Mehdi Tibouchi
Huaxiong Wang (Eds.)

Advances in Cryptology -
ASIACRYPT 2021

27th International Conference on the Theory

and Application of Cryptology and Information Security
Singapore, December 6-10, 2021

Proceedings, Part lli

Foen

LNCS 13092

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

13092

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://springerlink.bibliotecabuap.elogim.com/bookseries/7410

Mehdi Tibouchi - Huaxiong Wang (Eds.)

Advances in Cryptology —
ASIACRYPT 2021

27th International Conference on the Theory

and Application of Cryptology and Information Security
Singapore, December 6-10, 2021

Proceedings, Part III

@ Springer

Editors

Mehdi Tibouchi Huaxiong Wang

NTT Corporation Nanyang Technological University
Tokyo, Japan Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-030-92077-7 ISBN 978-3-030-92078-4 (eBook)

https://doi.org/10.1007/978-3-030-92078-4
LNCS Sublibrary: SL4 — Security and Cryptology

© International Association for Cryptologic Research 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2736-2963
https://orcid.org/0000-0002-7669-8922
https://doi.org/10.1007/978-3-030-92078-4

Preface

Asiacrypt 2021, the 27th Annual International Conference on Theory and Application
of Cryptology and Information Security, was originally planned to be held in Singapore
during December 6-10, 2021. Due to the COVID-19 pandemic, it was shifted to an
online-only virtual conference.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 341 submissions from all over the world, and the Program
Committee (PC) selected 95 papers for publication in the proceedings of the confer-
ence. The two program chairs were supported by a PC consisting of 74 leading experts
in aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. The two program chairs were not allowed to submit a paper, and PC
members were limited to two submissions each. There were approximately 363
external reviewers, whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 233 submissions to proceed to the second round
and the authors were then invited to provide a short rebuttal in response to the referee
reports. The second round involved extensive discussions by the PC members.

Alongside the presentations of the accepted papers, the program of Asiacrypt 2021
featured an IACR distinguished lecture by Andrew Chi-Chih Yao and two invited talks
by Kazue Sako and Yu Yu. The conference also featured a rump session which
contained short presentations on the latest research results of the field.

The four volumes of the conference proceedings contain the revised versions of the
95 papers that were selected, together with the abstracts of the IACR distinguished
lecture and the two invited talks. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Via a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “On the Hardness of the NTRU
problem” by Alice Pellet-Mary and Damien Stehlé (which received the best paper
award); “A Geometric Approach to Linear Cryptanalysis” by Tim Beyne (which
received the best student paper award); and “Lattice Enumeration for Tower NFS: a
521-bit Discrete Logarithm Computation” by Gabrielle De Micheli, Pierrick Gaudry,
and Cécile Pierrot. The authors of all three papers were invited to submit extended
versions of their manuscripts to the Journal of Cryptology.

Many people have contributed to the success of Asiacrypt 2021. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge

vi Preface

and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions. We are greatly indebted to Jian Guo, the
General Chair, for his efforts and overall organization. We thank San Ling and Josef
Pieprzyk, the advisors of Asiacrypt 2021, for their valuable suggestions. We thank
Michel Abdalla, Kevin McCurley, Kay McKelly, and members of IACR’s emergency
pandemic team for their work in designing and running the virtual format. We thank
Chitchanok Chuengsatiansup and Khoa Nguyen for expertly organizing and chairing
the rump session. We are extremely grateful to Zhenzhen Bao for checking all the
IXTEX files and for assembling the files for submission to Springer. We also thank
Alfred Hofmann, Anna Kramer, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2021 Mehdi Tibouchi
Huaxiong Wang

General Chair

Jian Guo

Organization

Nanyang Technological University, Singapore

Program Committee Co-chairs

Mehdi Tibouchi
Huaxiong Wang

Steering Committee

Masayuki Abe
Lynn Batten
Jung Hee Cheon
Steven Galbraith
D. J. Guan

Jian Guo

Khalid Habib
Lucas Hui
Nassar Ikram
Kwangjo Kim
Xuejia Lai
Dong Hoon Lee
Satya Lokam

NTT Corporation, Japan
Nanyang Technological University, Singapore

Dingyi Pei
Duong Hieu Phan
Raphael Phan
Josef Pieprzyk (Vice Chair)
C. Pandu Rangan
Bimal Roy
Leonie Simpson
Huaxiong Wang
Henry B. Wolfe
Duncan Wong
Tzong-Chen Wu
Bo-Yin Yang
Siu-Ming Yiu

Mitsuru Matsui (Chair) Yu Yu
Tsutomu Matsumoto Jianying Zhou
Phong Nguyen

Program Committee

IIT Madras, India

Royal Holloway, University of London, UK

Nanyang Technological University, Singapore
University of Porto (FCUP) and INESC TEC, Portugal

Shweta Agrawal
Martin R. Albrecht
Zhenzhen Bao
Manuel Barbosa

Lejla Batina Radboud University, The Netherlands

Sonia Belaid CryptoExperts, France

Fabrice Benhamouda Algorand Foundation, USA

Begiil Bilgin Rambus - Cryptography Research, The Netherlands

Xavier Bonnetain
Joppe W. Bos

University of Waterloo, Canada
NXP Semiconductors, Belgium

viii Organization

Wouter Castryck
Rongmao Chen
Jung Hee Cheon
Chitchanok
Chuengsatiansup
Kai-Min Chung
Dana Dachman-Soled
Bernardo David
Benjamin Fuller
Steven Galbraith
Maria Isabel Gonzalez
Vasco
Robert Granger
Alex B. Grilo
Aurore Guillevic
Swee-Huay Heng
Akinori Hosoyamada
Xinyi Huang
Andreas Hiilsing
Tetsu Iwata
David Jao
Jérémy Jean
Shuichi Katsumata
Elena Kirshanova
Hyung Tae Lee
Dongdai Lin

Rongxing Lu
Xianhui Lu

Mary Maller

Giorgia Azzurra Marson

Keith M. Martin
Daniel Masny
Takahiro Matsuda
Krystian Matusiewicz
Florian Mendel

Nele Mentens

Atsuko Miyaji
Michael Naehrig
Khoa Nguyen
Miyako Ohkubo
Emmanuela Orsini
Jiaxin Pan

Panos Papadimitratos

KU Leuven, Belgium

National University of Defense Technology, China
Seoul National University, South Korea

The University of Adelaide, Australia

Academia Sinica, Taiwan

University of Maryland, USA

IT University of Copenhagen, Denmark
University of Connecticut, USA

The University of Auckland, New Zealand
Universidad Rey Juan Carlos, Spain

University of Surrey, UK

CNRS, LIP6, Sorbonne Université, France

Inria, France

Multimedia University, Malaysia

NTT Corporation and Nagoya University, Japan

Fujian Normal University, China

Eindhoven University of Technology, The Netherlands

Nagoya University, Japan

University of Waterloo and evolutionQ, Inc., Canada

ANSSI, France

AIST, Japan

I. Kant Baltic Federal University, Russia

Chung-Ang University, South Korea

Institute of Information Engineering, Chinese Academy
of Sciences, China

University of New Brunswick, Canada

Institute of Information Engineering, Chinese Academy
of Sciences, China

Ethereum Foundation, UK

NEC Labs Europe, Germany

Royal Holloway, University of London, UK

Visa Research, USA

AIST, Japan

Intel Corporation, Poland

Infineon Technologies, Germany

Leiden University, The Netherlands, and KU Leuven,
Belgium

Osaka University, Japan

Microsoft Research, USA

Nanyang Technological University, Singapore

NICT, Japan

KU Leuven, Belgium

NTNU, Norway

KTH Royal Institute of Technology, Sweden

Alice Pellet-Mary

Duong Hieu Phan

Francisco
Rodriguez-Henriquez

Olivier Sanders

Jae Hong Seo

Haya Shulman

Daniel Slamanig

Ron Steinfeld

Willy Susilo

Katsuyuki Takashima

Qiang Tang

Serge Vaudenay

Damien Vergnaud

Meiqin Wang
Xiaoyun Wang
Yongge Wang
Wenling Wu

Chaoping Xing
Sophia Yakoubov
Takashi Yamakawa
Bo-Yin Yang

Yu Yu
Hong-Sheng Zhou

Additional Reviewers

Behzad Abdolmaleki
Gorjan Alagic

Orestis Alpos

Miguel Ambrona
Diego Aranha

Victor Arribas
Nuttapong Attrapadung
Benedikt Auerbach
Zeta Avarikioti
Melissa Azouaoui
Saikrishna Badrinarayanan
Joonsang Baek

Karim Baghery

Shi Bai

Gustavo Banegas
Subhadeep Banik

Organization ix

CNRS and University of Bordeaux, France
Télécom Paris, Institut Polytechnique de Paris, France
CINVESTAV, Mexico

Orange Labs, France

Hanyang University, South Korea

Fraunhofer SIT, Germany

AIT Austrian Institute of Technology, Austria

Monash University, Australia

University of Wollongong, Australia

Waseda University, Japan

The University of Sydney, Australia

EPFL, Switzerland

Sorbonne Université and Institut Universitaire
de France, France

Shandong University, China

Tsinghua University, China

UNC Charlotte, USA

Institute of Software, Chinese Academy of Sciences,
China

Shanghai Jiao Tong University, China

Aarhus University, Denmark

NTT Corporation, Japan

Academia Sinica, Taiwan

Shanghai Jiao Tong University, China

Virginia Commonwealth University, USA

James Bartusek
Balthazar Bauer
Rouzbeh Behnia
Yanis Belkheyar

Josh Benaloh

Ward Beullens

Tim Beyne

Sarani Bhattacharya
Rishiraj Bhattacharyya
Nina Bindel

Adam Blatchley Hansen
Olivier Blazy
Charlotte Bonte
Katharina Boudgoust
Ioana Boureanu
Markus Brandt

X Organization

Anne Broadbent
Ileana Buhan
Andrea Caforio
Eleonora Cagli
Sébastien Canard
Ignacio Cascudo
Gaétan Cassiers
André Chailloux
Tzu-Hsien Chang
Yilei Chen

Jie Chen

Yanlin Chen
Albert Cheu
Jesus-Javier Chi-Domiguez
Nai-Hui Chia
Tlaria Chillotti
Ji-Jian Chin
Jérémy Chotard
Sherman S. M. Chow
Heewon Chung
Jorge Chavez-Saab
Michele Ciampi
Carlos Cid
Valerio Cini
Tristan Claverie
Benoit Cogliati
Alexandru Cojocaru
Daniel Collins
Kelong Cong
Craig Costello
Geoffroy Couteau
Daniele Cozzo
Jan Czajkowski
Tianxiang Dai
Wei Dai

Sourav Das
Pratish Datta
Alex Davidson
Lauren De Meyer
Elke De Mulder
Claire Delaplace

Cyprien Delpech de Saint Guilhem

Patrick Derbez
Siemen Dhooghe
Daniel Dinu
Christoph Dobraunig

Samuel Dobson
Luis J. Dominguez Perez
Jelle Don
Benjamin Dowling
Maria Eichlseder
Jesse Elliott

Keita Emura
Muhammed F. Esgin
Hulya Evkan

Lei Fan

Antonio Faonio
Hanwen Feng
Dario Fiore
Antonio Florez-Gutierrez
Georg Fuchsbauer
Chaya Ganesh
Daniel Gardham
Rachit Garg
Pierrick Gaudry
Romain Gay
Nicholas Genise
Adela Georgescu
David Gerault
Satrajit Ghosh
Valerie Gilchrist
Aron Gohr
Junqging Gong
Marc Gourjon
Lorenzo Grassi
Milos Grujic
Aldo Gunsing
Kaiwen Guo
Chun Guo

Qian Guo

Mike Hamburg
Ben Hamlin
Shuai Han
Yonglin Hao
Keisuke Hara
Patrick Harasser
Jingnan He

David Heath
Chloé Hébant
Julia Hesse

Ryo Hiromasa
Shiqi Hou

Lin Hou
Yao-Ching Hsieh
Kexin Hu

Jingwei Hu
Zhenyu Huang
Lois Huguenin-Dumittan
Arnie Hung
Shih-Han Hung
Kathrin Hovelmanns
Ilia Iliashenko
Aayush Jain
Yanxue Jia
Dingding Jia

Yao Jiang

Floyd Johnson
Luke Johnson
Chanyang Ju
Charanjit S. Jutla
John Kelsey
Taechan Kim
Myungsun Kim
Jinsu Kim

Minkyu Kim
Young-Sik Kim
Sungwook Kim
Jiseung Kim
Kwangjo Kim
Seungki Kim
Sunpill Kim
Fuyuki Kitagawa
Susumu Kiyoshima
Michael Kloof
Dimitris Kolonelos
Venkata Koppula
Liliya Kraleva
Mukul Kulkarni
Po-Chun Kuo
Hilder Vitor Lima Pereira
Russell W. F. Lai
Jianchang Lai
Yi-Fu Lai

Virginie Lallemand
Jason LeGrow
Joohee Lee
Jooyoung Lee
Changmin Lee

Organization

Hyeonbum Lee
Moon Sung Lee
Keewoo Lee
Dominik Leichtle
Alexander Lemmens
Gaétan Leurent
Yannan Li
Shuaishuai Li
Baiyu Li

Zhe Li

Shun Li

Liang Li

Jianwei Li

Trey Li

Xiao Liang
Chi-Chang Lin
Chengjun Lin
Chao Lin
Yao-Ting Lin

Eik List

Feng-Hao Liu
Qipeng Liu
Guozhen Liu
Yunwen Liu
Patrick Longa
Sebastien Lord
George Lu

Yuan Lu

Yibiao Lu
Xiaojuan Lu

Ji Luo

Yiyuan Luo
Mohammad Mahzoun
Monosij Maitra
Christian Majenz
Ekaterina Malygina
Mark Manulis
Varun Maram
Luca Mariot

Loic Masure

Bart Mennink
Simon-Philipp Merz
Peihan Miao
Kazuhiko Minematsu
Donika Mirdita
Pratyush Mishra

xi

xii Organization

Tomoyuki Morimae
Pratyay Mukherjee
Alex Munch-Hansen
Yusuke Naito

Ngoc Khanh Nguyen
Jianting Ning

Ryo Nishimaki

Anca Nitulescu
Kazuma Ohara
Cristina Onete
Jean-Baptiste Orfila
Michele Orru

Jong Hwan Park
Jeongeun Park

Robi Pedersen

Angel L. Perez del Pozo
Léo Perrin

Thomas Peters
Albrecht Petzoldt
Stjepan Picek

Rafael del Pino
Geong Sen Poh
David Pointcheval
Bernardo Portela
Raluca Posteuca
Thomas Prest

Robert Primas

Chen Qian

Willy Quach

Md Masoom Rabbani
Rahul Rachuri
Srinivasan Raghuraman
Sebastian Ramacher
Matthieu Rambaud
Shahram Rasoolzadeh
Krijn Reijnders

Joost Renes

Elena Reshetova
Mélissa Rossi

Mike Rosulek

Yann Rotella

Joe Rowell

Arnab Roy

Partha Sarathi Roy
Alexander Russell
Carla Rafols

Paul Rosler

Yusuke Sakai

Amin Sakzad

Yu Sasaki

Or Sattath

John M. Schanck
Lars Schlieper
Martin Schlifer
Carsten Schmidt
André Schrottenloher
Jacob Schuldt
Jean-Pierre Seifert
Yannick Seurin
Yaobin Shen

Yixin Shen
Yu-Ching Shen
Danping Shi

Omri Shmueli

Kris Shrishak
Hervais Simo Fhom
Luisa Siniscalchi
Daniel Smith-Tone
Fang Song

Pratik Soni

Claudio Soriente
Akshayaram Srinivasan
Douglas Stebila
Damien Stehlé
Bruno Sterner
Christoph Striecks
Patrick Struck
Adriana Suarez Corona
Ling Sun

Shi-Feng Sun
Koutarou Suzuki
Aishwarya T

Erkan Tairi

Akira Takahashi
Atsushi Takayasu
Abdul Rahman Taleb
Younes Talibi Alaoui
Benjamin Hong Meng Tan
Syh-Yuan Tan
Titouan Tanguy
Alexander Tereshchenko
Adrian Thillard

Emmanuel Thomé
Tyge Tiessen

Radu Titiu

Ivan Tjuawinata
Yosuke Todo

Junichi Tomida
Bénédikt Tran

Jacques Traoré

Ni Trieu

Ida Tucker

Michael Tunstall
Dominique Unruh
Thomas Unterluggauer
Thomas van Himbeeck
Daniele Venturi

Jorge Villar

Mikhail Volkhov
Christine van Vredendaal
Benedikt Wagner
Riad Wahby

Hendrik Waldner
Alexandre Wallet
Junwei Wang

Qingju Wang

Yuyu Wang

Lei Wang

Senpeng Wang

Peng Wang

Weijia Wang

Yi Wang

Organization

Han Wang

Xuzi Wang

Yohei Watanabe
Florian Weber
Weiqgiang Wen
Nils Wisiol
Mathias Wolf
Harry H. W. Wong
Keita Xagawa
Zejun Xiang
Jiayu Xu

Luyao Xu

Yaqi Xu

Shota Yamada
Hailun Yan
Wenjie Yang
Shaojun Yang
Masaya Yasuda
Wei-Chuen Yau
Kazuki Yoneyama
Weijing You
Chen Yuan

Tsz Hon Yuen
Runzhi Zeng
Cong Zhang
Zhifang Zhang
Bingsheng Zhang
Zhelei Zhou

Paul Zimmermann
Lukas Zobernig

Xiii

Contents — Part II1

NIZK and SNARKS

Lunar: A Toolbox for More Efficient Universal and Updatable zkSNARKSs

and Commit-and-Prove Extensions

Matteo Campanelli, Antonio Faonio, Dario Fiore, Anais Querol,
and Hadrian Rodriguez

Gentry-Wichs is Tight: a Falsifiable Non-adaptively Sound SNARG

Helger Lipmaa and Kateryna Pavilyk

Proofs for Inner Pairing Products and Applications

Benedikt Biinz, Mary Maller, Pratyush Mishra, Nirvan Tyagi,
and Psi Vesely

Snarky Ceremonies o vt v vt

Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov

Efficient NIZKs for Algebraic Sets

Geoffroy Couteau, Helger Lipmaa, Roberto Parisella,
and Arne Tobias Odegaard

Theory

Bit Security as Computational Cost for Winning Games with High

Probability

Shun Watanabe and Kenji Yasunaga

Giving an Adversary Guarantees (Or: How to Model Designated Verifier

Signatures in a Composable Framework)

Ueli Maurer, Christopher Portmann, and Guilherme Rito

How to Build a Trapdoor Function from an Encryption Scheme

Sanjam Garg, Mohammad Hajiabadi, Giulio Malavolta,
and Rafail Ostrovsky

Beyond Software Watermarking: Traitor-Tracing

for Pseudorandom Functions.

Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu

Batching Base Oblivious Transfers

lan McQuoid, Mike Rosulek, and Lawrence Roy

Xvi Contents — Part III

Algebraic Adversaries in the Universal Composability Framework 311
Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss,
and Jiayu Xu

Symmetric-Key Constructions

Luby-Rackoff Backwards with More Users and More Security 345
Srimanta Bhattacharya and Mridul Nandi

Double-Block-Length Hash Function for Minimum Memory Size 376
Yusuke Naito, Yu Sasaki, and Takeshi Sugawara

Toward a Fully Secure Authenticated Encryption Scheme from a
Pseudorandom Permutation 407
Wonseok Choi, Byeonghak Lee, Jooyoung Lee, and Yeongmin Lee

Tight Security for Key-Alternating Ciphers with Correlated Sub-keys 435
Stefano Tessaro and Xihu Zhang

FAST: Secure and High Performance Format-Preserving Encryption and
Tokenization. 465
F. Betiil Durak, Henning Horst, Michael Horst, and Serge Vaudenay

Fine-Tuning the ISO/IEC Standard LightMAC 490
Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi

Categorization of Faulty Nonce Misuse Resistant Message Authentication ... 520
Yu Long Chen, Bart Mennink, and Bart Preneel

Homomorphic Encryption and Encrypted Search

Balanced Non-adjacent Forms. 553
Marc Joye
Efficient Boolean Search over Encrypted Data with Reduced Leakage. 577

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

Revisiting Homomorphic Encryption Schemes for Finite Fields 608
Andrey Kim, Yuriy Polyakov, and Vincent Zucca

Transciphering Framework for Approximate Homomorphic Encryption 640
Jihoon Cho, Jincheol Ha, Seongkwang Kim, Byeonghak Lee,
Joohee Lee, Jooyoung Lee, Dukjae Moon, and Hyojin Yoon

Contents — Part III Xvii

Improved Programmable Bootstrapping with Larger Precision and Efficient
Arithmetic Circuits for TFHE L 670
llaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap

Author Index 701

NIZK and SNARKSs

®

Check for
updates

Lunar: A Toolbox for More Efficient
Universal and Updatable zkSNARKSs
and Commit-and-Prove Extensions

Matteo Campanelli'®™) Antonio Faonio?, Dario Fiore®, Anais Querol4®)
and Hadrian Rodriguez?

! Aarhus University, Aarhus, Denmark
matteo@cs.au.dk
2 EURECOM, Sophia Antipolis, France
antonio.faonio@eurecom.fr
3 IMDEA Software Institute, Madrid, Spain
{dario.fiore,anais.querol,hadrian.rodriguez}@imdea.org
4 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. We study how to construct zkSNARKs whose SRS is univer-
sal and updatable, i.e., valid for all relations within a size-bound and to
which a dynamic set of participants can indefinitely add secret random-
ness. Our focus is: efficient universal updatable zkSNARKSs with linear-
size SRS and their commit-and-prove variants. We both introduce new
formal frameworks and techniques, as well as systematize existing ones.

We achieve a collection of zkSNARKSs with different tradeoffs. One
of our schemes achieves the smallest proof size and proving time com-
pared to the state of art for proofs for arithmetic circuits. The language
supported by this scheme is a variant of R1CS that we introduce, called
R1CS-lite. Another of our constructions directly supports standard R1CS
and achieves the fastest proving time for this type of constraints.

These results stem from different contributions: (1) a new
algebraically-flavored variant of IOPs that we call Polynomial Holo-
graphic IOPs (PHPs); (2) a new compiler that combines our PHPs with
commit-and-prove zkSNARKs (CP-SNARKs) for committed polynomi-
als; (3) pairing-based realizations of these CP-SNARKs for polynomials;
(4) constructions of PHPs for R1CS and R1CS-lite. Finally, we extend
the compiler in item (2) to yield commit-and-prove universal zkSNARKs.

Keywords: zkSNARK - Universal SRS - Polynomial commitments -
10P

1 Introduction

A zero-knowledge proof system [31] allows a prover to convince a verifier
that a non-deterministic computation accepts without revealing more infor-
mation than its input. In the last decade, there has been growing interest in
zero-knowledge proof systems that additionally are succinct and non interac-
tive [12,29,40,46], dubbed zkSNARKs. These are computationally-sound proof

© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASTACRYPT 2021, LNCS 13092, pp. 3-33, 2021.
https://doi.org/10.1007/978-3-030-92078-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92078-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-92078-4_1

4 M. Campanelli et al.

systems (arguments) that are succinct, in that their proofs are short and efficient
to verify: the proof size and verification time should be constant or polylogarith-
mic in the length of the non-deterministic witness. In circuit-based arguments for
general computations the verifier must at least read the statement to be proven
which includes both the description of the computation (i.e., the circuit) and its
input (i.e., public input). But this is not succinct; by reading the whole circuit,
the verifier runs linearly in the size of the computation. Preprocessing zkSNARKs
try and work around this problem [13,28,32,44]. Here the verifier generates a
structured reference string (SRS) that depends on a certain circuit C; it does this
once and for all. This SRS can be used later to verify an unbounded number
of proofs for the computation of C. This is a succinct system: while the cost of
SRS generation does depend on |C|, proof verification does not have to.

Works on subversion-resistance show that CRS can be generated by a veri-
fier with no impact on security [1,3,24]. But contexts with many verifiers, e.g.
blockchains, require a trusted party. Solutions that mitigate this problem (e.g.
MPC secure against dishonest majority [7]) are still expensive and often imprac-
tical as they should be carried out for each single C. To address this problem,
Groth et al. [34] introduced the model of universal and updatable SRS. An SRS
is universal if it can be used to generate and verify proofs for all circuits of some
bounded size; it is updatable if any user can add randomness to it and a sequence
of updates makes it secure if at least one user acted honestly. They proposed the
first such zkSNARK, but their scheme requires an SRS of size quadratic in the
number of multiplication gates of the supported arithmetic circuits (and similar
quadratic update/verification time).

Recent works [18,19,21,27,45, 53] have improved on this result obtaining uni-
versal and updatable SRS whose size is linear in the largest supported circuit.
In particular, the current MARLIN [19] and PLONK [27] proof systems achieve
a proving time concretely faster than that of Sonic [45] while retaining constant-
size proofs ([18,21,53] have instead polylogarithmic-size proofs). We also mention
the very recent works of Biinz, Fisch and Szepieniec [17], and Chiesa, Ojha and
Spooner [20] that proposed zkSNARKs in the uniform random string (URS)
model, that is implicitly universal and updatable; their constructions have a
short URS and poly-logarithmic-size proofs. Yet another universal zkSNARK
construction is that in [41] which, despite its proofs of 4 group elements and
comparable proving time, has an SRS which is not updatable.

Many of these efficient constructions (and the ones in this work) follow a
similar blueprint to build zkSNARKSs, which we now overview.

The Current Landscape of zkSNARKSs with Universal SRS. A known
modular paradigm to build efficient cryptographic arguments [36,37] works in two
distinct steps. First construct an information-theoretic protocol in an abstract
model, e.g., interactive proofs [31], standard or linear PCPs [13], IOPs [9,48]. Then
apply a compiler that, taking an abstract protocol as input, transforms it into
an efficient computationally sound argument via a cryptographic primitive. This
approach has been successfully adopted to construct zkSNARKSs with universal
SRS in the recent works [17,19,27], in which the information theoretic object is
an algebraically-flavored variant of Interactive Oracle Proofs (IOPs), while the

Lunar 5

cryptographic primitive are polynomial commitments [39]. Through polynomial
commitments, a prover can compress a polynomial p (as a message much shorter
than all its concatenated coefficients) and can later open the commitment at eval-
uations of p, namely to convince a verifier that y = p(z) for public points and y.
In these IOP abstractions—called algebraic holographic proofs (AHP) in [19] and
polynomial IOPs' in [17]—a prover and a verifier interact, one providing oracle
access to a set of polynomials and the other sending random challenges (if public-
coin). At the end of the protocol the verifier asks for evaluations of these polyno-
mials and decides to accept or reject based on the responses. The idealized low-
degree protocols (ILDPs) abstraction of [27] proceeds similarly except that in the
end the verifier asks to verify a set of polynomial identities over the oracles sent
by the prover (which can be tested via evaluation on random points). To build a
zkSNARK with universal SRS starting from AHPs/ILDPs we let the prover com-
mit to the polynomials obtained from the AHP/ILDP prover, and then use the
opening feature of polynomial commitments to respond to the evaluation queries
in a sound way. As we detail later, our contribution revisits the aforementioned
blueprint to construct universal zkSNARKSs.

1.1 Owur Contribution

In this work we propose Lunar, a family of new preprocessing zkSNARKs in
the universal and updatable SRS model that have constant-size proofs and that
improve on previous work [19,27,45] as to proof size and prover running time.
In Table 1, we present a detailed efficiency comparison between prior work
and the best representatives of our schemes, when using arithmetic circuit satis-
fiability as common benchmark. LunarLite has the smallest proof size (384 bytes
over curve BN128; 544 bytes over BLS12-381)? and the lowest proving time com-
pared to the state of art of universal zkSNARKs with constant-size proofs for
arithmetic circuits. As we explain later, LunarLite uses a new arithmetization of
arithmetic circuit satisfiability that we call R1CS-lite, quite similar to rank-1
constraint systems (R1CS). A precise comparison to PLONK depends on the
circuit structure and how the number m of nonzero entries of R1CS-lite matri-
ces depends on the number a of addition gates®; for instance, PLONK is faster
for circuits with only multiplication gates, but LunarLite is faster when m < 3a.
If we focus the comparison on solutions that directly support R1CS (of which
MARLIN [19] is the most performant among prior work), our scheme Lunarlcs
(fast & short) offers the smallest SRS, the smallest proof and the fastest prover.
This comes at the price of higher constants for the size of the (specialized)
verification key and verification time®. Lunarlcs (short vk) offers a tradeoff: it
has smaller verification key and faster verification time, but slightly larger proofs,
3x larger SRS, and 5m more Gi-exponentiations at proving time than Lunarlcs
(fast & short). Even with this tradeoff, Lunarlcs (short vk) outperforms MARLIN

! Hereinafter we use AHP/PIOPs interchangeably as they are almost the same notion.

2 BN128 is 100-bits-secure while BLS12-381 has 128-bits-security.

3 Applying [14] PLONK’s proving time drops to 8n + 8a, but our analysis still holds.

* In practice this overhead is negligible. Lunarlcs (fast & short) takes 7 pairings to
verify (/35 ms); faster schemes, including some from this work, take 2 (~10 ms).

6 M. Campanelli et al.

in all these measures. We implemented Lunar’s building blocks and we confirm
our observations experimentally (check full version).

Table 1. Efficiency of universal and updatable practical zkSNARKs for arithmetic
circuit satisfiability with O(1) proofs. n: number of multiplication gates; a: number of
addition gates; m > n: number of nonzero entries in R1CS(-lite) matrices encoding the
circuit; N, N*, A and M: largest supported values for n,a + m,a and m respectively.

ZKSNARK size . time .
|srs| |ekr| |vkg||m| KeyGen Derive Prove Verify
.. Gi 4N 36n 20 AN 36n 273n L.
Sonic . 7 pairings
[45] Gy 4N — 3 — 4N — —
F 16 O(mlogm) O(mlogm) O(l+logm)
G 3M 3m 12 13 3M 12m 14n+8m .
MARLIN 2 pairings
b G2 — 02— — — —
F 8 O(mlogm) O(mlogm) O(L+logm)
(small proof) 3N*3n+3a 8 7 3N* 8n+8a 11n+11la
(fast prover) = N* nta 8 9 N* 8n+3a 9n+9a
PLONK Gy 1 1 1 2 pairings
[27] F — — — 7 — O((n+a)log(n+a)) O((n+a)log(n+a)) O(L+log(n+a))
G, M m 10 M 8n+3m 7 i
LunarLite G, M — 27T — M 24m —
[this work] TF 2 O(mlogm) O(mlogm) O(¢+logm)
G, M m 11 M In+3m 7 i
Lunarles Gy M — 60 — M 57Tm —
(fast & short) F 2 O(mlogm) O(mlogm) O(¢+logm)
Gy 3M 3m 12 12 3M 12m In+8m 2 pairings
Lunarles Gy 1 — 1 = 1 — —
(short vk) T 5 O(mlogm) O(mlogm) O(l+logm)

Our main contribution to achieve this result is to revisit the aforementioned
blueprint to construct universal zkSNARKs by proposing: (1) a new algebraically-
flavored variant of IOPs, Polynomial Holographic IOPs (PHPs), and (2) a new
compiler that builds universal zkSNARKs by using our PHPs together with
commit-and-prove zkSNARKs (CP-SNARKs) [18] for committed polynomials.
Additional contributions include: (3) pairing-based realizations of these CP-
SNARKs for polynomials, (4) constructions of PHPs for both R1CS and a novel
simplified variant of it, (5) a variant of the compiler (2) that yields a commit-and-
prove universal zkSNARK. The latter is the first general compiler from (alge-
braic) IOPs to commit-and-prove zkSNARKs. A CP-SNARK permits to verify
a proof through a commitment to an input (rather than an input in the clear)
that, crucially, we can reuse among proofs®. Below we detail our contributions.

Polynomial Holographic IOPs (PHPs). Our PHPs generalize AHPs® as
well as ILDPs. A PHP consists of an interaction between a verifier and a prover
sending oracle polynomials, followed by a decision phase in which the verifier

5 We compose CP-SNARKSs as gadgets to modularly build complex schemes; as studied
recently [18,54], they are useful to prove properties of committed values [11,35].
% PHPs generalize AHPs where the verifier is “algebraic”, including all schemes in [19].

Lunar 7

outputs a set of polynomial identities to be checked on the prover’s polynomials

(such as a(X)b(X) — z - ¢(X) 20, for oracle polynomials a, b, ¢ and some scalar
z), as well as a set of degree tests (e.g. deg(a(X)) < D). The PHP model is close
to ILDPs, but the two differ with respect to zero-knowledge formalizations: while
ILDPs lack one altogether, we introduce and formalize a fine-grained notion of
zero-knowledge—called (by, . . ., b,)-bounded zero-knowledge—where the verifier
may learn up to b; evaluations of the i-th oracle polynomial. When compared
to AHPs, PHP has, again, a more granular notion of zero-knowledge, as well as
verification queries that are more expressive than mere polynomial evaluations.
As we shall discuss next, these two properties of PHPs—expressive verifier’s
queries and a highly flexible zero-knowledge notion—naturally capture more
(and more efficient) strategies when compiling into a cryptographic argument
(e.g., we can weaken the required hiding property of the polynomial commit-
ments and the zero-knowledge of the CP-SNARKSs used in our compiler).

From PHPs to zkSNARKs Through Another Model of Polynomial
Commitments. We describe how to compile a (public-coin) PHP into a
zkSNARK. For AHPs and ILDPs [19,27], compilation works by letting the prover
use polynomial commitments on the oracles and then open them to the evalua-
tions asked by the verifier. Our approach, though similar, has a key distinction:
a different formalization of polynomial commitments with a modular design.

Our notion of polynomial commitments is modular: rather than seeing them
as a monolithic primitive—a tuple of algorithms for both commitment and
proofs—we split them into two parts, i.e., a regular commitment scheme with
polynomials as message space, and a collection of commit-and-prove SNARKSs
(CP-SNARKS) for proving relations over committed polynomials. We find sev-
eral advantages in this approach.

As already argued in prior work on modular zkSNARKs through the commit-
and-prove strategy [11,18], one benefit of this approach is separation of concerns:
commitments are required to do one thing independently of the context (com-
mitting), whereas what we need to prove about them may depend on where we
are applying them. For example, we often want to prove evaluation of commit-
ted polynomials: given a commitment ¢ and points z,y, prove that y = p(x)
and ¢ opens to p. But to compile a PHP (or AHP/ILDP) we also need to be
able to prove other properties about them, such as checking degree bounds or
testing equations over committed polynomials. Because these properties—and
the techniques to prove them—are somehow independent from each other, we
argue they should not be bundled under a bloated notion of polynomial com-
mitment. Going one step further in this direction, we formalize commitment
extractability as a proof of knowledge of opening of a polynomial commitment.
This modular design allows us to describe an abstract compiler that assumes
generic CP-SNARKSs for the three aforementioned relations—proof of knowledge
of opening, degree bounds and polynomial equations—and can yield zkSNARKSs
with different tradeoffs depending on how we instantiate them.

We also find additional benefits of the modular abstraction. First, a CP-
SNARK for testing equations over committed polynomials more faithfully cap-
tures the goal of the PHP verifier (as well as the AHP verifier in virtually all

8 M. Campanelli et al.

known constructions). Second, we can allow for realizations of CP-SNARKSs for
equations over polynomials other than the standard one, which reduces the prob-
lem of (batched) polynomial evaluations via random point evaluation. As an
application, we show a simple scheme for quadratic equations that can even
have an empty proof (see below); our most efficient realizations exploit this fact.

From PHPs to zkSNARKS: Fine-Grained Leakage Requirements. Our
second contribution on the compiler is to minimize the requirements needed to
achieve zero-knowledge. As we shall discuss later, this allows us to obtain more
efficient zkSNARKSs. A straightforward compiler from PHPs to zkSNARKs would
require hiding polynomial commitments and zero-knowledge CP-SNARKS; we
weaken both requirements. Instead of “fully” hiding commitments, our compiler
requires only somewhat hiding commitments. This new property guarantees, for
each committed polynomial, leakage of at most one evaluation on a random
point. Instead of compiling through “full” zero-knowledge CP-SNARKSs, our
compiler requires only (b, ..., b,)-leaky zero-knowledge CP-SNARKs. This new
notion is weaker than zero-knowledge and states that the verifier may learn up to
b; evaluations of the i-th committed polynomial.

We show that by using a somewhat-hiding commitment scheme and a (bq, .. .,
b,)-leaky zero-knowledge CP-SNARK that can prove the checks of the PHP
verifier, one can compile a PHP that is (b; + 1,...,b, + 1)-bounded ZK into a
fully-zero-knowledge succinct argument.

Although related ideas were used in constructions in previous works [27], our
contribution is to systematically formalize (as well as expand) the properties
needed on different fronts: the PHP, the commitment scheme, the CP-SNARKSs
used as building blocks and the interaction among all these in the compiler.

Pairing-Based CP-SNARKSs for Committed Polynomials. We consider
the basic commitment scheme for polynomials consisting of giving a “secret-
point evaluation in the exponent” [32,39] and then show CP-SNARKSs for various
relations over that same commitment scheme. In particular, by using techniques
from previous works [19,27,39] we show CP-SNARKSs for: proof of knowledge of
an opening in the algebraic group model [25] (which actually comes for free),
polynomial evaluation, degree bounds, and polynomial equations. In addition to
these, we propose a new CP-SNARK for proving opening of several commitments
with a proof consisting of one single group element; the latter relies on the PKE
assumption [32] in the random oracle model. Also, we show that for a class of
quadratic equations over committed polynomials (notably capturing some of the
checks of our PHPs), we can obtain an optimized CP-SNARK in which the proof
is empty as the verifier can test the relation using a pairing with the inputs (the
inputs are commitments, i.e., group elements). This technique is reminiscent of
the compiler from [13] that relies on linear encodings with quadratic tests.

PHPs for Constraint Systems. We propose a variety of PHPs for the R1CS
constraint system and for a simplified variant of it that we call R1CS-lite. In
brief, R1CS-lite is defined by two matrices L, R and accepts a vector x if there
is a w such that, for ¢ = (1,x,w), L-co R- ¢ = ¢. We show that R1CS-lite

Lunar 9

can express arithmetic circuit satisfiability with essentially the same complexity
of R1CS, and its simpler form allows us to design slightly simpler PHPs. We
believe this characterization of NP problems to be of independent interest.

Part of our techniques stem from those in Marlin [19]: we adopt their encoding
of sparse matrices; also one of our main building blocks is the sumcheck protocol
from Aurora of Ben-Sasson et al. [8]. But in our PHPs we explore a different
protocol that proves properties of sparse matrices and we introduce a refined
efficient technique for zero-knowledge in a univariate sumcheck. In a nutshell,
compared to [8] we show how to choose the masking polynomial with a specific
sparse distribution that has only a constant-time impact on the prover. This
idea and analysis of this technique is possible thanks to our fine-grained ZK
formalism for PHPs. By combining this basic skeleton with different techniques
we can obtain PHPs with different tradeoffs (see Table 2).

Commit-and-Prove zkSNARKSs from PHPs. We propose the first gen-
eral compiler from an information-theoretic object such as (algebraic) IOPs—
and more in general PHPs—to Commit-and-Prove zkSNARKSs”. Recall that the
latter is a SNARK where the verifier’s input includes one (or several) reusable
hiding commitment(s), i.e., to check that R(uy,...,us) holds for a tuple of com-
mitments (¢;);efq such that ¢; opens to u;. By reusable we mean that these
commitments could be used in multiple proofs and with different proof systems
since their commitment key is generated before the setup of the proof system.
To obtain a CP-SNARK we cannot apply the committing methods for polyno-
mials used in [19,27]: these require a known bound on how many times we will
evaluate the polynomials. This is analogous to knowing a bound on the number
of proofs over those same committed polynomials, which may be unknown at
commitment time. Therefore we apply more stringent requirements and assume
these commitments to be full-fledged hiding rather than just somewhat-hiding.

To obtain our commit-and-prove compiler we adapt our compiler to
zkSNARKSs to include the following key idea: we prove a “link” between the
committed witnesses (uj);cgq—which open hiding commitments (¢;);c(q—and
the PHP polynomials (p;);cn—which open somewhat-hiding commitments
(¢j)jem)- We design a specific CP-SNARK for this task, CPji,x. Our construc-
tion works for pairing-based commitments and supports a wide class of linking
relations which include those in our PHP constructions.

Simplifying a little bit, our techniques involve proving equality of images
of distinct (committed) polynomials on distinct domains and they are of inde-
pendent interest. In particular they can plausibly be adapted to compile other
zkSNARKSs with similar properties—e.g., Marlin or PLONK [19,27]—into CP-
SNARKSs with commitments that can be reused among different proofs.

Efficient CP-SNARKSs with a universal setup are strongly motivated by prac-
tical applications. One of them is committing-ahead-of-time [10,18] in which we
commit to a value possibly before we can predict what we are going to prove
about it. A CP-SNARK with a universal SRS, like those in this work, can be a

" Here we do not consider the alternative approach of explicitly proving in the PHP
a relation augmented with commitment opening; this is often too expensive [18].

10 M. Campanelli et al.

requirement in the context of committing-ahead-of-time: if the setting requires
committing to data before knowing what properties to prove about them (which
can happen on-demand), the same setting can benefit from an (unspecialized)
SRS string available before knowing what to prove about the committed data.

Our work improves on the efficiency of LegoUAC in [18], a modular CP-
SNARK construction with universal setup for universal relations (and the only
one in literature to the best of our knowledge). Our results are also complemen-
tary to those of [18] (in particular their specialized CP-SNARKs with universal
setup) and to those of works on efficient composable CP-SNARKs on commit-
ments in prime order groups, such as [11]: our universal CP-SNARK can be
composed with the schemes in these works as they can all be derived from the
same SRS, or with some of the transparent instantiations in [11].

1.2 Other Related Work

In this work we focus on practical zkSNARKSs with a universal and updatable
setup and constant-size proofs. Recent work builds on our formalizations to
expand this area designing a fully algebraic framework for modular arguments
[47]. Here we briefly survey other works that obtain universality through other
approaches at the cost of a larger proof size.

Concurrent work in [42] proposes a new scheme with universal—but not
updatable—SRS and an asymptotically linear prover (our prover is quasi-linear
due to the use of FFT). By recursive composition they achieve an asymptotically
O (1)-size proof. In practice this is about 9x larger than some of our proofs.

Spartan [49] obtains preprocessing arguments with a URS; it trades a trans-
parent setup for larger arguments and less efficient verification, ranging from
O(log?(n) to O(y/n), depending on the instantiation.

Concurrent work in [43] extends Spartan techniques obtaining a linear-time
prover. They obtain asymptotically constant-sized proofs through one step of
recursive composition with Grothl6 [33]; they do not discuss concrete proof
sizes. This, however, yields a scheme with universal but not updatable setup. It
would require an existing scheme with universal and updatable setup to achieve
the latter; their work can thus be seen as complementary to ours.

Other works obtain universal SNARGS through a transparent setup and
by exploiting the structure of the computation for succinctness. They mainly
use two classes of techniques: hash-based vector commitments applied to oracle
interactive proofs [4—6] or multivariate polynomial commitments and doubly-
efficient interactive proofs [51,53,55-58].

Fractal [20] achieves transparent zkSNARKs with recursive composition—
the ability of a SNARG to prove computations involving prior SNARGs. Their
work also uses an algebraically-flavored variant of interactive oracle proofs that
they call Reed-Solomon encoded holographic I0Ps.

Another line of work, e.g., [2,8,15,16,26], obtains a restricted notion of suc-
cinctness with no preprocessing, a linear verifier and sublinear proof size.

Lunar 11

1.3 Outline

See Sect. 2 for preliminaries. In Sect.3 we define PHPs; we describe PHP con-
structions in Sect.4. Section5 describes how to compile PHPs to universal
zkSNARKSs. Concrete compilations for the Lunar zkSNARKSs are in Sect. 6.

2 Preliminaries and Notation

Universal Relations. A universal relation R is a set of triples (R, x,w) where
R is a relation, x € Dy is called the instance (or input), w € D,, the witness,
and Dy, D,, are domains that may depend on R. Given R, the corresponding
universal language L(R) is the set {(R,x) : Iw : (R,x,w) € R}. For a size bound
N € N, Ry denotes the subset of triples (R,x,w) in R such that R has size at
most N, i.e. |R| < N. In our work, we also write R(R,x,w) = 1 (resp. R(x,w) = 1)
to denote (R,x,w) € R (resp. (x,w) € R).

When discussing schemes that prove statements on committed values we
assume that D,, can be split in two subdomains D, x D,,, and sometimes we use
an even more fine-grained splitting of D, := (Dy X --- X Dy) for some arity £.

2.1 Algebraic Preliminaries

We denote by F a finite field, by F[X] the ring of univariate polynomials, and by
F.4[X] (resp. F<4[X]) the set of polynomials in F[X] of degree < d (resp. < d).
We briefly describe some algebraic preliminaries (see full version for details):

Vanishing and Lagrange Basis Polynomials. For any subset S C [F we denote by
Z 5(X) = [I,cq(X — s) the vanishing polynomial of S, and by L5(X) the s-th
Lagrange basis polynomial, which is the unique polynomial of degree at most
|S| — 1 such that for any s’ € S it evaluates to 1 if s = s’ and to 0 otherwise.

Multiplicative Subgroups. If H C F is a multiplicative subgroup of order n, then
its vanishing polynomial has a compact representation Zy(X) = (XM — 1).

Similarly, for such H it holds £} (X) = - X)‘(ﬁlzl [38,50,52]. Both Zg(X) and
EE(X) can be evaluated in O(logn) field operations. We assume that H comes
with a bijection ¢y : H — [n], and we use elements of H to index the entries of a
matrix M € F**" ie., M, ,» denotes M g, () ¢u(n/)> and similarly for vectors.
For any vector v € F", we denote by v(X) its interpolating polynomial in H, i.e.,

the unique degree-(|H| — 1) polynomial such that, for all n € H, v(n) = v,,.

Univariate Sumcheck. We use the lemma from [8,19], which shows that for any
p € Fq[X] and multiplicative subgroup H C F, 0 = >_, ;; p(n) iff there exists
¢(X), r(X) such that p(X) = ¢(X) z2r(X)+Xr(X)+o/|H| with deg(r) <n—1.

Polynomial Masking. Given a subgroup H C F and an integer b > 1,
Mask{ (p(X)) is a shorthand for p(X) 4+ Zu(X)p(X) for a randomly sampled
p(X) —sFp[X].

Definition 1 (Bivariate Lagrange polynomial). The bivariate Lagrange
polynomial for a multiplicative subgroup H C TF is Ag(X,Y) =
Z[—H(X)-szX'?H(Y)

n(X-Y :

12 M. Campanelli et al.

This polynomial has two properties useful for our work: for all n € H, Ag(X,n) =
L7(X), and it can be evaluated in O(logn) time (see full version).

Sparse Matriz Encodings. For a matrix M, ||[M|| denotes the number of its
nonzero entries, which we call its density. We occasionally use encodings for
sparse matrices inspired to [19]. Let K be another multiplicative subgroup of F
such that |K| > [|M]|. In brief, a sparse encoding of a matrix M is a triple of
polynomials (valu, rowm, colm) in Fo g [X], where rowy : K — H (resp. coly :
K — H) is the function such that rowm(k) (resp. colm(k)) is the row (resp.
column) index of the k-th nonzero entry of M, and valy, : K — TF is the function
that encodes the values of M in some arbitrary ordering. Hence it holds that for
all k € K, valm(k) = M oy, (x),colm(x)- We define the matriz-encoding polynomial
of M as the bivariate polynomial Var(X,Y) := 35 valm(k) - L3, (X)) -
EglM(ﬁ)(Y), and note that for all n,7" € H, Vi (n,n') = M, ..

The following lemma shows that a sparse encoding polynomial of a matrix
M can be used to express linear transformations by M. Proof in the full version.

Lemma 1 (Sparse Linear Encoding). Let M € F"*™ and let Vi (X,Y) be
its matriz-encoding polynomial. Let v,y € F™ be two vectors and v(X),y(X) be
their interpolating polynomials over H. Then y = M - v if and only if y(X) =

2 nerv(n) - Var(X,m).

Joint Sparse Encodings for Multiple Matrices. When working with multiple
matrices, it is sometimes convenient to use a sparse encoding that keeps track of
entries that are nonzero in either of the matrices. This has the advantage of hav-
ing a pair of col, row polynomials common to all matrices. For example, for two
matrices L, R, this encoding includes polynomials {valy,valg} encoding their
values, and polynomials {col,row} that maintain the indices in which either of
the matrix is nonzero. Namely, for any x € K, we have valr, (k) = Lyow(x),col(x) and
valg (k) = Rrow(s),col(x)- In this case though |K] is in the worst case > ||L||+||R||.

3 Polynomial Holographic IOPs

In this section we define our notion of Polynomial Holographic IOPs (PHP), that
generalizes algebraic holographic proofs (AHPs) [19]. We show how to compile
them into one another in the full version. In a nutshell, a PHP is an interactive
oracle proof (IOP) system that works for a family of universal relations R that is
specialized in two main ways. First, it is holographic, i.e., the verifier has oracle
access to the relation encoding, a set of oracle polynomials created by a trusted
party, the holographic relation encoder (or simply, encoder) RE. Second, it is
algebraic in the sense that the system works over a finite field F: at each round
the prover can send field elements or oracle polynomials to the verifier, while the
latter can perform algebraic checks as queries over the prover’s messages.
More formally, a Polynomial Holographic IOP is defined as follows.

Lunar 13

Definition 2 (Polynomial Holographic IOP (PHP)). Let F be a family of
finite fields and let R be a universal relation. A Polynomial Holographic IOP over
F for R is a tuple PHP = (r,n,m,d,ne, RE, P, V) where r,n,m,d,ne : {0,1}* —
N are polynomial-time computable functions, and RE, P,V are three algorithms
for the encoder, prover and verifier respectively, that work as follows.

- Offline phase: The encoder RE(F,R) takes as input a field F € F and a
relation description R, and returns n(0) polynomials {po.;}jcm(o) encoding
R.

— Online phase: The prover P and verifier V run for r(|R|) rounds and take
respectively as input a tuple (R,x,w) € R and an instance x; the verifier has
also oracle access to the polynomials encoding R.

In the i-th round, V sends a message p; € F to the prover, and P replies
with m(i) messages {m;j € F}icim(s)), and n(i) oracle polynomials {p;; €
F[XT}jem@y, such that deg(p; ;) < d(|R],4,7).

— Decision phase: After the r(|R|)-th round, the verifier outputs two sets of
algebraic checks of the following type.

e Degree checks: to check a bound on the degree of the polynomials sent by

the prover. More in detail, let n, = >} (IRD n(k) and let (p1,...,pn,) be the
polynomials sent by P. The vemﬁer speczﬁes a vector of integers d € N
which is satisfied if and only if Vk € [np] : deg(py) < di.
e Polynomial checks: to check that certain polynomial identities hold
for the oracle polynomials and the prover messages. Formally, let
Z;C(IRO‘ n(k) and m* ZklRD (k), and denote by (p1,-..,Pn~)
and (771,.. ,Tm+) oll the omcle polynomials (including the encoder’s)
and all the messages sent by the prover. The wverifier can specify
a list of ne tuples, each of the form (G,vi,...,vn+), where G €
FIX, X1,...,Xn, Y1,..., Y] and every v, € F[X]. Then a tuple (G,v)
is satisfied if and only if F(X) =0 where

F(X) = G(X, {px(vx(X)) ke {7k ke m=))

The verifier accepts if and only if all the checks are satisfied.

Efficiency Measures. Given the functions r,d,n,m in the tuple PHP, one can
derive some efficiency measures of the protocol PHP such as the total number
of oracles sent by the encoder, n(0), by the prover ny,, by both in total, n*; or
the number of prover messages m*. In addition to these, we define the following
shorthands for two more measures of PHP; degree D, and proof length L(|R|):

D:= max (d(R,i,5), L(R):= Y m(i)+d(R[i,j).

RER
i€[0,r(IR])] i€lr(IR[)]
J€n(@)] JEn(@)]

PHP should satisfy completeness, (knowledge) soundness and zero-knowledge:

Completeness. If for all F € F and any (R,x,w) € R, the checks returned by
VREER)(R) after interacting with (honest) P(F, R, x,w) are always satisfied.

14 M. Campanelli et al.

Soundness. A PHP is e-sound if for every field F € F, relation-instance tuple
(R,x) & L(R) and prover P* we have Pr[(P*, VREERI(F x)) = 1] < e.

Knowledge Soundness. A PHP is e-knowledge-sound if there exists a polynomial-
time knowledge extractor £ such that for any prover P*, field F € F, relation R,
instance x and auziliary input z:

Pr|(R,x,w)e€ R:w «— EF"(F,R,x, z)| > Pr[(P*(F,R,x, z), VREER(F x)) =1]—¢
where € has oracle access to P*, i.e., it can query the next message function of
P* (and rewind it) and obtain all the messages and polynomials returned by it.

Zero-Knowledge. A PHP is e-zero-knowledge if there exists a PPT simulator S
such that for every field F € F, every triple (R,x,w) € R, and every algorithm
V* the following random variables are within € statistical distance:

View (P (F,R,x,w) , V*) ~. View(SY" (F,R,x))

where VieW(P(F, R, x, w),V*) consists of V*’s randomness, P’s messages
T1yeoo s Tme (Which do not include the oracles), and V*’s list of checks, while
VieW(SV* (F,R, x)) consists of V*’s randomness followed by S’s output, obtained
after having straightline access to V*, and V*’s list of checks.

Remark 1 (About messages and constant polynomials). We explicitly model the
prover’s messages ;, although they could be replaced by (degree-0) polynomial
oracles evaluated on 0 during the checks. This is useful for zero-knowledge: while
messages are supposed not to leak information on the witness (i.e., they must
be simulated), this does not hold for the oracles. Thus, in our compiler, we will
not need to hide messages 7; from the verifier, only the oracles.

On the Class of Polynomial Checks. Above we describe the class of poly-
nomial checks of the verifier in full generality; nonetheless, when possible, we
use more convenient notations. We note that this class includes low-degree poly-
nomials like G({p;(X)};) (e.g., p1(X)p2(X)p3(X) + pa(X)), in which case each
v;(X) = X, polynomial evaluations p;(z), in which case v;(X) = x, tests over P
messages, e.g., p;(x) — m;, and combinations of all these.

Public Coin and Non-adaptive Queries. In the rest of this work, we only
consider PHPs that are public coin and non-adaptive: the messages of the verifier
are random elements and its checks are independent of the prover’s messages.

Below we define two additional properties that can be satisfied by a PHP:

Bounded Zero-Knowledge. This property will be useful for our compiler of
Sect. 5. We require that zero-knowledge holds even if the view includes a bounded
number of evaluations of oracle polynomials at given points.

However, we cannot allow evaluations on any possible point: specific points
could leak bits of information of the witness. Thus we define a notion of “admis-
sible” evaluations. Below we say that a list £ = {(i1,41),...} is (b, C)-bounded
where b € N and C is a PT algorithm if Vi € [np] : [{(¢,¥) : (4,y) € L} < b;
and Y(i,y) € L:C(4,y) = 1.

Lunar 15

Definition 3 ((b, C)-Zero-Knowledge). We say that PHP is (b, C)-Zero-
Knowledge if for every triple (R,x,w) € R, and every (b, C)-bounded list L,
the following random variables are within e statistical distance:

(View (P(Fv Rv X, W)v V)v (pi (y))(i,y)éﬁ) ~e S(Fv Ra X, V(]Fv X)a 'C)

where p1,...,pn, are the polynomials returned by the prover P.

Moreover, we say that PHP is honest-verifier zero-knowledge with query
bound b (b-HVZK for short) if there exists a PT algorithm C such that PHP is
(b, C)-ZK and for all i € N we have Pry ¥[C(7,y) = 0] € negl()).

3.1 PHP Verifier Relation

We formalize the definition of an NP relation that models the PHP verifier’s
decision phase. We shall use it in our compiler in Sect. 5.

Let PHP = (r,n,m,d,n., RE, P, V) be a PHP protocol over a finite field fam-
ily F for a universal relation R, with D as its maximum degree. We define Rphp
as a family of relations that express the checks of V over the oracle polynomials,
which can be formally defined as follows.

Let np,n* € N be two positive integers, and consider the following relations:

?
Raeg ((d3)jem,)> (P5)jeiny)) == /\je[np] deg(p;) < d;

Req ((G/,v), (pj)je[n*]) =G (Xa (pj(vj(X)))je[n*])

where G € F[X, X1, ..., Xy+] and v = (vq,...,v,-) € F[X]"". For a PHP verifier
that returns a polynomial check (G’, v), Req expresses such check if one considers
G’ as the partial evaluation of G at (Y1 = m1,..., Y+ = T+). Rueg instead
expresses the degree checks of a PHP verifier.

Given relations R4 C Dy x Dy, and Rp C D) x D,, with a common domain
D, for the witness, consider the product R4 x Rg C Dy x D x D,, containing
all the tuples (x4,xp,w) where (x4,w) € R4 and (xp,w) € Rg. For ne € N, let

?

0

ne times

——f
R npune 7= Raeg X Req X+ X Req and Rphp 1= { R+ (IRp) n, (IR (R) * R € R}

and prover oracle polynomials respectively, when running PHP with relation R.

where n*(|R|) = E;(lgl) n(i) and ny(|R|) = ZZQTI) n(i) are the number of total

4 Our PHP Constructions

We propose a collection of PHP constructions for two types of constraint systems:
the by now standard rank-1 constraint systems [28] and an equally expressive
variant we introduce in Sect. 4.1 called R1CS-lite.

R1CS-lite can be seen as a simplified version of R1CS with only two matrices.
In brief, an R1CS-lite relation is defined by two matrices L, R and is satisfied if

16 M. Campanelli et al.

Table 2. Comparison of our PHP constructions, all with complexities: O(m logm) for
RE, O(mlogm+nlogn) for P and O(£+logm+logn) for V. To have a simpler table,
we assume |K| = m > 2n, which is often the case. We call || = 5n + 2m — 2¢ 4 2b, +
2by, + 2bs + 6bg — 4, and |7'| = |w| +n — £+ by, + Tbg. For verifier checks, we denote by
“deg” the number of degree checks that require a tight bound; the last two columns
show the degree of the two polynomial checks: in the first one we have all v;(X) =y
and in the second one all v;(X) = X. “Rk” (“full”) denote remark (resp. full version).

PHP Degree | Oracles | Msgs | Proof V checks

Name Ref. RE|P length deg | degx (x,}(G1) | degx (x,3(G2)
PHPjer | 4.1 2m 7 |1 Im|+2m |2 |2 2
PHPjite1x | Remark 2 | 2m 711 || +2m |2 2 3
PHPjte2 full m 24 |7 |1 || 2 2 2
PHPjeac | full m 16 |7 |1 7| 2 |2 3
PHP,c1 | full 3m 8 |1 || +4m |2 |2 2
PHP, 1615 | full 3m 8 |1 || +4m | 2 2 3
PHP1cs2 | full m 57 |8 |1 || 2 |2 2
PHP, e« | full m 42 |8 |1 || 2 2 3
PHP1c3 | full 3m 12 |8 |1 || 2 |2 5

there exists a vector ¢ such that (L -¢)o (R-c¢) = c. We show that R1CS-lite
is as expressive as R1CS since it can represent arithmetic circuit satisfiability
with essentially the same complexity as R1CS (see full version)®. It allows us to
obtain PHP constructions (and resulting zkSNARKSs) that are simpler and more
efficient. More formally, R1CS-lite is defined as follows.

Definition 4 (R1CS-lite). Let F be a finite field and n,m € N be positive
integers. The universal relation Rgics-lite 1S the set of triples

(R,x,w) := ((F,n,m,¢,{L, R}), ¢, w)

where L,R € F*" max{||L|,||R||} < m, the first £ rows of R are
(=1,0,...,0) € F¥>*" z € F'~! w € F"*, and for ¢ := (1,z,w), it holds
(Le) o (Re) = c.

In this section, we present one PHP for R1CS-lite relations and give the
intuition to obtain other PHP variants. The PHPs for the R1CS language follow
the same bare-bone protocol, differing mainly in the number of matrices and an
additional witness vector. In Table2 we give a summary of all our PHPs and
their measures.

4.1 Owur PHPs for R1CS-Lite

In all our constructions we use a variant of R1CS-lite in which we slightly expand
the witness, and we express the witnesses and the check in polynomial form.

8 Comparing to R1CS, the number of columns in R1CS-lite matrices do not change
and the number of rows increase by the amount of public inputs, for the same circuit.
The count of nonzero entries in R1CS-lite is smaller for virtually every circuit.

Lunar 17

Definition 5 (Polynomial R1CS-lite). Let F be a finite field, and n,m € N
be positive integers. The universal relation Rpoiyrics-iite 15 the set of triples

((F,n,m,{L, R}, (), x,(a'(X),V'(X)))

where LR € F™*", max{HLH,HRH} < m, z € F1 d(X),b(X) €
Fen_o-1[X], and such that, for L = {¢g" (2)}16[5 z = (Lz), a(X) =
D nel & gu(n) LX) +d/ (X) - z2L(X) and b(X) :=1+V/(X) - zL(X), it holds,
over F[X, Z],

a(X) + Z - b(X) +ZW€H (L +Z - Ryap) - alnf) - b() - £/(X) =0 (1)

In the full version we prove that L(Rrics—tite) = L(RpolyR1CS-lite)-

Our PHP PHPjj;e;. We describe the main ideas of our protocol PHPj1. The
prover’s goal is to convince the verifier that the polynomials a(X), b(X) satisfy
Eq. (1). To this end, the relation encoder RE encodes the matrices L, R by
using a joint sparse encoding (see Sect.2.1), which consists of four polynomials
(valp,valg,col,row) in F_g[X]. In this case we use a multiplicative subgroup
K C F of minimal cardinality such that |[K| > 2m > ||L|| + || R]].

By applying the sparse linear encoding of Lemma 1 to the matrices L and R
and using the property of the bivariate Lagrange polynomial that Ag(X,n) =
L3(X), Eq. (1) can be expressed as

0=a(X)+2Z-b(X)+> _ a(n)-bn) - (VL(X,n)+ 2 Va(X,n))
=D @) +Z b)) - Au(X,m) + a(n) - b(n) - Vir(X,n,2) (2)
where, exploiting the use of col, row common to L, R, VL r(X,Y, Z) equals:
VL(X,Y)+Z - VR(X,Y) = Z%K(Vah(ﬁ) + Z -valr(K)) - Liguey (X) - Loy (V)

In order to show that a(X),b(X) satisfy Eq. (2), the verifier draws random
points z,a s that are used to “compress” the equation from F[X, Z] to F.
Then, the prover’s task becomes to show that

ZWEH(a(n) +a-b(n)) - Au(z,n) +a(n) - b(n) - Ver(e,n,a) =0

This is done via a univariate sumcheck over p(X) := (a(X)+a-b(X)) - Ag(x, X)+
a(X) - b(X) - Vor(z, X,). However, since p(X) depends on the witness, we
make the sumcheck zero-knowledge by doing it over p(X) + s(X) for a random
polynomial s(X) sent by the prover in the first round. Although this resembles
the zero-knowledge sumcheck technique of [8], we propose an optimized way
to randomly sample a sparse s(X), which is sufficient for the bounded zero-
knowlegde of our PHP. So, for the sumcheck the prover sends two polynomials
q(X),r(X) such that s(X)+p(X) = ¢(X)-2u(X)+X -r(X). The verifier checks
this equation by evaluating all the polynomials on a random point y «s F\ H. To

18 M. Campanelli et al.

do this, the verifier can compute on its own (in O(logn) time) the polynomials
Ag(z,y), Zu(y), and query all the others, except for Vi r(z,y,). For the latter
the prover sends a candidate value ¢ and runs a univariate sumcheck to convince
the verifier that o = Y, .y (valp (k) + o - valg(k)) - L2 (2) - CE),(H) (y).

row(K)

In what follows we give a detailed description of the PHP protocol PHPje;.

Offtine Phase RE(F,n,m,{L, R},¢). The holographic relation encoder takes as
input a description of the specific relation and outputs eight polynomials

{col(X), row(X), cr(X), col'(X), row'(X), cr' (X)), verp (X), verg(X) } € F<jg) [X].

The polynomials {col, row,valy,valr} are the joint sparse encoding of {L, R}.
The holographic relation encoder computes:

ar(X) = ZNEK col(k) - row(r) - LX(X)
{vera(X) = valy(s) - cr(r) - L5(X) are(r.ry

col'(X) := X -col(X), row'(X):= X -row(X), cr'(X):=X - cr(X)

rEK

Essentially, the polynomials cr(X),very(X) and verg(X) are low-degree
extensions of the evaluations in K of (col(X)-row(X)), (valy(X)-col(X)-row(X))
and (valg(X) - col(X)-row(X)) respectively, while col’, row” and cr’ are a shifted
version of col, row and cr each. The intuition behind expanding the sparse encod-
ing of L, R in this way is to keep the polynomial checks of the verifier of the
lowest possible degree. In particular we are interested in obtaining a PHP where
degy (x,}(G) < 2 as it enables interesting instantiations of our compiler. As an
example, by adding cr(X) we can replace terms involving col(X) - row(X) with
cr(X). This shall become more clear when looking at the decision phase.

Online Phase (P ((F,n,m,{L,R},(),z, (¢/(X),b'(X))),V(F,n,m,x)).

Round 1: P {&’(X),E’(X),S(X)} %

The prover samples polynomials qs(X)«sFp, 4b,—1[X] and 74(X)s
Fp, +b,—1[X], and sets s(X) := ¢s(X) - Zu(X) + X - r,(X). Note that, whenever
b, + by < n, the pair ¢s(X),rs(X) is a unique decomposition of s(X), and also
5(X) € F<nib,+b,—1[X]. P sends s(X) to V together with randomized versions
of the witness polynomials &' (X) «s Mask]i\fl;bq (a'(X)) € F<pn—t4b,+b,—1[X] and

b(X) s MaSkiﬂb\hq (V'(X)) € F<n—tibytb,—1[X]-

Round 2: V z, o P {g(X),r(X)} Vv

The verifier sends two random points z,« <sF. The prover uses the pair z, «
to “compress” the check of Eq. (1) over F[X, Z] into the sumcheck statement

Lunar 19

>_ner P(n) = 0 over F for the polynomial p(X) := (a(X)+ o b(X))- Ag(z, X)+
a(X) - IS(X) -Vir(z, X, o) where, for ' = (1, x), we have

a(X) = d'(X) - 2L(X) + ZnE]L T () EE(X) € Fantb,+b,-1[X],
b(X) :=¥(X)- Z2L(X) +1 € Fepib,+b,-11X],

Next, P computes and sends polynomials ¢(X) € F<anqb, +b,+2b,—3/X] and
r(X) € Fep_2[X]—such that s(X) + p(X) = ¢(X) - 2u(X) + X - r(X)—to
prove the univariate sumcheck , p; s(7) +p(n) = 0. Note that by construction
>_nem $(1n) = 0; its role here is to (sufficiently) randomize ¢(X),r(X) in a way
that their evaluations do not leak information about the witness (Theorem 2).

Round 3: V Y p o {dX),r(X)} Vv

The verifier sends a random point y <—sF \ H. The prover uses y to compute
o — Vir(x,y,a) and then defines the degree-(|K| — 1) polynomial

P(X):= ZKeK(vaIL(/ﬁ) + o valr(k)) - Lo (@) - L @) - LE(X)
The goal of the prover is to convince the verifier that », . p'(x) = o and

Vi € K:p/'(k) = (valp(k) + a - valg(k)) - EEW(R)(I) . EEI)M) (y)

These two statements can be combined in such a way that P does not need to

send p’(X), which is implicitly known by V as it depends on RE polynomials.
The first claim, since deg(p’) < |K|, reduces to proving that its constant term

is 177, for which P sends 7'(X) € F<g)—2[X] such that p'(X) = X -7'(X) + T’
The second claim, by definition of £%(-), means proving that V¥ & € K:

n?p'(r)(z — row(k))(y — col(k)) = (valL (k) + avalg(x))row(x)col (k) Z 1 (z) Z m(y).

By definition of p’(X) and of the relation polynomials, P can define

% 2. (zy +cr(X) —x - col(X) — y - row(X)) 4+ 7' (X) - n? . (zy - X + o’ (X)—

@ col’ (X) =y - row (X)) — (verp (X) + o - verp(X)) - 2 (@) - 21 (y) € Faor)—2[X]

t(X) :=

that equals 0 on any x € K. This way, P computes ¢'(X) := % € Fog—2[X]
and sends o and {¢'(X),r'(X)} to V.

Decision Phase. The verifier outputs the following degree checks

deg (i), deg({/), deg(s), deg(q). deg(¢') < Dong 3)

deg(r) <n —2 (4)

deg(r') < |K| - 2 (5)

20 M. Campanelli et al.

and the following two polynomial checks:

sw) + (@) - 2.0) + Y2 s £4W) (A) +o(F W) - 515) +1)

nelL

+(V (@) -z2uy)+1)-a- Aulz,y) — qly) 2uly) —y ry)

2

=0

(6)

m%‘.n?(;py_y cr(X) —a- col(X) —y- row(X))

+ 7(X) n?(vy- X+ o(X) —2- col(X) —y- row' (X))
— (verp(X) +a- verp(X)) - zu(e) - Zuly) — ¢(X) - z2x(X) =0 (7)

Above, we highlight the oracle polynomials in gray , the prover messages in
blue, and the coefficients of the verifier’s polynomial checks in red. This is to
help seeing how the above checks fit the form described in Definition 2.

In the first degree check, Dsnq is an integer that can be chosen by the verifier
and governs the soundness error as shown in Theorem 1. While for correctness
we need Dgng > D — 1, where D is the degree of the PHP (shown below), this
bound does not need to be tight (i.e., Dshg = D — 1) as is the case for the degree
checks on r and 7’. This observation has an impact on our compiler where, by
choosing Dg,g to be the maximal degree supported by the commitment scheme,
one does not need to create a proof for degree checks of the form “< Dgpq”.

SECURITY ANALYSIS. We state knowledge soundness and zero-knowledge of
PHP)jte1; full proofs are in the full version.

Theorem 1 (Knowledge Soundness). Our protocol PHPjie1 is e-knowledge-

. H| | 2Dsng+|H|
sound with ¢ = 1l =t
[F] [F\H]

Theorem 2 (Zero-Knowledge). Our PHP protocol PHPe1 is perfect zero-
knowledge. Furthermore, it is perfect b-HVZK with b = (b, by, bs, by, b, 00, 00).

For an intuition about soundness we refer to the intuitive description of the
construction. For b-HVZK, we present the main ideas. Following a rather stan-
dard argument, we have that up to b, (resp. by) evaluations of @’ (resp. b') are
randomly distributed due to their construction through Mask. Instead, up to b,
(resp. b,) evaluations of ¢ (resp. r) can be argued random thanks to the random-
ness of the polynomials ¢; and rs defining s(X) = ¢5(X) - Z2r(X) + X - ro(X).
In particular, this uses that for v € F \ H, s(X) is (bs + by)-wise indepen-
dent even conditioned on r4(X), and that the honest ¢(X) is determined by
(p(X) + s(X) — Xr(X))/zu(X), where p(X) is that defined in round 2.

Remark 2 (PHPjie1x: @ variant with fewer relation polynomials). We present a
variant of PHPjie1, that we call PHPjie15, which has fewer relation polynomials.

Lunar 21

In particular, the RE of PHPjie1x does not output col’ (X), row’(X) and cr'(X),
and the second polynomial check, of degree 3 with a public term X, becomes:

n? . <X~ r'(X) +§§> . (:z;gz/Jr car(X) —x- col(X) —y- row(X))

—(verp(X) +a- verg(X)) - zu(z) - Zu(y) — ¢(X) ~ZK(X);O (8)

PHPjie>: Separate Sparse Matrix Encodings. We propose another PHP for
R1CS-lite called PHPjjieo. PHPjiter is very similar to PHPjje1, indeed its first
two rounds of the online phase are identical. The main difference is that in
PHPjie» the matrices {L, R} are encoded in sparse form separately. Namely,
L, R are represented with the functions {valys, rowns, colas } areqr, gy so that, for
any x € K, valpr (k) = M yow,, (x),colas (). The main benefit of this choice is that
we can work with a subgroup K C F such that |[K| > m > max{||L||, ||R||},
which is half the size of the one needed in PHPjie;. Using this encoding, the
Vir(X,Y, Z) polynomial in Eq. (2) here becomes

Z (V3|L(f'”v) Lo () X) * Looi () (Y) + Z -valr() - Lo () (X) * Leotn(o) (Y))
reK

So, in round 3 of PHPj> the prover’s goal is to show that ¢ = Vpgr(z,y,a)
for the equation above. This is done analogously to PHP; except that here
{valas, rowns, colas fareqr,ry are expanded in a total of 24 relation polynomials
for the goal of keeping 2 the degree of the second polynomial check. See Table 2
for a summary of PHPj;ep measures and its variant PHP);teox, and the full version
for a detailed description.

5 Compiler from PHPs to Universal zkSNARKSs

We start with the definitions for our compiler. Some of the following notions are
standard or were introduced in previous works, while some others are new. For
space reasons, we defer to the full version for formal definitions.

Commitment Schemes. In our work we use the notion of type-based commit-
ments, introduced by Escala and Groth [22]: these are a generalization of regular
commitments that unify several committing methods into the same scheme. As
done in [11], in this work we exploit the formalism of type-based commitments to
describe commit-and-prove zero-knowledge proofs that work with commitments
of different types, tailoring different properties for the same message space.
More in detail, a type-based commitment scheme is a tuple of algorithms
CS = (Setup, Commit, VerCom) that works as a commitment scheme with the
difference that the Commit and VerCom algorithms take an extra input type that
represents the type of c. All the possible types are included in the type space
7. Having different types helps for a more granular description of the security
properties of the commitment scheme. For example, a commitment scheme for

22 M. Campanelli et al.

a set of types {type;,types} could be trapdoor hiding for commitments of type
type; and could be computationally hiding for commitments of type type,. In
this case, we say that the commitment scheme is type;-trapdoor hiding and
type,-computationally hiding. We assume succinct commitments.

zkSNARKs with Universal and Specializable SRS. A zkSNARK with
specializable universal SRS for a family of relations {Rn}nen, introduced by
Groth et al. [34], is a tuple of algorithms II = (KeyGen, Derive, Prove, Verify)
where KeyGen is probabilistic and upon input public parameters and size bound
N produces the srs and a trapdoor tdy, Derive is deterministic and upon input
srs and R € Ry produces ekgr, vkg, and the prover Prove and verifier Verify act as
usual. We require the standard notions of completeness, succinctness, knowledge-
soundness and zero-knowledge.

Universal CP-SNARKSs. We adapt the notion of commit-and-prove SNARKSs
of [18] to universal relations. Very roughly speaking, a universal CP-SNARK for
a family of relationships R and a commitment scheme CS is a universal SNARK
for a family of relations R“°®™ which includes all the relations R“®™ such that
RC™(x, c,w) = 1 if and only if R(x,w) = 1 and ¢ is a commitment that opens to
w and R € R. As in [18], in the definition we add syntactic sugar to this idea to
handle relations where the domain of the witness is more fine grained and split
over £ + 1 subdomains for a fixed ¢ € N.

More in detail, we denote a universal CP-SNARK as a tuple of algorithms
CP = (KeyGen, Derive, Prove, Verify) where: (i) KeyGen(ck,N) — srs := (ek, vk)
generates the structured reference string. (ii) Derive(srs,R) — (ekg,Vvkgr) is a
deterministic algorithm that takes as input an srs produced by KeyGen(ck, N),
and a relation R € 7Ry. (iii) Prove(ek,x, (c;j) e, (Uj)icies (05)je,w) —
m outputs the proof for (x,w) € R and w = (ug,...,unw). (iv)
Verify(vkg,, (¢j) e, ™) — {0,1} rejects or accepts the proof. Sometimes we
use a more general notion of knowledge soundness for CP-SNARKSs introduced
by Benarroch et al. [11] named knowledge soundness with partial opening. The
intuition is to consider adversaries that explicitly return valid openings for a
subset of the commitments that they return, thus enabling to formally define
knowledge soundness in the context where not all the commitments need to be
extracted.

In the basic completeness notion of Universal CP-SNARKSs, the CP-SNARK
is required to work with commitments of any type. We also define a weaker notion
of completeness in which the CP-SNARK works only when certain witnesses are
committed with a specific type. We call this notion T'-restricted completeness.
This is useful if we want to use a CP-SNARK that supports only a subset
T of the types of the commitment scheme. We give a few examples. Suppose
the commitment scheme has two different types, type;, type,, and there exists a
CP-SNARK that only works with commitments of type,. Alternatively, a CP-
SNARK for a relation with ¢; + 5 committed witnesses could work only when
the first /1 commitments are of type type; and the subsequent ¢ commitments
are of type type,. And clearly, more fine-grained combinations are possible.

Lunar 23

Commitment-Only SRS. We say that a universal CP-SNARK has a commitment-
only SRS if the key generation algorithm is deterministic. Notice that for Uni-
versal CP-SNARK with commitment-only SRS the notion of zero-knowledge in
the SRS model is not achievable. In fact, formally speaking, the commitment
key ck is part of the description of a relation; thus, the actual SRS of the CP-
SNARK would be the empty string. However, the classical result of [30] shows
that NIZK in the plain model exists only for trivial languages. Therefore we
consider a weaker notion of zero-knowledge for these CP-SNARKSs, that we call
trapdoor-commitment zero-knowledge in the SRS model, where the trapdoor
necessary for simulation comes from the commitment key of CS.

5.1 Compiler’s Building Blocks

Commitments to Polynomials. Recall that a PHP verifier has access to
two sets of oracle polynomials: those from the relation encoder (which describe
the relation) and those from the prover (which should supposedly convince the
verifier to accept a public input x). The compiler commits to polynomials in
both sets; it requires all these commitments to be binding, but not to fully hide
any of these polynomials.

The commitments for the relation encoding polynomials—whose type we
denote by rel—do not need to hide anything: they open to polynomials repre-
senting the relation, which is public information. The polynomial commitments
of type rel have weaker requirements for one more reason. Besides not requiring
them to be hiding, we will not require them to be extractable (i.e., we do not
assume a CP-SNARK that has knowledge soundness for them, here is the reason
to use the notion of knowledge soundness with partial opening).

Above, we ignored leakage when committing to relation encoding polynomi-
als; we cannot do the same when committing to the polynomials from the PHP
prover as they contain information about the witness. If we do not prevent some
leakage we will lose zero-knowledge. At the same time we will show that we do
not need full hiding for these polynomials either, just a relaxed property that
may hold even for a deterministic commitment algorithm. We call this property
somewhat-hiding—defined below—and denote its type by swh.

In the remainder of this section we will assume CS to be a polynomial com-
mitment scheme; i.e., a commitment scheme in which the message space M is
F<4[X] for a finite field F € F and an integer d € N. Without loss of generality
we assume d to be an input parameter of Setup.

Definition 6 (Somewhat-Hiding Polynomial Commitments). Let CS =
(Setup, Commit, VerCom) be a type-based commitment scheme for a class of poly-
nomials F<4[X] and a class of types T, and that works as in Type-Based Commit-
ment Schemes, but where we allow Commit to be deterministic. Then CS is said to
be type-typed somewhat-hiding if there exist three algorithms (ck,td = (td’, s)) «
Sck(s) where s € F, (¢, st) «— TdCom(td,v) and o «— TdOpen(td, st,c, f) such
that: (1) the distribution of the commitment key returned by S with a uniformly
random s «—sF as input is identical to the one of the key returned by Setup;

24 M. Campanelli et al.

(2) for any f € FqlX], (c,0) = (/,0') where (c,0) — Commit(ck,type, f),
(¢, st) « TdCom(td, f(s)) and o' «— TdOpen(td, st, ¢, f).

CP-SNARKS for the Commitment Scheme. We assume that the commit-
ment scheme CS is equipped with a CP-SNARK CPph, = (KeyGen,,,, Provephp,
Verify ;) for a relation family R’ 2 Ry, (we defined Rphp in Sect. 3.1), and with
a CP-SNARK CP,,, = (KeyGen,,,, Provegp,, Verify,,,) for the (trivial) relation
family Ropn = {¥, (pj)jejq : £ € N} whose instance is the empty string 1/ and
witnesses are tuples of polynomials. A CP-SNARK for Ropn is essentially a proof
of knowledge of the openings of ¢ commitments.

Leaky Zero-Knowledge. We define a weaker zero-knowledge notion that is suffi-
cient to be satisfied by the CPph, CP-SNARK in our compiler. This new property
allows better efficiency and flexibility of the compiled protocols. Intuitively, a
CP-SNARK for relations over committed polynomials is leaky zero-knowledge if
its proofs may leak information about a bounded number of evaluations of these
polynomials. More in detail, a CP-SNARK is (b, C)-leaky zero-knowledge if there
exists a ZK simulator that has access to a list of leaked values {u;, (;)}(;,;) where
the list {(¢;,9;)};en is (b, C)-bounded (see Sect. 3).

5.2 The Compiler

At a high level, we follow the known paradigm stemming from [40,46] in which
the prover commits to the oracles, answers the verifier’s queries generated using
a random oracle and proves correctness of these answers. A high-level description
of the compiled SNARK IT = (KeyGen, Derive, Prove, Verify) follows:

— The KeyGen algorithm runs the setup of the commitment scheme CS and
generates keys for the auxiliary CP-SNARKSs.

— The Derive algorithm, when deriving a specialized SRS for a specific relation
R, commits to all the polynomials returned by the relation encoder RE(R)
using rel-typed commitments.

— The prover Prove algorithm executes internally the PHP prover P, at each
round of P it commits the polynomials from P using swh-typed commitments;
it proves it knows their opening using CPopn; concatenate the commitments,
the proofs and the rest of the messages from P. It computes a hash of the
partial transcript, which it then uses as the next message to feed to the P. At
the last round it uses CPph, to prove that the PH P verifier V would accept.

— The verifier checks all the CP-SNARK proofs of opening for the commitments
and executes the decision stage of V with input the instance and the random
oracle hash values computed over the partial transcripts. It thus generates an
instance for CPph, and checks the related CP-SNARK proof.

For compactness in the exposition, we state the main result of the section in
one theorem, however in the full version we restate the theorem in two steps: first
we compile to universal interactive argument systems, and secondly we compile
the latter argument systems to SNARKSs using the Fiat-Shamir transform—thus
the following theorem holds in the random oracle model.

Lunar 25

Theorem 3. Let PHP = (r,n,m,d, ne, RE, P, V) be a non-adaptive public-coin
PHP over a finite field family F and for a universal relation R. Let CS be a
type-based commitment scheme for a class of polynomials F.4[X] and a class of
types T = {rel,swh} that is T -binding and swh-somewhat-hiding and equipped
with CP-SNARKs CPopn for Ropn and CPphp for Ronp.

— The scheme II = (KeyGen, Derive, Prove, Verify) is a 2kSNARK with special-
izable universal SRS for the family of relations R.

— If CPopn is TP-ZK, and, for a checker C, PHP (resp. CPpynp) is (b +1,C)-
bounded honest-verifier zero-knowledge (resp. (b, C)-leaky zero-knowledge)
then II is zero-knowledge in the SRS model.

Remark 8 (On completeness). It is sufficient for CPppp to be T-restricted com-
plete, with 7' = ((re1)"(®)||(swh)™) € 7", to obtain the completeness of 1.

Remark 4 (On updatable SRS). If the commitment key generated by Setup is
updatable [21,34], and CPopn and CPppp have commitment-only SRS then the
SRS of IT is updatable.

Intuition on Security Proof. The proof of knowledge soundness follows the stan-
dard argument of simulating a prover for the PHP extracting the polynomials
from the commitments sent by the adversary and use the binding property of
the commitments together with the knowledge soundness of CPph, to prove that
the verifier of the PHP protocol would indeed accept.

We now provide an intuition about zero-knowledge; for simplicity we describe
it as if the protocol involved a single committed polynomial. First, observe that
we assume a PHP with b+ 1-bounded ZK—i.e., we can simulate interaction with
an honest prover even after we have leaked b 4 1 evaluations of the polynomial.
Since we assume a commitment scheme that is only somewhat-hiding (Definition
6), we are actually leaking one evaluation of the committed polynomial (in par-
ticular on a random point). We now combine this fact with the ZK property we
are assuming on the CP-SNARKSs in the compiler—b-leaky ZK—and this allows
us to still simulate an interaction with an honest prover that is indistinguishable
after further b leaked evaluations.

Compiler to Universal CP-SNARK. We briefly explain how to adapt our
compiler to turn PHPs into CP-SNARKSs. More details appear in the full version.

We consider a natural sub-class of PHP where the extractor for the knowl-
edge soundness satisfies a stronger property usually denoted as straight-line
extractability in the literature. In particular, we assume there exists an extractor
WitExtract that on input the polynomials sent by a malicious prover interacting
with the verifier can extract the valid witness.

Recall that the instances for CP-SNARKSs are tuples of the form (x, é1, ..., ¢)
for a value ¢ € N, where x is an instance for the relation and ¢4, ..., ¢ commits
to chunks of the witness. The commitments ¢1, ..., ¢y are just classical commit-
ments (in the sense that they are hiding and binding, but there are no restrictions
on other properties they might have). Therefore we consider CP-SNARKs for

26 M. Campanelli et al.

typed-commitment schemes with class of types 7 = {rel, swh, 1nk}, where the
latter type is reserved for the input commitments (and thus the commitment
scheme is 1nk-typed hiding and lnk-typed binding).

The compiler to a CP-SNARK is exactly the same as the compiler pre-
sented before but where the prover, after having computed all the commitments
C1,...,¢n, (and the proofs for CPep, and CPppp), additionally computes a CP-
SNARK proof for the relation Ry, that says that the commitments ¢4, ..., ¢

open to values ug,...,uy and the commitments cy,...,c,, open to polynomials
P1,-- -, Pn, such that WitExtract(py,...,pn,) = (U1, ..., U, w), therefore creating
a link between the computed proof and the input commitments ¢, ..., ¢.

6 Instantiating Our Compiler: Our Universal zkSNARKSs

We propose different instantiations of the building blocks needed by our compiler
of Sect.5: (i) (type-based) pairing-based commitment schemes for polynomials;
(ii) a collection of CP-SNARKSs for various relations over such committed poly-
nomials. Next, we describe different options to combine them together in our
compiler, when applied to our PHP constructions (see Table2). The resulting
zkSNARKSs offer different tradeoffs in terms of SRS size, proof size, and verifi-
cation time. Table 1 summarizes the most interesting among these schemes.

We denote a bilinear group setting by a tuple (¢, G1, G2, Gr, €), where G1, Go,
Gr are additive groups of prime order ¢, and e : G; X Gy — Gy is an efficiently
computable, non-degenerate, bilinear map. We focus on Type-3 groups and use
the bracket notation of [23], i.e., for g € {1,2,T} and a € Z,, we write [a], to
denote a - Py € G,4, where P, is a fixed generator of G.

6.1 Pairing-Based Commitment Schemes for Polynomials

We show two type-based commitment schemes, denoted CS; and CSs respec-
tively, with type set {rel, swh} and for degree-d polynomials. The commitment
of a polynomial p is essentially the evaluation in the exponent of p in a secret
point s, following the scheme of Groth [32] and Kate et al. [39]. Slightly more
in detail, in both schemes, the commitment key ck contains encodings of powers
of a secret point s, and a commitment of type swh to a polynomial p(X) is a
group element [p(s)]1. The only difference between the two schemes are the com-
mitments of type rel, which in CS; are [p(s)]; whereas in CSy are [p(s)]2. As
discussed in the next section, the advantage of having some polynomials commit-
ted in G5 is that one immediately gets a way to test quadratic equations over
committed polynomials where each quadratic term involves exactly one poly-
nomial of type rel. Both types of commitments are computationally binding
under the power-discrete logarithm assumption [44]; we prove commitments of
type swh to also be somewhat hiding.

Remark 5 (On updatability of our SNARKs). Since the commitment schemes
CS; and CS, that we work upon generate keys that only contain monomials
in the exponent, our constructions are updatable in the sense that participants
can easily re-randomize them at will. Pointing to previous works on updatable
SNARKSs, “a CRS that consists solely of monomials (...) is updatable” [34].

Lunar 27

6.2 Pairing-Based CP-SNARKSs for CS; and CS,

We show CP-SNARKSs for various relations over polynomials committed using
CS; or CS,. Our CP-SNARKs work over both commitment schemes unless
explicitly stated otherwise. A full description of these schemes is in the full
version.

Proof of Knowledge: “I know p and ¢ opens to p”. We show two schemes. (i)
CPOA;M is a trivial scheme in which the proof is the empty string and is knowledge-
sound in the algebraic group model £25]; this is an observation already done in
previous work, e.g., [19,27]. (ii) CPCF:g(n , is novel and provides extractability based
on the mPKE assumption and, when used on more than one commitment, on the
random oracle heuristic. In a nutshell, this scheme uses the classical technique
of giving as a proof a group element mep, = 7y - ¢, where v € F is a secret but
such that mepn can be publicly computed if one knows the opening of c. What is
new in our scheme is a way to batch this proof for £ commitments in such a way

that we have only one extra group element as a proof, instead of ¢ elements.

Polynomials Evaluation: “(pi(xi) = yi)ie[e]”' We first give a CP-SNARK for

single polynomial evaluation—“p(x) = y”—CPeyal,1, secure under the d-SDH
assumption and the extractability of CPgp,, and then we extend it into a CP-
SNARK CPyq to support batching. Both schemes stem from techniques in [39].

Polynomial Equations: A CP-SNARK CP.q for general polynomial equations,
e.g., a(X)b(X) — 2¢(X)d(X)e(X) = 0), relying mainly on CPqp, and CPey,. It
is based on the idea of doing evaluations on a random point, with optimizations
from [27], based on the linearity of the commitment, to minimize proof size.

Quadratic Polynomial Equations: A novel CP-SNARK for quadratic polynomial
equations? specific to commitment scheme CSo; although less general than CPeq,
CPgeq is more efficient since its proof may simply be empty, while verification
consists of some pairing checks over the commitments. The basic intuition is
simple: to check that G(p1(X),...,p¢(X)) = 0 for a quadratic polynomial G it
is possible to homomorphically compute G over the values (pi(s),...,pe(s)) in
the target group using pairings and the linear property of the commitments. For
this to be possible, for each quadratic monomial p; (X)p;(X), we need at least one
of [pi(s)]2 or [pj(s)]2 in Go. This holds if they are committed through different
types, i.e., one as rel and the other as swh. Otherwise, if they are both in the
same group, we let the prover create one of the two polynomials committed in
the “symmetric” group. Interestingly, for carefully designed equations, the CPgeq
proof can be empty and all the verifier needs to do is verifying a pairing product.

Degree Bound: “(deg(p;) < d;)c[q”- Two CP—SNARKS—CP&Z; and CPé?g—such
that CPS:; works over both commitment schemes while Cpgz works only over
CS,. The basic idea is to commit to the shifted polynomial p*(X) = XP~Ip(X)

9 Here “quadratic” means it supports products of at most two polynomials.

28 M. Campanelli et al.

and then prove that the polynomial equation XP~% . p(X) — p*(X) = 0 using a
CP-SNARK for polynomial equations, either CPeq or CPgeq. This idea is extended
in order to batch together these proofs for several polynomials.

6.3 Available Options to Compile Our PHPs

We discuss how to combine the aforementioned CP-SNARKs for committed
polynomials to obtain CP-SNARKSs for the Rphp relations corresponding to our
PHPs. All our PHPs have a similar structure in which the verifier checks consist
of one vector d of degree checks, and two polynomial checks ((G},v1), (G, v2)).
Hence, for each PHP the corresponding relation Rphp, can be expressed as:

Raeg((dj)jelnyl: (Pi)icin©)+101) A {Rea((G5 i), () jem) i oy

where G/, is the partial evaluation of G; on the prover message o.

In all the PHPs, in the first polynomial check the vy ;(X) are constant poly-
nomials (in particular, they all encode the same point, i.e., Vj : v1 ;(X) = v),
while in the second check they are the identity, i.e., Vj : v ;(X) = X. Further-
more, in those PHPs where degX7{XZ_}(G2) = 2, the second Req relation can be
replaced by its specialization for quadratic equations.

We use two main compilation options for our PHPs (outlined in Fig. 1):

Ropn Req Rdeg

ENNEN =
Blocks QW el LN

GDD CPdeg
N

CPgeq

PHPite1x ~ PHPRrics1x PHPite1 PHPRrics1 CSo
P HP g PHPiiteax PHPRics2x PHPiite2 ~ PHPRics2
[

Fig. 1. Different options to compile our PHPs. We mark compatibility with commit-
ment schemes CS; and CS; respectively by a circle and a square (both shapes mean
full compatibility). Dotted lines mean either option is possible. An index 1 or 2 for an
arrow to Req denotes whether it refers to the first or second polynomial check.

6.4 Zero-Knowledge Bounds When Instantiating PHPs

Our compiler assumes a CP-SNARK CPp, that can be (b, C)-leaky-ZK to com-
pile a PHP protocol that is (1 + b)-bounded ZK (see Theorem 3), as the com-
mitments reveals one evaluation per oracle polynomial. Among the CP-SNARKSs
we propose to realize CPphp, the only one that is leaky-ZK is the CPeq scheme.

Lunar 29

Its leakage is due to the fact that the proof includes evaluations of those poly-
nomials that end up in the set S used to optimize the proof size. Note that this
concern arises only when using it to prove the first polynomial check. Indeed, in
all of our schemes the second polynomial check involves only oracle polynomials
that are not related to the witness, and thus for those polynomials the amount
of leakage does not matter. We discuss how to choose b for the b-leaky-ZK of
CP¢q when proving the first polynomial check in all of our PHPs.

PHPs for R1CS-lite. The first polynomial check is the same in both construc-
tions. Through the syntax for relation Req we write the polynomial G} as

Gll (Xm Xba st an Xr) = Xa‘Xb 'ga,b+Xa *Ya +Xb'gb+Xq ’gq+Xr “Gr +Xs +90

where the goal is to prove that on a given y, G’ ((p;(y));ej5)) = 0, that is:

~ ~ 2 ?
a (V' (Y) - gap + 0" (W) - ga +0"(W) - 9o+ s(y) +a(y) - 99+ 1Y) - g + 90 =0

To this end, CPeq chooses a set S of size 1; for instance it reveals l;’(y) and
nothing more. Thus, CP.q for this polynomial check is b-leaky-ZK with b =
(bg, by, bs, by, b)) =(0,1,0,0,0). From Theorem 3, PHPjie; and PHPjite» need to
be (1,2,1,1,1)-bounded ZK, and we can optimize the degrees and instantiate
PHPjjie. with a € F§n+1[X], BI S F§n+2[X:|, qs € Fgl[X], rs € Fgl[X]

PHPs for R1CS. All these constructions need to be (1,2,1,1,1,1)-bounded ZK.
The analysis is the same as for R1CS-lite; we omit details for lack of space.

6.5 Our Resulting zZkSNARKs and CP-SNARKSs

In the full version we provide a table with the efficiency of all the zZkSNARKSs
obtained through the different options to instantiate the compiler on all of our
PHPs. We also discuss how those measures are obtained and give the costs for
the CP-SNARKSs resulting from the commit-and-prove compiler. We recall that
the most representative zkSNARKSs (in the algebraic group model) are shown in
Table 1 together with a comparison with the state of the art. We recall that all
our constructions are universal and updatable.

We note that instantiating our proofs under the mPKE assumption (instead
of the AGM) is significantly more efficient than for those in [19]. The overhead
of instantiating our proofs under mPKE is: for us, have 4 more G; elements and
the prover needs up to 3n + 6m more G; exponentiations: in [19], 11 more G
elements in the proof and 11n 4+ 5m more exponentiations to the prover.

Acknowledgments. This work has received funding in part from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation program under project PICOCRYPT (grant agreement No. 101001283), by
the Spanish Government under projects SCUM (ref. RT12018-102043-B-100), CRYP-
TOEPIC (ref. EUR2019-103816), and SECURITAS (ref. RED2018-102321-T), by the

30

M. Campanelli et al.

Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339), and by
research grants from Protocol Labs, and by Nomadic Labs and the Tezos Foundation.
The first and second authors were at the IMDEA Software Institute while developing
part of this work. Additionally, the project that gave rise to these results received the
support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship
code is LCF/BQ/ES18/11670018.

References

1.

10.

11.

12.

Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajkac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3-33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6_-1

Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublin-
ear arguments without a trusted setup. In: ACM CCS 2017, pp. 20872104 (2017).
https://doi.org/10.1145/3133956.3134104

Baghery, K.: Subversion-resistant simulation (knowledge) sound NIZKs. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 42-63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1_3

Ben-Sasson, E.; et al.: Computational integrity with a public random string from
quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
III. LNCS, vol. 10212, pp. 551-579. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56617-7_19

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701-732. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8_23

Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.:
Linear-size constant-query IOPs for delegating computation. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 494-521. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_19

Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy, pp. 287-304 (2015). https://doi.org/10.1109/SP.2015.25
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103-128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2_4

Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31-60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5_2

Benarroch, D., Campanelli, M., Fiore, D.: Commit-and-Prove Zero-Knowledge
Proof Systems. ZKProof.org (2020)

Benarroch, D.;, Campanelli, M., Fiore, D., Gurkan, K., Kolonelos, D.: Zero-
knowledge proofs for set membership: efficient, succinct, modular. In: Finan-
cial Cryptography and Data Security (2021). https://doi.org/10.1007/978-3-662-
64322-8_19

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012, pp. 326-349 (2012)

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1109/SP.2015.25
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-64322-8_19
https://doi.org/10.1007/978-3-662-64322-8_19

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Lunar 31

Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315-333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2_18

Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report
2020,/081 (2020)

Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327-357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315-334 (2018). https://doi.org/10.1109/SP.2018.00020
Biinz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A, Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677-706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composi-
tion of succinct zero-knowledge proofs. In: ACM CCS 2019, pp. 2075-2092 (2019).
https://doi.org/10.1145/3319535.3339820

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKSs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738-768. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1_26

Chiesa, A., Ojha, D., Spooner, N.: FRACTAL: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769-793. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1_27

Daza, V., Rafols, C., Zacharakis, A.: Updateable inner product argument with
logarithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 527-557. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45374-9_18

Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630-649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0-36

Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129-147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1_8

Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315-347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5_11

Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33-62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Gabizon, A.: AuroraLight: improved prover efficiency and SRS size in a Sonic-like
system. Cryptology ePrint Archive, Report 2019/601 (2019)

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953 (2019)

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45374-9_18
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2

32

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

M. Campanelli et al.

Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinet NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626—645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM STOC, pp. 99-108 (2011). https://doi.org/10.
1145/1993636.1993651

Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 1, 1-32 (1994)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comput. 1, 186-208 (1989)

Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 321-340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305-326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKSs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698-728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Tech-
nical report, 2016-1.10. Zerocoin Electric Coin Company (2016)

Ishai, Y.: Efficient Zero-Knowledge Proofs: A Modular Approach. Simons Institute.
Lecture (2019)

Ishai, Y.: Zero-Knowledge Proofs from Information-Theoretic Proof Systems - Part
I. ZKProof.org, Blog entry (2020)

Ivanov, K.G., Saff, E.B.: Behavior of the Lagrange interpolants in the roots of unity.
In: Ruscheweyh, S., Saff, E.B., Salinas, L.C., Varga, R.S. (eds.) Computational
Methods and Function Theory. LNM, vol. 1435, pp. 81-87. Springer, Heidelberg
(1990). https://doi.org/10.1007/BFb0087899

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177-194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723-732 (1992)

Kosba, A.E., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: succinct
arguments for randomized algorithms with applications to universal zk-SNARKs.
In: USENIX Security 2020, pp. 2129-2146 (2020)

Kothapalli, A., Masserova, E., Parno, B.: Poppins: a direct construction for asymp-
totically optimal zkSNARKSs. Cryptology ePrint Archive, Report 2020/1318 (2020)
Lee, J., Setty, S., Thaler, J., Wahby, R.: Linear-time zero-knowledge SNARKSs for
R1CS. Cryptology ePrint Archive, Report 2021/030 (2021)

Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169—
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKS from linear-size universal and updatable structured reference strings. In:
ACM CCS 2019, pp. 2111-2128 (2019). https://doi.org/10.1145/3319535.3339817

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/BFb0087899
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1145/3319535.3339817

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Lunar 33

Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253-1298
(2000)

Rafols, C., Zapico, A.: An algebraic framework for universal and updatable
SNARKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol.
12825, pp. 774-804. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84242-0.27

Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: 48th ACM STOC, pp. 49-62 (2016). https://doi.
org/10.1145/2897518.2897652

Setty, S.: Spartan: efficient and general-purpose zkSNARKSs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol.
12172, pp. 704-737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1_25

Trefethen, L., Berrut, J.P.: Barycentric Lagrange interpolation. STAM Rev. 46(3),
501-517 (2004)

Wahby, R.S., Tzialla, I., shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKSs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926-943 (2018). https://doi.org/10.1109/SP.2018.00060

Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero
knowledge proof system. In: USENIX Security 2018, pp. 675-692 (2018)

Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733-764. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8_24

Yamashita, K., Tibouchi, M., Abe, M.: On the impossibility of NIZKs for disjunc-
tive languages from commit-and-prove NIZKs. IEEE Access (2021). https://doi.
org/10.1109/ACCESS.2021.3056078

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy, pp. 859-876 (2020). https://doi.org/10.1109/SP40000.2020.00052
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy, pp. 863-880 (2017). https://doi.org/10.1109/
SP.2017.43

Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017)
Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
faster verifiable RAM with program-independent preprocessing. In: 2018 IEEE
Symposium on Security and Privacy, pp. 908-925 (2018). https://doi.org/10.1109/
SP.2018.00013

https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1109/ACCESS.2021.3056078
https://doi.org/10.1109/ACCESS.2021.3056078
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP.2017.43
https://doi.org/10.1109/SP.2017.43
https://doi.org/10.1109/SP.2018.00013
https://doi.org/10.1109/SP.2018.00013

q

Check for
updates

Gentry-Wichs is Tight: a Falsifiable
Non-adaptively Sound SNARG

(=)

Helger Lipmaa and Kateryna Pavlyk

Simula UiB, Bergen, Norway

Abstract. By the impossibility result of Gentry and Wichs, non-
falsifiable assumptions are needed to construct (even non-zero-knowledge)
adaptively sound succinct non-interactive arguments (SNARGs) for hard
languages. It is important to understand whether this impossibility result
is tight. While it is known how to construct adaptively sound non-succinct
non-interactive arguments for NP from falsifiable assumptions, adaptively
sound SNARGs for NP from non-falsifiable assumptions, and adaptively
sound SNARGs for P from falsifiable assumptions, there are no known
non-adaptively sound SNARGs for NP from falsifiable assumptions. We
show that Gentry-Wichs is tight by constructing the latter. In addition, we
prove it is non-adaptively knowledge-sound in the algebraic group model
and Sub-ZK (i.e., zero-knowledge even if the CRS is subverted) under a
non-falsifiable assumption.

Keywords: Falsifiable assumptions - Gentry-Wichs - Non-adaptive
soundness + SNARG - SNARK - Sub-ZK

1 Introduction

Due to excellent efficiency properties, zk-SNARKSs (zero-knowledge succinct non-
interactive arguments of knowledge, [22]) are currently the most popular argu-
ment systems for NP. Zk-SNARKSs are usually defined in the CRS model, where
a universally trusted third party generates a CRS used by both the prover
and the verifier. A more realistic model is subversion zero-knowledge (Sub-
ZK, [1,3,5,14]); a Sub-ZK SNARK is zero-knowledge even if the CRS was
subverted. Zk-SNARGs are zero-knowledge succinct non-interactive argument
systems that are not necessarily knowledge-sound. NIZKs are non-interactive
zero-knowledge argument systems that are not necessarily succinct.

Unfortunately, known SNARKs for NP are based on non-falsifiable assump-
tions. Gentry and Wichs [17] showed that this is (in a quite precise sense)
unavoidable. Their impossibility result balances four aspects of efficient NIZKs:
succinctness, adaptive soundness, reliance on falsifiable assumptions, and hard-
ness of the languages. All four aspects are highly desirable:

(1) Succinctness plays a crucial role in the practical adaptation since non-succinct
NIZKs are not efficient enough for applications like cryptocurrencies.

© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASTACRYPT 2021, LNCS 13092, pp. 34-64, 2021.
https://doi.org/10.1007,/978-3-030-92078-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92078-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-92078-4_2

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 35

Table 1. Some known (im)possibility results. Impossibility results mean that one can-
not achieve all o’s at the same time. Possibility results achieve v’s but do not achieve
X’s. AS = adaptive soundness, s = succinctness, HL. = hard languages, FA = falsifiable
assumptions, PZK = perfect zero-knowledge, BBR = black-box reduction.

AS S HL FA PZK Some papers
Impossibility results
o ° o Gentry-Wichs [17] (BBRs), [7] (nonuniform BBRs)
o o o o [4] (direct BBRs), [38] (BBRs), [7] (non-uniform BBRs)

Possibility results: the tightness of Gentry-Wichs
X Feige-Lapidot-Shamir [13]
v SNARKSs [22]
Delegation schemes [29,21] (ZK is irrelevant)
v The current paper

ENENEN
ANENENE
ANEENEN
ANENE RN

Additional possibility result: tightness of [38]
v Groth-Ostrovsky-Sahai [25]

>
>
N
<

(2) A falsifiable assumption is an assumption where a challenger can efficiently
decide whether the adversary broke it. Non-falsifiable assumptions are con-
troversial in general [36].

(3) Adaptive soundness guarantees that the SNARK stays sound even if the
malicious prover can choose the input x after seeing the CRS. Non-adaptive
soundness guarantees soundness only if x is chosen before the CRS is fixed.

(4) Most of the applications need SNARKSs for hard languages (i.e., languages
with hard subset membership problem) like circuit satisfiability; SNARKSs
for easy languages have their uses, but they are limited.

Gentry and Wichs [17] proved that non-falsifiable assumptions are needed to
construct (even non-zero-knowledge) adaptively sound succinet non-interactive
arguments (SNARGs) for hard languages under black-box reductions. Assum-
ing black-box reductions (or stronger non-uniform black-box-reductions, [7]),
Gentry-Wichs is known to be tight in three aspects, see Table 1. First, non-
succinct adaptively sound falsifiable NIZKs are known for NP [13]. Second,
adaptively sound falsifiable SNARGs are known for P [21,29] (note that in this
case, zero-knowledge is not important). Third, adaptively sound non-falsifiable
SNARGs are known for NP [16,22,23,31,32,37]. However, it is a major open
problem whether Gentry-Wichs is tight in the fourth aspect; i.e., whether non-
adaptively sound falsifiable SNARGS for hard languages are possible.*

Our Contributions. We construct the first falsifiable non-adaptively sound
SNARG FANA for NP. Thus, Gentry-Wichs is tight. We also prove that FANA is
both non-adaptively knowledge-sound and Sub-ZK (zero-knowledge, even if the
CRS is maliciously generated, [1,3,5,14]). While the last two properties are not
related to Gentry-Wichs, they are important in applications.

! Note that even non-succinct falsifiable adaptively sound NIZKs for NP do not exist
when one aims to obtain perfect zero-knowledge, [38]. The impossibility result of [38]
is known to be tight, see Table 1. Thus, we will focus on [17].

36 H. Lipmaa and K. Pavlyk

FANA is inspired by [10,12] who proposed two NIZKs (DGPRS and FLPS)
for well-known constraint systems SSP [9] and SAP [23], correspondingly. We
emphasize that DGPRS and FLPS do not seem to be good starting points for our
goal:

(a) They are quasi-adaptive SNARGs (QA-SNARGs [27]). (We use the term
QA-SNARG instead of the common QA-NIZK to emphasize the succinctness
property.) In QA-SNARGs, the NP language is parameterized by a language
parameter Ipar. Both the quasi-adaptive soundness and zero-knowledge prop-
erties hold only if Ipar is honestly generated. Since the latter is an undesirable
trust assumption, we aim to avoid it by constructing a SNARG and not a
QA-SNARG.

(b) They are quasi-adaptively sound [27] (which means the argument system is
sound against an adversary who chooses the input x after seeing Ipar and
crs), and thus they do not seem to be candidates for non-adaptive NIZKs.

(¢c) They are commit-and-prove argument systems, having a mnon-succinct
perfectly-binding commitment and are thus not succinct.

(d) They are for the SSP [9] and the SAP [23], which are less standard and less
powerful constraint systems compared to the QAP [16].

(e) They are not known to be knowledge-sound.

(f) They are not known to be Sub-ZK.

We solve Items a to ¢ by carefully modifying the construction and the sound-
ness proof of [10,12]. In DGPRS and FLPS, the prover commits to the input x
and the witness w by using a perfectly-binding and several succinct commitment
schemes, including a functional SSB commitment scheme [12]. Functional SSB
commitment schemes satisfy the following helpful property: for a small locality
parameter ¢ (¢ < 10 in DGPRS and FLPS), one can reprogram its commitment
key ck during the security proof so that the reduction will obtain ¢ linear com-
binations of the input and witness coordinates; moreover, in existing schemes,
the commitment length is ¢ + 1 group elements.

The quasi-adaptive soundness proof of [10,12] consists of several games.
Assume that A is a successful soundness adversary. The first game is the classic
(quasi-adaptive) soundness game. In the second game, one picks a random J,
which is a guess for the SSP/SAP/QAP constraint that is not satisfied. One
aborts if the guess was wrong. (This results in n-time security loss where n is
the number of constraints.) Crucially, one uses the perfectly binding commit-
ment scheme to extract values required to do this check. In the third game, one
additionally modifies the commitment key of the functional SSB scheme to be
a function of J. One can do so due to the “function-set hiding” property [12]
of the functional SSB scheme. One then shows that the last game is secure by
constructing two different reductions to two different security assumptions.

In comparison, we check whether the reduction guessed a non-satisfied con-
straint correctly by using the succinct functional SSB commitment. Thus, we
do not need the perfectly binding commitment at all, solving Item c. Hence, we
have a succinct NIZK, i.e., a SNARG. Moreover, since the language parameter

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 37

Ipar in DGPRS and FLPS is the commitment key of the perfectly-binding com-
mitment scheme and we will not use the latter at all, FANA will not have Ipar.
Importantly, it means that FANA is not a QA-NIZK but a usual NIZK. This
solves Item a. Moreover, since FANA is secure under a variant of the security
assumptions of [10,12], we have a falsifiable SNARG.

At this moment, it might seem that we have breached the Gentry-Wichs
impossibility result since DGPRS and FLPS are quasi-adaptively sound. How-
ever, this is not the case. Namely, since we use the functional SSB commitment
to check whether the Jth constraint is satisfied, we cannot do a check (and a
conditional abort) before changing the commitment key. In the case of (quasi-
Jadaptive soundness, x (and thus also the unsatisfied constraint’s number) can
depend on ck, where the latter depends on J. A malicious prover can thus, after
seeing ck, choose x so that the Jth constraint is satisfied.

We solve this seeming contradiction by resorting to non-adaptive soundness,
i.e., we ask A to output x before seeing ck so that it cannot depend on J that
is embedded in ck. In this case, the security proof follows. This solves Item
b. Since we now have a non-adaptively sound SNARG for NP under falsifiable
assumptions, we have also shown that Gentry-Wichs is tight. We emphasize
that while this change to [10,12] may sound simple, it is pretty surprising: as
we already argued, DGPRS and FLPS do not seem to be suitable starting points
for our endeavor. It also results in a multiple changes to the construction of the
SNARG, including the omission of perfectly-binding commitment and Ipar.

Additional Features. While we have already solved our main open problem,
to make FANA more attractive in practice, we will also tackle Items d to f.
In addition, we will base FANA on an—arguably—better falsifiable assumption,
which also results in slight efficiency gain. Due to this, FANA’s argument length
and verifier’s complexity are almost the same as in FLPS.

Finally, FANA relies on the Gonzalez-Hevia-Rafols bilateral subspace QA-
NIZK BLS from [19]. For FANA to be non-adaptively sound, non-adaptively
knowledge-sound, and Sub-ZK, BLS has to satisfy quasi-adaptive o-strong sound-
ness, adaptive knowledge-soundness, and Sub-ZK. Here, quasi-adaptive o-strong
soundness is a new security property of QA-SNARGs that lies between quasi-
adaptive soundness and quasi-adaptive strong soundness [28]. We prove that
BLS satisfies all three properties. Since bilateral subspace QA-NIZKs have many
independent applications, this constitutes a contribution of independent interest.

QAP (Item d). DGPRS is for SSP (Square Span Program, [9]), a constraint
system that has an efficient reduction to Boolean circuit satisfiability. In many
applications, it is desirable to construct a (QA-)SNARG for arithmetic circuits.
FLPS is for SAP (Square Arithmetic Program, [23,24]), a constraint system
that has an efficient reduction to arithmetic circuit satisfiability for circuits that
consist of addition and square gates. The use of square gates instead of general
multiplication gates results in a factor of two overhead.

The constraint system QAP (Quadratic Arithmetic Program, [16]) models
efficiently arithmetic circuits with general multiplication gates. FANA is directly
for QAP. In the pairing-based setting, SNARKSs for QAP have one complication

38 H. Lipmaa and K. Pavlyk

compared to SNARKs for SSP and SAP: namely, in the former, the prover
outputs an element in both source groups. Hence, differently from DGPRS and
FLPS, we use functional SSB commitments in both source groups G; and Gs. In
the soundness proof, this means adding one more game to change the functional
SSB ck in both groups. Adding another commitment means that, at least when
using the same approach as DGPRS and FLPS, SNARKSs for QAP are necessarily
less efficient. We mitigate it by using a different assumption.

Better Assumption. The ¢-type assumptions S-TSDH (Square Target Strong
Diffie-Hellman) and SA-TSDH (Square Arithmetic Target Strong Diffie-
Hellman) used in [10] and [12] respectively, look quite complicated.? To argue
that such assumptions are sensible, one can prove that they hold in the generic
group model (GGM). In a GGM proof, one considers a generic adversary that is
only allowed to (i) execute group operations in the source and target groups, (ii)
perform the pairing operation, and (iii) check for equality of two group elements.
GGM is a very restrictive model. One of the many criticisms against GGM is
that the target group Gr is a subgroup of the finite field, and thus it is ques-
tionable whether it can be modeled as a generic group, [26]. Indeed, one can
use the finite field structure to operate on the elements of the Gr. To address
this issue, [26] defined the semi-GGM, where one assumes that only the source
groups are generic. A significant drawback of S-TSDH and SA-TSDH is that,
in their definition, the adversary can output a value in the target group. Thus,
they are not (known to be) secure in the semi-GGM.

Moreover, the adversary of the {*}TSDH assumptions is required to output
some elements together with their “knowledge components” [8]. To prove sound-
ness under {+*}TSDH assumptions, the prover of the SNARG must also output
the knowledge components. Due to this, {*}TSDH assumptions “force” one to
design SNARGs that might not be optimal.

Instead of {#}TSDH assumptions, we introduce a very different-looking
assumption QA-LINRES. QA-LINRES (see Definition 2) holds in the algebraic
group model (AGM, [15]).® Since the QA-LINRES adversary does not have to
output “knowledge components”, QA-LINRES allows to design more efficient
SNARGs. Even without counting the cost of perfectly-binding commitment in
DGPRS and FLPS, FANA is efficiency-wise competitive with DGPRS and FLPS
despite being for QAP and thus involving one more functional SSB commitment.

Knowledge-Soundness (Item e). In many applications, knowledge-soundness is
desirable. It is especially important in the case of succinct NIZKs, where the
verifier only has access to a succinct commitment to the witness. Such com-
mitments can be information-theoretically opened to an exponential number of
witnesses, and it is important to know which witness was used by the adversary.
Unfortunately, neither DGPRS nor FLPS is known to be knowledge-sound.

2 DGPRS, FLPS, and FANA also rely on two standard assumptions SKerMDH [19] and
DDH. We focus on the least standard assumptions, S-TSDH and SA-TSDH.

3 We recall that the AGM is a modern, somewhat more realistic alternative to the
GGM. In particular, like the semi-GGM, the AGM of [15] considers only the source
groups to be “algebraic”. Thus, QA-LINRES also holds in the semi-GGM.

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 39

Sub-ZK (Ttem f). DGPRS and FLPS are proven to be sound and zero-knowledge,
assuming that both Ipar and crs are trusted. Since in many applications, it is cru-
cial to avoid trust assumptions (like crs’s correctness), this situation is not satis-
factory. Instead, one should aim to prove Sub-ZK [5]. It is known that the most
efficient zk-SNARK [23] is also Sub-ZK [1,3,14] under non-falsifiable assump-
tions. As noted in [2], non-falsifiable assumptions are also needed due to the
well-known impossibility result of [18]. In Theorem 2, we prove that FANA is
Sub-ZK assuming that BLS is Sub-ZK.

Efficiency. The FANA argument 7 is succinct, consisting of 9 elements of Gy
and 5 elements of Gs.

The Bilateral Subspace Argument. FANA uses a bilinear subspace argu-
ment system that, in particular, allows one to prove that different commitments
in both G; and G5 commit to the same message. As a contribution of indepen-
dent interest, we study the quasi-adaptively strongly sound and perfectly zero-
knowledge Gonzélez-Hevia-Rafols bilateral subspace argument system BLS [19].

Let o be an efficiently computable function. We define a new soundness
notion for QA-SNARGsS, o-strong soundness, that lies between soundness and
strong soundness [28]. Since BLS is quasi-adaptively strongly sound, it is also
quasi-adaptively o-strongly sound for any efficiently computable o. While quasi-
adaptive strong soundness of BLS is known to be sufficient for the non-adaptive
(knowledge-) soundness of FANA, we show that it suffices that BLS is o,-strongly
sound for a particular function o,.. There are two primary motivations for intro-
ducing the new security notion. First, it allows one to capture the exact security
property of BLS needed by FANA. Second, it may be possible (though we leave it
for future work) to construct more efficient bilinear subspace argument systems
that are o,-strongly sound but not strongly sound.

In Theorem 1, we prove BLS is adaptively sound under the non-falsifiable
assumption SKerMDH® from [2]. We prove that BLS is adaptively knowledge-
sound in the AGM under the SDLY assumption from [2]. (See Theorem 1.) Both
SKerMDHY and SDLY belong to the family of non-adaptive oracle assump-
tions, where the adversary is initially given access to the oracle who solves the
discrete logarithm assumption. After that, the adversary has to break either
the SKerMDH or the SDL [6] assumption on a fresh instance. We believe such
assumptions are significantly more realistic than knowledge assumptions under-
lying efficient zk-SNARKSs.

As shown in [2], to prove that a QA-SNARG is Sub-ZK, one must prove that
the QA-SNARG is both black-box zero-knowledge (that is, zero-knowledge, if
Ipar and crs are trusted) and non-black-box persistent zero-knowledge (that is,
zero-knowledge, if Ipar and crs are not trusted; this notion was defined in [2]). In
the latter case, one assumes that one can extract the simulation trapdoor from
a malicious crs. Zero-knowledge does not follow from persistent zero-knowledge
since the former is black-box and the latter is non-black-box, [2]. In Theorem
1, we prove that (1) BLS is perfectly zero-knowledge, and (2) BLS is persistent
zero-knowledge under a novel knowledge-assumption GHR-KE, similar to the
KW-KE assumption [2].

40 H. Lipmaa and K. Pavlyk

Since bilateral subspace argument systems have many more applications, the
BLS section constitutes a significant independent contribution.

Summary of Security Results. To not overwhelm the reader, we did not
describe all security results in the introduction. As a corollary of various theorems
of the current paper, we can informally state the following result.

Corollary 1 (Informal). FANA is a SNARG that is non-adaptively sound
under the falsifiable SKerMDH, DDH, and QA-LINRES assumptions (where
the latter is a new falsifiable assumption that holds under the PDL assumption
in the AGM). It is non-adaptively knowledge-sound in the AGM if additionally
the non-falsifiable assumptions SKerMDHY and SDLY [2| hold. It is Sub-ZK
under the DDH and the non-falsifiable GHR-KE assumption (where the latter is
a new knowledge assumption that holds in the AGM).

Full Version. Due to the lack of space, we postpone most of the security proofs
and several additional results to the full version, [35].

Open Problems. To be precise, we showed that [17] is tight with respect to
black-box reductions [17] and non-uniform black-box reductions [7]. We leave
the study of general non-black-box reductions as an interesting open problem.

2 Preliminaries

For a matrix A = (A;;), A; denotes its ith row and AY) denotes its jth column.
The cokernel of A is defined as coker(A) = {a :a' A = 0}. Let colspace(A) be
the column space of A. For matrices A and B, denote A//B = (4).

Assume n is a power of two. Let w be the nth primitive root of unity modulo
p (w exists, given that n | (p — 1).) Then,

~ Z(X) =}, (X —w'~!) = X™ —1 is the unique degree n monic polynomial,
such that Z(w'=1) =0 for all i € [1,n].

— For i € [1,n], let £;(X) be the ith Lagrange polynomial, i.e., the unique degree
n — 1 polynomial, such that ¢;(w*~!) = 1 and ¢;(w=1) = 0 for i # j. Let
Z'(X)=dZ(X)/dX =nX""1. It is well known that

n i—1 .
6i(X) = Z'(wi—lz)(())(()fm—l) = (;((X:Bf_l) for X # wi1.
Given X € Z,, one can efficiently compute {¢;(X)}7 . L,(X) := Y | z;il;(X)
is the interpolating polynomial of the vector z € Z at points wiL,

We denote assignment by < and (uniformly random) sampling by «s. PPT
denotes probabilistic polynomial-time; A € N is the security parameter. We
assume all adversaries are stateful, i.e., keep up a state between different execu-
tions. For an algorithm A, range(.A) is the range of A, i.e., the set of valid outputs
of A, RNDj(A) denotes the random tape of A (for given), and r «<—s RND,(A)
denotes the uniformly random choice of the randomizer r from RND,(A). By
y «— A(x;r) we denote the fact that A, given an input z and a randomizer r,

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 41

outputs y. Let negl(A) be an arbitrary negligible function, and poly (A) be an
arbitrary polynomial function. We write a =~ b if |a — b| < negl(\).

Bilinear Groups. A bilinear group generator Pgen(1*) returns (p, Gy, Ga, G,
é,[1]1,[1]2), where Gy, G2, and Gr are three additive cyclic groups of prime
order p, é : G; x Go — G is an efficiently computable non-degenerate bilinear
pairing, and [1], is a fixed generator of G,. While [1], is a part of p, for the sake
of clarity, we often give it as an explicit input to different algorithms. We assume
n | (p— 1), where n is a large deterministically fixed upper bound on the size of
the statements that one handles in this bilinear group. As in [5], we assume that
Pgen is deterministic and cannot be subverted. The bilinear pairing is of Type-3,
i.e., there is no efficient isomorphism between G; and Gs. We use the by-now
standard bracket notation, i.e., for ¢« € {1,2, T}, we write [a], to denote a[l1],. We
denote é([a]1, [b]2) by [a]1 ®[b]2. We use freely the bracket notation together with
matrix notation, e.g., AB = C iff [A]; e [B]y = [C]r. For an integer (vector) a,
we denote [a]« := ([a1]1, [a2]2).

Assumptions. Let *, k € N, with «* > k, be small constants. Let p be a large
prime. A PPT-sampleable distribution D ,, is a matriz distribution [11] if it
samples matrices A € Z’;*X“ of full rank k. Dy« is robust [27] if it samples
matrices A whose upper x x & submatrix A is invertible. Denote the lower
(k* — k) x Kk submatrix of A by A. Denote D,, = D,.y1,. We denote D, 11
by D,. In the full version [35], we define five common distributions [11]: U,
(uniform), L, (linear), JL, (incremental linear), C, (cascade), SC, (symmetric
cascade). All mentioned distributions can be made robust with minimal changes.

Let di(n),da(n) € poly(X). (di(n),d2(n))-PDL (Power Discrete Loga-
rithm, [31,39]) holds relative to Pgen, if V PPT A,

A .
AdvEd! A):=Pr P Peen(17), & Zy: ~) 0.
et A T [) = o

The ¢-PDL assumption in Gy (resp., G3) is equal to the (g,0)-PDL (resp., (0, ¢)-
PDL) assumption. The symmetric discrete logarithm (SDL [6]) assumption is
equal to the (1,1)-PDL assumption.

Let ¢ €{1,2}. DDHg, (Decisional Diffie-Hellman) holds relative to Pgen, if
V PPT A, Advige ¢, a(A) = [e%(X) — e4(A)] = 0, where

si()\) :=Prlp «— Pgen(l)‘); x, Y, 2 —s Ly : Ap, [z, y,xy + Bz],) = 1].
Let ¢ € {1,2}. Dy ,-KerMDHg, (Kernel Diffie-Hellman) holds relative to
Pgen, if YV PPT A, Advigen @ o, . a(N) =
Prlp « Pgen(1*); A «~s Dy i [c]s—, — A(p,[A],) : ATe =0, A c#0/] =, 0.

Do+ w-SKerMDH (Split Kernel Diffie-Hellman, [19]) holds relative to Pgen,
if V PPT A, Advpgantrs, . . a(A) =

p— Pgen(1"); A s Dy ; ([e1]1, [e2]2) — A(p, [Al1, [A]2) : 0
T =~ .
AT(lecQ):OH A\ 617627&0,{* A

42 H. Lipmaa and K. Pavlyk

According to Lemma 1 of [19], if Dy« .-KerMDH holds in generic symmet-
ric bilinear groups, then D« ,-SKerMDH holds in generic asymmetric bilinear
groups. The KerMDH assumption holds also for Type-1 pairings, where G; = Go,
but then one needs k > 2, which affects efficiency.

Algebraic Group Model (AGM). The AGM is a new model [15] used to prove
the security of a cryptographic assumption, protocol, or a primitive. Essentially,
in the AGM, one assumes that each PPT algorithm A is algebraic in the following
sense. Assume A’s input includes [z,], and no other elements from the group
G,. We consider a less restrictive version of the AGM that gives the adversary
additional access to random oracles. More precisely, assume A has an access to
oracles O; and Os. For ¢ € {1,2}, O, samples and outputs a random element
[¢.k]. from G,. The oracle access models the ability of A to create random group
elements without knowing their discrete logarithms.

We assume that if A outputs group elements [y,],, then A knows matrices
N ,, such that y, = N,(g"). Formally, a PPT algorithm A is (Pgen-)algebraic
if there exists an efficient extractor Exty, such that for any PPT-sampleable
distribution D, AdvEzl 1 4 g, (A) =

p «—sPgen(1?);x = ([z1]1, [x2]2) < D; 7 s RND,(A);
Pr | ([y,]1. [Yyal2) s A9 (x:7); (N1, Na) Exta(xsr) :| = negl(A).
Y1 # Ni(q,) Vys # Na(G3)

For + € {1,2}, O, is an oracle that samples and returns a random element
from G,. [g,], is the list of all elements output by O,. The AGM states that
for any PPT-sampleable D and PPT A, there exists a PPT Exty4, such that

AdVpgen b 4 Ext., (A) = negl(A).

Quadratic Arithmetic Program (QAP). QAP was introduced in [16] as a
relation R where for an input x and a witness w, (x, w) € R can be verified by
using a parallel quadratic check. QAP has an efficient reduction from the (either
Boolean or Arithmetic) CIRCUIT-SAT. Thus, an efficient zk-SNARK for QAP
results in an efficient zk-SNARK for CIRCUIT-SAT.

In QAP, one considers arithmetic circuits that consist only of fan-in-2 multi-
plication gates, but either input of each multiplication gate can be any weighted
sum of wire values [16]. In arithmetic circuits, n is the number of multiplication
gates, m is the number of wires, and mg < m is the number of public inputs.

For the sake of efficiency, we require the existence of the n-th primitive root of
unity modulo p, denoted by w. (However, this is not needed for the new protocols
to work.) Let U, V, W € Zy*™ be instance-dependent matrices and let z € Z;!
be a witness. A QAP is characterized by the constraint Uzo Vz = Wz, where o
denotes the entrywise product of two vectors and z = (3). For j € [1,m], define
u;(X) = Ly (X), v;(X) = Ly »(X), and wj(X) := Ly,) (X) to be inter-
polating polynomials of the jth columns of the corresponding matrices. Thus,
uj, v, w5 € Z=" VX Let u(X) = S5 25u;(X), o(X) = £, 20,(X), and

w(X) = Z;n:l zjw;j(X). Then Uz o Vz = Wz iff Z(X) | (w(X)v(X) — w(X))

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 43

iff w(X)v(X)=w(X) (mod Z(X)) iff there exists a polynomial h(X) such that
u(X)v(X) —w(X) = h(X)Z(X).

An QAP instance Zqap is equal to (Zp, mo, {uj, v, w;}y). Zgap defines the
following relation:

X, W): X = (Z1,---,%m, T W = (Zm, 1,...,Zm—r
{<,> ()T A W= (@ “}m

Rz w(X)w(X) = w(X) (mod Z(X))

qap

where u(X), v(X), and w(X) are defined as above. Alternatively, (x,w) € R =
Rz, if there exists a (degree < n —2) polynomial h(X), such that the following

key equation holds:
N(X) = u(X)o(X) — w(X) — h(X)Z(X) = 0, (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, (i) the first mg coefficients z; in u(X)
are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all computed
by using the same coefficients z; for j € [1,m].

SAP and SSP. Square arithmetic programs (SAPs, [23]) are QAPs with the
extra condition U = V; thus, all multiplication gates in the arithmetic circuit
have equal inputs, i.e., they are square gates. Square span program (SSP, [9])
are QAPs with the restriction that U = V = W see [34]. There is an efficient
relation between the arithmetic circuit evaluation problem and QAP/SAP and
another one between the Boolean circuit evaluation problem and SSP. SSP is
useful when the concrete zero-knowledge language is related to Boolean circuits.

2.1 Underlying Commitment Schemes

We will use several different commitment schemes that are all specific cases of
the Multi-Pedersen commitment scheme.

EMP Commitment. Let ¢ € {1,2}. Let ¢ (the locality parameter) and n
(the plaintext length) be two integers. Let D be a (matrix) distribution on
g x (m+1) matrices. In the (¢, D)-FEztended Multi-Pedersen commitment scheme
EMP [12,20], the commitment key is ck = [G],, where G «sD. The commitment
EMP.Com(ck; a;r), where a € Z" and r s Z,,, is defined as [G],(). The inter-
polation commitment scheme [33] is a perfectly-hiding EMP commitment scheme,
with ck := [¢1(x), ..., ln(2), Z(x)], € G for a random trapdoor z «—s Zy.

Functional SSB Commitment [12]. Let F' be a fixed function. In general, F'
may depend on p, but we will not emphasize it for notational simplicity. In our
applications, F': a — [a], for ¢ € {1,2}. Let F be a function family, where f € F
inputs a vector & and outputs an element from the domain of F'. An F-extractable
functional somewhere statistically-binding (SSB) commitment scheme [12] I' =
(Pgen, KC, Com, LExtr) for a function family F makes it possible to commit to
a vector &, such that the following properties hold. (1) The commitment key ck
is chosen depending on the description of a function tuple f1,...,f, € F, (2)

44 H. Lipmaa and K. Pavlyk

commitment keys corresponding to different function tuples are computationally
indistinguishable, and (3) given the extraction key, one can extract from the
commitment the vector (F(fi(x)),...,F(fq(x))).

More precisely, an F-extractable functional SSB commitment scheme I' =
(Pgen, KC, Com, LExtr) for a function family F consists of the following
polynomial-time algorithms. We will omit algorithms (like trapdoor opening)
and properties not needed in the current paper.

Parameter generation: Pgen(1}) returns parameters p (for example, group
description). Recall that F' depends on p.

Commitment key generation: for parameters p, a positive integer n €
poly (\), a locality parameter ¢ € [1,n], and a tuple S = (f1,..., fis)) € F
with |S| < ¢, KC(p,n,q,S) outputs a commitment key ck and a trapdoor
td = (ek,tk). Here, ek is the extraction key, and tk is the trapdoor key. ck,
ek, and tk implicitly specify p, the message space M, the randomizer space
R, and the commitment space C, s.t. F(M) C C. For any other input, KC
outputs (ck,td) = (L, 1).

Commitment: for a commitment key ck # 1, a message * € M", and a
randomizer r € R, Com(ck; x;r) outputs a commitment ¢ € C.

Local extraction: for p € Pgen(1%), a positive integer n € poly(\), a local-
ity parameter ¢ € [1,n], a tuple S = (fi,..., fis) € F with 1 < [S] <
q, (ck,(ek,tk)) € KC(p,n,q,S), and ¢ € C, LExtp(ek;c) returns a tuple
(F(fi(2)),..., F(fis)(x))) € MIS;

For {f;}{_, C F and vector x let us denote zs = (f1(x),..., fy(x)).
An F-extractable functional SSB commitment scheme I' for function family
F can satisfy the following security requirements.
Function-Set Hiding: YA, PPT A, n € poly(\), ¢ € [1,n], AdvﬁfEL7q7A()\) =
2 [0 a(A) = 1/2] mx 0, where e 4(X) :=
p — Pgen(1M); (S0, S1) — A(p,n,q) s.t. Vi € {0,1}.8; C FA|Si| < ¢
B —s{0,1};(cks, tdg) < KC(p,n,q,Sp) : A(ckg) = 3 '

Intuitively, ck reveals computationally no information about S.
Almost Everywhere Perfectly Hiding: VA, unbounded A, n € poly(X), ¢ € [1,n],
AdVERE J(A) o= 2[5 4(A) = 1/2] = 0, where 5P ,()) :=

p — Pgen(1*); S — A(p,n,q) s.t. S C F A |S| < ¢; (ck, td) «— KC(p, n,q,S);

P .
' (zo, 1) — A(ck) s.t. xos = x15;8 s {0,1};r —sR : A(Com(ck;zp;7)) =0

Intuitively, given ck, that depends on S, the commitment hides perfectly the
values of x; for i € S.

Local F-Extractability: VA, p € Pgen(1*), n € poly(\), ¢ € [1l,n], S =
(f1,-, fls)) © F with |S| < q, (ck, (ek,tk)) «— KC(p,n,q,S), and PPT A,
AdVII?‘,XIE,n,q,A()‘) =

Pr[z,r « A(ck) : LExtp(ek; Com(ck; ;7)) # (F(f1(x)), ..., F(fis/(2)))] = 0.

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 45

KC(p,n, g, [M]. € GI"™):

Set implicitly M = R = Zy and C = G!™;
Zz(jq+1)><(q+1)

Sample R +s so that it has full rank; Sample @ <—sZ,’;
Set [M'], « [39] ezt

Set ck + R[M'], € G > tq (ek + R, tk + o);
return (ck,td);

Com(ck;x € Zy;r € Zp) LExt(ek;[c].)

return ck(%); return ek[ec], without the last element;

Fig. 1. Functional SSB commitment scheme FSSB, for linear functions in G,.

Intuitively, given ck, that depends on S, and an extraction key, one can extract
F(xs). (This property was called somewhere perfect F-extractability in [12].)

Computational Hiding: ¥ PPT A, n € poly(A), ¢ € [L,n],
Adv, o a(N) =2+ e 4 (A) — 1/2] = negl(\), where &5, . 4()) :=

p — Pgen(1*);S — A(p,n,9) s.t. SCF A [S] < g;
Pr | (ck,td) — KC(p,n,q,S); (xg, x1) «— A(ck); 8 —s {0,1};7r —sR :
A(Com(ck;zg;r)) =0

Intuitively, given ck, that can depend on any S, the commitment hides compu-
tationally the vector x.

Construction. [12] constructed a functional SSB scheme for the family of all lin-
ear functions, see Fig. 1. It represents ¢ linear functions by a matrix [M], € GI*",
where each row contains coefficients of one function. Clearly, the commitment
computes [c], — Com(ck;x;7) = ck(%) = R[M'],(%) = [RMzR(¢ x+r)],, while
LExt(ek; [c],) computes ek - [c], = R™'[RM'(%)], = [M'(2)], = [M2o a+r],,
and returns [Mx],.

Proposition 1 ([12]). Let Pgen be a bilinear group generator. Fix data size
n and locality parameter q. The commitment scheme in Fig. 1 is (i) function-
set hiding relative to Pgen under the DDHg, assumption: for each PPT A,
there exists a PPT B, such that Advﬁf’};’q’A(A) < [logy(g+ 1)] - Adv%?flpgen’g()\).
(ii) locally F-extractable for F = [], (thus, F depends on p), (iii) almost
everywhere perfectly-hiding, (iv) computationally-hiding. More precisely, for all
PPT A, there exist PPT By and unbounded By, such that Adv}}jn’q’A(/\) <

S aeph
Advi 5 (M) + Adv (A

Due to (iv), computational hiding does not have to be proven separately since it
always follows from function-set hiding and almost everywhere perfect hiding.

46 H. Lipmaa and K. Pavlyk

2.2 Sub-ZK NIZK and QA-NIZK

In the current paper, we use both NIZKs and quasi-adaptive NIZKs [27]. To
save space, we first give a complete description of QA-NIZKs (both since QA-
NIZKs are less known and their security definitions subsume those of NIZKs)
and then point out the differences in the case of NIZKs. We postpone the formal
definitions of non-QA NIZKs to the full version [35].

A QA-NIZK argument system in the CRS model proves membership in the
language Lip,r defined by a relation Ripar = {(x, w)}, where both are determined
by a language parameter Ipar. In the honest case, Ipar is sampled from a dis-
tribution Dy; let setup.lpar be the PPT algorithm that does this sampling. We
assume that Ipar contains p, and thus, we do not include p as an argument to
algorithms that also input Ipar; recall that we assumed that p cannot be sub-
verted. A distribution Dy, is witness-sampleable if there exists a PPT algorithm
setup.ltrap that samples (lpar, Itrap) such that Ipar is distributed according to Dy,
and the membership of Ipar in L, can be efliciently verified given Itrap. The CRS
crs can depend on Ipar, but the simulator has to be a single algorithm that works
for the whole collection of relations R, = {R|pa,}|pa,€image(@p). We will assume
that crs contains Ipar implicitly.

The zero-knowledge simulator is usually required to be a single (non-black-
box) PPT algorithm that works for the whole collection of relations R, =
{Ripar fiparcimage(D,); that is, one requires uniform simulation (see [27]). Fol-
lowing [1,3,14], we accompany the universal simulator Sim with an adversary-
dependent extractor. We assume Sim also works when one cannot efficiently
establish whether Ipar € image(D,). The simulator is not allowed to create new
Ipar or crs but has to operate with one given to it as an input.

A Sub-ZK QA-NIZK argqument system in the CRS model for a set of
witness-relations Ry, = {Ripar }iparcimage(D,) i a tuple of PPT algorithms IT =
(Pgen, setup.lpar, Kgs, PARV, CV,P,V,Sim). In the case of witness-sampleable
languages, setup.lpar is replaced by setup.ltrap. Here, Pgen is the parameter
generation algorithm, setup.lpar is the language parameter generation algo-
rithm, setup.ltrap is the corresponding Ipar/Itrap generation algorithm in the
witness-sampleable case, Ks is the CRS generation algorithm, PARV is the Ipar-
verification algorithm, CV is the CRS verification algorithm, P is the prover, V
is the verifier, and Sim is the simulator.

II can satisfy the following security notions. Intuitively, quasi-adaptive
soundness is soundness in the case when Ipar is honestly generated. Quasi-
adaptive strong soundness is soundness when Ipar is honestly generated from
a witness-sampleable distribution, and the adversary additionally gets access to
Itrap. Adaptive soundness is soundness in the case of maliciously generated Ipar.
In all previous cases, the adversary sees crs before creating the input x. Non-
adaptive soundness is soundness in the case of maliciously generated Ipar when
the adversary has to fix x before seeing crs. Similar intuition holds in the case
of various knowledge-soundness notions. Quasi-adaptive (knowledge)-soundness
follows from adaptive (knowledge-)soundness. (Quasi-)adaptive soundness fol-
lows from (quasi-)adaptive knowledge-soundness.

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 47

Perfect Completeness: ¥ A\, PPT A,
p«— Pgen(1>‘); Ipar < setup.lpar(p); (crs, td) «— Kes(Ipar);
Pr | (x,w) « A(crs); m < P(lpar,crs,x, w) : PARV(lpar) = 1A | = 1.
CV(lpar,crs) =1 A ((x,w) & Ripar V V(Ipar,crs,x,7) = 1)

Computational Quasi-Adaptive Strong Soundness: defined if lpar is witness-
sampleable. For any stateful PPT A, Adv,it;:,?;}rfi‘()\) =

p«— Pgen(lk); (Ipar, Itrap) « setup.ltrap(p); (crs, td) «— Kes(lpar);
(x,m) «— A(lpar, Itrap, crs) : V(lpar,crs,x,m) =1 A =(3w.Ripar(x, w) = 1)

In the definition of computational quasi-adaptive soundness (also defined in
the non-witness-sampleable case), the only difference is that one samples Ipar «—
setup.lpar(p), and the adversary does not get Itrap as an input.

Computational Non-adaptive Soundness: ¥ stateful PPT A, Advpge, 7 4(A) :=

b [p — Pgen(1%); (Ipar, x) « A(p); (crs, td) « Kes(lpar); m — A(crs) :| 0
T ~ .
| PARV(Ipar) =1 A V(lpar,crs,x, m) = 1 A =(Iw.Ripar (x5, w) = 1) | *

Computational Adaptive Soundness: V stateful PPT A, Advpge, 17, 4(A) ==

[p— Pgen(1%); Ipar — A(p); (crs, td) — Kqs(Ipar); (x,) «— A(crs) .|
_PARV(Ipar) =1 A V(lpar,crs,x,7) =1 A =~(Fw.Ripar(x, w) = 1) |

Pr A\ 0.

Computational Adaptive Knowledge-Soundness: ¥ PPT stateful adversary A,
there exist a PPT extractor Ext 4, s.t. Adv,%l;in’H’A()\) =

p «— Pgen(1*);r —sRND (A); Ipar — A(p,7);
Pr | (ers,td) «— Kas(Ipar); (x, 7) < A(crs; r); w < Exta(p,crs;r) :| = 0.
PARV(lpar) =1 A V(lpar,crs,x,m) =1 A Ripar(x, w) =0

A knowledge-sound argument system is called an argument of knowledge.

Computational (resp., Perfect) Zero Knowledge: ¥ PPT (resp., unbounded)

adversary A, [egF — e3¥| =, 0 (resp., |eg¥ — ei*| = 0), where 7% :=

Pr[p < Pgen(1*); Ipar « Dy; (crs, td) «— Kes(Ipar) : A% (Ipar, crs) = 1].

That is, A is given an oracle access to Oy(+, -), where Op(x, w) returns L (reject)
if (x,w) & Rypar, and otherwise it returns P(Ipar, crs,x, w). Similarly, O (x, w)
returns L (reject) if (x, w) & Rypar, and otherwise it returns Sim(Ipar, crs, td, x).

Intuitively, zero knowledge in this sense corresponds to black-box zero-
knowledge in the case when Ipar and crs are trusted.

Computational (resp., Perfect) Persistent Zero Knowledge: ¥V PPT subverter Z,

there exists a PPT extractor Extz, s.t. V PPT (resp., unbounded) adversary A,

ek — k| ~, 0 (resp., |e&F — e3*| = 0), where 7% :=

48 H. Lipmaa and K. Pavlyk

P p < Pgen(1*);r —sRND,(Z); (Ipar, crs, aux) «— Z(p,7); td «— Extz(p,7) :
r
PARV(Ipar) = 1 A CV(lpar,crs) =1 A A% (Ipar, crs, aux) = 1

The oracles are as above. Persistent zero-knowledge corresponds to non-black-
box zero-knowledge in the case when Ipar and crs are not trusted.

IT is Sub-ZK if it is both perfectly ZK and perfectly persistent zero-
knowledge. ZK does not follow from persistent zero-knowledge in the case of
QA-NIZKs [2] and thus, one has to prove both properties separately.

NIZKs. In the case of a (non-QA) NIZK, there is no language parame-
ter and thus, no algorithms setup.lpar and PARV; other algorithms (includ-
ing the adversary) do not take Ipar as an argument or output it. Thus, IT =
(Pgen, Kgs, CV, P, V,Sim). Moreover, one deals with a single non-parametrized
language L. Otherwise, all properties of QA-NIZKs carry over but in a simpli-
fied form. Note that (1) one is not interested in quasi-adaptive (strong) soundness
and (2) Sub-ZK and persistent zero-knowledge coincide. We postpone the formal
definitions of non-QA NIZKs to the full version [35].

SNARKS. A (QA-)NIZK is succinct ((QA-)SNARG) if the argument 7 has a
sublinear (desirably, logarithmic) length in poly (A) (|x| + |w]|). A (QA-)SNARK
is a (QA-)SNARG that is additionally knowledge-sound.

Gentry-Wichs Impossibility Result. Gentry and Wichs [17] proved that if
an NP language L has a sub-exponentially (resp., exponentially) hard subset-
membership proof and IT is a complete SNARG in the CRS model with |7| =
poly (A) (|xc| + [w[)?1) (resp., || = poly () ([x| + [w])° + o((x| + [ov]) for some
constant ¢ < 1) for L, then there is a black-box reduction from the adaptive
soundness of IT to a falsifiable assumption X only when X is false.

3 Sub-ZK Bilateral Subspace QA-SNARK

A bilateral subspace argument system, with Ipar = [M],, allows to prove that
[c1]1 € GT* and [co]2 € G52 satisfy (¢l) € colspace(%;). Following [10,12],
we will use it to construct QA-SNARGs. Next, we prove that BLS, a variant
of the Gonzalez-Hevia-Rafols bilateral subspace QA-SNARG, satisfies stronger
properties, needed for FANA to be non-adaptively knowledge-sound and Sub-ZK.

First, let o be any efficiently computable function. A distribution D, is o-
witness-sampleable if (1) there exists a PPT algorithm setup.ltrap, that samples
(Ipar,o(ltrap)) such that lIpar is distributed according to D,, and (2) for any
language trapdoor Itrap’, such that the membership of Ipar in the parameter lan-
guage L, can be efficiently verified given Itrap’, it holds that o(ltrap) = o(ltrap’).
(In the context of the current paper, think of ltrap as the discrete logarithm
of Ipar, and o(ltrap) as an efficient—fixed—leakage function of ltrap.) We will
prove that BLS satisfies the following new security property that follows from
the quasi-adaptive strong soundness (see page 14):

Computational Quasi-Adaptive o-Strong Soundness: defined if Ipar is o-

witness-sampleable. For any stateful PPT A, Advggeifﬁfj“d(A) =

Gentry-Wichs is Tight: A Falsifiable Non-adaptively Sound SNARG 49

p — Pgen(1); (Ipar, o(Itrap)) « setup.ltrap, (p); (crs, td) «— Kes(Ipar);
Pr | (x,m) < A(lpar, o(ltrap), crs) : V(lpar, crs,x, 7) = 1 A ~x 0.
—(Iw.Ripar (x, w) = 1)

This notion agrees with the quasi-adaptive strong soundness when o = id is
the identity function and with the quasi-adaptive soundness if ¢ is a constant
function. While BLS is quasi-adaptively strongly sound and thus also quasi-
adaptively o-strongly sound for any efficient o, we find it instructive to define o-
strong soundness. In particular, for the non-adaptive soundness of FANA, we will
need BLS to be og,-strongly sound for a well-defined function o,. It is possible
that one can find a more efficient version of BLS that is quasi-adaptively o,-
strongly sound but not quasi-adaptively strong sound.

Assume that the matrix security parameter is k = 2 (if k = 1 then SKerMDH
does not hold, [19]). Assume 7 := corank(M) = ny + ny — rank(M) > 1; here,
ni,ng can be smaller or larger (only the latter case was studied in [19]) than m.
For Ipar € G**™ x G5**™, where Ipar = [M]., define the bilateral subspace
language (also known as the subspace concatenation language, [19])

Lipar := { (1)1, [e2]2) € G} x G3? : FIw € Z (&) = (A)w} .

That iS, C, = le and Cy = MQW.

A distribution D,, is efficiently verifiable 2], if there exists a PPT algorithm
MATV([A];) that outputs 1 if A is invertible (recall that we assume that the
matrix distribution is robust) and well-formed with respect to D, and otherwise
outputs 0. Clearly, the standard distributions (see the full version [35]) Uy, L.,
JL,, Cx, and 8C, (for any) are verifiable [2], while the verification whether
[A]5 is invertible is intractable for U, if & > 1. To be able to handle U,, [2] added
parts of [A]; to crs. However, in the U, case, they proved adaptive soundness
under the SKerMDH® (that we will define in Sect.3.1) assumption instead of
the KerMDH® assumption (see [2] for more discussion), which resulted in the
choice k = 2. [A]; is always in crs of a bilateral subspace argument system and
thus the adaptive soundness relies on (a variant of) the SKerMDH®' assumption.

As before, assume that the distribution D, is robust. Extending the defini-
tion of [2], we say that D, is efficiently verifiable, if there exists an algorithm
MATV([A]1, [A]2) that outputs 1 if A is invertible and well-formed with respect
to D, and otherwise outputs 0. Here, MATV gets two inputs, [A]; and [A]s;
there are cases when an efficient MATV does not exist when only [A]; is given
as the input. In particular, under this definition, also U, is efficiently verifiable.

We depict a slight variant of the Gonzalez-Hevia-Rafols bilateral sub-
space QA-SNARG argument system BLS for Las,), (a1,), in Fig. 2. Compared
to [19], we add the CRS verification algorithm CV and assume the existence of
setup.ltrap, for some efficiently computable function o. As in [19], the prover’s
work is dominated by 2mk exponentiations, the verifier’'s work is dominated
by (n1 4+ n2 + 2k)k pairings, and the argument consists of 2k group elements.
Theorem 1 generalizes a theorem from [19] to any n, x m matrices M, (even if
m > n,), given that 7 := ny + ny — rank(M) > 1. This generalization is impor-
tant since in FANA (see Eq. (4)), m > ng. On top of the known results that BLS

50 H. Lipmaa and K. Pavlyk

L, = {[M]. € GI"*™ x G3?*™ : 7 := n1 — rank(M1) = nz — rank(Mz) > 1}

setup.lpar(p) BLS.P(p, crs; ([e1]1, [c2]2), w)

([M]«, 0(My, M>)) <+ssetup.ltrap,_ (p); ¢ <sZy;

return lpar < [M],; [Y1]1 + [Piliw + [C]1;

BLS Kes(p, Ipar = (M1, [Ma])) o]z [Polow —[Clos [[9]. €6

return ¢ « ([¢1]1, [P2]2);

. (kt1)Xr 5 o - .
A s ‘D;{; ><// A€z, +1’n><><, A is 1nvert11>zl:, BLS.Sim(p,crs; ([Cl}la [Cz]z),td)
Ky sZy " Ko s Z> " A s Ly ™ -
Ci+ KiA;Cy +— K2A; [C, ez ” ¢ sZy;

[Py + K| [Mi]: + [A]; [‘/J:ﬂl — Ki[m]l + [Ci]l% / led. G
[Po]s « KJ [Ms]o — [Al; /) [P, ecrxm (W2l & Ko feoa = [Cla; [Wil € GF
Crs <— ([A, CQ, P1]1, [A, Cl, Pz}g); return d] A ([1/)1]17 [1[’2}2);

td « (Kl,Kz);

return (crs, td);

BLS.V(p, crs; ([e1]1, [€2]2), %)

return [c1]] o [C1]o + ([C2] @ [ea]o) " = [41]] @ [A]s + ([A]] @ [4pa]2) T / in 6"
BLS.CV([M].,crs):

return 1 if the following checks all succeed
crs = ([Avc% Plhf [Av ChP?]Q);
[Pi1]1 € GY*™ A [A]2 € GE*"™ A [C1]2 € GEY*";
[P2]2 € G5*™ A [Ab € G5*" A [Ca]1 € G2,
() (Al e[l]e = [1]1 o [Al2;
(*) [Mi]] [Ci]z+ [Me]; o [Coli = [P1]{ o [A]2 + [P]; o [A];
MATV([A]2) = 1;

Fig. 2. The Sub-ZK bilateral subspace QA-SNARG BLS, for efficiently verifiable D,.

is quasi-adaptively (strongly) sound and zero-knowledge, we prove that BLS is
quasi-adaptively o-strongly sound (for any efficient o), adaptively sound, adap-
tively knowledge-sound, persistent zero-knowledge, and thus Sub-ZK. To state
Theorem 1, we will first need to define several security assumptions.

3.1 New Security Assumptions

To state Theorem 1, we will first need to define two (non-falsifiable) non-adaptive
security assumptions, SKerMDH® and SDL%, that state that the SKerMDH and
SDL [6] assumptions stay secure even if one is given a non-adaptive access to
a discrete logarithm oracle in both Gy and Ga. [30] used KerMDH to prove
the quasi-adaptive soundness of their QA-SNARG Ily,, (assuming that Ipar is
honestly generated and witness-sampleable), and [2] used (non-falsifiable) non-
adaptive interactive assumptions KerMDH® and SDLY to prove the adaptive
soundness and knowledge-soundness