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Preface

Asiacrypt 2021, the 27th Annual International Conference on Theory and Application
of Cryptology and Information Security, was originally planned to be held in Singapore
during December 6–10, 2021. Due to the COVID-19 pandemic, it was shifted to an
online-only virtual conference.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 341 submissions from all over the world, and the Program
Committee (PC) selected 95 papers for publication in the proceedings of the confer-
ence. The two program chairs were supported by a PC consisting of 74 leading experts
in aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. The two program chairs were not allowed to submit a paper, and PC
members were limited to two submissions each. There were approximately 363
external reviewers, whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 233 submissions to proceed to the second round
and the authors were then invited to provide a short rebuttal in response to the referee
reports. The second round involved extensive discussions by the PC members.

Alongside the presentations of the accepted papers, the program of Asiacrypt 2021
featured an IACR distinguished lecture by Andrew Chi-Chih Yao and two invited talks
by Kazue Sako and Yu Yu. The conference also featured a rump session which
contained short presentations on the latest research results of the field.

The four volumes of the conference proceedings contain the revised versions of the
95 papers that were selected, together with the abstracts of the IACR distinguished
lecture and the two invited talks. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Via a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “On the Hardness of the NTRU
problem” by Alice Pellet-Mary and Damien Stehlé (which received the best paper
award); “A Geometric Approach to Linear Cryptanalysis” by Tim Beyne (which
received the best student paper award); and “Lattice Enumeration for Tower NFS: a
521-bit Discrete Logarithm Computation” by Gabrielle De Micheli, Pierrick Gaudry,
and Cécile Pierrot. The authors of all three papers were invited to submit extended
versions of their manuscripts to the Journal of Cryptology.

Many people have contributed to the success of Asiacrypt 2021. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge



and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions. We are greatly indebted to Jian Guo, the
General Chair, for his efforts and overall organization. We thank San Ling and Josef
Pieprzyk, the advisors of Asiacrypt 2021, for their valuable suggestions. We thank
Michel Abdalla, Kevin McCurley, Kay McKelly, and members of IACR’s emergency
pandemic team for their work in designing and running the virtual format. We thank
Chitchanok Chuengsatiansup and Khoa Nguyen for expertly organizing and chairing
the rump session. We are extremely grateful to Zhenzhen Bao for checking all the

files and for assembling the files for submission to Springer. We also thank
Alfred Hofmann, Anna Kramer, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2021 Mehdi Tibouchi
Huaxiong Wang
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Lunar: A Toolbox for More Efficient
Universal and Updatable zkSNARKs
and Commit-and-Prove Extensions

Matteo Campanelli1(B), Antonio Faonio2, Dario Fiore3, Anäıs Querol3,4(B),
and Hadrián Rodŕıguez3

1 Aarhus University, Aarhus, Denmark
matteo@cs.au.dk

2 EURECOM, Sophia Antipolis, France
antonio.faonio@eurecom.fr

3 IMDEA Software Institute, Madrid, Spain
{dario.fiore,anais.querol,hadrian.rodriguez}@imdea.org

4 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. We study how to construct zkSNARKs whose SRS is univer-
sal and updatable, i.e., valid for all relations within a size-bound and to
which a dynamic set of participants can indefinitely add secret random-
ness. Our focus is: efficient universal updatable zkSNARKs with linear-
size SRS and their commit-and-prove variants. We both introduce new
formal frameworks and techniques, as well as systematize existing ones.

We achieve a collection of zkSNARKs with different tradeoffs. One
of our schemes achieves the smallest proof size and proving time com-
pared to the state of art for proofs for arithmetic circuits. The language
supported by this scheme is a variant of R1CS that we introduce, called
R1CS-lite. Another of our constructions directly supports standard R1CS
and achieves the fastest proving time for this type of constraints.

These results stem from different contributions: (1) a new
algebraically-flavored variant of IOPs that we call Polynomial Holo-
graphic IOPs (PHPs); (2) a new compiler that combines our PHPs with
commit-and-prove zkSNARKs (CP-SNARKs) for committed polynomi-
als; (3) pairing-based realizations of these CP-SNARKs for polynomials;
(4) constructions of PHPs for R1CS and R1CS-lite. Finally, we extend
the compiler in item (2) to yield commit-and-prove universal zkSNARKs.

Keywords: zkSNARK · Universal SRS · Polynomial commitments ·
IOP

1 Introduction

A zero-knowledge proof system [31] allows a prover to convince a verifier
that a non-deterministic computation accepts without revealing more infor-
mation than its input. In the last decade, there has been growing interest in
zero-knowledge proof systems that additionally are succinct and non interac-
tive [12,29,40,46], dubbed zkSNARKs. These are computationally-sound proof
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13092, pp. 3–33, 2021.
https://doi.org/10.1007/978-3-030-92078-4_1
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systems (arguments) that are succinct, in that their proofs are short and efficient
to verify: the proof size and verification time should be constant or polylogarith-
mic in the length of the non-deterministic witness. In circuit-based arguments for
general computations the verifier must at least read the statement to be proven
which includes both the description of the computation (i.e., the circuit) and its
input (i.e., public input). But this is not succinct; by reading the whole circuit,
the verifier runs linearly in the size of the computation. Preprocessing zkSNARKs
try and work around this problem [13,28,32,44]. Here the verifier generates a
structured reference string (SRS) that depends on a certain circuit C; it does this
once and for all. This SRS can be used later to verify an unbounded number
of proofs for the computation of C. This is a succinct system: while the cost of
SRS generation does depend on |C|, proof verification does not have to.

Works on subversion-resistance show that CRS can be generated by a veri-
fier with no impact on security [1,3,24]. But contexts with many verifiers, e.g.
blockchains, require a trusted party. Solutions that mitigate this problem (e.g.
MPC secure against dishonest majority [7]) are still expensive and often imprac-
tical as they should be carried out for each single C. To address this problem,
Groth et al. [34] introduced the model of universal and updatable SRS. An SRS
is universal if it can be used to generate and verify proofs for all circuits of some
bounded size; it is updatable if any user can add randomness to it and a sequence
of updates makes it secure if at least one user acted honestly. They proposed the
first such zkSNARK, but their scheme requires an SRS of size quadratic in the
number of multiplication gates of the supported arithmetic circuits (and similar
quadratic update/verification time).

Recent works [18,19,21,27,45,53] have improved on this result obtaining uni-
versal and updatable SRS whose size is linear in the largest supported circuit.
In particular, the current Marlin [19] and PLONK [27] proof systems achieve
a proving time concretely faster than that of Sonic [45] while retaining constant-
size proofs ([18,21,53] have instead polylogarithmic-size proofs). We also mention
the very recent works of Bünz, Fisch and Szepieniec [17], and Chiesa, Ojha and
Spooner [20] that proposed zkSNARKs in the uniform random string (URS)
model, that is implicitly universal and updatable; their constructions have a
short URS and poly-logarithmic-size proofs. Yet another universal zkSNARK
construction is that in [41] which, despite its proofs of 4 group elements and
comparable proving time, has an SRS which is not updatable.

Many of these efficient constructions (and the ones in this work) follow a
similar blueprint to build zkSNARKs, which we now overview.

The Current Landscape of zkSNARKs with Universal SRS. A known
modular paradigm to build efficient cryptographic arguments [36,37] works in two
distinct steps. First construct an information-theoretic protocol in an abstract
model, e.g., interactive proofs [31], standard or linear PCPs [13], IOPs [9,48]. Then
apply a compiler that, taking an abstract protocol as input, transforms it into
an efficient computationally sound argument via a cryptographic primitive. This
approach has been successfully adopted to construct zkSNARKs with universal
SRS in the recent works [17,19,27], in which the information theoretic object is
an algebraically-flavored variant of Interactive Oracle Proofs (IOPs), while the
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cryptographic primitive are polynomial commitments [39]. Through polynomial
commitments, a prover can compress a polynomial p (as a message much shorter
than all its concatenated coefficients) and can later open the commitment at eval-
uations of p, namely to convince a verifier that y = p(x) for public points x and y.
In these IOP abstractions—called algebraic holographic proofs (AHP) in [19] and
polynomial IOPs1 in [17]—a prover and a verifier interact, one providing oracle
access to a set of polynomials and the other sending random challenges (if public-
coin). At the end of the protocol the verifier asks for evaluations of these polyno-
mials and decides to accept or reject based on the responses. The idealized low-
degree protocols (ILDPs) abstraction of [27] proceeds similarly except that in the
end the verifier asks to verify a set of polynomial identities over the oracles sent
by the prover (which can be tested via evaluation on random points). To build a
zkSNARK with universal SRS starting from AHPs/ILDPs we let the prover com-
mit to the polynomials obtained from the AHP/ILDP prover, and then use the
opening feature of polynomial commitments to respond to the evaluation queries
in a sound way. As we detail later, our contribution revisits the aforementioned
blueprint to construct universal zkSNARKs.

1.1 Our Contribution

In this work we propose Lunar, a family of new preprocessing zkSNARKs in
the universal and updatable SRS model that have constant-size proofs and that
improve on previous work [19,27,45] as to proof size and prover running time.

In Table 1, we present a detailed efficiency comparison between prior work
and the best representatives of our schemes, when using arithmetic circuit satis-
fiability as common benchmark. LunarLite has the smallest proof size (384 bytes
over curve BN128; 544 bytes over BLS12-381)2 and the lowest proving time com-
pared to the state of art of universal zkSNARKs with constant-size proofs for
arithmetic circuits. As we explain later, LunarLite uses a new arithmetization of
arithmetic circuit satisfiability that we call R1CS-lite, quite similar to rank-1
constraint systems (R1CS). A precise comparison to PLONK depends on the
circuit structure and how the number m of nonzero entries of R1CS-lite matri-
ces depends on the number a of addition gates3; for instance, PLONK is faster
for circuits with only multiplication gates, but LunarLite is faster when m ≤ 3a.

If we focus the comparison on solutions that directly support R1CS (of which
Marlin [19] is the most performant among prior work), our scheme Lunar1cs
(fast & short) offers the smallest SRS, the smallest proof and the fastest prover.
This comes at the price of higher constants for the size of the (specialized)
verification key and verification time4. Lunar1cs (short vk) offers a tradeoff: it
has smaller verification key and faster verification time, but slightly larger proofs,
3× larger SRS, and 5m more G1-exponentiations at proving time than Lunar1cs
(fast & short). Even with this tradeoff, Lunar1cs (short vk) outperforms Marlin

1 Hereinafter we use AHP/PIOPs interchangeably as they are almost the same notion.
2 BN128 is 100-bits-secure while BLS12-381 has 128-bits-security.
3 Applying [14] PLONK’s proving time drops to 8n + 8a, but our analysis still holds.
4 In practice this overhead is negligible. Lunar1cs (fast & short) takes 7 pairings to

verify (≈35 ms); faster schemes, including some from this work, take 2 (≈10 ms).
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in all these measures. We implemented Lunar’s building blocks and we confirm
our observations experimentally (check full version).

Table 1. Efficiency of universal and updatable practical zkSNARKs for arithmetic
circuit satisfiability with O(1) proofs. n: number of multiplication gates; a: number of
addition gates; m ≥ n: number of nonzero entries in R1CS(-lite) matrices encoding the
circuit; N, N∗, A and M : largest supported values for n, a + m, a and m respectively.

zkSNARK
size time

|srs| |ekR| |vkR| |π| KeyGen Derive Prove Verify

G1 4N 36n — 20 4N 36n 273n
7 pairingsSonic

G2 4N — 3 — 4N — —
[45]

F — — — 16 — O(m logm) O(m logm) O(�+logm)
G1 3M 3m 12 13 3M 12m 14n+8m

2 pairingsMarlin
G2 2 — 2 — — — —

[19]
F — — — 8 — O(m logm) O(m logm) O(�+logm)

(small proof)
G1

3N∗ 3n+3a 8 7 3N∗ 8n+8a 11n+11a
(fast prover) N∗ n+a 8 9 N∗ 8n+8a 9n+9a
PLONK G2 1 — 1 — 1 — — 2 pairings

[27] F — — — 7 — O((n+a) log(n+a)) O((n+a) log(n+a)) O(�+log(n+a))

G1 M m — 10 M — 8n+3m
LunarLite G2 M — 27 — M 24m —

7 pairings

[this work] F — — — 2 — O(m logm) O(m logm) O(�+logm)
G1 M m — 11 M — 9n+3m

Lunar1cs G2 M — 60 — M 57m —
7 pairings

(fast & short) F — — — 2 — O(m logm) O(m logm) O(�+logm)
G1 3M 3m 12 12 3M 12m 9n+8m

Lunar1cs G2 1 — 1 — 1 — —
2 pairings

(short vk) F — — — 5 — O(m logm) O(m logm) O(�+logm)

Our main contribution to achieve this result is to revisit the aforementioned
blueprint to construct universal zkSNARKs by proposing: (1) a new algebraically-
flavored variant of IOPs, Polynomial Holographic IOPs (PHPs), and (2) a new
compiler that builds universal zkSNARKs by using our PHPs together with
commit-and-prove zkSNARKs (CP-SNARKs) [18] for committed polynomials.
Additional contributions include: (3) pairing-based realizations of these CP-
SNARKs for polynomials, (4) constructions of PHPs for both R1CS and a novel
simplified variant of it, (5) a variant of the compiler (2) that yields a commit-and-
prove universal zkSNARK. The latter is the first general compiler from (alge-
braic) IOPs to commit-and-prove zkSNARKs. A CP-SNARK permits to verify
a proof through a commitment to an input (rather than an input in the clear)
that, crucially, we can reuse among proofs5. Below we detail our contributions.

Polynomial Holographic IOPs (PHPs). Our PHPs generalize AHPs6 as
well as ILDPs. A PHP consists of an interaction between a verifier and a prover
sending oracle polynomials, followed by a decision phase in which the verifier
5 We compose CP-SNARKs as gadgets to modularly build complex schemes; as studied

recently [18,54], they are useful to prove properties of committed values [11,35].
6 PHPs generalize AHPs where the verifier is “algebraic”, including all schemes in [19].
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outputs a set of polynomial identities to be checked on the prover’s polynomials
(such as a(X)b(X) − z · c(X) ?= 0, for oracle polynomials a, b, c and some scalar
z), as well as a set of degree tests (e.g. deg(a(X)) < D). The PHP model is close
to ILDPs, but the two differ with respect to zero-knowledge formalizations: while
ILDPs lack one altogether, we introduce and formalize a fine-grained notion of
zero-knowledge—called (b1, . . . , bn)-bounded zero-knowledge—where the verifier
may learn up to bi evaluations of the i-th oracle polynomial. When compared
to AHPs, PHP has, again, a more granular notion of zero-knowledge, as well as
verification queries that are more expressive than mere polynomial evaluations.

As we shall discuss next, these two properties of PHPs—expressive verifier’s
queries and a highly flexible zero-knowledge notion—naturally capture more
(and more efficient) strategies when compiling into a cryptographic argument
(e.g., we can weaken the required hiding property of the polynomial commit-
ments and the zero-knowledge of the CP-SNARKs used in our compiler).

From PHPs to zkSNARKs Through Another Model of Polynomial
Commitments. We describe how to compile a (public-coin) PHP into a
zkSNARK. For AHPs and ILDPs [19,27], compilation works by letting the prover
use polynomial commitments on the oracles and then open them to the evalua-
tions asked by the verifier. Our approach, though similar, has a key distinction:
a different formalization of polynomial commitments with a modular design.

Our notion of polynomial commitments is modular : rather than seeing them
as a monolithic primitive—a tuple of algorithms for both commitment and
proofs—we split them into two parts, i.e., a regular commitment scheme with
polynomials as message space, and a collection of commit-and-prove SNARKs
(CP-SNARKs) for proving relations over committed polynomials. We find sev-
eral advantages in this approach.

As already argued in prior work on modular zkSNARKs through the commit-
and-prove strategy [11,18], one benefit of this approach is separation of concerns:
commitments are required to do one thing independently of the context (com-
mitting), whereas what we need to prove about them may depend on where we
are applying them. For example, we often want to prove evaluation of commit-
ted polynomials: given a commitment c and points x, y, prove that y = p(x)
and c opens to p. But to compile a PHP (or AHP/ILDP) we also need to be
able to prove other properties about them, such as checking degree bounds or
testing equations over committed polynomials. Because these properties—and
the techniques to prove them—are somehow independent from each other, we
argue they should not be bundled under a bloated notion of polynomial com-
mitment. Going one step further in this direction, we formalize commitment
extractability as a proof of knowledge of opening of a polynomial commitment.
This modular design allows us to describe an abstract compiler that assumes
generic CP-SNARKs for the three aforementioned relations—proof of knowledge
of opening, degree bounds and polynomial equations—and can yield zkSNARKs
with different tradeoffs depending on how we instantiate them.

We also find additional benefits of the modular abstraction. First, a CP-
SNARK for testing equations over committed polynomials more faithfully cap-
tures the goal of the PHP verifier (as well as the AHP verifier in virtually all
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known constructions). Second, we can allow for realizations of CP-SNARKs for
equations over polynomials other than the standard one, which reduces the prob-
lem of (batched) polynomial evaluations via random point evaluation. As an
application, we show a simple scheme for quadratic equations that can even
have an empty proof (see below); our most efficient realizations exploit this fact.

From PHPs to zkSNARKs: Fine-Grained Leakage Requirements. Our
second contribution on the compiler is to minimize the requirements needed to
achieve zero-knowledge. As we shall discuss later, this allows us to obtain more
efficient zkSNARKs. A straightforward compiler from PHPs to zkSNARKs would
require hiding polynomial commitments and zero-knowledge CP-SNARKs; we
weaken both requirements. Instead of “fully” hiding commitments, our compiler
requires only somewhat hiding commitments. This new property guarantees, for
each committed polynomial, leakage of at most one evaluation on a random
point. Instead of compiling through “full” zero-knowledge CP-SNARKs, our
compiler requires only (b1, . . . , bn)-leaky zero-knowledge CP-SNARKs. This new
notion is weaker than zero-knowledge and states that the verifier may learn up to
bi evaluations of the i-th committed polynomial.

We show that by using a somewhat-hiding commitment scheme and a (b1, . . . ,
bn)-leaky zero-knowledge CP-SNARK that can prove the checks of the PHP
verifier, one can compile a PHP that is (b1 + 1, . . . , bn + 1)-bounded ZK into a
fully-zero-knowledge succinct argument.

Although related ideas were used in constructions in previous works [27], our
contribution is to systematically formalize (as well as expand) the properties
needed on different fronts: the PHP, the commitment scheme, the CP-SNARKs
used as building blocks and the interaction among all these in the compiler.

Pairing-Based CP-SNARKs for Committed Polynomials. We consider
the basic commitment scheme for polynomials consisting of giving a “secret-
point evaluation in the exponent” [32,39] and then show CP-SNARKs for various
relations over that same commitment scheme. In particular, by using techniques
from previous works [19,27,39] we show CP-SNARKs for: proof of knowledge of
an opening in the algebraic group model [25] (which actually comes for free),
polynomial evaluation, degree bounds, and polynomial equations. In addition to
these, we propose a new CP-SNARK for proving opening of several commitments
with a proof consisting of one single group element; the latter relies on the PKE
assumption [32] in the random oracle model. Also, we show that for a class of
quadratic equations over committed polynomials (notably capturing some of the
checks of our PHPs), we can obtain an optimized CP-SNARK in which the proof
is empty as the verifier can test the relation using a pairing with the inputs (the
inputs are commitments, i.e., group elements). This technique is reminiscent of
the compiler from [13] that relies on linear encodings with quadratic tests.

PHPs for Constraint Systems. We propose a variety of PHPs for the R1CS
constraint system and for a simplified variant of it that we call R1CS-lite. In
brief, R1CS-lite is defined by two matrices L,R and accepts a vector x if there
is a w such that, for c = (1,x,w), L · c ◦ R · c = c. We show that R1CS-lite
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can express arithmetic circuit satisfiability with essentially the same complexity
of R1CS, and its simpler form allows us to design slightly simpler PHPs. We
believe this characterization of NP problems to be of independent interest.

Part of our techniques stem from those in Marlin [19]: we adopt their encoding
of sparse matrices; also one of our main building blocks is the sumcheck protocol
from Aurora of Ben-Sasson et al. [8]. But in our PHPs we explore a different
protocol that proves properties of sparse matrices and we introduce a refined
efficient technique for zero-knowledge in a univariate sumcheck. In a nutshell,
compared to [8] we show how to choose the masking polynomial with a specific
sparse distribution that has only a constant-time impact on the prover. This
idea and analysis of this technique is possible thanks to our fine-grained ZK
formalism for PHPs. By combining this basic skeleton with different techniques
we can obtain PHPs with different tradeoffs (see Table 2).

Commit-and-Prove zkSNARKs from PHPs. We propose the first gen-
eral compiler from an information-theoretic object such as (algebraic) IOPs—
and more in general PHPs—to Commit-and-Prove zkSNARKs7. Recall that the
latter is a SNARK where the verifier’s input includes one (or several) reusable
hiding commitment(s), i.e., to check that R(u1, . . . , u�) holds for a tuple of com-
mitments (ĉj)j∈[�] such that ĉi opens to ui. By reusable we mean that these
commitments could be used in multiple proofs and with different proof systems
since their commitment key is generated before the setup of the proof system.
To obtain a CP-SNARK we cannot apply the committing methods for polyno-
mials used in [19,27]: these require a known bound on how many times we will
evaluate the polynomials. This is analogous to knowing a bound on the number
of proofs over those same committed polynomials, which may be unknown at
commitment time. Therefore we apply more stringent requirements and assume
these commitments to be full-fledged hiding rather than just somewhat-hiding.

To obtain our commit-and-prove compiler we adapt our compiler to
zkSNARKs to include the following key idea: we prove a “link” between the
committed witnesses (uj)j∈[�]—which open hiding commitments (ĉj)j∈[�]—and
the PHP polynomials (pj)j∈[n]—which open somewhat-hiding commitments
(cj)j∈[n]. We design a specific CP-SNARK for this task, CPlink. Our construc-
tion works for pairing-based commitments and supports a wide class of linking
relations which include those in our PHP constructions.

Simplifying a little bit, our techniques involve proving equality of images
of distinct (committed) polynomials on distinct domains and they are of inde-
pendent interest. In particular they can plausibly be adapted to compile other
zkSNARKs with similar properties—e.g., Marlin or PLONK [19,27]—into CP-
SNARKs with commitments that can be reused among different proofs.

Efficient CP-SNARKs with a universal setup are strongly motivated by prac-
tical applications. One of them is committing-ahead-of-time [10,18] in which we
commit to a value possibly before we can predict what we are going to prove
about it. A CP-SNARK with a universal SRS, like those in this work, can be a

7 Here we do not consider the alternative approach of explicitly proving in the PHP
a relation augmented with commitment opening; this is often too expensive [18].
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requirement in the context of committing-ahead-of-time: if the setting requires
committing to data before knowing what properties to prove about them (which
can happen on-demand), the same setting can benefit from an (unspecialized)
SRS string available before knowing what to prove about the committed data.

Our work improves on the efficiency of LegoUAC in [18], a modular CP-
SNARK construction with universal setup for universal relations (and the only
one in literature to the best of our knowledge). Our results are also complemen-
tary to those of [18] (in particular their specialized CP-SNARKs with universal
setup) and to those of works on efficient composable CP-SNARKs on commit-
ments in prime order groups, such as [11]: our universal CP-SNARK can be
composed with the schemes in these works as they can all be derived from the
same SRS, or with some of the transparent instantiations in [11].

1.2 Other Related Work

In this work we focus on practical zkSNARKs with a universal and updatable
setup and constant-size proofs. Recent work builds on our formalizations to
expand this area designing a fully algebraic framework for modular arguments
[47]. Here we briefly survey other works that obtain universality through other
approaches at the cost of a larger proof size.

Concurrent work in [42] proposes a new scheme with universal—but not
updatable—SRS and an asymptotically linear prover (our prover is quasi-linear
due to the use of FFT). By recursive composition they achieve an asymptotically
Oλ(1)-size proof. In practice this is about 9× larger than some of our proofs.

Spartan [49] obtains preprocessing arguments with a URS; it trades a trans-
parent setup for larger arguments and less efficient verification, ranging from
O(log2(n) to O(

√
n), depending on the instantiation.

Concurrent work in [43] extends Spartan techniques obtaining a linear-time
prover. They obtain asymptotically constant-sized proofs through one step of
recursive composition with Groth16 [33]; they do not discuss concrete proof
sizes. This, however, yields a scheme with universal but not updatable setup. It
would require an existing scheme with universal and updatable setup to achieve
the latter; their work can thus be seen as complementary to ours.

Other works obtain universal SNARGS through a transparent setup and
by exploiting the structure of the computation for succinctness. They mainly
use two classes of techniques: hash-based vector commitments applied to oracle
interactive proofs [4–6] or multivariate polynomial commitments and doubly-
efficient interactive proofs [51,53,55–58].

Fractal [20] achieves transparent zkSNARKs with recursive composition—
the ability of a SNARG to prove computations involving prior SNARGs. Their
work also uses an algebraically-flavored variant of interactive oracle proofs that
they call Reed–Solomon encoded holographic IOPs.

Another line of work, e.g., [2,8,15,16,26], obtains a restricted notion of suc-
cinctness with no preprocessing, a linear verifier and sublinear proof size.
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1.3 Outline

See Sect. 2 for preliminaries. In Sect. 3 we define PHPs; we describe PHP con-
structions in Sect. 4. Section 5 describes how to compile PHPs to universal
zkSNARKs. Concrete compilations for the Lunar zkSNARKs are in Sect. 6.

2 Preliminaries and Notation

Universal Relations. A universal relation R is a set of triples (R, x,w) where
R is a relation, x ∈ Dx is called the instance (or input), w ∈ Dw the witness,
and Dx,Dw are domains that may depend on R. Given R, the corresponding
universal language L(R) is the set {(R, x) : ∃w : (R, x,w) ∈ R}. For a size bound
N ∈ N, RN denotes the subset of triples (R, x,w) in R such that R has size at
most N, i.e. |R| ≤ N. In our work, we also write R(R, x,w) = 1 (resp. R(x,w) = 1)
to denote (R, x,w) ∈ R (resp. (x,w) ∈ R).

When discussing schemes that prove statements on committed values we
assume that Dw can be split in two subdomains Du ×Dω, and sometimes we use
an even more fine-grained splitting of Du := (D1 × · · · × D�) for some arity �.

2.1 Algebraic Preliminaries

We denote by F a finite field, by F[X] the ring of univariate polynomials, and by
F<d[X] (resp. F≤d[X]) the set of polynomials in F[X] of degree < d (resp. ≤ d).

We briefly describe some algebraic preliminaries (see full version for details):

Vanishing and Lagrange Basis Polynomials. For any subset S ⊆ F we denote by
Z S(X) :=

∏
s∈S(X − s) the vanishing polynomial of S, and by LS

s (X) the s-th
Lagrange basis polynomial, which is the unique polynomial of degree at most
|S| − 1 such that for any s′ ∈ S it evaluates to 1 if s = s′ and to 0 otherwise.

Multiplicative Subgroups. If H ⊆ F is a multiplicative subgroup of order n, then
its vanishing polynomial has a compact representation Z H(X) = (X |H| − 1).
Similarly, for such H it holds LH

η (X) = η
|H| · X|H|−1

X−η [38,50,52]. Both Z H(X) and
LH

η (X) can be evaluated in O(log n) field operations. We assume that H comes
with a bijection φH : H → [n], and we use elements of H to index the entries of a
matrix M ∈ F

n×n, i.e., Mη,η′ denotes MφH(η),φH(η′), and similarly for vectors.
For any vector v ∈ F

n, we denote by v(X) its interpolating polynomial in H, i.e.,
the unique degree-(|H| − 1) polynomial such that, for all η ∈ H, v(η) = vη.

Univariate Sumcheck. We use the lemma from [8,19], which shows that for any
p ∈ Fd[X] and multiplicative subgroup H ⊂ F, σ =

∑
η∈H

p(η) iff there exists
q(X), r(X) such that p(X) = q(X)Z H(X)+Xr(X)+σ/|H| with deg(r) < n−1.

Polynomial Masking. Given a subgroup H ⊂ F and an integer b ≥ 1,
MaskHb (p(X)) is a shorthand for p(X) + Z H(X)ρ(X) for a randomly sampled
ρ(X) ←$F<b[X].

Definition 1 (Bivariate Lagrange polynomial). The bivariate Lagrange
polynomial for a multiplicative subgroup H ⊆ F is ΛH(X,Y ) :=
Z H(X)·Y −X·Z H(Y )

n·(X−Y ) .
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This polynomial has two properties useful for our work: for all η ∈ H, ΛH(X, η) =
LH

η (X), and it can be evaluated in O(log n) time (see full version).

Sparse Matrix Encodings. For a matrix M , ||M || denotes the number of its
nonzero entries, which we call its density. We occasionally use encodings for
sparse matrices inspired to [19]. Let K be another multiplicative subgroup of F
such that |K| ≥ ||M ||. In brief, a sparse encoding of a matrix M is a triple of
polynomials (valM, rowM, colM) in F<|K|[X], where rowM : K → H (resp. colM :
K → H) is the function such that rowM(κ) (resp. colM(κ)) is the row (resp.
column) index of the κ-th nonzero entry of M , and valM : K → F is the function
that encodes the values of M in some arbitrary ordering. Hence it holds that for
all κ ∈ K, valM(κ) = M rowM(κ),colM(κ). We define the matrix-encoding polynomial
of M as the bivariate polynomial VM (X,Y ) :=

∑
κ∈K

valM(κ) · LH

rowM(κ)(X) ·
LH

colM(κ)(Y ), and note that for all η, η′ ∈ H, VM (η, η′) = Mη,η′ .
The following lemma shows that a sparse encoding polynomial of a matrix

M can be used to express linear transformations by M . Proof in the full version.

Lemma 1 (Sparse Linear Encoding). Let M ∈ F
n×n and let VM (X,Y ) be

its matrix-encoding polynomial. Let v,y ∈ F
n be two vectors and v(X), y(X) be

their interpolating polynomials over H. Then y = M · v if and only if y(X) =∑
η∈H

v(η) · VM (X, η).

Joint Sparse Encodings for Multiple Matrices. When working with multiple
matrices, it is sometimes convenient to use a sparse encoding that keeps track of
entries that are nonzero in either of the matrices. This has the advantage of hav-
ing a pair of col, row polynomials common to all matrices. For example, for two
matrices L,R, this encoding includes polynomials {valL, valR} encoding their
values, and polynomials {col, row} that maintain the indices in which either of
the matrix is nonzero. Namely, for any κ ∈ K, we have valL(κ) = Lrow(κ),col(κ) and
valR(κ) = Rrow(κ),col(κ). In this case though |K| is in the worst case ≥ ||L||+||R||.

3 Polynomial Holographic IOPs

In this section we define our notion of Polynomial Holographic IOPs (PHP), that
generalizes algebraic holographic proofs (AHPs) [19]. We show how to compile
them into one another in the full version. In a nutshell, a PHP is an interactive
oracle proof (IOP) system that works for a family of universal relations R that is
specialized in two main ways. First, it is holographic, i.e., the verifier has oracle
access to the relation encoding, a set of oracle polynomials created by a trusted
party, the holographic relation encoder (or simply, encoder) RE . Second, it is
algebraic in the sense that the system works over a finite field F: at each round
the prover can send field elements or oracle polynomials to the verifier, while the
latter can perform algebraic checks as queries over the prover’s messages.

More formally, a Polynomial Holographic IOP is defined as follows.
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Definition 2 (Polynomial Holographic IOP (PHP)). Let F be a family of
finite fields and let R be a universal relation. A Polynomial Holographic IOP over
F for R is a tuple PHP = (r, n,m, d, ne,RE ,P,V) where r, n,m, d, ne : {0, 1}∗ →
N are polynomial-time computable functions, and RE ,P,V are three algorithms
for the encoder, prover and verifier respectively, that work as follows.

– Offline phase: The encoder RE(F,R) takes as input a field F ∈ F and a
relation description R, and returns n(0) polynomials {p0,j}j∈[n(0)] encoding
R.

– Online phase: The prover P and verifier V run for r(|R|) rounds and take
respectively as input a tuple (R, x,w) ∈ R and an instance x; the verifier has
also oracle access to the polynomials encoding R.
In the i-th round, V sends a message ρi ∈ F to the prover, and P replies
with m(i) messages {πi,j ∈ F}j∈[m(i)], and n(i) oracle polynomials {pi,j ∈
F[X]}j∈[n(i)], such that deg(pi,j) < d(|R|, i, j).

– Decision phase: After the r(|R|)-th round, the verifier outputs two sets of
algebraic checks of the following type.

• Degree checks: to check a bound on the degree of the polynomials sent by

the prover. More in detail, let np =
∑r(|R|)

k=1 n(k) and let (p1, . . . , pnp) be the
polynomials sent by P. The verifier specifies a vector of integers d ∈ N

np ,
which is satisfied if and only if ∀k ∈ [np] : deg(pk) ≤ dk.

• Polynomial checks: to check that certain polynomial identities hold
for the oracle polynomials and the prover messages. Formally, let
n∗ =

∑r(|R|)
k=0 n(k) and m∗ =

∑r(|R|)
k=1 m(k), and denote by (p1, . . . , pn∗)

and (π1, . . . , πm∗) all the oracle polynomials (including the encoder’s)
and all the messages sent by the prover. The verifier can specify
a list of ne tuples, each of the form (G, v1, . . . , vn∗), where G ∈
F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗ ] and every vk ∈ F[X]. Then a tuple (G,v)
is satisfied if and only if F (X) ≡ 0 where

F (X) := G(X, {pk(vk(X))}k∈[n∗], {πk}k∈[m∗])

The verifier accepts if and only if all the checks are satisfied.

Efficiency Measures. Given the functions r, d, n,m in the tuple PHP, one can
derive some efficiency measures of the protocol PHP such as the total number
of oracles sent by the encoder, n(0), by the prover np, by both in total, n∗; or
the number of prover messages m∗. In addition to these, we define the following
shorthands for two more measures of PHP; degree D, and proof length L(|R|):

D := max
R∈R

i∈[0,r(|R|)]
j∈[n(i)]

(d(|R|, i, j)), L(|R|) :=
∑

i∈[r(|R|)]
j∈[n(i)]

m(i) + d(|R|, i, j).

PHP should satisfy completeness, (knowledge) soundness and zero-knowledge:

Completeness. If for all F ∈ F and any (R, x,w) ∈ R, the checks returned by
VRE(F,R)(F, x) after interacting with (honest) P(F,R, x,w) are always satisfied.
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Soundness. A PHP is ε-sound if for every field F ∈ F , relation-instance tuple
(R, x) /∈ L(R) and prover P∗ we have Pr[〈P∗,VRE(F,R)(F, x)〉 = 1] ≤ ε.

Knowledge Soundness. A PHP is ε-knowledge-sound if there exists a polynomial-
time knowledge extractor E such that for any prover P∗, field F ∈ F , relation R,
instance x and auxiliary input z:

Pr
[
(R, x,w)∈ R : w ← EP∗

(F,R, x, z)
]
≥ Pr[〈P∗(F,R, x, z),VRE(F,R)(F, x)〉=1]−ε

where E has oracle access to P∗, i.e., it can query the next message function of
P∗ (and rewind it) and obtain all the messages and polynomials returned by it.

Zero-Knowledge. A PHP is ε-zero-knowledge if there exists a PPT simulator S
such that for every field F ∈ F , every triple (R, x,w) ∈ R, and every algorithm
V∗ the following random variables are within ε statistical distance:

View
(
P(F,R, x,w) ,V∗) ≈ε View

(
SV∗

(F,R, x)
)

where View
(
P(F,R, x,w),V∗) consists of V∗’s randomness, P’s messages

π1, . . . , πm∗ (which do not include the oracles), and V∗’s list of checks, while
View

(
SV∗

(F,R, x)
)

consists of V∗’s randomness followed by S’s output, obtained
after having straightline access to V∗, and V∗’s list of checks.

Remark 1 (About messages and constant polynomials). We explicitly model the
prover’s messages πi, although they could be replaced by (degree-0) polynomial
oracles evaluated on 0 during the checks. This is useful for zero-knowledge: while
messages are supposed not to leak information on the witness (i.e., they must
be simulated), this does not hold for the oracles. Thus, in our compiler, we will
not need to hide messages πi from the verifier, only the oracles.

On the Class of Polynomial Checks. Above we describe the class of poly-
nomial checks of the verifier in full generality; nonetheless, when possible, we
use more convenient notations. We note that this class includes low-degree poly-
nomials like G({pi(X)}i) (e.g., p1(X)p2(X)p3(X) + p4(X)), in which case each
vi(X) = X, polynomial evaluations pi(x), in which case vi(X) = x, tests over P
messages, e.g., pi(x) − πj , and combinations of all these.

Public Coin and Non-adaptive Queries. In the rest of this work, we only
consider PHPs that are public coin and non-adaptive: the messages of the verifier
are random elements and its checks are independent of the prover’s messages.

Below we define two additional properties that can be satisfied by a PHP:

Bounded Zero-Knowledge. This property will be useful for our compiler of
Sect. 5. We require that zero-knowledge holds even if the view includes a bounded
number of evaluations of oracle polynomials at given points.

However, we cannot allow evaluations on any possible point: specific points
could leak bits of information of the witness. Thus we define a notion of “admis-
sible” evaluations. Below we say that a list L = {(i1, y1), . . . } is (b,C)-bounded
where b ∈ N

np and C is a PT algorithm if ∀i ∈ [np] : |{(i, y) : (i, y) ∈ L}| ≤ bi

and ∀(i, y) ∈ L : C(i, y) = 1.
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Definition 3 ((b,C)-Zero-Knowledge). We say that PHP is (b,C)-Zero-
Knowledge if for every triple (R, x,w) ∈ R, and every (b,C)-bounded list L,
the following random variables are within ε statistical distance:

(
View

(
P(F,R, x,w),V

)
, (pi(y))(i,y)∈L

)
≈ε S(F,R, x,V(F, x),L).

where p1, . . . , pnp are the polynomials returned by the prover P.
Moreover, we say that PHP is honest-verifier zero-knowledge with query

bound b (b-HVZK for short) if there exists a PT algorithm C such that PHP is
(b,C)-ZK and for all i ∈ N we have Pry ←$ F[C(i, y) = 0] ∈ negl(λ).

3.1 PHP Verifier Relation

We formalize the definition of an NP relation that models the PHP verifier’s
decision phase. We shall use it in our compiler in Sect. 5.

Let PHP = (r, n,m, d, ne,RE ,P,V) be a PHP protocol over a finite field fam-
ily F for a universal relation R, with D as its maximum degree. We define Rphp

as a family of relations that express the checks of V over the oracle polynomials,
which can be formally defined as follows.

Let np, n
∗ ∈ N be two positive integers, and consider the following relations:

Rdeg
(
(dj)j∈[np], (pj)j∈[np]

)
:=

∧

j∈[np]
deg(pj)

?
≤ dj

Req
(
(G′,v), (pj)j∈[n∗]

)
:= G′ (X, (pj(vj(X)))j∈[n∗]

) ?≡ 0

where G ∈ F[X,X1, . . . , Xn∗ ] and v = (v1, . . . , vn∗) ∈ F[X]n
∗
. For a PHP verifier

that returns a polynomial check (G′,v), Req expresses such check if one considers
G′ as the partial evaluation of G at (Y1 = π1, . . . , Ym∗ = πm∗). Rdeg instead
expresses the degree checks of a PHP verifier.

Given relations RA ⊂ Dx × Dw and RB ⊂ D′
x × Dw with a common domain

Dw for the witness, consider the product RA × RB ⊂ Dx × D′
x × Dw containing

all the tuples (xA, xB ,w) where (xA,w) ∈ RA and (xB ,w) ∈ RB . For ne ∈ N, let

Rn∗,np,ne := Rdeg ×
ne times

︷ ︸︸ ︷
Req × · · · × Req and Rphp :=

{
Rn∗(|R|),np(|R|),ne(|R|) : R ∈ R

}

where n∗(|R|) =
∑r(|R|)

i=0 n(i) and np(|R|) =
∑r(|R|)

i=1 n(i) are the number of total
and prover oracle polynomials respectively, when running PHP with relation R.

4 Our PHP Constructions

We propose a collection of PHP constructions for two types of constraint systems:
the by now standard rank-1 constraint systems [28] and an equally expressive
variant we introduce in Sect. 4.1 called R1CS-lite.

R1CS-lite can be seen as a simplified version of R1CS with only two matrices.
In brief, an R1CS-lite relation is defined by two matrices L,R and is satisfied if



16 M. Campanelli et al.

Table 2. Comparison of our PHP constructions, all with complexities: O(m log m) for
RE , O(m log m+n log n) for P and O(�+log m+log n) for V. To have a simpler table,
we assume |K| = m > 2n, which is often the case. We call |π| = 5n + 2m − 2� + 2ba +
2bb + 2bs + 6bq − 4, and |π′| = |π| + n − � + bw + 7bq. For verifier checks, we denote by
“deg” the number of degree checks that require a tight bound; the last two columns
show the degree of the two polynomial checks: in the first one we have all vj(X) = y
and in the second one all vj(X) = X. “Rk” (“full”) denote remark (resp. full version).

PHP Degree Oracles Msgs Proof

length

V checks

Name Ref. RE P deg degX,{Xi}(G1) degX,{Xi}(G2)

PHPlite1 4.1 2m 8 7 1 |π| + 2m 2 2 2

PHPlite1x Remark 2 2m 5 7 1 |π| + 2m 2 2 3

PHPlite2 full m 24 7 1 |π| 2 2 2

PHPlite2x full m 16 7 1 |π| 2 2 3

PHPr1cs1 full 3m 9 8 1 |π′| + 4m 2 2 2

PHPr1cs1x full 3m 6 8 1 |π′| + 4m 2 2 3

PHPr1cs2 full m 57 8 1 |π′| 2 2 2

PHPr1cs2x full m 42 8 1 |π′| 2 2 3

PHPr1cs3 full 3m 12 8 1 |π′| 2 2 5

there exists a vector c such that (L · c) ◦ (R · c) = c. We show that R1CS-lite
is as expressive as R1CS since it can represent arithmetic circuit satisfiability
with essentially the same complexity as R1CS (see full version)8. It allows us to
obtain PHP constructions (and resulting zkSNARKs) that are simpler and more
efficient. More formally, R1CS-lite is defined as follows.

Definition 4 (R1CS-lite). Let F be a finite field and n,m ∈ N be positive
integers. The universal relation RR1CS-lite is the set of triples

(R, x,w) := ((F, n,m, �, {L,R}),x,w)

where L,R ∈ F
n×n, max{||L||, ||R||} ≤ m, the first � rows of R are

(−1, 0, . . . , 0) ∈ F
1×n, x ∈ F

�−1, w ∈ F
n−�, and for c := (1,x,w), it holds

(Lc) ◦ (Rc) = c.

In this section, we present one PHP for R1CS-lite relations and give the
intuition to obtain other PHP variants. The PHPs for the R1CS language follow
the same bare-bone protocol, differing mainly in the number of matrices and an
additional witness vector. In Table 2 we give a summary of all our PHPs and
their measures.

4.1 Our PHPs for R1CS-Lite

In all our constructions we use a variant of R1CS-lite in which we slightly expand
the witness, and we express the witnesses and the check in polynomial form.
8 Comparing to R1CS, the number of columns in R1CS-lite matrices do not change

and the number of rows increase by the amount of public inputs, for the same circuit.
The count of nonzero entries in R1CS-lite is smaller for virtually every circuit.
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Definition 5 (Polynomial R1CS-lite). Let F be a finite field, and n,m ∈ N

be positive integers. The universal relation RpolyR1CS-lite is the set of triples
(
(F, n,m, {L,R}, �),x, (a′(X), b′(X))

)

where L,R ∈ F
n×n, max{||L||, ||R||} ≤ m, x ∈ F

�−1, a′(X), b′(X) ∈
F≤n−�−1[X], and such that, for L := {φ−1

H
(i)}i∈[�], x′ = (1,x), a(X) :=

∑
η∈L

x′
φH(η) · LH

η (X) + a′(X) · Z L(X) and b(X) := 1 + b′(X) · Z L(X), it holds,
over F[X,Z],

a(X) + Z · b(X) +
∑

η,η′∈H

(Lη,η′ + Z · Rη,η′) · a(η′) · b(η′) · LH

η (X) = 0 (1)

In the full version we prove that L(RR1CS−lite) ≡ L(RpolyR1CS-lite).

Our PHP PHPlite1. We describe the main ideas of our protocol PHPlite1. The
prover’s goal is to convince the verifier that the polynomials a(X), b(X) satisfy
Eq. (1). To this end, the relation encoder RE encodes the matrices L,R by
using a joint sparse encoding (see Sect. 2.1), which consists of four polynomials
(valL, valR, col, row) in F<|K|[X]. In this case we use a multiplicative subgroup
K ⊆ F of minimal cardinality such that |K| ≥ 2m ≥ ||L|| + ||R||.

By applying the sparse linear encoding of Lemma 1 to the matrices L and R
and using the property of the bivariate Lagrange polynomial that ΛH(X, η) =
LH

η (X), Eq. (1) can be expressed as

0 = a(X) + Z · b(X) +
∑

η∈H

a(η) · b(η) · (VL(X, η) + Z · VR(X, η))

=
∑

η∈H

(a(η) + Z · b(η)) · ΛH(X, η) + a(η) · b(η) · VLR(X, η, Z) (2)

where, exploiting the use of col, row common to L,R, VLR(X,Y,Z) equals:

VL(X,Y )+Z ·VR(X,Y ) =
∑

κ∈K

(valL(κ)+Z · valR(κ)) · LH

row(κ)(X) · LH

col(κ)(Y )

In order to show that a(X), b(X) satisfy Eq. (2), the verifier draws random
points x, α ←$F that are used to “compress” the equation from F[X,Z] to F.
Then, the prover’s task becomes to show that

∑

η∈H

(a(η) + α · b(η)) · ΛH(x, η) + a(η) · b(η) · VLR(x, η, α) = 0

This is done via a univariate sumcheck over p(X) := (a(X)+α·b(X))·ΛH(x,X)+
a(X) · b(X) · VLR(x,X, α). However, since p(X) depends on the witness, we
make the sumcheck zero-knowledge by doing it over p(X) + s(X) for a random
polynomial s(X) sent by the prover in the first round. Although this resembles
the zero-knowledge sumcheck technique of [8], we propose an optimized way
to randomly sample a sparse s(X), which is sufficient for the bounded zero-
knowlegde of our PHP. So, for the sumcheck the prover sends two polynomials
q(X), r(X) such that s(X)+p(X) = q(X) ·Z H(X)+X ·r(X). The verifier checks
this equation by evaluating all the polynomials on a random point y ←$F\H. To
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do this, the verifier can compute on its own (in O(log n) time) the polynomials
ΛH(x, y), Z H(y), and query all the others, except for VLR(x, y, α). For the latter
the prover sends a candidate value σ and runs a univariate sumcheck to convince
the verifier that σ =

∑
κ∈K

(valL(κ) + α · valR(κ)) · LH

row(κ)(x) · LH

col(κ)(y).

In what follows we give a detailed description of the PHP protocol PHPlite1.

Offline Phase RE(F, n,m, {L,R}, �). The holographic relation encoder takes as
input a description of the specific relation and outputs eight polynomials
{
col(X), row(X), cr(X), col′(X), row′(X), cr′(X), vcrL(X), vcrR(X)

}
∈ F≤|K|[X].

The polynomials {col, row, valL, valR} are the joint sparse encoding of {L,R}.
The holographic relation encoder computes:

cr(X) :=
∑

κ∈K

col(κ) · row(κ) · LK

κ (X)

{vcrM (X) :=
∑

κ∈K

valM (κ) · cr(κ) · LK

κ (X)}M∈{L,R}

col′(X) := X · col(X), row′(X) := X · row(X), cr′(X) := X · cr(X)

Essentially, the polynomials cr(X), vcrL(X) and vcrR(X) are low-degree
extensions of the evaluations in K of

(
col(X)·row(X)

)
,
(
valL(X)·col(X)·row(X)

)

and
(
valR(X) · col(X) · row(X)

)
respectively, while col′, row′ and cr′ are a shifted

version of col, row and cr each. The intuition behind expanding the sparse encod-
ing of L, R in this way is to keep the polynomial checks of the verifier of the
lowest possible degree. In particular we are interested in obtaining a PHP where
degX,{Xi}(G) ≤ 2 as it enables interesting instantiations of our compiler. As an
example, by adding cr(X) we can replace terms involving col(X) · row(X) with
cr(X). This shall become more clear when looking at the decision phase.

Online Phase 〈P ((F, n,m, {L,R}, �),x, (a′(X), b′(X))) ,V(F, n,m,x)〉.

Round 1: P {â′(X), b̂′(X), s(X)} V

The prover samples polynomials qs(X)←$Fbs+bq−1[X] and rs(X)←$

Fbr+bq−1[X], and sets s(X) := qs(X) · Z H(X) + X · rs(X). Note that, whenever
br + bq ≤ n, the pair qs(X), rs(X) is a unique decomposition of s(X), and also
s(X) ∈ F≤n+bs+bq−1[X]. P sends s(X) to V together with randomized versions
of the witness polynomials â′(X) ←$Mask

H\L
ba+bq (a

′(X)) ∈ F≤n−�+ba+bq−1[X] and

b̂′(X) ←$Mask
H\L
bb+bq (b

′(X)) ∈ F≤n−�+bb+bq−1[X].

Round 2: V x, α P {q(X), r(X)} V

The verifier sends two random points x, α ←$F. The prover uses the pair x, α
to “compress” the check of Eq. (1) over F[X,Z] into the sumcheck statement
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∑
η∈H

p(η) = 0 over F for the polynomial p(X) := (â(X)+α · b̂(X)) ·ΛH(x,X)+
â(X) · b̂(X) · VLR(x,X, α) where, for x′ = (1,x), we have

â(X) := â′(X) · Z L(X) +
∑

η∈L

x′
φH(η) · LH

η (X) ∈ F≤n+ba+bq−1[X],

b̂(X) := b̂′(X) · Z L(X) + 1 ∈ F≤n+bb+bq−1[X],

Next, P computes and sends polynomials q(X) ∈ F≤2n+ba+bb+2bq−3[X] and
r(X) ∈ F≤n−2[X]—such that s(X) + p(X) = q(X) · Z H(X) + X · r(X)—to
prove the univariate sumcheck

∑
η∈H

s(η) + p(η) = 0. Note that by construction∑
η∈H

s(η) = 0; its role here is to (sufficiently) randomize q(X), r(X) in a way
that their evaluations do not leak information about the witness (Theorem 2).

Round 3: V y P σ, { q′(X), r′(X) } V

The verifier sends a random point y ←$F \ H. The prover uses y to compute
σ ← VLR(x, y, α) and then defines the degree-(|K| − 1) polynomial

p′(X) :=
∑

κ∈K

(valL(κ) + α · valR(κ)) · LH

row(κ)(x) · LH

col(κ)(y) · LK

κ (X)

The goal of the prover is to convince the verifier that
∑

κ∈K
p′(κ) = σ and

∀κ ∈ K : p′(κ) = (valL(κ) + α · valR(κ)) · LH

row(κ)(x) · LH

col(κ)(y)

These two statements can be combined in such a way that P does not need to
send p′(X), which is implicitly known by V as it depends on RE polynomials.

The first claim, since deg(p′) < |K|, reduces to proving that its constant term
is σ

|K| , for which P sends r′(X) ∈ F≤|K|−2[X] such that p′(X) = X · r′(X) + σ
|K| .

The second claim, by definition of LH(·), means proving that ∀ κ ∈ K:

n2p′(κ)(x − row(κ))(y − col(κ))=
(
valL(κ) + αvalR(κ)

)
row(κ)col(κ)Z H(x)Z H(y).

By definition of p′(X) and of the relation polynomials, P can define

t(X) :=
σ

|K| · n
2 · (xy + cr(X) − x · col(X) − y · row(X)) + r

′
(X) · n

2 · (xy · X + cr′(X)−

x · col′(X) − y · row′
(X)) − (

vcrL(X) + α · vcrR(X)
) · Z H(x) · Z H(y) ∈ F≤2|K|−2[X]

that equals 0 on any κ ∈ K. This way, P computes q′(X) := t(X)
Z K(X) ∈ F≤|K|−2[X]

and sends σ and {q′(X), r′(X)} to V.

Decision Phase. The verifier outputs the following degree checks

deg(â′), deg(b̂′), deg(s), deg(q), deg(q′)
?
≤ Dsnd (3)

deg(r)
?
≤ n − 2 (4)

deg(r′)
?
≤ |K| − 2 (5)
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and the following two polynomial checks:

s(y) +
(

â′(y) · Z L(y) +
∑
η∈L

x′
φH(η) · LH

η (y)
)(

ΛH(x, y) + σ( b̂′(y) · Z L(y) + 1)
)

+ ( b̂′(y) · Z L(y) + 1) · α · ΛH(x, y) − q(y) Z H(y) − y r(y)
?
= 0

(6)

σ

|K| · n2 · (xy + cr(X) − x · col(X) − y · row(X) )

+ r′(X) · n2 · (xy · X + cr′(X) − x · col′(X) − y · row′(X) )

−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y) − q′(X) · Z K(X) ?= 0 (7)

Above, we highlight the oracle polynomials in gray , the prover messages in
blue, and the coefficients of the verifier’s polynomial checks in red. This is to
help seeing how the above checks fit the form described in Definition 2.

In the first degree check, Dsnd is an integer that can be chosen by the verifier
and governs the soundness error as shown in Theorem 1. While for correctness
we need Dsnd ≥ D − 1, where D is the degree of the PHP (shown below), this
bound does not need to be tight (i.e., Dsnd = D− 1) as is the case for the degree
checks on r and r′. This observation has an impact on our compiler where, by
choosing Dsnd to be the maximal degree supported by the commitment scheme,
one does not need to create a proof for degree checks of the form “≤ Dsnd”.

Security Analysis. We state knowledge soundness and zero-knowledge of
PHPlite1; full proofs are in the full version.

Theorem 1 (Knowledge Soundness). Our protocol PHPlite1 is ε-knowledge-
sound with ε = |H|

|F| + 2Dsnd+|H|
|F\H| .

Theorem 2 (Zero-Knowledge). Our PHP protocol PHPlite1 is perfect zero-
knowledge. Furthermore, it is perfect b-HVZK with b = (ba, bb, bs, bq, br,∞,∞).

For an intuition about soundness we refer to the intuitive description of the
construction. For b-HVZK, we present the main ideas. Following a rather stan-
dard argument, we have that up to ba (resp. bb) evaluations of â′ (resp. b̂′) are
randomly distributed due to their construction through Mask. Instead, up to bq

(resp. br) evaluations of q (resp. r) can be argued random thanks to the random-
ness of the polynomials qs and rs defining s(X) = qs(X) · Z H(X) + X · rs(X).
In particular, this uses that for γ ∈ F \ H, s(X) is (bs + bq)-wise indepen-
dent even conditioned on rs(X), and that the honest q(X) is determined by
(p(X) + s(X) − Xr(X))/Z H(X), where p(X) is that defined in round 2.

Remark 2 ( PHPlite1x: a variant with fewer relation polynomials). We present a
variant of PHPlite1, that we call PHPlite1x, which has fewer relation polynomials.
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In particular, the RE of PHPlite1x does not output col′(X), row′(X) and cr′(X),
and the second polynomial check, of degree 3 with a public term X, becomes:

n2 ·
(

X · r′(X) +
σ

|K|

)

·
(
xy + cr(X) − x · col(X) − y · row(X)

)

−
(
vcrL(X) + α · vcrR(X)

)
· Z H(x) · Z H(y) − q′(X) · Z K(X) ?= 0 (8)

PHPlite2: Separate Sparse Matrix Encodings. We propose another PHP for
R1CS-lite called PHPlite2. PHPlite2 is very similar to PHPlite1, indeed its first
two rounds of the online phase are identical. The main difference is that in
PHPlite2 the matrices {L,R} are encoded in sparse form separately. Namely,
L,R are represented with the functions {valM , rowM , colM}M∈{L,R} so that, for
any κ ∈ K, valM (κ) = M rowM (κ),colM (κ). The main benefit of this choice is that
we can work with a subgroup K ⊂ F such that |K| ≥ m ≥ max{||L||, ||R||},
which is half the size of the one needed in PHPlite1. Using this encoding, the
VLR(X,Y,Z) polynomial in Eq. (2) here becomes

∑

κ∈K

(
valL(κ) · LH

rowL(κ)(X) · LH

colL(κ)(Y ) + Z · valR(κ) · LH

rowR(κ)(X) · LH

colR(κ)(Y )
)

So, in round 3 of PHPlite2 the prover’s goal is to show that σ = VLR(x, y, α)
for the equation above. This is done analogously to PHPlite1 except that here
{valM , rowM , colM}M∈{L,R} are expanded in a total of 24 relation polynomials
for the goal of keeping 2 the degree of the second polynomial check. See Table 2
for a summary of PHPlite2 measures and its variant PHPlite2x, and the full version
for a detailed description.

5 Compiler from PHPs to Universal zkSNARKs

We start with the definitions for our compiler. Some of the following notions are
standard or were introduced in previous works, while some others are new. For
space reasons, we defer to the full version for formal definitions.

Commitment Schemes. In our work we use the notion of type-based commit-
ments, introduced by Escala and Groth [22]: these are a generalization of regular
commitments that unify several committing methods into the same scheme. As
done in [11], in this work we exploit the formalism of type-based commitments to
describe commit-and-prove zero-knowledge proofs that work with commitments
of different types, tailoring different properties for the same message space.

More in detail, a type-based commitment scheme is a tuple of algorithms
CS = (Setup,Commit,VerCom) that works as a commitment scheme with the
difference that the Commit and VerCom algorithms take an extra input type that
represents the type of c. All the possible types are included in the type space
T . Having different types helps for a more granular description of the security
properties of the commitment scheme. For example, a commitment scheme for
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a set of types {type1, type2} could be trapdoor hiding for commitments of type
type1 and could be computationally hiding for commitments of type type2. In
this case, we say that the commitment scheme is type1-trapdoor hiding and
type2-computationally hiding. We assume succinct commitments.

zkSNARKs with Universal and Specializable SRS. A zkSNARK with
specializable universal SRS for a family of relations {RN}N∈N, introduced by
Groth et al. [34], is a tuple of algorithms Π = (KeyGen,Derive,Prove,Verify)
where KeyGen is probabilistic and upon input public parameters and size bound
N produces the srs and a trapdoor tdk, Derive is deterministic and upon input
srs and R ∈ RN produces ekR, vkR, and the prover Prove and verifier Verify act as
usual. We require the standard notions of completeness, succinctness, knowledge-
soundness and zero-knowledge.

Universal CP-SNARKs. We adapt the notion of commit-and-prove SNARKs
of [18] to universal relations. Very roughly speaking, a universal CP-SNARK for
a family of relationships R and a commitment scheme CS is a universal SNARK
for a family of relations RCom which includes all the relations RCom such that
RCom(x, c,w) = 1 if and only if R(x,w) = 1 and c is a commitment that opens to
w and R ∈ R. As in [18], in the definition we add syntactic sugar to this idea to
handle relations where the domain of the witness is more fine grained and split
over � + 1 subdomains for a fixed � ∈ N.

More in detail, we denote a universal CP-SNARK as a tuple of algorithms
CP = (KeyGen,Derive,Prove,Verify) where: (i) KeyGen(ck,N) → srs := (ek, vk)
generates the structured reference string. (ii) Derive(srs,R) → (ekR, vkR) is a
deterministic algorithm that takes as input an srs produced by KeyGen(ck,N),
and a relation R ∈ RN. (iii) Prove(ek, x, (cj)j∈[�], (uj)j∈[�], (oj)j∈[�], ω) →
π outputs the proof for (x,w) ∈ R and w = (u1, . . . , u�, ω). (iv)
Verify(vkR, x, (cj)j∈[�], π) → {0, 1} rejects or accepts the proof. Sometimes we
use a more general notion of knowledge soundness for CP-SNARKs introduced
by Benarroch et al. [11] named knowledge soundness with partial opening. The
intuition is to consider adversaries that explicitly return valid openings for a
subset of the commitments that they return, thus enabling to formally define
knowledge soundness in the context where not all the commitments need to be
extracted.

In the basic completeness notion of Universal CP-SNARKs, the CP-SNARK
is required to work with commitments of any type. We also define a weaker notion
of completeness in which the CP-SNARK works only when certain witnesses are
committed with a specific type. We call this notion T -restricted completeness.
This is useful if we want to use a CP-SNARK that supports only a subset
T of the types of the commitment scheme. We give a few examples. Suppose
the commitment scheme has two different types, type1, type2, and there exists a
CP-SNARK that only works with commitments of type1. Alternatively, a CP-
SNARK for a relation with �1 + �2 committed witnesses could work only when
the first �1 commitments are of type type1 and the subsequent �2 commitments
are of type type2. And clearly, more fine-grained combinations are possible.
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Commitment-Only SRS. We say that a universal CP-SNARK has a commitment-
only SRS if the key generation algorithm is deterministic. Notice that for Uni-
versal CP-SNARK with commitment-only SRS the notion of zero-knowledge in
the SRS model is not achievable. In fact, formally speaking, the commitment
key ck is part of the description of a relation; thus, the actual SRS of the CP-
SNARK would be the empty string. However, the classical result of [30] shows
that NIZK in the plain model exists only for trivial languages. Therefore we
consider a weaker notion of zero-knowledge for these CP-SNARKs, that we call
trapdoor-commitment zero-knowledge in the SRS model, where the trapdoor
necessary for simulation comes from the commitment key of CS.

5.1 Compiler’s Building Blocks

Commitments to Polynomials. Recall that a PHP verifier has access to
two sets of oracle polynomials: those from the relation encoder (which describe
the relation) and those from the prover (which should supposedly convince the
verifier to accept a public input x). The compiler commits to polynomials in
both sets; it requires all these commitments to be binding, but not to fully hide
any of these polynomials.

The commitments for the relation encoding polynomials—whose type we
denote by rel—do not need to hide anything: they open to polynomials repre-
senting the relation, which is public information. The polynomial commitments
of type rel have weaker requirements for one more reason. Besides not requiring
them to be hiding, we will not require them to be extractable (i.e., we do not
assume a CP-SNARK that has knowledge soundness for them, here is the reason
to use the notion of knowledge soundness with partial opening).

Above, we ignored leakage when committing to relation encoding polynomi-
als; we cannot do the same when committing to the polynomials from the PHP
prover as they contain information about the witness. If we do not prevent some
leakage we will lose zero-knowledge. At the same time we will show that we do
not need full hiding for these polynomials either, just a relaxed property that
may hold even for a deterministic commitment algorithm. We call this property
somewhat-hiding—defined below—and denote its type by swh.

In the remainder of this section we will assume CS to be a polynomial com-
mitment scheme; i.e., a commitment scheme in which the message space M is
F≤d[X] for a finite field F ∈ F and an integer d ∈ N. Without loss of generality
we assume d to be an input parameter of Setup.

Definition 6 (Somewhat-Hiding Polynomial Commitments). Let CS =
(Setup,Commit,VerCom) be a type-based commitment scheme for a class of poly-
nomials F≤d[X] and a class of types T , and that works as in Type-Based Commit-
ment Schemes, but where we allow Commit to be deterministic. Then CS is said to
be type-typed somewhat-hiding if there exist three algorithms (ck, td = (td′, s)) ←
Sck(s) where s ∈ F, (c, st) ← TdCom(td, γ) and o ← TdOpen(td, st, c, f) such
that: (1) the distribution of the commitment key returned by Sck with a uniformly
random s ←$F as input is identical to the one of the key returned by Setup;
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(2) for any f ∈ F<d[X], (c, o) ≈ (c′, o′) where (c, o) ← Commit(ck, type, f),
(c′, st) ← TdCom(td, f(s)) and o′ ← TdOpen(td, st, c′, f).

CP-SNARKs for the Commitment Scheme. We assume that the commit-
ment scheme CS is equipped with a CP-SNARK CPphp = (KeyGenphp,Provephp,
Verifyphp) for a relation family R′ ⊇ Rphp (we defined Rphp in Sect. 3.1), and with
a CP-SNARK CPopn = (KeyGenopn,Proveopn,Verifyopn) for the (trivial) relation
family Ropn = {ψ, (pj)j∈[�] : � ∈ N} whose instance is the empty string ψ and
witnesses are tuples of polynomials. A CP-SNARK for Ropn is essentially a proof
of knowledge of the openings of � commitments.

Leaky Zero-Knowledge. We define a weaker zero-knowledge notion that is suffi-
cient to be satisfied by the CPphp CP-SNARK in our compiler. This new property
allows better efficiency and flexibility of the compiled protocols. Intuitively, a
CP-SNARK for relations over committed polynomials is leaky zero-knowledge if
its proofs may leak information about a bounded number of evaluations of these
polynomials. More in detail, a CP-SNARK is (b,C)-leaky zero-knowledge if there
exists a ZK simulator that has access to a list of leaked values {uij (yj)}(i,j) where
the list {(ij , yj)}j∈N is (b,C)-bounded (see Sect. 3).

5.2 The Compiler

At a high level, we follow the known paradigm stemming from [40,46] in which
the prover commits to the oracles, answers the verifier’s queries generated using
a random oracle and proves correctness of these answers. A high-level description
of the compiled SNARK Π = (KeyGen,Derive,Prove,Verify) follows:

– The KeyGen algorithm runs the setup of the commitment scheme CS and
generates keys for the auxiliary CP-SNARKs.

– The Derive algorithm, when deriving a specialized SRS for a specific relation
R, commits to all the polynomials returned by the relation encoder RE(R)
using rel-typed commitments.

– The prover Prove algorithm executes internally the PHP prover P, at each
round of P it commits the polynomials from P using swh-typed commitments;
it proves it knows their opening using CPopn; concatenate the commitments,
the proofs and the rest of the messages from P. It computes a hash of the
partial transcript, which it then uses as the next message to feed to the P. At
the last round it uses CPphp to prove that the PHP verifier V would accept.

– The verifier checks all the CP-SNARK proofs of opening for the commitments
and executes the decision stage of V with input the instance and the random
oracle hash values computed over the partial transcripts. It thus generates an
instance for CPphp and checks the related CP-SNARK proof.

For compactness in the exposition, we state the main result of the section in
one theorem, however in the full version we restate the theorem in two steps: first
we compile to universal interactive argument systems, and secondly we compile
the latter argument systems to SNARKs using the Fiat-Shamir transform—thus
the following theorem holds in the random oracle model.
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Theorem 3. Let PHP = (r, n,m, d, ne,RE ,P,V) be a non-adaptive public-coin
PHP over a finite field family F and for a universal relation R. Let CS be a
type-based commitment scheme for a class of polynomials F<d[X] and a class of
types T = {rel, swh} that is T -binding and swh-somewhat-hiding and equipped
with CP-SNARKs CPopn for Ropn and CPphp for Rphp.

– The scheme Π = (KeyGen,Derive,Prove,Verify) is a zkSNARK with special-
izable universal SRS for the family of relations R.

– If CPopn is TP-ZK, and, for a checker C, PHP (resp. CPphp) is (b + 1,C)-
bounded honest-verifier zero-knowledge (resp. (b,C)-leaky zero-knowledge)
then Π is zero-knowledge in the SRS model.

Remark 3 (On completeness). It is sufficient for CPphp to be T -restricted com-
plete, with T =

(
(rel)n(0)‖(swh)np

)
∈ T n∗

, to obtain the completeness of Π.

Remark 4 (On updatable SRS). If the commitment key generated by Setup is
updatable [21,34], and CPopn and CPphp have commitment-only SRS then the
SRS of Π is updatable.

Intuition on Security Proof. The proof of knowledge soundness follows the stan-
dard argument of simulating a prover for the PHP extracting the polynomials
from the commitments sent by the adversary and use the binding property of
the commitments together with the knowledge soundness of CPphp to prove that
the verifier of the PHP protocol would indeed accept.

We now provide an intuition about zero-knowledge; for simplicity we describe
it as if the protocol involved a single committed polynomial. First, observe that
we assume a PHP with b+1-bounded ZK—i.e., we can simulate interaction with
an honest prover even after we have leaked b + 1 evaluations of the polynomial.
Since we assume a commitment scheme that is only somewhat-hiding (Definition
6), we are actually leaking one evaluation of the committed polynomial (in par-
ticular on a random point). We now combine this fact with the ZK property we
are assuming on the CP-SNARKs in the compiler—b-leaky ZK—and this allows
us to still simulate an interaction with an honest prover that is indistinguishable
after further b leaked evaluations.

Compiler to Universal CP-SNARK. We briefly explain how to adapt our
compiler to turn PHPs into CP-SNARKs. More details appear in the full version.

We consider a natural sub-class of PHP where the extractor for the knowl-
edge soundness satisfies a stronger property usually denoted as straight-line
extractability in the literature. In particular, we assume there exists an extractor
WitExtract that on input the polynomials sent by a malicious prover interacting
with the verifier can extract the valid witness.

Recall that the instances for CP-SNARKs are tuples of the form (x, ĉ1, . . . , ĉ�)
for a value � ∈ N, where x is an instance for the relation and ĉ1, . . . , ĉ� commits
to chunks of the witness. The commitments ĉ1, . . . , ĉ� are just classical commit-
ments (in the sense that they are hiding and binding, but there are no restrictions
on other properties they might have). Therefore we consider CP-SNARKs for
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typed-commitment schemes with class of types T = {rel, swh, lnk}, where the
latter type is reserved for the input commitments (and thus the commitment
scheme is lnk-typed hiding and lnk-typed binding).

The compiler to a CP-SNARK is exactly the same as the compiler pre-
sented before but where the prover, after having computed all the commitments
c1, . . . , cnp (and the proofs for CPopn and CPphp), additionally computes a CP-
SNARK proof for the relation Rlink that says that the commitments ĉ1, . . . , ĉ�

open to values u1, . . . , u� and the commitments c1, . . . , cnp open to polynomials
p1, . . . , pnp such that WitExtract(p1, . . . , pnp) = (u1, . . . , u�, ω), therefore creating
a link between the computed proof and the input commitments ĉ1, . . . , ĉ�.

6 Instantiating Our Compiler: Our Universal zkSNARKs

We propose different instantiations of the building blocks needed by our compiler
of Sect. 5: (i) (type-based) pairing-based commitment schemes for polynomials;
(ii) a collection of CP-SNARKs for various relations over such committed poly-
nomials. Next, we describe different options to combine them together in our
compiler, when applied to our PHP constructions (see Table 2). The resulting
zkSNARKs offer different tradeoffs in terms of SRS size, proof size, and verifi-
cation time. Table 1 summarizes the most interesting among these schemes.

We denote a bilinear group setting by a tuple (q,G1,G2,GT , e), where G1, G2,
GT are additive groups of prime order q, and e : G1 ×G2 → GT is an efficiently
computable, non-degenerate, bilinear map. We focus on Type-3 groups and use
the bracket notation of [23], i.e., for g ∈ {1, 2, T} and a ∈ Zq, we write [a]g to
denote a · Pg ∈ Gg, where Pg is a fixed generator of Gg.

6.1 Pairing-Based Commitment Schemes for Polynomials

We show two type-based commitment schemes, denoted CS1 and CS2 respec-
tively, with type set {rel, swh} and for degree-d polynomials. The commitment
of a polynomial p is essentially the evaluation in the exponent of p in a secret
point s, following the scheme of Groth [32] and Kate et al. [39]. Slightly more
in detail, in both schemes, the commitment key ck contains encodings of powers
of a secret point s, and a commitment of type swh to a polynomial p(X) is a
group element [p(s)]1. The only difference between the two schemes are the com-
mitments of type rel, which in CS1 are [p(s)]1 whereas in CS2 are [p(s)]2. As
discussed in the next section, the advantage of having some polynomials commit-
ted in G2 is that one immediately gets a way to test quadratic equations over
committed polynomials where each quadratic term involves exactly one poly-
nomial of type rel. Both types of commitments are computationally binding
under the power-discrete logarithm assumption [44]; we prove commitments of
type swh to also be somewhat hiding.

Remark 5 (On updatability of our SNARKs). Since the commitment schemes
CS1 and CS2 that we work upon generate keys that only contain monomials
in the exponent, our constructions are updatable in the sense that participants
can easily re-randomize them at will. Pointing to previous works on updatable
SNARKs, “a CRS that consists solely of monomials (. . . ) is updatable” [34].
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6.2 Pairing-Based CP-SNARKs for CS1 and CS2

We show CP-SNARKs for various relations over polynomials committed using
CS1 or CS2. Our CP-SNARKs work over both commitment schemes unless
explicitly stated otherwise. A full description of these schemes is in the full
version.

Proof of Knowledge: “I know p and c opens to p”. We show two schemes. (i)
CPAGM

opn is a trivial scheme in which the proof is the empty string and is knowledge-
sound in the algebraic group model [25]; this is an observation already done in
previous work, e.g., [19,27]. (ii) CPPKE

opn , is novel and provides extractability based
on the mPKE assumption and, when used on more than one commitment, on the
random oracle heuristic. In a nutshell, this scheme uses the classical technique
of giving as a proof a group element πopn = γ · c, where γ ∈ F is a secret but
such that πopn can be publicly computed if one knows the opening of c. What is
new in our scheme is a way to batch this proof for � commitments in such a way
that we have only one extra group element as a proof, instead of � elements.

Polynomials Evaluation: “
(
pi(xi) = yi

)
i∈[�]

”. We first give a CP-SNARK for
single polynomial evaluation—“p(x) = y”—CPeval,1, secure under the d-SDH
assumption and the extractability of CPopn, and then we extend it into a CP-
SNARK CPeval to support batching. Both schemes stem from techniques in [39].

Polynomial Equations: A CP-SNARK CPeq for general polynomial equations,
e.g., a(X)b(X) − 2c(X)d(X)e(X) = 0), relying mainly on CPopn and CPeval. It
is based on the idea of doing evaluations on a random point, with optimizations
from [27], based on the linearity of the commitment, to minimize proof size.

Quadratic Polynomial Equations: A novel CP-SNARK for quadratic polynomial
equations9 specific to commitment scheme CS2; although less general than CPeq,
CPqeq is more efficient since its proof may simply be empty, while verification
consists of some pairing checks over the commitments. The basic intuition is
simple: to check that G(p1(X), . . . , p�(X)) = 0 for a quadratic polynomial G it
is possible to homomorphically compute G over the values (p1(s), . . . , p�(s)) in
the target group using pairings and the linear property of the commitments. For
this to be possible, for each quadratic monomial pi(X)pj(X), we need at least one
of [pi(s)]2 or [pj(s)]2 in G2. This holds if they are committed through different
types, i.e., one as rel and the other as swh. Otherwise, if they are both in the
same group, we let the prover create one of the two polynomials committed in
the “symmetric” group. Interestingly, for carefully designed equations, the CPqeq

proof can be empty and all the verifier needs to do is verifying a pairing product.

Degree Bound: “(deg(pi) ≤ di)i∈[�]”. Two CP-SNARKs—CP
(
)
deg and CP

(2)
deg—such

that CP
(
)
deg works over both commitment schemes while CP

(2)
deg works only over

CS2. The basic idea is to commit to the shifted polynomial p∗(X) = XD−dp(X)

9 Here “quadratic” means it supports products of at most two polynomials.
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and then prove that the polynomial equation XD−d · p(X) − p∗(X) = 0 using a
CP-SNARK for polynomial equations, either CPeq or CPqeq. This idea is extended
in order to batch together these proofs for several polynomials.

6.3 Available Options to Compile Our PHPs

We discuss how to combine the aforementioned CP-SNARKs for committed
polynomials to obtain CP-SNARKs for the Rphp relations corresponding to our
PHPs. All our PHPs have a similar structure in which the verifier checks consist
of one vector d of degree checks, and two polynomial checks ((G′

1,v1), (G′
2,v2)).

Hence, for each PHP the corresponding relation Rphp can be expressed as:

Rdeg((dj)j∈[np], (pj)j∈[n(0)+1,n∗]) ∧
{
Req((G′

i,vi), (pj)j∈[n∗])
}

i∈{1,2}

where G′
i is the partial evaluation of Gi on the prover message σ.

In all the PHPs, in the first polynomial check the v1,j(X) are constant poly-
nomials (in particular, they all encode the same point, i.e., ∀j : v1,j(X) = y),
while in the second check they are the identity, i.e., ∀j : v2,j(X) = X. Further-
more, in those PHPs where degX,{Xi}(G2) = 2, the second Req relation can be
replaced by its specialization for quadratic equations.

We use two main compilation options for our PHPs (outlined in Fig. 1):

Fig. 1. Different options to compile our PHPs. We mark compatibility with commit-
ment schemes CS1 and CS2 respectively by a circle and a square (both shapes mean
full compatibility). Dotted lines mean either option is possible. An index 1 or 2 for an
arrow to Req denotes whether it refers to the first or second polynomial check.

6.4 Zero-Knowledge Bounds When Instantiating PHPs

Our compiler assumes a CP-SNARK CPphp that can be (b,C)-leaky-ZK to com-
pile a PHP protocol that is (1 + b)-bounded ZK (see Theorem 3), as the com-
mitments reveals one evaluation per oracle polynomial. Among the CP-SNARKs
we propose to realize CPphp, the only one that is leaky-ZK is the CPeq scheme.
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Its leakage is due to the fact that the proof includes evaluations of those poly-
nomials that end up in the set S used to optimize the proof size. Note that this
concern arises only when using it to prove the first polynomial check. Indeed, in
all of our schemes the second polynomial check involves only oracle polynomials
that are not related to the witness, and thus for those polynomials the amount
of leakage does not matter. We discuss how to choose b for the b-leaky-ZK of
CPeq when proving the first polynomial check in all of our PHPs.

PHPs for R1CS-lite. The first polynomial check is the same in both construc-
tions. Through the syntax for relation Req we write the polynomial G′

1 as

G′
1(Xa,Xb,Xs,Xq,Xr) := Xa ·Xb ·ga,b+Xa ·ga+Xb ·gb+Xq ·gq +Xr ·gr+Xs+g0

where the goal is to prove that on a given y, G′
1((pj(y))j∈[5]) = 0, that is:

â′(y)b̂′(y) · ga,b + â′(y) · ga + b̂′(y) · gb + s(y) + q(y) · gq + r(y) · gr + g0
?= 0

To this end, CPeq chooses a set S of size 1; for instance it reveals b̂′(y) and
nothing more. Thus, CPeq for this polynomial check is b-leaky-ZK with b =
(ba, bb, bs, bq, br) = (0, 1, 0, 0, 0). From Theorem 3, PHPlite1 and PHPlite2 need to
be (1, 2, 1, 1, 1)-bounded ZK, and we can optimize the degrees and instantiate
PHPlite∗ with â′ ∈ F≤n+1[X], b̂′ ∈ F≤n+2[X], qs ∈ F≤1[X], rs ∈ F≤1[X].

PHPs for R1CS. All these constructions need to be (1, 2, 1, 1, 1, 1)-bounded ZK.
The analysis is the same as for R1CS-lite; we omit details for lack of space.

6.5 Our Resulting zkSNARKs and CP-SNARKs

In the full version we provide a table with the efficiency of all the zkSNARKs
obtained through the different options to instantiate the compiler on all of our
PHPs. We also discuss how those measures are obtained and give the costs for
the CP-SNARKs resulting from the commit-and-prove compiler. We recall that
the most representative zkSNARKs (in the algebraic group model) are shown in
Table 1 together with a comparison with the state of the art. We recall that all
our constructions are universal and updatable.

We note that instantiating our proofs under the mPKE assumption (instead
of the AGM) is significantly more efficient than for those in [19]. The overhead
of instantiating our proofs under mPKE is: for us, have 4 more G1 elements and
the prover needs up to 3n + 6m more G1 exponentiations: in [19], 11 more G1

elements in the proof and 11n + 5m more exponentiations to the prover.
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Abstract. By the impossibility result of Gentry and Wichs, non-
falsifiable assumptions are needed to construct (even non-zero-knowledge)
adaptively sound succinct non-interactive arguments (SNARGs) for hard
languages. It is important to understand whether this impossibility result
is tight. While it is known how to construct adaptively sound non-succinct
non-interactive arguments for NP from falsifiable assumptions, adaptively
sound SNARGs for NP from non-falsifiable assumptions, and adaptively
sound SNARGs for P from falsifiable assumptions, there are no known
non-adaptively sound SNARGs for NP from falsifiable assumptions. We
show that Gentry-Wichs is tight by constructing the latter. In addition, we
prove it is non-adaptively knowledge-sound in the algebraic group model
and Sub-ZK (i.e., zero-knowledge even if the CRS is subverted) under a
non-falsifiable assumption.

Keywords: Falsifiable assumptions · Gentry-Wichs · Non-adaptive
soundness · SNARG · SNARK · Sub-ZK

1 Introduction

Due to excellent efficiency properties, zk-SNARKs (zero-knowledge succinct non-
interactive arguments of knowledge, [22]) are currently the most popular argu-
ment systems for NP. Zk-SNARKs are usually defined in the CRS model, where
a universally trusted third party generates a CRS used by both the prover
and the verifier. A more realistic model is subversion zero-knowledge (Sub-
ZK, [1,3,5,14]); a Sub-ZK SNARK is zero-knowledge even if the CRS was
subverted. Zk-SNARGs are zero-knowledge succinct non-interactive argument
systems that are not necessarily knowledge-sound. NIZKs are non-interactive
zero-knowledge argument systems that are not necessarily succinct.

Unfortunately, known SNARKs for NP are based on non-falsifiable assump-
tions. Gentry and Wichs [17] showed that this is (in a quite precise sense)
unavoidable. Their impossibility result balances four aspects of efficient NIZKs:
succinctness, adaptive soundness, reliance on falsifiable assumptions, and hard-
ness of the languages. All four aspects are highly desirable:

(1) Succinctness plays a crucial role in the practical adaptation since non-succinct
NIZKs are not efficient enough for applications like cryptocurrencies.

c© International Association for Cryptologic Research 2021
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Table 1. Some known (im)possibility results. Impossibility results mean that one can-
not achieve all ◦’s at the same time. Possibility results achieve ✓’s but do not achieve
✗’s. AS = adaptive soundness, s = succinctness, HL = hard languages, FA = falsifiable
assumptions, PZK = perfect zero-knowledge, BBR = black-box reduction.

(2) A falsifiable assumption is an assumption where a challenger can efficiently
decide whether the adversary broke it. Non-falsifiable assumptions are con-
troversial in general [36].

(3) Adaptive soundness guarantees that the SNARK stays sound even if the
malicious prover can choose the input x after seeing the CRS. Non-adaptive
soundness guarantees soundness only if x is chosen before the CRS is fixed.

(4) Most of the applications need SNARKs for hard languages (i.e., languages
with hard subset membership problem) like circuit satisfiability; SNARKs
for easy languages have their uses, but they are limited.

Gentry and Wichs [17] proved that non-falsifiable assumptions are needed to
construct (even non-zero-knowledge) adaptively sound succinct non-interactive
arguments (SNARGs) for hard languages under black-box reductions. Assum-
ing black-box reductions (or stronger non-uniform black-box-reductions, [7]),
Gentry-Wichs is known to be tight in three aspects, see Table 1. First, non-
succinct adaptively sound falsifiable NIZKs are known for NP [13]. Second,
adaptively sound falsifiable SNARGs are known for P [21,29] (note that in this
case, zero-knowledge is not important). Third, adaptively sound non-falsifiable
SNARGs are known for NP [16,22,23,31,32,37]. However, it is a major open
problem whether Gentry-Wichs is tight in the fourth aspect; i.e., whether non-
adaptively sound falsifiable SNARGs for hard languages are possible.1

Our Contributions. We construct the first falsifiable non-adaptively sound
SNARG FANA for NP. Thus, Gentry-Wichs is tight. We also prove that FANA is
both non-adaptively knowledge-sound and Sub-ZK (zero-knowledge, even if the
CRS is maliciously generated, [1,3,5,14]). While the last two properties are not
related to Gentry-Wichs, they are important in applications.

1 Note that even non-succinct falsifiable adaptively sound NIZKs for NP do not exist
when one aims to obtain perfect zero-knowledge, [38]. The impossibility result of [38]
is known to be tight, see Table 1. Thus, we will focus on [17].
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FANA is inspired by [10,12] who proposed two NIZKs (DGPRS and FLPS)
for well-known constraint systems SSP [9] and SAP [23], correspondingly. We
emphasize that DGPRS and FLPS do not seem to be good starting points for our
goal:

(a) They are quasi-adaptive SNARGs (QA-SNARGs [27]). (We use the term
QA-SNARG instead of the common QA-NIZK to emphasize the succinctness
property.) In QA-SNARGs, the NP language is parameterized by a language
parameter lpar. Both the quasi-adaptive soundness and zero-knowledge prop-
erties hold only if lpar is honestly generated. Since the latter is an undesirable
trust assumption, we aim to avoid it by constructing a SNARG and not a
QA-SNARG.

(b) They are quasi-adaptively sound [27] (which means the argument system is
sound against an adversary who chooses the input x after seeing lpar and
crs), and thus they do not seem to be candidates for non-adaptive NIZKs.

(c) They are commit-and-prove argument systems, having a non-succinct
perfectly-binding commitment and are thus not succinct.

(d) They are for the SSP [9] and the SAP [23], which are less standard and less
powerful constraint systems compared to the QAP [16].

(e) They are not known to be knowledge-sound.
(f) They are not known to be Sub-ZK.

We solve Items a to c by carefully modifying the construction and the sound-
ness proof of [10,12]. In DGPRS and FLPS, the prover commits to the input x
and the witness w by using a perfectly-binding and several succinct commitment
schemes, including a functional SSB commitment scheme [12]. Functional SSB
commitment schemes satisfy the following helpful property: for a small locality
parameter q (q < 10 in DGPRS and FLPS), one can reprogram its commitment
key ck during the security proof so that the reduction will obtain q linear com-
binations of the input and witness coordinates; moreover, in existing schemes,
the commitment length is q + 1 group elements.

The quasi-adaptive soundness proof of [10,12] consists of several games.
Assume that A is a successful soundness adversary. The first game is the classic
(quasi-adaptive) soundness game. In the second game, one picks a random J,
which is a guess for the SSP/SAP/QAP constraint that is not satisfied. One
aborts if the guess was wrong. (This results in n-time security loss where n is
the number of constraints.) Crucially, one uses the perfectly binding commit-
ment scheme to extract values required to do this check. In the third game, one
additionally modifies the commitment key of the functional SSB scheme to be
a function of J. One can do so due to the “function-set hiding” property [12]
of the functional SSB scheme. One then shows that the last game is secure by
constructing two different reductions to two different security assumptions.

In comparison, we check whether the reduction guessed a non-satisfied con-
straint correctly by using the succinct functional SSB commitment. Thus, we
do not need the perfectly binding commitment at all, solving Item c. Hence, we
have a succinct NIZK, i.e., a SNARG. Moreover, since the language parameter
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lpar in DGPRS and FLPS is the commitment key of the perfectly-binding com-
mitment scheme and we will not use the latter at all, FANA will not have lpar.
Importantly, it means that FANA is not a QA-NIZK but a usual NIZK. This
solves Item a. Moreover, since FANA is secure under a variant of the security
assumptions of [10,12], we have a falsifiable SNARG.

At this moment, it might seem that we have breached the Gentry-Wichs
impossibility result since DGPRS and FLPS are quasi-adaptively sound. How-
ever, this is not the case. Namely, since we use the functional SSB commitment
to check whether the Jth constraint is satisfied, we cannot do a check (and a
conditional abort) before changing the commitment key. In the case of (quasi-
)adaptive soundness, x (and thus also the unsatisfied constraint’s number) can
depend on ck, where the latter depends on J. A malicious prover can thus, after
seeing ck, choose x so that the Jth constraint is satisfied.

We solve this seeming contradiction by resorting to non-adaptive soundness,
i.e., we ask A to output x before seeing ck so that it cannot depend on J that
is embedded in ck. In this case, the security proof follows. This solves Item
b. Since we now have a non-adaptively sound SNARG for NP under falsifiable
assumptions, we have also shown that Gentry-Wichs is tight. We emphasize
that while this change to [10,12] may sound simple, it is pretty surprising: as
we already argued, DGPRS and FLPS do not seem to be suitable starting points
for our endeavor. It also results in a multiple changes to the construction of the
SNARG, including the omission of perfectly-binding commitment and lpar.

Additional Features. While we have already solved our main open problem,
to make FANA more attractive in practice, we will also tackle Items d to f.
In addition, we will base FANA on an—arguably—better falsifiable assumption,
which also results in slight efficiency gain. Due to this, FANA’s argument length
and verifier’s complexity are almost the same as in FLPS.

Finally, FANA relies on the González-Hevia-Ràfols bilateral subspace QA-
NIZK BLS from [19]. For FANA to be non-adaptively sound, non-adaptively
knowledge-sound, and Sub-ZK, BLS has to satisfy quasi-adaptive σ-strong sound-
ness, adaptive knowledge-soundness, and Sub-ZK. Here, quasi-adaptive σ-strong
soundness is a new security property of QA-SNARGs that lies between quasi-
adaptive soundness and quasi-adaptive strong soundness [28]. We prove that
BLS satisfies all three properties. Since bilateral subspace QA-NIZKs have many
independent applications, this constitutes a contribution of independent interest.

QAP (Item d). DGPRS is for SSP (Square Span Program, [9]), a constraint
system that has an efficient reduction to Boolean circuit satisfiability. In many
applications, it is desirable to construct a (QA-)SNARG for arithmetic circuits.
FLPS is for SAP (Square Arithmetic Program, [23,24]), a constraint system
that has an efficient reduction to arithmetic circuit satisfiability for circuits that
consist of addition and square gates. The use of square gates instead of general
multiplication gates results in a factor of two overhead.

The constraint system QAP (Quadratic Arithmetic Program, [16]) models
efficiently arithmetic circuits with general multiplication gates. FANA is directly
for QAP. In the pairing-based setting, SNARKs for QAP have one complication
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compared to SNARKs for SSP and SAP: namely, in the former, the prover
outputs an element in both source groups. Hence, differently from DGPRS and
FLPS, we use functional SSB commitments in both source groups G1 and G2. In
the soundness proof, this means adding one more game to change the functional
SSB ck in both groups. Adding another commitment means that, at least when
using the same approach as DGPRS and FLPS, SNARKs for QAP are necessarily
less efficient. We mitigate it by using a different assumption.

Better Assumption. The q-type assumptions S-TSDH (Square Target Strong
Diffie-Hellman) and SA-TSDH (Square Arithmetic Target Strong Diffie-
Hellman) used in [10] and [12] respectively, look quite complicated.2 To argue
that such assumptions are sensible, one can prove that they hold in the generic
group model (GGM). In a GGM proof, one considers a generic adversary that is
only allowed to (i) execute group operations in the source and target groups, (ii)
perform the pairing operation, and (iii) check for equality of two group elements.
GGM is a very restrictive model. One of the many criticisms against GGM is
that the target group GT is a subgroup of the finite field, and thus it is ques-
tionable whether it can be modeled as a generic group, [26]. Indeed, one can
use the finite field structure to operate on the elements of the GT . To address
this issue, [26] defined the semi-GGM, where one assumes that only the source
groups are generic. A significant drawback of S-TSDH and SA-TSDH is that,
in their definition, the adversary can output a value in the target group. Thus,
they are not (known to be) secure in the semi-GGM.

Moreover, the adversary of the {∗}TSDH assumptions is required to output
some elements together with their “knowledge components” [8]. To prove sound-
ness under {∗}TSDH assumptions, the prover of the SNARG must also output
the knowledge components. Due to this, {∗}TSDH assumptions “force” one to
design SNARGs that might not be optimal.

Instead of {∗}TSDH assumptions, we introduce a very different-looking
assumption QA-LINRES. QA-LINRES (see Definition 2) holds in the algebraic
group model (AGM, [15]).3 Since the QA-LINRES adversary does not have to
output “knowledge components”, QA-LINRES allows to design more efficient
SNARGs. Even without counting the cost of perfectly-binding commitment in
DGPRS and FLPS, FANA is efficiency-wise competitive with DGPRS and FLPS
despite being for QAP and thus involving one more functional SSB commitment.

Knowledge-Soundness (Item e). In many applications, knowledge-soundness is
desirable. It is especially important in the case of succinct NIZKs, where the
verifier only has access to a succinct commitment to the witness. Such com-
mitments can be information-theoretically opened to an exponential number of
witnesses, and it is important to know which witness was used by the adversary.
Unfortunately, neither DGPRS nor FLPS is known to be knowledge-sound.
2 DGPRS, FLPS, and FANA also rely on two standard assumptions SKerMDH [19] and

DDH. We focus on the least standard assumptions, S-TSDH and SA-TSDH.
3 We recall that the AGM is a modern, somewhat more realistic alternative to the

GGM. In particular, like the semi-GGM, the AGM of [15] considers only the source
groups to be “algebraic”. Thus, QA-LINRES also holds in the semi-GGM.
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Sub-ZK (Item f). DGPRS and FLPS are proven to be sound and zero-knowledge,
assuming that both lpar and crs are trusted. Since in many applications, it is cru-
cial to avoid trust assumptions (like crs’s correctness), this situation is not satis-
factory. Instead, one should aim to prove Sub-ZK [5]. It is known that the most
efficient zk-SNARK [23] is also Sub-ZK [1,3,14] under non-falsifiable assump-
tions. As noted in [2], non-falsifiable assumptions are also needed due to the
well-known impossibility result of [18]. In Theorem 2, we prove that FANA is
Sub-ZK assuming that BLS is Sub-ZK.

Efficiency. The FANA argument π is succinct, consisting of 9 elements of G1

and 5 elements of G2.

The Bilateral Subspace Argument. FANA uses a bilinear subspace argu-
ment system that, in particular, allows one to prove that different commitments
in both G1 and G2 commit to the same message. As a contribution of indepen-
dent interest, we study the quasi-adaptively strongly sound and perfectly zero-
knowledge González-Hevia-Ràfols bilateral subspace argument system BLS [19].

Let σ be an efficiently computable function. We define a new soundness
notion for QA-SNARGs, σ-strong soundness, that lies between soundness and
strong soundness [28]. Since BLS is quasi-adaptively strongly sound, it is also
quasi-adaptively σ-strongly sound for any efficiently computable σ. While quasi-
adaptive strong soundness of BLS is known to be sufficient for the non-adaptive
(knowledge-) soundness of FANA, we show that it suffices that BLS is σx-strongly
sound for a particular function σx. There are two primary motivations for intro-
ducing the new security notion. First, it allows one to capture the exact security
property of BLS needed by FANA. Second, it may be possible (though we leave it
for future work) to construct more efficient bilinear subspace argument systems
that are σx-strongly sound but not strongly sound.

In Theorem 1, we prove BLS is adaptively sound under the non-falsifiable
assumption SKerMDHdl from [2]. We prove that BLS is adaptively knowledge-
sound in the AGM under the SDLdl assumption from [2]. (See Theorem 1.) Both
SKerMDHdl and SDLdl belong to the family of non-adaptive oracle assump-
tions, where the adversary is initially given access to the oracle who solves the
discrete logarithm assumption. After that, the adversary has to break either
the SKerMDH or the SDL [6] assumption on a fresh instance. We believe such
assumptions are significantly more realistic than knowledge assumptions under-
lying efficient zk-SNARKs.

As shown in [2], to prove that a QA-SNARG is Sub-ZK, one must prove that
the QA-SNARG is both black-box zero-knowledge (that is, zero-knowledge, if
lpar and crs are trusted) and non-black-box persistent zero-knowledge (that is,
zero-knowledge, if lpar and crs are not trusted; this notion was defined in [2]). In
the latter case, one assumes that one can extract the simulation trapdoor from
a malicious crs. Zero-knowledge does not follow from persistent zero-knowledge
since the former is black-box and the latter is non-black-box, [2]. In Theorem
1, we prove that (1) BLS is perfectly zero-knowledge, and (2) BLS is persistent
zero-knowledge under a novel knowledge-assumption GHR-KE, similar to the
KW-KE assumption [2].
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Since bilateral subspace argument systems have many more applications, the
BLS section constitutes a significant independent contribution.

Summary of Security Results. To not overwhelm the reader, we did not
describe all security results in the introduction. As a corollary of various theorems
of the current paper, we can informally state the following result.

Corollary 1 (Informal). FANA is a SNARG that is non-adaptively sound
under the falsifiable SKerMDH, DDH, and QA-LINRES assumptions (where
the latter is a new falsifiable assumption that holds under the PDL assumption
in the AGM). It is non-adaptively knowledge-sound in the AGM if additionally
the non-falsifiable assumptions SKerMDHdl and SDLdl [2] hold. It is Sub-ZK
under the DDH and the non-falsifiable GHR-KE assumption (where the latter is
a new knowledge assumption that holds in the AGM).

Full Version. Due to the lack of space, we postpone most of the security proofs
and several additional results to the full version, [35].

Open Problems. To be precise, we showed that [17] is tight with respect to
black-box reductions [17] and non-uniform black-box reductions [7]. We leave
the study of general non-black-box reductions as an interesting open problem.

2 Preliminaries

For a matrix A = (Aij), Ai denotes its ith row and A(j) denotes its jth column.
The cokernel of A is defined as coker(A) = {a : a�A = 0}. Let colspace(A) be
the column space of A. For matrices A and B, denote A//B := (A

B ).
Assume n is a power of two. Let ω be the nth primitive root of unity modulo

p (ω exists, given that n | (p − 1).) Then,

– Z(X) :=
∏n

i=1(X −ωi−1) = Xn −1 is the unique degree n monic polynomial,
such that Z(ωi−1) = 0 for all i ∈ [1, n].

– For i ∈ [1, n], let �i(X) be the ith Lagrange polynomial, i.e., the unique degree
n − 1 polynomial, such that �i(ωi−1) = 1 and �i(ωj−1) = 0 for i �= j. Let
Z ′(X) = dZ(X)/dX = nXn−1. It is well known that

�i(X) := Z(X)
Z′(ωi−1)(X−ωi−1) =

(Xn−1)ωi−1

n(X−ωi−1) for X �= ωi−1.

Given X ∈ Zp, one can efficiently compute {�i(X)}n
i=1. Lz(X) :=

∑n
i=1 zi�i(X)

is the interpolating polynomial of the vector z ∈ Z
n
p at points ωi−1.

We denote assignment by ← and (uniformly random) sampling by ←$ . PPT
denotes probabilistic polynomial-time; λ ∈ N is the security parameter. We
assume all adversaries are stateful, i.e., keep up a state between different execu-
tions. For an algorithm A, range(A) is the range of A, i.e., the set of valid outputs
of A, RNDλ(A) denotes the random tape of A (for given λ), and r ←$RNDλ(A)
denotes the uniformly random choice of the randomizer r from RNDλ(A). By
y ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
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outputs y. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an
arbitrary polynomial function. We write a ≈λ b if |a − b| ≤ negl(λ).

Bilinear Groups. A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT ,
ê, [1]1, [1]2), where G1, G2, and GT are three additive cyclic groups of prime
order p, ê : G1 × G2 → GT is an efficiently computable non-degenerate bilinear
pairing, and [1]ι is a fixed generator of Gι. While [1]ι is a part of p, for the sake
of clarity, we often give it as an explicit input to different algorithms. We assume
n | (p − 1), where n is a large deterministically fixed upper bound on the size of
the statements that one handles in this bilinear group. As in [5], we assume that
Pgen is deterministic and cannot be subverted. The bilinear pairing is of Type-3,
i.e., there is no efficient isomorphism between G1 and G2. We use the by-now
standard bracket notation, i.e., for ι ∈ {1, 2, T}, we write [a]ι to denote a[1]ι. We
denote ê([a]1, [b]2) by [a]1 • [b]2. We use freely the bracket notation together with
matrix notation, e.g., AB = C iff [A]1 • [B]2 = [C]T . For an integer (vector) a,
we denote [a]∗ := ([a1]1, [a2]2).

Assumptions. Let κ∗, κ ∈ N, with κ∗ ≥ κ, be small constants. Let p be a large
prime. A PPT-sampleable distribution Dκ∗,κ is a matrix distribution [11] if it
samples matrices A ∈ Z

κ∗×κ
p of full rank κ. Dκ∗,κ is robust [27] if it samples

matrices A whose upper κ × κ submatrix Ā is invertible. Denote the lower
(κ∗ − κ) × κ submatrix of A by A. Denote Dκ = Dκ+1,κ. We denote Dκ+1,κ

by Dκ. In the full version [35], we define five common distributions [11]: Uκ

(uniform), Lκ (linear), ILκ (incremental linear), Cκ (cascade), SCκ (symmetric
cascade). All mentioned distributions can be made robust with minimal changes.

Let d1(n), d2(n) ∈ poly (λ). (d1(n), d2(n))-PDL (Power Discrete Loga-
rithm, [31,39]) holds relative to Pgen, if ∀ PPT A,

AdvpdlPgen,d1,d2,A(λ) := Pr

[
p ← Pgen(1λ), x ←$Z

∗
p :

A(p, [(xi)d1(n)
i=0 ]1, [(xi)d2(n)

i=0 ]2) = x

]

≈λ 0.

The q-PDL assumption in G1 (resp., G2) is equal to the (q, 0)-PDL (resp., (0, q)-
PDL) assumption. The symmetric discrete logarithm (SDL [6]) assumption is
equal to the (1, 1)-PDL assumption.

Let ι ∈ {1, 2}. DDHGι
(Decisional Diffie-Hellman) holds relative to Pgen, if

∀ PPT A, AdvddhPgen,Gι,A(λ) := |ε0A(λ) − ε1A(λ)| ≈λ 0, where

εβ
A(λ) := Pr[p ← Pgen(1λ);x, y, z ←$Zp : A(p, [x, y, xy + βz]ι) = 1].

Let ι ∈ {1, 2}. Dκ∗,κ-KerMDHGι
(Kernel Diffie-Hellman) holds relative to

Pgen, if ∀ PPT A, Advkermdh
Pgen,Gι,Dκ∗,κ,A(λ) :=

Pr[p ← Pgen(1λ);A ←$Dκ∗,κ; [c]3−ι ← A(p, [A]ι) : A�c = 0κ ∧ c �= 0�] ≈λ 0.

Dκ∗,κ-SKerMDH (Split Kernel Diffie-Hellman, [19]) holds relative to Pgen,
if ∀ PPT A, Advskermdh

Pgen,Gι,Dκ∗,κ,A(λ) :=

Pr

[
p ← Pgen(1λ);A ←$Dκ∗,κ; ([c1]1, [c2]2) ← A(p, [A]1, [A]2) :

A�(c1 − c2) = 0κ ∧ c1 − c2 �= 0κ∗

]

≈λ 0.
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According to Lemma 1 of [19], if Dκ∗,κ-KerMDH holds in generic symmet-
ric bilinear groups, then Dκ∗,κ-SKerMDH holds in generic asymmetric bilinear
groups. The KerMDH assumption holds also for Type-1 pairings, where G1 = G2,
but then one needs κ ≥ 2, which affects efficiency.

Algebraic Group Model (AGM). The AGM is a new model [15] used to prove
the security of a cryptographic assumption, protocol, or a primitive. Essentially,
in the AGM, one assumes that each PPT algorithm A is algebraic in the following
sense. Assume A’s input includes [xι]ι and no other elements from the group
Gι. We consider a less restrictive version of the AGM that gives the adversary
additional access to random oracles. More precisely, assume A has an access to
oracles O1 and O2. For ι ∈ {1, 2}, Oι samples and outputs a random element
[qιk]ι from Gι. The oracle access models the ability of A to create random group
elements without knowing their discrete logarithms.

We assume that if A outputs group elements [yι]ι, then A knows matrices
N ι, such that yι = N ι(

xι
qι
). Formally, a PPT algorithm A is (Pgen-)algebraic

if there exists an efficient extractor ExtA, such that for any PPT-sampleable
distribution D, AdvagmPgen,D,A,ExtA(λ) :=

Pr

⎡

⎢
⎣

p ←$Pgen(1λ);x = ([x1]1, [x2]2) ←$D; r ←$RNDλ(A);

([y1]1, [y2]2) ←$ AO1,O2(x; r); (N1,N2) ← ExtA(x; r) :
y1 �= N1(

x1
q1 ) ∨ y2 �= N2(

x2
q2 )

⎤

⎥
⎦ = negl(λ) .

For ι ∈ {1, 2}, Oι is an oracle that samples and returns a random element
from Gι. [qι]ι is the list of all elements output by Oι. The AGM states that
for any PPT-sampleable D and PPT A, there exists a PPT ExtA, such that
AdvagmPgen,D,A,ExtA(λ) = negl(λ).

Quadratic Arithmetic Program (QAP). QAP was introduced in [16] as a
relation R where for an input x and a witness w, (x,w) ∈ R can be verified by
using a parallel quadratic check. QAP has an efficient reduction from the (either
Boolean or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP
results in an efficient zk-SNARK for Circuit-SAT.

In QAP, one considers arithmetic circuits that consist only of fan-in-2 multi-
plication gates, but either input of each multiplication gate can be any weighted
sum of wire values [16]. In arithmetic circuits, n is the number of multiplication
gates, m is the number of wires, and m0 < m is the number of public inputs.

For the sake of efficiency, we require the existence of the n-th primitive root of
unity modulo p, denoted by ω. (However, this is not needed for the new protocols
to work.) Let U ,V ,W ∈ Z

n×m
p be instance-dependent matrices and let z ∈ Z

m
p

be a witness. A QAP is characterized by the constraint Uz◦V z = Wz, where ◦
denotes the entrywise product of two vectors and z = ( x

w ). For j ∈ [1,m], define
uj(X) := LU (j)(X), vj(X) := LV (j)(X), and wj(X) := LW (j)(X) to be inter-
polating polynomials of the jth columns of the corresponding matrices. Thus,
uj , vj , wj ∈ Z

(≤n−1)
p [X]. Let u(X) =

∑m
j=1 zjuj(X), v(X) =

∑m
j=1 zjvj(X), and

w(X) =
∑m

j=1 zjwj(X). Then Uz ◦ V z = Wz iff Z(X) | (u(X)v(X) − w(X))
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iff u(X)v(X) ≡ w(X) (mod Z(X)) iff there exists a polynomial h(X) such that
u(X)v(X) − w(X) = h(X)Z(X).

An QAP instance Iqap is equal to (Zp,m0, {uj , vj , wj}m
j=1). Iqap defines the

following relation:

RIqap =

{
(x,w) : x = (z1, . . . , zm0)

� ∧ w = (zm0+1, . . . , zm)� ∧
u(X)v(X) ≡ w(X) (mod Z(X))

}

(1)

where u(X), v(X), and w(X) are defined as above. Alternatively, (x,w) ∈ R =
RIqap if there exists a (degree ≤ n−2) polynomial h(X), such that the following
key equation holds:

χ(X) := u(X)v(X) − w(X) − h(X)Z(X) = 0, (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, (i) the first m0 coefficients zj in u(X)
are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all computed
by using the same coefficients zj for j ∈ [1,m].

SAP and SSP. Square arithmetic programs (SAPs, [23]) are QAPs with the
extra condition U = V ; thus, all multiplication gates in the arithmetic circuit
have equal inputs, i.e., they are square gates. Square span program (SSP, [9])
are QAPs with the restriction that U = V = W ; see [34]. There is an efficient
relation between the arithmetic circuit evaluation problem and QAP/SAP and
another one between the Boolean circuit evaluation problem and SSP. SSP is
useful when the concrete zero-knowledge language is related to Boolean circuits.

2.1 Underlying Commitment Schemes

We will use several different commitment schemes that are all specific cases of
the Multi-Pedersen commitment scheme.

EMP Commitment. Let ι ∈ {1, 2}. Let q (the locality parameter) and n
(the plaintext length) be two integers. Let D be a (matrix) distribution on
q×(m+1) matrices. In the (q,D)-Extended Multi-Pedersen commitment scheme
EMP [12,20], the commitment key is ck = [G]ι, where G ←$D. The commitment
EMP.Com(ck;a; r), where a ∈ Z

m
p and r ←$Zp, is defined as [G]ι( a

r ). The inter-
polation commitment scheme [33] is a perfectly-hiding EMP commitment scheme,
with ck := [�1(x), . . . , �m(x), Z(x)]ι ∈ G

1×(m+1)
ι for a random trapdoor x ←$Zp.

Functional SSB Commitment [12]. Let F be a fixed function. In general, F
may depend on p, but we will not emphasize it for notational simplicity. In our
applications, F : a �→ [a]ι for ι ∈ {1, 2}. Let F be a function family, where f ∈ F
inputs a vector x and outputs an element from the domain of F . An F -extractable
functional somewhere statistically-binding (SSB) commitment scheme [12] Γ =
(Pgen,KC,Com, LExtF ) for a function family F makes it possible to commit to
a vector x, such that the following properties hold. (1) The commitment key ck
is chosen depending on the description of a function tuple f1, . . . , fq ∈ F , (2)
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commitment keys corresponding to different function tuples are computationally
indistinguishable, and (3) given the extraction key, one can extract from the
commitment the vector (F (f1(x)), . . . , F (fq(x))).

More precisely, an F-extractable functional SSB commitment scheme Γ =
(Pgen,KC,Com, LExtF ) for a function family F consists of the following
polynomial-time algorithms. We will omit algorithms (like trapdoor opening)
and properties not needed in the current paper.

Parameter generation: Pgen(1λ) returns parameters p (for example, group
description). Recall that F depends on p.

Commitment key generation: for parameters p, a positive integer n ∈
poly(λ), a locality parameter q ∈ [1, n], and a tuple S = (f1, . . . , f|S|) ⊆ F
with |S| ≤ q, KC(p, n, q,S) outputs a commitment key ck and a trapdoor
td = (ek, tk). Here, ek is the extraction key, and tk is the trapdoor key. ck,
ek, and tk implicitly specify p, the message space M, the randomizer space
R, and the commitment space C, s.t. F (M) ⊆ C. For any other input, KC
outputs (ck, td) = (⊥,⊥).

Commitment: for a commitment key ck �= ⊥, a message x ∈ Mn, and a
randomizer r ∈ R, Com(ck;x; r) outputs a commitment c ∈ C.

Local extraction: for p ∈ Pgen(1λ), a positive integer n ∈ poly(λ), a local-
ity parameter q ∈ [1, n], a tuple S = (f1, . . . , f|S|) ⊆ F with 1 ≤ |S| ≤
q, (ck, (ek, tk)) ∈ KC(p, n, q,S), and c ∈ C, LExtF (ek; c) returns a tuple(
F (f1(x)), . . . , F (f|S|(x))

) ∈ M|S|;

For {fi}q
i=1 ⊆ F and vector x let us denote xS = (f1(x), . . . , fq(x)).

An F -extractable functional SSB commitment scheme Γ for function family
F can satisfy the following security requirements.

Function-Set Hiding: ∀λ, PPT A, n ∈ poly (λ), q ∈ [1, n], AdvfshΓ,n,q,A(λ) :=
2 · |εfshΓ,n,q,A(λ) − 1/2| ≈λ 0, where εfshΓ,n,q,A(λ) :=

Pr

[
p ← Pgen(1λ); (S0, S1) ← A(p, n, q) s.t. ∀i ∈ {0, 1}.Si ⊆ F ∧ |Si| ≤ q;

β ←$ {0, 1} ; (ckβ , tdβ) ← KC(p, n, q, Sβ) : A(ckβ) = β

]
.

Intuitively, ck reveals computationally no information about S.

Almost Everywhere Perfectly Hiding: ∀λ, unbounded A, n ∈ poly(λ), q ∈ [1, n],
AdvaephΓ,n,q,A(λ) := 2 · |εaephΓ,n,q,A(λ) − 1/2| = 0, where εaephΓ,n,q,A(λ) :=

Pr

[
p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q; (ck, td) ← KC(p, n, q, S);
(x0, x1) ← A(ck) s.t. x0S = x1S ;β ←$ {0, 1} ; r ←$ R : A(Com(ck;xβ ; r)) = β

]
.

Intuitively, given ck, that depends on S, the commitment hides perfectly the
values of xi for i �∈ S.

Local F-Extractability: ∀λ, p ∈ Pgen(1λ), n ∈ poly (λ), q ∈ [1, n], S =
(f1, . . . , f|S|) ⊆ F with |S| ≤ q, (ck, (ek, tk)) ← KC(p, n, q,S), and PPT A,
AdvlextF,Γ,n,q,A(λ) :=

Pr[x, r ← A(ck) : LExtF (ek;Com(ck;x; r)) �= (
F (f1(x)), . . . , F (f|S|(x))

)
] = 0.
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KC(p, n, q, [M ]ι ∈ G
q×n
ι ):

Set implicitly M = R = Z
n
p and C = G

q+1
ι ;

Sample R $Z
(q+1)×(q+1)
p so that it has full rank; Sample $Z

n
p ;

Set [M ]ι M 0
1 ι

∈ Z
(q+1)×(n+1)
p ;

Set ck R[M ]ι ∈ G
(q+1)×(n+1)
ι , td (ek R−1, tk );

return (ck, td);

Com(ck;x ∈ Z
n
p ; r ∈ Zp)

return ck( x
r );

LExt(ek; [c]ι)

return ek[c]ι without the last element;

Fig. 1. Functional SSB commitment scheme FSSBι for linear functions in Gι.

Intuitively, given ck, that depends on S, and an extraction key, one can extract
F (xS). (This property was called somewhere perfect F -extractability in [12].)

Computational Hiding: ∀ PPT A, n ∈ poly (λ), q ∈ [1, n],
AdvchΓ,n,q,A(λ) := 2 · |εchΓ,n,q,A(λ) − 1/2| = negl(λ), where εchΓ,n,q,A(λ) :=

Pr

⎡

⎢
⎣

p ← Pgen(1λ);S ← A(p, n, q) s.t. S ⊆ F ∧ |S| ≤ q;
(ck, td) ← KC(p, n, q,S); (x0,x1) ← A(ck);β ←$ {0, 1} ; r ←$ R :
A(Com(ck;xβ ; r)) = β

⎤

⎥
⎦ .

Intuitively, given ck, that can depend on any S, the commitment hides compu-
tationally the vector x.

Construction. [12] constructed a functional SSB scheme for the family of all lin-
ear functions, see Fig. 1. It represents q linear functions by a matrix [M ]ι ∈ G

q×n
ι ,

where each row contains coefficients of one function. Clearly, the commitment
computes [c]ι ← Com(ck;x; r) = ck( x

r ) = R[M ′]ι( x
r ) = [RM xR(��x+r) ]ι, while

LExt(ek; [c]ι) computes ek · [c]ι = R−1[RM ′( x
r )]ι = [M ′( x

r )]ι = [M x��x+r ]ι,
and returns [Mx]ι.

Proposition 1 ([12]). Let Pgen be a bilinear group generator. Fix data size
n and locality parameter q. The commitment scheme in Fig. 1 is (i) function-
set hiding relative to Pgen under the DDHGι

assumption: for each PPT A,
there exists a PPT B, such that AdvfshΓ,n,q,A(λ) ≤ �log2(q + 1)� · Advddh

Gι,Pgen,B(λ).
(ii) locally F -extractable for F = [·]ι (thus, F depends on p), (iii) almost
everywhere perfectly-hiding, (iv) computationally-hiding. More precisely, for all
PPT A, there exist PPT B1 and unbounded B2, such that AdvchΓ,n,q,A(λ) ≤
AdvfshΓ,n,q,B1

(λ) + AdvaephΓ,n,q,B2
(λ).

Due to (iv), computational hiding does not have to be proven separately since it
always follows from function-set hiding and almost everywhere perfect hiding.
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2.2 Sub-ZK NIZK and QA-NIZK

In the current paper, we use both NIZKs and quasi-adaptive NIZKs [27]. To
save space, we first give a complete description of QA-NIZKs (both since QA-
NIZKs are less known and their security definitions subsume those of NIZKs)
and then point out the differences in the case of NIZKs. We postpone the formal
definitions of non-QA NIZKs to the full version [35].

A QA-NIZK argument system in the CRS model proves membership in the
language Llpar defined by a relation Rlpar = {(x,w)}, where both are determined
by a language parameter lpar. In the honest case, lpar is sampled from a dis-
tribution Dp; let setup.lpar be the PPT algorithm that does this sampling. We
assume that lpar contains p, and thus, we do not include p as an argument to
algorithms that also input lpar; recall that we assumed that p cannot be sub-
verted. A distribution Dp is witness-sampleable if there exists a PPT algorithm
setup.ltrap that samples (lpar, ltrap) such that lpar is distributed according to Dp,
and the membership of lpar in Lp can be efficiently verified given ltrap. The CRS
crs can depend on lpar, but the simulator has to be a single algorithm that works
for the whole collection of relations Rp = {Rlpar}lpar∈image(Dp). We will assume
that crs contains lpar implicitly.

The zero-knowledge simulator is usually required to be a single (non-black-
box) PPT algorithm that works for the whole collection of relations Rp =
{Rlpar}lpar∈image(Dp); that is, one requires uniform simulation (see [27]). Fol-
lowing [1,3,14], we accompany the universal simulator Sim with an adversary-
dependent extractor. We assume Sim also works when one cannot efficiently
establish whether lpar ∈ image(Dp). The simulator is not allowed to create new
lpar or crs but has to operate with one given to it as an input.

A Sub-ZK QA-NIZK argument system in the CRS model for a set of
witness-relations Rp = {Rlpar}lpar∈image(Dp) is a tuple of PPT algorithms Π =
(Pgen, setup.lpar,Kcrs,PARV,CV,P,V,Sim). In the case of witness-sampleable
languages, setup.lpar is replaced by setup.ltrap. Here, Pgen is the parameter
generation algorithm, setup.lpar is the language parameter generation algo-
rithm, setup.ltrap is the corresponding lpar/ltrap generation algorithm in the
witness-sampleable case, Kcrs is the CRS generation algorithm, PARV is the lpar-
verification algorithm, CV is the CRS verification algorithm, P is the prover, V
is the verifier, and Sim is the simulator.

Π can satisfy the following security notions. Intuitively, quasi-adaptive
soundness is soundness in the case when lpar is honestly generated. Quasi-
adaptive strong soundness is soundness when lpar is honestly generated from
a witness-sampleable distribution, and the adversary additionally gets access to
ltrap. Adaptive soundness is soundness in the case of maliciously generated lpar.
In all previous cases, the adversary sees crs before creating the input x. Non-
adaptive soundness is soundness in the case of maliciously generated lpar when
the adversary has to fix x before seeing crs. Similar intuition holds in the case
of various knowledge-soundness notions. Quasi-adaptive (knowledge)-soundness
follows from adaptive (knowledge-)soundness. (Quasi-)adaptive soundness fol-
lows from (quasi-)adaptive knowledge-soundness.
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Perfect Completeness: ∀ λ, PPT A,

Pr

⎡
⎢⎣
p ← Pgen(1λ); lpar ← setup.lpar(p); (crs, td) ← Kcrs(lpar);

(x,w) ← A(crs);π ← P(lpar, crs,x,w) : PARV(lpar) = 1∧
CV(lpar, crs) = 1 ∧ ((x,w) 	∈ Rlpar ∨ V(lpar, crs,x, π) = 1)

⎤
⎥⎦ = 1.

Computational Quasi-Adaptive Strong Soundness: defined if lpar is witness-
sampleable. For any stateful PPT A, AdvstrsoundPgen,Π,A(λ) :=

Pr

[
p ← Pgen(1λ); (lpar, ltrap) ← setup.ltrap(p); (crs, td) ← Kcrs(lpar);

(x, π) ← A(lpar, ltrap, crs) : V(lpar, crs,x, π) = 1 ∧ ¬(∃w.Rlpar(x,w) = 1)

]
≈λ 0.

In the definition of computational quasi-adaptive soundness (also defined in
the non-witness-sampleable case), the only difference is that one samples lpar ←
setup.lpar(p), and the adversary does not get ltrap as an input.

Computational Non-adaptive Soundness: ∀ stateful PPT A, AdvnasPgen,Π,A(λ) :=

Pr

[
p ← Pgen(1λ); (lpar,x) ← A(p); (crs, td) ← Kcrs(lpar);π ← A(crs) :

PARV(lpar) = 1 ∧ V(lpar, crs,x, π) = 1 ∧ ¬(∃w.Rlpar(x,w) = 1)

]
≈λ 0.

Computational Adaptive Soundness: ∀ stateful PPT A, AdvasPgen,Π,A(λ) :=

Pr

[
p ← Pgen(1λ); lpar ← A(p); (crs, td) ← Kcrs(lpar); (x, π) ← A(crs) :

PARV(lpar) = 1 ∧ V(lpar, crs,x, π) = 1 ∧ ¬(∃w.Rlpar(x,w) = 1)

]
≈λ 0.

Computational Adaptive Knowledge-Soundness: ∀ PPT stateful adversary A,
there exist a PPT extractor ExtA, s.t. AdvaksPgen,Π,A(λ) :=

Pr

⎡
⎢⎣
p ← Pgen(1λ); r ←$RNDλ(A); lpar ← A(p, r);

(crs, td) ← Kcrs(lpar); (x, π) ← A(crs; r);w ← ExtA(p, crs; r) :

PARV(lpar) = 1 ∧ V(lpar, crs,x, π) = 1 ∧ Rlpar(x,w) = 0

⎤
⎥⎦ ≈λ 0.

A knowledge-sound argument system is called an argument of knowledge.

Computational (resp., Perfect) Zero Knowledge: ∀ PPT (resp., unbounded)
adversary A, |εzk

0 − εzk
1 | ≈λ 0 (resp., |εzk

0 − εzk
1 | = 0), where εzk

b :=

Pr[p ← Pgen(1λ); lpar ← Dp; (crs, td) ← Kcrs(lpar) : AOb(·,·)(lpar, crs) = 1].

That is, A is given an oracle access to Ob(·, ·), where O0(x,w) returns ⊥ (reject)
if (x,w) �∈ Rlpar, and otherwise it returns P(lpar, crs,x,w). Similarly, O1(x,w)
returns ⊥ (reject) if (x,w) �∈ Rlpar, and otherwise it returns Sim(lpar, crs, td,x).

Intuitively, zero knowledge in this sense corresponds to black-box zero-
knowledge in the case when lpar and crs are trusted.

Computational (resp., Perfect) Persistent Zero Knowledge: ∀ PPT subverter Z,
there exists a PPT extractor ExtZ , s.t. ∀ PPT (resp., unbounded) adversary A,
|εzk

0 − εzk
1 | ≈λ 0 (resp., |εzk

0 − εzk
1 | = 0), where εzk

b :=
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Pr

[
p ← Pgen(1λ); r ←$RNDλ(Z); (lpar, crs, aux) ← Z(p, r); td ← ExtZ(p, r) :

PARV(lpar) = 1 ∧ CV(lpar, crs) = 1 ∧ AOb(·,·)(lpar, crs, aux) = 1

]
.

The oracles are as above. Persistent zero-knowledge corresponds to non-black-
box zero-knowledge in the case when lpar and crs are not trusted.

Π is Sub-ZK if it is both perfectly ZK and perfectly persistent zero-
knowledge. ZK does not follow from persistent zero-knowledge in the case of
QA-NIZKs [2] and thus, one has to prove both properties separately.

NIZKs. In the case of a (non-QA) NIZK, there is no language parame-
ter and thus, no algorithms setup.lpar and PARV; other algorithms (includ-
ing the adversary) do not take lpar as an argument or output it. Thus, Π =
(Pgen,Kcrs,CV,P,V,Sim). Moreover, one deals with a single non-parametrized
language L. Otherwise, all properties of QA-NIZKs carry over but in a simpli-
fied form. Note that (1) one is not interested in quasi-adaptive (strong) soundness
and (2) Sub-ZK and persistent zero-knowledge coincide. We postpone the formal
definitions of non-QA NIZKs to the full version [35].

SNARKs. A (QA-)NIZK is succinct ((QA-)SNARG) if the argument π has a
sublinear (desirably, logarithmic) length in poly(λ) (|x|+ |w|). A (QA-)SNARK
is a (QA-)SNARG that is additionally knowledge-sound.

Gentry-Wichs Impossibility Result. Gentry and Wichs [17] proved that if
an NP language L has a sub-exponentially (resp., exponentially) hard subset-
membership proof and Π is a complete SNARG in the CRS model with |π| =
poly(λ) (|x| + |w|)o(1) (resp., |π| = poly(λ) (|x| + |w|)c + o(|x| + |w|) for some
constant c < 1) for L, then there is a black-box reduction from the adaptive
soundness of Π to a falsifiable assumption X only when X is false.

3 Sub-ZK Bilateral Subspace QA-SNARK

A bilateral subspace argument system, with lpar = [M ]∗, allows to prove that
[c1]1 ∈ G

n1
1 and [c2]2 ∈ G

n2
2 satisfy ( c1c2 ) ∈ colspace

(
M1
M2

)
. Following [10,12],

we will use it to construct QA-SNARGs. Next, we prove that BLS, a variant
of the González-Hevia-Ráfols bilateral subspace QA-SNARG, satisfies stronger
properties, needed for FANA to be non-adaptively knowledge-sound and Sub-ZK.

First, let σ be any efficiently computable function. A distribution Dp is σ-
witness-sampleable if (1) there exists a PPT algorithm setup.ltrapσ that samples
(lpar, σ(ltrap)) such that lpar is distributed according to Dp, and (2) for any
language trapdoor ltrap′, such that the membership of lpar in the parameter lan-
guage Lp can be efficiently verified given ltrap′, it holds that σ(ltrap) = σ(ltrap′).
(In the context of the current paper, think of ltrap as the discrete logarithm
of lpar, and σ(ltrap) as an efficient—fixed—leakage function of ltrap.) We will
prove that BLS satisfies the following new security property that follows from
the quasi-adaptive strong soundness (see page 14):

Computational Quasi-Adaptive σ-Strong Soundness: defined if lpar is σ-
witness-sampleable. For any stateful PPT A, Advσ−strsound

Pgen,Π,A (λ) :=
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Pr

⎡
⎢⎣
p ← Pgen(1λ); (lpar, σ(ltrap)) ← setup.ltrapσ(p); (crs, td) ← Kcrs(lpar);

(x, π) ← A(lpar, σ(ltrap), crs) : V(lpar, crs,x, π) = 1∧
¬(∃w.Rlpar(x,w) = 1)

⎤
⎥⎦ ≈λ 0.

This notion agrees with the quasi-adaptive strong soundness when σ = id is
the identity function and with the quasi-adaptive soundness if σ is a constant
function. While BLS is quasi-adaptively strongly sound and thus also quasi-
adaptively σ-strongly sound for any efficient σ, we find it instructive to define σ-
strong soundness. In particular, for the non-adaptive soundness of FANA, we will
need BLS to be σx-strongly sound for a well-defined function σx. It is possible
that one can find a more efficient version of BLS that is quasi-adaptively σx-
strongly sound but not quasi-adaptively strong sound.

Assume that the matrix security parameter is κ = 2 (if κ = 1 then SKerMDH
does not hold, [19]). Assume τ := corank(M) = n1 + n2 − rank(M) ≥ 1; here,
n1, n2 can be smaller or larger (only the latter case was studied in [19]) than m.
For lpar ∈ G

n1×m
1 × G

n2×m
2 , where lpar = [M ]∗, define the bilateral subspace

language (also known as the subspace concatenation language, [19])

Llpar :=
{
([c1]1, [c2]2) ∈ G

n1
1 × G

n2
2 : ∃w ∈ Z

m
p .( c1c2 ) =

(
M1
M2

)
w

}
.

That is, c1 = M1w and c2 = M2w.
A distribution Dκ is efficiently verifiable [2], if there exists a PPT algorithm

MATV([Ā]2) that outputs 1 if Ā is invertible (recall that we assume that the
matrix distribution is robust) and well-formed with respect to Dκ, and otherwise
outputs 0. Clearly, the standard distributions (see the full version [35]) U1, Lκ,
ILκ, Cκ, and SCκ (for any κ) are verifiable [2], while the verification whether
[Ā]2 is invertible is intractable for Uκ if κ > 1. To be able to handle Uκ, [2] added
parts of [Ā]1 to crs. However, in the Uκ case, they proved adaptive soundness
under the SKerMDHdl (that we will define in Sect. 3.1) assumption instead of
the KerMDHdl assumption (see [2] for more discussion), which resulted in the
choice κ = 2. [Ā]1 is always in crs of a bilateral subspace argument system and
thus the adaptive soundness relies on (a variant of) the SKerMDHdl assumption.

As before, assume that the distribution Dκ is robust. Extending the defini-
tion of [2], we say that Dκ is efficiently verifiable, if there exists an algorithm
MATV([Ā]1, [Ā]2) that outputs 1 if Ā is invertible and well-formed with respect
to Dκ and otherwise outputs 0. Here, MATV gets two inputs, [Ā]1 and [Ā]2;
there are cases when an efficient MATV does not exist when only [Ā]1 is given
as the input. In particular, under this definition, also U2 is efficiently verifiable.

We depict a slight variant of the González-Hevia-Ràfols bilateral sub-
space QA-SNARG argument system BLS for L[M1]1,[M2]2 in Fig. 2. Compared
to [19], we add the CRS verification algorithm CV and assume the existence of
setup.ltrapσ for some efficiently computable function σ. As in [19], the prover’s
work is dominated by 2mκ exponentiations, the verifier’s work is dominated
by (n1 + n2 + 2κ)κ pairings, and the argument consists of 2κ group elements.
Theorem 1 generalizes a theorem from [19] to any nι × m matrices Mι (even if
m > nι), given that τ := n1 + n2 − rank(M) ≥ 1. This generalization is impor-
tant since in FANA (see Eq. (4)), m > n2. On top of the known results that BLS
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Lp = {[M ]∗ ∈ G
n1×m
1 × G

n2×m
2 : τ := n1 − rank(M1) = n2 − rank(M2) ≥ 1}

setup.lpar(p)

([M ]∗, σ(M1, M2)) $ setup.ltrapσ(p);
return lpar [M ]∗;

BLS.Kcrs(p, lpar = ([M1]1, [M2]2))

A $Dκ; // A ∈ Z
(κ+1)×κ
p , Ā is invertible

K1 $Z
n1×κ
p ;K2 $Z

n2×κ
p ;Δ $Z

κ×m
p ;

C1 K1Ā;C2 K2Ā; // Cι ∈ Z
nι×κ
p

[P 1]1 K1 [M1]1 + [Δ]1;
[P 2]2 K2 [M2]2 − [Δ]2; // [P ι]ι ∈ G

κ×m
ι

crs ([Ā, C2, P 1]1, [Ā, C1, P 2]2);
td (K1, K2);
return (crs, td);

BLS.P(p, crs; ([c1]1, [c2]2), )

ζ $Z
κ
p ;

[ψ1]1 [P 1]1 + [ζ]1;
[ψ2]2 [P 2]2 − [ζ]2; // [ψι]ι ∈ G

κ
ι

return ψ ([ψ1]1, [ψ2]2);

BLS.Sim(p, crs; ([c1]1, [c2]2), td)

ζ $Z
κ
p ;

[ψ1]1 K1 [c1]1 + [ζ ]1; // [cι]ι ∈ G
nι
ι

[ψ2]2 K2 [c2]2 − [ζ ]2; // [ψι]ι ∈ G
κ
ι

return ψ ([ψ1]1, [ψ2]2);

BLS.V(p, crs; ([c1]1, [c2]2), ψ)

return [c1]1 • [C1]2 + ([C2]1 • [c2]2)
?= [ψ1]1 • [Ā]2 + ([Ā]1 • [ψ2]2) ; // in G

1×κ
T

BLS.CV([M ]∗, crs):

return 1 if the following checks all succeed

crs = ([Ā, C2, P 1]1, [Ā, C1, P 2]2);
[P 1]1 ∈ G

κ×m
1 ∧ [Ā]2 ∈ G

κ×κ
2 ∧ [C1]2 ∈ G

n1×κ
2 ;

[P 2]2 ∈ G
κ×m
2 ∧ [Ā]1 ∈ G

κ×κ
2 ∧ [C2]1 ∈ G

n2×κ
1 ;

( ) [Ā]1 • [1]2 = [1]1 • [Ā]2;
(∗) [M1]1 • [C1]2 + [M2]2 • [C2]1 = [P 1]1 • [Ā]2 + [P ]2 • [Ā]1;

MATV([A]2) = 1;

Fig. 2. The Sub-ZK bilateral subspace QA-SNARG BLS, for efficiently verifiable Dκ.

is quasi-adaptively (strongly) sound and zero-knowledge, we prove that BLS is
quasi-adaptively σ-strongly sound (for any efficient σ), adaptively sound, adap-
tively knowledge-sound, persistent zero-knowledge, and thus Sub-ZK. To state
Theorem 1, we will first need to define several security assumptions.

3.1 New Security Assumptions

To state Theorem 1, we will first need to define two (non-falsifiable) non-adaptive
security assumptions, SKerMDHdl and SDLdl, that state that the SKerMDH and
SDL [6] assumptions stay secure even if one is given a non-adaptive access to
a discrete logarithm oracle in both G1 and G2. [30] used KerMDH to prove
the quasi-adaptive soundness of their QA-SNARG Πkw (assuming that lpar is
honestly generated and witness-sampleable), and [2] used (non-falsifiable) non-
adaptive interactive assumptions KerMDHdl and SDLdl to prove the adaptive
soundness and knowledge-soundness of Πkw. Witness-sampleability makes it pos-
sible for the reduction to generate lpar together with ltrap, and then use the
knowledge of ltrap. The use of a non-falsifiable but reasonable looking non-
adaptive interactive assumption allows the reduction to obtain ltrap by using
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the (non-polynomial-time) discrete logarithm oracles. Thus, one does not have
to assume anymore that lpar is honestly generated. See [2] for discussion.

The intuition behind using different assumptions, compared to [2], is similar
to the reason why BLS is sound under the SKerMDH and not under the KerMDH
assumption. See [19] for discussion.

For ι ∈ {1, 2}, the oracle dlι([y]ι) returns the discrete logarithm y of [y]ι. The
Dκ∗,κ-SKerMDHdl assumption [2] holds relative to Pgen, if ∀ PPT A,

Advskermdhdl
Dκ∗,κ,Pgen,A(λ) := Pr

⎡
⎢⎣
p ← Pgen(1λ); st ← Adl1(·),dl2(·)(p);

A ←$Dκ∗,κ; ([c1]1, [c2]2) ← A(p, st, [A]1, [A]2) :

A�(c1 − c2) = 0κ ∧ c1 − c2 	= 0κ∗

⎤
⎥⎦ ≈λ 0.

The SDLdl assumption [2] holds relative to Pgen, if for any PPT A,

AdvsdldlPgen,A(λ) := Pr

[
p ← Pgen(1λ); st ← Adl1(·),dl2(·)(p);x ←$Zp :

A(p, st, [x]1, [x]2) = x

]
≈λ 0.

In the version of SKerMDHdl and SDLdl from [2], A was only given access to
the oracle dl1. We decided to not change the name of the assumption.

[2] proved the persistent zero-knowledge of the Kiltz-Wee QA-SNARG argu-
ment system [30] under a new knowledge assumption KW-KE and then proved
KW-KE’s security in the algebraic group model, [15]. Since BLS is sufficiently
different from [30], we need to define another knowledge assumption, GHR-KE
(the González-Hevia-Ràfols knowledge-of-exponent). Intuitively, GHR-KE states
that if one outputs an lpar and a crs, such that PARV and CV accept (lpar, crs)
correspondingly, then one must know td = (K1,K2). This also gives an intuition
of the role that is filled by PARV and CV. In the full version [35], we prove the
security of GHR-KE in the AGM.

Definition 1. Fix κ ≥ 1, n > m ≥ 1, and a distribution Dκ. Let BLS.PARV
and BLS.CV be as in Fig. 2. (Dp, κ,Dκ)-GHR-KE holds relative to Pgen if for
any PPT A, there exists a PPT extractor ExtA, s.t. AdvghrkeDp,κ,Dκ,Pgen,A,ExtA(λ) :=

Pr

⎡
⎢⎢⎢⎢⎣
p ← Pgen(1λ); r ←$RNDλ(A); (lpar := [M ]∗, crs) ← A(p, r);

(K1, K2) ← ExtA(p, r) : crs = ([Ā, C1, P 2]1, [Ā, C2, P 1]2)∧
BLS.PARV(lpar) = 1 ∧ BLS.CV(lpar, crs) = 1∧
(P 1 + P 2 	= K�

1 M1 + K�
2 M2)

⎤
⎥⎥⎥⎥⎦ ≈λ 0.

3.2 Security Proof of BLS

Theorem 1. Fix λ, n1, n2, m, let ñ = n1 + n2. Let κ = 2. Let σ be any effi-
cient function. Let Dp be a matrix distribution on [M ]∗ ∈ G

n1×m
1 × G

n2×m
2 ,

such that ñ − rank(M) ≥ 1, where M :=
(

M1
M2

)
. Then (1) BLS is perfectly

complete and perfectly zero-knowledge. (2) If (Dp, κ,Dκ)-GHR-KE holds rela-
tive to Pgen, then BLS is perfectly persistent zero-knowledge. (3) Assume Dκ is
efficiently verifiable. If Dκ-SKerMDHdl holds relative to Pgen, then BLS is com-
putationally adaptively sound. (4) Assume Dp is σ-witness-sampleable and Dκ
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is efficiently verifiable. If Dκ-SKerMDH holds relative to Pgen then BLS is com-
putationally quasi-adaptively σ-strongly sound. (5) Assume that Dκ is robust. If
BLS is computationally adaptively sound and SDLdl holds relative to Pgen, then
BLS is computationally adaptively knowledge-sound in the AGM.

4 A Non-adaptive SNARK FANA for QAP

Next, we propose a non-adaptively sound Sub-ZK SNARK FANA for QAP by
following the ideas from [10,12] who proposed (quasi-adaptively sound) QA-
SNARGs for SSP and SAP. A significant difference between QAP and SSP/SAP
is that in QAP, one has to deal with different polynomials uj(X) and vj(X) in
groups G1 and G2; this complicates the argument system since one has to include
a functional SSB commitment in both groups. (In both [10,12], a functional
SSB commitment is only given in G1.) On top of doing a version of the usual
zk-SNARK with perfectly-hiding commitments to the evaluations a = A(x),
b = B(x), and c = C(x) of three polynomials A(X), B(X), C(X) (see Eq. (3);
here, x is a trapdoor), we add (in both groups) a functional SSB commitment
to specific values, explained later. We then use a bilateral subspace argument
system [19] to show that all commitments are consistent.

More precisely, let u(X), v(X), and w(X) be defined as in Sect. 2. In the new
zk-SNARG, we define the following polynomials with randomizers ra, rb, rc:

A(X) =u(X) + raZ(X),

B(X) = v(X) + rbZ(X),

C(X) =w(X) + rcZ(X),

h(X) = (A(X)B(X) − C(X))/Z(X)

= (u(X)v(X) − w(X))/Z(X) + (rav(X) + rbu(X) − rc) + rarbZ(X).

(3)

V checks [a]1 • [b]2 − [c]1 • [1]2 = [h(x)]1[Z(x)]2, where [a = A(x), c = C(x)]1,
[b = B(x)]2 are circuit-dependent perfectly-hiding commitments. Intuitively, V
checks [V (x)]2 = [0]2, where V (X) := A(X)B(X) − C(X) − h(X)Z(X).

Let [gu]1 ← FSSB1.KC(p,m + 2, N1, [Nu]1) and [gv]2 ← FSSB2.KC(p,m +
1, N2, [Nv]2) be commitment keys of the functional SSB commitment scheme,
with gu ∈ Z

(N1+1)×(m+3)
p and gv ∈ Z

(N2+1)×(m+2)
p . Here, N1 and N2 are locality

parameters set to N1 := 4 and N2 := 2. (We define [Nu]1 and [Nv]2 in Lemma
3; the choice of N1 and N2 will become later.)

In addition, we commit to the bases u(X) = (ui(X))mi=1, v(X) = (vi(X))mi=1,
and w(X) = (wi(X))mi=1. For example, [c]1 =

∑m
j=1 zj [wj(x)]1 + rc[Z(x)]1.

Since wj(X) =
∑n

i=1 Wij�i(X), then [c]1 =
∑n

i=1

∑m
j=1 Wijzj [�i(X)]1 +

rc[Z(x)]1 =
∑n

i=1

∑m
j=1(Wz)i[�i(X)]1 + rc[Z(x)]1 = [g�]1

(
W z
rc

)
, where [g�]ι :=

[�1(x), . . . , �n(x), Z(x)]ι. Thus, [c]1 is an interpolation commitment [33] to the
vector Wz (i.e., the vector of all output wires of all multiplication gates) with
the randomness rc. Similar formulas hold for [a]1 and [b]2.

Let Ĝ = (Im0‖0m0×(m−m0)) ∈ Z
m0×m
p . Let ûi(X) = 0 for i ≤ m0 and

ûi(X) = ui(X) for i > m0. Using ûi(X) instead of ui(X) helps us to prove
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efficiently that the prover used the correct public input (z1, . . . , zm0)
� = x. We

use BLS to prove that several commitments commit to the same message while
using different commitment keys, with

H1 =

⎛

⎜
⎜
⎜
⎝

Ĝ
(1)

. . . Ĝ
(m)

0m0 0m0 0m0 0m0 0m0

û1(x) . . . ûm(x) Z(x) 0 0 0 0
w1(x) . . . wm(x) 0 0 Z(x) 0 0
g
(1)
u . . . g

(m)
u g

(m+1)
u 0N1+1 g

(m+2)
u g

(m+3)
u 0N1+1

⎞

⎟
⎟
⎟
⎠

.

H2 =
(

v1(x) . . . vm(x) 0 Z(x) 0 0 0
g
(1)
v . . . g

(m)
v 0N2+1 g

(m+1)
v 0N2+1 0N2+1 g

(m+2)
v

)

.

(4)

Here, H1 ∈ Z
(m0+N1+3)×(m+5)
p and H2 ∈ Z

(N2+2)×(m+5)
p . The witness is

(z, ra, rb, rc, ru, rv), where ru and rv are randomizers needed to randomize addi-
tional commitments.4

We use the bilateral subspace argument system to guarantee that

(x//a//c//c̃u//b//c̃v) ∈ colspace
(

H 1
H 2

)
. (5)

That is, there exists BLS.w = (z = ( x
w ), ra, rb, rc, ru, rv), such that

– [a]1 =
∑m

j=1 zj [ûj(x)]1 + ra[Z(x)]1 =
∑m

j=m0+1 zj [uj(x)]1 + ra[Z(x)]1,
– [c]1 =

∑m
j=1 zj [wj(x)]1 + rc[Z(x)]1,

– [c̃u]1 = FSSB1.Com([gu]1;z//ra//rc; ru),
– [b]2 =

∑m
j=1 zj [vj(x)]2 + rb[Z(x)]2, and

– [c̃v]2 = FSSB1.Com([gv]2; (
z
rb
); rv).

4.1 Description of FANA

We depict FANA in Fig. 3. The CRS of FANA consists of the public elements
needed to compute all the commitments, [h(x)]1, and the bilateral subspace
argument system. The input of P and V is x. The argument π includes [a, c]1
and [b]2 (perfectly-hiding commitments to Uz, Wz, and V z, with randomizers
ra, rc, and rb) and [c̃u]1 and [c̃v]2 (functional SSB commitments to z//ra//rc

and ( z
rb
)). On top of that, the argument also contains [h(x)]1 and a bilateral

subspace argument BLS.π. Here, h(X) is as in the description of the QAP.

5 FANA: Assumptions and Soundness Proofs

5.1 The QA-LINRES Assumption

In the full version [35], we reproduce the known assumptions n-TSDH [37] (a
well-known, relatively standard pairing-based assumption), n-S-TSDH (Assump-
tion 7 and Assumption 8 in [10]; used to prove the soundness of the SNARG
4 In [12], the structure of corresponding matrices was different, and thus one ended

up with dimensions [H1]1 ∈ G
(2m+2)×(2m+3)
1 , [H2]2 ∈ G

5×(2m+3)
2 .In particular, they

used Elgamal encryption as a perfectly-binding commitment in G1 (resulting in the
addend 2m in the number of rows of G1).
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Kcrs(p,RIqap ): // n is implicit in p,R, matrices are as in Eq. (4)

Nu $Z
N1×(m+1)
p ; ([gu]1, tdu) FSSB1.KC(p, m + 2, N1, [Nu]1);

Nv $Z
N2×(m+1)
p ; ([gv]2, tdv) FSSB2.KC(p,m + 1, N2, [Nv]2);

x $Z
∗
p; Create BLS.lpar [H]∗ as in Eq. (4);

(BLS.crs,BLS.td) BLS.Kcrs(p,BLS.lpar);
crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs); td BLS.td;
return (crs, td);

CV(crs): Create BLS.lpar [H]∗ as in Eq. (4); Check BLS.CV(BLS.lpar,BLS.crs) = 1;

P(crs, = ( 1, . . . , m0); = ( j)mj=m0+1):
1. ra, rb, rc, ru, rv $Zp;
2. A(X) m

j=1 juj(X) + raZ(X); B(X) m
j=1 jvj(X) + rbZ(X);

3. C(X) m
j=1 jwj(X) + rcZ(X);

4. h(X) (A(X)B(X) − C(X))/Z(X);
5. [a]1 m

j=m0+1 j [uj(x)]1 + ra[Z(x)]1; [c]1 m
j=1 j [wj(x)]1 +

rc[Z(x)]1; [b]2 m
j=1 j [vj(x)]2 + rb[Z(x)]2;

6. [c̃u]1 FSSB1.Com([gu]1; //ra//rc; ru);
7. [c̃v]2 FSSB2.Com([gv]2; ( rb

); rv);
8. [h(x)]1 n−2

i=0 hi[xi]1;
9. BLS. [ //a//c//c̃u]1//[b//c̃v]2;

10. BLS.π BLS.P(BLS.lpar,BLS.crs;BLS. ; ( , ra, rb, rc, ru, rv));
11. π ([a, c, c̃u, h(x)]1, [b, c̃v]2,BLS.π).

V(crs, = ( 1, . . . , m0);π):
BLS. [ //a//c//c̃u]1//[b//c̃v]2;
check BLS.V(BLS.lpar,BLS.crs,BLS. ,BLS.π) accepts and ([a]1 +

m0
j=1 j [uj(x)]1) • [b]2 − [c]1 • [1]2 = [h(x)]1 • [Z(x)]2.

Sim(crs, td = BLS.td, = ( 1, . . . , m0)):
1. ru, rv, μ1, μ2, μ3 $Zp;
2. [a]1 μ1[Z(x)]1 − m0

j=1 j [uj(x)]1; [b]2 μ2[Z(x)]2;
3. [c]1 μ3[Z(x)]1;
4. [c̃u]1 FSSB1.Com([gu]1;0m+2; ru);
5. [c̃v]2 FSSB2.Com([gv]2;0m+1; rv);
6. [h(x)]1 μ1μ2[Z(x)]1 − μ3[1]1;
7. BLS. [ //a//c//c̃u]1//[b//c̃v]2;
8. BLS.π BLS.Sim(BLS.lpar = [H]∗,BLS.crs,BLS.td;BLS. ).
9. π ([a, c, c̃u, h(x)]1, [b, c̃v]2,BLS.π).

Fig. 3. New zk-SNARK FANA for QAP.

DGPRS for SSP), n-Q-TSDH (Assumption 8 in [10]; used to prove the soundness
of range proofs and some other argument systems), and n-SA-TSDH [12] (used
to prove the soundness of a SNARG for SAP). The last three assumptions are
known to hold under if n-TSDH and a suitable knowledge assumption hold. One
can similarly define a new TSDH-related assumption QA-TSDH (see the full
version [35]) to prove the non-adaptive soundness of FANA.
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While {S,Q,SA,QA}TSDH naturally extend the well-known assumption
TSDH, they look complicated. Each of them is intrinsically related to the under-
lying language: S-TSDH is related to the SSP language, SA-TSDH is related to
the SAP language, and QA-TSDH is related to the QAP language. Since SAP is
a more involved language than SSP, SA-TSDH is more involved than S-TSDH.

Most importantly, in {S,Q,SA,QA}TSDH, A returns an element [ν]T of the
target group GT . The widely-accepted way to motivate the security of an assump-
tion like {S,Q,SA,QA}TSDH is to analyze its security in the generic group model
GGM, or in some of its weakenings like the algebraic group mode, AGM [15].
As explained in [26], in pairing-based settings, GT , being a subgroup of the mul-
tiplicative group of a finite field, should not be thought of as a generic group.
Instead, [26] proposed the semi-GGM, where only G1 and G2 are considered to
be generic groups. Since an {S,Q,SA,QA}TSDH adversary returns [ν]T in the
target group, {S,Q,SA,QA}TSDH is not secure in the semi-GGM.

Fortunately, this is a problem of the concrete assumptions, not intrinsic to
the QA-SNARGs. We prove that FANA is sound under a different assumption,
QA-LINRES, where the adversary only returns elements in G1 and G2.

Definition 2 (QA-LINRES). n-Quadratic Arithmetic Linear Residuosity (n-
QA-LINRES) holds relative to Pgen, if ∀ PPT A, Advqa-linresPgen,n,A(λ) = negl(λ),
where Advqa-linresPgen,n,A(λ) :=

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p ← Pgen(1λ);x, y ←$Z
∗
p; ck ← (([xi]1, [xi]2)ni=0, [y]1, [y]2);π ← A(p, ck) :

π =
(
J, [A(x), αu(x), β̂u, C(x), αw(x), β̂w, h(x)]1, [B(x), αv(x), β̂v]2

)
∧

A(x) = αu(x)(x − ωJ−1) + β̂u/y ∧ B(x) = αv(x)(x − ωJ−1) + β̂v/y ∧
C(x) = αw(x)(x − ωJ−1) + β̂w/y ∧ A(x)B(x) − C(x) = h(x)Z(x)∧
β̂uβ̂v �= β̂wy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

QA-LINRES is falsifiable since the challenger who created x and y can efficiently
verify that the conditions hold. Like {∗}TSDH, QA-LINRES is parameterized
by n (the size of the instance) but does not depend on the instance otherwise.

Next, we will motivate the choice of the assumption. The penultimate equality
above, A(x)B(x) − C(x) = h(x)Z(x), is the key equation of the QAP. The first
three equalities are explicitly motivated by the soundness proof of FANA; they
intuitively guarantee that (say) when one divides the polynomial A(X) with
X −ωJ−1, then the remainder is (integer) βu and the quotient is the polynomial
αu(X). To guarantee that (say) βu is an integer (and thus does not depend on
x), the {S,Q,SA,QA}TSDH assumptions introduce a new indeterminate y and
require that the adversary also outputs [βuy]1. Since ck only contains [y]1 (and
no [xiy]1), it means that an algebraic adversary must know the integer βu.

This trick means that in the case of the say SA-TSDH assumption (see the
full version, [35]), the adversary has to return [βu, βw]1 together with knowledge-
components [β̂w, β̂w]1; this makes the assumption more complicated. Moreover,
in the soundness proof, the reduction has to extract all four elements. While
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[βu, βw]1 can be extracted from the perfectly-binding commitment scheme, the
other two are extracted from the functional SSB commitment scheme, making
the output of the functional SSB commitment longer. Following this blueprint,
in the case of the QA-SNARG for QAP, there are three elements [βu, βw]1, [βv]2
and thus there would be also three extra knowledge components [β̂u, β̂w]1, [β̂v]2.

In QA-LINRES, the adversary only has to return the knowledge-components
[β̂u, β̂w]1, [β̂v]2 but not [βu, βw]1, [βv]2. This results in a cleaner assumption (the
adversary has to return fewer elements) and a more efficient QA-SNARG (the
length of the functional SSB commitment is reduced by one group element).

Since the adversary of QA-LINRES does not output elements like [βu]1
together with their knowledge components anymore, the security of QA-LINRES
cannot be directly ascertained under Damgård’s knowledge-of-exponent assump-
tions. Hence, in the full version [35], we will prove that QA-LINRES holds in
the AGM under the standard PDL assumption.

Theorem 2. (1) FANA is perfectly complete. (2) If BLS is perfectly zero-
knowledge and FSSB1 and FSSB2 are almost everywhere perfectly-hiding then
FANA is perfectly zero-knowledge. (3) If BLS is perfectly persistent zero-
knowledge, FANA is perfectly zero-knowledge, and FSSB1 and FSSB2 are
computationally-hiding then FANA is Sub-ZK.

Recall that if FSSBι is function-set hiding and almost everywhere perfectly-
hiding, then it is also computationally-hiding; thus, for (3) it suffices if we assume
function-set hiding and almost everywhere perfectly-hiding properties.

5.2 Non-adaptive Soundness of FANA

Our non-adaptive soundness proof proceeds in four games. In the last game,
Game4, we construct two reductions. The first reduction is to the quasi-adaptive
σ-strong soundness (for a fixed σx) of BLS that guarantees that no PPT non-
adaptive soundness adversary A is successful if there exists no witness BLS.w,
s.t. Eq. (5) holds; this includes the case A used a wrong public input.

Assume now that there exists at least one witness BLS.w, such that Eq. (5)
holds. Then, a successful A left at least one constraint unsatisfied. The adversary
B3 (constructed in the second, QA-LINRES, reduction) samples J ←$ [1, n] and
guesses that the Jth QAP constraint (UJz)(V Jz) = WJz is unsatisfied. B3

aborts in Game4 if the guess was correct. In Game3 and Game4, we modify the
functional SSB scheme’s commitment key to be able to extract six elements
(namely, ([α̂u(x), β̂u, α̂w(x), β̂w]1, [α̂v(x), β̂v]2; other elements can be computed
in a straightforward way) needed to break QA-LINRES. B3 works with the
modified commitment keys; inside the QA-LINRES experiment, B3 aborts if A
satisfied the Jth constraint. This incurs an n-times security loss.

Crucially, B3 makes the decision to abort based on the information in modi-
fied functional SSB commitment keys. Thus, we can only abort in the last game
Game4. This is the main reason why we have both a succinct argument (abortion
is not based on information, extracted from the perfectly-binding commitment
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as in [10,12]) and non-adaptive soundness (in the adaptive case, A sees the mod-
ified commitment key before creating the input, and then it can covertly choose
the unsatisfied constraint based on it).

With the modified commitment keys, β̂u = UJz, β̂v = V Jz, and β̂w =
WJz for some z. If B3 aborts, then β̂uβ̂v �= β̂w. (The quasi-adaptive σx-
strong soundness of BLS guarantees that such a z exists.) Since A(X) =∑n

i=1 Uiz�i(X) + raZ(X), we get A(X) ≡ UJz (mod Z(X)) and thus A(X) ≡
UJz (mod X − ωJ−1). Similarly, B(X) ≡ V Jz (mod X − ωJ−1) and C(X) ≡
WJz (mod X − ωJ−1). Thus, for some polynomials αu(X), αv(X), and αw(X),

A(X) =αu(X)(X − ωJ−1) + β̂u, B(X) =αv(X)(X − ωJ−1) + β̂v,

C(X) =αw(X)(X − ωJ−1) + β̂w.

In the malicious case, [β̂u]1, [β̂v]2, and [β̂w]1 can depend on x; e.g., [β̂u]1 =
[β̂u(x)]1. Consider first the case y = 1. Then, the verification equation
A(X)B(X) − C(X) = h(X)Z(X) guarantees that β̂u(X)β̂v(X) − β̂w(X) ≡ 0
(mod X − ωJ−1) as a polynomial while the QA-LINRES assumption states
β̂uβ̂v �= β̂w. To obtain a contradiction, we need to guarantee that B3 returned
([β̂u, β̂v]1, [β̂w]2), such that β̂u, β̂v, and β̂w do not depend on x. We achieve this
by sampling a random y and adding ([y]1, [y]2) to crs; then an algebraic adver-
sary can create (say) [β̂u]1 = [UJzy]1, such that β̂u/y is in a non-trivial relation
only if β̂u does not depend on the trapdoor x.

Importantly, the non-adaptive soundness of FANA follows from falsifiable
assumptions. Knowing which constraint J was unsatisfied, we use the local
extractability of the functional SSB scheme to recover a succinct local witness
that allows one to reduce the non-adaptive soundness to QA-LINRES. Thus,
we do not need to have a perfectly-binding commitment. In comparison, [10,12]
used witness-sampleability to extract some elements of that local witness from
the perfectly-binding commitment scheme.

Let σx : ltrap �→ x. Clearly, σx can be computed efficiently: given (H1,H2),
σx uses one of the entries of H1 that contains Z(x) to compute the value of x.
For ι ∈ {1, 2}, let FSSBι be the Fauzi-Lipmaa-Pindado-Siim functional SSB com-
mitment scheme in Gι. Let BLS be the González-Hevia-Ràfols bilateral subspace
argument system. Let N1 = 4 and N2 = 2.

Theorem 3. Assume that FSSBι is locally [·]ι-extractable and function-set hid-
ing for ι ∈ {1, 2}, BLS is quasi-adaptively σx-strongly sound, and n-QA-LINRES
holds relative to Pgen. Then the QA-SNARK FANA from Fig. 3 is non-adaptively
sound. More precisely, there exist PPT adversaries B1,B′

1,B2,B3 against the
function-set hiding property of FSSB1, the function-set hiding property of FSSB2,
the quasi-adaptive σx-strong soundness of BLS, and the n-QA-LINRES assump-
tion, respectively, such that

AdvnasPgen,FANA,A(λ) ≤AdvfshFSSB1,m+2,N1,B1
(λ) + AdvfshFSSB2,m+1,N2,B′

1
(λ)+

Advσx−strsound
Pgen,BLS,B2

(λ) + n · Advqa-linresPgen,n,B3
(λ).
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For the quasi-adaptive σx-strong soundness of BLS, the language parameter dis-
tribution of BLS must be σx-witness-sampleable. On the other hand, [10,12]
assumed that BLS.lpar is witness-sampleable and thus also lpar for their QA-
SNARG (for SSP/SAP) is witness-sampleable; by this reason alone, their
SNARGs are only quasi-adaptively sound (i.e., sound, assuming lpar is honestly
generated). FANA is not a QA-SNARG and thus has no language parameter.

Proof. (of Theorem 3). The non-adaptive soundness proof consists of the follow-
ing games. Let A be an adversary against the non-adaptive soundness. We recall
that in the terminology of arithmetic circuits, A has two avenues of cheating:
either by using a wrong public input or by leaving some constraints unsatisfied.

Game1: this is the non-adaptive soundness game for non-QA NIZKs (see page
14 but remember that in the case of NIZKs, there is no lpar). The output is 1
if A produces a false accepting proof, i.e., either (1) there exists at least one
constraint i, such that (Uz)i(V z)i �= (Wz)i, or (2) the various committed
values are either different or do not start with x.

Game2: This game also samples J ←$ [1, n] as a guess for the unsatisfied equation
i in the case (1).

Game3: Let δuj(X) (resp., δwj(X) / δZ(X)) be the quotient of the division of
uj(X) (resp., wj(X) / Z(X)) with X − ωJ−1. We will show later that the
remainder is UJj (resp., WJj / 0). We redefine the commitment key of the
FSSB1 scheme as ([gu]1, tdu) ← FSSB1.KC(p,m + 2, N1, [Nu]1) for

[Nu]1 ←
[

δu1(x) ... δum(x) δZ(x) 0
UJ1y ... UJmy 0 0

δw1(x) ... δwm(x) 0 δZ(x)
WJ1y ... WJmy 0 0

]

1

∈ G
N1×(m+2)
1 . (6)

In Lemma 3, this change allows us to use the local extractability of
FSSB1 to extract [α̂u, β̂u, α̂w, β̂w]1(= [αu(x), β̂u, αw(x), β̂w]1) related to the
QA-LINRES assumption (see Definition 2).

Game4: Let δvj(X) be the quotient of the division of vj(X) with X − ωJ−1. We
will show later that the remainder is VJj . We redefine the commitment key of
the FSSB2 scheme as ([gv]2, tdv) ← FSSB2.KC(p,m + 1, N2, [Nv]2) for

[Nv]2 ←
[

δv1(x) ... δvm(x) δZ(x)
VJ1y ... VJmy 0

]

2
∈ G

N2×(m+1)
2 . (7)

In Lemma 3, this change allows us to use the local extractability of FSSB2 to
extract [α̂v, β̂v]2(= [αv(x), β̂v]2) related to the QA-LINRES assumption.
We show that in Game4, either one can (1) break the quasi-adaptive σx-
strong soundness of BLS or (2) with probability 1/n, compute [β̂u, β̂w]1 and
[β̂v]2, where β̂u/y = UJz, β̂v/y = V Jz, and β̂w/y = WJz, and thus break
QA-LINRES. (Here, we need FSSBι to be locally [·]ι-extractable.)

See Fig. 4 for the formal description of all games.

Game1 and Game2 are clearly indistinguishable.

Lemma 1. There exist a PPT adversary B1, such that |Pr[Game3(A) = 1] −
Pr[Game2(A) = 1]| ≤ AdvfshFSSB1,m+2,N1,B1

(λ).
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Game1 / Game2 / Game3 / Game4

p Pgen(1λ); (p); // Non-adaptive NIZK soundness adversary A (no lpar)

J $ [1, n]; (crs, td) Kcrs(p);π

A

A(crs);

if V(crs, , π) = 1 ∧ ¬(∃ .R( , ) = 1) then return 1; else return 0;fi ;

Kcrs(p)

Nu $Z
N1×(m+1)
p ; ([gu]1, tdu) FSSB1.KC(p,m + 2, N1, [Nu]1);

Choose [Nu]1 as in Eq. (6); ([gu]1, tdu) FSSB1.KC(p,m + 2, N1, [Nu]1);

Nv $Z
N2×(m+1)
p ; ([gv]2, tdv) FSSB2.KC(p, m + 1, N2, [Nv ]2);

Choose [Nv]2 as in Eq. (7); ([gv ]2, tdv) FSSB2.KC(p, m + 1, N2, [Nv]2);
x $Z

∗
p; Create BLS.lpar [H]∗ as in Eq. (4);

(BLS.crs,BLS.td) BLS.Kcrs(p,BLS.lpar);
crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs); td BLS.td;
return (crs, td);

Fig. 4. Games in the proof of Theorem 3. Dotted boxed part is only in Game2,
dashed boxed part is only in Game3, and boxed part is only in Game4. The parts
with several boxes are present in all corresponding games.

Proof. If A’s success in the two games differs then one can distinguish between
two different [gu]1’s: the distinguisher B1 obtains x from A(p), creates crs from
the correct Game2 or Game3 distribution but embedding [gu]1 to it, and then
obtains π from A. If A succeeds, then B1 guesses that [gu]1 was modified. Clearly,
B1 has at least the same advantage as A. ��

The analysis of Lemma 2 is similar.

Lemma 2. There exist a PPT adversary B′
1, such that |Pr[Game4(A) = 1] −

Pr[Game3(A) = 1]| ≤ AdvfshFSSB2,m+1,N2,B′
1
(λ).

Finally, we bound the advantage of A in Game4.

Lemma 3. Assume FSSB1 is locally [·]1-extractable and FSSB2 is locally [·]2-
extractable. There exist PPT adversaries B2 and B3, such that

|Pr[Game4(A) = 1] ≤ Advσx−strsound
Pgen,BLS,B2

(λ) + n · Advqa-linresPgen,n,B3
(λ).

Proof. Let A be a non-adaptive soundness adversary in Game4. Let ev be
the event that Eq. (5) does not hold, that is, there does not exist BLS.w =
(z, ra, rb, rc, rsph, ru, rv), such that Eq. (5) (and the paragraph after it) holds.
Clearly,

Pr[Game4(A) = 1] ≤ Pr[Game4(A) = 1|ev] + Pr[Game4(A) = 1|ev].

First Reduction. We bound the first addend Pr[Game4(A) = 1|ev] by the advan-
tage of an adversary B2 against the quasi-adaptive σx-strong soundness (see
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B2(p,BLS.lpar = [H]∗, σx(BLS.ltrap) = x,BLS.crs) // QA σx-strong soundness

(p); // = ( 1, . . . , m0)

Nu $Z
N1×(m+1)
p ;Nv $Z

N2×(m+1)
p ; // Generate crs

([gu]1, tdu = (eku, tku)) FSSB1.KC(p, m + 2, N1, [Nu]1);
([gv]2, tdv = (ekv, tkv)) FSSB2.KC(p, m + 1, N2, [Nv]2);
Create BLS.lpar [H]∗ as in Eq. (4);
FANA.crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs);
π

A

A(FANA.crs); // π = ([a, c, c̃u, h(x)]1, [b, c̃v ]2,BLS.π)
BLS. ([ //a//c//c̃u]1//[b//c̃v]2);
return (BLS. ,BLS.π);

B3(p, ([xi]1, [xi]2)ni=0, [y]1, [y]2) // QA-LINRES

(p); // = ( 1, . . . , m0)

Nu $Z
N1×(m+1)
p ;Nv $Z

N2×(m+1)
p ; // Generate crs

([gu]1, tdu = (eku, tku)) FSSB1.KC(p, m + 2, N1, [Nu]1);
([gv]2, tdv = (ekv, tkv)) FSSB2.KC(p, m + 1, N2, [Nv]2);
Create BLS.lpar = [H]∗ as in Eq. (4);
BLS.crs BLS.Kcrs(p,BLS.lpar);
FANA.crs ([gu, (xi)ni=0]1, [gv, (xi)ni=0]2,BLS.lpar,BLS.crs);
π

A

A(FANA.crs); // π = ([a, c, c̃u, h(x)]1, [b, c̃v ]2,BLS.π)
[α̂u, β̂u, α̂w , β̂w]1 FSSB1.LExt(eku; [c̃u]1);

[α̂v, β̂v ]2 FSSB2.LExt(ekv; [c̃v]2);
[a ]1 [a]1 + m0

j=1 j [uj(x)]1;
if [β̂u]1 • [β̂v ]2 = [β̂w ]1 • [y]2 then return ⊥;
else return (J, [a , α̂u, β̂u, c, α̂w , β̂w, h(x)]1, [b, α̂v, β̂v ]2);fi ;

Fig. 5. The quasi-adaptive σx-strong soundness adversary B2 and the n-QA-LINRES
adversary B3 in Lemma 3. A is a non-adaptive soundness adversary in Game4.

page 15 for the definition) of BLS. In Fig. 5, we depict B2. B2 receives its input,
sampled according to the distribution specified by Game4. (The necessity to
have σx(ltrap) = x as part of the input is precisely why BLS needs to be quasi-
adaptively σx-strongly sound.) Given σx(ltrap) = x, B2 constructs the rest of
FANA.crs. Finally, B2 uses the output of A to break the quasi-adaptively σx-
strong soundness of BLS. Thus, Pr[Game4(A) = 1|ev] ≤ Advσx−strsound

Pgen,BLS,B2
(λ).

Notably, quasi-adaptive σx-strong soundness of BLS suffices since BLS.lpar is
a part of FANA.crs and thus honestly generated; moreover, σx is efficient.

Second Reduction. Assume ev = false. To bound the second addend
Pr[Game4(A) = 1|ev], we construct an adversary B3 (see Fig. 5) against the n-
QA-LINRES assumption. B3 queries A to obtain x. After that, B3 uses its input
to create FANA.crs according to the CRS distribution specified by the game
(Game3 or Game4). B3 sends FANA.crs to A, who outputs π. B3 uses the local
extractability of FSSB1 and FSSB2 to extract certain values and then finishes as
in Fig. 5, aborting when β̂uβ̂v �= β̂wy.
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Let us explain why B3 succeeds with probability at least 1/n. First, since
FSSB1 is locally [·]1-extractable and FSSB2 is locally [·]2-extractable, B3 can
extract [α̂u, β̂u, α̂w, β̂w]1 := [Nu (z//ra//rc)]1 ← FSSB1.LExt(eku; [c̃u]1) and
[α̂v, β̂v]2 := [Nv ( z

rb
)]2 ← FSSB2.LExt(ekv; [c̃v]2). (LExt is defined as in Fig. 1).

We will next show that if that B3 does not abort, then it succeeds in breaking
QA-LINRES. That is, the following conditions lifted from Definition 2 hold in
relation to the values output by B3:

(a) β̂uβ̂v �= β̂wy,
(b) a′ = α̂u · (x − ωJ−1) + β̂u/y, where a′ is as in Fig. 5 description of B3),
(c) b = α̂v · (x − ωJ−1) + β̂v/y,
(d) c = α̂w · (x − ωJ−1) + β̂w/y,
(e) a′b − c = h(x)Z(x).

Trivially, if B3 does not abort, then Item a holds. Since the FANA verifier accepts,
[a′]1 • [b]2 − [c]1 • [1]2 = [h(x)]1 • [Z(x)]2. Thus, Item e holds.

Next, since ev = false, there exists at least one BLS.w = (z =
( x
w ), ra, rb, rc, rsph, ru, rv), such that Eq. (5) holds. Fix any such BLS.w (it

does not have to be known to the reduction or even the one used by the
adversary). Due to Eqs. (6) and (7), α̂u =

∑m
j=1 zjδuj(x) + raδZ(x) and

β̂u = (
∑m

j=1 zjUJj)y = UJzy. The quotient of uj(X)/(X−ωJ−1) is δuj(X). Since
uj(X) =

∑n
i=1 Uij�i(X), the remainder of uj(X)/(X − ωJ−1) is UJj . Clearly,

Z(X) = δZ(X)(X − ωJ−1). Since Eq. (5) holds, a′ =
∑m

j=1 zjuj(x) + raZ(x) =
∑m

j=1 zj(δuj(x)(x − ωJ−1) +UJj) + raδZ(x)(x − ωJ−1) = α̂u · (x − ωJ−1) + β̂u/y.
Thus, Item b holds. Similarly, Item c and d hold. Hence, if B3 does not abort,
then all five conditions hold.

Finally, we need to argue that B3 does not abort with a probability of at least
1/n. Since ev = false, we have that BLS.w starts with w. Thus, according to Eq.
(1), for A to be successful, there must exist an i such that (Uz)i(V z)i �= (Wz)i.
Since J is chosen uniformly at random and the non-adaptive soundness adversary
A chooses the input before seeing crs, with probability ≥ 1/n, the Jth constraint
is not satisfied. Thus, with probability ≥ 1/n, A(X)B(X)−C(X) does not divide
by X−ωJ−1, where A,B,C are defined as always. Then, β := A(X)B(X)−C(X)
mod (X−ωJ−1) is non-zero. However, β = (UJz)(V Jz)−WJz = β̂uβ̂v/y2−β̂w/y
and thus B3 does not abort with probability ≥ 1/n. Thus, Item a holds with
probability ≥ 1/n.

Since (1) if B3 does not abort, then all five conditions hold, and (2) B3 does
not abort with probability ≥ 1/n, Pr[Game4(A) = 1|ev] ≤ n · Advqa-linresPgen,n,B3

(λ). ��
Combining the lemmas proves the theorem. ��

5.3 Adaptive Knowledge-Soundness of FANA

Theorem 4. Assume the setting of Theorem 3. If FANA is non-adaptively sound
and BLS is adaptively knowledge-sound, then FANA is non-adaptively knowledge-
sound.
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Abstract. We present a generalized inner product argument and
demonstrate its applications to pairing-based languages. We apply our
generalized argument to prove that an inner pairing product is correctly
evaluated with respect to committed vectors of n source group elements.
With a structured reference string (SRS), we achieve a logarithmic-time
verifier whose work is dominated by 6 log n target group exponentiations.
Proofs are of size 6 log n target group elements, computed using 6n pair-
ings and 4n exponentiations in each source group.

We apply our inner product arguments to build the first polyno-
mial commitment scheme with succinct (logarithmic) verification, O(

√
d)

prover complexity for degree d polynomials (not including the cost to
evaluate the polynomial), and a SRS of size O(

√
d). Concretely, this

means that for d = 228, producing an evaluation proof in our protocol is
76× faster than doing so in the KZG commitment scheme, and the CRS
in our protocol is 1000× smaller: 13 MB vs 13 GB for KZG.

As a second application, we introduce an argument for aggregating n
Groth16 zkSNARKs into an O(log n) sized proof. Our protocol is signif-
icantly faster (>1000×) than aggregating SNARKs via recursive com-
position: we aggregate ∼130, 000 proofs in 25 min, versus 90 proofs via
recursive composition. Finally, we further apply our aggregation protocol
to construct a low-memory SNARK for machine computations that does
not rely on recursive composition. For a computation that requires time
T and space S, our SNARK produces proofs in space Õ(S + T ), which
is significantly more space efficient than a monolithic SNARK, which
requires space Õ(S · T ).

1 Introduction

An inner product argument proves that an inner product relation holds between
committed vectors. In this work, we present a new construction of inner product
arguments for pairing-based languages that yields a logarithmic time verifier—a
significant improvement over the linear time verifier of previous work. We use
our new inner product argument to build (1) a new polynomial commitment
c© International Association for Cryptologic Research 2021
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scheme that achieves novel asymptotic characteristics of succinct verification
and opening proofs that can be computed in time square root of the polynomial
degree as well as a square root sized SRS; and (2) a new approach for aggregation
of Groth16 general-purpose SNARKs [Gro16] useful for verifiable computation,
avoiding the expensive costs of recursive proving circuits. We provide an open-
source Rust implementation of all our protocols and applications and benchmark
them against the state of the art. Our benchmarks show that the asymptotic
improvements translate to significant practical gains.

Inner Product Arguments. Inner product arguments (IPA) are core com-
ponents of many primitives, including zero-knowledge proofs and polynomial
and vector commitment schemes [Boo+16,Bün+18,Wah+18,LMR19,BGH19,
Bün+20]. Despite the fact that the inner product arguments constructed in these
works largely share the same core strategy as the original protocol in [Boo+16],
they all spend significant effort in reproving security to accommodate for minor
changes (introduced for efficiency and/or application-specific purposes). This
repeated effort adds significant overhead in the process of auditing the security
of inner product arguments, and enables errors to slip through unnoticed. Our
first contribution is an abstraction of previous work into a generalized inner
product argument (GIPA). While the techniques in GIPA are not novel, they do
provide a unified view of all prior work, enabling simpler exposition and simpler
security proofs. In particular, this means that our single security proof suffices to
prove the security of all prior GIPA instantiations [Boo+16,Bün+18,LMR19],
as well as the protocols introduced in this paper.

We additionally prove security for the non-interactive variant of GIPA in a
generalization of the algebraic group model [FKL18], which we dub the algebraic
commitment model. Because GIPA is a public-coin protocol, it can be trans-
formed to a non-interactive argument using the Fiat–Shamir heuristic, and it
is this variant that is used in applications—non-interactive Bulletproofs secures
almost 2 billion USD of Monero [O’L18]. However, due to a technicality about
modeling random oracles in recursive arguments (the generic transformation
leads to a super-polynomial extractor), prior works provided no satisfactory
security proof for these non-interactive variants. Our security proof remedies
this oversight, and we envisage that our techniques may be useful in proving the
security of other non-interactive and recursive protocols [BFS20].

Reducing Verification Cost. Making use of the high level GIPA blueprint,
our second contribution is a protocol for reducing the verifier cost for specific
inner product arguments over pairing-based languages. For a committed vector
length of n, we reduce the verifier cost from O(n) for existing protocols [LMR19],
to O(log n), which is an exponential improvement. To do this, we introduce
a new pairing-based commitment scheme with structured keys and prove its
security. We then exploit a special structure of the “homomorphic collapsing”
execution of GIPA (first observed in [BGH19]) with our commitment scheme. In
particular, the outsourced computation is reduced to opening a KZG polynomial
commitment scheme. We rely on a trusted setup that is updatable [Gro+18] and
can be used for languages of different sizes (up to some maximum bound specified
by the SRS).
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Equipped with our new logarithmic-time verifier for inner products over
pairing-based languages, we next turn to apply our techniques to two appli-
cations: (1) polynomial commitments, and (2) SNARK aggregation.

Polynomial Commitments. Polynomial commitment (PC) schemes [KZG10]
are commitment schemes specialized to work with polynomials. A committer
outputs a short commitment to a polynomial, and then later may convince a
verifier of correctness of an evaluation of that committed polynomial at any
point via a short evaluation proof, or “opening”. PC schemes have been used
to reduce communication and computation costs in a vast breadth of applica-
tions including proofs of storage and replication [Xu+16,Fis18], anonymous cre-
dentials [Cam+15,FHS19], verifiable secret sharing [KZG10,BDK13], and zero-
knowledge arguments [Wah+18,Mal+19,Set20,GWC19,Xie+19,Chi+20].

In this work, we use a combination of inner product arguments in order to
build a pairing-based polynomial commitment scheme that requires a universal
structured reference string of size only

√
d when committing to degree d polyno-

mials, and where proving an evaluation claim only requires O(
√

d) cryptographic
operations (i.e., group/pairing operations not including scalar computation). We
achieve this while maintaining constant-sized commitments, O(log d)-sized eval-
uation proofs, and O(log d) verifier time.

This compares to a linear sized CRS for the widely used KZG [KZG10]
commitment scheme. Concretely, this means that for polynomial of degree 222,
KZG requires a large SRS of size ∼400 MB. This can cause deployment hurdles
in applications in decentralized systems, as this SRS needs to be stored by every
prover. For example, in SNARKs relying on polynomial commitments [GWC19,
Chi+20], the degree of the polynomial is roughly the size of the circuit, which
can be large [Ben+14c,Wu+18]. A large SRS also has a non-trivial impact on
security [GGW18]. In contrast, the SRS of our protocol has size 3MB, which is
over 130× smaller, making deployment much easier.

Furthermore, as noted above, computing an evaluation proof requires only
O(

√
d) cryptographic operations, which is much better than KZG, which requires

O(d) cryptographic operations. This is important for applications such as vector
commitments [LY10] and proofs of space [Fis19], where a polynomial is commit-
ted to just once, but the commitment is opened at many different evaluation
points.

SNARK Aggregation. A SNARK aggregation protocol takes as input many
SNARK proofs and outputs a single aggregated proof that can be verified more
quickly than individually verifying each SNARK. This is useful for applications
where the batch of proofs will be verified many times by different clients. For
example, this is the case in applications that aim to improve the scalability of
decentralized blockchains by using SNARKs to prove the correctness of state
transitions [Whi,Bon+20].

We use our inner product arguments to design an aggregation protocol for
Groth16 [Gro16] SNARKs that enjoys the following efficiency properties when
aggregating n proofs: (a) aggregation requires O(n) cryptographic operations,
(b) the aggregated proof has size O(log n), and (c) verification requires O(log n)
cryptographic operations, and O(n) field operations.
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Our protocol offers asymptotic and concrete improvements over prior
approaches that aggregate proofs via recursive composition. In more detail, these
approaches create (another) SNARK for the circuit that contains n copies of the
Groth16 verifier circuit [Ben+14a,Bow+20]. This entails constructing arithmetic
circuits for computing pairings, which is expensive (for example, computing a
pairing on the BLS12-377 curve requires ∼15, 000 constraints [Bow+20]). In con-
trast, our protocol “natively” works with pairing-based languages. This results in
the following efficiency savings: (a) our protocol does not have to reason about
arithmetic circuits for computing pairings, (b) our protocol does not have to
compute FFTs, which require time O(n log n), and (c) our protocol does not
require special cycles or chains of curves [Ben+14a,Bow+20].

Put together, these savings allow us to aggregate proofs over ∼ 1400× faster
than the recursive approach. Furthermore, our protocol requires the verifier to
only perform O(n) field operations, as opposed to O(n) cryptographic operations
for the recursive approach.

Low-Memory SNARKs for Machine Computations. We leverage our
aggregation protocol to construct a low-memory SNARK for (non-deterministic)
machine computations. In more detail, if for a machine M , checking an execu-
tion transcript requires space S and time T , then our SNARK prover takes
space Õ(S + T ) to produce a proof for that execution. In comparison, con-
structing a monolithic proof for the entire computation at once requires space
Õ(S ·T ), whereas the only other solution for constructing low-memory SNARKs
for machine computations requires recursive composition of proofs [Bit+13],
which is concretely expensive.

Summary of Contributions

• We provide a unifying generalization of inner product arguments, identifying
and formalizing the appropriate doubly-homomorphic commitment property.

• We prove security of the non-interactive Fiat-Shamir transform of this pro-
tocol, implying security for the entire family of protocols.

• We provide a new set of inner product arguments for pairing-based languages
that improve verifier efficiency from linear to logarithmic by introducing a
trusted structured setup.

• We construct a new polynomial commitment scheme with constant-sized com-
mitments, opening time square root in the degree and square root sized CRS.
The opening verifier runs in logarithmic time and opening proofs are loga-
rithmic in size.

• We design an aggregator for Groth16 [Gro16] pairing-based SNARKs that
produces an aggregated proof of logarithmic size. We apply our aggregator to
construct a low-memory SNARK for machine computations without relying
on recursive composition.

• We implement a set of Rust libraries that realize our inner product argument
protocols and applications from modular and generic components. We evalu-
ate our implementation, and find that our PC scheme is over 14× faster to
open than a KZG commitment [KZG10] for polynomials of degree 106, and
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Table 1. Efficiency comparisons for polynomial commitment schemes. All numbers are
given asymptotically. We use G1,G2,GT to represent groups in a bilinear map, P to
represent pairings, GU to represent groups of unknown order, and H to represent hash
functions. For simplicity we only specify the dominant costs e.g., if there are d G1 and
d G2 group exponentiations we simple write d G2. Column 5 is the expected size of one
commitment plus one opening proof at d = 220 over a BN256 curve.

Polynomial commitment Communication complexity Transparent
setup

Time complexity

CRS Commitments Openings d = 220 Commit Open Verify

Kate et al. [KZG10] d G1 1 G1 1 G1 96b no d G1 d G1 1 P,G1

Bulletproofs [Bün+18] d G1 1 G1 log(d) G1 1.3 KB yes d G1 d G1 d G1

Hyrax [Wah+18]
√

d G1
√

d G1 log(d) G1 33 KB yes d G1
√

d G1
√

d G1

DARKs [BFS20] d GU 1 GU log(d) GU 8.6 KB yes d GU d log(d) GU log(d) GU

Virgo [Zha+20] 1 1 H log(d)2 H 183 KB yes d log(d) H d log(d) H log(d)2 H

Groth [Gro11] 3
√

d G2
3
√

d GT
3
√

d G1 25 KB yes d G1
2
3
√

d G1
3
√

d P

This work
√

d G2 1 GT log(d) GT 2.5 KB no d G1
√

d P log(d)GT

that our aggregation scheme aggregates over 1400× faster than the alternative
2-chain approach.

Related Work. Lai, Malavolta, and Ronge [LMR19] introduced an inner prod-
uct argument for pairing based languages. Their scheme runs over a transparent
setup and is secure under the SXDH assumption. Their work improves on Groth
and Sahai Proofs [GS08] which are a method to prove pairing-based languages
under zero-knowledge without reducing to NP. Their proving costs are domi-
nated by a linear number of pairings, their proof sizes are logarithmic and their
verifier running costs are dominated by a linear number of group exponentia-
tions. Our pairing based IPA’s have much lower verification costs but we use a
trusted setup. Our generalized IPA argument can be used to greatly simplify the
security proofs for their Theorems 3.2, 4.1, 4.2 and 4.3, and we prove security of
a non-interactive variant in the algebraic commitment model.

In Table 1, we compare the efficiency of various polynomial commitment
schemes. [KZG10] introduced a pairing based polynomial commitment scheme
with constant sized proofs. Their scheme is secure under an updatable setup in
the algebraic group model. Groth [Gro11] designed a pairing based “batch prod-
uct argument” secure under SXDH. This argument that can be seen as a form
of polynomial commitment scheme and our two-tiered polynomial commitment
techniques were inspired by this work. Under discrete-logarithm assumptions,
Bayer and Groth designed a zero-knowledge proving system to show that a com-
mitted value is the correct evaluation of a known polynomial [BG13]. Both the
prover and verifier need only compute a logarithmic number of group exponenti-
ations, however verifier costs are linear in the degree of the polynomial. Wahby
et al. proved that it is possible to use the inner product argument of Bullet-
proofs [Bün+18] to build a polynomial commitment scheme [Wah+18]. Bowe
et al. [BGH19] argued that the inner product argument of Bulletproofs is also
highly aggregatable, to the point where aggregated proofs can be verified using
a one off linear cost and an additional logarithmic factor per proof. Attema
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and Cramer [AC20] recently provided an orthogonal generalization of the inner
product argument. They show that the inner product argument can be seen as
a black box compression mechanism for sigma protocols and show that it can be
used as a proof system for secret shared data.

Polynomial commitment schemes have also been constructed using Reed-
Solomon codes [Zha+20]. These commitments use highly efficient symmetric
key primitives, however the protocols that use them require soundness boosting
techniques that result in large constant overheads. Bünz et al. [BFS20] designed
a polynomial commitment scheme in groups of unknown order such as RSA
groups or class groups with efficient verifier time and small proof sizes. How-
ever, it requires super-linear commitment and prover time. Asymptotically, our
scheme positions itself competitively among state-of-the-art PCs (see Table 1).
In terms of concrete efficiency, the trusted setup scheme of Kate et al. [KZG10]
allows for constant proof sizes and verifier time (versus our logarithmic results),
whereas our protocol offers quadratic improvements to opening efficiency and
the maximum degree polynomial supported by a SRS of a given size.

Prior aggregatable SNARKs have relied on efficiently expressing SNARK ver-
ifiers as as arithmetic circuits [Ben+14b,Ben+13b]. For pairing based SNARKs
this was achieved through the use of pairing-friendly cycles [Ben+14a] or two-
chains [Bow+20]. Known cycles and two-chains for the 128-bit security level
require roughly 768-bit curves, which are ∼10× more expensive than the roughly
384-bit curves used when recursion is not necessary. Bowe et al. introduce a novel
approach to recursive SNARKs that works with cycles of standard (non-pairing)
curves [BGH19]. Bünz et al. [Bün+20] generalize and formalize this approach.
Chiesa et al. build a post-quantum recursive SNARK [COS20]. For all of these
approaches we expect to significantly improve on prover time because we do not
rely on expensive NP reductions.

Subsequent Work. Prior (full) versions of this work included an additional
polynomial commitment construction based on GIPA that only requires an
unstructured reference string. In this construction, the prover computes O(

√
d)

pairings and exponentiations, the opening proof consists of O(log(d)) group ele-
ments, and the verifier performs O(

√
d) exponentiations for degree d univari-

ate polynomials. Recent subsequent work [Lee20] introduced a new PC scheme
(called Dory) that builds on, and improves upon, our unstructured-setup con-
struction. The key improvement is that the verifier time of this scheme is
O(log d), which is achieved by cleverly switching the commitment key in every
round of the GIPA protocol and folding the old commitment key into the com-
mitted vector. This is possible when GIPA is instantiated with a bilinear group
as the key space of the commitment to one vector is the message space of the
commitment to the other vector, and vice versa. It is therefore possible to com-
bine keys and messages homomorphically. However, log-verification costs of Dory
are concretely more costly than our log-verification structured-setup PC scheme
(≈ 6×): at d = 220, Dory’s opening proofs are 18KB and computed in 6 s, while
our scheme has proofs of size 2.5 KB computed in 1 s.
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Further subsequent works have applied our inner product arguments to
aggregate vector commitment opening proofs [Sri+21], construct incrementally-
verifiable computation without recursion [Tya+21], and aggregate SNARKs in
blockchain settings using existing trusted setups [GMN21].

2 Technical Overview

2.1 Generalized Inner Product Argument

The first contribution of our paper is a generalized inner product argument
we denote GIPA. At a high level, our protocol generalizes the protocols of
[Boo+16,Bün+18] as follows. The protocols of [Boo+16,Bün+18] enable proving
the correctness of inner products of scalar vectors committed via the Pedersen
commitment scheme [Ped92]. Our protocol generalizes their techniques to enable
proving the correct computation of a large class of inner products between vec-
tors of group and/or field elements committed to using (possibly distinct) doubly
homomorphic commitments. We explain in more detail below.

Starting Point: Inner Product Arguments. The inner product argument
(IPA) by [Boo+16] enables a prover to convince a verifier that two commit-
ted vectors (using Pedersen vector commitments) have a publicly known inner
product. It does this by elegantly rescaling the committed vectors to half their
size in each round. In each round the verifier sends a random challenge, which
the prover uses to take a linear combination of the right and left half of the
committed vectors, and they both rescale the commitment keys accordingly.

After log2 m such reduction step the prover simply opens the commitment
and the verifier checks that the product relation holds. In Bulletproofs [Bün+18]
the authors improve on the IPA by committing to the two vectors and the scalar
in a single commitment, while maintaining the halving structure of the argument.
This enables sending just two commitments per round.

We observe that the same argument structure works for a much wider class
of commitment schemes. In particular we require only that the commitment
scheme is binding and has the homomorphic properties that enable the rescaling
step. This property is that the commitment scheme is doubly homomorphic, i.e.,
homomorphic over the messages and the commitment keys.

Doubly Homomorphic Commitments. At a high level, a doubly homo-
morphic commitment scheme is a binding commitment scheme (Setup,CM)
where the key space K, message space M, and commitment space C form
abelian groups of the same size such that CM((ck1 + ck2); (M1 + M2)) =
CM(ck1,M1) + CM(ck1;M2) + CM(ck2,M1) + CM(ck2,M2) .

The Pedersen commitment CM(g,a) → ∏
i gai

i is the doubly homomorphic
commitment used in Bulletproofs. Lai, Malavolta, and Ronge [LMR19] used
a doubly homomorphic commitment for bilinear groups where the committed
vectors consist of group elements in a bilinear group: CM(v,v′,w,w′;A,B) →∏

i e(vi, Ai)e(Bi, wi),
∏

i e(v′
i, Ai)e(Bi, w

′
i) .
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In some of our protocols the verifier already has access to one of the commit-
ted vectors. For instance, in the polynomial commitment scheme the verifier can
simply compute the vector consisting of the monomials of the evaluation point.
Such protocols are also captured by our abstraction since the identity commit-
ment is doubly homomorphic. In the actual protocols, the prover doesn’t send
any scalings of these vectors, and the verifier simply computes them directly.

Inner Products. Building on our generalization of commitment schemes that
work for inner product arguments, GIPA also generalizes the types of inner prod-
ucts that can be proven between committed vectors. It can be used not only to
show inner products between field elements, but for arbitrary inner product maps
〈·, ·〉 that are bilinear, i.e., for which 〈a+b, c+d〉 = 〈a, c〉+〈a,d〉+〈b, c〉+〈b,d〉
. It immediately follows our generalized argument works for bilinear pairings. We
apply GIPA to three different inner products:

〈·, ·〉 : Gm
1 × G

m
2 �→ GT , 〈A,B〉 =

∏m−1
i=0 e(Ai, Bi)

〈·, ·〉 : Gm
1 × F

m �→ G1, 〈A, b〉 =
∏m−1

i=0 Abi
i

〈·, ·〉 : Fm × F
m �→ F, 〈a, b〉 =

∑m−1
i=0 aibi

We refer to the first inner product as the inner pairing product.

Security Proof. We prove both the interactive and the non-interactive vari-
ant of GIPA to be knowledge-sound. The interactive security proof shows
the (k1, . . . , kr)-special soundness of GIPA protocols, which implies knowledge-
soundness via a recent result of Attema and Cramer [AC20] (previous interac-
tive security proofs showed only witness-extended emulation). In particular, we
reduce the security of any GIPA instantiation to the binding of its commitment
scheme.

We also prove knowledge-soundness of the non-interactive version of GIPA
given by the Fiat-Shamir transform. It is known from folklore that applying the
Fiat-Shamir transformation to a r-round interactive argument of knowledge with
negligible soundness error yields a non-interactive argument of knowledge in the
random oracle model where the extractor E runs in time O(tr) for an adversary
that performs at most t = poly(λ) random oracle queries. GIPA has log m rounds
for m = poly(λ) so this transformation yields a super-polynomial extractor.
Given this, we directly prove the security of the non-interactive argument in
the algebraic commitment model, a generalization of the algebraic group model
[FKL18] for doubly-homomorphic commitments. In essence, whenever the prover
outputs a commitment he must also give an opening to it with respect to some
linear combination of commitment keys; the commitment schemes we consider
can be shown to achieve this model in their own respective algebraic group
models. Our security proof yields an efficient linear-time extractor and negligible
knowledge-soundness. Given the generality of GIPA this also yields the first tight
security analysis of non-interactive Bulletproofs [Boo+16,Bün+18] and the many
related protocols [LMR19,BGH19,Bün+20].

TIPP and MIPP. Generically GIPA protocols have logarithmic communication
but linear verifier time as computing the final commitment key takes a linear
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number of operations. We introduce TIPP, a logarithmic verifier variant for the
inner pairing product and MIPP for the multi-exponentiation inner product.1

These schemes use universal and updatable structured references string as com-
mitment keys. Their commitments are based on that of Abe et al. [Abe+16],
where given a commitment key (v0, v1) ∈ G2 the commitment to (A0, A1) ∈ G

2
1

is given by e(A0, v0)e(A1, v1), and the KZG polynomial commitment [KZG10].
Instead of the verifier having to compute the verification key itself, we lever-

age a recent insight by Bowe, Grigg, and Hopwood [BGH19]. The final com-
mitment key in GIPA can be viewed as a polynomial commitment to a degree
m polynomial that can be verified in log m time. Using the structured setup
we can outsource computing the commitment key to the prover. The verifier
simply verifies that the commitment key was computed correctly. This amounts
to evaluating the polynomial at a random point and checking a KZG [KZG10]
polynomial commitment proof.

2.2 Applications

We show how to use instantiations of our generalized inner product argument to
obtain interesting applications: a polynomial commitment scheme where com-
puting evaluation proofs for polynomials of degree d requires only O(

√
d) crypto-

graphic operations, and a protocol for aggregating n Groth16 SNARKs [Gro16]
to produce an aggregate proof of size O(log n) and verifiable in time O(log n).

Polynomial Commitment Following Groth [Gro11] we use two-tiered homo-
morphic commitments: i.e. commitments to commitments. Suppose we wish to
commit to a polynomial

f(X,Y ) = f0(Y ) + f1(Y )X + . . . + fm−1(Y )Xm−1 =
∑m−1

i=0 fi(Y )Xi.

We can view this polynomial in matrix form

f(X, Y ) = (1, X, X2, . . . , Xm−1)

⎛
⎜⎜⎜⎜⎜⎝

a0,0 a0,1 a0,2 . . . a0,�−1

a1,0 a1,1 a1,2 . . . a1,�−1

a2,0 a2,1 a2,2 . . . a2,�−1
...

. . .
...

am−1,0 am−1,1 am−1,2 . . . am−1,�−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
Y
Y 2

. . .

Y �−1

⎞
⎟⎟⎟⎟⎠

One first computes commitments A0, . . . , Am−1 to f0(Y ), . . . , fm−1(Y ). Next one
commits to the commitments A0, . . . , Am−1.

On receiving an opening challenge (x, y) the prover evaluates the first tier at x
to obtain a commitment A to f(x, Y ). This is done using MIPP. The prover then
opens the second tier commitment A at y in order to obtain ν = f(x, y). This is

1 We actually introduce two variants of MIPP: MIPPu, where both the vectors are
committed, and MIPPk where the verifier already knows the exponent, but it’s of a
structured form.
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done using a KZG univariate polynomial commitment scheme [KZG10]. To apply
our prover efficient polynomial commitment scheme to univariate polynomials,
commit to f(X,Xn) and open at (x, xn).

Note that for m ≈ � ≈ √
d both the MIPP and the KZG commitment are

only of square root size. This results in a square root reference string. In order
to achieve square root prover time (in addition to evaluating the polynomial)
the prover needs to store the A0, . . . , Am−1 when committing to the polynomial.
Using these values the resulting MIPP can be opened in O(m) = O(

√
d) time.

SNARK Aggregation and Proofs of Machine Computation Pairing-
based SNARKs such as Groth16 can be proven and verified using only algebraic
operations (e.g., field operations, group operations and pairings). This means
we can aggregate by applying TIPP to the Groth16 verifier equations, such that
whenever TIPP verifies the aggregator must have seen some verifying proof. In
particular, to aggregate n Groth 16 proofs {(Ai, Bi, Ci)}n

i=1 ∈ G1×G2×G1, one
first computes commitments to the Ai, Bi, Ci values. Then the aggregator com-
putes

∏n
i=1 e(Ai, Bi)r2i

and
∏n

i=1 Cr2i

i for some random value r and proves these
are correct using our pairing based arguments. Finally the verifier checks that
these values satisfy a randomized version of the Groth16 verifier equations. Over-
all the verifier only performs one field multiplication per instance and O(log(n))
cryptographic operations for the TIPP protocol.

Low-memory SNARKs for Machine Computation. We make use of the
SNARK aggregation protocol to build a low-memory SNARK that does not rely
on recursive computation. Our approach proceeds by producing an individual
Groth16 proof for each machine step and aggregating these individual proofs.
The key observation is that due to the structure of the intermediate computation
state, i.e., the output of one computation step becomes the input to the next, we
can speed up the verifier’s work from linear in the number of computation steps
to logarithmic with an additional inner product commitment to the intermediate
states. See Sect. 8 for details.

2.3 Implementation

We implement a set of Rust libraries that realize our inner product argument
protocols and applications. Our libraries consists of a number of modular and
generic components: (a) a generic interface for inner products, and instantia-
tions for scalar products, multi-scalar multiplication, and pairing products; (b)
a generic interface for doubly-homomorphic commitments, with instantiations
for Pedersen commitments, the commitments of [Abe+16], and trivial identity
commitments; (c) a generic implementation of GIPA that relies on the above
interfaces, and instantiations for the various concrete inner products and corre-
sponding commitments; and (d) implementations of our polynomial commitment
scheme and our aggregation scheme for Groth16 proofs. See Sects. 6 and 7 for
evaluation details.
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3 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]ni=1 as a short-hand for
the vector (a1, . . . , an), and [ai]ni=1 = [[ai,j ]mj=1]

n
i=1 as a short-hand for the vector

(a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes the number of entries in a. We
analogously define {ai}n

i=1 with respect to sets instead of vectors. If x is a binary

string then |x| denotes its bit length. For a finite set S, let x
$←− S denote that x

is an element sampled uniformly at random from S. We also write x
$←− A() to

denote when an algorithm A samples and uses randomness in the computation
of x.

Inner Pairing Product Notation. We introduce some special notation related
to our inner pairing product argument, some of which is borrowed from the Ped-
ersen inner product introduced in [Bün+18]. We write group operations as multi-
plication. For a scalar x ∈ F and vector A ∈ G

n, we let Ax = (Ax
1 , . . . , Ax

n) ∈ G
n,

and for a vector x = (x0, . . . , xm−1) ∈ F
n we let Ax = (Ax0

0 , . . . , A
xm−1
m−1 ).

For a bilinear group (G1,G2,GT , q, g, h, e) and pair of source group vectors
A ∈ G

n
1 , B ∈ G

n
2 we define A∗B =

∏n
i=1 e(Ai, Bi). For two vectors A,A′ ∈ G

n

we let A ◦ A′ = (A0A
′
0, . . . , Am−1A

′
m−1).

Let A‖A′ = (A0, . . . , An−1, A
′
0, . . . , A

′
m−1) be the concatenation of two vec-

tors A ∈ G
n and A′ ∈ G

m. To denote slices of vectors given A ∈ G
n
· and 0 ≤ � <

n − 1 we write A[:�] = (A0, . . . , A�−1) ∈ G
� and A[�:] = (A�, . . . , An−1) ∈ G

n−�.

Languages and Relations. We write {(x) : p(x)} to describe a polynomial-
time language L ⊆ {0, 1}∗ decided by the polynomial-time predicate p(·). We
write {(x;w) : p(x,w)} to describe a NP relation R ⊆ {0, 1}∗ × {0, 1}∗ between
instances x and witnesses w decided by the polynomial-time predicate p(·, ·).
Security Notions. We denote by λ ∈ N a security parameter. When we state
that n ∈ N for some variable n, we implicitly assume that n = poly(λ). We denote
by negl(λ) an unspecified function that is negligible in λ (namely, a function that
vanishes faster than the inverse of any polynomial in λ). When a function can
be expressed in the form 1 − negl(λ), we say that it is overwhelming in λ. When
we say that algorithm A is an efficient we mean that A is a family {Aλ}λ∈N of
non-uniform polynomial-size circuits. If the algorithm consists of multiple circuit
families A1, . . . ,An, then we write A = (A1, . . . ,An).

Arguments of Knowledge and Commitments. We use several standard
notions in this paper such as interactive arguments of knowledge and commit-
ments. For completeness, we include their definitions in the full version [Bün+19].

4 Generalized Inner Product Argument (GIPA)

We now generalize the inner product argument (IPA) from [Boo+16,Bün+18] to
work for all “doubly homomorphic” inner product commitments. The generalized
inner product argument (GIPA) protocol is described with respect to a doubly
homomorphic inner product commitment and an inner product map defined over
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Prove(〈group〉, ck = (ck1, ck2, ck3); (a, b)) Verify(〈group〉, ck, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ∈ M1, b ∈ M2 Return CM (ck; (a, b, a � b)) == C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Else m ≥ 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m
′ = m/2 m

′ = m/2

zL = 〈a[m′:], b[:m′]〉
zR = 〈a[:m′], b[m′:]〉
CL = CM(ck1, ck2, ck3; a[m′:]‖0, 0‖b[:m′], zL)

CR = CM(ck1, ck2, ck3; 0‖a[:m′], b[m′:]‖0, zR)

CL, CR ∈ Image(CM)

x ∈ Fp x
$

Fp

a
′ = a[:m′] + x · a[m′:]

b
′ = b[:m′] + x

−1 · b[m′:]

ck′
1 = ck1,[:m′] + x

−1 · ck1,[m′:] ck′
1 = ck1,[:m′] + x

−1 · ck1,[m′:]

ck′
2 = ck2,[:m′] + x · ck2,[m′:] ck′

2 = ck2,[:m′] + x · ck2,[m′:]

C
′ = Collapse(x · CL + C + x

−1 · CR)

Recurse on (〈group〉, (ck′
1, ck′

2, ck3), (a
′
, b

′)) Recurse on (〈group〉, (ck′
1, ck′

2, ck3), C
′)

Fig. 1. Generalized inner product argument. Cases are based on the length m of the
message (and correspondingly commitment key) vectors. Here, 0 is the vector contain-
ing m′ sequential group identity elements for the appropriate group.

its message space. All of the inner pairing product arguments in this paper as
well as the discrete-log inner product argument from [Boo+16,Bün+18] can be
described as instantiations of GIPA, sometimes with non-black-box optimizations
that do not work generally. The generalized version enables us to simplify the
proof of security of the specific instantiations presented in the rest of the paper
and provides a “compiler” that lets the reader plug in their own computationally
binding “inner product commitment” to obtain a new inner product argument
(of knowledge).

Protocol Intuition. The protocol works by reducing the instance from size m
to m/2 each round. As an intuition, we will show how to reduce an instance with
2 expensive mappings � to an instance with just a single �. Given a1, a2, b1, b2 a
prover wants to convince a verifier that (a1 � b1)+(a2 � b2) = c for an expensive
map �. To do this the prover sends cross terms l = a1 � b2 and r = a2 � b1. The
verifier then sends a challenge x. Note that for a′ = x·a1+a2 and b′ = x−1 ·b1+b2
we have that a′�b′ = x·l+c+x−1 ·r. Since the prover has to commit to the cross
terms l and r before knowing x, if x is uniformly sampled from a sufficiently large
space then checking this latter equation implies that c = (a1 � b1) + (a2 � b2)
with overwhelming probability.

GIPA extends this idea to work for committed vectors a1,a2, b1, b2. It
relies on doubly homomorphic commitments with a commitment key ck where
CM(ck,a) = CM(x−1 · ck, x · a).
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4.1 Doubly Homomorphic Commitments

We can apply GIPA over any commitment scheme which is “doubly-
homomorphic.” For example, consider the Pedersen commitment scheme:

Setup(1λ) → ck CM(ck,a) → c

Return (g1, . . . , gm) $←− G Return ga1
1 · · · gam

m

This scheme allows us to commit to elements in the message space M = F
m
p

under commitment keys in the key space K = G
m for a group G of prime order

p. We denote the key space (i.e., the image of the setup algorithm) by K. The
commitment space is additively homomorphic because for all a, b ∈ M and
g ∈ K we have that ga · gb = ga+b . The key space is also homomorphic because
for all g,w ∈ K and a ∈ M we have that ga ·wa = (g ◦w)a . Thus, we consider
the Pedersen commitment scheme to be doubly-homomorphic (i.e., homomorphic
in both the commitment space and the key space).

Definition 1 (Doubly homomorphic commitment scheme). A commit-
ment scheme (Setup,CM) is doubly homomorphic if (K,+), (M,+) and (Image(
CM), +) define abelian groups such that for all ck, ck′ ∈ K and M,M ′ ∈ M it
holds that

1. CM(ck;M) + CM(ck;M ′) = CM(ck;M1 + M ′)
2. CM(ck;M) + CM(ck′;M) = CM(ck + ck′;M)

Observe that if CM is doubly homomorphic then for all x ∈ Zp it holds that
CM(x · ck;M) = CM(ck;x · M).

4.2 Inner Product

We consider inner products as bilinear maps from two equal-dimension vector
spaces over two groups to a third group.

Definition 2 (Inner product map). A map � : M1 × M2 → M3 from two
groups of prime order p to a third group of order p is an inner product map if for
all a, b ∈ M1 and c, d ∈ M2 we have that

(a + b) � (c + d) = a � c + a � d + b � c + b � d

Given an inner product � between groups we define the inner product between
vector spaces 〈, 〉 : Mm

1 × Mm
2 → M3 to be 〈a, b〉 :=

∑m
i=1 ai � bi

We use three different inner products in this paper. For the Pedersen commit-
ment described above we have that � is multiplication between elements in Fp

and 〈, 〉 is the dot product. In TIPP we have that � : G1 × G2 → GT and
A � B = e(A,B). In this case we refer to the resulting protocols as inner pair-
ing product arguments. In MIPP we use the inner product � : G × F → G and
A � b = Ab, a multiexponentiation inner product.
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Inner Product Commitment. We further define an inner product commit-
ment which consists of a doubly homomorphic commitment with a message
space that is the Cartesian product of three message subspaces and an inner
product that maps the first two message subspaces to the third. For GIPA the
committed vectors and commitment keys halve in every round. If the commit-
ments are constant sized, we can add commitments of different length. If not,
we need to assume that the commitment key has a collapsing property such
that additions of commitments are still well defined: Concretely we require that
there exists a collapsing function Collapse to reduce the size of commitments
with repeated entries. For example consider a commitment scheme with com-
mitment key [g1, g2, g3, g4] ∈ G

4 that commits a message vector with repeated
entries, [a1, a2, a1, a2] ∈ F

4 as [ga1
1 , ga2

2 , ga1
3 , ga2

4 ]. Then, we can define a collaps-
ing function that outputs the shorter commitment [(g1g3)a1 , (g2g4)a2 ] under a
compressed commitment key [g1g3, g2g4] ∈ G

2.

Definition 3 (Inner product commitment). Let (Setup,CM) be a doubly
homomorphic commitment with message space M = Mm

1 × Mm
2 × M3 and key

space K = Km
1 × Km

2 × K3 defined for all m ∈ [2j ]j∈N, where |Mi| = |Ki| =
p is prime for i ∈ [3]. Let � : M1 × M2 → M3. We call ((Setup,CM),�)
an inner product commitment if there exists an efficient deterministic function
Collapse such that for all m ∈ [2j ]j∈N, M ∈ M, and ck, ck′ ∈ K such that
ck3 = ck′

3 it holds as

Collapse

⎛

⎝CM

⎛

⎝
ck1‖ck′

1

ck2‖ck′
2

ck3

∣
∣
∣
∣
∣
∣

M1‖M1

M2‖M2

M3

⎞

⎠

⎞

⎠ = CM

⎛

⎝
ck1 + ck′

1

ck2 + ck′
2

ck3

∣
∣
∣
∣
∣
∣

M1

M2

M3

⎞

⎠ .

We refer to the requirement above as the collapsing property.

Let ((Setup,CM),�) be a binding inner product commitment as defined above.
In Fig. 1 we present a generalized inner product argument defined for all
m ∈ [2j ]j∈N. We prove that this protocol is an argument (resp., proof) of knowl-
edge when instantiated with a computationally (resp., statistically) binding inner
product commitment. The proof of the following theorem is presented in the full
version [Bün+19].

Theorem 1 (GIPA knowledge-soundness). If ((Setup,CM),�) is a com-
putationally (resp., perfectly) binding inner product commitment, then (Setup,
Prove, Verify), where CM and � instantiate the Prove and Verify algorithms pre-
sented in Fig. 1, has perfect completeness and computational (resp., statistical)
knowledge-soundness for the relation

RIPA =
{(

ck ∈ Km
1 × Km

2 × K3 C ∈ Image(CM);a ∈ Mm
1 , b ∈ Mm

2

)
:

C = CM (ck; (a, b, 〈a, b〉))
}

.

Non-interactive Argument. In order to turn the public-coin interactive argu-
ment into a non-interactive proof we rely on the Fiat–Shamir heuristic. This
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results in all challenges being generated from a cryptographic hash function
instead of by a verifier. The proof for the following theorem is presented in the
full version [Bün+19].

Theorem 2. If ((Setup,CM),�) is a computationally (resp., perfectly) binding
inner product commitment then in the algebraic group model and modeling Hash
as a random oracle FS(GIPA) is a non-interactive argument of knowledge against
an efficient t-query adversary in the random oracle model.

Efficiency. Let m be a power of 2 and � = log2 m, the number of rounds in the
GIPA protocol. The prover communication consists of 2� commitments, 1 M1

element, and 1 M2 element. When the commitment scheme used is constant-
sized, an instantiation of GIPA produces log-size proof. The prover makes 2 com-
mitments to (m + 1)-element messages in the first round, 2 commitments to
(m/2+1)-element messages in the second, and 2 commitments to (m/2i−1 +1)-
element messages in the i-th. It holds that 2·∑�

i=1

(
m

2i−1 + 1
)

= 4m+2�−4 ≈ 4m.
So we say the prover commits to a total of 4m elements. Before computing these
commitments, however, the prover first must compute the zL and zR inner prod-
ucts, similarly requiring 2m invocations of � on 4m elements. Upon receiving
the 2 commitments sent each round, the verifier uses them along with the chal-
lenge xi it sampled that round to compute C ′, requiring 2� multiplications in
Image(CM).

The prover and verifier each compute ck′ in each round, requiring 2m multi-
plications in K. Some extensions of the GIPA protocol we’ll introduce later use
trusted setups to produced structured commitment keys. In these protocols, the
verifier doesn’t compute ck′ themself in each round, but instead is sent the final
rescaling ck ∈ K1 × K2 × K3 that can be seen as a polynomial commitment in
the verifiers challenges because of how the commitment key was structured. The
verifier asks for an opening at a random point, which they can check with a small
constant number of multiplications and pairings, and O(�) field operations. This
technique achieves a log-time verifier.

The prover alone computes a′ and b′, requiring m multiplications in each of
M1 and M2. In some instantiations of GIPA, one or both of the vectors in M1

and M2 are included in full in the public input (i.e., the commitment performs
the identity map on these inputs). In this case the verifier computes a′ and/or
b′ themself.

4.3 Instantiation

GIPA can be instantiated with different commitments and inner product maps.
In Bulletproofs [Bün+18] it is instantiated with the generalized Pedersen com-
mitment defined above, where K = G

m × G
m × G

m, M = F
m
p × F

m
p × Fp, and

� is the field addition operation. The reader can verify the commitment is a
binding, doubly-homomorphic commitment scheme if the DL assumption holds
for G.
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As a second example, in [LMR19] GIPA is instantiated for the inner pairing
product a � b ≡ e(a, b) using the public-coin setup commitment scheme

CM((v,w,1); (A,B,A ∗ B)) = (A ∗ v,w ∗ B,A ∗ B) .

Parts of the commitment may be computable directly from inputs to the veri-
fier. For efficiency reasons the prover would not have to transmit that part of
the commitment. We can formulate instantiations of GIPA for the inner pairing
product map and the identity commitment scheme, which is perfectly (and thus
statistically) binding.

An Improvement on [LMR19]. GIPA also directly yields an improvement to
the protocol presented in [LMR19] for proving knowledge of committed vectors
of source group elements such that their inner pairing product is a public target
group element. Replacing Lai et al.’s commitment scheme with [Abe+16] results
in a 2 times faster prover and verifier for the relation while retaining the same
proof size and assumptions.

5 Log-Time Verifier Inner Pairing Product Arguments

We present three inner product protocols that build on GIPA with the use of a
trusted setup. Informally, these protocols prove the following relations:

(1) TIPP: An inner pairing product argument that proves Z ∈ GT is the inner
pairing product between committed vectors A ∈ G

m
1 and B ∈ G

m
2 .

(2) MIPPu: An unknown-exponent multiexponentiation inner product argument
that proves U ∈ G1 is the multiexponentiation product between committed
vectors A ∈ G

m
1 and b ∈ F

m.
(3) MIPPk: A known-exponent multiexponentiation inner product argument

that proves U ∈ G1 is the multiexponentiation inner product between a
committed vector A ∈ G

m
1 and an uncommitted vector b = [bi]m−1

i=0 for
b ∈ F.

Our arguments achieve log-time verification by building on a recent obser-
vation about inner product arguments by Bowe, Grigg, and Hopwood [BGH19].
A specially structured commitment scheme allows the prover to send the final
commitment key and a succinct proof (as a KZG polynomial opening) of its cor-
rectness, which is verified via a log-time evaluation of the polynomial and two
pairings.

5.1 Inner Product Commitments with Structured Setup

We construct inner product commitments for our arguments that are structured-
key variants of the pairing-based commitment for group elements introduced
by Abe et al. in [Abe+16] and of the Pedersen commitment for field ele-
ments [Ped92]. The setup algorithms for the inner product arguments are input
a security parameter λ and a max instance size m ∈ {2n}n∈Z+ . A type 3 bilinear
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group description 〈group〉 ← SampleGrp3(1λ) is sampled. The structured setup

proceeds by sampling random trapdoor elements α, β
$←− F, and constructing the

prover and verifier keys (SRS) as follows for generators g ∈ G1 and h ∈ G2:

(〈group〉, pk = (
[
gαi

]2m−2

i=0
,
[
hβi

]2m−2

i=0
), vk = (gβ , hα)) $←− Setup(1λ,m)

The inner product commitment keys are derived by taking the even powers from

the prover SRS as w =
[
gα2i

]m−1

i=0
and v =

[
hβ2i

]m−1

i=0
. They are used as keys for

the following inner product commitments. Observe that the vector commitment
components of these inner product commitments are simply the structured-key
variants of [Abe+16] and [Ped92]. The inner product values U,Z and the known
vector b are committed to as the identity with keys initialized to 1.

(1) TIPP: CMTIPP((v,w, 1GT
); A,B, Z) := (A ∗ v,w ∗ B, Z)

(2) MIPPu: CMMIPP-u((v,w, 1GT
); A, b, U) := (A ∗ v,wb , U)

(3) MIPPk: CMMIPP-k((v,1F, 1GT
); A, b, U) := (A ∗ v, b, U)

It follows directly from the q-ASDBP assumption (see full version [Bün+19])
that these commitments are binding with respect to both the commitment key
and the proving SRS. Note that the commitment keys only use even powers of
trapdoor elements. This is to prevent an adversary from using (gβ , hα) to find
collisions in the commitment scheme—observe that e(g, hα) · e(gα, h−1) = 1GT

.
The proving SRS requires all powers in order to compute the succinct KZG
polynomial opening proofs for the final commitment keys. This is the reason for
our introduction of a new security assumption.

KZG Polynomial Commitments. As mentioned, we make use of the KZG
polynomial commitment scheme [KZG10] which commits to polynomials of some
max degree n. For polynomial f(X) =

∑n−1
i=0 aiX

i where a = [ai]n−1
i=0 , the com-

mitment is computed with an analogously-structured trapdoor commitment key

ck =
[
gαi

]n−1

i=0
as KZG.CM(〈group〉, ck,a) = cka .

To open a point (x, y) where y = f(x), KZG uses the polynomial remainder
theorem which says f(x) = y ⇔ ∃q(X) : f(X) − y = q(X)(X − x). The proof
is just a KZG commitment to the quotient polynomial q(X) where if q(X) has
coefficients b, then KZG.Open(〈group〉, ck,a, x) = ckb . The verifier key consists
of hα, and the verifier runs KZG.Verify(〈group〉, hα, C,W, x, y) for commitment
C and opening W and checks that e(Cg−yW x, h) = e(W,hα).

5.2 Final Commitment Keys

Recall in GIPA, the verifier is required to perform a logarithmic amount of work
to verify the final commitments CL and CR, using the challenges of each round of
recursion to transform the commitments homomorphically. Assuming the com-
mitments are of constant size this means that the verifier can efficiently check
that these values are correct. However, the verifier must also perform a linear
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Prove(〈group〉, f(X), g = [gαi

]2m−2
i=0 ) Verify(〈group〉, (f(X), hα))

w = KZG.CM(〈group〉, g, f(X)) w ∈ G1

z ∈ Fp z
$

Fp

π = KZG.Open(〈group〉, g, f(X), z) π ∈ G1 Return KZG.Verify(〈group〉, h
α

, w, π, f(z))

Fig. 2. The argument (of Rck) used to allow a prover to prove well-formedness of
the final structured commitment key. The final commitment key w is interpreted as a
KZG polynomial commitment that the prover must open at a random point. Shown
for w ∈ G1, but holds analogously for v ∈ G2.

amount of work in rescaling the commitment key ck. Thus to achieve logarithmic
verification time, when instantiating GIPA we need to avoid having the verifier
rescale the commitment keys. We do this by outsourcing the work of rescaling
the commitment keys to the prover.

The prover will compute the final commitment keys and then prove that
they are well-formed, i.e., that they are exactly what the verifier would have
computed in an unmodified instantiation of GIPA. Recall, we have structured

our commitment keys as w =
[
gα2i

]m−1

i=0
and v =

[
hβ2i

]m−1

i=0
. Without loss of

generality, we will present the approach inspired by techniques from [BGH19]
with respect to proving well-formedness of the final commitment key for w ∈ G1;
the techniques will apply analogously to v ∈ G2.

In each round of GIPA, the commitment key is homomorphically rescaled by
the round challenge x as:

w′ = w[:m/2] ◦ wx
[m/2:] =

[
gα2i(1+xαm+2i)

]m/2−1

i=0
.

Repeating this rescaling over � = log m recursive rounds with challenges
x = [xj ]�j=0, we claim (and show using an inductive argument in the full ver-
sion [Bün+19]) that the final commitment key w takes the form:

w = g
∏�

j=0

(
1+x�−jα2j+1)

.

We can then view this final commitment key w as a KZG polynomial commit-
ment to the polynomial fw(X) defined below (and analogously v as the commit-
ment to fv(X)):

fw(X) =
�∏

j=0

(
1 + x�−jX

2j+1
)

fv(X) =
�∏

j=0

(
1 + x−1

�−jX
2j+1

)

Thus, to prove the well-formedness of the final commitment keys, the prover
will prove the following relation Rck making direct use of the KZG polynomial
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opening proof. Again, without loss of generality, the relation is presented with
respect to the final commitment key w ∈ G1.

Rck =
{(

〈group〉, w ∈ G2, f(X), hα ; g = [gαi

]2m−2
i=0

)
: w = gf(α)

}

Our protocol for proving Rck is given in Fig. 2. At a high level, the verifier
produces a challenge point z ∈ F. If the prover can provide a valid KZG opening
proof of fw(z) for commitment w, then the verifier accepts. We formally prove
the security of this argument system in the full version [Bün+19] in the algebraic
group model.

5.3 TIPP: Inner Pairing Product

The TIPP protocol allows a prover to show that for T,U, Z ∈ GT , they know
A ∈ G1 and B ∈ G2 such that T and U are pairing commitments to A and B,
and Z is the inner pairing product Z = A ∗ B.

This description is not quite general enough to cover the needs of our applica-
tions, such as batch verification. For example, to check that m pairing equations
are simultaneously satisfied (i.e., that [Zi = e(Ai, Bi)]m−1

i=0 ), it is not sufficient to
prove that Πm−1

i=0 e(Ai, Bi) = Πm−1
i=0 Zi. Rather, instead you must prove the inner

pairing product of a random linear combination defined by verifier challenge
r ∈ F: Πm−1

i=0 e(Ai, Bi)ri

= Πm−1
i=0 Zri

i .
We support this by modifying the TIPP relation to include the linear combi-

nation challenge r. For notational simplicity, we will use powers of two (match-
ing that of our commitment keys) and define a public vector of field elements
r = [r2i]2m−2

i=0 . The prover first commits to T and U , and then the verifier send a
random field element r. Thus, the TIPP relation is captured formally as follows:

RTIPP =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
〈group〉, gβ ∈ G1, hα ∈ G2, T, U, Z ∈ GT , r ∈ F ;

w = [gα2i

]m−1
i=0 ,A ∈ G

m
1 , v = [hβ2i

]m−1
i=0 ,B ∈ G

m
2 ,

r = [r2i]m−1
i=0 ∈ F

m

⎞

⎠ :

T = A ∗ v ∧ U = w ∗ B ∧ Z = Ar ∗ B

⎫
⎪⎪⎬

⎪⎪⎭

.

Observe that if T = A ∗ v is a commitment to A, then T = Ar ∗ vr−1
is a

commitment to Ar under the commitment key vr−1
. Intuitively, the argument

proceeds by having the prover act as if it is working with a rescaled commitment
key v′ = vr−1

. TIPP runs the GIPA protocol with CMTIPP where the collapsing
function is defined as the identity, Collapseid(C) = C, over message (Ar ,B, Z =
Ar ∗ B) and commitment key (v′ = vr−1

,w, 1GT
). Since all components of the

commitment are compact, the identity collapsing function is sufficient.
Lastly, since the protocol is run over a rescaled commitment key v′, the poly-

nomial with which the prover proves the well-formedness of the final commitment
key is also rescaled. It is as follows (derived in the full version [Bün+19]):

f ′
v(X) =

�∏

j=0

(
1 + x−1

�−j(rX)2
j+1

)
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TIPP.Prove(〈group〉, pk = (
[
gαi

]2m−2

i=0
,
[
hβi

]2m−2

i=0
), (T, U, Z, r), (A,B,w,v, r))

TIPP.Verify(〈group〉, vk = (gβ , hα), (T, U, Z, r)) :
1. Prover rescales A and v with respect to linear combination challenge r:

A′ = Ar v′ = vr−1
.

Run GIPA:
2. Prover and verifier run GIPA with CMTIPP and Collapseid with some minor changes:

GIPACM-TIPP.Prove(〈group〉, (v′,w, 1GT ), (A
′,B)) GIPACM-TIPP.Verify(〈group〉, ·, (T, U, Z))

(a) The verifier does not take as input a commitment key, and does not perform commitment
key rescalings during GIPA execution. The verifier takes as output the final commitment C,
the final message values (A, B), and the recursive round challenges x = [xj ]

log m
j=0 .

(b) The prover stores the recursive round challenges x and the final commitment keys (v, w) =
(ck1, ck2).

(c) The prover sends the final commitment keys (v, w) to the verifier.

Prove well-formedness of final commitment keys:
3. Define the following polynomials for � = logm:

fw(X) =
�∏

j=0

(
1 + x�−jX

2j+1
)

f ′
v(X) =

�∏
j=0

(
1 + x−1

�−j(rX)2
j+1

)

4. Prover and verifier run the argument from Figure 2 for each final commitment key v and w:

CK.Prove(〈group〉, fw(X),
[
gαi

]2m−2

i=0
) CK.Verify(〈group〉, (w, fw(X), hα))

CK.Prove(〈group〉, f ′
v(X),

[
hβi

]2m−2

i=0
) CK.Verify(〈group〉, (v, f ′

v(X), gβ))

5. Verifier returns 1 if the above arguments accept and if CMTIPP((v, w, 1GT ); (A, B, e(A, B))) == C.

Fig. 3. TIPP argument of knowledge for inner pairing product between committed
vectors.

A full description of the protocol is given in Fig. 3. Because the protocol is public-
coin, we can transform the interactive argument into a non-interactive proof
using the Fiat-Shamir heuristic. In later sections, we may overload TIPP.Prove
and TIPP.Verify as their non-interactive counterparts in which the prover will
output a proof π that will be taken as an additional input by the verifier. This
will be the case for MIPPu and MIPPk as well.

Communication and Time Complexity. Table 2 gives an overview of the
communication and time complexity of our inner product protocols. Here we
provide accounting for TIPP. The prover SRS consists of 2m elements in G1

and 2m elements in G2. The SRS consists only of monomials and therefore is
updatable. The verifier’s SRS consists of the group description, 1 elements in G1

and 1 elements in G2.
We calculate the prover computation. Our recursive argument requires

log(m) rounds. The left and right commitments at each recursive round of GIPA
require a total of 6m pairings to compute: 3m in the first round, 3m

2 in the second
round, and 3m

2j−1 in the j-th round. Homomorphically rescaling the commitment
keys (v,w) and the messages (A,B) require a total of 2m exponentiations in
each source group. The prover for the final commitment key costs 2m group
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Table 2. Efficiency table for TIPP, MIPPk, and MIPPu. The verifier keys are succinct.

Communication complexity Time complexity

|SRS| |π| Prove Verify

TIPP 2m G1 + 2m G2 6 log m GT + 3 G1 + 3 G2 4m G1 + 4m G2 + 6m P 7 P + 6 log m GT

MIPPu m G1 + 2m G2 2 log m GT + 3 G1 + 2 G2 + 1 F 3m G1 + 3m G2 + 2m P 6 P + 2 log m GT

MIPPk 2m G2 2 log m GT + 1 G1 + 2 G2 m G1 + 3m G2 + 2m P 4 P + 2 log m GT + log m F

exponentiations in each source group (for each commitment key). In total this
sums to 6m pairings, 4m G1 exponentiations and 4m G2 exponentiations.

Regarding proof size, we have 6 log(m) GT elements from the recursive argu-
ment, 1 G1 element and 1 G2 element from the final openings, and 2 G1 elements
and 2 G2 elements from the final commitment key argument (i.e., w, v, and their
proofs of correctness).

The verifier computes 7 pairings: 3 from the recursive argument and 4 from
the final commitment key argument. Homomorphically rescaling the commit-
ments in the recursive argument requires 6 log(m) exponentiations in GT . The
verifier also computes f(z) in the final commitment key argument which costs
2� = 2 log2(m) field multiplications and additions.

Security. Here we prove soundness for TIPP in the algebraic group model.

Theorem 3 (Computational knowledge-soundness TIPP). The protocol
defined in Sect. 5.3 for the NP relation RTIPP has computational knowledge-
soundness against algebraic adversaries under the q-ASDBP and 2q-SDH
assumptions.

Proof. The commitment scheme CM((v′,w, 1), (A′,B, Z)) = (A′ ∗ v′, w ∗
B, Z) = (T,U, Z) is doubly homomorphic: the key space G

m
2 × G

m
1 × F is

homomorphic under G2 multiplication, G1 multiplication, and F addition. The
message space G

m
1 ×G

m
2 ×GT is homomorphic under the respective group multi-

plications. The commitment space GT ×GT ×GT is homomorphic under GT mul-
tiplication. All groups have prime order p for p > 2λ. The commitment scheme
is also binding by the q-ASDBP assumption. This means that the commitment
scheme is an inner product commitment. Thus either the adversary convinces the
verifier of incorrect w, v, or by Theorem 1 an adversary that breaks knowledge-
soundness can extract a valid m-ASDBP instance. An algebraic adversary that
convinces a verifier of incorrect w, v can extract a valid 2m-SDH instance by the
security of Rck (Eq. 5.2).

5.4 MIPPu : Multiexponentiation with Unknown Field Vector

In the MIPPu protocol, a prover demonstrates knowledge for pairing commitment
T ∈ GT and KZG commitment B ∈ G2 of A ∈ G

m
1 as the opening of T and

b ∈ F
m as the opening of B where U =

∏m−1
i=0 Ar2ibi

i for a public field element
r. The public field element r, as in Sect. 5.3, allows the argument to be used for
random linear combinations. The MIPPu relation is captured formally as follows:
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RMIPP-u =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎝

〈group〉, gβ ∈ G1, hα ∈ G2, T ∈ GT , B, U ∈ G1, r ∈ F ;

w = [gα2i

]m−1
i=0 ,A ∈ G

m
1 , v = [hβ2i

]m−1
i=0 , b ∈ F

m,
r = [r2i]m−1

i=0 ∈ F
m

⎞
⎠ :

T = A ∗ v ∧ B = wb ∧ U = Ar◦b

⎫⎪⎪⎬
⎪⎪⎭

.

The MIPPu argument proceeds analogously to TIPP if using the inner product
commitment CMMIPP-u where kU is initialized to 1GT

:

CMMIPP-u((v,w, kU ); A, b, U) := (A ∗ v,wb , kUU)

However, we make a small optimization by replacing the above commitment
scheme with a modified scheme CM′

MIPP-u with a commitment size consisting
only of one element in GT (concretely ∼25% reduction in size). Recall, the proof
includes a logarithmic number of commitments, so cutting the commitment size
by 25% more or less cuts the proof size by the same proportion.

Using CM′
MIPP-u adds two additional random group elements ĥ1, ĥ2

$←− G2 to
the prover key and verifier key (pk, vk) during setup. After setting (T,B,U, r),

the verifier samples values (c1, c2)
$←− F and sends them to the prover. The prover

and verifier then each set ĥ′
1 = ĥc1

1 and ĥ′
2 = ĥc2

2 . The values ĥ′
1 and ĥ′

2 become
part of the commitment key for the following inner product commitment:

CM′
MIPP-u((v,w, (ĥ′

1, ĥ
′
2)); A, b, U) := (A||wb ||U) ∗ (v||ĥ′

1||ĥ′
2)

The prover then proceeds analogously to TIPP. First, running GIPA with
CM′

MIPP-u with the identity collapsing function over message (Ar , b, U = Ar◦b)
and commitment key (v′ = vr−1

,w, (ĥ′
1, ĥ

′
2)). The verifier runs with commit-

ment C = T · e(B, ĥ′
1) · e(U, ĥ′

2. The final commitment keys w and v are proved
with respect to the same polynomials fw(X) and f ′

v(X).
A full description of the protocol is given in the full version [Bün+19]. Sound-

ness follows for algebraic adversaries from the q-ASDBP and the q-SDH assump-
tions and the algorithm is proven secure in the full version [Bün+19].

5.5 MIPPk : Multiexponentiation with Known Field Vector

In the MIPPk protocol a prover demonstrates knowledge of A ∈ G
m
1 such that

A commits to pairing commitment T under v and U = Ab for a public vector
b = [bi]m−1

i=0 for b ∈ F. The MIPPk relation is captured formally as follows:

RMIPP-k =

⎧
⎨

⎩

( 〈group〉, gβ ∈ G1, T ∈ GT , U ∈ G1, b ∈ F ;
A ∈ G

m
1 ,v = [hβ2i

]m−1
i=0 , b

)

:

T = A ∗ v ∧ U = Ab ∧ b = [bi]m−1
i=0

⎫
⎬

⎭
.

For the known vector multiexponentiation inner product, we use an inner
product commitment that commits to the vector b as itself using a key kb ini-
tialized to 1F. Since the commitment is no longer compact, we use a collapsing
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function that collapses the vector by adding the first and second halves. This
provides the required homomorphic properties of Definition 3.

CMMIPP-k((v,kb , 1GT
); A, b, U) := (A ∗ v, [kb,ibi]m−1

i=0 , U)

CollapseMIPP-k(C = (CA,Cb , CU )) = (CA, [Cb,i + Cb,(i+m
2 )]

m
2 −1

i=0 , CU )

If we were to run GIPA naively with this commitment, the proof size would be
linear in the length of b. However, we can use a similar to trick to how we calcu-
late the final commitment keys (Sect. 5.2). Instead of sending the commitment
to the rescaled message b at each recursive round, we observe that rescaling the
structured vector b leads to a closed-form expression of the final b′ message using
recursive challenges x = [xj ]

log m
j=0 : b′ =

∏�
j=0

(
1 + x−1

�−jb
2j

)
. This value b′ can

be computed in log m time by the verifier and allows for the prover to omit the
commitment to b, bringing the proof size back to logarithmic in m.

In addition, as in Sect. 5.4 for MIPPu, we provide an optimized inner product
commitment scheme CM′

MIPP-k with commitment size equal to one element of
GT (when using the above trick to omit b). The commitment CM′

MIPP-u adds

one additional random group element ĥ
$←− G2 to the prover key and verifier key

(pk, vk) during setup. After setting (T,U, b), the verifier samples value c
$←− F

and sends it to the prover. The prover and verifier then each set ĥ′ = ĥc. The
value ĥ′ becomes part of the commitment key for the following inner product
commitment:

CM′
MIPP-k((v,kb , ĥ

′); A, b, U) := ((A||U) ∗ (v||ĥ′), [kb,ibi]m−1
i=0 )

Collapse′
MIPP-k(C = (CA||U , b = [bi]m−1

i=0 )) = (CA||U , [Cb,i + Cb,(i+m
2 )]

m
2 −1

i=0 )

A full description of the protocol is given in the full version [Bün+19]. Soundness
follows for algebraic adversaries from the q-ASDBP and the q-SDH assumptions
and the algorithm is proven secure in the full version [Bün+19].

6 Log-Time Verifier Polynomial Commitments
with Square Root SRS

In this section we introduce a polynomial commitment (PC) scheme with a
square root sized SRS and opening time, and logarithmic proof sizes and verifier
time. We use a two-tiered homomorphic commitment algorithm similar to the
one from [Gro11] but with structured keys. We first describe how our PC can
be used for bivariate polynomials, and then present a simple way to use it for
univariate polynomials as well. In the full version [Bün+19], we show how these
polynomial commitments can be made hiding for zero-knowledge applications.

Two-Tiered Inner Product Commitment. We describe a two-tiered inner
product commitment for bivariate polynomials. It is based on the [Gro11] two
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tiered commitment. We use the structured-key variant of the [Abe+16] commit-
ment introduced in Sect. 5.1 to commit to the KZG commitments [KZG10]. A
brief description of KZG commitments was also given in Sect. 5.1. We describe
our polynomial commitment in Fig. 4.

To commit to a polynomial f(X,Y ) =
∑m−1

j=0 fj(Y )Xj given commitment
key ck = (g,v, ĥ), the committer computes m KZG polynomial commitments
A = [Aj ]m−1

j=0 to y-polynomials f = [fj(Y )]m−1
j=0 where say fj(Y ) has coefficients

aj = [ai,j ]�−1
i=0 : Aj = KZG.CM(g,aj) = gaj = g

∑�−1
i=0 ai,jαi

. The committer then
computes the pairing commitment [Abe+16] to the KZG commitments

T = A ∗ v =
m−1∏

j=0

e(Aj , vi) =
m−1∏

j=0

e(Aj , h
β2j

) .

Thus, T = e(g, h)
∑�−1,m−1

i,j=0 ai,jαiβ2j

, and this commitment is binding under the
q-ASDBP assumption and the q-SDH assumption.

Two-Tiered Opening. Our opening algorithm proves a commitment T to a
polynomial f(X,Y ) evaluates to ν at a point (x, y) ∈ F

2. We proceed in three
steps. First the prover produces an opening for an outer tier partial evaluation
U = f(x, Y ) =

∏m−1
i=0 Axi

i for a point x ∈ F. Observe that U is a KZG com-
mitment to the univariate polynomial f(x, Y ) =

∑�−1
j=0(

∑m−1
i=0 ai,jx

i)Y j . Second
the prover produces a MIPPk proof (see Sect. 5.5) that U is the inner product of
the opening to T and the vector x = (1, x, . . . , xm−1). Third the prover produce
a KZG proof that ν is the evaluation of U at y. The prover returns U and the
two proofs. The verifier simply checks the two proofs.

Theorem 4. If there exists a bilinear group sampler SampleGrp3 that satisfies
the q-ASDBP assumption in G2 and the q-SDH assumption, then the protocol
in Fig. 4 is a polynomial commitment scheme with computational extractability
against algebraic adversaries.

Note that computing the partial opening U takes m� G1 exponentiations if
computing from scratch. Instead, if the KZG commitments to the y-polynomials
A are given as input, U can be computed with only m G1 exponentiations. Thus,
we pass A, which was already computed during commitment, as auxiliary data
to the opening algorithm to facilitate our square root degree opening time.

Supporting Univariate Polynomials. If we have a univariate polynomial,
then we set �m = d for d the degree of f(X) and fi(Y ) = ai� + ai�+1Y + . . . +
a(i+1)�−1Y

�−1 =
∑�−1

j=0 ai�+jY
j . Observe now that p(X,Y ) =

∑m−1
i=0 fi(Y )Xi is

such that p(X�,X) = f(X) Thus we commit to f(X) by committing to p(X,Y ).
To evaluate f(X) at x the prover evaluates the first tier at x� and the second
at x. If � ≈ m then we have square root values fi(X) which each have degree
square root in d. Hence our IPP arguments are ran over a square root number of
commitments, which is what makes our verifier complexity and SRS size square
root.
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Setup(1λ, �,m) :
〈group〉 SampleGrp3(1λ)

ĥ
$
G2; α, β

$
F

g [gαi

]�−1
i=0

v [hβ2i

]m−1
i=0

ck (〈group〉, g,v, ĥ)
ek (〈group〉, g, [hβi

]2m−2
i=0 , ĥ)

vk (〈group〉, gβ , hα, ĥ)
Return (ck, vk)

Open(ek, T, (x, y), ν, f(X,Y ), [Aj ]m−1
j=0 )

(〈group〉, g, pk, ĥ) ek

U
∏m−1

j=0 Axi

j

π1 MIPPk.Prove(〈group〉, (pk, ĥ), (T, U, x), (A,v,x))
π2 KZG.Open(〈group〉, g, f(x, Y ), ν)
Return (U, π1, π2)

CM(ck, f(X, Y )) :
[Aj ]m−1

j=0
∏�−1

i=0 g
ai,j

i

T
∏m−1

j=0 e(Aj , vj)
Return T

Check(vk, (T, (x, y), ν), (U, π1, π2))
b1 MIPPk.Verify(〈group〉, (gβ , ĥ), (T, U, x), π1))
b2 KZG.Verify(〈group〉, hα, U, π2, y)
Return b1 ∧ b2

Fig. 4. A two-tiered inner product commitment.

Fig. 5. Measured performance of the IPA polynomial commitment.

Evaluation. In Fig. 5, we compare the performance of our polynomial com-
mitment scheme against the state-of-the-art KZG commitment scheme. In opti-
mizing the IPA commitment scheme, we found that the MIPPk proof was more
expensive than the KZG proof. Therefore, it makes sense to skew the split of
the polynomial so the MIPPk proof is over a smaller vector than the KZG proof.
We found a skew of κ = 16 to be optimal, leading to a split of m =

√
d

κ and
� = κ

√
d; this explains the hitch in the plots until the optimal tradeoff is able to

be made at d = 210.
Both KZG and our IPA produce commitments of constant size (a single G1

element for KZG and a single GT element for IPA). The differences are that
KZG allows for constant opening proof sizes and constant verifier time (versus
our logarithmic opening sizes and verifier time), whereas IPA allows for square
root opening time and SRS size (compared to the linear complexity of KZG).
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These asymptotic differences result in significant concrete tradeoffs between
the two schemes. As expected, the IPA commitment, while expensive for low
degree polynomials due to overhead of the inner product argument, quickly
becomes much faster to compute opening proofs with breakeven degree being
d ≈ 2000; at d = 106, IPA is 14× faster, and at d = 250 × 106 is 80× faster.
Similar savings are made with respect to prover SRS size. For degree 106, IPA
requires an SRS of size 800 KB, 60× smaller than the 50 MB SRS required by
KZG. In contrast, the IPA verifier time and opening size grow logarithmically
and thus do not get too large; verifier time remains below 50 ms even for poly-
nomials of degree d = 250 × 106, and opening proof size remains below 4 KB.

7 Aggregating SNARK Proofs

We now discuss how the inner pairing product can be used to verify that n inde-
pendently generated SNARK proofs on independent instances can be aggregated
to a O(log(n)) sized proof. While zk-SNARKs have constant-sized proofs and
verifiers, in many settings, such as blockchains, a verifier needs to read and verify
many proofs created by independent provers. We show how an untrusted aggre-
gator can use inner product arguments to aggregate these proofs into a small
logarithmic sized proof. The verifiers only need to check the aggregated proof
to be convinced of the existence of the underlying pairing-based SNARKs. We
show our approach is concretely much faster than existing approaches relying on
recursive composition and expensive pairing-friendly cycles of elliptic curves.

To date the most efficient zkSNARK is due to Groth [Gro16]; it consists of 3
group elements and requires checking a single pairing product equation to ver-
ify. We thus choose to describe our methods with respect to [Gro16], but note
that they apply more generally to pairing-based SNARKs that do not use ran-
dom oracles [GM17,Par+13]. We first provide some background on the [Gro16]
SNARK, focusing on the verifier and not the prover, for it is the verification
equations that we aim to prove are satisfied.

[Gro16] Background. We recall the following facts about the [Gro16] SNARK:
The verification key is of the form:

vk := (p = gρ, q = hτ , [sj = g(βuj(x)+αvj(x)−wj(x))]�j=1, d = hδ) .

Here ρ, τ, δ, x ∈ F are secrets generated (and discarded) during the gen-
eration of the proving and verification keys, � is the statement size, and
uj(X), vj(X), wj(X) are public polynomials that together with δ define a cir-
cuit representation of the computation being checked. The proof is of the form
π := (A,B,C) ∈ G1 × G2 × G1. On input a verification key vk, an NP instance
x := (a1, . . . , a�) ∈ F

�, and a proof π = (A,B,C), the verifier checks that
e(A,B) = e(p, q) · e(

∏�
j=1 s

aj

j , h) · e(C, d).
A part of the [Gro16] trusted setup is circuit-specific, i.e., the sj values con-

structed from uj(X), vj(X), wj(X) polynomials and d. Our protocol supports
aggregating proofs over different circuits that share the non-circuit-specific part
of their trusted setup, i.e., the p, q elements in the verification key.
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Setup(〈group〉, [vki]
n−1
i=0 ):

1. Construct commitment keys and prover and verifier keys. Note commitment keys

w =
[
gα2i

]m−1

i=0
and v =

[
hβ2i

]m−1

i=0
are included in pkIPP. Sample α, β

$
F:

(pkIPP = (
[
gαi

]2m−2

i=0
,
[
hβi

]2m−2

i=0
), vkIPP = (gβ , hα))

$
IPP.Setup(m;α, β)

2. Commit to circuit-specific elements of verification keys, vki = (p, q, [si,j ]
�
j=1, di):

(a) Commit to d = [di]
n−1
i=0 : Cd CM(w,d) = w ∗ d.

(b) For each j ∈ [�], commit to sj : Cs,j CM(v, sj = [si,j ]
n−1
i=0 ) = sj ∗ v.

3. Return (pkagg = (pkIPP, [vki]
n−1
i=0 , [Cs,j ]

�
j=1, Cd,d), vkagg = (vkIPP, p, q, [Cs,j ]

�
j=1, Cd)).

Agg(pkagg, [( i = [ai,j ]
�
j , πi)]

n−1
i=0 ):

(π, r) AggHelper(pkagg, [( i, πi)]
n−1
i=0 , ⊥)

Return π

Verify(vkagg, [ i = [ai,j ]
�
j ]

n−1

i=0
, πagg):

[Zs,j ]
�
j=1 [

∏n−1
i=0 s

ai,jr2i

i,j ]�j
(b, r) VerHelper(vkagg, [Zs,j ]

�
j , πagg, ⊥)

Return b

Fig. 6. Aggregation of Groth16 SNARKs. The helper subprotocols for aggregation and
verification are given in the full version [Bün+19].

Our Aggregation Protocol. Our aggregation protocol is described in Fig. 6.
Given n instances [[ai,j ]n−1

i=0 ]�j=1, proofs [πi = (Ai, Bi, Ci)]n−1
i=0 , and circuit-specific

verification keys [[si,j ]�j , di]n−1
i=0 , verifying the pairing product equation for each

proof πi individually requires performing 3n pairings and n� exponentiations.
To reduce this computation to a single pairing product equation, the verifier can
take a random linear combination between all equations. That is, the verifier
samples r

$←− F, sets r = (1, r2, . . . , r2n−2) and then checks whether

n−1∏

i=0

e((Ai)r2i

, Bi) = e(p, q)
∑n−1

i r2i · e(
�∏

j=1

n−1∏

i=0

s
ai,jr2i

i,j , h) · e(
n−1∏

i=0

Cr2i

i , di) .

If this equation holds, then with overwhelming probability each individual ver-
ification holds. It therefore suffices to check this one pairing product instead of
checking all SNARKs individually.

We make use of two inner products arguments to prove that the above check
succeeds. At a high level, the prover commits to A, B and C. First, the TIPP
protocol is used to prove the evaluation of Ar ∗ B = ZAB . The verifier must
check ZAB against the expected evaluation of the right-hand side of the above
pairing product equation. To further help the verifier, a second evaluation of
TIPP is used to prove the evaluation of Cr ∗ d = ZCd, where d is derived from
the circuit-specific verification keys. The verifier then completes by evaluating
and checking:

ZAB = e(p, q)
r2n−1
r2−1 · e(

�∏

j=1

n−1∏

i=0

s
ai,jr2i

i,j , h) · ZCd ,
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Fig. 7. Measured performance of TIPP aggregation of SNARK proofs compared to the
cost of proving a one layer of recursion inside a SNARK.

which requires only two pairings, � + 2 exponentiations, and O(� · n) field oper-
ations. If aggregating over the same circuit, the circuit-specific setup of d is not
needed and the protocol can be simplified to use MIPPk instead of TIPP to derive
ZCd.

Evaluation. In Fig. 7, we compare the performance for aggregating SNARK
proofs using (a) our aggregation protocol, (b) using recursive SNARKs over a
2-chain [Bow+20], and (c) not aggregating at all (i.e., sending all proofs indi-
vidually). The 2-chain approach proves inside another SNARK that each of the
aggregated SNARKs is valid. The verification time for no aggregation consists
of a single batched pairing check.

While our protocol does not produce constant-sized proofs, it does reduce
setup size and aggregation time greatly. For example, when aggregating 64
proofs, our protocol is 900× faster than the 2-chain approach. Furthermore,
the 2-chain approach is unable to scale further as it consumed too much mem-
ory. In fact, in the time it takes 2-chain approach to aggregate 64 proofs, our
protocol can aggregate 65, 000 proofs into a 35 kB proof that takes 300 ms to
verify.

8 Low-Memory SNARKs for Machine Computations

We now show how to leverage our aggregation protocol in Sect. 7 to construct a
low-memory SNARK for (non-deterministic) machine computations. A machine
computation M consists of applying a sequence of operations M = (op0, . . . , opT )
(from some operation set OpSet) over a fixed number of registers. We model
that M can read and write to an external memory (of size S) using techniques
for online memory checking [Bit+13,Ben+13a,Blu+91] in which the memory
is represented as a Merkle tree. In this case, an arithmetic circuit Pi for each
operation opi can be built such that |Pi| = polylog(S), given that opi itself
has complexity polylog(S) and makes at most polylog(S) reads or writes to
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memory. Taking this approach, we provide Theorem 5, which states that if a
machine computation M executes using memory S over T operation steps, then
our SNARK prover takes time Õ(maxi(|Pi|) ·T ) and space Õ(maxi(|Pi|)+T +S)
to produce a proof for that execution.

In comparison, constructing a monolithic proof for the entire computation at
once requires the same time, but incurs a space usage of Õ(

∑
i(|Pi|) ·T +S). The

only other solution for constructing low-memory SNARKs for machine compu-
tations requires recursive composition of proofs [Bit+13]. Recursive composition
achieves a further improved space usage of Õ(maxi(|Pi|) + S), but the time to
prove, while asymptotically equivalent to the previous solutions, is concretely
very expensive.

Definition 4 (Machine relation). For a machine M with step operations
[opi]

T−1
i=0 , the NP relation RM is the set of instance-witness pairs (x, [ω]T−1

i ),
such that M accepts (x, [ω]T−1

i ) after the T step operations are applied.

Theorem 5. Let RM be a machine relation for some machine M with step
operations [opi]

T−1
i=0 that can be represented with arithmetic circuits [Pi]T−1

i , and
opi ∈ OpSet for all i. Then there exists a SNARK for RM where

(1) Setup takes time O(T +
∑

op∈OpSet(|Pop|)).
(2) Proving takes time Õ(maxi(|Pi|) · T ) and uses space Õ(maxi(|Pi|) + T + S),

where S is the space required to compute M .
(3) Proof size is O(log(T )) and verification takes time O(log(T )).

Overview of Solution. We first introduce some notation. The full details of
our protocol are given in the full version [Bün+19]. Machine M operates over
a fixed set of � registers. The statement for each operation circuit Pi consists
of 2� elements: � input registers [ai,j ]�j=1 and � output registers [bi,j ]�j=1. The
circuit verifies that the output registers are valid with respect to applying the
operation on the input registers. Importantly, the output registers of an operation
are passed as the input registers to the next operation in sequence:

[bi,j ]�j=1 = [ai+1,j ]�j=1 .

The verifier does not need to be aware of all of the values the registers take on
during intermediate steps of execution. Instead, it need only verify that the above
“sequential” pattern of registers is present in the proofs for each operation step.
This is the key observation we take advantage of to produce a log-time verifier.

As a strawman, consider the solution of proving an individual Groth16
SNARK for each operation step and aggregating using the protocol of Sect. 7.
To verify, the verifier must receive and perform scalar computations over all of
the intermediate statements, incurring linear proof size and verification time.

Instead, in our solution, the prover commits to all of the intermediate state-
ments and proves to the verifier that they follow the sequential structure, i.e.,
the second half of the statement for proof i is the first half of the statement for
proof i+1. The verifier can verify this in time � with knowledge of only the initial
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register state [a0,j ]�j and the final register state [bT−1,j ]�j . The prover commits to
the inputs and outputs of all statements, aj , bj , to Ca,j , Cb,j . The prover then
proves the sequential pattern between aj and bj holds, namely that the vectors
are offset by one:

a0,j a1,j . . . aT−1,j

b0,j . . . bT−2,j bT−1,j

The prover does this by homomorphically shifting the commitment to bj

using challenge r and taking the difference between the two vector commit-
ments Ca,jC

−1/r2

b,j , then providing a KZG opening proof that it opens to
a0,j − bn−1,jr

2T−2 when evaluated on r. Lastly, the prover uses the commit-
ments to precompute a part of the final pairing product verification check to
help the verifier avoid the linear scalar computations. The prover computes and
proves using MIPPu the multiexponentiation inner products, Zs,j = s

aj◦r
j and

Zs,�+j = s
bj◦r
�+j for sj derived from circuit-specific verification keys. The veri-

fier then completes the verification by checking the following pairing product
equation:

ZAB = e(p, q)
r2n−1
r2−1 · e(

2�∏

j=1

Zs,j , h) · ZCd ,

which requires only two pairings and O(�) group operations. Our solution may
be adapted to provide greater efficiency in the case of repeated application of a
single step operation.
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Abstract. Succinct non-interactive arguments of knowledge (SNARKs)
have found numerous applications in the blockchain setting and else-
where. The most efficient SNARKs require a distributed ceremony pro-
tocol to generate public parameters, also known as a structured reference
string (SRS). Our contributions are two-fold:

– We give a security framework for non-interactive zero-knowledge
arguments with a ceremony protocol.

– We revisit the ceremony protocol of Groth’s SNARK [Bowe et al.,
2017]. We show that the original construction can be simplified and
optimized, and then prove its security in our new framework. Impor-
tantly, our construction avoids the random beacon model used in the
original work.

1 Introduction

Zero-knowledge proofs of knowledge [23] allow to prove knowledge of a witness
for some NP statement while not revealing any information besides the truth
of the statement. The recent progress in zero-knowledge (ZK) Succinct Non-
interactive Arguments of Knowledge (SNARKs) [16,24,25,34,37] has enabled
the use of zero-knowledge proofs in practical systems, especially in the context
of blockchains [6,10,31].

Groth16 [25] is the SNARK with the smallest proof size and fastest veri-
fier in the literature, and it is also competitive in terms of prover time. Beyond
efficiency, it has several other useful properties. Groth16 is rerandomizable [33],
which is a desirable property for achieving receipt-free voting [33]. Simultane-
ously, it also has a weak form of simulation extractability [3] which guarantees
that even if the adversary has seen some proofs before, it cannot prove a new
statement without knowing the witness. The prover and verifier use only alge-
braic operations and thus proofs can be aggregated [13]. Furthermore, Groth16
is attractive to practitioners due to the vast quantity of implementation and
code auditing it has already received.
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Every application using Groth16 must run a separate trusted setup ceremony
in order to ensure security, and even small errors in the setup could result a
complete break of the system. Indeed, the paper of the original Zcash SNARK [8]
contained a small typo which resulted in a bug that would allow an attacker
to print unlimited funds in an undetectable manner [20]. Some would use this
example as a reason to avoid any SNARK with a trusted setup ceremony at all
costs. And yet Groth16 is not only still being used, but many protocols are being
actively designed on top of it, potentially for the reasons listed above. Thus we
believe that if this SNARK ceremony is going to be used anyway, it is important
to put significant effort on simplifying its description and verifying its security.

The primary purpose of this work is to take a formal approach to proving
the security of the Groth16 setup ceremony of Bowe, Gabizon, and Miers [12]
that is currently commonly used in practice. The first prominent application of
the protocol was the Zcash Sapling ceremony, but it was also run by many other
projects, for example Aztec protocol, Filecoin, Semaphore, Loopring, Tornado
Cash, Plumo Ceremony, and Hermez. Some of these ceremonies are based on
the project called Perpetual Powers of Tau (PPoT), which implements the first
phase of [12], that is not specialized to any circuit—this implies that the project
planning to run a ceremony can fork off the PPoT, reducing its own setup cost. In
other words, [12] is by far the most popular ceremony protocol used in practice;
but it is also modified, specialized, and re-implemented by many independent
projects. We simplify the original protocol, specifically we remove the need for a
random beacon. Our security proofs equally apply to the version of the protocol
with a beacon already used in practice.

A number of different works have analysed the setup security of zk-SNARKs.
The works of [1,7,11] propose specialized multi-party computation protocols for
SRS generation ceremonies. A common feature of these protocols is that they
are secure if at least one of the parties is honest. However, these schemes are
not robust in the sense that all parties must be fixed before the beginning of
the protocol and be active throughout the whole execution. In other words if a
single party goes offline between rounds then the protocol will not terminate.
Bowe, Gabizon, and Miers [12] showed that the latter problem could be solved
if there is access to a random beacon—an oracle that periodically produces bit-
strings of high entropy—which can be used to rerandomize the SRS after each
protocol phase. Unfortunately, obtaining a secure random beacon is, by itself, an
extremely challenging problem [9,27,30]. Secure solutions include unique thresh-
old signatures [28], which themselves require complex setup ceremonies as well as
verifiable delay functions [9,38,39] that require the design and use of specialized
hardware. Practical realizations have instead opted for using a hash function
applied to a recent blockchain block as a random beacon. This is not an ideal
approach since the blockchain miners can bias the outcome.1

The work of Groth, Kohlweiss, Maller, Meiklejohn, and Miers [26] takes a
different approach and directly constructs a SNARK where the SRS is updat-

1 It is desirable for a setup ceremony to avoid dependence on setups as much as
possible—we spurn random beacons but embrace random oracles.
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able, that is, anyone can update the SRS and knowledge soundness and zero-
knowledge are preserved if at least one of the updaters was honest.2 Subsequent
updatable SNARKS like Sonic [36], Marlin [15], and PLONK [21] have improved
the efficiency of updatable SNARKs, but they are still less efficient than for
example [25]. Mirage [32] modifies the original Groth16 by making the SRS uni-
versal, that is the SRS works for all relations up to some size bound. The latter
work can be seen as complementary to the results of this paper as it amplifies
the benefits of a successfully conducted ceremony.

1.1 Our Contributions

Our key contributions are as follows:

Designing a security framework. We formalize the notion of non-interactive
zero-knowledge (NIZK) argument with a multi-round SRS ceremony proto-
col, which extends the framework of updatable NIZKs in [36]. Our definitions
fix a syntax for ceremonies with Update and VerifySRS algorithms and take a
game-based approach. This is less rigid than a multi-party computation def-
inition (see for example [1] for a UC-functionality). Our security notion says
that an adversary cannot forge a SNARK proofs even if they can participate
in the setup ceremony. We call such a SNARK ceremonial. This notion is
more permissible for the setup ceremony than requiring simulatability and
is therefore easier to achieve. In particular, using our definitions we do not
require the use of a random beacon (as is needed in [12]) or additional setup
assumptions ([7] assumes a common random string and [1] assumes a trusted
commitment key), whereas it is not clear that those could be avoided in
the MPC setting. Our definitions are applicable to SNARKs with a multiple
round setup ceremony as long as they are ceremonial.

Proving security without a random beacon. We prove the security of the
Groth16 SNARK with a setup ceremony of [12] in our new security framework.
We intentionally try not change the original ceremony protocol too much so
that our security proof would apply to protocols already used in practice.
Security is proven with respect to algebraic adversaries [18] in the random
oracle model. We require a single party to be honest in each phase of the
protocol in order to guarantee that knowledge soundness and subversion zero-
knowledge hold. Unlike [12], our security proof does not rely on the use of
a random beacon. However, our security proof does apply to protocols that
have been implemented using a (potentially insecure) random beacon because
the beacon can just be treated as an additional malicious party. We see this
as an important security validation of real-life protocols that cryptocurrencies
depend on.

Revisiting the discrete logarithm argument. The original paper of [12]
used a novel discrete logarithm argument Πdl to prove knowledge of update
contributions. They showed that the argument has knowledge soundness

2 Note that one can independently prove subversion ZK [2,17].
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under the knowledge of exponent assumption in the random oracle model.
While proving the security of the ceremony protocol, we observe that even
stronger security properties are necessary. The discrete logarithm argument
must be zero-knowledge and straight-line simulation extractable, i.e., knowl-
edge sound in the presence of simulated proofs. Furthermore, simulation-
extractability has to hold even if the adversary obtains group elements as
an auxiliary input for which he does not know the discrete logarithm. We
slightly modify the original argument to show that those stronger properties
are satisfied if we use the algebraic group model with random oracles.

Thus, this work simplifies the widely used protocol of [12] and puts it onto
firmer security foundations.

1.2 Our Techniques

Security Framework. Our security framework assumes that the SRS is split
into ϕmax distinct components srs = (srs1, . . . , srsϕmax

) and in each phase of
the ceremony protocol one of the components gets finalized. We formalize this
by enhancing the standard definition of NIZK with an Update and VerifySRS
algorithms. Given srs and the phase number ϕ, the Update algorithm updates srsϕ
and produces a proof ρ that the update was correct. The verification algorithm
VerifySRS is used to check that srs and update proofs {ρi}i are valid.

We obtain the standard updatability model of [36] if ϕmax = 1. When mod-
elling the Groth16 SNARK we set ϕmax = 2. In that scenario, we split the SRS
into a universal component srs1 = srsu that is independent of the specific rela-
tion that we want to prove3 and to a specialized component srs2 = srss, which
depends on a concrete relation R. Both srsu and srss are updatable; however,
the initial srss has to be derived from srsu and the relation R. Thus, parties need
first to update srsu, and only after a sufficient number of updates can they start
to update srss. The universal srsu can potentially be reused for other relations.

In our definition of update knowledge soundness, we require that no adversary
can convince an honest verifier of a statement unless either (1) they know a valid
witness; (2) the SRS does not pass the setup ceremony verification VerifySRS;
or (3) one of the phases did not include any honest updates. Completeness and
zero-knowledge hold for any SRS that passes the setup ceremony verification,
even if there were no honest updates at all. The latter notions are known as
subversion completeness and subversion zero-knowledge [5].

Security Proof of Setup Ceremony. We must prove subversion zero-
knowledge and update knowledge-soundness. Subversion zero-knowledge follows
from the previous work in [2,17], which already proved it for Groth16 under

3 Similarly to the universal updatability notions that share the same “independence”,
e.g. [36], srsu still formally depends on the maximum size of the circuit, which can
nevertheless be made large enough to be practically universal.
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knowledge assumptions. The only key difference is that we can extract the simu-
lation trapdoor with a discrete logarithm proof of knowledge argument Πdl used
in the ceremony protocol.

Our security proof of update knowledge-soundness uses a combination of the
algebraic group model and the random oracle (RO) model. As was recently shown
by Fuchsbauer, Plouviez, and Seurin [19] the mixture of those two models can be
used to prove powerful results (tight reductions of Schnorr-based schemes in their
case) but it also introduces new technical challenges. Recall that the algebraic
group model (AGM) is a relaxation of the generic group model proposed by
Fuchsbauer, Kiltz, and Loss [18]. They consider algebraic adversaries Aalg that
obtain some group elements G1, . . . , Gn during the execution of the protocol
and whenever Aalg outputs a new group element E, it also has to output a
linear representation �C = (c1, . . . , cn) such that E = Gc1

1 Gc2
2 . . . Gcn

n . Essentially,
Aalg can only produce new group elements by applying group operations to
previously known group elements. In contrast to the generic group model, the
representation of group elements is visible to Aalg, and thus security proofs
in AGM are typically reductions to some group-assumptions (e.g. the discrete
logarithm assumption).

Already the original AGM paper [18] proved knowledge soundness of the
Groth16 SNARK in the AGM model (assuming trusted SRS). They proved it
under the q-discrete logarithm assumption, i.e., a discrete logarithm assumption
where the challenge is (Gz, Gz2

, . . . , Gzq

). The main idea for the reduction is that
we can embed Gz in the SRS of the SNARK. Then when the algebraic adversary
Aalg outputs a group-based proof π, all the proof elements are in the span of the
SRS elements, and Aalg also outputs the respective algebraic representation. We
can view the verification equation as a polynomial Q that depends on the SRS
and π such that Q(SRS, π) = 0 when the verifier accepts. Moreover, since π and
SRS depend on z, we can write Q(SRS, π) = Q′(z). Roughly, the proof continues
by looking at the formal polynomial Q′(Z), where Z is a variable corresponding
to z, and distinguishing two cases: (i) if Q′(Z) = 0, it is possible to argue based
on the coefficient of Q′ that the statement is valid and some of the coefficients are
the witness, i.e., Aalg knows the witness, or (ii) if Q′(Z) �= 0, then it is possible
to efficiently find the root z of Q′ and solve the discrete logarithm problem.

Our proof of update knowledge soundness follows a similar strategy, but it is
much more challenging since the SRS can be biased, and the Aalg has access to all
the intermediate values related to the updates. Furthermore, Aalg also has access
to the random oracle, which is used by the discrete logarithm proof of knowledge
Πdl. Firstly, since the SRS of the Groth16 SNARK contains one trapdoor that is
inverted (that is δ), we need to use a novel extended discrete logarithm assump-
tion where the challenge value is ({Gzi}q1

i=0, {Hzi}q2
i=0, r, s,G

1
rz+s ,H

1
rz+s ) where

G and H are generators of pairing groups and r, s, z are random integers. We
prove that this new assumption is very closely related (equivalent under small
change of parameters) to the q-discrete logarithm assumption. In the case with
an honest SRS [18] it was possible to argue that by multiplying all SRS elements
by δ we get an equivalent argument which does not contain division, but it is
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harder to use the same reasoning when the adversary biases δ. The reduction still
follows a similar high-level idea, but we need to introduce intermediate games
that create a simplified environment before we can use the polynomial Q. For
these games we rely on the zero-knowledge property and simulation extractabil-
ity of Πdl. Moreover, we have to consider that Aalg sees and adaptively affects
intermediate states of the SRS on which the proof by π can depend on. Therefore
the polynomial Q′ takes a significantly more complicated form, but the simplified
environment will reduce this complexity.

Revisiting the Discrete Logarithm Argument. One of the key ingredi-
ents in the [12] ceremony is the discrete logarithm proof of knowledge Πdl. Each
updater uses this to prove that it knows its contribution to the SRS. The origi-
nal [12] proved only knowledge soundness of Πdl. While proving the security of
the setup ceremony in our framework, we observe that much stronger properties
are needed. Firstly, Πdl needs to be zero-knowledge since it should not reveal
the trapdoor contribution. Secondly, Πdl should be knowledge sound, but in an
environment where the adversary also sees simulated proofs and obtains group
elements (SRS elements) for which it does not know the discrete logarithm.
For this, we define a stronger notion simulation-extractability where the adver-
sary can query oracle Ose for simulated proofs and oracle Opoly on polynomials
f(X1, . . . , Xn) that get evaluated at some random points x1, . . . , xn such that
the adversary learns Gf(x1,...,xn) or Hf(x1,...,xn).

We show that proofs can be trivially simulated when the simulator has access
to the internals of the random oracle and thus Πdl is zero-knowledge. We once
again use AGM, this time to prove simulation-extractability. Since in this proof
we can embed the discrete logarithm challenge in the random oracle responses,
we do not need different powers of the challenge and can instead rely on the
standard discrete logarithm assumption. We also slightly simplify the original
Πdl and remove the dependence on the public transcript TΠ of the ceremony
protocol, that is, the sequence of messages broadcasted by the parties so far.
Namely, the original protocol hashes TΠ and the statement to obtain a challenge
value. This turns out to be a redundant feature, and removing it makes Πdl more
modular.

Implementation and Optimization. Partners in a joint research project
have developed a Rust implementation4 of our Update and VerifySRS algorithms
for Groth16 building on the arkworks library with various optimizations such as
batching and parallelization. This validates the correctness of our algorithms and
intends to serve as an independent implementation to measure other solutions.
We describe batched SRS update verification in the full version of this paper.

4 https://github.com/grnet/snarky.

https://github.com/grnet/snarky
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2 Preliminaries

PPT denotes probabilistic polynomial time, and DPT denotes deterministic
polynomial time. The security parameter is denoted by λ. We write y

r← A(x)
when a PPT algorithm A outputs y on input x and uses random coins r. Often
we neglect r for simplicity. If A runs with specific random coins r, we write
y ← A(x; r). Uniformly sampling x from a set A is denoted by x ←$ A. A view
of an algorithm A is a list denoted by viewA which contains the data that fixes
A’s execution trace: random coins, its inputs (including ones from the oracles),
and outputs5. We sometimes refer to the “transcript” implying only the public
part of the view: that is interactions of A with oracles and the challenger.

Let �a and �b be vectors of length n. We say that the vector �c of length 2n − 1

is a convolution of �a and �b if ck =
(n,n)∑

(i,j)=(1,1);i+j=k+1

aibj for k ∈ {1, . . . , 2n − 1}. In par-

ticular, multiplying the polynomial
∑n

i=1 aiX
i−1 with

∑n
i=1 biX

i−1 produces∑2n−1
i=1 ciX

i−1. When indexing families of values, we sometimes use semicolon
to separate indices, e.g. {Gβx:i}n

i=0 is a vector Gβx indexed by i.

Bilinear Pairings. Let BGen be a bilinear group generator that takes in a security
parameter 1λ and outputs a pairing description bp = (p,G1,G2,GT , ê, G,H)
where G1,G2,GT are groups of prime order p, G is a generator of G1, H is a
generator of G2, and ê : G1 ×G2 → GT is a non-degenerate and efficient bilinear
map. That is, ê(G,H) is a generator of GT and for any a, b ∈ Zp, ê(Ga,Hb) =
ê(G,H)ab. We consider Type III asymmetric pairings, with G1 �= G2 and without
any efficiently computable homomorphism between G1 and G2.

2.1 Algebraic Group Model with RO and Discrete Logarithm
Assumptions

We will use the algebraic group model (AGM) [18] to prove the security of
Groth’s SNARK. In AGM, we consider only algebraic algorithms that provide
a linear explanation for each group element that they output. More precisely, if
Aalg has so far received group elements G1, . . . , Gn ∈ G and outputs a group
element Gn+1 ∈ G, then it has to also provide a vector of integer coefficients �C =
(c1, . . . , cn) such that Gn+1 =

∏n
i=1 Gci

i . We will use AGM in a pairing-based
setting where we distinguish between group elements of G1 and G2. Formally,
the set of algebraic coefficients �C is obtained by calling the algebraic extractor
�C ← Eagm

A (viewA) that is guaranteed to exist for any algebraic adversary A. This
extractor is white-box and requires A’s view to run.

5 The latter can be derived from the former elements of the list, and is added to viewA
for convenience.
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ROt(φ) // Initially QRO = ∅
if QRO[φ] = ⊥ then r QRO[φ];
else r $Zp; QRO[φ] r
if t = 1 then return r else return Gr

Fig. 1. The transparent random oracle RO0(·) : {0, 1}∗ → G1, RO1(·) : {0, 1}∗ → Zp.
We write RO(φ) for the interface RO0(φ) provided to protocols.

Random Oracle. Fuchsbauer et al. [18] also show how to integrate the AGM with
the random oracle (RO) model. In particular, we are interested in RO that out-
puts group elements. Group elements returned by RO(φ) are added to the set of
received group elements. To simulate update proofs we make use of a weakening
of the programmable RO model that we refer to as a transparent RO, presented
on Fig. 1. For convenience we will denote RO(·) := RO0(·). The simulator has
access to RO1(·) and can learn the discrete logarithm r by querying RO1(x). It
could query RO0(x) for Gr but can also compute this value itself. Constructions
and the A in all security definitions only have access to the restricted oracle
RO0(·).

One remarkable detail in using white-box access to the adversary A in the
RO model is that viewA includes the RO transcript (but not RO randomness),
since it contains all requests and replies A exchanges with the oracles it has
access to, including RO. Thus access to viewA is sufficient for our proofs, even
though we do not give any explicit access to the RO history besides the view of
the adversary to the extractor.

Assumptions. We recall the (q1, q2)-discrete logarithm assumption [18].

Definition 1 ((q1, q2)-dlog). The (q1, q2)-discrete logarithm assumption holds
for BGen if for any PPT A, the following probability is negligible in λ,

Pr
[
bp ← BGen(1λ); z ←$Zp; z′ ← A(bp, {Gzi}q1

i=1, {Hzi}q2
i=1) : z = z′

]
.

In our main theorem it is more convenient to use a slight variation of the
above.

Definition 2 ((q1, q2)-edlog). The (q1, q2)-extended discrete logarithm ass-
umption holds for BGen if for any PPT A, the following probability is negligible
in λ,

Pr
[
bp ← BGen(1λ); z, r, s ←$Zp s.t. rz + s �= 0;
z′ ← A(bp, {Gzi}q1

i=1, {Hzi}q2
i=1, r, s,G

1
rz+s ,H

1
rz+s ) : z = z′

]
.

The assumption is an extension of (q1, q2)-dlog, where we additionally give
A the challenge z in denominator (in both groups), blinded by s, r, which A is
allowed to see. Later this helps to model fractional elements in Groth16’s SRS.
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Notice that (q1, q2)-edlog trivially implies (q1, q2)-dlog, since A for the latter
does not need to use the extra elements of the former. The opposite implication is
also true (except for a slight difference in parameters) as we state in the following
theorem. The proof is postponed to full version of this paper.

Theorem 1. If (q1 + 1, q2 + 1)-dlog assumption holds, then (q1, q2)-edlog
assumption holds.

We also state two lemmas that are often useful in conjunction with AGM
proofs.

Lemma 1 ([4]). Let Q be a non-zero polynomial in Zp[X1, . . . , Xn] of
total degree d. Define Q′(Z) := Q(R1Z + S1, . . . , RnZ + Sn) in the ring
(Zp[R1, . . . , Rn, S1, . . . , Sn])[Z]. Then the coefficient of the highest degree mono-
mial in Q′(Z) is a degree d polynomial in Zp[R1, . . . , Rn].

Lemma 2 (Schwartz-Zippel). Let P be a non-zero polynomial in
Zp[X1, . . . , Xn] of total degree d. Then, Pr[x1, . . . , xn ←$Zp : P (x1, . . . , xn) =
0] ≤ d/p.

3 Ceremonial SNARKs

We present our definitions for NIZKs that are secure with respect to a setup cere-
mony. We discuss the new notions of update completeness and update soundness
that apply to ceremonies that take place over many rounds. We also define sub-
version zero-knowledge which is adjusted to our ceremonial setting.

Compared to standard MPC definitions, our definition of (update) knowl-
edge soundness is not simulation-based and the final SRS may not be uniformly
random. We believe that the attempt to realise standard MPC definitions is
what led prior works to make significant practical sacrifices e.g. random beacons
or players that cannot go offline. This is because a rushing adversary that plays
last can manipulate the bit-decomposition, for example to enforce that the first
bit of the SRS is always 0. We here choose to offer an alternative protection: we
allow that the final SRS is not distributed uniformly at random provided that the
adversary does not gain any meaningful advantage when attacking the soundness
of the SNARK. This is in essence an extension of updatability definitions [26] to
ceremonies that require more than one round.

We consider NP-languages L and their corresponding relations R = {(φ,w)}
where w is an NP-witness for the statement φ ∈ L. An argument system Ψ (with
a ceremony protocol) for a relation R contains the following algorithms:

(i) A PPT parameter generator Pgen that takes the security parameter 1λ as
input and outputs a parameter p (e.g., a pairing description)6. We assume
that p ← Pgen(1λ) and the security parameter is given as input to all
algorithms without explicitly writing it.

6 We disallow subversion of p in this paper but in real life systems also this part of
the setup needs scrutiny. This is arguable easier since usually p is trapdoor free.
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(ii) A PPT SRS update algorithm Update that takes as input a phase number
ϕ ∈ {1, . . . , ϕmax}, the current SRS srs, and proofs of previous updates
{ρi}i, and outputs a new SRS srs′ and an update proof ρ′. It is expected
that Update itself forces a certain phase order, e.g. the sequential one.

(iii) A DPT SRS verification algorithm VerifySRS that takes as an input a SRS
srs and update proofs {ρi}i, and outputs 0 or 1.

(iv) A PPT prover algorithm Prove that takes as an input a SRS srs, a statement
φ, and a witness w, and outputs a proof π.

(v) A DPT verification algorithm Verify that takes as an input a SRS srs, a
statement φ, and a proof π, and outputs 0 or 1.

(vi) A PPT simulator algorithm Sim that takes as an input a SRS srs, a trapdoor
τ , and a statement φ, and outputs a simulated proof π.

The description of Ψ also fixes a default srsd = (srsd1, . . . , srs
d
ϕmax

). We require
that a secure Ψ satisfies the following flavours of completeness, zero-knowledge,
and knowledge soundness. All our definitions are in the (implicit) random oracle
model, since our final SRS update protocol will be using RO-dependent proof
of knowledge. Therefore, all the algorithms in this section have access to RO, if
some sub-components of Ψ require it.

Completeness of Ψ requires that Update and Prove always satisfy verification.

Definition 3 (Perfect Completeness). An argument Ψ for R is perfectly
complete if for any adversary A, it has the following properties:

1. Update completeness:

Pr
[

(ϕ, srs, {ρi}i) ← A(1λ), (srs′, ρ′) ← Update(ϕ, srs, {ρi}i) :
VerifySRS(srs, {ρi}i) = 1 ∧ VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 0

]
= 0.

2. Prover completeness:

Pr
[

(srs, {ρi}i, φ, w) ← A(1λ), π ← Prove(srs, φ, w) :
VerifySRS(srs, {ρi}i) = 1 ∧ (φ,w) ∈ R ∧ Verify(srs, φ, π) �= 1

]
= 0.

Our definition of subversion zero-knowledge follows [2]. Intuitively it says that
an adversary that outputs a well-formed SRS knows the simulation trapdoor τ
and thus could simulate a proof himself even without the witness. Therefore,
proofs do not reveal any additional information. On a more technical side, we
divide the adversary into an efficient SRS subverter Z that generates the SRS
(showing knowledge of τ makes sense only for an efficient adversary) and into
an unbounded distinguisher A. We let Z send st to communicate with A.

Definition 4 (Subversion Zero-Knowledge (sub-ZK)). An argument Ψ for
R is subversion zero-knowledge if for all PPT subverters Z, there exists a PPT
extractor EZ , such that for all (unbounded) A, |ε0 − ε1| is negligible in λ, where

εb := Pr
[

(srs, {ρi}i, st) ← Z(1λ), τ ← EZ(viewZ) :
VerifySRS(srs, {ρi}i) = 1 ∧ AOb(srs,τ,·)(st) = 1

]
.
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Ob is a proof oracle that takes as input (srs, τ, (φ,w)) and only proceeds if (φ,w) ∈
R. If b = 0, Ob returns an honest proof Prove(srs, φ, w) and when b = 1, it returns
a simulated proof Sim(srs, τ, φ).

Bellare et al. [5] showed that it is possible to achieve soundness and sub-
version zero-knowledge at the same time, but also that subversion soundness
is incompatible with (even non-subversion) zero-knowledge. Updatable knowl-
edge soundness from [26] can be seen as a relaxation of subversion soundness to
overcome the impossibility result.

We generalize the notion of update knowledge soundness to multiple SRS
generation phases. SRS is initially empty (or can be thought to be set to a
default value srsd). In each phase ϕ, the adversary has to fix a part of the
SRS, denoted by srsϕ, in such a way building the final srs. The adversary can
ask honest updates for his own proposal of srs∗ϕ, however, it has to pass the
verification VerifySRS. The adversary can query honest updates using update
query through a special oracle Osrs, described in Fig. 2. Eventually, adversary
can propose some srs∗ϕ with update proofs Q∗ to be finalized through finalize
query. The oracle does it if Q∗ contains at least one honest update proof obtained
from the oracle for the current phase. If that is the case, then srsϕ cannot be
changed anymore and the phase ϕ+1 starts. Once the whole SRS has been fixed,
A outputs a statements φ and a proof π. The adversary wins if (srs, φ, π) passes
verification, but there is no PPT extractor EA that can extract a witness even
when given the view of A.

Definition 5 (Update Knowledge Soundness). An argument Ψ for R is
update knowledge-sound if for all PPT adversaries A, there exists a PPT extrac-
tor EA such that Pr[GameA,EA

uks (1λ) = 1] is negligible in λ, where

GameA,EA
uks (1λ) :=

[
(φ, π) ← AOsrs(·)(1λ); get (srs, ϕ) from Osrs;w ← EA(viewA);
return Verify(srs, φ, π) = 1 ∧ (φ,w) �∈ R ∧ ϕ > ϕmax

]
,

SRS update oracle Osrs is described in Fig. 2.

If ϕmax = 1, we obtain the standard notion of update knowledge soundness.
In the rest of the paper, we only consider the case where ϕmax = 2. In particular,
in the first phase we will generate a universal SRS srsu = srs1 that is independent
of the relation and in the second phase we generate a specialized SRS srss = srs2
that depends on the concrete relation. We leave it as an open question whether
ceremony protocols with ϕmax > 2 can provide any additional benefits. We also
note that we do not model the possibility of the protocol running for several
relations honestly simultaneously, although A can construct such SRS variants
on its own.

It is important to explain the role of the default SRS in the definition. Our
definition allows A to start its chain of SRS updates from any SRS, not just from
the default one; the only condition is the presence of a single honest update in
the chain. The default srsd is only used as a reference, for honest users. This has
positive real-world consequences: since the chain is not required to be connected
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Osrs(intent, srs∗, Q∗) // Initially Q1 = · · · = Qϕmax = ∅; ϕ = 1

if ϕ > ϕmax : return ⊥; // SRS already finalized for all phases
srsnew (srs1, . . . , srsϕ−1, srs

∗
ϕ, . . . , srs∗ϕmax

);
if VerifySRS(srsnew, Q∗) = 0 : return ⊥; // Invalid SRS
if intent = update :

(srs , ρ ) Update(ϕ, srsnew, Q∗); Qϕ Qϕ ∪ {ρ };
return (srs , ρ );

if intent = finalize∧ Qϕ ∩ Q∗ = ∅ :
Assign srsϕ srs∗ϕ; ϕ ϕ + 1;

Fig. 2. SRS update oracle Osrs given to the adversary in Definition 5. update returns
A an honest update for ϕ, and finalize finalizes the current phase. Current phase ϕ
and current SRS srs are shared with the KS challenger. {Qϕi}i is a local set of proofs
for honest updates, one for each phase.

to any “starting point”, clients only need to verify the suffix of Q∗, if they are
confident it contains an honest update. In particular, clients that contribute to
the SRS update can start from the corresponding proof of update.

We again note that when using the random oracle model in a sub-protocol,
we assume that all of the above algorithms in our security model have access to
RO.

4 Update Proofs of Knowledge

One of the primary ingredients in the setup ceremony is a proof of update knowl-
edge whose purpose is to ensure that adversary knows which values they used
for updating the SRS. In this section, we discuss the proof of knowledge given by
Bowe et al. [12]. Bowe et al. only proved this proof of knowledge secure under the
presence of an adversary that can make random oracle queries. This definition
is not sufficient to guarantee security (at least in our framework), because the
adversary might be able to manipulate other users proofs or update elements in
order to cheat. We therefore define a significantly stronger property that suffices
for proving security of our update ceremony.

4.1 White-Box Simulation-Extraction with Oracles

In this section, we provide definitions for the central ingredient of the ceremony
protocol—the update proof of knowledge that ensures validity of each sequential
SRS update. The proof of knowledge (PoK) protocol does not rely on reference
string but employs a random oracle as a setup. Hence we will extend the standard
NIZK definitions with ROt(·), defined in Fig. 1.

Since NIZK proof of knowledge is used in our ceremony protocol, we require
it to satisfy a stronger security property than knowledge soundness or even sim-
ulation extraction. Instead of the standard white-box simulation-extractability
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(SE), we need a property that allows to compose the proof system more freely
with other protocols while still allowing the adversary to extract. This is some-
what similar to idea of universal composability (UC, [14]), but contrary to the
standard UC, our extractor is still white-box. Another way would be to use an
augmented UC model which allows white-box assumptions (see [29]). In this
work we follow the more minimal and commonly used game-based approach.

We model influence of other protocols by considering a polynomial oracle
Opoly in the SE game of the update PoK.

The adversary can query the oracle Opoly on Laurent polynomials
fi(Z1, . . . , Zn) and it will output Gfi(z1,...,zn) for z1, . . . , zn pre-sampled from
a uniform distribution, and unknown to A. We use Laurent polynomials since
SRS elements, the access to which the oracle models, may have negative trap-
door powers.7 By deg(f) we will denote the maximum absolute degree of its
monomials, where by absolute degree of the monomial we mean the sum of all
its degrees taken as absolute values. Formally, deg(c · ∏

i Zai
i ) :=

∑
i |ai|, and

deg(f(Z1, . . . , Zn)) = deg(
∑

i Mi) := max{deg(Mi)}, where Mi are monomials
of f . For example, deg(3x2αδ−2 + y) = 5. This notion is used to limit the degree
of input to Opoly—we denote the corresponding degree d(λ) (or d, interchange-
ably).

This empowered adversary still should not be able to output a proof of knowl-
edge unless it knows a witness. Note that Opoly is independent from the random
oracle ROt and cannot provide the adversary any information about the random
oracle’s responses. In general, Opoly adds strictly more power to A. The intention
of introducing Opoly is to account for the SRS of the Groth’s SNARK later on.

In addition, our ceremony protocol for Groth’s SNARK requires NIZK to be
straight-line simulation extractable, i.e., that extraction works without rewinding
and is possible even when the adversary sees simulated proofs. Below, we define
such a NIZK in the random oracle model.

Ose(φ)

// Initially Q = ∅
π SimRO1(·)(φ)
Q Q ∪ {(φ, π)}
return π

OG1
poly(f(Z1, . . . , Zd(λ)))

if deg(f) > d(λ)
return ⊥

else return Gf(z1,...,zd(λ))

OG2
poly(g(Z1, . . . , Zd(λ)))

if deg(g) > d(λ)
return ⊥

else return Hg(z1,...,zd(λ))

Fig. 3. Simulation-extraction oracle and two d−Poly oracles—for G1 and G2. All used
in GamesSE.

Let L be a language and R the corresponding relation. The argument Ψ
for R in the random oracle model consists of the following PPT algorithms:
the parameter generator Pgen, the prover ProveRO(·), the verifier VerifyRO(·), and

7 See the description of Groth16 SRS, which has 1/δ in some SRS elements.
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the simulator SimRO1(·). We make an assumption that all algorithms get p ←
Pgen(1λ) as an input without explicitly writing it.

We assume that Ψ in the random oracle model satisfies the following defini-
tions.

Definition 6. An argument Ψ for R is perfectly complete in the random oracle
model, if for any adversary A,

Pr
[
(φ, w) ← ARO(·), π ← ProveRO(·)(φ, w) : (φ, w) ∈ R ∧ VerifyRO(·)(φ, π) �= 1

]
= 0.

Definition 7. An argument Ψ for R is straight-line simulation extractable in
the (RO, d−Poly)-model, if for all PPT A, there exists a PPT extractor EA such
that Pr[GameA

sSE(1
λ) = 1] = negl(λ), where GameA

sSE(1
λ) =

⎡

⎣
Q ← ∅; z1, . . . , zd(λ) ← Zp;

(φ, π) ← AOse,RO,OG1
poly,O

G2
poly(1λ);

w ← EA(viewA);
: Verify

RO(·)(φ, π) = 1∧
(φ,w) �∈ R ∧ (φ, π) �∈ Q

⎤

⎦

The oracles Ose,OG1
poly,OG2

poly are defined on Fig. 3.

Roughly speaking, the adversary wins if it can output a verifying statement and
proof for which it does not know a witness, such that this proof has not been
obtained from a simulation oracle. There are also up to d(λ) random variables
chosen at the start such that the adversary can query an oracle for arbitrary
polynomial evaluations with maximum degree d(λ) of these values in the group.
With respect to the relation of this definition to more standard one we note two
things. First, our definition is white-box (since EA requires viewA), and strong
(in the sense that proofs are not randomizable). Second, our notion implies
strong-SE in the presence of RO, which is the special case of GamesSE with Opoly
removed, and thus is very close to the standard non-RO strong-SE variant.

Definition 8. An argument Ψ for the relation R is perfectly zero-knowledge
in the random oracle model if for all PPT adversaries A, ε0 = ε1, where εb :=
Pr

[AOb(·),RO(·)(1λ) = 1
]
. Ob is a proof oracle that takes as an input (φ,w) and

only proceeds if (φ,w) ∈ R. If b = 0, Ob returns an honest proof ProveRO(·)(φ,w)
and when b = 1, it returns a simulated proof SimRO1(·)(φ).

Note that Sim is allowed to have access to RO discrete logarithms.

4.2 On the Security of BGM Update Proofs

We now prove that the proof system of [12] satisfies this stronger property.
Bowe et al. [12] proved that the proof system is secure under a Knowledge-

of-Exponent assumption. Their analysis does not capture the possibility that an
attacker might use additional knowledge obtained from the ceremony to attack
the update proof. Our analysis is more thorough and assumes this additional
knowledge. This means that we cannot use a simple Knowledge-of-Exponent
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assumption. Instead we rely on the algebraic group model; the AGM is to date
the weakest idealized model in which Groth16 has provable security and thus we
do not see this as being a theoretical drawback. The proof of knowledge is for
the discrete logarithm relation

Rdl = {(φ = (m,Gy1 ,Hy2), w) | y1 = y2 = w},

where m is an auxiliary input that was used in the original [12] proof of knowl-
edge. The auxiliary input is redundant as we will see, but we still model it to
have consistency with the original protocol. We recall that one of our goals is
also to confirm the security of ceremony protocols already used in practice.

The protocol is given formally in Fig. 4. First the prover queries the random
oracle on the instance φ. The oracle returns a fresh random group element Hr.
The prover returns π = Hrw. The verifier checks that the instance is well-
formed (y1 = y2), and then checks that ê(π,H) = ê(RO(φ),Hy2) which ensures
knowledge of y2. Intuition for the last equation is that RO(φ) acts as a fresh
random challenge for φ and the only way to compute π = RO(φ)y2 and Hy2 is
by knowing y2. The fact that in Rdl every φ with y1 = y2 belongs to Ldl (the
exponent w always exists) justifies that we will call the correspondent equation
“well-formedness check”; subsequently, we will refer to the other check as “the
main verification equation”.

Prove
RO(·)
dl (φ, w)

Gr RO(φ);
return Grw;

Verify
RO(·)
dl (φ = (·, Gy1 , Hy2), π)

Gr RO(φ);
Verify that
ê(Gy1 , H) = (G, Hy2) ∧
ê(π, H) = ê(Gr, Hy2);

Sim
RO1(·)
dl (φ = (·, Gy1 , Hy2))

Assert ê(Gy1 , H) = (G, Hy2);
rφ RO1(φ);
return π (Gy1)rφ ;

Fig. 4. A discrete logarithm proof of knowledge Πdl.

Here we have moderately simplified the description from [12]:

– We allow the message m to be unconstrained. Thus if one were to hash
the public protocol view, as current implementations do, our security proof
demonstrates that this approach is valid. However, we can also allow m to be
anything, including the empty string.

– The original protocol has the proof element in G2. We switched it to G1 to
have shorter proofs.

– Our protocol includes the pairing based equality check for y in Gy and Hy in
the verifier rather than relying on this being externally done in the ceremony
protocol. The value Gy is needed by the simulator.

We are now ready to state the security theorem for Πdl.
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Theorem 2. The argument Πdl = (ProveRO(·)
dl ,Verify

RO(·)
dl ,Sim

RO1(·)
dl ) is (i) com-

plete, (ii) perfect zero-knowledge in the random oracle model, and (iii) straight-
line SE in the (RO,d−Poly)-model against algebraic adversaries under the (1, 0)-
dlog assumption in G1.

Proof (sketch). Completeness and perfect zero-knowledge follow directly from
the construction of the prover, verifier, and simulator algorithms. The proof of
straight-line simulation extractability is considerably more challenging and we
provide the proof in the full version of this paper. We only mention the high
level idea here.

We consider security against algebraic adversaries A. Both statement φ ele-
ments (Gy,Hy) and proof π ∈ G1 that A outputs are going to be in the span of
elements that A queried from oracles. Coefficients of those spans are available
in A’s view viewA due to A being algebraic. We construct an extractor EA that
gets viewA as an input and returns the coefficient k corresponding to the ele-
ment RO(φ) = Gr. Rest of the proof focuses on proving that k is the witness y.
Roughly speaking, the idea is to construct a discrete logarithm adversary C that
embeds (a randomized) discrete logarithm challenge Gc into each of the random
oracle queries that A makes. We show that unless k = y, C is able to compute
the discrete logarithm c from viewA with an overwhelming probablity. 
�

5 Groth16 is Ceremonial

We show that Groth16 is ceremonial for a setup ceremony similar to the one
proposed in [12]. In this section, we start by giving an intuitive overview of
the [12] ceremony protocol. After that, we recall the Groth16 argument and
carefully model the ceremony protocol in our security framework.

5.1 Ceremony Overview

We briefly remind the main idea of the [12] ceremony protocol.

– The SRS contains elements of the form e.g. (A1, . . . , An, T ) = (Gx, Gx2
, . . . ,

Gxn

, Gδp(x)) where p(X) is a public polynomial known to all parties, and x
and δ are secret trapdoors.8

– Parties initialize the SRS to (A1, . . . , An, T ) = (G, . . . , G,G).
– In the first phase any party can update (A1, . . . , An) by picking a random x′ ∈

Zp and computing (Ax′
1 , . . . , A

(x′)n

n ). They must provide a proof of knowledge
of x′.

– The value T is publicly updated to Gp(x) given A1, . . . , An.
– In the second phase any party can update T by picking a random δ′ ∈ Zp

and computing T δ′
. They must provide a proof of knowledge of δ′.

8 The polynomial p(X) is introduced only in the scope of this example, and is not
related to QAP.
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In order to prove knowledge of x′ they assume access to a random oracle RO :
{0, 1}∗ → G2 and proceed as follows:

– The prover computes R ← RO(TΠ‖Gx) as a challenge where TΠ is the public
transcript of the protocol.

– Then prover outputs π ← Rx as a proof which can be verified by recomputing
R and checking that ê(G, π) = ê(Gx, R). The original protocol is knowledge
sound under (a variation of) the knowledge of exponent assumption, which
states that if given a challenge R, the adversary outputs (Gx, Rx), then the
adversary knows x.

Our protocol differs from the [12] in a few aspects related to both performance
and security. Additionally to the RO switch to G1 and optionality of including
TΠ in evaluation of RO, which we described in Sect. 4, we remove the update with
the random beacon in the end of each phase. That means that SRS can be slightly
biased, but we prove that it is not sufficient to break the argument’s security. We
consider this to be the biggest contribution of this work since obtaining random
beacons is a significant challenge both in theory and practice. Our approach
completely side-steps this issue by directly proving the protocol without relying
on the random beacon model.

5.2 Formal Description

We present the version of Groth’s SNARK [25] from [12] and adjust the ceremony
protocol to our security framework by defining Update and VerifySRS algorithms
which follow the intuition of the previous section.

Firstly, let us recall the language of Groth’s SNARK. A Quadratic Arithmetic
Program (QAP) is described by a tuple

QAP =
(
Zp, {ui(X), vi(X), wi(X)}m

i=0, t(X)
)

where ui(X), vi(X), wi(X) are degree n − 1 polynomials over Zp, and t(X) is a
degree n polynomial over Zp. Let the coefficients of the polynomials be respec-
tively uij , vij , wij , and tj . We can define the following relation for QAP,

RQAP =

⎧
⎪⎪⎨

⎪⎪⎩
(φ, w)

0 φ = (a0 = 1, a1, . . . , a�) ∈ Z
1+�
p ,

w = (a�+1, . . . , am) ∈ Z
m �
p ,

∃h(X) ∈ Zp[X] of degree ≤ n − 2 such that(∑m
i=0 aiui(X)

) (∑m
i=0 aivi(X)

)
=

∑m
i=0 aiwi(X) + h(X)t(X)

⎫
⎪⎪⎬

⎪⎪⎭
.

In particular, the satisfiability of any arithmetic circuit, with a mixture of public
and private inputs, can be encoded as a QAP relation (see [22] for details).

Groth [25] proposed an efficient SNARK for the QAP relation, which is
now widely used in practice. Bowe et al. [12] modified original argument’s SRS
to make it consistent with their distributed SRS generation protocol. The full
description of the latter argument is in Fig. 5. For the intuition of the construc-
tion, we refer the reader to the original paper by Groth.

We adjust the SRS in Fig. 5 to our model with a ceremony protocols: the
default SRS, update algorithm, and a SRS specialization algorithm are described
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Setup(RQAP): Sample τ = (α, β, , x) $ (Z∗
p)4 and return (srs = (srsu, srss), τ ) s.t.

srsu {Gxi

, Hxi}2n−2
i=0 , {Gαxi

, Gβxi

, Hαxi

, Hβxi}n−1
i=0 ,

srss G , H , {G
βui(x)+αvi(x)+wi(x) }m

i= +1, {G
xit(x) }n−2

i=0 .

Prove(RQAP, srs, {ai}m
i=0): Sample r, s $Zp and return π = (GA, HB, GC), where

A = α + m
i=0 aiui(x) + r , B = β + m

i=0 aivi(x) + s ,

C =
m
i= +1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

+ As + Br − rs .

Verify(RQAP, srs, {ai}i=1, π): Parse π as (GA, HB, GC) and verify that

ê(GA, HB) = ê(Gα, Hβ) · ê(
i=0

Gai(βui(x)+αvi(x)+wi(x)), H) · ê(GC , H ).

Sim(RQAP, srs, τ, {ai}i=1): Return (GA, HB, GC), where

A,B $Zp, C =
AB−αβ− i=0 ai(βui(x)+αvi(x)+wi(x))

Fig. 5. Groth’s zk-SNARK description.

in Fig. 6.9 We obtain the default SRS from the trapdoor τ = (1, 1, 1, 1). The
algorithm Update samples new trapdoors and includes them in the previous
SRS by exponentiation as was described in Sect. 5.1. For example, to update
Gι, where ι is some trapdoor, the updater will sample ι′ and computes (Gι)ι′

.
Depending on the phase number ϕ ∈ {1, 2}, the algorithm will either update srsu
or srss. When updating srsu, we also derive a consistent srss using the Specialize
algorithm10 which essentially computes srss with δ = 1. This fixes a sequential
phase update scenario, since updating srsu after srss overwrites the latter.

Each update is additionally accompanied with an update proof ρ, which
allows us to verify update correctness. For each trapdoor update ι′, ρ contains
Gιι′

(the element of the new SRS), Gι′
, Hι′

, and a NIZK proof of knowledge
πι′ for ι′. Since Gι is part of the previous update proof, we can use pairings
to assert well-formedness of Gιι′

, Gι′
, and Hι′

. The first element of the update
proof duplicates the element of the new SRS, but since we do not store every
updated SRS but only update proofs, we must keep these elements.

Finally, we have a SRS verification algorithm VerifySRS in Fig. 7, that takes
as an input srs and a set of update proofs Q, and then (i) uses pairing-equations
to verify that srs is well-formed respect to some trapdoors, (ii) checks that each
update proof ρ ∈ Q contains a valid NIZK proof of discrete logarithm, and (iii)
uses pairing-equations to verify that update proofs in Q are consistent with srs.

9 Our Groth16 SRS follows [12] and not the original [25]. It additionally contains

{Hxi}2n 2
i=n 2, {Hαxi}n 1

i=1 , and {Hβxi}n 1
i=1 .

10 This generality simplifies our model. In practice srss can be derived using Specialize
only once just before starting phase 2.
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Default SRS: Run Setup in Fig. 5 with τ = (1, 1, 1, 1) to obtain srsd.

Update(RQAP, ϕ ∈ {1, 2}, (srs = (srsu, srss), Q)):
If ϕ = 1:

1. Parse srs
2. Sample
3. For Prove

4.
5.

6.
7.

8. srs

9. srs Specialize QAP
10. return

If ϕ = 2:
11. Parse srs
12. Sample
13. Prove

14.
15. srs

16. return
Specialize(RQAP, srsu): // Computes srss with

17. Parse srs

18. srs

19. return srs

Fig. 6. Default SRS and update algorithm for Groth’s SNARK

In the full version , we show how to make VerifySRS more efficient by using
batching techniques. This will allow to substitute most of pairings in VerifySRS
with significantly cheaper small-exponent multi-exponentiations.

6 Security

We prove the security of Groth’s SNARK from Sect. 5 in our NIZK with a
ceremony framework of Sect. 3.

Theorem 3 (Completeness). Groth’s SNARK has perfect completeness, i.e.,
it has update completeness and prover completeness.

Proof. Let us first make a general observation that if some bitstring s =
(srs, {ρi}i) satisfies VerifySRS(s) = 1, then there exists a unique α, β, x, δ ∈ Z

∗
p

that define a well-formed srs.
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VerifySRSRO(·)(QAP, srs, Q):
1. Parse and
2. Parse and assert

that elements belong to correct groups;
3. For

(a) Parse
(b) For

i. Parse
ii. Assert Verify

iii. If : Assert
4. Assert
5. For : Assert and

6. For and : Assert and

7. Parse and assert that ele-
ments belong to correct groups;

8. For
(a) Parse
(b) Assert Verify

(c) if assert
9. Assert and

10. For : Assert

11. For : Assert , where

Fig. 7. SRS verification algorithm for Groth’s SNARK

Update Completeness: Let A be an adversary that outputs s = (ϕ, srs, {ρi}i)
such that VerifySRS(s) = 1. By the observation above, there exists some
α, β, x, δ ∈ Z

∗
p that map to a well-formed srs. It is easy to observe that by con-

struction Update(QAP, ϕ, (srs, {ρi}i)) picks a new α′, β′, x′ ∈ Z
∗
p (or δ′ if ϕ = 2)

and rerandomizes srs such that the new srs′ has a trapdoor αα′, ββ′, xx′ ∈ Z
∗
p

(or δδ′ ∈ Z
∗
p). Since the srs′ is still well-formed and ρ is computed independently,

VerifySRS(srs′, {ρi}i ∪ {ρ′}) = 1.

Prover Completeness: Suppose that A output (srs, {ρi}i, φ, w) such that
(φ,w) ∈ RQAP, and VerifySRS(srs, {ρi}i) = 1. It follows that srs is a well-formed
SRS for Groth’s SNARK. From here, the prover completeness follows from the
completeness proof in [25]. 
�

Subversion zero-knowledge of Groth’s SNARK was independently proven in
[2] and [17] under slightly different knowledge assumptions. Our approach here
differs only in that we extract the trapdoor from Πdl proofs. For sake of com-
pleteness, we sketch the main idea below.
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Theorem 4 (sub-ZK). If Πdl is a non-interactive proof of knowledge, then
Groth’s SNARK is subversion zero-knowledge.

Proof (sketch). Let Z be a PPT subverter and A an unbounded adversary
in the subversion zero-knowledge definition. We suppose that Z(1λ) outputs
(srs, {ρi}i, st) such that VerifySRS(srs, {ρi}i) = 1. The latter guarantees that srs
is well-formed and that update proofs verify. To prove subversion zero-knowledge,
we need to construct an extractor EZ that give viewZ extracts the simulation
trapdoor for srs. Idea behind EA is that we use straight-line extractability of Πdl

to extract ι1, ..., ιm for ι ∈ {x, α, β, δ} from the proofs {ρi}i and then compute
ι =

∏
i ιi to obtain the trapdoor τ = (x, α, β, δ). Given that EA outputs the

correct trapdoor τ , proofs can be perfectly simulated as is proven in [25]. 
�

6.1 Update Knowledge Soundness

Theorem 5. Let us assume the (2n − 1, 2n − 2)-edlog assumption holds. Then
Groth’s SNARK has update knowledge soundness with respect to all PPT alge-
braic adversaries in the random oracle model.

Proof. Let A be an algebraic adversary against update knowledge soundness and
let us denote the update knowledge soundness game Gameuks by Game0. We con-
struct an explicit white-box extractor EA and prove it to succeed with an over-
whelming probability. The theorem statement is thus AdvGame0

A,EA (λ) = negl(λ).
We assume that A makes at most q1 update queries in phase 1 and at most q2
in phase 2. Often we will use ι to denote any of the elements x, α, β or δ.

EA(viewA)

1. Extract the set of algebraic coefficients Tπ Eagm
A (viewA) and obtain

{Ci:x:j}m1,m
i,j=(1,l+1) from it, corresponding to the elements {(βui(x) + αvi(x) +

wi(x))/ } in the second phase, where m1 is the number of update queries
made in the first phase, and m is the QAP parameter.

2. From viewA deduce icrit2 — Osrs query index that corresponds to the last
honest update in the final SRS.

3. Return coefficients w = {Cicrit2 :x:j}m
j=l+1.

Fig. 8. The extractor EA for update knowledge soundness

Description of the extractor EA. We present the extractor EA on Fig. 8.
The extractor takes the adversarial view viewA as an input and extracts AGM
coefficients from viewA when A produces a verifying proof. The goal of the
extractor is to reconstruct the witness from this information.

The intuition behind its strategy is that, in Prove on Fig. 5, C is constructed
as

∑
i ai(αui(x)+βvi(x)+wi(x))/δ, and we would like to obtain precisely these
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ai as AGM coefficients corresponding to the (αui(x) + . . .)/δ elements of the
final SRS. When A submits the final response (φ, π = (A,B,C)), the proof ele-
ment C ∈ G1 has the algebraic representation, corresponding to following G1

elements: (1) SRS elements that the update oracle outputs, (2) corresponding
update proofs, and (3) direct RO replies. These sets include all the SRS ele-
ments that were produced during the update KS game, not only those that were
included in the final SRS. The coefficient of elements (αui(x) + . . .)/δ that the
extractor needs belong to the first category and in particular correspond to the
second phase updates, since δ is updated there.

Let mϕ be the number of update queries that A makes in phase ϕ ∈ {1, 2}.
We introduce the notion of the critical query—icritϕ ∈ {1, . . . , mϕ} corresponds
to the last honest update that A includes into the finalized SRS in phase ϕ.
Technically, we define it in the following way. For every phase ϕ, the final SRS
is associated with update proofs {ρϕ,i}kϕ

i=1 (contained in Q∗ in Fig. 2) and at
least one of them must be produced by honest update query for finalization to
succeed. Suppose that ρϕ,imax

is the last honest update in that set, that is, the
one with the largest index i. If ρϕ,imax

was obtained as the j-th update query,
then we define icritϕ := j.

The extractor EA can deduce icritϕ , since viewA includes Osrs responses and
Q∗. When EA obtains icrit2 , it merely returns the AGM coefficients (which it can
obtain from viewA since A is algebraic) corresponding to the (αui(x) + . . .)/δ
elements of update oracle response number icrit2 . For now, there is no guarantee
that these elements are in any way connected to the final SRS, but later we show
that EA indeed succeeds.

Description of Game1. We describe Game1, that differs from Game0 in that
one of the honest updates in each phase is a freshly generated SRS instead of
being an update of the input SRS. This simplifies further reasoning (Lemma 4),
and also at a later step we build a reduction B that embeds the edlog challenge
z into the trapdoors of the fresh SRS. For convenience, we describe Game1 in
terms of communication between the challenger C (top-level execution code of
Game1) and A.

C of Game1 maintains an update (current call) counter icall, which is reset to
zero in the beginning of each phase. Before the game starts, C uniformly samples
two values iguess1 and iguess2 , ranging from 1, . . . , q1 and 1, . . . , q2 (upperbounds
on the number of queries) correspondingly, in such a way attempting to guess
critical queries {icritϕ}ϕ. In case the actual number of queries mϕ in a particular
execution of A is less than iguessϕ , C will just execute as in Game0 for phase
ϕ. C will generate fresh SRS for at most two (randomly picked) update queries
through Osrs, and it will respond to all the other update requests from A honestly.
The successful guess formally corresponds to the event lucky, set during SRS
finalization in Game1.

It is not possible for C to generate an update proof for a fresh SRS as in
Game0 because it does not know the update trapdoors ι̂′ for critical queries—
these values do not exist explicitly, since instead of updating an SRS, C generated
a new one. Therefore, it uses a specific technique to simulate update proofs
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using the procedure SimUpdProof. The task of SimUpdProof is to create ρι̂′ =
(Gι̂′

ι̂ , Gι̂′
,H ι̂′

, πι̂′), which is a valid update proof from srs∗ to a freshly generated
srs′. Since C does not actually update srs∗, but creates a completely new one
with zι trapdoors, we have Gzι = Gι̂ι̂′

where ι̂ is the trapdoor value of srs∗ and
ι̂′ is the new update trapdoor. Given the value ι̂ in clear, we can reconstruct Gι̂′

by computing (Gι̂ι̂′
)ι̂−1

= (Gzι)ι̂−1
.

This is the strategy of C: it uses viewA to extract the trapdoors ιj for all the
ku updates that led to srs∗ϕ, and thus obtains ι̂. Notice that these updates can
be both honest and adversarial, but importantly, none of them are simulated
(because we perform this procedure only once per phase), which guarantees that
extraction succeeds. Next, SimUpdProof computes a product ι̂ of these extracted
values, and using its inverse produces (Gι̂′

,H ι̂′
), which are the second and third

elements of the update proof. The first element of ρι̂′ is just an element of the
new SRS (e.g. for ι = x, it is Gι′

x:1, and for ι ∈ {α, β} it is Gι′
ιx:0), so we set

the value to Gzι . The last element, the proof-of-knowledge of ι̂′, we create by
black-box simulation, since Πdl is perfectly ZK. Namely, since the challenger
already has φdl = (⊥, Gι̂′

,H ι̂′
), it passes it into Simdl, and attaches the resulting

πι′ to the update proof. Since we know zι in Game1 (and therefore know φdl

exponent ι̂′), it is not necessary to simulate the proof in Game1—technically,
the procedure only requires Gzι . However, simulation will be critical in the final
part of our theorem, reduction to edlog, since in that case zι contains embedded
edlog challenge for which the challenger does not know the exponent. This is
why we introduce it here in Game1.

We prove in the full version of this paper that the game Game1 that
we introduced is indistinguishable from Game0 for A by relying on the zero-
knowledge and simulation-extractability properties of Πdl. We recall that (1, 0)-
dlog assumption is implied by (2n − 1, 2n − 2)-edlog assumption.

Lemma 3. Assuming (1, 0)-dlog, the difference between advantage of A in win-
ning Game0 and Game1 is negligible: AdvGame0

A,EA (λ) ≤ AdvGame1
A,EA (λ) + negl(λ).

Reconstructing the Proof Algebraically. For the next steps of our proof
we will need to be able to reconstruct the proof elements, and the verification
equation generically from the AGM coefficients we extract from A. Almost all
the elements that A sees depend on certain variables �Ψ that are considered
secret for the adversary (update trapdoors, RO exponents, critical query honest
trapdoors). Since A can describe proof elements A,B,C as linear combinations of
elements it sees, that depend on �Ψ , we are able to reconstruct the proof elements
as functions A(�Ψ), B(�Ψ), C(�Ψ) (Laurent polynomials, as we will show later).
That is, for the particular values �ψ that we chose in some execution in Game1,
A(�ψ) = A (but we can also evaluate A(�Ψ) on a different set of trapdoors). From
these functions A(�Ψ), B(�Ψ), C(�Ψ) one can reconstruct a SNARK verification
equation Q(�Ψ), such that Verify(ψ, π) = 1 ⇐⇒ Q(�ψ) = 0.

We note that it is not trivial to obtain the (general) form of these functions,
because it depends on viewA—different traces produce different elements that A
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sees, which affects with which functions these elements are modelled. Therefore,
we start by defining which variables are used to model elements that A sees.

We denote by �Ψ this set of variables which are unknown to A. This includes,
first and foremost, the set of trapdoors that are used for the (critical) simulation
update queries: Zx, Zα, Zβ , Zδ (these abstract the corresponding trapdoors {zι}).
To denote the expression that includes final adversarial trapdoors ιAj , we will
use Ẑι that is equal to the previously defined Zι, but now as a function of Zι:
Ẑι(Zι) = Zι

∏
ιAj for ι ∈ {x, α, β}, and Ẑδ(Zδ) = Zδ/

∏
δA
j .11

The full list of variables that constitute �Ψ is the following:

1. Critical honest trapdoor variables: Zα, Zβ , Zx, Zδ.
2. Honest (non-critical) update trapdoors �T = {Ti,ι}.
3. RO replies, which we, for convenience of indexing, split into three disjoint

sets:
– RO values for the critical queries �K = {Kι}x,α,β,δ: these RO replies are

used in PoK simulation by Game1.
– RO values for honest update proofs �RT = {RT :i:ι}i,ι. First phase update

query number i ∈ {1, . . . , m1} corresponds to three values RT :i:x, RT :i:α,
RT :i:β , and second phase update query number j ∈ {1, . . . , m2} corre-
sponds to RT :j:δ.

– RO responses �RA that A directly requests from RO. These are used by A,
in particular, but not only, to create PoKs for adversarial SRS updates.

We denote by �R = �RA ∪ �RT . Therefore, �Ψ = ({Zι}ι, �K, �T , �R). Since we will be
often working only with the first set of variables {Zι}, we will denote it as �Ψ2,
and all other variables from �Ψ as �Ψ1.

Success in Lucky Executions. In general, the set structure of Q(�Ψ) can vary
enormously, and it depends on many things, including the way A interacts with
the challenger. Each interaction can present a different set of coefficients in A
that will be modelled by different functions. Therefore, we would like to take
advantage of the lucky event to simplify our reasoning and reduce the space of
possible interactions.

We claim that lucky is independent from A’s success in Game1. In other
words, in order to win Game1 it suffices to only show the existence of a witness
extractor in the case where the lucky indices correspond to A’s critical queries.

AdvGame1
A,EA (λ) = Pr[GameA,EA

1 (1λ) = 1] = Pr[GameA,EA
1 (1λ) = 1 | lucky]

where q1 and q2 are polynomially bounded. Indeed, A is blind to whether we sim-
ulate or not, and so we can assume independence of events: Pr[GameA,EA

1 (1λ) =
1 | simi] is the same for all simulation strategies simi, including the lucky one.

11 If Ẑι is not equal Zι

∏
ιA
j as a function we have Ẑι(Ψ) − Zι

∏
ιA
j �= 0 but Ẑι(ψ) −

zι

∏
ιA
j ≡ 0 for ι ∈ {x, α, β, δ}, and we break the (2n − 1, 2n − 2)-edlog problem as

in Lemma 6.



122 M. Kohlweiss et al.

AdvGame1
A,EA (λ) =

q1q2∑

i=0

Pr[GameA,EA
1 (1λ) = 1 | simi]

1
q1q2

=
1

q1q2

∑

i

Pr[GameA,EA
1 (1λ) = 1 | lucky] = Pr[GameA,EA

1 (1λ) = 1 | lucky]

Our choice of {iguessϕ}ϕ, and thus the chosen simulation strategy simi is
independent from the success of A. This does not imply that we ignore some
traces of A, which would break the reduction. Instead, for each possible trace
of A, and thus each possible way it communicates with the challenger and the
oracles, we only consider those executions in which we guess the indices correctly.

Defining the Function Q(�Ψ) for Game1. Therefore, when in Game1 the chal-
lenger guesses critical queries correctly (lucky), and A returns a verifying proof,
the complexity is greatly simplified, and we can now define at least the high-level
form of the function Q:

Q(�Ψ) :=

(
A(�Ψ)B(�Ψ)−ẐαẐβ−


∑

i=0

ai(Ẑβui(Ẑx)+Ẑαvi(Ẑx)+wi(Ẑx))−C(�Ψ)Ẑδ

)

(1)
such that GA(�ψ) = A and similarly for B and C, where �ψ is the concrete set of
secret values used for a particular execution.12 The function Q(�Ψ) reconstructs
verification equation of the proof in this particular game execution: in particular,
Q(�ψ) = 0 ⇐⇒ Verify(srs, φ, π) = 1.

Note that the form of functions A(�Ψ), B(�Ψ), and C(�Ψ) depends on the inter-
action with A, and thus on the particular execution trace. But the general form
of Q we have just specified is enough to argue the critical lemmas. The proof of
the following Lemma, which shows exactly that, is deferred to the full version.

Lemma 4. In Game1, conditioned on event lucky, the general form of the func-
tion Q(�Ψ) reconstructing the main verification equation is as presented in Eq. 1,
under (2n − 1, 2n − 2)-edlog. Moreover, A,B,C are Laurent polynomials in �Ψ2

when viewed over Zp[�C, �Ψ1], where �C are AGM coefficients, abstracted as vari-
ables. In other words, A,B,C ∈ (Zp[�C, �Ψ1])[�Ψ2] are Laurent. Therefore, Q also
is Laurent when viewed as (Zp[�C, �Ψ1])[�Ψ2] element.

Description of Game2. The following game, presented on Fig. 9 extends Game1
with two additions. Firstly, it introduces the event bad. The condition that we
are trying to capture is whether A uses the elements that depend on trapdoors
12 The form of the proof-independent parts of the verification equation is due to our

critical-step-simulation strategy that we introduce in Game1. That is, these values
they only depend on the challenge variables Zι plus last adversarial trapdoors (e.g.∏

αA
i etc.). This is where guessing the last query really helps: otherwise these terms

would also depend on Ψ1, e.g. on �T .
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GameA,EA
2 (1λ)

srs srsd, ϕ = 1,
Q1, Q2 ; icall 0; iguess1 $ [0, q1]; iguess2 $ [0, q2]; {zι}ι∈{x,α,β, $Zp;
ROt, Osrs and SimUpdProof are constructed as in Game1;
(φ, π) Osrs,RO;
w

∅

A
EA(viewA);

bad := lucky ∧ Q(ψ1, {zι}) = 0 ∧ Q(ψ1, {Zι}) 0

return Verify(srs, φ, π) = 1 ∧ (φ,w) /∈ R ∧ ϕ > ϕmax ∧ lucky;

Fig. 9. Description of Game2, an extension of Game1 with bad event. Q(�Ψ1, �Ψ2) is the
function (Laurent polynomial in �Ψ2) that corresponds to the way to reconstruct π and
verification equation, where Ψ2 corresponds to the trapdoor variables {Zι}.

zι blindly or not. When bad does not happen, the adversary is constructing
π in such a way that it works for any value of z′

ι (Q(ψ1, {Zι}) is a zero as
a polynomial). Otherwise, we can argue that A’s cheating strategy depends on
the specific value of zι, even though it is hidden in the exponent (Q(ψ1, {zι}) = 0,
but Q(ψ1, {Zι}) is a non-zero polynomial).

Secondly, we require that adversary wins only if the event lucky hap-
pens. Since lucky is an independent event, then Pr[GameA,EA

2 (1λ) = 1] =
Pr[GameA,EA

1 (1λ) = 1 ∧ lucky] = Pr[GameA,EA
1 (1λ) = 1]/(q1q2). The last tran-

sition is due to independence of winning Game1 and lucky explained earlier
(Pr[GameA,EA

1 (1λ) = 1] = Pr[GameA,EA
1 (1λ) = 1 | lucky]). We can use the total

probability formula to condition winning in Game2 on the event bad.

Pr[GameA,EA
2 (1λ) = 1] = Pr[GameA,EA

2 (1λ) = 1 | ¬bad] · Pr[¬bad]

+ Pr[GameA,EA
2 (1λ) = 1 | bad] · Pr[bad]

≤Pr[GameA,EA
2 (1λ) = 1 | ¬bad] + Pr[bad].

The next two lemmas will upperbound this probability. The Lemma 5 will bound
the first term of the sum and the Lemma 6 bounds the second term.

Extractor Succeeds in Good Executions. In this subsection we present a
lemma, that states that whenever C guesses the critical indices correctly, and
event bad does not happen, the output of the extractor EA is a QAP witness.
The proof of Lemma 5 is presented in the full version of this paper.

Lemma 5. In Game2, when ¬bad happens and A produces a verifying proof,
then EA succeeds: Pr[GameA,EA

2 (1λ) = 1 | ¬bad] = negl(λ).

Description of the EDLOG Reduction. We show that the event bad can
only happen with a negligible probability by making a reduction to the edlog
assumption. If A triggers bad, then it could construct a proof in a manner that
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is specific to the SRS �ψ2 and does not generalize to any other �ψ′
2. This means

that A has knowledge of the exponent element, which is impossible assuming
edlog. The proof of the following lemma is delayed to the full version.

Lemma 6. The probability of bad in Game2 is negligible under the (2n−1, 2n−
2)-edlog assumption.

Now, combining the results of Lemma 5 and Lemma 6 with previous game
transitions:

Pr[GameA,EA
0 (1λ) = 1] ≤ Pr[GameA,EA

1 (1λ) = 1] + negl(λ)

= (q1q2) Pr[GameA,EA
2 (1λ) = 1] + negl(λ)

≤ (q1q2)
(
Pr[GameA,EA

2 (1λ) = 1 | ¬bad] + Pr[bad]
)
+ negl(λ)

= (q1q2)(negl(λ) + negl(λ)) + negl(λ) = negl(λ)

This concludes the proof of the update knowledge soundness theorem. 
�
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Abstract. Significantly extending the framework of (Couteau and Hart-
mann, Crypto 2020), we propose a general methodology to construct
NIZKs for showing that an encrypted vector χ belongs to an algebraic
set, i.e., is in the zero locus of an ideal I of a polynomial ring. In the case
where I is principal, i.e., generated by a single polynomial F , we first
construct a matrix that is a “quasideterminantal representation” of F
and then a NIZK argument to show that F (χ) = 0. This leads to com-
pact NIZKs for general computational structures, such as polynomial-
size algebraic branching programs. We extend the framework to the case
where I is non-principal, obtaining efficient NIZKs for R1CS, arithmetic
constraint satisfaction systems, and thus for NP. As an independent
result, we explicitly describe the corresponding language of ciphertexts
as an algebraic language, with smaller parameters than in previous con-
structions that were based on the disjunction of algebraic languages. This
results in an efficient GL-SPHF for algebraic branching programs.

Keywords: Algebraic branching programs · Algebraic languages ·
Algebraic sets · NIZK · Pairing-based cryptography · SPHF · Zero
knowledge

1 Introduction

Zero-knowledge arguments are fundamental cryptographic primitives allowing
one to convince a verifier of the truth of a statement while concealing all further
information. A particularly appealing type of zero-knowledge arguments, with a
wide variety of applications in cryptography, are non-interactive zero-knowledge
arguments (NIZKs) with a single flow from the prover to the verifier.

Early feasibility results from the 90’s established the existence of NIZKs
for all NP languages (in the common reference string model) under standard
cryptographic assumptions. However, these early constructions were inefficient.
In the past decades, a major effort of the cryptographic community has been
directed towards obtaining efficient and conceptually simple NIZK argument
systems for many languages of interest. Among the celebrated successes of this
line of work are the Fiat-Shamir (FS) transform, which provides simple and
efficient NIZKs but only offers heuristic security guarantees, and pairing-based
NIZKs such as the Groth-Sahai proof system [21] (and its follow-ups).
c© International Association for Cryptologic Research 2021
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The Quest for Efficient and Conceptually Simple NIZKs. The Groth-
Sahai NIZK proof system was a major breakthrough in this line of work, pro-
viding the first provably secure (under standard pairing assumptions) and rea-
sonably efficient NIZK for a large class of languages, capturing many concrete
languages of interest. This proof system initiated a wide variety of cryptographic
applications, and its efficiency was refined in a sequence of works. Unfortunately,
the efficiency of Groth-Sahai proofs often remains unsatisfying (typically much
worse than NIZKs obtained with Fiat-Shamir), and building an optimized Groth-
Sahai proof for a specific problem is an often tedious process that requires con-
siderable expertise. This lack of conceptual simplicity inhibits the potential for
large-scale deployment of this proof system. Therefore, we view it as one of the
major open problems in this line of work to obtain an efficient proof system
where constructing an optimized proof for a given statement does not require
dedicated expertise. The Fiat-Shamir transform offers such a candidate – and as
a consequence, it has seen widescale adoption in real-world protocols – but lacks
a formal proof of security. The recent line of work on quasi-adaptive NIZKs offers
simultaneously simple, efficient, and provably secure proof systems, but these are
restricted to a small class of languages – namely, linear languages. Some recent
SNARK proof systems also offer generic and efficient methods to handle a large
class of languages given by their high-level description; however, they all rely on
very strong knowledge-of-exponent style assumptions.

The Couteau-Hartmann Argument System. Very recently, Couteau and
Hartmann put forth a new framework for constructing pairing based NIZKs [9].
At a high level, their approach compiles a specific interactive zero-knowledge
proof into a NIZK (as does Fiat-Shamir), by embedding the challenge in the
exponent of a group equipped with an asymmetric pairing. The CH argument
system enjoys several interesting features:

– It generates compact proofs, with efficiency comparable to Fiat-Shamir argu-
ments, with ultra-short common reference strings (a single group element);

– It has a conceptually simple structure, since it compiles a well-known and
simple interactive proof;

– It handles a relatively large class of algebraic languages [5,8], which are
parameterized languages of the shape LΓ ,θ = {x : ∃w,Γ (x) ·w = θ(x)}, where
x is the input, w is the witness, Γ and θ are affine maps, such that x and
θ(x) are vectors and Γ (x) is a matrix. We call (θ,Γ ) the matrix description
of the language L. Since any NP language can be embedded into an algebraic
language1, this gives a proof system for all of NP.

These features make the CH argument system a competitive alternative to Fiat-
Shamir and Groth-Sahai in settings where efficiency and conceptual simplicity
are desirable while maintaining provable security under a plausible, albeit new,
assumption over pairing groups. In a sense, Couteau-Hartmann achieves a sweet
spot between efficiency, generality, and underlying assumption.
1 The classical approach to do so for circuit satisfiability uses algebraic commitments

to all values on the wire of the circuit; then the statement “all committed values are
consistent and the output is 1” is an algebraic language.
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Limitations of the CH Argument System. The CH transformation offers
attractive efficiency features, but its core advantage is (arguably) its conceptual
simplicity. As many previous works pointed out (see e.g. [25]), what “real-world”
protocol designers need is a method that can easily take a high-level description
of a language, and “automatically” generate a NIZK for this language without
going through a tedious and complex process requiring dedicated expertise. Ide-
ally, both the process of generating the NIZK description from the high-level
language and the NIZK itself should be efficient.

With this in mind, CH provides an important step in the right direction,
where producing the NIZK for any algebraic language is a straightforward generic
transformation applied to its matrix description. However, it falls short of fully
achieving the desired goal for two reasons.

First, it does not entirely remove the need for dedicated expertise from the
NIZK construction; rather, it pushes the complexity of building the NIZK to that
of finding its matrix description given a higher-level description of an algebraic
language. However, it does not provide a characterization of which languages,
given via a common higher-level description, are algebraic, neither does it give
a method to construct their matrix description2.

Second, the CH-compilation produces NIZKs whose soundness reduces to an
instance of the novel ExtKerMDH family of assumptions. However, the particular
assumption will only be falsifiable in the much more restricted setting of witness-
samplable algebraic languages, which essentially seem to capture disjunctions
of linear languages. Couteau and Hartmann focused on NIZKs based on the
falsifiable variant, which severely limits the class of languages captured by the
framework. It is much more desirable to base the security of all NIZKs produced
by this framework on a single, plausible, well-supported assumption: this would
avoid protocol designers the hurdle of precisely assessing the security of the
specific flavor of the ExtKerMDH assumption their particular instance requires.

1.1 Our Contribution

We overcome the main limitations of the CH argument system. Our new app-
roach, which significantly departs from the CH methodology, allows us to pro-
duce compact NIZKs for a variety of languages, with several appealing features.

A General Framework. We provide a generic method to compute, for sev-
eral important families of languages, a different matrix description of the
languages. We then construct a NIZK. We implicitly use the CH-compiler
but in a way, different from [9]. We focus on the important setting
of commit-and-prove NIZK argument systems, i.e. languages of the form
{Com(x1), . . . ,Com(xn) | R(x1, . . . , xn)}, where R is some efficiently computable
relation. Our method allows us to automatically obtain a compact matrix
description for many types of high-level relations.

2 While we can always embed any language in an algebraic language, this can be
inefficient; the CH proof system is efficient when the language is “natively” algebraic.
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New NIZKs: Improved Efficiency or Generality. As a first byproduct, we obtain
improved NIZKs for some important statements, such as set membership (see
Table 1) or the language of commitments to points on an elliptic curve3, as well
as new NIZKs for very general classes of statements, such as R1CS, arithmetic
constraint satisfaction systems (and thus for NP).

A Weaker Unified Assumption. As the second byproduct of our formal approach,
we manage to base all NIZKs in our framework on a slightly weaker form of
the extended Kernel Diffie-Hellman assumption, which we call the CED (family
of) assumption(s) (for Computational Extended Determinant assumption). This
turns out to have an important consequence: we show that all instances of our
assumption can be based on a single plausible gap assumption, which states
that solving the kernel Diffie-Hellman assumption in a group G2 (a well-known
search assumption implied in particular by DDH) remains hard, even given a
CDH oracle in a different group G1. On top of it, several of our NIZKs (like the
one for Boolean Circuit-SAT) are based on a falsifiable CED assumption, while
we also show that a slight modification of the NIZK for arithmetic circuits can
be also based on a falsifiable variant of CED.

New SPHFs. Eventually, as another byproduct of our methodology, we obtain
constructions of Smooth Projective Hash Functions (SPHFs) [17] for new lan-
guages (SPHFs were the original motivation for introducing the notion of alge-
braic language, and [5] gives a generic construction of SPHFs given the matrix
description of an algebraic language), including languages describable by efficient
algebraic branching programs.

1.2 Efficiency, Generality, and Security of Our NIZKs

The argument of Couteau and Hartmann [9] improves over (even optimized vari-
ants of) the standard Groth-Sahai approach on essentially all known algebraic
languages. Couteau and Hartmann illustrated this by providing shorter proofs
for linear languages (Diffie-Hellman tuples, membership in a linear subspace)
and OR proofs (and more generally, membership in t out of n possibly differ-
ent linear languages), two settings with numerous important applications (to
structure-preserving signatures, tightly-secure simulation-sound NIZKs, tightly-
mCCA-secure cryptosystems, ring signatures...). Our framework builds upon
the Couteau-Hartmann framework, provides a clean mathematical approach to
overcoming its main downside (which is that the matrix description of “algebraic
languages” must be manually found), and significantly generalizes it. Our frame-
work enjoys most of the benefits of the Couteau-Hartmann framework, such as
its ultra-short common random string (a single random group element).

Efficiency. Our framework shines especially as soon as the target language
becomes slightly too complex to directly “see” from its description an appropri-
ate and compatible matrix description C of the language; then, we get significant
3 NIZKs for this type of languages have recently found important applications in

blockchain applications, such as the zcash cryptocurrency, see [25] and https://z.
cash/technology/jubjub/.

https://z.cash/technology/jubjub/
https://z.cash/technology/jubjub/
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Table 1. Comparison of set-membership proofs, i..e., NIZKs for Lpk,F , where F (X) is
univariate, as in Lemma 7and 8and an additional lemma in the full version [10]. The
verifier’s computation is given in pairings. The Groth-Sahai computation figures are not
published and based on our own estimation; hence, we have omitted the computation
cost. Note that |G2| = 2|G1| in common settings. In CHM and new NIZK, |crs| = |G2|.

Argument |π| P comp. V comp.
Previous works

Optimized GS [33] d|G1| + (3d + 2)|G2| - -
CHM NIZK + [9] (Γ , θ), full version [10] (3d − 1)|G1| + (3d − 2)|G2| (7d − 4)e1 + (3d − 1)e2 9d − 2

New solutions
CHM NIZK + new Γ , θ, Lemma 8 2d|G1| + (2d − 1)|G2| (5d − 3)e1 + 4de2 7d − 1
New NIZK, Lemma 7 2d|G1| + (2d − 1)|G2| ≤ 3de1 + (4d − 2)e2 7d − 1

efficiency improvements. We illustrate this on a natural and useful example: set
membership proofs for ElGamal ciphertext over G1 (i.e., the language of ElGa-
mal encryptions of m ∈ S for some public set S of size d), see Table 1. It depicts
the complexity of optimized Groth-Sahai proofs, the generic Couteau-Hartmann
compilation of Maurer’s protocol (denoted CHM) by using the language param-
eters (Γ ,θ) provided in [9], CHM NIZK for (Γ ,θ) automatically derived in the
current paper from the matrix description C, and our new NIZK. On the other
hand, our modular approach provides significantly shorter proofs. Taking e.g.
d = 5, we get a proof about 25% shorter compared to Groth-Sahai. Our app-
roach also significantly improves in terms of computational efficiency. Moreover,
since in our approach, we need to only encrypt the data in a single group, as
opposed in two groups in the case of (asymmetric-pairing-based) Groth-Sahai,
we have three times shorter commitments. In Sect. 8.2, we also discuss the case
of multi-dimensional set membership proofs (where, depending on the structure
of the set, our framework can lead to even more significant improvements).

Generality. Our framework also goes way beyond the class of languages natu-
rally handled by Couteau-Hartmann. In particular, we show that our framework
directly encompasses arithmetic constraint satisfaction systems (aCSPs), i.e.,
collections of functions F1, . . . , Fτ (called constraints) such that each function
Fi depends on at most q of its input locations.4 In particular, this efficiently
captures arithmetic circuits, hence all NP languages.5

Rank-1 constraints systems (R1CS) are well-known to be powerful, since
they capture compactly many languages of interest [16]. They have been widely
used in the construction of SNARKs. aCSPs directly extend these simple con-
straints to arbitrary low-degree polynomial relations. Moving away from R1CS
to more expressive constraint systems can potentially be very useful: in many
4 That is, for every j ∈ [1, τ ] there exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that

∀χ ∈ F
n, Fj(χ) = f(χi1 , . . . , χiq ). Then F is satisfiable if ∀j, Fj(χ) = 0.

5 Technically, one could always take aCSPs, write them as a circuit satisfiability prob-
lem, and embed that into an agebraic language to capture it with the Couteau-
Hartmann framework; the point of our framework is that, by capturing this powerful
model directly, we can obtain much better efficiency on aCSPs.
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applications of NIZKs with complex languages, an important work is dedicated
to finding the “best” R1CS to represent the language. The increased flexibil-
ity of being allowed to handle more general constraints can typically allow to
achieve a significantly more efficient solution. While systematically revisiting
existing works and demonstrating that their R1CS system could be improved
using aCSPs would be out of the scope of this paper, we point out that this
generalization approach was successfully applied in the past: the work of [22]
described a method to go beyond R1CS in “Bulletproof style” random-oracle-
based NIZKs (this setting is incomparable to ours, as we focus on NIZKs in
the standard model). They show how to handle general quadratic constraints,
and demonstrate that this leads to efficiency improvements over Bulletproof on
aggregate range proofs. Since aCSPs are even more general, handling any low-
degree polynomials, we expect that this representation could lead to significant
optimizations for many applications of NIZKs that rely on R1CS representa-
tions. However, we are aware of no previous random-oracle-less NIZKs that can
handle aCSPs natively.

Furthermore, even in scenarios where R1CS does indeed provide the best pos-
sible representation, our framework leads to proofs more compact than Groth-
Sahai. We illustrate this on Table 2 for the case of general boolean circuits.
Here, the standard GOS approach [20] reduces checking each gate of the circuit
to checking R1CS equations. When comparing the cost obtained with our frame-
work to the cost achieved by a Groth-Sahai proof (using the optimized variant
of [18]), we find that our framework leads to three times smaller commitments,
20% shorter argument, and almost a factor two reduction in computation.

On the Non-falsifiability of Our Assumption. When the algebraic branch-
ing program representation of the relation is multivariate, the corresponding
matrix description may lead to a NIZK under a non-falsifiable assumption. This
might appear at first sight to significantly restrict the interest of our framework:
while our NIZKs are typically more efficient than Groth-Sahai, they are usually
larger than SNARKs since they grow linearly with (the algebraic branching pro-
gram representation of) the relation, while SNARKs have size independent of
both the relation and the witness. Hence, if we allow non-falsifiable assumptions,
wouldn’t SNARKs provide a better solution?

We discuss this apparent issue in Sect. 10. First, we identify a large class
of important cases where the underlying assumption becomes falsifiable; this
includes Boolean circuits (and thus NP). Second, we provide a general app-
roach to transform any NIZK from our framework into NIZKs under a falsifiable
assumption, by replacing the underlying commitment scheme by a DLIN-based
encryption scheme and double-encrypting certain values. This comes at the cost
of increasing the commitment and argument size. Third, we argue that the gap
assumption [30] underlying our framework is, despite its non-falsifiability, a very
natural and plausible assumption; see Sect. 10 for more details. In particular,
gap assumptions are generally recognized as much more desirable than knowl-
edge of exponent assumptions. In essence, our assumption says that uncovering
structural weaknesses in a group G1 does not necessarily imply the existence
of structural weaknesses in another group G2; in particular, this assumption
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trivially holds in the generic bilinear group model (where a CDH oracle in G1

provides no useful information for breaking any assumption in G2).
Overall, we view our framework as providing a desirable middle ground

between Groth-Sahai (which leads to less efficient NIZKs, but under the stan-
dard SXDH assumption) and SNARKs (which lead to more efficient NIZKs in
general but require highly non-standard knowledge of exponent assumptions).

1.3 Technical Overview

Intuitive Overview. At a high level, the Couteau-Hartmann methodology com-
piles a Σ-protocol for languages of the form {x : ∃w,Γ (x) · w = θ(x)}, where
(Γ ,θ) are linear maps, into a NIZK. This leaves open, however, the tasks of
characterizing which languages admit such a representation, finding such a rep-
resentation, and when multiple representations are possible optimizing the choice
of the representation. We provide a blueprint for these tasks.

We focus on commit-and-prove languages, a large and useful class of lan-
guages. At the heart of our techniques is a general method to convert a set
of low-degree polynomial equations Fi(X) into a set of “optimized” matrices
Ci(X) such that det(Ci(X)) = Fi(X) with a specific additional structure. We
call this matrix a quasideterminental (QDR) representation of the polynomial.
Then, we directly construct a compact NIZK proof system for a QDR, using
a variant of the Couteau-Hartmann methodology. We prove that the resulting
proof system is sound under a CED assumption. Whenever Fi has a polynomial
number of roots (e.g., univariate), the corresponding CED assumption is always
falsifiable.

Constructing a QDR from a polynomial is a non-trivial task that highly
depends on the representation of Fi. We provide a general framework to construct
such QDRs from the algebraic branching program (ABP [29]) representation of
Fi; hence, our framework is especially suited whenever the polynomials have a
compact ABP representation. ABP is a powerful model of computation, cap-
turing in particular all log-depth circuits, boolean branching programs, boolean
formulas, logspace circuits, and many more.

Background. The rest of the technical overview requires understanding of some
minimal background from algebraic geometry, see [11] for more. Let F = Zp and
X = (X1, . . . , Xν). For a set F of polynomials in F[X], let A(F) := {χ ∈ F

ν :
f(χ) = 0forallf ∈ F} be the algebraic set defined by F . A subset A ⊆ F

ν

is an algebraic set if A = A(F) for some F . Given a subset A of Fν , let I(A)
be the ideal of all polynomial functions vanishing on A, I(A) := {f ∈ F[X] :
f(χ) for all χ ∈ A}. Since each ideal of F [X] is finitely generated [11], then so
is I(A), and thus I(A) = 〈F1, . . . , Fτ 〉 for some Fi. I is principal if it is generated
by a single polynomial. All univariate ideals are principal. For an ideal I with
generating set {Fi}, A(I) := A({Fi}). We also define Z(F ) := A({F}).

Commit-and-Prove NIZKs for Algebraic Sets. For the sake of concrete-
ness, we focus on commit-and-prove languages where the underlying commitment
scheme is the ElGamal encryption scheme; it is easy to extend this approach
to any additively homomorphic and perfectly binding algebraic commitment
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scheme. Let pk be an Elgamal public key and let A be an algebraic set. We pro-
vide a general methodology of constructing a NIZK argument for the language
Lpk,A = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧χ ∈ A} of Elgamal-encryptions
of elements of A. We define Lpk,F := Lpk,Z(F ) when we are working with a single
polynomial. Assuming I(A) = 〈F1, . . . , Fτ 〉, we prove that χ ∈ A by proving that
Fi(χ) = 0 for each Fi. The resulting argument system is efficient (probabilistic
polynomial-time), assuming that there is

(i) an efficient algorithm (to be run only once) that finds a small generating set
(F1, . . . , Fτ ) for I(A) where τ = poly(λ), and

(ii) an efficient NIZK argument system to show that Fi(χ) = 0 for each Fi.

Note that the NIZK for showing that Fi(χ) = 0 for each i is a simple conjunction
of NIZKs for showing for each i that Fi(χ) = 0.

Now, i is a non-cryptographic problem from computational commutative alge-
bra. The classical Buchberger-Möller algorithm [27] can find efficiently a finite
Gröbner basis {Fi} for all algebraic sets A that have a finite Gröbner basis.
Other methods exist, and we will only mention a few. Most importantly, one
can relate i to finding efficient arithmetic circuits and arithmetic constraint sat-
isfaction systems (aCSPs), see Sect. 8.1. The main technical contribution of our
work (on top of the general framework) is to propose an efficient solution to ii.

Constructing a Compact Proof System for F (χ) = 0. Here, we follow the
next blueprint: we construct

(iii) a small matrix C(X) (that satisfies some additional properties) of affine
maps, such that det(C(X)) = F (X), and

(iv) an efficient NIZK argument system for showing that det(C(χ)) = 0 for
committed χ.

To solve iv, we build upon the new computational extended determinant assump-
tion (CED). The CED assumption is a relaxation of the ExtKerMDH assumption
from [9], which itself is a natural generalization of the Kernel Diffie-Hellman
assumption. At a high level, CED says that given a matrix in a group G2, it is
hard to find an extension of this matrix over G2, together with a large enough
set of linearly independent vectors in G1 in the kernel of the extended matrix
(where (G1,G2) are groups equipped with an asymmetric pairing). While CED
is not falsifiable in general, it can be reduced to a natural gap assumption. The
latter reduction does not work with the ExtKerMDH assumption.

Our reduction to the CED assumption proceeds by identifying the matrix C,
returned by the CED adversary, with the matrix C(X) from iii. Intuitively,
we construct a reduction that, knowing the Elgamal secret key sk, extracts
[(γ‖C)(χ)]1, where [χ]1 = Decsk([ct]1), such that C(χ) has full rank iff the
soundness adversary cheated, i.e., F (χ) 	= 0. In that case, the reduction can
obviously break the CED assumption.

To ensure that the NIZK argument can be constructed, we require that C
satisfies two additional properties. Briefly,(1) C(X) is a matrix of affine maps,
(to ensure that the matrix is computable from the statement) and (2) the first
column of C(χ) is in the linear span of the remaining columns of the matrix
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for any χ ∈ Z(F ) (a technical condition which ensures that an honest prover
can compute the argument). We say that then C(X) is a quasideterminantal
representation (QDR) of F . We also give some conditions which make it easier
to check whether a given matrix is a QDR of F .

Building NIZKs from QDRs. Assuming C(X) is a QDR of F , we propose
a linear-algebraic NIZK argument Πnizk for showing that x ∈ Lpk,F . We prove
that Πnizk is sound under a CED assumption. Importantly, CED is falsifiable if
A = A(F ) has a polynomial number of elements. Otherwise, CED is in general
non-falsifiable (except in some relevant cases, see Sect. 10), but belongs to the
class of “inefficient-challenger” assumptions (usually considered more realistic
than knowledge assumptions, see [31]). Furthermore, CED can be reduced to a
single, natural gap assumption: the hardness of breaking DDH in a group G2

given a CDH oracle in a different group G1. We refer to Sect. 10.2 for more
details.

Constructing QDRs. The remaining, highly non-trivial, problem is to con-
struct a QDR of F , such that the constructed NIZK argument is efficient. In the
rest of the paper, we study this problem.

First, we propose a general framework to construct NIZK arguments for Lpk,F

where F (χ) can be computed by an efficient algebraic branching program. Let Π
be an ABP that computes F , with the node set V and the edge set E, and let
� = |V | − 1. Given the methodology of [23,24], one can represent Π as an � × �
matrix IK(X), such that det(IK(X)) is equal to the output of the ABP. We show
that such IK(X) is a QDR. Thus, we obtain an efficient computationally-sound
NIZK for Lpk,F under a CED assumption.

Applications. We consider several natural applications of our framework.

Univariate Polynomials. Given a univariate polynomial F (X) =
∏

(X − ξi) of
degree-d, for different roots ξi, we construct a simple matrix C(X). The resulting
NIZK argument is about 30% shorter and 20% more computationally efficient
than the set membership proof that stems from [9, Section C]; see the comparison
in Table 1.

Commitments to Points on an Elliptic Curve. We construct a NIZK argument to
prove that the committed point (X,Y ) belongs to the given elliptic curve Y 2 =
X3 + aX + b. Such NIZK proofs are popular in cryptocurrency applications, [4].
The construction of C(X,Y ) is motivated by a classical algebraic-geometric
(possibility) result that for any homogeneous cubic surface F (X,Y,Z), there
exists a 3 × 3 matrix of affine maps that has F (X,Y,Z) as its determinant [14].

OR Proofs. In Sect. 6.2, we look at the special case of OR proofs and study
three instantiations of our general protocol to OR arguments. We discuss the
advantages and downsides of each.

Non-principal Ideals. Importantly, in Sect. 8, we capture the very general sce-
nario where I(A) has a “nice-looking” generating set (F1, . . . , Fτ ) (i.e. τ is small
and each polynomial has a small degree). Some cryptographically important
examples include arithmetic circuits, R1CS, Boolean circuits, and arithmetic
constraint satisfaction systems. Thus, we obtain efficient NIZKs for NP.
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Full Version. Due to the lack of space, a significant amount of additional material
(including all proofs) can be found in the full version of this paper, [10].

2 Preliminaries

For a matrix A ∈ Z
n×n
p and i ∈ [1, n], let C(i,1) be the submatrix obtained from

C by removing the ith row and the first column.

Cryptography. A bilinear group generator Pgen(1λ) returns p =
(p,G1,G2,GT , ê, [1]1, [1]2), where G1, G2, and GT are three additive cyclic
groups of prime order p, [1]ι is a generator of Gι for ι ∈ {1, 2, T} with [1]T =
ê([1]1, [1]2), and ê : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear pairing. We require the bilinear pairing to be Type-3, that is, we assume
that there is no efficient isomorphism between G1 and G2. We use the additive
implicit notation of [15], that is, we write [a]ι to denote a[1]ι for ι ∈ {1, 2, T}.
We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the
bracket notation together with matrix notation; for example, if AB = C then
[A]1 • [B]2 = [C]T . We also assume that [A]2 • [B]1 := ([B]�1 • [A]�2 )� = [AB]T .

Let Pν := {[a0]1 +
∑ν

i=0[ai]1Xi : ai ∈ Zpfori ∈ [0, ν]} ⊂ G1[X] be the set of
linear multivariate polynomials over G1 in ν variables.

Algebraic languages [8,9] are parameterized languages of the shape LΓ ,θ =
{x : ∃w,Γ (x) ·w = θ(x)}, where x is the input, w is the witness, Γ and θ are affine
maps, such that x and θ(x) are vectors, and Γ (x) is a matrix. One can construct
Gennaro-Lindell smooth projective hash functions (GL-SPHFs [3,5,17]) for all
algebraic languages.

Let k ∈ {1, 2, . . .} be a small parameter related to the matrix distribution.
In the case of asymmetric pairings, usually k = 1. Let D�k be a probability
distribution over Z�×k

p , where � > k. We denote Dk+1,k by Dk. We use the matrix
distribution, L1, defined as the distribution over matrices ( 1

a ), where a ←$Zp.
In the Elgamal encryption scheme, the public key is pk = [1, sk]1, and

Encpk(m; r) = (r[1]1‖m[1]1 + r[sk]1). To decrypt, one computes [m]1 =
Decsk([c]1) ← −sk[c1]1 + [c2]1. In what follows, we denote [c]1 = Enc(m; r)
for a fixed public key pk = [ 1

sk ]1. Elgamal’s IND-CPA security is based on L1-
KerMDH, that is, DDH.

The following Extended Kernel Diffie-Hellman assumption ExtKerMDH [9]
generalizes the well-known KerMDH assumption [28]. We also define in parallel
a new, slightly weaker version of this assumption, CED (computational extended
determinant).

Definition 1. (Dk-(� − 1)-ExtKerMDH). Let �, k ∈ N, and Dk be a matrix dis-
tribution. The Dk-(� − 1)-ExtKerMDH assumption holds in Gι relative to Pgen,
if for all PPT adversaries A, the following probability is negligible:

Pr

[
p ← Pgen(1λ), [D]ι ←$ Dk, ([γ‖C]3−ι, [δ]ι) ← A(p, [D]ι) : δ ∈ Z

(�−1)×k
p ∧

γ ∈ Z
�×k
p ∧ C ∈ Z

�×�
p ∧ (γ‖C)

(
D
δ

)
= 0 ∧ rk(γ‖C) ≥ �

]

.

We define Dk-(� − 1)-CED analogously, except that we change the condition
rk(γ‖C) ≥ � to rk(C) ≥ �.
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CED is weaker than ExtKerMDH since a successful adversary has to satisfy a
stronger condition (rk(C) ≥ � instead of rk(γ‖C) ≥ �). (See the full version [10]
for a reduction.) CED suffices for the security of all NIZK arguments of the
current paper. Moreover, in Sect. 10.2, we reduce CED to a gap assumption. It
seems that ExtKerMDH cannot be reduced to the same assumption. Finally, CED
is a natural assumption since we always care about rk(C) and not rk(γ‖C) ≥ �.

Despite the general definition, in the rest of the paper (following [9]), we will
be only concerned with the case k = 1 and Dk = L1.

NIZK Arguments. An adaptive NIZK Π for a family of language distribution
{Dp}p consists of five probabilistic algorithms: (1) Pgen(1λ): generates public
parameters p that fix a distribution Dp. (2) kgen(p): generates a CRS crs and a
trapdoor td. For simplicity of notation, we assume that any group parameters
are implicitly included in the CRS. We often denote the sequence “p ← Pgen(1λ);
(crs, td) ← kgen(p)” by (p, crs, td) ← kgen(1λ). (3) P(crs, lpar, x, w): given a
language description lpar ∈ Dp and a statement x with witness w, outputs a
proof π for x ∈ Llpar. (4) V(crs, lpar, x, π). On input of a CRS, a language
description lpar ∈ Dp, a statement and a proof, accepts or rejects the proof. (5)
Sim(crs, td, lpar, x). Given a CRS, the trapdoor td, lpar ∈ Dp, and a statement
x, outputs a simulated proof for the statement x ∈ Llpar.

Note that the CRS does not depend on the language distribution or language
parameters, i.e. we define fully adaptive NIZKs for language distributions. The
following properties need to hold for a NIZK argument.

A proof system Π for {Dp}p is perfectly complete, if

Pr
[

V(crs, lpar, x, π) = 1 | (p, crs, td) ←$Kcrs(1λ); lpar ∈ Supp(Dp);
(x, w) ∈ Rlpar;π ←$P(crs, lpar, x, w)

]

= 1

A proof system Π for {Dp}p is computationally sound, if for every efficient A,

Pr
[
V(crs, lpar, x, π) = 1 (p, crs, td) ←$Kcrs(1λ);

∧x /∈ Llpar lpar ∈ Supp(Dp); (x, π) ← A(crs, lpar)

]

≈ 0

with the probability taken over Kcrs.
Π for {Dp}p is perfectly zero-knowledge, if for all λ, all (p, crs, td) ∈

Supp(Kcrs(1λ)), all lpar ∈ Supp(Dp) and all (x, w) ∈ Rlpar, the distributions
P(crs, lpar, x, w) and Sim(crs, td, lpar, x) are identical.

Σ-Protocols. A Σ-protocol [12] is a public-coin, three-move interactive proof
between a prover P and a verifier V for a relation R, where the prover sends an
initial message a, the verifier responds with a random e ←$Zp and the prover
concludes with a message z. Lastly, the verifier outputs 1, if it accepts and 0
otherwise. In this work we are concerned with three properties of a Σ-protocol:
completeness, optimal soundness and honest-verifier zero-knowledge.

CH Compilation. Couteau and Hartmann [9] compile Σ-protocols to NIZKs
in the CRS model for algebraic languages by letting [e]2 be the CRS. The basic
Couteau and Hartmann compilation is for a Σ-protocol, inspired by [26], for
algebraic languages. We will describe it in Sect. 9.
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3 Quasideterminantal Representations

Next, we define quasideterminantal representations (QDRs) C(X) of a polyno-
mial F (X). We prove a technical lemma in Sect. 3.1 which shows how one can
check whether a concrete matrix C(X) is a QDR of F . We use this definition
in Sect. 4, where, given a QDR C(X), we define the NIZK argument for the
associated language Lpk,F (defined in Eq. (1)), and prove its security.

We first define the class of languages we are interested in. Initially, we are
interested in the case where A = A({F}) for a single polynomial F . Fix p ←
Pgen(1λ). For a fixed Elgamal public key pk, let lpar := (pk, F ). (Implicitly,
lpar also contains p.) Let [ct]1 = Enc([χ]1; r) = (Enc([χi]1; ri))i. We use freely
the notation F (Dec([ct]1)) = F ([χ]1) = [F (χ)]1. In Sect. 4, we describe a general
technique that results both in efficient NIZK arguments for languages

Lpk,F = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ Z(F )} . (1)

For example, if F (X) = X2 − X, then Lpk,F corresponds to the language of all
Elgamal encryptions of Boolean values under the fixed public key pk.

Intuition. To motivate the definition of QDRs, we first explain the intuition
behind the new NIZK argument. Recall from Definition 1 that an adversary
breaks the L1-(�−1)-CED assumption if, given [D]2 = [ 1e ]2 ←$ L1 (i.e., e ←$Zp),
he returns ([γ‖C]1 ∈ G

�×(�+1)
1 , [δ]2 ∈ G

(�−1)×1
2 ), such that rk(C) ≥ � and

γ + C( e
δ ) = 0. (2)

Following [9], in our arguments [e]2 (i.e., [D]2) is given in the CRS and [δ]2
is chosen by the prover. More precisely, the prover sends Enc([γ‖C]1) and [δ]2
(together with some elements that make it possible to verify that Eq. (2) holds
using encrypted values) to the verifier.

The matrix C must have full rank whenever the prover cheats, i.e. F (χ) 	= 0.
We achieve this by requiring that det(C(X)) = F (X). Then, rk(C) = d.

We guarantee that C is efficiently computable by requiring that C(X) is
a matrix of affine maps, and [C]1 = [C(χ)]1 for [χ]1 = Dec([ct]1). This also
minimizes communication since each element of Enc([C(χ)]1) can be recomputed
from Enc([χ]1) by using the homomorphic properties of Elgamal.

On the other hand, assume that the prover is not honest (i.e., det(C(χ)) =
F (χ) 	= 0) but managed to compute Enc([γ]1) and [δ]2 accepted by the verifier.
Assume that the reduction knows sk (the language trapdoor). Then, the reduc-
tion obtains [χ]1 by decryption and recomputes [C(χ)]1. Since det(C(χ)) 	= 0
but the verifier accepts (i.e., Eq. (2)), then one can break the CED assumption
by returning [(γ‖C)(χ)]1 and [δ]2.

3.1 Definition

We now define quasideterminantal representations (QDRs) C(X) of polynomial
F . QDRs are related to the well-known notion of determinantal representation
from algebraic geometry, see the full version [10] for a discussion.
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Definition 2 (Quasideterminantal Representation (QDR)). Let F (X)
∈ Zp[X] be a ν-variate polynomial. Let � ≥ 1 be an integer. A matrix C(X) =
(Cij(X)) ∈ Zp[X]�×� is a QDR of F , if the following requirements hold. Here,
C(X) = (h‖T )(X), where h(X) is a column vector.

Affine map: For each i and j, Cij(X) =
∑ν

k=1 PkijXk + Qij, for public
Pkij , Qij ∈ Zp, is an affine map.

F -rank: det(C(X)) = F (X).
First column dependence: For any χ ∈ Z(F ), h(χ) ∈ colspace(T (χ)).

The quasideterminantal complexity qdc(F ) of F is the smallest QDR size of F .
(Clearly, qdc(F ) ≥ deg(F ).)

For example, C(X) =
(

0 X
X−1 1−X

)
is a QDR of F (X) = X(X − 1). The first

column dependence property follows since
(

0
χ−1

)
=

( χ
1−χ

)
w iff (χ,w) = (0,−1)

or (χ,w) = (1, 0), i.e., χ ∈ Z(F ). On the other hand, C(X) =
(

X 0
0 X−1

)
is not a

QDR (of the same F ) since ( χ
0 ) =

(
0

χ−1

)
w iff (χ,w) = (0, 0).

The first column dependence property is nicely connected to a computational
requirement we need for our NIZK. However, it can be difficult to check whether
a given matrix satisfies this condition. We now give two alternative conditions
that imply the first column dependence property, and which are easier to check.

Lemma 1. Suppose a matrix C satisfies the affine map and F -rank properties.
If it in addition satisfies one of the following properties, it also satisfies the first
column dependence property.

(1) High right rank: For any χ ∈ Z
ν
p, rk(T (χ)) = � − 1.

(2) Invertible right-submatrix: there exists i, s.t. det(C(i,1)(χ)) 	= 0 for any χ.

E.g., any matrix C(X) that contains non-zero elements on its upper 1-diagonal
and only 0’s above the upper 1-diagonal is automatically a QDR of F (X) :=
det(C(X)). See Sects. 5 and 6 for more.

3.2 Corollaries

The affine map property is needed since we use a homomorphic cryptosystem
which makes it possible to compute Enc([Cij(χ)]1) =

∑ν
k=1 PkijEnc([χk]1) +

QijEnc([1]1) given only Enc([χ]1). The F -rank property follows directly from
the definition of CED. The first column dependence property, guarantees that
the QDR C(X) satisfies the following two properties, required later:

Efficient prover: There exist two PPT algorithms that we later explicitly use
in the new NIZK argument (see Fig. 2) for Lpk,F . First, comp1(p,χ,C(X)),
that computes [γ]1 and a state st. Second, comp2(st, [e]2), that computes [δ]2.
We require that if F (χ) = 0, then ([γ]1, [δ]2) satisfy Eq. (2). We denote the
sequential process ([γ]1, st) ← comp1(p,χ,C(X)), [δ]2 ← comp2(st, [e]2) by
([γ]1, [δ]2) ← comp(p, [e]2,χ,C(X)).
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comp1(p, χ, C(X)):

Write C(χ) = (h T )(χ);y $Z
−1

p ;
γ T (χ)y; st (p, χ, C(X);y);
return ([γ]1, st);

comp2(st, ψ(e)):

Write C(χ) = (h T )(χ);
Compute w such that T (χ)w = h(χ);
ψ(δ) (wψ(e) + ψ(y)); return ψ(δ);

Fig. 1. compi algorithms assuming h(χ) ∈ colspace(T (χ)). Here, ψ = id in the case of
the Σ-protocol, and ψ = [·]2 in the case of the NIZK argument.

Zero-knowledge: For ([γ]1, [δ]2) ← comp(p, [e]2,χ,C(X)), δ is uniformly ran-
dom. This requirement is needed for the zero-knowledge property of the result-
ing NIZK argument.

To be able to construct an efficient Σ-protocol for Lpk,F , we need to replace the
efficient prover assumption with the following assumption.

Efficient prover over integers: as the “efficient prover” requirement, but one
uses e everywhere instead of [e]2, and δ instead of [δ]2.

In all our instantiations, the two variations of comp are related as follows:
comp(p, [e]2,χ,C(X)) is the same as comp(p, e,χ,C(X)) but applies an addi-
tional [·]2 to some of the variables.

Remark 1. We will explicitly need the independence of [γ]1 from [e]2 for Σ-
protocols and thus for CH-compilation. It is not a priori clear if it is needed for
NIZK arguments in general. However, if γ = f(e) for some non-constant affine
map f , then one cannot efficiently compute [γ]1 given only [e]2, since we rely on
type-III pairings and those two values belong to different source groups. Thus,
independence of [γ]1 from [e]2 seems inherent in the case of type-III pairings.

Lemma 2. Assume F is as in Definition 2 and that C(X) is a QDR of F . Then
(1) C has the efficient-prover property. (2) C has the zero-knowledge property.

Finally, we show that any matrix which satisfies the efficient prover property
as well as the affine map and F -rank properties must satisfy the first column
dependence property. Thus, the latter property is actually needed.

Lemma 3. Let C(X) be a matrix that satisfies the affine map, F -rank and
efficient prover properties. Then C satisfies the first column dependence property.

4 Argument for Algebraic Set of Principal Ideal

Fix p ← Pgen(1λ) and define Dp := {lpar = (pk, F )}, where (1) pk is an Elgamal
public key for encrypting in G1, and (2) F is a polynomial with qdc(F ) =
poly(λ), i.e., there exists a poly(λ)-size QDR C(X) of F . (In Sects. 5 and 6, we
will show that such QDRs exist for many F -s.)

Before going on, recall that Cij(X) =
∑ν

k=1 PkijXk + Qij for public Pkij

and Qij . To simplify notation, we will use vector/matrix format, by writing
C(X) =

∑ν
k=1 P kXk +Q. As always, we denote Enc([a]1; r) := (Enc([ai]1; ri))i.

We often omit χ in notation like [C(χ)]1, and just write [C]1.
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kgen(p, lpar): e $Zp; return (crs, td) ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [ ]2) comp(p, [e]2, χ, C(X));
$Zp; [ctγ ]1 Enc([γ]1; ) ∈ G

×2
1 ;

[z]2 [1]2 + ( ν
k=1 rkP k) [ e

δ ]2 ∈ G2.
Return π ([ctγ ]1, [ , z]2) ∈ G

2
1 × G

2 −1
2 .

V(crs, lpar, x = [ct]1, π): check [ctγ ]1 • [1]2 + ν
k=1 ([ctk]1 • P k [ e

δ ]2) =?

[0, 1]1 • (−Q [ e
δ ]2) + pk • [z]2.

Sim(crs, td, lpar, x = [ct]1): $Z −1
p ;

z $Zp; [ct
γ ]1 Enc(−Q( e

δ )[1]1; z) − ν
k=1[ctk]1 · P k( e

δ );
Return π ([ctγ ]1, [ , z]2) ∈ G2

1 × G
2 −1
2 .

Fig. 2. The new NIZK argument Πnizk for Lpk,F .

4.1 Protocol Description

Let Lpk,F be defined as in Eq. (1). The new Σ-protocol and NIZK argument
for Lpk,F are based on the same underlying idea. Since the new NIZK is a CH-
compilation of the Σ-protocol, it suffices to describe intuition behind the NIZK.

In the new NIZK argument (see Fig. 2), P uses comp1 to compute [γ]1
(together with state st), encrypts [γ]1 by using fresh randomness �, and then
uses comp2 (given crs = [e]2) to compute [δ]2. If P is honest, then by the defini-
tion of QDRs of F , Eq. (2) holds, i.e., γ +C(χ)( e

δ ) = 0. The latter is equivalent
to γ +(

∑
k P kχk)( e

δ ) = −Q( e
δ ). V needs to be able to check that the last equa-

tion holds, while given only an encryption of [γ]1. To help V to do that, P sends
a vector of randomizers [z]2 to V as helper elements that help to “cancel out”
the randomizers used by the prover to encrypt [γ]1 and [χ]1.

The new NIZK argument is given in Fig. 2.

4.2 Efficiency

Next, we estimate of the efficiency of the NIZK argument. Note that if we
use the comp algorithm given in Fig. 1, we see that the algorithm computes
w and y such that [δ]2 = −(w[e]2 + y[1]2). This lets us write [ e

δ ]2 =(
1−w

)
[e]2+

(
0−y

)
[1]2. This allows us to compute [z]2 as (

∑ν
k=1 rkP k)

(
1−w

)
[e]2+

(� +
∑ν

k=1 rkP k)
(

0−y

)
[1]2, which can be done with 2� exponentiations in G2.

This leads to the following lemma. Its proof follows by direct observation.

Lemma 4. Consider Πnizk with QDR C. Define TP (C) := |{(i, j) : ∃k, Pkij 	=
0}|, and TQ(C) := |{(i, j) : Qij 	= 0}|. Let c be the time needed to run comp,
eι is the time of an exponentiation in Gι, and p is the time of a pairing. Then
(1) the prover’s computation is dominated by c + 2� · e1 + 2� · e2, (2) the veri-
fier’s computation is dominated by (TP (C) + TQ(C)) · e2 + 2(2 + ν)� · p, (3) the
communication is 2� elements of G1 and 2� − 1 elements of G2.
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For the argument to be efficient, we need comp to be as efficient (according
to Sect. 3.1, it must be efficient to solve the system T (χ)w = h(χ) for w, where
C(X) = (h‖T )(X)), and the matrices P k and Q to be sparse.

In Sect. 5, we propose a way to construct C(X) that satisfies these restric-
tions for any F (X) that can be computed by a polynomial-size ABP. In Sect. 6,
we study other interesting cases.

The estimate in Lemma 4 is often over-conservative. For example, let δ′ =
( e

δ ). If Pkij1 = Pkij2 =: P ′ for j1 	= j2, then the verifier has to perform one
exponentiation P ′([δ′

j1
]2 + [δ′

j2
]2) instead of two. The same holds when Qij1 =

Qij2 for some j1 	= j2. Moreover, when the exponent is a small constant (in the
extreme case, 1 or −1), then one does not have to perform a full-exponentiation.

4.3 Security of the NIZK Argument

Theorem 1. Let {Dp}p be the family of language distributions, where Dp =
{lpar = (pk, F )} as before. Here, F (X) is a ν-variate polynomial of degree d,
where ν, d ∈ poly(λ). Let C(X) ∈ Zp[X]�×� be a QDR of F . The NIZK argument
Πnizk for {Dp}p from Fig. 2 is perfectly complete and perfectly zero-knowledge.
It is computationally (adaptive) sound under the L1-(� − 1)-CED assumption in
G2 relative to Pgen.

5 Efficient Instantiation Based on ABP

In this section we construct QDRs, that we denote by IK(X), for any polynomial
F that can be efficiently computed by algebraic branching programs (ABPs).
This results in NIZKs for the class of languages Lpk,F , where F is only restricted
to have a small ABP. However, in many cases, the resulting matrix IK(X) is
not optimal, and this will be seen in Sect. 7.1. Thus, following sections consider
alternative construction techniques of such matrices.

5.1 Preliminaries: Algebraic Branching Programs

A branching program is defined by a directed acyclic graph (V,E), two special
vertices s, t ∈ V , and a labeling function φ. An algebraic branching program
(ABP, [29]) over a finite field Fp computes a function F : F

n
p → Fp. Here, φ

assigns to each edge in E a fixed affine (possibly, constant) function in input
variables, and F (X) is the sum over all s − t paths (i.e., paths from s to t) of
the product of all the values along the path.

Algebraic branching programs capture a large class of functions, including
in particular all log-depth circuits, boolean branching programs, boolean for-
mulas, logspace circuits, and many more. For some type of computations, they
are known to provide a relatively compact representation, which makes them
especially useful. See [23,24] and the references therein.

Ishai and Kushilevitz [23,24] related ABPs to matrix determinants as follows.
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Proposition 1. [24, Lemma 1] Given an ABP abp = (V,E, s, t, φ) computing
F : Fν

p → Fp, we can efficiently (and deterministically) compute a function IK(χ)
mapping an input χ ∈ F

ν
p to a matrix from F

�×�
p , where � = |V | − 1, such that:

1. det(IK(χ)) = F (χ),
2. each entry of IK(χ) is an affine map in a single variable χi,
3. IK(χ) contains only −1’s in the upper 1-diagonal (the diagonal above the main

diagonal) and 0’s above the upper 1-diagonal.

Specifically, IK is obtained by transposing the matrix you get by removing the
column corresponding to s and the row corresponding to t in the matrix adj(X)−
I, where adj(X) is the adjacency matrix for abp.

Note that the matrix IK is transposed compared to what is found in [24,
Lemma 1], to ensure consistency with the notation from the CED assumption.

5.2 NIZK for Algebraic Branching Programs

Lemma 5. Let abp = (V,E, s, t, φ) be an ABP that computes a ν-variate poly-
nomial F (X). Then IK(X) is a QDR of F with � = |V | − 1.

In particular, qdc(F ) ≤ |V | − 1.

Efficiency of comp. We next specialize the general compi algorithms given in
Fig. 1 to ABP. For this, we just have to write down how to efficiently do the
next two steps: (1) Compute γ = T (χ)y. Due to the shape of IK(χ) and thus
of T (χ), one can clearly compute γ as γi ← ∑i−1

j=1 Tij(χ)yj−1 − yi for each
i ∈ [1, �]. (2) Solve T (χ)w = h(χ) for w. Let T ∗ be the matrix obtained from
T (χ) by omitting its last row, and similarly let h∗ be the vector obtained from
h(χ) by omitting its last element. One finds w by solving T ∗w = h∗ by forward
substitution, as follows: wi ← ∑i−1

j=1 Tij(χ)wj − hi(χ) for each i ∈ [1, � − 1].

Lemma 6. Let N(v) be the neighbourhood of a node v in the underlying ABP.
Assuming C(X) = IK(X), the computational complexity of comp is dominated
by 2(|E| − |N(s)|) − |N(t)| field multiplications, � exponentiations in G1, and
2(� − 1) exponentiations in G2.

6 Applications

6.1 Univariate F (Set-Membership Proof)

Consider an algebraic set A ∈ Zp of size poly (λ), generated by τ univariate
polynomials F1, . . . , Fτ ∈ Zp[X]. As before, we aim to prove that an Elgamal-
encrypted χ satisfies χ ∈ A, i.e., Fi(χ) = 0 for all i. In the univariate case, all
ideals are principal [11, Section 1.5], and thus any ideal can be written as I = 〈F 〉
for some F . Thus, A = A(F ) for F ← gcd(F1, . . . , Fτ ) [11, Section 1.5].

Moreover, I(A(F )) = I(Fred) [11, Section 1.5], where Fred has the same roots
as F but all with multiplicity one. That is, if F (X) =

∏
(X − ξi)bi , for bi ≥ 1
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s a1 · · · ad−1 t
X − ξ1 X − ξ2 X − ξd−1 X − ξd IKpath(X) =

X−ξ1 −1 0 ... 0
0 X−ξ2 −1 ... 0
... ... ... ... ...
0 0 0 ... −1
0 0 0 ... X ξd

Fig. 3. The ABP abpd
path(X, ξ) for F (X) =

∏d
i=1(X − ξi) and IKpath(X)

and mutually different ξi, then Fred =
∏

(X − ξi). This reduced polynomial Fred

can be efficiently computed as Fred = F/ gcd(F, F ′), [11, Section 1.5]. Since we
are constructiong NIZKs for algebraic sets, in this section, we will assume that
F (X) = Fred(X) =

∏
(X − ξi) for mutually different roots ξi. (This will be

the case if we assume A = {ξi} for polynomially many ξi.) Thus, it suffices to
prove that F (χ) = 0, where F is a reduced polynomial. As before, for efficiency
reasons, we assume that F has degree poly(λ).

We now apply the ABP-based protocol to a univariate reduced polynomial
F . We depict the ABP abpd

path(X, ξ) in Fig. 3. The ABP consists of a single path
of length d with edges labelled by values X − ξi. Clearly, abpd

path(X, ξ) computes
F (X). The corresponding matrix IKpath(X) is also given in Fig. 3.

Lemma 7. Let F (X) be a univariate reduced polynomial. The ABP-based NIZK
argument for Lpk,F has prover’s computation of at most 3d exponentiations in
G1 and 4d − 2 exponentiations in G2, verifier’s computation of 7d − 1 pairings
and at most d exponentiations in G2, and communication of 2d elements of G1

and 2d − 1 elements of G2.

6.2 Special Case: OR Arguments

In an OR argument, the language is Lpk,X(X−1), that we will just denote by
L{0,1}, assuming that pk is understood from the context. The case of OR argu-
ments is of particular interest because of its wide applications in many different
scenarios. Indeed, one of the most direct applications of [9] is a new OR proof
with the argument consisting of 7 group elements. Due to the importance of
L{0,1}, in the full version [10], we will detail three example NIZK arguments
that are all based on CED-matrices. The first argument is based on abp2path, and
the other two arguments are based on known Σ-protocols from the literature.
Interestingly, the third example is not based on ABPs; the added discussion
clarifies some benefits of using the ABP-based approach.

6.3 Elliptic Curve Points

In Fig. 4, we depict an ABP and IK(X,Y ) for the bivariate function F (X,Y ) =
X3 + aX + b − Y 2 (i.e., one checks if (X,Y ) belongs to the elliptic curve Y 2 =
X3 + aX + b). In Sect. 7.1, we will propose a non-ABP-based QDR for the same
task. ABPs for hyperelliptic curves Y 2 + H(X)Y = f(X) (where deg(H) ≤ g
and deg f = 2g + 1) of genus g can be constructed analogously.
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X X2

s F (X)

Y

X

X

Y

Xa

b

−Y

IK(X, Y ) =
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

Fig. 4. ABP example for F (X, Y ) = X3 + aX + b − Y 2.

NIZK arguments that committed (X,Y ) belongs to the curve are interesting
in practice since one often needs to prove in zero-knowledge that a verifier of
some pairing-based protocol accepts. Such a situation was studied in [4], who
proposed to use cycles of elliptic curves, such that the number of points on one
curve is equal to the size of the field of definition of the next, in a cyclic way.
Using the NIZK, resulting from the example of the current subsection, one can
use a bilinear group with group order p to prove that the encrypted coordinates
belong to an elliptic curve where the finite field has size p.

Different Normal Form. Motivated by [32], we also consider the following less
common normal form for an elliptic curve, F (X,Y ) = (X + aY )(X + bY )(X +
cY ) − X, for mutually different a, b, c. Then, one can construct the following

ABP-based 3 × 3 QDR:
( X+aY −1 0

0 X+bY −1
−X 0 X+cY

)
.

7 On Bivariate Case

Dickson [14] proved that for any degree-d bivariate polynomial F (X), there
exists a d × d matrix C(X) of affine maps that has F (X) as its determinant.
Plaumann et al. [32] described efficient algorithms for finding C(X) for some
families of polynomials F ; in their case, C(X) is usually symmetric and can
satisfy some other additional requirement like semidefiniteness. Since the ABP-
based approach often blow ups the dimension of the matrix, we will next use
the results of [14,32] to construct a d × d matrix C(X). However, the resulting
matrix is usually not a QDR, which results in additional complications. We
provide several concrete examples in the case F (X,Y ) describes an elliptic curve.
Plaumann et al. [32] provided also examples for the case d ∈ {4, 5}, noting
however that finding a determinantal representation of F becomes very time-
consuming for d ≥ 5. In the full version [10], we will provide an example for
d = 5. We refer to [32] for algorithms and general discussion.

7.1 Optimized Solutions for Elliptic Curves

Let F (X,Y ) = X3+aX+b−Y 2 be a polynomial that describes an elliptic curve.
In Sect. 6.3, we described a small ABP for checking that (X,Y ) ∈ E(Zp), where
E(Zp) : F (X,Y ) = 0. However, this resulted in a 4 × 4 matrix IK(X,Y ). Next,
we construct 3 × 3 matrices, of correct determinant, for two different choices
of F . In general, there are several inequivalent linear symmetric determinantal
representations of F , [32]. In both cases, we chose the matrix by inspection.



Efficient NIZKs for Algebraic Sets 147

Case F (X,Y ) = X3 + aX + b − Y 2 for a 	= 0. In the full version [10], we
show that in case there exists a 3 × 3 determinantal representation that is not a
QDR, and discuss the possible issues that arise when one tries to use our NIZK
argument in such a case.

Case F (X,Y ) = X3 + b − Y 2. We will tackle this case in the full version [10].

8 Handling Non-principal Ideals

Next, we extend the new framework to constructing a NIZK argument that an
Elgamal-encrypted χ satisfies χ ∈ A for any algebraic set A = A(I). Namely,
assume that I(A) has a known generating set (F1, . . . , Fτ ) for some τ . We prove
that χ ∈ A by proving that Fi(χ) = 0 for each Fi. Thus, Dp = {(pk,A)}, where
I(A) = 〈F1, . . . , Fτ 〉 and each Fi has qdc(Fi) = poly(λ).

The argument system can be implemented in polynomial time and space,
assuming that (1) we know a generating set with small τ = poly(λ) and with
small-degree polynomials, (2) for each Fi, we know a small QDR Ci(X) of Fi,
and (3) we can construct an efficient NIZK argument system for showing that
det(Ci(X)) = 0. The previous sections already tackled the last two issues. In
this section, we study issue (1). However, the issues are related. In particular,
steps (2) and (3) are most efficient for specific type of polynomials Fi, and when
solving (1), we have to take this into account.

8.1 NIZK for NP

Next, we use the described methodology to implement arithmetic circuits, and
then extend it to R1CS (a linear-algebraic version of QAP [16]) and aCSPs (arith-
metic constraint satisfaction systems), i.e., constraint systems where each con-
straint is a small-degree constant that depends on some small number of inputs.
We also show how to directly use our techniques to implement the Groth-Sahai-
Ostrovsky constraint system [20] that have efficient reductions to correspond-
ing circuits. Interestingly, this seems to result in the first known pairing-based
(random-oracle-less) NIZK for general aCSPs.

Arithmetic Circuits. Let C be an arithmetic circuit over Zp, with n gates
(including input gates) and m wires. We construct an algebraic set AC =
(χ1, . . . , χn) ∈ Z

n
p , such that χ ∈ AC iff C(χ) = 0, as follows. First, χ corresponds

to the vector of wire values. As in the case of QAP [16], we assume that each gate
is a weighted multiplication gate that computes Fi : (

∑
j uijχij

)(
∑

j vijχij
) �→

χi for public uij , vij , and ij , where for the sake of efficiency, the sum is taken
over a constant number of values.

1. First, each χi corresponds to the value of the output wire of ith gate, with
χj , j ≤ m0 corresponding to the inputs of the circuit. We also assume that
the last few wire values correspond to the output values of the circuit.

2. Second, for each gate i > m0, we introduce the polynomial Fi(χ) = χi −
(
∑

uijχij
)(

∑
vijχij

).
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Then AC = {(χ1, . . . , χm) : Fi(χ) = 0 for all i > m0}. To construct a NIZK for
showing χ ∈ AC, we do as before: (1) We let the prover Elgamal-encrypt χ.
(2) We show that Fi(χ) = 0 for all i by using the NIZK argument from Sect. 4.
Note that each polynomial in this case is quadratic, and thus one can construct
a 2 × 2 QDR C(χ) =

(∑
uijχij

−1

−χi

∑
vijχij

)
.

According to [21], the Groth-Sahai proof for this task has commitment length
(2m + 1)(|G1| + |G2|) and argument length (2m + 2n + 2)(|G1| + |G2|). The new
NIZK has commitment length 2m|G1| and argument length n(4|G1| + 3|G2|).
Assuming m ≈ n and |G2| = 2|G1|, the new NIZK has 3 times shorter com-
mitments/encrypts and 20% shorter proofs. The new NIZK has approximately
1.5–2 times smaller prover’s and verifier’s computation. Since the computation
in [21] can probably be optimized, we have not included complete comparison.

Extension: R1CS. In R1CS (rank-1 constraint system [16]), one has n con-
straints (

∑
uijχi)(

∑
vijχi) =

∑
wijχi in m variables χi, for arbitrary public

matrices U = (uij), V = (vij), and W = (wij). There is clearly a simple reduc-
tion from arithmetic circuits to R1CS. The described solution for arithmetic
circuits can be used to construct a NIZK argument system for R1CS, by defin-
ing Fi(χ) = (

∑
uijχi)(

∑
vijχi) − ∑

wijχi and C(χ) =
( ∑

uijχij
−1

−∑wijχij

∑
vijχij

)
.

Extension: Arithmetic Constraint Satisfaction Problems (aCSPs). Fix
F = Zq. Recall that for a q ≥ 1, a q-aCSP instance F over F is a collection
of functions F1, . . . , Fτ (called constraints) such that each function Fi depends
on at most q of its input locations. That is, for every j ∈ [1, τ ] there exist
i1, . . . , iq ∈ [1, n] and f : Fq → F such that Fj(χ) = f(χi1 , . . . , χiq

) for every
χ ∈ F

n. Then F is satisfiable if Fj(χ) = 0 for each j.
One can extend R1CS to q-aCSP for small constant q, assuming that Fj

are (small-degree) polynomials for which one can construct poly-size QDRs.
Intuitively, F is the generating set for some polynomial ideal I = I(A), and
thus the examples of this subsection fall under our general methodology. One
can possibly use some general techniques (see Sect. 8.2 for some examples) to
minimize the generating sets so as to obtain more efficient NIZKs.

Specialization: Boolean Circuits. By using techniques from [20], one can
construct a NIZK for any Boolean circuit that, w.l.o.g., consists of only NAND
gates. Intuitively, one does this by showing that each wire value is Boolean,
and then showing that each NAND gate is followed correctly. The latter can be
shown by showing that a certain linear combination of the input and output
wires of the NAND gate is Boolean. Thus, here one only uses polynomials of
type fi(χ) = A(χ)2 − A(χ), where A(χ) =

∑
aijχj for some coefficients aij .

In Table 2, we compare the resulting NIZK with the optimized Groth-Sahai
proof for Boolean circuits by Ghadafi et al. [18]. Here, m is the number of wires
and n is the number of gates. In the case of the AES circuit described in [18],
m = 33880 and n = 34136. Assuming |G2| = 2|G1| and e2 = 2e1, we get that the
NIZK of [18] has commitment length 203283|G1|, argument length 814662|G1|,
prover’s computation 1629324e1, and verifier’s computation 1630336p. The new
NIZK has commitment length 67760|G1|, argument length 680160|G1|, and
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Table 2. Comparison of falsifiable NIZKs for Boolean circuit satisfiability: the Groth-
Sahai proof, as optimized by Ghadafi et al. [18], and the new NIZK from Sect. 8.1.Here,
|Gι| is the length of one element from Gι

Protocol |crs| |com| |π| P comp. V comp.

Groth-Sahai [18] 4(|G1| + |G2|) 2(m + 1)(|G1| + |G2|) (6m + 2n + 2)(|G1| + |G2|) (12m + 4n + 4)(e1 + e2) 16(2m + n)p
New, Sect. 8.1 |G2| 2m · |G1| (m + n)(4|G1| + 3|G2|) (m + n)(5e1 + 4e2) 13(m + n)p

prover’s computation 884208e1, and verifier’s computation 884208p. Hence, the
new NIZK has 3 times shorter commitments, 20% shorter arguments, and 1.84
times smaller prover’s and verifier’s computation.

8.2 Various Examples

Next, we give very generic background on generating sets and after that, we
give some examples of the cases when it pays off directly to work with aCSPs
(and not just arithmetic circuits) and then use the described methodology to
construct the NIZK. We emphasize that one does not need a Gröbner basis and
thus sometimes there exist smaller generating sets. In fact, there exist many
alternative methods for constructing efficient aCSPs not directly related to gen-
erating sets at all; and the Gröbner basis technique is just one of them—albeit
one that is strongly related to our general emphasis on polynomial ideals. As
we see from the examples, the efficiency of NIZK depends on a delicate balance
between the size of the generating set and the degree of the polynomials in that
set. Really, it follows from Lemma 4 that if the generating set contains polynomi-
als Fi for which QDRs have sizes �i, then the resulting NIZK has communication
complexity (2

∑
�i)(|G1| + |G2|) − τ |G2|.

Basic Background on Generating Sets. Generating sets of an ideal can
have vastly different cardinality. For example, Z is generated by either {1} or
by the set of all primes. Since a Gröbner basis [7] is, in particular, a generating
set, one convenient way of finding a generating set is by using a Gröbner basis
algorithm; however, such algorithms assume that one already knows a generating
set. Fortunately, the Buchberger-Möller algorithm [27] (as say implemented by
CoCoA6) can compute a Gröbner basis for I(A), given any finite set A.

Worst-Case Multi-dimensional Set-Membership Proof. We performed an
exhaustive computer search to come up with an example of a 3-dimensional set
of five points that has the least efficient NIZK argument in our framework. One
of the examples we found7 is A = {(2, 5, 1), (2, 4, 2), (2, 5, 3), (1, 2, 4), (3, 1, 5)}.
In this case, we found a reduced degree-lexicographic Gröbner basis
{

(y − z − 2)(y + z − 6), 1
18 (6x(3y − 5) − 37y + (z − 4)z + 68),

1
9

(
9x2 − 33x + y − (z − 4)z + 22

)
, 1
3 (−12x + 5y + z(z(3z − 23) + 53) − 34)

}

6 http://cocoa.dima.unige.it/.
7 In the case of many other sets, the NIZK will be much more efficient. We will provide

one concrete example in the full version [10].

http://cocoa.dima.unige.it/
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that consists of three quadratic and one cubic polynomials. Clearly, here, each
degree-d polynomial has an optimal-size d×d QDR. In the only non-trivial case
(the cubic polynomial), one can use the matrix

C4(x, y, z) =
(

z 1 0
53/3 23/3−z −4

x−5y/12+17/6 0 −z

)

.

Thus, one can construct a NIZK argument with communication of 2(2 + 2 + 2 +
3) = 18 elements of G1 and 18 − 4 = 14 elements of G2. Since, usually, elements
of G2 are twice as long as elements of G1, it means that, in the worst case, such
a NIZK argument will only be 4.6 times longer than a single OR proof. This is
also the upper bound on the NIZK communication according to our exhaustive
search, further discussion would be outside the scope of the current paper.

The most efficient known alternative seems to add (structure-preserving)
signatures (SPSs) of 5 points to the CRS, letting the prover encrypt a signature
of the chosen point, and then proving that the encrypted value is a valid signature
of some point. This alternative has both a much larger CRS and worse concrete
complexity compared to our NIZK argument. Moreover, it assumes that the
underlying signature scheme is unforgeable.

Range Proofs. In the full version [10], we will show how to use our techniques
to construct range proofs, i.e., proofs that the committed value χ belongs to
some interval [0, N ]. Couteau and Hartmann’s approach can be used to propose
range proofs of efficiency Θ(log N) by using the binary decomposition of χ. In
the full version [10], we note that the use of the NIZK from Sect. 6.1 helps us to
obtain a NIZK with better verifier’s computation.

9 Back to Algebraic Languages

The well-known methodology of diverse vector spaces (DVSs, [3,5]) has been
used to successfully create efficient smooth projective hash functions (SPHFs)
for algebraic languages. Moreover, by now several constructions of NIZKs based
on such SPHFs are known, [1,9]. For all such constructions, the first step is
to construct language parameters Γ and θ (see Sect. 2). Unfortunately, existing
constructions of the language parameters are all somewhat ad hoc.

Next, we improve on the situation by proposing a methodology to construct
(Γ ,θ) for any Lpk,A, where A is any algebraic set for which Sect. 8 results in an
efficient NIZK. We start the process from a QDR Ci of Fi, where 〈F1, . . . , Fτ 〉
is some generating set of I(A), and output concrete parameters (Γ ,θ). The
problem of constructing such Ci was already tackled in the current paper, with
many examples (including the case when Ci is based on an ABP). As the end
result, we construct explicit language parameters (Γ ,θ) for a variety of languages
where no such small parameters were known before. Moreover, even in the simple
case of univariate polynomials, where previous solutions were known [5,9], the
new parameters are smaller than before.

We consider various NIZKs that one can construct for given (Γ ,θ). For every
fixed (Γ ,θ), the NIZK from Sect. 4 is more efficient than the QA-NIZK of [1]
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and usually more efficient than the CHM NIZK of [9]. Finally, we briefly discuss
resulting GL-SPHFs [17] based on the new language parameters.

Preliminaries. We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol
and the resulting NIZK in the full version [10]. There, we will also state the
efficiency of their construction as a function of (Γ ,θ). We also restate Theorem
18 from [9] about the security of the CHM NIZK.

9.1 On Algebraic Languages for Elgamal Ciphertexts

Next, we derive language parameters Γ and θ for an arbitrary Lpk,F , such that
θ(x) ∈ colspace Γ (x) iff x ∈ Lpk,F . In the case where I(A) = 〈F1, . . . , Fτ 〉 is not
a principal ideal, one can then “concatenate” all τ parameters Γ (x) and θ(x).

We start the derivation from the equation T (χ)w = h(χ) in Fig. 1. To sim-
plify notation, let E(χ; r) := Enc([χ]1; r)� ∈ G

2
1 be a transposed ciphertext.

Let E(T (χ)) (resp., E(h(χ))) denote an element-wise (transposed) encryption
of T (χ) (resp., h(χ)), where χi is encrypted by using randomizer ri (that is, χi

is “replaced” by [cti]�1 ) and constants are encrypted by using the randomizer 0.
We define [Γ (x)]1 and [θ(x)]1 as follows:

[Γ (x)]1 = (E(T (χ))‖E(0d×d; Id)) ∈ G
2d×(2d−1)
2 , [θ(x)]1 = E(h(χ)) ∈ G

2d
2 . (3)

Thus, [Γ ]1w∗ = [θ]1 is an “encrypted” version of T (χ)w = h(χ), where [Γ ]1
contains additional columns and w∗ contains additional rows (compared to w)
to take into account the randomizers used to encrypt χi. Note that E(C(χ)) =
E(

∑
P kχk + Q;

∑
P krk).

Example 1. Let F (X) = (X − 0)(X − 1), and thus d = 2. Recall that then
C(χ) =

( χ −1
0 χ−1

)
and thus T (χ) =

( −1
χ−1

)
and h(χ) = ( χ

0 ). Since Enc([0]1; 1) =
[1, sk]1 and Enc([0]1; 0) = [0, 0]1, Eq. (3) results in

[Γ ]1 =

( E(−1; 0) E(0; 1) E(0; 0)
E(χ − 1; r) E(0; 0) E(0; 1)

)

=

⎡

⎢
⎢
⎣

0 1 0
−1 sk 0
ct1 0 1

ct2 − 1 0 sk

⎤

⎥
⎥
⎦

1

∈ G
4×3
1 , [θ]1 =

[ ct1
ct2
0
0

]

1

.

A variation of this [Γ ,θ]1 was given in [5,9]. To motivate Theorem 2, note
that w∗

1 = w = −χ is a solution of T (χ)w∗
1 = h(χ). Setting ŵ := (w∗

2‖w∗
3)

� =
r
(

1
−w∗

1

)
= r

(
1
χ

)
results in Γw∗ − θ = (0‖0‖0‖ − χ(χ − 1))�, which is equal to

04 iff χ ∈ {0, 1}.

Theorem 2. Lpk,F = LΓ ,θ .

In the full version [10], we will give two more (lengthy) examples to illustrate
how w∗ is chosen.

Handling Non-principal Ideals. Assume I(A) has a generating set (F1, . . . ,
Fτ ) for τ > 1, and that for each Fi, we have constructed the language parameter
Γ i,θi. We can then construct the language parameter for Lpk,A by using the

well-known concatenation operation, setting Γ =
(

Γ 1 ... 0
... ... ...
0 ... Γ τ

)
and θ =

(
θ1
...
θτ

)
.
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On the Couteau-Hartmann Disjunction. In the full version [10], we describe
the Couteau-Hartmann disjunction that results in Γ of size (3d − 1) × (3d − 2)
and compare it to Eq. (3). For the sake of completeness, we also reprove the
efficiency of the CHM NIZK from [9].

9.2 Efficiency of Set-Membership NIZKs: Comparisons

In Table 1 we give a concrete efficiency comparison in the case of set-membership.
This is motivated by the fact that this is probably the most complex language
for which [9] provides a concrete NIZK with which we can compare our results.
Because of the still large dimensions of Γ , using the CHM Σ-protocol as in [9]
for LΓ ,θ = Lpk,F has quite a big overhead. Thus, the NIZK in Lemma 7 is quite a
bit more efficient. However, it compares favorably to [9]. In the following lemma,
we state its efficiency.

Lemma 8. Let F be a univariate degree-d polynomial and let C(X) be the
abppath-based QDR of F from Sect. 6.1. Let [Γ ]1 be constructed as in Eq. (3).
Then, the CHM NIZK argument requires (5d−3)e1+4de2 from the prover, 7d−1
pairings from the verifier, and 4d − 1 group elements.

Note that the computation of the language parameters Γ ,θ induces some cost.
However, this computation is usually done once in advance. It is also not expen-
sive, both in the case of the new NIZK and the CHM NIZK [9] requiring one to
compute [ξi]1 for each root ξi.

9.3 GL-SPHFs for Algebraic Sets

We give an example of GL-SPHFs (Gennaro-Lindell smooth projective hash
functions, [17]) based on the new lpar = (Γ ,θ). We refer the reader to [3,5,13]
for a formal definition of GL-SPHFs. Briefly, recall that an SPHF is defined for
a language parameter lpar and associated language Llpar. A SPHF consists of
an algorithm hashkg(lpar) to generate the private hashing key hk, an algorithm
projkg(lpar, hk) to generate a public projection key hp from hk, and two different
hashing algorithms: hash(lpar, hk, x) that constructs an hash H, given the input
x and hk, and projhash(lpar, hp, x, w) that constructs a projection hash pH, given
the input x and its witness w. It is required that (1) H = pH when x ∈ Llpar,
and that (2) H looks random when x 	∈ Llpar, given (lpar, hp, x).

In the GL-SPHFs [17], lpar and the projection key hp can depend on x,
while in other types of SPHFs, x is only chosen after lpar and hp are fixed. In
the “DVS-based” constructions of SPHFs of [5], one starts with [Γ ]1 ∈ G

n×t
1

and [θ]1 ∈ G
n
1 that may or may not depend on x = [Γ ]1w. One samples a

random hk = α ←$Z
n
p , and sets hp ← α�[Γ ]1. For x = [Γ ]1w, one computes

pH = projhash(lpar, hp, x, w) ← hp · w and H = hash(lpar, hk, x) ← hk · x.
For any A(I) for which the NIZK of Sect. 4 is efficient, one can also construct

an efficient SPHF by constructing Γ and θ as in Eq. (3). In the full version [10],
we will describe a GL-SPHF for the language of elliptic curve points.
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10 On Falsifiability of CED

In the current paper, we significantly expand the class of languages for which
the Couteau-Hartmann framework allows for the construction of efficient NIZKs.
However, for many of these languages, the underlying variant of the CED assump-
tion is not falsifiable. At first sight, even though the Couteau-Hartmann frame-
work leads to particularly compact NIZKs, relying on a non-falsifiable assump-
tion seems to limit the interest of the result severely: if one is willing to rely on
non-falsifiable in the first place, then there are countless pairing-based SNARGs
and SNARKs which will achieve much more compact proofs (albeit the prover
cost will be much higher in general).

Next, we discuss the falsifiability of the CED assumption. In Sect. 10.1, we
study the falsifiable CED case, by clarifying for which languages there exist
(algebraic) polynomial-time algorithms to check F (χ) = 0. In particular, we
point out that for many examples of the current paper, the CED assumption is
already falsifiable. After that, we concentrate on the cases when this is not so.

In Sect. 10.2, we show that despite their unfalsifiability, CED assumptions
are fundamentally different in nature from knowledge-of-exponent assumptions
(which underlie the security of existing SNARK candidates). We will prove that
CED assumptions are implied by a new but natural gap assumption [30] that
KerMDH stays secure in G2 even given a CDH oracle in G1.

In Sect. 10.3, we modify our NIZKs to make the CED assumption falsifiable
by letting the prover additionally encrypt input elements in G2. If the polyno-
mial F is quadratic, then the soundness reduction can use them to check whether
the prover’s inputs belong to the language or not, thus making CED falsifiable.
Since each gate of an arithmetic circuit is a quadratic polynomial, one can con-
struct a NIZK for arithmetic circuits under a falsifiable assumption. The reason
why we do not start with this solution is the added cost. First, the additional
elements make the argument longer. Second, as probably expected, one cannot
use Elgamal but has to use the less efficient DLIN cryptosystem [6].

Thus, if CED is falsifiable, then one can use an Elgamal-based solution. Other-
wise, one has a security-efficiency tradeoff: one can either rely on a non-falsifiable
gap-assumption or use a slightly less efficient DLIN-based falsifiable NIZK.

10.1 On Languages for Which CED is Falsifiable

The CED assumption is falsifiable if there exists an efficient verification algo-
rithm Vf , such that given an arbitrary ciphertext tuple x = [ct1, . . . , ctν ]1
and an sk-dependent trapdoor T, Vf(p, pk, x,T) can efficiently check whether
Decsk([ct1, . . . , ctν ]1) ∈ Lpk,F . As in the rest of the paper, we take T = sk. Thus,
given a ciphertext tuple [ct]1, Vf can use sk to decrypt it and obtain the plaintext
[χ]1. Vf then forms the QDR [C(χ)]1 from [χ]1. If F (χ) 	= 0 (that is, x 	∈ Lpk,F ),
then [C(χ)]1 has full rank. Otherwise, it has rank < �. Thus, if F (X) is such
that it is possible to check efficiently whether F (χ) = 0, given [χ]1, we can
construct an efficient falsifiability check Vf . (Note that this approach is different
from Couteau-Hartmann, who required T to be a matrix.)
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First, if |A| = poly(λ), then Vf just checks if [χ]1 is equal to [a]1 for any
a ∈ A. Thus, the NIZK for the univariate case in Sect. 6.1 and the NIZK for
boolean circuits in Sect. 8.1 rely on a falsifiable CED assumption. (This assumes
that all polynomials have degree poly(λ), and the circuits are polynomial-size.)
In general, the NIZK in the case of non-principal ideal, Sect. 8, is based on
falsifiable CED iff A(I) has polynomial size.

The outliers are the cases of principal ideals of multivariate polynomials (since
then |A(I)| can be exponential as in the set of points (X,Y ) on an elliptic curve)
and some instances of non-principal ideals where |A(I)| is super-polynomial. In
the latter case, we can clarify the situation further. Namely, given a generating
set 〈F1, . . . , Fτ 〉, by Bézout’s theorem, A(I) has at most size

∏
deg Fi. Assuming

each deg Fi is poly(λ),
∏

deg Fi is super-polynomial if τ = ω(1). Thus, constant-
size set-membership arguments in Sect. 8.2 or aCSPs for constant-size arithmetic
circuits in Sect. 8.1 are based on falsifiable CED. However, range proofs and
superconstant-size arithmetic circuits are based on non-falsifiable CED.

The super-polynomial size of A(I) does not mean that efficient Vf does not
exist. E.g., assume Fj(X) =

∏
i(Xi − sj) for each j. The ideal 〈Fj〉, for a single

j, has exponential size. However, given [χ]1, one can check if Fj(χ) = 0 by
checking if χi = sj for some j. This can be generalized to the case Fj is a
product of affine multivariate polynomials

∑
aikXk + bik. Clearly, F (χ) = 0

iff one of its affine factors is equal to 0. So, Vf can check if there exists an
i such that

∑
aik[χk]1 + bik[1]1 = [0]1. Generalizing this, one can efficiently

establish whether [C]1 is full-rank if the Leibniz formula for the determinant,
det(C) =

∑
σ∈Sn

(sgn(σ)
∏n

i=1 Ci,σi
), contains only one non-zero addend.

On the other hand, since Vf has only access to [χ]1, there is not much hope
that the CED assumption is falsifiable if F is a product of irreducible polynomials,
such that at least one of them has a total degree greater than one, unless we add
some additional, carefully chosen, elements to the proof for this purpose. In the
general case, this is not efficient, but the number of additional needed elements
might not be prohibitive for some applications.

Finally, the falsifiability of CED depends only on the polynomial F and not
on the specific C. One could find two different CED-matrices Ci for F , such that
the first one results in a more efficient NIZK argument, but the second one has
a specific structure enabling one to construct efficient Vf .

10.2 CED as a Gap Assumption

We show that CED follows from a new gap assumption, which states that given
p ← Pgen(1λ), even if one finds some structural properties in G1 that allows
breaking CDH over this group, this does in general not guarantee an efficient
algorithm for solving KerMDH [28] over the other group G2. More formally:

Definition 3. Assume that the (exponential-time) oracle O([x, y]1) outputs
[xy]1. D�−1,k-CDHG1	⇒KerMDHG2 holds relative to Pgen, if ∀ PPT A,

Pr
[
p ← Pgen(1λ); D ←$ D�−1,k; [c]3−ι ← AO(p, [D]ι) : D�c = 0k ∧ c �= 0�−1

]
≈λ 0 .
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Theorem 3. Let � − 1, k ∈ N. If the Dk-CDHG1	⇒KerMDHG2 assumption holds
relative to Pgen, then Dk-(� − 1)-CED holds in G1 relative to Pgen.

Note that in particular, this re-proves the result of [9] that CED is secure in
the generic bilinear group model (since a CDH oracle in G1 does not help to
break any assumption in G2 in the generic bilinear group model).

10.3 DLIN-Based NIZK Based on Falsifiable CED

While constructing a Sub-ZK QA-NIZK, [2] had to check efficiently if C is invert-
ible, given only [C]1. We will next study whether we can apply their technique.
It is not straightforward to apply it since their case is somewhat different: there,
C is a k × k (in particular, k ∈ {1, 2}) public matrix sampled from Dk and
then given as a part of the CRS. In our case, C can have an arbitrary poly(λ)
dimension, and it is reconstructed from the input to the NIZK argument.

To explain the technique of [2], consider the case [C]1 ∈ G
2×2
1 . [2] added

to the CRS certain additional elements in G2 (namely, [C11, C12]2), such that
it became possible to check publicly (by using pairings) whether detC = 0 by
checking whether [C11]1 • [1]2 = [1]1 • [C11]2, [C12]1 • [1]2 = [1]1 • [C12]2, and
[C22]1 • [C11]2 = [C21]1 • [C12]2. One cost of publishing the additional elements
in [2] was that it changed the assumption they used from KerMDH to the less
standard SKerMDH assumption [19]. As we see next, we have to use the DLIN
cryptosystem [6] instead of the Elgamal cryptosystem. However, as a result, we
will obtain a NIZK for any F , computable by a poly-size arithmetic circuit, sound
under a falsifiable CED assumption. Another benefit of it is to demonstrate that
our framework is not restricted to Elgamal encryptions.

Next, we show how to construct a NIZK, based on a falsifiable CED assump-
tion, for the polynomial F (X,Y ) = X2−Y . We ask the prover to also encrypt X
in G2. In the soundness reduction, a CED-adversary uses the latter, after decryp-
tion, to check whether [X]1 • [X]2 = [Y ]1 • [1]2. We must ensure that the verifier
only accepts the proof if [X]2 is correct, i.e., [X]1•[1]2 = [1]1•[X]2. Since Elgamal
is not secure given symmetric pairings, we cannot use the secret key or the same
randomness in both groups. Hence, we use the DLIN encryption scheme (see the
full version [10] for its definition). Given sk = (sk1, sk2) and pkι = [1, sk1, sk2]ι, we
define lpar := (pk1, pk2, F ). Then, Llpar := {([ct1, ct2]1, [ct1]2)}, where [ct1]ι =
Encι(X; r1, r2) = [r1sk1, r2sk2,X + r1 + r2]ι and [ct2]1 = Enc1(Y ; r3, r4) =
[r3sk1, r4sk2, Y + r3 + r4]1. We prove that [ct1, ct2]1 are encryptions of X and Y
such that X2 = Y , by using the QDR C(X,Y ) =

(
X −1

−Y X

)
. The use of the DLIN

encryption scheme just affects the efficiency and the communication size of the
protocol. In addition, one can check that [ct1]1 and [ct1]2 encrypt the same X
in two different groups by checking that [ct1]1 • [1]2 = [1]1 • [ct1]2.

Since the DLIN encryption is doubly-homomorphic like Elgamal, then
the argument of Sect. 4.1 stays essentially the same, with Elgamal encryp-
tions replaced by DLIN encryptions, and the dimensions of randomizers and
ciphertexts increasing slightly. In the soundness proof, given that the prover
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also outputs Enc2(X; r1, r2), the constructed CED adversary obtains plaintexts
[X,Y ]1, [Z]2 and, then can efficiently verify if the statement X2 = Y holds.

Combining this idea with the rest of our framework, we can construct a
NIZK for any language of DLIN-encryptions for any F , based on a falsifiable
CED assumption. This is since one can check that F = 0 by checking that an
arithmetic circuit evaluates to 0, and each gate of an arithmetic circuit evaluates
a quadratic function. For example, to prove that Y 2 = X3 + aX + b, one can
encrypt Y , Y ′, X, X ′, and X ′′, and then prove that Y ′ = Y 2, X ′ = X2, X ′′ =
XX ′, and Y ′ = X ′′ + aX + b.
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Abstract. We introduce a novel framework for quantifying the bit secu-
rity of security games. Our notion is defined with an operational meaning
that a λ-bit secure game requires a total computational cost of 2λ for
winning the game with high probability, e.g., 0.99. We define the bit
security both for search-type and decision-type games. Since we identify
that these two types of games should be structurally different, we treat
them differently but define the bit security using the unified framework
to guarantee the same operational interpretation. The key novelty of our
notion of bit security is to employ two types of adversaries: inner adver-
sary and outer adversary. While the inner adversary plays a “usual” secu-
rity game, the outer adversary invokes the inner adversary many times
to amplify the winning probability for the security game. We find from
our framework that the bit security for decision games can be charac-
terized by the information measure called the Rényi divergence of order
1/2 of the inner adversary. The conventional “advantage,” defined as the
probability of winning the game, characterizes our bit security for search-
type games. We present several security reductions in our framework for
justifying our notion of bit security. Many of our results quantitatively
match the results for the bit security notion proposed by Micciancio and
Walter in 2018. In this sense, our bit security strengthens the previous
notion of bit security by adding an operational meaning. A difference
from their work is that, in our framework, the Goldreich-Levin theorem
gives an optimal reduction only for “balanced” adversaries who output
binary values in a balanced manner.

Keywords: Bit security · Rényi divergence · Goldreich-Levin theorem

1 Introduction

The security levels of cryptographic primitives are usually measured by the
attacker’s cost for breaking them. We say a primitive P has λ-bit security if
the attacker needs to perform 2λ operations to break it. The idea behind the
notion is that an ideal scheme should be secure as if the only effective attack is
the brute-force search of the λ-bit secret key. The attacker can find the key by
checking each candidate roughly 2λ times or randomly guessing a key, which is
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13092, pp. 161–188, 2021.
https://doi.org/10.1007/978-3-030-92078-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92078-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-92078-4_6


162 S. Watanabe and K. Yasunaga

correct with probability 2−λ. In either way, the attacker needs a computational
cost of roughly 2λ operations to find the correct key. There is a trade-off between
the computational cost T and the success probability ε for finding the key. Thus,
a λ-bit secure primitive should satisfy the relation T/ε ≥ 2λ for any attacks. The
quantity log2(T/ε) has been used to give an upper bound on bit security.

The above notion of bit security only captures search primitives such as one-
way functions and signature schemes, where the attacker tries to find the correct
answer from a wide range of the solution space. We also have another type
of primitives, called decision primitives, such as pseudorandom generators and
encryption schemes, where the attacker tries to distinguish two possible cases.
Since the quantity of log2(T/ε) has an operational meaning only for search-type
games, the corresponding notion for decision primitives has not been established.

Micciancio and Walter [19] introduced a unified framework for measuring bit
security that captures both search and decision primitives. They discussed the
validity of their definition by giving several results, including the tightness of
the Goldreich-Levin hard-core predicate and a simple reduction of one-wayness
of pseudorandom generators. Results obtained under their framework are com-
patible with what has been believed in the cryptography community. Notably,
their bit security definition reflects the folklore (cf. [16]), claiming that the bit
security of decision games is reciprocal of the “square” of the advantage. In the
framework of [19], they consider a security game in which an attacker is allowed
to output a failure symbol ⊥; the advantage of the attacker is defined as the ratio
between the mutual information and the Shannon entropy of random variables
induced by the security game. However, these concepts seem to be introduced
without satisfactory explanation. The security of cryptographic primitives can-
not be verified by experiments, unlike physics. Thus, the compatibility of the
results is not sufficient enough to justify the notion. It is desirable to build a
security definition that has a firm operational meaning.

In this work, we revisit a theoretical treatment of bit security and introduce
a new notion of bit security with an operational meaning. Specifically, we define
bit security as the computational cost for winning the security game with high
probability. We apply the same interpretation to both search and decision prim-
itives but distinguish them since they should be structurally different. Below we
explain the underlying idea of our framework of bit security.

In cryptography, the security of a primitive is usually defined through the
security game. The game is played by an attacker and defines the success prob-
ability ε of the attacker. For example, in the security of one-way function f , an
attacker is given f(x) for random x and tries to output x′ satisfying f(x) = f(x′).
When the success probability is at most ε for any attackers with computational
cost at most T , we say that f is (T, ε)-secure one-way function. Assume there
is an attacker A that, given f(x), can output x′ with f(x) = f(x′) with com-
putational cost T and success probability ε. What can we say about the cost
of breaking the one-wayness? Suppose we run A in total N times, where A
receives an independently generated challenge f(xi) for the ith time. The total
cost is NT , and the success probability for finding a pair (f(xi), x′

i) satisfying
f(x′

i) = f(xi) can be increased to roughly Nε. Thus, it suffices to run A about
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1/ε times to break one-wayness with high probability. The total cost of T/ε cor-
responds with the quantity described above. Hence, if f is a λ-bit secure one-way
function, it must satisfy T/ε ≥ 2λ for any attackers.

The above formulation of bit security can be adopted for other search prim-
itives. The success probability for those primitives is designed to be sufficiently
small, and it may be increased by running the base attacker repeatedly. For
decision primitives, the success probability of an attacker is designed to be close
to 1/2. In a security game of a pseudorandom generator g : {0, 1}� → {0, 1}m,
an attacker tries to distinguish whether a given bit string y is from an output
g(x) for random x ∈ {0, 1}� or a random sampling from {0, 1}m. A game is such
that, after choosing a bit u ∈ {0, 1} randomly, the attacker obtains y = g(x) if
u = 0, and random y ∈ {0, 1}m if u = 1, and finally outputs u′ ∈ {0, 1} as a
guess. The attack succeeds if u′ = u. We usually require that, for any attacker
with cost T , the success probability ε is bounded by ε ≤ 1/2 + δ for small δ ≥ 0.

Although the success probability for decision primitives should be close to
1/2, it can be amplified by running the base attacker repeatedly and making
the final decision from the output sequence. Thus, bit security can be defined
similarly as the computational cost for winning the security game with high
probability. Note that there is a structural difference between games for search
and decision primitives. For search primitives, an attacker receives independently
generated challenges in repeated games and wins the game if it finds any success-
ful solution. For decision primitives, an attacker needs to determine the secret
bit u, which is consistent in every repeated game.

1.1 Our Contribution

We define a notion of bit security based on the above idea. Specifically, we define
a game in which two types of adversaries exist. The first adversary A, called
an inner adversary, is an attacker for the “usual” security game. The second
adversary B, called an outer adversary, invokes A certain times to amplify the
final success probability εA,B . The bit security is defined as (the logarithm base
2 of) the computational cost of (A,B) necessary for achieving εA,B ≥ 0.99.

The condition for success differs depending on the types of games. For deci-
sion games, the inner adversary A tries to distinguish two cases whether the
secret bit u equals 0 or 1. The outer adversary also tries to distinguish the two
cases by observing answers from A sufficiently many times. The success condition
of (A,B) is that B outputs b with b = u. For search games, where a secret u is
chosen from {0, 1}n for n > 1, at the ith invocation of A by B, the challenge xi is
generated independently and sent to A. The pair (A,B) succeeds if at least one
invocation of A could find the correct answer of the underlying security game.
Thus, as long as A chooses a value from a finite solution space, the bit security
takes a finite value in search games.

Suppose an adversary A runs in time TA and achieves the success prob-
ability εA for some security game. For the search game, the advantage of A
is usually defined to be advsrch = εA. Our bit security is roughly given by
log2 TA+log2(1/advsrch)+O(1). This is compatible with the well-accepted quan-
tification of bit security in the literature.
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On the other hand, for the decision game, the advantage of A is usually
defined to be advdecn = 2εA − 1. Our main message of this paper is that the
usual notion of advantage advdecn is useful only for a certain class of adver-
saries. More specifically, we introduce a class of adversaries that output in a
“balanced” manner, referred to as β-balanced adversaries. For instance, the lin-
ear test of pseudorandom generators is β-balanced for β = 1/2 since it outputs
0 and 1 with equal probability when the instance is from a true random gener-
ator. For that class of adversary, we show that our bit security is roughly given
by log2 TA + 2 log2(1/advdecn) + O(1). Thus, it is compatible with the folklore
(cf. [16]) that the bit security of decision games is reciprocal of the square of the
advantage. However, for general adversaries, we demonstrate that the bit security
is characterized by the Rényi advantage advRenyi

A = D1/2(A0‖A1), where D1/2 is
the Rényi divergence of order 1/2 and Au is the random variable of the output
of A under the condition that u is the secret bit. This new notion of advantage
is closely tied to the optimal exponential convergence of the error probability in
the Bayesian hypothesis testing [5, Section 11.9]. Using the Rényi advantage, we
show that our bit security is roughly given by log2 TA +log2(1/advRenyi

A )+O(1).
When we consider a security reduction of a decision game to the correspond-

ing search game, it turns out that the use of the Rényi advantage instead of
the advantage advdecn is crucial. As a concrete example, let us consider the case
of proving that a λ-bit secure pseudorandom generator (PRG) implies a λ-bit
secure one-way function (OWF). Suppose that there is an inner adversary A
for the OWF with success probability εA. Then, using this adversary A, we
can build an inner adversary A′ for the PRG; this adversary A′ outputs 0 only
when A succeeds in inverting the OWF and thus is extremely biased. For such a
biased adversary, it turns out that the Rényi advantage advRenyi

A and the advan-
tage advdecn are both Ω(εA). Then, our estimate of the bit security using the
Rényi advantage provides that the bit security of the PRG is upper bounded by
log2 TA + log2(1/εA) + O(1), which proves the desired contradiction. However,
using the advantage advdecn, the bit security of the PRG is only upper bounded
by log2 TA +2 log2(1/εA)+O(1), which does not prove the desired contradiction.

Using our framework, in addition to the above example of the PRG to the
OWF, we present several other security reductions. For the distribution approxi-
mation problem (a.k.a. approximate samplers), we show that the approximation
precision for preserving the bit security is essentially the same for search and
decision primitives as long as the distributions are close enough in the Hellinger
distance. It solves another peculiar problem raised in [19] that decision primi-
tives may require more precise approximation than search primitives. Regarding
the Goldreich-Levin hard-core predicate [9,10], we observe that their reduction
is tight as long as we consider β-balanced attackers for the hard-core predicate.
Concretely, if a one-way function f : {0, 1}n → {0, 1}m is λ-bit secure, then
the inner product function

∑
i xi · ri mod 2 is a (λ − O(log2 n))-bit secure hard-

core predicate for function g(x, r) = (f(x), r) against adversaries A satisfying
minx Pr[A = x] = Ω(1). We observe that the well-known reduction from the
Computational Diffie-Hellman (CDH) problem to the Decisional Diffie-Hellman



Bit Security as Computational Cost for Winning Games 165

(DDH) problem shows that if the DDH problem has λ-bit security, then the
corresponding CDH problem has (λ − O(1))-bit security. Although the DDH
assumption is stronger than the CDH assumption, our result implies that the
DDH problem may not necessarily have quantitatively higher bit security. In
addition, we give a quantitative relationship between the IND-CPA security and
the one-wayness of encryption schemes. We show that if an encryption scheme is
λ-bit secure IND-CPA and the message space is of size 2λ, it has (λ − O(1))-bit
secure one-wayness. Finally, we show that a hybrid argument for distinguishing
distributions can be generally applied in our framework.

1.2 Related Work

Our study is inspired by the bit security framework introduced by Miccian-
cio and Walter [19]. They first defined the advantage of adversary A using
the mutual information and the Shannon entropy. Then, they observed that
their advantage could be approximated by advsrchMW = αβ for search games and
advdecnMW = α(2β − 1)2 for decision games, where α is the probability that A out-
puts values other than ⊥ and β is the conditional probability that A succeeds
in the game under the condition that A outputs values other than ⊥. Their
bit security is defined as minA log2(TA/advMW), where TA is the measure of
resources of A. Their notion could solve peculiar problems in PRG and approx-
imate samplers. However, it is not easy to understand the quantitative meaning
of their bit security. Since the notion of bit security was introduced to offer an
easy-to-understand simple metric, our new notion of bit security would be more
appealing. In our framework, if a security game has λ-bit security, the game
requires a total computational cost of 2λ to win the game with high probability.

In [26], the closeness in Hellinger distance was used for the distribution
approximation problem in the bit security framework of [19]. Although we
have not found concrete relations between the frameworks of [19] and ours,
the Hellinger distance plays a key role in both frameworks for the distribution
approximation problem.

The Rényi divergence has been used in various problems in the informa-
tion theory; see [23,25] and references therein. Since the Rényi divergence can
be regarded as a proxy of distance, it has been used as a security metric on
encryption [12], an approximation metric in lattice cryptography [2,4,15,22,24],
differential privacy [20], and security analysis [14,17]. Our usage of the Rényi
divergence is different from these cryptographic applications in the sense that
the Rényi divergence naturally arises as a characterization of the operationally
defined bit-security via the Bayesian hypothesis testing.

2 Preliminaries

We present several basic notions and their properties about probability distri-
butions. Let P and Q be probability distributions over a finite set Ω. For a
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distribution P over Ω and A ⊆ Ω, we denote by P (A) the probability of event
A, which is equal to

∑
x∈A P (x).

The total variation distance between P and Q is

dTV(P,Q) = max
A⊆Ω

|P (A) − Q(A)| =
1
2

∑

x∈Ω

|P (x) − Q(x)|.

The Hellinger distance between P and Q is

dHD(P,Q) =

√
1
2

∑

x∈Ω

(√
P (x) −

√
Q(x)

)2
=
√

1 −
∑

x∈Ω

√
P (x) · Q(x),

which takes values in [0, 1]. It holds that

dHD(P,Q)2 ≤ dTV(P,Q) ≤
√

2 · dHD(P,Q). (1)

The Rényi divergence of order 1/2 is

D1/2(P‖Q) = −2 ln
∑

x∈Ω

√
P (x)Q(x).

It holds that 1 − 1/t ≤ ln t ≤ t − 1 for t > 0. By using this inequality, we have
that

dHD(P,Q)2 ≤ 1
2

· D1/2(P‖Q) ≤ dHD(P,Q)2

1 − dHD(P,Q)2
≤ 2 · dHD(P,Q)2, (2)

where the last inequality holds if dHD(P,Q)2 ≤ 1/2. Thus, if D1/2(P‖Q) ≥ x,
we have

dHD(P,Q)2 ≥ min
{

1
2
,
x

2

}

. (3)

3 Bit Security

Based on the idea described in Sect. 1, we introduce our framework of bit security.
Section 3.1 provides a formal definition. Section 3.2 presents upper and lower
bounds on the bit security, which will be used for security reductions.

3.1 Definition

We define an n-bit security game GA,B = (X,R, {Oθ}θ) consisting of an algo-
rithm X, a Boolean function R, and oracles {Oθ}θ, played by an inner adversary
A and an outer adversary B. The inner adversary A plays a usual security game.
First, a secret u ∈ {0, 1}n is chosen uniformly at random, and the challenge x is
computed as X(u). Given x, A tries to output a such that R(u, x, a) = 1 using
oracle access to {Oθ}θ. See Fig. 1. The success probability of A is

εA = Pr
[
u

R←− {0, 1}n;x ← X(u); a ← A{Oθ(·)}θ (x) : R(u, x, a) = 1
]
.



Bit Security as Computational Cost for Winning Games 167

u

X

A {Oθ}θ

x

a

Fig. 1. A description of the inner adversary.

The outer adversary B can invoke the inner adversary A multiple times. We
denote by Ai the ith invocation of A, which is the identical copy of A. The outer
adversary B finally outputs b. The success condition of B depends on the type
of games.

Decision Type (n = 1): When n = 1, A tries to distinguish two cases whether
u = 0 or u = 1. The outer adversary B also tries to tell apart from the two
cases based on the answers a1, a2, · · · from A1, A2, · · · , where ai ∈ {0, 1}.
Thus, the success probability of B is defined as

εdecnA,B = Pr
[
u

R←− {0, 1}; b ← BOdecn
A : b = u

]
,

where Odecn
A is the oracle that, given the ith query, computes xi ← X(u) and

replies with ai ← A
{Oθ(·)}θ

i (xi). See Fig. 2.
A typical example of the decision-type primitive is the pseudorandom gen-
erator. In that case, the secret describes whether the algorithm X is the
pseudorandom generator (u = 0) or the true random generator (u = 1).
Then, upon observing the output x from X(u), the goal of the inner adver-
sary is to estimate the value of u. Usually, the success probability is given by
1
2 (1 + δ) for some small advantage δ. The purpose of the outer adversary is
to boost the success probability of estimating u by aggregating the outputs
of N independent invocations of the inner adversary.

Search Type (n > 1): When n > 1, A tries to find any “correct” answer a
satisfying R(u, x, a) = 1. Thus, B also tries to find any correct answer by
invoking Ai’s. At the ith invocation, a secret ui is chosen independently and
uniformly at random. Given X(ui), Ai replies with ai. The final output of
B is the list {(j, aj)}j of all oracle replies. The success probability of B is
defined as

εsrchA,B = Pr
[
b = {(j, aj)}j ← BOsrch

A : ∃i, (i, ai) ∈ b ∧ R(ui, xi, ai) = 1
]
,

where Osrch
A is the oracle that, given the ith query, chooses ui ∈ {0, 1}n uni-

formly at random, computes xi ← X(ui), and replies with ai ← A
{Oθ(·)}θ

i (xi).
See Fig. 3.
A typical example of the search-type primitive is the one-way function. In
that case, the secret describes the input of the one-way function X. Then,
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u

X

{Oθ}θ

u

X

{Oθ}θ

u

X

{Oθ}θA1 A2 AN

a1 a2 aN

· · ·

B

b

x1 x2 xN

Fig. 2. A description of the outer adversary for n = 1.

X

{Oθ}θ

X

{Oθ}θ

X

{Oθ}θA1 A2 AN

a1 a2 aN

· · ·

B

u1 u2 uN

x1 x2 xN

b = {(j, aj)}j

Fig. 3. A description of the outer adversary for n > 1.

upon observing the output of the one-way function, the goal of the inner
adversary is to find an element in the inverse image of the given output.
Usually, the success probability of the search-type game is tiny. Unlike the
decision-type primitive, the outer adversary does not process the outputs
obtained from the inner adversary; the role of the outer adversary is to invoke
the inner adversary a sufficient number of times so that at least one correct
estimate of the secret is included in the list.

The objective of the outer adversary B is to achieve the success probability
of 1 − μ for some small constant μ > 0 with the least number N = NA,B

of invocations of A. We assume that N outputs a1, . . . , aN are independently
identically distributed according to a distribution determined by the behavior of
the inner adversary A. This assumption implies that our definition captures the
situation in which the outer adversary tries to amplify the success probability
by observing multiple invocations of the inner adversary.

Let TA denote the computational complexity for playing the inner game by
A. Namely, it is the (worst-case) computational cost for running the experi-
ment

[
u

R←− {0, 1}n;x ← X(u); a ← A{Oθ(·)}θ (x)
]
. The bit security is defined as

the computational cost of (A,B) necessary for achieving the success probability
εA,B ≥ 1 − μ.
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Definition 1 (Bit Security). The bit security of an n-bit game G =
(X,R, {Oθ}θ) for error probability μ is defined to be

BSμ
G � min

A,B
{log2(NA,B · TA) : εA,B ≥ 1 − μ}

= min
A

{
log2 TA + log2 min

B
{NA,B : εA,B ≥ 1 − μ}

}
,

where NA,B is the number of queries to A made by the outer adversary B.

The computational complexity of B is not considered in the definition. It
is for simplicity. Most of the time is consumed by the NA,B times running of
A. Compared to it, the computational cost of B is negligibly small. Indeed, in
Sect. 3.2, we show that simple computations of B can achieve tight upper bounds
on the bit security. We note that when n = 1, the restriction of the output range
of A to {0, 1} is necessary to ignore the computational cost of B. If A can output
any values and we do not consider B’s cost, B may trivially predict the value u
by observing each Ai’s view and performing a high-cost computation that is not
counted.

By definition, the bit security of search primitives has a finite value if the
output space of inner adversaries is finite. If an inner adversary A for a search-
type game outputs a ∈ {0, 1}�, since a random guessing adversary has a success
probability of at least 1/2�, the bit security is bounded above by � + O(1). In
contrast to this fact, decision games can have infinite bit security. For example,
since the one-time pad has perfect secrecy, the bit security should be unbounded.

Measures of Computational Costs

We can adopt various measures of resources as computational complexity. The
only restriction is that repeating the task with complexity T in total � times
takes the complexity of �T . This property is implicitly assumed in Definition 1.

We can assume that time complexity is employed to measure computational
cost in this paper. Following the literature, one may also employ the circuit
size as the computational cost. Note that there have been discussions about
measuring the cost of attacks [3,6,13], especially in the non-uniform model.

Instantiations

Some instantiations of decision and search games in our framework are described
in Table 1.

3.2 Upper and Lower Bounds

Since most cryptographic primitives are built upon unproven hardness assump-
tions, it is difficult to provide absolute bounds on the bit security of given
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Table 1. Some instantiations of security games.

Game Type∗ X R {Oθ(·)}θ

OWF f S f(u) f(u) = f(a) —

PRG g D

{
g(U�) u = 0

Um u = 1
u = a —

IND of (D0, D1) D Du u = a —

IND security of (Enc, Dec) D (m0, m1, Enc(mu)) u = a —

IND-CPA of (Enc, Dec) D pp u = a Oe(q) = Encek(q)

Oc(q0, q1) = Encek(qu)

Unforgeability of (Sign, Vrfy) S vk a /∈ {Os(qi)}i Os(q) = (q, Signsk(q))

∧ Vrfyvk(a) = 1

2nd-preimage resistance of h S (u, r) r �= a ∧ —

hu(r) = hu(a)

Collision resistance of h S u a1 �= a2∧ —

hu(a1) = hu(a2)

DDH D

{
(g, gc, gd, gcd) u = 0

(g, gc, gd, ge) u = 1
u = a —

CDH S (g, gc, gd) a = gcd —
∗S = Search, D = Decision

primitives. In this section, we present an upper bound (Theorem 1) and a lower
bound (Theorem 2) on the bit security in terms of the success probability of
an inner adversary. In Sect. 4, those upper bound and lower bound are used to
discuss the relative loss of the bit security during reductions of cryptographic
primitives.

First, we derive an upper bound. To that end, for a given inner adversary
A with success probability εA, we shall derive an upper bound on the number
NA,B of invocations necessary to attain the outer adversary’s success probability
1 − μ. For the search-type game, the number NA,B can be upper bounded by a
simple bound on the geometric distribution.

Lemma 1 (Upper bound for n > 1). Let G be a search-type security game,
and A be its inner adversary with success probability εA ∈ (0, 1]. Then, there
exists an outer adversary B such that εA,B ≥ 1 − μ and

NA,B =
⌈

1
εA

ln(1/μ)
⌉

.

Proof. We consider an adversary B that simply invokes Ai in total N = NA,B

times. The success probability of B is εB = 1− (1− εA)N . We need to guarantee
that εB ≥ 1 − μ, i.e., (1 − εA)N ≤ μ. Since

(1 − εA)N ≤ exp(−NεA),

it suffices to choose N = 
(1/εA) ln(1/μ)� for achieving (1 − εA)N ≤ μ. Hence,
the statement follows. ��
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For the decision-type game, we need some machinery from the Bayesian
hypothesis testing. Observe that the success probability of an inner adversary
can be written as

εA =
1 + dTV(PA|U (·|0), PA|U (·|1))

2
,

where PA|U (·|u) is the distribution of the inner adversary’s output when the
secret is u. When we evaluate the outer adversary’s success probability, the expo-
nential convergence is characterized by the Rényi divergence of order 1/2. The
following lemma connects the total variation distance and the Rényi divergence
of order 1/2.

Lemma 2. For given distributions P and Q, we have

dTV(P,Q)2 ≤ 1 − exp(−D1/2(P‖Q)).

Proof. For example, see [8, Proposition 5]. ��
By using Lemma 2, we can derive the following upper bound on NA,B for

the decision-type game.

Lemma 3 (Upper bound for n = 1). Let G be a decision-type security game,
and A be its inner adversary with success probability εA = (1+δ)/2 for δ ∈ (0, 1].
Then, there exists an outer adversary B such that εA,B ≥ 1 − μ and

NA,B =
⌈

2
δ2

ln(1/2μ)
⌉

. (4)

Proof. We define the strategy of the outer adversary B as

b =

{
0 if PAN |U (aN |0) ≥ PAN |U (aN |1)
1 if PAN |U (aN |0) < PAN |U (aN |1)

where PAN |U (·|u) is the distribution of N independent outputs a1, . . . , aN of the
inner adversary for the secret u. Then, by using a standard technique of the
Bayesian hypothesis testing (cf. [5, Section 11.9]), the error probability of the
outer adversary can be bounded as

Pr[b �= u] =
1
2

∑

aN

min
{
PAN |U (aN |0), PAN |U (aN |1)

}

≤ 1
2

∑

aN

√
PAN |U (aN |0) · PAN |U (aN |1)

=
1
2

exp
(

− 1
2
D1/2(PAN |U (·|0)‖PAN |U (·|1))

)

=
1
2

exp
(

− N

2
D1/2(PA|U (·|0)‖PA|U (·|1))

)

.
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Here, by noting e−t ≥ 1 − t, Lemma 2 implies

δ2 = dTV(PA|U (·|0), PA|U (·|1))2 ≤ D1/2(PA|U (·|0)‖PA|U (·|1)).

Thus, we have

Pr[b �= u] ≤ 1
2

exp
(

− δ2 N

2

)

.

This means that, in order to satisfy Pr[b �= u] ≤ μ, it suffices to take

N =
⌈

2
δ2

ln(1/2μ)
⌉

,

which implies (4). ��
We estimate the computational cost for implementing the outer adversary B

in the above proof. We assume that B knows the conditional probability distri-
butions PA|U (·|0) and PA|U (·|1). Given aN ∈ {0, 1}N , B counts the number of
0’s in aN , denoted by N0. Let N1 = N − N0. Then, B can compute the value
PAN |U (aN |0) as PA|U (0|0)N0 ·PA|U (1|0)N1 . Also, PAN |U (aN |1) can be calculated
similarly. The computation of B is for counting N0, calculating the two proba-
bilities, and comparing them. Thus, the computational complexity of B is O(N).
Even if we take into account the computational complexity of B, the bit security
is affected by a constant that does not depend on security games.

It follows from the proof of Lemma 3 that the Rényi advantage

advRenyi
A := D1/2(PA|U (·|0)‖PA|U (·|1))

gives an upper bound for n = 1.

Lemma 4 (Upper bound for n = 1 with Rényi advantage). Let G be
a decision-type security game, and A be its inner adversary with the Rényi
advantage with advRenyi

A > 0. Then, there exists an outer adversary B such
that εA,B ≥ 1 − μ and

NA,B =
⌈

2

advRenyi
A

ln(1/2μ)
⌉

. (5)

From the above three lemmas, we can derive the following upper bound on
the bit security.

Theorem 1. Let G be an n-bit security game, and A be its inner adversary with
success probability εA > 0, running time TA, and Rényi advantage advRenyi

A > 0.
Then, we have

BSμ
G ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log2 TA + log2
(

1
εA

)
+ log2 ln(1/μ) + 1 n > 1

log2 TA + 2 log2
(

1
2(εA−1/2)

)
+ log2 ln(1/2μ) + 2 n = 1

log2 TA + log2
(

1

advRenyi
A

)
+ log2 ln(1/2μ) + 2 n = 1

.
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Proof. It directly follows from the definition of the bit security and the upper
and lower bounds on NA,B in Lemmas 1, 3, and 4. ��

Next, we derive a lower bound on the bit security. To that end, for a given
inner adversary with success probability εA, we need to derive a lower bound on
NA,B for arbitrary outer adversaries B. For the search-type game, the following
bound can be derived from a simple union bound.

Lemma 5 (Lower bound for n > 1). Let G be an n-bit security game, and
A be its inner adversary with success probability εA. Then, any outer adversary
B with εB ≥ 1 − μ must satisfy

NA,B ≥ 1 − μ

εA
.

Proof. Since εB is the probability that B successfully finds u at least once, by
the union bound, we have εB ≤ NA,B · εA, which implies the claim. ��

For the decision-type game, deriving a lower bound on NA,B is more subtle.
In fact, without further assumptions on the inner adversary to be discussed at
the end of this section, it is not possible to derive a desirable lower bound in
terms of the success probability εA of an inner adversary. Instead, we derive a
lower bound in terms of the Rényi advantage as follows.

Lemma 6 (Lower bound for n = 1). Let G be a 1-bit security game, and
A be its inner adversary. Then, any outer adversary B with εB ≥ 1 − μ must
satisfy

NA,B ≥ ln(1/(4μ))

advRenyi
A

,

Proof. For any outer adversary B, we must have

Pr[b �= u] ≥ 1 − dTV(PAN |U (·|0), PAN |U (·|1))
2

. (6)

For two distributions P and Q, Lemma 2 implies

dTV(P,Q)2 ≤ 1 − exp(−D1/2(P‖Q))

≤
(

1 − 1
2

exp(−D1/2(P‖Q))
)2

,

i.e.,

1 − dTV(P,Q) ≥ 1
2

exp(−D1/2(P‖Q)).

Thus, by applying this inequality to (6), we have

Pr[b �= u] ≥ 1
4

exp(−D1/2(PAN |U (·|0)‖PAN |U (·|1)))

=
1
4

exp(−ND1/2(PA|U (·|0)‖PA|U (·|1))).
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Since Pr[b �= u] ≤ μ, it holds that

N ≥ ln(1/(4μ))
D1/2(PA|U (·|0)‖PA|U (·|1))

.

��
From Lemma 5 and Lemma 6, we can derive the following implication on the

bit security.

Theorem 2. If an n-bit game G is not λ-bit secure, i.e., BSμ
G < λ, then there

exists an inner adversary A for the game such that A runs in time TA and
satisfies

εA >
TA

2λ
(1 − μ)

for the search-type game n > 1; and

advRenyi
A = D1/2(PA|U (·|0)‖PA|U (·|1)) >

TA

2λ
· ln (1/4μ)

and

dHD(PA|U (·|0), PA|U (·|1)) > min

{
1√
2
,

√
TA

2λ+1
· ln (1/4μ)

}

.

for the decision-type game n = 1.

Proof. If G is not λ-bit secure, there exist an inner adversary A and an outer
adversary B such that NA,B · TA < 2λ. Then, the bound for the search-type
game follows from Lemma 5.

For the case that n = 1, Lemma 6 implies that D1/2(PA|U (·|0)‖PA|U (·|1)) >

(TA/2λ) · ln(1/4μ), and thus dHD(PA|U (·|0), PA|U (·|1))2 > min{1/2, x/2} for x =
(TA/2λ) · ln(1/4μ) by (3). ��

Discussion

Theorem 1 roughly claims that for search-type games, if there is an adversary A
with success probability εA and cost TA, then the bit security cannot be larger
than λ � log2(TA/εA); on the other hand, Theorem 2 roughly claims that if the
best possible inner adversary A has success probability εA and cost TA, then the
bit security of λ � log2(TA/εA) is guaranteed. Thus, the upper bound and the
lower bound essentially coincide.

For the decision-type game, the situation is more subtle. Theorems 1 and 2
show that the upper bound and the lower bound coincide in terms of the Rényi
advantage. With the success probability, Theorem 1 claims that, if there exists
an adversary A with success probability εA = (1 + δ)/2 and cost TA, then the
bit security cannot be larger than λ � log2(TA/δ2). By using the relation (1)
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between the total variation and the Hellinger distances, Theorem 2 guarantees
that if the best possible inner adversary A has success probability εA = (1+δ)/2
and cost TA, the bit security is guaranteed to be at least λ � log2(TA/δ). There
is a gap of log2(1/δ) between the bounds. As a further illustration, let us consider
an inner adversary given by PA|U (0|0) = δ, PA|U (1|0) = 1 − δ, PA|U (0|1) = 0,
and PA|U (1|1) = 1; this inner adversary makes no error when u = 1, and it
makes an error most of the time, 1 − δ, when u = 0. For this adversary, the
advantage is given by

dTV(PA|U (·|0), PA|U (·|1)) = δ.

On the other hand, the Rényi divergence/advantage is given by

D1/2(PA|U (·|0)‖PA|U (·|1)) = − ln(1 − δ)
= δ + o(δ).

Thus, if this kind of inner adversary exists, we can only guarantee the bit security
of λ � log(TA/δ) as a function of possible advantage δ.

Let us consider linear tests against a PRG g : {0, 1}� → {0, 1}m (cf. [1,21]). It
is known that they are powerful enough to give the best-known attack that yields
the distinguishing advantage δ ≥ 2−�/2 (See [1,7]). These tests output a = 0 and
a = 1 with the same probability for the true random generator (u = 1). Thus,
it seems reasonable to assume that the probability of each a given u is lower
bounded as PA|U (a|u) ≥ β for some β > 0; in the following, a class of inner
adversaries satisfying such an assumption is termed, β-balanced adversaries.

When probabilities are bounded below, we can connect the total variation
distance and the Rényi divergence.

Lemma 7. For given distributions P and Q, we have

D1/2(P‖Q) ≤ D(P‖Q) ≤ 2β−1
Q dTV(P,Q)2,

where βQ = minx∈X+ Q(x), X+ = {x : Q(x) > 0}, and D(P‖Q) =∑
x P (x) log(P (x)/Q(x)) is the KL-divergence.

Proof. The former inequality follows from the fact that the Rényi diver-
gence is monotonically non-decreasing with respect to α and D(P‖Q) =
limα→1 Dα(P‖Q). For the latter inequality, see [11, Lemma 4.1]. ��

Using Lemma 7, we can derive the following lower bound on the bit security
against β-balanced adversaries.

Theorem 3. If a 1-bit game G is not λ-bit secure against β-balanced adver-
saries, then there exists a β-balanced inner adversary A for the game such that
A runs in time TA and the success probability εA = (1 + δ)/2 satisfies

δ2 >
βTA

2λ+1
· ln
(

1
4μ

)

.
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Proof. In the same manner as Theorem 2, Lemma 6 implies that
D1/2(PA|U (·|0)‖PA|U (·|1)) > (TA/2λ) · ln(1/4μ), which together with Lemma
7 and the β-balanced assumption imply the desired bound. ��

Theorem 3 claims that, if the best possible advantage by β-balanced adver-
saries is δ, the bit security of λ � log(βTA/δ2) is guaranteed, which coincides
with the upper bound for β = Ω(1).

4 Security Reductions

We present several security reductions of security games.
We give the following lemma used in the proofs.

Lemma 8. Let A0 and A1 be distributions over {0, 1} such that A0(0) =
δ,A0(1) = 1−δ,A1(0) = qδ,A1(1) = 1−qδ, where 0 ≤ δ ≤ 1/32 and 0 ≤ qδ ≤ 1.
Then, D1/2(A0‖A1) ≥ φ(q) · δ, where

φ(q) := (1 − √
q)2 − q/16.

Proof. By definition,

D1/2(A0‖A1) = −2 ln
(√

qδ2 +
√

(1 − δ)(1 − qδ)
)

= − ln
(
qδ2 + (1 − δ)(1 − qδ) + 2

√
(1 − δ)(1 − qδ)qδ2

)

≥ − ln
(
qδ2 + (1 − δ)(1 − qδ) + 2

√
qδ
)

= − ln
(
1 − (1 + q)δ + 2

√
qδ + 2qδ2

)

= − ln
(
1 − (1 − √

q)2δ + 2qδ2
)

≥ (1 − √
q)2δ − 2qδ2

≥ ((1 − √
q)2 − q/16

)
δ,

where the last inequality holds for δ ≤ 1/32. ��

4.1 Goldreich-Levin Hard-Core Predicate

For functions f : {0, 1}n → {0, 1}m and h : {0, 1}n → {0, 1}, the hard-core
predicate game for f is a decision game with X = (f(R), h(R)) when u = 0, and
X = (f(R), U1) otherwise, where R is the uniform distribution over {0, 1}n and
U1 is the uniformly random bit.

We show that the Goldreich-Levin theorem [9,10] gives a tight reduction if
adversaries for the hard-core predicate are restricted to be β-balanced for some
constant β > 0. Namely, we assume that the adversary outputs each value with
a not too small probability.
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Theorem 4. Let f : {0, 1}n → {0, 1}m be a λ-bit secure one-way function.
Define g : {0, 1}2n → {0, 1}n+m as g(x, r) = (f(x), r). Then, the function h :
{0, 1}2n → {0, 1} defined by h(x, r) =

∑
i xi · ri mod 2 is a (λ − α)-bit secure

hard-core predicate for g against β-balanced adversaries, where α = 2 log2 n +
3 log2 λ + log2(1/β) + log2 ln(1/μ) + O(1).

Proof. It was proved by Goldreich and Levin (cf. [9,10]) that for any inner
adversary A for the hard-core predicate game with running time TA and

δA = 2 · Pr[A(f(Q,R)) = h(Q,R)] − 1 > 0,

where Q and R are uniform distributions over {0, 1}n, there is an adversary A′

that runs in time TA′ = O(n2(log2(1/δA))3) · TA such that

Pr[A(f(Q,R)) = (Q,R)] = Ω(δ2A).

Assume for contradiction that h is not (λ − α)-bit secure hard-core for g
against β-balanced adversaries. Then, by Theorem 3, there exists an inner adver-
sary A with running time TA such that the success probability for the hard-
core predicate game is εA = (1 + δA)/2 for δA >

√
βTA · ln(1/4μ)/2λ−α+1.

It is well-known that the distinguisher A for the hard-core predicate can be
used to construct a predictor of the value h(x, r). By the Goldreich-Levin the-
orem, there is an inner adversary A′ for the OWF game that runs in time
TA′ = O(n2 · λ3) · TA with success probability εA′ = Ω(βTA · 2−(λ−α)). It follows
from Theorem 1 that the bit security of the OWF game is bounded above by
log2 TA′ + log2(1/εA′) + log2 ln(1/μ) + 1, which is at most

λ − α + log2 O(n2λ3) + log2(1/β) + log2 ln(1/μ) + 1.

By choosing α = 2 log2 n + 3 log2 λ + log2(1/β) + log2 ln(1/μ) + O(1), f is not a
λ-bit secure one-way function, a contradiction. Hence, the statement follows. ��

If the β-balanced assumption is removed in Theorem 4, we cannot guarantee
the existence of an inner adversary A with δA � 2−λ/2. When the hard-core
predicate is λ-bit secure against general adversaries, it might be attained by a
“biased” inner adversary such that δA � 2−λ. Then, the success probability of A′

guaranteed by the Goldreich-Levin theorem would be Ω(2−2λ). Consequently, we
can only guarantee that a 2λ-bit secure one-way function implies a λ-bit secure
hard-core predicate. In this sense, it remains an open problem to prove if λ-bit
secure one-way function implies λ-secure hard-core predicate in our framework.
To that end, we may need a tight reduction that directly connects the Rényi
advantage of predicting the hard-core to the success probability of inverting the
one-way function.

4.2 PRG Implies OWF

Consider a pseudorandom generator g : {0, 1}� → {0, 1}m. As noted in [7],
since g is also a δ-biased generator (cf. [21]), the seed length � must be at least
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2 log(1/δ) for achieving the distinguishing advantage δ even for linear tests [1].
That is, it must be that δ ≥ 2−�/2. We might deduce from this fact that the bit
security of PRG needs to be half of OWF. We show that this is not the case
in our framework. Namely, there would be a λ-bit secure PRG that is a λ-bit
secure OWF but is not a (λ + ω(1))-bit secure OWF.

Theorem 5. If g : {0, 1}� → {0, 1}m is a λ-bit secure pseudorandom generator,
then g is a (λ − α)-bit secure one-way function for α = max{log2(1 + Tg) +
log2(1/φ(1/2)) + log2(ln(1/2μ)/(1 − μ)) + 2, log2(1 + Tg) + log2 ln(1/2μ) + 14},
where Tg is the computational complexity for evaluating g.

Proof. Suppose for contradiction that g is not a (λ − α)-bit secure one-way
function. Theorem 2 implies that there exists an inner adversary A that runs
in TA and has success probability εA > TA(1 − μ)/2λ−α. Also, it must be that
NA,B ·TA < 2λ−α, implying that TA < 2λ−α. Consider an inner adversary A′ for
the PRG game G such that, on input x, A′ runs A(x) to get a, and outputs 0 if
g(a) = x, and 1 otherwise. For u, b ∈ {0, 1}, let Au be the probability distribution
on the output of A′ when u ∈ {0, 1} was chosen in the PRG game. Then, we
have

A0(0) = εA, A0(1) = 1 − εA, A1(0) ≤ 2�

2m
εA, A1(1) ≥ 1 − 2�

2m
εA.

We apply Lemma 8 with A1(0) = qεA and A1(1) = 1 − qεA for some q ≤ 1/2.
Since φ(q) is monotonically decreasing on [0, 1/2], we have

D1/2(A0||A1) ≥ φ(q) · εA ≥ φ(1/2) · εA

as long as εA ≤ 1/32. By using Theorem 1,

BSμ
G ≤ log2(TA + Tg) + log2(1/φ(1/2)εA) + log2 ln(1/2μ) + 2

< λ − α + log2(1 + Tg/TA) + log2(1/φ(1/2)) + log2(ln(1/2μ)/(1 − μ)) + 2
≤ λ.

When εA > 1/32, the success probability of A′ is

Pr[u = 0] · A0(0) + Pr[u = 1] · A1(1) ≥ 1
2

(

εA + 1 − 2�

2m
εA

)

≥ 1
2

(
1 +

εA

2

)

>
1
2

(

1 +
1
64

)

,

where the second inequality follows from m ≥ � + 1. By Theorem 1,

BSμ
G ≤ log2(TA + Tg) + 2 log2(64) + log2 ln(1/2μ) + 2

< λ − α + log2(1 + Tg/TA) + log2 ln(1/2μ) + 14
≤ λ.

In both cases, we have a contradiction. Hence, the statement follows. ��
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Next, we demonstrate that the bit security achieved in Theorem 5 is almost
optimal. Specifically, we show that as long as considering pseudorandomness
against β-balanced adversaries for constant β > 0, the PRG constructed from a
λ-bit secure one-way permutation and the hard-core predicate is a (λ − O(1))-
bit secure PRG. However, it is not a (λ + ω(1))-bit secure OWF if the one-way
permutation is not (λ + 1)-bit secure.

Theorem 6. Let f : {0, 1}n → {0, 1}n be a λ-bit secure one-way per-
mutation that is not (λ + 1)-bit secure one-way. Consider a function g :
{0, 1}2n → {0, 1}2n+1 defined by g(x, r) = (f(x), r, h(x, r)) and h(x, r) =∑

i xi · ri mod 2. Then, g is a (λ − α)-bit secure pseudorandom generator
against β-balanced adversaries, but is not a (λ + α′)-bit secure one-way func-
tion for α = 2 log2 n + 3 log2 λ + log2(1/β) + log2 ln(1/μ) + O(1) and α′ =
log2(1 + Tf,h) + log2(ln(1/μ)/(1 − μ)) + 2, where Tf,h is the computational com-
plexity for evaluating f and h.

Proof. First, we show that g is a PRG. Assume for contradiction that g is not
a (λ − α)-bit secure PRG against β-balanced adversaries. By Theorem 3, there
exists a β-balanced inner adversary A for the PRG game of g that runs in TA

and has success probability εA = (1 + δA)/2 with δA >
√

βTA ln(1/4μ)/2λ−α+1.
Since f is a permutation, the first 2n bits of g are distributed uniformly at
random. Thus, the distinguisher A for the PRG g can work as a distinguisher
for the hard-core predicate game of h(x, r) for function g′(x, r) = (f(x), r). By
Theorem 4, as long as α = 2 log2 n + 3 log2 λ + log2(1/β) + log2 ln(1/μ) + O(1),
f is not a λ-bit secure one-way function, a contradiction.

Next, we show that g is not a (λ+α′)-bit secure one-way function. Since f is
not a (λ + 1)-bit secure one-way function, it follows from Theorem 2 that there
is an inner adversary A for the OWF game of f that runs in time TA and has
success probability εA > TA(1−μ)/2λ+1. Consider an inner adversary A′ for the
OWF game of g that given (y, r, b), runs A on input y, and outputs (a, r) if A
output a satisfying y = f(a) and h(a, r) = b, and ⊥ otherwise. Let εA′ be the
success probability of A′ in the OWF game of g. Since f is a permutation, there
is no a ∈ {0, 1}n satisfying f(a) = f(x) and a �= x. Thus, A′ succeeds in the
OWF game of g whenever A outputs a satisfying y = f(a). That is, εA′ ≥ εA.
Theorem 1 implies that the bit security of g is at most

log2(TA + Tf,h) + log2(1/εA′) + log2 ln(1/μ) + 1

< λ + log2(1 + Tf,h) + log2
ln(1/μ)
(1 − μ)

+ 2.

��

4.3 IND-CPA Encryption Implies OW-CPA Encryption

For an encryption scheme, the one-way chosen-plaintext-attack (OW-CPA) game
Gow

A,B is defined such that given a ciphertext of a randomly chosen message
m ∈ M, an inner adversary A tries to output the plaintext m. At any time
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during the game, A can query any message in M and receive its encrypted
ciphertext.

It is well-known that IND-CPA security implies OW-CPA security if the mes-
sage space is sufficiently large. We reveal the quantitative relationship between
the two notions in our framework. Note that if we employ the “conventional”
advantage-based argument, 2λ-bit IND-CPA security is required for achieving
λ-bit OW-CPA security. The reason is that by assuming an attacker for λ-bit
secure OW-CPA game with advantage εA ≈ 2−λ, Theorem 1 only guarantees
that the bit security of IND-CPA is at most 2 log2(1/εA) ≈ 2λ. We resolve this
problem by exploiting the Rényi advantage.

Theorem 7. If an encryption scheme with message space M has λ-bit secure
IND-CPA security, with |M| ≥ max{2λ−α+4/(1 − μ) + 1, 65}, then it has
(λ − α)-bit secure OW-CPA security, where α = log2(1 + 2(Tsamp + Teq)) +
max{log2(ln(1/2μ)/(1−μ))+3, log2 ln(1/2μ)+8}, where Tsamp is the computa-
tional complexity for sampling a message from M uniformly at random and Teq

is for checking the equality of given two messages in M.

Proof. Assume for contradiction that the scheme does not have (λ−α)-bit secure
OW-CPA security. Theorem 2 implies that there exists an inner adversary A
with running time TA and success probability εA > TA(1 − μ)/2λ−α. Consider
an inner adversary A′ for the IND-CPA game GIND such that A′ first chooses
two different messages m0,m1 ∈ M uniformly at random and sends them to the
challenger. Given the challenge ciphertext c for message mu, A′ runs A on input
c. Oracle queries from A can be replied by querying them to the oracles of A′.
If A outputs either m0 or m1, A′ outputs the corresponding bit. Otherwise, A′

outputs 1. The computational complexity of A′ for running the IND-CPA game
is at most TA + 2(Tsamp + Teq). Let Au be the probability distribution on the
output of A′ when u ∈ {0, 1} is chosen as the secret in GIND. By definition,
A0(0) = εA and A0(1) = 1 − εA. We note that A1(0) is not necessarily equal to
0 since A′ may accidentally output m0 even when the ciphertext of m1 is sent
to A′. Since the challenge ciphertext does not contain any information on m0

and m0 is randomly chosen from M \ {m1} when u = 1, the probability that A′

outputs m0 is at most 1/(|M|− 1). Hence, we have A1(0) = ε and A1(1) = 1− ε
for some ε ≤ 1/(|M| − 1). Suppose that εA ≤ 1/32. By Lemma 8, the Rényi
advantage of A′ satisfies

advRenyi
A′ = D1/2(A0‖A1) ≥ φ(q) · εA

for q = ε/εA. By assumption on |M|,

q =
ε

εA
≤ 2λ−α

TA(1 − μ)(|M| − 1)
≤ 1

16
.
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Since φ(q) > 1/2 for q ≤ 1/16, we have advRenyi
A′ ≥ φ(1/16) · εA > εA/2. Theo-

rem 1 implies that

BSμ
GIND ≤ log2(TA + 2(Tsamp + Teq)) + log2(2/εA) + log2 ln(1/2μ) + 2

< λ − α + log2(1 + 2(Tsamp + Teq)) + log2(ln(1/2μ)/(1 − μ)) + 3
≤ λ.

When εA > 1/32, the success probability of A′ is

Pr[u = 0] · A0(0) + Pr[u = 1] · A1(1) ≥ 1
2
(εA + 1 − ε) >

1
2

(

1 +
1
64

)

.

Since TA < 2λ−α, it follows from Theorem 1 that

BSμ
GIND < log2(TA + 2(Tsamp + Teq)) + log2(64) + log2 ln(1/2μ) + 2

< λ − α + log2(1 + 2(Tsamp + Teq)) + log2 ln(1/2μ) + 8
≤ λ.

In both cases, we have a contradiction. ��
In the above reduction, the IND-CPA adversary does not make a random

guess if the OW-CPA adversary fails to recover the plaintext. This reduction is
different from the traditional one.

4.4 DDH and CDH Problems

Let G be a polynomial-time group-generation algorithm that outputs a descrip-
tion of a cyclic group G of prime order p and a generator g ∈ G. The Com-
putational Diffie-Hellman (CDH) problem is to compute gxy from (gx, gy) for
random x, y ∈ Zp. The success probability of an inner adversary A for the CDH
game of G is formally defined by

εcdhA = Pr
[
(G, p, g) ← G;x, y

R←− Zp; a ← A(G, p, g, gx, gy) : a = gxy
]

The Decisional Diffie-Hellman (DDH) problem is to distinguish (gx, gy, gz) from
(gx, gy, gxy) for random x, y, z ∈ Zp. The success probability of A for the DDH
game of G is defined by

εddhA = Pr

[
u

R←− {0, 1}; (G, p, g) ← G;
x, y, z

R←− Zp; (g0, g1) = (gxy, gz)
: u ← A(G, p, g, gx, gy, gu)

]

.

It is well-known that the DDH problem is reducible to the corresponding
CDH problem. Quantitatively, we show that the bit security of the CDH problem
is at least that of the DDH problem.
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Theorem 8. Let G be a group-generation algorithm of cyclic groups of order p.
If the DDH game of G has λ bit security with p ≥ max{2λ−α+4/(1 − μ), 64},
then the CDH game of G has (λ − α) bit security, where α = log2(1 + Teq) +
max{log2(ln(1/2μ)/(1 − μ)) + 3, log2 ln(1/2μ) + 8} and Teq is the computational
complexity for checking the equality of given two elements in G.

Proof. Assume for contradiction that the CDH game is not (λ − α)-bit secure.
By Theorem 2, there exists an inner adversary A for the CDH game GCDH that
runs in time TA and has success probability εA > TA(1 − μ)/2λ−α. Consider an
inner adversary A′ for the DDH game that, given (G, p, g, gx, gy, gu), runs A on
input (G, p, g, gx, gy) to obtain a. If a = gu, A′ outputs 0. Otherwise, A′ outputs
1. Let Au be the probability distribution on the output of A′ when u ∈ {0, 1}
was chosen in the DDH game. By definition, A0(0) = εA and A0(1) = 1 − εA.
Since the probability A1(0) is bounded above by the probability that a randomly
chosen z equals xy in the DDH game, we have A1(0) ≤ 1/p and A1(1) ≥ 1−1/p.
Suppose that εA ≤ 1/32. By Lemma 8, D1/2(A0‖A1) ≥ φ(q) · εA for q ≤ 1/pεA.
Since p ≥ 2λ−α+4/(1 − μ), we have

1
pεA

≤ 1 − μ

2λ−α+4
· 2λ−α

TA(1 − μ)
≤ 1

16
.

Hence, φ(q) > 1/2. It follows from Theorem 1 that

BSμ
GDDH ≤ log2(TA + Teq) + log2(2/εA) + log2 ln(1/2μ) + 2

< λ − α + log2(1 + Teq) + log2(ln(1/2μ)/(1 − μ)) + 3
≤ λ.

When εA > 1/32, the success probability of A′ is

Pr[u = 0] · A0(0) + Pr[u = 1] · A1(1) ≥ 1
2

(εA + 1 − 1/p) >
1
2

(

1 +
1
64

)

.

Since TA < 2λ−α, Theorem 1 implies that

BSμ
GDDH ≤ log2(TA + Teq) + log2(64) + log2 ln(1/2μ) + 2

< λ − α + log2(1 + Teq) + log2 ln(1/2μ) + 8
≤ λ.

In both cases, we have a contradiction. ��

4.5 Distribution Approximation

We consider replacing probability distributions in security games. Let G =
(X,R, {Oi}i) be a game for primitive Π. Suppose that a distribution ensemble
Q = (Qθ)θ over (Ωθ)θ is employed in G, where each distribution Qθ is available
in a black-box manner such that when some player queries θ, a sample from Qθ
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is replied. We denote the game by GQ for clarity. We want to show that the bit
security of Π is preserved when replacing the ensemble Q with an approximated
distribution ensemble P = (Pθ)θ if Qθ and Pθ are close enough each other. The
question is how close P should be to Q.

Let d(P,Q) be a divergence/distance on probability distributions. A diver-
gence is said to be (β, γ)-efficient if it satisfies the following conditions:

1. Sub-additivity: For two distribution ensembles (Xi)i and (Yi)i over the same
finite support

∏
i Ωi,

d((Xi)i, (Yi)i) ≤
∑

i

max
a∈∏

j<i Ωj

d ((Xi|X<i = a), (Yi|Y<i = a)) ,

where X<i = (X1, . . . , Xi−1) and Y<i = (Y1, . . . , Yi−1).
2. Data processing inequality: For any two distributions P and Q and function

f , d(f(P ), f(Q)) ≤ d(P,Q).
3. (β, γ)-Pythagorean probability preservation: For two distribution ensembles

(Xi)i and (Yi)i over the same finite support
∏

i Ωi, if

d ((Xi|X<i = ai), (Yi|Y<i = ai)) ≤ β

for all i and ai ∈∏j<i Ωj , then

dTV((Xi)i, (Yi)i) ≤ γ ·
∥
∥
∥
∥

(

max
ai

d((Xi|X<i = ai), (Yi|Y<i = ai)
)

i

∥
∥
∥
∥
2

.

The above is a generalization of λ-efficient divergence in [18,19] so that it also
captures the Hellinger distance as a special case.

It is known that the max-log distance is (1/3, 1)-efficient [18]. Also, the
Hellinger distance is (1,

√
2)-efficient [26]. The following lemma follows from the

proof of Lemma 1 in [26].

Lemma 9. Let Q = (Q1, . . . , Q�) and P = (P1, . . . , P�) be probability distribu-
tion ensembles over a finite support

∏
i Ωi. Then,

dHD(P,Q) ≤
√

� · max
ai∈

∏
j<i Ωj

dHD(Pi|ai, Qi|ai).

We present a sufficient condition under which a distribution ensemble Q can
be replaced with P without compromising bit security. Specifically, to preserve
λ-bit security, two ensembles should be close enough in (2−λ/2, O(1))-efficient
divergences for search-type games and are close within 2−λ/2 in the Hellinger
distance for decision-type games.

Theorem 9. Let Q = (Qi)i and P = (Pi)i be distribution ensembles over a
finite support

∏
i Ωi.

1. If an n-bit security game GQ with n > 1 is λ-bit secure and d((Pi|P<i =
ai), (Qi|Q<i = ai)) ≤ 2−λ/2 for (β, γ)-efficient divergence d with β ≥ 2−λ/2,
then GP is (λ − α)-bit secure for α = max{2 log2(γ ·√ln(1/μ)/(1 − μ)/(1 −
2−ρ − μ)), ρ + log2(ln(1/μ)2/(1 − μ)) + 1} and ρ > 0.



184 S. Watanabe and K. Yasunaga

2. If a 1-bit security game GQ is λ-bit secure and dHD((Pi|P<i = ai), (Qi|Q<i =
ai)) ≤ 2−λ/2 for any i and ai ∈ ∏j<i Ωj, then GP is (λ − α)-bit secure for
α = max{log2(ln(1/2μ)/ ln(1/4μ)) + 3, log2 ln(1/2μ) + 6, 7}.

Proof. First, we show the case that n > 1. Let δ = maxi,ai
d((Pi|P<i =

ai), (Qi|Q<i = ai)), which is at most 2−λ/2 by assumption. Suppose for con-
tradiction that GP is not (λ−α)-bit secure. Theorem 2 implies that there exists
an inner adversary A for GP that runs in time TA and has success probability
εP
A > TA(1 − μ)/2λ−α. Let NP be the number of invocations of A by the outer

adversary B to achieve εP
A,B ≥ 1−μ. By Lemma 1, NP is at most 
ln(1/μ)/εP

A�.
Now consider the success probability εQ

A,B , where the probability distribution
P is replaced with Q. Since the number of queries to the distribution ensemble
during the inner game is at most TA, we have

∣
∣
∣εP

A,B − εQ
A,B

∣
∣
∣ ≤ dTV(PNP

, QNP

) ≤ γ ·
√

NP TAδ2,

where the last inequality follows from the (β, γ)-Pythagorean probability preser-
vation property of d. It holds that

εQ
A,B ≥ εP

A,B − γ ·
√

NP TAδ2

> 1 − μ − γ ·
√

ln(1/μ)
εP
A

· εP
A · 2λ−α

1 − μ
· 1
2λ

= 1 − μ − γ ·
√

ln(1/μ)
(1 − μ)2α

≥ 2−ρ,

where the last inequality follows by the assumption on α. We can consider the
pair of adversaries (A,B) as an inner adversary A′ that achieves the success
probability εA′ > 2−ρ with computational complexity TA′ = NP TA. Thus, by
Theorem 1, the bit security of GQ is bounded above by

log2(N
P TA) + ρ + log2 ln(1/μ) + 1 < λ − α + ρ + log2(ln(1/μ)2/(1 − μ)) + 1,

which is less than λ by assumption on α. It contradicts the assumption that GQ

is λ-bit secure.
Next, we prove the second case. Let δ = maxi,ai

dHD((Pi|P<i =
ai), (Qi|Q<i = ai)) ≤ 2−λ/2. Suppose for contradiction that GP is not (λ−α)-bit
secure. Theorem 2 implies that there exists an inner adversary A for GP that
runs in time TA and satisfies

dHD(AP
0 , AP

1 ) > min

{
1√
2
,

√
TA

2λ−α+1
· ln(1/4μ)

}

:= ωP ,

where AP
u is the probability distribution of the output of A under the condition

that u ∈ {0, 1} is chosen in GP . We define AQ
0 and AQ

1 for GQ similarly. Since
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the number of queries to distribution ensembles P/Q is at most TA, it follows
from Lemma 9 and the data processing inequality that for u ∈ {0, 1},

dHD(AP
u , AQ

u ) ≤
√

TA · δ ≤
√

TA

2λ
.

By the triangle inequality, we have

dHD(AP
0 , AP

1 ) ≤ dHD(AP
0 , AQ

0 ) + dHD(AQ
0 , AQ

1 ) + dHD(AQ
1 , AP

1 )

≤ dHD(AQ
0 , AQ

1 ) + 2

√
TA

2λ
.

Thus, dHD(AQ
0 , AQ

1 ) ≥ ωP − 2
√

TA/2λ.
Suppose that ωP =

√
TA ln(1/4μ)/2λ−α+1. Then,

dHD(AQ
0 , AQ

1 ) ≥
√

2 ln(1/2μ)TA

2λ

(√
2α−2 ln(1/4μ)

ln(1/2μ)
−
√

2
ln(1/2μ)

)

>

√
2 ln(1/2μ)TA

2λ

by assumption on α. Let advRenyi
A,Q be the Rényi advantage of A for the game GQ.

By (2), we have advRenyi
A,Q ≥ 2dHD(AQ

0 , AQ
1 )2 > 4 ln(1/2μ)TA/2λ. It follows from

Theorem 1 that the bit security of GQ is at most

log2 TA + log2
(
1/advRenyi

A,Q

)
+ log2 ln(1/2μ) + 2 < λ.

Next, suppose that ωP = 1/
√

2. We have the relation that dTV(AP
0 , AP

1 ) ≥
dHD(AP

0 , AP
1 )2 ≥ (ωP )2 = 1/2. Thus, adversary A has success probability εP

A =
(1 + dTV(AP

0 , AP
1 ))/2 ≥ 3/4 for GP . Since we assume that GP is not (λ − α)-bit

secure, it must be that NA,B · TA < 2λ−α, implying that TA < 2λ−α. Since the
Hellinger distance is (1,

√
2)-efficient, we have

∣
∣
∣εP

A − εQ
A

∣
∣
∣ ≤ dTV(P,Q) ≤ γ ·

√
TA · δ2 ≤

√
2TA

2λ
<

√
1

2α−1
≤ 1

8
,

where the last inequality follows from α ≥ 7. Hence, εQ
A ≥ 5/8. By Theorem 1,

the bit security of GQ is at most

log2 TA + log2 ln(1/2μ) + 6 < λ − α + log2 ln(1/2μ) + 6,

which is less than λ by assumption on α.
In both cases, we have shown that GQ is not λ-bit secure, contradicting the

assumption. Hence, the statement follows. ��
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4.6 Hybrid Arguments

We show that a hybrid argument can be generally applied to decision games in
our framework.

Theorem 10. Let H1, . . . , Hk+1 be distributions over the same finite alphabet.
If Hi and Hi+1 are λ-bit secure indistinguishable for all i, then H1 and Hk+1

are (λ−α)-bit secure indistinguishable for α = 2 log2 k+max{log2(1/2μ)+1, 3}.
Proof. Suppose that H1 and Hk+1 are not (λ − α)-bit secure indistinguishable.
Theorem 2 implies that there exists an inner adversary A that runs in time TA

and satisfies

dHD(A1, Ak+1) > x = min

{
1√
2
,

√
TA

2λ−α+1
· ln(1/4μ)

}

,

where Ai is the output distribution of A on input Hi. By the triangle inequality,
we have

x < dHD(A1, Ak+1) ≤
k∑

i=1

dHD(Ai, Ai+1).

There must be some i such that dHD(Ai, Ai+1) > x/k. Let Au be the output
distribution of A when u ∈ {0, 1} was chosen. By (2), the Rényi advantage of A
for distinguishing Ai from Ai+1 satisfies

advRenyi
A = D1/2(A0‖A1) ≥ 2dHD(Ai, Ai+1)2 > 2(x/k)2.

By Theorem 1, the bit security BSμ
i,i+1 for distinguish Ai from Ai+1 satisfies

BSμ
i,i+1 < log2 TA + 2 log2(k/x) + log2(1/2μ) + 1.

Suppose x = 1/
√

2. Since H1 and Hk+1 are not (λ − α)-bit secure, we have
2λ−α > NA,B · TA ≥ TA. Thus, BSμ

i,i+1 < λ − α + 2 log2 k + log2(1/2μ) + 1 ≤ λ.
Suppose x =

√
(TA/2λ−α+1) ln(1/4μ). Then,

BSμ
i,i+1 < log2 TA + 2 log2 k − log2 TA + λ − α + 1 − log2(1/4μ) + log2(1/2μ) + 1

≤ λ.

In both cases, we have BSμ
i,i+1 < λ, which contradicts the assumption that Hi

and Hi+1 are λ-bit secure indistinguishable. ��

Acknowledgements. The work of S.W. was supported in part by JSPS KAKENHI
under Grant 20H02144.

References

1. Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)



Bit Security as Computational Cost for Winning Games 187

2. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
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Abstract. When defining a security notion, one typically specifies what
dishonest parties cannot achieve. For example, communication is confi-
dential if a third party cannot learn anything about the messages being
transmitted, and it is authentic if a third party cannot impersonate the
real (honest) sender. For certain applications, however, security crucially
relies on giving dishonest parties certain capabilities. As an example, in
Designated Verifier Signature (DVS) schemes, one captures that only the
designated verifier can be convinced of the authenticity of a message by
guaranteeing that any dishonest party can forge signatures which look
indistinguishable (to a third party) from original ones created by the
sender.

However, composable frameworks cannot typically model such guar-
antees as they are only designed to bound what a dishonest party can
do. In this paper we show how to model such guarantees—that dishonest
parties must have some capability—in the Constructive Cryptography
framework (Maurer and Renner, ICS 2011). More concretely, we give
the first composable security definitions for Multi-Designated Verifier
Signature (MDVS) schemes—a generalization of DVS schemes.

The ideal world is defined as the intersection of two worlds. The first
captures authenticity in the usual way. The second provides the guaran-
tee that a dishonest party can forge signatures. By taking the intersection
we have an ideal world with the desired properties.

We also compare our composable definitions to existing security
notions for MDVS schemes from the literature. We find that only
recently, 23 years after the introduction of MDVS schemes, sufficiently
strong security notions were introduced capturing the security of MDVS
schemes (Damg̊ard et al., TCC 2020). As we prove, however, these
notions are still strictly stronger than necessary.
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1 Introduction

1.1 Composable Security

In a nutshell, composable security frameworks define security by designing an
ideal world and proving that the real world is indistinguishable [2,5,8,12,20,22,
23,26]. Typically, one first designs an ideal functionality, which corresponds to
the functionality one wishes to achieve. For example, if one wants confidential
communication from Alice to Bob, then the ideal functionality allows Alice to
input messages, Bob to read messages, and guarantees that Eve can only learn
the length of the messages input by Alice. Eve could additionally be given extra
capabilities that do not violate confidentiality, e.g. inputting messages. A simu-
lator is then connected to this ideal functionality, covering the idealized inputs
and outputs available to dishonest parties and providing “real” inputs and out-
puts to the environment (that should be indistinguishable from those of the real
world). Let S denote an ideal functionality, and simS the ideal world consisting
of S with some simulator sim attached. Since any (efficient) simulator sim ∈ Ω
is acceptable, one can alternatively view the ideal world as the set of all possible
acceptable ideal worlds:

S = {simS}sim∈Ω . (1.1)

A security proof then shows that the real world R (also modeled as a set) is a
subset of the ideal world S. Since sim covers the dishonest parties’ interfaces of
S, it can only further limit the capabilities of dishonest parties. For example, an
ideal functionality for confidentiality might allow a third party to change Alice’s
message, but if this is not possible in the real world, the simulator can disallow
the environment to use that capability. This structure of the ideal world makes it
impossible for traditional composable frameworks to provide guarantees about a
dishonest party’s capabilities, because these might be blocked by the simulator.

Some prior works using the Constructive Cryptography (CC) framework
[14,23] have noted that the ideal world does not have to be structured as in
Eq. (1.1). In particular, the simulator does not have to necessarily cover all dis-
honest parties’ interfaces (or might not be present at all). This relaxed view of the
ideal world allows one to define composable security notions capturing the secu-
rity of schemes whose security could not be modeled by traditional composable
frameworks. In this work we crucially exploit this to give the first composable
security notions for Multi-Designated Verifier Signature schemes. We refer the
interested reader to [3] to see how to model Digital Signature Schemes (DSS) in
CC, and to [14] for an extended introduction to CC, in which some of the novel
techniques used here were first applied.

1.2 MDVS Schemes

Designated Verifier Signature (DVS) schemes are a variant of DSS that allow
a signer to sign messages towards a specific receiver, chosen (or designated) by
the signer [9,11,13,16–19,27–30,32]. The goal of these schemes is to establish
an authentic communication channel, say from a sender Alice to a receiver Bob,
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where the authenticity property is exclusive to the receiver Bob designated by
Alice, i.e. Bob and only Bob can tell whether Alice actually sent some message
authentically. In Multi-Designated Verifier Signature (MDVS) schemes [9,11,
13,16,32], multiple receivers may be designated verifiers for the same message,
e.g. Alice signs a message so that both Bob and Charlie can verify that Alice
generated the signature, but a third party Eve would not be convinced that
Alice signed it. This should hold even if a verifier is dishonest, say Bob, and
provides his secret keys to Eve. MDVS schemes achieve this by guaranteeing
that Bob could forge signatures that would look indistinguishable to Eve from
Alice’s signatures—but Charlie could distinguish the two using his secret key,
thus authenticity with respect to the designated verifiers is not violated.

MDVS schemes have numerous applications: from secure messaging (and
in particular secure group messaging for the multi-verifier case) [11], to online
auctions wherein all bidders place their binding-bids in a non-interactive way,
and the highest bidder wins. In the case of online auctions a bidder Bob would
then sign its bid to both the auctioneer Charlie and his bank Blockobank, and
if Bob wins Charlie would then sign a document stating Bob is the winner of
the auction; the winner could also be kept anonymous by having Charlie signing
such document only with respect to Bob, its bank Blockobank and any other
official entity needed to confirm Bob’s ownership of the auctioned item.

While composable security notions for DSS are well understood [1,3,5,6],
the literature on (M)DVS schemes provides only a series of different game-based
security definitions—which we discuss in detail in Sect. 5—capturing a variety
of properties that an MDVS scheme could possess. By defining the ideal world
for an MDVS scheme in this work, we can compare the resulting composable
definition to the game-based ones and determine which security properties are
needed. It turns out that crucial properties for the security of MDVS schemes
like consistency—all (honest) designated verifiers will either accept or reject the
same signature—and security against any subset of dishonest verifiers were only
introduced very recently [11].

1.3 Contributions

Providing Guarantees to Dishonest Parties. To capture that a dishonest party
is guaranteed to have some capability, we introduce a new type of ideal world
specification, which we sketch in this section. The first step consists in defining
a set of ideal functionalities (called resources or resource specification in CC [22,
23]) that have the required property. For example, in the case of MDVS schemes,
we want a dishonest receiver to be able to generate a valid signature. This
corresponds to a channel in which both Alice (the honest sender) and Bob (the
dishonest receiver) may insert messages. Thus anyone reading from that channel
would not know if the message is from Alice or Bob. Let ̂X denote such a set.
The ideal worlds we are interested in are those in which a dishonest receiver
could achieve this property if they run an (explicit) forging algorithm π. Thus,
the ideal world of interest is defined as
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X =
{

X : πX ∈ ̂X
}

, (1.2)

where πX denotes a resource X with the algorithm π being run at the dishonest
receivers’ interface of X.

Similar techniques could be used to model ideal worlds for ring signatures [4,
27] or coercibility [22,31].

Composable Security Notions for MDVS Schemes. We then use the technique
described above to define composable security for MDVS schemes. For example,
if one considers a fixed honest sender and a fixed set of designated verifiers
(some of which may be dishonest), then an MDVS scheme is expected to achieve
authenticity with respect to the honest verifiers, but this authenticity should be
exclusive to them, meaning that any dishonest player should be able to generate
a signature that would fool a third party Eve. Authenticity is captured in the
usual way (see, e.g. [3]), as in Eq. (1.1), i.e. we define an authentic channel A
from Alice to the honest verifiers, and the ideal world is given by a set

A = {simA}sim∈Ω . (1.3)

The exclusiveness of the authenticity is defined with a (set of) ideal world(s)
as in Eq. (1.2). Both properties are then achieved by taking the intersection of
the two, namely by proving that for the real world R we have

R ⊆ A ∩ X .

Comparison With Existing Notions for MDVS. Now that the composable secu-
rity notion is defined, we compare it to the game-based definitions from the
literature. It turns out that only the most recent definitions from [11] are suffi-
cient to achieve composable security.

More precisely, we prove reductions and a separation between our composable
security definition and the games of [11]. Our statements imply the following:

– any MDVS scheme which is Correct, Consistent, Unforgeable and Off-The-
Record (according to [11]) can be used to construct the ideal world for MDVS;

– there is an MDVS scheme which satisfies the composable definition, but which
is not Off-The-Record (as defined in [11]).

1.4 Structure of This Paper

In Sect. 2 we start by introducing the concepts from CC [14,20,22,23] that are
needed to understand the framework. We also define repositories which are the
resources we use in this work for communication between parties jointly running
a protocol (see also [3]). In Sect. 3 we consider a setting in which the sender and
designated receivers are fixed and publicly known. This allows us to define the
ideal worlds and the corresponding composable security definition in a simpler
setting. Also for simplicity, we only require that dishonest delegated verifiers
have the ability to forge signatures, not third parties. We then prove that the
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security games from [11] are sufficient to imply composable security. In Sect. 4
we model the more general setting where the sender and designated receivers
can be arbitrarily chosen. As before, we model composable security and prove
that the security games from [11] are sufficient to achieve composable security in
this setting as well. But we also prove a seperation between the Off-The-Record
game from [11] and the composable security defintion, showing that this game
is stronger than necessary. Note that in this section any dishonest party should
be able to forge signatures, not only the dishonest designated verifiers. Finally,
in Sect. 5 we discuss the literature related to MDVS schemes and some of the
issues in previous security definitions.

2 Constructive Cryptography

The Constructive Cryptography (CC) framework [20,22] views cryptography as a
resource theory: protocols construct new resources from existing (assumed) ones.
For example, a CCA-secure encryption scheme constructs a confidential channel
given a public key infrastructure and an insecure channel on which the ciphertext
is sent [10]. The notion of resource construction is inherently composable: if a
protocol π1 constructs R from S and π2 constructs T from S, then running
both protocols will construct T given that one initially has access to R.1

In this section we first review the building blocks of CC in Sect. 2.1. We
explain how security is defined in Sect. 2.2. Then in Sect. 2.3 we model a specific
type of resources, namely repositories, which is an abstract model of commu-
nication. Throughout the rest of the paper, for any set of parties S, we denote
by SH the partition of S containing all honest parties, and SH the partition
containing all dishonest parties, such that S = SH � SH . The set of all parties
is denoted P.

2.1 Resource Specifications, Converters, and Distinguishers

Resource. A resource is an interactive system shared by all parties, e.g. a
channel or a key resource—and is akin to an ideal functionality in UC [5]. Each
party can provide inputs and receive outputs from the resource. We use the term
interface to denote specific subsets of the inputs and outputs, in particular, all
the inputs and outputs available to a specific party are assigned to that party’s
interface. For example, an insecure channel INS allows all parties to input mes-
sages at their interface and read the contents of the channel. A confidential
channel resource CONF shared between a sender Alice, a receiver Bob and an
eavesdropper Eve allows Alice to input messages at her interface; it allows Eve
to insert her own messages and it allows her to duplicate Alice’s messages, but
not to read them2; and it allows Bob to receive at his interface any of the mes-
sages inserted by Alice or Eve. As another example, an authenticated channel

1 For a formal statement of the composition theorem used here we refer to [14,23].
2 More precisely, the CONF channel only allows Eve to read the length of messages.
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from Bob to Alice (AUT) allows Bob to send messages through the channel and
allows Alice and Eve to read messages from the channel.

Formally, a resource is a random system [24,25], i.e. it is uniquely defined by
a sequence of conditional probability distributions. For simplicity, however, we
usually describe resources by pseudo-code.

If multiple resources {Ri}n
i=1 are simultaneously accessible, we write R =

[R1, . . . ,Rn], or alternatively R = [Ri]i∈{1,...,n}, for the new resource obtained
by the parallel composition of all Ri, i.e. R is a resource that provides each
party with access to the (sub)resources Ri.

Converter. A converter is an interactive system executed either locally by a
single party or cooperatively by multiple parties. Its inputs and outputs are
partitioned into an inside interface and an outside interface. The inside interface
connects to (those parties’ interfaces of) the available resources, resulting in a
new resource. For instance, connecting a converter α to Alice’s interface A of
a resource R results in a new resource, which we denote by αAR. The outside
interface of the converter α is now the new A-interface of αAR. Thus, a converter
may be seen as a map between resources. Note that converters applied at different
interfaces commute, i.e. βBαAR = αAβBR.

A protocol is given by a tuple of converters π = (πPi
)Pi∈PH , one for each

(honest) party Pi ∈ PH . Simulators are also given by converters. For any set S
will often write πSR for (πPi

)Pi∈S R. We also often drop the interface super-
script and write just πR when it is clear from the context to which interfaces π
connects.

For example, suppose Alice and Bob share an insecure channel INS and a
single use authenticated channel from Bob to Alice AUT and suppose that Alice
runs a converter enc and Bob runs a converter dec, and that these converters
behave as follows: First, converter dec generates a public-secret key-pair (pk, sk)
for Bob and sends pk over the single-use authenticated channel AUT to Alice.
Each time a message m is input at the outside interface of enc, the converter
uses Bob’s public key pk—which it received from AUT—to compute a ciphertext
c = Encpk (m); it then sends this ciphertext over the insecure channel to Bob
(via the inside interface of enc connected to INS). Each time Bob’s decryption
converter dec receives a ciphertext c from the INS channel, it uses Bob’s secret
key sk to decrypt c, obtaining a message m = Decsk (c), and if m is a valid
plaintext, the converter then outputs m to Bob (via the outside interface of the
converter). The real world of such a system is given by

decBencA[AUT, INS]. (2.1)

Specification. Often one is not interested in a unique resource, but in a set
of resources with common properties. For example, the confidential channel
described above allows Eve to insert messages of her own. Yet, if she did not
have this ability, the resulting channel would still be a confidential one. We call
such a set a resource specification (or simply also a resource), and denote it with
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a bold calligraphic letter, e.g. a specification of confidential channels could be
defined as

T =
{

simECONF
}

sim∈Ω
. (2.2)

where Ω is a set of converters (the simulators) that are applied at Eve’s inter-
face.3

Parallel composition of specifications R and S, and composition of a con-
verter α and a specification R follow by applying the operations elementwise to
the resources R ∈ R and S ∈ S.

Distinguisher. To measure the distance between two resources we use the
standard notion of a distinguisher, an interactive system D which interacts with
a resource at all its interfaces, and outputs a bit 0 or 1. The distinguishing
advantage for distinguisher D is defined as

ΔD(R,S) := Pr [DS = 1] − Pr [DR = 1]

where DR and DS are the random variables over the output of D when it
interacts with R and S, respectively.

Relaxation. Typically one proves that the ability to distinguish between two
resources is bounded by some function of the distinguisher, e.g. for any D,

|ΔD(R,S)| ≤ ε(D)

where ε(D) might be the probability that D can win a game or solve some finite
instance of a problem believed to be hard.4

This distance measure then naturally defines another type of specification,
namely an ε-ball: for a resource specification R, the ε-ball around R is given by

Rε :=
⋃

R∈R
{S : ∀D, |ΔD(R,S)| ≤ ε(D)}. (2.3)

If one chooses a function ε (D) which is small for a certain class of distinguishers
D—e.g. ε (D) is small for all D that cannot be used to solve (a finite instance of)
a problem believed to be hard, as described in Footnote 4—but potentially large
for other D, then we have a specification of resources that are indistinguishable
(to the distinguishers in the chosen class) from (one of) those in R.
3 The definition of the set Ω may depend on the context, e.g. whether one is inter-

ested in bounded run time, bounded memory, and whether one is making finite or
asymptotic statements.

4 Formally, one first finds an (efficient) reduction χ which constructs a solver S =
χ(D) from any distinguisher D. Then one bounds the distance |ΔD(R,S)| with a
function of the probability that χ(D) succeeds is solving some problem, i.e., ε(D) :=
f(Pr[χ(D) succeeds]) for an f that does not significantly alter the probability of
success. Thus for any D that cannot be used to solve the problem, |ΔD(R,S)| must
be small.
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Remark 1 (Finite vs. Asymptotic security statements). In this paper, rather
than making asymptotic security statements (where one considers the limit
k → ∞ for security parameter k) we make a security statement for each pos-
sible k ∈ N. Specifications, resources, converters and distinguishers are then
defined for a fixed security parameter k. If needed, one can obtain the corre-
sponding asymptotic statements by defining sequences of resources, converters
and distinguishers and then making a statement about the limit behavior of
these sequences when k → ∞.

2.2 Composable Security

We now have all the elements needed to define a cryptographic construction.

Definition 1 (Cryptographic Construction [14,23]). Let R and S be two
resource specifications, and π be a protocol for R. We say that π constructs S
from R if

πR ⊆ S. (2.4)

For example, in the case of constructing the confidential channel described
above, the real world is the singleton set with the element given in Eq. (2.1),
and the ideal world is given by an ε-ball around the set of confidential channels
given in Eq. (2.2), i.e. to prove security one would need to show that

decBencA{[AUT, INS]} ⊆ (
{

simECONF
}

sim∈Ω
)ε

. (2.5)

Equation (2.5) is equivalent to the more traditional notation of requiring the
existence of a simulator sim such that for all D,

|ΔD(decBencA[AUT, INS], simECONF)| ≤ ε(D).

But the formulation in Definition 1 is more general and allows other types
of ideal worlds to be defined than the specification obtained by appending a
simulator at Eve’s interface of the ideal resource and taking an ε-ball.

Remark 2 (Asymptotic Construction). As pointed out in Remark 1, specifica-
tions, resources, converters and distinguishers are defined for a fixed security
parameter k. The specifications and converters in Definition 1 are then to be
interpreted as being defined for a concrete security parameter k, and Eq. (2.4)
is to be understood as a statement about a fixed k, i.e.

πkRk ⊆ Sk. (2.6)

For simplicity we omit the security parameter whenever it is clear from the con-
text, and thus will simply write as in Eq. (2.4). If one wishes to make an asymp-
totic security statement then one defines efficient families {πk}k∈N

, {Rk}k∈N
,

{Sk}k∈N
and shows that Eq. (2.6) holds asymptotically in k, meaning that there

is a family −→ε := {εk}k∈N
of ε-balls such that πkRk ⊆ (Sk

εk), and for any effi-
cient family of distinguishers

−→
D := {Dk}k∈N

, the function −→ε (
−→
D) : N → R

defined as −→ε (
−→
D)(k) := εk(Dk) is negligible.
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Remark 3 (Modeling different sets of (dis)honest parties). When one is interested
in making security statements for different sets of (dis)honest parties it is not
sufficient to make a single statement as in Definition 1. Instead, one makes a
statement for each relevant set of (dis)honest parties. For example, let π be the
protocol defining a converter πi for each party Pi ∈ P. For every relevant subset
of honest parties PH ⊆ P, letting RPH

and SPH

denote, respectively, the
available resources’ specifications—the real world—and the desired resources’
specifications—the ideal world—one needs to prove that

πPHRPH ⊆ SPH

,

where πPHRPH

denotes the attachment of each converter πi—run by honest
party Pi ∈ PH as ascribed by the protocol π—to RPH

. In this paper, although
we will make statements of this format, i.e. modeling different sets of (dis)honest
parties, we will drop the superscript PH from the notation of the converters and
specifications, whenever clear from the context.

2.3 Access Restricted Repositories

We formalize communication between different parties as having access to a
repository resource. More specifically, a repository consists of a set of reg-
isters and a single buffer containing register identifiers; a register is a pair
reg = (id,m), which includes the register’s identifier id (uniquely identify-
ing the register among all repositories), and a message m ∈ M (where M is the
message space of the repository5). Access rights to a repository are divided in
three classes: write access allows a party to add messages to a repository, read
access allows a party to read all the messages in a repository, and copy access
allows a party to make duplicates of messages already existing in the repository
(without necessarily being able to read the messages).6 Let P be the set of all
parties, and let W ⊆ P, R ⊆ P and C ⊆ P denote the parties with write,
read and copy access to a repository rep, respectively. We will write CrepW

R
whenever it is needed to make the access permissions explicit. Though we may
drop them and only write rep whenever clear from the context. For example, in
the three party setting with sender Alice, receiver Bob and dishonest Eve, i.e.
P = {A,B,E}, the insecure channel mentioned in Sect. 2.1—which allows all
parties to read and write—is given by INSP

P ;7 an authentic channel from Alice

5 In analogy to Remark 1 we consider that a repository defined for security parameter k
has message space Mk; for a family of repositories one then considers a corresponding

family of message spaces
−→M := {Mk}k∈N

. Since most statements are made for a fixed
parameter k, we usually omit k from the notation, writing M instead.

6 Copy access is used to capture the capability that dishonest parties have for copying
or resending (modifications of) whatever they see; modeling this capability is crucial
for some of the security proofs.

7 Since all parties can read and write, copying capabilities are redundant.
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to Bob is given by {E}AUT{A}
{B,E}; for fixed-length message spaces, the confi-

dential channel mentioned in Sect. 2.1 is given by {E}CONF{A,E}
{B} . The exact

semantics of such an (atomic) repository are defined in Algorithm 1.

Algorithm 1. Repository CrepW
R for the set of parties P.

Initialization
Buffer ← ∅

(P ∈ W)-Write(m ∈ M)
id ← NewRegister(m)
Buffer ← id
P -Output(id)

(P ∈ R ∪ C)-ReadBuffer
P -Output(Buffer)

(P ∈ R)-ReadRegister(id)
P -Output(GetMessage(id))

(P ∈ C)-CopyRegister(id)
m ← GetMessage(id)
id′ ← NewRegister(m)
Buffer ← id′

P -Output(id′)

Parties will typically have access to many repositories simultaneously, e.g.
an authentic repository from Alice to Bob and one from Alice to Charlie. One
could model this as providing all these (atomic) repositories in parallel to the
players, i.e.

[C1rep1
W1
R1

, . . . , Cnrepn
Wn

Rn
]. (2.7)

However, this would mean that to check for incoming messages, a party would
need to check every possible atomic repository repi, which could be inefficient if
the number of atomic repositories is very high. Instead, we define a new resource
REP which is identical to a parallel composition of the atomic repositories,
except that it allows parties to efficiently check for incoming messages (rather
than requiring parties to poll each atomic repository repi they have access to).
Abusing notation, we denote such a resource as in Eq. (2.7), namely

REP = [C1rep1
W1
R1

, . . . , Cnrepn
Wn

Rn
]. (2.8)

The new resource REP allows every party with read or copy access to issue a
single ReadBuffer operation that returns a list of pairs, each pair containing
a register’s identifier and a label identifying the atomic repository in which the
register was written. In addition, it provides single ReadRegister and Copy-
Register operations which return the contents of the register with the given
id and copy the register with the given id, respectively. Write operations for
REP additionally have to specify the atomic repository for which the operation
is meant. The exact semantics of REP are defined in Algorithm 2.

3 Modeling MDVS with Fixed Sender and Receivers

One can find multiple definitions of Multi-Designated Verifier Signature (MDVS)
schemes in the literature [9,11,16,32]. In this paper, we define an MDVS Π
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Algorithm 2. Repository REP = [C1rep1
W1
R1

, . . . , Cnrepn
Wn

Rn
] for a set of parties

P.
Initialization

for each repi ∈ REP do
repi-Initialization

(P ∈ P)-Write(repi, m ∈ M)
Require: (P ∈ Wi)

id ← repi-Write(m)
P -Output(id)

(P ∈ P)-ReadBuffer
outputList ← ∅
for each repi ∈ REP do

if P ∈ Ri ∪ Ci then
for each id ∈ repi-ReadBuffer

do
outputList ← (id, repi)

P -Output(outputList)

(P ∈ P)-ReadRegister(id)
Require: P ∈ Ri for id ∈ repi-ReadBuffer

m ← repi-ReadRegister(id)
P -Output(m)

(P ∈ P)-CopyRegister(id)
Require: P ∈ Ci for id ∈ repi-ReadBuffer

id′ ← repi-CopyRegister(id)
P -Output(id′)

as a 5-tuple Π = (Setup,GS ,GV ,Sign,Vfy) of Probabilistic Polynomial Time
algorithms (PPTs), following [17]. Setup takes the security parameter as input,
and produces public parameters (pp) and a master secret key (msk),

(pp, msk) ← Setup(1k).

These are then used by GS and GV to generate pairs of public and secret keys
for the signers and verifiers, respectively,

(spk1, ssk1) ← GS (pp, msk) , . . . (spkm, sskm) ← GS (pp, msk) ,

(vpk1, vsk1) ← GV (pp, msk) , . . . (vpkn, vskn) ← GV (pp, msk) .

Finally, the signing algorithm Sign requires the signer’s secret key and the public
keys of all the verifiers, and the verifying algorithm Vfy requires the signer’s
public key, the secret key of whoever is verifying and the public keys of all
verifiers. For example suppose that party A is signing a message m for a set of
verifiers V and that B ∈ V verifies the signature, then

σ ← Sign(pp, sskA, {vpki}i∈V ,m)
b ← Vfy(pp, spkA, vskB , {vpk}i∈V ,m, σ),

where b = 1 if the verification succeeds and b = 0 otherwise.
In this section we consider a fixed sender A, a fixed set of receivers R =

{B1, . . . , Bn} and one eavesdropper E that is neither sender nor receiver, and
is always dishonest. The set of parties is then given by P = {A,B1, . . . , Bn, E}.
Furthermore, we assume that sender A always designates R as the set of des-
ignated receivers for the messages it sends. This means in particular that if all
receivers are honest then E always learns when A sends a message (as no other
party can send messages).
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3.1 Real-World

To communicate, each party in P has access to an insecure repository INS :=
INSk (for a fixed security parameter k) to which everyone can read from and
write to (recall Sect. 2.3). In addition, parties also have access to a Key Gen-
eration Authority (KGA), which generates and stores the parties’ key pairs.8

For a fixed security parameter k, the KGA := KGAk resource runs the Setup
algorithm giving it the (implicit) parameter k, and then generates and stores all
key pairs for the sender A and each receiver in R, using GS and GV , respectively.
Every honest party can then query their own public-secret key pair, the public
parameters and everyone’s public key at their own interface. Dishonest parties
can additionally query the public-secret key pairs of any other dishonest party.
The semantics of the KGA resource is defined in Algorithm 3.9

Algorithm 3 . Key Generation Authority resource KGA for MDVS scheme
Π = (Setup,GS ,GV ,Sign,Vfy) with a set of senders S (= SH � SH) and set of
receivers R (= RH � RH). In the following, k is the implicitly defined security
parameter (i.e. KGA := KGAk), and PH the set of all dishonest parties.

Initialization
Sign-Keys ← ∅
Vfy-Keys ← ∅
(pp, msk) ← Π.Setup(1k)
for each Ai ∈ S do

(spki, sski) ← Π.GS(pp, msk)
Sign-Keys ← (Ai, (spki, sski))

for each Bj ∈ R do
(vpkj , vskj) ← Π.GV (pp, msk)

Vfy-Keys ← (Bj , (vpkj , vskj))

(P ∈ P)-PublicParameters
P -Output(pp)

(Ai ∈ SH)-SignerKeyPair
(spki, sski) ← Sign-Keys(Ai)
Ai-Output(spki, sski)

(P ∈ PH)-SignerKeyPair(Ai ∈ SH)
(spki, sski) ← Sign-Keys(Ai)
P -Output(spki, sski)

(P ∈ P)-SignerPublicKey(Ai ∈ S)
(spki, sski) ← Sign-Keys(Ai)
P -Output(spki)

(Bj ∈ R)-VerifierKeyPair
(vpkj , vskj) ← Vfy-Keys(Bj)

Bj-Output(vpkj , vskj)

(P ∈ PH)-VerifierKeyPair(Bj ∈ RH)
(vpkj , vskj) ← Vfy-Keys(Bj)

P -Output(vpkj , vskj)

(P ∈ P)-VerifierPublicKey(Bj ∈ R)
(vpkj , vskj) ← Vfy-Keys(Bj)

P -Output(vpkj)

The sender A runs a converter Snd (locally) and each receiver Bj ∈ R runs a
converter Rcv (also locally). This means sender A can send messages by simply
running its converter Snd, and each receiver can receive messages by simply
running its converter Rcv.

8 The purpose of having an explicit KGA resource is guaranteeing that receivers
know their secret keys, which is crucial for being able to achieve the exclusiveness
of authenticity guarantee of MDVS schemes [13,29].

9 Algorithm 3 defines the behavior of KGA in the case of multiple senders, which will
only be used in Sect. 4.
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The Snd converter connects to INS and KGA at its inner interface, and has
an outer interface that is identical to the interface of a repository for a party who
is a writer, i.e. it provides a procedure Write which takes as input a label 〈Ai →
V〉 defining the sender Ai and set of receivers V and a message m ∈ M to be
signed. Snd then gets the necessary keys and public parameters from KGA, signs
the input message m using the algorithm Sign, which outputs some signature
σ ∈ S, and then writes (m,σ, (Ai,V)) into the insecure repository INS. For
simplicity, since in this section the label is always 〈A → R〉 it is simply omitted.
In addition, rather than making the Snd converter always write (m,σ, (A,R))
tuples into INS, we omit (A,R) and simply write (m,σ) pairs instead. The exact
(simplified) semantics for converter Snd is given in Algorithm 4.

Algorithm 4. Snd converter for A ∈ SH .
(A ∈ SH)-Write(m ∈ M)

pp ← A-PublicParameters
(spk, ssk) ← A-SignerKeyPair
for each Bl ∈ R do

{vpkl} ← A-VerifierPublicKey(Bl)

σ ← Π.Sign(pp, ssk, {vpkl}Bl∈R, m)

id ← A-Write(m, σ)
return id

Similarly to Snd, the Rcv converter connects to KGA and INS at its inner
interfaces and provides the same outer interface as a repository for a party with
read access, i.e. it gives access to two read operations, namely ReadBuffer
and ReadRegister. The behavior of Rcv for each such read operation is spec-
ified by means of a procedure with the same name (i.e. a ReadBuffer and a
ReadRegister procedure). The ReadBuffer procedure first reads all tuples
(m,σ, (Ai,V)) written into INS—by issuing a ReadBuffer operation to INS
followed by a series of ReadRegister operations, one for each id returned
by the first operation—and for each tuple satisfying Ai = A and V = R, the
converter verifies whether σ is a valid signature on m with respect to sender A
and set of receivers R. To this end, the Rcv converter first fetches all the public
parameters and keys needed from KGA, and then checks if σ is a valid signa-
ture on m with respect to the public keys of the sender A and of each receiver
in R using the Vfy algorithm defined by the underlying MDVS scheme Π. The
converter then outputs a list of pairs—one for each register stored in INS con-
taining a valid message-signature pair according to Vfy and with respect to A
and R—where each pair contains a register’s id and a label 〈A → R〉. Since
in this section the label is always the same, we simply omit it. The ReadReg-
ister procedure of the Rcv converter receives as input the id of the register
to be read; if the register contains a valid tuple (in the same sense as above)
the procedure then outputs the message contained in the register. The exact
(simplified) semantics for the Rcv converter is given in Algorithm 5.
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Algorithm 5. Rcv converter for Bj ∈ RH .
(Bj ∈ RH)-ReadBuffer

return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if id ∈ Bj-GetValidIds then

(m, σ) ← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds � Local procedure. Operation not available at outside interface.
pp ← Bj-PublicParameters
(vpkj , vskj) ← Bj-VerifierKeyPair

spk ← Bj-SignerPublicKey(A)
for each Bl ∈ R do

{vpkl} ← Bj-VerifierPublicKey(Bl)

validIds ← ∅
for each id ∈ Bj-ReadBuffer do

(m, σ) ← Bj-ReadRegister(id)
if Π.Vfy(pp, spk, vskj , {vpkl}Bl∈R, m, σ) then

validIds ← id
return validIds

In the case where the sender and all receivers are honest—i.e. PH = {A}∪RH

with RH = R—the real world specification is given by

SndARcvRH{[KGA, INS]}, (3.1)

where RcvRH

= RcvB1 · · ·RcvBn denotes all receiver converters run at the inter-
faces of Bj ∈ RH . This is illustrated in Fig. 1. As explained in Remark 3 in
Sect. 2.2, if a party P is dishonest, then we simply remove their converter from
Eq. (3.1) to get the corresponding real world.

3.2 Ideal-Worlds

Whether the sender is honest or dishonest completely changes the guarantees
one wishes to give, and thus completely changes the ideal world. So we divide
this in two subsections, the first models a dishonest sender and the second an
honest sender. Recall that the third-party E is always dishonest.

Dishonest Sender. In case of a dishonest sender the only property the con-
struction must capture is consistency, namely that all honest receivers in RH

get the same messages (for any RH �= ∅). This means that even if all dishon-
est parties collude, including the sender A, the dishonest receivers RH and the
third-party E, they are unable to generate confusion within the honest senders
as to whether some message is authentic or not: either every receiver Bj ∈ RH

accepts a message as authentic or none does. A repository to which all honest
receivers have read access captures this guarantee. Since dishonest parties may
share secret keys with each other, any of them may have either read or write
access. The repository we want to construct is then

〈A → R〉RH∪{A,E}
R∪{A,E} ,
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A
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B3
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KGA

INS

Fig. 1. Illustration of the real world system specified by Eq. (3.1) for the case where
R = {B1, B2, B3}, with RH = {B1, B2}.

where we have used 〈A → R〉 as label to denote the repository. By considering a
set of converters Ω10 that could be run jointly at the dishonest parties’ interfaces,
one can then define the ideal world specification CFix

Ω capturing consistency as

CFix
Ω :=

{

simRH∪{A,E}
[

〈A → R〉RH∪{A,E}
R∪{A,E}

]}

sim∈Ω
. (3.2)

Finally, we also want the ideal world to contain systems that are indistin-
guishable from the perfect ones defined above, so we put an ε-ball around the
ideal resource.11 The ideal world is then

(

CFix
Ω

)ε

.

Honest Sender. In the case of an honest sender, there are two properties that
we expect from an MDVS scheme. The first is that the (honest) designated
receivers can verify the authenticity of the message as coming from the actual
sender A. The second is that this authenticity is exclusive to the designated
receivers,12 i.e. a third party E cannot be convinced that any message was sent

10 We do not define Ω at this point, since in a finite setting there is no “good” and
“bad” system (efficient or inefficient, negligible or non-negligible). Instead, in the
theorem statement for a security proof we explicitly give the set Ω which is used, as
the meaningfulness of the theorem will depend on the choice of this set.

11 Like for Ω (see Footnote 10) we do not define acceptable ε here, but in a theorem
statement for a security proof we explicitly give the one used.

12 A third important property is correctness, but in our setting dishonest parties cannot
delete the messages of honest parties, so correctness follows from authenticity and
does not need to be considered separately.
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by A, even if dishonest receivers leak all their secret keys to E.13 To this end,
MDVS schemes need to be such that every possible set of dishonest receivers
can (cooperatively) come up with forged signatures that are indistinguishable
from the real ones generated by A to the third-party E (who has access to the
dishonest receivers’ secret keys). Note, on the other hand, that honest desig-
nated receivers are not “fooled” by signatures forged by dishonest (designated)
receivers; authenticity guarantees that honest designated receivers can verify
whether it was really A signing a message or otherwise.

Authenticity is straightforward to capture: it essentially corresponds to a
repository where only the sender can write, but everyone else can read. The only
twist is that dishonest parties might be able to duplicate messages written by
the sender A [3].14 So the repository we wish to be constructed is given by

RH∪{E}〈A → R〉{A}
R∪{E}.

As for consistency, by considering a set of converters Ω that could be run jointly
at the dishonest parties’ interfaces, one can then define the ideal world specifi-
cation AFix

Ω capturing authenticity as

AFix
Ω :=

{

simRH∪{E}
[

RH∪{E}〈A → R〉{A}
R∪{E}

]}

sim∈Ω
. (3.3)

Here too, we extend the ideal world to also contain systems that are indistin-
guishable from those in Eq. (3.3) by adding a ε-ball around the specification.
The final ideal specification is thus

(

AFix
Ω

)ε

.

Figure 2 illustrates the ideal world systems from the AFix
Ω specification.

Finally, the notion of exclusiveness of authenticity is captured in a world
where there exists an (explicit) behavior π for the dishonest receivers that allows
them to generate signatures that look just like fresh signatures to any third party
E. This means that running π would result in a repository in which both the
honest sender A and all the dishonest receivers in RH can write and E can read,
namely15

〈A → R〉{A}∪RH

{E} . (3.4)

As usual, we extend the specification by attaching a converter sim at the dishon-
est parties’ interfaces. However, sim is not allowed to block or cover the write
13 If all receivers are honest only A can send messages, and so in this case E just knows

that A must be the one sending messages.
14 They can do this either by creating a copy of a valid message-signature pair or by

sending the same message but with a different signature.
15 As one might note, the repository in Eq. (3.4) does not allow the honest desig-

nated receivers RH to read. The reason for this is that the security statement does
not concern them, so we remove them from the security statement. In fact, due to
authenticity the honest designated receivers could distinguish signatures written by
Alice or forged by the dishonest receivers.
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A
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B2
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E

Fig. 2. Illustration of an ideal world system from the AFix
Ω specification (Eq. (3.3)) for

the case where R = {B1, B2, B3}, with RH = {B1, B2}.

ability at the interfaces of the parties in RH , because we wish to guarantee that
a dishonest receiver can write to the repository.16 The specification providing
the guarantee that E cannot distinguish real signatures (created by A) from fake
ones (forged by the dishonest designated receivers) is given by

̂XFix

Ω :=
{

sim{E}
[

〈A → R〉{A}∪RH

{E}
]}

sim∈Ω
. (3.5)

Figure 3 illustrates an ideal world system from ̂XFix

Ω . As stated above, there must
exist a converter π that the dishonest receivers RH can run jointly to achieve a
resource in the specification from Eq. (3.5). Since dishonest receivers could have
run (and can run) π, a third party E cannot tell if the message was sent by them
or by the honest sender A even when given access to the keys of all dishonest
receivers (notice that E, being one of the dishonest parties, can query the KGA
to obtain the secret keys of any dishonest receiver). Putting things together, the
ideal world is defined as

XFix
Ω,π :=

{

V : πRH⊥RH

V ∈ ̂XFix

Ω

}

, (3.6)

where ⊥RH

blocks the interfaces of all honest receivers RH .17 Figure 4 illus-
trates a possible real world system in the XFix

Ω,π specification with a converter

⊥RH

blocking the interface of the (only) honest receiver B1, and protocol πRH

16 Traditional composable security frameworks require the simulator to cover all dis-
honest interfaces making it impossible to model Eq. (3.5).

17 Note that the ideal specification in Eq. (3.6) does not follow the ideal-functionality-
simulator paradigm, making it impossible to (directly) model the same thing in
traditional composable frameworks.
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A
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B2
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E

Fig. 3. Illustration of an ideal world system from the ̂XFix

Ω specification (Eq. (3.5)) for
the case where R = {B1, B2, B3}, with RH = {B1}.

attached to the interfaces of the dishonest receivers (i.e. B2 and B3). Again,
we put an ε-ball around Eq. (3.6), and define the ideal specification for the
exclusiveness of authenticity to be

(

XFix
Ω,π

)ε

.

Putting things together, the ideal world specification for the case of an honest
sender is then given by

S =
(

AFix
Ω

)ε

∩
(

XFix
Ω′,π

)ε′

. (3.7)

3.3 Reduction to Game-Based Security

We now compare our composable notions against the existing game-based secu-
rity notions from the literature. The definitions of these game-based security
notions can be found in the full version of this paper, together with full proofs
of all the theorems below [21].

The first theorem shows that in the case of a dishonest sender, the advantage
in distinguishing the real and ideal systems is upper bounded by the advantage
in winning the consistency game.

Theorem 1. When the sender A is dishonest, i.e. PH = RH , we find an explicit
reduction system C and an explicit simulator sim such that for any Ω ⊇ {sim}:

R ⊆ (CFix
Ω )AdvCons(·C) (3.8)

where for any distinguisher D, AdvCons(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Consistency
game (see [21, Definition 3]).
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Fig. 4. Illustration of a possible real world system in the XFix
Ω,π specification (Eq. (3.6))

for the case where R = {B1, B2, B3}, with RH = {B1}. Converter ⊥RH

blocks B1’s

interface; signature forgery protocol πRH
is attached to the interfaces of B2 and B3.

A proof of Theorem 1 is provided in the full version [21].
The second theorem shows that in the case of an honest sender, the advan-

tage in distinguishing the real world from the ideal world for authenticity is
upper bounded by the advantage in winning the unforgeability game and the
correctness game.

Theorem 2. When the sender is honest, i.e. for PH = {A} ∪ RH , we find
explicit reduction systems C′ and C and an explicit simulator sim such that
for any Ω ⊇ {sim}:

R ⊆ (AFix
Ω )AdvUnforg(·C) +AdvCorr (·C′) (3.9)

where for any distinguisher D, AdvUnforg(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Unforgeability
game (see [21, Definition 4]), and AdvCorr(DC′) is the advantage of D′′ = DC′

in winning the Correctness game (see [21, Definition 2])

A proof of Theorem 2 is provided in the full version [21].
In the third theorem we show that in the case of an honest sender, the advan-

tage in distinguishing the real world from the ideal world for the exclusiveness of
authenticity is bounded by the advantage in winning the Off-The-Record game.

Theorem 3. When the sender is honest, i.e. for PH = {A} ∪ RH , and for any
signature forgery algorithm Forge suitable for the Off-The-Record security notion
(see [21, Definition 5]), we find an explicit reduction system C and an explicit
simulator sim such that for any Ω ⊇ {sim}:

R ⊆ (XFix
Ω,πForge )AdvOTR-Forge(·C), (3.10)
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where πForge is the converter running the Forge algorithm (see Algorithm 6), and
for any distinguisher D, AdvOTR-Forge(DC) is the advantage of D′ = DC (the
distinguisher resulting from composing D and C) in winning the Off-The-Record
game with respect to the signature forgery algorithm Forge (see [21, Definition
5]).

Algorithm 6. Converter πForge for set of (dishonest) parties RH ; πForge uses
algorithm Forge to forge signatures, and is connected to a KGA and an insecure
repository INS.

(Bj ∈ RH)-Write(m ∈ M)
pp ← Bj-PublicParameters
spk ← Bj-SignerPublicKey(A)

for each Bc ∈ RH do
{(vpkc, vskc)} ← Bj-VerifierKeyPair(Bc)

for each Bl ∈ R do
{vpkl} ← Bj-VerifierPublicKey(Bl)

σ ← Forge(pp, spk, {vpkl}Bl∈R, {vskc}
Bc∈RH , m)

Bj-Output(Bj-Write(m, σ))

A proof of Theorem 3 is provided in the full version [21].

4 Modeling MDVS for Arbitrary Parties

In this section we model the security of MDVS schemes in the presence of mul-
tiple possible senders and multiple sets of receivers, which corresponds to a
generalization of the models given in Sect. 3. Throughout this section, we denote
by S the set of senders, and by SH and SH the partitions of S corresponding
to honest and dishonest senders. As before, R, RH and RH correspond to the
set of all receivers, honest and dishonest receivers, respectively. Furthermore, we
assume that RH , RH , SH and SH are all non-empty sets.

4.1 Real-World

The real world specification for this security model is similar to the one given in
Sect. 3.1 for the fixed sender and fixed set of receivers case. However, in Sect. 3 we
made a few simplifications in the description of converters Snd and Rcv namely,
the fixed sender and a fixed set of receiver are hard-coded in the converters.
In this section, the converters SndArb and RcvArb (see Algorithm 7 and Algo-
rithm 8, respectively) allow the sender to specify the set of receivers for each
message they send, and the RcvArb converters explicitly output the sender and
the set of designated receivers. Moreover, the SndArb converter now attaches to
each message-signature pair also the sender and set of receivers meant for that
message-signature pair; the RcvArb converter then relies on this information to
validate the authenticity of messages meant for the corresponding receiver. Apart
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from this, the real-world specification is as before: the SndArb and RcvArb con-
verters connect to the KGA and to an insecure repository INS, and behave
otherwise similarly to the Snd and Rcv converters. Since we assumed that SH

and RH are non-empty sets, the real-world specification is then defined by

SndArbSH

RcvArbRH

{[KGA, INS]}, (4.1)

as illustrated in Fig. 5.

Algorithm 7. SndArb converter for Ai ∈ SH .
(Ai ∈ SH)-Write(〈Ai → V〉, m ∈ M)

pp ← Ai-PublicParameters
(spk, ssk) ← Ai-SignerKeyPair
for each Bl ∈ V do

{vpkl} ← Ai-VerifierPublicKey(Bl)

σ ← Π.Sign(pp, ssk, {vpkl}Bl∈V , m)

id ← Ai-Write(m, σ, (Ai, V))
return id

Algorithm 8. RcvArb converter for Bj ∈ RH .
(Bj ∈ RH)-ReadBuffer

return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if (id, 〈Ai → V〉) ∈ Bj-GetValidIds then

(m, σ, (Ai, V)) ← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds � Local procedure. Operation not available at outside interface.
pp ← Bj-PublicParameters
(vpkj , vskj) ← Bj-VerifierKeyPair

validIds ← ∅
for each (id, INS) ∈ Bj-ReadBuffer do

(m, σ, (Ai, V)) ← Bj-ReadRegister(id)
if Bj ∈ V then

spki ← Bj-SignerPublicKey(Ai)
for each Bl ∈ V do

{vpkl} ← Bj-VerifierPublicKey(Bl)

if Π.Vfy(pp, spki, vskj , {vpkl}Bl∈V , m, σ) then

validIds ← (id, 〈Ai → V〉)
return validIds

4.2 Ideal-Worlds

As aforementioned in Sect. 3.2, the guarantees given by the ideal world when
a sender is honest are completely different from the ones when it is dishonest.
However, since now we have both honest and dishonest senders at the same time,
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Fig. 5. Illustration of the real world system specified by Eq. (4.1) for the case where
S = {A1, A2, A3} and R = {B1, B2, B3}, with SH = {A1, A2} and RH = {B1, B2}.

the ideal-world specification modeling the security of MDVS schemes consists of
the intersection of only two (relaxed) specifications, one capturing the consis-
tency and authenticity together (CA)Arb

Ω ,18 and one capturing the exclusiveness
of authenticity XArb

Ω′,π. The ideal world is then

S =
(

(CA)Arb
Ω

)ε

∩
(

XArb
Ω′,π

)ε′

. (4.2)

One key difference between the model we now introduce and the one from
Sect. 3 is that we may have dishonest parties (other than Eve) that are neither
sender nor designated receivers in this section, and we require exclusiveness of
authenticity to hold with respect to them as well. So it is not sufficient that (any
non-empty subset of) dishonest verifiers who have a secret verification key can
forge signatures, parties with no secret verification key should also be able to
forge.19

Consistency and Authenticity. As just mentioned, (CA)Arb
Ω models consis-

tency and authenticity. More concretely, for dishonest senders Ai ∈ SH , (CA)Arb
Ω

includes the repository
[

〈Ai → V〉PH

V∪PH

]

Ai∈SH ,V⊆R
,

18 As noted in Sect. 3, in our setting correctness follows from authenticity, so it does
not need to be considered separately.

19 This could have been modeled in Sect. 3 by adding a second Eve, but we omitted it
for simplicity.
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Fig. 6. Illustration of the ideal world system specified by Eq. (4.3) for the case where
S = {A1, A2, A3}, R = {B1, B2, B3}, with SH = {A1, A2} and RH = {B1, B2}.

which captures consistency, since all honest receivers have access to the same
messages. And for honest senders Ai ∈ SH , (CA)Arb

Ω includes the repository
[

PH 〈Ai → V〉{Ai}
V∪PH

]

Ai∈SH ,V⊆R
,

which captures authenticity, since only Ai can write. As before, a simulator sim
is added at the interfaces of the dishonest parties, hence

(CA)Arb
Ω :=

⎧

⎪

⎨

⎪

⎩

simPH

⎡

⎢

⎣

[

〈Ai → V〉PH

V∪PH

]

Ai∈SH ,V⊆R
[

PH 〈Ai → V〉{Ai}
V∪PH

]

Ai∈SH ,V⊆R

⎤

⎥

⎦

⎫

⎪

⎬

⎪

⎭

sim∈Ω

. (4.3)

Figure 6 illustrates the ideal world systems from the (CA)Arb
Ω specification.

Exclusiveness of Authenticity. To model exclusiveness of authenticity, for
honest senders Ai ∈ SH , we define a resource containing a repository where Ai

and all dishonest parties (except Eve) can write and Eve can read, i.e.
[

〈Ai → V〉{Ai}∪SH∪RH

{E}
]

Ai∈SH ,V⊆R
.

This means that Eve does not know if the messages she sees are from Alice or
another dishonest party—even those that are not designated verifiers can input
messages.

In the arbitrary party setting, we also need to deal with the case of dishonest
senders. Since we cannot exclude that by submitting forged signatures and seeing
whether they are accepted, dishonest parties might learn something about the
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honest receivers’ secret keys, we also include repositories where a dishonest party
(Eve) can write and honest verifiers read,20 namely

[

〈Ai → V〉{E}
VH

]

Ai∈SH ,V⊆R
.

Like in the previous section, we want to guarantee that the ability of dis-
honest parties to write in the repositories for honest senders is preserved, so the
simulator only covers Eve’s interface.21 We thus get a resource specification,

̂XArb

Ω :=

⎧

⎪

⎨

⎪

⎩

sim{E}

⎡

⎢

⎣

[

〈Ai → V〉{E}
VH

]

Ai∈SH ,V⊆R
[

〈Ai → V〉{Ai}∪SH∪RH

{E}
]

Ai∈SH ,V⊆R

⎤

⎥

⎦

⎫

⎪

⎬

⎪

⎭

. (4.4)

As previously, our ideal world consists of all resources that when the interfaces
of the honest designated verifiers on repositories with honest senders are covered
and when the dishonest parties (excluding Eve) collude to run a forging protocol

π result in a resource contained in ̂XArb

Ω , i.e. the ideal-world specification XArb
Ω,π

is defined as
XArb

Ω,π :=
{

V : πSH∪RH
(⊥Arb)RH

V ∈ ̂XArb

Ω

}

, (4.5)

where ⊥Arb is the converter specified in Algorithm 9 which does not allow the
receiver to verify the authenticity of messages input into any repository 〈Ai → V〉
with an honest sender (i.e. for which Ai ∈ SH).22

4.3 Reduction to Game-Based Security

We now compare our composable notions for arbitrary parties to the exist-
ing game-based security notions from the literature. Again, the definitions of
these game-based security notions can be found in the full version of this paper,
together with full proofs of all the theorems [21].

The first theorem in this section shows that that advantage in distinguishing
the real world from the ideal world for authenticity and consistency is upper
bounded by the advantage in winning the consistency, unforgeability and cor-
rectness games.

20 Messages signed by a party with no knowledge of the signer’s secret key will likely
be recognized as forgeries, so we only need to consider the case where the sender is
dishonest and the keys are shared. Furthermore, the distinguisher could in principle
use any party’s interface to submit these messages, but since it simplifies the pre-
sentation to only have the simulator at Eve’s interface we only include Eve in the
parties with write abilities.

21 Traditional composable security frameworks require the simulator to cover all dis-
honest interfaces making it impossible to model Eq. (4.4).

22 Note that the ideal specification in Eq. (4.5) does not follow the ideal-functionality-
simulator paradigm, making it impossible to (directly) model the same thing in
traditional composable frameworks.
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Algorithm 9. ⊥Arb converter for Bj ∈ RH .
(Bj ∈ RH)-ReadBuffer

return Bj-GetValidIds

(Bj ∈ RH)-ReadRegister(id)
if (id, 〈Ai → V〉) ∈ Bj-GetValidIds then

m ← Bj-ReadRegister(id)
return m

(Bj ∈ RH)-GetValidIds � Local procedure. Operation not available at outside interface.
validIds ← ∅
for each (id, 〈Ai → V〉) ∈ Bj-ReadBuffer do

if Ai ∈ SH then
validIds ← (id, 〈Ai → V〉)

return validIds

Theorem 4. Consider a setting where RH , RH , SH and SH are all non-empty.
We find an explicit reduction system C′, an explicit simulator sim and explicit
reduction systems C, CCons and CUnforg such that, for any Ω ⊇ {sim}

R ⊆
(

(CA)Arb
Ω

)AdvCons(·CCCons)+AdvUnforg(·CCUnforg)+AdvCorr (·C′)
, (4.6)

where for any distinguisher D, AdvCons(DCCCons), AdvUnforg(DCCUnforg),
and AdvCorr(DC′) are, respectively, the advantages of D′ = DCCCons (the
distinguisher resulting from composing D, C and CCons) in winning the Con-
sistency game (see [21, Definition 3]), of D′′ = DCCUnforg in winning the
Unforgeability game (see [21, Definition 4]) and of D′′′ = DC′ in winning the
Correctness game (see [21, Definition 2])

A proof of Theorem 4 is provided in the full version [21].
In the second theorem we show that the advantage in distinguishing the real

world from the ideal world for the exclusiveness of authenticity is bounded by
the advantage in winning the Off-The-Record and Consistency games.

Theorem 5. Consider a setting where RH , RH , SH and SH are all non-empty.
For any signature forgery algorithm Forge suitable for the Off-The-Record secu-
rity notion we find explicit reduction systems C and C′, and an explicit simulator
sim such that for any Ω ⊇ {sim}:

R ⊆ (XArb
Ω,πForge )AdvOTR-Forge(·C)+AdvCons(·C′)

, (4.7)

where πForge is the converter running the Forge algorithm (see Algorithm 10),
and for any for any distinguisher D, AdvOTR-Forge(DC) and AdvCons(DC′)
are, respectively, the advantage of D′ = DC (the distinguisher resulting from
composing D and C) in winning the Off-The-Record game with respect to forgery
algorithm Forge (see [21, Definition 5]), and the advantage of D′′ = DC′ in
winning the Consistency game (see [21, Definition 3]).

A proof of Theorem 5 is provided in the full version [21].
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Algorithm 10. πForge converter for set of (dishonest) parties SH ∪ RH .
(P ∈ SH ∪ RH)-Write(〈Ai → V〉, m ∈ M)

pp ← P -PublicParameters
spki ← P -SignerPublicKey(Ai)

for each Bj ∈ VH do
{(vpkj , vskj)} ← P -VerifierKeyPair(Bj)

for each Bl ∈ V do
{vpkl} ← P -VerifierPublicKey(Bl)

σ ← Forge(pp, spki, {vpkl}Bl∈V , {vskc}
Bc∈VH , m)

P -Output(P -Write(m, σ, (Ai, V)))

Asymptotic Composable Security of MDVS. Analogously to Remark
2, for a security notion X, AdvX(

−→
A) : N → R denotes a function defined as

AdvX(
−→
A) (k) := AdvX(Ak). We say that a scheme satisfies X asymptotically

if AdvX(
−→
A) is negligible on the security parameter k.

In the following, let Π = (Setup,GS ,GV ,Sign,Vfy) be an MDVS scheme.
The following corollaries, Corollary 1 and Corollary 2, follow from Theorem 4
and Theorem 5, respectively. These results state that any MDVS scheme Π that
is asymptotically secure—according to asymptotic versions of [21, Definition 2],
[21, Definition 3], [21, Definition 4], and [21, Definition 5]— and which is used as
specified in Sect. 4.1 asymptotically constructs, from a real world specification
R, the ideal world specification defined in Eq. 4.2 (see Remark 2). Note that,
since we are making asymptotic construction statements, Ω and Ω′ are both
classes of efficient simulators (say non-uniform probabilistic polynomial time),
and for any efficient family of distinguishers

−→
D, −→ε and −→ε ′ are both negligible

functions (on the security parameter).

Corollary 1. Consider a setting where RH , RH , SH and SH are all non-empty.
If Π is asymptotically Correct (see [21, Definition 2]), Consistent (see [21, Def-
inition 3]) and Unforgeable (see [21, Definition 4]), then R asymptotically con-
structs (CA)Arb.

Corollary 2. Consider a setting where RH , RH , SH and SH are all non-empty.
If Π is asymptotically Off-The-Record (see [21, Definition 5]) and Consistent
(see [21, Definition 3]), then R asymptotically constructs XArb

πForge , where πForge

is the converter defined in Algorithm 10, running an algorithm Forge with respect
to which Π is asymptotically Off-The-Record (i.e. no non-uniform probabilistic
polynomial time adversary

−→
A can win the Off-The-Record game of Π with respect

to algorithm Forge with non-negligible advantage).

4.4 Separation from Existing Game-Based Security Notions

The game-based security notion from [11] capturing the Off-The-Record security
property of MDVS schemes (see [21, Definition 5]) is unnecessarily strong as
for some MDVS schemes it allows the adversary to verify the validity of the
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challenge signatures, and thus allows it to trivially win the game. As hinted by
our composable security notions, the main goal of the Off-The-Record security
notion is capturing that a third party cannot tell whether a given signature
is a valid one generated by the signer, or a forged one generated by dishonest
receivers. The ability of a third party to generate signature replays—which might
only be valid if the original signatures were already valid—does not violate any
of the security properties that MDVS schemes intend to guarantee, and as such
should not help in winning the corresponding security game. However, it does
help in winning the Off-The-Record game from [11], meaning that this notion
(i.e. the one from [11]) is unnecessarily strong.

Theorem 6. Let P = {A1, A2, A3, B1, B2, B3, E}. Consider any MDVS scheme
Π, and let εΠ-4 and εΠ-5 denote the ε-balls (see Eq. (2.3)) given by, respectively,
Theorem 4 and Theorem 5 for settings where RH , RH , SH and SH are all non-
empty sets. Then there is a modified MDVS scheme Π ′ that is also secure as in
each of these two theorems and for essentially the same ε-balls as Π, but such
that for any suitable algorithm Forge for the Off-The-Record security notion (see
[21, Definition 5]) there is an explicit and efficient adversary A such that

AdvΠ′-OTR-Forge(A) ≥ 1 − δcorr − δauth,

where AdvΠ′-OTR-Forge(A) denotes the advantage of A in winning the Off-The-
Record game for Π ′ with respect to the signature forgery algorithm Forge(see [21,
Definition 5]), δcorr is the probability that a single honestly generated signature
does not verify correctly and δauth is the probability that a single forged signature
is considered valid by the signature verification algorithm.

A proof of Theorem 6 is provided in the full version [21].

5 Further Related Work

In [13], Jakobsson, Sako, and Impagliazzo introduce DVS and MDVS schemes
and give two property-based security notions for the single designated veri-
fier case. Their weaker notion is intended to capture essentially the same as
our weaker exclusiveness of authenticity notion—if all receivers are honest, Eve
learns that Alice is the one sending messages—whereas their stronger notion
is intended to capture our stronger notion—even if all receivers are honest, Eve
cannot tell if Alice sent any message. Unfortunately, the signature unforgeability
notion considered—equivalent to Existential Unforgeability under No-Message
Attacks (EUF-NMA)—is known to be too weak to allow for authentic com-
munication.23 Furthermore, the security notion capturing the exclusiveness of
authenticity which is implicitly considered for the case of multiple receivers is

23 Existential Unforgeability under Chosen Message Attacks (EUF-CMA)—a security
notion known to be strictly stronger than EUF-NMA—is necessary for authentic
communication, see [3,7].
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also too weak, and in particular is not sufficient to achieve neither of our compos-
able notions. This is so since simulating signatures requires secret information
from every designated verifier, and thus if at least one of the verifiers is honest,
doing so is not feasible.

In [29], Steinfeld, Bull, Wang and Pieprzyk introduce Universal Designated
Verifier Signatures, wherein a signer can generate publicly verifiable signatures
which can then be transformed into designated verifier ones (possibly by a dis-
tinct party not possessing the secret signing key). Although the security notions
capturing the exclusiveness of authenticity property introduced in that paper are
weak—in that they only meet the weaker notion we introduce in this paper—
the proposed schemes meet our stronger notion for this property (for the single
receiver case). On the other hand, the unforgeability notion considered in the
paper is too weak: it does not suffice to achieve even our weaker composable
security notion. Unfortunately, numerous subsequent works have considered the
same unforgeability notion [16–19,30,32].

In [15], Krawczyk and Rabin introduce Chameleon signature schemes, which
work by first using a chameleon hash function to hash a message and then using
a normal signature scheme to sign the resulting hash. Chameleon hash functions
are public key schemes which are collision-resistant for anyone not possessing
the secret key, but which allow for efficient collision finding given the secret
key. The intended use of these schemes is to provide the same guarantees as
DVS schemes: a designated receiver first generates its chameleon hash function,
and sends the corresponding public key to the signer; the signer then sends
a signature on the message under the hash function provided by the receiver,
which it can verify. Since the receiver knows the secret key of the chameleon
hash function it sent to the signer, no one other than the receiver gets convinced
that the signer signed any particular message. However, these schemes do not
allow to achieve the exclusiveness of authenticity that our stronger composable
notion captures: anyone with the public keys of the signer and of the chameleon
hash function can verify whether a certain signature is a valid one (for some
message), which implies that no third-party can feasibly forge signatures that
are indistinguishable from real ones (or otherwise the signature scheme used by
the signer is not unforgeable). Moreover, they also do not achieve our weaker
notion, as dishonest receivers can only forge signatures once the signer signed a
message.

In [27], Rivest, Shamir and Tauman mention that two party ring signatures
are DVS schemes. Indeed, one can obtain a DVS scheme meeting our weaker
composable notion for the case of a single receiver B by taking a ring signature
scheme and using it to produce signatures for a ring composed by the signer A
and by the intended (designated) receiver of that message, B.24 But notice that,
similarly to the case of Chameleon signature schemes, public keys are enough
to verify signatures, implying that the DVS schemes yielded by ring signatures

24 As one might note, the resulting DVS scheme can only meet our weaker composable
notion if the underlying ring signature scheme meets the stronger Anonymity against
Attribution Attacks [4, Definition 4].
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can really only achieve our weaker security notion—where if both A and B are
honest, E learns A is the signer. Furthermore, since any ring member can locally
sign messages that are valid with respect to the entire ring, which is incompatible
with the stronger authenticity requirement of MDVS schemes, ring signatures
may only be used as DVS schemes for the case of a single receiver. Unfortunately,
this went unnoticed in various prior works [9,16,18], which gave constructions
of MDVS schemes based on ring signature schemes.

One could think that perhaps, to achieve our stronger notion for exclusiveness
of authenticity—where a third party is not convinced that the signer signed some
message even when all the designated receivers (and the signer) are honest—
it suffices to guarantee that the validity of a signature can only be efficiently
determined with the secret key given as input [28]. However, this is not the case.
Consider for example, the case where the sender and the designated receivers
share the signing key dsk of some (traditional) Digital Signature Scheme (DSS)
(with the corresponding verification key dvk being publicly known), and where
the MDVS signature σm for each message m also includes a signature σm

′ under
dsk on m. Then, while to verify the validity of an MDVS signature σm one
may need the secret verification key for the MDVS scheme, by verifying the
corresponding σm

′ using dvk signature a third party already gets convinced, in
the case where the sender and all the designated receivers are honest, that the
really signer signed m. This same reasoning also explains why, in general, MAC
schemes cannot be used per se as DVS schemes (in the stronger sense, captured
by our stronger composable notion) for the two party case: it may not be feasible
to simulate MAC schemes which look just like real ones.
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Abstract. In this work we ask the following question: Can we trans-
form any encryption scheme into a trapdoor function (TDF)? Alterna-
tively stated, can we make any encryption scheme randomness recover-
able? We propose a generic compiler that takes as input any encryption
scheme with pseudorandom ciphertexts and adds a trapdoor to invert
the encryption, recovering also the random coins. This universal TDFier
only assumes in addition the existence of a hinting pseudorandom gener-
ator (PRG). Despite the simplicity, our transformation is quite general
and we establish a series of new feasibility results:

– The first identity-based TDF [Bellare et al. EUROCRYPT 2012]
from the CDH assumption in pairing-free groups (or from factor-
ing), thus matching the state of the art for identity-based encryption
schemes. Prior works required pairings or LWE.

– The first collusion-resistant attribute-based TDF (AB-TDF) for all
(NC1, resp.) circuits from LWE (bilinear maps, resp.). Moreover, the
first single-key AB-TDF from CDH. To the best of our knowledge, no
AB-TDF was known in the literature (not even for a single key) from
any assumption. We obtain the same results for predicate encryption.

As an additional contribution, we define and construct a trapdoor garbling
scheme: A simulation secure garbling scheme with a hidden “trigger” that
allows the evaluator to fully recover the randomness used by the garbling
algorithm. We show how to construct trapdoor garbling from the DDH
or LWE assumption with an interplay of key-dependent message (KDM)
and randomness-dependent message (RDM) techniques.
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Trapdoor garbling allows us to obtain alternative constructions of
(single-key) AB-TDFs with additional desirable properties, such as adap-
tive security (in the choice of the attribute) and projective keys. We
expect trapdoor garbling to be useful in other contexts, e.g. in case
where, upon successful execution, the evaluator needs to immediately
verify that the garbled circuit was well-formed.

1 Introduction

Seminal results in 1970’s laid the foundations of public-key cryptography by
introducing the notion of trapdoor functions [14,35]. These are families of injec-
tive functions, where each function can be computed in the forward direction,
but a randomly chosen function is one-way. Moreover, any function in the family
can be efficiently inverted using the function’s associated trapdoor key.

The historical interest in TDFs stems from this primitive being sufficient for
CPA-secure public-key encryption (PKE) schemes. Recent results, however, have
substantially changed this perspective, showing TDFs (or extensions thereof)
enable many applications which are beyond the reach of traditional public-key
encryption techniques [3,4,18,25,32]. Most notably, a recent result of Hohen-
berger, Koppula and Waters shows that TDFs generically imply the existence
of CCA-secure PKE schemes [25], while whether or not CPA-secure PKE is suf-
ficient is a long standing open problem. Also, recent advances in TDFs have led
to many new feasibility results (e.g. rate-1 oblivious transfer) [18].

What makes trapdoor functions a strong primitive is its inversion property:
The inversion algorithm recovers the entire input, in contrast to randomized PKE
schemes where the decryption algorithm may not necessarily recover the encryp-
tion randomness. Such a property is crucially used in all the above applications,
and in particular is the central ingredient of the recent result of Hohenberger et
al. [25] for enforcing well-formedness of ciphertexts.

We now have constructions of TDFs from a range of specific assumptions,
including factoring/QR/DCR [19,33], LWE/DDH [32], low-noise LPN [27], and
CDH [20,21]. One limitation of these results is that they employ what appear
to be ad-hoc techniques to obtain TDFs. Consequently, it is not clear whether
and how these techniques will scale to obtain TDFs for more advanced primitives
such as Identity-Based Encryption (IBE) or Attribute-Based Encryption (ABE).
As we argue below, while TDFs for such advanced primitives will have additional
applications, our knowledge of how these advanced TDFs may be realized is quite
limited.

TDFs for Advanced Encryption. In this work, we are interested in realizing
TDF notions for advanced encryption primitives, such as ABE or IBE. For exam-
ple, under Identity-Based TDFs (IB-TDFs), one deterministically evaluates an
input x ∈ {0, 1}n as Eval(pp, id, x) to get an image y; an inverter with knowl-
edge of tdid, a user secret key for identity id, may retrieve x as Invert(tdid, y).
More generally, under Attribute-Based TDFs (AB-TDFs), one deterministically
evaluates an input x relative to a public parameter pp and attribute α to get an
image y; the value of x can be recovered from y by using a trapdoor key tdC for a
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circuit C where C(α) = 1. Moreover, if C(α) = 0, then even given tdC it should
be computationally infeasible to recover x from y. This notion can be extended
to allow many key corruptions, as in the standard ABE setting, or even to hide
the attribute if C(α) = 0, as in predicate encryption (PE).

Why TDFs for Advanced Encryption? In addition to being an interest-
ing notion on its own, AB-TDFs enable applications that cannot be obtained
using either TDFs or randomized ABE schemes alone. For example, while TDFs
allow us to build CCA-secure PKE schemes [25], we do not know whether TDFs
are sufficient for realizing stronger primitives, such as Designated-Verifier Non-
Interactive Zero-Knowedge (DV-NIZK). On the other hand, the work of [31]
shows that DV-NIZK can be realized using any single-key AB-TDFs or, more
generally, under what they called single-key weak-function hiding ABE. At a
high level, this latter notion requires that using skC to decrypt any (possi-
bly malformed) ciphertext c with a public attribute x should reveal nothing
beyond whether or not C(x) = 1. Any AB-TDF (or equivalently a randomness-
recoverable ABE) by design has this property as one can decrypt and re-encrypt
to reject all malformed ciphertexts.

Also, the direct usage of IB/AB-TDF can be beneficial: As shown in [5],
they directly imply secure constructions of deterministic encryption [2,7] (lifted
to the IBE/ABE settings) that allow users to publicly search over encrypted data
while maintaining the maximum level of privacy possible. Another application of
this class of primitives is the construction of hedged IBE/ABE [3,36] where the
encryption algorithm is made resilient to the presence of low-quality randomness.

Assumptions Behind AB-TDFs/IB-TDFs. While single-key ABE can be
built from any CPA-secure PKE, we do not have any constructions of (even)
single-key AB-TDFs for general circuits. The closest result is the approach
of [31], which shows that, assuming LWE, one can build an ABE scheme where
the decryption algorithm recovers an “encoded” version of the underlying ran-
domness, which nonetheless is sufficient for checking whether the ciphertext is
well-formed (i.e. the LWE noise values sampled during encryption, as opposed
to the encryption coins themselves). Even in the simpler IBE setting, the only
known constructions of IB-TDFs (for the multi-key setting) are from pair-
ings/LWE [5]. Recent advancements in the IBE landscape showed construc-
tions from CDH/DDH [12,15,16], however it is currently not clear whether these
assumptions are sufficient for constructing IB-TDFs.

Difficulties in Building AB-TDFs. Let us review the construction of single-
key ABE from CPA-secure PKE, as a way to understand the underlying dif-
ficulties in realizing AB-TDFs. For circuits of size m, the public parameter
pp := {pki,b}i∈[m],b∈{0,1} contains 2m public keys; a secret key for a circuit
C ∈ {0, 1}m is the sequence of secret keys {ski,Ci

}. To encrypt a message m rel-
ative to (pp, α) we garble the universal circuit which has [α,m] hardwired, and
which on input C returns m if and only if C(α) = 1. The resulting ciphertext
consists of the garbled circuit as well as an encryption of the (i, b) label under
pki,b. Making the above scheme randomness recoverable encounters two major
difficulties: (1) The random coins used to generate the garbled circuit during
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encryption should be kept private to ensure circuit privacy; and (2) The random
coins used to encrypt the 2m labels should also be kept secret, since otherwise
the security of the garbled circuit will be lost. Using a TDF (or equivalently
a randomness recoverable PKE) to encrypt the labels does not get us too far
either, because it will only allow us to recover half of the randomness used to
encrypt the labels (and none of the coins used to garble the circuit).

The same obstacles emerge trying to extend the approach of [15,16] to get
IB-TDFs: During encryption we generate a sequence of garbled circuits, and
recovering the underlying random coins seems hopeless, as explained above.

1.1 Our Results

We propose a generic approach for building TDFs for advanced encryption func-
tionalities. Our first contribution is the construction of a universal TDFier :
Given any IBE/ABE/PE with pseudorandom ciphertexts, our compiler returns
a secure IB/AB/P-TDF. Our transformation is insensitive to the exact security
and functionality of the underlying encryption scheme: For example, if the base
ABE is single-key (resp., collusion) secure for a function family F , then so is the
resulting AB-TDFs. The only additional building block needed by our compiler
is a hinting PRG [29]. More precisely, we prove the following theorem.

Theorem 1 (Informal). If there exists a {PKE, IBE, ABE, PE} with pseu-
dorandom ciphertext and a hinting PRG, then there exists a {TDF, IB-TDF,
AB-TDF,P-TDF}. Moreover, if the hinting PRG is robust, the constructed
scheme provides deterministic-encryption security.

To complement our result, we define and construct hinting PRGs that satisfy
(k, n)-robustness: The hinting PRG provides pseudorandomness even if the seed
is not uniformly distributed, but is a (k, n)-source (i.e., the n-bit seed has at
least k-bits min-entropy). By tweaking the hinting-PRG construction of [29], we
show the following.

Theorem 2 (Informal). If the {CDH, LWE} problem is hard, then there exists
a (k, n)-robust hinting PRG.

One of the most surprising features of our compiler is its simplicity : Once all
components are in place, our transformation adds a very small (conceptual and
computational) overhead. Yet, it is quite general. It allows us to establish a new
series of feasibility results, such as:

– The first IB-TDF from the CDH assumption in pairing-free groups (or under
factoring), thus matching the state of the art for IBE schemes. Prior work [5]
gave two specialized constructions from pairings and LWE, respectively.

– The first (collusion-resistant) {AB-TDF, P-TDF} for NC1 circuits from bilin-
ear maps. To the best of our knowledge, this is the first provably secure version
of AB-TDF from any assumption.

– The first (collusion-resistant) {AB-TDF, P-TDF} for all circuits from the
LWE assumption. We believe that there might already be a way to build
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(many-key) AB-TDF for circuits from LWE, by using the techniques of [1,9]
in the context of [5]. The resulting construction might be more efficient than
our HPRG-based LWE-based one, but ours is generic.

As an added bonus, using our compiler, the public/secret keys of the result-
ing TDF are identical to that of the underlying encryption scheme. This means
that the trapdoor functionality (i.e. the randomness recoverability) can be added
to the encryption after the fact, without the need to redistribute keys, by just
including some additional public parameters (which can be reused across multi-
ple instances of the scheme).

Trapdoor Projective Garbled Circuits. We also initiate the study of ran-
domness recoverability for garbled circuits. Our result is a new notion of trapdoor
garbled circuits: Given a garbled circuit P̃ and garbled labels {�i,b} produced
for a circuit P : {0, 1}m → {0, 1} using randomness r, we require the follow-
ing properties. (1) Randomness recoverability: For any x such that P(x) = 1,
given (P̃, {�i,xi

}) we can recover r; and (2) Privacy: We have simulation security
against any input x such that P(x) = 0. We note that a randomness recover-
able single-key ABE (constructed from Theorem 1 above) allows one to build
a trapdoor garbled circuit, but it will not be projective (i.e., one label for each
input wire value). The projective property of garbled circuits is crucially used
in many applications, and hence is a desirable feature to have. One of our main
contributions is a construction of trapdoor garbling under standard assumptions.

Theorem 3 (Informal). If the {DDH, LWE} problem is hard, then there exists
a trapdoor (projective) garbling scheme for all circuits.

Our scheme builds on an interplay of key-dependent message (KDM) and
randomness-dependent message (RDM) techniques, which may be of indepen-
dent interest. As an immediate application, we obtain a single-key AB-TDF that
is simultaneously (1) adaptively secure (in the choice of the identity/attribute),
(2) perfectly correct, and (3) has projective keys (i.e. one label for each input
wire value).1 We believe trapdoor garbling may find further applications in the
future.

2 Technical Overview

In this section we give an overview of our techniques for building TDFs from
advanced encryption schemes.

2.1 A Universal TDFier

Our construction of universal TDFier is quite simple and the best way to present
it is to just describe the scheme. It builds on the mirroring technique of [20].

1 Our generic conversion starting from any single-key ABE does not preserve property
(1) and (3).
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Before delving into the technical details, we recall the notion of a hinting PRG
and we briefly define the security notion of (k, n)-robustness that is at the heart
of our transformation.

Robust Hinting PRGs. The notion of hinting PRG [29] was introduced in
the context of upgrading CPA-secure scheme into CCA-secure ones.2 A hinting
PRG, is a function that takes as input an n-bit seed and returns n-many �-bit
strings, for some polynomial � = �(λ). A hinting PRG is required to satisfy an
enhanced notion of pseudorandomness. In the security game, we define a 2-by-n
matrix where the rows corresponding to the bit representation of the seed are
populated with the outputs of the hinting PRG, whereas the other entries are
sampled uniformly �-bit strings. The requirement is that it is computationally
hard to distinguish such 2-by-n matrix from a uniform one. Note that such a
notion does not follow from the standard definition of pseudorandomness: The
pseudorandom entries of the 2-by-n matrix give a “hint” about the input seed.
Nevertheless, it was shown that such a notion can be achieved under standard
assumptions, such as CDH or LWE [29].

In this work we are interested in a stronger notion of security that we
call (k, n) robustness. Loosely speaking, we require that the above guaran-
tee is retained even if the n-bit seed is not sampled uniformly, but rather
from a distribution with k-bits of min entropy. We observe that the schemes
in [29], which are in turn based on the constructions of chameleon encryp-
tion from [12,13,16,17,21], can be shown to satisfy (k, n)-robustness with some
tweaking of the parameters and of the security analysis. Henceforth, we simply
assume we are given a (k, n)-robust hinting PRG.

Universal TDFier. We are now ready to show how to add randomness recover-
ability to any encryption scheme (i.e. construction a TDF). We only require such
an encryption to satisfy a mild structural property, which is usually referred to
as pseudorandom ciphertext : Ciphertexts c ∈ Enc(pk, ·) must be computationally
indistinguishable from uniformly sampled bitstrings {0, 1}|c|. Our actual com-
piler will be slightly more general, allowing us to capture all ciphertext domains
that form a (not necessarily Abelian) group, with efficiently samplable elements.
This will allow us to capture a large class of encryption schemes and will signif-
icantly expand the scope of our compiler. However, for the sake of this overview
we assume ciphertexts are indistinguishable from uniformly random strings.

We describe our universal TDFier for the simple case of PKE, which already
contains the main ideas of our approach. We refer the reader to the main body
for the generalization to IBE/ABE/PE. The key generation algorithm consists of
sampling a key pair (sk, pk) of the input PKE, along with the public parameters

ppHPRG of a (k, n)-robust hinting PRG and n random strings ri
$←− {0, 1}|c|. The

index key of the TDF consists of

(pk, ppHPRG, r1, . . . , rn)
2 Although there is some resemblance with our approach, we note that the compiled

scheme of [29] is not randomness recoverable unless one starts with a randomness
recoverable encryption scheme, which is tautological.
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and the trapdoor is set to sk. On input some string x ∈ {0, 1}n, we define the
evaluation algorithm of the TDF as follows. For all i ∈ [n]:

– If xi = 0: Compute yi = Enc(pk, $; zi), where zi = HPRG.Eval(ppHPRG, x, i).
– If xi = 1: Compute yi = Enc(pk, $; zi) ⊕ ri, where zi = HPRG.Eval

(ppHPRG, x, i).

Return the image y = (y1, . . . , yn). Here $ denotes some distinguished string,
which is instrumental to ensure correctness of the inversion. Given the trapdoor
sk, one can recover the input x from an image y = (y1, . . . , yn) bit by bit, setting
xi = 0 if Dec(sk, yi) = $ and xi = 1 otherwise. Setting $ to be a large enough
string, we can show that the scheme achieves perfect correctness with all but
negligible probability, over the random choice of the index key.

Besides adding small overhead to the runtime of the encryption scheme (i.e.
n evaluations of a hinting PRG and n calls to the encryption algorithm), the
public/secret keys of the compiled scheme are identical to that of the underlying
PKE, except for some additional public parameters (ppHPRG, r1, . . . , rn). This
means that we can take any encryption scheme (with pseudorandom ciphertexts)
and add randomness recoverability almost for free.

Security Proof (Sketch). We provide a high-level idea of the proof strategy, to
motivate the security requirements for the underlying building blocks. To prove
CPA-security, we modify the distribution of the challenge image through a series
of hybrids, which we summarize below.

– Hybrid 0: This is the original distribution.
– Hybrid 1: In this hybrid we compute the public parameters after the challenge

ciphertext. More precisely, for all i ∈ [n]:
• If xi = 0: Compute yi = Enc(pk, $; zi), where zi = HPRG.Eval

(ppHPRG, x, i). The set ri = yi ⊕ si, where si
$←− {0, 1}|c|

• If xi = 1: Compute yi = si
$←− {0, 1}|c| and set ri = yi ⊕ Enc(pk, $; zi),

where zi = HPRG.Eval(ppHPRG, x, i).
This step is reminiscent of the mirroring technique from [20] and will allow
us to later equivocate the challenge image. Note that so far the distribution
did not change.

– Hybrid 2: In this hybrid we change the si (as defined above) to be encryptions
of $ with fresh random coins. Indistinguishability follows from the pseudo-
randomness of the ciphertexts of the encryption scheme. The effect of this
change is to remove the “signal” of x in the challenge image: Regardless
of the value of xi, we always compute yi as an encryption of $ and ri as
Enc(pk, $) ⊕ Enc(pk, $). However we are not yet done: The usage of pseudo-
random/truly random coins still contains some lingering information about
x.

– Hybrid 3: In this hybrid we compute all ciphertexts for the challenge image
with truly random coins. It is tempting to conclude that the indistinguisha-
bility follows from the pseudorandomness of the hinting PRG, however note



How to Build a Trapdoor Function from an Encryption Scheme 227

that x is not necessarily uniformly sampled.3 Our final weapon to deploy
is the notion of (k, n)-robustness of the hinting PRG: Provided that x has
enough min-entropy, this step goes trough.

– Hybrid 4: In the last step we change all ciphetexts to encrypt 0 (padded to the
appropriate length). Since they are all computed using truly random coins,
we can now invoke the CPA-security of the encryption scheme.

The proof is concluded by observing that the image in the last hybrid has no
pre-image.

2.2 Trapdoor Garbled Circuits and Single-Key ABE

We will now show an alternative way of building single-key AB-TDFs. We will
start with a single-key ABE built from a CPA-secure PKE and garbled circuits
and develop new techniques that will allow us to make this scheme randomness
recoverable. This new approach has several advantages when compared with our
generic transformation:

– The resulting AB-TDF is adaptively secure in the choice of the attribute
string α.

– The resulting AB-TDF has projective keys, i.e. one labels per input wire.

Along the way, we define and construct a notion we call trapdoor garbling, which
may be of independent interest.

An ABE scheme ABE is defined as follows. The public parameter pp :=
{pki,b} consist of 2n public keys; the secret key for a circuit C is skC := {ski,Ci

}.
To encrypt a message m to an attribute α, we garble the universal circuit P[α,m]
(where P[α,m](C) = m iff C(α) = 1) to get (P̃, {lbi,b}); we then output ct :=
(P̃, {PKE.Enc(pki,b, lbi,b)}). Let ρ be the randomness used to garble C[α,m] and
let {ri,b} be the randomness used to encrypt the labels {lbi,b}.

How to Make ABE Randomness Recoverable? Recall the two sources of
randomness ρ, {ri,b} mentioned above. At first, one might think that recovering
ρ would be too much to ask for, since otherwise the whole security of the garbled
circuit is lost. We, however, notice that there is some wiggle room here: Only
legitimate inverters—namely one who has skC where C(α) = 1—need to be able
to recover ρ, while security should hold against illegitimate inverters. This brings
us to the notion of trapdoor garbling.

Trapdoor Garbling. We explain the idea of trapdoor garbling in the above
context. Letting (P̃, {lbi,b}) be as above, trapdoor garbling requires: (1) Ran-
domness Recoverability: for any C such that C(α) = 1, given (P̃, {lbi,Ci

}) one
may efficiently recover ρ; we call this trapdoor mode; and (2) Security: for any

3 One could define the security of the TDF to hold only for uniformly sampled inputs
(i.e. one-wayness) however this precludes many interesting applications, such as
deterministic and searchable encryption.
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C such that C(α) = 0 (which we call security mode), the pair (P̃, {lbi,Ci
}) can

be simulated in the standard sense (and in particular without knowing m or α).

Realizing Trapdoor Garbling. Let us see the challenges involved in adding
a trapdoor mode to Yao’s garbling scheme. For Yao’s scheme, the garbling ran-
domness ρ may be split into (A) ρk: the coins used to generate all the underlying
wire keys and (B) ρc: the coins used to generate the underlying ciphertexts for
the garble tables. Yao’s scheme guarantees coin recovery for neither case. Let
Key be the set of all keys produced during the garbling algorithm (i.e., two keys
per wire). Our first observation is that if the underlying secret-key encryption
scheme SKE := (G,Enc,Dec) is randomness recoverable and that if a secret key
is just the coins of G, then recovering all the keys in Key will enable recover-
ing both ρk and ρc. We can recover ρk because a key is just the coins of G;
and we can recover ρc because we can decrypt every ciphertext to recover the
underlying coins. Now to recover Key in trapdoor mode, letting kout,1 be the
output-wire key for value 1, we simply add an encryption SKE.Enc(kout,1, k) for
any k ∈ Key to P̃.4 We will have randomness recoverability, but we have intro-
duced key-dependent-message (KDM) circularity involving multiple keys (since
kout,1 encrypts all the keys in Key, and is in turn encrypted under those keys
via a chain of “hops”). While we have multi-key KDM-secure SKE schemes, we
have to make sure both Conditions (A) and (B) above hold. Fortunately, the
DDH-based SKE schemes of Boneh et al. (SKEBHHO) [10] and the LWE-based
Dual-Regev’s SKE scheme [22,34] provide both Conditions (A) and (B). For con-

creteness, under SKEBHHO, a key is chosen as s
$←− {0, 1}n; to encrypt Enc(s, g):

we return (g1, . . . , gn, s · g), where g := (g1, . . . , gn) $←− G
n and s · g =

∏
gsi

i .5

The proof of security is exactly like Yao’s scheme [30,37], breaking the circularity
using the underlying KDM-secure scheme.

ABE Made Randomness Recoverable? Unfortunately, we are not done yet,
because in the ABE scheme we need to recover both ρ (the garbled circuit
randomness) and {ri,b}, the randomness used to encrypt the labels {lbi,b} under
{pki,b}. Trapdoor garbling allows us to recover ρ, but we are left with recovering
{ri,b}. Even if the underlying PKE scheme is randomness recoverable, we can
only recover half of {ri,b}, those corresponding to the bits of C. Moreover, we
cannot make ri,0 and ri,1 related (so to have either one reveal the other one)
because the ABE security will be lost. So, it seems we are stuck here. To get
around this, we augment the garbled circuit P̃ even further! We now add to
P̃ an encryption of SKEBHHO.Enc(kout,1, ri,b) for all i and b, where recall that

4 In Yao’s scheme [30,37], the key kout,1 is put in the clear in P̃ with the corresponding
bit 1 for it; we do not put kout,1 in the clear in P̃, but rather we encrypt 1 under kout,1

to assert the underlying recovered key corresponds to bit 1; similarly, we encrypt 0
under the output-wire key kout,0 for bit 0.

5 One might complain that the scheme is not randomness recoverable in a strict sense,
in that the coins used to sample the group elements are not recovered. We note,
however, that in our ABE application, these group elements g may be chosen during
key-generation time and put in pp. We ignore these issues for simplicity.
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kout,1 is the output-wire key for bit 1. Doing so will indeed make the underlying
ABE scheme randomness recoverable, but we have now introduced a much more
complicated circularity, involving both KDM and RDM (randomness-dependent
messaging) at the same time. In particular, (i) pki,b encrypts lbi,b using coins
ri,b and (ii) ri,b is encrypted under kout,1; and (iii) kout,1 is encrypted under
lbi,b (via a sequence of intermediate encryptions). We have RDM dependence
because of (ii) and similarly we have KDM dependence. We now introduce a
technique that will allow us to handle the above circularity, using a careful choice
of encryption schemes. To make things more concrete, let us focus on a special
case of the above circularity which nonetheless captures all the difficulties: (A)
pki,b encrypts kout,1 using coins ri,b and (B) kout,1 encrypts ri,b using fresh coins
(under the SKE scheme).

Handling RDM+KDM. Let SKE := (G,Enc,Dec) be an SKE scheme and
PKE := (G,Enc,Dec) be a PKE scheme. We need security in the presence of

pk,PKE.Enc(pk, s; r),SKE.Enc(s, r), (1)

where all the variables are chosen at random and that SKE.Enc uses fresh coins
to encrypt. By having security, we mean semantic security against both pk and
s. We give a technique that allows us to reduce RDM+KDM in the sense of Eq. 1
to KDM alone. Focusing on DDH, SKE will be SKEBHHO (see above) and PKE
will be the dual version of PKEbhho, where the roles of randomness and secret
keys are swapped.

Let |s| = n. Let PKEbhho be the n-bit version of BHHO (defined below). We
will define a dual version of n-bit BHHO, which we call PKEdbhho, satisfying:

1. An encryption randomness under PKEdbhho is a secret key under PKEbhho.
Also, a secret key under PKEdbhho is an encryption randomness under
PKEbhho.

2. Looking at the PKE part of Eq. 1, we require

pkdbhho,PKEdbhho.Enc(pkdbhho, s; rdbhho) ≡ pkbhho,PKEbhho.Enc(pkbhho, s; rbhho), (2)

where (pkdbhho, skdbhho) is a key pair under PKEdbhho, skbhho := rdbhho, pkbhho
is the corresponding public key for skbhho under PKEbhho and rbhho := skdbhho.

Instantiating Eq. 1 with PKEdbhho, using Eq. 2, we may rewrite Eq. 1 as

pkbhho,PKEbhho.Enc(pkbhho, s; rbhho),SKEBHHO.Enc(s, skbhho), (3)

where everything is chosen randomly. Since the randomness of PKEbhho.Enc (i.e.,
rbhho) never appears as a plaintext, Eq. 3 is secure by [10].6

We quickly review k-bit BHHO [10], where the secret key size is n. (In our
ABE instantiation, k will be n, because we need to encrypt a secret key of the

6 The result of [10] concerns a single PKE scheme; in our setting SKEBHHO is just
the secret-key version of BHHO, and by choosing the public parameter to be the
same across the two schemes, we will have cross KDM security.
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SKE scheme.) We have a public parameter g := (g1, . . . , gn). The secret key of
PKEbhho is sk ∈ {0, 1}n and the public key is (g, gpub), where gpub := sk · g. To
encrypt k group elements (g′

1, . . . , g
′
k), sample k exponents r := (f1, . . . , fk) and

set ct := (gf1 , gf1
pub · g′

1, . . . ,g
fk , gfk

pub · g′
k).

Dual BHHO. We define k-bit PKEdbhho as follows: the secret key is k random
exponents (f1, . . . , fk) and the public key is (g, g′

1, . . . ,g
′
k) := (g, gf1 , . . . ,gfk),

where g is as above. To encrypt k-group elements (g′
1, . . . , g

′
k), sample s

$←−
{0, 1}n and return (s · g, (s · g′

1) × g′
1, . . . , (s · g′

k) × g′
k).

Now notice that an encryption randomness under k-bit PKEdbhho is an n-bit
string, a secret key for k-bit PKEbhho. Also, a secret key for k-bit PKEdbhho is
a tuple of k exponents, an encryption randomness for k-bit PKEbhho. Finally,
Eq. 2 may be verified by inspection. (See Lemma 5.)

For LWE we can do a similar trick, by plugging in Regev’s PKE scheme [34]
and Dual-Regev’s secret-key scheme [22] in Eq. 1. While dual PKE/SKE Regev
is known, we are the first to introduce Dual BHHO. We believe our RDM/KDM
switching technique may find other applications in the future.

Back to the AB-TDF scheme, Eq. 1 may now be used to reduce RDM+KDM
(created by encrypting ρ and {ri,b} under kout,1) to a KDM-only setting. At this
point, we can rely on the underlying KDM-secure schemes to argue security for
the garbled circuit.

How is Adaptive Security Obtained? We now have a randomness-
recoverable single-key ABE scheme. Unlike the construction in Sect. 2.1 which
only provides selective security, we obtain adaptive security in the sense that
the attribute α may be chosen based on the ABE public parameter. We get
this exactly because of the same reason that single-key ABE constructed from
CPA-secure PKE provides adaptive security in the choice of α. The difference in
our setting is that (after the RDM+KDM to KDM reduction) we have KDM-
dependency, but notice that the input wires for the corrupted circuit C are
chosen non-adaptively ; this is why we can use the KDM results as is. In other
words, the adaptive choice of α, only specifies the circuit P[α], but the input C
to this circuit is chosen non-adaptively, and not after seeing P̃.

2.3 Related Works

The work of Kitagawa et al. [28] shows a generic approach for constructing TDFs,
starting from randomness-recoverable KDM-secure symmetric encryption and
PKE with pseudorandom ciphertexts. We highlight the main conceptual and
technical differences in the following.

– Robustness: The TDF from [28] is not robust, i.e. it does not offer
deterministic-encryption security. This means that none of our results on
deterministic IBE/ABE follows from their work. This is not just an artifact
of the analysis, in fact there is a concrete attack7 if one allows non-uniform

7 We remark that this attack does not invalidate any claim made in [28], but rather
exemplifies the separation between their approach and ours.
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(but high-entropy) inputs: In their scheme, a domain point is of the form
(s, r1, . . . , rn). Fixing a distribution where the first n/2 bits of s and the
variables (r1, . . . , rn/2) are fixed to 0, we obtain an image that contains

Enc(pk, 0; 0), . . . ,Enc(pk, 0; 0),Enc(pk, sn/2+1; rn/2+1), . . . ,Enc(pk, sn; rn)

which is easily distinguishable from uniform. The high-level issue (that our
approach overcomes using robust hinting PRGs) is the locality of the output
bits of the TDF.

– Generality: The work of [28] does not elaborate on more advanced primi-
tives than TDFs. Although it appears to be likely that one could generalize
their techniques to construct IB/AB-TDF, they would suffer from the above
mentioned drawbacks. Furthermore, we view the connection of hinting PRGs
with IB/AB-TDF as an important conceptual contribution of our work.

– Assumptions: Our work requires hinting PRGs, whereas [28] assumes
randomness-recoverable KDM-secure symmetric encryption. These assump-
tions are not known to be equivalent: From hinting PRGs, one can build
KDM-secure encryption, but it is not randomness recoverable.

Finally, we mention that [31] showed8 a construction of trapdoor garbling
(although with a different syntax) for NC1 circuits, assuming CDH or LWE.
Their approach does not appear to be extendable to all circuits, due to the
reliance on information-theoretic secret-sharing.

3 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote computa-

tional indistinguishability and use ≡ to denote two distributions are identical.
For a distribution S we use x

$←− S to mean x is sampled according to S and
use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a distribu-

tion. For a set S we overload the notation to use x
$←− S to indicate that x is

chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm,
then A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random vari-
able obtained by sampling random coins r uniformly at random and returning
A(a1, . . . , an; r). We use [n] := {1, . . . , n} and [i, i+s] := {i, i+1, . . . , i+s}. The
min-entropy of a distribution S is defined as H∞(S) �= − log(maxx Pr[S = x]).
We call a distribution S a (k, n)-source if H∞(S) ≥ k and sup(S) ⊆ {0, 1}n.
We recall the standard notion of statistical distance. Unless otherwise stated, we
assume the length of a randomness value to a function is λ.

Definition 1 (Statistical Distance). Let X and Y be two random variables
over a finite set U. The statistical distance between X and Y is defined as

SD [X ,Y] =
1
2

∑

u∈U

|Pr[X = u] − Pr[Y = u]| .

8 The scheme appears in Appendix D in an older version of the paper.
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3.1 Standard Lemmas

We recall the Markov inequality.

Lemma 1 (Markov Inequality). Let X be a non-negative random variable.
Then, for all ε > 0:

Pr[X ≥ ε] ≤ E[X ]
ε

where E[X ] denotes the expected value of X .

We recall the definition of universal hash and the leftover hash lemma [26].

Definition 2 (Universal Hash Functions). An ensemble of functions H :
X → Y is called universal, if it holds for all x 
= x′ ∈ X that

Pr
h

[h(x) = h(x′)] ≤ 1/|Y|

where h
$←− H.

Lemma 2 (Leftover Hash Lemma). Let X be a random variable over X and
h : S × X → Y be a universal hash function, where |Y| ≤ 2m for some m > 0. If
m ≤ H∞(X ) − 2 log

(
1
ε

)
, then

SD[(h(S,X ),S), (U ,S)] ≤ ε

where S is uniform over S and U is uniform over Y.

3.2 Standard TDFs

We recall the notion of trapdoor functions (TDFs).

Definition 3 (Trapdoor Functions). Let n = n(λ) be a polynomial. A family
of trapdoor functions (KeyGen,Eval, Invert) with domain {0, 1}n consists of the
following algorithms.

– KeyGen(1λ): On input the security parameter, the key generation algorithm
returns the index key ik and the trapdoor td.

– Eval(ik, x): On input the index key ik and an input string x ∈ {0, 1}n, the
evaluation algorithm returns an image y.

– Invert(td, y): On input a trapdoor td and an image y, the inversion algorithm
returns a pre-image x.

We require the following properties.

– (Correctness) There exists a negligible function negl such that for all λ ∈ N

it holds that

Pr
(ik,td)

[∃x ∈ {0, 1}n s.t. Invert(td,Eval(ik, x)) 
= x] = negl(λ)

where the probability is taken over (ik, td) $←− KeyGen(1λ).
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– (One-Wayness) There exists a negligible function negl such that for all λ ∈ N

and all PPT adversaries A it holds that

Pr [A(ik,Eval(ik, x)) = x] = negl(λ)

where (ik, td) $←− KeyGen(1λ) and x
$←− {0, 1}n.

3.3 Predicate Trapdoor Functions

In the following we define a generalized notion of TDFs, that we call predicate
TDFs. A predicate TDF allows one to evaluate a function with respect to an
attribute α and issue trapdoors for circuits C. The trapdoor tdC allows one to
invert the function if and only if C(α) = 1 and otherwise the input (as well as
the attribute) is hard to recover. This notion generalizes identity-based TDFs [5]
in the same way as functional encryption [11] generalizes identity-based [8] and
attribute-based encryption [24]. We give a formal definition below.

Definition 4 (Predicate TDFs). Let n = n(λ) be a polynomial. A family of
predicate TDFs (Setup,KeyGen,Eval, Invert) with domain {0, 1}n consists of the
following algorithms.

– Setup(1λ): On input the security parameter, the setup algorithm returns a
master secret key msk and some public parameters pp.

– KeyGen(msk, C): On input the master secret key msk and a circuit C, the key
generation algorithm returns a trapdoor tdC .

– Eval(pp, α, x): On input the public parameters pp, an attribute α, and an input
string x ∈ {0, 1}n, the evaluation algorithm returns an image y.

– Invert(tdC , y): On input a trapdoor tdC for a circuit C and an image y, the
inversion algorithm returns a pre-image x.

We require the following notion of correctness.

– (Correctness) There exists a negligible function negl such that for all λ ∈ N

it holds that

Pr
(pp,msk)

[∃(x, α, C) s.t. Invert(KeyGen(msk, C),Eval(pp, α, x)) ∧ C(α) = 1] = negl(λ)

where the probability is taken over (pp,msk) $←− Setup(1λ).

Deterministic Security. We now define a strong notion of security for predi-
cate TDFs, i.e. we require that evaluating the TDF over two inputs with enough
min-entropy yields two computationally indistinguishable distributions. This is
the natural generalization of the standard notion of security for deterministic
encryption [7] and thus we refer to it as deterministic security. Note that the
following definitions assume without loss of generality that the key generation
algorithm is deterministic. This can always be enforced by drawing the random
coins from a PRF applied to the input circuit C.
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Definition 5 (Deterministic CPA Security). A predicate TDF is (k, n)-
CPA secure if there exists a negligible function negl such that for all λ ∈ N,
all PPT adversaries A, any two (k, n)-sources S0 and S1, all pairs of attributes
(α0, α1) it holds that

Pr
[
AKeyGen(msk,·)(pp, α0, α1,Eval(pp, αb, xb)) = b

]
− 1/2 = negl(λ)

where (pp,msk) $←− Setup(1λ), b
$←− {0, 1}, xb

$←− Sb, and the adversary never
queries the KeyGen oracle on some C such that C(α0) = 1 or C(α1) = 1.

To draw an analogy to the standard public-key settings (i.e. encryption without
randomness recovery) the above definition corresponds to the notion of one-sided
security for predicate encryption (where the attribute is not hidden if C(α) = 1).
However, in our settings this seems to be the best-possible notion to achieve:
Since the secret keys for accepting predicates are required to recover all random
coins of the evaluation function, it is impossible to fully hide the attribute α if
C(α) = 1. This is because one can always try to recompute the ciphertext with
a candidate attribute and see whether the result matches.

Selective vs Adaptive Security. We note that the definition as stated above
captures the selective variant of security, where the challenge attributes are fixed
ahead of times and prior to the adversary seeing the public parameters of the
scheme. The stronger (and perhaps more natural) notion of adaptive security
allows the adversary to choose the challenge attributes (α0, α1) depending on
the public parameters of the scheme and possibly the answers of some queries to
the KeyGen oracle. The formal definition is the same as Definition 5 modified in
the natural way. We remark that any selectively secure scheme can be shown to
be also adaptively secure although with an exponential decrease in the success
probability of the reduction (via complexity leveraging).

4 Robust Hinting PRGs

A hinting pseudorandom generator (PRG) is a notion introduced in [29] and has
since found several applications (e.g. [28,31]). Roughly speaking, it stretches the
input n-bit seed into a n · �-bit string. In the security game, the distinguisher
is given a 2-by-n matrix where the entries corresponding to the seed are taken
from the output of the hinting PRG and the others are uniformly sampled. The
distinguisher has to tell this distribution apart from a uniformly random 2-by-n
matrix. In this work we are interested in a stronger notion of hinting PRG where
the seed is not required to be uniformly sampled, instead we only impose that
it has high-enough min-entropy. We call this notion robust hinting PRG and
we provide formal definitions in the following. We recall the syntax of hinting
PRG [29].

Definition 6 (Hinting PRGs). Let n = n(λ) and � = �(λ) be two polynomials.
A family of hinting PRGs consists of the following algorithms.
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– Setup(1λ): On input the security parameter 1λ, the setup algorithm returns
the public parameters pp.

– Eval(pp, x, i): On input the public parameters pp, an input string x ∈ {0, 1}n,
and an index i, the evaluation algorithm returns an image y ∈ {0, 1}�.

The security that we require is essentially identical to that of [29], except that we
only require the seed to have high min-entropy, as opposed to be uniformly sam-
pled. We name this notion (k, n)-robustness and we present a formal definition
below.

Definition 7 (Robustness). A hinting PRG (Setup,Eval) is (k, n)-robust if
there exists a negligible function negl such that for all λ ∈ N, all PPT adversaries
A, all (k, n)-sources S it holds that

Pr
[

A
(

pp, yb
0,

(
yb
1,0, . . . , y

b
n,0

yb
1,1, . . . , y

b
n,1

))

= b

]

− 1/2 = negl(λ)

where

– pp
$←− Setup(1λ), x

$←− S, and b
$←− {0, 1}.

– y0
0

$←− {0, 1}� and y1
0 ← Eval(pp, x, 0).

– For all i ∈ [n] :
(
y0

i,0, y
0
i,1

) $←− {0, 1}2�, y1
i,xi

← Eval(pp, x, i) and y1
i,xi⊕1

$←−
{0, 1}�.

In the full version we show how to instantiate robust hinting PRGs assuming
the hardness of the CDH or the LWE problem.

5 A Universal TDFier

In the following we show how a generic compiler that takes as input any encryp-
tion scheme (that satisfies some mild structural properties) and makes it random-
ness recoverable, i.e. transforms it into a TDF. We call this scheme a universal
TDFier.

5.1 One-Sided Predicate Encryption

We recall the notion of predicate encryption with one-sided security [23], which
one of the most general derivations of the standard notion of public-key encryp-
tion.

Definition 8 (Predicate Encryption). A family of one-sided predicate
encryption schemes (Setup,KeyGen,Enc,Dec) consists of the following algo-
rithms.

– Setup(1λ): On input the security parameter, the setup algorithm returns a
master secret key msk and some public parameters pp.
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– KeyGen(msk, C): On input the master secret key msk and a circuit C, the key
generation algorithm returns a secret key skC .

– Enc(pp, α,m): On input the public parameters pp, an attribute α, and a mes-
sage m, the evaluation algorithm returns a ciphertext c.

– Dec(skC , c): On input a secret key skC for a circuit C and a ciphertext c, the
decryption algorithm returns a message m.

We require the following properties.

– (Correctness) For all λ ∈ N, all (pp,msk) in the support of Setup(1λ), all
messages m, all attributes α, all circuits C such that C(α) = 1, and all skC

in the support of KeyGen(msk, C), it holds that

Dec(skC ,Enc(pp, α,m)) = m.

– (One-Sided CPA Security) There exists a negligible function negl such that
for all λ ∈ N, all PPT adversaries A, and all pairs of attributes (α0, α1) it
holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

AKeyGen(msk,·)(c) = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp,msk) $←− Setup(1λ)
(m0,m1) ← AKeyGen(msk,·)(pp)

b
$←− {0, 1}

c
$←− Enc(pp, αb,mb)

⎤

⎥
⎥
⎥
⎥
⎦

− 1/2 = negl(λ)

where the adversary never queries the KeyGen oracle on some C such that
C(α0) = 1 or C(α1) = 1.

We remark that we require the scheme to satisfy perfect correctness, which is
the case for most natural candidates of predicate encryption schemes (we refer
the reader to the full version for a detailed discussion). We also note that generic
transformation from approximate to perfect correctness are known [6].

Pseudorandom Ciphertexts. We additionally require that the ciphertext
space satisfies some group-like structural properties. More specifically, we require
the existence of a (not necessarily Abelian) group H with group operation ◦
such that (i) all ciphertexts in the range of the encryption algorithm consist of
elements of H and (ii) undecryptable ciphertexts are computationally indistin-
guishable from uniformly sampled elements in H. We define this more formally
below.

Definition 9 (Pseudorandom Ciphertexts). A one-sided predicate encryp-
tion scheme (Setup,KeyGen,Enc,Dec) has pseudorandom ciphertexts if there
exists a negligible function negl and a group H such that for all λ ∈ N, all
PPT adversaries A, and attributes α it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

AKeyGen(msk,·)(c) = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pp,msk) $←− Setup(1λ)
m ← AKeyGen(msk,·)(pp)

b
$←− {0, 1}

c
$←− Enc(pp, α,m) if b = 0

c
$←− H if b = 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1/2 = negl(λ)
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where the adversary never queries the KeyGen oracle on some C such that
C(α) = 1.

As an example, schemes that have ciphertexts indistinguishable from uniformly
sampled bit strings satisfy this notion of security, since the set of all binary
strings {0, 1}p of length p = p(λ) form a group with group operation ⊕. We will
also consider schemes that have ciphertexts indistinguishable from uniformly
sampled integers in Z

d
q , with dimension d = d(λ), where the group operation is

the component-wise addition modulo q. Note that also a combination of both
{0, 1}p ×Z

d
q satisfies this definition by defining the group operation canonically.

Selective vs Adaptive Security. As discussed before, we state the security
definition in its selective variant, where the challenge attribute is fixed ahead of
time. The definition can be extended to the adaptive settings canonically.

5.2 The Construction

In the following we present our compiler, which turns any one-sided predicate
encryption scheme with pseudorandom ciphertexts into a predicate TDF for
(k, n)-sources. The scheme is described below.

Construction 4 (Universal TDFier). Let (PE.Setup,PE.KeyGen,PE.Enc,
PE.Dec) be a one-sided predicate encryption scheme with pseudorandom cipher-
texts over H with group operation ◦, and let (HPRG.Setup,HPRG.Eval) be a
(k, n)-robust hinting PRG. Our scheme (Setup,KeyGen,Eval, Invert) is defined
as follows.

– Setup(1λ): Invoke (ppPE,msk) $←− PE.Setup(1λ) and ppHPRG
$←− HPRG.

Setup(1λ), then sample (r1, . . . , rn) $←− H
n and a uniform u

$←−
{0, 1}|C|+|α|+3λ. Set the public parameters of the scheme to be pp :=
(ppPE, ppHPRG, r1, . . . , rn, u) and the master secret key to msk.

– KeyGen(msk, C): Return the trapdoor tdC ← PE.KeyGen(msk, C).
– Eval(pp, α, x): On input some x ∈ {0, 1}n, for all i ∈ [n], proceed as follows.

• If xi = 0: Compute

di ← PE.Enc(ppPE, α, u; zi)

where zi ← HPRG.Eval(ppHPRG, x, i). Set ci := di.
• If xi = 1: Compute

di ← PE.Enc(ppPE, α, u; zi)

where zi ← HPRG.Eval(ppHPRG, x, i). Set ci := di ◦ ri.
Return the image y := (c1, . . . , cn).

– Invert(tdC , y): On input some y ∈ H
n, for all i ∈ [n], proceed as follows: If

u = Dec(tdC , ci) then set x̃i := 0, else set x̃i := 1. Return (x̃1, . . . , x̃n).
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Before proceeding with the analysis of our scheme, we highlight two important
facts about the compiled TDF.

1. The public parameters of the scheme consist of the public parameters of the
encryption scheme ppPE, together with some independently sampled strings
(ppHPRG, r1, . . . , rn, u).

2. The master secret key and the user-specific keys are identical to those of the
underlying encryption scheme.

Taken together, these imply that the underlying (predicate) encryption scheme
can be upgraded to TDF (or, equivalently, made randomness recoverable) after
the fact : Users of an existing (predicate) encryption scheme can decide to
upgrade it to a TDF without the need to update their public nor their secret
keys. Instead they just need to add some public parameters (fixed once and for
all) and modify their encryption/decryption procedure to achieve randomness
recoverability. Alternatively, one can think of the above compiler as to add a
dual mode to the encryption algorithm: Users are can choose whether they want
to make their encryption randomness recoverable or not, without the need to
change the public/secret keys of the scheme.

Correctness. We now show that the scheme as described above satisfies per-
fect correctness with all but negligible probability over the choice of the public
parameters.

Theorem 5 (Correctness). Let (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be a
one-sided predicate encryption with perfect correctness. Then Construction 4 sat-
isfies correctness.

Proof. We assume without loss of generality that the encryption algorithm of the
one-sided predicate encryption scheme uses exactly λ-many bits of randomness.
Recall that H is a bound on the ciphertext space of the scheme. Note that each
secret key tdC defines a one-to-one mapping H → PC , where the multiset PC is
populated by plaintexts (possibly with repeated elements). Define P to be the
multiset that contains (possibly with repeated elements) all Pi for i ∈ [2|C|],
where |P | = |H| · 2|C|. Let Su ⊆ P be the subset of P where all entries of Su are
equal to u. In expectation, over the random choice of u, we have that

E [|Su|] =
|P |
2|u| =

|H| · 2|C|

2|u| .

By Lemma 1, we have that

|Su| ≤ |H| · 2|C| · 2λ

2|u|

except with probability 2−λ, over the random choice of u. Define Tu ⊆ H to be
the set of all pre-images of Su. Note that

|Tu| ≤ |Su| ≤ |H| · 2|C| · 2λ

2|u| .
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Let Ru be the set such that for all r ∈ Ru there exist ciphertexts
PE.Enc(ppPE, ·, u) such that PE.Enc(ppPE, ·, u) ◦ r ∈ Tu. Note that there are at
most 2|α| ·2λ many ciphertexts in the support of PE.Enc(ppPE, ·, u) and therefore
we can bound

|Ru| ≤ |H| · 2|C| · 2λ · 2|α| · 2λ

2|u| =
|H| · 2|C|+|α|+2λ

2|u|

by a counting argument. Thus the probability that a uniformly chosen r
$←− H

belongs to Ru is at most

Pr[r ∈ Ru] ≤ |H| · 2|C|+|α|+2λ

|H| · 2|u| =
2|C|+|α|+2λ

2|C|+|α|+3λ
=

1
2λ

.

Note that a decryption error only happens whenever some ri maps a valid encryp-
tion of u to some other encryption of u, i.e. r ∈ Ru. By a union bound, the
probability that at least one of the elements (r1, . . . , rn) belong to such a set is
also negligible. This concludes our proof. 
�

Security. We now turn to prove the deterministic CPA security of our scheme.
Note that we restrict our analysis to the selective variant of the security
definition.

Theorem 6 (CPA Security). Let (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be
a one-sided predicate encryption scheme with pseudorandom ciphertexts over
H with group operation ◦, and let (HPRG.Setup,HPRG.Eval) be a (k, n)-robust
hinting PRG. Then Construction 4 satisfies selective (k, n)-CPA security.

Proof. The proof proceeds by a series on hybrids where we gradually change the
distribution of the public parameters and of the challenge ciphertext.

– Hybrid H0: This is the original experiment with the challenge bit b fixed to
0.

– Hybrid H1: In this hybrid we first compute the challenge ciphertext and then
we set the values of (r1, . . . , rn) accordingly. More specifically, for all i ∈ [n],
we do the following:

• If xi = 0 compute ci ← PE.Enc(ppPE, α, u; zi), then define ri := ci ◦ si,

where si
$←− H.

• If xi = 1 compute ci
$←− H and define ri := ci ◦ PE.Enc(ppPE, α0, u; zi).

Since H is a group and in particular all elements of H have an inverse, the
distribution induced by this hybrid is identical to the previous one and thus
the change described here is only syntactical.

– Hybrids H2 . . . Hn+1: For all i ∈ [2, n + 1] we define Hi as the previous one,
except for the following modification:

• If xi = 0 compute ci ← PE.Enc(ppPE, α0, u; zi), then define ri := ci ◦ si,

where si
$←− PE.Enc(ppPE, α0, u).
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• If xi = 1 compute ci
$←− PE.Enc(ppPE, α0, u), then define the variable

ri := ci ◦ PE.Enc(ppPE, α0, u; zi).
I.e. instead of sampling a random mask, we compute an encryption of u
under the appropriate attribute using fresh random coins. Indistinguishabil-
ity follows from a routine reduction against the (selective) pseudorandom
ciphertexts of the one-sided predicate encryption scheme.

– Hybrid Hn+2: In this hybrid we compute the challenge ciphertext and the
setup using fresh random coins. More precisely, for all i ∈ [n] we do the
following:

• If xi = 0 compute ci
$←− PE.Enc(ppPE, α0, u), then define ri := ci ◦ si,

where si
$←− PE.Enc(ppPE, α0, u).

• If xi = 1 compute ci
$←− PE.Enc(ppPE, α0, u), then define ri := ci ◦ si,

where si
$←− PE.Enc(ppPE, α0, u).

Note that the only difference between this hybrid and the previous one is
that we use fresh coins instead of pseudorandom ones derived from applying
the hinting PRG to x0. Furthermore, note that the only information about
x is encoded in the positions where we used truly random coins instead of
pseudorandom. Since x0 is a (k, n)-source, indistinguishability follows by a
reduction against the (k, n)-robustness of the hinting PRG.

– Hybrid Hn+3: In this hybrid we fix the challenge bit b to 1. Note that the
challenge ciphertext does no longer depend on the input x so the only differ-
ence here is that we compute all ciphertexts as PE.Enc(ppPE, α1, u) instead of
PE.Enc(ppPE, α0, u). Indistinguishability follows by a standard hybrid argu-
ment against the one-sided CPA security of the predicate encryption scheme.

– Hybrids Hn+4 . . . H2n+5: In these hybrids we undo the changes that we per-
formed in the previous hybrids, except for switching the challenge bit. The
indistinguishability arguments are identical. The final hybrid is the original
experiment with b fixed to 1.

To summarize, we have that

H0 ≡ H1
c≡ H2

c≡ . . .
c≡ Hn+1

c≡ Hn+2
c≡ Hn+3

c≡ Hn+4
c≡ . . .

c≡ H2n+4 ≡ H2n+5

which implies that the scheme is selective (k, n)-CPA secure. 
�

6 Trapdoor Garbled Circuits and Adaptive Single-Key
AB-TDFs

The AB-TDF scheme in Sect. 5 is only selectively secure. In this section we
show an alternative way of building single-key AB-TDFs, that provides adaptive
security in the choice of the attribute α (i.e., α can be chosen adaptively based on
the ABE public parameter). Along the way, we define a concept called trapdoor
garbling, and show how to build it from DDH/LWE.

Adaptive Security for Single-Key AB-TDF. For simplicity, we will focus
on one-wayness only (as opposed to deterministic-encryption security). Here the
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adversary after seeing pp can choose a circuit C and an attribute α satisfying
C(α) = 0, and is tasked with recovering a random x

$←− {0, 1}n from skC and
y := Eval(pp, α, x).

6.1 Definition

Garbled circuits in a traditional sense allows one to garble a circuit P : {0, 1}m →
{0, 1}, so that a garbled circuit and a corresponding garbled label for an input x
reveals nothing beyond P(x)—in particular, the randomness used by the garbling
algorithm as well as any possible circuit-hardcoded information should remain
hidden. We introduce and realize a notion of garbled circuits which allows one to
recover the randomness on specific garbled inputs. We define it for the universal
circuit below.

Definition 10 (Trapdoor Garbling). Let U[·, ·] be a circuit that works as
follows: the output of U[s1, s2](C) is s2 if C(s1) = 1, and is a special symbol $
otherwise. We define a trapdoor garbling scheme GRB = (Garble,Eval,Sim) for
U[·, ·] : {0, 1}m → {0, 1}κ ∪ {$}.
– Garble(1λ, s1, s2; ρ): On input the security parameter 1λ and private hardcoded

strings s1, s2, and randomness ρ, the garbling algorithm returns a garbled
circuit Ũ and a set of m pairs of labels {�i,0, �i,1}i∈[m].

– Eval(Ũ, {�i,Ci
}i∈[m]): On input a garbled circuit Ũ and a set of labels

{�i,Ci
}i∈[m], the evaluation algorithm returns an output string y ∈ {0, 1}κ ∪

{$}.
We require the following properties.

– (Correctness) For all λ ∈ N, all s1, all s2 ∈ {0, 1}κ, C ∈ {0, 1}m, and garbling

randomness ρ, letting (Ũ, {�i,0, �i,1}i∈[m])
$←− Garble(1λ, s1, s2; ρ):

• if U[s1, s2](C) = $, then Eval
(
Ũ, {�i,xi

}i∈[m]

)
= $

• else, Eval
(
Ũ, {�i,Ci

}i∈[m]

)
= (s2, ρ).

– (Simulation Security) For any “admissible” PPT adversary A, the fol-

lowing holds. Letting ((s1, s2, C), st) $←− A(1λ), ρ
$←− {0, 1}∗, and

(Ũ, {�i,0, �i,1}i∈[m]) = Garble(1λ, s1, s2; ρ):
(
st, Ũ, {�i,Ci

}i∈[m]

)
c≡ (st,Sim (1λ, |s1|, |s2|,U[s1, s2](C)

))
.

We say A is admissible if U[s1, s2](C) = $, where all strings are as above.

6.2 Tools for Building Single-Key AB-TDFs

We show how to build single-key AB-TDFs from DDH/LWE. (All our results will
also apply to the predicate-encryption setting.) Our techniques will implicitly
also realize trapdoor garbling (Definition 10).
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Definition 11 (Randomness Recoverable SKE). We say SKE :=
(G,Enc,Dec) is randomness recoverable if (1) a key is chosen at random from
{0, 1}n for some n = n(λ); and (2) given k and Enc(k,m; r) we can recover both
m and r.

Notation. We use the shorthand {ai,b} to mean {ai,b}i∈[m],b∈{0,1}.
We will now define and later realize an enhanced version of Yao’s garbled

circuits. Informally, this enhancement allows the recovery of the garbled circuits
coins, in trapdoor mode (i.e., when we have labels corresponding to an input
which makes the circuit evaluate to one). We explained the high-level idea in the
introduction, and will now formalize it.

In the construction below, we assume the following for Yao’s scheme for
garbling single-bit output circuits:

Construction 7 (Enhanced Garbled Circuits). We describe an enhanced
way of garbling U[·, ·], introduced in Definition 10. Let P[·] be a circuit, where
for α ∈ {0, 1}k and C ∈ {0, 1}m, P[α](C) = C(α). Let (Garble,Eval) be Yao’s
garbled-circuit scheme for P[·], as described in [30,37], with the following slight
modification: Letting kout,0 and kout,1 be the keys for the two values of the output
wire, instead of appending (kout,0, 0) and (kout,1, 1) to the garbled circuit, we
append Enc(kout,0, 0) and Enc(kout,1, 1) to the garbled circuit (i.e., the values of
kout,0 and kout,1 are not copied in the garbled circuit in the clear).

– Garble(α, x): Sample (C̃, {lbi,b}) $←− Garble(P, α) and let kout,1 be output wire
for bit value 1. Let Key be the set of all keys for the circuit wires (i.e., two
keys for each wire), and let CT = {Enc(kout,1, x)} ∪ {Enc(kout,1, k) : k ∈ Key \
{kout,1}}. Let C̃en := (CT, C̃), and return (C̃en, {lbi,b}i∈[m],b∈{0,1}).

– Eval(C̃en, lb): Parse C̃en := (CT, C̃). Let b := Eval(C̃, lb). If b = 0, return $;
otherwise, letting kout,1 be the key for the output wire, return (Dec(kout,1,CT)),
where Dec(kout,1,CT) = {Dec(kout,1, c) : c ∈ CT}.
The following lemma shows that given an enhanced garbled circuit and a

sequence of accepting labels, then in addition to x, we can recover the random-
ness used to garble the circuit.

Lemma 3 (Randomness Recoverability of the Enhanced Garbled Cir-
cuit). Suppose SKE := (G,Enc,Dec) is randomness recoverable. Fix randomness
ρ for Eval and let (C̃en, {lbi,b}) := Garble(α, x; ρ). Assuming Eval(C̃en, {lbi,Ci

}) =
(x, ω), then given ω we can recover the original randomness ρ.

Proof. Notice that ρ consist of two sources of randomness: (1) those used to
generate the keys for the wires (i.e., the keys in set Key, Construction 7) and (2)
the random coins used to encrypt the keys. Given kout,1, we can recover all the
keys in Key (since they are all encrypted under kout,1) and hence by Definition 11
all random coins involving Source (1) are recovered. Having recovered all the
keys in Key, by Definition 11 we can recover all the coins used to generate the
ciphertexts. 
�
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6.3 Single-Key AB-TDFs Construction

We now give the construction.

Construction 8 (Single-Key AB-TDF). Let m and k be the size of the
circuit and attribute.

Ingredients. A randomness recoverable secret-key encryption scheme SKE =
(G,Enc,Dec) (Definition 11), a PKE scheme PKE = (G,Enc,Dec) and an
enhanced Yao’s garbling scheme (Garble,Eval) (Construction 7).

Input to the TDF. The input to a function is of the form (r, ρ), consisting of
2n randomness values r := {ri,b} for PKE.Enc and a randomness string ρ for the
garble function Garble(U[α, r]).

– Setup(1λ): for i ∈ [m] and b ∈ {0, 1}: (pki,b, ski,b)
$←− PKE.G(1λ). Let pp :=

{pki,b}i∈[m],b∈{0,1} and msk := {ski,b}i∈[m],b∈{0,1}.
– KeyGen(msk, C): output skC := (C, sk1,C1 , . . . , skm,Cm

).
– Eval(pp, α, x): parse x := (r := {ri,b}i∈[m],b∈{0,1}, ρ). Let (C̃, lb) = Garble

(α, x; ρ), and parse lb := {lbi,b}i∈[m],b∈{0,1}. Let cti,b := PKE.Enc(pki,b,

lbi,b; ri,b) and return y := (C̃, {cti,b}).
– Invert(skC , y): Parse skC := (C, s̃k1, . . . , ˜skm) and y := (C̃, ˜ct1, . . . , ˜ctm) and

let �i := PKE.Dec( ˜ski, c̃ti) for i ∈ [m]. Run Eval(C̃, {�i}); if the output is
$, return ⊥; otherwise, parsing the output (x, ω), return (x, ρ) where ρ is
computed from ω as shown in Lemma 3.

Lemma 4 (Correctness). Assuming SKE := (G,Enc,Dec) is randomness
recoverable (Definition 11), the resulting scheme PE-TDF in Construction 8
has perfect correctness (Definition 3).

Proof. The proof follows because by Lemma 3 the enhanced version of Yao’s
garbled circuit is randomness recoverable (hence recovering ρ), and also all the
random coins used to encrypt the labels (i.e., r in Construction 8) are outputted
by the evaluation algorithm on an accepting sequence of garbled labels. 
�
Instantiating the Encryption Schemes in Construction 8. Construction 8
introduces a circularity: the labels of the garbled circuit are encrypted under a
PKE scheme using randomness r, and the underlying randomness r is hardwired
into the circuit being garbled. We now show how to overcome this circularity in
a provable way using the following instantiations: the underlying PKE scheme
will be Dual-BHHO (which we call PKEdbhho), while the secret-key encryption
scheme is BHHO, adapted to the private-key setting.

Construction 9 (Private-Key BHHO). Define SKE = (SKE.G,SKE.Enc,
SKE.Dec) as follows:

– SKE.G(1λ): return s
$←− {0, 1}n.

– SKE.Enc(s, g′): sample (g1, . . . , gn) $←− G and return (g1, . . . , gn, g′ × Πgsi
i ).

– SKE.Dec(s, ct): parse ct := (g, g′′); return, g′′/(s · g).
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Randomness Recoverability. For SKE of Construction 9, the encryption algo-
rithm also samples n group elements, and one might complaint that we cannot
necessarily recover the underlying coins used to generate these group elements.
However, this fact can be handled by putting all these group elements in the
public parameter pp of the TD-ABE scheme (Construction 8). In other words,
the algorithm Setup of Construction 8 will include n group elements in pp for
every private-key encryption that is going to be performed during Eval (more
specifically, during Garble). We ignore this fact here, and we hereon assume these
group elements are generated as part of each encryption.

We review the scheme of k-block BHHO, which outputs k ciphertexts each
sampled under BHHO.

Construction 10 (k-block BHHO [10]). We review the definition of the
BHHO scheme PKEbhho for encrypting k group elements.

– S(1λ): Sample n random group elements pp := g := (g1, . . . , gn), where n ∈
ω(log p), where p = |G|.

– G(pp): On pp := g, return (pk, sk := s), where s
$←− {0, 1}n and pk := (g, s·g).

By abusing notation, we may sometimes write pk = G(pp, sk).
– Enc(pk,m := (g′

1, . . . , g
′
k)): To encrypt m under pk := (g, gpk), sample a k-

tuple randomness (r1, . . . , rk) $←− Z
k
p and return ct := (gr1 , gr1

pk ·g′
1, . . . ,g

rk , grk

pk ·
g′

k).
– Dec(sk, ct): Obvious.

Construction 11 (k-block Dual BHHO). Define PKEdbhho = (S,G,Enc,
Dec), the k-block version of DualBHHO, as follows.

– S(1λ): Sample n randomgroup elements pp := g := (g1, . . . , gn), where n ∈
ω(log(|G|)).

– G(g): On pp := g, return (pk, sk), where sk := (r1, . . . , rk) $←− Z
k
p and pk :=

(g, gr1 , . . . ,grk). By abusing notation,wemay sometimeswrite pk = G(pp, sk).
– Enc(pk, gm): To encrypt

k group element (g1, . . . , gk) under pk := (g, g1, . . . ,gk), sample randomness

s
$←− {0, 1}n and return ct := (s · g, (s · g1) × g1, . . . , (s · gk) × gk), where

s · g := Πgsi
i .

– Dec(sk, ct): parse sk := (r1, . . . , rk) and ct := (g1, g2, . . . , gk+1), then return
(g2/(g1)r1 , . . . , gk+1/(g1)rk).

We now prove a technique for switching RDM+KDM security to KDM
security. Recall that under PKEdbhho the encryption randomness is a string
s ∈ {0, 1}n, the same as a secret key for PKEbhho. Similarly, a secret key
(r1, . . . , rk) under PKEdbhho corresponds to encryption randomness for k-block
PKEbhho. We give the following lemma, and will then discuss its usefulness.

Lemma 5 (RDM/KDM Switching Lemma). Let m = (m1, . . . ,mk) be a
sequence of k group elements, to be encrypted. Fix a public parameter g :=
(g1, . . . , gn) across both PKEbhho and PKEdbhho. Let
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– r := (r1, . . . , rk) ∈ Z
k
p be a secret key under PKEdbhho and let pk be the

corresponding public key; pk := (g, gr1 , . . . ,grk).
– s ∈ {0, 1}n be a randomness value under PKEdbhho. Also, let pk′ be the cor-

responding BHHO public key under s:That is, pk′ := (g, s · g).

Up to “rearrangement of the terms”:

pk,Encdbhho(pk,m; s) = pk′,Encbhho(pk′,m; r),

where = indicates that the two distributions are identical.

Usefulness of Lemma 5. Let SKE be the private-key BHHO scheme (Con-
struction 9) and assume |s| = n. Then we can reduce a combination of RDM
and KDM attacks into a solely KDM scenario.

pk,Encdbhho(pk, s; s′),SKE.Enc(s, s′)
︸ ︷︷ ︸

RDM+KDM

≡ pk′,Encbhho(pk′, s; r),SKE.Enc(s, s′)
︸ ︷︷ ︸

KDM Only

(4)

where s
$←− {0, 1}n, r $←− Z

n
p , pk := PKEdbhho.G(pp, r), s′ $←− {0, 1}n and pk′ :=

Gbhho(pp, s′). Notice that the randomness r in the righthand side is not used
anywhere else in that side, so we do not have randomness dependency anymore.

Proof of Lemma 5. The proof follows easily by inspection. Letting g :=
(g1, . . . , gn):

pk,Encdbhho(pk,m; s) :=

⎛

⎜
⎜
⎜
⎝

g1, g2, . . . , gn

gr1
1 , gr1

2 , . . . , gr1
n

...
grk
1 , grk

2 , . . . , grk
n

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

s · g
(s · g)r1 · m1

...
(s · g)rk · mk

⎞

⎟
⎟
⎟
⎠

.

Thus, we may concisely write

pk,Encdbhho(pk,m; s) :=

⎛

⎜
⎜
⎜
⎝

g1, g2, . . . , gn, s · g
gr1
1 , gr1

2 , . . . , gr1
n , (s · g)r1 · m1

...
grk
1 , grk

2 , . . . , grk
n , (s · g)rk · mk

⎞

⎟
⎟
⎟
⎠

, (5)

Recall that pk′ = (g1, . . . , gn, s · g), which is the first column of the matrix
in Eq. 5. Thus, the matrix in Eq. 5 corresponds to pk′,Encbhho(pk′,m; r), up to
obvious rearrangement of the terms. 
�
Lemma 6 (Adaptive Security for AB-TDF). Assuming the DDH assump-
tion holds. Instantiating Construction with SKE of Construction 9 and PKE of
Construction 11 and an enhanced garbled circuit (Construction 7), the AB-TDF
scheme of Construction 8 is single-key adaptively secure.
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Proof. Let (C̃, {lbi,b}) be the resulting garbled circuits and labels. Let

– k1,0, k1,1, . . . , km,0, km,1 be the input labels of the garbled circuit (i.e., lbi,b =
ki,b), and let {pki,b} be the 2n pairs of public keys and secret keys used to
encrypt the corresponding input label.

– Key be the set of all keys sampled during the garbled circuit construction
(Construction 7).

Also, let kout,0 and kout,1 be the output-wire keys corresponding to bit values
zero and one. Let CTall be the set of all ciphertexts in the image y. We may split
CTall into three subsets:

1. CTall1: label encryptions:

CTall1 : {PKEdbhho.Enc(pki,b, ki,b; ri,b) : i ∈ [m], b ∈ {0, 1}};

2. CTall2: encryptions of the random coins {ri,b} used in Step 1. as well as the
garbled circuit keys Key, made under kout,1:

CTall2 :=
{SKE.Enc(kout,1, ri,b) : i ∈ [m], b ∈ {0, 1}} ∪ {SKE.Enc(kout,1, k) : k ∈ Key \ {kout,1}}

where all encryptions in CTall2 use fresh randomness.
3. CTall3: all intermediate key encryptions, as per Yao’s garbled circuit construc-

tion (Construction 7).

Notice the RDM/KDM circularity involved between CTall1 and CTall2: pki,b

are encrypting ki,b (which in turn encrypt kout,1 via a sequence of hops), and the
random coins used to encrypt ki,b under pki,b are encrypted under kout,1.

We will now use Lemma 5 to reduce the above RDM+KDM dependency to
KDM-dependency alone, at which point we can use the BHHO result to argue
security for the garbled circuit.

Let hi,b
$←− Z

k
p be the randomness used to generate (pki,b, ski,b), and note that

this randomness is never encrypted in CT. Also, recall that ri,b
$←− {0, 1}n. By

Lemma 5

PKEdbhho.Enc(pki,b, ki,b; ri,b) := PKEbhho.Enc(pk′
i,b, ki,b;hi,b), (6)

where pk′
i,b = PKEbhho.G(pp, ri,b). In other words, ri,b is now the secret key of

pk′
i,b. With this in mind, we may write

CTall1 : {PKEbhho.Enc(pk′
i,b, ki,b;hi,b) : i ∈ [m], b ∈ {0, 1}}. (7)

Notice that CTall2 is now encrypting the secret keys of pk′
i,b, and thus we are

in a KDM-only scenario.
Once having reduced RMD/KDM to KDM-only in the garbled circuits, the

rest of the proof follows as in [30,37]. 
�
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Instantiation Using LWE. Instantiating Construction 8 with SKE which is
dual-Regev’s circularly-secure SKE scheme [22], with PKE which is Regev’s PKE
scheme [34] and an enhanced garbled circuit (Construction 7) based on SKE
above, the AB-TDF scheme of Construction 8 is adaptively secure. The proof
will be the same, since we can prove the RDM/KDM switching lemma (Lemma 5)
based on these encryption schemes. See the full version for further details.
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Abstract. Software watermarking schemes allow a user to embed an
identifier into a piece of code such that the resulting program is nearly
functionally-equivalent to the original program, and yet, it is difficult to
remove the identifier without destroying the functionality of the program.
Such schemes are often considered for proving software ownership or for
digital rights management. Existing constructions of watermarking have
focused primarily on watermarking pseudorandom functions (PRFs).

In this work, we revisit the definitional foundations of watermark-
ing, and begin by highlighting a major flaw in existing security notions.
Existing security notions for watermarking only require that the iden-
tifier be successfully extracted from programs that preserve the exact
input/output behavior of the original program. In the context of PRFs,
this means that an adversary that constructs a program which computes
a quarter of the output bits of the PRF or that is able to distinguish
the outputs of the PRF from random are considered to be outside the
threat model. However, in any application (e.g., watermarking a decryp-
tion device or an authentication token) that relies on PRF security, an
adversary that manages to predict a quarter of the bits or distinguishes
the PRF outputs from random would be considered to have defeated the
scheme. Thus, existing watermarking schemes provide very little security
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guarantee against realistic adversaries. None of the existing constructions
of watermarkable PRFs would be able to extract the identifier from a
program that only outputs a quarter of the bits of the PRF or one that
perfectly distinguishes.

To address the shortcomings in existing watermarkable PRF defi-
nitions, we introduce a new primitive called a traceable PRF. Our def-
initions are inspired by similar definitions from public-key traitor trac-
ing, and aim to capture a very robust set of adversaries: namely, any
adversary that produces a useful distinguisher (i.e., a program that can
break PRF security), can be traced to a specific identifier. We provide a
general framework for constructing traceable PRFs via an intermediate
primitive called private linear constrained PRFs. Finally, we show how
to construct traceable PRFs from a similar set of assumptions previously
used to realize software watermarking. Namely, we obtain a single-key
traceable PRF from standard lattice assumptions and a fully collusion-
resistant traceable PRF from indistinguishability obfuscation (together
with injective one-way functions).

1 Introduction

Software watermarking is a mechanism for protecting against unauthorized re-
distribution of software. In a watermarking scheme, a user can embed some
special information called a “mark” into a program such that the resulting pro-
gram is nearly functionally-equivalent to the original one, and moreover, it is
difficult for an adversary to remove the watermarking without destroying its
input/output behavior. The majority of works studying cryptographic notions of
watermarking have focused primarily on watermarking pseudorandom functions
(PRFs) [CHN+16,BLW17,KW17,QWZ18,YAL+18,KW19,YAL+19,YAYX20].
Namely, the goal in each of these constructions is to embed an identifier (e.g.,
a user’s name or a device id) into a PRF key such that (1) the marked key
still preserves the input/output behavior of the original PRF; and (2) no effi-
cient adversary is able to construct a key that both preserves the input/output
behavior of the PRF on an ε-fraction of the domain and does not contain the
identifier. The first requirement corresponds to “correctness” while the second
corresponds to “unremovability.”

The Limitations of Existing Definitions. While these correctness and unremov-
ability requirements seem to capture an intuitive notion of what we might desire
from a watermarking scheme, they fall short of capturing meaningful notions of
security in many realistic settings. For instance, take a watermarkable PRF that
is secure under the above notions, and consider an adversary that takes a marked
circuit C : {0, 1}n → {0, 1}n and outputs a circuit C ′ that on input x, outputs
the first n/4 bits of C(x). Under existing definitions, mark-extraction is allowed
to fail in this setting (since C ′ does not preserve the input/output behavior of
the marked program). At the same time, C ′ still reveals substantial information
about the original function and is often sufficient to compromise security of any
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(a) Original (b) Encrypted (c) Recovered (pixel-
level)

(d) Recovered
(block-level)

Fig. 1. Illustration of plaintext recovery using a PRF-based encryption scheme given
a circuit that computes the leading n/4 bits of the PRF. Figure 1a shows the original
image and Fig. 1b shows the image encrypted using a PRF in counter mode. Figures 1c
and 1d shows the recovered image if the image is encrypted pixel-by-pixel and block-
by-block, respectively, and the adversary has a circuit that computes the n/4 most
significant bits of the PRF output.

cryptographic scheme that relies on the watermarked PRF. For instance, if the
PRF is used to construct a symmetric encryption scheme, a circuit that out-
puts a quarter of the bits of the PRF completely breaks semantic security of the
encryption scheme (see Fig. 1 for a visual example of this). However, even though
C ′ suffices to completely break semantic security of the encryption scheme, the
watermarking scheme cannot recover the mark from the compromised key.

The above example highlights a limitation in existing security notions for
cryptographic watermarking: namely, the existing definition only allows for a
restrictive (and unrealistic) set of adversarial strategies. Indeed, none of the exist-
ing constructions [CHN+16,BLW17,KW17,QWZ18,YAL+18,KW19,YAL+19,
YAYX20] of software watermarking remain secure if we expand the set of admis-
sible adversarial strategies to include the simple example described above. Exist-
ing watermarking constructions all take the approach of carefully embedding the
identifier in the output of the function. Such an embedding critically exploits of
the assumption that the adversary must preserve much of the exact input/output
behavior of the original function, in which case, most of the original outputs
(that embed the identifier) are also preserved. Consequently, if the adversary
constructs a circuit that does not exactly preserve the input/output behavior,
then the tracing algorithm cannot recover the embedded identifier.1

In cryptography, it is not only prudent, but oftentimes, essential for appli-
cations, to design expressive threat models that enable the broadest range of

1 In some cases (e.g., [CHN+16]), the tracing algorithm can still partially recover the
identity (e.g., a quarter of the bits) from a circuit that outputs a quarter the bits
of each output. But this tracing algorithm can be defeated by an adversary which
outputs a circuit that only distinguishes the output of the PRF (i.e., on input (x, y),
output 1 if Eval(msk, x) = y and 0 otherwise) or a circuit that computes the parity
of the bits of the PRF output.
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adversaries. Indeed, the very first formal security notions [GM84,GGM84] in
cryptography carefully distinguished between the functionality requirements of
a primitive and what the adversary would need to do to break it. In the case
of semantic security [GM84], it sufficed for an adversary to distinguish between
encryptions of two messages, and not that the adversary be able to recover the
original message. In the case of PRFs [GGM84], it sufficed that the adversary
could distinguish PRF evaluations from random as opposed to needing to predict
the outputs of the PRF (and indeed, imposing such a restriction on the adver-
sary would limit the usefulness of the primitive). In each of these examples, the
adversary’s objective is easier to achieve than emulating the exact functionality
or semantic requirements of the primitive. This is the philosophy we take when
designing our security definitions.

This Work. Our primary goals in this work are to highlight the deficiencies
of existing security notions for cryptographic watermarking and to introduce a
new security framework that better models our intuitive notions of security for
a watermarking scheme. Our definitions are inspired by similar notions devel-
oped in the literature on traitor tracing [CFN94,BSW06,NWZ16,GKRW18,
GKW18] and recent work on watermarking public-key cryptographic primi-
tives [GKM+19]. We begin by introducing a new notion of a traceable PRF
which both suffices to instantiate the existing applications of watermarkable
PRFs and addresses the limitations of existing watermarkable PRF definitions
and offers meaningful security guarantees in realistic scenarios (e.g., they can be
used to construct traceable symmetric encryption schemes). We then show how
to construct non-collusion-resistant traceable PRFs from private constrained
PRFs [BLW17] and fully collusion-resistant traceable PRFs from indistinguisha-
bility obfuscation [BGI+01]. We note that the assumptions needed to instantiate
both of our schemes match the assumptions needed to instantiate watermarkable
PRFs. This means that our new primitives can be instantiated from the same
assumptions as watermarkable PRFs, and yet, provide much stronger security
guarantees.

1.1 Our Results

Our first contribution is a new security definition that better captures the secu-
rity goals in watermarkable PRFs. Here, we start from the beginning by re-
examining the original motivation for building watermarkable PRFs. The orig-
inal intent of watermarking PRFs is to be able to give a user a marked imple-
mentation of a PRF (e.g., for use in a symmetric encryption or authentication
scheme) such that if the user later on tries to replicate the PRF functionality,
there is a way to trace the replicated program back to the user’s original key.
The question is what constitutes a “valid” attempt at replicating the function-
ality. In this work, we consider any program that violates the security of the
PRF (i.e., is able to distinguish PRF outputs from random) to be a “valid”
attack. This definition is in part inspired by security definitions proposed in
the setting of traitor tracing by Nishmaki et al. [NWZ16] (and adopted by later
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papers [GKRW18,GKW18]). In the earlier definitions starting with [CFN94], the
tracing algorithm was only required to work against adversarial decoders that
could successfully decrypt and recover the original message in its entirety from
a ciphertext. However, [NWZ16] observed that this definition can be too restric-
tive as it ruled out valid attacks that could extract partial information about
the encrypted message (e.g., the first quarter of an encrypted video stream) or
simply distinguished between different messages. Fortunately, most traitor trac-
ing constructions developed under earlier definitions also remained secure under
the strengthened definition. However, this does not appear to be the case for
watermarkable PRFs.

Our Notion: Traceable PRFs. Since the functionality in this case is a PRF, a
natural security notion is that if the adversary outputs any functionality that
helps one break pseudorandomness (i.e., distinguish the outputs of the PRF from
random), then it should be possible to trace the identity associated with the func-
tionality. In this work, we require that the tracing algorithm succeeds against any
distinguisher that can break weak pseudorandomness of the PRF. Specifically,
any program that can distinguish the PRF outputs on random domain elements
can be traced to one (or more) compromised keys. Observe that this not only
captures adversarial strategies that preserve the exact input/output behavior of
the PRF on an ε-fraction of the domain (as in the case of watermarking), but
also the previous example of a program that outputs a quarter of the bits of the
PRF. It also includes more general strategies such as a distinguisher circuit that
outputs 1 if (x, y) is an input/output pair of the PRF and 0 otherwise. Under
our definition, no efficient adversary can remove a mark from the program unless
it produces a program that does not break weak pseudorandomness of the PRF.

It is natural to ask whether we could trace the embedded mark from any
PRF distinguisher, such as a distinguisher that can adaptively choose the inputs
rather than only seeing evaluations at random points. While this may seem more
natural, a closer inspection shows that it is unsatisfiable. This is because under
this definition, we can construct an untraceable PRF distinguisher by simply
hardwiring a single PRF input-output pair (x, y) in the distinguisher. This dis-
tinguisher completely breaks pseudorandomness, but is untraceable as it contains
no information about the PRF except a single input-output pair. It is crucial to
observe that such a distinguisher is also useless for any adversarial applications
of the PRF. This shows that the concept of traceability must be carefully defined
to precisely capture the semantics of a “useful” distinguisher. We discuss this in
more detail in Sect. 3.1. Our definition considers distinguishers for weak pseu-
dorandomness, which means that the adversary’s program necessarily contains
information about the PRF on a noticeable fraction of the domain. We also note
that this does not preclude a traceable PRF to satisfy pseudorandomness as
a standalone primitive (and indeed, the constructions we propose in this work
satisfy the usual notion of pseudorandomness). The restriction to distinguishers
that break weak pseudorandomness is only in the definition of tracing security.
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Traceable PRF Syntax. A traceable PRF scheme consists of four algorithms:
Setup, KeyGen, Eval, and Trace. The Setup algorithm samples a PRF key msk
and a tracing key tk that is used for tracing. The key-generation algorithm takes
as input the PRF key msk and an identifier id and outputs a “marked” key
skid. The evaluation algorithm Eval takes as input either the PRF key msk or an
identity key skid and implements PRF evaluation. We require that Eval(skid, ·)
and Eval(msk, ·) agree almost everywhere (i.e., on all but a negligible fraction of
the domain). This property is the analog of the “correctness” or “functionality-
preserving” property in the setting of watermarking schemes. Finally, there is
a trace algorithm Trace that takes as input the tracing key tk and has oracle
access to a distinguisher D, and outputs a set of compromised keys (if any).
Our security requirement says that if the distinguisher D is able to break weak
pseudorandomness of the PRF (i.e., distinguish the outputs of Eval(msk, ·) at
random points from those of a random function), then the tracing algorithm must
successfully identify a set of compromised keys used to construct D. Similar to
the corresponding notions in traitor tracing (and watermarking), we can consider
several variations of our basic schema and requirements:

– Collusion-resistance: We say that a traceable PRF is fully collusion-
resistant if an adversary who has an arbitrary number of identity keys
S = {skid1 , . . . , skidk

} still cannot construct a useful distinguisher D where
TraceD(tk) does not output a non-empty set T ⊆ S.2 We say that a scheme
satisfies bounded (resp., Q-key) collusion resistance if security only holds
against adversaries that compromise an a priori bounded number of keys
(resp., at most Q keys). In this work, we show how to construct a single-
key traceable PRF from standard lattice assumptions3 and a fully collusion
resistant traceable PRF from indistinguishability obfuscation (and injective
one-way functions).

– Public tracing vs. secret tracing: We say that a traceable PRF supports
public tracing if security holds even if the tracing key tk is public. Otherwise,
we say the traceable PRF is in the secret tracing setting. Our basic single-key
traceable PRF from lattices is secure in the secret-tracing setting, while our
obfuscation-based construction is secure in the public-tracing setting.

We provide the full definition in Sect. 4.1.

Constructing Traceable PRFs. To construct traceable PRFs, we introduce an
intermediate primitive of a private linear constrained PRF. This primitive can
2 We cannot stipulate that T = S since the adversary might not use every compro-

mised key when constructing the distinguisher D. The tracing algorithm can only
recover the keys the adversary actually uses.

3 A traceable PRF bears many similarities with a constrained PRF [BW13,KPTZ13,
BGI14], and all known constructions of collusion-resistant constrained PRFs for
sufficiently complex constraints from standard lattice assumptions are secure only in
the single-key setting [BV15]. Fully collusion-resistance constrained PRFs for general
constraints are only known from indistinguishability obfuscation [BZ14] and one-way
functions. Recent work has shown how to construct indistinguishability obfuscation
from the combination of multiple standard assumptions [JLS21].
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be viewed as a symmetric analog of a “private linear broadcast encryption”
(PLBE) from [BSW06] and which has featured prominently in a number of sub-
sequent traitor tracing constructions [GKSW10,NWZ16,GKW18]. First, recall
that in a constrained PRF [BW13,KPTZ13,BGI14], the holder of the PRF mas-
ter secret key msk can issue a constrained key skf for a constraint f such that
the constrained key can be used to evaluate on only the inputs x that satisfy the
constraint (i.e., the inputs x where f(x) = 1). Moreover, the value of the PRF
at points x where f(x) = 0 remain pseudorandom even given skf .

A private linear constrained PRF is similar in spirit to a constrained PRF
for a class of linear constraints.4 In this case, the constrained keys are each
associated with a κ-bit index id ∈ [0, 2κ − 1]. Every input in the domain is
associated with a private index t ∈ [0, 2κ] and a constrained key for index id
can be used to evaluate the PRF on all inputs whose index t ≤ id. In addition
to the usual Setup (for sampling the PRF key), KeyGen (for issuing constrained
keys), and Eval (for evaluating the PRF), there is a fourth algorithm Samp that
is used to sample domain elements with a given index t together with the PRF
evaluation at the sampled point. The sampling algorithm Samp can either be
public-key algorithm (in which case we obtain a publicly-traceable PRF) or a
secret-key algorithm (in which case we obtain a secretly-traceable PRF). Similar
to a PLBE scheme, there are three main security requirements we require on a
private linear constrained PRF:

– Normal hiding: A random domain element is computationally indistin-
guishable from a randomly-sampled domain element with index 0 (output
by Samp), even given any collection of identity keys.

– Identity hiding: A randomly-sampled domain element with index i is com-
putationally indistinguishable from a randomly-sampled domain element with
index j, provided that the adversary does not have any identity keys for an
index id ∈ [i, j − 1].

– Pseudorandomness: The PRF evaluations on randomly-sampled domain
elements with index 2κ are computationally indistinguishable from uniform
given any collection of identity keys.

Given a private linear constrained PRF satisfying the above properties, we can
construct a traceable PRF using a similar type of transformation used to con-
struct traitor tracing from PLBE. Namely, we can reduce the tracing problem
to a “jump-finding” problem as follows. Let D be the decoder constructed by
the adversary. By assumption, we assume that D is useful: namely, it breaks
weak pseudorandomness of the encryption scheme. This means that D is able
to distinguish the PRF evaluation at a randomly-sampled domain element from
a uniformly random value with non-negligible advantage ε. By the normal hid-
ing property, D must also have advantage ε when distinguishing evaluations at
randomly-sampled points with index 0. Next, by the pseudorandomness property,

4 As we describe more formally below, the “privacy” requirement refers to a property
on the inputs to the PRF, and not the notion of constraint-privacy in the standard
definition of a “private constrained PRF” from [BLW17].
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the distinguishing advantage of D for randomly-sampled points with index 2κ

must be negligible. Thus, there must be a “jump” in the decoder’s distinguishing
advantage on domain elements on some index 0 < t < 2κ. By the identity-hiding
property, such “jumps” can only occur on indices for which the adversary pos-
sesses an identity key. We can then identify these jumps (and correspondingly,
the set of compromised keys) by either performing a linear scan over the iden-
tity space (when the identity space is polynomial) [BSW06,GKSW10,GKW18]
or by using a jump-finding algorithm (when the identity space is exponen-
tial) [NWZ16].

Due to some technical differences between PLBE and private linear con-
strained PRFs, we actually have to run the tracing algorithm twice in our con-
struction. Very briefly, the reason behind this requirement is that, unlike encryp-
tion systems where the distinguisher just receives a single ciphertext and has to
output its guess, the distinguisher in the case of traceable PRFs receives a tuple
consisting of both a random domain element together with its evaluation. Here,
the distinguisher may stop working if it notices the tracer is changing the distri-
bution used to sample the inputs (i.e., domain elements). This means that if the
tracer only performs a single scan, such decoders may evade detection. Thus, we
need to apply the underlying tracing algorithm twice to circumvent this issue.
In the first scan, the tracer runs the scan with a consistent output distribution,
and then it performs a second scan where the output distribution is random and
essentially independent of the input distribution. We provide the full technical
details in Sect. 4.2.

Constructing Private Linear Constrained PRFs. In this work, we describe two
constructions of private linear constrained PRFs. The first construction gives a
single-key private linear constrained PRF in the secret-tracing setting and can
be instantiated from LWE while the second construction is a collusion-resistant
private linear constrained PRF in the public-tracing setting. Interestingly, both
of our constructions rely on a similar set of building blocks as those used for
watermarkable PRFs. We give a high-level sketch of our main constructions
here:

– Single-key private linear constrained PRF. Our first construction com-
bines a private constrained PRF together with an authenticated encryp-
tion scheme with pseudorandom ciphertexts (such authentication encryption
schemes can be based on one-way functions). Recall first that a private con-
strained PRF is a constrained PRF where the constrained key skf hides the
associated constraint function f .
Let � be the bit-length of the ciphertexts in the authenticated encryption
scheme, and let sk be the secret key of the authenticated encryption scheme.
The domain of our PRF will be {0, 1}�, and a point with index t ∈ [0, 2κ]
will be an authenticated encryption of t. A constrained key for an identity id
consists of a private constrained key for the function fsk,id where fsk,id(x) = 0
whenever x is a valid encryption under sk of some index t′ > id, and is 1
otherwise. The (secret-key) sampling algorithm will first encrypt the target
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index t under sk and output the resulting ciphertext ctt together with the
PRF evaluation at ctt.
At a high-level, the security proof relies on the fact that a private constrained
PRF hides the constraint function, which in this particular case, means that
it hides the secret key sk. Then, normal hiding and identity hiding follows
from the fact that ciphertexts are pseudorandom, and pseudorandomness fol-
lows from constrained security of the underlying constrained PRF. We give
the full description and analysis in Sect. 5.

– Collusion-resistant private linear constrained PRF with public-
tracing. Our second construction gives a fully collusion resistant private
linear constrained PRF that supports public tracing from indistinguisha-
bility obfuscation and injective one-way functions. By the recent break-
through work of Jain et al. [JLS21], both assumptions hold assuming the
existence of a PRG in NC0 together with the LWE, LPN, and SXDH assump-
tions. The high-level idea is very similar to our secret-key scheme above.
Namely, the domain elements are ciphertexts in a (puncturable) public-key
encryption scheme [CHN+16], and the identity keys consist of an obfuscated
program with the decryption key hard-wired within it. To publicly sample
inputs/outputs of the PRF (needed for public tracing), we provide an obfus-
cated program with a (puncturable) PRF key hard-wired within. We provide
the details and analysis in Sect. 6.

An Application: Secret-key Traitor Tracing. We note that our notion of traceable
PRFs lends itself naturally to a secret-key traitor tracing scheme. For instance,
we can take our encryption scheme to be standard nonce-based encryption with
a PRF (i.e., to encrypt a message m, sample a random r ← {0, 1}n and compute
the ciphertext ct = (r,m⊕PRF(k, r)). If we instantiate the underlying PRF with
a traceable PRF, then the resulting scheme immediately gives a traitor tracing
scheme. Namely, any decoder that is able to distinguish between the encryption
of two messages m0 and m1 also necessarily is able to distinguish PRF(k, r) from
uniformly random for a random choice of r ← {0, 1}n. The claim then follows
by tracing security. We stress here that a similar notion would not follow if we
replace PRF with a watermarkable PRF. Here, it is not clear how to translate a
decoder D that is only able to distinguish between encryptions of two messages
into an algorithm that is able to recover the full input/output behavior of the
PRF on a noticeable fraction of the domain.

Comparison with Watermarkable PRFs. One distinction between traceable
PRFs and watermarkable PRFs is that in our definition of a traceable PRF,
the tracing key is sampled jointly with the PRF key. In classic definitions of
watermarking, it is possible to have a single (fixed) tracing key for an entire
family of PRFs. This means that it is possible to sample a PRF key and decide
to mark it at a later point in time. As we discuss in Sect. 3.1, having a tracing
key that depends on the PRF key is essential to realizing the strong security
notions in a traceable PRF. In most practical scenarios, if one wanted to take
advantage of watermarking for software protection, it seems reasonable for them
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to sample the PRF key together with the marked key(s). Thus this distinction
does not seem significant in practice, and we believe that the stronger and mean-
ingful security notions achieved by traceable PRFs makes it a far more suitable
primitive than a watermarkable PRF in any realistic environment.

1.2 Related Work

Watermarking. Barak et al. [BGI+01,BGI+12] and Hopper et al. [HMW07]
introduced the first rigorous mathematical frameworks for software watermark-
ing that considered arbitrary adversarial strategies (i.e., the adversary is allowed
to output an arbitrary circuit that preserves the input-output behavior of the
original program). Cohen et al. [CHN+16] provided the first construction of
a watermarking scheme for PRFs using indistinguishability obfuscation. Ear-
lier works on watermarking [NSS99,YF11,Nis13] imposed additional restrictions
on the adversary’s capabilities. Several works have also studied watermarking
public-key cryptographic primitives [CHN+16,BKS17,GKM+19,Nis20]. Here,
the work of Goyal et al. [GKM+19] expanded watermarking security definitions
(in the public-key setting) to include adversaries that are able to break the
“semantics” of a scheme (as opposed to just the set of adversaries that preserve
exact input/output behavior).

Traitor Tracing. The notion of traitor tracing was first proposed by Chor et
al. [CFN94] for solving the piracy problem in broadcast systems. Since then,
numerous relaxations have been studied in order to achieve short ciphertexts.
Broadly these can be categorized as follows: schemes where the traceability
guarantees hold as long as the adversary corrupts an a priori bounded num-
ber of users and schemes where the guarantees hold as long as the adver-
sary’s decoder succeeds with probability greater than an a priori thresh-
old. The former relaxation leads to traitor tracing schemes in the bounded
collusion setting where we have numerous constructions via combinatorial
tools [CFN94,SW98,CFNP00,SSW01,PST06,BP08] as well as a variety of cryp-
tographic assumptions [KD98,BF99,KY02a,KY02b,CPP05,ADM+07,FNP07,
LPSS14,NWZ16,ABP+17]. The latter schemes are typically referred to as
“threshold traitor tracing” [NP98,CFNP00,BN08]. In another line of work,
[GKRW18] considered schemes with a relaxed tracing guarantee: namely, the
tracing algorithm does not need to be succeed in all cases. Recently, there
has been significant progress on constructing fully collusion-resistant compact
traitor tracing schemes from standard lattice assumptions [GKW18,GKW19a].
Since then, a sequence of works has built new traitor tracing systems with more
functionality from standard cryptographic assumptions [CVW+18,GQWW19,
GKW19b,KW20].

2 Preliminaries

We write PPT to denote probabilistic polynomial-time. We denote the set of
all positive integers up to n as [n] := {1, . . . , n}. Throughout this paper, unless
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specified otherwise, all polynomials we consider are positive polynomials. For
any finite set S, x ← S denotes a uniformly random element x from the set
S. Similarly, for any distribution D, x ← D denotes an element x drawn from
distribution D. The distribution Dn is used to represent a distribution over
vectors of n components, where each component is drawn independently from
the distribution D.

For (possibly randomized) algorithms A and D, we use the notation AD to
denote that algorithm A has oracle access to algorithm D. Here, if the algorithm
D is stateless, then on each query made by A to D, the oracle responds with
a randomly drawn sample from the corresponding output distribution. If the
algorithm D is stateful, then whenever A queries the oracle D, it can choose to
either suspend the current execution of the oracle D or to continue executing
D while it maintains its state. If D terminates after receiving an input, then it
sends the final output of the computation as its query response to A.

Pseudorandom Generator. A pseudorandom generator PRG : {0, 1}λ → {0, 1}�

is secure if for every PPT adversary A, there exists a negligible function negl(·)
such that

Pr
[
A(tb) = b :

s ← {0, 1}λ, t0 ← PRG(s)
t1 ← {0, 1}�, b ← {0, 1}

]
≤ 1

2
+ negl(λ).

3 Defining Traceable PRFs

In this section, we formally introduce our notion of a traceable PRF.

Syntax. A traceable PRF scheme, with input-output space X = {Xλ,κ}λ,κ∈N

and Y = {Yλ,κ}λ,κ∈N

5, consists of the following four algorithms:

Setup(1λ, 1κ) → (msk, tk). The setup algorithm takes as input the security param-
eter λ, the “’identity space” parameter κ, and outputs a master PRF key msk
and a tracing key tk.

KeyGen(msk, id) → skid. The key generation algorithm takes as input the master
key and an identity id ∈ {0, 1}κ. It outputs a secret key skid.

Eval(sk, x) → y. The decryption algorithm takes as input a secret key sk (which
could be the master key), input x ∈ X , and outputs y ∈ Y.

TraceD(tk, 1z) → T ⊆ {0, 1}κ. The tracing algorithm has oracle access to a
program D, it takes as input the tracing key tk, parameter z, and it outputs
a set T of identities.

5 Throughout the paper, we drop the dependence of spaces Xλ,κ and Yλ,κ on security
parameter λ and identity length parameter κ whenever clear from context.
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Weak Pseudorandomness. Below we define the weak pseudorandomness property
for traceable PRFs.

Definition 3.1 (Weak pseudorandomness). A traceable PRF scheme
Tr-PRF = (Setup,KeyGen,Eval,Trace) satisfies weak pseudorandomness property
if for every stateful PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds

Pr
[
AOb(msk) = b :

1κ ← A(1λ), b ← {0, 1}
(msk, tk) ← Setup(1λ, 1κ)

]
≤ 1

2
+ negl(λ),

where the oracle Ob(msk) is defined as follows: if b = 0, then on each evaluation
query made by adversary A, the oracle samples random input x ← X and sends
(x,Eval(msk, x)) to A; otherwise, if b = 1, then on each evaluation query made
by adversary A, the oracle samples random input x ← X and sends (x, f(x)) to
A where f : X → Y is a random function.6

Key-similarity Property. Informally, the key-similarity property says that the
marked key is functionally equivalent to the original unmarked key on all but a
negligible fraction of inputs. Formally, we define the property as follows:

Definition 3.2 (Key similarity). A traceable PRF scheme Tr-PRF = (Setup,
KeyGen,Eval,Trace) satisfies key-similarity if there exists a negligible function
negl(·) such that for all λ, κ ∈ N, identity id ∈ {0, 1}κ, (msk, tk) ← Setup(1λ, 1κ),
the following holds

Pr
[
Eval(msk, x) �= Eval(skid, x) :

skid ← KeyGen(msk, id)
x ← X

]
≤ negl(λ).

We note that while the marked keys agree with the unmarked key almost every-
where, it may still be easy for an adversary to efficiently find a point on which
they differ. Thus, we can consider a strengthening of the property called “key
indistinguishability” which we introduce next.

Key-indistinguishability Property. Informally, the key-indistinguishability prop-
erty states that it should be hard for any PPT adversary to find inputs where
the marked key (for an identity of the adversary’s choosing) disagrees with the
unmarked key. Formally, we define key indistinguishability as follows:

Definition 3.3 (Key indistinguishability). A traceable PRF scheme
Tr-PRF = (Setup,KeyGen,Eval,Trace) satisfies key indistinguishability if for
every stateful PPT adversary A, there exists a negligible function negl(·) such
that for all λ ∈ N, the following holds

Pr
[
Eval(msk, x) �= Eval(sk∗, x) :

1κ ← A(1λ), (msk, tk) ← Setup(1λ, 1κ)
(x, idx, id∗) ← AEval(msk,·),KeyGen(msk,·)

]
≤ negl(λ),

6 Note that instead of actually sampling a random function, the challenger simulates
it by sampling random input-output pairs on the fly and storing them in a table.
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where sk∗ is defined as

sk∗ =

{
sk(idx) if idx �= ⊥
skid∗ ← KeyGen(msk, id∗) otherwise,

and sk(�) denotes the �th key A submits to the key-generation oracle.

Remark 3.4 (Key similarity vs. key indistinguishability). It is easy to see that
key indistinguishability is a strictly stronger property than key similarity. As
a result, this property is only achievable in the secret-tracing setting. As we
define more formally below, our tracing algorithm only has oracle access to the
adversary’s distinguishing circuit. If this tracing algorithm can be run publicly,
then it must be the case that the tracing algorithm must be able to efficiently
find some input where the unmarked key and the marked key differ. Otherwise, it
cannot distinguish between the two keys given just oracle access to the evaluation
algorithm.

In the full version of this paper [GKWW20], we also describe a weaker notion of
key indistinguishability that we consider in some of our constructions.

Secure Tracing. The secure tracing property states that if any PPT adversary
creates a successful PRF distinguisher with respect to a master key, then the
tracing algorithm, when provided with the PRF distinguisher, outputs the iden-
tity of at least one corrupted secret key, while never outputting the identity of
an uncorrupt secret key. We define secure tracing as follows:

Definition 3.5 (Secure tracing). Let Tr-PRF = (Setup,KeyGen,Eval,Trace)
be a traceable PRF scheme. For any nonnegligible function ε(·), polynomial p(·)
and PPT adversary A, we define the tracing experiment ExptTPRFTr-PRF

A,ε (λ) in
Fig. 2. Based on ExptTPRFTr-PRF

A,ε , we define the following set of (probabilistic)
events and their corresponding probabilities (which are a functions of λ and
parameterized by A, ε):

– Good-Dis : Pr
[
DOb(msk)(1λ) = b : b ← {0, 1}

]
≥ 1

2 + ε(λ),
where the probability is taken over the coins of D, and oracle Ob(msk) is
exactly as defined in Definition 3.1.
Intuitively, this says that a distinguisher D is an ε-good distinguisher if D
can break weak pseudorandomness of the underlying PRF with advantage ε =
ε(λ).
Pr -G-DA,ε(λ) = Pr[Good-Dis].

– Cor-Tr : T �= ∅ ∧ T ⊆ SID
This event corresponds to the tracing algorithm successfully outputting one or
more of the keys the adversary possesses.
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].

– Fal-Tr : T �⊆ SID
This event corresponds to the tracing algorithm outputting a key that the
adversary did not request (i.e., falsely implicating an honest user).
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr].
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Experiment ExptTPRFTr-PRF
A,ε (λ)

– 1κ (1λ).
– (msk, tk) Setup(1λ, 1κ).
– D

A

AEval(msk,·),KeyGen(msk,·),SplEval(msk,·,·).
– T TraceD(tk, 11/ε(λ)).

Let SID be the set of identities queried by A to the key generation
oracle KeyGen(msk, ·). Here, SplEval denotes a special evaluation algo-
rithm that is defined as a randomized oracle algorithm that has msk
hardwired, takes as input an identity id ∈ {0, 1}κ, a string x ∈ X , and
outputs y = Eval(skid, x) where skid KeyGen(msk, id). We discuss
the rationale for this oracle in Remark 3.7.

Fig. 2. Experiment ExptTPRF

A traceable PRF scheme Tr-PRF (with secret-key tracing) is said to satisfy
secure tracing property if for every PPT adversary A, polynomial q(·), and non-
negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) > 1/q(λ), the following two properties hold:

Pr -Fal-TrA,ε(λ) ≤ negl(λ) and Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ) − negl(λ).

Intuitively, the first property states that the tracing algorithm cannot falsely
implicate an honest user with non-negligible probability and the second property
requires that whenever D is a ε-good distinguisher, then the tracing algorithm
correctly traces at least one corrupt user.

Remark 3.6 (Security for publicly-traceable PRFs). A traceable PRF scheme
with public-tracing is defined identically to its secret-tracing counterpart, except
now the adversary is additionally provided the tracing key tk in all of the secu-
rity games. In the public-tracing setting, we require the scheme to satisfy weak
pseudorandomness, key similarity, and the secure public tracing property (but
not key indistinguishability; see Remark 3.4).

Remark 3.7 (Special evaluation oracle SplEval). In our tracing experiment, we
allow an attacker to not only corrupt keys for different users, but also query for
PRF evaluations under keys of non-corrupt users on inputs of the adversary’s
choosing. Although providing access to this “special evaluation” oracle SplEval
is not necessary for applications of traceable PRFs to traitor tracing systems,
we include this as part of our definition to cover a broader class of adversarial
strategies. For instance, this definition captures adversaries that may passively
observe interactions between honest users using their respective identity keys.
Our definition says that even if the adversary can see (polynomially-many) such
evaluations, they cannot construct a distinguisher that evades the tracing algo-
rithm (nor can they cause the tracing algorithm to implicate one of the honest
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users). Thus, by allowing the adversary access to such an oracle, the definition
provides security even against these much powerful adversaries.

Also, one could possibly have a seemingly stronger mechanism for capturing
the special evaluation oracle where now it will be a stateful oracle and the
adversary can ask the oracle to either sample (and store) a fresh key followed by
evaluation with respect to the sampled key, or answer a evaluation query with
respect to a previously-sampled key. Although this might seem like a stronger
definition, this is not necessary since we can always assume without loss of
generality that key generation algorithm is deterministic (by using a standard
PRF for derandomization).

3.1 Note on Weak Pseudorandomness and Other Definitional
Choices

In this section, we briefly discuss and motivate the definitional choices for our
traceable PRF notion.

On Weak Pseudorandomness. In our definitional framework above, we focus on
weak pseudorandomness as the target for both PRF security as well as the class
of distinguishers against which we provide the tracing guarantee. There are a
few technical reasons for the above choice. First, observe that it is impossible for
a traceable PRF to be a secure PRF in the standard sense (i.e., appear pseudo-
random on adversarially-chosen inputs) while also providing tracing guarantees
against distinguishers that only break pseudorandomness in the standard sense.
This is because in such a scenario, the adversary can construct an untraceable
distinguisher by simply hardwiring a single PRF input-output pair (on a random
input) and use that to claim that it is a valid distinguisher. Such a distinguisher
can break the standard PRF game with advantage close to 1 by querying on
its hard-wired input, and yet, no tracing algorithm can succeed here (since with
overwhelming probability, the single input-output pair chosen by the adversary
coincides with the real PRF evaluation on that input, and thus, cannot contain
any information about an embedded identity).

Another possibility could be to allow the distinguisher to make arbitrary
evaluation queries to the PRF, but the challenge point would still be chosen
randomly. While this is a meaningful notion, this causes problems when defining
publicly-traceable PRFs. Under this definition, the tracing algorithm would need
the actual code of the distinguisher, as opposed to only requiring oracle access
to the distinguisher. This is because under this definition, the tracing algorithm
would need a way to respond to the distinguisher’s evaluation queries (in order
to use the distinguisher at tracing time). But if the distinguisher can make arbi-
trary PRF evaluation queries that the public tracing algorithm can answer, then
the tracing algorithm can be used to break pseudorandomness. Consequently,
this model is only achievable in the setting where the public tracing algorithm
has access to the code of the distinguisher. In this work, we focus on settings
where tracing can be done just given black-box access to the decoder. Note that
if we restrict ourselves to weak pseudorandomness, then there is no inherent
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contradiction; namely, a public tracing key only needs to provide an ability to
sample random input-output evaluations of the PRF. Using indistinguishabil-
ity obfuscation, we can realize this by publishing an obfuscated program that
can sample input-output evaluations from a sparse pseudorandom subset of the
domain and which does not compromise standard pseudorandomness.

A third possibility is to consider secure tracing against distinguishers which
only break weak pseudorandomness, while requiring the PRF to achieve (regu-
lar) pseudorandomness security. Although this is not impossible (and our cur-
rent constructions can be shown to satisfy this property), we decided to simply
consider weak pseudorandomness security for PRF security since that yields a
unified definitional framework and sufficed for many applications. Basically our
intuition here is to avoid unevenness between the target pseudorandomness secu-
rity for PRF security and the class of distinguishers against which we provide
secure traceability.

Joint Sampling of Tracing and PRF Keys. Lastly, our definitions assume that
the tracing key is generated together with a PRF master key (via the Setup
algorithm). That is, each PRF key is associated with a specific tracing key. An
alternate definition could be to sample a single tracing key during the system
setup, and then PRF keys could be sampled independent of the tracing key.
This is the setting encountered in the context of watermarking PRFs [CHN+16].
However PRFs are a symmetric-key primitive. This means that in this scenario,
the tracing algorithm would either need a description of the master PRF key
to run the tracing algorithm, or the PRF setup must non-trivially depend on
the tracing key itself. In the former case, it seems very restrictive since now the
tracing party needs to know the full master key which may not be accessible in
most applications. As to the latter case, it is not clear whether it provides any
more functionality compared to our current definition. Therefore, we decided
to consider a single joint setup for sampling the master PRF key as well as
the tracing parameters as done in prior works on traitor tracing for public-key
encryption systems [BSW06,NWZ16,GKRW18,GKW19a].

4 Traceable PRFs via Private Linear Constrained PRFs

In this section, we introduce an intermediate abstraction, that we call pri-
vate linear constrained PRFs (PLCPRFs), towards building a traceable PRF
scheme. This primitive mirrors the notion of private linear broadcast encryption
(PLBE) [BSW06] from traitor tracing literature where PLBE was used as a use-
ful abstraction for building general traitor tracing systems. We first present the
syntax and security definitions for PLCPRFs, and later show that PLCPRFs
lead to traceable PRFs.
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4.1 Defining Private Linear CPRFs

Syntax. A private linear CPRF scheme with input-output space X =
{Xλ,κ}λ,κ∈N

and Y = {Yλ,κ}λ,κ∈N

7 consists of the following four algorithms:

Setup(1λ, 1κ) → (msk, tk). The setup algorithm takes as input the security param-
eter λ, the “identity space” parameter κ, and outputs a master PRF key msk
and a tracing key tk.

KeyGen(msk, id) → skid. The key generation algorithm takes as input the master
key and an identity id ∈ {0, 1}κ. It outputs a secret key skid.8

Eval(sk, x) → y. The decryption algorithm takes as input a secret key sk (which
could be the master key), input x ∈ X , and outputs y ∈ Y.

Samp(tk, t) → (x, y). The sampling algorithm takes as input the tracing key tk,
a threshold t ∈ [0, 2κ], and it outputs a input-output pair (x, y) ∈ X × Y.

Key Similarity and Key Indistinguishability. We define key similarity and key
indistinguishability for PLCPRFs to be identical to that for traceable PRFs as
in Definitions 3.2 and 3.3.

Security. We now introduce some useful security properties for PLCPRFs that
will be useful for constructing traceable PRFs. Intuitively, the properties can be
stated as follows. The first property is called the normal hiding property which
states that for any PPT adversary, it should be hard to distinguish whether
an input string x is sampled uniformly at random from the full domain X , or
if it is sampled uniformly at random using the sample algorithm for threshold
0 (that is, as (x, y) ← Samp(tk, 0)). The second property is called the iden-
tity hiding property which states that an input string x should also hide the
threshold t corresponding to which it is sampled as long as the adversary can-
not trivially learn it by simply evaluating at x using its secret keys. Lastly,
we define the pseudorandomness property which states that the PRF output
on input strings sampled corresponding to threshold 2κ are pseudorandom. For-
mally, we define each notion similar to the corresponding set of PLBE definitions
from [BSW06,GKW18,GKW19a]. However, in our setting, we allow the adver-
sary to make an a priori unbounded number of oracle queries, which will be
essential to our construction of traceable PRFs from PLCPRFs. In the public-
key setting, handling a single encryption query is sufficient to construct traitor
tracing.

7 As mentioned previously, we drop the dependence on λ, κ whenever clear from con-
text.

8 This could also be viewed as a “constrain” algorithm (in the language of constrained
PRFs [BW13,KPTZ13,BGI14]), but there are some semantic differences. As such,
we refer to this algorithm as a “key-generation” algorithm instead.
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Definition 4.1 (Normal hiding). A PLCPRF scheme is said to satisfy nor-
mal hiding if for every stateful PPT adversary A, there exists a negligible func-
tion negl(·) such that for every λ ∈ N, the following holds:

Pr

⎡
⎣AS(·),E(·),K(·),SlE(·,·)(xb) = b :

1κ ← A(1λ); (msk, tk) ← Setup(1λ, 1κ)
b ← {0, 1}; x0 ← X

(x1, y1) ← Samp(tk, 0)

⎤
⎦

≤ 1
2

+ negl(λ),

where the oracles S,E,K,SlE are defined as follows:

– S(·) = Samp(tk, ·) is the sampling oracle with tk hardwired,
– E(·) = Eval(msk, ·) is the evaluation oracle with msk hardwired,
– K(·) = KeyGen(msk, ·) is the key-generation oracle with msk hardwired, and
– SlE(·, ·) is a randomized oracle that has msk hardwired, takes as input an

identity id ∈ {0, 1}κ, a string x ∈ X , and outputs y = Eval(skid, x) where
skid ← KeyGen(msk, id).

Definition 4.2 (Identity hiding). A PLCPRF scheme is said to satisfy iden-
tity hiding if for every stateful PPT adversary A, there exists a negligible function
negl(·) such that for every λ ∈ N, the following holds:

Pr

⎡
⎣AS(·),E(·),K(·),SlE(·,·)(x) = b :

1κ ← A(1λ); (msk, tk) ← Setup(1λ, 1κ)
(t0, t1) ← AS(·),E(·),K(·),SlE(·,·)

b ← {0, 1}; (x, y) ← Samp(tk, tb)

⎤
⎦

≤ 1
2

+ negl(λ),

where the oracles are defined as in Definition 4.1, and A must not query oracle
SlE on the input-identity pair (x, id) where id ∈ [t0, t1 − 1], and each query
id made by A to the key-generation oracle K must satisfy the condition that
id /∈ [t0, t1 − 1].9 We say the PLCPRF scheme satisfies selective identity hiding
if the adversary has to commit to its challenge identities (t0, t1) at the beginning
of the game before it makes any oracle queries. Note that selective security implies
adaptive security at the expense of a sub-exponential loss in the security reduction
via a technique called complexity leveraging [BB04].

Definition 4.3 (Pseudorandomness). A PLCPRF scheme is said to satisfy
pseudorandomness if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds:

Pr
[
AS(·),E(·),K(·),SlE(·,·)(x, yb) = b :

1κ ← A(1λ); (msk, tk) ← Setup(1λ, 1κ)
b ← {0, 1}; (x, y0) ← Samp(tk, 2κ); y1 ← Y

]

≤ 1
2
+ negl(λ),

9 Here and throughout, the κ-bit identities are interpreted as non-negative integers
between 0 and 2κ − 1 for comparison.
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where the oracles are defined as in Definition 4.1, A cannot query oracle SlE on
the input-identity pair (x, 2κ), and A cannot query the evaluation oracle E on
input x.

Remark 4.4 (Multi-challenge security). For security of PLCPRFs, we consider
three properties (normal hiding, identity hiding, and pseudorandomness). Note
that in each of Definitions 4.1 to 4.3, we consider a single-challenge variant which
means that the adversary gets to see exactly one challenge element. For instance,
in the normal hiding game it gets a single challenge xb which is either a random
input or an input sampled corresponding to threshold 0.

Consider a multi-challenge variant of these security properties where the
adversary instead gets unbounded access to a challenge oracle, where the chal-
lenge oracle on each query provides a fresh sample from the corresponding chal-
lenge distribution. For instance, in the multi-challenge version of normal hiding,
the adversary gets oracle access to a challenge oracle where on every query, the
challenger provides a freshly sampled input xb which is either a random input or
an input sampled for threshold 0. (Here, the challenge bit b is chosen only once.)
In our transformation provided in Sect. 4.2, we will rely on this multi-challenge
variant of the security game. Note that single-challenge and multi-challenge defi-
nitions are equivalent since the adversary is given unbounded oracle access to the
sampling oracle S in these games already. This follows from a standard hybrid
argument.

Remark 4.5 (Security for publicly-sampleable PLCPRFs). Similar to that for
traceable PRFs, a PLCPRF with public-sampleability is defined identically to
its secret-key counterpart, except now the attacker is additionally provided the
tracing key tk in all the security games.

Remark 4.6 (Single-key security). In some settings, we will consider private
linear constrained PRFs where the security properties (Definitions 4.1 and 4.3)
only hold against adversaries that can make a single key-generation query. We
refer to such schemes as single-key private linear constrained PRFs. In the single-
key setting, we also consider the selective notion of security where the adversary
is required to commit to its key-generation query at the beginning of the security
game (before making any oracle queries or in the case of the public-tracing
setting, seeing the tracing key). Note that selective single-key security implies
the standard adaptive single-key security at the expense of making a stronger
sub-exponential hardness assumption via complexity leveraging [BB04].

4.2 Building Traceable PRFs

In this section, we show how to build a traceable PRF scheme from a private
linear CPRF scheme. First, we recall the ‘jump-finding’ problem introduced in
the work of Nishimaki et al. [NWZ16]. Later on, we describe our construction.

Definition 4.7 (Noisy jump finding problem [NWZ16, Definition 3.6]).
The (N, q, δ, ε)-jump-finding problem is defined as follows. An adversary chooses



Beyond Software Watermarking 269

a set C ⊆ [N ] of q unknown points. Then, the adversary provides an oracle
P : [0, N ] → [0, 1]R with the following properties:

– |P (N) − P (0)| ≥ ε.
– For any x, y ∈ [0, N ] where x < y and [x+1, y]∩C = ∅, then |P (y) − P (x)| <

δ.

The (N, q, δ, ε)-jump finding problem is to interact with the oracle P and output
an element in C. In the (N, q, δ, ε)-noisy jump finding problem, the oracle P is
replaced with a randomized oracle Q : [0, N ] → {0, 1} where on input x ∈ [0, N ],
Q(x) outputs 1 with probability P (x). A fresh independent draw is chosen for
each query to Q(x).

Theorem 4.8 (Noisy jump finding algorithm [NWZ16, Theorem 3.7]).
There is an efficient algorithm QTraceQ(λ,N, q, δ, ε) that runs in time t =
poly(λ, log N, q, 1/δ) and makes at most t queries to Q that solves the (N, q, δ, ε)-
noisy-jump-finding problem whenever ε > δ(5 + 2(
log N − 1�)q). In particu-
lar, QTraceQ(λ,N, q, δ, ε) will output at least one element in C with probability
1 − negl(λ) and will never output an element outside C. Moreover, any element
x output by QTraceQ(λ,N, q, δ, ε) has the property that P (x) − P (x − 1) > δ,
where P (x) = Pr[Q(x) = 1].

Remark 4.9 (Relaxed non-intersection property [NWZ16, Remark 3.8]). The
algorithm QTraceQ in Theorem 4.8 succeeds in solving the (N, q, δ, ε)-noisy-
jump-finding problem even if the associated oracle P does not satisfy the second
property in Definition 4.7: namely, there may exist x, y where [x + 1, y] ∩ C = ∅

and |P (y) − P (x)| ≥ δ. As long as the property holds for all pairs x, y queried
by QTraceQ, Theorem 4.8 applies.

Construction 4.10 (Traceable PRF). Let PLCPRF = (PL.Setup,
PL.KeyGen,PL.Eval,PL.Samp) be a private linear CPRF scheme with input-
output space X and Y. Below we construct a traceable PRF scheme with identical
input-output spaces. (Here we provide a transformation for PRF schemes with
secret key tracing, but the construction can be easily extended to work in the pub-
lic tracing setting if the special sampling algorithm in the underlying PLCPRF
scheme is public key as well, that is tracing key tk is public).

Setup(1λ, 1κ) → (msk, tk). The setup algorithm runs the PLCPRF setup as
(msk, tk) ← PL.Setup(1λ, 1κ), and outputs master secret-tracing key pair as
(msk, tk).

KeyGen(msk, id) → skid. The key generation algorithm runs the PLCPRF key gen-
eration algorithm as skid ← PL.KeyGen(msk, id), and outputs secret key skid.

Eval(sk, x) → y. The evaluation algorithm runs the PLCPRF evaluation algorithm
as y = PL.Eval(sk, x), and outputs y.

TraceD(tk, 1z, q) → T. The tracing algorithm runs the QTrace algorithm twice

as T (real) ← QTraceQ
(real)
D (λ, 2κ, q, δ, ε) and T (rnd) ← QTraceQ

(rnd)
D (λ, 2κ, q, δ, ε),

where δ = ε/(5 + 2κq), ε = 1/z, and oracles Q
(real)
D and Q

(rnd)
D are described

in Fig. 3. Finally, it outputs the set as T (real) ∪ T (rnd).
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On input τ ∈ [0, 2κ], the oracle Q
(mode)
D proceeds as follows:

– Let compτ denote the comparison function that on input inp, outputs
1 if and only if inp ≥ τ .

– Run the (stateful) oracle D, where on each query made by D the
oracle QD samples an input-output pair as (x, y) PL.Samp(tk, τ).
It samples a random output string y′ Y. If mode = real, it sends
(x, y) as the query response to D. Otherwise, it sends (x, y′) as the
query response to D.

– Finally, D outputs a bit b, and oracle QD outputs the same bit b.

Fig. 3. The distinguishing oracle Q
(mode)
D for mode ∈ {real, rnd}.

Remark 4.11 (Additional parameter q). Note that here the trace algorithm takes
an additional parameter q. This is not an additional restriction since one could
simply run the tracing algorithm increasingly with parameter q growing as suc-
cessive powers of two as long as the tracing algorithm outputs an empty set. A
similar approach was taken in prior works such as [NWZ16,GKW19b].

4.3 Security

In this section, we prove security of our construction. Formally, we prove the
following.

Theorem 4.12 (Correctness). If the PLCPRF scheme PLCPRF =
(PL.Setup,PL.KeyGen,PL.Eval,PL.Samp) satisfies the key-similarity (resp., key-
indistinguishability) property (Definitions 3.2 and 3.3, respectively), then the
scheme T = (Setup, KeyGen, Eval, Trace) from Construction 4.10 also satis-
fies key-similarity (resp., key-indistinguishability).

The above theorem follows directly from our construction. Next, we prove tracing
security of our scheme.

Theorem 4.13 (Security). If the scheme PLCPRF = (PL.Setup,PL.KeyGen,
PL.Eval,PL.Samp) satisfies normal hiding (Definition 4.1), identity hiding (Defi-
nition 4.2), and pseudorandomness (Definition 4.3) (resp., in the absence of SlE
queries), then the scheme T = (Setup, KeyGen, Eval, Trace) from Construction
4.10 is a secure traceable PRF scheme as per Definition 3.5 (resp., in the absence
of SlE queries).

We provide an overview of the security proof below and provide the full proof
in the full version of this paper [GKWW20].
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Proof Overview. We prove the theorem in two parts. First, we show that the
false tracing probability is bounded by a negligible function. Next, we show the
correct tracing probability is close to the probability of adversary outputting an
ε-good distinguisher for some non-negligible ε.

We begin by introducing some notation for the overview. Fix some master
secret-tracing key pair (msk, tk). Given any pirate distinguisher D and threshold
τ ∈ [0, 2κ], let

pτ,D = Pr
[
DPL.Samp(tk,τ)(1λ) = 0

]
and qτ,D = Pr

[
D

˜PL.Samp(tk,τ)(1λ) = 0,
]

where the oracle algorithm ˜PL.Samp is defined as the regular PL.Samp oracle
algorithm, except the second tuple element (i.e., the output string) is sampled
uniformly at random. Concretely, on each query to ˜PL.Samp(tk, τ), the ora-
cle first samples (x, y) ← PL.Samp(tk, τ), y′ ← Y, and outputs (x, y′) as the
response. Here the probability is taken over the random coins of distinguisher D
as well as the randomness used by the sample algorithm. Similarly, let

pnrml,D = Pr
[
DReal(msk)(1λ) = 0

]
, and prnd,D = Pr

[
DRand(1λ) = 0

]

where oracle Real(msk) on each query, samples a random input x ← X , and
outputs (x,Eval(msk, x)) as the query response; whereas the oracle Rand is sim-
ulated by sampling by a random function f : X → Y, and on each query, it
samples a random input x ← X , and outputs (x, f(x))) as the query response.
The above probabilities are also parameterized by the PLCPRF keys, but for
simplicity of notation we do not include them as they are clear from context.

Now, suppose there exists a successful attacker A. That is, A produces a dis-
tinguisher D∗, after making polynomially-many evaluation and key-generation
queries, such that pnrml,D∗ − prnd,D∗ ≥ 2ε, and the tracing algorithm outputs
either an empty set or an identity outside the set of identities queried by A.10

Let δ = ε/(5 + 2κq) as used in the construction. Let γ∗ denote the probabil-
ity that the distinguisher D∗ outputs 0 when given oracle access to a random
function. Thus, we get that pnrml,D∗ ≥ γ∗ + 2ε. We first argue that it must also
be the case that p0,D∗

> γ∗ + 2ε − δ, as otherwise we could use A to break the
PLCPRF normal hiding property. Next, we also show that for any two thresholds
τ1 < τ2, pτ1,D∗ − pτ2,D∗

< δ and qτ2,D∗ − qτ1,D∗
< δ as long as A does not make

any key-generation query for an identity in the range [τ1, τ2 − 1]. This argument
relies on the identity hiding property of the PLCPRFs. Next, we argue that
p2

κ,D∗ −q2
κ,D∗

< δ, as otherwise we could break the pseudorandomness security
of the PLCPRFs. Lastly, we also argue that q0,D∗ − prnd,D∗

< δ, as otherwise we
could break the PLCPRF normal hiding property. Combining these statements
with the guarantees provided by the noisy jump finding algorithm (Theorem
4.8), we conclude that the tracing does not output an incorrect identity. ��
10 Recall that if D∗ is a ε-good distinguisher, then we have the bound

Pr
[
D∗Ob(msk)(1λ) = b : b ← {0, 1}

]
≥ ε. This can be rewritten as pnrml,D∗ −

prnd,D∗ ≥ 2ε.
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Remark 4.14 (Public-tracing and handling SlE oracle queries). In the proof of
Theorem 4.13 above, we showed that Construction 4.10 gives a traceable PRF
scheme with private tracing (which is secure in the absence of special evaluation
oracle (SlE) queries), as long as the underlying PLCPRF scheme is privately-
sampleable and secure in the absence of SlE queries. However, if the underly-
ing PLCPRF scheme is either publicly-sampleable or secure in presence of SlE
queries, or both, then the reduction algorithm described above easily extends
to prove the construction described above to be publicly-traceable, or secure in
presence of SlE queries, or both, respectively.

Remark 4.15 (Single-key security). In the proof of Theorem 4.13, the number
of key-generation queries each of the reduction algorithms needs to make to
the underlying private linear constrained PRF is equal to the number of key-
generation queries the tracing adversary makes. Thus, if we have a single-key
private linear constrained PRF (Remark 4.6), that implies a traceable PRF
with security against adversaries that can only make a single key-generation
query. In Sect. 5, we show how to construct a single-key private linear constrained
PRF from standard lattice assumptions (using single-key private constrained
PRFs) as a starting point. It is an open problem to construct a many-key (i.e.,
collusion-resistant) private linear constrained PRF (or a traceable PRF) from
standard lattice assumptions. We can construct a fully collusion-resistant private
linear constrained PRF from indistinguishability obfuscation and injective one-
way functions (see Sect. 6).

5 Privately-Traceable Private Linear Constrained PRFs

In this section, we show how to construct a single-key private linear constrained
PRF from a private constrained PRF (for general circuit constraints) and an
authenticated encryption scheme. Together with Construction 4.10, this yields
a single-key traceable PRF in the private-tracing setting (and without access
to the SlE) from standard lattice assumptions (namely, on the sub-exponential
hardness of LWE with a sub-exponential modulus-to-noise ratio). We define pri-
vate constrained PRFs below and provide the formal definitions of authenticated
encryption in the full version of this paper [GKWW20].

5.1 Private Constrained PRFs

Syntax. A private constrained PRF with input space X , output-space Y, and
constraint family F = {Fλ,κ}λ,κ∈N

where Fλ,κ = {f : X → {0, 1}} consists of
the following algorithms:

Setup(1λ, 1κ) → msk. The setup algorithm takes as input the security parameter
λ and a constraint-family parameter κ and outputs a master PRF key msk.

Constrain(msk, f) → skf . The constrain algorithm takes as input the master
secret key msk and a constraint f ∈ Fλ,κ and outputs a constrained key skf .

Eval(sk, x) → y. The evaluation algorithm takes as input a secret key sk (which
could be the master secret key msk) and an input x ∈ X and outputs a value
y ∈ Y.
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Correctness and Security. We describe the correctness and security definitions
for a private constrained PRF in the full version of this paper [GKWW20].

Instantiations. Private constrained PRFs (for general circuit constraints) sat-
isfying the above properties can be built assuming sub-exponential hardness of
LWE (with a sub-exponential modulus-to-noise ratio) [BTVW17,PS18].

5.2 Constructing a Private Linear Constrained PRF

We begin with a brief overview of our construction of a private linear constrained
PRF. As discussed in Sect. 1.1, the domain of our PRF will be the ciphertext
space {0, 1}� for an authenticated encryption scheme with pseudorandom cipher-
texts. A point corresponding to an index t ∈ [0, 2κ] (as would be output by the
Samp algorithm) is an authenticated encryption of t. The PRF itself is imple-
mented using a private constrained PRF, and the marked keys in our system
correspond to a constrained key. Specifically, a marked key for an identity id
consists of a constrained key for the function fsk,id that has the secret key sk and
the identity id hard-wired within in. The constraint fsk,id has the property that
fsk,id(x) = 0 whenever x is a valid encryption under sk of some index t′ > id,
and is 1 otherwise.

At a high-level, the security proof relies on the fact that a private constrained
PRF hides the constraint function, which in this particular case, means that it
hides the secret key sk. Then, normal hiding and identity hiding follows from
the fact that the ciphertexts in the underlying authenticated encryption scheme
are pseudorandom, and pseudorandomness follows from constrained security of
the underlying constrained PRF. We give our formal construction and security
analysis below:

Construction 5.1 (Private linear constrained PRF). Fix a security parameter
λ and an identity-space parameter κ. Our private linear constrained PRF relies
on the following ingredients:

– A symmetric encryption scheme (SE.Setup,SE.Enc,SE.Dec) with key-space K,
message-space M = {Mκ}κ∈N

where Mκ = [0, 2κ], and ciphertext space
C = {Cλ,κ}λ,κ∈N

. Suppose that Cλ,κ ⊆ {0, 1}� where � = �(λ, κ).
– For a symmetric encryption key k ∈ K and a threshold t ∈ [0, 2κ], let

fk,t : {0, 1}� → {0, 1} be the following predicate:

On input ct ∈ {0, 1}�:

1. Compute t′ ← SE.Dec(k, ct). If SE.Dec(k, ct) does not have this form,
output 1.

2. Output 1 if t′ ≤ t and 0 otherwise.

– A private constrained PRF (PCPRF.Setup,PCPRF.Eval,PCPRF.Constrain)
with input space X = {0, 1}�, output space Y and constraint family Fλ,κ =
{fk,t | k ∈ K, t ∈ [0, 2κ]}.
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We construct a private linear constrained PRF with input space X = {0, 1}�,
output space Y as follows:

Setup(1λ, 1κ) → (msk, tk) The setup algorithm samples a symmetric encryption
key k ← SE.Setup(1λ, 1κ) and a private constrained PRF key pcprf.msk ←
PCPRF.Setup(1λ, 1κ). Then, it outputs msk = tk = (k, pcprf.msk).

KeyGen(msk, id) → skid. The key-generation algorithm takes as input a master
secret key msk = (k, pcprf.msk) and an identity id ∈ [0, 2κ] and outputs skid ←
PCPRF.Constrain(pcprf.msk, fk,id).

Eval(sk, x) → y. The evaluation algorithm takes as input a secret key sk and an
input x ∈ {0, 1}� and output y ← PCPRF.Eval(sk, x).

Samp(tk, t) → (x, y). The sampling algorithm takes as input the tracing key tk =
(k, pcprf.msk) and a threshold t ∈ [0, 2κ]. It computes x ← SE.Enc(k, t) and
y ← PCPRF.Eval(pcprf.msk, x) and outputs (x, y).

As long as the underlying private constrained PRF PCPRF is single-key secure
and the underlying authenticated encryption scheme is secure, Construction 5.1
is a single-key private linear constrained PRF (see Remarks 4.6 and 4.15 for a
discussion of single-key security). We provide the proofs in the full version of
this paper [GKWW20].

Theorem 5.2 (Key indistinguishability). Suppose PCPRF satisfies correct-
ness and single-key selective privacy, and that SE satisfies ciphertext integrity.
Then, the private linear constrained PRF from Construction 5.1 satisfies single-
key selective key indistinguishability where the adversary is only able to choose
idx = 1 (i.e., the adversary can only target the identity key skid it requested).

Theorem 5.3 (Single-key normal hiding). Suppose PCPRF satisfies single-
key selective privacy, SE is correct and satisfies ciphertext integrity and cipher-
text pseudorandomness. Then, the private linear constrained PRF from Con-
struction 5.1 satisfies selective single-key normal hiding security (without SlE
queries).

Theorem 5.4 (Single-key identity hiding). Suppose PCPRF satisfies
single-key selective privacy, SE is correct and satisfies ciphertext integrity and
CPA-security. Then, the private linear constrained PRF from Construction 5.1
satisfies selective single-key identity hiding security (without SlE queries).

Theorem 5.5 (Single-key pseudorandomness). Suppose PCPRF satisfies
constrained pseudorandomness and SE is correct and satisfies CPA-security.
Then, the private linear constrained PRF from Construction 5.1 satisfies selec-
tive single-key pseudorandomness (without SlE queries).

Instantiating Construction 5.1. Combining a private constrained PRF for cir-
cuit constraints [BTVW17,PS18] with an authenticated encryption scheme with
pseudorandom ciphertexts (implied by any one-way function), we obtain a pri-
vate linear constrained PRF from sub-exponential hardness of LWE with a sub-
exponential modulus-to-noise ratio (by applying complexity leveraging [BB04]
to the selectively secure construction above).
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6 Publicly-Traceable Private Linear Constrained PRFs

In this section, we show how to construct a publicly-traceable private linear
constrained PRF from indistinguishability obfuscation [BGI+01] together with
a puncturable public-key encryption scheme [CHN+16]. We provide the formal
definitions of these building blocks in the full version of this paper [GKWW20].

Our construction takes the same general approach as our previous construc-
tion based on private constrained PRFs in Sect. 5. Namely, the domain of the
PRF is the ciphertext space for a sparse (puncturable) public-key encryption
scheme with pseudorandom ciphertexts.11 The special points associated with an
index t ∈ [0, 2κ] used for tracing correspond to encryptions of t under the public-
key encryption scheme. A marked key for an identity id consists of an obfuscated
program that has both the decryption key hard-wired within it (needed to iden-
tify special points) as well as the master PRF key (in order to compute valid PRF
evaluations on non-special points). Similarly, the public sampling algorithm con-
sists of an obfuscated program with the master PRF key hard-wired and which
takes an index t and randomness r, and samples an input-output pair for the
PRF. In the security proof, we show that security holds as long as the public-key
encryption scheme and the underlying PRF are puncturable, and the analysis is
a standard application of the punctured programming paradigm of [SW14].

Construction 6.1 (Private linear constrained PRF with public trac-
ing). Fix a security parameter λ and an identity-space parameter κ. We rely
on the following ingredients:

– A puncturable public-key encryption scheme (PE.Setup,PE.Enc,PE.Dec,
PE.Puncture) with message space M = {Mκ}κ∈N

where Mκ = [0, 2κ], and
ciphertext space C = {Cλ,κ}λ∈N,κ∈N

, where Cλ,κ ⊆ {0, 1}� for some � = �(λ, κ).
Let ρ = ρ(λ) be a bound on the number of bits of randomness PE.Enc takes.

– A length-doubling pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
– A puncturable PRF12 (PPRF.Setup,PPRF.Eval,PPRF.Puncture) with domain

{0, 1}�+2λ and range Y.
– An indistinguishability obfuscator iO for general circuits.

We construct our private linear constrained PRF family with domain {0, 1}�+2λ

and range Y as follows (Figs. 4, 5):

Setup(1λ, 1κ) → (msk, tk). Sample a public and secret key-pair (PE.pk,PE.sk) ←
PE.Setup(1λ, 1κ) and a puncturable PRF key PPRF.msk ← PPRF.Setup(1λ).
Let PSamp[PE.pk,PPRF.msk] be the following program:

11 To implement the punctured programming ideas from [SW14] in the security anal-
ysis, we also adjoin a long pseudorandom string to the domain.

12 A puncturable PRF is a constrained PRF (see Sect. 5.1) is a constrained PRF for the
family of “puncturing” constraints F = {fx : X → {0, 1} : x ∈ X} where fx(y) = 1
if x �= y and 0 if x = y. They can be built directly from one-way functions [GGM84,
BW13,KPTZ13,BGI14].
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Hard-wired: a PE public key PE.pk and a puncturable PRF key
PPRF.msk

Input: an index t ∈ [0, 2κ], and randomness r ∈ {0, 1}ρ+λ.

– Parse r = r0‖r1 where r0 ∈ {0, 1}ρ and r1 ∈ {0, 1}λ. Compute
ct PE.Enc(PE.pk, t; r0), set z ct‖PRG(r1) ∈ {0, 1}�+2λ, and
output (z,PPRF.Eval(PPRF.msk, z)).

Fig. 4. The program PSamp[PE.pk,PPRF.msk]

Hard-wired: an identity id ∈ {0, 1}κ, a PE secret key PE.sk, and a PRF
key PPRF.msk

Input: an input x ∈ {0, 1}�+2λ

– Parse x as ct‖x′ where ct ∈ {0, 1}� and x′ ∈ {0, 1}2λ. Compute
t′ PE.Dec(PE.sk, ct). If t′ = ⊥, output PPRF.Eval(PPRF.msk, x).

– Otherwise, output PPRF.Eval(PPRF.msk, x) if t′ ≤ id and ⊥ if t′ >
id.

Fig. 5. The program PEval[id,PE.sk,PPRF.msk]

The setup algorithm outputs msk ← (PE.pk,PE.sk,PPRF.msk) and tk ←
iO(1λ, PSamp[PE.pk,PPRF.msk]). Note that PSamp[PE.pk,PPRF.msk] is padded
to be the maximum size of all modified P ′

Samp programs that appear in the
security analysis.

KeyGen(msk, id) → skid. Let PEval[id,PE.sk,PPRF.msk] be the following program:

Output skid ← iO(1λ, PEval[id,PE.sk,PPRF.msk]). Similar to Setup, the pro-
gram PEval[id,PE.sk,PPRF.msk] is padded to be the maximum size of all mod-
ified P ′

Eval programs that appear in the security analysis.
Eval(sk, x) → y. If the secret key sk has the form (PE.pk,PE.sk,PPRF.msk),

then output PPRF.Eval(PPRF.msk, x). Otherwise, if skid is a description of
an obfuscated program, output skid(x).

Samp(tk, t) → (x, y). Sample a random r ← {0, 1}ρ+λ and output tk(t, r).

Due to space limitations, we defer the formal theorem statements and their
proofs to the full version of this paper [GKWW20].
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Abstract. Protocols that make use of oblivious transfer (OT) rarely
require just one instance. Usually, a batch of OTs is required—notably,
when generating base OTs for OT extension. There is a natural way to
optimize 2-round OT protocols when generating a batch, by reusing cer-
tain protocol messages across all instances. In this work we show that
this batch optimization is error prone. We catalog many implementations
and papers that have an incorrect treatment of this batch optimization,
some of them leading to catastrophic leakage in OT extension protocols.
We provide a full treatment of how to properly optimize recent 2-round
OT protocols for the batch setting. Along the way we show several per-
formance improvements to the OT protocol of McQuoid, Rosulek, and
Roy (ACM CCS 2020). In particular, we show an extremely simple OT
construction that may be of pedagogical interest.

1 Introduction

Oblivious transfer (OT) is a fundamental primitive for cryptographic proto-
cols. It is well-known that OT cannot be constructed in a black-box way from
symmetric-key primitives [IR90]. Nevertheless, it is possible to generate a large
number of OTs from symmetric-key primitives and a small number of “base
OTs”, thanks to an idea called OT extension [Bea96]. With OT extension,
parties can generate many OT instances where the marginal cost of each instance
involves only cheap symmetric-key operations. Modern OT extension proto-
cols [IKNP03,KK13,ALSZ13,KOS15] can generate millions of OTs per second.

OT extension protocols require κ (e.g., 128) base OTs, and yet most base-
OT protocols in the literature are described in terms of a single OT instance.
Obviously any single-instance OT protocol can be invoked κ times to produce
base OTs; however, this overlooks the possibility of optimizations for the batch
setting. In this work we provide a full treatment of the batch setting for recent
leading OT protocols.

1.1 Overview of Our Results

Näıve Batching is Insecure. There is a natural way to optimize certain 2-round
OT protocols for the batch setting. When the OT sender is first to speak, it is
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Sender Receiver
a KA.R (input c ∈ {0, 1})
A = KA.msg1(a)

A

b KA.R
B = KA.msg2(b, A)

B̃ = Π(B) ⊕ c

M0 := KA.key1(a, Π−1(B̃)) Mc = KA.key2(b, A)
M1 := KA.key1(a, Π−1(B̃ 1))

Fig. 1. Our conceptually simple 1-of-2 random OT protocol, from instantiating
[MRR20] with a new “programmable-once public function.” Π± is an ideal permu-
tation and KA is a 2-message key agreement whose “B-messages” are pseudorandom
bit strings.

natural to reuse their protocol message for all OT instances in the batch. We
call this method näıve batching.

We show that näıve batching is not guaranteed to be secure. Not only does
näıve batching fail to achieve an appropriate security notion, but it is also demon-
strably unsuitable as the base OTs for certain OT extension protocols. Specif-
ically, we show a serious attack on the 1-out-of-N OT extension protocol of
Orrù, Orsini, and Scholl [OOS17], when its base OTs are generated with näıve
batching. Unfortunately, we find improper batching (including näıve batching)
implemented in several protocol libraries [Rin,CMR,Kel20,Sma] and appearing
in several papers [CO15,HL17,CSW20].

Proper Batching of Base OTs. We then give a complete treatment of how to
correctly optimize leading OT protocols for the batch setting. Fortunately, it is
simple and cheap to fix näıve batching, although the complete security analysis
requires care. We show how to correctly optimize the recent OT protocol of
McQuoid, Rosulek, and Roy [MRR20] (hereafter, MRR) for the batch setting.
As we show, the Masny-Rindal protocol [MR19] is a special case of the MRR
protocol, so our analysis applies to that protocol as well. A comparison of our
batched-OT/base-OT protocol to existing work is shown in Table 1.

Other Improvements. We present several additional improvements to the OT
protocol paradigm of McQuoid-Rosulek-Roy (MRR). The MRR protocol can
provide 1-out-of-N random-OT, for essentially any N . Modern OT extension
protocols require the base OTs to provide only 1-out-of-2 OT. Our optimizations
to the MRR approach center around the special case of 1-out-of-2 OT1 and
specific properties of the batch setting.

– The MRR protocol revolves around an object called a programmable-once
public function (POPF). A POPF with domain [N ] leads to a protocol
for 1-out-of-N OT. In introducing the concept of a POPF, MRR describe a

1 Most of our improvements also apply to 1-out-of-N OT, for polynomial N .
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Table 1. Comparison of m-instance random 1-of-2 OT protocols. “Exp” denotes expo-
nentiations (f = fixed-base, v = variable-base, fM = fixed-base Montgomery, vM =
variable-base Montgomery). “Com” denotes communication (G = one group element).
PRO = programmable random oracle; ORO = observable random oracle; IC = ideal
cipher.

Scheme Assumption Setup Flows Exp (Send/Receive) Com (Send/Receive)

SimplestOT [CO15] Gap-CDH PRO 2 1f (m + 1)v/mf mv 1G/mG

BlazingOT [CSW20] CDH ORO 3 1f (m + 1)v/mf mv mκ + 1G/2κ + mG

EndemicOT [MR19] DDH PRO 2 2mf 2mv/mf mv 2mG/2mG

EndemicOT [MR19] iDDH PRO 1 mf 2mv/mf mv mG/2mG

Ours (MR) ODH PRO 1 2fM 2mvM/mfM mvM 2G/2mG

Ours (EKE) ODH IC 1 2fM 2mvM/mfM mvM 2G/mG

Ours (Feistel) ODH PRO 1 2fM 2mvM/mfM mvM 2G/mG

POPF with domain {0, 1}∗, which is useful in some applications but overkill
for the special case of 1-out-of-2 OT.
We show several improved POPF constructions for small domains (such as
N = 2). One particularly interesting and new POPF is in the ideal random
permutation model2 and is inspired by the Even-Mansour block cipher con-
struction [EM93]. When we instantiate MRR with this new POPF, we obtain
an endemic OT protocol that is efficient, incredibly simple to describe, and
may have pedagogical value as well (Fig. 1).

– The MRR protocol constructs OT from a POPF and a key agreement (KA)
protocol. These two components must be compatible, and in [MRR20] it was
shown how to make elliptic-curve Diffie-Hellman KA compatible with POPFs,
by using hash-to-curve operations or Elligator [BHKL13] encoding steps. In
this work, we present an alternative approach that avoids using either of these
somewhat costly operations, based on a trick due to Möller [Möl04]. Möller-
DHKA also avoids curve point addition, allowing us to use Montgomery lad-
ders to multiply, which are more efficient. Adopting the Möller technique
requires doubling the length of the sender’s protocol message; however, in the
batch setting it is exactly this sender’s message that is reused across all OT
instances in the batch, so the effect of doubling its size is minimal. In our
performance benchmark, we found that the Möller technique affords up to
a 36% increase in efficiency when batching OTs. This allows for UC secure
constructions with comparable runtime to those with standalone security. See
Table 2.

Finally, we show how our batch OT protocol can be used as the base OTs in
2-round OT extension.

2 The ideal random permutation model is like the random oracle model, except that
all parties have access to a random permutation on {0, 1}2κ, and its inverse!.
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Functionality batchEOT

The functionality batchEOT is parameterized by the length of the OT strings � and
the number m of OTs in the batch. It interacts with two parties, a sender S and a
receiver R via the following queries:

On input (ready, (r̃1,0, r̃1,1, . . . , r̃m,0, r̃m,1)) from S, with r̃i,c ∈ {0, 1}�:

– If S is corrupt, and there has been no previous ready command from S, then
internally record ri,c = r̃i,c for all i ∈ [m], c ∈ {0, 1}. Otherwise do nothing.

On input (ready, (c1, . . . cm) ∈ {0, 1}m, (r̃1, . . . , r̃m)) from R, with r̃i ∈ {0, 1}�:

– Do nothing if there has been a previous ready query from R.
– Internally record (c1, . . . cm)
– If R is corrupt, then internally record ri,ci = r̃i for each i ∈ [m].

After receiving ready queries from both S and R:

– For all i ∈ [m], c ∈ {0, 1}, if ri,c is not already defined, then sample ri,c {0, 1}�.
– Output (r1,c1 , . . . , rm,cm) to R and ((r1,0, r1,1), . . . , (rm,0, rm,1)) to S.

Fig. 2. Ideal functionality for a size m batch of endemic 1-out-of-2 oblivious transfers,
FbatchEOT. Adapted from the endemic OT functionality of [MR19].

2 Preliminaries

Endemic OT. We use the security definitions for universally composable OT
suggested by [MR19] (ideal functionality given in Fig. 2), which are a convenient
middle-ground between random OT and chosen-message OT. An OT protocol
results in outputs r0, r1 for the sender and rc for the receiver (who has choice
bit c). In endemic OT, a corrupt party may choose their own OT outputs,
and all other OT outputs are chosen uniformly by the functionality. Hence, a
corrupt sender can choose both r0 and r1. A corrupt receiver can choose rc

and the functionality will ensure that r1−c is uniform. As shown in [MR19], OT
extension protocols are secure if the base OTs satisfy this notion of endemic OT.

3 Problems with Näıve Batching

3.1 Näıve Batching

Consider any 2-round protocol for (endemic) OT, with the following syntax:

Sender Receiver (input c ∈ {0, 1})
sS ← {0, 1}κ

MS = OT.msgS(sS) MS

sR ← {0, 1}κ

MR = OT.msgR(sR,MS , c)
MR

(r0, r1) = OT.outS(sS ,MR) rc = OT.outR(sR,MS , c)
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Where the four functions OT.{msg, out}{S,R} are abstracted from the raw OT
protocol. In such a protocol, the sender’s message MS is clearly independent of
the receiver’s influence. In many protocols MS is additionally a message from a
KA protocol, and it is well-known that a KA message can be reused for many
KA instances, in certain circumstances. These observations suggest reusing the
first OT protocol message in the following way, when generating a batch of m
OTs:

Sender Receiver (inputs {ci}i∈[m])
sS ← {0, 1}κ

MS = OT.msgS(sS) MS

for i ∈ [m]:
sR,i ← {0, 1}κ

MR,i = OT.msgR(sR,i, MS , ci)
MR,1, . . . , MR,m

for i ∈ [m]: for i ∈ [m]:
(ri,0, ri,1) = OT.outS(sS , MR,i) ri,ci = OT.outR(sR,i, MS , ci)

We call this protocol transformation näıve batching. All four component func-
tions taken from the base OT protocol will be given the same (sub)session ID
because they are treated as a single batch instance. They are reused in such a
way that disallows for internal domain separation.

Lemma 1. Näıve batching does not securely realize batch endemic OT (Fig. 2).

Proof. The attack is simple: a corrupt receiver simply sends MR,1 = · · · = MR,m.
As a result, the sender must compute (r1,0, r1,1) = · · · = (rm,0, rm,1). There is
no way for the simulator to influence the sender’s output in this way in the ideal
model, hence this constitutes an attack.

Why Not Trivially Patch this Attack? The attack is for the receiver to send the
same OT response for all instances. We could simply tell the sender to abort if
it receives any repeated OT responses.

However, the simple attack that we have described is only the tip of the
iceberg. In all of the 2-round OT protocols that we consider, a corrupt receiver
can induce more complicated correlations among the OT values. For example,
a receiver can act honestly in the first OT instance to learn r1,0. Then r1,1

is unknown to the receiver. But there is a more sophisticated strategy for the
receiver to force the ratio r1,1/r2,0 to be a certain value. (The details of this
strategy are given in the full version of this paper, and depend on the details of
a specific base OT protocol.)

Based on this kind of attack, one might wish to weaken the endemic OT
functionality. Why not allow the simulator to specify these kinds of correlations
in the ideal model? Even this will not work, because the attack is perfectly
indistinguishable from honest behavior by the receiver. Thus, there is simply no
way for the simulator to distinguish this kind of an attack (where the receiver
must learn r1,1/r2,0) vs. honest behavior (where the receiver must learn r2,0).
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For these reasons, we believe there is no way to closely capture the security
of näıve batching in a UC ideal functionality.

3.2 Implications for OT Extension

Since the main application for batch OTs is as base OTs for OT extension, it
is natural to wonder whether the simple attack above jeopardizes the security
of OT extension. It has been established that OT extension can be securely
realized from base OTs with weakened security. For example, [CSW20] show
that certain input-dependent aborts in the base OTs do not harm the security
of OT extension.

We show that our simple attack on näıve batching indeed compromises secu-
rity of some OT extension protocols. Specifically, we consider the protocol of
Orrù, Orsini, and Scholl (OOS) [OOS17]. This OT extension protocol gener-
ates many instances of 1-out-of-2t OT, where in each one the sender obtains
r1, . . . , r2t and the receiver learns only rc, where c is an input. It will be conve-
nient to consider c to be an element of {0, 1}t in the natural way.

The OOS protocol is secure when the base OTs securely realize endemic
batch OT; see [MR19] for details. However, it loses security when using näıve
batching to generate its base OTs.

Lemma 2. The OOS protocol [OOS17] is demonstrably insecure when its base
OTs are instantiated via näıve batching.

Proof. The complete details of OOS can be found in [OOS17]. We sketch the
relevant details of their protocol here. Let Alice be the OOS sender (with no
inputs), and Bob be the OOS receiver (with choice value ci ∈ {0, 1}t for the ith
OT instance). The protocol proceeds as follows:

– The parties run m base OT instances, with Alice acting as receiver and Bob
acting as sender. Bob obtains base-OT outputs (k1,0, k1,1), . . . , (km,0, km,1).
Alice’s inputs and outputs are not relevant here.

– When extending to N OTs, Bob constructs two N × m matrices K and R as
follows:

• The jth column of K is PRG(kj,0) ⊕ PRG(kj,1).
• The ith row of R is C(ci) where C : {0, 1}t → {0, 1}m is a suitable binary

error correcting code (the details of which are not relevant here).

Bob sends K ⊕ R to Alice.
These details of OOS are enough to understand the attack. A corrupt Alice

will attack the base OTs (in the role of OT receiver as above) so that all ki,0’s are
the same and all ki,1’s are the same. As a result, every column of K is identical.
In other words, every row of K is either 0m or 1m.

Then the ith row of Bob’s matrix K ⊕ R is either C(ci) or its complement.
This means that if c, c′ ∈ {0, 1}t are any two choices for Bob whose codewords are
not bitwise complements of each other, then Alice can distinguish between Bob
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having choice c vs c′ in each extended OT. For some choices of C, learning C(x)
up to complement uniquely reveals x. This attack results in almost complete
leakage of Bob’s private input.

What if C is a Repetition Code? C is a binary error-correcting code, the simplest
of which is the repetition code C : {0, 1} → {0, 1}m. This corresponds to the case
of t = 1, and hence 1-out-of-2 OT extension. Specifically, instantiating OOS with
a repetition code collapses it to the Keller-Orsini-Scholl 1-out-of-2 OT extension
protocol (KOS) [KOS15].

In this case the only two codewords are 0m and 1m. Since these are bitwise
complements of one another, it is not clear that our attack leads to any security
problems. The rows of matrix R (encoding Bob’s private input) are masked by
either 0m or 1m, depending on a bit that is unknown to Alice. We are not sure
whether a more sophisticated attack on the base OTs (even for a specific näıvely
batched OT) can break KOS OT extension.

3.3 Problematic Batching Found in the Wild

Looking ahead, the fix for näıve batching is simple and essentially free (although
the security analysis of the fix requires some care, as we show in the next sec-
tions). In Diffie-Hellman-based OT protocols, the OT outputs r0, r1 are com-
puted by taking a (random oracle) hash of a Diffie-Hellman value. The fix is to
include the OT index in that key derivation—i.e., instead of r0 = H(sid, gab),
use r0 = H(sid, gab, i) in the ith OT instance in the batch. That way, even
if all gab values are identical (or correlated strangely), the final OT values are
independently random.

Given that both the attack and the fix are so simple, one may wonder whether
this problem is well-known. In fact, we found problems related to OT batching
in many libraries that implement malicious-secure OT extension.3 We focus on
the implications for the overall OT extension protocols, which are minor in
most cases. However, the consequences would be more severe for developers that
directly access the base-OT functionalities of these libraries.

– The libote OT extension library [Rin] implements Masny-Rindal [MR19]
base OTs and applies näıve batching. The original Masny-Rindal paper con-
siders only the single-instance setting and does not discuss security of the
batch setting under näıve batching. In some configurations, the libote imple-
mentation of OOS indeed uses these näıvely batched base OTs, thus falling
victim to our attack. Other configurations use a hybrid approach, first näıvely
batching 128 base OTs, then using KOS to extend to 512 OTs, and using
those 512 OTs as base for OOS. As mentioned above, we are not aware of
any explicit attack on KOS extension, but our observations merely raise some
concerns about its security with näıvely batched OTs.

3 We notified the maintainers of these libraries about the issues and the suggested fix.
By the time of writing, all maintainers have either already fixed or planned to fix
their handling of batch OTs.
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– The swanky MPC library [CMR] implements the Chou-Orlandi protocol and
reuses the sender’s message, but uses good domain separation in key deriva-
tion.4 However, it allows the sender’s protocol message to be reused across
several batches, while the domain separation is local to the batch! In other
words, parties could execute two batches of OTs, and the receiver could cause
the batches to produce identical outputs, by replaying its protocol messages.
In this library’s implementation of OT extension, they first apply the trans-
formation in [MR19] from endemic OT to uniform-message OT on the base
OTs. This prevents the receiver from forcing OT extension to operate on
identical base OTs. If not for this additional step, even KOS OT extension
would leak information across different batches. As it is, only the XOR of
PRG seeds is leaked under our attack on näıve batching, which is unlikely to
lead to a concrete attack.

– The mp-spdz [Kel20] and scale-mamba [Sma] library implementations of OT
use näıve batching of Chou-Orlandi base OTs. These libraries implement only
KOS and not OOS, and therefore we know of no concrete attack against their
OT extension.

We have also identified problematic handling of OT batching in several papers:

– The Chou-Orlandi OT protocol [CO15] explicitly considers the batch setting
and uses näıve batching to achieve it. As such, the protocol as written is not
suitable as the base OT for certain OT extensions.

– Since security flaws (unrelated to batching) were discovered in the Chou-
Orlandi protocol, several works have attempted to address and repair them.
Of those works, both [HL17] and [CSW20] explicitly consider the batch set-
ting. The paper of Hauck & Loss [HL17] maintains the näıve batching of the
original.

– The “Blazing OT” construction of Canetti, Sarkar, and Wang [CSW20] does
not technically use näıve batching, since it introduces a joint consistency check
across all instances in the batch. However, the key derivation in their base
OTs does not include the OT index. This means that the attack in Lemma 1
has the intended effect: causing all OT instances to give identical output. The
paper only considers a combined protocol with batched Chou-Orlandi base
OTs and KOS OT extension, and as such we are not aware of an explicit
attack on their final OT extension protocol. However, their security analysis
does not seem to acknowledge the possibility of all base OTs giving identical
outputs.

We found one instance of totally correct batching, in the implementation
of Chou-Orlandi OT in emp-toolkit [WMK16], despite näıve batching being
described in the paper.

4 The authors explicitly justify their correct key derivation as a bug in the Chou-
Orlandi paper, and reference the attack in which all base OTs generate identical
output. See chou orlandi.rs.

https://github.com/GaloisInc/swanky/blob/27c2a3888342822c172805dfd0fb4f8ae6cb00a6/ocelot/src/ot/chou_orlandi.rs#L14
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4 Properly Batching OTs

In this section we describe how to repair näıve batching. We focus on the
McQuoid-Rosulek-Roy (MRR) protocol [MRR20] since it subsumes the Masny-
Rindal protocol, while the Chou-Orlandi protocol does not achieve UC security.
As we saw, the main problem is that a corrupt receiver can force correlations
among the OT outputs in different instances—even causing some OT values to
be equal. The solution is to enforce “domain separation” among the different
instances. Intuitively, parties should hash each instance’s OT outputs under a
random oracle, with domain separation (i.e., include the index of that instance
in the hash).

However, proving the security of this change requires some care. For exam-
ple, we cannot prove security merely from the single-instance security of the OT
protocol, since the single-instance protocol is not being used correctly. Instead,
we must use some known structure of the protocol. The MRR protocol derives its
outputs from its underlying KA protocol, and we require stronger properties from
that KA. The KA must accept an extra “tag” argument, so that even if the KA
messages are identical, the resulting keys will be different under different tags.

4.1 Tagged KA

A tagged KA is identical in syntax to a traditional KA, except that the KA.key1
and KA.key2 algorithms take an additional tag argument. Correctness is that for
all a, b ∈ KA.R and all tags τ :

KA.key1(a,KA.msg2(b,KA.msg1(a)), τ) = KA.key2(b,KA.msg1(a), τ)

Looking ahead to our batch OT protocol, we will let the tag τ be the index of
the OT instance (e.g., OT instance 1, 2, 3, . . .).

Intuitively, we will require that KA outputs under different tags appear inde-
pendently random. This should hold not only when the KA protocol messages
are identical, but also when the KA messages (e.g., KA.msg2) are correlated,
since we previously observed (Sect. 3) that the adversary could induce arbitrary
correlations across OT/KA instances. This definition may be of independent
interest—specifically, in scenarios where KA protocol messages are reused.

Definition 3. A tagged KA protocol is tag-non-malleable if a session with
tag τ∗ is secure, even against an eavesdropper that has oracle access to
KA.key1(a, ·, ·), provided the eavesdropper never queries the oracle on tag τ∗.
Formally, the following distributions are indistinguishable, for all τ∗ and every
PPT A that never queries its oracle with second argument τ∗:

a, b ← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)
K = KA.key1(a,M2, τ

∗)
return AKA.key1(a,·,·)(M1,M2,K)

a, b ← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)
K ← KA.K
return AKA.key1(a,·,·)(M1,M2,K)



290 I. McQuoid et al.

Like [MRR20], we also require the KA protocol to satisfy the following ran-
domness property:

Definition 4. A key agreement protocol has strongly random responses if
the honest output of KA.msg2 is indistinguishable from random, even to an adver-
sary who (perhaps maliciously) generated M1. Formally, for all polynomial time
A, the following distributions are indistinguishable:

(M1, state) ← A()
b ← KA.R
M2 = KA.msg2(b,M1)
return (state,M2)

(M1, state) ← A()

M2 ← KA.M
return (state,M2)

4.2 Programmable-Once Public Functions

The MRR protocol uses a primitive called programmable-once public functions
(POPFs). We introduce definitions for POPF here, which slightly differ from
the original definitions. We have specialized the definitions for the case of 1-
out-of-2 OT5—[MRR20] define POPFs in a way that is useful for 1-out-of-N
OT (with exponential N) and also password-authenticated key exchange. In the
original POPF definitions, a simulator simulated the random oracle setup in the
service of a single POPF instance; in our batch setting there will be many POPF
instances, thus we must adapt the definitions to explicitly allow simulation of
multiple POPFs in a non-interfering way.

Definition 5. A 1-weak random oracle is a function F : N → O such that
the following two distributions are indistinguishable,

x ← N
y := F (x)
return x, y

x ← N
y ← O
return x, y

when the adversary does not have access to F other than through these experi-
ments.

Note that F is only allowed to be used once this definition. This makes it an
extremely weak property—it’s even satisfied by universal hashes.

Definition 6 (Syntax). A batch 2-way programmable-once public func-
tion (batch 2-POPF) consists of algorithms:

– Eval : M × {0, 1} → N
– Program : {0, 1} × N → M
5 All of the POPFs in this paper have straightforward generalizations to the 1-out-

of-N case, for polynomial N , and some to exponential N as well, but we restrict
ourselves to the 1-out-of-2 case for simplicity.
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Both algorithms access some local setup H—depending on the instantiation, H
could consist of common reference strings, random oracles, ideal ciphers, etc. All
parties (adversaries) may access the setup directly as well, although it is local to
a single instance of the batch 2-POPF. The setup may be stateful (e.g., the “lazy”
formulation of a random oracle, which samples outputs on the fly).

A 2-POPF must also include alternative local setups, which are used in dif-
ferent security definitions:

– HHSim must provide the same interface as H as well as an additional method
HSim : N × N → M.

– HExtract must provide the same interface as H as well as an additional method
Extract : M → {0, 1}. Extract must not modify the private state of HExtract.

We write AH to denote an algorithm A with oracle access to all methods
provided by the setup H.

Definition 7 (Correctness). A batch 2-POPF satisfies correctness if
Eval(φ, x∗) = y∗ with all but negligible probability, whenever φ ←
Program(x∗, y∗).

Definition 8 (Security). A batch 2-POPF is secure if it satisfies the following
properties:

1. Indistinguishable Local Setups: The local setups H, HHSim and HExtract all
implement a common interface. The setups must be indistinguishable to an
adversary that only queries on this interface. Formally, if A is a polynomial-
time algorithm that only queries its setup on the interface of H then the
following probabilities are negligibly close:

Pr[AH() = 1]; Pr[AHHSim() = 1]; Pr[AHExtract() = 1]

2. Honest Simulation: Any φ that is generated honestly as φ ←
Program(x∗, y∗), with y∗ chosen uniformly, is indistinguishable from φ gener-
ated via the HSim algorithm of HHSim. Since HSim does not have a “preferred”
input x∗, this establishes that an honestly generated φ hides the x∗ on which
it was programmed.
Formally, define the following functions:

real phi(x∗ ∈ {0, 1},D):
(s, y∗) ← D
φ ← Program(x∗, y∗)
r0 := Eval(φ, 0)
r1 := Eval(φ, 1)
return s, φ, r0, r1

sim phi(x∗ ∈ {0, 1},D):
(s, y∗) ← D
rx∗ := y∗

r1−x∗ ← N
φ ← HSim(r0, r1)
return s, φ, r0, r1

Then for all polynomial time A,

Pr[AHHSim,real phi() = 1] − Pr[AHHSim,sim phi() = 1]
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is negligible. Here we restrict A to always query with D a distribution over
{0, 1}∗ ×N such that the marginal distribution of y∗ is indistinguishable from
the uniform distribution over N . The other component s appears for technical
reasons; the reader can think of it as the coins used to sample y∗.
Note that sim phi calls the HSim method of the local setup, and that A may
even query the HSim method (both the real and ideal experiments use HHSim).

3. Uncontrollable Outputs: For any φ generated by the adversary, the Extract
method of HExtract can identify an input x∗ such that the adversary has no
control over Eval(φ, 1 − x∗). We say that Eval(φ, 1 − x∗) is beyond the adver-
sary’s control if F (Eval(φ, 1 − x∗)) is indistinguishable from random, for any
1-weak-RO F .6

Formally, the following distributions must be indistinguishable for all
polynomial-time A1,A2 and all 1-weak-RO F :

(φ, state) ← AHExtract
1 ()

x∗ := Extract(φ)
r := F (Eval(φ, 1 − x∗))
return AHExtract

2 (state, r)

(φ, state) ← AHExtract
1 ()

r ← N
return AHExtract

2 (state, r)

As above, the left distribution calls the Extract method of the HExtract setup,
and the adversary may query this method as well. Note that A does not have
any access to F beyond the one call provided by this experiment.

The reader may be curious why we forced y∗ to be sampled inside Hon-
est Simulation, instead of letting the adversary choose it like in [MRR20]. The
answer is that otherwise an ideal cipher would not be a POPF. An adversary
could have already run Program(0, y∗) earlier, and because for each x there is a
bijection between values of y and φ, a call to HSim(y∗, r1) would be forced to
return the same φ as before. Ideal ciphers were used as a motivating example for
POPFs in [MRR20], so this is clearly a mistake. Ideal ciphers satisfy our new
definition (Sect. 5.1).

4.3 The Batch OT Protocol

In Fig. 3 we present the batch variant of the OT protocol of [MRR20]. The
protocol is essentially the näıve batching of the single-instance protocol, except
we use a tagged KA and use different tags for each KA output.

Theorem 9. When instantiated with a secure batch POPF and a tag-non-
malleable KA scheme (Definition 3) with strongly random responses (Definition
4), the OT protocol in Fig. 3 is a UC secure batch endemic OT (Fig. 2), if the
POPF’s output satisfies N = KA.M2.

6 There are 1-weak ROs whose outputs can be distinguished from random when inputs
are chosen in a certain adversarial way. Hence, requiring the RO outputs to remain
random is a way of requiring that these values are not chosen in an adversarial way.
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Sender Receiver (with input {ci}i∈[m])
a KA.R
MS = KA.msg1(a)

MS for i ∈ [m]:
bi KA.R
MR,i := KA.msg2(bi, MS)
φi := Program(ci, MR,i)

for i ∈ [m]: φ1, . . . , φm

for j ∈ {0, 1}: for i ∈ [m]:
ri,j = KA.key1(a,Eval(φi, j), i j) ri,ci = KA.key2(bi, MS , i ci)

Fig. 3. Our m-batch 1-of-2 oblivious transfer protocol.

Proof. Correctness of the POPF and KA clearly show that the protocol is correct
in the case where both parties are honest. When both parties are corrupt, the
simulator has direct access to both parties and can simulate the real protocol by
just running it. This leaves the two interesting cases, where one party is malicious
and the other is honest. We prove each case by giving first a simulator, then a
sequence of hybrids showing indistinguishability. The hybrids start from the real
world and end at the ideal world: the simulator composed with an ideal batch
endemic OT.

Simulator for Malicious Sender: The simulator uses HHSim instead of H to imple-
ment the local setup. It then waits until the sender provides its protocol mes-
sage MS . It creates fresh random values bi,j ∈ KA.R for i ∈ [m], j ∈ {0, 1},
then computes the KA messages Mi,j = KA.msg2(bi,j ,MS). Then it chooses
φi ← HSim(Mi,0,Mi,1) and sends φ1, . . . , φm as the simulated protocol mes-
sage from the honest receiver. Finally, it submits ri,j = KA.key2(bi,j ,MS , i ‖ j)
to the ideal functionality, for i ∈ [m] and j ∈ {0, 1} (as the endemic OT values).

Sequence of Hybrids for Malicious Sender: Starting at the real interaction
between malicious sender and honest receiver:

1. Replace local setup H with HHSim. This change is indistinguishable by the
Indistinguishable Local Setups property of the POPF.

2. Change how φi is generated:

replace
bi ← KA.R
MR,i = KA.msg2(bi,MS)
φi ← Program(ci,MR,i)

with

bi ← KA.R
Mi,ci = KA.msg2(bi,MS)
Mi,1−ci ← KA.M
φi ← HSim(Mi,0,Mi,1)

This is indistinguishable by the Honest Simulation property. Recall that this
property requires bi,Mi,ci to come from a distribution D over {0, 1}∗ × N
where the marginal distribution of the second element is indistinguishable
from uniform. This holds because KA has strongly random responses.

3. Change how Mi,1−ci is sampled:



294 I. McQuoid et al.

replace

bi ← KA.R
Mi,ci = KA.msg2(bi,MS)
Mi,1−ci ← KA.M
φi ← HSim(Mi,0,Mi,1)

with

bi,0, bi,1 ← KA.R
Mi,0 = KA.msg2(bi,0,MS)
Mi,1 = KA.msg2(bi,1,MS)
φi ← HSim(Mi,0,Mi,1)

Later references to bi become references to bi,ci . This is indistinguishable
because KA has strongly random responses.

This final hybrid describes the ideal world. The receiver’s inputs ci are not used to
simulate protocol messages to the sender; they are used only to determine which
ri,j

def= KA.key2(bi,j ,MS) the receiver takes as output. In the ideal world the
simulator sends identically defined ri,j to the ideal functionality, which uses the
receiver’s ci inputs to determine which ones to deliver as the receiver’s output.

Simulator for Malicious Receiver: The simulator uses HExtract instead of H to
implement the local setup. It generates MS in the same way as an honest sender
and sends it to the corrupted receiver. When the receiver provides φ1, . . . , φm,
the simulator runs ci = Extract(φi) for all i ∈ [m], and submits them to the ideal
functionality. It also computes ri,ci = KA.key1(a,Eval(φi, ci), i ‖ ci), and submits
these to the ideal functionality as well (as the endemic OT values).

Sequence of Hybrids for Malicious Receiver

1. Replace local setup H with HExtract, an indistinguishable change.
2. Rearrange how ri,j are computed:

replace
for j ∈ {0, 1}:

ri,j = KA.key1(a,Eval(φi, j), i ‖ j)

with
ci ← Extract(φi)
ri,ci = KA.key1(a,Eval(φi, ci), i ‖ ci)
ri,1−ci = KA.key1(a,Eval(φi, 1 − ci), i ‖ 1 − ci)

This is indistinguishable because running Extract has no effect on the local
setup’s internal state.

3. For each i ∈ [m] and j ∈ {0, 1}, create an oracle Fi,j = y �→ KA.key1(a, y, i ‖
j). Then rewrite the computation of ri,j in terms of these oracles as ri,j =
Fi,j(Eval(φi, j)). In Lemma 10 we show that every oracle Fi,j is a 1-weak
random oracle.

4. Change how ri,1−ci is chosen:

replace
ci ← Extract(φi)
ri,ci = Fi,ci(Eval(φi, ci))
ri,1−ci = Fi,ci−1(Eval(φi, 1 − ci))

with
ci ← Extract(φi)
ri,ci = Fi,ci(Eval(φi, ci))
ri,1−ci ← KA.K

This change is indistinguishable by the Uncontrollable Outputs property.
Since each Fi,j is a 1-weak RO, we can apply the Uncontrollable Outputs
property once for each i to make the change described here.
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This final hybrid describes the ideal world. After seeing the receiver’s protocol
message, the simulator extracts ci values and also computes values ri,ci which
will be part of the sender’s output. The other OT values in the sender’s output
(ri,1−ci) are sampled uniformly, just as in the ideal world.

Lemma 10. For any tag-non-malleable key agreement KA with strongly random
responses, and for any set of tags T , the following distribution outputs a key
agreement message and a collection of |T | weak random oracles from KA.M2 to
KA.K.

a ← KA.R
MS := KA.msg1(a)
for τ ∈ T :

Fτ := x �→ KA.key1(a, x, τ)
return MS , {Fτ}τ∈T

Proof. We need to show that every Fτ is a weak random oracle. We describe a
sequence of hybrids starting from the real weak random oracle distribution and
ending at random.

1. Sample the input x and compute y early, when the oracle Fτ is created, rather
than when the weak RO experiment is run.

2. Instead of sampling x ← KA.M2, sample b ← KA.R and set x =
KA.msg2(b,MS). This is indistinguishable by the strongly random responses
property of KA.

3. We are now computing y = KA.key1(a, x, τ) for a random KA message x, then
giving oracle access to KA.key1(a, x′, τ ′) (from the other oracles Fτ ′), but only
for τ ′ �= τ . This is exactly the same as the real distribution for a tag-non-
malleable KA, so it is indistinguishable to switch to the random distribution
by randomly sampling y ← KA.K instead.

4. Use strongly random responses again, to sample x ← KA.M2 and remove b.
5. Delay the sampling of x, y until the 1-weak RO distribution is run.

Our protocol considers an underlying KA with sequential messages. Yet
Diffie-Hellman-based KA protocols have independent messages that can be sent
in any order. We call such a KA protocol 1-flow, where KA.msg2(b) is indepen-
dent of MS . When the KA is 1-flow, the OT protocol can also be made 1-flow
by sending both messages in parallel.

Theorem 11. Our OT protocol (Fig. 3) becomes a 1-flow UC secure batch
endemic OT when KA is 1-flow.

Proof. This theorem largely the same as Theorem 9 from the previous one,
but with key changes. In the 1-flow instance, the adversary may rush the other
party, requiring them to send their message first before responding. For malicious
receiver the adversary already went last, but it’s different for malicious sender.

When the sender is corrupt, the simulator instead generates φ1, . . . , φm with
HSim before receiving MS , as each of the receiver’s messages from the key agree-
ment may now be sampled independently of the sender’s. The hybrid proof
continues as before, after replacing KA.msg2(b,MS) with KA.msg2(b).
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5 New/Improved POPF Constructions

In this section, we describe several suitable POPF constructions for the batch
OT protocol.

5.1 Ideal Cipher (EKE)

M := N
Program(x, y):

return E(x, y)

Eval(φ, x):
return E−1(x, φ)

H

T := empty list
E(x, y):

if ∃φ. (x, y, φ) ∈ T :
return φ

φ
append (x, y, φ) to T
return φ

E−1(x, φ):
if ∃y. (x, y, φ) ∈ T :

return y
y

M

N
append (x, y, φ) to T
return y

HHSim

T := {}
// E and E−1 are same as in H

HSim(r0, r1):
if ∃x, φ. (x, rx, φ) ∈ T :

return ⊥
φ M
append (0, r0, φ) to T
append (1, r1, φ) to T
return φ

HExtract

T := {}
// E and E−1 are same as in H

Extract(φ):
find first (x∗, y∗, φ) ∈ T :

return x∗

if none exist:
return 0

Fig. 4. Batch 2-POPF based on an ideal cipher.

Our first POPF is inspired by the EKE password-authenticated key exchange
protocol of Bellovin & Merritt [BM92]. POPF was created as a generalization of
an ideal cipher in the EKE protocol, and it is no surprise that in fact an ideal
cipher is a POPF. The full definition is in Fig. 4. We are not aware of prior work
pointing out the connection between EKE and oblivious transfer. But it is easy
to see that an ideal cipher is useful for OT: the adversary can know the trapdoor
to at most one of E−1(0, φ) and E−1(1, φ).

The local setup H is simply an ideal cipher. Actually, we have defined H in
a way that is indistinguishable from an ideal cipher—it chooses oracle responses
uniformly, instead guaranteeing that each E(x, ·) is a permutation. By a standard
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PRF/PRP switching lemma, the difference is indistinguishable, and this choice
makes the description of H simpler. HHSim is similar to H, but it programs E−1

so that Eval(φ, i) = ri, to satisfy the honest simulation property.
In HExtract, Extract(φ) finds the first ideal cipher call that produced φ—either

as the input to an E−1 query or the output of an E query. The idea is that
once φ has appeared in some ideal cipher query, future forward queries to E give
output φ only with negligible probability. Hence, all future calls that involve φ
must be of the form E−1(·, φ), meaning that the adversary has no control over
the outputs of these queries (which are outputs of Eval). This is precisely the
property needed for a POPF.

Theorem 12. Figure 4 defines a secure and correct batch 2-POPF with all dis-
tinguisher advantages except for Uncontrollable Outputs bounded by O

(
q2

|N |

)
,

when the adversary makes q ideal cipher lookups. Uncontrollable Outputs instead
has advantage bounded by q Adv(wRO)+O

(
q2

|N |

)
, where Adv(wRO) is the dis-

tinguisher advantage against the 1-weak RO F .

Proof. We have deferred the security proofs for the POPF constructions to the
full version of this work.

5.2 Even-Mansour POPF

In [MRR20] the authors construct a POPF with a 2-round Feistel cipher. Intu-
itively, a POPF generalizes an ideal cipher, but is strictly weaker. So, while an
8-round Feistel cipher is indifferentiable from an ideal cipher, a 2-round Feistel
cipher suffices for a POPF. Similarly, we suggest a POPF based on the Even-
Mansour [EM93] construction. While the Even-Mansour construction is not an
ideal cipher unless many rounds are added [DSST17], a single round suffices for
a POPF.

The construction (Fig. 5) is similar to the Ideal Cipher POPF, but with a few
changes. The local setup H is not an ideal cipher, but a simpler ideal random
permutation. In the ideal cipher POPF, every query to the oracles included the
x-value (as the key of the cipher). In this Even-Mansour POPF the value x
is used only by xor’ing with the ideal permutation output—it is not directly
available to the simulator (in Extract).

To deal with this challenge, we observe that x can be inferred by the simulator
given φ. The only situation where x is ambiguous given φ is when Π(y1) ⊕ x1 =
φ = Π(y2) ⊕ x2 for distinct bits x1, x2. This event implies Π(y1) ⊕ Π(y2) =
x1⊕x2 = 1, which is negligibly likely for forward queries to Π. This turns out to
be enough for the simulator to extract. The construction generalizes to strings
x which are significantly shorter than the ideal permutation output.

Theorem 13. Figure 5 defines a secure and correct batch 2-POPF where the
distinguisher advantage is O(q22−α) when the adversary makes q ideal permuta-
tion lookups, except for Uncontrollable Outputs which allows an additional advan-
tage of q Adv(wRO).

Proof. We have deferred this proof to the full version of this work.
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M := N := {0, 1}α

Program(x, y):
return Π(y) ⊕ x

Eval(φ, x):
return Π−1(φ ⊕ x)

H

T := empty list
Π(u):

if ∃v. (u, v) ∈ T :
return v

v 0, 1}α

append (u, v) to T
return v

Π−1(v):
if ∃u. (u, v) ∈ T :

return u
u

{

{0, 1}α

append (u, v) to T
return u

HHSim

T := empty list
// E and E−1 are same as in H

HSim(r0, r1):
if ∃x, φ. (rx, φ ⊕ x) ∈ T :

return ⊥
φ {0, 1}α

append (r0, φ ⊕ 0) to T
append (r1, φ ⊕ 1) to T
return φ

HExtract

T := empty list
// E and E−1 are same as in H

Extract(φ):
find first (y∗, φ ⊕ x∗) ∈ T :

return x∗

if none exist:
return 0

Fig. 5. Batch 2-POPF based on an ideal permutation.

5.3 Masny-Rindal POPF

This next POPF is inspired by the OT construction of Masny and Rindal [MR19].
Using this POPF in the context of Fig. 3 we see that the Masny-Rindal OT proto-
col for 1-out-of-2 OT7 is then a specific instance of our protocol. The description
of the POPF can be found in Fig. 6.

The local setup H consists of two random oracles H0,H1 whose outputs are
a group G. In the resulting OT protocol, the KA scheme must have protocol
messages that reside in this group. HHSim is similar to H, but it also tracks the
values r0, r1 that have been given to HSim(R). To satisfy the honest simulation
property, it further programs the random oracles Hx to be consistent:

Eval(φ, x) = sx · Hx(s1−x) = sx · (sx)−1 · rx = rx.

HExtract is also very similar to H, but it also tracks chronological order of the
oracle queries. Extract(φ), upon seeing φ = (s0, s1), checks if s1−x∗ was a query

7 Generalizing to 1-out-of-N for polynomial N works the same as in [MR19].
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M := G
2

Program(x, y):
s1−x G

sx = y · (Hx(s1−x))−1

return (s0, s1)

Eval((s0, s1), x):
return sx · Hx(s1−x)

H

record calls in a transcript T
Hx(u):

if ∃v. (v Hx(u)) ∈ T :
return v

v G

return v

HHSim

record calls in a transcript T
U := empty assoc. array
Hx(u):

if ∃v. (v Hx(u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v G

return v
HSim(r0, r1):

φ = (s0, s1) M
U [0, s1] := s−1

0 · r0
U [1, s0] := s−1

1 · r1
return φ

HExtract

record calls in a transcript T
// Hx is the same as in H

Extract((s0, s1)):
find first query Hx∗(s1−x∗) in T :

return x∗

if none exist:
return 0

Fig. 6. Batch 2-POPF based on the OT construction of Masny-Rindal [MR19]. Here
H0, H1 : G → G are random oracles, and (G, ·) is a group.

to the random oracle Hx∗ , for either x∗ ∈ {0, 1}. Extract(φ) then chooses the first
query (chronologically) and returns the associated x∗, or chooses x∗ arbitrarily
to be 0 if neither call was made. As in the original proof in [MR19] the main
idea is that for the adversary to program φ, they need to query on one of the
two sx values to find the other, unless the “other” is sampled independently, in
which case the adversary fails to program.

Theorem 14. Figure 6 defines a secure and correct batch 2-POPF with all dis-
tinguisher advantages except for Uncontrollable Outputs bounded by O

(
q2

|G|

)

when the adversary makes q queries to the random oracles. Uncontrollable Out-
puts instead has advantage bounded by q2−q+2

2 Adv(wRO) + O
(

q2

|G|

)
.

Proof. We have deferred this proof to the full version of this work.

5.4 Streamlined Feistel POPF

[MRR20] propose a POPF based on 2-round Feistel, in which the φ value is
3κ bits longer than the underlying value from N . We present an alternative
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N := G

M := G × F

Program(x, y):
u F

t := H(x, u)−1 · y
s := u − ι(t)x
return s, t

Eval((s, t), x):
return H(x, ι(t)x + s) · t

H

record calls in a transcript T
H(x, u):

if ∃v. (v H(x, u)) ∈ T :
return v

v G

return v

HHSim

record calls in a transcript T
U := empty assoc. array
H(x, u):

if ∃v. (v H(x, u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v G

return v
HSim(r0, r1):

(s, t) G × F

U [0, ι(t) 0 + s] := r0 · t−1

U [1, ι(t) 1 + s] := r1 · t−1

return (s, t)

HExtract

record calls in a transcript T
// H is the same as in H

Extract((s, t)):
find first query H(x∗, ι(t)x∗ + s):

return x∗

if none exist:
return 0

Fig. 7. Variant of the Feistel POPF in [MRR20], where one random oracle has been
replaced with multiplication in a finite field F. ι is an injection with an efficient left
inverse ι−1, i.e., ∀t. ι−1(ι(t)) = t.

construction (Fig. 7) that improves on this when G = N can be represented
with less than 3κ bits. This is useful because elliptic curve points usually can be
represented with 2κ bits.

As with [MRR20], we need N to be a group G, and the local setup H is a
hash function H mapping into G. However, instead of a second random oracle
H ′(x, T ), we use an injection ι from G into a finite field F. The hash call H ′(x, T )
in one of the Feistel rounds is then replaced with multiplication ι(T )x. ι is
required to have an efficiently computable left inverse ι−1.

These changes eliminate the main bad event in the security proof of [MRR20],
which occurs when the adversary manages to delay making the H ′ query, which
the simulator needs to see in order to find what T the adversary chose, until
after the simulator needs to use T to program H. The simulator can now find T
directly using ι−1.
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Theorem 15. The streamlined Feistel POPF in Fig. 7 is a secure and cor-
rect batch 2-POPF. The distinguisher advantage is O

(
q2

|G|

)
when the adver-

sary makes q ideal permutation lookups, except for Uncontrollable Outputs which
allows an additional advantage of q2−q+2

2 Adv(wRO).

Proof. We have deferred this proof to the full version of this work.

The original 2-round Feistel POPF in [MRR20] also satisfies our new def-
initions. We omit the proof because it is substantially similar to the proof of
Theorem 15, just preserving a few more ideas from [MRR20].

6 Suitable Key Agreement Choices

Our batched OT protocol requires a tagged KA in which the receiver’s protocol
messages are indistinguishable from the uniform distribution over the domain of
the POPF (outputs of Eval). In this section we discuss several choices for KA,
including one not considered in [MRR20] but which is well-suited to the batch
setting.

The main challenge is that traditional DHKA on an elliptic curve is not
enough. Under the usual encoding (the x-coordinate), points on the curve are
easily distinguishable from random strings, while it is more natural to define a
POPF operating on strings. Hence, some care is involved in making the POPF
and KA compatible.

6.1 Curve Mappings

In [MRR20], the authors suggest two ways to achieve compatibility between
POPF and KA over elliptic curves.

One choice is to ensure that the KA protocol messages are uniform bit strings.
This can be done using the Elligator technique of [BHKL13] to encode curve
elements. Elligator is an injective and efficiently invertible function ι from {0, 1}κ

to a large subset of the elliptic curve. If some party wishes to make their KA
protocol message a uniform string, they simply sample from points in the image
of ι. This is achieved in practice by re-sampling a DH scalar until the resulting
curve point is in ι({0, 1}κ). If the range of ι is a large fraction of the elliptic
curve, then the expected number of re-samples is small. See Fig. 8 for a formal
description of tagged Elligator ECDHKA.

Another choice is to ensure that the POPF Eval function only outputs values
on the curve. In the POPF construction of [MRR20] this can be achieved by
instantiating a random oracle that gives outputs in the curve.

These techniques incur nontrivial computational overhead. The Elliga-
tor approach requires resampling each curve element some constant num-
ber of times on average. The state-of-the-art techniques for hashing-to-curve
[BCI10,FFS+10,TK17] have cost roughly 25% that of a scalar multiplication on
the curve, and the POPF requires at least 2 hash-to-curve operations per party.
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Sender (tag τ revieceR) (tag τ)
do:

a Fp b Fp

A = BGa = bG
while B �∈ ι({0, 1}κ)

A

B̃ = ι−1(B)

return H(a ι(B̃), τ) return H(bA, τ)

Fig. 8. Tagged Elligator ECDHKA. G is a generator of the curve and ι is the injective
Elligator mapping of [BHKL13].

6.2 Möller Variant of ECDHKA

We now suggest a more efficient approach that is well suited for the batch setting.
Before continuing, let us give a brief review of elliptic curves. For the remainder
of this section, we will consider curves over prime fields with order larger than
3. Further results and descriptions can be found in Silverman [Sil09].

Definition 16. An elliptic curve Ea,b over a field Fp is defined by a congru-
ence of the form Y 2 = X3 + aX + b parameterized by elements a, b ∈ Fp such
that 4a3 + 27b2 �= 0. The elements of Ea,b are given by tuples (X,Y ) satisfying
the congruence along with a neutral element O, the point at infinity.

We may equip this set with a group law called the chord-and-tangent law such
that we arrive at a commutative group where the usual Diffie-Hellman problems
are believed to be hard.

Definition 17. Given an elliptic curve Ea,b over a field Fp and c ∈ Fp, we may
consider the elliptic curve E′

c : cY 2 = X3 + aX + b. If c is a quadratic residue
in Fp then E′ is isomorphic to E, otherwise, E′ is called the (quadratic) twist
of E.

As a twist of a given curve is unique up to isomorphism, we may consider, singly,
a primary curve and its twist curve. It follows from the definition that any x ∈ Fp

is the abscissa (x-coordinate) of a point on E or of a point on the twist E′.

Lemma 18. Let c �= 0 be a quadratic non-residue in the field Fp, and let Ea,b

be an elliptic curve over Fp with twist E′
c. Then for every x ∈ Fp:

1. If x3 + ax + b is a non-zero quadratic residue, then (x,±
√

x3 + ax + b) are
points on Ea,b. Furthermore, (x3 + ax + b)/c is a quadratic non-residue and
x is not the abscissa of any point on E′

c

2. If x3 + ax + b is a quadratic non-residue, then x is not a point on Ea,b. Fur-
thermore, (x3 + ax + b)/c is a quadratic residue and (x,±

√
(x3 + ax + b)/c)

are points on E′
c.

3. If x3 + ax + b = 0, then (x, 0) is a point on Ea,b and E′
c.
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This idea is of importance as for many curves and applications; only the abscissa
of a point is needed. This means that we can work with bitstrings using the
implicit mapping defined above.

Furthermore, there are a similar number of points on the twist as there are on
the curve. If one were to toss a coin b ← {0, 1}, and then sample an x-coordinate
of a random curve point (if b = 0) or a random twist point (if b = 1), the result
would be statistically close to the uniform distribution on the set of bitstrings.

Lemma 19 ([CFGP06, Corollary 11]). Given a curve Ea,b and its twist E′
c

over Fp, where 2q − p < 2q/2 (i.e., p is very close to a power of 2), the following
distribution is indistinguishable from the uniform distribution in {0, 1}q

D = {β ← {0, 1}, x0 ← [Ea,b]abscissa, x1 ← [E′
c]abscissa : K = xβ},

with statistical distance

δ =
1
2

∑
x∈Fp

∣∣∣∣ Pr
K←F2q

[K = x] − Pr
K←D

[K = x]
∣∣∣∣ ≤ 1 +

√
2

2q/2
.

This suggests the key agreement approach in Fig. 9. The receiver will sample
an x-coordinate as above. The sender cannot anticipate the receiver’s choice, so
she prepares a DH message on both the curve and the twist, then chooses the
correct one to compute the final key. Lemma 19 establishes that the receiver’s
KA message is statistically indistinguishable from the uniform distribution on
strings.

Note that the sender sends two curve/twist elements instead just one as in
standard DHKA. However, in batched OT it is exactly this sender message that
is reused across all OT instances. Hence a slight increase in its size has minimal
effect on the overall OT protocol’s efficiency.

Similar approaches to representation have been used in the context of
PAKE [BMN01], pseudo-random permutations [Kal91], authenticated key
exchange [CFGP06], and by Möller [Möl04] in the context of ElGamal.

6.3 Curve Choice and Security

We now discuss the security of the Möller variant (tagged) KA protocol. The
choice of curve must satisfy the following

– The finite field must have order at least 2q − 2q/2.
– The curve and its twist must be cryptographically secure.
– The curve and its twist must be cyclic.

More specifically, we need a security property similar to the oracle Diffie-
Hellman (ODH) assumption [ABR01]. That definition is as follows:

Definition 20 ([ABR01]). Let G be a cyclic group of order n, with generator
g, and let H : {0, 1}∗ → {0, 1}� be a hash function. Then the oracle Diffie-
Hellman (ODH) assumption holds in G with respect to H if the following
distributions are indistinguishable, for all A that do not query their oracle at bg.
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Sender (tag τ revieceR) (tag τ)
a0 [n] b [n]
a1 [n] β {0, 1}
A0 = a0G0 B = bGβ

A1 = a1G1
A0, A1

Babscissa,sign

if B on the curve:
β = 0

else: β = 1
return H(aβ B, τ) return H(b Aβ , τ)

Fig. 9. Möller tagged ECDHKA. G0 is a generator of the curve and G1 is a generator
of its twist.

a, b ← [n]
def Ha(X) = H(aX)
K = H(abg)
return AHa(ag, bg,K)

a, b ← [n]
def Ha(X) = H(aX)
K ← {0, 1}�

return AHa(ag, bg,K)

Our applications require a variant of ODH where the hash function H takes an
additional tag argument:

Definition 21. Let G be a cyclic group of order n, with generator g, and let H :
{0, 1}∗ × {0, 1}∗ → {0, 1}� be a hash function. Then the tagged oracle Diffie-
Hellman (TODH) assumption holds in G with respect to H if the following
distributions are indistinguishable, for all tags τ∗ and all A that do not query
their oracle with second argument τ∗:

a, b ← [n]
def Ha(X, τ) = H(aX, τ)
K = H(abg, τ∗)
return AHa(ag, bg,K)

a, b ← [n]
def Ha(X, τ) = H(aX, τ)
K ← {0, 1}�

return AHa(ag, bg,K)

In [ABR01] the authors show that standard ODH is secure in the generic
group model when H is a random oracle. This proof is easily adapted to the new
TODH assumption as well.

Proposition 22. Möller tagged DHKA (Fig. 9) satisfies tag nonmalleability
(Definition 3) if the TODH assumption holds in both the curve and its twist.

A further small optimization is possible for Montgomery curves. The multi-
plication algorithm only depends on the x-coordinate of its input and is uniform
for both the curve and its twist, in the sense that the usual multiplication algo-
rithm for the curve also correctly multiplies in the twist if the input is on the
twist. So if the sender in Fig. 9 chooses a0 = a1 then there is no need to check
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Sender Receiver (with input {ci}i∈[N ])

φ1 . . . φκ Base OT Receiver φ1, . . . , φκ MS , {ri,j} Base OT Sender
{ui} OT Extension Receiver
chal := H({φi}, MS , {ui})

ri,ci Base OT Receiver
MS , {ui}, resp

resp OT Extension Receiver
chal := H({φi}, MS , {ui})
check that resp answers chal
{r′

i,j}i,j OT Extension Sender {r′
i,ci}i OT Extension Receiver

return r′
i,j i∈[N ],j∈{0,1} return r′

i,ci i∈[N ]

Fig. 10. Sketch of the composition of our batch OT protocol with the KOS OT exten-
sion protocol, in 2 rounds.

whether the receiver’s B is on the curve or twist. Instead, the sender simply mul-
tiplies B without any checking. However, security of this optimization requires
that a kind of TODH assumption hold for the curve and twist jointly (instead
of separately/independently for the curve and for the twist).

Instantiation. When creating a concrete instantiation of Möller ECDHKA, we
chose to use Curve25519 [Ber06]. The main reasons for this choice were:

1. The base field Fp is of prime order 2255 − 19 > 2255 − 2255/2.
2. Curve25519 is explicitly designed to have a twist that is as secure as the curve

itself.
3. Curve25519 can take full advantage of Montgomery Ladders for scalar mul-

tiplication which allows us to use only the abscissa in computations.
4. Curve25519 and its twist have large prime subgroups of size #E/8 and

#E′
c/4.

Curve25519 also provides additional evidence for the security of the above
optimization of setting a0 = a1, because [Ber06] recommends not checking
whether a given point is on the curve or twist before performing scalar mul-
tiplication. This optimization is why Curve25519 was chosen to have a secure
twist, and in fact the reference implementation does not check if an elliptic curve
point is on the curve. This requires a similar additional security assumption to
our optimization because it uses the same key for both the curve and its twist.

7 2-Round Endemic OT Extension

When our protocol is used for base OTs, we can achieve a 2-round Endemic
OT extension protocol if the Fiat-Shamir heuristic is used. First, recall that our
batch OT protocol is 1-flow when instantiated with a 1-flow KA protocol, e.g.,
any Diffie-Hellman-based KA protocol. This gives us the flexibility to send base
OT messages in any order.
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Second, we summarize the 1-out-of-2 OT extension protocol of [KOS15]:

– The parties perform base OTs
– The receiver (who is base OT sender) sends data as in all IKNP-

based [IKNP03] extension protocols.
– To protect against a malicious receiver, the sender gives a random challenge
– The receiver sends a response to this challenge, which the sender checks.

We can order the messages of the base OTs so that the receiver can send their
IKNP data along with their base OT sender message. Additionally, we can col-
lapse the malicious consistency check using the Fiat-Shamir heuristic, since the
sender’s challenge is random. The resulting OT extension protocol is sketched
in Fig. 10.

In related work, [CSW20] show how to use the Chou-Orlandi base OT pro-
tocol to achieve 3-round OT extension. This is inevitable since their base OTs
already require 3 rounds. [BCG19] show a 2-round OT extension protocol based
on newer “silent OT” techniques. Note however that both these papers achieve
chosen message OT, while Fig. 10 only achieves endemic OT and would require
a third round to derandomize the sender’s messages.

8 Performance Evaluation

In this section, we will explore the concrete performance benchmarks of multiple
instantiations of the protocol in Fig. 3.

8.1 Implementation Details

We implemented8 our protocol inside the libote OT extension library [Rin],
modifying the library to use Rijndael-256 [DR99,BÖS11] to instantiate an ideal
cipher and libsodium [Den20] to implement elliptic curve operations. The
library uses Blake2 [ANWW13] to instantiate a random oracle. We then tested
the protocols on a machine running on an Intel Xeon E5-2699 v3 CPU, without
assembly optimizations or multi-threading. For benchmarking, each protocol was
run in a batch of 128 OTs for two settings of simulated latency and bandwidth
limiting. The two settings are meant to shed light on the LAN vs WAN environ-
ments that these protocols may run in. The number of OTs to run was chosen
to provide a realistic setting in the case of 128 base OTs as is common in OT
extension.

We compared the following implementations:

– Chou-Orlandi (Simplest OT).
– Naor-Pinkas OT
– Masny-Rindal (Endemic OT), with and without reusing the sender’s message.

This protocol uses hash-to-curve operations.

8 Source code is at https://github.com/Oreko/popfot-implementation.

https://github.com/Oreko/popfot-implementation
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Table 2. Running time to generate a batch of 128 OT instances. We report the average
of 100 trials for each experiment.

Protocol Security Sender (ms) Receiver (ms)

0.1 ms latency, 10000 Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) Standalone 35 17

Naor-Pinkas OT [NP01] (Sender-reuse) Standalone 43 34

Endemic OT [MR19] (No reuse) UC 79 42

Endemic OT (Sender-reuse) UC 62 37

Ours (Field Feistel POPF Fig. 7—DHKA) UC 80 40

Ours (Field Feistel POPF—Möller DHKA) UC 50 27

Ours (MR POPF Fig. 6—Möller DHKA) UC 48 27

Ours (EKE POPF Fig. 4—Möller DHKA) UC 50 25

30ms latency, 100Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) Standalone 105 111

Naor-Pinkas OT [NP01] (Sender-reuse) Standalone 101 107

Endemic OT [MR19] (No reuse) UC 161 53

Endemic OT (Sender-reuse) UC 137 53

Ours (Field Feistel POPF Fig. 7—DHKA) UC 155 47

Ours (Field Feistel POPF—Möller DHKA) UC 128 44

Ours (MR POPF Fig. 6—Möller DHKA) UC 128 44

Ours (EKE POPF Fig. 4—Möller DHKA) UC 128 44

– Our protocol instantiated with Möller’s DHKA and various POPFs presented
in Sect. 5. Because the messages from Möller’s scheme are uniformly random
bit strings, our POPFs avoid the hash-to-curve operations that are needed
in [MR19]. We did not evaluate the Even-Mansour POPF (Fig. 5) since its
performance would be identical to the EKE POPF (Fig. 4) when Rijndael is
used to instantiate both the ideal cipher and ideal permutation.

– Our protocol with traditional DHKA, and all POPF instantiations exclud-
ing EKE and Masny-Rindal. We did not implement the EKE POPF using
DHKA; however, this might be possible using Elligator or a similar mapping
to construct an ideal cipher on a subset of the curve points. We did not imple-
ment our protocol with Masny-Rindal POPF as it would be nearly identical
to the Masny-Rindal protocol.

8.2 Results and Discussion

The performance benchmarks can be found in Table 2 for both settings.
As we would expect, when comparing the three instances of Masny-Rindal

OT, each with their own improvement, we see a marked increase in efficiency.
Specifically, reusing the sender’s message reduced the total time spent by both
parties by 18%/11% in the low latency and high bandwidth setting/the high
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latency and low bandwidth setting, respectively. Moving to Möller’s KA caused
an additional 24%/9% improvement, respectively, for the Masny-Rindal con-
struction. On average, for the three protocols with both DHKA and Möller
DHKA versions (Masny-Rindal and the Feistel POPF) we saw an improvement
of 31%/12%, respectively, when moving to Möller’s KA.

As expected, the Simplest OT protocol outperforms our instantiations for the
sender since it uses fewer exponentiations in the group. One point to take note of
in the evaluation data is the large gap in the performance for the receiver between
the Naor-Pinkas and Simplest/Blazing OT constructions and the POPF and
Masny-Rindal constructions in the high latency/low bandwidth setting. This is
due to the different flow requirements between the two sets of protocols. Simplest
OT and Naor-Pinkas constructions all require an additional flow (or two) which,
in the WAN setting, will accrue more time for the party which needs to wait.
It then follows that the advantages of our protocol over Simplest OT is our UC
security and round/flow complexity.
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Abstract. The algebraic-group model (AGM), which lies between the
generic group model and the standard model of computation, provides a
means by which to analyze the security of cryptosystems against so-called
algebraic adversaries. We formalize the AGM within the framework of
universal composability, providing formal definitions for this setting and
proving an appropriate composition theorem. This extends the applica-
bility of the AGM to more-complex protocols, and lays the foundations
for analyzing algebraic adversaries in a composable fashion. Our results
also clarify the meaning of composing proofs in the AGM with other
proofs and they highlight a natural form of independence between ide-
alized groups that seems inherent to the AGM and has not been made
formal before—these insights also apply to the composition of game-
based proofs in the AGM. We show the utility of our model by proving
several important protocols universally composable for algebraic adver-
saries, specifically: (1) the Chou-Orlandi protocol for oblivious transfer,
and (2) the SPAKE2 and CPace protocols for password-based authenti-
cated key exchange.

1 Introduction

Security proofs are often carried out in idealized models that seek to capture
certain classes of adversarial behavior. Examples include the random-oracle
model [9], in which the attacker is assumed to treat a hash function as an ideal
random function; the ideal-cipher model, in which the attacker is assumed to
treat a block cipher as an ideal keyed permutation; and the generic-group model
(GGM) [29,30], where the attacker is assumed to treat group elements as abstract
identifiers and group operations as black-box operations on those identifiers.
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Cryptographers continually seek to refine these models, making them more
expressive so they capture larger classes of algorithms and thus come closer to
modeling adversaries performing arbitrary computation. With this motivation
in mind, Fuchsbauer et al. [19] (based on ideas of Abdalla et al. [4]) proposed
the algebraic-group model (AGM) as a more expressive version of the GGM.
Roughly, the AGM considers algebraic adversaries that compute group elements
via a sequence of “generic” group operations, but which—in contrast to the
GGM—are allowed to utilize the actual bitstrings representing group elements
in the course of their computation. This model is strictly stronger than the GGM;
for example, index-calculus algorithms that apply to certain classes of groups are
algebraic and hence allowed in the AGM, even though they are ruled out in the
GGM by known lower bounds on the hardness of the discrete-logarithm problem
in that model. The AGM has been used to show equivalence of various number-
theoretic assumptions [6,7,19] and to prove security of SNARKs [17,19,27] and
blind signatures [20]. An extension called the strong AGM has recently been
used to prove hardness of the repeated squaring assumption underlying timed
commitments and related primitives [24].

Notably, none of the aforementioned results provide any guarantees of secu-
rity under composition with other protocols (whether proven secure in the AGM
or not). Here, we lay the foundations for a composable treatment of algebraic
adversaries by formalizing the AGM within the framework of universal com-
posability (UC) [13] and proving a corresponding composition theorem. This
involves not only formalizing a number of subtle issues related to the AGM itself
(which may be of independent interest for subsequent work in the AGM), but also
making a number of careful design decisions in defining what algebraic adver-
saries mean in the UC framework, in part to ensure that a suitable composition
theorem holds. We discuss this in more detail in the following section.

We demonstrate the utility of our model by proving several important pro-
tocols universally composable for algebraic adversaries. Specifically, we prove
security of (1) the Chou-Orlandi protocol for oblivious transfer [18], and
(2) the SPAKE2 and CPace protocols for password-based authenticated key
exchange [5,22] in our model. We describe these results further in Sect. 1.2.

1.1 Defining the AGM Within the UC Framework

We first define some notation and terminology related to the AGM that suf-
fices to understand the discussion that follows. (Our treatment here is deliber-
ately informal, and we refer the reader to Sect. 2 for technical details.) Fix a
group G. An algebraic representation of h ∈ G with respect to a list of elements
g1, . . . , gn ∈ G is a tuple (x1, . . . , xn) ∈ Z

n with h =
∏

i gxi
i . Roughly speaking,

the AGM considers adversaries that are algebraic (with respect to G), meaning
that if an adversary A outputs a group element h ∈ G, then A must also output
an algebraic representation of h with respect to the set of group elements (which
we call a base) that A has been given as input thus far.
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We generalize the AGM to the standard UC framework by restricting our
attention to algebraic attackers.1 While this is a natural idea, it involves deal-
ing with a number of subtle technical issues. First of all, to make this notion
meaningful it is not sufficient to restrict the adversary to be algebraic; rather,
we require the environment to be algebraic as well. Moreover, in order for com-
position to possibly hold, we must also require the simulator used in proving
security to be algebraic. That is, in the UC-AGM a protocol π securely realizes
a functionality F if, for any efficient algebraic adversary A, there is an efficient
algebraic simulator S such that no efficient algebraic environment can distin-
guish the execution of A with π from the execution of S with F . Under this
definition, we can indeed prove that a UC-style composition theorem holds in
the UC-AGM.

Our definition of an algebraic algorithm makes a distinction between adver-
sarial entities (real and ideal world adversaries and environments) and non-
adversarial entities (uncorrupted protocol participants and ideal functionalities).
In the real world, we require the adversary to behave algebraically when it
delivers group elements to uncorrupted participants and to ideal functionali-
ties (when the proof is carried out in a hybrid real-world); moreover, we also
require the environment to behave algebraically when it delivers group elements
to the adversary, but not the converse. Algebraic behavior is defined within the
context of a UC AGM proof by specifying what set of group elements occurring
during the protocol execution in the real-world must be used by the environment
and by the adversary as a base for the provided group element representations.
When this is the empty set, we recover the standard UC framework. The natural
definition for this set is to include in it all the group elements that are produced
by non-adversarial entities.

Formally, the quantification of the UC-emulation notion is subtle. As in UC,
we require for all adversaries A, the existence of a simulator S, such that for all
enviroments Z the real and ideal worlds are indistinguishable. However, the sim-
ulator is only required to work if the pair (A,Z) satisfies the algebraic restrictions
specified in the real world. Intuitively, the extra power of the simulator comes
from the fact that Z is bound to behave algebraically when interacting with A
and, furthermore, that A will also behave algebraically if the simulator runs it
internally. A caveat is that the simulator must also ensure that (S,Z) satisfy
the algebraic restrictions in the ideal world. However, in the most common case
when the simulator is interacting with an ideal functionality, if this interaction
does not involve group elements, then the algebraic requirement is not a restric-
tion on the simulation strategy (this is the case in all our proofs for concrete
protocols).

1 One can consider formalizing the AGM within the UC framework by introducing
a functionality FAGM that “forces” arbitrary algorithms to behave algebraically by
registering group elements and their representations in a central repository. This has
a number of disadvantages that we discuss in the full version [3]. Our approach is
closer to the spirit of the AGM, which idealizes groups by quantifying over restricted
classes of adversaries.
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The UC AGM composition theorem then states, as expected, that ρπ ∼ ρF if
π ∼ F . Again the quantification is subtle. The composition theorem guarantees
only hold if we restrict our quantification to match the emulation guarantee
provided by π: i.e., we have that ρπ ∼ ρF with respect to pairs (A,Z) that
adhere to the base Bπ when interacting with machines in π. Note that this
means, in particular, that the attacker cannot use group elements produced in ρ
when attacking π, unless it is able to provide a representation according to Bπ.

The companion UC AGM transitivity theory further highlights a natural
notion of independence between UC AGM proofs. Suppose that ρF is known
to UC AGM emulate some functionality G. Transitivity intuitively implies that
ρπ ∼ G if ρπ ∼ ρF . We show that this is the case also in the UC AGM setting, if
we restrict the quantification over (A,Z) to those attackers that independently
meet the AGM restrictions imposed by the proofs of both π and ρ. This means
providing algebraic decompositions to parties executing π with respect to a base
Bπ defined in the proof of π and, similarly, respecting the algebraic base Bρ

when interacting with parties executing ρ. This restriction means that AGM
UC composition works as expected for protocols that operate on groups that
can be assumed to be independent.

In Sect. 2.3 we give full technical details and also show that proofs in the UC
AGM naturally compose with proofs in the plain UC model; as expected, the
composed protocols can only be shown to be secure in the UC AGM setting.
We also show that the standard approach of writing UC proofs wrt to a dummy
adversary still applies in the UC AGM setting.

Discussion. Our theorems show that one should be very careful when com-
posing proofs in the AGM, and not only in the UC setting. For example, when
composing game-based reductions carried out in the AGM, the same issues arise.
Intuitively, composition can only be guaranteed when the AGM assumptions do
not interact badly with each-other, i.e., interacting with one protocol does not
allow an attacker to override the extractability assumption that is being cap-
tured by the AGM in the proof of another protocol. In practice this seems to
imply excluding attackers that take group elements from one protocol and use
them to attack another protocol (unless of course the algebraic construction of
those elements can be explained with respect to the set of bases defined by the
target protocol alone).

Interestingly, in recent independent work Kerber, Kiayias and Kohlweiss [25]
encouter a manifestation of the same problem in the constructive cryptogra-
phy framework. In this work, the authors propose a general notion of proofs
wrt to knowledge assumptions, which generalizes the AGM: adversaries provide
the relevant extractable information when interacting with the protocol. Their
goal is to study the composition of protocols that rely on different knowledge
assumptions. It is beyond the scope of this paper to make a detailed compari-
son, since the approaches rely on different compositional frameworks and have
different goals, but it is clear that the same restrictions must be imposed in the
composition theorem to enable a proof; quoting from the paper: “Care must be
taken that knowledge stemming from one knowledge assumption does not give
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an advantage in another. . . we conjecture that multiple instances with the AGM
with independently sampled groups are sufficiently independent.”

To conclude, we do not see the restrictions in the UC AGM composition the-
orems as a limitation of our work, but rather as a limitation inherent to proofs in
idealized models—for example, it is easy to establish a parallel with the random
oracle model in the UC setting, where the need for independent RO instances is
well known [16]. On the contrary, we believe that an important contribution of
our work is to clarify what this limitation means for proofs in the AGM. To over-
come these limitations, and similarly to proofs in the random-oracle model, one
can prove multiple protocol executions secure simultaneously. At the very least,
it is important to ensure that AGM UC proofs are carried out with respect to
multi-session ideal functionalities, so that multiple executions of the same pro-
tocol can be guaranteed to compose securely. We adopt this approach in our
proofs. Another option is to strengthen the proofs of each protocol to consider a
global/shared source of bases along with a more powerful composition theorem,
similarly to UC with global functionalities. We leave exploring this option as an
interesting and important direction for future work.

1.2 Proofs of Security in the UC-AGM

In addition to defining the UC-AGM framework, we also show that several impor-
tant protocols from the literature—which were previously lacking full proofs of
security in the UC framework—can be proven secure in our model.

The Chou-Orlandi Protocol. Chou and Orlandi [18] proposed a simple and
elegant protocol for oblivious transfer and claimed that it was universally com-
posable (with adaptive corruptions) under a suitable assumption in the random-
oracle model. Unfortunately, subsequent works [11,21,23] uncovered several
problems with their proof. While these subsequent works also showed how to
address some of these issues, and/or presented modified protocols that could be
proven secure, there seems to be no way of proving the original Chou-Orlandi
protocol universally composable, even in the random-oracle model.

We show that the original Chou-Orlandi protocol can be proven secure in
the UC-AGM, based on the discrete-logarithm assumption in the random-oracle
model. We refer to Sect. 3 for a high-level view of the proof and further details.

The SPAKE2 and CPace Protocols. SPAKE2 [5] and CPace [22] have
attracted a lot of interest recently due to their consideration for standardization
by the IETF. The selection process explicitly considered whether these proto-
cols were universally composable, which turned out to be a surprisingly difficult
question to answer.2

Abdalla et al. [2] recently proved that these protocols are universally compos-
able with respect to a relaxed version of the standard functionality for password-
based authenticated key exchange (PAKE) that, roughly speaking, allows the

2 For a review of the security proofs available for both protocols at the time, see
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s.

https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s
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adversary to delay its password guess for a session until an arbitrary time after
that session ends. The full implications of relying on that relaxed functionality
are unclear; in particular, although Abdalla et al. [2] showed that adding a key-
confirmation step lifts a UC PAKE protocol to one that provides explicit entity
authentication, we do not know if this is the case when we start from a PAKE
protocol that only realizes the relaxed PAKE functionality.

In this work, we improve upon these results by showing that both SPAKE2
and CPace are universally composable with respect to the original PAKE func-
tionality [15] when we restrict our attention to algebraic adversaries. Interest-
ingly, our proofs are significantly simpler than those of Abdalla et al. [2], since
the simulator in our case can leverage the fact that the adversary is algebraic to
directly extract password guesses, rather than performing an indirect extraction
using the random oracle.

In addition, we also demonstrate that an important variant of SPAKE2,
known as SPAKE1, is secure in the UC-AGM. SPAKE1, in contrast to SPAKE2,
does not include the password as input to the final key-derivation function,
and thus may be advantageous relative to SPAKE2 with regard to side-channel
attacks targeting the key-derivation step. Prior to this work, SPAKE1 was not
known to satisfy the standard notions of security for game-based and UC PAKE.
In particular, it was not known to guarantee even the weaker notion of forward
secrecy, in which the attacker can only learn passwords for sessions in which it
played the role of a passive eavesdropper.

1.3 Related Work

We are not aware of any prior work modeling algebraic adversaries in the UC
framework, however a few works have considered generic groups and other ide-
alized models in that setting. Larangeira and Tanaka [26] analyze universally
composable non-committing encryption schemes in the GGM and the generic-
ring model (GRM). However, they leave the modeling of the GGM/GRM in the
UC framework informal, and in particular do not prove that composition holds
in their setting. Bradley et al. [10] prove security of a strong asymmetric PAKE
protocol against a generic-group adversary in the UC framework, but their treat-
ment is also informal; in particular, their protocol is split into an “offline part”
and an “online part,” with the GGM used only in the former, and it is unclear
how these two parts are defined for general protocols or what the implications
are for composition. Naor et al. [28] model generic-group adversaries in the UC
framework by introducing a generic-group functionality FGGM in a way similar
in spirit to the approach involving the FAGM functionality described earlier that
we ultimately rejected. A similar approach was followed in [8] for the analysis of
time-lock puzzles in the UC setting.

1.4 Overview of the Paper

Section 2 introduces the UC-AGM model. Section 3 then presents a proof of
the Chou-Orlandi protocol in the UC-AGM. Next, Sect. 4 proves security of
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SPAKE1, SPAKE2, and CPace in the new model. The full version [3] includes
detailed proofs for theorems in Sects. 2 to 4.

2 Defining Algebraic Adversaries in the UC Framework

In this section, we introduce the UC-AGM framework that incorporates algebraic
adversaries into the UC framework. We provide a brief overview of the UC
framework [13] in Sect. 2.1; for a more detailed description, see the full version of
this paper [3]. In Sect. 2.2 we formally define algebraic adversaries and introduce
the notation of AGM-emulation that underlies the UC-AGM. We also show
there that, analogous to the UC framework, it suffices to consider “algebraically
dummy” adversaries when proving AGM-emulation. We prove a composition
theorem for the UC-AGM in Sect. 2.3.

For simplicity, our treatment of the UC-AGM is based on the so-called sim-
plified UC framework [13, Section 2] where the number of parties, their identities,
program code, and connectivity are all fixed in advance. In the full version [3]
we explain how the UC-AGM can be extended to the full UC framework.

2.1 Overview of the UC Framework

A protocol consists of a number of machines (or parties) with unique identities,
each of which represents some computational entity. Protocol machines commu-
nicate with each other via messages labeled input or subroutine-output. In an
execution of the protocol, two additional machines (whose identities are distinct
from any protocol machines) are added: the environment E and the adversary A.
(Below we assume that E has identity 0 and A has identity 1.) The environment
E can send input messages to A and a subset of the protocol machines (called
main machines), and protocol machines can send subroutine-output messages to
E ; the adversary A can send backdoor messages to E and all protocol machines,
and receive backdoor messages from all protocol machines.

The notion of UC emulation involves two protocols, π and φ. We say that
π emulates φ if for any efficient adversary A in an execution of π, there is an
efficient adversary (called the simulator) S in an execution of φ that “simulates”
the environment’s view, in the sense that no efficient environment can distin-
guish an execution of π with A from an execution of φ with S. A particularly
important example of UC emulation is realizing an ideal functionality, in which
the emulated protocol idealF consists of an incorruptible ideal functionality F ,
and the main machines are dummy parties that simply pass messages between
the ideal functionality and the environment.

2.2 UC Emulation in the Algebraic Group Model

In this work we put forth a notion of UC emulation (called AGM-emulation) in
which the adversary is restricted to be algebraic. To this end, we first introduce
the concept of algebraic adversaries [19]. At a high level, an algebraic adversary
has an additional auxiliary tape on which it writes the representation of any
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group element it outputs on (some of) its other tapes.3 We assume for simplicity
that the group G = (G, g, p) under consideration is cyclic with known order p,
though neither of these assumptions is essential.

Definition 1. Suppose an execution of protocol π involves protocol machines
sending elements in group G = (G, g, p) (henceforce “protocol π involves group
G”).4 A pair of environment E and adversary A (in π’s execution) is (G, π)-
algebraic if it satisfies the following:

(1) A has a special output tape called the algebraic tape;
(2) Whenever A sends (backdoor,m) to some protocol machine, where m con-

tains some X ∈ G, then either (1) A also writes an algebraic represen-
tation of X on its algebraic tape, or (2) A has previously received such
representation from E; where the algebraic representation of X is a list
Λ = [(X1, λ1), . . . , (Xk, λk)] (where X1, . . . ,Xk ∈ G and λ1, . . . , λk ∈ Zp)
such that X = Xλ1

1 · · ·Xλk

k , and X1, . . . ,Xk is the ordered list of group ele-
ments in messages E and/or A has received up to that point in the execution
of π.

We stress that it is necessary to separate the algebraic tape from the other
tapes of A so that, for example, the message m itself does not contain an algebraic
representation of X. When clear from the context, we will drop G and π, and
simply say that the environment/adversary is “algebraic.”

We note that when considering static corruptions, the adversary runs the
corrupt parties internally and hence messages produced by corrupt parties are
subject to the restrictions above. The model for adaptive corruptions is the
obvious one. Non-corrupt parties compute group elements honestly. So, if no
secure erasure is assumed, the representations of any group elements computed
by non-corrupt parties are part of their state when they are corrupted (and
are given to the adversary). If we assume secure erasure, then any such state
will not be available, and so any group elements that are part of a non-corrupt
party’s state will not have their representations available; in this case they must
be added to the adversary’s basis.

AGM Emulation. We could now consider standard UC emulation restricted
to algebraic adversaries and environments. However, looking ahead, in order for
composition to hold we will want the simulator to be algebraic as well.

3 Formally, we assume an encoding of group elements that distinguishes them from
arbitrary strings. This can be done by simply prefixing any group element with a 0
and any other string (not necessarily representing a group element) with a 1. Fol-
lowing prior work [19], we use bold capital letters to denote group elements (except
for the generator g).

4 Formally, we consider protocols having access to a FCRS functionality, where FCRS

runs a group-generation algorithm to obtain G (and possibly additional group ele-
ments), and then sends G (and any other elements) to parties that request it. Note
that the protocol may use other groups, but we only require the adversary to be
algebraic with respect to G.
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Definition 2. Suppose protocols π and φ involve the same group G. We say that
π G-AGM emulates φ if the following holds: for any efficient adversary A, there is
an efficient adversary S (called the simulator) such that: for any efficient E such
that (E ,A) are (G, π)-algebraic, we have that (E ,S) are (G, φ)-algebraic, and

execφ,S,E ≈ execπ,A,E ,

where execπ,A,E denotes environment E’s view in π’s execution with adver-
sary A.

Above, we write ≈ to denote generic computational indistinguishability. This
may refer to either asymptotic indistinguishability, in which case a security
parameter is introduced as well, or concrete indistinguishability, in which case
we write ≈ε to denote that the distinguishing advantage is bounded by ε.

Definition 3. Protocol π G-AGM realizes ideal functionality F if π G-AGM emu-
lates idealF , the ideal protocol for F .

AGM Emulation with Respect to a Sub-protocol. Our definitions of alge-
braic adversary and environment can be easily extended to the setting where the
adversary/environment is restricted within a sub-protocol, namely it can only
use group elements in received from parties in this sub-protocol as its basis for
algebraic representation.

Definition 4. Suppose protocol ρπ involves group G, and π is a sub-protocol
of ρπ. A pair of environment E and adversary A (in ρπ’s execution) is (G, π)-
algebraic if it satisfies the following:

(1) A has a special output tape called the algebraic tape;
(2) Whenever A sends (backdoor,m) to some protocol machine, where m con-

tains some X ∈ G, then either (1) A also writes an algebraic representation
(with respect to π) of X on its algebraic tape, or (2) A has previously received
such representation from E; where the algebraic representation of X is a list
Λ = [(X1, λ1), . . . , (Xk, λk)] (where X1, . . . ,Xk ∈ G and λ1, . . . , λk ∈ Zp)
such that X = Xλ1

1 · · ·Xλk

k , and X1, . . . ,Xk is the ordered list of group ele-
ments in messages E and/or A have received up to that point from either the
environment or protocol machines in π, that is, excluding protocol machines
in ρπ \ π. (For the formal definition of a “sub-protocol,” see the full ver-
sion [3].)

Clearly, Definition 1 can be viewed as Definition 4 in the special case that
ρπ = π. Note that now we can talk about AGM emulation with respect to a
sub-protocol, i.e., protocol ρπ (G, π, φ)-AGM emulates ρφ, where the environ-
ment/adversary pair is restricted by the sub-protocol π, and the environment/
simulator pair is restricted by the sub-protocol φ. The formal definition exactly
follows Definition 2.
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The Algebraically Dummy Adversary. Similar to the standard UC frame-
work, we can also define a notion of dummy adversary here; this will be usful in
our protocol analyses in the later sections. Recall that in the standard UC frame-
work, the dummy adversary is one that merely passes messages to and from the
environment. However, in our setting, the environment might send some alge-
braic representations to the adversary, which we do not want the protocol parties
to receive. Hence, we define the algebraically dummy adversary as dropping these
algebraic representations.

Definition 5. Suppose protocol π involves group G. An adversary D (in π’s
execution) is (G, π)-algebraically dummy if it satisfies the following: for any mes-
sage (backdoor,m) sent from some identity ID �= 0 (i.e., from some proto-
col machine), it sends (backdoor, (ID,m)) to the environment E; for any mes-
sage (input, (ID,m)) sent from E, it sends (backdoor,m) to identity ID, except
that if m contains X ∈ G and its algebraic representation Λ, then A sends
(backdoor,m′) to identity ID instead, where m′ is m with Λ deleted.

Since D does not write anything on its algebraic tape, for (E ,D) to be alge-
braic, E must send all necessary algebraic representations to D. To simplify
notations, we may say “E is algebraic” in this case.

Now we can define AGM emulation with respect to the dummy adversary:

Definition 6. Suppose protocols π and φ involve the same group G. π G-AGM
emulates φ with respect to the dummy adversary if the following holds: there is an
efficient simulator S such that: for any efficient and (G, π)-algebraic environment
E, we have that (E ,S) are (G, φ)-algebraic, and

execφ,S,E ≈ execπ,D,E ,

where D is the (G, π)-algebraically dummy adversary.

Similar to the standard UC framework, we can show that emulation is equiv-
alent to emulation with respect to the dummy adversary. This simplifies protocol
analysis, since from now on we can simply assume that the adversary is alge-
braically dummy.

Theorem 1. Suppose protocols π and φ involve the same group G. Then π G-
AGM emulates φ (as in Definition 2) iff π G-AGM emulates φ with respect to
the dummy adversary (as in Definition 6).

The proof is tedious and is therefore deferred to the full version [3].

2.3 Composition in the UC-AGM

The Composition Theorem. We are now ready to prove the composition
theorem in our UC-AGM framework:



Algebraic Adversaries in the Universal Composability Framework 321

Theorem 2. Suppose protocols π and φ involve the same group G, such that φ
is a sub-protocol of ρφ, π G-AGM emulates φ, and π is identity-compatible with
ρφ and φ. Then ρπ (ρφ with its sub-protocol φ replaced with π) (G, π, φ)-AGM
emulates ρφ. (For formal definitions of “identity-compatibility” and “sub-protocol
replacement”, see the full version [3])

Proof. Let Dπ be the algebraically dummy adversary in an execution of π. Since
π G-AGM emulates φ, we know that there is an efficient simulator Sπ such that:
for any efficient and (G, π)-algebraic environment Eπ, we have that (Eπ,Sπ) are
(G, φ)-algebraic, and

execφ,Sπ,Eπ
≈ execπ,Dπ,Eπ

.

Let ρ = ρφ \ φ, i.e., ρ is the “caller” part of ρπ.

Construction of Simulator S. By Theorem 1, it suffices to consider the (G, π)-
algebraically dummy adversary D in an execution of ρπ. We construct a simulator
S (in an execution of ρφ) which simulates E ’s view for any efficient and (G, π)-
algebraic environment E . S essentially “combines” D and Sπ. Concretely, S works
as follows:

1. On message (input, (ID,m0)) from identity 0 (recall that this means that E
instructs S to send message m0 to the protocol party with identity ID), S
checks if there is a machine in φ with identity ID.
(a) If so, then S activates Sπ with input (input, (ID,m0)) (as from the envi-

ronment), and follows Sπ’s instruction until the activation of Sπ com-
pletes.

(b) Otherwise, i.e., ID is the identity of a machine in ρ, S parses m0 = (m′
0, Λ)

(where Λ is the algebraic representations of the group elements in m′
0)

and sends (backdoor,m′
0) to ID, and writes Λ on its algebraic tape.

2. On message (backdoor,m1) from some identity ID �= 0 (i.e., from a protocol
party), S checks if there is a machine in φ with identity ID.
(a) If so, then S activates Sπ with input (backdoor,m1) (as from ID), and

follows Sπ’s instruction until the activation of Sπ completes.
(b) Otherwise, i.e., ID is the identity of a machine in ρ, S sends

(backdoor,m1) to identity 0 (i.e., to E).

Analysis of Simulator S. It is straightforward to see that if Sπ is efficient,
then S is also efficient. We now show that (E ,S) are (G, φ)-algebraic. Recall that
(E ,S) are (G, φ)-algebraic iff whenever S sends (backdoor,m) to identity ID �= 1,
it also writes on its algebraic tape the algebraic representations (w.r.t. φ) of all
group elements in m. According to the description of S above, S sends backdoor
messages to identity ID �= 1 in step 1(b) only; in this case S writes the algebraic
representation Λ on its algebraic tape, so E is (G, π)-algebraic implies that (E ,S)
are (G, φ)-algebraic.

Moreover, S plays the role of an (G, π)-algebraic environment when activating
Sπ with message (input, (ID,m0)). This is because S copies E ’s message payload
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m0, so E is (G, π)-algebraic implies that m0 contains the algebraic representations
(w.r.t. π) of its all group elements.

Next we show the validity of S. We construct another environment Eπ, which
aims to distinguish between π’s execution with D and φ’s execution with Sπ. Eπ

simulates instances of E and runs the codes of ρ and S locally, and essentially
“combines” E , ρ, and S. Concretely, Eπ, on initial input z, activates E with initial
input z. Then Eπ works as follows:

1. When E completes this activation,
(a) If E halts with some output, then Eπ also halts with the same output.
(b) If E generates an outgoing message (input,m0) to some identity ID such

that there is a machine μ ∈ ρ with identity ID, then Eπ runs the code of
μ on message (input,m0). When μ halts, (∗)

i If μ generates an outgoing message (subroutine-output,m1) to identity
0, then Eπ activates E with message (subroutine-output,m1) (as from
ID) and jumps to the beginning of this step.

ii If μ generates an outgoing message (backdoor,m1) to identity 1, then
Eπ runs the code of S on message (backdoor,m1).

iii If μ generates an outgoing message (input,m1) to identity ID′, which
is the identity of a machine μ′ ∈ ρ, then Eπ runs the code of μ′ on
input (input,m1) and jumps to (∗) (with μ replaced by μ′).

iv If μ generates an outgoing message (input,m1) to identity ID′, which
is the identity of a machine in φ/π, then Eπ sends (input,m1) to
identity ID′.

(c) If E generates an outgoing message (input, (ID,m0)) to identity 1, then
Eπ runs the code of S on message (input, (ID,m0)).

2. When S halts (as in case (b)ii or (c) in step 1; recall that S is a piece of code
run by E itself),
(a) If S generates an outgoing message (backdoor,m2) to identity 0, then Eπ

activates E with message (backdoor,m2) and jumps to step 1.
(b) If S generates an outgoing message (backdoor,m2) to identity ID, which

is the identity of a machine μ ∈ ρ, then Eπ runs the code of μ on message
(input,m2) and jumps to (∗).

(c) If S activates Sπ
5 with message (input, (ID,m2)), then Eπ sends (input,

(ID,m2)) to identity 1 (i.e., to Dπ or Sπ).
3. On message (backdoor, (ID,m3)) from identity 1, Eπ runs the code of S on

message (backdoor, (ID,m3)) (as from Sπ) and jumps to step 2.
4. On message (backdoor,m3) from some identity ID �= 1 (i.e., from a machine

in φ or π) aimed at some identity ID′,
(a) If there is a machine μ′ ∈ ρ with identity ID′, then Eπ runs the code of

μ′ on message (input,m3) and jumps to (∗) (with μ replaced by μ′).
(b) Otherwise, i.e., if ID′ is an external identity, then Eπ activates E with

message (backdoor,m3) (as from ID) and jumps to step 1.

5 Note that this Sπ is an imaginary machine supposed to run inside S, whereas the
“actual” Sπ is the simulator in the execution of φ. Same with step 3 below.
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It is straightforward to see that if E is efficient, then Eπ is also efficient. Also,
Eπ perfectly simulates an instance of D in π’s execution, and an instance of Sπ

in φ’s execution, i.e.,

execπ,Dπ,Eπ
= execρπ,D,E , and execφ,Sπ,Eπ

= execρφ,S,E .

Next we claim that if E is (G, π)-algebraic, then Eπ, as the environment in an
execution of π, is also (G, π)-algebraic. Recall that Eπ is (G, π)-algebraic iff when-
ever it sends (input,m) to identity 1, m contains the algebraic representations
(w.r.t. π) of its all group elements. According to the description of Eπ above,
Eπ sends input messages to identity 1 in step 2(c) only. The message payload
m2 is copied from S’s message aimed at Sπ; we have argued above that S plays
the role of a (G, π)-algebraic environment while communicating with Sπ, which
implies that m2 contains the algebraic representations (w.r.t. π) of its all group
elements.

Since Eπ is both efficient and (G, π)-algebraic, by the definition of Sπ, we
have that

execφ,Sπ,Eπ
≈ execπ,Dπ,Eπ

.

Combining the three results above, we conclude that

execρφ,S,E ≈ execρπ,D,E ,

completing the proof. ��

Transitivity of AGM-emulation. The following theorem is straightforward
to prove, similarly to the standard UC framework.

Theorem 3. Suppose protocols π, π′, φ involve the same group G, such that π
G-AGM emulates π′ and π′ G-AGM emulates φ. Then π G-AGM emulates φ.

Proof. Our goal is to give a simulator S such that execφ,S,E ≈ execπ,A,E when
(A, E) are (G, π)-algebraic. Furthermore, (S, E) must be (G, φ)-algebraic.

By assumption, since π AGM-emulates π′, there is an efficient algebraic
adversary A′ such that execπ′,A′,E ≈ execπ,A,E when (A, E) are (G, π) alge-
braic. Furthermore, (A′, E) are (G, π′)-algebraic.

Moreover, since π′ AGM-emulates φ, there is an efficient algebraic adversary
S such that execφ,S,E ≈ execπ′,A′,E when (A′, E) are (G, π′)-algebraic. Further-
more, (S, E) are (G, φ)-algebraic. This implies that S is the required simulator,
which concludes the proof. ��

In the standard UC framework, the guarantees given by the UC composition
theorem can be plugged in as hypothesis of the transitivity theorem, which allows
deriving a natural corollary when φ is an ideal functionality. Intuitively, in the
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standard UC setting, composition allows us to derive that ρπ emulates ρF , when
π emulates F . If, in turn ρF has been shown to emulate F ′, then transitivity
yields that ρπ emulates F ′.

However, this is not the case in the UC AGM setting. The composition the-
orem guarantees that ρπ emulates ρF with respect to (G, π)-algebraic attackers,
rather than (G, ρπ)-algebraic attackers. This means that, in order to plug-in
composition results with transitivity to obtain a result for ideal functionality
emulation, we require a refined theorem that considers the specific case of com-
posed protocols.

Theorem 4. Suppose protocols ρF , π and ideal functionalities F , F ′ involve
the same group G, such that:

1. idealF is a sub-protocol of ρF ,
2. the π protocol (G, π)-AGM realizes F ,
3. the ρF protocol (G, ρ)-AGM realizes F ′, and
4. π is identity-compatible with ρF and idealF .

Then the instantiated protocol ρπ AGM realizes F ′ with respect to attackers that
are both (G, ρ)- and (G, π)-algebraic.

Proof (Sketch). To prove this statement we need to recall the structure of the
simulator for ρπ that is implied by the composition theorem; here we will call it
A′ consistently with the transitivity theorem proof.

This simulator runs A internally and, when A communicates with machines
executing π, it uses the simulator Sπ as a translator that communicates to F
instead. On the other hand, communications between A and parties executing
ρ are just passed along.

Note that, to use this simulator we need to apply the composition theorem,
which means that (A, E) must be (G, π) algebraic; this is guaranteed by the
stronger restriction that attackers are both (G, ρ) and (G, π) algebraic.

At this point we can now follow the same strategy adopted in the proof of
the transitivity theorem: simulator A′ is used as an attacker against ρF . The
crucial observation now is that, this simulator guarantees that, if (A, E) are
(G, π) algebraic and (G, ρ) algebraic, then (A′, E) is also (G, ρ) algebraic. This is
because communications with ρ are just passed along between A and ρ.

We can now apply the hypothesis that the ρF protocol (G, ρ)-AGM realizes
F ′ and take simulator S implied by this hypothesis to conclude the proof. ��

Extension to the Full UC Framework and Relation to UC Proofs. In
the full version [3] we explain how our treatment here can be extended to the full
UC framework, which models fully dynamic and evolving distributed computing
systems.

UC Emulation Implies AGM Emulation. For completeness, we note that
UC emulation implies AGM emulation whenever the algebraic restriction on the
simulator is moot. To see this, fix protocols π, φ where π UC emulates φ and φ
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does not impose any algebraic restriction on S. Any efficient algebraic environ-
ment E is in particular an efficient environment, so there is an efficient simulator
S for which execφ,S,E ≈ execπ,D,E holds for any efficient algebraic environ-
ment E . Furthermore, S is trivially algebraic since there is no such requirement
when interacting with φ.

In the full version [3] we discuss in detail how UC AGM proofs compose with
stronger standard UC emulation results, and further clarify the implications of
the UC AGM composition theorems. The discussion also clarifies what happens
in the setting where different groups are used by different protocols.

We finally note that the fact that we refer to protocols that use the same
group in our theorems because this is the more problematic case, and it serves
to highlight the limitations to composition in the AGM. All our results carry
without change to the case where different groups are used; in this case excluding
attacks that prevent using group elements occurring in one protocol in an attack
against another protocol, unless a representation can be provided, seems less of
a limitation.

3 Analysis of the Chou-Orlandi Protocol

In this section, we analyze the security of the Chou-Orlandi protocol for oblivious
transfer in the UC-AGM. For convenience, we present the standard OT func-
tionality FOT in Fig. 1. We describe the Chou-Orlandi protocol ΠCO in Fig. 2.
All messages sent in the protocol are via a message authentication functionality
FAUTH, as presented in [13].

We now turn toward proving security of the protocol. In the following, we
denote S and R as the sender and the receiver in protocol ΠCO, respectively.
We describe a simulator SimCO for ΠCO by considering the different options for
the order of corruptions. We assume that the simulator immediately aborts if it
obtains syntactically ill-formed messages from a corrupted party as part of ΠCO.
We first give an outline of the proof.

Proof Intuition. Roughly speaking, our proof must overcome two main chal-
lenges from the original work of Chou and Orlandi. The first is how to simulate
the internal state of parties upon adaptive corruption. Namely, in Chou and
Orlandi’s proof, there seems to be no way of explaining the secret exponent x
chosen by R if S is statically corrupted and can send an arbitrary group element
A in Step 1 for which R does not know the discrete logarithm y. This issue is
easily resolved using the AGM, as the simulator always learns the exponent y
from the algebraic coefficients provided for A.

The second issue in their proof comes from an improperly defined FOT func-
tionality. Roughly speaking, their version of this functionality does not notify S
upon R obtaining the message mb. If the corrupted R never makes the query for
one of the keys kb to H then the simulator cannot extract the correct bit and
complete the simulation of the protocol. Note that this issue cannot be overcome
by the simulator naively completing the simulation before R makes this query
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Functionality OT

– On input (receive, sid , b) where b ∈ {0, 1} from R do: if no message of the
form (receive, sid , b), b ∈ {0, 1} has been stored, store (receive, sid , b).
Output (receive, sid) to S.

– On input (send, sid , m0, m1) where m0, m1 ∈ {0, 1}� from S do: if
no message of the form (send, sid , m0, m1) has been stored, store
(send, sid , m0, m1). Output (send, sid) to S.

Adversary S:
– On input (receive, sid , b) where b ∈ {0, 1} from S do: if no message of the

form (receive, sid , b), b ∈ {0, 1} has been stored, store (receive, sid , b).
– On input (send, sid , m0, m1) where m0, m1 ∈ {0, 1}� from S do: if

no message of the form (send, sid , m0, m1) has been stored, store
(send, sid , m0, m1).

– On input (deliver, sid , R) from S: if both (receive, sid , b) and
(send, sid , m0, m1) have previously been stored, do:

• If R is honest: output (output, sid , mb) to R.
• If R is corrupted: output (output, sid , mb) to S.

Otherwise, output ⊥ to S.
– On input (deliver, sid , S) from S, if (output, sid , mb) was previously out-

put (to R or to S) and S is honest, output (output, sid) to S. Otherwise,
output to .

Fig. 1. Functionality for 1-out-of-2 OT

Protocol ΠCO

– Step 1: Upon receiving input (send, sid , m0, m1), S samples y Zp

and computes A := gy,B := gy2
. It sends A to R via AUTH.

– Step 2: Upon receiving input (receive, sid , b) and A ∈ G from S, R
samples x Zp and computes U := Abgx. It sends U to S via AUTH.

– Step 3: Upon receiving U from R, S computes kb :=
H(A,UyB−b−1), eb := mb ⊕ kb for b ∈ {0, 1}. It sends e0, e1 to R
via AUTH and outputs (output, sid).

– Step 4: Upon receiving e0, e1 from S, R computes kb∗ :=
H(A,Ax), mb∗ := eb∗ ⊕kb∗ for b∗ ∈ {0, 1}. It outputs (output, sid , mb∗).

Fig. 2. The Chou-Orlandi OT protocol.

by prompting the message (output, sid) from FOT to S prematurely via a query
on some arbitrary b. The reason is that E can always make the opposite query to
H, i.e., for k1−b, with probability 1 after the simulation is complete. In this case,
there is no way to obtain m1−b from FOT again, since S already had to make the
query in order to force (output, sid) being output to E . Both of these issues can
be overcome when requiring that the environment E be algebraic. In this case, y
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is revealed when the corrupted S sends it in Step 1. For the issue of extraction,
S observes that R either sends U := Abgx as specified by the protocol, or sends
U := gx that does not satisfy this format. In the either case, S can safely carry
out the extraction according to either b or an arbitrary bit (in case U is not of
the specified format). The only way for E to distinguish the simulation from the
real world is by making a query from which a discrete logarithm instance can be
solved (using algebraic coefficients provided by E as part of that query to H).

Let g denote a generator for a cyclic group G of prime order q and let DL
denote the problem of computing a when given a random element A = ga in G.
Moreover, denote AdvDL

B := Pr[a′ = a | a′ ← B(ga)] the advantage of adversary
B in solving DL. Then Theorem 5 shows that the ΠCO protocol for oblivious
transfer AGM realizes FOT.

Theorem 5. ΠCO UC-realizes FOT in the FRO-hybrid model under adaptive
corruptions. More precisely, there exists an algebraic simulator SimCO for the
algebraically dummy adversary D such that, for every algebraic environment E
that makes at most qH queries to FRO, there exist attackers B1 and B2 running
in roughly the same time as E, such that execFOT,S,E ≈ε execΠCO,D,E , with

ε ≤ qH · (AdvDL
B1

+ AdvDL
B2

).

Proof. The simulator SimCO is as follows:

S is corrupted before Step 1.

– R is corrupted before Step 2. In this case, there is nothing for SimCO to
simulate.

– R is corrupted between Step 2 and 4. In this case, R has received A ∈ G

from S (but has not yet received e0, e1). In addition, SimCO learns y ∈ Zp s.t.
A = gy. SimCO samples u ← Zp and computes U := gu, which it sends to S.
When R becomes corrupted, SimCO learns b and sets x := u − yb. It outputs
(b, x) to E . In addition, it simulates the random oracle H as described in the
next subcase.

– R is corrupted after Step 4. In this case, R receives A ∈ G at Step 2 and
e0, e1 at Step 4. In addition, SimCO learns y ∈ Zp s.t. A = gy. SimCO samples
u ← Zp and computes U := gu, which it sends to S. To program H, when E
queries H on input (I,J) (together with the algebraic representations of I,J),
SimCO does as follows.

• It first checks whether H[I,J] �= ⊥. In this case, it returns H[I,J]. Thus,
assume in the following that E queries H on some input for the first time.
In addition, for any fresh query I,J, assume that SimCO sets H[I,J] to
the value it returns.

• If the query is of the form H(gy,Uygy2(b−1)) for b ∈ {0, 1}, SimCO sets
kb ← {0, 1}κ. It returns kb.

• Otherwise SimCO samples k ← {0, 1}κ and returns k.
• After observing both A and U in the protocol, SimCO also retroactively

checks whether it has previously set H[gy,Uygy2(b−1)]. If so, it sets kb :=
H[gy,Uygy2(b−1)].



328 M. Abdalla et al.

Upon having received e0, e1 from S, SimCO samples m0,m1 ← {0, 1}κ. For
all b ∈ {0, 1} for which kb = ⊥ at this point, it sets kb ← {0, 1}κ and
programs H[gy,Uygy2(b−1)] = kb (it does not resample kb in case it has
already been defined). It then sets m0 := e0 ⊕ k0,m1 := e1 ⊕ k1 and inputs
(send, sid ,m0,m1) and (deliver, sid , R) to FOT. This prompts the output
(output, sid ,mb) to the honest R, since R has previously input (receive, sid , b)
to FOT. When R is corrupted, SimCO learns b and sets x := u − yb (mod q).
It outputs (b, x,mb) to E .

S is corrupted between Step 1 and Step 3. To simulate the behaviour of
S, SimCO samples y ← Zp and computes A := gy,B := gy2

. It sends A to R.
When S is corrupted, SimCO learns m0,m1. It outputs (y,m0,m1) to E .

– R is corrupted before Step 2. In this case, SimCO only needs to simulate H
before S becomes corrupted (afterwards, both parties are corrupt and there
is nothing to simulate). When R sends U in Step 2, SimCO learns u, v s.t.
U = guAv. SimCO now proceeds to simulate H exactly as in the case where S
is corrupted before Step 1, except that it aborts if it ever sets both k0, k1 �= ⊥.
As in the case where the Sender is corrupted before Step 1, SimCO’s simulation
is indeed efficient, since it knows y and can hence check the necessary relations
in the exponent of U.

Claim. SimCO does not abort except with probability 1
qH

AdvDL
B1

, where B1 is
an adversary that runs in roughly the same time as E .

Proof. SimCO aborts in this case only if the adversary queries gy,Uygy2), as it
queries both gy,Uygy2(b−1) for both b = 0, b = 1 to H by assumption. In this
case, we can construct B1 as follows. On input a discrete logarithm challenge
A = gy in game DL, B1 samples i ∈ [qH ] uniformly at random and runs E .
It simulates the behavior of SimCO by sending the element A in Step 1. If
E corrupts R, B1 aborts. When E (controlling R) queries H on input A,J,
SimCO learns coefficients a, b s.t. J = gaAb. If J = A, and v = 0, then B1 sets
kb ← {0, 1}κ and programs H[I,J] = kb. For the i-th such query for which
v �= 0, B solves the equation (1+v) ·y2 +(u−b) ·y−a = 0 (mod q) for y, and
outputs y. (Note that this yields the correct solution in case the i-th query is
of the form gy,Uygy2)). Since B1 guesses q correctly with probability at least
1

qH
and perfectly simulates the behavior of SimCO up that point perfectly, the

claim follows. ��
– R is corrupted between Steps 2 and 4. In this case, the simulation for

R can be carried out as in the case where S is corrupted before Step 1.
– R is corrupted after Step 4. In this case, R receives e0, e1 from the cor-

rupted sender S at Step 4. The only difference to the case where S is corrupted
before Step 1 is that SimCO knows y ∈ Zp s.t. A = gy from sampling it in
the first part of the simulation (rather than learning it from the algebraic
coefficients output by the corrupted S).

S is corrupted after Step 3. To simulate the behaviour of S, in Step 1, SimCO

samples y ← Zp and computes A := gy,B := gy2
. It sends A to R.
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– R is corrupted before Step 2. When R sends U ∈ G to S, SimCO checks
whether the algebraic coefficients provided by R are such that U = Abgx for
some b ∈ {0, 1}, x ∈ Zp.

• If so, SimCO inputs (receive, sid , b) and then (deliver, sid , R) to FOT.
• Otherwise, SimCO samples b ← {0, 1}, x ← Zp and inputs (receive, sid , b)

and then (deliver, sid , R) to FOT.
Either case prompts the output (output, sid ,mb) to SimCO, since S is honest
at this point and has previously input (send, sid ,m0,m1) to FOT. To simulate
H on input (I,J), SimCO does as follows.

• It first checks whether H[I,J] �= ⊥. In this case, it returns H[I,J]. Thus,
assume in the following that H is queried on some input for the first time.
In addition, for any fresh query I,J, assume that SimCO sets H[I,J] to
the value it returns.

• For any query to H, SimCO checks whether it is of the form H(gy, gy2
,

Uygy2(b−1)) for b ∈ {0, 1}, (i.e., it checks with respect to both b = 0 and
b = 1). If any queries have been made before U was set by the corrupted
R, SimCO also checks whether they have this format.
∗ If not, it samples k ← {0, 1}κ and returns k.
∗ Otherwise, if SimCO has previously set eb �= ⊥ (see below) it sets kb :=

eb ⊕ mb. Else, it sets kb ← {0, 1}κ. It returns kb.
• If during this process, SimCO ever sets both k0, k1 �= ⊥, it aborts.

In Step 3, SimCO samples e0, e1 ← {0, 1}κ and sends them to R. After SimCO

performs Step 3 of the protocol, SimCO inputs (deliver, sid , S) to FOT which
prompts the output (output, sid) to S. Once S is corrupted (after Step 3),
SimCO learns m0,m1. It outputs (y,m0,m1) to E .

– R is corrupted between Step 2 and Step 4. In this case, the sim-
ulation for R can be carried out as in the case where S is corrupted
before Step 1. In addition, after S performs Step 3 of the protocol, SimCO

inputs (receive, sid , b), (deliver, sid , S) to FOT (in this order). This prompts
the output (output, sid) to S, since S is honest at this point and thus has
input (send, sid ,m0,m1) to FOT. Moreover, SimCO aborts upon setting both
k0, k1 �= ⊥.

– R is corrupted after Step 4. Same as previous case, except that SimCO

does not have to abort if R is corrupted after S.

The proof of the following claim is almost identical to the one given for the
case where S is corrupted between Step 1 and Step 3.

Claim. SimCO does not abort in case the sender is corrupted after Step 3 except
with probability 1

qH
AdvDL

B2
, and B2 runs in roughly the same time as E .

As long as SimCO does not abort, it perfectly simulates the behavior of a
party in ΠCO, as all outputs of the random oracle H are uniformly distributed in
this case from the view of E . Moreover, SimCO can consistently simulate the view
of E . Finally, it is easy to see that all SimCO can output algebraic representations
of all elements that it outputs relative to group elements it receives as input,
and hence SimCO is algebraic. This concludes the proof. ��
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4 Analysis of PAKE Protocols: SPAKE2 and CPace

In this section we analyze the UC security of PAKE protocols SPAKE2 and
CPace in the algebraic group model. We show that, modeling the hash functions
used by these protocols as random oracles, they both achieve full UC security.
The proofs are simpler than the ones we encountered in the literature for the UC
and game-based security of the same protocols and they are based on standard
(non-interactive) assumptions (we do not need gap assumptions). We use the
standard definition of FpwKE from [2,15] supporting multiple sessions Fig. 3.

Remark. Throughout the paper we present the simulators as running their own
instances of the random oracle functionality used by the protocols, which means
that we assume that the random oracle is local to the protocol [14]. However, in
this section, we make it clear that none of the given simulators needs to program
the random oracle functionality and, in the case of the SPAKE2 protocol, it
does not even need to know which adversarial queries were made to the random
oracle. These observations indicate that our proofs of security may carry over to
a setting with global random oracle as in [12,16]. Providing a full formalization
of the referred works in the AGM is beyond the scope of this paper; however, we
believe that our formal approach will carry naturally to extensions of UC with
global functionalities.

Remark. The SPAKE2 simulator does not need to program the common refer-
ence string and the CPace protocol does not use one (in addition to the group
description). We also show for both protocols that the simulators are algebraic.
This means that the UC-AGM composition applies to both protocols.

4.1 SPAKE2

Figure 4 shows a SPAKE2 protocol execution between an user U and a server S.
SPAKE2 is a two-pass protocol, where we assume the user plays the role of the
initiator and the server that of the responder.

Let SqDH denote the problem of computing ga2
, when given a random ele-

ment A = ga in G, and AdvSqDH
B the probability that attacker B succeeds in solv-

ing this problem. Theorem 6 shows that SPAKE2 AGM realizes FpwKE assuming
that SqDH and the discrete-logarithm problems are hard in G.

Theorem 6. SPAKE2 AGM-emulates FpwKE in the (FRO,FCRS)-hybrid model
under static corruptions. More precisely, there exists an algebraic simulator S
for the (algebraic) dummy adversary D such that, for every efficient algebraic
environment E creating at most qS sessions and placing at most qH queries to
the random oracle, there exist attackers B1

1, B2
1, and B2 running in roughly the

same time as E such that execpwKE,S,E ≈ε execspake2,D,E , where

ε ≤ AdvDL
B1

1
+ AdvDL

B2
1

+ qH · AdvSqDH
B2

+
qS + 1

q
.
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Functionality pwKE

Upon receiving a query (NewSession, sid , P, P ′, pw, role) from party P :
Ignore this query if record (sid , P, ·, ·, ·) already exists. Otherwise, record
(sid , P, P ′, pw, role) marked fresh and send (NewSession, sid , P, P ′, role) to S.

Upon receiving a query (TestPwd, sid , P, pw∗) from S:
If ∃ a fresh record (sid , P, P ′, pw, ·) then:
– If pw∗ = pw then mark it compromised and return “correct guess”;
– If pw∗ �= pw then mark it interrupted and return “wrong guess”.

Upon receiving a query (NewKey, sid , P, K∗) from S:
If ∃ a record (sid , P, P ′, pw, role) not marked completed then do:
– If the record is compromised, or either P or P ′ is corrupted, then set

K := K∗.
– If the record is fresh and ∃ a completed record (sid , P ′, P, pw, role′, K′) with

role′ �= role that was fresh when P ′ output (sid , K′), then set K := K′.
– In all other cases pick K uniformly at random.

Finally, append K to record (sid , P, P ′, pw, role), mark it completed, and out-
put (sid , K) to P .

Fig. 3. The password-based key-exchange functionality FpwKE.

User Server

x Zq y Zq

X gx Y gy

X� X · Mpw X X� / Mpw

Y Y � / Npw Y � Y · Npw

K H(sid , U, S, X�, Y �, pw, Y x) K H(sid , U, S, X�, Y �, pw, Xy)

sid , U, S, pw ∈ P, crs = (G, M, N)

X�

Y �

Fig. 4. The SPAKE2 protocol [5]. The CRS includes the group description G, where
|G| = q and two group elements M, N ∈ G sampled uniformly at random.

Note, that the DL problem and the SqDH problems are equivalent when we
consider algebraic attackers, so the theorem follows with a reduction to the DL
problem even if the proof relies on an apparently stronger assumption.

We also remark that the structure of this proof is much simpler than the
proof that SPAKE2 satisfies relaxed UC PAKE security [2]. This is because, in
the AGM, the password guessing event can be detected directly by the simulator
(and hence by the reductions) and one does not need to rely on the random oracle
to extract passwords in active attacks.

We give a sketch of the proof and provide the full proof in the full version [3].



332 M. Abdalla et al.

Simulator S for SPAKE2

proc Initialize( )
Get CRS=(M,N)

On input (NewSession, sid, P, P ′, role) from
If ) discard input.
If role = init

Send SendInit(P, P ′, sid ,X�) to E
Else

On message SendInit(P, P ′, sid , (X�, alg)) from E

(Interrupt all other sessions so independent key is set)
Else Query (
Complete:

On message SendResp(P ′, P, sid , (Y�, alg)) from E

resp) Jump to Complete
was constructed as per protocol)

(Interrupt all other sessions so independent key is set)
Else Query (
Complete:

Fig. 5. The operation of the SPAKE2 simulator. The simulator does not need to observe
adversarial random oracle queries nor program either of the random oracle or the CRS.
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Proof (Sketch). Simulator S is shown in Fig. 5. Recall that, whenever the dummy
adversary is instructed to deliver a group element to an uncorrupted party, it
will output on its auxiliary tape the algebraic representation of that element
with respect to group elements that appear in the view of the environment. In
this case, the bases for such representations include M, N and any messages X	

or Y	 produced by an uncorrupted party.

Simulation Strategy. The simulator generates all messages of uncorrupted
parties by raising either M or N to a random exponent. It does so because it
does not know the corresponding password. The distribution of such messages is
identical to those produced by honest parties in the real world, which are of the
form gxMpw or gyNpw. The simulator then keeps track of whether the adver-
sary is launching a passive attack or an active attack: where the former means
that there exists another simulated session with a consistent view. All passively
attacked sessions are not interrupted by the simulator, which means that FpwKE

will choose independent keys at the associated dummy parties’ outputs.
For actively attacked sessions, the simulator checks if the delivered message

was constructed as per the protocol and, if so, it extracts the password. All mal-
formed messages cause the simulator to interrupt the session in the functionality
by calling TestPw with pw =⊥. For well formed messages, the simulator queries
TestPw on the extracted password and, if the password is correct, computes the
correct key: this is possible because, even though the simulator does not know
the correct exponent implicit in the simulated honest party’s state, it knows
the algebraic decomposition of the delivered message and this is well formed
(this means it can compute the key as the adversary would). If the password
is incorrect, the simulator generates a totally random key (this is ignored by
the functionality if there are no corrupt parties involved in the session, but it is
relevant otherwise as we discuss below).

The simulation is perfect for all sessions with well-formed messages and cor-
rect password guesses. It looks perfect for all other sessions, unless the attacker
can query the random oracle on the group element that such a session would
compute in the real world. Our proof shows that any such query can, with
overwhelming probability, be used to solve the SqDH problem. Two important
observations for the proof: i. the simulator never uses the random exponents it
generates for the honest party messages to perform any computation; and ii. the
simulator never constructs any group element for which it cannot provide an
algebraic decomposition to bases g, M and N. The second observation guaran-
tees that our simulator is an algebraic adversary as required by the composition
theorem in Sect. 2.

Corrupt Parties. Figure 5 does not show explicitly the simulator’s handling of
sessions involving corrupt parties. In this case, the environment tells the simu-
lator what the corrupt party should be doing, and the simulator does not keep
the state of the corrupt party. Moreover, any group elements transmitted by the
corrupt party come with their algebraic decomposition as above. Our simulator
is structured to handle this case identically to the setting where the uncorrupted
party is actively attacked while interacting with another uncorrupted party; we
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explain why this is the case in the detailed version of the proof provided in the
full version [3]. The proof below covers this scenario as a particular case.

Proof of Simulator Correctness. From this point on we consider only inter-
actions involving uncorrupted parties. The first observation we make is that the
distribution of the protocol messages produced by the simulator is identical to
that occurring in the real world, even though they are constructed differently.
It therefore remains to prove that the outputs of the ideal functionality match
the distribution of the parties’ outputs in the real world. We observe that the
real and ideal worlds are identical until bad, where bad is defined as the event
that a secret key that is selected uniformly at random by the functionality at
the output of an uncorrupted party is inconsistent with the answer given by H
to the adversary. This is because in all other cases the simulator programs the
output of the ideal functionality consistently with the real world. This means
formally that, for ε = Pr[execpwKE,S,E ⇒ bad], we have

execpwKE,S,E ≈ε execspake2,D,E

More precisely, we define event bad as the existence within the set of queries
placed by E to the random oracle of a query (sid , P, P ′,X	,Y	, pw,Z) that is
consistent with the trace of a session at an uncorrupted party, which accepted
after a passive attack or after an active attack where the simulator did not place
a correct TestPw query. We define now these conditions formally.

We say a random oracle query (sid , P, P ′,X	,Y	, pw,Z) is consistent with
an initiator session πsid

P if this instance was created following a NewSession query
by E using pw and πsid

P = ( · , (P, P ′,X	,Y	), · , init). Similarly, the condition for
responder session πsid

P ′ is πsid
P ′ = ( · , (P, P ′,X	,Y	), · , resp). Note that the order

of party identities in the trace determines the role of the party.
We say an initiator session πsid

P accepted after a passive attack if it com-
pleted following a SendResp(P ′, P, sid , (Y	, alg)) message from E , when πsid

P ′ =
( · , (P, P ′, sid ,X	,Y	), · , resp). We say a responder session πsid

P ′ accepted after
a passive attack if it completed following a SendInit(P, P ′, sid , (X	, alg)) mes-
sage from E , when πsid

P = ( · , (P, P ′, sid ,X	,Y	), · , init). All other sessions are
considered to be under active attack.

We reduce the probability of bad to SqDH. Intuitively, our reduction embeds
the SqDH challenge A in the global parameters (M = A,N = Aδ) for δ sampled
uniformly at random from Z

	
q (this accounts for the 1/q term in the theorem

statement). Suppose bad is first set for a random oracle entry that is consistent
with a session accepted by an initiator session. The attacker delivered a message
Y	 and an algebraic representation that we can see as [(a, g), (b,M), (c,N)]. The
reduction can transform this algebraic representation into [(a, g), (b+δc,A)]. Let
CDH(A,B) = gab for A = ga and B = gb. This means that any problematic
random oracle query will include a group element of the form

Z = CDH(Ax−pw, gaAb+δ(c−pw)) = CDH(Ax−pw, ga) · CDH(Ax−pw,Ab+δ(c−pw))
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where x was chosen by the reduction following the simulator code. Since the
reduction can compute the first factor, we can recover

CDH(A,A)(x−pw)(b+δ(c−pw))

which means that the required SqDH solution can be recovered when (x−pw)(b+
δ(c − pw)) �= 0. The case of responders is similar, but we can only recover the
SqDH result provided δ(y − pw)(b + δc − pw) �= 0.

The detailed proof given the full version [3] bounds the probability that
our reduction strategy fails using a statistical term and reductions B1

1 and B2
1

to the discrete logarithm problem. Once this possibility is excluded, we can
reduce the probability of bad to SqDH. The detailed proof also includes the code
for the algorithm B2 that breaks SqDH if the bad event occurs. In this case,
we know that the random oracle table will contain a solution to SqDH if the
event bad has occurred. When the experiment terminates, B2 therefore samples
a random oracle query uniformly at random6 and looks for a consistent session.
It could find one or two consistent sessions, where the latter case corresponds to a
passive attack with matching passwords on both sides. In any case, it computes a
candidate SqDH value using the appropriate initiator or responder-side formula
we described above. If the randomly selected random oracle entry was the first
to cause the bad event, the algorithm solves SqDH. This accounts for the qH
multiplicative loss in the theorem statement. ��

Remark. The above proof strategy can be used almost without change for an
alternative version of the protocol that does not include the password pw in the
input to the key derivation hash. This has practical advantages, as the password
need not be kept in memory after computing the outgoing message. This version
of the protocol was introduced as SPAKE1 in [5], and it was previously not known
that this protocol could achieve forward secrecy or UC security. The only point
where the current proof would need to be modified is in the final computation
of the SqDH solution: in the particular case of a passive attack there now could
be two protocol instances at P and P ′ with different passwords, but matching
the same random oracle entry. In this case, the reduction would toss a coin and
choose one of them at random to fix the password used to compute the SqDH
solution. This adds only a factor of 2 to the final reduction step.

Furthermore, the same proof applies to both protocols when we can rely on
a DDH oracle to the fixed basis A to look for the offending random oracle entry.
In this case, we get a tight reduction to Strong SqDH for both protocols, i.e.,
the strong DH assumption adapted to the computation of ga2

. Finally, the proof
also applies to variants of the protocol discussed in [1], whereby the CRS is
defined as (M,N = M), or when the CRS is simply the group description and
(M,N) = H(sid , U, S) and H is modeled as a random oracle.

6 This step could be replaced with a search for a consistent entry using a DDH oracle
to the fixed basis A, resulting in a tighter reduction to Strong SqDH where the qH
factor disappears.
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4.2 CPace

Figure 6 shows a CPace protocol execution between an user U and a server S.
CPace is a two-pass protocol, where we assume the user plays the role of the
initiator and the server that of the responder. We give a sketch of the proof here
and provide the complete proof in the full version [3].

User Server

G H1(sid , U, S, pw) G H1(sid , U, S, pw)

x Zq y Zq

X Gx Abort if X = 1

Abort if Y = 1 Y Gy

K H2(sid , X, Y, Y x) K H2(sid , X, Y, Xy)

sid , U, S, pw ∈ P, crs = (G)

X

Y

Fig. 6. The CPace protocol [22]. CRS includes the group description G s.t. |G| = q.

Let InvCDH denote the problem of computing g1/a when given a random
element A = ga in G and let AdvInvCDH

B denote the probability that attacker
B solves this problem. Theorem 7 shows that CPace AGM realizes FpwKE if
InvCDH is hard in G.

Theorem 7. CPace AGM-emulates FpwKE under static corruptions, in a hybrid
model with the random oracle functionality. More precisely, there exists an alge-
braic simulator S for the (algebraic) dummy adversary D such that, for every
efficient algebraic environment E creating at most qS sessions, querying H1 at
most qH1 times and querying H2 at most qH2 times, there exists B�1,�2 running
in roughly the same time as E such that execpwKE,S,E ≈ε execcpace,D,E , where

ε ≤ qH1 · qH2 · AdvInvCDH
B�1,�2

( ) +
q2H1

+ qS

q
.

Note that the InvCDH problem is equivalent to the DL problem when we
consider algebraic attackers, so the theorem follows with a reduction to the DL
problem even if the proof relies on this apparently stronger assumption.

Proof. (Sketch) Simulator S is shown in Fig. 7. The simulation strategy here
is identical to that we adopt for the SPAKE2 proof, with the caveat that the
simulator must learn the environment’s queries to H1 in order to extract the
password in an active attack. (In this case, the bases for the algebraic represen-
tations of adversarially constructed messages include the outputs of the random
oracle H1 and any messages X or Y produced by an uncorrupted party.) Also
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Simulator S for CPace

proc H1(sid , P, P ′, pw) (non-repeat queries)

Simulator aborts if at any point T1 is non-injective.

On input (NewSession, sid, P, P ′, role) from
If ) discard input.
If role = init

Else ˆ

On message SendInit(P, P ′, sid , (X, alg) �= 1) from E via D

init) Jump to Complete
was constructed as per protocol)

(Interrupt all other non-passive sessions.)
Else Query (
Complete:

On message SendResp(P ′, P, sid , (Y, alg) �= 1) from E via D

resp) Jump to Complete
was constructed as per protocol)

(Interrupt all other non-passive sessions.)
Else Query (
Complete:

Fig. 7. The operation of the CPace simulator. The simulator needs to observe adver-
sarial random oracle queries on H1 but not on H2, and it does not need to program
either of the random oracles. T1 is initially empty.
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here the simulator never generates any group element for which it cannot give
an algebraic decomposition with respect to base g, and hence it is an algebraic
adversary. The handling of corrupt parties is also the same.

Proof of Simulator Correctness. This part of the proof is also similar in
structure to that of SPAKE2. We first eliminate some corner cases, where the dis-
tribution of real world and the ideal world views do not match, but are straight-
forward to bound using a statistical term; this includes collisions at the random
oracle output. We then conclude that the real and ideal worlds are identical until
bad, where bad is defined as the existence within the set of queries placed by E
to H2 of a query (sid ,X,Y,Z) that is consistent with the trace of a session at
an uncorrupted party, which accepted after a passive attack or after an active
attack where the simulator did not place a correct TestPw query. We define now
these conditions formally.

We say an H2 query (sid ,X,Y,Z) is consistent with an initiator ses-
sion πsid

P if πsid
P = ( · , ( · , · ,X,Y), · , init). Similarly, the condition for

responder session πsid
P ′ is πsid

P ′ = ( · , ( · , · ,X,Y), · , resp). We say an ini-
tiator session πsid

P accepted after a passive attack if it completed fol-
lowing a SendResp(P ′, P, sid , (Y, alg)) message from E , when πsid

P ′ =
( · , (P, P ′, sid ,X,Y), · , resp). Responder session πsid

P ′ accepted after a passive
attack if it completed after a SendInit(P, P ′, sid , (X, alg)) message from E , when
πsid

P = ( · , (P, P ′, sid ,X,Y), · , init). All other sessions are considered to be under
active attack. Finally, we say a T1 entry of the form (sid , P, P ′, pw) is consistent
with an initiator (resp. responder) instance, if that instance was initialized by
the environment in a NewSession query with (sid , P, P ′, pw, init) (resp. (sid ,
P ′, P, pw, resp)).

We bound the probability of bad in the ideal world using a sequence of games.

Guessing the RO Entries that Cause bad. We modify ideal world as follows:
sample (
1, 
2) uniformly at random in [qH1 ]× [qH2 ]. Then, if bad first occurs due
to the i-th H2 query such that i �= 
2, abort. Furthermore, if the offending
T1 entry (i.e., the T1 unique entry consistent with the session where the bad
event was detected) is not the 
1-th one, abort. Clearly, we can still bound the
probability of bad in the previous game with the pessimistic bound qH1 · qH2 ·
Pr[bad], where we only check for bad if the experiment has not aborted. We
give in the full version [3] a reduction B�1,�2 that solves the InvCDH problem
whenever bad occurs in this modified game.

Final Reduction. The reduction strategy is as follows. The generator returned
by H1 for the problematic session associated with the 
2-th password query is
programmed to be A, the InvCDH problem instance. All messages generated
by uncorrupted parties are generated as gx̂ or gŷ. All random oracle queries
consistent with a session with trace (X,Y) and generator A include the key
element Z satisfying the following equation:

Z = XdlogA(Y) = YdlogA(X) = A(dlogA(X)·dlogA(Y))
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Observing that dlogA(X) = dlogg(X)/dlogg(A) the equation can be re-written
as:

Z = g
dlogg(X)·dlogg(Y)

dloggA

In the simplest case of a passive attack, it is immediate that we recover the
solution to the InvCDH problem if x̂ · ŷ �= 0, which we know to be the case.

Now let us suppose the problematic case occurs with an actively attacked
initiator session. Then we know that Y = gαAβ and α �= 0; otherwise this
would be a correct password guess and the bad event could never have occurred
for this session—recall the experiment would have aborted if H1 did not program
A as the output for the password associated with this session. We can therefore
refine the equation above to:

Z = g
x̂·(α+β·dlogg(A))

dloggA = g
x̂·α

dloggA+x̂·β

Again, the InvCDH solution can be recovered, as long as x̂ �= 0. The responder
session case is identical. ��

Remark. As in the proof of SPAKE2, we could eliminate the qH2 factor in
the reduction by using a DDH oracle to the fixed basis A to detect which of the
entries in H2 is consistent with the bad event; however, we would still be guessing
the problematic H1 query in order to program the hard problem instance, and
the qH1 factor would remain.

Remark. In the proofs for SPAKE2 and CPace, we have seen that it is possible
to have tighter reductions to a stronger gap assumption that excludes the need
to guess an entry in the key derivation random oracle. However, we should also
mention that in the algebraic group model, the gap versions of the SqDH and
InvCDH assumptions are actually equivalent to the standard versions, provided
that the reduction is able to give algebraic decompositions of all the elements
queried to the DDH oracle. This is the case in our proofs, provided that the
attacker is also required to give algebraic decompositions of the group elements
it queries to the random oracle. Note that this is a requirement for algebraic
environments in the UC AGM model, as explained in Sect. 2. The take away
from this discussion is that our proof of SPAKE2 implies a tight reduction to
SqDH in the algebraic group model for both SPAKE1 and SPAKE2 (SPAKE1
is the variant that does not include pw in the key derivation hash). The CPace
proof implies a reduction to InvCDH in the AGM with a loss of qH1 .
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Abstract. It is known, from the work of Dai et al. (in CRYPTO’17),
that the PRF advantage of XORP (bitwise-xor of two outputs of n-bit ran-
dom permutations with domain separated inputs), against an adversary
making q queries, is about q/2n for q ≤ 2n−5. The same bound can be
easily shown to hold for XORP[k] (bitwise-xor of k outputs n-bit pseudo-
random random permutations with domain separated inputs), for k ≥ 3.
In this work, we first consider multi-user security of XORP[3]. We show
that the multi-user PRF advantage of XORP[3] is about

√
uqmax/2n for

all qmax ≤ 2n/12, where u is the number of users and qmax is the maxi-
mum number of queries the adversary can make to each user. In the multi-
user setup, this implies that XORP[3] gives security for O(2n) users even
allowing almost O(2n) queries to each user. This also indicates significant
improvement in the single-user setup (i.e., when u = 1), where the dis-
tinguishing advantage of the adversary even after making O(2n) queries
is O( 1√

2n ), i.e., negligible. Subsequently, we consider a simple efficient

variant of XORP[3] in which we use five calls to produce 2n bit output
(instead of six calls in the case of XORP[3]). This variant also achieves
similar level of security. As an immediate application, we can construct a
variant of block cipher based counter mode which provides much higher
security (both in the single-user and the multi-user setup) compared to
the security of the encryption part of GCM at the cost of efficiency.

Keywords: Random permutation · PRF security · Multi-user
security · χ2 method · XOR construction

1 Introduction

Luby-Rackoff Backwards. Pseudorandom functions (PRFs) are important
cryptographic primitives. Construction of PRFs using other primitives is an
intriguing problem in cryptography. In the context of symmetric-key cryptog-
raphy, construction of PRFs from pseudorandom permutations (PRPs) is com-
monly termed “Luby-Rackoff Backwards” [BKR98].1

1 In reference to the seminal work by Luby and Rackoff ([LR88]) who considered the
converse problem and showed how to construct a PRP from a PRF.
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A potential drawback of block ciphers (modeled as a PRP) is that they
merely achieve birthday bound security, i.e., a block cipher becomes distinguish-
able from a PRF when it is queried O(2n/2) times, where n is the block size.
Achieving security beyond the birthday bound (BBB) is very much desirable but
non-trivial. Bellare, Krovetz, and Rogaway ([BKR98]) and Hall, Wagner, Kelsey,
and Schneier ([HWKS98]) initiated the study of constructions of good PRFs from
block ciphers with BBB security. Since then the problem has received a lot of
attention and at present, it is an intensely investigated area of research.

Different constructions have been proposed in the literature that achieve
varying level of BBB security. A particularly simple construction which we
refer to as the XORP construction, has received much attention in this con-
text. Given an n-bit random permutation RP, the construction is given by
XORP : {0, 1}n−1 → {0, 1}n; XORP(x) = RP(0‖x) ⊕ RP(1‖x).

In a generalized version of XORP, denoted by XORP[k], xor of k indepen-
dent n-bit random permutations is considered (though in this work, we will
consider its domain separated version). Lucks [Luc00] showed BBB security
for XORP[k] for all k ≥ 2. More precisely, he showed that the construction
is secure up to O(2

kn
k+1 ) queries. This was further improved in a sequence of

papers [BI99,CLP14,Pat10,Pat08,DHT17]. In particular, in [DHT17], it was
shown that the PRF advantage of an adversary making at most q queries to the
XORP construction is at most q

2n +3( q
2n )1.5 indicating that XORP is secure up to

O(2n) queries.
On the other hand, Mennink et al. [MP15] showed a reduction proving that

the security of XORP[k] can be reduced to that of XORP for any k ≥ 3. Hence,
XORP[k] also achieves n-bit security. So, to begin with, PRF security of XORP[k]
for k ≥ 2 looks settled. But we show that further improvement is possible (in
terms of the distinguishing advantage of the adversary) even in the case of
XORP[3]. Consideration of XORP (or its general version XORP[k]) is important
since it has been used to obtain some constructions achieving BBB (or some-
times almost full) security (e.g., CENC [Iwa06,BN18c], PMAC Plus [Yas11], and
ZMAC [IMPS17]).

Multi-user Security. In the multi-user PRF setting of XORP[k], the adver-
sary can query multiple independent random functions in the ideal world or
multiple independent XORP[k]’s (by independent choice of underlying random
permutation) in the real world. In the present-day scenario, multi-user security
(first considered in [BBM00] in the context of public-key cryptography) of a cryp-
tographic primitive is a prudent goal to achieve. Perhaps, due to the large scale
deployment of primitives over the internet it deserves more urgent attention.
Quite a few recent works ([BT16,HTT18,BHT18,HT17,ML15]) have addressed
this area.

Multi User Security of XORP[k]. To motivate its significance in a concrete
manner let us further investigate the multi-user security of XORP[k]. Until now,
the best single-user PRF advantage for XORP[k] is q/2n for any k ≥ 2 (ignoring
the other lower order terms). By using standard hybrid reduction, multi-user
PRF bound of XORP[k] is uqmax/2n, where u is the number of users and qmax
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is the maximum number of queries per user. When we use AES (so n = 128) as
the underlying block cipher, we have to limit u and qmax such that uqmax ≤ 296

if we tolerable distinguishing advantage is at most 2−32. Even though the limit
is reasonable for the time being, it may be a concern as the number of users as
well as amount of usage of the internet is growing at a huge pace. One option to
boost the security is to increase the block size n. Unfortunately, AES does not
support block size other than 1282. The other option could be to come up with
some construction which provides stronger security. In this work, we investigate
the second option.

1.1 Our Contribution

In this paper, we investigate the multi-user PRF security of XORP[3] construc-
tion. We show that, for any adversary, making at most qmax queries to any user,
the multi-user PRF advantage for XORP[3] is at most 20

√
uqmax/2n, where u is

the number of users and qmax ≤ 2n/12. The result shows that XORP[3] can be
simultaneously used by O(2n) users even after allowing the adversary to make
almost O(2n) queries to each user (provided the keys, i.e. the underlying ran-
dom permutations of XORP[3] are chosen independently by each user); though
in practice the random permutation should be instantiated with a block cipher
with sufficiently long key (see [ML15]). For a single user, i.e., when u = 1, the
result says that even if the adversary is allowed to query almost all inputs of
the block cipher, its distinguishing advantage is O

(
1√
2n

)
, which is negligible in

n. To the best of our knowledge, this is the first result (in the standard model)
showing negligible advantage for an adversary that is allowed to query almost
the entire domain.

We also analyze the single-user PRF security of a simple variant of XORP[3],
which we denote as XORP′[3]. This construction makes 5 calls to the underlying
block cipher (instead of 6 in case of XORP[3]) to generate 2 output blocks. Even
with a saving in the number of block cipher calls we show that the PRF security
of XORP′[3] is very similar to that of XORP[3]. In particular, we show that the
PRF advantage of the construction is bounded by 5

√
q

N + 256q
N2 + 8192q

N
3
2

. Though
we have analyzed the single-user case for the sake of simplicity, multi-user PRF
security of XORP′[3] can be analyzed in the same way as that of XORP[3].

In order to emphasize our contribution further, we mention that multi-
user PRF advantage of XORP[2] (obtained in [HS20] using the χ2 method)
and XORP′[2] (obtained in [Cog18] using Patarin’s Mirror theory) are at most
O

(√
nq
2n

)
and O

(
q
2n

)
, where q is the total number of queries made to all the

users.

1.2 Our Technique

We use the χ2 method, introduced in [DHT17], which has of late emerged as a
potent tool for bounding statistical distance between two joint distributions.
2 However, Rijndael has variants with larger block sizes.
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Though relatively new, it has so far been effectively applied in quite a few
other works ([BN18c,BN18a,CLL19,Men19,GM20]). Although its application to
bound PRF advantage of an adversary for XORP[k] is not novel, in the present
case of XORP[3] and XORP′[3], the analyses become significantly intricate. In
the case of XORP[3], we need to handle the multi-user scenario with subtle but
important adjustments. On the other hand, in case of XORP′[3], calculations are
quite involved. However, as discussed above, by applying this method we get
significantly better bounds than the existing ones. We give technical description
of the χ2 method in Sect. 2.3.

2 Preliminaries

2.1 Notation

In this paper, we denote 2n by N . We fix G to be the group F
n
2 , and denote

the group addition (i.e., bit-wise xor) by +. For an element g ∈ G and a subset
H ∈ G, we denote by g +H the subset {g + h|h ∈ H}. Sometimes (will be clear
from context) we will term the elements of G as blocks.3

For a positive integer s, we denote an s-tuple (x1, . . . , xs) as xs; however,
when the value of s is clear from the context we will drop it (for notational
simplicity) and denote the tuple as x. Also, when a sequence xs is partitioned
into subsequences (in a way that will be appropriately specified), we will denote
the i-th subsequence by x̂i. Moreover, by slightly abusing the notation we will
denote by (xs \ x̂i) the subsequence of xs formed (maintaining the same order of
xs) by removing the elements of x̂i.

For a random variable X, we write PrX to denote the probability distribution
(or function) corresponding to X. Sample space of a random variable X is a set
Ω so that PrX(Ω) = 1. Support of X is the sample space Ω of X so that for all
x ∈ Ω, PrX(x) > 0. Given a set S and the tuple Xs := (X1, . . . ,Xs), we will write
X1, . . . ,Xs ←$S to mean that Xi’s are sampled uniformly and independently from
the set S. Moreover, these are also independent with all other previously sampled
random variables in the context. A sample, i.e., a particular realization of Xs

will be denoted by xs := (x1, . . . , xs).

With and Without Replacement. Let S be a set of size M and s be a
positive integer. To distinguish between with replacement (WR) sampling and
without replacement (WOR) sampling (when they appear in the same context)
we write X1, . . . ,Xs ←wrS to represent that X1, . . . ,Xs are chosen randomly in
WR manner from S (i.e., X1, . . . ,Xs ←$S), and we write X1, . . . ,Xs ←worS to
mean that Xi’s are randomly sampled in WOR manner from the set S. Let

Ss = {(x1, . . . , xs) : xi’s are distinct elements of S}

3 We do not reserve the term ‘block’ solely for this purpose. However, its presence in
other contexts will not create any ambiguity.
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be the set of all block-wise distinct (i.e., the elements of the tuple are distinct)
s-tuples of blocks. Note that |Ss| = M(M −1) · · · (M −s+1). We use shorthand
notation Ms := M(M − 1) · · · (M − s + 1). In this notation, a WOR sample Xs

is chosen uniformly from Ss. In other words,

Pr[Xs = as] =
1

|S|s , for all as ∈ Ss.

So, Ss is the support of Xs.

Definition 1 (Random Set). A subset Vr ⊆ G of size r is called a random
r-set if it is chosen uniformly from the set of all r sized subsets of G. Thus, for
every V ⊆ G, with |V| = r,

Pr[Vr = V] =
(

N

r

)−1

.

Throughout the paper we denote a random r-set in G as Vr. A random r-set
can be constructed by drawing a random WOR sample, i.e., Vr = {X1, . . . ,Xr},
where (X1, . . . ,Xr) ←worG. Note that the complement set G \ Vr is a random
(N − r)-set. We will require the following estimate from [BN18c].

Lemma 1 ([BN18c]). If 2w < N then 1 − (N−r)w

Nw ≤ 2rw
N .

2.2 Adversary and Advantage

Here, we recall the notion of adversarial advantage in the context of a generic
indistinguishability game. An oracle adversary or oracle distinguisher A is an
oracle algorithm that interacts with an oracle O through a set of (potentially
adaptive) queries and responses. Finally, it returns a bit b ∈ {0, 1}. We express
this as AO → b. In an indistinguishability game, A interacts with two oracles
O1 and O2. The goal of A is to distinguish between O1 and O2 only from the
corresponding queries and responses. The advantage of the adversary in this
game, denoted AdvA(O1,O2), is given by

AdvdistO1,O2
(A) := |Pr[AO1 → 1] − Pr[AO2 → 1]|,

where the probabilities are taken over the random coins of A,O1, and O2.

Pseudorandom function (PRF) is a very important cryptographic primitive.
For example, while analyzing message authentication code (MAC), we mostly
study PRF security as it is a stronger notion than MAC. It has also been used
to define encryption schemes, authenticated encryptions and other cryptographic
algorithms. PRF security is quantified by PRF advantage. Below we describe the
PRF advantage of a keyed function which is relevant for this work.

Let m and n be positive integers. Let Funcm→n is the set of all functions
from {0, 1}m to {0, 1}n, and let RFm→n ←$Funcm→n, i.e., RFm→n is a function
chosen uniformly at random from Funcm→n. Also, let K be a finite set, termed
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the key space. Given a function f : K × {0, 1}m → {0, 1}n, for every k ∈ K,
we denote by fk the function (also termed a keyed function) f(k, ·) ∈ Funcm→n.
The PRF advantage of an oracle adversary A against f is defined as follows.

Definition 2 (PRF advantage). Let f : K × {0, 1}m → {0, 1}n be a function
and A be a distinguisher. Then the PRF advantage of A against f is defined
as

Advprf
f (A) := Advdistf,RF(A) = |Pr[AfK → 1 : K ←$K] − Pr[ARFm→n → 1]|.

PRP Advantage is defined in an analogous manner. Here, instead of a ran-
dom function oracle the adversary A interacts with a random permutation ora-
cle RPn ←$Permn, where Permn is the set of all permutations on {0, 1}n. PRP
advantage is relevant in the context of a block cipher which is modeled as a
pseudorandom permutation. More formally, an n-bit block cipher is a function
e : K× {0, 1}n → {0, 1}n such that for all K ∈ K, eK := e(K, ·) is a permutation
on {0, 1}n. The PRP advantage of A against e is defined as

Advprp
e (A) = Advdiste,RP(A) = |Pr[AeK → 1 : K ←$K] − Pr[ARPn → 1]|.

We write Advprf
f (q, t) = maxA Advprf

f (A) where maximum is taken over all
adversaries making at most q queries and runs in time t. We similarly define
Advprp

f (q, t) for PRP advantage.
Since we are concerned with information theoretic security (with the only

restriction that the adversary makes total q queries), w.l.o.g we assume that the
adversary is deterministic and does not repeat its queries.

When A is interacting with RFm→n, the outputs follow uniform and inde-
pendent distributions over {0, 1}n which we denote as U1, . . . ,Uq ←$ {0, 1}n.
Similarly, X1, . . . ,Xq denote the outputs of fK where K ←$K. We denote the
probability distributions associated to U1, . . . ,Uq and X1, . . . ,Xq by PrU and
PrX respectively. Thus,

Advprf
f (A) = |PrX(E) − PrU(E)|, (1)

where E is the set of all q-tuple responses xq = (x1, . . . , xq) ∈ ({0, 1}n)q at
which A returns 1. It is well known that the statistical distance between the
distributions PrX and PrU is given by

‖PrU − PrX‖ def=
1
2

∑

xq∈({0,1}n)q

|PrX(xq) − PrU(xq)| = max
E⊆({0,1}n)q

(PrX(E) − PrU(E)). (2)

Multi-user PRF Advantage is a generalization of the PRF advantage of a
keyed function to the multi-user scenario. Let u be the number of users denoted
by the elements of [u]. With a keyed function f : K × {0, 1}m → {0, 1}n, we
associate its multi-user extension f (u) : Ku × [u] × {0, 1}m → {0, 1}n mapping
(ku, i, x) to fki

(x), for all ku ∈ Ku, i ∈ [u]. Let RF denote the random function
from [u] × {0, 1}m to {0, 1}n. We define the multi-user advantage against f for
u users as

Advmu prf
f (u, qmax, q, t) = max

A
Advdistf(u),RF(A),
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where the maximum is taken over all adversaries A that run in time t making at
most qmax queries to each user and q queries altogether to all users. To simplify
our analysis, w.l.o.g. we allow A to make exactly qmax queries to each user in
[u]. Indeed, this can only increase A’s advantage which we are going to upper
bound. So, with this convention, we have q = u× qmax. Also, following the same
considerations made for the single-user case we assume, w.l.o.g, that A makes
distinct queries to individual users.

2.3 χ2 Method

Given a set Ω, let Xq := (X1, . . . ,Xq) and Zq := (Z1, . . . ,Zq) be two random
vectors distributed over Ωq = Ω × · · · × Ω (q times) according to the distribu-
tions PrX and PrZ respectively. In what follows, we will require the following
conditional distributions.

PrX|xi−1(xi) := Pr[Xi = xi | X1 = x1, . . . ,Xi−1 = xi−1],

PrZ|xi−1(xi) := Pr[Zi = xi | Z1 = x1, . . . ,Zi−1 = xi−1].

When i = 1, PrX|xi−1(x1) represents Pr[X1 = x1]. Similarly, for PrZ|xi−1(x1). Let
xi−1 ∈ Ωi−1, i ≥ 1. The χ2-distance between these two conditional probability
distributions is defined as

χ2(PrX|xi−1 ,PrZ|xi−1) :=
∑

xi∈Ω

(PrX|xi−1(xi) − PrZ|xi−1(xi))2

PrZ|xi−1(xi)
, (3)

with the assumption that the support of the distribution PrX|xi−1 be contained
within the support of the distribution PrZ|xi−1 . Further, when the distributions
PrX|xi−1 and PrZ|xi−1 are clear from the context we will use the notation χ2(xi−1)
for χ2(PrX|xi−1 ,PrZ|xi−1). Then the crux of the χ2 method is the following the-
orem from [DHT17] (see also [BN18b]).

Theorem 1 ([DHT17]). Following the notation as above and suppose the sup-
port of the distribution PrX|xi−1 is contained within the support of the distribution
PrZ|xi−1 for all xi−1, then

‖PrX − PrZ‖ ≤
(

1
2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

, (4)

where for each i, the expectation is over the (i − 1)-th marginal distribution of
PrX.

3 Multi-user PRF Security of XORP[3]

In this section, we analyze the multi-user PRF security of XORP[3](x). For-
mally, the output of XORP[3] is given by XORP[3](x) := RP(x‖00)⊕RP(x‖01)⊕
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RP(x‖10), where RP is an n-bit random permutation and x ∈ {0, 1}n−2. In the
multi-user setting of XORP[3], we let A to interact with u users [u] : {1, . . . , u}.
In the real world, each of the u users holds an independent copy of the under-
lying random permutation RP. In the ideal world, there is a random function
RF : [u] × {0, 1}n−2 → {0, 1}n. We allow A to make total q queries of the form
(ui, xi) with ui ∈ [u], xi ∈ {0, 1}n−2 for i ∈ [q]. Repeating our assumptions for
multi-user security in this setting we have (i) For all v ∈ [u] if (v, xi), (v, xj) are
two queries then xi �= xj (ii) For all v ∈ [u] the number of queries of the form
(v, x) is qmax. So, we have q = u × qmax.

Let the transcript of replies be P := (P1, . . . ,Pq) when A is interacting in
the real world and R := (R1, . . . ,Rq) when it is interacting in the ideal world,
where Pi,Ri ∈ G are the replies to the i-th query. Therefore, here our goal is to
upper bound ‖PrP−PrR‖. Here, it is important to observe that the qmax replies
given by any user is distributed independently of the other replies. For exam-
ple, suppose w.l.o.g. that user 1’s reply is the sequence (P1, . . . ,Pqmax

). Then
(P1, . . . ,Pqmax

) is independent of (Pqmax+1, . . . ,Pq). Indeed, this follows from
the fact that each user in [u] holds an independent copy of RP.

Now, there is a subtle technical difficulty involved while working with the
distributions PrP and PrR in the setting of the χ2-method. The difficulty arises
because user Ui for the i-th query is not completely dependent on i. We will
highlight and elaborate more on the issue at the appropriate place in our proof
of Theorem 2 (see the discussion immediately following (7)).

In order to overcome the difficulty, we reorder the samples P and R to get new
samples S and U respectively. In S, Pi’s are grouped into a sequence of u blocks,
where each block comprises of qmax Pi’s output by the same user; similarly
for the distribution U (though we note that R and U are the same, because any
reordering of a sequence of q outputs of a random function is identical to itself).4

Now it is easy to see that in S and U each i ∈ [q] uniquely identifies Ui ∈ [u]. In
Fig. 1, we present a precise description of the samples U and S together with a
formal explanation presented below.

For i ∈ [u], let Ii := {(i − 1)qmax + j : j ∈ [qmax]}. So, the sequence (Ii)i∈[u]

partitions [q]. Let U := (U1,U2, . . . ,Uq), be a WR or with replacement sample
(represented as a tuple) of size q, each Ui is sampled from G uniformly and
independently. In other words, we have U ←$Gq. On the other hand, the sample
S := (S1,S2, . . . ,Sq) is generated (as described in Fig. 1) as follows. First, for
each i ∈ [u], a WOR or without replacement sample T̂i = (Tj,k : j ∈ Ii, k ∈ [3])
of size 3qmax is generated, where T̂i is independent of T̂j for each 1 ≤ j ≤ i − 1.

4 It is not difficult to conceive a bijection between P and S effected by the reordering
described here (since R and U are identical we only focus on P and S). Indeed, for
this purpose one can consider an extended transcript P′ := ((P1, U1), . . . , (Pq, Uq))
which also contains the user Ui associated with the i-th query, and subsequently
express the bijection in an explicit manner. However, we will not do that here in
order to reduce notational complexity. More so, because we will not refer to this
bijection in the subsequent discussion.
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Then for each � ∈ [q], S� is computed as

S� = T�,1 + T�,2 + T�,3.

So both U and S have the same sample space Gq, and since they are permu-
tations of R and P respectively, we note that

‖PrS − PrU‖ = ‖PrP − PrR‖ (5)

Here it can be noted that the reordering works in the case of XORP[3] because
the distribution of the output of any query does not depend on the input value in
both worlds. Moreover, we assumed with no loss of advantage for the adversary,
the number of queries to each user is constant (maximum allowed for each user).

Random Experiment for U

1 : U := (Ui : i ∈ [q]) wr

2 : return U

Random Experiment for S

1 : for 1 ≤ i ≤ u

2 : Ti := (Tj,k : j ∈ [Ii], k ∈ [3]) wor

// Ti is sampled independent of Tj , 1 ≤ j ≤ i − 1

3 : for 1 ≤ ≤ q

4 : S = T 1 + T 2 + T 3

5 : return S := (S : ∈ [q])

Fig. 1. Description of sampling methods of random variables U, S.

Now, we state our main theorem which provides an upper bound on the
statistical distance ‖PrS − PrU‖. The theorem shows that the sample S is very
close to the uniform sample U even though it is computed from a non-uniform
sample.

Theorem 2 (Pseudorandomness of S). Let U and S be the random vectors
as described in Fig. 1. Then, for all qmax ≤ N/12

‖PrS − PrU‖ ≤ 20
√

uqmax

N

We postpone the proof to Sect. 3.4.

3.1 Application to Single-User PRF Security of XORP[3]

We now describe the cryptographic implications of the result from Theorem 2.
Let us define XORP[3] construction based on a single keyed n-bit block cipher
e : K × {0, 1}n → {0, 1}n with key-space K. For x ∈ {0, 1}n−2 and k ∈ K, we
define

XORPe[3](k, x) = ek(x‖00) ⊕ ek(x‖01) ⊕ ek(x‖10) (6)
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Using the hybrid argument we can replace e by a random permutation at the cost
of PRP advantage. Then we can apply our result to get the following corollary.

Corollary 1. For all q ≤ 2n/12,

Advprf
XORPe[3]

(q, t) ≤ Advprp
e (3q, t′) +

20
√

q

2n

where t′ ≈ t + 3q.

The above corollary is a simple hybrid argument where we replace the underlying
block cipher e by a random permutation. We note that outputs of a random
permutation for distinct inputs is exactly a WOR or without replacement sample
and hence we apply Theorem 2.

3.2 Application to Multi-user PRF Security of XORP[3]

Similarly, we state multi-user security of XORP construction.

Advmu prf
XORPe[3]

(u, qmax, q, t) ≤ Advmu prp
e (u, 3qmax, t

′) +
20

√
uqmax

N

where u denotes the number of users.

3.3 Application to Counter Mode Encryption

Parity method encryption scheme introduced by Bellare-Goldreich-Krawczyk
in [BGK99] is a probabilistic encryption scheme based on a pseudorandom func-
tion. Let FK : {0, 1}n → {0, 1}n be a pseudorandom function. Then for message
m ∈ {0, 1}n and randomness rt := (r1, . . . , rt) ∈ ({0, 1}n)t, the ciphertext of
the parity method encryption scheme is given by (rt, FK(r1) ⊕ · · · ⊕ FK(rt) ⊕m).
For all q ≤ N/(e2t), the PRF-advantage of this construction is shown to be
O(q2/N t) + O(q3/N3t/2) for even t and O(q2/N t) + O(q4/N2t) for odd t. Thus,
for t = 2, the construction achieves n-bit security and for t = 4, it achieves
beyond n-bit security. However, the construction requires a pseudorandom func-
tion and random coins.

Counter mode encryption is a practical alternative to the above scheme. In
counter mode encryption, we replace the random coins by some nonce (which
does not repeat over all executions). More precisely, for nonce N and message m,
the ciphertext of the counter mode encryption is (N, FK(N) ⊕ m). If the nonce
does not repeat then the security of the encryption relies on the PRF security
of FK.

As the counter mode is quite popular and has wide applications, the multi-
user security of the counter mode is also of considerable significance. Now,
XORP[3], which uses pseudorandom permutations, can be seen to be the fol-
lowing counter mode encryption scheme.

Let s be the size of the counter (maximum message length is at most n2s).
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1. Given a message m = (m1, . . . ,m�) ∈ {0, 1}n�, and a nonce N ∈ {0, 1}n−s−2,
we define xi,j = N‖〈j〉2‖〈i〉s, for all j ∈ [3], i ∈ [�].

2. Let zi = eK(xi,1) ⊕ eK(xi,2) ⊕ eK(xi,3) for all i ∈ [�].
3. The ciphertext is defined as (N, z1 ⊕ m1, . . . , z� ⊕ m�).

The multi-user PRF security of the above encryption scheme is the same
as the multi-user PRF security of XORP[3]. More precisely, the u-user privacy
advantage of the counter mode encryption scheme (provided the nonce does
not repeat) for an adversary making (i) at most qmax queries to each user, (ii)
maximum number of message blocks is at most �, and (iii) total q queries made
to all users is given by (following the same hybrid argument as before)

Advmu prp
e (u, 3�q, t′) +

20
√

uqmax

N

.

3.4 Proof of Theorem 2

First, in Fig. 2, we describe the extended random variables X and Y which extends
S and U respectively. Here, by extension we mean that S and U are marginal
random variables of X and Y respectively. Note that in line 7 of the random
experiment for Y, the execution following else will not be required in our paper.
It is kept only for the sake of the completeness of the definition. We will formally
show this in Claim 1.

Random Experiment for

1 : for

2 :

3 : for

4 :

5 :

6 : return

Random Experiment for

1 : for

2 : initialize

3 : for

4 :

5 :

6 :

7 : then

8 : else

9 :

10 :

11 :

12 : return

Fig. 2. X and Y are extended random variables of S and U respectively.
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Claim 1. In the Random Experiment for Y (in Fig. 2), Nj �= ∅ holds for all j.
Therefore, line 8 (following else) never executes.

Proof of claim. Without loss of generality first we fix user i. Then it is sufficient
to show that for any uj ∈ G, we can choose distinct v1, v2 ∈ Sk−1

i such that
uj + v1 + v2 ∈ Sk−1

i \ {v1, v2} for k ≤ qmax. To do this, we fix uj ∈ G. Note
that the distinctness of v1, v2, uj + v1 + v2 is equivalent to the distinctness of
v1, v2, uj . Now, we choose v1 arbitrarily from the set Sk−1

i \ {uj}. This is clearly
possible as we have that |Sk−1

i \ {uj}| ≥ N − 3(k − 1) > N − 3qmax ≥ 3N
4 ,

since qmax ≤ N
12 by our assumption. Next, we choose v2 arbitrarily from the set

D = Sk−1
i \ {{uj , v1} ∪ {(uj + v1) + {G \ Sk−1

i }}}. This is also possible since
|D| ≥ N − (2 × 3(k − 1) + 2) > N − 6qmax ≥ N

2 . Then it is easy to see that, for
the given uj , the choice of v1 and v2 satisfies the desired condition. �

Let C = G3 denote the set of all 3-tuples of G. To understand the probability
distributions of the random vectors X and Y and their supports we consider the
following involution (a permutation with self inverse) ρ over the set C mapping
(x1, x2, x3) to (x1, x2, x1 + x2 + x3).

We extend the definition of the mapping ρ to a mapping ρ∗ which is defined
over Cc for any c. Formally, we define ρ∗(z1, . . . , zc) := (ρ(z1), . . . , ρ(zc)). From
the random experiments, it is trivial to see that

ρ(Xi) = Ti := (Ti,1,Ti,2,Ti,3) ρ(Yi) = Vi := (Vi,1,Vi,2,Vi,3)

where Vi,3 = Ui +Vi,1 +Vi,2. So, for every i ∈ [q], ρ∗(Xi) = Ti and ρ∗(Yi) = Vi.
In other words, the random variables X and Y are equivalent to the random
variables T and V := ((Vi,1,Vi,2,Vi,3), i ∈ [q]) respectively. More precisely, in
the first case, for each i ∈ [u], we first have WOR sample T̂i and then define X̂i

by applying ρ on each block. Whereas, in the second case, for each i ∈ [u], we
first sample Ŷi (extending a WR sample Ûi) and then we define V̂i by applying
ρ on each block. However, V̂i behaves like a WOR sample (though it is not
perfect WOR sample, it would have same support as a WOR sample). So for
every i ∈ [u] and every j ∈ [qmax], the support of T̂j

i (as well as V̂j
i ) is the set

Γ̂j
i := {((ai′,1, ai′,2, ai′,3) : i′ ∈ [j]) : a′

i′,ks are distinct for all i′ ∈ [j], k ∈ [3]}.

Hence, the support of X̂j
i (as well as Ŷj

i ), denoted as Ω̂j
i , would be the set of all

such 3j tuples

Ω̂j
i := {(xi′,j : i′ ∈ [j], k ∈ [3]) ∈ G3i :((ai′,1, ai′,2, ai′,3) : i′ ∈ [j]) ∈ Γ̂j

i

ρ(ai′,1, ai′,2, ai′,3) = (xi′,1, xi′,2, xi′,3)}.

Therefore, the support of vectors X and Y is given by Ω = (Ω̂qmax

i |i ∈ [u]).
Next, for a fixed i ∈ [q] let i = (j − 1)qmax + k, j ∈ [u], k ∈ [qmax]. Then it

follows that Xi = X̂j,k ∈ X̂k
j . Then for every xi ∈ Ωi, the conditional probability

for X can be expressed as
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PrX(xi | xi−1) def= Pr[Xi = xi |X̂k−1
j = x̂k−1

j , (Xi−1 \ X̂j) = (xi−1 \ x̂k−1
j )]

= Pr[X̂j,k = x̂j,k |X̂k−1
j = x̂k−1

j ], (7)

since X̂j is independent of (Xi−1 \ X̂j)

= Pr[T̂j,k = t̂j,k |T̂k−1
j = t̂k−1

j ]

=
1

(N − 3(k − 1))3
. (8)

Here, we take a small but important detour in our proof to explain the tech-
nical issue involving the distributions PrP and PrR mentioned in the beginning.
Note that in (7) the independence of X̂j from (Xi−1\X̂j) follows because the user
number ui is completely determined by i. This is not the case for the original
distribution PrP. Indeed, for this distribution A can make adaptive choice of
user ui for the i-th query based on all the previous queries, and hence Pi may
depend on the entire Pi−1. By reordering P into S (and correspondingly X) we
make ui completely determined by i, and hence the independence of X̂j from
(Xi−1 \ X̂j). Similar observation holds in (9) corresponding to the reordering of
the distribution R into U (and subsequently into Y).

Now, we introduce some notations for the random experiment Y.
For all i ∈ [q], let us denote ui = xi,3, i.e., xi = (xi,1, xi,2, ui). As before,

let ρ(xi′) = ti′ for every i′ ∈ [i]. So, ti′,j ’s are distinct. Now, we define the two
crucial sets for our analysis. For j ∈ [u], k ∈ [qmax] let us denote

Sk
j = G \ {t�,p : � ∈ [Ij ], p ∈ [3]}, with S0

j = G,

Nui(x̂k−1
j ) := {v1, v2 ∈ Sk−1

j : ui + v1 + v2 ∈ Sk−1
j and v1, v2, ui distinct}.

As noted earlier in Claim 1, the condition that v1, v2, ui are distinct is equiv-
alent to the condition that v1, v2, v1 + v2 + ui are distinct.

Now, for Ui = ui and Ŷk−1
j = x̂k−1

j , the set Ni and the set Sk
j (defined in the

line 5 and line 9 of the random experiment of Y in Fig. 2) is exactly the same as
the set Nui(x̂k−1

j ) and Sk
j defined above. It is easy to observe the following:

– If x̂k−1
j ∈ Ω̂k−1

j then the set Nui(x̂k−1
j ) is nonempty as xi,1, xi,2 ∈ Nui(x̂k−1

j ).

Recall that in Claim 1 we have already justified that the set Ni is non-empty (and
hence line 8 of the Random Experiment for Y is never executed) using a different
argument. Now, we compute the conditional probability on the support of Y.

Claim 2. Let i = (j − 1)qmax + k, with i ∈ [q], j ∈ [u], k ∈ [qmax]. Then for all
xi ∈ Ωi we have,

PrY(xi | xi−1) def= Pr[Yi = xi | Yi−1 = xi−1] =
1
N

× 1
|Nui(x̂k−1

j )| .

Proof of claim. First, note that xi−1 ∈ Ωi−1, and Nui(x̂k−1
j ) cannot be the empty

set as xi,1, xi,2 ∈ Nui(x̂k−1
j ). So,
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PrY(xi | xi−1) def= Pr[Yi = xi | Yi−1 = xi−1]

= Pr[Ŷj,k = x̂j,k | Ŷk−1
j = x̂k−1

j , (Yi−1 \ Ŷk−1
j ) = (xi−1 \ x̂k−1

j )],
(9)

(since (Yi−1 \ Ŷk−1
j ) is independent of Ŷk−1

j and Ŷj,k)

= Pr[Ŷj,k = x̂j,k | Ŷk−1
j = x̂k−1

j ]

= Pr[Ui = ui | Ŷk−1
j = x̂k−1

j ] × Pr[(Vi,1,Vi,2) = (xi,1, xi,2) |
Ui = ui ∧ Ŷk−1

j = x̂k−1
j ]

=
1
N

× 1
|Nui(x̂k−1

j )
. (10)

The last equality follows from the definition of sampling of Ui and (Vi,1,Vi,2). �
We now apply the χ2 method to X and Y.

χ2(xi−1) :=
∑
xi

(PrX(xi |̂xk−1
j ) − PrY(xi |̂xk−1

j ))2

PrY(xi |̂xk−1
j )

=(a)

∑
xi=(xi,1,xi,2,ui)

(
1

(N−3(k−1))3 − 1

N |Nui (̂xk−1
j )|

)2
1

N |Nui (̂xk−1
j )|

=(b) C ×
∑
ui

∑
(xi,1,xi,2)

(|Nui(x̂k−1
j )| − D

)2
|Nui(x̂k−1

j )|

=(c) C ×
∑
ui

(|Nui(x̂k−1
j )| − D

)2
, (11)

where C = N
((N−3(k−1))3)2 , and D = (N−3(k−1))3

N . The equality (a) follows by
plugging the conditional probabilities derived in (8) and (10). The expression on
the r.h.s. of (b) is obtained by algebraic simplification. The equation (c) follows
from the observation that

(1)
(
|Nui (̂xk−1

j )|−D
)2

|Nui (̂xk−1
j )| is functionally independent of (xi,1, xi,2),

and (2) for each ui, the number of choices of (xi,1, xi,2) is |Nui(x̂k−1
j )|.

Next, in order to apply Theorem 1, we compute Ex[χ2(Xi−1)] which (from
(11)) is given by

C ×
∑
ui

Ex[
(|Nui(X̂k−1

j )| − D
)2].

Note that |Nui(x̂k−1
j )| is a function of x̂k−1

j , and so, it is also a function of t̂k−1
j .

When x̂k−1
j is sampled according to X̂k−1

j , t̂k−1
j would be sampled according to

T̂k−1
j (WOR sample).
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For notational simplicity, let r = N − 3(k − 1) and r′ = N − r = 3(k − 1).
Note that D = r3

N . Also, let

Vr = G \ {T�,p : � ∈ Ij , � ≤ i, p ∈ [3]},

which is a random r-set in G. Then the set Nui(x̂k−1
j ) is same as the set

{v1, v2 ∈ Vr : ui + v1 + v2 ∈ Vr, and u, v1, v2 distinct}.

We denote the size of the set by Nui
r . Then we have

Ex[χ2(Xi−1)] = C ×
∑
ui

Ex[
(
Nui

r − D
)2]. (12)

Next, we apply the following core lemma (its proof is postponed to Sect. 3.5) to
get an upper bound on the r.h.s. of (12).

Lemma 2 (core lemma for XORP). Let C, r, r′ be defined as above, where
r′ ≤ N

4 . Then for every b ∈ G, we have

Ex[Nb
r] =

r3

N
, and Ex[(Nb

r − r3

N
)2] ≤ 1

C

(
576
N3

+
48(r′)3

27N6

)
. (13)

Subsequently, for r′ ≤ N
4 we have

Ex[χ2(Xi−1)] ≤ 576
N2

+
48(r′)3

27N5
.

Now, we continue to bound the statistical distance between X and Y using
the χ2-method as follows. Since qmax ≤ N/12, we have r′ ≤ N/4 (a required
condition for our core lemma). Therefore

‖PrX − PrY‖ ≤
(

1
2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

=

⎛
⎝1

2

u∑
j=1

qmax∑
k=1

Ex[χ2(Xk−1)]

⎞
⎠

1
2

≤
⎛
⎝

u∑
j=1

qmax∑
k=1

288
N2

+
48(r′)3

54N5

⎞
⎠

1
2

≤
⎛
⎝

u∑
j=1

qmax∑
k=1

288
N2

+
48(k − 1)3

2N5

⎞
⎠

1
2

, since r′ = 3(k − 1)

≤
⎛
⎝

u∑
j=1

288qmax

N2
+

47qmax
4

2N5

⎞
⎠

1
2
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≤
(

288uqmax

N2
+

47uqmax
4

2N5

) 1
2

≤ 12
√

2uqmax

N
+

64
√

2uqmax
2

N
5
2

.

≤ 12
√

2uqmax

N
(1 + 6/(12)1.5) , since qmax ≤ N/12

≤ 20
√

uqmax

N
.

Therefore, we finally have

‖PrQ − PrS‖ ≤ ‖PrX − PrY‖ ≤ 20
√

uqmax

N
. �

3.5 Proof of Lemma 2

Let r,N be positive integers such that r′ = N − r ≤ N
4 . Let G be a group of size

N , and Vr be a random r-set in G.

Definition 3. For u ∈ G we associate a random variable Nu
r defined as the size

of the following set

Nu
r := {g1 �= g2 ∈ Vr : u + g1 + g2 ∈ Vr, g1 �= u �= g2.}

We would like to note that Nu
r as defined above is equivalent to the previous

definition since Vr is a random r′-set. We represent Nu
r as a sum of indicator

random variables. To do so we define the set Gu of tuples of distinct elements of
G as

Gu = {(g1, g2)|g1 �= g2 ∈ G \ {u}}.
So, |Gu| = (N − 1)(N − 2). Then we have

Nu
r =

∑
g∈Gu

Ig, (14)

where, for g = (g1, g2), the indicator random variable Ig is defined as

Ig =

{
1 if g1, g2, u + g1 + g2 ∈ Vr, and g1 �= u �= g2

0 otherwise.

We note that g1, g2, u+ g1 + g2 are distinct elements of G since g1 �= u �= g2. So,
the number of r-sets that contain the three distinct elements g1, g2, u + g1 + g2
is exactly

(
N−3
r−3

)
. Thus,

Ex[Ig] = Pr[{g1, g2, u + g1 + g2} ⊆ Vr] =

(
N−3
r−3

)
(
N
r

) =
r3

N3
. (15)
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By using the linearity of expectation, we have

Ex[Nu
r] =

∑
g∈Gu

Ex[Ig]

=
∑
g∈Gu

r3

N3
= |Gu| × r3

N3
=

r3

N
.

Now, we compute the second part of the lemma which gives a bound on the
variance of Nu

r. Since Nu
r is sum of indicator random variables, we can write

Var[Nu
r] = Var[

∑
g∈Gu

Ig]

=
∑
g∈Gu

Var[Ig] +
∑

g �=g′∈Gu

Cov(Ig, Ig′).

For the sake of notational simplicity, we denote the set {g1, g2, u + g1 + g2} as
Sg
u for every g ∈ Gu. In (15), we have shown that Ex[Ig] = r3

N3 . As Ig is a 0 − 1
random variable, Ex[I2g] = Ex[Ig]. Thus,

Var[Ig] = Ex[I2g] − Ex[Ig]2

= Ex[Ig](1 − Ex[Ig])

=
r3

N3
×

(
1 − r3

N3

)
. (16)

Therefore,

∑
g∈Gu

Var[Ig] = |Gu| × r3

N3
×

(
1 − r3

N3

)

≤ 6r2(r − 1)(r − 2)
N2

by employing Lemma 1. (17)

Considering r′ ≤ N
4 < 3N

4 ≤ r, here we settle for a weaker bound which is
sufficient for our purpose.

Now, we compute the covariance term. Note that IgIg′ = 1 if and only if
Sg
u ∪ Sg′

u ⊆ Vr. So,

Ex[IgIg′ ] = Pr[Sg
u ∪ Sg′

u ⊆ Vr] =
rw

Nw
,

where w = |Sg
u ∪Sg′

u |. Here, it is not difficult to see that the possible values taken
by w are 3, 5, and 6. Indeed, for w = 4 it is necessary to have |Sg

u ∩ Sg′
u | = 2.

But this implies Sg
u = Sg′

u (since any two elements of Sg
u or Sg′

u determines the
third element), which violates the fact that w = 4.
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Accordingly, we can partition the sum of covariances as follows.
∑

g �=g′∈Gu

Cov(Ig, Ig′) =
∑

w∈{3,5,6}

∑
g �=g′∈Gu

|Sgu∪S
g′
u |=w

Cov(Ig, Ig′). (18)

Now, we consider the three possible cases according to the value of w.

Case w = 3: In this case, we have

|{(g, g′)| g �= g′ ∈ Gu, |Sg
u ∪ Sg′

u | = 3}| = 5(N − 1)(N − 2).

To arrive at the above expression note that the choice of g = (g1, g2) can be made
in (N − 1)(N − 2) ways (since u /∈ {g1, g2}). Now, after fixing g the potential
number of ordered choices for g′ = (g′

1, g
′
2) from the elements of Sg

u can be seen
to be 6. Finally, from these 6 choices we discount the choice (g′

1, g
′
2) = (g1, g2).

Now, since w = 3, we have

Cov(Ig, Ig′) = Ex[IgIg′ ] − Ex[Ig]Ex[Ig′ ]

=
r3

N3
−

(
r3

N3

)2

=
r3

N3
×

(
1 − r3

N3

)

Therefore, similar to (17) we get

∑
g �=g′∈Gu

|Sgu∪S
g′
u |=3

Cov(Ig, Ig′) ≤ 30r2(r − 1)(r − 2)
N2

(19)

Case w = 5: Here, we have

|{(g, g′)| g �= g′ ∈ Gu, |Sg
u ∪ Sg′

u | = 5}| = 9(N − 1)(N − 2)(N − 4).

To justify the above expression, observe that after fixing g in (N −1)(N −2) ways
the common element between the sets Sg

u and Sg′
u can be determined in 3 × 3 = 9

ways (note that in this case we necessarily have |Sg
u ∩ Sg′

u | = 1). Following this,
one of the two remaining elements of Sg′

u can be chosen (from outside of the set
Sg
u ∪ {u}) in N − 4 ways. This fixes g’.

Next, for w = 5 we have

Cov(Ig, Ig′) = Ex[IgIg′ ] − Ex[Ig]Ex[Ig′ ] =
r5

N5
−

(
r3

N3

)2

.
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Therefore,

∑
g �=g′∈Gu

|Sgu∪S
g′
u |=5

Cov(Ig, Ig′) = 9(N − 1)(N − 2)(N − 4)

(
r5

N5
−

(
r3

N3

)2
)

(20)

Case w = 6: In this case, the sets Sg
u and Sg′

u are necessarily disjoint. Ensuring
this condition the choice of g1, g2, g′

1 can be made (following similar argument as
in the w = 5 case) in (N −1)(N −2)(N −4) ways. Now, letting S := Sg

u ∪{u, g′
1},

it can be seen that the choice of g′
2 should be made from outside of the set

S ∪ {u+ g′
1 + s|s ∈ S} which has cardinality 8. Therefore, we have the following.

|{(g, g′)| g �= g′ ∈ Gu, |Sg
u ∪ Sg′

u | = 6}| = (N − 1)(N − 2)(N − 4)(N − 8).

So, for w = 6 we have

∑
g �=g′∈Gu

|Sgu∪S
g′
u |=6

Cov(Ig, Ig′) = (N − 1)(N − 2)(N − 4)(N − 8)

(
r6

N6
−

(
r3

N3

)2
)

(21)

Next, to express the upper bound on Var[
∑

g∈Gu
Ig] in terms of r′ we consider

the sum of (17) and (19) together and (20) and (21) together.

C × (
∑
g∈Gu

Var[Ig] +
∑

g �=g′∈Gu

|Sgu∪S
g′
u |=3

Cov(Ig, Ig′)) ≤ N

(r3)2
× 36r2(r − 1)(r − 2)

N2

=
36

N(r − 1)(r − 2)

≤ 576
N3

(22)

The last inequality follows from (r − 2) ≥ N
4 . Suppressing the simplification,

we get

C × (
∑

g �=g′∈Gu

|Sgu∪S
g′
u |=5

Cov(Ig, Ig′ )) +
∑

g �=g′∈Gu

|Sgu∪S
g′
u |=6

Cov(Ig, Ig′ )) ≤ N

(r3)2
×(

r3

N3
)×

(
12N(r′)3

(N − 3)(N − 5)

)

≤ 48(r′)3

27N6
. (23)

For the last inequality note that (r − 2) > N
4 and (N − 5) > 3N

4 for N ≥ 32. So,
we have r(r − 1)(r − 2) > (N

4 )3, and (N − 1)(N − 2)(N − 3)(N − 5) > ( 3N
4 )4.

Hence, the upper bound.
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Therefore, finally we get

Ex[χ2(Xi−1)] = C ×
∑
ui

Ex[
(
Nui

r − D
)2]

= C ×
∑
ui

Var[Nui
r ]

=
∑
ui

C × Var[Nui
r ]

≤ 576
N2

+
48(r′)3

27N5
. (24)

�

4 An Efficient Variant of XORP[3]

In this section, we consider an efficient version of XORP[3], which we term
XORP′[3]. Formally, given an n-bit random permutation RP and an input
x ∈ {0, 1}n−3, the output of XORP′[3] is given by

RP(x‖000) ⊕ RP(x‖001) ⊕ RP(x‖010) ‖ RP(x‖000) ⊕ RP(x‖101) ⊕ RP(x‖110).

So, for 2n-bit output XORP′[3] makes 5 calls to the underlying random permu-
tation RP - a saving of one call compared to XORP[3].

In Theorem 3, which is our main result of this section, we bound the total
variation between the probability distributions of the random vectors S and U
defined over the same sample space G2q. The formal description of these random
variables is given in Fig. 3. The random vector

U := (U1,1,U1,2,U2,1,U2,2, . . . ,Uq,1,Uq,2)

is a WR sample (represented as a vector) of size 2q, each Ui,j is sampled from
G. Whereas,

S := (S1,1,S1,2,S2,1,S2,2, . . . ,Sq,1,Sq,2)

is generated (as described in Fig. 3) from a WOR sample

T := (T1,1,T1,2, . . . ,T1,5,T2,1,T2,2, . . . ,T2,5, . . . ,Tq,1,Tq,2, . . . ,Tq,5)

of size 5q, each Ti,j is sampled from G. More precisely, Si,j = Ti,1+Ti,2j +Ti,2j+1

for all 1 ≤ i ≤ q, 1 ≤ j ≤ 2. So both U and S have the same sample space G2q.
Now, we state our main theorem which provides an upper bound on the total

variation between U and S. In other words, it shows the distribution of S is very
close to uniform even though it is computed from a non-uniform distribution.

Theorem 3 (Pseudorandomness of S). Let U and S be the random vectors
as described in Fig. 3. Then, for all q ≤ N/8,

‖PrS − PrU‖ ≤ 5
√

q

N
+

256q

N2
+

8192q

N
3
2

Clearly, the PRF advantage of the above construction (when block cipher is
replaced by a random permutation) is at most 5

√
q

2n + 256q
22n + 8192q

2
3n
2

for all q ≤ 2n−3.
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Random Experiment for

1 :

2 : return

Random Experiment for

1 :

2 : for

3 : for

4 :

5 : return

Fig. 3. Description of sampling methods of random variables U, S.

4.1 Proof of Theorem 3

Proof will follow in a similar path as the proof of XORP[3]. First, in Fig. 4,
we describe the extended random variables X and Y which extends S and U
respectively. Here, by extension we mean that S and U are marginal random
variables of X and Y respectively. By using similar argument as in Claim 1,
which we do not present due to lack of space, we can show that the set Ni is
always non-empty. Hence, execution of the part following else in line 5 of the
Random Experiment for Y will never happen. It is kept only for the sake of the
completeness of the definition.

Random Experiment for

1 :

2 : for

3 : for

4 :

5 :

6 :

7 : return

Random Experiment for

1 : initialize

2 : for

3 :

4 :

and distinct

5 : if then

else

6 :

7 :

8 : return

Fig. 4. X and Y are extended random variables of S and U respectively.

Let C = G5 denote the set of all 5-tuples of G. To understand the probability
distributions PrX and PrY of the random vectors X and Y (respectively), and
their supports we consider the following permutation ρ over the set C which maps
the tuple (x1, . . . , x5) to (x1+x2+x3, x1+x4+x5, x1, x2, x4). It is easy to see that ρ
is a permutation and ρ−1(x′

1, x
′
2, . . . , x

′
5) = (x′

3, x
′
4, x

′
1+x′

3+x′
4, x

′
5, x

′
2+x′

3+x′
5). We
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extend the definition of ρ over Cc for any c as ρ∗(z1, . . . , zc) = (ρ(z1), . . . , ρ(zc)).
From the random experiments, it is trivial to see that

1. ρ(Xi) = Ti := (Ti,1, . . . ,Ti,5) and
2. ρ(Yi) = Vi := (Vi,1,Vi,2,Ui,1 + Vi,1 + Vi,2,Vi,3,Ui,2 + Vi,1 + Vi,3).

So, for every i ≤ q, ρ∗(Xi) = Ti and ρ∗(Yi) = Vi. In other words, the random
variables X and Y are equivalent to T and V := (Vi,j , i ∈ [q], j ∈ [5]) respectively.
In the first case, we first sample T and then define X by applying ρ−1 on each
block. Whereas, in the second case, we first sample Y and then we define V by
applying ρ on each block. So, for every i, the support of Ti is the set of all block-
wise distinct tuples (ai′,j : i′ ∈ [i], j ∈ [w]). Hence, the support of Xi, denoted as
Ωi, would be the set of all such iw tuples

Ωi := {(xi′,j : i′ ∈ [i], j ∈ [w]) ∈ Giw : (ai′,j : i′ ∈ [i], j ∈ [5]) is block-wise distinct},

where ρ(xi′) = ai′ := (ai′,j : j ∈ [5]) for all i′. In fact, for every xi ∈ Ωi, the
conditional probability for X can be expressed as

PrX(xi | xi−1) def= Pr[Xi = xi |Xi−1 = xi−1]

= Pr[Ti = ti |Ti−1 = ti−1]

=
1

(N − 5(i − 1))5
. (25)

Now, we are going to argue that the support of Yi contains Ωi for all i. First,
for all (x1, . . . , xi) ∈ Ωi, let us denote ui := (ui,1, ui,2) = (xi,1, xi,2). Next, let
xi = (x1, . . . , xi) ∈ Ωi be a fixed i-tuple of blocks with xi = (ui, xi,3, xi,4, xi,5). As
before, let ρ(xi′) = ti′ for every i′ ∈ [i]. So, ti′,j ’s are distinct. Next, we define
the following set

Nui(xi−1) := {(v1, v2, v3) : v1, v2, v3, ui,1 + v1 + v2, ui,2 + v1 + v3 ∈ Si−1 ,and
v1, v2, v3, ui,1 + v1 + v2, ui,2 + v1 + v3 distinct},

where Si−1 = G \{ti′,j : i′ < i, j ∈ [5]}. Given that Ui = ui and Yi−1 = xi−1, the
set Ni (defined in the line 4 of the random experiment of Y in Fig. 4) is exactly
the same as the set Nui(xi−1) defined above. It is easy to observe the following:

If xi ∈ Ωi then the set Nui(xi−1) is nonempty as xi,3, xi,4, xi,5 ∈ Nui(xi−1),

and xi ∈ Ωi is indeed in the support of Yi. Now, we have the following claim on
the support of Y.5

Claim 3. For all xi ∈ Ωi,

PrY(xi | xi−1) def= Pr[Yi = xi | Yi−1 = xi−1] =
1

N2
× 1

|Nui(xi−1)| .

5 As noted in the beginning of this proof, Ni can be shown to be non-empty by an
argument similar to Claim 1.
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Proof of claim. First, note that xi−1 ∈ Ωi−1, and Nui(xi−1) cannot be the empty
set as xi,3, xi,4, xi,5 ∈ Nui(xi−1). So,

PrY(xi | xi−1) def= Pr[Yi = xi | Yi−1 = xi−1]

= Pr[Ui = ui| Yi−1 = xi−1]×Pr[(Vi,1,Vi,2,Vi,3) = (xi,3, xi,4, xi,5) |
Ui = ui ∧ Yi−1 = xi−1]

=
1

N2
× 1

|Nui(xi−1)| , (26)

where the last equality follows from the definition of sampling of Ui and
(Vi,1,Vi,2,Vi,3) in the Random Experiment for Y (see Fig. 4). �

We now apply the χ2 method to X and Y.

χ2(xi−1) :=
∑
xi

(PrX(xi|xi−1) − PrY(xi|xi−1))2

PrY(xi|xi−1)

=(a)

∑
xi=(ui,xi,3,xi,4,xi,5)

(
1

(N−5(i−1))5 − 1
N2|Nui (xi−1)|

)2

1
N2|Nui (xi−1)|

=(b) C ×
∑
ui

∑
(xi,3,xi,4,xi,5)

(|Nui(xi−1)| − D
)2

|Nui(xi−1)|

=(c) C ×
∑
ui

(|Nui(xi−1)| − D
)2

, (27)

where C = N2

((N−5(i−1))5)2 , and D = (N−5(i−1))5

N2 . The equality (a) follows by
plugging the conditional probabilities derived in (25) and (26). The expression
on the r.h.s. of (b) is obtained by algebraic simplification. The equation (c)

follows from the observation that
(
|Nui (xi−1)|−D

)2

|Nui (xi−1)| is functionally independent
of (xi,3, xi,4, xi,5), and for each ui, the number of choices of (xi,3, xi,4, xi,5) is
|Nui(xi−1)|. Next, in order to apply Theorem 1, we compute Ex[χ2(Xi−1)] which
(from (27)) is given by

C ×
∑
ui

Ex[
(|Nui(Xi−1)| − D

)2].

Note that |Nui(xi−1)| is a function of xi−1, and so, it is also a function of ti−1.
When xi−1 is sampled according to Xi−1, ti−1 would be sampled according to
Ti−1 (WOR sample).

For notational simplicity, let r = N − 5(i − 1) and r′ = N − r = 5(i − 1).
Also, let Vr = G \{Ti′,j : i′ ∈ [i−1], j ∈ [5]} which is a random r-set in G. Then
the set Nui(Xi−1) is same as the set

{(v1, v2, v3) : v1, v2, v3, ui,1 + v1 + v2, ui,2 + v1 + v3 ∈ Vr,
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v1, v2, v3, ui,1 + v1 + v2, ui,1 + v1 + v3 distinct}

We denote the size of the set by Nui
r . Then we have

Ex[χ2(Xi−1)] = C ×
∑
ui

Ex[
(
Nui

r − D
)2]

= C ×
∑
ui

(
Ex[

(
Nui

r − Ex[Nui
r ]

)2] + (Ex[Nui
r ] − D)2

)

=
∑
ui

C × Var[Nui
r ] +

∑
ui

C × (Ex[Nui
r ] − D)2. (28)

Next, we apply the following lemma to get an upper bound on the r.h.s. of (28).

Lemma 3. For every u ∈ G2, we have

C × (Ex[Nu
r] − D)2 ≤ 25

N4
,

C × Var[Nu
r] ≤ 214r′

N6
+

224r′

N5
for N ≥ 100.

Subsequently, when N ≥ 100 and r′ ≤ 5N
8 we have

Ex[χ2(Xi−1)] ≤ 214r′

N4
+

224r′

N3
+

25
N2

.

We defer the proof of the lemma to Sect. 4.2.
Finally, from Theorem 1 and Lemma 3, we get

‖PrS − PrU‖ ≤ ‖PrX − PrY‖ (29)

≤
(

1
2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

≤
(

q∑
i=1

25
N2

+
47r′

N4
+

224r′

N3

) 1
2

since r′ = 5(i − 1) ≤ 5q ≤ 5N/8

≤
(

q∑
i=1

25
N2

+
475(i − 1)

N4
+

2245(i − 1)
N3

) 1
2

since r′ = 5(i − 1)

≤
(

25q

N2
+

48q2

N4
+

226q2

N3

) 1
2

≤ 5
√

q

N
+

256q

N2
+

8192q

N
3
2

for N ≥ 100. (30)

�
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4.2 Proof of Lemma 3

Let r,N be positive integers such that r′ = N − r ≤ 5N
8 . Let G be a group of

size N , and Vr be a random r-set in G. For u = (u1, u2) ∈ G2 we associate a
random variable Nu

r defined as the size of the following set

Nu
r := {(g1, g2, g3) ∈ G3 : g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ Vr,

g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 distinct.}

We represent Nu
r as a sum of indicator random variables. To do so we define

the set Gu of tuples of distinct elements of G as

Gu = {(g1, g2, g3) : g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ G,

g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 distinct}.

Let |Gu| = Nu. Then we have the following claim.

Claim 4 Nu ≤ (N − 1)(N − 2)(N − 3).

Proof of claim. It may be observed that for fixed u, g1 /∈ {u1, u2}. Otherwise,
either u1 + g1 + g2 = g2 or u2 + g1 + g3 = g3 which contradicts the distinctness
requirement. Discounting for the fact u1, u2 may be equal we get that the number
of choices for g1 is at most (N − 1). Similarly, we have that g2 /∈ {u1, g1} and
g3 /∈ {g1, g2, u1 + g1 + g2}. Hence, the claim follows. �

Next, we have

Nu
r =

∑
g∈Gu

Ig, (31)

where, for g = (g1, g2, g3) ∈ Gu, the indicator random variable Ig is defined as
follows.

Ig =

{
1 if g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ Vr and distinct,
0 otherwise.

So, we have

Ex[Ig] = Pr[{g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3 ∈ Vr} ⊆ Vr]

=

(
N−5
r−5

)
(
N
r

)

=
r5

N5
. (32)

By using the linearity of expectation, we have

Ex[Nu
r] =

∑
g∈Gu

Ex[Ig]
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=
∑
g∈Gu

r5

N5

≤ r5

N(N − 4)
using Claim 4.

Therefore, plugging in the values of C and D we have

C × (Ex[Nu
r] − D)2 ≤ N2

(r5)2
×

(
r5

N(N − 4)
− r5

N2

)2

≤ 16
N2(N − 4)2

≤ 25
N4

for N ≥ 20. (33)

Now, we compute the variance using the following relation.

Var[
∑
g∈Gu

Ig] =
∑
g∈Gu

Var[Ig] +
∑

g �=g′∈Gu

Cov(Ig, Ig′). (34)

For the sake of notational simplicity, for every g ∈ Gu, we denote the set
{g1, g2, g3, u1 + g1 + g2, u2 + g1 + g3} as Sg

u . In (32), we have obtained
Ex[Ig] = r5

N5 . As Ig is a 0 − 1 random variable, Ex[I2g] = Ex[Ig]. Thus,

Var[Ig] = Ex[I2g] − Ex[Ig]2

= Ex[Ig](1 − Ex[Ig])

=
r5

N5
×

(
1 − r5

N5

)
(35)

≤ r5

N5
× 10r′

N
using Lemma 1. (36)

Therefore, by using the estimate of Nu from Claim 4 we get

C ×
∑
g∈Gu

Var[Ig] =
N2

(r5)2
× Nu × r5

N5
× 10r′

N
.

≤ 214r′

N6
for N ≥ 16. (37)

Now, we compute the covariance term of (34). Note that IgIg′ = 1 if and only
if Sg

u ∪ Sg′
u ⊆ Vr. So,

Ex[IgIg′ ] = Pr[Sg
u ∪ Sg′

u ⊆ Vr] =
r�

N �
,
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where � = |Sg
u ∪Sg′

u |. Here, it is not difficult to observe that � ∈ {5, 6, 7, 8, 9, 10}.
Accordingly, we can partition the sum of covariances as follows.

∑
g �=g′∈Gu

Cov(Ig, Ig′) =
∑

�∈{5,6,7,8,9,10}

∑
g �=g′∈Gu

|Sgu∪S
g′
u |=�

Cov(Ig, Ig′)

=
∑

�∈{5,6,7,8,9,10}
Δu

�COV�,

(38)

where

Δu
� = |{(g, g′) ∈ Gu × Gu|g �= g′, |Sg

u ∪ Sg′
u | = �}|,

and

COV� =
r�

N �
−

(
r5

N5

)2

=
(

r5

N5

)(
(r − 5) . . . (r − � + 1)

(N − 5) . . . (N − � + 1)
− r5

N5

)

=
(

r5

N5

)
× Γ�,

where Γ� =
(

(r−5)...(r−�+1)
(N−5)...(N−�+1) − r5

N5

)
. Therefore,

C × COV� =
N

r5(N − 1)4
× Γ�

≤ 1024
N8

× Γ� for N ≥ 16. (39)

Now, we estimate the order of magnitude of Δu
� and Γ� for different values of �

through the following claims.

Claim 5. With the notations mentioned above we have the following upper
bounds.

1. Δu
5 ≤ 40Nu,

2. Δu
6 ≤ 600Nu,

3. Δu
7 ≤ 600NNu,

4. Δu
8 ≤ 200NNu,

5. Δu
9 ≤ 25N2Nu,

6. Δu
10 = (N3 − cN2)Nu for some c with 10 ≤ c ≤ 36 and N ≥ 15.

Proof of claim. Below, we provide case by case justification of the above claim,
although with significant compromise on the accuracy of the constants as our
primary focus is on the order of magnitude of the considered variables. In each
case, i.e. for � ∈ {5, 6, 7, 8, 9, 10}, we fix some g ∈ Gu and consider the number of
g′ ∈ Gu for which |Sg

u ∩Sg′
u | = �, and then the final expression of Δu

� is obtained
by multiplying with the cardinality (Nu) of Gu (i.e., the number of g). Here note
that u = (u1, u2) is already fixed.
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1. In this case, we have Sg
u = Sg′

u . Now, with g fixed, g
′
1, g

′
2 can be fixed by the

elements of Sg
u in at most 5 × 4 = 20 ways. Not all such choices will be valid

(because for some of them g
′
1 + g

′
2 + u1 /∈ Sg

u ). For each valid choice of g
′
1, g

′
2

there are at most 2 choices of g
′
3 (indeed g

′
3 ∈ Sg

u \ {g′
1, g

′
2, g

′
1 + g

′
2 + u1}). So,

Δu
5 ≤ 40Nu.

2. In this case, 4 elements of Sg
u can be chosen in 5 ways. These 4 elements can

be assigned to the 4 elements of Sg′
u in at most 5×4×3×2 = 120 ways. This

fixes the tuple g′. So, Δu
6 ≤ 120 × 5 × Nu = 600Nu.

3. Here, 3 elements of Sg
u can be chosen in 10 ways. The chosen elements can

be assigned to 3 elements of Sg′
u in 5 × 4 × 3 = 60 ways. Fixing any of the

remaining 2 elements of Sg′
u can be done in at most N ways. This fixes the

tuple g′. So, we have Δu
7 ≤ 600NNu.

4. Following an argument quite similar to the above, we get that Δu
8 ≤ 200NNu.

5. In this case, the two sets Sg
u and Sg′

u intersect in a single element. This can
happen in 25 possible ways and fixing any two from {g′

1, g
′
2, g

′
3} \Sg

u fixes the
remaining one (among {g′

1, g
′
2, g

′
3}) if it is already not in Sg′

u . Now, the two
elements can be fixed in at most N2 number of ways. So, the claim for this
case is established.

6. In this case, the sets Sg
u and Sg′

u are disjoint. So, for fixed g the number of
choices of g

′
i is N − di, for integers di, 1 ≤ i ≤ 3. Now, d1 = |Sg

u ∪ {u1, u2}|.
So, 5 ≤ d1 ≤ 7. Similarly, (conditioned on the choice of g

′
1) we have that

d2 = |Sg
u ∪ {u1, g′

1} ∪ u1 + g
′
1 + Sg

u |. From this it follows that 5 ≤ d2 ≤ 12.
Finally, following similar argument, and compromising on accuracy it follows
that (conditioned on the choice of g

′
1 and g

′
2 ) 5 ≤ d3 ≤ 17. So, for this case,

the possible number of choices of g′ for fixed g is (N − d1)(N − d2)(N − d3)
which is (N3 − cN2) for some 10 ≤ c ≤ 36 and N ≥ 15. �

Claim 6

Γ� ≤ 10r′

N

for � ∈ {5, 6, 7, 8}

Proof of claim. This (weaker) bound follows from Lemma 1. �

Claim 7
Δu

9Γ9 + Δu
10Γ10 ≤ 720r′N3,

for N ≥ 100

Proof of claim. Here we use the estimates of Δu
9 and Δu

10 from Claim 5 with
Nu ≤ N3. Also, we suppress the tedious calculation (verified using symbolic
algebra package) and get the final upper bound 720r′N3 for N ≥ 100. �

Next, using the estimates form Claim 5, Claim 6, and Claim 7 together with
(39) and Nu ≤ N3 we get the following upper bound on the r.h.s. of (38).

C ×
∑

g �=g′∈Gu

Cov(Ig, Ig′) = C ×
∑

�∈{5,6,7,8,9,10}
Δu

�COV�
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≤ 1024
N8

×
∑

�∈{5,6,7,8,9,10}
Δu

�Γ�

≤ 1024
N8

×
(

640N3 × 10r′

N
+ 800N4 × 10r′

N
+ 720r′N3

)

≤ 1024
N8

× (6400r′N2 + 8000r′N3 + 720r′N3)

≤ 224r′

N5
for N ≥ 100. (40)

Finally, using (33),(37), and (40) the r.h.s. of (28) yields

Ex[χ2(Xi−1)] ≤
∑
u

25
N4

+
214r′

N6
+

224r′

N5

=
25
N2

+
214r′

N4
+

224r′

N3
for N ≥ 100. (41)

�

5 Conclusion

In this paper, we have demonstrated much stronger PRF security gurarantee
of a block cipher based PRF construction termed XORP[3] in the multi-user
and single-user setting. With the choice of a sufficiently secure block cipher, the
construction allows simultaneous (independent) use by O(2n) users even when
the adversary makes almost O(2n) many queries to each user. In the single-user
scenario our result implies O

(
1/

√
2n

)
, i.e., negligible distinguishing advantage

for an adversary even allowing it to make almost O(2n) many queries. We have
also considered an efficient version of XORP[3], termed XORP′[3] which uses less
number of block cipher calls but achieves same level of security. We have also
shown an application of our result to counter mode encryption. In the end, we
invite the reader to investigate whether the variant XORP′[3] can be further
extended to achieve still better security/ efficiency.
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Abstract. Sharing a common primitive for multiple functionalities is
essential for lightweight cryptography, and NIST’s lightweight cryptog-
raphy competition (LWC) considers the integration of hashing to AEAD.
While permutations are natural primitive choices in such a goal, for
design diversity, it is interesting to investigate how small block-cipher
(BC) based and tweakable block-cipher (TBC) based schemes can be.
Double-block-length (DBL) hash function modes are suitable to ensure
the same security level for AEAD and hashing, but hard to achieve a
small memory size. Romulus, a TBC-based finalist in NIST LWC, intro-
duced the DBL hashing scheme Romulus-H, but it requires 3n + k bits
of memory using an underlying primitive with an n-bit block and a k-
bit (twea)key. Even the smallest DBL modes in the literature require
2n + k bits of memory. Addressing this issue, we present new DBL
modes EXEX-NI and EXEX-I achieving (n + k)-bit state size, i.e., no
extra memory in addition to n + k bits needed within the primitive.
EXEX-NI is indifferentiable from a random oracle up to n − log n bits.
By instantiating it with SKINNY, we can provide hashing to Romulus
with zero memory overhead. EXEX-I is an optimized mode with collision
resistance. We finally compare the hardware performances of EXEX-NI,
EXEX-I, and Romulus-H with SKINNY-128-384. EXEX-NI and EXEX-I
achieve the circuit-area reduction by 2,000+ GE, yielding the total areas
being smaller than 70% of that of Romulus-H.

Keywords: Double-block-length hash · Lightweight cryptography ·
Low memory · Indifferentiability · Collision resistance · Tweakable
block cipher

1 Introduction

Lightweight cryptography receives great attention in the field of symmetric-key
cryptography. The National Institute of Standards and Technology (NIST) is
now organizing a competition (NIST LWC) to standardize lightweight authen-
ticated encryption with associated data (AEAD) schemes [29]. In particular, it
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13092, pp. 376–406, 2021.
https://doi.org/10.1007/978-3-030-92078-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92078-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-92078-4_13


Double-Block-Length Hash Function for Minimum Memory Size 377

is the final year of the competition, at the time of writing, and new knowledge
on lightweight AEAD schemes is highly important. Sharing a common primitive
for multiple functionalities is important for reducing hardware/software costs;
it is an essential idea behind AEAD schemes that simultaneously realize both
encryption and message authentication. For even higher efficiency, NIST LWC
considers the integration of yet another functionality into AEAD: a hashing
scheme.

Efficient integration of AEAD and hashing is a challenging task. Using a
secret key is the central difference between AEAD and hashing, which results in
different security levels for a given state size. Intuitively, to ensure the same level
of security, hashing schemes require a larger state than AEAD schemes in order
to resist collision attacks based on the birthday paradox. A naive approach to
compensate for this difference is to use a larger primitive for hashing, but using
a larger primitive for the optional functionality in NIST LWC is unreasonable
for lightweight implementation. Compared to block ciphers (BCs) and tweak-
able block ciphers (TBCs), cryptographic permutations seem more suitable to
support both AEAD and hashing by using the duplex construction for AEAD
[5] and the sponge construction for hashing [4].

NIST LWC has recently proceeded into the final stage by selecting 10 schemes
as finalists [30], where 6 of them are permutation-based schemes, and the rest
have diversity; a BC-based scheme, a TBC-based scheme, a stream cipher-based
scheme, and a keyed permutation-based scheme. Among the 10 finalists, the 4
schemes support both AEAD and hashing, and all of them adopt the duplex and
the sponge constructions. NIST explicitly states that they consider design diver-
sity during the selection [31], and exploring an efficient realization of hashing
in other constructions is an important research challenge. The design team of
the TBC-based scheme Romulus [12] has recently announced a hashing scheme
called Romulus-H [13], which is an MDPH hashing mode [24] instantiated with
SKINNY-128-384 [3] used in Romulus AEAD. This is an interesting direction,
and the goal of this paper is to explore an optimal construction with respect to
the memory size to realize a hashing scheme based on a BC or a TBC, particu-
larly to satisfy the design requirements for NIST LWC.

We begin by recalling NIST’s requirements for hash functions: (1) cryptana-
lytic attacks to find a collision, a second preimage, and a preimage shall require
at least 2112 computations and (2) length extension attacks should be prevented.
For example, if part of the message is a secret key, constructing a hash value
corresponding to another message under the same key should be infeasible.

DBL Modes. Double block length (DBL) hashing modes construct a 2n-bit
hash function from an n-bit block cipher.1 Given that hashing schemes require a
larger state than AEAD schemes, DBL modes are very suitable to support both
AEAD and hashing schemes by BCs. Moreover, NIST LWC requires at least

1 Instead of BCs, TBCs can be used in DBL. Hashing modes replace a key with some
public value, hence BCs with a k-bit key and TBCs with a k′-bit key and a t-bit
tweak generally play the same role as long as k = k′ + t. For sake of simplicity, we
denote underlying primitives by BCs.
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112-bit security for a hashing scheme, while most of the existing lightweight
BCs and TBCs have a block size of 128 bits or shorter, which makes it natural
to design a 256-bit hashing scheme from a 128-bit BC. Apart from NIST LWC,
DBL modes are motivated by a practical demand; one may want to implement
a 256-bit hash function from AES (128-bit block and a 128-bit or a 256-bit key)
instead of implementing SHA-256 that has a completely different structure.

A popular approach to design DBL modes is to first design a DBL com-
pression function (CF), which is then converted to a hash function (HF) by the
Merkle-Damg̊ard domain extension [9,21]. There are many such modes, including
MDC-2, MDC-4 [7], Tandem-DM, and Abreast-DM [16]. Hirose’s DBL construc-
tion [10] is one of the most widely known DBL CFs, which is depicted in Fig. 1.
Besides, many DBL constructions have been proposed for different goals, e.g., for
improving security [1,18,24], relaxing the key size limitation for underlying BCs
[17,20], etc. In particular, there is a line of research works for reducing the
required memory size, which determines the overall hardware cost in lightweight
implementation. The goal of this paper is to optimize the memory size, and we
explain below the previous works in this direction.

With an underlying BC having an n-bit block and a k-bit key, Hirose’s DBL
CF requires a (3n + k)-bit state. Bogdanov et al. proposed a lightweight hash
function for RFID tags by instantiating Hirose’s construction with a lightweight
block cipher PRESENT [6]. Notably, they pointed out that the feed-forward
operation in Hirose’s DBL construction increases the memory size. Naito’s
MDPH, the mode used in Romulus-H, also requires a (3n + k)-bit state because
it is an extension of Hirose’s CF; MDPH replaces the standard Merkle-Damg̊ard
domain extension with Merkle-Damg̊ard-Permutation (MDP) domain extension
[11], thereby providing indifferentiability (from a random oracle) [19].

Özen and Stam broke the (3n + k)-bit barrier by proposing a synthetic app-
roach to achieving the (2n + k)-bit state size [32]. Their generic construction
includes Hirose’s DBL CF without the feed-forward, which enables to reduce
the state size to 2n + k bits. This is an interesting approach because the omis-
sion of the feed-forward makes the CF vulnerable, while the security (colli-
sion resistance) is guaranteed as a whole HF. Naito followed the same app-
roach [23], and designed another mode achieving 2n + k bits of memory in
which the CF is Hirose’s construction without feed-forward, while the security
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Table 1. Comparison of DBL modes. −ε denotes that security is lost by a factor of
log n. coll resp. indiff denote the collision resistance resp. the indifferentiability.

Scheme Memory Security Security #BC Message Key Parallel Omit Ref.

in bits goal calls length length KSF−1

Tandem-DM 3n + k n coll 2 k − n n < k Yes No [16]

Abreast-DM 3n + k n coll 2 k − n 2n ≤ k Yes No [16]

MDC-2 3n + k 3n/5 − ε coll 2 n n ≤ k Yes No [7]

MDC-4 3n + k 5n/8 − ε coll 4 n n ≤ k Yes No [7]

Mennink 4n + k n − ε coll 3 n n ≤ k Yes No [20]

MJH 5n + k n − ε coll 2 n n ≤ k Yes No [17]

Hirose 3n + k n coll 2 k − n n < k Yes No [10]

MDPH† 3n + k n − ε indiff 2 k − n n < k Yes No [13,24]

Özen-Stam 2n + k n − ε coll 2 k − n n < k Yes No [32]

Naito‡ 2n + k n indiff 2 k − n 2n ≤ k Yes No [23]

EXEX-NI‡ n + k n − ε indiff 2 k − n 2n ≤ k No Yes Ours

EXEX-I n + k n − ε coll 2 k − n n < k No Yes Ours

†The mode used in Romulus-H. ‡Requires 2 additional BC calls.

(indifferentiability) for the HF is guaranteed by replacing the domain extension.
Naito’s mode imposes a stronger requirement on the underlying BC with k ≥ 2n.

The memory size of existing DBL modes, along with their security and other
associated parameters, is compared in Table 1. The smallest memory size in
the literature is 2n + k bits by Özen-Stam [32] and Naito [23]. The collision
resistance may not be sufficient to prevent the length extension attack, one of the
requirements in NIST LWC, while indifferentiability suffices to prevent it. The
lack of indifferentiability does not immediately imply that the length extension
attack is feasible; however, the standard Merkle-Damg̊ard domain extension is
known to be vulnerable against the length extension attack.

Our Contributions. In this paper, we present new DBL hash function modes
EXEX-NI (NI for nested iterated) and EXEX-I (I for iterated) achieving (n+k)-bit
state size using an underlying primitive having an n-bit block and a k-bit key.
This is the smallest as compared in Table 1, and is optimal because we need
n + k bits just for implementing the BC. EXEX-NI and EXEX-I also accept a
TBC of an n-bit block, a k′-bit key, and a t-bit tweak such that k = k′ + t.
Their instantiations with SKINNY can be efficient alternatives to Romulus-H;
our modes provide hashing to Romulus (AEAD) with zero memory overhead.

Designing DBL modes with a small memory size is challenging. We first
observe that many existing DBL modes call the underlying BC at least twice,
and the results of the first BC call (or the value after the feed-forward) are stored
on the memory, which will be used as a half of the compression function output
after the second BC call. Our idea is to save such a memory. Namely, we use
the result of the first BC call to compute an input to the second BC call, as
shown in Fig. 2.2 In this way, all the memory is always actively used to compute

2 Linear dependency between the message and the key does not degrade security. Intu-
itively, previous block-cipher’s output spreads to next block-cipher’s key. This makes
two keys different, and block-cipher’s outputs become different random strings.
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both BC calls, which enables us to reduce the memory size to n + k bits. As a
natural consequence of serialization, the new CF cannot run these consecutive
BCs in parallel (see “Parallel” in Table 1), however, that has a negligible impact
on low-area implementations.

Due to the strictly restricted memory size, we adopt the same approach as
Özen-Stam and Naito that use a vulnerable CF [23,32], which actually allows
an attacker to easily find a preimage of the CF. This implies that there exists
a preimage attack on HF by using the meet-in-the-middle approach with O(2n)
computational cost, though the digest size is 2n bits. As required in NIST LWC,
not all practical usage require higher security for the preimage resistance than
the collision resistance.3 EXEX-NI and EXEX-I are suitable for such demand. We
prove the security of EXEX-NI with respect to indifferentiability up to n − log n
bits, which ensures that EXEX-NI resists the length-extension attacks. Recall that
NIST LWC requires 112-bit security. This can be satisfied by using a 128-bit BC
or a 128-bit TBC, say AES or SKINNY-128, even by considering the security loss
of log n bits. We believe that EXEX-NI is an attractive design, especially as an
alternative to the MDPH mode in Romulus-H.

As mentioned above, our CF is invertible. In contrast, to design an indiffer-
entiable HF, we need a non-invertible function somewhere in the computation.
In EXEX-NI, we fill this gap by using Coron et al.’s NMAC hash [8]: we add
a special finalization function with 2 BC calls, making the finalization function
non-invertible with a constant-time overhead. EXEX-NI requires an underlying
BC to support the key size k ≥ 2n, and the requirement can be satisfied by
many existing BC designs, e.g., by AES-256 and SKINNY-128-256.

Although it is required in NIST LWC, we observe that resisting the length-
extension attack may be unnecessary in practice. This is because all the NIST
LWC candidates support an AEAD scheme, thus keyed computations such as
MACs can be done by using the AEAD scheme. This motivates us to consider
relaxing the security goal to the collision resistance rather than the indifferentia-
bility. EXEX-I is a design for this purpose. EXEX-I does not require the finaliza-
tion function, which reduces the number of BC calls by 2. This has a significant
impact on the performance for short messages. Moreover, the requirement of the
key size of the underlying BC is relaxed compared to EXEX-NI.

As shown in Fig. 2, we prove the security of EXEX-NI and EXEX-I by assuming
that some part of the key state can be updated by using any linear functions
π1 and π2, which allows us interesting optimization regarding on-the-fly key
scheduling (see “Omit KSF−1” in Table 1). This idea was first introduced by
Naito et al. [26] and known to reduce the hardware cost when a key schedule
function (and a tweak schedule function) of the underlying BC is a state-wise
linear update, which is particularly useful when the underlying BC is SKINNY.
In short, by setting π1 and π2 to the key schedule function (KSF), the updated
key state during the computation of BC can immediately be used to compute
the next BC without applying the KSF−1.

3 HMAC [28] and Hash-then-MAC [15] are example use-cases whose security is reduced
to coll of the hashing scheme, thus does not require higher security level than coll.
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Table 2. Comparison between EXEX and the sponge construction. A check mark �
shows that the target mode is advantageous.

Modes Sponge EXEX

Base primitive Permutation BC or TBC

Memory size for modes n + k n + k

Number of primitive calls 1 2

Construction simplicity � —

Proof simplicity � —

Memory size with TI — �
Backward compatibility with AES — �

We finally compare the hardware performances of EXEX-NI, EXEX-I, and
Romulus-H by instantiating them with SKINNY-128-384 and implementing them
with the same design policy. Thanks to the smaller memory size and the opti-
mized tweakey-schedule implementation, EXEX-NI and EXEX-I achieved the
circuit-area reduction by 2,000+ GE, yielding the total areas being smaller than
70% of that of the Romulus-H.

Related Work. It is well-known that permutation-based schemes (the sponge
construction) provide an excellent hardware performance. Although BC-based
and TBC-based hashing schemes are important with respect to the design diver-
sity, it is still interesting to compare the performance of those schemes.

Memory sizes for the sponge construction and EXEX are the same to achieve
the same rate under the same security level. The sponge construction is advan-
tageous with respect to the number of primitive calls, design simplicity, and
proof simplicity, though the number of primitive calls is a low-priority criterion
for small implementations. EXEX is advantageous with respect to other met-
rics. First, TBC-based designs are advantageous with masking countermeasures
against side-channel attack, as discussed in [25]. Second, it has backward com-
patibility with AES. Many microprocessors have AES accelerators and EXEX
provides efficient hashing to them. The comparison is summarized in Table 2.
Overall, EXEX is competitive with the key performance metric memory size and
offers new options for implementers depending on the criteria of their choice.

Outline. Section 2 introduces notations and fundamentals. Section 3 shows our
general approach to obtain DBL HF only with n + k-bit memory. Section 4
shows our higher-security variant EXEX-NI that satisfies the requirements in
NIST LWC, followed by its proof in Sect. 5. Section 6 shows our rigorously opti-
mized variant EXEX-I that compromises the security goal to collision resistance
but provides better performance, particularly for short messages. Finally, we
make a hardware performance comparison by implementing EXEX-NI, EXEX-I,
and Romulus-H instantiated with SKINNY-128-384 in Sect. 7. Section 8 is the
conclusion.
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2 Preliminaries

Notation. Let {0, 1}∗ be the set of all bit strings. Let λ be an empty string, and
∅ an empty set. For an integer n ≥ 0, {0, 1}n be the set of all n-bit strings, and
({0, 1}n)∗ be the set of all strings whose bit lengths are multiples of n. For an
integer i > 0, let [i] be the set of positive integers less than or equal to i. For an
m�-bit string M , we write its partition into m-bit strings as (M1,M2, . . . , M�)

m←−
M . For integers r, s with 0 ≤ s ≤ r and an r-bit string X, the most (resp.
least) significant s bits of X is denoted by [X]s (resp. [X]s). For a bit string

Y , X ← Y means that Y is assigned to X. X
$←− X means that an element is

sampled uniformly at random from a finite set X and is assigned to X. Y ← X
means that a finite set X is assigned to Y, and Y ∪←− X means that Y ← X ∪ Y.

Security Definition of Hash Function. Our proofs are given in the ideal
cipher model. For positive integers k and n, let E be (an encryption function
of) a BC having a k-bit key and an n-bit plaintext block, which is a set of n-
bit permutations indexed by keys. The decryption function of E is denoted by
D : {0, 1}k × {0, 1}n → {0, 1}n. BC(k, n) denotes the set of all BCs with k-bit

keys and n-bit blocks. An ideal cipher is defined as E
$←− BC(k, n). In the ideal

cipher model, an adversary has access to E and D.
Let HE : {0, 1}∗ → {0, 1}2n be a DBL hash function using a BC E. We define

security notions for HE .

Preimage Security. In the security game, a computationally unbounded
adversary A is given oracle access to (E,D), where E

$←− BC(k, n). The goal
of A is to find a massage M of a given hash value H. The advantage function of
an adversary A is defined as Advpre

H,H(A) = Pr
[
HE(M) = H : M ← AE,D(H)

]
,

where the probabilities are taken over A, H, and E.

Collision Security. In the security game, a computationally unbounded
adversary A is given oracle access to (E,D), where E

$←− BC(k, n). The goal
of A is to find a pair of messages M and M ′ such that the hash values are
equal. The advantage function of an adversary A is defined as Advcoll

H (A) =
Pr

[
HE(M) = HE(M ′) : (M,M ′) ← AE,D,M �= M ′], where the probabilities are

taken over A and E.

Indifferentiability from a Random Oracle. The indifferentiability of HE

from a random oracle is indistinguishability between HE (in the ideal cipher
model) and a random oracle. Func(∗, 2n) denotes the set of all functions from

{0, 1}∗ to {0, 1}2n, and a random oracle is defined as RO $←− Func(∗, 2n).
In the security game, an adversary A tries to distinguish a real world

from an ideal world. A has access to a hash oracle L, an encryption ora-
cle RE , and a decryption oracle RD. In the real world, these oracles are
(L,RE , RD) = (HE , E,D), where E

$←− BC(k, n). In the ideal world, these ora-

cles are (L,RE , RD) = (RO,SRO
E ,SRO

D ), where RO $←− Func(∗, 2n), and SRO
E and
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Fig. 3. GLMCFE : a general construction for low-memory compression function.

SRO
D are simulators with access to RO. After the interaction, A outputs a deci-

sion bit in {0, 1}. An output of an adversary A with access to oracles L,RE , RD

is denoted by AL,RE ,RD . For a simulator SRO = (SRO
E ,SRO

D ), the advantage

function of an adversary A is defined as Advindiff
H,S (A) = Pr

[
AHE ,E,D = 1

]
−

Pr
[
ARO,SRO

E ,SRO
D = 1

]
, where the probabilities are taken over A, E, RO, and

S. HE is indifferentiable from a random oracle if for any adversary A, there exists
a simulator S such that the advantage function is upper-bounded by a negligi-
ble probability. In this paper, we call queries to L, RE , and RD hash queries,
encryption queries, and decryption queries, respectively.

3 Conditions for Secure Low Memory DBL Hash Designs

In this section, we approach to DBL hash functions with the smallest memory
size, which uses a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n and uses a memory
of k+n bits. We first introduce a generic framework to construct a CF in Sect. 3.1.
We then derive conditions for parameters to resist collision attacks in Sect. 3.2.
We show that such a CF is always invertible, thus requires additional effort to
be indifferentiable in Sect. 3.3. Finally, a generic framework to construct a HF is
introduced in Sect. 3.4.

3.1 Generic Construction of Low-Memory DBLCF

To design a DBL hash function with a (k + n)-bit memory, we need to design
a CF with a (k + n)-bit memory. In this subsection, we introduce GLMCFE :
a generic construction of the low-memory CF with a block cipher E, which is
depicted in Fig. 3.

Let m be the bit-length of a message block. GLMCFE takes as input a 2n-bit
state value Si−1 and an m-bit message Mi, and generates a 2n-bit output Si.
GLMCFE calls a BC with n-bit block and a k-bit key, denoted by E. E can be
called multiple times even under the restriction of (k + n)-bit memory if all E
calls are sequentially processed. At this stage, we do not fix the number of calls
of E, and let r be this number. Since E uses the entire k + n bits, we cannot
carry anything over the E call. This restricts the design of GLMCFE to be an
iteration of a linear function Li and E. Namely, we first apply a linear function
L0 to map a (2n+m)-bit state to a (k +n)-bit state. Then, the state is updated
to another (k +n)-bit state by E and linear function L1. This is iterated r times
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to apply BC r times. Lastly, the (k+n)-bit state is transformed to 2n-bit output
by a linear function Lr. At this stage, we do not make any assumption on m,
thus L0 can be either an expanding or a contracting function and Lr can be its
opposite.

The formal description is as follows. Let L0 : {0, 1}2n × {0, 1}m → {0, 1}k ×
{0, 1}n, L1 : {0, 1}k × {0, 1}n → {0, 1}k × {0, 1}n, . . . , Lr−1 : {0, 1}k × {0, 1}n →
{0, 1}k × {0, 1}n, and Lr : {0, 1}k × {0, 1}n → {0, 1}2n be linear functions. We
give the procedure of GLMCFE : {0, 1}2n × {0, 1}m → {0, 1}2n.

– GLMCFE(Si−1,Mi)
1. (K1,X1) ← L0(Si−1,Mi)
2. for j = 1, . . . , r − 1 do Yj ← E(Kj ,Xj); (Kj+1,Xj+1) ← Lj(Kj , Yj)
3. Yr ← E(Kr,Xr); Si ← Lr(Kr, Yr); return Si

3.2 Conditions of m, k, and n for n-bit Collision Resistance

Now we are lifting the CF to a HF. Suppose that a DBL HF is constructed
by iteratively applying GLMCFE , which is denoted by iGLMCFE . For sake of
simplicity, an input message M is in ({0, 1}m)∗. Let IV be a 2n-bit constant.

– iGLMCFE(M)
1. (M1,M2, . . . , M�)

m←− M ; S0 ← IV
2. for i = 1, . . . , � do Si ← GLMCFE(Si−1,Mi)
3. return S�

First, the construction needs to satisfy n ≤ k. In fact, if n > k, n-bit security
cannot be ensured due to the birthday attack on the (n + k)-bit state.

Second, the construction needs to satisfy k−n ≥ m. In fact, there is an attack
that breaks the collision security on iGLMCFE with O(2(k+n−m)/2) complexity,
which we discuss in this section. In this attack, we split the linear function L0 in
GLMCFE into two linear functions L′

0 : {0, 1}2n → {0, 1}k+n and L∗
0 : {0, 1}m →

{0, 1}k+n that satisfy L0(Si−1,Mi) = L′
0(Si−1) ⊕ L∗

0(Mi). L∗
0 must be injective,

otherwise one can trivially find a collision. The compression function with some
formulation is given in Fig. 4, where f : {0, 1}n+k → {0, 1}2n is a composed
function covering from the first BC to the last linear function Lr. The security
bound is given in the following lemma.
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Lemma 1. Let f be an ideal function. For any Si ∈ {0, 1}2n, there exists an
adversary A making Q · max{1, �n/m
} queries to f such that Advcoll

iGLMCF(A) =
Ω

(
Q2

2k+n−m

)
.

Proof. We define an adversary A that finds a collision of iGLMCFE where f is
ideal. Let u := �n/m
.

1. For j = 1, . . . , Q do the following steps.
(a) Select a j-th message (M (j)

1 ‖ · · · ‖M
(j)
u ) that is distinct from all previous

messages (M (1)
1 ‖ · · · ‖M

(1)
u ), . . . , (M (j−1)

1 ‖ · · · ‖M
(j−1)
u ).

(b) Calculate the u-th state denoted by S
(j)
u for the message (M (j)

1 ‖ · · · ‖M
(j)
u )

by making queries to f .
(c) For each j′ ∈ [j − 1], check if there exist message blocks M

(j)
u+1 and M

(j′)
u+1

such that L′
0(S

(j)
u ) ⊕ L∗

0(M
(j)
u+1) = L′

0(S
(j′)
u ) ⊕ L∗

0(M
(j′)
u+1) which causes a

collision at the (u + 1)-th CF call.
(d) If such an index j′ exists then M ← (M (j)

1 ‖ · · · ‖M
(j)
u ‖M

(j)
u+1), M ′ ←

(M (j′)
1 ‖ · · · ‖M

(j′)
u ‖M

(j′)
u+1), and go to Step 3.

2. Choose messages M
$←− {0, 1}m and M ′ $←− {0, 1}m.

3. Return (M,M ′).

The number of choices of the XOR value L∗
0(M

(j)
u+1) ⊕ L∗

0(M
(j′)
u+1) is 2m. Hence,

for each pair (j, j′), the probability that there exist message blocks M
(j)
u+1 and

M
(j′)
u+1 such that L′

0(S
(j)
u ) ⊕ L∗

0(M
(j)
u+1) = L′

0(S
(j′)
u ) ⊕ L∗

0(M
(j′)
u+1) is Ω(1/2k+n−m).

By summing the probability for each pair, we have Advcoll
iGLMCFE (A) =

Ω(Q2/2k+n−m). ��

To ensure n-bit security against the collision attack, k + n − m ≥ 2n, which
results in k − n ≥ m. This implies that m can take any value between k − n and
1. The memory size is k+n bits for any m, while the number of bits processed in
each invocation of GLMCFE decreases when m becomes small. In the rest of the
paper, we fix k−n = m, which is the optimal choice in terms of the performance
under the restriction of the (k + n)-bit memory.

3.3 Conditions for Indifferentiability: Invertibility of GLMCF

The conditions in Sect. 3.2 were derived for the collision resistance, which is insuf-
ficient for the indifferentiability (to ensure resistance against length-extension
attacks required by NIST). Towards indifferentiable constructions, we first show
that one can break the preimage security of GLMCFE , where E is an ideal cipher.

Lemma 2. Fix r. For any Si ∈ {0, 1}2n, there exists an adversary A making r
queries such that Advpre

GLMCFE ,Si
(A) = 1.

Proof. We define an adversary A that finds a preimage of a value Si.
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Fig. 5. Hash function GLMHF.

1. Find (Kr, Yr) s.t. Si = Lr(Kr, Yr); Xr ← D(Kr, Yr)
2. for j = r − 1, . . . , 1 do

Find (Kj , Yj) s.t. (Kj+1,Xj+1) = Lj(Kj , Yj); Xj ← D(Kj , Yj)
3. Find (Si−1,Mi) s.t. (K1,X1) = L0(Si−1,Mi); Return (Si−1,Mi)

Since L0, L1, . . . , Lr are linear functions, for each j = 0, 1, . . . , r, given an output
of Lj , one can easily find the input. Hence, the adversary finds a preimage
(Mi, Si−1) by r queries. ��

This analysis shows that only with (k + n)-bit memory satisfying k − n = m,
GLMCFE is easily invertible. To obtain an indifferentiable HF, we need a non-
invertible part somewhere in HF.

3.4 Generic Construction of Low Memory DBL HF

The analysis in Sect. 3.3 motivates us to introduce a non-invertible finalization
function Fin : {0, 1}2n → {0, 1}2n. Here, we define GLMHF : {0, 1}∗ → {0, 1}2n, a
generic construction of low memory hash function using the compression function
GLMCFE and a finalization function Fin. Let pad : {0, 1}∗ → ({0, 1}m)∗ be an
injective padding function.

– GLMHFE,Fin(M)
1. (M1,M2, . . . , M�)

m←− pad(M); S0 ← IV
2. for i = 1, . . . , � do Si ← GLMCFE(Si−1,Mi)
3. H ← Fin(S�); return H

Note that IV is a 2n-bit constant. Figure 5 shows the structure of GLMHF. In
the next section, we propose EXEX-NI by specifying details in GLMHF.

4 EXEX-NI: Low Memory Indifferentiable DBL HF

In this section, we specify every details of the general framework introduced in
Sect. 3. In particular, a compression function EXEX and our indifferentiable DBF
mode EXEX-NI are defined in Sect 4.1. An overview of its indifferentiability is
given in Sect. 4.2 and Sect. 4.3.
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Fig. 6. Compression function EXEX. The figure shows the structure of the CF block

Si−1
Mi−−→ Si in the proof of Theorem 1.
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Fig. 7. Hash function EXEX-NI. The inner function of this figure shows the structure

of the path 02n M1‖M2‖···‖M�−−−−−−−−−−→ S� in the proof of Theorem 1.

4.1 Specifications of EXEX and EXEX-NI

To realize our modes using GLMCFE , we should specify the number of E calls
r and the linear functions L0, . . . , Lr. Choosing the same linear function for L0

to Lr−1 is a reasonable decision considering implementation efficiency. In each
invocation of GLMCFE , the 2n-bit state (chaining values) must be updated non-
linearly. For this purpose, we XOR BC’s output to the least significant n bits of
the key state. To provide 2n-bit entropy from BC’s output, we set r = 2.4

We can prove security only with the above configuration, but in addition, we
assume that the (k−n)-bit and the remaining n-bit key states are independently
updated by any linear function π1 and π2. As shown by Naito et al. [26], a proof
over π1 and π2 provides a certain optimization of the memory size when a key
(and a tweak) schedule function of E is a state-wise linear update, which is
particularly useful for SKINNY. The intuition behind is that k bits of memory
for the key state is updated by a key schedule function inside E, thus starting the
next E with the state after the key schedule function is more efficient. Indeed, if
the next E takes as input the key state before the key schedule function, the k
bits of memory must be reproduced by computing the inverse of the key schedule
function. We will discuss this optimization later in Sect. 7. Note that π1 and π2

4 For an EXEX-based hash function with r = 1 (single BC call), one can easily found
a collision with O(2n/2) complexity: Choosing distinct 2n/2 single-block messages, a
collision of the BC outputs occurs with non-negligible probability, yielding a collision
on the internal state. Note that when the linear layers of GLMCFE are arbitrary,
attacking GLMCFE with r = 1 is non-trivial and an open problem.
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can also be the identity map, hence if E does not have such a structure, we use
the identity map to avoid having extra computations.

EXEXE uses a BC E : {0, 1}k ×{0, 1}n → {0, 1}n with k > n. Let m = k−n.
The formal definition of EXEXE : {0, 1}2n × {0, 1}m → {0, 1}2n is given below,
which is also depicted in Fig. 6.

– EXEXE(Si−1,Mi):
1. Y ← E(Mi‖[Si−1]n, [Si−1]n); K ← π1(Mi)‖(π2([Si−1]n) ⊕ Y );
2. [Si]n ← E(K,Y ); [Si]n ← π2([K]n) ⊕ [Si]n; return Si

We next define a EXEX-NI : {0, 1}∗ → {0, 1}2n. Let pad : {0, 1}∗ → ({0, 1}m)∗

be an injective padding function, e.g., one-zero padding pad(M) = M‖10w where
w = m− 1− |M | mod m. We realize Fin in GLMHF by reusing EXEX to save the
memory size. The nested-iterated construction enables us to achieve it. Let i be
an n-bit representation of a positive integer i, e.g., 1 = 0n−11. The definition is
given below, which is also depicted in Fig. 7.

– EXEX-NIE(M):
1. S0 ← 02n; M1,M2, · · · ,M�

m←− pad(M)
2. for i = 1, . . . , � do Si ← EXEXE(Si−1,Mi) // Inner Function
3. H ← EXEXE([S�]n‖1, 0m−n‖[S�]n) // Outer Function
4. return H

4.2 Indifferentiability of EXEX-NI

We give an upper-bound of the indifferentiability of EXEX-NI below.

Theorem 1. Let μ be any positive integer. There exists a simulator S such that
for any adversary A running in time t and making q hash queries with σ BC
calls in total and p encryption or decryption queries,

Advindiff
EXEX-NI,S(A) ≤ 2n+2 ·

(
3Q

μ

)
·
(

1
2n − 3Q

)μ

+
6μQ + 19Q

2n − 3Q
+

22Q2

(2n − 3Q)2
,

where Q = σ + p. S runs in time t + O(p) and makes at most p queries.

We next study the upper-bound.

– Putting μ = n and using Stirling’s approximation (x! ≥ (x/e)x for any x), we

have Advindiff
EXEX-NI,S(A) ≤ 4 ·

(
3eQ

n(2n−2Q)

)n

+ 6nQ+19Q
2n−3Q + 22Q2

(2n−3Q)2 . The upper-
bound ensures that EXEX-NI is indifferentiable from a random oracle up to
O(2n/n) query complexity.

– Consider a BC with n = 128. In this case, putting μ = 17 and using Stir-

ling’s approximation, Advindiff
EXEX-NI,S(A) ≤

(
97Q

2128−3Q

)17

+ 121Q
2128−3Q + 22Q2

(2128−3Q)2 .

The upper-bound is less than 1/2 as long as Q ≤ 2118. Thus, EXEX-NI is
indifferentiable from a random oracle up to 2118 query complexity.
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4.3 Overview of the Proof of Theorem 1

We briefly describe the proof of Theorem 1 along with some definitions. We
give the full proof in Sect. 5. The goal of this proof is to construct a simulator
S = (SE ,SD) such that the real-world oracles are indistinguishable from the
ideal-world oracles up to O(2n/n) query complexity. The real-world oracles are
(L,RE , RD) = (EXEX-NIE , E,D), and the ideal-world oracles are (L,RE , RD) =
(RO,SRO

E ,SRO
D ).

Firstly, we give several definitions to explain an outline of our simulator.

Definition 1 (query-response of RE/RD). An encryption (resp. decryption)
query is denoted by (K,X) ∈ {0, 1}k × {0, 1}n (resp. (K,Y ) ∈ {0, 1}k × {0, 1}n)
and the response is denoted by Y ∈ {0, 1}n (resp. X ∈ {0, 1}n). Hence, Y =
RE(K,X) and X = RD(K,Y ). Let Lqr be a set of tuples (K,X, Y ) of RE or
RD. A tuple in Lqr is called R block.

Definition 2 (block). A CF block is a tuple (Si−1,Mi, Si) which is defined by
two R blocks with the relation Si = EXEXRE (Si−1,Mi). The CF block is denoted
by Si−1

Mi−−→ Si (see Fig. 6). Lblock is a set of all CF blocks obtained from Lqr.

Definition 3 (Path). A path is a CF block or a concatenation of CF
blocks which start from the initial value 02n. For a sequence of CF blocks
02n M1−−→ S1, S1

M2−−→ S2, . . . , S�−1
M�−−→ S�, we denote the concatenation

by 02n M1‖M2‖···‖M�−−−−−−−−−→ S�. Hence, the path represents the inner function of
EXEX-NIRE (M1‖M2‖ · · · ‖M�) (see Fig. 7). Lpath is a set of all paths obtained
from Lblock.

Definition 4. For a path 02n M−→ S and an input (K,X) to RE, if (K,X) is
the first R block at the next CF block, i.e., S = [K]n‖X, then the relation is
denoted by S

in� (K,X). If (K,X) is the input of the first R block at the outer
function connected with the path 02n M−→ S, i.e., [K]2n = [S]n‖[S]n, X = 1,
and [K]m−n = 0m−n, then the relation is denoted by S

out� (K,X). We abuse

the notation for a CF block S′ M ′
−−→ H, i.e., if [S′]n = 1, S = [S′]n‖[M ′]n, and

[M ′]m−n = 0m−n then the relation is denoted by S
out� (S′,M ′).

We next specify a relation between L and RE in the real world. In the
real world, for each query M , the response L(M) is defined as L(M) =
EXEX-NIRE (M) where RE = E, thus the following relation is satisfied.

∀
(
02n M−→ S

)
∈ Lpath,

(
S′ M ′

−−→ H
)

∈ Lblock

s.t. S
out� (S′,M ′) :L(M) = H. (1)

On the other hand, in the ideal world, L = RO is a monolithic function. We
thus need to construct a simulator SRO = (SRO

E ,SRO
D ) so that Eq. (1) is satisfied

and the simulator behaves like an ideal cipher.
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Fig. 8. Collision event E1. The R block (a) (resp. (b)) is defined by SE (resp. SE or
SD). The R block (b) by SE is defined before the R block (a).

We explain an outline of our simulator. For each query to SE/SD, to behave
like an ideal cipher, the response is defined by lazy sampling.5 In addition, in
order to ensure the relation in Eq. (1), the simulator keeps paths in a table Tpath

that are constructed from R blocks. Specifically, for each tuple (K,X, Y ) defined

by SE , if there exists a path
(
02n M ′

−−→ S′
)

∈ Tpath such that S′ in� (K,X), then

a new path
(
02n M−→ S

)
is added to Tpath, which is defined by appending the

CF block
(
S′ M∗

−−→ S
)

having the R block (K,X, Y ) to
(
02n M ′

−−→ S′
)
, where

M = M ′‖M∗. Since the new path represents an inner function with the input
M , SE defines a CF block corresponding to the outer function by using RO(M).
That ensures the relation in Eq. (1) as long as the following events do not occur.

E1: For a path
(
02n M−→ S

)
∈ Lpath, there exists an i-th CF block defined by SE

such that the (i+1)-th CF block is defined by SD or defined by SE before the
i-th CF block. The collision event is depicted in Fig. 8. In this event, if the
CF blocks from the (i + 2)-th to the last (in the outer function) are already
defined, then SE cannot obtain the message M when defining the last CF
block. Thus, Eq. (1) cannot be satisfied.

E2: When the path
(
02n M−→ S

)
∈ Lpath is defined, the last CF block (in the

outer function) is already defined. In this event, SE cannot obtain the message
M when defining the last CF block. Thus, Eq. (1) cannot be satisfied.

E3: There exist collision paths
(
02n M−→ S

)
,
(
02n M†

−−→ S†
)

∈ Lpath such that

S = S†. In this case, RO(M) �= RO(M†) is satisfied with a high probability
(on the other hand, EXEX-NIE(M) = EXEX-NIE(M†) is satisfied in the real
world). In this event, Eq. (1) cannot be satisfied.

Assume that the above events do not occur. By ¬E1, for any path
(
02n M−→

S
)
, the internal CF blocks are defined in order from the first to the last. Since

5 For a query (K, X) (resp. (K, Y )) to SE (resp. SD), the response Y (resp. X) is chosen
uniformly at random from {0, 1}n excluding previous ciphertext (resp. plaintext)
blocks associated with the key K.
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no collision path exists by ¬E3, S can obtain the message M leading to S. By
¬E2, the path is defined before the R block in the outer function, thus the
simulator can define the R block by using RO(M) so that Eq. (1) is satisfied.
Thus, we have the indifferentiable bound by summing the upper-bounds of the
probabilities for these events.

First, we analyze the event E1 by using Fig. 8. If the R block (b) defined
by SD before (a), then using the multi-collision technique for Wi, the number
of the R block (b) resulting in the Wi value can be n, that is, the number of
candidates for Xi+1 is at most n. Thus, for each R block (a), the probability
that E1 occurs is at most O(n/2n). Similarly, if the R block (b) is defined by SD

after (a), then using the multi-collision technique for Wi+1, for each R block (b),
the probability that E1 occurs is at most O(n/2n). If the R block (b) is defined
by SE before (a), then by the randomnesses of Yi and Zi, the probability that
the R block (a) connects with one of candidates for the R block (b) is O(Q/22n).
Using the upper-bounds, we have Pr[E1] ≤ O(nQ/2n).

Second, we analyze E2. For each path
(
02n M−→ S

)
∈ Lpath, since S is a 2n-bit

(almost) random value by two R blocks, the probability that S hits some R block
(in the outer function) is at most O(Q/22n). Hence, we have Pr[E2] ≤ O(Q2/22n).

Third, we analyze E3. For a path
(
02n M−→ S

)
, since S is a 2n-bit (almost)

random value by two R blocks, the probability that there exists a collision path(
02n M†

−−→ S†
)

with S = S† is at most O(Q/22n). Hence, we have Pr[E3] ≤
O(Q2/22n).

Finally, by these upper-bounds, we have the indifferentiable bound
O(nQ/2n).

5 Proof of Theorem 1

In this proof, for the sake of simplicity, the padding function pad in EXEX-NI is
omitted. Hence, an adversary A makes hash queries whose lengths are multiples
of m. Since A can select any padding rule, this setting does not reduce the
advantage of A.

This proof considers three games. Game 0 is the real world, Game 1 is defined
later, and Game 2 is the ideal world. In each game, an adversary A interacts
with three oracles (L,RE , RD). L is a hash oracle, RE is an encryption oracle,
and RD is a decryption oracle.

In the following analysis, we use Definitions 1, 2, 3, and 4 in Subsect. 4.3.

5.1 Simulator

We define a simulator SRO = (SRO
E ,SRO

D ), where SRO
E : {0, 1}k × {0, 1}n →

{0, 1}n simulates an encryption oracle E, and SRO
D : {0, 1}k × {0, 1}n → {0, 1}n

simulates a decryption oracle D. In the real world, for a hash query, the response
is defined by using E via the EXEX-NI structure, thus the relation in Eq. (1) is
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Algorithm 1. Simulator SRO = (SRO
E ,SRO

D )
Simulator SRO

E (K, X)

1: if E(K, X) �= λ then return E(K, X)

2: Y
$←− {0, 1}n\E(K, ∗); E(K, X) ← Y ; D(K, Y ) ← X

3: X2 ← Y ; K2 ← π1([K]m)‖(π2([K]n) ⊕ Y )
4: if E(K2, X2) = λ then

5: Y2
$←− {0, 1}n\E(K2, ∗); E(K2, X2) ← Y2; D(K2, Y2) ← X2

6: end if
7: Y2 ← E(K2, X2); Y0 ← X; K0 ← π−1

1 ([K]m)‖π−1
2 ([K]n ⊕ X)

8: if D(K0, Y0) = λ then

9: X0
$←− {0, 1}n\D(K0, ∗); E(K0, X0) ← Y0; D(K0, Y0) ← X0

10: end if

11: if ∃
(
02n M′

−−→ S′
)

∈ Tpath s.t. S′ in� (K, X) then

12: M ← M ′‖[K]m; S ←
(
π2([K2]n) ⊕ Y2

)
‖Y2; Tpath

∪←−
(
02n M−→ S

)

13: H ← RO(M); K′
1 ← 0m−n‖[S]n‖[S]n; X ′

1 ← 1
14: Y ′

2 ← [H]n; K′
2 ← π1([K

′
1]

m)‖π−1
2 ([H]n ⊕ [H]n); X ′

2 ← [K′
2]n ⊕ π2([K

′
1]n)

15: Y ′
1 ← X ′

2; if Y ′
1 ∈ E(K′

1, ∗) then abort
16: E(K′

1, X
′
1) ← Y ′

1 ; D(K′
1, Y

′
1 ) ← X ′

1; if Y ′
2 ∈ E(K′

2, ∗) then abort
17: E(K′

2, X
′
2) ← Y ′

2 ; D(K′
2, Y

′
2 ) ← X ′

2

18: end if
19: return E(K, X)

Simulator SRO
D (K, Y )

1: if D(K, Y ) �= λ then return D(K, Y )

2: X
$←− {0, 1}n\D(K, ∗); E(K, X) ← Y ; D(K, Y ) ← X

3: return D(K, Y )

satisfied. On the other hand, in the ideal world, for a hash query, the hash value
is defined by a monolithic random function RO. Hence, the goal of a simulator
is to simulate an ideal cipher so that the query-responses of RO and of S satisfy
the relation in Eq. (1).

S is defined in Algorithm 1. S keeps R blocks in lists E and D whose entries are
initially empty strings. If an R block (K,X, Y ) is defined where SE(K,X) = Y
or SD(K,Y ) = X, then Y is stored in E(K,X) and X is stored in D(K,Y ). S
also keeps paths in Tpath, which initially keeps only a path 02n λ−→ 02n. For K ∈
{0, 1}k, let E(K, ∗) = {E(K,X)|X ∈ {0, 1}n ∧ E(K,X) �= λ} a set of all entries
associated with K in E and D(K, ∗) = {D(K,Y )|Y ∈ {0, 1}n ∧ D(K,Y ) �= λ}
a set of all entries associated with K in D. For a query (K,X) to SE , two
ciphertext blocks Y, Y2 and a plaintext block X0 are defined, where the three
tuples (K0,X0, Y0), (K,X, Y ), (K2,X2, Y2) offer two CF blocks: the first (resp.
second) CF block consists of (K0,X0, Y0) and (K,X, Y ) (resp. (K,X, Y ) and

(K2,X2, Y2)). See Fig. 9. If there exists a path
(
02n M ′

−−→ S′
)

∈ Tpath such that

S′ in� (K,X), then a new path
(
02n M−→ S

)
is defined by appending the CF
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Fig. 9. Structures of R blocks defined by SE . The R block (1) is defined by a forward
operation, then the R block (2) is defined by a forward operation and the R block (3)
is defined by an inverse operation.

block with (K,X, Y ) and (K2,X2, Y2) to the path, and is added to Tpath. To
ensure the relation in Eq. (1), R blocks (K ′

1,X
′
1, Y

′
1) and (K ′

2,X
′
2, Y

′
2) in the

outer function that are connected with the path are defined by using RO(M).
Since Y ′

1 and Y ′
2 are defined by RO, there is a case that E(K ′

1,X
′
1) or E(K ′

2,X
′
2)

is already defined, which does not occur in the real world. If this case occurs,
then S aborts.

For each encryption query, SE makes a query to RO at most once. Hence,
the number of queries to RO is at most p. Regarding the running time, for each
query, the number of steps of S is a constant. Hence, the running time is t+O(p).

In SE , we call the operations to define Y, Y2, Y
′
1 , and Y ′

2 “forward operations”,
and the operation to define X0 “inverse operation”. In SD, we call the operation
to define X “inverse operation”.

5.2 Main Part of the Proof

Structure of the Proof. As mentioned above, this proof consists of three
games, Game 0, Game 1, and Game 2. Let Gi be oracles in Game i. These oracles
are defined as follows: Game 0: G0 := (L,RE , RD) = (EXEX-NIE , E,D); Game 1:
G1 := (L,RE , RD) = (EXEX-NISE ,SRO

E ,SRO
D ); Game 2: G2 := (L,RE , RD) =

(RO,SRO
E ,SRO

D ). Game 1 is a middle game between the real world (Game 0)
and the ideal world (Game 2): for each hash query, the response is defined by
using SE via the structure of EXEX-NI. In the following proof, in Game 2, after
finishing all queries by A, the procedure of EXEX-NIS

RO
E (M) is performed for

all hash queries M . Note that the additional procedure does not reduce the
advantage of A.

Bad Events and Definitions. We next define bad events in Game 1 and
Game 2. Let QF (resp. QI) be a list of R blocks defined by forward (resp.
inverse) operations in S. Let qF = |QF | and qI = |QI |. We assume that after an
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R block (K,X, Y ) is stored in QF (resp. QI), the R block is not stored in QI

(resp. QF ). Note that Lblock = QF ∪ QI is satisfied.

– mcollF: ∃(K1,X1, Y1), . . . , (Kμ,Xμ, Yμ) ∈ QF s.t. π2([K1]n) ⊕ Y1 = · · · =
π2([Kμ]n) ⊕ Yμ.

– mcollI: ∃(K1,X1, Y1), . . . , (Kμ,Xμ, Yμ) ∈ QI s.t. [K1]n ⊕ X1 = · · · = [Kμ]n ⊕
Xμ.

– hitFI: ∃(K,X, Y ) ∈ QF , (K ′,X ′, Y ′) ∈ QI s.t. π2([K]n)⊕Y = [K ′]n ∧ Y = X ′.
– hitIV: (∃(K,X, Y ) ∈ QF s.t. Y = 0n ∨ Y = 1) ∨ (∃(K,X, Y ) ∈ QI s.t.

X = 0n ∨ X = 1).
– hitXY: ∃(K,X, Y ) ∈ QF ∪ QI s.t. X = Y .

– coll: ∃
(
02n M−→ S

)
,
(
02n M ′

−−→ S′
)

∈ Lpath s.t. M �= M ′ ∧ S = S′.

– hitPath: ∃
(
02n M−→ S

)
∈ Lpath, (K,X, Y ) ∈ QF s.t. S = [K]n‖X or [S]n‖[S]n =

[K]2n, and the path is defined after the R block.
– Ecoll: S aborts.

For an event e, the event in Game 1 (resp. Game 2) is denoted by e1 (resp. e2).
Let bad1 := mcoll1F ∨ mcoll1I ∨ hit1FI ∨ hit1IV ∨ hit1XY ∨ coll1 ∨ hit1Path. Let bad2 :=
mcoll2F ∨ mcoll2I ∨ hit2FI ∨ hit2IV ∨ hit2XY ∨ coll2 ∨ hit2Path ∨ Ecoll2.

Remark 1. For the overview in Sec. 4.3, hitFI and hitPath (first condition) cor-
respond to E1, hitPath (second condition) corresponds to E2, t coll corresponds
to E3, and mcollF and mcollI correspond to the multi-collision technique used
in the analysis of E1. Note that hitIV, hitXY, and Ecoll are not discussed in the
overview. The following analyses show that these probabilities are negligible as
long as other events do not occur.

Upper-Bounding the Advantage Function. To upper-bound the advantage,
we use the following lemmas.

Lemma 3. Let
(
02n M−→ S

)
∈ Lpath be a path with � CF blocks (i.e., 2� R

blocks). In both Game 1 and Game 2, for any i ∈ [2�], the i-th R block is
defined by forward operations and is defined after the (i − 1)-th R block as long
as (hitFI ∨ hitIV ∨ hitXY ∨ hitPath) does not occur.

Lemma 4. For V ∈ {0, 1}2n and
(
02n M−→ S

)
∈ Lpath such that V is given

before the path is defined, we have Pr[S = V ] ≤ 1/(2n − 3Q)2 as long as (hitFI ∨
hitIV ∨ hitXY ∨ hitPath) does not occur.

Lemma 5. Pr[AG0 = 1] = Pr[AG1 = 1 | ¬Ecoll1].

Lemma 6. Pr[AG1 = 1 | ¬bad1 ∧ ¬Ecoll1] = Pr[AG2 = 1 | ¬bad2].



Double-Block-Length Hash Function for Minimum Memory Size 395

Lemma 3 is used in the proofs of Lemmas 4 and 6 and in the analyses of the
bad events. Lemma 4 is used in the analyses of the bad events. Using Lemmas 5
and 6, we have the following in equation6

Advindiff
H,S (A) ≤ Pr[bad1 | ¬Ecoll1] + Pr[bad2],

where

Pr[bad1 | ¬Ecoll1] ≤ Pr[mcoll1F | ¬Ecoll1] + Pr[mcoll1I | ¬Ecoll1]
+ Pr[hit1FI | ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll1]
+ Pr[hit1IV | ¬Ecoll1] + Pr[hit1XY | ¬Ecoll1]
+ Pr[coll1 | ¬hit1IV ∧ ¬hit1FI ∧ ¬hit1XY ∧ ¬hit1Path ∧ ¬Ecoll1]
+ Pr[hit1Path | ¬hit1IV ∧ ¬hit1FI ∧ ¬hit1XY ∧ ¬Ecoll1],

and

Pr[bad2] ≤ Pr[mcoll2F] + Pr[mcoll2I ] + Pr[hit2FI | ¬mcoll2F ∧ ¬mcoll2I ]

+ Pr[hit2IV] + Pr[hit2XY] + Pr[coll2 | ¬hit2IV ∧ ¬hit2FI ∧ ¬hit2XY ∧ ¬hit2Path]

+ Pr[hit2Path | ¬hit2IV ∧ ¬hit2FI ∧ ¬hit2XY] + Pr[Ecoll2 | ¬hit2Path].

These upper-bounds are given in the following, which gives

Advindiff
H,S (A) ≤ 2n+2 ·

(
3Q

μ

)
·
(

1
2n − 3Q

)μ

+
6μQ + 19Q

2n − 3Q
+

22Q2

(2n − 3Q)2
.

Upper-Bounding Pr[mcoll1F | ¬Ecoll1]. For each (K,X, Y ) ∈ QF , since Y is
chosen uniformly at random from at least 2n − 3Q elements in {0, 1}n, for some
V ∈ {0, 1}n, we have Pr[π2([K]n) ⊕ Y = V ] ≤ 1/(2n − 3Q). Hence, we have

Pr[mcoll1F | ¬Ecoll1] ≤ 2n ·
(
qF

μ

)
·
(

1
2n−3Q

)μ

.

6 The inequation is obtained by

Advindiff
H,S (A) = Pr[AG0 = 1] − Pr[AG2 = 1] = Pr[AG1 = 1 | ¬Ecoll1] − Pr[AG2 = 1]

≤
(

Pr[AG1 = 1 ∧ bad1 | ¬Ecoll1] + Pr[AG1 = 1 ∧ ¬bad1 | ¬Ecoll1]
)

−
(

Pr[AG2 = 1 ∧ bad2] + Pr[AG2 = 1 ∧ ¬bad2]
)

=
(

Pr[AG1 = 1 | bad1 ∧ ¬Ecoll1] · Pr[bad1 | ¬Ecoll1]

+ Pr[AG1 = 1 | ¬bad1 ∧ ¬Ecoll1]︸ ︷︷ ︸
=Pr[AG2=1|¬bad2]

· Pr[¬bad1 | ¬Ecoll1]︸ ︷︷ ︸
=1−Pr[bad1|¬Ecoll1]

)

−
(

Pr[AG2 = 1 | bad2] · Pr[bad2] + Pr[AG2 = 1 | ¬bad2] · Pr[¬bad2]
)

=
(

Pr[AG1 = 1 | bad1 ∧ ¬Ecoll1] − Pr[AG2 = 1 | ¬bad2]
)

· Pr[bad1 | ¬Ecoll1]

+
(

Pr[AG2 = 1 | ¬bad2] − Pr[AG2 = 1 | bad2]
)

· Pr[bad2]

≤ Pr[bad1 | ¬Ecoll1] + Pr[bad2].

.
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Upper-Bounding Pr[mcoll2F]. By the same analysis as Pr[mcoll1F | ¬Ecoll1], we

have Pr[mcoll2F] ≤ 2n ·
(
qF

μ

)
·
(

1
2n−3Q

)μ

.

Upper-Bounding Pr[mcoll1I | ¬Ecoll1]. For each (K,X, Y ) ∈ QI , since X is
chosen uniformly at random from at least 2n − 3Q elements in {0, 1}n, for some
V ∈ {0, 1}n, we have Pr[[K]n⊕X = V ] ≤ 1/(2n−3Q). Hence, we have Pr[mcoll1I |
¬Ecoll1] ≤ 2n ·

(
qI

μ

)
·
(

1
2n−3Q

)μ

.

Upper-Bounding Pr[mcoll2I ]. By the same analysis as Pr[mcoll1I | ¬Ecoll1], we

have Pr[mcoll2I ] ≤ 2n ·
(
qI

μ

)
·
(

1
2n−3Q

)μ

.

Upper-Bounding Pr[hit1FI | ¬mcoll1F∧¬mcoll1I ∧¬Ecoll1]. For R blocks (K,X, Y )
and (K ′,X ′, Y ′), if (K ′,X ′, Y ′) is defined after (K,X, Y ), then the relation is
denoted by (K,X, Y ) � (K ′,X ′, Y ′). We consider the following two cases.

– hit1←−
FI

: ∃(K,X, Y ) ∈ QF , (K ′,X ′, Y ′) ∈ QI s.t. (K,X, Y ) � (K ′,X ′, Y ′) ∧
π2([K]n) ⊕ Y = [K ′]n ∧ Y = X ′.

– hit1−→
FI

: ∃(K,X, Y ) ∈ QF , (K ′,X ′, Y ′) ∈ QI s.t. (K ′,X ′, Y ′) � (K,X, Y ) ∧
π2([K]n) ⊕ Y = [K ′]n ∧ Y = X ′.

We analyze hit1←−
FI

. For an input (K ′, Y ′) in QI , by ¬mcoll1F, the number of
tuples (K,X, Y ) ∈ QF such that π2([K]n) ⊕ Y = [K ′]n is satisfied is at most
μ − 1, thus the probability that X ′ equals one of the (μ − 1) ciphertext blocks
is at most (μ − 1)/(2n − 3Q). Summing the probability for each element in QI ,
we have Pr[hit1←−

FI
| ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll1] ≤ (μ − 1)qI/(2n − 3Q).

For hit1−→
FI

, the analysis is the same as that of hit1←−
FI

. Using the condition ¬mcoll1I ,
we have Pr[hit1−→

FI
| ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll1] ≤ (μ − 1)qF /(2n − 3Q).

By qF + qI ≤ 3Q, we have Pr[hit1FI | ¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll1] ≤ 3(μ−1)Q
2n−3Q .

Upper-Bounding Pr[hit2FI | ¬mcoll2F ∧ ¬mcoll2I ]. As the analysis of Pr[hit1FI |
¬mcoll1F ∧ ¬mcoll1I ∧ ¬Ecoll1], using the conditions ¬mcoll2F and ¬mcoll2I , we have
Pr[hit2FI | ¬mcoll2F ∧ ¬mcoll2I ] ≤ 3(μ−1)Q

2n−3Q .

Upper-Bounding Pr[hit1IV | ¬Ecoll1] For each (K,X, Y ) ∈ QF (resp.
(K,X, Y ) ∈ QI), Y (resp. X ) is chosen uniformly at random from at least
2n − 3Q elements in {0, 1}n. Thus, we have Pr[hit1IV | ¬Ecoll1] ≤ 6Q

2n−3Q .

Upper-Bounding Pr[hit2IV]. The analysis is the same as that of Pr[hit1IV |
¬Ecoll1]. We have Pr[hit2IV] ≤ 6Q

2n−3Q .

Upper-Bounding Pr[hit1XY | ¬Ecoll1]. For each (K,X, Y ) ∈ QF (resp.
(K,X, Y ) ∈ QI), Y (resp. X) is chosen uniformly at random from at least
2n − 3Q elements in {0, 1}n. Thus, we have Pr[hit1XY | ¬Ecoll1] ≤ 3Q

2n−3Q .

Upper-Bounding Pr[hit2XY]. The analysis is the same as that of Pr[hit1IV |
¬Ecoll1]. We have Pr[hit2XY] ≤ 3Q

2n−3Q .
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Upper-Bounding Pr[coll1 | ¬hit1IV ∧¬hit1FI ∧¬hit1XY ∧¬hit1Path ∧¬Ecoll1]. Assume
that (hit1IV∨hit1FI∨hit1XY∨hit1Path∨Ecoll1) is not satisfied. Fix a path

(
02n M−→ S

)
∈

Lpath, and assume that coll1 has not occurred before the path. Then, for each path(
02n M ′

−−→ S′
)

∈ Lpath that was defined before
(
02n M−→ S

)
, we have Pr[S = S′] ≤

1/(2n −3Q)2 by Lemma 4. Summing the probability for each pair of paths where
|Lpath| ≤ 2Q, we have Pr[coll1 | ¬hit1IV ∧ ¬hit1FI ∧ ¬hit1XY ∧ ¬hit1Path ∧ ¬Ecoll1] ≤
(
2Q
2

)
· 1
(2n−3Q)2 ≤ 2Q2

(2n−3Q)2 .

Upper-Bounding Pr[coll2 | ¬hit2IV ∧ ¬hit2FI ∧ ¬hit2XY ∧ ¬hit2Path]. The analysis is
the same as that of Pr[coll1 | ¬hit1IV ∧ ¬hit1FI ∧ ¬hit1XY ∧ ¬hit1Path ∧ ¬Ecoll1]. By
Lemma 4, we have Pr[coll2 | ¬hit2IV ∧ ¬hit2FI ∧ ¬hit2XY ∧ ¬hit2Path] ≤ 2Q2

(2n−3Q)2 .

Upper-Bounding Pr[hit1Path | ¬hit1IV ∧ ¬hit1FI ∧ ¬hit1XY ∧ ¬Ecoll1]. Fix
(
02n M−→

S
)

∈ Lpath and (K,X, Y ) ∈ QF such that hit1Path has not occurred and the R

block was defined before the path is defined. By Lemma 4, we have Pr[S =
[K]n‖X] ≤ 1/(2n − 3Q)2 and Pr[[S]n‖[S]n = [K]2n] ≤ 1/(2n − 3Q)2. Summing
the probabilities for each path and R block, we have Pr[hit1Path | ¬hit1IV ∧ ¬hit1FI ∧
¬hit1XY ∧ ¬Ecoll1] ≤ 2Q · 2Q · 2

(2n−3Q)2 ≤ 8Q2

(2n−3Q)2 .

Upper-Bounding Pr[hit2Path | ¬hit2IV ∧¬hit2FI ∧¬hit2XY]. The analysis is the same
as that of Pr[hit1Path | ¬hit1IV ∧¬hit1FI ∧¬hit1XY ∧¬Ecoll1]. Thus we have Pr[hit2Path |
¬hit2IV ∧ ¬hit2FI ∧ ¬hit2XY] ≤ 8Q2

(2n−3Q)2 .

Upper-Bounding Pr[Ecoll2 | ¬hit2Path]. For each process of SRO
E (K,X), if there

exists a path
(
02n M ′

−−→ S′
)

∈ Tpath s.t. S′ in� (K,X), then by ¬hit2Path, E[K ′
1, ∗] =

λ and E[K ′
2, ∗] = λ are satisfied. On the other hand, there is a case that K ′

1 = K ′
2

and X ′
1 �= X ′

2 are satisfied, but Y ′
1 = Y ′

2 is satisfied. For each path, the collision
probability is 1/2n, since Y ′

1 and Y ′
2 are defined by RO. We thus have Pr[Ecoll2 |

hit2Path] ≤ Q
2n .

5.3 Proof of Lemma 3

Consider Game j where j ∈ [2]. Assume that (hitjFI ∨ hitjIV ∨ hitjXY ∨ hitjPath) does

not occur. Consider a path
(
02n M−→ S

)
∈ Lpath with � CF block (2� R blocks).

By the definition of SE , after an R block is defined by a forward operation, the
next R block is immediately defined by a forward operation, and the former R
block is defined by an inverse operation. All R blocks in the path are defined by
forward operations by ¬hitjFI and ¬hitjIV, and for each i ∈ [2� − 1], the (i + 1)-th
R block in the path is defined after the i-th R block by ¬hitjXY and ¬hitjPath.

5.4 Proof of Lemma 4

Consider Game j where j ∈ [2]. Assume that (hitjFI ∨ hitjIV ∨ hitjXY ∨ hitjPath)

does not occur. Fix a value V ∈ {0, 1}2n. For a path
(
02n M−→ S

)
∈ Lpath, by
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Lemma 3, the last CF block in the path consists of two R blocks defined by
forward operations and the outputs are differently sampled. Since the outputs
are chosen uniformly at random from at least 2n − 3Q elements in {0, 1}n, we
have Pr[S = V ] ≤ 1/(2n − 3Q)2.

5.5 Proof of Lemma 5

Since outputs of RO are chosen uniformly at random from {0, 1}2n, a collision
occurs in entries with the same key. In other words, S behaves as an ideal cipher
if and only if such collision does not occur, i.e., Ecoll1 = false. Thus, we have
Pr[AG0 = 1] = Pr[AG1 = 1 | ¬Ecoll1].

5.6 Proof of Lemma 6

We show that Pr[AG1 = 1 | ¬bad1∧¬Ecoll1] = Pr[AG2 = 1 | ¬bad2] (Game 1 and
Game 2 are indistinguishable). In this proof, we need to show that the structural
difference of L gives no advantage to A. The difference is: L = EXEX-NIRE

(Game 1) and L = RO (Game 2), thus with the following two points, the
equivalence is ensured.

1. In Game 1, for any hash query M , the response is equal to RO(M).
2. In Game 2, L and R are consistent as in Game 1 with respect to the structure

of EXEX-NI, that is, for any
(
02n M−→ S

)
∈ Lpath,

(
S′ M ′

−−→ H
)

∈ Lblock such

that S
out� (S′,M ′), H = L(M) is satisfied.

The following lemma ensures these two points. Hence, we have

Pr[AG1 = 1 | ¬bad1 ∧ ¬Ecoll1] = Pr[AG2 = 1 | ¬bad2].

Lemma 7. In Game j (= 1, 2), the following is satisfied as long as badj does

not occur: ∀
(
02n M−→ S

)
∈ Lpath,

(
S′ M ′

−−→ H
)

∈ Lblock s.t. S
out� (S′,M ′):

H = RO(M).

Proof (Lemma 7). In Game j (j = 1, 2), for a path
(
02n M−→ S

)
∈ Lpath and

a CF block
(
S′ M ′

−−→ H
)

∈ Lblock such that S
out� (S′,M ′), by ¬hitjPath, the CF

block
(
S′ M ′

−−→ H
)

is defined after the path
(
02n M−→ S

)
∈ Lpath is defined. By

Lemma 3, all R blocks in the path are defined by forward operations in order
from the first to the last. By ¬collj , there is no collision path leading to S. Thus,
by the definition of SE , H is defined as H = RO(M). ��

6 EXEX-I: Low Memory Collision Resistant DBL HF

In this section, we consider relaxing the security goal to the collision resistance
rather than the indifferentiability. We design EXEX-I in Sect. 6.1. An overview
of its collision resistance is given in Sect. 6.2.
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Fig. 10. Hash function EXEX-I.

6.1 Specification of EXEX-I

Like EXEX-NI, we design EXEX-I by iterating EXEX defined in Sect. 4.1, but
unlike EXEX-NI, we relax the security goal to be collision resistance. The change
of the security goal enables us to remove the outer function of EXEX-NI, which
was introduced to achieve indifferentiability. Removal of the outer function
relaxes the condition for the key length and improves the efficiency.

We define EXEX-I : {0, 1}∗ → {0, 1}2n. Let pad : {0, 1}∗ → ({0, 1}m)∗ be
an injective padding function, e.g., one-zero padding pad(M) = M‖10w where
w = m − 1 − |M | mod m. The construction of EXEX-I is depicted in Fig. 10.

– EXEX-IE(M):
1. S0 ← 02n; M1,M2, · · · ,M�

m←− pad(M)
2. for i = 1, . . . , � do Si ← EXEXE(Si−1,Mi)
3. return S�

6.2 Collision Resistance of EXEX-I

The following gives an upper-bound for the collision resistance of EXEX-I.

Theorem 2. Let μ be any positive integer. For any adversary A making Q
queries, we have

Advcoll
EXEX-I(A) ≤ 0.5Q2

(2n − 3Q)2
+

3μQ + 3Q

2n − 3Q
+ 2n ·

(
3Q

μ

)
·
(

1
2n − 3Q

)μ

.

EXEX-I is equal to the inner function of EXEX-NI. Since a collision of the
inner function breaks the indifferentiability of EXEX-NI, the proof of the collision
resistance of EXEX-I is equal to (some part of) the proof of the indifferentiability
of EXEX-NI. Using the proof, we can show that EXEX-I is collision resistant up to
the bound given in the theorem.

7 Hardware Performance Evaluation

We compare the hardware performances of EXEX-NI, EXEX-I, and Romulus-H
under the same design policy. We instantiate the candidates with
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SKINNY-128-384 used in the first literature on Romulus-H [13].7 All the instanti-
ations achieve the same data rate, i.e., processing a 256-bit message block with
two TBC calls. EXEX-NI and EXEX-I can choose SKINNY-128-256 for an even
smaller implementation, which we will discuss later in Sect. 7.4.

7.1 SKINNY-128-384 Implementation

The baseline design is Naito et al.’s conventional SKINNY-128-384 implementa-
tion [25] based on the common byte-serial architecture [3]. The state array is a
128-bit register arranged in a 2-dimensional array, which integrates the linear
operations, i.e., MixColumns and ShiftRows. It finishes the round function in 21
cycles, and the entire SKINNY-128-384 in 1,176 (=21 × 56) cycles. We use a scan
flip-flop, a special-purpose register with a built-in 2-way selector, for efficiently
implementing the 2-dimensional array [3,25].

The 384-bit tweakey comprises independently scheduled 128-bit chunks,
referred to as TK1, TK2, and TK3 hereafter. We assign TK1 for storing the state
mixed with TBC outputs and TK2||TK3 for storing 256-bit message blocks. By
following the baseline implementation, we again use the 2-dimensional arrays
for storing the tweakey, namely the TK1, TK2, and TK3 arrays. Those arrays
efficiently realize a serial byte scanning and the byte-wise permutation for the
tweakey schedule [25]8.

7.2 Hardware Implementation of EXEX-NI and EXEX-I

We decompose EXEX-NI into the four operations as shown in Fig. 11-(left): (C1)
a TBC call, (C2) transferring a TBC output to TK1, (C3) feeding a 256-bit new
message block to TK2||TK3, and (C4) organizing data for the nested processing.
The circuit in Fig. 11-(right) implements the four basic operations and can hash
a long message by dispatching the operations in an appropriate order. Starting
from the baseline SKINNY-128-384 implementation, we added some 8-bit selec-
tor, XOR, and AND gates for managing data transmission between the arrays
to support the (C2) and (C4) operations. The EXEX-I implementation is the
EXEX-NI implementation without the (C4) operation, and we can remove some
gates from the datapath in Fig. 11-(right).

π1 and π2 for Tweakey Schedule. We use the linear operations π1 and π2 (see
Fig. 7) to achieve better performance by eliminating the inverse tweakey sched-
ule. A lightweight TBC implementation commonly uses an on-the-fly tweakey
schedule to avoid storing the round keys. As a drawback, we lose the original
tweakey by updating it in place, which is a problem for a mode of operation that
uses the same tweakey in the following operations. The previous SKINNY-128-384
7 In the updates for the NIST LWC final round, the Romulus team decided to use

a reduced-round variant called SKINNY-128-384+. We discuss the impact of this
change in Sect. 7.4.

8 For efficiency, we remove a built-in arithmetic counter in the previous tweakey arrays
needed for an AEAD mode of operation [25].
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Fig. 11. (Left) Decomposition of EXEX-NI into basic operations and (Right) the dat-
apath architecture realizing those operations

implementation addressed this issue by integrating the inverse tweakey schedule
in the tweakey arrays at the cost of additional hardware resources [25].

A more sophisticated approach is integrating the tweakey schedule into a
mode of operation so that we can continue without recovering the original
tweakey [26]. EXEX-NI and EXEX-I support this optimization by assigning π1

as TK1’s schedule and assigning π2 as TK2’s and TK3’s schedule combined. As
a result, by skipping the inverse operation after an on-the-fly key schedule, the
(C2) operation implicitly executes π2 and π3 after a TBC call. This allows us to
remove the circuits for the inverse tweakey operations from the tweakey arrays.9

7.3 Hardware Implementation of Romulus-H

Our Romulus-H design is based on the same SKINNY-128-384 implementation
and has a similar architecture and components (the state and tweakey arrays).
Romulus-H needs additional 2 × 128 bits of memory, and we realize them using
a set of 128-bit shift registers, namely SR0 and SR1.

We decompose Romulus-H into several basic operations in Fig. 12-(left): (D1)
a TBC call, (D2) processing the first TBC output, (D3) processing the sec-
ond TBC output, and (D4) feeding a 256-bit new message block to TK2||TK3.
Figure 12-(left) also illustrates how we manage data between the memory ele-
ments: we use SR0 for storing the previous TBC input for feed-forward and use
SR1 for preserving a derivative of the first TBC call during the second one.

Figure 12-(right) shows the corresponding datapath. The major additions to
the baseline SKINNY-128-384 implementation are SR0 and SR1 implemented as
simple 8-bit width and 16-stage shift registers. We also added some 8-bit logic
gates for enabling data transmission between the memory elements.

9 The conventional TK1–TK3 arrays integrates circuits for inverse tweakey operations
(the inverse LFSRs and inverse byte permutation) [25]. We remove these circuits
along with selectors for switching between the datapaths. These circuits are intact
in our Romulus-H implementation because it requires the inverse operations.
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Fig. 12. (Left) Decomposition of Romulus-H into basic operations and (Right) the
datapath architecture realizing those operations

7.4 Performance Evaluation and Comparison

Implementation and Evaluation Procedure. We implement the designs
at the register-transfer level; we explicitly instantiate the standard cells only
for the scan flip-flops [22]. We synthesize the designs using Synopsys Design
Compiler with the NanGate 45-nm standard cell library [27]. Table 3 summarizes
the circuit areas of our EXEX-NI, EXEX-I, and Romulus-H implementations in
NAND gate equivalent (GE), along with its breakdown to major components
that we preserved during the synthesis.

Comparison. The EXEX-NI and EXEX-I implementations are smaller than that
of Romulus-H, as shown in Table 3. More specifically, the EXEX-NI implemen-
tation is smaller by 2,262 GE and is only 68% of the Romulus-H implemen-
tation. The main reason is the memory sizes: Romulus-H’s additional memory,
implemented as the shift registers SR0 and SR1, consumes roughly 1,500 GE, as
shown in Table 3.10 Another reason is the inverse tweakey schedule we discussed
in Sect. 7.2. Eliminating the inverse tweakey schedule makes each tweakey array
smaller by roughly 250 GE, resulting in the total reduction of 750 GE. The dif-
ference between the EXEX-NI and EXEX-I implementations is only 48 GE that
corresponds to several 8-bit width logic gates for the (C4) operation; EXEX-I’s
main advantage is speed. The S-box circuit, composed of eight XORs and NORs,
occupies roughly 30 GE which is negligible compared to the registers.

Missing Parallelism. The conventional schemes including Romulus-H can run
up to two TBCs in parallel, which is impossible with EXEX-NI and EXEX-I that
serializes the consecutive TBCs for smaller memory. Missing parallelism has
a negligible impact on lightweight implementations because parallel execution
needs double the hardware resources. On the other hand, in high-speed imple-
mentation with sufficiently many resources available, Romulus-H and other con-
ventional schemes can have higher efficiency (i.e., throughput/area) by pipelining
the consecutive TBCs.
10 The per-bit cost of SR0 and SR1 is smaller than those of the state/tweakey arrays

because SR0 and SR1 use a simple flip-flop instead of a scan flip-flop.
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Table 3. Circuit-area comparison of EXEX-NI, EXEX-I, and Romulus-H instantiated
with SKINNY-128-384 in gate-equivalent (GE)

Target Total State TK1 TK2 TK3 SR0 SR1

array array array array

EXEX-NI 4,755 1,078 1,007 1,019 1,019 – –

EXEX-I 4,707 1,077 1,007 1,019 1,019 – –

Romulus-H 7,017 1,078 1,231 1,270 1,271 743 743

Further optimization. We can implement EXEX-NI even smaller at the cost
of speed by choosing a TBC with a smaller tweakey. If we instantiate EXEX-NI
with SKINNY-128-256 instead of SKINNY-128-384, we can eliminate the TK3

array and save roughly 1,000 GE, and the total circuit will be approximately
3,700 GE. Meanwhile, this modification comes at the cost of speed: the data
rate is roughly halved because we can process only a 128-bit message block with
a pair of TBC calls.

EXEX-NI and EXEX-I enjoy the conventional Romulus-H optimizations pro-
posed by the Romulus team [13,14]. The first optimization is to reduce the round
number considering SKINNY’s large security margin [13], i.e., SKINNY-128-384+.
It will speed up each TBC call but its impact to area should be limited. Another
optimization is to virtually reduce the tweakey size by using message blocks
stuffed with zeros. For example, if we limit the message size to 128 bits in
our tweakey configuration, the input to TK3 becomes always zero, and we can
replace the TK3 array with a constant-value generator, which makes the circuit
area similar to those instantiated with SKINNY-128-256.

8 Conclusion

In this paper, we proposed two DBL hash modes achieving minimum memory
size. When an underlying BC supports an n-bit block and a k-bit key, our modes
only require n + k-bit memory, which improves the previous smallest results of
2n + k-bit memory. EXEX-NI mode is indifferentiable up to n − log n bits. Its
instantiation with SKINNY-128 can be an efficient alternative to Romulus-H;
our mode satisfies all the requirements in NIST LWC and provides hashing to
Romulus with zero memory overhead, which significantly reduces the memory
size of 3n + k bits for Romulus-H. EXEX-I mode focuses on the fact that indif-
feretiability may be unnecessary to be integrated with AEAD schemes, and we
rigorously optimized its efficiency by focusing on the collision resistance.

There are several possible research directions, which includes relaxing the
key size limitation k ≥ 2n of EXEX-NI, finding an attack rigorously matching
the bound, a new mode without security loss of log n bits, integrated imple-
mentations of AEAD and hashing schemes. Application of our modes to the
BC-based NIST finalist GIFT-COFB [2] is also interesting because it does not
support hashing. Its underlying cipher GIFT128 supports n = 128 and k = 128,
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thus the block size fits perfectly, while the key size does not. Modifying GIFT128
to support a 256-bit key or 128-bit tweak is an interesting challenge.
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Abstract. In this paper, we propose a new block cipher-based authen-
ticated encryption scheme, dubbed the Synthetic Counter with Mask-
ing (SCM) mode. SCM follows the NSIV paradigm proposed by Peyrin
and Seurin (CRYPTO 2016), where a keyed hash function accepts a
nonce N with associated data and a message, yielding an authentication
tag T , and then the message is encrypted by a counter-like mode using
both T and N . Here we move one step further by encrypting nonces; in
the encryption part, the inputs to the block cipher are determined by T ,
counters, and an encrypted nonce, and all its outputs are also masked
by an (additional) encrypted nonce, yielding keystream blocks.

As a result, we obtain, for the first time, a block cipher-based authen-
ticated encryption scheme of rate 1/2 that provides n-bit security with
respect to the query complexity (ignoring the influence of message
length) in the nonce-respecting setting, and at the same time guaran-
tees graceful security degradation in the faulty nonce model, when the
underlying n-bit block cipher is modeled as a secure pseudorandom per-
mutation. Seen as a slight variant of GCM-SIV, SCM is also parallelizable
and inverse-free, and its performance is still comparable to GCM-SIV.

Keywords: Authenticated encryption · Beyond-birthday-bound
security · Nonce-misuse resistance · Graceful degradation · Block cipher

1 Introduction

Authenticated Encryption. Authenticated encryption (AE) aims at achiev-
ing the two fundamental security goals of symmetric key cryptography, namely,
the confidentiality and the authenticity of data. With a significant amount of
research in this area, we now have a rich set of general-purpose AE schemes,
some already standardized (e.g., GCM [21] and CCM [27]) and some expected
to be adopted by new applications and standards (e.g., the CAESAR finalists
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COLM [1], Ascon [8], Deoxys II [18], OCB [20], ACORN [28], and AEGIS-128 [29]).
Such AE schemes are built on top of various cryptographic primitives such as
permutations and (tweakable) block ciphers. Most of recent constructions accept
associated data (AD), which are authenticated but not encrypted. In this paper,
we will also consider AE schemes with associated data.

Nonce-Misuse Resistance. Nonces or initial vectors (IVs) are used in most
encryption schemes in order to guarantee the variability of the ciphertext. In par-
ticular, nonces will guarantee stronger security in the authentication part than
deterministic constructions when they are never reused. On the other hand, only
a single nonce repetition can completely break the security of the scheme. For
example, GCM leaks its hash key as soon as a single nonce is used twice. How-
ever, it might be challenging to maintain the uniqueness of the nonce in certain
environments, for example, in a stateless device where good quality randomness
is not available. A faulty implementation of the AE scheme might also repeat
nonces. For this reason, there has been a considerable amount of research on the
design of AE schemes achieving nonce-misuse resistance.

Rogaway and Shrimpton [26] formalized the notion of misuse-resistant AE
(MRAE) and proposed a method of turning a deterministic AE scheme into
a nonce-based MRAE scheme. In this way, nonce repetitions do not affect the
overall security of the scheme as long as a triple of nonce, AD and message val-
ues is not repeated. MRAE schemes include EAX [2], SIV [26], AEZ [12], and
GCM-SIV [11]. Later, this notion has been refined by viewing the adversarial
distinguishing advantage as a function of the maximum number of multicolli-
sions in nonce values (amongst all encryption queries) [25]. Recently, Dutta et
al. [9] introduced the faulty nonce model ; an adversarial query is called a faulty
query if there exists a previous query with the same nonce. Here, the adversar-
ial distinguishing advantage is analyzed as a function of the number of faulty
queries. They also proposed a new MAC scheme, dubbed nEHtM, and showed
that it enjoys graceful degradation of security in this model. The two models of
nonce misuse above seem to complement each other; when an m-multicollsion
of a single nonce happens, it implies that there have been at least m − 1 faulty
queries, while any number of faulty queries can be made by multicollisions of
nonces with small multiplicities.

Birthday and Beyond-Birthday Security. Most block cipher-based AE
modes provide only the birthday-bound security (with respect to the size of the
underlying primitive). For example, if an AE mode is based on a 128-bit block
cipher such as AES, then it would guarantee only up to 64-bit security, whereas
this bound might not be sufficient in defense-in-depth applications where higher
security is required.

Some AE schemes enjoy beyond-birthday-bound security. Iwata [14] proposed
the CIP AE mode of rate 4/9 (for the default parameters) and 2n/3-bit security,
and Iwata and Minematsu [15] proposed a variant of GCM-SIV of rate 1/4 and
2n/3-bit security. Bose et al. [4] proved n-bit security of AES-GCM-SIV in the
ideal cipher model. However, in this stronger model, its provable security would
not be called “full” since the underlying ideal primitive accepts (n+κ)-bit inputs,
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Fig. 1. Security of SCM in terms of the threshold number of encryption queries q as a
function of the number of faulty queries μ.

where κ denotes the key size. Assuming the multi-user security of AES in the
standard model, Iwata and Seurin [17] proved 3n/4-bit security of AES-GCM-SIV.
The mGCM mode [3] achieves almost n-bit security with reasonable efficiency (of
rate around 1/2) in the standard model, while it is vulnerable to nonce misuse.

When it comes to tweakable block cipher-based constructions (for simplicity,
assuming that the underlying tweakable block cipher uses n-bit tweaks), SCT [25]
provides n-bit security in the nonce-respecting setting, while its integrity falls
down to the birthday bound as soon as a nonce is repeated. Iwata et al. proposed
ZAE [16], which is a deterministic AE scheme providing n-bit security.

The focus of this paper is put on the construction of (conventional) block
cipher-based nonce-misuse resistant AE schemes with almost n-bit security and
reasonable efficiency assuming the pseudorandomness of the underlying block
cipher in the single-user setting. One of the advantages of block cipher-based
schemes is that it can be instantiated with a widely-used block cipher such
as AES. Due to AES-NI instructions, and a considerable amount of research
on efficient implementation of AES, AES-based schemes are usually faster than
tweakable block cipher-based ones. On the other hand, compared to using an
n-bit tweakable block cipher, it seems more challenging to achieve the same
level of security using an n-bit conventional block cipher with a weaker security
assumption.

1.1 Our Contribution

We propose the Synthetic Counter with Masking (SCM) mode, which turns a
block cipher into a nonce-based authenticated encryption scheme. SCM follows
the NSIV paradigm proposed by Peyrin and Seurin in CRYPTO 2016 [25], where
a keyed hash function accepts a nonce N with associated data and a message,
yielding an authentication tag T , and then the message is encrypted by a counter-
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Table 1. Comparison of SCM with existing AE modes. NR (resp. NM) represents the
nonce-respecting setting (resp. the nonce-misuse setting).

AEAD Assumption Rate Security Graceful degradation Reference

NR NM

GCM PRF 1/2 n/2 − ✗ [21]

OCB3 PRP 1 n/2 − ✗ [19]

mGCM PRP 1/2 n − ✗ [3]

GCM-SIV PRF 1/2 n/2 n/2 ✓ [11]

CWC+ PRP 1/2 3n/4 n/2† ✓† [9]

AES-GCM-SIV muPRP 1/2 3n/4 n/2 ✓ [17]

AES-GCM-SIV‡ ICM 1/2 n n/2 ✓ [4]

SCM PRP 1/2 n n/2 ✓ This work

ΘCB TPRP 1 n − ✗ [19]

SCT TPRP 1/2 n n/2 ✗ [25]

ZAE TPRP 2/3 n n ✓ [16]
† Authenticity only. CWC+ does not provide privacy in the nonce-misuse setting.
‡ A variant of AES-GCM-SIV with the key derivation function modified.

like mode using both T and N . Here we move one step further by encrypting
nonces: from a secret key and a nonce, three encrypted nonces Δ, Δ′ and Δ′′

are computed. The authentication tag T is defined by a variant of nEHtM [9]
using Δ′′. More precisely, for an associated data A and a message M ,

T = EK′(HKh
(A,M) ⊕ (N ‖ 00)) ⊕ Δ′′.

The i-th keystream block Z[i] is defined as

Z[i] = EK(T ⊕ 2i−1Δ) ⊕ Δ′,

which is xored to the corresponding message block. We prove that if H is a δ-
almost XOR universal hash function with δ ≈ 1

2n , if E is a secure block cipher,
and if the maximum length of encryption queries is sufficiently small, then SCM
is secure up to O(2n) encryption and decryption queries in the nonce-respecting
setting. Even if nonces are repeated, SCM is secure up to the birthday bound,
enjoying graceful security degradation in the faulty nonce model. Figure 1 shows
the security bounds of SCM in terms of the threshold number of encryption
queries q as a function of the number of faulty queries μ ignoring the maximum
message length. The influence of μ to the threshold number of decryption queries
is negligible as seen in Theorem 1 (with L = n).

Table 1 compares SCM to well-known AE schemes based on (tweakable) block
ciphers. For simplicity of comparison, we assume that the underlying tweakable
block cipher uses n-bit tweaks. To the best of our knowledge, SCM is the first
block cipher-based nonce-misuse resistant AE scheme of rate 1/2 that provides
n-bit security in the nonce-respecting setting when the underlying n-bit block
cipher is modeled as a pseudorandom permutation. Seen as a slight variant of
GCM-SIV, SCM is also parallelizable and inverse-free.
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Fig. 2. The threshold number of the total length of the encryption queries σ as a
function of l, where the number of faulty queries μ is fixed as a small constant. The
solid line is the bound for SCM, while the dashed (resp. dash-dotted) line is the bound
for AES-GCM-SIV in the ideal cipher (resp. multi-user PRP) model.

Figure 2 compares the influence of the maximum message length l to the
threshold number of the total length of the encryption queries σ for SCM and
AES-GCM-SIV, where we distinguish two different models in which AES-GCM-
SIV has been analyzed. When security bounds are not represented by only σ and
l, we use a (loose) bound q ≤ σ. We see that SCM provides stronger bounds than
AES-GCM-SIV in the standard model. We note that GCM, OCB3 and GCM-SIV
are secure when σ � 2

n
2 , while all the tweakble cipher-based constructions ΘCB,

SCT, and ZAE are secure when σ � 2n, all regardless of the maximum message
length. In [9], CWC+ has been proved to be secure up to 2

2n
3 block cipher queries,

while one can obtain a stronger bound using recent results [3,6]. Even with this
improvement, its security does not go beyond 2

3n
4 (in terms of σ).

Being nonce-misuse resistant, SCM provides beyond-birthday-bound security
as long as μl � 2n/2, and it can be seen as optimal when μ and l are small enough.
This property is practically relevant for a certain case, where data is broken into
small parts, and they are encrypted with different nonces. For example, in the
TLS network protocol, the maximum transmission unit (MTU) is typically set to
1500B, and each fragment is encrypted with a different nonce using its sequence
number.

Table 2 compares SCM using POLYVAL1 [10] as a universal hash function to
existing AE schemes in terms of efficiency. In this comparison, we focus on the AE
schemes whose reference codes are publicly available (except ZAE). The efficiency

1 POLYVAL is a universal hash function used in AES-GCM-SIV.
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Table 2. Performance comparison of SCM to various AE schemes. Throughput is
measured in cycles per byte.

Mode Cipher Message Reference

1 KB 4 KB 64 KB

ChaCha20-Poly1305 – 2.17 1.55 1.47 [22]

GCM AES-128 1.23 0.63 0.56 [21]

AES-GCM-SIV AES-128 1.57 0.89 0.81 [17]

Deoxys-I (≈ ΘCB) Deoxys-BC-256 1.38 0.91 0.77 [18]

Deoxys-II (≈ SCT) Deoxys-BC-256 2.19 1.68 1.52 [18]

ZAE Deoxys-BC-256 ≥1.94 ≥1.41 ≥1.25 [16]

SCM AES-128 0.94 0.86 0.83 This work

of ZAE has been only approximately estimated based on the speed of Deoxys-
BC-256 in counter mode (as done in [16]), so the number in Table 2 should be
understood as rough lower bounds. The implementations of ChaCha20-Poly1305,
GCM, and AES-GCM-SIV are taken from BoringSSL2 and those of Deoxys-I and
Deoxys-II are taken from SUPERCOP3. Our experiments are done in the Skylake
microarchitecture (i7-6700 CPU@4.20 GHz) which supports PCLMUL, AVX,
SSE, and AES instructions, using GCC 7.4.0 with optimization level -O2.

Although SCM requires four block cipher calls to encrypt nonces at the begin-
ning of every encryption, our implementation shows that it does not slow down
the overall efficiency since it can be done in parallel with the encryption of the
hash output. We see that SCM is comparable to AES-GCM-SIV.

Overview of the Proof. Our security proof takes a modular approach;
SCM[H,E] (based on a keyed hash function H and a block cipher E) is decom-
posed into a MAC scheme and an encryption scheme, denoted SCM.MAC[H,E]
and SCM.PRNG[E], respectively. We first prove that if both SCM.MAC[H,E]
and SCM.PRNG[E] are secure, then SCM[H,E] is also secure (Lemma 5), where
we need to slightly modify the security model for the encryption part; it takes
as input a random tag T (which can be seen as an initial vector), and T is also
given to the adversary.

The underlying MAC scheme is similar to the nonce-based enhanced hash-
then-mask MAC (nEHtM), whose security has been recently proved up to 2

3n
4

MAC queries [6]. The main difference of SCM.MAC from nEHtM is that the
“encrypted mask” EK(N) used in nEHtM is replaced by EK(N ‖00)⊕EK(N ‖11)
using an (n − 2)-bit nonce N , which can be seen as ρ(N) for a truly random
function ρ. At the cost of an additional block cipher call, SCM.MAC[H,E] is
secure up to 2n MAC queries when H is a δ-almost XOR universal with δ ≈
1
2n (Lemma 6).

2 https://boringssl.googlesource.com/boringssl.
3 https://bench.cr.yp.to/supercop.html.

https://boringssl.googlesource.com/boringssl
https://bench.cr.yp.to/supercop.html
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The pseudorandomness of SCM.PRNG[E] is analyzed by two different
approaches. When the number of faulty queries μ is relatively large, we use
Mirror theory in a refined form as given in [6] (and restated in Lemma 3). In
Lemma 7, we prove that SCM.PRNG[E] is pseudorandom up to 2

2n
3 queries,

enjoying graceful security degradation as μ increases.
When μ is small, for example, in the nonce-respecting setting, one can expect

even stronger security. In such cases, we make the adversary non-adaptive by
allowing it to repeat each nonce exactly μ times. In this setting, we can use
the χ2-method as restated in Lemma 2, and its interpretation in terms of Mir-
ror theory as given in Lemma 4. All the bounds contain the sum-of-squares
and sum-of-cubes of component sizes in the graph representation of the tran-
script, and it is the most challenging part of the proof to upper bound their
expectation (Lemma 10 and 12). Finally, we apply the expectation method to
prove the security of SCM.PRNG[E] up to 2n queries in the nonce-respecting
setting (Lemma 8).

2 Preliminaries

2.1 Notation

In all of the following, we fix a positive integer n such that n ≥ 3. We denote
0n (i.e., n-bit string of all zeros) by 0. The set {0, 1}n is sometimes regarded as
a set of integers {0, 1, . . . , 2n − 1} by converting an n-bit string an−1 · · · a1a0 ∈
{0, 1}n to an integer an−12n−1 + · · · + a12 + a0. We also identify {0, 1}n with
a finite field GF(2n) with 2n elements, assuming that 2 cyclically generates all
the nonzero elements of GF(2n). We write {0, 1}∗ to denote the set of all binary
strings including the empty string. For X ∈ {0, 1}∗, |X| denotes its length. For
a nonnegative integer s and a string X ∈ {0, 1}∗ such that |X| ≤ s, msbs(X)
denotes the s most significant bits of X. For a positive integer q, we write
[q] = {1, . . . , q}.

Given a non-empty finite set X , x ←$ X denotes that x is chosen uniformly at
random from X . The set of all functions from X to Y is denoted Func(X ,Y), and
the set of all permutations of X is denoted Perm(X ). The set of all permutations
of {0, 1}n is simply denoted Perm(n). The set of all sequences that consist of b
pairwise distinct elements of X is denoted X ∗b. For integers 1 ≤ b ≤ a, we will
write (a)b = a(a − 1) · · · (a − b + 1) and (a)0 = 1 by convention. If |X | = a, then
(a)b becomes the size of X ∗b.

When two sets X and Y are disjoint, their (disjoint) union is denoted X 
Y.
For a set X ⊂ {0, 1}n and λ ∈ {0, 1}n, we will write X ⊕ λ = {x ⊕ λ : x ∈ X}.
For a graph G = (V, E), we will interchangeably write |V| and |G| for the number
of vertices of G.

2.2 Security Notions

Almost Xor Universal Hash Functions. Let δ > 0, and let H : Kh ×M →
X be a keyed function for three non-empty sets Kh, M, and X . H is said to be
δ-almost XOR universal (AXU) if for any distinct M,M ′ ∈ M and X ∈ X ,
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Pr [Kh ←$ Kh : HKh
(M) ⊕ HKh

(M ′) = X] ≤ δ.

PRPs. Let E : K × {0, 1}n → {0, 1}n be a keyed permutation with key space
K, where E(K, ·) is a permutation for each K ∈ K. We will denote EK(X) for
E(K,X). A (q, t)-distinguisher against E is an algorithm D with oracle access to
an n-bit permutation and its inverse, making at most q oracle queries, running in
time at most t, and outputting a single bit. The advantage of D in breaking the
PRP-security of E, i.e., in distinguishing E from a uniform random permutation
π ←$ Perm(n), is defined as

Advprp
E (D) =

∣
∣
∣Pr

[

K ←$ K : DEK ,E−1
K = 1

]

− Pr
[

π ←$ Perm(n) : Dπ,π−1
= 1

]∣
∣
∣ .

We define Advprp
E (q, t) as the maximum of Advprp

E (D) over all (q, t)-distinguishers
against E.

Nonce-based MACs. Given four non-empty sets K, N , M, and T , a nonce-
based MAC with key space K, nonce space N , message space M and tag space
T is a function F : K × N × M → T . Stated otherwise, it is a keyed function
whose domain is a cartesian product N ×M. We will sometimes write FK(N,M)
to denote F (K,N,M).

For K ∈ K, let AuthK be the MAC oracle which takes as input a pair
(N,M) ∈ N ×M and returns FK(N,M), and let VerK be the verification oracle
which takes as input a triple (N,M, T ) ∈ N × M × T and returns 
 (“accept”)
if FK(N,M) = T , and ⊥ (“reject”) otherwise. We assume that an adversary
makes queries to the two oracles AuthK and VerK for a secret key K ∈ K. A
MAC query (N,M) made by an adversary is called a faulty query if the adversary
has already queried to the MAC oracle with the same nonce but with a different
message. For example, if the i-th query is denoted by (Ni,Mi) and there are four
distinct queries, (Ni,Mi) for i ∈ [4] such that N1 �= N2 = N3 = N4, the third
and the fourth queries are faulty and the number of faulty queries is two.

In this work, we will consider the MAC security of F using the advantage of an
adversary trying to distinguish the real world (AuthK ,VerK) and the ideal world.
The ideal world oracles are (Rand,Rej), where Rand returns an independent
random value (instantiating a truly random function) and Rej always returns ⊥
for every verification query. A (μ, q, v, t)-distinguisher against the MAC security
of F is an algorithm D with oracle access to AuthK/Rand and VerK/Rej, making
at most q MAC queries to its first oracle with at most μ faulty queries and at
most v verification queries to its second oracle, and running in time at most t.
We assume that D does not make a verification query by reusing any previous
MAC query. We define

Advmac
F (μ, q, v, t) = max

D

(

Pr
[

K ←$ K : DAuthK ,VerK = 1
]

− Pr
[

DRand,Rej = 1
] )

,

where the maximum is taken over all (μ, q, v, t)-distinguishers D. When we con-
sider information theoretic security, we will drop the parameter t.
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Nonce-based AE Schemes. Given four non-empty sets K, N , A and M, a
nonce-based authenticated encryption (AE) scheme is a tuple

Π = (K,N ,A,M,Enc,Dec),

where Enc and Dec are called encryption and decryption algorithms, respectively.
The encryption algorithm Enc takes as input a key K ∈ K, a nonce N ∈ N ,
an associated data A ∈ A, and a message M ∈ M, and outputs a ciphertext
C ∈ {0, 1}∗. The decryption algorithm Dec takes as input a tuple (K,N,A,C) ∈
K × N × A × {0, 1}∗, and outputs either a message M ∈ M or a special symbol
⊥. We require that

Dec(K,N,A,Enc(K,N,A,M)) = M

for any tuple (K,N,A,M) ∈ K×N ×A×M. We will write EncK(N,A,M) and
DecK(N,A,C) to denote Enc(K,N,A,M) and Dec(K,N,A,C), respectively.

The goal of an adversary D against the nonce-based AE security of Π is to
distinguish the real world (EncK ,DecK) (using a random key K, unknown to D)
and the ideal world. The ideal world oracles are (Rand,Rej), where Rand returns
an independent random string of length |EncK(N,A,M)| and Rej always returns
⊥ for every decryption query. We assume that D does not make a decryption
query by reusing any previous encryption query. The advantage of D breaking
the nAE-security of Π is defined as

AdvnAE
Π (D) =

∣
∣Pr

[

K ←$ K : DEncK ,DecK = 1
]

− Pr
[

DRand,Rej = 1
]∣
∣ .

A (μ, q, v, σ, l, t)-adversary against the nonce-based AE security of Π is an algo-
rithm that makes at most q encryption queries to its first oracle with at most
μ faulty queries (using repeated nonces) and at most v decryption queries to its
second oracle, and running in time at most t, where the length of each encryp-
tion/decryption query is at most l blocks of n bits, and the total length of
the encryption queries (nonce excluded) is at most σ blocks of n bits. When
μ = 0, we say that D is nonce-respecting, otherwise D is said nonce-misusing.
However, the adversary is allowed to repeat nonces in its Dec oracle. We
define AdvnAE

Π (μ, q, v, σ, l, t) as the maximum of AdvnAE
Π (D) over all (μ, q, v, σ, l, t)-

adversaries D against Π. When we consider information theoretic security, we
will drop the parameter t.

2.3 Coefficient-H Technique

We will use Patarin’s coefficient-H technique, more precisely, its refinement called
the expectation method [13]. The goal of this technique is to upper bound the
adversarial distinguishing advantage between a real construction and its ideal
counterpart. In the real and the ideal worlds, an information-theoretic adversary
D is allowed to make queries to certain oracles (with the same oracle interfaces),
denoted Oreal and Oideal, respectively. The interaction between the adversary D
and the oracle determines a “transcript”; it contains all the information obtained
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by D during the interaction. We call a transcript τ attainable if the probability
of obtaining τ in the ideal world is non-zero. We also denote Tid (resp. Tre) the
probability distribution of the transcript τ induced by the ideal world (resp. the
real world). By extension, we use the same notation to denote a random variable
distributed according to each distribution.

We partition the set of attainable transcripts Γ into a set of “good” tran-
scripts Γgood such that the probabilities to obtain some transcript τ ∈ Γgood are
close in the real world and the ideal world, and a set Γbad of “bad” transcripts
such that the probability to obtain any τ ∈ Γbad is small in the ideal world. The
lower bound in the ratio of the probabilities to obtain a good transcript in both
worlds will be given as a function of τ , and we will take its expectation. The
expectation method is summarized in the following lemma.

Lemma 1. Let Γ = Γgood 
 Γbad be a partition of the set of attainable
transcripts, where there exists a non-negative function ε1(τ) such that for any
τ ∈ Γgood,

Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − ε1(τ),

and there exists ε2 such that Pr[Tid ∈ Γbad] ≤ ε2. Then for any adversary D,
∣
∣Pr

[

DOreal = 1
]

− Pr
[

DOideal = 1
]∣
∣ ≤ Ex [ε1(τ)] + ε2,

where the expectation is taken over the distribution Tid in the ideal world.

We refer to [13] for the proof of Lemma 1.

2.4 Sampling with Replacement Using a Random Permutation

Xoring the outputs of a random permutation is a simple way of generating
pseudorandom samples using a random permutation. A random permutation
can be viewed as a random sampling without replacement.

Fix positive integers w1, . . . , wr ≥ 2. Let σ =
∑

i∈[r] wi, and let

T = (Ti,j)i∈[r],j∈[wi] = (T1,1, · · · , T1,w1 , T2,1, · · · , T2,w2 , · · · , Tr,1, · · · , Tr,wr
)

be a sequence sampled from ({0, 1}n)∗σ uniformly at random (i.e., by random
sampling without replacement). Let

S = (Ti,j ⊕ Ti,wi
)i∈[r],j∈[wi−1]

= (T1,1 ⊕ T1,w1 , · · · , T1,w1−1 ⊕ T1,w1 , · · · , Tr,1 ⊕ Tr,wr
, · · · , Tr,wr−1 ⊕ Tr,wr

)

Using the χ2-method, Bhattacharya and Nandi [3] proved the pseudorandomness
of S as follows.
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Lemma 2. Let S be a sequence sampled as described above, and let R be a
sequence sampled from ({0, 1}n)σ−r uniformly at random.4 Then we have

‖S − R‖ ≤
(

4σ

22n

r∑

i=1

w3
i

) 1
2

+
r∑

i=1

wi(wi − 1)
2n+1

. (1)

For an integer w ≥ 2, let wi = w for i ∈ 1, . . . , r. Then we have

‖S − R‖ ≤
√

2rw2

2n
+

w(w − 1)r
2n+1

. (2)

We note that (2) is simply a restatement of Theorem 2 in [3], and (1) can also
be derived from the proof of the theorem (see page 327 in [3]).

2.5 Mirror Theory

Mirror theory [23,24] is one of the main tools for our security proof, whose goal
is to systematically estimate the number of solutions to a system of equations.
Mirror theory is later generalized to extended Mirror theory [7,9], by including
non-equations in the system.

A system of equations and non-equations can be represented by a graph. Each
vertex corresponds to an n-bit distinct unknowns. By abuse of notation, we will
identify the vertices with the values assigned to them. We distinguish two types of
edges, namely, =-labeled edges and �=-labeled edges that correspond to equations
and non-equations, respectively. So we consider a graph G = (V, E=
E �=), where
E= and E �= denote the set of =-labeled edges and the set of �=-labeled edges,
respectively. Then G can be seen as a superposition of two subgraphs G= =def

(V, E=) and G �= =def (V, E �=).
We will define label functions λ : E= → {0, 1}n and λ′ : E �= → {0, 1}n. If

two vertices P and Q are adjacent by an =-labeled (resp. �=-labeled) edge and
λ(P,Q) = c (resp. λ′(P,Q) = c) for some c ∈ {0, 1}n, then it would mean that
P ⊕ Q = c (resp. P ⊕ Q �= c). We will write h(G, λ, λ′) to denote the number of
solutions to (G, λ, λ′) such that all the vertices take different values in {0, 1}n.
When there is no �=-labeled edge, we will simply write h(G, λ).

Throughout this paper, we will consider a graph G such that G= has no cycle.
In this case, G= is decomposed into its connected components, all of which are
trees; let

G= = C1 
 C2 
 · · · 
 Cr 
 D (3)

for some r ≥ 0, where Ci denotes a component of size at least 2, and D denotes
the set of isolated vertices. Any pair of distinct vertices P and Q in the same
component are connected by a unique trail,5 say,

P = P0 − P1 − · · · − Ps = Q.

4 We will view S and R as random variables, and also write them to denote their
probability distributions.

5 A trail is a walk in which all edges are distinct.
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In this case, we define

λ̄(P,Q)
def=

r−1∑

i=0

λ(Pi, Pi+1).

By defining λ̄(P,Q) = ⊥ for any pair of vertices P and Q contained in different
components, λ̄ is defined on V∗2, extending λ. For G = (V, E= ∪ E �=), let

L(G)
def= Func(E=, {0, 1}n) × Func(E �=, {0, 1}n).

We call (λ, λ′) ∈ L(G) bad if one of the following conditions holds:

– there exists (P,Q) ∈ V∗2 such that λ̄(P,Q) = 0;
– there exists (P,Q) ∈ E �= such that λ̄(P,Q) = λ′(P,Q).

Note that h(G, λ, λ′) = 0 if (λ, λ′) is bad. Let Lbad(G) denote the set of the bad
label functions in L(G). When (λ, λ′) /∈ Lbad(G), we can lower bound h(G, λ, λ′)
using the extended Mirror theory as follows.

Lemma 3. For positive integers q and v, let G = (V, E= ∪ E �=) be a graph
such that G= has no cycle, |V| ≤ 2n, |E=| = q, and |E �=| = v. Suppose that
G= is decomposed into its connected components as in (3). Let wi = |Ci| for
i = 1, . . . , r, and let σ =

∑r
i=1 wi. Then, for any (λ, λ′) /∈ Lbad(G), we have

h(G, λ, λ′)
(2n)|V|

≥ 1
2qn

(

1 − σ2

22n

r∑

i=1

w2
i − 2v

2n

)

.

The proof of Lemma 3 is given in the full version [5].
From the definition of S and R (given in Sect. 2.4), (1) can be rephrased in

terms of Mirror theory as follows.

Lemma 4. For positive integers q and v, let G = (V, E= ∪ E �=) be a graph such
that G= has no cycle, |E=| = q, and E �= = ∅. Suppose that G= is decomposed
into its connected components as in (3). Let wi = |Ci| for i = 1, . . . , r, and let
σ =

∑r
i=1 wi. Then we have

1
2

∑

λ∈Func(E=,{0,1}n)

∣
∣
∣
∣

h(G, λ)
(2n)|V|

− 1
2qn

∣
∣
∣
∣
≤

(

4σ

22n

r∑

i=1

w3
i

) 1
2

+
r∑

i=1

wi(wi − 1)
2n+1

.

3 The SCM Authenticated Encryption Mode

The SCM AE mode is built on top of a keyed hash function H : Kh × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}n and a block cipher E : Kb × {0, 1}n → {0, 1}n. Formally, the
SCM mode based on H and E is

SCM[H,E] = (K,N ,A,M,SCM.ENC,SCM.DEC)
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(c) Generating a keystream.

Fig. 3. The SCM mode based on H and E using a key (Kh, K, K′, K′′).

where K = Kh ×Kb ×Kb ×Kb, N = {0, 1}n−2, A = M = {0, 1}∗, and SCM.ENC
and SCM.DEC are deterministic algorithms. Given a key (Kh,K,K ′,K ′′) ∈ K,
a nonce N ∈ N and a message M ∈ M with associated data A ∈ A,6

SCM[H,E]Kh,K,K′,K′′ generates Δ, Δ′ and Δ′′, where

Δ = EK′′(N ‖ 00) ⊕ EK′′(N ‖ 01),
Δ′ = EK′′(N ‖ 00) ⊕ EK′′(N ‖ 10),
Δ′′ = EK′′(N ‖ 00) ⊕ EK′′(N ‖ 11).

Then the tag T is defined as

T = EK′(HKh
(A,M) ⊕ (N ‖ 00)) ⊕ Δ′′.

Let M = M [1] ‖ M [2] ‖ . . . ‖ M [m] for a positive integer m, where |M [α]| = n
for α = 1, . . . ,m − 1, and 0 < M [m] ≤ n. Then, for α = 1, . . . ,m, the α-th
keystream block Z[α] is defined as
6 We assume that either |A| > 0 or |M | > 0.
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Z[α] = EK(T ⊕ 2α−1Δ) ⊕ Δ′,

where the last block is truncated so that |Z[m]| = |M [m]|. The keystream Z =
Z[1] ‖ Z[2] ‖ . . . ‖ Z[m] is xored to the message M , producing the corresponding
ciphertext C = M ⊕ Z (see Fig. 3).

As shown in Fig. 4, SCM.ENC and SCM.DEC can be described using the
underlying MAC scheme and the PRNG, denoted SCM.MAC and SCM.PRNG,
respectively.

4 Security of SCM

The nAE-security of SCM is summarized by the following theorem.

Theorem 1. Let δ > 0, let H : Kh × ({0, 1}∗ × {0, 1}∗) → {0, 1}n be a δ-
AXU function, and let E : Kb × {0, 1}n → {0, 1}n be a block cipher. Then for
nonnegative integers μ, q, v, σ, l, t such that q + v ≤ 2n−3, and for any positive
integer L, we have

AdvnAE
SCM[H,E](μ, q, v, σ, l, t) ≤ min

{
8q(μ + 1)2l2

2n
,
4σ3l + 2σ2μ2l2

22n
+

8σl + 4μ2l2

2n

}

+
16μ4

22n
+

μ2

2n
+ 4μ2δ +

4v

2n
+ (2L + 1)vδ

+ 2n

(
eμ2

L2n

)L

+
(16

√
2 + 6)(q + v)

2n

+ 3Advprp
E (5q + 5v + σ + vl, t + t′),

where t′ is the time complexity necessary to compute E for 5q+5v+σ+vl times.

Remark 1. When L = n and μ ≤ 2
n
2 , we have 2n

(
eμ2

L2n

)L

≤
(
2e
n

)n, which is
close to 0 for a sufficiently large n.

4.1 Proof of Theorem 1

Fix a (μ, q, v, σ, l, t)-adversary D against SCM[H,E]. Up to the prp-security of
E, keyed permutations EK , EK′ , and EK′′ can be replaced by truly random
permutations π, π′, and π′′, respectively. Precisely, the cost of this replacement
is upper bounded by

3Advprp
E (5q + 5v + σ + vl, t + t′) (4)

since D makes at most 5q + 5v + σ + vl block cipher queries.
Furthermore, by Lemma 2 (with w = 4 and r = q + v in (2)), π′′(· ‖ 00) ⊕

π′′(· ‖ 01), π′′(· ‖ 00) ⊕ π′′(· ‖ 10) and π′′(· ‖ 00) ⊕ π′′(· ‖ 11) (used to encrypt
nonces) can be replaced by three independent random functions ρ, ρ′, and ρ′′,
respectively, at the cost of

(16
√

2 + 6)(q + v)
2n

. (5)
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Fig. 4. Description of the SCM mode in pseudocode.
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The resulting construction (using independent random permutations π and π′,
and three independent random functions ρ, ρ′, and ρ′′) will be denoted SCM∗[H].

Similarly to SCM[H,E], SCM∗[H] uses two subprocedures SCM.MAC∗[H]
and SCM.PRNG∗; SCM.MAC∗[H] takes as input a nonce N ∈ {0, 1}n−2 and a
message M ∈ {0, 1}∗ with associated data A ∈ {0, 1}∗, and returns the tag T ,
where

T
def= ρ′(N) ⊕ π′(HKh

(A,M) ⊕ (N ‖ 00)).

On the other hand, SCM.PRNG∗ takes as input a nonce N ∈ {0, 1}n−2, a tag T ∈
{0, 1}n and a nonnegative integer m such that m ≤ l, and returns a keystream
Z = Z[1] ‖ . . . ‖ Z[m] and T , where

Z[α]
def= π(T ⊕ 2α−1ρ(N)) ⊕ ρ′(N)

for α = 1, . . . , m.
For our security proof, we consider a slightly modified variant of SCM.PRNG∗,

denoted SCM.PRNG#, that takes as input a nonce N ∈ {0, 1}n−2 and a nonneg-
ative integer m such that m ≤ l, and returns SCM.PRNG∗

π,ρ,ρ′(N,T,m) and T ,
where T is chosen uniformly at random from {0, 1}n. For an adversary B making
oracle queries to SCM.PRNG#, its distinguishing advantage is defined as

Advprg
SCM.PRNG#(B)

def=
∣
∣
∣Pr

[

BSCM.PRNG#
= 1

]

− Pr
[

B$ = 1
]∣
∣
∣

where the ideal oracle $ takes as input N and m, and returns a tuple of a random
nm-bit string and a random n-bit string. Note that $ is a sampling that returns
a fresh random value for every redundant query.7

A (μ, q, σ, l)-adversary against SCM.PRNG# is an (information-theoretic)
algorithm that makes at most q queries with at most μ faulty queries (using
repeated nonces), where m ≤ l for every query, and the sum of m over all the
queries is at most σ. Then we define Advprg

SCM.PRNG#(μ, q, σ, l) as the maximum
of Advprg

SCM.PRNG#(B) over all (μ, q, σ, l)-adversaries B against SCM.PRNG#. With
this notion of security, we can prove the following lemma.

Lemma 5. Let δ > 0, let H : Kh × ({0, 1}∗ × {0, 1}∗) �→ {0, 1}n be a δ-AXU
function. Then for nonnegative integers μ, q, v, σ, l, we have

AdvnAE
SCM∗[H](μ, q, v, σ, l) ≤ Advmac

SCM.MAC∗[H](μ, q, v) + Advprg
SCM.PRNG#(μ, q, σ, l)

The MAC security of SCM.MAC∗[H] is proved as follows.

Lemma 6. Let δ > 0, and let H : K × ({0, 1}∗ ×{0, 1}∗) �→ {0, 1}n be a δ-AXU
hash function. For nonnegative integers μ, q, v, such that q + v ≤ 2n−3 and for
any positive integer L, we have

Advmac
SCM.MAC∗[H](μ, q, v) ≤ 16μ4

22n
+

μ2

2n
+ 4μ2δ +

4v

2n
+ (2L + 1)vδ + 2n

(
eμ2

L2n

)L

.

7 This property might allow an adversary to distinguish SCM.PRNG# and $ by making
redundant queries, and this aspect will be taken into account in Lemma 7 and 8.
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We remark that the proof of Lemma 5 is similar to the NSIV composition
Lemma by Peyrin and Seurin [25], and the proof of Lemma 6 is similar to the
security proof of nEHtM by Choi et al. [6]. The proofs of Lemma 5 and 6 are
given in the full version [5].

The following lemmas upper bound the adversarial distinguishing advantage
against SCM.PRNG# using two different approaches.

Lemma 7. For nonnegative integers μ, q, σ, and l, we have

Advprg
SCM.PRNG#(μ, q, σ, l) ≤ 4σ3l + 2σ2μ2l2

22n
+

8σl + 4μ2l2

2n
.

Lemma 8. For nonnegative integers μ, q, σ, and l, we have

Advprg
SCM.PRNG#(μ, q, σ, l) ≤ 8q(μ + 1)2l2

2n
.

The proof of Theorem 1 is complete by (4), (5), Lemma 5, 6, 7 and 8.

4.2 Proof of Lemma 7

Let D be a (μ, q, σ, l)-adversary against the pseudorandomness of SCM.PRNG#,
assuming that D makes exactly q encryption queries without loss of generality.
At the end of the interaction, D will be given Δi =def ρ(Ni), i = 1, . . . , q, for
free. In the ideal world, dummy masks Δi will be defined by an independent
random function ρ : N → {0, 1}n, and given to D. Then the transcript is defined
as

τ
def= (Ni,mi,Δi, Ti, Zi[1] ‖ · · · ‖ Zi[mi])i∈[q].

From this transcript, one can fix Xi = Xi[1] ‖ . . . ‖ Xi[mi], where

Xi[α]
def= Ti ⊕ 2α−1Δi

for i ∈ [q] and α ∈ [mi]. Let

Nm = {N1, . . . , Nq} ,

V = {π(Xi[α]) : i ∈ [q], α ∈ [mi]} .

For N ∈ Nm, let

VN
def= {π(Xi[α]) : Ni = N, i ∈ [q], α ∈ [mi]} .

For simplicity of notation, we rename the elements of VN , writing

VN = {VN [1], . . . , VN [sN ]} ,

where sN is the sum of mi over all i ∈ [q] such that Ni = N . The following
bound will be useful in our security proof.
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Property 1.
∑

N∈Nm
s2N ≤ 2σl + μ2l2.

Proof. Let F denote the index set of faulty queries, namely,

F = {i ∈ [q] : Ni = Nj for some j such that j < i} .

Since
∑

i∈[q]\F (sNi
− mi) ≤ μl, we have

∑

N∈Nm

s2N =
∑

i∈[q]\F
(mi + (sNi

− mi))2

≤
∑

i∈[q]\F

(

2misNi
+ (sNi

− mi)2
)

≤ 2σl + μ2l2. �


For VN [α] ∈ VN such that VN [α] = π(Xi[β]), let WN [α] denote the corresponding
keysteam block Zi[β]. This means that WN [α] = VN [α] ⊕ ρ′(N). A transcript τ
is defined as bad if one of the following conditions holds.

– bad1 ⇔
∨

t≥1 bad1[t], where bad1[t] if and only if there exist (N [i])i∈[t] ∈ N ∗t
m ,

(αi)i∈[t] and (βi)i∈[t] such that αi �= βi and

VN [i][βi] = VN [i+1][αi+1]

for i = 1, . . . , t, with indices taken modulo t;
– bad2 ⇔

∨

t≥1 bad2[t], where bad2[t] if and only if there exist (N [i])i∈[t] ∈ N ∗t
m ,

(αi)i∈[t] and (βi)i∈[t] such that αi �= βi and

VN [i][βi] = VN [i+1][αi+1]

for i = 1, . . . , t − 1, and

t∑

i=1

(

WN [i][βi] ⊕ WN [i][αi]
)

= 0.

The probability of each bad event (in the ideal world) is upper bounded as
follows.

Lemma 9. Pr [bad1 ∨ bad2] ≤ 8σl+4μ2l2

2n .

Sketch of Proof. For a fixed t ≥ 1, consider (N [i])i∈[t] ∈ N ∗t
m , (αi)i∈[t] and

(βi)i∈[t]. The number of possibilities for such sequences is upper bounded by
(∑

N∈Nm
s2N

)t. Suppose that VN [i][βi] and VN [i+1][αi+1] are defined by the γ-th
block of the j-th query and the δ-th block of the k-th query, respectively. Then
the equation VN [i][βi] = VN [i+1][αi+1] is equivalent to

Tj ⊕ 2γ−1Δj = Tk ⊕ 2δ−1Δk.
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In this way, bad1[t] defines t equations, where we focus on t+1 random variables,
namely, all the Δ-values and the T -value for the last query (with the other
T -values fixed). From the 2(t+1)n possible values for these variables, one can
always find out 2n solutions to this system of equations. Therefore, the system
of equations holds with probability 1

2tn . Then, by Property 1, we have

Pr [bad1] ≤
∞∑

t=1

Pr [bad1[t]] ≤
∞∑

t=1

(

2σl + μ2l2
)t

2tn
,

and hence, Pr [bad1] ≤ 4σl+2μ2l2

2n since

∞∑

t=1

(
2σl + μ2l2

2n

)t

≤ 4σl + 2μ2l2

2n

if 2σl+μ2l2

2n ≤ 1
2 , and 4σl+2μ2l2

2n > 1 otherwise. With a similar argument to the
analysis of bad1, we can also prove that Pr [bad2] ≤ 4σl+2μ2l2

2n , which completes
the proof. �


If a transcript is not bad, then it will be called a good transcript. For a good
transcript τ , we make some noteworthy observations as follows.

1. Distinct pairs (i, α) ∈ [q] × [mi] and (j, β) ∈ [q] × [mj ] such that Ni =
Nj correspond to distinct elements of VNi

(= VNj
) since otherwise we have

bad1[1]. Therefore, we have |VN | = sN for any N ∈ Nm.
2. For any pair of distinct nonces N and N ′, |VN ∩ VN ′ | ≤ 1 since otherwise we

have bad1[1] ∨ bad1[2].
3. Assuming ¬(bad1[1] ∨ bad1[2]), for each nonce N ∈ Nm, we can define a tree

TN = (VN , E=
N ), and a label function λN on E=

N , where any vertex VN [α] such
that α ≥ 2 is connected with VN [1], and

λN (VN [1], VN [α])
def= WN [1] ⊕ WN [α].

We define a graph Gτ = (V, E=) and a label function λ : E= → {0, 1}n as the
union of TN and the union of λN over all nonces in Nm, respectively. Then,
(a) there is no cycle in Gτ since otherwise we have bad1;
(b) there is no pair of two vertices P and Q such that λ̄(P,Q) = 0 since

otherwise have bad2.

Due to the above properties, we can apply Lemma 3 to Gτ when τ is a good
transcript. Let Comp(Gτ ) denote the set of connected components of Gτ . We will
lower bound the probability of obtaining the good transcript τ in the real world
by the following steps.

1. Since the number of distinct nonces used in τ is |Nm|, the probability that a
random function ρ realizes (Δi) is 1

2|Nm|n .
2. The probability that a random sampling realizes (Ti) is 1

2qn .
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3. The number of possible assignments of distinct values to the vertices of Gτ is
lower bounded by

(2n)|V|
2|E=|n

⎛

⎝1 − σ2

22n

∑

C∈Comp(Gτ )

|C|2
⎞

⎠

by Lemma 3 with |E �=| = 0. The probability that a random permutation π
realizes each assignment is 1/(2n)|V|.

4. The above assignment uniquely determines ρ′(N) for any N ∈ Nm (without
any contradiction), and the probability that a random function ρ′ realizes
each assignment is 1

2|Nm|n .

Therefore, we have

Pr [Tre = τ ] ≥ 1
2(q+2|Nm|+|E=|)n

⎛

⎝1 − σ2

22n

∑

C∈Comp(Gτ )

|C|2
⎞

⎠ .

Since Pr [Tid = τ ] = 1
2(q+2|Nm|+|E=|)n , we have

Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 − σ2

22n
· ε(τ), (6)

where
ε(τ)

def=
∑

C∈Comp(Gτ )

|C|2.

We define ε̄ by extending the domain of ε to Γ ; ε̄(τ) = ε(τ) if τ is good, and
ε̄(τ) = 0 otherwise.

Lemma 10. If
∑

N∈Nm
s2N ≤ 2n−1, then

Ex [ε̄] ≤ 4σl + 2μ2l2,

where the expectation is taken over the distribution Tid in the ideal world.

Proof. We define a random variable S over Γ such that S(τ) ≥ ε̄(τ) for any
attainable transcript τ .

– For (N,N ′) ∈ N ∗2, we define a random variable IN,N ′ : Γ → {0, 1}. For
τ ∈ Γ , IN,N ′(τ) = 1 if, for a positive integer t, there exists (N [0], . . . , N [t]) ∈
Nm

∗(t+1) such that N [0] = N , N [t] = N ′, and VN [i] ∩ VN [i+1] �= ∅ for i =
0, . . . , t − 1; IN,N ′(τ) = 0 otherwise.

– For N ∈ N , we define a random variable s̄N on Γ ; for τ ∈ Γ , s̄N (τ) = sN if
N ∈ Nm, and s̄N (τ) = 0 otherwise.

– Finally, let
S

def=
∑

N∈N
s̄2N +

∑

(N,N ′)∈N ∗2

s̄N s̄N ′IN,N ′ .
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Then for a good transcript τ , we have

S(τ) =
∑

N∈Nm

s2N +
∑

(N,N ′)∈N ∗2
m

sNsN ′IN,N ′ .

Suppose that Nm = {N1, N2}. If TN1 and TN2 are distinct components (i.e.,
IN1,N2 = 0), then

∑

C∈Comp(Gτ )
|C|2 = s2N1

+ s2N2
, and otherwise,

∑

C∈Comp(Gτ )

|C|2 ≤ (sN1 + sN2)
2 = s2N1

+ s2N2
+ IN1,N2sN1sN2 + IN2,N1sN2sN1 .

By generalizing this observation, we have
∑

C∈Comp(Gτ )

|C|2 ≤ S(τ).

Any attainable transcript τ is partitioned as τ = (τ1, τ2), where

τ1 = (Ni,mi, Ti, Zi[1] ‖ · · · ‖ Zi[mi])i∈[q],

τ2 = (Δi)i∈[q].

A set of partial transcripts τ1 (resp. τ2) obtained from attainable transcripts will
be denoted Γ1 (resp. Γ2). Let T1 and T2 denote the marginal distributions of τ1
and τ2, respectively, in the ideal world. So the joint probability distribution of
T1 and T2 becomes Tid.

First, fix τ1 ∈ Γ1. Then it determines Nm. So we have

S =
∑

N∈Nm

s2N +
∑

(N,N ′)∈N ∗2
m

sNsN ′IN,N ′ .

For distinct nonces N,N ′ ∈ Nm and for a positive integer t, let

Pt(N,N ′)
def=

{

(N [0], . . . , N [t]) ∈ Nm
∗(t+1) : N [0] = N,N [t] = N ′

}

.

Then, we have

ExT2 [IN,N ′ ] ≤
|Nm|−1

∑

t=1

∑

(N [0],...,N [t])∈Pt(N,N ′)

Pr

[
t−1∧

i=0

(VN [i] ∩ VN [i+1] �= ∅)

]

≤
|Nm|−1

∑

t=1

∑

(N [0],...,N [t])∈Pt(N,N ′)

t−1∏

i=0

sN [i]sN [i+1]

2n

≤
∞∑

t=1

sNsN ′

2n

(∑

N ′′∈Nm
s2N ′′

2n

)t−1

≤ 2sNsN ′

2n
,
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where the expectation is taken over the distribution T2. By Property 1, we have

ExT2 [S] =
∑

N∈Nm

s2N +
∑

(N,N ′)∈(Nm)∗2

sNsN ′ExT2 [IN,N ′ ]

≤
∑

N∈Nm

s2N +
∑

(N,N ′)∈(Nm)∗2

2s2Ns2N ′

2n

≤
∑

N∈Nm

s2N +
∑

N∈Nm

s2N

(∑

N ′∈Nm
2s2N ′

2n

)

≤
∑

N∈Nm

2s2N ≤ 4σl + 2μ2l2,

where the expectation is also taken over the distribution of T2. Since the above
inequality holds for any τ1 ∈ Γ1, we also have Ex[S] ≤ 4σl + 2μ2l2. The proof is
complete since Ex[ε̄] ≤ Ex[S]. �


By Lemma 1, 9 and 10, and (6), we have

Advprg
SCM.PRNG#(μ, q, σ, l) ≤ 4σ3l + 2σ2μ2l2

22n
+

8σl + 4μ2l2

2n
,

where the right-hand side of the above inequality is greater than 1 when 2n−1 <
∑

N∈Nm
s2N by Property 1.

4.3 Proof of Lemma 8

Let D be a (μ, q, σ, l)-adversary against the pseudorandomness of SCM.PRNG#.
By giving more power to D, we will assume that D makes exactly μ + 1 queries
for each nonce, whose length is exactly l blocks of n bits, using exactly q distinct
nonces. Since D makes the maximum number of queries for each nonce, and since
each nonce is fed to random functions ρ and ρ′, generating independent masks,
we can assume that D is non-adapative using a fixed set of q distinct nonces.
The set of nonces will be denoted Nm = {N1, . . . , Nq}.

At the end of the interaction, D will be given Δi =def ρ(Ni), i ∈ [q], for free.
In the ideal world, dummy masks Δi will be defined by an independent random
function ρ : N → {0, 1}n, and given to D. Then the transcript is defined as

τ
def= (Ni,Δi, Ti, Zi[1] ‖ · · · ‖ Zi[l])i∈[q̄],

where q̄ = (μ + 1)q. For our security proof, we will partition this transcript as
τ = (τ ′, τ ′′), where

τ ′ def= (Ni,Δi, Ti)i∈[q̄] ,

τ ′′ def= (Zi[1] ‖ . . . ‖ Zi[l])i∈[q̄] .
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A set of partial transcripts τ ′ (resp. τ ′′) obtained from attainable transcripts will
be denoted Γ ′ (resp. Γ ′′). Let T′ and T′′ denote the marginal distributions of τ ′

and τ ′′, respectively, in the ideal world. We note that T′ and T′′ are independent.
For i ∈ [q̄] and α ∈ [l], one can fix Xi = Xi[1] ‖ . . . ‖ Xi[l], where Xi[α] =

Ti ⊕ 2α−1Δi. Let

V = {π(Xi[α]) : i ∈ [q̄], α ∈ [l]} .

For N ∈ Nm, let

VN = {π(Xi[α]) : Ni = N, i ∈ [q̄], α ∈ [l]} .

For simplicity of notation, we rename the elements of VN , writing

VN = {VN [1], . . . , VN [s]} ,

where s = (μ + 1)l. For VN [α] ∈ VN such that VN [α] = π(Xi[β]), let WN [α]
denote the corresponding keysteam block Zi[β]. This means that WN [α] =
VN [α] ⊕ ρ′(N). We note that VN and V are defined only by τ ′. We will call
a partial transcript τ ′ bad if the following condition holds.

– bad ⇔
∨

t≥1 bad[t], where bad[t] if and only if there exist (N [i])i∈[t] ∈ N ∗t
m ,

(αi)i∈[t] and (βi)i∈[t] such that αi �= βi and

VN [i][βi] = VN [i+1][αi+1]

for i = 1, . . . , t, with indices taken modulo t.

The subset of bad parts τ ′ in Γ ′ will be denoted Γ ′
bad. Similarly to Lemma 9, we

can prove the following lemma.

Lemma 11. Pr [T′ ∈ Γ ′
bad] ≤ 2q(μ+1)2l2

2n .

We will call τ = (τ ′, τ ′′) a good transcript if τ ′ is not bad. Given a good transcript
τ , we can define a tree TN = (VN , E=

N ), and a label function λN on E=
N for each

nonce N ∈ Nm, where any vertex VN [α] such that α ≥ 2 is connected with
VN [1], and

λN (VN [1], VN [α])
def= WN [1] ⊕ WN [α].

We also define a graph Gτ ′ = (V, E=) and a label function λ : E= → {0, 1}n as
the union of TN and the union of λN over all nonces in N , respectively. We note
that Gτ ′ is determined only by τ ′ (independent of τ ′′). We also see that there is
no cycle in Gτ ′ since otherwise we have bad. Similarly to the proof of Lemma 7,
we have

Pr [Tre = τ ] =
1

2(q̄+2q)n
· h(Gτ ′ , λ)

(2n)|V|
,

Pr [Tid = τ ] =
1

2(q+q̄+q̄l)n
=

1
2(|E=|+q̄+2q)n

,
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since |E=| = q̄l − q. Therefore, we have

‖Tre − Tid‖ =
1
2

∑

τ

|Pr [Tre = τ ] − Pr [Tid = τ ]|

≤ 1
2

Pr [T′ ∈ Γ ′
bad] +

1
2

∑

τ ′ /∈Γ ′
bad

∑

τ ′′∈Γ ′′
|Pr [Tre = τ ] − Pr [Tid = τ ]|

=
q(μ + 1)2l2

2n
+

1
2

∑

τ ′ /∈Γ ′
bad

∑

τ ′′∈Γ ′′

1
2(q̄+2q)n

∣
∣
∣
∣

h(Gτ ′ , λ)
(2n)|V|

− 1
2|E=|n

∣
∣
∣
∣
. (7)

For each λ ∈ L(Gτ ′) (which is the set of all possible label functions on Gτ ′), the
number of partial transcripts τ ′′ yielding λ is exactly 2qn since one can arbitrarily
choose WN [1] for each N ∈ Nm. Therefore, for a fixed τ ′ /∈ Γ ′

bad, we have

1
2

∑

τ ′′∈Γ ′′

∣
∣
∣
∣

h(Gτ ′ , λ)
(2n)|V|

− 1
2|E=|n

∣
∣
∣
∣
=

1
2

∑

λ∈L(Gτ′ )

2qn

∣
∣
∣
∣

h(Gτ ′ , λ)
(2n)|V|

− 1
2|E=|n

∣
∣
∣
∣

≤ 2qn · ε(τ ′)

where

ε(τ ′)
def=

⎛

⎝
4q̄l

22n

∑

C∈Comp(Gτ′ )

|C|3
⎞

⎠

1
2

+
∑

C∈Comp(Gτ′ )

|C|2
2n+1

(8)

by Lemma 4 with σ ≤ q̄l, where Comp(Gτ ′) denotes the set of connected com-
ponents of Gτ ′ . We define ε̄ by extending the domain of ε to Γ ′; ε̄(τ ′) = ε(τ ′) if
τ ′ ∈ Γ ′\Γ ′

bad, and ε̄(τ ′) = 0 otherwise. By (7) and (8), we have

‖Tre − Tid‖ ≤ q(μ + 1)2l2

2n
+ ExT′ [ε̄], (9)

where the expectation is taken over the distribution T′.

Lemma 12. If q(μ + 1)2l2 ≤ 2n−1, then

ExT′ [ε̄] ≤ 7q(μ + 1)2l2

2n
.

Proof. We define some random variables to upper bound ε̄ as follows.

– For (N,N ′) ∈ Nm
∗2, we define a random variable IN,N ′ : Γ ′ → {0, 1}. For

τ ′ ∈ Γ ′, IN,N ′(τ ′) = 1 if, for a positive integer t, there exists

(N [0], . . . , N [t]) ∈ Nm
∗(t+1)

such that N [0] = N , N [t] = N ′, and VN [i−1] ∩ VN [i] �= ∅ for i ∈ [t]; IN,N ′(τ ′) =
0 otherwise. If τ = (τ ′, τ ′′) is good, and IN,N ′(τ ′) = 1, then two trees TN and
TN ′ are in the same component of Gτ ′ .
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– For (N,N ′, N ′′) ∈ Nm
∗3, we define a random variable JN,N ′,N ′′ : Γ ′ → {0, 1}.

For τ ′ ∈ Γ ′, JN,N ′,N ′′(τ ′) = 1 if, for integers t ≥ 1 and t′ ≥ 0, there exist two
sequences of nonces

(N [0], . . . , N [t]) ∈ Nm
∗(t+1),

(N ′[0], . . . , N ′[t′]) ∈ Nm
∗(t′+1)

such that N [0] = N , N [t] = N ′′, N ′[t′] = N ′, VN [i−1] ∩ VN [i] �= ∅ for i ∈ [t],
VN ′[i−1] ∩ VN ′[i] �= ∅ for i ∈ [t′], and

{N [0], . . . , N [t]} ∩ {N ′[0], . . . , N ′[t′]} = {N ′[0]} ;

JN,N ′,N ′′(τ ′) = 0 otherwise. If τ = (τ ′, τ ′′) is good, and JN,N ′,N ′′(τ ′) = 1,
then three trees TN , TN ′ and TN ′′ are in the same component of Gτ ′ .

– Let

S(τ ′)
def= qs2 +

∑

(N,N ′)∈Nm
∗2

s2IN,N ′(τ ′),

T (τ ′)
def= qs3 + 3

∑

(N,N ′)∈Nm
∗2

s3IN,N ′(τ ′) +
∑

(N,N ′,N ′′)∈Nm
∗3

s3JN,N ′,N ′′(τ ′).

Then for any τ ′ ∈ Γ ′\Γ ′
bad, we have

∑

C∈Comp(Gτ′ )

|C|2 ≤ S(τ ′),
∑

C∈Comp(Gτ′ )

|C|3 ≤ T (τ ′). (10)

For any τ ′ ∈ Γ ′, let τ ′ = (τ1, τ2), where τ1 = (Ni, Ti)i∈[q̄] and τ2 = (Δi)i∈[q̄].
A set of partial transcripts τ1 (resp. τ2) obtained from the transcripts in Γ ′ will
be denoted Γ1 (resp. Γ2). Let T1 and T2 denote the marginal distributions of τ1
and τ2, respectively, in the ideal world.

Similarly to the proof of Lemma 10, we have ExT2 [IN,N ′ ] = 2s2

2n for any
τ1 ∈ Γ1, and hence,

ExT′ [S] ≤ 2q(μ + 1)2l2. (11)

The next goal is to upper bound ExT′ [T ]; we fix τ1 ∈ Γ1. For distinct nonces
N,N ′, N ′′ ∈ Nm, integers t ≥ 1 and t′ ≥ 0, the number of sequences (N [i]) ∈
Nm

∗(t+1) and (N ′[i]) ∈ Nm
∗(t′+1) such that N [0] = N , N [t] = N ′′, N ′[0] = N [j]

for some j ∈ {0, . . . , t}, and N ′[t′] = N ′ is at most (t+1)qt+t′−2, where it cannot
be the case that both t = 1 and t′ = 0. For each of such sequences, we have
VN [i−1]∩VN [i] �= ∅ for i ∈ [t], and VN ′[i−1]∩VN ′[i] �= ∅ for i ∈ [t′] with probability

at most
(

s2

2n

)t+t′

. Therefore, we have

ExT2 [JN,N ′,N ′′ ] ≤
∞∑

t′=1

(

2qt′−1

(
s2

2n

)t′+1
)

+
∞∑

t=2

∞∑

t′=0

(

(t + 1)qt+t′−2

(
s2

2n

)t+t′)

≤ 4s4

22n
+

s4

22n

∞∑

t=0

(

(t + 3)
(

qs2

2n

)t ∞∑

t′=0

(
qs2

2n

)t′)

≤ 20s4

22n
,
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where the expectation is taken over the distribution T2 and the last inequality
holds since qs2 ≤ 2n−1. By (10) and since ExT2 [IN,N ′ ] ≤ 2s2

2n , we have

ExT2 [T ] ≤ qs3 +
6q2s5

2n
+

20q3s7

22n
≤ 9qs3 = 9q(μ + 1)3l3

where the expectation is also taken over the distribution T2. Since the above
inequality holds for any τ1 ∈ Γ1, we have

ExT′ [T ] ≤ 9q(μ + 1)3l3. (12)

By (8), (10), (11), (12) and Jensen’s inequality, we have

ExT′ [ε̄] ≤
(

4q̄lExT′ [T ]
22n

) 1
2

+
ExT′ [S]
2n+1

≤
(

36q2(μ + 1)4l4

22n

) 1
2

+
q(μ + 1)2l2

2n
≤ 7q(μ + 1)2l2

2n
.

�


By (9) and Lemma 12, we have

Advprg
SCM.PRNG∗(q, μ, σ, l) ≤ ‖Tre − Tid‖ ≤ 8q(μ + 1)2l2

2n
.

4.4 Using Random IVs

One may want to instantiate nonces with random IVs for convenience of imple-
mentation. For the analysis of this instantiation, we need to introduce a new
parameter r that denotes the highest multiplicity in IV collisions. Then we make
the following observations.

1. The expected number of IV collisions is q(q−1)
2n−1 . By defining μ > q

2
3 as a

bad event, one can upper bound μ by q
2
3 , while the probability of this bad

event is upper bounded by 2q
4
3

2n by Markov’s inequality. Following the proof
of Lemma 6 with this bad event, we have

Advmac
SCM.MAC∗[H](q, v) ≤ 16q

8
3

22n
+

3q
4
3

2n
+4q

4
3 δ +

4v

2n
+(2L+1)vδ +2n

(

eq
4
3

L2n

)L

.

2. By closely looking at the proof of Lemma 7, one see that

Advprg
SCM.PRNG#(μ, q, σ, l) ≤ 2σ2 S

22n
+

4S

2n

where S = maxτ∈Γ

{∑

N∈Nm
s2N

}

. Since
∑

N∈Nm
s2N ≤ σrl and Pr [r ≥ 4] ≤

3q4/23n, we have

Advprg
SCM.PRNG#(q, σ, l) ≤ 6σ3l

22n
+

12σl

2n
+

3q4

23n
.
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3. In the proof of Lemma 8, it is assumed that exactly μ + 1 queries are made
for each nonce. When nonces are instantiated with random IVs, μ + 1 can be
replaced by r, obtaining the following bound.

Advprg
SCM.PRNG#(q, σ, l) ≤ 72ql2

2n
+

3q4

23n
.

All in all, we conclude that the security bound is dominated by

min
{

72ql2

2n
,
6σ3l

22n
+

12σl

2n

}

,

when q � O(2
3n
4 ) and v � O(2n).

References

1. Andreeva, E., et al.: COLM v1. Submission to the CAESAR competition (2016).
https://competitions.cr.yp.to/round3/colmv1.pdf

2. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-25937-4 25

3. Bhattacharya, S., Nandi, M.: Revisiting variable output length XOR pseudoran-
dom function. IACR Trans. Symmetric Cryptol. 2018(1), 314–335 (2018)

4. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user secu-
rity, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 18

5. Choi, W., Lee, B., Lee, J., Lee, Y.: Toward a fully secure authenticated encryp-
tion scheme from a pseudorandom permutation. IACR Cryptology ePrint Archive,
Report 2021/1168 (2021). http://eprint.iacr.org/2021/1168

6. Choi, W., Lee, B., Lee, Y., Lee, J.: Improved security analysis for nonce-based
enhanced hash-then-mask MACs. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12491, pp. 697–723. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64837-4 23

7. Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? To make a
single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 631–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96884-1 21

8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. submis-
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Abstract. A substantial effort has been devoted to proving optimal
bounds for the security of key-alternating ciphers with independent sub-
keys in the random permutation model (e.g., Chen and Steinberger,
EUROCRYPT ’14; Hoang and Tessaro, CRYPTO ’16). While common
in the study of multi-round constructions, the assumption that sub-keys
are truly independent is not realistic, as these are generally highly cor-
related and generated from shorter keys.

In this paper, we show the existence of non-trivial distributions of
limited independence for which a t-round key-alternating cipher achieves
optimal security. Our work is a natural continuation of the work of Chen
et al. (CRYPTO ’14) which considered the case of t “ 2 when all-subkeys
are identical. Here, we show that key-alternating ciphers remain secure
for a large class of (t ´ 1)-wise and (t ´ 2)-wise independent distribution
of sub-keys.

Our proofs proceed by generalizations of the so-called Sum-Capture
Theorem, which we prove using Fourier-analytic techniques.

Keywords: Provable security · Key-alternating ciphers

1 Introduction

Key-alternating ciphers (KACs) alternate the application of fixed, invertible, and
key-independent permutations P1, . . . , Pt on the n-bit strings with xor-ing t ` 1
n-bit sub-keys s0, s1, . . . , st, i.e., the output of the KAC on input x and sub-keys
s “ (s0, s1, . . . , st) is

KACs(x) “ st ` Pt(st´1 ` Pt´1(· · · P2(s1 ` P1(s0 ` x)) · · · )),

where ` denotes the bit-wise xor. Several modern block cipher designs are KACs
– these include in particular Substitution-Permutation Networks (SPNs), like
AES [10], PRESENT [3] and LED [14].

Most theoretical analyses of KACs [4,6,9,13,16,18,21] have proved their
security as a (strong) pseudorandom permutation in a model where the permu-
tations P1, . . . , Pt are randomly and independently chosen, and can be queried
by the adversary. Moreover, the sub-keys s “ (s0, s1, . . . , st) are also chosen

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13092, pp. 435–464, 2021.
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independently.1 These results show that the number of queries q (to the keyed
construction, as well as to the permutations) needed to break the construction
is roughly q “ N t{(t`1) (where N “ 2n), which has been shown to be optimal.

This paper: Security with correlated sub-keys. Real sub-keys are how-
ever not independent, and are generated from a shorter key using a specific key
schedule algorithm. However, very little progress has been made in understanding
when such key schedules are secure, and independence assumptions are common
even in cryptanalysis. In this paper, we therefore ask the following question:

For which distributions of sub-keys can we still obtain optimal security
against q “ N t{(t`1) queries?

We note that this question was partially addressed by Dunkelman et al. [11] for
t “ 1 and later by Chen et al. [5], who proved such bounds for the case where
t “ 2, and the subkeys satisfy the constraint s0 “ s1 “ s2.2 Here, we consider
the extension of their work beyond three rounds.

We also stress that our goal is not that of finding practical key schedules
which are comparable to those used in actual block cipher designs. Rather, we
aim for a broader understanding of correlated key schedules, and when they
preserve optimal security. We also point out that with respect to our current
state of knowledge, even modest savings in randomness to generate the keys are
not known for multi-round KACs.

Reducing key dependence for arbitrary rounds. As our first contri-
bution, we show that for any t-round KAC with t ` 1 subkeys, there are key
schedules that merely depend on t´1 independent and uniform keys that achieve
q “ Ω(N t{(t`1)) security. This generalizes the result for t “ 2 proved by Chen et
al. [5] to multi-round instantiations.

We give a general sufficient condition on key distributions for s that achieve
optimal security – specifically our condition considers distributions where the
t ` 1 subkeys s for the t-round KAC are a linear function of a vector k of t ´ 1
“master” keys, denoted as s “ Ak, in which we view each master key and subkey
as an element of the field F2n . The sufficient conditions for the key schedules
are, in particular, as follows:

1. Any t ´ 2 rows of A forms a matrix of rank t ´ 2.
2. For any t rows of A,

– the t rows form a matrix of rank t ´ 1.
– there exists a linear combination of the t rows such that it gives zero

vector and there are two neighboring rows with non-zero coefficients.
1 In fact, Chen and Steinberger [6] already noted that their result holds in the case

where the underlying subkeys are t-wise independent. The tight concrete bound
proved by Hoang and Tessaro [16] also extends to t-wise independent setting.

2 Actually, Chen et al. [5] also addressed reducing the number of keys and permutations
in parallel. They showed that a 2-round KAC is secure against q “ Ω(N2{3) queries
when instantiated by a single permutation and a single key with a key schedule built
over a linear orthomorphism.
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For example, a suitable and natural key schedule that satisfies our condition is
the one where s is from the (t ´ 1)-wise independent distribution obtained by
evaluating a random polynomial of degree t ´ 2 at t ` 1 distinct points over F2n .
In fact, while our condition on key schedules is more restrictive than (t´2)-wise
independence, it still allows for simple key schedules for small rounds (e.g. t “ 3
and t “ 4) that do not require field multiplication, which may be considered an
expensive operation, i.e., for t “ 3, we show that one can set s “ (k0, k0, k1, k1)
to have q “ Ω(N3{4). For t “ 4, we set s “ (k0, k1, k2, k0 ` k1, k1 ` k2) to have
q “ Ω(N4{5).

Less independence for more rounds. Of course, we would like to under-
stand whether even more randomness can be saved. We make progress by saving
n more bits for a sufficiently large number of rounds. Again, we give a general
condition on distributions characterized by linear functions mapping t ´ 2 n-bit
keys k to t ` 1 keys s, i.e., s “ Ak. For any linear mapping A satisfying the
property that each t ´ 2 rows of A have rank t ´ 2, our security proof shows, for
t ą 5, a bound that gives security strictly better than q “ Ω(N (t´1){t) and for
t � 8, we achieve q “ Ω(N t{(t`1)) security. Again, one particular instantiation
is obtained by evaluating a random polynomial of degree t ´ 3 at t ` 1 distinct
points over F2n .

How far can we go? The end question is of course whether we can push our
results even further. Ideally, it would be possible to use a single-key schedule
(as in Chen et al.) for an arbitrary number of rounds. However, as we explain
below, the classical approach to prove security for limited independence is via
so-called “sum-capture theorems” [2,22]. In the paper below, we show that the
sum-capture theorem necessary to study the trivial key schedule beyond two
rounds is not true. This, of course, does not mean that the resulting construc-
tion is insecure, but improving beyond the results of this paper would require
substantially new counting techniques. (See Sect. 4.3).

Other related works. Another aspect of theoretical analyses over KACs is to
reduce the number of random permutations used in the construction. Recently,
Wu et al. [23] showed that for a three round KAC instantiated with four uniform
and independent subkeys and a single random permutation is secure against
q “ Ω(N3{4) adversarial queries. Dutta [12] considered minimizing the tweakable
KAC by reducing the number of random permutations and proves the security
of q “ Ω(N2{3) for the 2-round tweakable KAC by Cogliati et al. [7] and 4-round
tweakable KAC by Cogliati and Seurin [8].

1.1 Technical Overview

Our paper follows the well-established paradigm of proving security of key-
alternating ciphers based on the expectation method by Hoang and Tessaro [16],
combined with generalizations of sum-capture theorems as proposed by Chen et
al. [5].
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Chain-based analyses. The core of existing analyses proceeds by identify-
ing a set of bad transcripts which contains so-called chains – these are tran-
scripts where the adversary has made direct queries to P1, P2, . . . , Pt, and/or
to the construction, which are linked together by the chosen subkeys. In the
ideal world, such bad transcript would likely become inconsistent with the real
world. i.e., the probability of obtaining the bad transcript from the real world
can be zero. Formally, we represent a transcript as τ “ (QE ,Q1, . . . ,Qt,k),
where QE contains queries to the construction, and Qi’s are the queries to the
individual permutations. Further, k are the keys from which the actual sub-keys
s “ (s0, s1, . . . , st) are generated. (As our statements are independent of whether
such queries occurred in the forward or in the backward direction, and of their
order, we think of the transcript as being made of sets of input-output pairs.)
We say that such a τ is bad if the subkeys (s0, s1, . . . , st) are such that there
exist queries (ut`1, v0) P QE , (u1, v1) P Q1, . . . , (ut, vt) P Qt which constitutes a
chain, i.e., if there exists an index i, such that for all j P {0, . . . , t} satisfying
j �“ i, one has vj ` uj`1 “ sj , then we say they form the i-th type of chain.
If the sub-keys s are independent and uniform, then the number of chains is at
most (t ` 1) · qt`1 (by a simple union bound over all types of chain), and thus,
the probability that the transcript is bad is at most O((t ` 1)qt`1{N t). (Note
that every chain definition only involved t subkeys.)

Handling limited independence. This argument however does not work if s
is generated (say) from (t ´ 1)-wise independent and uniform n-bit keys, as we
can expect (at best) to prove O((t`1)qt`1{N t´1). We resolve this by considering
a generalized version of the sum-capture quantity which allows us to give tighter
bound over the number of chains, namely we define

μc(V0,Q1, . . . ,Qt´1, Ut) :“
∣
∣
∣
∣
∣

{

(v0, (u1, v1), . . . , (ut´1, vt´1), ut) P V0 ˆ Q1 ˆ . . . ˆ Qt´1 ˆ Ut :

t´1∑

i“0

ci(vi ` ui`1) “ 0

}∣
∣
∣
∣
∣
(1)

where V0, Ut Ď {0, 1}n and the coefficients c “ (c0, . . . , ct´1) are field elements
of F2n . A bound on this quantity can be used to bound the number of chains
in a non-trivial fashion, as long as the coefficients arising are compatible with
the underlying method to generate the sub-keys and satisfy certain conditions
(which in turn will give our characterization of which distributions actually give
the desired optimal security).

Concretely, when the linear coefficients c “ (c0, . . . , ct´1) satisfies the condi-
tion that there is an index 0 � idx ă t ´ 1 such that cidx �“ 0 and cidx`1 �“ 0, we
prove the tight bound μc “ Θ(qt`1{N) using Fourier Analysis techniques.

Reducing key dependencies further. To obtain our results for construction
with subkeys generated from t ´ 2 independent and uniform keys, we need to
upper bound an even more restrictive version of the above sum-capture quantity
where two linear constraints are imposed, i.e.,
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μc,d(V0,Q1, . . . ,Qt´1, Ut) :“
∣
∣
∣
∣
∣

{

(v0, (u1, v1), . . . , (ut´1, vt´1), ut) P V0 ˆ Q1 ˆ . . . ˆ Qt´1 ˆ Ut :

t´1∑

i“0

ci(vi ` ui`1) “ 0,

t´1∑

i“0

di(vi ` ui`1) “ 0

}∣
∣
∣
∣
∣

(2)

For the 2-constraint case, we in particular look at the coefficients c “
(c0, . . . , ct´1) and d “ (d0, . . . , dt´1) that characterize the underlying subkeys
generated via the linear key schedule being (t ´ 2)-wise independent and uni-
form. We then show that, with the subkeys generated from t ´ 2 uniform and
independent n-bit keys via a linear key schedule:

– for t ą 5, the t-round KAC is secure against q “ ω(N
t´1

t ) queries.
– for t � 8, the t-round KAC has tight security bound (i.e., q “ Ω(N

t
t`1 ))

Given that (2) is a natural generalization of its one constraint counterpart, it
is tempting to conclude that upper-bounding (2) is not harder than upper-
bounding (1). However, as the number of constraints becomes two, we stress
that the problem of upper-bounding (2) is much harder. Moreover, the tightness
of upper-bounding (1) crucially relies on a particular step which was referred
to as the “Cauchy-Schwartz trick” [2,5,22], which does not seem to apply here.
We bypass this limitation by introducing a novel representation for the upper
bound of (2) as the 2-norm of a matrix. In particular, one can interpret the
Cauchy-Schwartz trick upper bound as essentially a special case of the matrix
norm bound in which each row and each column of the matrix contains at most
one non-zero entry. Then we use the matrix Frobenius norm which is easier to
compute for bounding the matrix 2-norm. Though our current technique only
proves tight security bound for t � 8, we believe that the matrix 2-norm is the
right characterization and one can extend the tightness result to t � 4 via a
better tool to derive the 2-norm bound, as the usage of Frobenius norm is, in
most cases, not tight3.

While (2) remains to be a promising candidate to consider for saving two
keys, we show that for t “ 3, i.e., for the 3-round KAC with identical subkey
and independent permutations, the quantity of (2) is lower bounded by q3{N
with good probability. Hence, a sum capture quantity with highly non-trivial
characterizations or an alternative proof strategy for the 3-round KAC is needed
to obtain the desired q “ Ω(N3{4) security bound.

Good transcript analysis. As we have bounded the probability of a tran-
script being bad, we move to understand the remaining transcripts which we
consider as good. We rely on the expectation method proposed by Hoang and

3 In fact, the Frobenius norm and 2-norm can have up to
√

N multiplicative gap for
N ˆ N matrix (e.g. the identity matrix), and we believe that a large gap exists in
our Frobenius norm bound. However, to get a better 2-norm bound, it requires a
much better understanding to our defined matrix for analyzing (2) than we do.
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Tessaro [16], which is a generalization of the H-coefficient method [6,20]. In the
expectation method, the final security upper bound is

Security bound � EX1 [g(X1)] ` Pr[X1 is bad]

in which X1 is the random variable representing the transcript generated from
the adversary interacting with the ideal world, and g : T → [0, `8) is a non-
negative function such that g(τ) upper bounds the real-world-ideal-world proba-
bility ratio of any good transcript τ . The goal is find a function g : T → [0, `8)
so that the value of EX1 [g(X1)] is minimized.

It is tempting to believe that the subkeys are needed to be at least t-wise
independent and uniform when applying the techniques in [16] to achieve the
tight security bound for the good transcripts. However, surprisingly, we show (in
Sect. 5) that as long as the underlying subkeys s “ (s0, . . . , st) are (t ´ 2)-wise
independent and uniform, we can pick a non-negative function g so that

EX1 [g(X1)] � O(qt`1{N t).

Therefore, as long as the t-round KAC has a key schedule that gives (t ´ 2)-wise
independent and uniform subkeys, our result on the good transcript analysis can
be applied as black-box.

1.2 Paper Organization

In Sect. 2 we define some basic notations and indistinguishability framework.
In Sect. 3 we give the main theorems and show tight security for classes of t-
round KAC. In Sect. 4 we analyze the sum capture quantity for upper-bounding
the number of bad transcripts. Then we provide analysis for good transcripts
in Sect. 5 and wrap up proof of theorems in Sect. 6. Finally we provide conclusions
and open problems in Sect. 7.

2 Preliminaries

Notations. For a finite set S, we write x
$← S to denote that x receives a

uniformly sampled value from S. For an algorithm A, we write y ← A(x1, . . . ; r)
to denote that A takes x1, . . . as inputs and runs with the randomness r and
assigning the output to y. We let y

$← A(x1, . . . , ) be that A, given the inputs,
is executed over a randomly chosen r and the resulting value is assigned to y.

We use Fp to denote a finite field of size p. For any two elements u, v P {0, 1}n,
we use 〈u, v〉 “ ∑n

i“1 uivi to denote the inner product of u and v, where ui, vi

are the i-th bit of u, v respectively. For any number 1 � b � a, we write a(b) “
a(a ´ 1) · · · (a ´ b ` 1) and take a(0) “ 1 by convention. In all the following, for
any two elements u, v P {0, 1}n, we take u ` v and uv as the field addition and
multiplication in F2n respectively, in which u ` v is implemented as the bit-wise
xor over {0, 1}n. For a fixed n, we write N “ 2n. For any vector u and matrix
A, we write uJ and AJ as their transpose.
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PRP security of block ciphers. We study the security of the Key Alter-
nating Cipher in the random permutation model. Let E : K ˆ M → M be a
blockcipher, which is constructed over a set of independent, random permuta-
tions P “ (P1, P2, . . . , Pt). Let A be an adversary, the strong PRP advantage of
A is defined as

Adv˘prp
E[P ](A) :“ Pr[K $← K : AE[P ],P “ 1] ´ Pr[AP0,P “ 1]

in which P0 is a random permutation independent of P , and “˘” denotes that
the adversary A can query the oracles in both forward direction and backward
direction.

Indistinguishability framework.We consider a computationally unbounded
distinguisher A interacting with two systems S0 and S1. The interaction between
A and Sb (where b P {0, 1}) defines a transcript τ “ ((u1, v1), . . . , (uq, vq)) that
records the q pairs of queries/replies A made to/received from the system Sb. Let
Xb be the random variable representing the transcript, then the goal is to upper
bound the following statistical distance

Δ(X0,X1) “
∑

τ

max{0,Pr[X1 “ τ ] ´ Pr[X0 “ τ ]}.

Formulating systems. We follow [19] to describe the system behavior of S
by associating every possible transcript τ “ ((u1, v1), . . . , (uq, vq)) with a value
pS(τ) P [0, 1]. One can interpret pS(τ) as the probability that, if the queries
u1, . . . , uq in τ are asked sequentially, S answers with v1, . . . , vq respectively. Note
that pS(·) is defined only by the underlying system S and is hence independent
of any distinguisher. We also note that pS(·) is not a probability distribution
over the transcripts, as the sum over all pS(τ) does not necessarily give one.

Since the distinguisher is computationally unbounded, it is sufficient to con-
sider deterministic distinguishers only. Fix any deterministic distinguisher A, let
X denote the transcript distribution of A interacting with S, then it holds that
Pr[X “ τ ] P {0, pS(τ)} for any τ because, either A issues the queries u1, . . . , uq

when given the answers v1, . . . , vq, leading to Pr[X “ τ ] “ pS(τ), or it does not,
resulting in Pr[X “ τ ] “ 0.

Let T be the set of transcripts τ that has Pr[X1 “ τ ] ą 0. Further noting
that Pr[X0 “ τ ] “ pS0(τ) if τ P T , we can rewrite the statistical distance as

Δ(X0,X1) “
∑

τ

max{0, pS1(τ) ´ pS0(τ)} “
∑

τ

pS1(τ) · max
{

0, 1 ´ pS0(τ)
pS1(τ)

}

.

The expectation method. In this part we review the expectation method
proposed by [16], which is developed based on the H-coefficient method [6,20].
In the H-coefficient method, the set of transcript T is partitioned into Tgood and
Tbad so that for any τ P Tgood, pS0(τ){pS1(τ) � 1 ´ ε for some carefully chosen
parameter ε. Then, an upper bound of the advantage directly follows. i.e.,

Δ(X0,X1) � ε ` Pr[X1 P Tbad].
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However, instead of giving a uniform bound over all good transcripts, we can
associate each τ with a non-negative value g(τ) so that pS0(τ){pS1(τ) � 1´g(τ)
for every τ P Tgood. Hence we can instead, derive the upper bound as

Δ(X0,X1) �
∑

τPTgood

pS1(τ) · g(τ) `
∑

τPTbad

pS1(τ) � EX1 [g(X1)] `
∑

τPTbad

pS1(τ),

where we can take the expectation over all τ P T by the fact that g(·) is non-
negative. Therefore, we have the following lemma.

Lemma 1 (The expectation method). If there exists a partition of T “
Tgood \ Tbad, and a function g : T → [0, `8) such that for any τ P Tgood,
pS0(τ){pS1(τ) � 1 ´ g(τ), then

Δ(X0,X1) � EX1 [g(X1)] ` Pr[X1 P Tbad].

3 Main Results

We consider the PRP security of t-round Key Alternating Cipher (KAC) that
is built on t random permutations P “ (P1, . . . , Pt) over {0, 1}n and t ` 1
subkeys (s0, . . . , st) in which si P {0, 1}n. The t-round KAC, when given input
M P {0, 1}n, outputs

st ` Pt(st´1 ` Pt´1(· · · P1(s0 ` M) · · · )).

The subkeys are generated from the master key denoted as (k0, . . . , kw) in which
ki are sampled from {0, 1}n uniformly and independently. Therefore, the length
of the master key is (w ` 1)n bits. Here we consider only linear key schedule
algorithms, which can be represented as a matrix A over F2n . We define the
column vectors s “ (s0, . . . , st)J and k “ (k0, . . . , kw)J in which we naturally
take each n-bit string as an element in F2n and use s ← Ak to denote the
key-scheduling process.

The case of A being an identity matrix of size (t ` 1) ˆ (t ` 1) has been
well studied, i.e. it was proved in [6,16] that, when the subkeys s0, . . . , st are
independent and uniform and the permutations P1, . . . , Pt are independent, any
adversary needs at least q “ Ω(N t{(t`1)) queries to achieve constant distin-
guishing advantage. Here we consider the case in which the permutations are
independent but the subkeys are correlated and are generated via linear key
schedules from t ´ 1 independent n-bit keys (considered Theorem 1) or t ´ 2
independent n-bit keys (Theorem 2).

We starts with providing security bound of t-round KAC for a class of key
schedules that generate t ` 1 subkeys from t ´ 1 independent keys.

Theorem 1. For the t-round KAC constructed over t random permutations P “
(P1, . . . , Pt), let the key of KAC be k “ (k0, k1, . . . , kt´2)J in which ki’s are
independently uniformly sampled from F2n . Let subkeys s “ (s0, s1, . . . , st)J be
derived by s ← Ak in which A is a (t ` 1) ˆ (t ´ 1) matrix over F2n , with the
rows denoted as A0, . . . , At, such that
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1. Any t ´ 2 rows of A forms a matrix of rank t ´ 2.
2. For any I Ď {0, . . . , t}, |I| “ t, then the row vectors (A�)�PI satisfy that

– (A�)�PI forms a matrix of rank t ´ 1.
– there exists values (c�)�PI such that

∑

�PI c�A� “ 0 and there are two
indices idx1, idx2 P I satisfying idx1 ´ idx2 P {1, t} and cidx1 , cidx2 are both
non-zero.

Then for any adversary A that issues at most q queries to KAC, P1, . . . , Pt, where
9(t ` 2)n � q � N{4,

Adv˘prp
KAC[P ](A) � (t2 ` t ` 1) · 4qt`1

N t
` 3(t ` 1)

√

q2t´1(t ` 2)n
N2t´2

.

First, we give a key schedule that gives (t ´ 1)-wise independent and uniform
subkeys for arbitrary t-round KAC.

Corollary 1. For t ă 2n, pick distinct elements α0, . . . , αt P F2n , and let subkey
si “ F (αi) in which F (X) “∑t´2

j“0 kj · Xj, then an adversary needs Ω(N t{(t`1))
queries to achieve constant distinguishing advantage.

Corollary 1 directly follows from the fact that A is a Vandermonde matrix
so that every t ´ 1 rows of A forms a full-rank sub-matrix. Hence, any t rows of
A are linear dependent with the coefficients (c�)�PI satisfying c� �“ 0 for all 	.

Note that by letting t “ 2 in Corollary 1, our result implies the optimal
security bound of 2-round KAC with identical subkeys and independent permu-
tations proven by Chen et al. [5].

Though it is implied in the theorem statement that we need the subkeys being
(t´2)-wise independent and uniform, for small round t, we still can obtain some
simple key schedules that achieve the optimal bound for q while do not require
any field multiplication operations, which may be considered an expensive oper-
ation in key-scheduling.

Corollary 2. Let the 3-round KAC be with key schedule

s “ (k0, k0, k1, k1)

in which k0, k1 are two independently uniform n-bit keys, then an adversary
needs Ω(N3{4) queries to achieve constant distinguishing advantage.

Corollary 3. Let the 4-round KAC be with key schedule

s “ (k0, k1, k2, k0 ` k1, k1 ` k2)

in which k0, k1, k2 are three independently uniform n-bit keys, then an adversary
needs Ω(N4{5) queries to achieve constant distinguishing advantage.

One can check that the subkeys in Corollary 2 (respectively Corollary 3) are
1-wise (pairwise) independent and uniform, and any t rows forms a sub-matrix of
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Table 1. q “ Ω(Nλ) for constant security bound in Theorem 2.

t 3 4 5 6 7 8 9 10 · · ·
λ “ logN q 0.571 0.720 0.800 0.842 0.870 0.889 0.9 0.909 · · ·
t{(t ` 1) 0.750 0.800 0.833 0.857 0.875 0.889 0.9 0.909 · · ·

rank t´1 with the coefficients (c�)�PI satisfying the given conditions via Gaussian
elimination.

As Theorem 1 gives tight bound for all t, one may optimistically expect
similar results can be proved with ease when saving one more key. However, for
the t-round KAC with subkeys generated from t ´ 2 keys, we are only able to
make partial progress and prove the following theorem that only implies tight
security for t � 8.

Theorem 2. For the t-round KAC constructed over t random permutations P “
(P1, . . . , Pt), let the key of KAC be k “ (k0, k1, . . . , kt´3)J in which ki’s are
independently and uniformly sampled from F2n . Let subkeys s “ (s0, s1, . . . , st)J
be derived by s “ Ak in which A is a (t ` 1) ˆ (t ´ 2) matrix over F2n such that
any t ´ 2 rows of A forms a matrix of rank t ´ 2. Then for any adversary A that
issues at most (t ` 2)nN2{3 � q � N{4 queries to KAC, P1, . . . , Pt,

Adv˘prp
KAC[P ](A) � (t2 ` 2t) · (5q)t`1

N t
` (t ` 1)2 · (3q)2t´2.5

N2t´4
.

Table 1 summarizes the order of q that leads the security bound to Ω(1).
We can observe that, initially Theorem 2 does not give good bound for t � 7.
From t � 5, the bound starts getting better than q “ Ω(N (t´1){t) which can
be obtained by instantiating a (t ´ 1)-round KAC from the provided t ´ 2 keys
and applying Theorem 1. When t � 8, the bound achieves the optimal q “
Ω(N t{(t`1)). The tightness results for t � 7 are left open.

A feasible instantiation of Theorem 2 is to let the subkeys be the evaluations
at t`1 distinct points of a degree t´3 polynomial. Then the following corollary
holds.

Corollary 4. For 8 � t ă 2n, pick distinct elements α0, . . . , αt P F2n , and let
subkey si “ F (αi) in which F (X) “ ∑t´3

j“0 kj · Xj, then an adversary needs
Ω(N t{(t`1)) queries to achieve constant distinguishing advantage.

Proof framework. We will use the expectation method (i.e. Lemma 1) to
show both theorems. Given the query record Q “ (QE ,Q1, . . . ,Qt), we will be
generous and allow the adversary A to see the key k after making all the queries.
Therefore, we let the transcript τ “ (Q,k) by attaching k to the end of Q. In
the ideal world, we sample and attach a dummy key k to Q. Here we define the
set of bad transcript for the t-round KAC.
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Definition 1 (Bad transcripts). For a t-round KAC, we say a transcript
τ “ (Q,k) is bad if

k P BadkeyQ “
t⋃

i“0

BadkeyQ,i

in which for every i,

BadkeyQ,i :“ {k : s ← KeySchedule(k), there exists (ut`1, v0) P QE ,

(u1, v1) P Q1, . . . , (ut, vt) P Qt

s.t. for all 0 � j � t, j �“ i, vj ` sj “ uj`1},

otherwise we say τ is good. We use Tgood to denote the set of all good transcripts
and Tbad to denote the set of all bad transcripts. Hence T “ Tgood \ Tbad.

Then, we break the analysis into the bad transcript case and the good tran-
script case. We will use the generalized sum capture quantity in Sect. 4 as an
upper bound for the bad transcripts. We analyze the good transcripts in Sect. 5.
The final proof of theorems will be presented in Sect. 6.

More fine-grained security. In the above theorems, we use q to be the
uniform upper bound over all kinds of queries. However, we note that our proof
technique also provides bounds when the number of cipher queries qe and the
number of permutation queries qp are separated. We provide the bounds in the
full version for both theorems.

4 Generalized Sum Capture Quantity for KAC

In [5] Chen et al. considered minimizing the 2-round KAC, where they proved
a variant of “sum-capture” results [1,2,15,17,22]. The results are often stated
that, for a randomly chosen set A of size q, the quantity

μ(A) :“ max
X,Y ĎZ

n
2

|X|“|Y |“q

|{(a, x, y) P A ˆ X ˆ Y : a “ x ` y}| (3)

is close to its expected value q3{N (when A,X, Y are all chosen at random)
with high probability. In the 2-round KAC with identical key schedule, the sum-
capture quantity is defined as

μ(Q) :“ max
X,Y ĎZ

n
2

|X|“|Y |“q

|{(x, (u, v), y) P X ˆ Q ˆ Y : x ` u “ v ` y}| (4)

where one can view the query transcript Q that derived from the interaction of
an adversary A with the permutation, equivalently as the set A in (3) defined
by A “ {u ` v | (u, v) P Q}.

However, both (3) and (4) consider only a single random permutation with a
single linear constraints. To generalize the sum capture quantity so that we can
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handle the KAC that saves more keys, we consider the sum capture quantity
that involves (t ´ 1) independently random permutations and r P {1, 2} linear
constraints over F2n for the t-round KAC with a linear key schedule.

For the r “ 1 case, we are able to prove the tight bounds of sum cap-
ture quantity for any choice of linear constraint, leading to a feasible set of key
schedule that enables saving two keys for arbitrary t-round KAC with tight secu-
rity. However, as we increase the number of constraints to r “ 2, the problem
becomes more complicated and we do not have sophisticated technique to give
a tight bound or handle arbitrary linear constraints. We are only able prove a
loose upper bound for the linear-constraints that characterizes the underlying
subkeys being (t ´ 2)-wise independent, leading to partial result for saving three
keys of t-round KAC.

Fourier Analysis. To prove the bounds, we will rely on the tool of Fourier
analysis. In this part we define some notations for the Fourier analysis over
{0, 1}m. Given a function f : {0, 1}m → R, the Fourier coefficient of f with
α P {0, 1}m is defined as

f̂(α) :“ 1
2m

∑

xP{0,1}m

f(x)(´1)〈α,x〉.

Then we have

f(x) “
∑

αP{0,1}m

f̂(α)(´1)〈α,x〉. (5)

For any set S Ď {0, 1}m, we let 1S : {0, 1}m → {0, 1} be the 0/1 indicator
function of S. Then the following properties hold for 1S :

1̂S(0) “ |S|
2m

“
∑

αP{0,1}m

1̂S(α)2, (6)

∀α P {0, 1}m : |1̂S(α)| � 1̂S(0) “ |S|
2m

. (7)

4.1 1-Constraint Sum Capture Quantity

We let 1-constraint sum capture quantity be associated with a vector of coeffi-
cients c “ (c0, c1, . . . , ct´1), as

μc(V0,Q1, . . . ,Qt´1, Ut) :“
∣
∣
∣
∣
∣
∣

⎧

⎨

⎩
(v0, (u1, v1), . . . , (ut´1, vt´1), ut) P V0 ˆ Q1 ˆ · · · ˆ Qt´1 ˆ Ut :

t´1∑

j“0

cj(vj ` uj`1) “ 0

⎫

⎬

⎭

∣
∣
∣
∣
∣
∣

.
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Lemma 2. Let t � 2. Let P1, . . . , Pt´1 be t ´ 1 independent uniformly ran-
dom permutations of {0, 1}n, and let A be a probabilistic algorithm that makes
adaptive queries to P1, . . . , Pt´1. Let Q1, . . . ,Qt´1 be the query transcripts of
P1, . . . , Pt´1 interacting with A. Let c “ (c0, . . . , ct´1) be any coefficients so that
there exists an index 0 � idx ă t ´ 1 satisfying cidx �“ 0 and cidx`1 �“ 0, then for
any A that makes at most q queries to each permutations,

PrP1,...,Pt´1

[

∃V0, Ut Ď F2n , |V0| “ |Ut| “ q,

μc(V0,Q1, . . . ,Qt´1, Ut) � 3qt`1

N
` 3qt´1{2√(t ` 2)n

]

� 2t

N t
.

We let Φ(Qi) :“ maxα�“0,β �“0 N2|
∧

1Qi(α, β)| for the query records Q1, . . . ,Qt´1.

To show Lemma 2, we will first rely on the following Lemma 3, which states the
upper bound in terms of Φ(Qi) we just defined. Then we will apply the later
stated Lemma 4 by Chen et al. [5] that provides an upper bound for the Φ(Qi)
term to conclude the proof.

Lemma 3. Fix any c “ (c0, . . . , ct´1) such that cidx �“ 0 and cidx`1 �“ 0 for some
index 0 � idx ă t ´ 1, then for any subsets V0, Ut with |V0| “ |Ut| “ q,

μc(V0,Q1, . . . ,Qt´1, Ut) � qt`1

N
` qt´1Φ(Qidx`1).

Proof. The very first step is to write μc as a sum over indicator functions,
then we will perform Fourier transform over each indicator functions. The key
point is that, even though the summation will be over many terms and Fourier
coefficients, we can eliminate most of the summation term and simplify the
equality so that it only sums over a single Fourier coefficient terms.

Here we sum over the indicator functions.

μc(V0,Q1, . . . ,Qt´1, Ut) “
∑

v0

∑

u1,v1

· · ·
∑

ut´1,vt´1

∑

ut

1V0(v0)1Q1(u1, v1) · · ·

· · ·1Qt´1(ut´1, vt´1) · 1Ut
(ut) · 1Eq

⎛

⎝0,

t´1∑

j“0

cj(vj ` uj`1)

⎞

⎠

in which 1Eq(x, y) is the equality indicator function so that 1Eq(x, y) “ 1 if and
only if x “ y. Note that for the equality indicator function, we can perform
Fourier transformation and get

1Eq(x, y) “
∑

α,β

1̂Eq(α, β) · (´1)〈α,x〉`〈β,y〉 “ 1
N

·
∑

α

(´1)〈α,x`y〉,

in which we use the fact that

1̂Eq(α, β) “
{

1{N if α “ β
0 o.w.
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We expand each indicator function using Fourier transform and continue the
calculation.

μc (V0, Q1, . . . , Qt´1, Ut)

“
∑

v0,u1,v1,···
ut´1,vt´1,ut

⎛

⎝
∑

β0

1̂V0(β0)(´1)〈β0,v0〉

⎞

⎠ ·
⎛

⎝
∑

α1,β1

1̂Q1(α1, β1)(´1)〈α1,u1〉`〈β1,v1〉

⎞

⎠ ·

· · ·
⎛

⎝
∑

αt´1,βt´1

1̂Qt´1(αt´1, βt´1)(´1)〈αt´1,ut´1〉`〈βt´1,vt´1〉

⎞

⎠

·
(

∑

αt

1̂Ut(αt)(´1)〈αt,ut〉
)

· 1

N

(
∑

γ

(´1)〈γ,
∑t´1

j“0 cj(vj `uj`1)〉
)

.

Here, notice that all Fourier coefficients only depend on the variables αs, βs and
γ, so we can expand the multiplication and change the order of summation, and
we obtain the following

μc (V0, Q1, . . . , Qt´1, Ut)

“ 1

N

∑

β0

∑

α1,β1

· · ·
∑

αt´1,βt´1

∑

αt

∑

γ

1̂V0(β0)1̂Q1(α1, β1) · · · 1̂Qt´1(αt´1, βt´1)1̂Ut(αt)

·
∑

v0

∑

u1,v1

· · ·
∑

ut´1,vt´1

∑

ut

(´1)〈β0,v0〉(´1)〈α1,u1〉`〈β1,v1〉 · · ·

· · · (´1)〈αt´1,ut´1〉`〈βt´1,vt´1〉 · (´1)〈αt,ut〉 · (´1)〈γ,
∑t´1

j“0 cj(vj`uj`1)〉

“ 1

N

∑

β0

∑

α1,β1

· · ·
∑

αt´1,βt´1

∑

αt

∑

γ

1̂V0(β0)1̂Q1(α1, β1) · · · 1̂Qt´1(αt´1, βt´1)

· 1̂Ut(αt) ·
(

∑

v0

(´1)〈β0,v0〉`〈γ,c0v0〉
)

·
(

∑

u1

(´1)〈α1,u1〉`〈γ,c0u1〉
)

(
∑

v1

(´1)〈β1,v1〉`〈γ,c1v1〉
)

· · ·
(

∑

ut

(´1)〈αt,ut〉`〈γ,ct´1ut〉
)

The last equality is simply grouping the inner products that share the same u, v
terms together. Note that the field multiplication of c · x can be represented as
a matrix Ac

4 that applies to an n-dimensional vector x over F2. If c “ 0, then
Ac “ O where we use O to denote an all zero matrix, otherwise Ac is a full-rank
matrix. Taking the summation over the v0 term as an example, we rewrite the
〈γ, c0v0〉 term as 〈γ, c0v0〉 “ γJAc0v0 “ (AJ

c0γ)Jv0 “ 〈AJ
c0γ, v0〉 where AJ

c0 is the
transpose of Ac0 . So we get

4 Since we are taking the natural field interpretation over {0, 1}n, in which the field
addition is the bit-wise xor operation, we have the i-th column of Ac defined as
the n-dimension vector representation of field element c · νi, in which νi is the field
element that has the corresponding representation to be a basis vector with the i-th
position being one and the rest positions being zero.



Tight Security for Key-Alternating Ciphers with Correlated Sub-keys 449

μc(V0,Q1, . . . ,Qt´1, Ut)

“ 1
N

·
∑

β0

∑

α1,β1

· · ·
∑

αt´1,βt´1

∑

αt

∑

γ

1̂V0(β0) · · · 1̂Ut
(αt) ·

(
∑

v0

(´1)〈β0`AJ
c0

γ,v0〉
)

·
(
∑

u1

(´1)〈α1`AJ
c0

γ,u1〉
)(
∑

v1

(´1)〈β1`AJ
c1

γ,v1〉
)

· · ·
(
∑

vt´1

(´1)〈βt´1`AJ
ct´1

γ,vt´1〉
)(
∑

ut

(´1)〈αt`AJ
ct´1

γ,ut〉
)

.

It is known that
∑

xP{0,1}n(´1)〈α,x〉 “ N if and only if α “ 0, otherwise it equals
zero. So we are only interested in the case in which the fourier coefficients gives
non-zero summation. And we observe that the set of interesting coefficients can
be expressed in terms of γ, i.e., for all i P {0, . . . , t ´ 1} : αi`1 “ βi “ AJ

ci
γ.

Hence the equality calculation can be greatly simplified as

μc(V0,Q1, . . . ,Qt´1, Ut)

“ N2t´1
∑

γ

1̂V0(A
J
c0γ)1̂Q1(A

J
c0γ,AJ

c1γ) · · · 1̂Qt´1(A
J
ct´2

γ,AJ
ct´1

γ)1̂Ut
(AJ

ct´1
γ)

“ qt`1

N
` N2t´1

∑

γ �“0

1̂V0(A
J
c0γ)1̂Q1(A

J
c0γ,AJ

c1γ) · · · 1̂Ut
(AJ

ct´1
γ)

� qt`1

N
` N2t´1

∑

γ �“0

|1̂V0(A
J
c0γ)| · |1̂Q1(A

J
c0γ,AJ

c1γ)| · · · |1̂Ut
(AJ

ct´1
γ)|.

Next, we let

left :“ min of i such that ci �“ 0
right :“ max of i such that ci �“ 0

To proceed with the calculation, case discussion over (left, right) is needed, here
we consider the case of left “ 0 and right “ t ´ 1 (i.e., c0 �“ 0 and ct´1 �“ 0).
The other cases give the same upper bound and we left them to the full version.
Therefore, we obtain

μc(V0,Q1, . . . ,Qt´1, Ut) ´ qt`1

N

� N2t´1
∑

γ �“0

|1̂V0(A
J
c0γ)| · |1̂Q1(A

J
c0γ,AJ

c1γ)| · · · |1̂Ut
(AJ

ct´1
γ)|

� N2t´3
∑

γ �“0

|1̂V0(A
J
c0γ)| ·

( q

N2

)t´2

· Φ(Qidx`1) · |1̂Ut
(AJ

ct´1
γ)|

“ qt´2NΦ(Qidx`1) ·
∑

γ �“0

|1̂V0(A
J
c0γ)| · |1̂Ut

(AJ
ct´1

γ)| � qt´1Φ(Qidx`1). (8)
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Note that we have N2|1̂Qidx`1(Acidxγ,Acidx`1γ)| � Φ(Qidx`1) for any γ �“ 0 given
the condition that cidx �“ 0 and cidx`1 �“ 0. We also used the fact of (7) that, for
any α, β, |1̂Qi

(α, β)| � q{N2. The last step of inequality holds because by (6)
we have

∑

γ 1̂V0(A
J
c0γ)2 “ ∑γ 1̂Ut

(AJ
ct´1

γ)2 “ q{N , so we can apply Cauchy-
Schwartz inequality to obtain the result. This exact inequality step ensures the
tight bound and was dubbed the Cauchy-Schwartz trick used in [2,5,22].

So we proved Lemma 3. 	\
Now the remaining step is to upper bound Φ(Qidx`1). Here we apply the

following lemma, which has essentially the same proof of Lemma 6 proved by
Chen et al. in [5], with the only adjustment of changing their parameter δ into
δ “√(12 ln N){q.
Lemma 4. Assuming that 9(t ` 2)n � q � N{2. Fix an adversary making q
queries to a random permutation P . Let Q denote the transcript of interaction
of A with P . Then for any α, β P F2n ,

PrP,ω

[

Φ(Q) � 2q2

N
` 3
√

(t ` 2)nq

]

� 2
N t

,

in which the probability is taken over the random permutation P and the random
coins ω used by A.

Plugging in the inequality we get

μc(V0,Q1, . . . ,Qt´1, Ut) � qt`1

N
` qt´1Φ(Qidx`1) � 3qt`1

N
` 3qt´1{2√(t ` 2)n

with probability at least 1 ´ 2t
Nt . Hence we proved Lemma 2.

Tightness of Lemma 2. We examine the tightness of 1-constraints sum capture
quantity in two aspects. One is, given the c “ (c0, . . . , ct´1) in which there exists
two neighboring ci, ci`1 so that ci �“ 0, ci`1 �“ 0, whether the upper bound is
tight or not.

We first give the following proposition showing that, if there exists neighbor-
ing coefficients ci �“ 0 and ci`1 �“ 0, then for moderately large q (e.g. q ą N2{3),
μc � qt`1{2N with high probability. We left the detailed proof to the full version.

Proposition 1. Let q be any positive integer of power of two. Fix any c “
(c0, . . . , ct´1) such that there exists an index 0 � i ă t ´ 1 satisfying ci �“ 0 and
ci`1 �“ 0, then there is an explicit algorithm A that makes at most q queries to
each of P1, . . . , Pt´1, and V0, Ut Ď F2n that have |V0| “ |Ut| “ q, so that

Pr

[

μc(V0,Q1, . . . ,Qt´1, Ut) � qt`1

2N

]

� 1 ´ N

q
· e´q2{8N .

The following proposition, which is complementary to Proposition 1, states that,
if c “ (c0, . . . , ct´1) satisfies that for any 0 � i ă t ´ 1, either ci “ 0 or ci`1 “ 0,
then μc(V0,Q1, . . . ,Qt´1, Ut) can achieve up to qt, which is larger than qt`1{N .
We left the proof to the full version.
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Proposition 2. Let q be any positive integer of power of two. Fix any c “
(c0, . . . , ct´1) such that for any 0 � i ă t ´ 1, either ci “ 0 or ci`1 “ 0, there
is an explicit algorithm A that makes at most q queries to each of P1, . . . , Pt´1,
and V0, Ut Ď F2n that have |V0| “ |Ut| “ q, so that

μc(V0,Q1, . . . ,Qt´1, Ut) � qt.

4.2 2-Constraints Sum Capture Quantity

Now we move to consider the sum capture quantity in which the number of
constraints r “ 2. We let the 2-constraint sum capture quantity be associated
with two vector of coefficients c “ (c0, c1, . . . , ct´1) and d “ (d0, d1, . . . , dt´1), as

μc,d(V0,Q1, . . . ,Qt´1, Ut) :“
|{(v0, (u1, v1), . . . , (ut´1, vt´1), ut) P V0 ˆ Q1 ˆ · · · ˆ Qt´1 ˆ Ut :

t´1∑

j“0

cj(vj ` uj`1) “ 0,

t´1∑

j“0

dj(vj ` uj`1) “ 0}|. (9)

Though the 2-constraint sum capture quantity is a natural generalization of the
1-constraint case, we note that adding only one more constraint makes proving
the tightest upper bound of (9) much harder. Here we only focus on giving
bounds over the sum capture quantity with a specific class of coefficients c,d
that can be derived from the (t ´ 2)-wise independently uniform subkeys. We
obtain a bound that gives the tightest KAC security for t � 8. However, for t ă 5,
our 2-constraint upper bound is even worse than a reduction-based bound. While
it is interesting to investigate whether our bound can be improved, for t “ 3, in
particular, we show that the above sum capture quantity is lower-bounded by
Ω(q3{N) and hence cannot be used to prove q “ Ω(N3{4) for the 3-round KAC
with identical subkeys.

We prove upper bounds for the class of linear constraint coefficients c “
(c0, . . . , ct´1),d “ (d0, . . . , dt´1) with the property that c0 “ dt´1 “ 1, ct´1 “
d0 “ 0, and for all i P {1, . . . , t´2}, ci �“ 0, di �“ 0, and for all i, j P {1, . . . , t´2}
such that i �“ j, cid

´1
i �“ cjd

´1
j . We justify that c,d corresponds to the linear

key schedule from t ´ 2 independent keys that gives (t ´ 2)-wise independently
uniform subkeys.

Justification. We use s0, . . . , st´1 to denote the subkeys. Given the subkeys are
generated linearly from t´2 independent keys and are (t´2)-wise independently
uniform, the middle t ´ 2 subkeys s1, . . . , st´2 uniquely fix the original master
keys and hence the first subkey s0 and the last subkeys st´1 can be uniquely
determined as a linear combination of s1, . . . , st´2. i.e.,

s0 “
t´2∑

i“1

cisi, st´1 “
t´2∑

i“1

disi.
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Note that all ci, di should be non-zero because otherwise we can obtain a linear
combination t ´ 2 subkeys that sum to zero, breaking the (t ´ 2)-wise indepen-
dence. Further, we show by contradiction, if there exists i, j such that i �“ j
and cid

´1
i “ cjd

´1
j , then we pick the set of subkeys {s0, st´1} ∪ {sk | 1 � k �

t ´ 2 ∧ k �P {i, j}} and we have

s0 ` cid
´1
i st´1 “

∑

k �P{0,i,j,t}
(cid

´1
i dk ` ck)sk

which is a linear dependence among t´2 subkeys. Thus all cid
´1
i must be distinct.

Then we have the following lemma for the 2-constraints sum capture quantity.

Lemma 5. Let t � 3. Let P1, . . . , Pt´1 be t ´ 1 independent uniformly ran-
dom permutations of {0, 1}n, and let A be a probabilistic algorithm that makes
adaptive queries to P1, . . . , Pt´1. Let Q1, . . . ,Qt´1 be the query transcripts of
P1, . . . , Pt´1 interacting with A. Let coefficients c,d be defined as above, then
for any A that makes at most q � (t ` 2)nN2{3 queries to each permutations,

PrP1,...,Pt´1

[

∃V0, Ut Ď F2n , |V0| “ |Ut| “ q,

μc,d(V0,Q1, . . . ,Qt´1, Ut) � qt`1

N2
` t · (3q)2t´3

N t´2
` (3q)2t´2.5

N t´2

]

� 2t

N t
.

Discussion. Note that when t � 5, the security bound starts getting better
than the t ´ 1 round KAC bound q “ Ω(N

t´1
t ). For t � 8, the security bound

achieves optimal security of q “ Ω(N
t

t`1 ).
As in the case of 1-constraint, we will prove an upper bound of μc,d condi-

tioning on Φ(Qi) being small for all i.

Lemma 6. Fix c,d defined as in Lemma 5, then conditioning on Φ(Qi) �
9q2{N for all 1 � i � t ´ 1, it holds that for any subsets V0, Ut Ď F2n with
|V0| “ |Ut| “ q,

μc,d(V0,Q1, . . . ,Qt´1, Ut) � qt`1

N2
` t · (3q)2t´3

N t´2
` (3q)2t´2.5

N t´2
.

Proof. The initial calculation steps are similar to the 1-constraint case. We
directly give the calculation result and left the details in the full version.

μc,d(V0,Q1, . . . ,Qt´1, Ut) “
N2t´2

∑

α,β

1̂V0(θ0)1̂Q1(θ0, θ1)1̂Q2(θ1, θ2) · · · 1̂Qt´1(θt´2, θt´1)1̂Ut
(θt´1)

in which

θ0 “ α, θt´1 “ β,

∀i P {1, . . . , t ´ 2} : θi “ AJ
ci

α ` AJ
di

β.
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We write Coeff “ {θ0, θ1, . . . , θt´1}. Here we partition the summation into three
cases and discuss the set of (α, β) assignments that falls into each cases.

1. At least two θs in Coeff are zero.
2. Exactly one θ in Coeff is zero.
3. None of the θs in Coeff is zero.

The following claim shows that, if case one happens, then all coefficients θ are
zero.

Claim 1. If two θs in Coeff are zero, then α “ β “ 0.

Proof. If θ0 “ α “ β “ θt´1 “ 0, then the claim is trivial. If α “ θ0 “ θi “ 0
for some i with 1 � i � t ´ 2, then given θi “ AJ

ci
α ` AJ

di
β “ AJ

di
β and AJ

di
is

full-rank (because di �“ 0), we can infer that β “ 0. Similarly we can infer α “ 0
if β “ θt´1 “ θi “ 0 for some i with 1 � i � t ´ 2. Now, if θi “ θj “ 0 for some
i, j such that 1 � i, j � t ´ 2 and i �“ j. Then the choice of (α, β) must satisfy

{
AJ

ci
α ` AJ

di
β “ 0

AJ
cj

α ` AJ
dj

β “ 0

implying AJ
d´1

i`1ci`1
α “ (AJ

di`1
)´1AJ

ci`1
α “ β “ (AJ

dj`1
)´1AJ

cj`1
α “ AJ

d´1
j`1cj`1

α.
Hence

(

AJ
d´1

i`1ci`1
` AJ

d´1
j`1cj`1

)

α “
(

AJ
d´1

i`1ci`1`d´1
j`1cj`1

)

α “ 0.

Here α can be non-zero only if d´1
i`1ci`1 “ d´1

j`1cj`1. However, this is impossible
as we have justified from the (t ´ 2)-wise independently uniform property of
subkeys. 	\

Let μ1, μ2, μ3 corresponds to summation for (α, β) that corresponds to case
one, two, three, respectively.

Proposition 3

μ1 “ qt`1

N2

Proof. Since case one only happens when α “ β “ 0, we have θi “ 0 for all i.
Therefore, a direct calculation using the fact that 1̂V0(0) “ 1̂Ut

(0) “ q{N and
1̂Qi

(0, 0) “ q{N2 proves the bound. 	\
Proposition 4

μ2 � t · (3q)2t´3

N t´2

We note that the proof of Proposition 4 can be derived via a moderate tweak from
the proof of 1-constraint sum capture quantity upper bound (i.e., Lemma 2), we
left the complete proof to the full version.
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Proposition 5

μ3 � (3q)2t´2.5

N t´2

Proof (of Proposition 5). We define a N ˆ N matrix M with each entry labeled
by (α, β) P F2n ˆ F2n so that

Mα,β “
{

0 if some θ P Coeff is 0
1̂Q1(α,AJ

c1α ` AJ
d1

β) · · · 1̂Qt´1(A
J
ct´2

α ` AJ
dt´2

β, β) o.w.

Note that M is a 2n ˆ 2n matrix. We also define the column vectors v, u with
each entry labeled by α P F2n so that vα “ 1̂V0(α) and uα “ 1̂Ut

(α). Therefore,
we can write μ3 as

μ3 “ N2t´2
∑

α,β | Mα,β �“0

1̂V0(α) · Mα,β · 1̂Ut
(β) “ N2t´2vJMu.

Noting that the equivalent definition for the matrix 2-norm as

‖M‖2 :“ sup
‖x‖2“1

‖Mx‖2 “ sup
‖x‖2“1,‖y‖2“1

yJMx,

we can use the matrix norm as the upper bound of μ3, that is

μ3 “ N2t´2 · vJMu � N2t´2 ‖v‖2 ‖M‖2 ‖u‖2 .

By (6), we can infer that ‖v‖2 “ √∑α v2
α “

√
∑

α 1̂V0(α)2 “ √q{N and

‖u‖2 “ √

q{N . We also use the fact that ‖M‖2 � ‖M‖F where ‖M‖F “
√
∑

i,j M2
i,j is the Frobenius norm, then we have

μ3 � N2t´2 ·
√

q

N
‖M‖2

√
q

N
� qN2t´3 ‖M‖F “ qN2t´3

√
∑

α,β

M2
α,β

where
∑

α,β

M2
α,β “

∑

α,β | Mα,β �“0

1̂Q1(α,AJ
c1α ` AJ

d1
β)2 · · · 1̂Qt´1(A

J
ct´2

α ` AJ
dt´2

β, β)2

�
∑

α,β | Mα,β �“0

1̂Q1(α,AJ
c1α ` AJ

d1
β)2 · (3q)4(t´2)

N6(t´2)

� (3q)4(t´2)

N6(t´2)

∑

α,β

1̂Q1(α,AJ
c1α ` AJ

d1
β)2 “ (3q)4(t´2)

N6(t´2)
· q

N2
� (3q)4t´7

N6t´10
.

So we get

μ3 � qN2t´3 · (3q)2t´3.5

N3t´5
� (3q)2t´2.5

N t´2
.

	\
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Putting the propositions all together, we have

μc,d “ μ1 ` μ2 ` μ3 � qt`1

N2
` t · (3q)2t´3

N t´2
` (3q)2t´2.5

N t´2
.

	\

4.3 Tightness of 2-Constraint Sum Capture Quantity for 3-Round
KAC

A natural question is whether the upper bound of the 2-constraint sum capture
quantity can be improved so that it gives tight security bound for t-round KAC
when t ă 7. In particular, the most interesting case is to prove tight security
bound q “ Ω(N3{4) for 3-round KAC with identical subkeys, which corresponds
to the instantiation in Corollary 4 when t “ 3. However, for the 3-round KAC
with identical key schedule, we show that it is impossible to show the conjectured
optimal security bound via upper-bounding the sum capture quantity, as the
sum capture quantity for 3-round identical-subkey KAC is lower-bounded by
Ω(q3{N) with high probability, giving μc{N “ Ω(q3{N2) instead of the desired
q4{N3. The sum capture quantity lower bound for 3-round identical-subkey KAC
directly follows from the following proposition with c1 “ d1 “ 1. We left the proof
of proposition to the full version.

Proposition 6. Let q be any positive integer of power of two. Let t “ 2 and fix
c “ (1, c1, 0), d “ (0, d1, 1) where c1, d1 are non-zero, then there exists an explicit
algorithm A that makes at most q queries to each of P1, P2 and V0, U3 Ď F2n

that have |V0| “ |U3| “ q, so that

Pr[μc,d(V0,Q1,Q2, U3) � q3{2N ] � 1 ´ N

q
· e´q2{8N .

Though Proposition 6 gives a lower bound of Ω(q3{N) for the sum capture
quantity μc,d , it does not immediately imply a distinguishing attack against
the 3-round KAC. This is because the number of bad keys generated by our
constructed A is at most q, so we have Pr[k P Badkey] � q{N . The reason of
μc,d being too large is that a bad key may be counted multiple times in the sum
capture quantity. Therefore, we cannot proceed with the sum capture quantity to
prove the optimal q “ Ω(N3{4) bound for 3-round KAC with identical subkeys
if the overcounting cannot be eliminated.

5 Good Transcript Analysis

Our next goal is to obtain upper bounds of 1 ´ pS0(τ){pS1(τ) for each τ P Tgood.
In particular, we will show the following lemma.
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Lemma 7. If the t-round KAC is instantiated with a key schedule that gives
(t ´ 2)-wise independently uniform subkeys, then there exists a function g : T →
[0, `8) so that for any τ “ (Q,k) P Tgood,

1 ´ pS0(τ)
pS1(τ)

� g(τ),

and for any query records Q,

Ek [g(Q,k)] � t2(4q)t`1

N t
.

To obtain the desired function g(·), we need to understand the ratio
pS0(τ){pS1(τ) first. Given the transcript τ “ (Q,k) in which Q “
(QE ,Q1, . . . ,Qt), we write E ↓ QE to denote that the real-world cipher construc-
tion E is consistent with the recorded query QE , that is, for each (x, y) P QE , it
holds that E(x) “ y. Similarly, we write Pi ↓ Qi to denote that the permutation
Pi is consistent with the recorded query Qi. Then following [5,16] one can derive
that

pS0(Q,k)
pS1(Q,k)

“ N (|QE |) · Pr[Ek ↓ QE | P1 ↓ Q1, . . . , Pt ↓ Qt], (10)

where N (|QE |) “ N(N ´ 1) · · · (N ´ |QE | ` 1). We provide a proof of (10) in the
full version.

To analyze the probability term on the RHS, we need to take the following
graph view for KAC, which was originally introduced by Chen and Steinberger
in [6].

5.1 Graph Definition and an Useful Lemma

Let G be a graph that consists of vertices which can be divided into m ` 1
layers L0, . . . , Lm such that each layer contains exactly N vertices, and edges
that can be partition into m sets E “ (E(0,1), E(1,2), . . . , E(m´1,m)) such that
E(i,i`1) forms a partial (but possibly perfect) matching from Li to Li`1.

We say a vertex u P Li, where i ă m, is right-free if no edge connects u to
any vertex in Li`1. Analogously, we say a vertex v P Lj , where j ą 0, is left-free
if no edge connects v to any vertex in Lj´1.

For any vertex u P L0 we define the following probabilistic procedure that
generates a path (w0, w1, . . . wm) from u to a vertex in Lm.

– Let w0 “ u.
– For i from 1 to m, if wi´1 is not right-free and connects to some vertex

w′ P Li, then let wi “ w′, otherwise let wi be uniformly sampled from all
left-free vertices in Li.

We write Pr[u → v] to denote the probability that the path (u,w1, . . . , wm)
satisfies wm “ v. In particular, we are interested in the pair of (u, v) such that
u is right-free and v is left-free.
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For the layered graph G, we let UG(a, b), where a � b, be the set of paths that
starts at a left-free vertex in La and reaches a vertex in Lb. We note that the
path in UG(a, b) does not necessarily ends in Lb. We write UG(a, b) “ |UG(a, b)|.
Note that UG(a, a) denotes the total number of left-free vertices in La.

Given any σ “ ((i0, i1), (i1, i2), . . . , (i|σ|´1, i|σ|)) in which i0 ă i1 ă · · · ă i|σ|,
we say σ is an interesting (a, b)-segment partition with regard to the index set
I Ď {0, . . . , m} if i0 “ a, i|σ| “ b and for all 1 ă j ă |σ| we have ij P I. We use
BI(a, b) to denote the set that contains all interesting (a, b)-segment partition of
the set I. Given a layered graph G, we let the interesting indices of G as

I(G) :“ {i P {0, 1, 2, . . . ,m} | UG(i, i) ą 0}.

Then we are ready to state the following lemma, which is a slightly different
variant of the lemma proved by Chen and Steinberger in [6] but with essentially
the same proof. We include the proof in the full version.

Lemma 8. For any graph G defined as above, and any u P L0, v P Lm such that
u is right-free and v is left-free, it holds that

Pr[u → v] “ 1
N

´ 1
N

∑

σPBI(G)(0,m)

(´1)|σ|
|σ|
∏

h“1

UG(ih´1, ih)
UG(ih, ih)

.

5.2 Graph View of KAC

The KAC can also be interpreted in the graph view. Given a transcript τ “
(Q,k) where Q “ (QE ,Q1, . . . ,Qt) and let subkeys s “ (s0, . . . , st) be gener-
ated from the key k, we define E(2i,2i`1) :“ {(v, v`si) | v P L2i} for i P {0, . . . , t}.
That is, L2i and L2i`1 are connected by the “subkey edges”, which corresponds
to the step of xoring the subkey si in the KAC execution. For i P {1, . . . , t}, we
let E(2i´1,2i) :“ {(u, v) | (u, v) P Qi}. This corresponds to the queries made to
the permutation Pi. Now, note that the interesting indices for KAC can only be
a subset of {0, 2, 4, . . . , 2t}.

For a fixed query records Q, let Zs(a, b), where a � b, be the total number of
paths that connects a vertex in La and a vertex in Lb when the subkeys are fixed
to s. Note that the paths do not necessarily start at La or end at Lb. For the
	-th cipher query (x�, y�), let α�[s] denote the largest possible index of the layer
that is reachable from x� when the subkeys are fixed to be s. let β�[s] denote
the smallest index of the layer than is reachable from y�. Note that in the good
key case, we always have α�[s] ă β�[s].

Now, to bound the probability Pr[E ↓ QE | P1 ↓ Q1, . . . , Pt ↓ Qt], we
analyze the following experiment that can be divided into |QE | stages.

1. Initially, G0 is defined according to the given transcript τ “ (Q,k).
2. For 	 from 1 to |QE |, given G�´1 is defined, the probabilistic path generating

process is run for the 	-th query (x�, y�) P QE over the graph G�´1, from
vertex x� P L0.
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– If the generated path from x� does not arrive at y�, the experiment outputs
0 and aborts.

– otherwise we first set G� “ G�´1, then we remove all vertices on the path
of (x�, y�) from G�. The new graph G� will have N ´ 	 vertices in each
layer.

3. If G|QE | is successfully defined, the experiment outputs 1.

So we have

pS0(Q,k)
pS1(Q,k)

“ N (|QE |)Pr[Exp(τ) “ 1] “ N (|QE |)
|QE |
∏

�“1

Pr[x� → y� | G�´1]

Now we are ready to state the core lemma that defines the function g(Q,k) and
prove it using Lemma 8.

Lemma 9. For any query records Q with q � N{4 and subkeys k such that the
transcript τ “ (Q,k) P Tgood,

pS0(Q,k)
pS1(Q,k)

� 1 ´
q
∑

�“1

∑

1�a�b�t

R2a´1,2b,�[s]
∑

σPBI(2a´1,2b), |σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

in which the set of interesting indices I of the segment partition set BI is defined
as I “ {0, 2, . . . , 2t}, and Ra,b,�[s] :“ 1(α�[s] � a, β�[s] � b).

Proof. For the 	-th cipher query (x�, y�) given the graph support G�´1, we can
define a graph G from G�´1 that removes all layers Li for i ă α�[s] and Lj for
j ą β�[s]. Thus, in the graph G we starts at a right-free vertex u P L0 and
targets a left-free vertex v P Lm, allowing us to apply Lemma 8.

PrG[(x� → y�) | G�´1]

“ 1
N ´ 	 ` 1

⎛

⎝1 ´
∑

σPBI(G)(0,m)

(´1)|σ|
|σ|
∏

h“1

UG(ih´1, ih)
UG(ih, ih)

⎞

⎠

“ 1
N ´ 	 ` 1

⎛

⎝1 ` UG(0,m)
UG(m,m)

´
∑

σPBI(G)(0,m), |σ|�2

(´1)|σ|
|σ|
∏

h“1

UG(ih´1, ih)
UG(ih, ih)

⎞

⎠

� 1
N ´ 	 ` 1

⎛

⎝1 ´
∑

σPBI(G)(0,m), |σ|�2

|σ|
∏

h“1

UG(ih´1, ih)
UG(ih, ih)

⎞

⎠

� 1
N ´ 	 ` 1

⎛

⎝1 ´
∑

σPBI(α�[s],β�[s]), |σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

⎞

⎠ (11)
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Now we only consider the case where the lower bound (11) � 0 for all 	. Otherwise
Lemma 9 becomes trivially true. Hence we have

pS0(Q,k)
pS1(Q,k)

�
q
∏

�“1

⎛

⎝1 ´
∑

σPBI(α�[s],β�[s]), |σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

⎞

⎠

� 1 ´
q
∑

�“1

∑

σPBI(α�[s],β�[s]), |σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

(12)

� 1 ´
q
∑

�“1

∑

1�a�b�t

R2a´1,2b,�[s]
∑

σPBI(2a´1,2b), |σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

(13)

in which (12) is due to (1 ´ a)(1 ´ b) � 1 ´ a ´ b for any a, b � 0 and (13) is
due to the indicator function R is non-negative and satisfies Rα[s],β[s],�[s] “ 1.
We note that (13) is the exact quantity we pick for 1 ´ g(Q,k). 	\
Lemma 10. If q � N{4, then,

Ek

⎛

⎝

q
∑

�“1

∑

1�a�b�t

R2a´1,2b,�[s]
∑

σPBI(2a´1,2b),|σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

⎞

⎠ � t2(4q)t`1

N t
.

Proof. By the sum of expectation and noting that none of σ P BI(2a ´ 1, 2b)
would have |σ| � 2 if a “ b, we have

Ek

⎛

⎝

q
∑

�“1

∑

1�a�b�t

R2a´1,2b,�[s]
∑

σPBI(2a´1,2b), |σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

⎞

⎠

“
q
∑

�“1

∑

1�aăb�t

∑

σPBI(2a´1,2b), |σ|�2

Es

⎛

⎝R2a´1,2b,�[s] ·
|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

⎞

⎠ .

Hence it is sufficient to derive bounds for each (a, b, σ). Note that for each a, b,
R2a´1,2b,j [s] only depends on the subkeys s0, . . . , sa´2, sb`1, . . . , st, which are
(a ´ 2 ` 1) ` (t ´ (b ` 1) ` 1) “ t ´ b ` a ´ 1 subkeys in total.

Next, given a fixed σ “ ((i0, i1), (i1, i2), . . . , (i|σ|´1, i|σ|)), we analyze the key
dependency for each Zs(ih´1, ih).

1. For Zs(i0, i1), note that i0 “ 2a ´ 1 which is odd, and i1 is even. So Zs(i0, i1)
(i1 ´ i0 ´ 1){2 subkeys between Li0 and Li1 .

2. For any (ih´1, ih) where h ą 1, given ih´1 is an even number, implying that
Lih´1 and Lih´1`1 are connected by “key-edges”, always forming a perfect
matching regardless of the subkey choice. Then the equality Zs(ih´1, ih) “
Zs(ih´1`1, ih) always holds. And we can see that Zs(ih´1`1, ih) only depends
on (ih ´ ih´1 ´ 2){2 subkeys.
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... ...

L0 L1

s0

... ...

L2 L3

s1

... ...

L4 L5

s2

... ...

L6 L7

s3

Q1 Q2 Q3

2a 1 1 2b 6
Zs 1( ), 6

Zs 1( ), 4 Zs 4( ), 6

Fig. 1. A 3-round KAC with fixed query records Q1, Q2, Q3. The subkeys s “
(s0, . . . , s3) are random and to be sampled. The red solid line indicates that the
Zs (left, right) that counts the number of paths from Lleft to Lright depends on the cor-
responding subkeys. Consider 2a ´ 1 “ 1, 2b “ 6, then R1,6,�[s] “ 1 and depends on
(a ´ 1) ` (3 ´ b) “ 0 subkeys, because any s0 allows x� from L0 to reach L1, and y�

from L7 to L6. For σ “ ((1, 6)), the value of Zs (1, 6) depends on two subkeys s1, s2.
However, if the σ is further paritioned into ((1, 4), (4, 6)), then Zs (1, 4) depends on s1
but Zs (4, 6) does not depend on any subkeys, because Zs (4, 6) “ Zs (5, 6) “ |Q3|.

Also note that the sets of dependent subkeys for Zs(ih´1, ih) and R2a´1,2b,j [s] are
disjoint. Putting the results altogether, after fixing (a, b, σ), the total number of
subkeys that each expectation term depends on are at most

#dependent subkeys “ (t ´ b ` a ´ 1) ` i1 ´ i0 ´ 1
2

`
|σ|
∑

h“2

(
ih ´ ih´1

2
´ 1
)

“ (t ´ b ` a ´ 1) `
∑|σ|

h“1(ih ´ ih´1) ´ 1
2

´ (|σ| ´ 1)

“ t ´ b ` a ´ 1 ` 2b ´ 2a

2
´ |σ| ` 1

“ t ´ |σ| � t ´ 2,

in which we observe that a summation term of (a, b, σ) depends on fewer subkeys
if the size of σ is larger (See Fig. 1 for a specific case illustration). Because our
construction ensures that any t ´ 2 subkeys are independently and uniformly
distributed, the random variables in each expectation terms are mutually inde-
pendent and hence we can break the terms into
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Ek

⎛

⎝

q
∑

�“1

∑

1�a�b�t

R2a´1,2b,�[s]
∑

σPBI(2a´1,2b), |σ|�2

|σ|
∏

h“1

Zs(ih´1, ih)
N ´ 2q

⎞

⎠

�
q
∑

�“1

∑

1�aăb�t

∑

σPBI(2a´1,2b), |σ|�2

Es

⎛

⎝R2a´1,2b,�[s] ·
|σ|
∏

h“1

2Zs(ih´1, ih)
N

⎞

⎠

“
q
∑

�“1

∑

1�aăb�t

∑

σPBI(2a´1,2b), |σ|�2

Es (R2a´1,2b,�[s]) ·
|σ|
∏

h“1

Es

(
2Zs(ih´1, ih)

N

)

(14)

�
q
∑

�“1

∑

1�aăb�t

( q

N

)t´b`a´1 ∑

σPBI(2a´1,2b),
|σ|�2

(
2q

N

)(i1´i0`1){2 |σ|
∏

h“2

(
2q

N

)(ih´ih´1){2

(15)

�
q
∑

�“1

∑

1�aăb�t

( q

N

)t´b`a´1

·
(

4q

N

)b´a`1

� t2 · (4q)t`1

N t
. (16)

In the above calculation, (14) is due to the subkeys are (t´2)-wise independent.
The first “q{N” term of (15) comes from moving the Es (R2a´1,2b,�[s]), and
inside the summation the “2q{N” terms are the direct calculation upper bound
of Es (2Zs(ih´1, ih){N) for each (ih´1, ih). Finally we have the first inequality
of (16) holds because the size of BI(2a ´ 1, 2b) is upper-bounded by 2b´a, which
is absorbed into “2q{N” term yielding a “4q{N” term. 	\

6 Concluding the Proof

Given the similarity of proofs for both theorems, we provide the proof of Theo-
rem 1 here and left the proof of Theorem 2 to the full version.

6.1 Proof of Theorem 1

Proof. We partition the set of transcripts T “ Tgood \ Tbad according to Defini-
tion 1. By applying Lemma 1, we have Δ(X0,X1) � EX1 [g(X1)]`Pr[X1 P Tbad].
We start with bounding Pr[X1 P Tbad].

Claim

Pr[X1 P Tbad] � (t ` 1) · 3qt`1

N t
` 3(t ` 1)

√

q2t´1(t ` 2)n
N2t´2

` t(t ` 1)
N t

.

Proof (of claim). We note that in the system S1, the set of bad keys BadkeyQ
is defined only by the query records Q “ (QE ,Q1, . . . ,Qt). Therefore, we have

Pr[X1 P Tbad] � PrQ
[

|BadkeyQ| ą C
]` C

N t´1
.
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To get the size bound for BadkeyQ, we compute the size of BadkeyQ,i for 0 �
i � t. Then, we have

|BadkeyQ,0| � μc0(V1,Q2,Q3, . . . ,Qt´1,Qt, Ut`1)

|BadkeyQ,1| � μc1(V2,Q3,Q4, . . . ,Qt,QE , U1)
...

|BadkeyQ,t´1| � μct´1(Vt,QE ,Q1, . . . ,Qt´2, Ut´1)

|BadkeyQ,t| � μct
(V0,Q1, . . . ,Qt´1, Ut).

where the linear coefficient tuples ci are given by the condition 2 of Theorem 1
so that there are two neighboring coefficients that are non-zero, and

∀i P {1, . . . , t} : Ui “ {u | ∃v : (u, v) P Qi}, Vi “ {v | ∃u : (u, v) P Qi}
Ut`1 “ {u | ∃v : (u, v) P QE}, V0 “ {v | ∃u : (u, v) P QE}.

The size of BadkeyQ,i is bounded by μci
because any key k P BadkeyQ,i is

uniquely mapped to the subkeys (s0, . . . , si´1, si`1, st) as the linear mapping has
rank t ´ 1 (stated in condition 2 of Theorem 1).

Now we can apply Lemma 2 to upper bound BadkeyQ,i with high proba-

bility. For every i, by letting Ci “ 3qt`1

N ` 3qt´1{2√(t ` 2)n, we obtain that
PrQ[|BadkeyQ,i| ą Ci] � 2

Nt . Therefore, setting C “∑t
i“0 Ci, we have

Pr[X1 P Tbad] �
t∑

i“0

PrQ
[

|BadkeyQi
| ą Ci

]` C

N t´1

� 2t(t ` 1)
N t

` (t ` 1) · 3qt`1

N t
` 3(t ` 1) · qt´1{2√(t ` 2)n

N t´1

Hence we proved the claim 	\
The next step is to pick a function g and upper bound EX1 [g(X1)]. Note that

by condition 1 of Theorem 1, any t ´ 2 rows of key schedule matrix A has rank
t ´ 2, implying that any subset of t ´ 2 subkeys are independent and uniform.
Therefore we can apply Lemma 7 and obtain a function g. Noting that X1 is in
the ideal world so k is sampled independently of Q, we have

EX1 [g(X1)] “ EQEk [g(Q,k)] � EQ

[
t2(4q)t`1

N t

]

“ t2(4q)t`1

N t
.

Then by summing up the two quantities and numerical simplifications, the the-
orem follows. 	\

7 Conclusion and Open Problems

In this paper, we provided key schedules of limited independence for t-round
key-alternating ciphers achieving tight security. We proved that the t-round key-
alternating cipher remains tightly secure for a class of (t ´ 1)-wise independent
sub-key distributions and, when t � 8, for (t ´ 2)-wise sub-key distributions.
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While, for 3 � t � 7, our result does not extends to (t ´ 2)-wise independent
sub-key distributions, we expect that a tighter analysis of the matrix 2-norm for
the sum-capture quantity should give a proof for 4 � t � 7. Also, it is interesting
to investigate new methods for bounding the bad keys and proving tight security
of 3-round key-alternating cipher with identical key schedule. Further, it would
be also interesting to study whether the tightness result holds for (t ´ 3)-wise
distributions or beyond.
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Abstract. We propose a new construction for format-preserving encryp-
tion. Our design provides the flexibility for use in format-preserving
encryption (FPE) and for static table-driven tokenization. Our algorithm
is a substitution-permutation network based on random Sboxes. Using
pseudorandom generators and pseudorandom functions, we prove a strong
adaptive security based on the super-pseudorandom permutation assump-
tion of our core design. We obtain empirical parameters to reach this
assumption. We suggest parameters for quantum security.

Our design accommodates very small domains, with a radix a from 4
to the Unicode alphabet size and a block length � starting 2. The num-

ber of Sbox evaluations per encryption is asymptotically �
3
2 , which is also

the number of bytes we need to generate using AES in CTR mode for each
tweak setup. For instance, we tokenize 10 decimal digits using 29 (parallel)
AES computations to be done only once, when the tweak changes.

1 Introduction

Symmetric encryption offers an efficient way to keep data private. However, it
is typically only length-preserving in the sense that a plaintext and a cipher-
text occupy exactly the same space and structure in memory. However, length
preservation falls short when we consider non-binary plaintext data such as
bank account numbers, driver license numbers, tax ID’s and so forth. This lim-
itation can be overcome by format-preserving protection mechanisms. Format-
Preserving Encryption (FPE) was proposed to encrypt data while retaining the
original format and field size of the input data. It can, for instance, encrypt a
16-digit credit card number (or part of it), as a series of digits, and produce a
ciphertext which is still 16-digits long. One difficulty with FPE is that the mes-
sage space can be very small for common fields used in personal data processing
scenarios, for example, age, a postal code, names, bank sort codes, subsets of
larger fields, and so on. In particular, adversaries may be able to go through the
message space exhaustively. Hence, FPE is strengthened with a tweak, follow-
ing the tweakable encryption paradigm. Contrarily to a nonce, a tweak can be
reused. Tweakable encryption was formalized by Liskov et al. [27].
c© International Association for Cryptologic Research 2021
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Formally speaking, an FPE takes as input a key and a message, as well as
parameters specifying the format and the tweak. In standard FPE, the format
consists of a radix a and a length �. The message domain has cardinality a�.

FPE first appeared as a data-type preserving encryption [13] and in the form
of an omnicipher with the Hasty Pudding AES competitor [31]. The term FPE
is due to Spies [33]. Rogaway presented a list of FPE schemes [29]. Some con-
structions are based on cycle walking [11]. The most popular FPEs are based
on Feistel networks and have been standardized as FF1 and FF3 [1,3,7,8,12]. A
weakness was found in FF1 and FF3 by Bellare et al. [6]. FF3 was broken and
repaired by Durak and Vaudenay [18]. The attack was later improved by Hoang
et al. [22,23]. There exist some dedicated constructions based on substitution-
permutation network (SPN) such as TOY100 [20] and DEAN18 [5], but they
are designed only for fixed blocks of decimal digits. Actually, one difficulty with
SPN-based FPE is that the internal Sboxes must be adapted to the specific for-
mat of the input data. Another SPN-based construction allows more formats
but suffers from lack of flexibility as well [15]. Another construction mixes the
cycle walking techniques with SPN based on Sboxes working on a domain which
is larger than the format [16]. However, this construction is not a pure SPN.
It is rather based on one-time-pad with a keystream generated from an SPN.
Hence, it needs a nonce and it has trivial chosen ciphertext decryption attacks.1

We believe that substitution-permutation networks has been under-explored for
FPE so far and will present a new FPE design based on an SPN.

Some cipher designs use pseudorandom Sboxes and use them in a pseudoran-
dom sequence. Both random selections can be derived from the secret key. This
approach was used in LUCIFER [19] (the preliminary version of DES), where
Sboxes are invertible 4-bit to 4-bit functions selected from a pool of two using a
binary key for each Sbox. It was used in KHUFU [28] as well, where Sboxes are
pseudorandom 8-bit to 32-bit functions generated from the secret key. BLOW-
FISH [30] also used pseudorandom 8-bit to 32-bit functions. In our design, we
use pseudorandom permutations over an alphabet set Za, where a is the radix
of the message to be encrypted. The key is used to select a sequence of Sboxes
from a pool. The pool of Sboxes is generated by a secret too.

Tokenization is another concept for format-preserving data protection that
introduces the notion of mapping cleartext values to substitute “token” values
that retain format and structure of the original data, but no cleartext data,
while logically isolating the process that performs the mapping. While encryp-
tion itself makes no assumption about key ownership, tokenization typically
implies that tokenization secret(s) and mapping process are owned by a tokeniza-
tion system, a strongly isolated single entity authenticating and auditing access
to the token mapping process using the tokenization secret(s). ANSI X9.119-
2 [2] defines three main approaches for tokenization: (1) On Demand Random
Assignment (ODRA) which generates random tokens on demand and stores the

1 Note that we want exact format preservation hence no stretch in theciphertext.
Consequently, FPE cannot authenticate at the same time and authenticationcannot
be used to defeat chosen ciphertext attacks.
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association with the plaintext value in a dynamic mapping table which grows
per new token generated. However, using the method, the large and constantly
growing mapping table creates severe operational issues for environments requir-
ing high performance and resilience. (2) Static table-driven tokenization (a.k.a.
vault-less tokenization) generates tokens using a tokenization mapping process
which operates using small pre-generated static random substitution tables used
as the tokenization secret. (3) Encryption-based tokenization generates tokens
using a suitable FPE or symmetric encryption algorithm where the key serves
as tokenization secret. Our design can be used as base for static table-driven
tokenization as well for encryption-based tokenization.

Our Contribution. In this paper, we design and analyze a new format-preserving
protection construction method. We call our method FAST as for Format-
preserving Addition Substitution Transformation.2 FAST can be used in FPE
or tokenization mode. Tokenization mode differs from FPE mode by having two
specific inputs instead of one secret key: pre-generated random Sboxes as state-
less table secret, which can be common to several domains, and a key, which is
be used for domain separation. The stateless table secret is much more used than
a given domain-specific key. Therefore, we consider a security model where the
stateless table secret is revealed to the adversary and the rest works like in FPE
security. In FPE mode, the pseudorandom Sboxes are generated from the key.

We formally define a strong security model for FPE which is essentially a
multi-target chosen format and chosen tweak super-PRP (pseudorandom permu-
tation) notion. Concretely, we consider adversaries who can choose all parame-
ters, have many targets, choose the plaintexts and the ciphertexts. One challenge
is that the encryption domain can be really small. Hence, the adversary could
get the complete codebook for some tweaks and even look at their permutation
parity. We model security by indistinguishability from an ideal FPE making only
even permutations.3

We formally prove strong security based on a weak security assumption: that
the core design is a super-PRP in a weak model where the adversary uses a
single target, a single format, and a single tweak. More precisely, we reduce
strong security to this weak security notion. We formally prove this reduction in
a tight and quantifiable manner.

2 There exists another FAST algorithm in the literature which is unrelated [14].
3 A permutation π is called even if the number of (x, y) pairs such that x < y and

π(x) > π(y) is even.
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The single-instance security of the core design is heuristic. We find (what we
believe to be) the best attacks on the core design. We optimize our parameters
to reduce the number of Sbox applications down to �

3
2 (instead of �2). We set the

number of rounds to twice the one we can break to have a good safety margin.
We also consider quantum security.

We implement our algorithm and show good performance. Concretely, our
design needs some AES applications to generate random bytes for each tweak.
However, in contrast to the FF1 and FF3 algorithms which use AES as round
functions in a Feistel network, our design allows for these generations to be
parallelized and thus achieve much higher performance by design. Then, the
core encryption needs no AES computation or expensive modular reductions. It
is purely an SPN with Sboxes, additions, subtractions, and permutations.

Structure of this Paper. We first detail the specifications of FAST in Sect. 2. In
Sect. 3, we give implementation results. We formally define a security model and
we prove strong adaptive security of FAST based on the hypothesis that our core
scheme is a super pseudorandom permutation in Sect. 4. Rationales are given in
Sect. 5. The full version of this article [17] further include the formal proofs and
the best known attacks which motivated our parameter choices.

2 Algorithm Specification

In what follows, we use the following integer parameters:

s: bit-security target
L: bitlength of key K

L1: bitlength of key KSEQ

L2: bitlength of key KS (L1 = L2)
a: the alphabet size a.k.a. radix (a = 10 for decimal digits) (a ≥ 4)
�: word length of input/output (� ≥ 2)

m: number of Sboxes in the pool (m = 256)
n: total number of layers (r = n/� rounds of � layers)
w: a branch distance (0 ≤ w ≤ � − 2)
w′: a second branch distance (1 ≤ w′ ≤ � − w − 1)

Without loss of generality, the alphabet is Za = {0, 1, . . . , a − 1} to which
we give the group structure defined by modulo a addition. The “input” is an
element of Z�

a. An Sbox is a permutation of Za. A pool of Sboxes is a tuple
S = (S0, . . . , Sm−1) of m Sboxes.
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Fig. 1. One layer with circular shift of branches: forward (on the left) and backward
(on the right) with w = 3, w′ = 2

Layers of Encryption/Decryption. Given a pool S of m Sboxes and an index
i in {0, . . . , m − 1}, we define the permutation ES [i] of Z�

a as follows: for any
x = (x0, . . . , x�−1) ∈ Z�

a, we have

ES [i](x) =
{

(x1, . . . , x�−1, Si(Si(x0 + x�−w′))) if w = 0
(x1, . . . , x�−1, Si(Si(x0 + x�−w′) − xw)) if w > 0

as depicted in Fig. 1. We call it a forward layer. Similarly, we define a backward
layer

DS [i](x) =
{

(S−1
i (S−1

i (x�−1)) − x�−w′−1, x0, . . . , x�−2) if w = 0
(S−1

i (S−1
i (x�−1) + xw−1) − x�−w′−1, x0, . . . , x�−2) if w > 0

· · · · · ·

S̄ij

S̄ij+1

S̄ij+2

Fig. 2. Three consecutive layers with w = 3 and w′ = 2 and without the circular shift
of branches (Each S̄ represents a double-Sbox)
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If we represent layers without the circular shift of registers, the circuit of
three consecutive layers looks like Fig. 2. Each layer involves one register which
was modified w′ layers before and one register which will be modified w layers
later.

Given a sequence i0, . . . , in−1 of n indices, we define our m-layer core encryp-
tion/decryption functions

CEncS [i0, . . . , in−1] = ES [in−1] ◦ · · · ◦ ES [i0]
CDecS [i0, . . . , in−1] = DS [i0] ◦ · · · ◦ DS [in−1]

so that (CEncS [i0, . . . , in−1])
−1 = CDecS [i0, . . . , in−1]. The n-layer encryption

scheme is depicted in Fig. 3 with � = 4, n = 16, w = 2, and w′ = 1. Since we
require n to be multiple of �, we consider n layers as being n/� rounds of � layers
each.

Sbox Index Sequence Generation. Given an L1-bit key KSEQ, we generate a
sequence SEQ = [i0, i1, i2 . . . , in−1] of n indices in {0, 1, . . . ,m − 1} using a
pseudorandom generator:

SEQ = PRNG1,m,n(KSEQ)

The choice of this function PRNG1,m,n is open. Our preferred option is the use
of AES in CTR mode as later explained.

Sbox Generation. Given an L2-bit key KS ,

S ← PRNG2,a,m(KS)

The Sboxes can be any permutation of Za. The choice of PRNG2,a,m is open. We
suggest one algorithm below.

Stateless Table-Driven Tokenization. The tokenization function uses a fixed pool
S of Sboxes which plays the role of the stateless table secret. Given an L-bit key
K (the key), a tweak tweak, a format specified by the parameters a and �, the
parameters (m,n,w,w′), the selected cipher suite algo = (PRNG1,PRF), and a
plaintext pt ∈ Z�

a, we define

instance1 = (a,m)
instance2 = (�, n, w,w′)

KSEQ = PRFL1(K, instance1, instance2, cste1, tweak)
ct = CEncS [PRNG1,m,n(KSEQ)](pt)
pt = CDecS [PRNG1,m,n(KSEQ)](ct)

where KSEQ is an L1-bit key which is used to generate SEQ. The value of cste1
is a constant which encodes the label “tokenization” and the size L1. The func-
tion PRFλ is a pseudorandom function with an L-bit key accepting an input of
variable length and producing a λ-bit output.4 With λ = L1, we obtain a key
KSEQ for PRNG1. The choice of PRF is open. Typically, we use AES-CMAC.
4 We will only use λ = L1 = L2. So, the superscript λ is only an informative notation.
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CEncS [i0, . . . , in−1](x0, . . . , x −1)
1: for j = 0 to n − 1 do
2: z Sij (Sij (x0 + x −w mod a) − xw mod a)
3: for k = 1 to − 1 do
4: xk−1 xk

5: end for
6: x −1 z
7: end for
8: return (x0, . . . , x −1)

CDecS [i0, . . . , in−1](y0, . . . , y −1)
9: for j = n − 1 down to 0 do
10: z y −1
11: for k = − 1 down to 1 do
12: yk yk−1
13: end for
14: y0 S−1

ij
(S−1

ij
(z) + yw mod a) − y −w mod a

15: end for
16: return (y0, . . . , y −1)

EncK(instance1, instance2, tweak, pt)
17: S Setup1(K, instance1)
18: SEQ Setup2(K, instance1, instance2, tweak)
19: return CEncS [SEQ](pt)

DecK(instance1, instance2, tweak, ct)
20: S Setup1(K, instance1)
21: SEQ Setup2(K, instance1, instance2, tweak)
22: return CDecS [SEQ](ct)

Setup1(K, instance1)
23: (a, m) instance1
24: KS PRFL2 (K, instance1, cste2)
25: S PRNG2,a,m(KS)
26: return S

Setup2(K, instance1, instance2, tweak)
27: (a, m) instance1
28: ( ) instance2
29: KSEQ PRFL1 (K, instance1, instance2, cste1, tweak)
30: SEQ PRNG1,m,n(KSEQ)
31: return SEQ

i = −

Si

Si

Fig. 3. Core encryption CEnc[i0, . . . , i15] with � = 4, w = 2, w′ = 1, n = 16
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Format-Preserving Encryption (FPE). The FPE uses a derived pool S of
Sboxes. Given an L-bit key K, a tweak tweak, a format specified by the param-
eters a and �, the parameters m and n, the selected cipher suite algo =
(PRNG1,PRNG2,PRF), and an input pt ∈ Z�

a, we define

instance1 = (a,m)
instance2 = (�, n, w,w′)

KSEQ = PRFL1(K, instance1, instance2, cste2, tweak)
KS = PRFL2(K, instance1, cste3)

S = PRNG2,a,m(KS)
ct = CEncS [PRNG1,m,n(KSEQ)](pt)
pt = CDecS [PRNG1,m,n(KSEQ)](ct)

where instance1, instance2, and PRF are like for tokenization, cste2 is a constant
which encodes the label “FPE SEQ” and the size L1, and cste3 is a constant which
encodes the label “FPE Pool” and the size L2. KSEQ is an L1-bit key which is
used to generate SEQ. KS is an L2-bit key which is used to generate S. As m is
the pool size and a is the Sbox size, changing m or a requires to recompute a new
pool S, which is a tedious operation. However, changing � should not require to
recompute S. This is why we separate instance1 and instance2. In the pseudocode
of Fig. 3, we separated the setup of S (in Setup1 using instance1) and the setup
of SEQ (in Setup2 using instance1 and instance2).

Example. We consider m = 256 so that each Sbox index is a byte.
We define PRNG1 from AES in CTR mode. We split KSEQ = (K1, IV1) with

IV1 of 128 bits with the last two bytes forced to 0.5 Then,

PRNG1,m,n(KSEQ) =

trunc8n

(
AESK1(IV1)‖AESK1(IV1 + 1)‖ · · · ‖AESK1

(
IV1 +

⌈ n

16

⌉
− 1

))

where trunc8n truncates to the first 8n bits and the addition is done modulo 2128.
The input of AES is an integer converted into a 128-bit string. We implicitly
assume that the 8n-bit result is converted into a sequence of bytes which define
(i0, . . . , in−1).

The PRNG2,a,m(KS) generator first splits KS = (K2, IV2) with IV2 of 128
bits and generates a sequence

coins = AESK2(IV2)‖AESK2(IV2 + 1)‖ · · ·
of pseudorandom coins (this is AES in CTR mode) then applies a shuffling tech-
nique to generate each Sbox σ.6 We can use the Fisher-Yates algorithm [24,
p.145]:
5 Forcing the last two bytes of IV to 0 avoids that some slide properties in coins such

as IV′ = IV + 1 and K′ = K may occur (although the complexity to obtain such
properties could be very high).

6 Interestingly, if the algorithm generating coins is secure, there is no need to care
about constant-time implementation for the Sbox generations as discussed in Sect. 5.
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1: initialize σ(i) = i for i = 0, . . . , a − 1
2: for i from a − 1 down to 1 do
3: pick j ∈ {0, . . . , i} at random using the random coins
4: exchange σ[j] and σ[i]
5: end for

The way we generate j can follow many options [4,25,26]. To generate unbiased
j from the random coins, we adapt a technique described by Lemire [25]. This
approach uses L random input bits to generate a random value the range [0, ..., i]
(with i < 2L) using only a multiplication with rejection probability 2L mod (i+1)

2L
.

We choose L as a tradeoff between random bit consumption and rejection fre-
quency: a value of �log2(i + 1)	 + 4 results in a maximum rejection probability
of 1/24 = 0.0625 and a much lower average rejection probability. We need on
average a number of coins per Sbox equal to

a−1∑
i=1

L

(
1 − 2L mod (i + 1)

2L

)−1

with L = �log2(i + 1)	 + 4. This generates unbiased Sboxes when the coins are
random.

We define PRFλ(K, list) as

truncλ (AES-CMACK(encode(0, list))‖AES-CMACK(encode(1, list))‖ · · · )
which returns a λ-bit key. We only use λ = L1 = L2. In practice, we use λ = 256
or λ = 384 so that we only need 2 or 3 CMAC computations. Here, encode must
be a non-ambiguous encoding of a list into a bitstring.

As an example, we can take a = 10 and � = 10 to encrypt a part of credit card
numbers. For that, our recommended parameters below suggest to use n = 390
(i.e. 39 rounds of 10 layers), with w = 3 and w′ = 2. We first need two AES
computations to generate KS (assuming encoding (instance1, cste2) takes a single
128-bit block) and 129 (parallel) AES computations to generate the pool of
Sboxes once for all. Thus, 131 AES for setting up the pool. Then, once for each
tweak, we need 4 AES computations to generate KSEQ then 25 AES computations
to generate SEQ. Thus, 29 AES for each new tweak. This latter computation
can be parallelized to have very fast processing. Finally, encryption/decryption
requires no AES computation.

Security Goal. Our construction is supposed to offer a pretty high security (e.g.
128-bit security) even though the input domain could be of very small size a�.
Security holds even when the adversary can choose the parameters, the tweak,
the plaintexts, and the ciphertexts. We also have security when the pool of
Sboxes is known, which may happen for instance when the stateless table secret
leaks in tokenization. Towards this goal, we will need PRNG1 and PRNG2 to be
secure pseudorandom generators, PRF to be a pseudorandom function, and we
will reduce to the assumption that CEncS is a super-pseudorandom permutation
(keyed by a random SEQ) when S is known but randomly set.
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Recommended Parameters. An instance defines a (a,m, �, n, w,w′) tuple and a
set of algorithms. Admissible (instance1, instance2) instances are defined by a set
F . We define what admissible tuples are here, depending on the targeted security
s. We recommend L = s, L1 = L2 = 2s, m = 256, a ≥ 4, � ≥ 2, n multiple of �,
and w, w′, and n tuned as w ∼ √

�, w′ ∼ √
�, and n ∼ �

3
2 . More precisely,

w = min(�
√

�	, � − 2)
w′ = max(1, w − 1)

n = � ×
⌈
2 × max

(
2s

� log2 m
,

s√
� ln(a − 1)

,
s√

� log2(a − 1)
+ 2

√
�

)⌉

(Note that the �−2 in the min defining w is reached only for � ∈ {2, 3}. Similarly,
the 1 in the max defining w′ is reached only for � ∈ {2, 3}. For, � > 3, we
have w = �√�	 and w′ = w − 1.) These parameters were adjusted based on
cryptanalysis and performance reasons. For s = 128, we write in Table 1 the
number n/� of “rounds” for a few sets of parameters.

Table 1. Number r = n/� of rounds for 128-bit security

� 2 3 4 5 6 7 8 9 10 12 16 32 50 64 100

a = 4 165 135 117 105 96 89 83 78 74 68 59 52 52 53 57

a = 5 131 107 93 83 76 70 66 62 59 54 48 46 47 48 53

a = 6 113 92 80 72 65 61 57 54 51 46 44 43 44 46 52

a = 7 102 83 72 64 59 55 51 48 46 43 41 41 43 45 50

a = 8 94 76 66 59 54 50 47 44 42 41 39 39 42 44 50

a = 9 88 72 62 56 51 47 44 42 40 39 38 38 41 43 49

a = 10 83 68 59 53 48 45 42 39 39 38 37 37 40 43 49

a = 11 79 65 56 50 46 43 40 38 38 37 36 37 40 42 48

a = 12 76 62 54 48 44 41 38 37 37 36 35 36 39 42 48

a = 13 73 60 52 47 43 39 37 36 36 35 34 36 39 41 48

a = 14 71 58 50 45 41 38 36 36 35 34 34 35 39 41 47

a = 15 69 57 49 44 40 37 36 35 34 34 33 35 38 41 47

a = 16 67 55 48 43 39 36 35 34 34 33 33 35 38 41 47

a = 100 40 33 28 27 26 26 25 25 25 26 26 30 34 37 44

a = 128 38 31 27 26 25 25 25 25 25 25 26 30 34 37 44

a = 256 33 27 25 24 23 23 23 23 23 24 25 29 33 37 44

a = 1000 32 22 21 21 21 21 21 21 21 22 23 28 32 36 43

a = 1024 32 22 21 21 21 21 21 21 21 22 23 28 32 36 43

a = 10 000 32 22 18 18 18 18 19 19 19 20 21 27 32 35 42

a = 65 536 32 22 17 17 17 17 17 18 18 19 21 26 31 35 42

For quantum security, we consider adversaries who can run quantum algo-
rithms such as Grover [21] or Simon [32]. However, we do not assume quantum
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access to encryption/decryption oracles. To face quantum adversaries, we use the
same formulas by replacing s by 2s, except for L1 = L2 = 3s. We obtain that
the number of rounds is doubled for the low � values but remains unchanged for
the large ones. This is because our security analysis suggests n = Ω(s�

1
2 + �

3
2 ).

More details about figures are provided in the full version [17]. For quantum
128-bit security, there are a few changes in the underlying algorithms which
should move to quantum 128-bit security. Namely, PRNG1 and PRNG2 are still
AES-CTR but with a 256-bit key. As AES-CMAC does not offer 256-bit security,
we need another algorithm or to twist CMAC with a 256-bit key.

Our design does not accommodate radix a = 2 or a = 3. We did not see as
a disadvantage as radix a = 4 or 8 and a = 9 or 27 are possible if needed.

Rationales for w and w′. Our first design was using w′ = 1 and w = 0 but had a
powerful chosen ciphertext attack for up to �2 layers. Using w > 0 mitigated this
attack and an optimal w ∼ √

� was found. Then, we observed that decryption
was faster than encryption because optimized compiled codes could process the
computation of consecutive branches in parallel, but not for encryption. This
motivated us to adopt a larger w′, which is quite counter-intuitive. Indeed, it
looks like slowing down the diffusion. However, our analysis did not show any
need to increase the number of rounds. Using w′ ∼ √

� was good but we had to
care for corner cases such as gcd(w,w′, �) > 1. Having w′ = w − 1 ensures that
gcd(w,w′) = 1.

3 Implementation Results

We implemented the algorithm in C++ on Intel Xeon 1.80GHz, using OpenSSL
with AESNI support enabled.7 It was compiled using g++ with flags

-O3 -Wall -Wextra -Wno-unused-const-variable -fPIC -DG PLUS PLUS

-falign-functions=32 -DHOT ASSERTS=0

We took an open source implementation of FF1 and FF38 and optimized it for
using AESNI and 128-bit arithmetic for modulo reduction where the input size
allowed.9

Setting up a key and an instance requires generating the Sboxes. We need
some AES computations to generate pseudorandom coins then apply the Fisher-
Yates shuffling algorithm. Using our Sbox generation algorithm for a = 10, we
need 61.8 random coins per Sbox on average. Hence, 124 AES parallel computa-
tions for m = 256. Note that our model allows S to be public, so even though
side channel attacks might be considered against rejection sampling, this should
be of no harm.

7 We tested other Intel CPUs and obtained comparable results.
8 https://github.com/0NG/Format-Preserving-Encryption.
9 Our code is available on https://github.com/comForte/Format-Preserving-

Encryption.

https://github.com/0NG/Format-Preserving-Encryption
https://github.com/comForte/Format-Preserving-Encryption
https://github.com/comForte/Format-Preserving-Encryption
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Setting up a tweak implies generating SEQ by some parallel AES computa-
tions. This can nicely exploit the AESNI pipeline architecture which is 3–4 times
faster than the CBC mode of AES which is needed in FF1 and FF3. The SEQ
sequence occupies a space of n bytes (with m = 256) in addition to the ma words
of S, thus a total of 2-3KB for a = 10. For our implementation, we used a tweak
of 8 bytes.

Finally, the core encryption needs no further AES computation. Due to w′ >
1, consecutive encryption branches can be done in parallel, which speeds up
the computation by the compiler. Similarly, w > 1 allows to run consecutive
decryption branches in parallel.

We report here some implementation results showing a big advantage for
FAST over FF1 and FF3. We plot in Fig. 4 the time for an encryption/decryption
cycle per Za symbol (so it is 1

� of the encryption time) for FAST, FF1, and FF3.
For FAST, we plot both the time when we reset the tweak or we reuse it (hence
with no AES computation). For FF1 or FF3, changing the tweak or reusing it has
no visible difference on the curve so we did not plot it. Essentially, the figures
for FAST are as follows for Setup1, Setup2, and Enc/Dec:

– AES key setup: 572 cycles. (With 128-bit key K/KS/KSEQ in either AES-CTR
or AES-CMAC.)

– S generation (in PRNG2 based on AES-CTR, after AES key setup): about 88
cycles for each Sbox to generate for a = 10. (for various a, this is: 10 : 88,
16 : 137, 32 : 282, 64 : 617, 128 : 1334, 256 : 2831). This includes the
generation of the random coins and the shuffle.

– KSEQ and KS derivation (PRF based on two parallel AES-CMAC, after AES
key setup): ∼ 300 cycles per input block. With 16-byte instance encoding and
8-byte tweak, we need 7 AES computations in total (encryption of the zero-
block, two CBC encryption of two blocks for KSEQ, and two AES encryption
of a single block for KS); some of them could be done in parallel.

– SEQ derivation (in PRNG1 based on AES-CTR, after AES key setup): 1.2 to
0.8 cycles for each of the n bytes.

– Core encryption/decryption: 5.7 cycles for each of the n layers, for a = 10.

For a best case comparison of most typical use cases, we optimized the open
source FF1 implementation (which used big number modular arithmetic for all
input lengths) to use the built-in (unsigned) int128 type provided by GCC
as “native 128 bit integers” for this platform for � ≤ 32. We did not change
the implementation for � > 32 and acknowledge that it does not leverage full
optimization potential. Therefore, we should take the � > 32 figures with a grain
of salt, but we do have good performances compared to FF1/FF3 using built-in
128-bit integer arithmetic for � ≤ 32 and nearly sustain this performance for
longer inputs. (Note that FF3 limits to � ≤ 56 and we abusively let an entry
for � = 64.) We can safely say that FF1 performance per symbol is impacted
negatively by the need for using a big integer library where modulo operands
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Fig. 4. Implementation results for a = 10 (FF3 limits � ≤ 56)

do not fit into 128 bits. The performance breakdown of FF1 for larger strings is
also acknowledged by other researchers.10

4 Security Proof

4.1 Security Definitions

We first define our strongest security notion by indistinguishability from an ideal
FPE. It corresponds to the natural notion of tweakable super-pseudorandom per-
mutation. I.e., the adversary can choose the tweak, a plaintext, a ciphertext. The
adversary can further change the parameters (in the list F of allowed parame-
ters). For instance, the adversary can change the format adaptively by keeping
the same key.

First, we assume that the interface of the algorithm can be modeled by

F : K 
→ (
instance1, instance2, tweak 
→ even permutation of Z�

a

)

10 See https://www.researchgate.net/publication/332088303 Evolution of Format Preserving Encry

ption\ on\ IoT\ Devices\ FF1 for instance.

https://www.researchgate.net/publication/332088303_Evolution_of_Format_Preserving_Encryption\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}on\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}IoT\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}Devices\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}FF1
https://www.researchgate.net/publication/332088303_Evolution_of_Format_Preserving_Encryption\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}on\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}IoT\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}Devices\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}FF1
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with instance1 = (a,m) and instance2 = (�, n, w,w′) (indeed, we will see in Sect. 5
that our permutations of Z�

a are always even). We assume a set F of admissible
instances. Given a secret k, Fk maps instance1, instance2, and tweak to an even
permutation Fk(instance1, instance2, tweak) of Z�

a. Hence,

ct = Fk(instance1, instance2, tweak)(pt)

pt = (Fk(instance1, instance2, tweak))
−1 (ct)

Based on this, we propose the security game in Fig. 5. In the Step 1 of the
game, we implicitly mean that the game will define tables of (pt, ct) pairs for
(K, instance1, instance2, tweak) by lazy sampling, when needed in OTE and OTD.
We obtain the following strong security notion.

The INDstrong security definition (as for “Strong INDistinguishability”)
gives oracle access (through OTE and OTD, as for “Oracle - Target Encryp-
tion/Decryption”) to encryption/decryption with the ith target function with
unknown key Ki. We limit the number of targets to a parameter τ as discussed
below.

Definition 1. We say that the algorithm is (T, τ, q, ε)-INDstrong-secure if for
any INDstrong-adversary A running the INDstrong game with τ targets, if the
average complexity is limited by T , and if the average number of queries to the
oracles is limited by q (we call this a (T, q)-limited adversary), the advantage is
bounded by ε:

AdvINDstrong(A) = Pr[INDstrong1 → 1] − Pr[INDstrong0 → 1] ≤ ε

The average complexity is measured when running the game on average over all
random coins (from the game and the adversary). We favor average number of
queries instead of sharp upper bounds on the number of queries of each type.

Our security model is quite powerful as it allows the adversary to attack one
of several target keys and also to mount attacks in which he can choose the
tweak, as well as the instance. Namely, the adversary can adaptively choose the
format (a, �) and parameters (m,n,w,w′) (as long as they are in an admissible
set) and reuse the same keys with multiple instances. The adversary can further
choose the input to the encryption or the decryption algorithm.

Regarding passive related-key attacks, since our key K is only used in a
PRF, the security of PRF against passive related-key attacks and the security of
our design in a multi-target model imply the security against passive related-key
attacks. By passive related-key attack, we mean those in which the adversary
launches many targets K[1], . . . ,K[τ ] and expect some to be related by random
selection. We could also address active related-key attacks in which the adversary
can force the creation of a target in a related manner to another, e.g. the creation
of K[1] and K[2] such that K[2] = K[1] + 1. We could prove that if PRF resists
to related-key attacks, then the FPE as well. Unfortunately, the PRF which we
use is based on AES which does not resist to this type of attacks for keys larger
than 128 bits [10]. However, we are not aware of any related-key attack on our
FPE.
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Game INDstrongb:
1: pick F following the interface at random:

for each K, instance1 (including a), instance2 (including ), tweak,
FK(instance1, instance2, tweak) is an even permutation of Za

2: pick K[1], . . . , K[τ ] ∈ {0, 1}L at random
3: run AOTE,OTD z
4: return z

Oracle OTE(i, instance1, instance2, tweak, pt)
5: if (instance1, instance2) then return ⊥
6: if i 1, . . . , τ} then return ⊥
7: if b = 0 then
8: return FKi

(instance1, instance2, tweak)(pt)
9: else
10: return EncKi

(instance1, instance2, tweak, pt)
11: end if

Oracle OTD(i, instance1, instance2, tweak, ct)
12: if (instance1, instance2) then return ⊥
13: if i 1, . . . , τ} then return ⊥
14: if b = 0 then
15: return FKi

(instance1, instance2, tweak) −1 (ct)
16: else
17: return DecKi

(instance1, instance2, tweak, ct)
18: end if

Fig. 5. General indistinguishability game with access to ideal F

On Limiting the Number of Targets. An adversary can always prepare a dictio-
nary of u keys with the encryption of a fixed plaintext, make a chosen plaintext
attack on τ targets, and spot if any target belongs to the dictionary [9]. This
gives an easy distinguisher with advantage uτ/2L. The value of τ could in prin-
ciple reach a value close to q while the value of u would be proportional to the
time complexity T . This type of attack applies well to AES too. With L = 128,
we can take u = τ = 264 and have a good distinguisher. In practice, it makes
sense to assume that the number of targets is limited to a small number τ . Since
we do not want to enlarge the key length due to this attack but still offer security
with large q, we chose to introduce a low τ parameter.

Meaning of a 128-bit Security. We target a “128-bit security” (classical or quan-
tum). However, the meaning of 128-bit security is often incorrectly understood
as any attack would need at least T = 2128 complexity to succeed. Attacks are
however measured by several metrics such as T , q, ε, and τ . We could have
attacks with a small T and a ridiculously low ε still 128-bit security.

It is hard to compare two attacks with different advantages. Sometimes, a
(T, q, ε)-attack could be amplified into a (kT, kq, kε)-attack (in which case we
could say that the attack needs k = 1

ε to succeed, hence it has a normalized
complexity of T

ε ) but sometimes, the amplification works as a (kT, kq,
√

kε)-
attack (in which case we could say that the attack needs k = 1

ε2 to succeed,
hence it has a normalized complexity of T

ε2 ). It could also be the case that
no amplification is possible. Hence, there is no general rule. We could try, as
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much as possible, to focus on adversaries achieving a constant advantage such
as advantage 1

2 .
Another difficulty is the introduction of the multiple instances, target keys,

and tweaks as mentioned above. Things become easier when the security notion
implies a single key, a single target, and a single tweak.

Hence, by “128-bit security”, we mean “like AES”. We mean that in a same
(q, ε, τ) configuration, we could have an attack against AES with a T which is
lower or equal. If an adversary achieves a constant advantage with a single target,
a single instance, and a single tweak, it must have a complexity comparable to
an exhaustive search on a 128-bit key.

Indistinguishability to Even Permutations. Most of existing ciphers are even
permutations. A random even permutation over a domain of size N is per-
fectly indistinguishable from a random permutation when the number of avail-
able input/output pairs does not reach N − 1. Block ciphers are defined over
domains with large N so this is not a problem. In FPE, N can be very small
and the parity may leak. Hence, we preferred to make sure that our FPE are
even permutations and to adopt as a security model the indistinguishability to
a random even permutation. In Sect. 5, we prove that our FPE with the selected
parameters is even.

Known Pool Security. Our construction is based on a pool S of Sboxes. We can
enrich the security notion to capture attacks in which the adversary learns S:
a “known S attack”.11 There are several motivations for considering known S
attacks:

– In tokenization mode, S is fixed once for all and the secret is only determining
SEQ. We could imagine that by time, the pool S eventually leaks.

– Some (side-channel) attacks may uncover some Sboxes.
– Security in this model with single target and single instance offers some nice

security reductions from strong security.

Hence, it is relevant to wonder if some attacks could exploit having the pool S
as prior knowledge and with a random S and SEQ instead of a pseudorandom
one. We enrich our security game as in Fig. 6. This is the INDKSsprp game (as
for “Known-S Super-Pseudorandom Permutation”), working with the OE and
OD oracles (as for “Oracle - Encryption/Decryption”) and OT1 and OT2 oracles
to set up the target parameters.

Definition 2. We say that the algorithm is (T, q, ε)-INDKSsprp-secure if for any
(T, q)-limited INDKSsprp-adversary A running the INDKSsprp game, the advan-
tage is bounded by ε:

AdvINDKSsprp(A) = Pr[INDKSsprp1 → 1] − Pr[INDKSsprp0 → 1] ≤ ε

11 A “chosen S attack” leads to trivial attacks. For instance, the adversary could pick all
Sboxes equal, or all Sboxes linear (over Za). Therefore, we do not consider chosen-S
models.
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Game INDKSsprpb:
1: run AOE,OD,OT1,OT2 z
2: return z

Oracle OT1(instance1)
3: if S defined then return ⊥
4: (a, m) instance1
5: pick S0, . . . , Sm−1 random permutations

of Za

6: S (S0, . . . , Sm−1)
7: return S

Oracle OT2(instance2)
8: if SEQ defined then return ⊥
9: if S undefined then return ⊥
10: if (instance1, instance2) then return

⊥
11: ( ) instance2
12: pick a random even permutation F of Za
13: pick random SEQ ∈ {0, . . . , m − 1}n
14: return

Oracle OE(pt)
15: if S or SEQ undefined then return ⊥
16: if b = 0 then
17: return F (pt)
18: else
19: return CEncS [SEQ](pt)
20: end if

Oracle OD(ct)
21: if S or SEQ undefined then return ⊥
22: if b = 0 then
23: return F−1(ct)
24: else
25: return CDecS [SEQ](ct)
26: end if

Fig. 6. Single-Target/Instance/Tweak Known S indistinguishability game

We could also consider revealing KS with the same arguments. We would
then have to set S generated by PRNG2 on a random KS in the game. One
advantage is that we would no longer need a specific security for PRNG2 (it
would be integrated in INDKSsprp with the above modification) and we could
“compress” the storage of S by KS if needed.

We finally define the one-time PRNG security and PRF security of our algo-
rithms by the games in Fig. 7 and Fig. 8.

Definition 3. We say that the algorithm is (T, ε)-INDPRNG1-secure if for any
T -limited INDPRNG1-adversary A running the INDPRNG1 game, the advantage
is bounded by ε:

AdvINDPRNG1(A) = Pr[INDPRNG1
1 → 1] − Pr[INDPRNG0

1 → 1] ≤ ε

We similarly define INDPRNG2-security. We similarly say that PRF is (T, q, ε)-
PRF-secure if for any (T, q)-limited PRF-adversary A running the PRF game,
the advantage is bounded by ε.

We can now formally reduce the strong security INDstrong to the weak secu-
rity INDKSsprp. The next step will be to heuristically assess the weak security
of our construction.

Theorem 4. There exists a (small) constant c such that for any s, T , q, and any
(T, τ, q)-limited INDstrong-adversary A, there exist q′ ≤ q, a (T + qc, q′)-limited
INDKSsprp-adversary A′, a (T, q+1)-limited PRF-adversary B, a (T +qc)-limited
INDPRNG1-adversary C and a (T +qc)-limited INDPRNG2-adversary D such that
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Game INDPRNGb
1:

1: run AOG z
2: return z

Oracle OG(m, n)
3: if SEQ defined then return ⊥
4: if b = 0 then
5: pick random SEQ ∈ {0, . . . , m − 1}n
6: else
7: pick KSEQ ∈ {0, 1}L1 at random
8: SEQ PRNG1,m,n(KSEQ)
9: end if
10: return SEQ

Game INDPRNGb
2:

11: run AOG z
12: return z

Oracle OG(a, m)
13: if S defined then return ⊥
14: if b = 0 then
15: pick S0, . . . , Sm−1, random Za per-

mutations
16: S (S0, . . . , Sm−1)
17: else
18: pick KS ∈ {0, 1}L2 at random
19: S PRNG2,a,m(KS)
20: end if
21: return S

Fig. 7. Indistinguishability game for PRNG

Game PRFb:
1: pick a random function F with same

input/output domain as PRF
2: pick K at random
3: run AOF z
4: return z

Oracle OF(x)
5: if b = 0 then
6: return F (x)
7: else
8: return PRFK(x)
9: end if

Fig. 8. Indistinguishability game for PRF

AdvINDstrong(A) ≤ q · AdvINDKSsprp(A′)
q′ + τ · AdvPRF(B) +

q · (AdvINDPRNG1(C) + AdvINDPRNG2(D)) +
τ2

2
· 2−L

In general, τ is limited by what is allowed in the implementation. The proof is
provided in the full version [17].

Given that AdvINDKSsprp(A′), AdvINDPRNG1(C), or AdvINDPRNG2(D) can easily
be as large as T · q′ · m−n, T · 2−L1 , or T · 2−L2 respectively (by doing an
exhaustive search on a list limited to T ), it is crucial that n log2 m and L1

are both larger than 2s. This will match the criteria (2) and (12) in Sect. 5.
Similarly, AdvPRF(B) can be as large as T · 2−L + q2 · 2−λ, with λ being the
output length of the PRFλ. By plugging all these values we obtain the upper
bound q · T · (

m−n + 2−L1 + 2−L2
)

+ τ · (T · 2−L + q2 · 2−λ) + τ2

2 · 2−L for
AdvINDstrong(A). Given that L = s and n log2 m ≈ λ = L1 = L2 = 2s, this is
3q ·T ·2−2s+τ ·(T ·2−s+q2 ·2−2s)+ τ2

2 ·2−s. The first term is fine. The other terms
account for a normal degradation of the security by a factor τ in a multi-target
setting. For instance, with the extreme case q ≈ T , we need T ≈ 1

τ 2s to reach a
constant advantage.

The proof of Theorem 4 follows several reduction steps as follows.

– Γ 0
b (A): We start with an INDstrong game.
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– Γ 1
j (A): Reduce to a game with independent Fi instead of FK[i]. (Cost is τ2

2 2−L

due to possible collisions on K[i].)
– Γ 2

b (Aj): Reduce to single target K. (Cost is a factor τ using an adversary for
each target.)

– Γ 3
b (Aj): Replace PRF by a random function. (Cost is AdvPRF.)

– Γ 4
b (Aj): Reduce to known S. (No cost.)

– Γ 5
j′(Aj)—Γ 6

b (Aj,j′): Reduce to single instance1 with hybrid games and single
adversary, then several adversaries playing a unique single-instance game.

– Γ 7
j′′(Aj,j′)—Γ 8

b (Aj,j′,j′′): Reduce to single (instance2, tweak) with the same
method.

– Γ 9
b (Aj,j′,j′′): Replace PRNG1 by a truly random function. (Cost is

AdvINDPRNG1 .)
– INDKSsprpb(Aj,j′,j′′): Replace PRNG2 by a truly random function. (Cost is

AdvINDPRNG2 .)
– INDKSsprpb(A′): We obtain an INDKSsprp game.

We use a trick to cumulate all hybrids which results in only a factor q. Namely,
we take the hybrid with maximal Adv

q′ and we upper bound the advantage of
hybrids by their number of queries times this ratio. Summing them all results in
q · Adv

q′ .

5 Rationales

On the choice of w′. The � = 2 is a special case where we shall use w = 0 and
w′ = 1. For � > 2, we use w = �√�	 and we wonder how to select w′.

We clearly need w′ > 0. Furthermore, it is required that w < � − w′ to avoid
changes in branch orders. Without loss of generality, we assume w′ ≤ w (with
the exception of � = 2 for which w = 0). The previous design was using w′ = 1.
However, it may be nice for performances to have w′ of same order of magnitude
as w.

There is an easy attack when d ≥ 2, with d = gcd(w,w′, �): if two plaintexts pt
and pt′ have a difference of form pt′ −pt = (?0d−1)�/d, this property is preserved
after d layers. Hence, we have a distinguisher with advantage close to 1 and any
number of layers. To avoid this problem, we adopt w′ = max(1, w − 1) which
guaranties that gcd(w,w′) = 1 so d = 1 as well.

Parity of CEnc. We prove that the parity of encryption only depends on the
parameters a, �, and n. Hence, it does not leak.

Lemma 5. For every y in a domain of size A, we consider a permutation Py.
The (x, y) 
→ (Py(x), y) is a permutation with parity equal to the sum of the
parities of every Py.

Proof. For y fixed, the permutation restricts to a permutation with same cycle
structure as Py. Hence, the permutation is a composition of permutations with
same cycle structure as Py, for every y. ��
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Lemma 6. The (x, y) 
→ (x + y, y) permutation over Z2
a is even when a is odd

and has the parity of a
2 when a is even. The same holds for (x, y) 
→ (x − y, y).

Proof. We let Py(x) = x+y mod a and we apply Lemma 5. Py is the composition
of a

k cycles of length k, where k is the order of y in Za. The parity of Py is the
parity of a

k (k − 1).
For y = 0, Py is even.
For a odd, we notice that for y �= 0, Py and P−y have the same parity hence

cancel each other. Hence, the permutation is even when a is odd.
For a even, the same observation holds for y ∈ {1, . . . , a

2 − 1}. Hence, the
parity is the same as the parity of Pa/2. We have k = 2 for Pa/2, thus its parity
is the one of a

2 . ��
Lemma 7. The parity of CEncS [i0, . . . , in−1] is as follows:

– for a mod 4 �= 3, it is even;
– for a mod 4 = 3, it is the parity of n(� − 1).

(For this, we assume that � = 2 implies w = 0.)

Since n is a multiple of �, n(� − 1) is always even. Hence, the permutation
CEncS [i0, . . . , in−1] is always even.

Proof. The encryption is the composition of permutations of n layers using
Si0 , . . . , Sin−1 . The layer using an Sbox σ is the composition of

P1 the permutation (x0, . . . , x�−1) 
→ (x0 + x�−1, x1, . . . , x�−1),
P1′ the permutation (x0, . . . , x�−1) 
→ (x0 − xw, x1, . . . , x�−1),
P2 the permutation (x0, . . . , x�−1) 
→ (σ(x0), x1, . . . , x�−1) (used twice),
P3 the permutation (x0, . . . , x�−1) 
→ (x1, . . . , x�−1, x0).

By writing P (x0, x�−1) = (x0 + x�−1, x�−1), for � > 2, P1 has the form of the
permutation of Lemma 5 with y in a domain of size A = a�−2 and all Py set to
P , so the parity of P1 is a�−2 times the parity of P , which is the same as a times
the parity of P . For � = 2, the permutation P1 is P so has the same parity. By
using Lemma 6, we obtain the parity of P . Therefore, the parity of P1 is

– (a even and � > 2) even,
– (a even and � = 2) the parity of a

2 ,
– (a odd) even.

The same holds for P1′.
The second permutation P2 has the form of the permutation given in

Lemma 5 with a fixed permutation P = σ with y in a domain of size A = a�−1.
We obtain that the parity of P2 is the same as a times the parity of σ. Therefore,
the parity of P2 is

– (a even and � > 2) even,
– (a even and � = 2) even,
– (a odd) the parity of σ.
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However, P2 is used twice so its parity has no impact.
The third permutation P3 is the composition of � − 1 permutations of form

(x0, . . . x�−1) 
→ (x0, . . . , xi−1, xi+1, xi, xi+2, . . . , x�−1) exchanging the coordi-
nates of index i and i + 1. Those permutations can be written as in Lemma 5
for � > 2 with P (xi, xi+1) = (xi+1, xi). This permutation has a fixed points and
a2−a

2 cycles of length two. Hence, it has the same parity as a2−a
2 . For � > 2, we

deduce that the parity of P3 is the parity of (� − 1)aa2−a
2 . For � = 2, the parity

of P3 is the parity of (� − 1)a2−a
2 . Therefore, the parity of P3 is

– (a even and � > 2) even,
– (a even and � = 2) the parity of a2−a

2 ,
– (a odd) the parity of (� − 1)a2−a

2 .

We sum the parities over the n layers and obtain the result. In the a even
and � > 2 case, everything is even. In the a even and � = 2 case, we first observe
that w = 0 so P1′ is unused. Then, we observe that the parity of a

2 + a2−a
2

is always even. In the a odd case, we observe that a2−a
2 is even if and only if

a mod 4 = 1. ��

Slide Attack on Previous SEQ Scheme. A previous version of our construction
was using SEQ with a sequence derived from a periodic repetition (or modified
repetition) of an AES-generated sequence. This made the entire encryption pro-
cess being a self-iteration on a simpler function, which is subject to a devastating
slide attack. In our construction, SEQ is a random sequence of indices and the
probability that it becomes periodic is negligible. So, the slide attack is defeated.

Best Known Attacks. We investigated several attack methods which we list here
together with the requirement that security implies. They are detailed in the full
version [17].

– Linear collapse. With too small parameters, there are chances that the encryp-
tion becomes linear over Za.

min(m,n) >
s

log2(a − 1)! − log2 ϕ(a)
(1)

– Known Sbox pool dictionary attack. With not enough layers, a partial dic-
tionary attack can work.

n >
2s

log2 m
(2)

– Chosen ciphertext distinguisher with w = 0 and w′ = 1.

n > �(� − 1) +
s

log2 min(m,a
√

a)
if w = 0 and w′ = 1 (3)

– Chosen plaintext distinguisher with w > 1 and w and w′ coprime.

n > (w′ + 1)(� − w′) +
s − 1 + 2 log2 a

log2 min(m,a!)
if w > 1 (4)
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– Chosen ciphertext distinguisher with w > 1 and w and w′ coprime.

n > (w + 1)(� − w) +
s − 1 + 2 log2 a

log2 min(m,a!)
if w > 1 (5)

– Chosen plaintext distinguisher with w + w′ factor of �.

n > (w + w′)
s − 1 + � log2 a

2 log2(a − 1)
(6)

n >
s − 1 + � log2 a

log2 min(m,a!)
(7)

– Chosen plaintext distinguisher with w′ factor of � + 1.

n > w′ s − 1 + (� + 2) log2 a

log2 a
(8)

n >
s − 1 + (� + 2) log2 a

log2 min(m,a!)
(9)

– Differential and linear attacks. Given a framework which captures truncated
differentials, impossible differentials, regular differentials, and linear hulls over
the algebraic structure of Za, we can derive a lower bound for n to achieve
security.

n >
s
√

�

ln(a − 1)
(10)

– Fixed point attacks. It may happen that all selected Sboxes have 0 as a fixed
point, which would lead to a trivial attack.

n >
s

log2 a
(11)

– Collision attacks. Trying many tweak until there is a collision on KSEQ leads
to a trivial distinguishing attack. Hence, the bitlength of KSEQ must be at
least 2s.

L1 ≥ 2s (12)

Choice of Parameters. The generic attacks have clearly shown that w should
be around

√
� but lower bounded by � − 2. As for the selection of n, we looked

at all obtained requirements. For each a and �, we computed the suggested w
and the maximal requirement. Table 2 represents the minimal value for n with a
subscript set to the equation number of the critical requirement. We set s = 128.
For instance, a = 10 and � = 6 (encryption of 6 decimal digits) has entry 14310
which means that we need n ≥ 143 layers (24 rounds) which is critical for
Eq. (10), the differential and linear attacks. We suggest 48 rounds which gives a
good security margin.

As we can see, low � values have Eq. (10) (differential cryptanalysis) as critical
while high � have one of the generic attacks as critical. Large � values have Eq. (6)
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Table 2. Minimal number n of layers following criteria with reference to the critical
one

� 2 3 4 5 6 7 8 9 10 12 16 32 50 64 100

a = 4 16510 20210 23410 26110 28610 30910 33010 35010 36910 40410 46710 6636 9316 12076 19606

a = 5 13110 16010 18510 20710 22710 24510 26210 27710 29210 32010 37010 5546 7916 10346 17076

a = 6 11310 13810 16010 17810 19510 21110 22510 23910 25210 27610 31910 4976 7186 9456 15786

a = 7 10210 12410 14310 16010 17510 19010 20310 21510 22610 24810 28610 4626 6736 8906 14996

a = 8 9410 11410 13210 14810 16210 17510 18710 19810 20910 22810 26410 4376 6426 8536 14456

a = 9 8810 10710 12410 13810 15110 16310 17510 18510 19510 21410 24710 4196 6196 8256 14066

a = 10 8310 10110 11710 13110 14310 15510 16510 17510 18510 20210 23410 4056 6026 8046 13776

a = 11 7910 9710 11210 12510 13710 14810 15810 16710 17610 19310 22310 3946 5876 7876 13536

a = 12 7610 9310 10710 12010 13110 14210 15110 16110 16910 18510 21410 3856 5766 7736 13346

a = 13 7310 9010 10410 11610 12710 13710 14610 15510 16310 17910 20710 3776 5666 7626 13186

a = 14 7110 8710 10010 11210 12310 13310 14210 15010 15810 17310 20010 3706 5586 7526 13046

a = 15 6910 8510 9810 10910 11910 12910 13810 14610 15410 16910 19510 3656 5516 7436 12926

a = 16 6710 8210 9510 10610 11610 12610 13410 14210 15010 16410 19010 3596 5456 7366 12826

a = 100 4010 4910 5610 6310 6910 7410 7910 8410 8910 9710 1246 2826 4516 6256 11356

a = 128 3810 4610 5310 6010 6510 7010 7510 8010 8410 9210 1206 2776 4446 6186 11256

a = 256 3310 4110 4710 5210 5710 6210 6610 7010 7410 8110 1126 2646 4296 6006 11026

a = 1000 322 3310 3810 4210 4610 506 5310 5610 5910 6510 1016 2476 4086 5766 10726

a = 1024 322 322 3710 4210 4610 506 5310 5610 5910 6410 1016 2466 4086 5766 10716

a = 10 000 322 322 322 322 3510 426 446 476 496 565 906 2296 3886 5526 10416

a = 65 536 322 322 322 322 322 386 405 445 485 565 846 2206 3776 5406 10266

(differential chosen plaintext attack) as best attack. We can also see that Eq. (2)
(Dictionary Attack) appears for low � and large a. Actually, our lower bounds
asymptotically give n = Ω(s�

1
2 + �

3
2 ) when s and � grow to infinity. To select

n, we doubled the requirement for a safety margin and we took the smallest
acceptable multiple of � by using Eq. (2), Eq. (10), and Eq. (6).

6 Conclusion

We constructed a flexible truly-SPN FPE. We proved that it is competitive in
terms of both throughput and security, even when the encryption domain is very
small. We encourage researchers to analyze the security.
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Abstract. LightMAC, by Luykx et al., is a block cipher based message
authentication code (MAC). The simplicity of design and low overhead
allows it to have very compact implementations. As a result, it has been
recently chosen as an ISO/IEC standard MAC for lightweight applica-
tions. LightMAC has been shown to achieve query-length independent
security bound of O(q2/2n) when instantiated with two independently
keyed n-bit block ciphers, where q denotes the number of MAC queries
and the query-length is upper bounded by (n − s)2s bits for a fixed
counter size s. In this paper, we aim to minimize the number of block
cipher keys in LightMAC. First, we show that the original LightMAC
instantiated with a single block cipher key, referred as 1k-LightMAC,
achieves security bound of O(q2/2n) while the query-length is at least
(n−s) bits and at most (n−s) min{2n/4, 2s} bits. Second, we show that a
minor variant of 1k-LightMAC, dubbed as LightMAC-ds, achieves security
bound of O(q2/2n) while query-length is upper bounded by (n − s)2s−1

bits. Of independent interest, our security proof of 1k-LightMAC employs
a novel sampling approach, called the reset-sampling, as a subroutine
within the H-coefficient proof setup.

Keywords: LightMAC · MAC · PRF · Single-key · Lightweight ·
ISO/IEC standard

1 Introduction

Lightweight cryptography endeavors to safeguard communications in resource-
constrained environments. The advent of Internet of Things has given a great
impetus to this field of research in the last decade or so. As a result, several stan-
dardization efforts have tried to systematize the field, most notably the CAESAR
competition [1], NIST lightweight cryptography standardization project [2], and
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the ISO/IEC standardization [3]. Specifically, the ISO/IEC 29192-6:2019 stan-
dard [3] specifies three message authentication code (or MAC) algorithms for
lightweight applications. MACs are symmetric-key primitives that achieve data
authenticity and integrity. The ISO/IEC standard recommends LightMAC [4],
Tsudik’s keymode [5] and Chaskey-12 [6] as the three MAC algorithms. In this
paper, we focus on LightMAC.

LightMAC, by Luykx et al. [4], is a parallelizable block cipher-based MAC.
For an n-bit block cipher E instantiated with keys K1 and K2, and a global
parameter s < n, a simplified1 version of LightMAC can be defined as:

LightMACK1,K2
(m) := EK2(EK1(x[1]) ⊕ · · · ⊕ EK1(x[� − 1]) ⊕ m[�]‖10s−1), (1)

where (m[1], . . . ,m[�]) denotes the (n − s)-bit parsing of the input message m,
and x[i] = 〈i〉s‖m[i] for 1 ≤ i ≤ � − 1, where 〈i〉s denotes the s-bit binary
representation of i. For obvious reasons s is also called the counter size. The
counter-based encoding in LightMAC is inherited from some earlier MAC designs
such as the XOR MACs by Bellare et al. [7] and Bernstein’s protected counter
sums [8]. The use of counter-based encoding limits the rate—ratio of the number
of n-bit blocks in the message m to the number of block cipher calls required
to process m. For example, LightMAC requires 4 calls to process a message of
length 3n bits when the counter size s = n/4, whence the rate is 3/4. Ideally,
the rate should be as high as possible, with rate 1 or higher considered as holy
grail. Dutta et al. [9] give optimal counter-based encoding strategies for some
scenarios, resulting in significant speed-up. However, LightMAC still falls short
on this account when compared to some other MAC schemes such as OMAC [10]
and PMAC [11] etc.

However, LightMAC design is quite simple as it minimizes all auxiliary opera-
tions other than the block cipher call, which reduces the overhead to a minimum.
For this reason, LightMAC is expected to have more compact implementations
as compared to PMAC. Further, LightMAC is parallelizable like PMAC which
enables it to exploit the parallel computing infrastructure, whenever available.
As a result, LightMAC is a quite flexible algorithm, as it has qualities suitable for
both memory-constrained environments as well as high performance computing.

Query-Length Independence: Yet another avenue where LightMAC gains
over several other MAC schemes is its security guarantee. Many MAC algo-
rithms, including PMAC and OMAC, have security bounds which degrade linearly
with the query-length. Apparently, some sort of dependence on query-length is
unavoidable in iterated MAC schemes. However, LightMAC is shown to have
query-length independent security bounds.

It is well-known [12,13] that variable input length (VIL) pseudorandom func-
tions (or PRFs) are good candidates for deterministic MACs. Indeed, almost all
the security bounds on deterministic MAC schemes, in fact, quantify their PRF
security. In the following discussion q and � denote the number of queries and
the bound on query-lengths, respectively.

1 Assuming all messages have length (n − s)r for some 1 ≤ r ≤ 2s.
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Luykx et al. [4] showed that LightMAC achieves O(q2/2n) bound on the
success probability of any adversary (also referred as the PRF advantage). This
bound is independent of the query-length �, apart from the obvious bound of
� ≤ (n − s)2s.

In comparison, arguably the most popular parallelizable MAC, PMAC, suf-
fers from a linear degradation in security with increase in query-length. Some
birthday-bound (PRF advantage is at least q2/2n) variants (or extensions) of
PMAC, like PMAC with parity [14] and PMAC3 [15], do achieve query-length
independence for a wide range of � values. However, this costs significant increase
in design complexity, such as more than two-fold increase in memory usage and
relatively complex auxiliary operations like multiple masking operations or gen-
erating error correcting codes.

The situation does not improve much, when we consider birthday-bound
sequential modes either. Schemes like CBC-MAC [16], XCBC [17] and OMAC
exhibit similar degradation in security with increase in query-length as PMAC.
EMAC [18,19] achieves query-length independence with slightly higher PRF
advantage of O(q/2n/2) while � ≤ 2n/4. However, EMAC only works for mes-
sages with “multiple-of-n” length. One can extend the construction to arbitrary
domain by either using extra block cipher keys, as in ECBC and FCBC [17],
or apply some injective padding rule on the input message before processing it
through EMAC.

Beyond-the-birthday bound (BBB) secure constructions such as Sum-ECBC
[20], PMAC+ [21], 3kf9 [22], PMACx [23], 1k-PMAC+ [24], and LightMAC+ [25],
can also achieve query-length independent security bounds for a wide range of
values of �. However, these constructions require significantly more memory and
additional operations (due to the BBB security requirement) as compared to
LightMAC.

1.1 Motivation

ISO standards are widely used in communication protocols such as TLS, Blue-
tooth protocol, Zigbee etc. Being an ISO standard for lightweight cryptography,
LightMAC is also widely recognized as a suitable MAC candidate for deployment
in resource-constrained environments. Possibly, its simple and compact design
and query-length independent security are the main reasons behind this percep-
tion. On a closer look, we see that the two independent keys greatly simplify
the security argument of LightMAC. Due to the independence of keys, it can be
viewed as an instance of the Hash-then-PRF paradigm [26,27], and hence the
PRF security bound follows directly from LightMAC output collision probability.

However, maintaining two block cipher keys could be a burden in memory-
constrained environments. Currently LightMAC with 2 keys requires 256 bits for
key (128-bit block cipher key). Instead, one-key variants of LightMAC use 128
bits, which is a significant optimization in memory footprint both in hardware
and software. The problem is further aggravated when implementations store
precomputed round keys to reduce latency. For example, in case of AES128 [28],
this precomputation would require 176 bytes of memory per key. This motivates
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us to look into the problem of minimizing the number of keys in LightMAC, while
maintaining the query-length independence. Specifically, we ask the following
question:

† : Is there a single-key LightMAC variant which achieves similar query-length
independent bounds as two-key LightMAC?

As it turns out, the answer to this question is not straightforward. Recall
the description of LightMAC from Eq. (1). Let yi := EK1(xi) and y⊕ :=
y1 ⊕ · · · ⊕ y�−1 ⊕ m�‖10s−1. We call xi and yi the i-th intermediate input and
outputs, respectively and y⊕ and t = EK2(y

⊕) the final input and output, respec-
tively. There are two non-trivial bottlenecks (see Sect. 3.2) in answering the above
questions:

1. Collisions between intermediate input and final input, and
2. Collisions between intermediate output and final output.

The naive way to handle these two cases is to bound the probability of these
events to O(q2�/2n) as there are at most q� intermediate inputs/outputs and q
final inputs/outputs. Clearly, this naive approach leads to a degradation in the
security. So,

� : we need a more sophisticated strategy to prove the security of single-key
LightMAC.

Yet another approach is to explicitly separate the final inputs from intermediate
inputs by fixing some input bit to 0 in intermediate inputs and 1 in final inputs.
This will help in resolving the first bottleneck. However, the second bottleneck
is still present. Hence, the resulting construction is not as straightforward as
two-key LightMAC. Further, domain separation also introduces slight changes in
the standardized design, which is not appreciated by end-users, in general. So,

�� : variants with very small modifications over the original LightMAC
algorithm will be preferred.

In this paper, we aim to answer † in affirmative using � and �� as general
guidelines.

1.2 Our Contributions

Our contributions are twofold:
First, in Sect. 4, we show that single-key LightMAC, denoted as 1k-LightMAC,

is as secure as two-key LightMAC, while the query-lengths are lower bounded by
(n − s) bits and upper bounded by (n − s)min{2n/4, 2s} bits. In other words,
we show a security bound of O(q2/2n) for 1k-LightMAC, while (n − s) ≤ � ≤
(n − s)min{2n/4, 2s}.

In order to circumvent the two bottlenecks discussed in Sect. 1.1, we use
a novel sampling approach, called the reset-sampling – a proof style much in
the same vein as the reprogramming of random oracles [29]. At the highest
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Table 1. A comparative summary of several birthday-bound block cipher based MAC
algorithms. Here q denotes the number of queries, � denotes the bound on query-length,
and s denotes the counter size.

Mode #BC keys Aux. memorya PRF bound Restrictionb

EMAC [18,19] 2 0 O
(

q

2n/2

)
[33] � ≤ n2n/4

ECBC,FCBC [17] 3 0 O
(

q

2n/2

)
[33] � ≤ n2n/4

XCBC [17] 1 2n O

(
q2�
2n

)
[34] � ≤ n2n/3

OMAC [10] 1 n O

(
q2�
2n

)
[35] � ≤ n2n/4

PMAC [11] 1 n Θ( q2�
2n ) [34,36,37] -

PMAC3 [15] 2 3n O

(
q2
2n

)
[15,38] � ≤ n2n/2

LightMAC [3,4] 2 s O

(
q2
2n

)
[4] � ≤ (n − s)2s

1k-LightMAC 1 s O

(
q2
2n

)
(n − s) ≤ � ≤ (n − s)min{2n/4, 2s}

LightMAC-ds 1 s O

(
q2
2n

)
� ≤ (n − s)2s−1

a The memory used to store masking keys or counter value.
b Upper bound on query-lengths for which the given security bound holds.

level, reset-sampling can be viewed as a subroutine in H-coefficient [30,31] or
Expectation method [32] based proofs that can be employed in order to transform
a possibly bad transcript into a good transcript given that certain conditions
are fulfilled. In other words, it resets some bad transcript into a good transcript.
For example, in our analysis we reset the intermediate outputs appropriately
whenever the corresponding intermediate input collides with some final input.

Second, in Sect. 5, we propose a close variant of 1k-LightMAC, dubbed as
LightMAC-ds, and show that LightMAC-ds is asymptotically as secure as two-key
LightMAC , i.e., it achieves security bound of O(q2/2n) while � ≤ (n − s)2s−1.
The restriction on length is due to the loss of 1-bit from counter for domain
separation.

Table 1 gives a comparison of LightMAC, 1k-LightMAC, and LightMAC-ds with
several popular birthday-bound block cipher based MAC mode of operation. We
deliberately refrain from enumerating beyond-the-birthday bound modes for a
fair comparison, as they require relatively more memory and/or key material
(due to the BBB security requirement). From the table, it is clear that the three
LightMAC candidates are overall better than other modes considering security
vs block cipher key size and security vs auxiliary memory. Further, 1k-LightMAC
is almost as good as LightMAC and LightMAC-ds as long as (n − s) ≤ � ≤
(n−s)min{2n/4, 2s}. Note that, the lower bound on � is necessary to avoid some
trivial collision events (see Sect. 3.2 for further details). Similarly, LightMAC-ds
is as good as LightMAC as long as � ≤ (n − s)2s−1.

Practical Significance: Our results are restricted in terms of the length of
messages, especially, 1k-LightMAC which effectively bounds the message length
to roughly 235.5 bytes for 128-bit block size. However, we believe that this is a
minor issue. Indeed, many real life communication protocols limit the message
lengths to much less than 1 Gigabyte. For example, SRTP [39] limits the payload
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length to at most 1 Megabyte. So, the impact of length restriction could, in fact,
be minimal in most applications. Furthermore, we emphasize that 1k-LightMAC
can be used as a drop-in replacement, since the required changes are minimal.
This is particularly a compelling feature for the intended application area of the
ISO/IEC-29192-6:2019 standard, i.e. resource constrained environments, where
additional deployment or maintenance cost is highly undesirable. In summary,
our results have significant practical importance due to the ISO/IEC standard-
ization of LightMAC and the inherent advantages of 1k-LightMAC and Light-
MAC-ds over LightMAC.

2 Preliminaries

Notational Setup: For n ∈ N, [n] denotes the set {1, 2, . . . , n}. The set of all
bit strings (including the empty string) is denoted {0, 1}∗. The length of any
bit string X ∈ {0, 1}∗, denoted |X|, is the number of bits in X. For n ∈ N,
{0, 1}n denotes the set of all bit strings of length n, and {0, 1}≤n :=

⋃n
i=0{0, 1}i.

For any A,B ∈ {0, 1}∗, we write A‖B to denote the concatenation of A and B.
For n ∈ N and X ∈ {0, 1}∗, (X1, . . . , Xl)

n←− X denotes the n-bit parsing of X
where |Xi| = n for all 1 ≤ i ≤ l − 1 and 0 ≤ |Xl| ≤ n − 1. For any n ∈ N

and M ∈ {0, 1}∗, we define padn(M) := M‖10d where d is the smallest integer
such that |padn(M)| is a multiple of n. For i,m ∈ N such that i < 2m, we define
〈i〉m as the m-bit binary encoding of the integer i. For 0 ≤ k ≤ n, we define
the falling factorial (n)k := n!/(n − k)! = n(n − 1) · · · (n − k + 1). The set of all
functions from X to Y is denoted F(X ,Y), and the set of all permutations of X
is denoted P(X ). We simply write F(a, b) and P(a), whenever X = {0, 1}a and
Y = {0, 1}b.

For a pair of q-tuples X̃ = (X1, . . . , Xq) and Ỹ = (Y1, . . . , Yq), (X̃, Ỹ ) denotes
the 2q-tuple (X1, . . . , Xq, Y1, . . . , Yq). Similarly, one can extend notation for more
than 2 tuples. Two q-tuples X̃ and Ỹ are said to be permutation compatible,
denoted as X̃ � Ỹ , if (Xi = Xj) ⇐⇒ (Yi = Yj), for all i �= j. By an abuse of
notation, we also use X̃ to denote the set {Xi : i ∈ [q]}.

For a finite set X , X ←$X denotes the uniform at random sampling of X
from X , and X̃ ←# X denotes the without replacement sampling of a tuple X̃
from the set X .

A Useful Lemma: The following result from linear algebra will be very useful
in later analysis.

Lemma 2.1. Let (Y1, . . . ,Yl) ←# S ⊂ {0, 1}n with |S| = N > l. Let A be a
k × l binary matrix with rank r. We write the column vector (Y1, . . . ,Yl)tr as Ỹ.
Then, for any c ∈ ({0, 1}n)k, we have

Pr
[
A · Ỹ = c

]
≤ 1

(N − l)r
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Proof. Since the rank of the matrix A is r, we can identify 1 ≤ i1 < · · · < ir ≤ l
such that Yi1 , . . . Yir

will be uniquely determined by fixing the value for the
remaining l − r variables. By conditioning on the values of these l − r variables,
the probability that A · Ỹ = c is bounded by at most 1

(N−l+r)r
which is less than

1
(N−l)r . 
�

We will often employ this lemma for k ≥ 2 cases.

2.1 Security Definitions

Distinguishers: A (q, T )-distinguisher A is an oracle Turing machine, that
makes at most q oracle queries, runs in time at most T , and outputs a
single bit. For any oracle O, we write A O to denote the output of A
after its interaction with O. By convention, T = ∞ denotes computation-
ally unbounded (information-theoretic) and deterministic distinguishers. In this
paper, we assume that the distinguisher is non-trivial, i.e., it never makes a
duplicate query. Let A(q, T ) be the class of all non-trivial distinguishers limited
to q queries and T computations.

Pseudorandom Function: A (K,X ,Y)-keyed function F with key space K,
domain X , and range Y is a function F : K × X → Y. We write FK(X) for
F (K,X).

The pseudorandom function or PRF advantage of any distinguisher A
against a (K,X ,Y)-keyed function F is defined as

Advprf
F (A ) = AdvF ;Γ(A ) :=

∣
∣
∣
∣ Pr
K ←$K

[
A FK = 1

]
− Pr

Γ ←$F(X ,Y)

[
A Γ = 1

]
∣
∣
∣
∣ . (2)

The PRF security of F against A(q, T ) is defined as

Advprf
F (q, T ) := max

A ∈A(q,T )
Advprf

F (A ).

Pseudorandom Permutation: A (K, {0, 1}n)-block cipher E with key space
K and block space {0, 1}n is a (K, {0, 1}n, {0, 1}n)-keyed function, such that
E(K, ·) is a permutation over {0, 1}n for any key K ∈ K. We write EK(X) for
E(K,X).

The pseudorandom permutation or PRP advantage of any distinguisher A
against a (K, {0, 1}n)-block cipher E is defined as

Advprp
E (A ) = AdvE;Π(A ) :=

∣
∣
∣
∣ Pr
K ←$K

[
A EK = 1

]
− Pr

Π ←$P(n)

[
A Π = 1

]
∣
∣
∣
∣ . (3)

The PRP security of E against A(q, T ) is defined as

Advprp
E (q, T ) := max

A ∈A(q,T )
Advprp

E (A ).
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2.2 H-Coefficient Technique

The H-coefficient technique by Patarin [30,31] is a tool to upper bound the
distinguishing advantage of any deterministic and computationally unbounded
distinguisher A in distinguishing the real oracle R from the ideal oracle I. The
collection of all queries and responses that A made and received to and from
the oracle, is called the transcript of A , denoted as τ .

Let R and I denote the transcript random variable induced by A ’s interaction
with R and I, respectively. Let T be the set of all transcripts. A transcript
τ ∈ T is said to be attainable if Pr [I = τ ] > 0, i.e., it can be realized by
A ’s interaction with I. Following these notations, we state the main result of
H-coefficient technique in Theorem 2.1. A proof of this theorem is available in
multiple papers, including [40,41].

Theorem 2.1 (H-coefficient). For ε1, ε2 ≥ 0, suppose there is a set Tbad ⊆ T ,
that we call the set of all bad transcripts, such that the following conditions hold:

– Pr [I ∈ Tbad] ≤ ε1; and

– For any τ /∈ Tbad, τ is attainable and
Pr [R = τ ]
Pr [I = τ ]

≥ 1 − ε2.

Then, for any computationally unbounded and deterministic distinguisher A , we
have

AdvR;I(A ) ≤ ε1 + ε2.

3 Revisiting LightMAC

LightMAC is a block cipher-based parallelizable PRF construction by Luykx et
al. [4]. It uses a counter-based encoding of input message blocks, much in the
same vein as some of the previously proposed constructions like XMACC and
XMACR [7] and protected counter sums [8]. Algorithm 3.1 gives the algorithmic
description of LightMAC and Fig. 1 gives a pictorial illustration.

Throughout the rest of this paper, we refer to x[i] and y[i] as intermediate
input and output, respectively, for all i ∈ [�− 1] and y⊕ and t are referred as the
final input and output, respectively.

Note that, the block size n and counter size s are application specific param-
eters that are fixed before any invocation. In order to argue the security of
LightMAC, we must have 〈i〉s �= 〈j〉s. When i = 2s + j for some j ∈ [2s − 1],
then 〈i〉s = 〈j〉s. So, the maximum number of blocks in the padded message,
denoted �max, must be less than 2s. This will ensure that all the counters will
be different.

3.1 Hash-Then-PRP and the Security of LightMAC

For some ε ≥ 0, a (K, {0, 1}≤(n−s)2s

, {0, 1}n)-keyed function H is called an ε-
universal hash function if for all distinct m,m′ ∈ {0, 1}≤(n−s)2s

, we have

Pr
K ←$K

[HK(m) = HK(m′)] ≤ ε.
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Algorithm 3.1. LightMAC based on an n-bit block cipher E instantiated with
two keys K1,K2. Here s denotes the counter size.
1: function LightMACEK1 ,EK2

(m)

2: y⊕ ← 0n

3: (m[1], . . . , m[�])
n−s←−−− m

4: for i = 1 to � − 1 do
5: x[i] ← 〈i〉s‖m[i] � encoding 〈i〉s and m[i] into x[i]
6: y[i] ← EK1(x[i]) � encrypting the encoded input
7: y⊕ ← y⊕ ⊕ y[i] � accumulating the intermediate output
8: end for
9: y⊕ ← y⊕ ⊕ padn(m[�]) � accumulating final block of message

10: t ← EK2(y
⊕) � tag generation

11: return t
12: end function

EK1 EK1
. . . EK1

〈1〉s‖m[1] 〈2〉s‖m[2] 〈� − 1〉s‖m[� − 1]

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ EK2 t. . .

padn(m[�])

Fig. 1. LightMAC evaluated over an �-block padded message m.

Universal hash functions are very useful in constructing PRFs via the Hash-
then-PRP2 paradigm [26,37]. In this paradigm, given independently keyed ε-
universal hash function HK and block cipher EK′ , we define the Hash-then-PRP
composition as EK′ ◦ HK . It is well-known that

Advprf
EK′ ◦HK

(q, T ) ≤ Advprp
E (q, T ′) +

(
q

2

)(
1
2n

+ ε

)

, (4)

where T ′ = T + qO(TE) and TE denotes the runtime of E.
We skip the proof of this result as it is available in multiple papers including

[37,42]. An informal justification for Eq. (4) is based on the observation that if
the input to EK′ is distinct for all q queries then the outputs behave as “almost
uniform at random”. The probability that some inputs to EK′ collide is bounded
by

(
q
2

)
ε.

PRF Security of LightMAC: Consider a (K, {0, 1}≤(n−s)2s

, {0, 1}n)-keyed
function LightHash, defined by the following mapping:

∀m ∈ {0, 1}≤(n−s)2s

, LightHashEK1
(m) := y⊕,

2 Here, we say PRP instead of PRF to highlight the use of block cipher based final-
ization.
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where y⊕ is the final input corresponding to m in LightMACEK1 ,EK2
(m). Now, we

can view LightMAC as an instantiation of Hash-then-PRP, by redefining Light-
MAC as

LightMACEK1 ,EK2
(m) := EK2(LightHashEK1

(m)).

Suppose, LightHashΠ1
is an εLH-universal hash for Π1 ←$P(n). Then, using

Eq. (4), we have

Advprf
LightMAC(q, T ) ≤ 2Advprp

E (σ, T ′) +
(

q

2

)(
1
2n

+ εLH

)

, (5)

where σ denotes the total number of blocks in all q padded queries, and T ′ =
T + σO(TE) and TE denotes the runtime of E.

In [4,9], it has been shown that εLH ≤ 1/(2n − 2�max), where �max is the
upper bound on the query-length in blocks. It is simply because for any m �= m′

with lengths �, �′ respectively, the event LightHashΠ1
(m) = LightHashΠ1

(m′) is
identical with

�−1⊕

i=1

Π1(x[i])
�′−1⊕

j=1

Π1(x′[j]) = padn(m[�]) ⊕ padn(m′[�′]). (6)

Now, since m �= m′, either (x[1], . . . , x[� − 1]) �= (x′[1], . . . , x′[�′ − 1]), or

(x[1], . . . , x[� − 1]) = (x′[1], . . . , x′[�′ − 1]) ∧ padn(m[�]) �= padn(m′[�′]).

The second case has zero probability. In the first case, assuming � ≥ �′, we have
at least one block say x[i] which is distinct from all other blocks. Then, the
probability of the event defined in Eq. (6) can be bounded above by probability
that Π1(x[i]) attains a certain value conditioned on the output of Π1 on all other
x[j] and x′[j′] values for j ∈ [�−1]\{i} and j′ ∈ [�′ −1]. There are at most 2�max

such values, i.e., Π1 is already sampled on at most 2�max points. Therefore, the
probability is bounded above by 1/(2n − 2�max).

By combining this bound with Eq. (5), we get the desired result for LightMAC
in the following proposition.

Proposition 3.1. For �max < min{2n−2, 2s}, we have

Advprf
LightMAC(q, T ) ≤ 2Advprp

E (σ, T ′) +
1.5q2

2n
,

where σ denotes the total number of blocks in all q padded queries, and T ′ =
T + σO(TE) and TE denotes the runtime of E.

3.2 Bottlenecks for Single-Key LightMAC

We have just seen that the query-length independent security argument for Light-
MAC comes quite easily from the Hash-then-PRP paradigm. This is possible
because K1 and K2 are independent of each other. A natural direction to explore
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eK . . . eK . . . eK

∗ Xi[j] ∗

⊕⊕⊕. . . ⊕⊕⊕ ⊕⊕⊕ eK ∗. . .

... ...
∗

∗

...

eK eK

∗

. . . eK

∗ ∗

...

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕. . . eK ∗
...

...

Y ⊕
i′

eK . . . eK . . . eK

∗ ∗ ∗

⊕⊕⊕. . . ⊕⊕⊕ ⊕⊕⊕ eK ∗. . .

...
...

∗

Yi[j]

∗

...

eK eK

∗

. . . eK

∗ ∗
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⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕. . . eK Ti′

...
...

Fig. 2. Icoll (left) and Ocoll (right) events. In each case, labels with same color are
equal, and double lines between two labels signify equality between the corresponding
variables.

is the relaxation: K1 = K2 = K, i.e., LightMAC instantiated with a single key.
Formally, we define the single-key LightMAC construction as follows:

1k-LightMACEK
:= LightMACEK ,EK

.

We remark that the additional nomenclature 1k-LightMAC is just for the sake of
brevity. Indeed, 1k-LightMAC and LightMAC are algorithmically equivalent. We
have just instantiated K1 = K2 = K.

First thing to note is that Hash-then-PRP is no longer applicable as the hash
function HK and block cipher EK are no longer independent. So, we have to look
for a dedicated proof.

Suppose the adversary makes q queries m1, . . . , mq and the corresponding
tuple of intermediate inputs and outputs are denoted xi = (xi[1], . . . , xi[�i − 1])
and yi = (yi[1], . . . , yi[�i − 1]), respectively. Similarly, the final input and output
for the q queries is denoted y⊕

i and ti, respectively. Consider the events:

Icoll : ∃(i, a) ∈ [q] × [�i − 1], j ∈ [q], such that xi[a] = y⊕
j ;

Ocoll : ∃(i, a) ∈ [q] × [�i − 1], j ∈ [q], such that yi[a] = tj ;

Icoll denotes the event that a final input collides with some intermediate input
and Ocoll denotes the analogous event for output collisions (see Fig. 2).

In a dedicated proof we must take care of these cases as they may lead to
inconsistent transcripts. For example, it is possible that xi[a] = y⊕

j (Icoll holds)
but yi[a] �= tj or vice-versa. The probability of realizing such a transcript is zero
in the real world. In fact, one can easily create such inconsistencies by first
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making a query m1 = 〈1〉s, and then making another query m2 = 10n−s−1‖x,
where x is any arbitrary bit string. Clearly, x2[1] = y⊕

1 , which implies that Icoll
holds. This might help an adversary to mount an attack on 1k-LightMAC as it
can access the internal variables using very short queries. Interestingly, if we
swap the positions of counter and message block, then this trivial collision is no
longer possible, and it might even be possible to show that the resulting variant
is secure. Since our aim is to study the standardized algorithm, we simply assume
that messages are at least (n − s) bits long, thereby ensuring that at least one
block cipher call is made in the hash layer. But, this only helps to avoid collisions
in the corner case. We still have to consider the possibility of Icoll and Ocoll in
the general case. We have to ensure that such inconsistencies do not occur with
high probability. A straightforward bound on these events introduces a bound
of the form O(q2�max/2n) since there are at most q�max many (i, a) pairs and q
choices for j. However, we aim to do better than this. In the next two sections,
we show how we can handle these events in better way.

4 Security of 1k-LightMAC

This section is devoted to the PRF security of 1k-LightMAC. Throughout this
section, we assume that messages are at least (n − s)-bit long. This assumption
is used to avoid some trivial bad events, as discussed in Sect. 3.2.

Theorem 4.1. Let q, �min, �max, σ, t > 0. For �min ≥ 2, q + 4�max ≤ 2n−1, the
PRF security of 1k-LightMAC against A(q, T ) is given by

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) +
1.5q2

2n
+

7.5q3�2max

22n
+

4q4�2max

23n
+

2σ

2n
,

where q denotes the number of queries, �max (res. �min) denotes an upper (res.
lower) bound on the number of blocks in any padded query, σ denotes the total
number of blocks present in all q queries, T ′ = T + σO(TE) and TE denotes the
runtime of E.

Further assuming �max ≤ min{2n/4, 2s} and q ≤ min{2
3n
4 −2, 2

n
2 −1.51}, we

have

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) +
4q2

2n
+

2σ

2n
.

The proof of this theorem is described in the rest of this section. First of all, we
switch to the information-theoretic setting, i.e., EK is replaced with Π ←$P(n)
via a standard hybrid argument. Formally, we have

Advprf
1k-LightMAC(q, T ) ≤ Advprp

E (σ + q, T ′) + Advprf
1k-LightMACΠ

(q,∞). (7)

So it is enough to bound the PRF security of 1k-LightMACΠ, henceforth also
referred as the real oracle. We apply the H-coefficient technique to bound this
term. Fix any A ∈ A(q,∞) such that

Advprf
1k-LightMACΠ

(q,∞) = Advprf
1k-LightMACΠ

(A ).

Going forward, we will bound the advantage of A .



502 S. Chattopadhyay et al.

4.1 Description of Oracles and Their Transcripts

Real Oracle: The real oracle corresponds to 1k-LightMACΠ. It responds faith-
fully to all the queries made by A . Once the query-response phase is over, it
releases all the intermediate inputs and outputs to A .

In addition, the real oracle releases three binary variables, namely, FlagT,
FlagZ, and FlagY, all of which are degenerately set to 0. The utility of these flags
will become apparent from the description of ideal oracle. For now, it is sufficient
to note that these flags are degenerate in the real world.
Formally, we have R := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ,FlagY), where

– M̃ = (M1, . . . ,Mq) denotes the q-tuple of queries made by A , where Mi ∈
{0, 1}≤(n−s)2s

for all i ∈ [q]. In addition, for all i ∈ [q], let �i :=
⌊

|Mi|
n−s

⌋
+ 1.

– T̃ = (T1, . . . ,Tq) denotes the q-tuple of final outputs received by A , where
Ti ∈ {0, 1}n.

– X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th
query, i.e., for all a ∈ [�i − 1], Xi[a] = 〈a〉s‖Mi[a].

– Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the
i-th query, i.e., for all a ∈ [�i − 1], Yi[a] = Π(Xi[a]). In addition, let Ỹ⊕ :=
(Y⊕

1 , . . . ,Y⊕
q ), where Y⊕

i :=
⊕

a∈[q] Yi[a] ⊕ padn(Mi[�i]) for all i ∈ [q].
– FlagI = 0 for all I ∈ {T,Z,Y}.

Note that, X̃ is completely determined from M̃. We have included it in the
transcript just for the sake of simplicity. From the definition of 1k-LightMAC,
we know that Π(Y⊕

i ) = Ti for all i ∈ [q]. So, in the real world we always have
(X̃, Ỹ⊕) � (Ỹ, T̃), i.e., (X̃, Ỹ⊕) is permutation compatible with (Ỹ, T̃). We keep
this observation in our mind when we simulate the ideal oracle.

Ideal Oracle: We reuse the variable notations from the real oracle description to
represent the ideal oracle transcript I, i.e., I := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ,FlagY).
This should not cause any confusion, as we never consider the random variables
R and I jointly, whence the probability distributions of the constituent variables
will always be clear from the context. The ideal oracle transcript is described
in three phases, each contingent on some predicates defined over the previous
stages. Specifically, the ideal oracle first initializes FlagT = 0, FlagZ = 0, FlagY =
0, and then follows the sampling mechanism given below:

Phase I (Query-Response Phase): In the query-response phase, the ideal
oracle faithfully simulates Γ ←$F({0, 1}≤(n−s)2s

, {0, 1}n). Formally, for i ∈ [q],
at the i-th query Mi ∈ {0, 1}≤(n−s)2s

, the ideal oracle outputs Ti ←$ {0, 1}n.
The partial transcript generated at the end of the query-response phase is given
by (M̃, T̃, X̃), where

– M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).
– X̃ = (X1, . . . ,Xq), where Xi = (Xi[1], . . . ,Xi[�i − 1]) and Xi[a] := 〈a〉s‖Mi[a]

for all (i, a) ∈ [q] × [�i − 1].
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Now, we define a predicate on T̃:

BadT : ∃i �= j ∈ [q], such that Ti = Tj .

If BadT is true, then FlagT is set to 1, and Ỹ = (Y1, . . . ,Yq) is defined degener-
ately: Yi[a] = 0n for all (i, a) ∈ [q]× [�i −1]. Otherwise, the ideal oracle proceeds
to the next phase.

Phase II (Offline Initial Sampling Phase): Onward, we must have Ti �=
Tj whenever i �= j, and FlagT = 0, since this phase is only executed when BadT is
false. In the offline phase, the ideal oracle initially makes the following sampling:

(Rx1 , . . . ,Rxσ′ ) ←# {0, 1}n \ T̃,

where (x1, . . . , xσ′) is an arbitrary ordering of the set

X(X̃) := {x : x = Xi[a], (i, a) ∈ [q] × [�i − 1]}.

Next, the ideal oracle sets

– Zi[a] := Rx if x = Xi[a], for all (i, a) ∈ [q] × [�i − 1], and
– Z⊕

i :=
⊕�i−1

a=1 Zi[a] ⊕ padn(Mi[�i]).

At this stage we have Zi[a] = Zj [b] if and only if Xi[a] = Xj [b]. In other words,
X̃ � Z̃. But the same might not hold for Z⊕ and T̃. Now, we define four
predicates on (Z̃, X̃):

BadZ1 : ∃i �= j ∈ [q], such that Z⊕
i = Z⊕

j .

BadZ2 : ∃(i, a) ∈ [q] × [�i − 1], such that Xi[a] = Z⊕
i .

BadZ3 : ∃i �= j �= k ∈ [q], a �= b ∈ [�i − 1], such that

(Xi[a] = Z⊕
j ) ∧ (Xi[b] = Z⊕

k ).

BadZ4 : ∃i �= j �= k ∈ [q], a ∈ [�i − 1], b ∈ [�j − 1], such that

(Xi[a] = Z⊕
j ) ∧ (Xj [b] = Z⊕

k ).

We write BadZ := BadZ1 ∨ BadZ2 ∨ BadZ3 ∨ BadZ4. Looking ahead momentarily,
BadZ will represent bad scenarios that are difficult to fix in the third stage.
For example, BadZ1 leads to permutation incompatibility between Z⊕ and T̃
which is not desirable. We will discuss utility of the other three predicates in the
description of next phase.

If BadZ is true, then FlagZ is set to 1, and Ỹ = (Y1, . . . ,Yq) is again defined
degenerately, as in the case of BadT. Otherwise, the ideal oracle proceeds to the
next phase.

Phase III (Offline Resetting Phase): At this point, we know that BadZ is
false. In this phase, we will define the complete transcript generated in the ideal
world, i.e., I, by appropriately defining Ỹ. Remember, our goal is to maintain
(X̃, Ỹ⊕) � (Ỹ, T̃).
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Definition 4.1 (full collision index). Any query index i ∈ [q] is called a full
collision index if ∃ a ∈ [�i − 1], j ∈ [q] such that Xi[a] = Z⊕

j . Additionally, let

– I := {i ∈ [q] : Z⊕
j = Xi[a], for some a ∈ [�i − 1], j ∈ [q]}.

– J := {j ∈ [q] : Z⊕
j = Xi[a] for some (i, a) ∈ [q] × [�i − 1]}.

– FCT := {(i, a, j) : i, j ∈ [q], a ∈ [�i − 1] such that Z⊕
j = Xi[a]}. Sometimes, we

also use F̃CT := {(i, a) ∈ [q] × [�i − 1] : ∃j ∈ [q] such that Z⊕
j = Xi[a]}.

We refer to i ∈ I and j ∈ J as full-collision and resetting index, respectively.

Observe that we can simply set Ỹ = Z̃, whenever I = ∅, since ¬(BadT ∨ BadZ)
holds. However, we need a more involved method when I �= ∅. Next, we use a
novel sampling approach, called reset-sampling, in context of the sampling for
Ỹ.

Reset-Sampling: The sampling of Ỹ is done in two stages:

Stage 1: For all (i, a) ∈ [q] × [�i − 1], set Yi[a] = Zi[a].
Stage 2: For all (i, a, j) ∈ FCT, reset Yi[a] = Tj .

Finally, define Y⊕ := (Y⊕
1 , . . . ,Y⊕

q ), where Y⊕
i =

⊕
a∈[q] Yi[q] ⊕ padn(Mi[�i]).

In the second stage, we have reset Yi[a] from Zi[a] to Tj for all (i, a, j) ∈ FCT.
This fixes the previous inconsistency issue, i.e., Xi[a] = Z⊕

j and Yi[a] �= Tj .
Figure 3 gives a pictorial view of this step.

The following must hold due to the condition ¬BadZ:

– For each (i, a) ∈ I × [�i −1], there is a unique choice for j (if exists) such that
Yi[a] is reset to Tj . Otherwise, ¬BadZ1 is violated.

– Continuing the previous point, we must have j �= i. Otherwise, ¬BadZ2 is
violated. Indeed, i = j incurs a trivial inconsistency: (Yi[a] = Ti) ∧ (Xi[a] �=
Y⊕

i ) due to the resetting mechanism.
– For each i ∈ I, there exists at most one a ∈ [�i − 1], such that Yi[a] is reset.

Otherwise, ¬BadZ3 is violated.
– For all j ∈ J , none of the intermediate outputs are reset. Otherwise, ¬BadZ4

is violated.

To summarize, the ideal oracle ensures that for each full collision index at most
one intermediate output is reset, and the resetting index is uniquely determined.
Further, a full collision index cannot be a resetting index. Thus, ¬BadZ helps in
avoiding trivial inconsistencies as well as keeping the resetting to a minimum.
Now, we define two predicates on (X̃, Z̃, Ỹ):

BadY1 : ∃i 	= j, k ∈ [q], ∃a ∈ [�i − 1], b ∈ [�k − 1], such that

(Xi[a] = Z⊕
j ) ∧ (Y⊕

i = Xk[b]).

BadY2 : ∃i 	= j 	= k ∈ [q], ∃a ∈ [�i − 1], such that (Xi[a] = Z⊕
j ) ∧ (Y⊕

i = Y⊕
k ).
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π. . . . . .

⊕⊕⊕. . . . . . π

Xi[a]

π

Xj [1] padn(Mj [�j ])

. . .

. . . ⊕⊕⊕ π∗ Tj

Yi[a] Z⊕
j

Fig. 3. Resetting of Yi[a] due to collision Xi[a] = Z⊕
j . The red double line represents a

collision arising in phase II sampling. The blue dashed edge represents the correspond-
ing resetting in phase III sampling. (Color figure online)

We write BadY := BadY1∨BadY2. It is easy to see that BadY simply handles the
new inconsistencies that may arise due to the reset sampling. For example, BadY1
represents the scenario where resetting leads to collision between intermediate
and final inputs. Similarly, BadY2 represents the scenario where resetting leads
to collision between two final inputs.

If BadY is true, then FlagY is set to 1, and Ỹ is redefined degenerately, as in
the case of BadT and BadZ. At this point, the ideal oracle transcript is completely
defined.

Intuitively, if the ideal oracle is not sampling Ỹ degenerately at any stage,
then we must have (X̃, Ỹ⊕) � (Ỹ, T̃). We justify this intuition in the following
proposition.

Proposition 4.1. For ¬(BadT∨BadZ∨BadY), we must have (X̃, Ỹ⊕) � (Ỹ, T̃).

Proof. We have

– X̃ � Z̃, by definition of Z̃. Moreover the resetting guarantees Z̃ � Ỹ. Thus,
X̃ � Ỹ.

– We have Yi[a] = Tj if and only if Xi[a] = Z⊕
j . Now, ¬BadZ4 implies that j �∈ I

thus, Y⊕
j = Z⊕

j . Therefore, Yi[a] = Tj ⇒ Xi[a] = Y⊕
j . Also, Xi[a] = Y⊕

j implies
j �∈ I (due to ¬BadY1), thus, Z⊕

j = Y⊕
j . This gives us Xi[a] = Y⊕

j ⇒ Yi[a] = Tj

from the second stage sampling of Y. Thus, Xi[a] = Y⊕
j ⇔ Yi[a] = Tj .

– ¬BadZ∧ ¬BadY and definition of Y imply that Y⊕
i ’s are distinct. Also, ¬BadT

implies that Ti’s are distinct. Thus Ỹ⊕ � T̃.

These observations suffice to conclude that (X̃, Ỹ⊕) � (Ỹ, T̃). 
�

4.2 Transcript Analysis

Set of Transcripts: Given the description of transcript random variable cor-
responding to the ideal oracle, we can define the set of transcripts T as the set
of all tuples τ = (m̃, t̃, x̃, ỹ,flagT,flagZ,flagY), where
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– m̃ = (m1, . . . , mq), where mi ∈
(
{0, 1}≤(n−s)2s)

for i ∈ [q]. For i ∈ [q], let

�i =
⌊

|mi|
n−s

⌋
+ 1.

– t̃ = (t1, . . . , tq), where ti ∈ {0, 1}n for i ∈ [q];
– x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[�i − 1]) for i ∈ [q], and xi[a] =

〈a〉s‖mi[a] for all a ∈ [�i − 1];
– ỹ = (y1, . . . , yq), where yi = (yi[1], . . . , yi[�i−1]) for i ∈ [q], and yi[a] ∈ {0, 1}n

for all a ∈ [�i − 1].
– flagT,flagZ,flagY ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,Z,Y}, then yi[a] = 0n for all (i, a) ∈ [q]× [�i − 1].
2. if flagT = 0, then ti’s are all distinct.
3. if flagI = 0 for all I ∈ {T,Z,Y}, then (x̃, ỹ⊕) � (ỹ, t̃).

The first two conditions are obvious from the ideal oracle sampling mechanism.
The last condition follows from Proposition 4.1 and the observation that in ideal
oracle sampling for any I ∈ {T,Z,Y}, FlagI = 1 if and only if BadI is true. Note
that, condition 3 is vacuously true for real oracle transcripts.

Bad Transcript: A transcript τ ∈ T is called bad if and only if the following
predicate is true:

(FlagT = 1) ∨ (FlagZ = 1) ∨ (FlagY = 1).

In other words, we term a transcript bad if the ideal oracle sets Ỹ degenerately.
Let

Tbad := {τ ∈ T : τ is bad.}.

All other transcript τ ′ = (m̃, t̃, x̃, ỹ,flagT,flagZ,flagY) ∈ T \ Tbad are called
good. From the preceding characterization of the set of transcripts, we conclude
that for any good transcript τ ′, we must have (x̃, ỹ⊕) � (ỹ, t̃). Henceforth,
we drop flagT, flagZ, flagY notations for any good transcript with an implicit
understanding that flagT = flagZ = flagY = 0.

To apply the H-coefficient theorem we have to upper bound the probability
Pr [I ∈ Tbad] and lower bound the ratio Pr [R = τ ]/Pr [I = τ ] for any τ ∈ T \Tbad.

Lemma 4.1 (bad transcript analysis). For 4�max + q ≤ 2n−1, we have

Pr [I ∈ Tbad] ≤ 3q2

2n+1
+

2.5q3�2max

22n
+

4q3�max

22n
+

4q4�2max

23n
+

2σ

2n
.

The proof of this lemma is postponed to Sect. 4.3.

Good Transcript: Now, fix a good transcript τ = (m̃, t̃, x̃, ỹ). Let σ′ := |x̃|.
Since, τ is good, we have (x̃, ỹ⊕) � (ỹ, t̃). Then, we must have |ỹ⊕| = q. Further,
let |x̃ ∩ ỹ⊕| = r. Thus, |x̃ ∪ ỹ⊕| = q + σ′ − r.
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Real World: In the real world, the random permutation Π is sampled on exactly
q + σ′ − r distinct points. Thus, we have

Pr [R = τ ] =
1

(2n)q+σ′−r
. (8)

Ideal World: Here, the probability computation is slightly involved due to the
two stage sampling employed in the ideal oracle. First of all, we have

Pr
[
T̃ = t̃

]
=

1
2nq

, (9)

since each Ti is sampled uniformly from the set {0, 1}n independent of others.
Now, observe that all the full collision and resetting indices are fully determined
from the transcript τ itself. In other words, we can enumerate the set F̃CT. Now,
since the transcript is good, we must have |F̃CT| = |x̃ ∩ ỹ⊕| = r, and for all
indices (i, a) /∈ F̃CT, we have Yi[a] = Zi[a]. Thus, we have

Pr
[
Yi[a] = yi

a ∧ (i, a) /∈ F̃CT | T̃ = t̃
]

= Pr
[
Zi[a] = yi

a ∧ (i, a) /∈ F̃CT | T̃ = t̃
]

=
1

(2n − q)σ′−r
, (10)

where the second equality follows from the fact that truncation3 of a without
replacement sample from a set of size (2n − q) is still a without replacement
sample from the same set. We have

Pr [I = ω] = Pr
[
T̃ = t̃

]
× Pr

[
Ỹ = ỹ | T̃ = t̃

]

≤ 1
2nq

× Pr
[
Yi[a] = yi[a] ∧ (i, a) /∈ F̃CT | T̃ = t̃

]

=
1

2nq
× 1

(2n − q)σ′−r
. (11)

The above discussion on good transcripts can be summarized in shape of the
following lemma.

Lemma 4.2. For any τ ∈ T \ Tbad, we have

Pr [R = τ ]
Pr [I = τ ]

≥ 1.

Proof. The proof follows from dividing Eq. (8) by Eq. (11). 
�

From H-coefficient Theorem 2.1 and Lemma 4.1 and 4.2, we get

Advprf
1k-LightMACΠ

(A ) ≤ 3q2

2n+1
+

2.5q3�2max

22n
+

4q3�max

22n
+

4q4�2max

23n
+

2σ

2n
. (12)

Theorem 4.1 follows from Eq. (7) and (12).
3 Removing some elements from the tuple.
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4.3 Proof of Lemma 4.1

We have

Pr [I ∈ Tbad] = Pr [(FlagT = 1) ∨ (FlagZ = 1) ∨ (FlagY = 1)]

= Pr [BadT ∨ BadZ ∨ BadY]

≤ Pr [BadT] × Pr [BadZ|¬BadT] × Pr [BadY|¬(BadT ∨ BadZ)]

We will handle the three terms on the right hand side separately. Before delving
further, we introduce few more notations.

Few more notations: For simplicity, we denote the last padded block of any
message mi by mi[�i] instead of padn(mi[�i]). For any (i, a) with i ∈ [q], a ∈ [�i],
Z

⊕\a
i (res. Y

⊕\a
i ) denotes

⊕
b
=a Zi[b] ⊕ mi[�i] (res.

⊕
b
=a Yi[b] ⊕ mi[�i]).

While we bound the probability of bad events, we need to deal with system of
equations in Z variables. Note that Z can be viewed as Π(X) for the corresponding
X variable. We will often employ Lemma 2.1 implicitly (without referring at each
application) to bound the probability that these system of equations hold.

1. Bounding Pr [BadT]: Since, we have at most
(
q
2

)
choice for i, j, and for each

such pair, Ti = Tj holds with exactly 2−n probability. Thus, we have

Pr [BadT] ≤ q2

2n+1
. (13)

2. Bounding Pr [BadZ|¬BadT]: Here, we have four cases.
(a) BadZ1 : ∃i �= j ∈ [q], such that Z⊕

i = Z⊕
j . This is similar to BadT above.

We have

Pr [BadZ1|¬BadT] ≤ q2

2 · (2n − q − 2�max)
.

(b) BadZ2 : ∃(i, a) ∈ [q] × [�i − 1], such that Xi[a] = Z⊕
i . It is easy to see that

Pr [BadZ2|¬BadT] ≤
q∑

i=1

�i − 1
2n − q − �max

≤ σ

2n − q − �max
.

(c) BadZ3 : ∃i �= j �= k ∈ [q], a, b ∈ [�i − 1], such that (Xi[a] = Z⊕
j ) ∧ (Xi[b] =

Z⊕
k ). Here, j �= k implies that the system of equations has rank 2. Thus,

using Lemma 2.1, we have

Pr [BadZ3|¬BadT] ≤ q3�2max

12(2n − q − 2�max)2
.

(d) BadZ4 : ∃i �= j �= k ∈ [q], a ∈ [�i − 1], b ∈ [�j − 1], such that (Xi[a] =
Z⊕

j ) ∧ (Xj [b] = Z⊕
k ). Using similar argumentation as above, we have,

Pr [BadZ4|¬BadT] ≤ q3�2max

12(2n − q − 2�max)2
.
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Combining all the four cases and assuming q + 2�max ≤ 2n−1, we have

Pr [BadZ|¬BadT] ≤ q2

2n
+

0.34q3�2max

22n
+

2σ

2n
(14)

3. Bounding Pr [BadY|¬(BadT ∨ BadZ)]: Here, we have two cases:
(a) BadY1 : ∃i, j, k ∈ [q],∃a ∈ [�i − 1], b ∈ [�k − 1] such that (Xi[a] = Z⊕

j ) ∧
(Y⊕

i = Xk[b]). By virtue of resetting mechanism and ¬BadZ, we arrive at
an equivalent system of Z-equations

Z⊕
j = Xi[a]

Z
⊕\a
i = Xk[b] ⊕ Tj

We claim that the system always has rank 2. This can be argued as
follows: Suppose the system has rank less than 2. Then, we must have
Z⊕

j ⊕ Xi[a] ⊕ Z
⊕\a
i ⊕ Xk[b] ⊕ Tj = 0n. However, Z̃ are sampled from

{0, 1}n \ T̃. Hence, Tj does not cancel out trivially. So, we must always
have rank 2. Now if the rank is 2, then we can always rewrite the system
of equations such that we have an equation in Tj and another equation
involving some Z variables. Then, the first equation holds with at most
1/2n probability (using the randomness of Tj) and conditioned on this
the second equation holds with probability at most 1/(2n − q − 2�max).
Thus, we have

Pr [BadY1|¬(BadT ∨ BadZ)] ≤ q3�2max

2n(2n − q − 2�max)
.

(b) BadY2 : ∃i, j, k ∈ [q],∃a ∈ [�i − 1], such that (Xi[a] = Z⊕
j ) ∧ (Y⊕

i = Y⊕
k ).

Here we get Xi[a] = Z⊕
j ∧ Z

⊕\a
i = Y⊕

k ⊕ Tj which changes according to
the following subcases:

Case A: when k �∈ I: Then the above system becomes

Z⊕
j = Xi[a]

Z
⊕\a
i = Z⊕

k ⊕ Tj

Using similar argumentation as before we can conclude that the sys-
tem has rank 2. Therefore, we have

Pr [BadY2 ∧ Case A|¬(BadZ ∨ BadT)] ≤ q3�max

(2n − q − 3�max)2
.

Case B: when k ∈ I: In this case we have the following system of
equations:

Z⊕
j = Xi[a]

Z⊕
l = Xk[b]

Z
⊕\a
i ⊕ Z

⊕\b
k = Tj ⊕ Tl
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We must have j �= l. Otherwise we will have Z⊕
i = Z⊕

k which again
violates ¬BadZ. Thus, j �= l. Now, j �= l and ¬BadZ implies that
Z⊕

j �= Z⊕
l . Then, following a similar line of argument as before, we

conclude that the system has rank 3. Therefore, we have

Pr [BadY2 ∧ Case B|¬(BadZ ∨ BadT)] ≤ q4�2max

2n(2n − q − 4�max)2
.

Combining all the cases with the assumption that q + 4�max ≤ 2n−1, we have

Pr [BadY|¬(BadT ∨ BadZ)] ≤ 2q3�2max

22n
+

4q3�max

22n
+

4q4�2max

23n
. (15)

The result follows from summing up Eq. (13)–(15). 
�

5 LightMAC-ds: A Minute Variant of Single-Key
LightMAC

In the previous section we showed that single-key LightMAC achieves query-
length independent security bounds while �min ≥ 2 and �max ≤ 2n/4. Now, we
propose a simple variant of LightMAC that achieves query-length independent
security unconditionally.

5.1 Description of LightMAC-ds

For any x ∈ {0, 1}n and k < n, let chopk(x) denote the most significant n −
k bits of x. The complete algorithmic description of LightMAC-ds is given in
Algorithm 5.1.

Algorithm 5.1. LightMAC-ds based on an n-bit block cipher E instantiated
with a single key K. Here the counter size is s−1. Highlighted lines point to the
algorithmic differences with the LightMAC algorithm.
1: function LightMAC-dsEK

(m)

2: y⊕ ← 0n

3: (m[1], . . . , m[�])
n−s←−−− m

4: for i = 1 to � − 1 do
5: x[i] ← 0‖〈i〉s−1‖m[i] � encoding 〈i〉s−1 and m[i] into x[i]

6: y[i] ← EK(x[i]) � encrypting the encoded input
7: y⊕ ← y⊕ ⊕ y[i] � accumulating the intermediate output
8: end for
9: y⊕ ← y⊕ ⊕ padn(m[�])

10: t ← EK(1‖chop1(y⊕))

11: return t
12: end function
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It is clear from the description that LightMAC-ds uses the familiar technique
of domain separation to generate two “almost independent” instances of E.
Specifically, we fix the most significant 1-bit of the block cipher input to

– 0 in the processing of encoded message blocks (see line no. 5 in Algorithm 5.1).
– 1 in the tag generation call (see line no. 10 in Algorithm 5.1).

Since 1-bit is reserved for domain separation, the effective counter size is reduced
to s − 1 for some global parameter s < n. Thus, the maximum message length
can be at most (n − s)2s−1, which is a slight drop from (n − s)2s in case of
LightMAC, for large value of n and s.

5.2 Security of LightMAC-ds

Surprisingly (or not), the security argument for LightMAC-ds is quite similar to
the one for single-key LightMAC. In fact, it is slightly easy to argue the security
here, as we have already ensured ¬Icoll (see Sect. 3.2) by the virtue of domain
separation. However, we still have to handle Ocoll (see Sect. 3.2) which would
require a slight care while sampling the intermediate outputs in the ideal world.
Note that, such complications do not arise in case of LightMAC for the obvious
reason of independence between the primitives used to generate the intermediate
and final outputs. The PRF security of LightMAC-ds is presented in Theorem 5.1.

Theorem 5.1. Let q, �max, T > 0. For q + 2�max ≤ 2n−1, the PRF security of
A against A(q, T ) is given by

Advprf
LightMAC-ds(q, T ) ≤ Advprp

E (σ + q, T ′) +
2.5q2

2n
,

where � denotes an upper bound on the number of blocks in any padded query,
T ′ = T + O(TE) and TE denotes the runtime of E.

As expected, the proof is quite similar and a bit easier than the proof of Theo-
rem 4.1. As the first step, we apply the hybrid argument to get

Advprf
LightMAC-ds(q, T ) ≤ Advprp

E (σ + q, T ′) + Advprf
LightMAC-dsΠ

(q,∞). (16)

We are interested in a bound on the PRF security of LightMAC-dsΠ, henceforth
also referred as the real oracle. Fix any A ∈ A(q,∞) such that

Advprf
LightMAC-dsΠ

(q,∞) = Advprf
LightMAC-dsΠ

(A ).

Going forward, we will bound the advantage of A using H-coefficient technique.
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5.3 Description of Oracles and Their Transcripts

Real Oracle: The real oracle is defined analogously as in the proof of Theo-
rem 5.1. We describe it just for the sake of completeness. The real oracle faithfully
responds to all the queries made by A . Once the query-response phase is over,
it releases all the intermediate inputs and outputs to A . Additionally, the real
oracle releases two binary flags, FlagT and FlagZ, that are degenerately set to 0.
Formally, we have

R := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ),

where

– M̃ = (M1, . . . ,Mq) denotes the q-tuple of queries made by A , where Mi ∈
{0, 1}≤(n−s)2s−1

for all i ∈ [q]. In addition, for all i ∈ [q], let �i := � |Mi|
n−s� + 1.

– T̃ = (T1, . . . ,Tq) denotes the q-tuple of final outputs received by A , where
Ti ∈ {0, 1}n.

– X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th
query, i.e., for all a ∈ [�i − 1], Xi[a] = 0‖〈a〉s−1‖Mi[a].

– Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the
i-th query, i.e., for all a ∈ [�i − 1], Yi[a] = Π(Xi[a]). In addition, let Ỹ⊕ :=
(Y⊕

1 , . . . ,Y⊕
q ), where Y⊕

i :=
⊕

a∈[�i−1] Yi[a] ⊕ padn(Mi[�i]) for all i ∈ [q].
– FlagT = FlagZ = 0.

Let chop1(Ỹ⊕) = (1‖chop1(Yi[1]), . . . , 1‖chop1(Yi[�i − 1])). It is straightforward
to see that in the real world we always have (X̃, chop1(Ỹ⊕)) � (Ỹ, T̃), i.e.,
(X̃, chop1(Ỹ⊕)) is permutation compatible with (Ỹ, T̃).

Ideal Oracle: We reuse the notations from real oracle description to represent
the variables in the ideal oracle transcript I, i.e.

I := (M̃, T̃, X̃, Ỹ,FlagT,FlagZ).

The ideal oracle transcript is described in two phases, with the second one
contingent on some predicate defined over the first stage. Specifically, the ideal
oracle initializes FlagT = FlagZ = 0, and then follows the sampling mechanism
given below:

Phase I (Query-Response Phase): In the query-response phase, the ideal

oracle faithfully simulates Γ ←$F({0, 1}≤(n−s)2s−1
, {0, 1}n). Formally, for i ∈ [q],

at the i-th query Mi ∈ {0, 1}≤(n−s)2s−1
, the ideal oracle outputs Ti ←$ {0, 1}n.

The partial transcript generated at the end of the query-response phase is given
by (M̃, T̃, X̃), where

– M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).
– X̃ = (X1, . . . ,Xq), where Xi = (Xi[1], . . . ,Xi[�i − 1]) and Xi[a] :=

0‖〈a〉s−1‖Mi[a] for all (i, a) ∈ [q] × [�i − 1].
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Now, we define a predicate on T̃:

BadT : ∃i �= j ∈ [q], such that Ti = Tj .

If BadT is true, then FlagT = 1, and Ỹ = (Y1, . . . ,Yq) is defined degenerately:
Yi[a] = 0n for all (i, a) ∈ [q] × [�i − 1]. Otherwise, the ideal oracle proceeds to
the next phase.

Phase II (Offline Sampling Phase): In the offline phase, the ideal oracle
initially makes the following sampling:

(Rx1 , . . . ,Rxt
) ←# {0, 1}n \ T̃,

where (x1, . . . , xt) is an arbitrary ordering of the set

X(X̃) := {x : x = Xi[a], (i, a) ∈ [q] × [�i − 1]}.

Next, the ideal oracle sets

– Zi[a] := Rx if x = Xi[a], for all (i, a) ∈ [q] × [�i − 1], and
– Z⊕

i :=
⊕�i−1

a=1 Zi[a] ⊕ padn(Mi[�i]).

At this stage we have Zi[a] = Zj [b] if and only if Xi[a] = Xj [b]. In other words,
X̃ � Z̃. But the same might not hold for chop1(Z̃⊕) and T̃. Now, we define a
predicate on (Z̃, X̃):

BadZ : ∃i �= j ∈ [q], such that chop1(Z
⊕
i ) = chop1(Z

⊕
j ).

Note that, ¬BadZ ensures chop1(Z̃⊕) � T̃, that when coupled with the X̃ � Z̃

due to the sampling mechanism ensures (X̃, chop1(Z̃⊕)) � (Z̃, T̃). Intuitively,
this makes the ideal world almost similar to the real world.

If BadZ is true, then FlagZ = 1, and Ỹ := (Y1, . . . ,Yq) is again defined
degenerately, as in the case of BadT. Otherwise, Ỹ := Z̃. At this point, the
transcript random variable for the ideal world is completely determined.

5.4 Transcript Analysis

Set of Transcripts: Given the description of the transcript random variable
corresponding to the ideal oracle, we can define the set of transcripts T as the
set of all tuples τ = (m̃, t̃, x̃, ỹ,flagT,flagZ), where

– m̃ = (m1, . . . , mq), where mi ∈
(
{0, 1}≤(n−s)2s−1

)
for i ∈ [q]. Let �i =

� |mi|
n−s� + 1 for i ∈ [q].

– t̃ = (t1, . . . , tq), where ti ∈ {0, 1}n for i ∈ [q];
– x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[�i − 1]) for i ∈ [q], and xi[a] =

0‖〈a〉s−1‖mi[a] for all a ∈ [�i − 1];
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– ỹ = (y1, . . . , yq), where yi = (yi[1], . . . , yi[�i−1]) for i ∈ [q], and yi[a] ∈ {0, 1}n

for all a ∈ [�i − 1].
– flagT,flagZ ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,Z}, then yi[a] = 0n for all (i, a) ∈ [q] × [�i − 1].
2. if flagT = 0, then ti’s are all distinct.
3. if flagI = 0 for all I ∈ {T,Z}, then (x̃, chop1(Ỹ⊕)) � (ỹ, t̃).

Bad Transcript: A transcript τ ∈ T is called bad if and only if the following
predicate is true:

(FlagT = 1) ∨ (FlagZ = 1).

In other words, we term a transcript bad if the ideal oracle sets Ỹ degenerately.
Let

Tbad := {τ ∈ T : τ is bad.}.

All other transcript τ ′ = (m̃, t̃, x̃, ỹ,flagT,flagZ) ∈ T \ Tbad are called good. It
is pretty straightforward to deduce that for any good transcript we must have
(x̃, chop1(ỹ⊕)) � (ỹ, t̃).

Lemma 5.1 (bad transcript analysis). For q + 2�max ≤ 2n−1, we have

Pr [I ∈ Tbad] ≤ 2.5q2

2n
.

Proof. We have

Pr [I ∈ Tbad] = Pr [(FlagT = 1) ∨ (FlagZ = 1)]

= Pr [BadT ∨ BadZ]

≤ Pr [BadT] × Pr [BadZ|BadT].

We will handle the two terms on the right hand side separately:

1. Bounding Pr [BadT]: Since, we have at most
(
q
2

)
choice for i, j, and for each

such pair, Ti = Tj holds with exactly 2−n probability. Thus, we have

Pr [BadT] ≤ q2

2n+1
. (17)

2. Bounding Pr [BadZ|¬BadT]: Fix two indices i �= j. Now, we can have two cases:
(a) �i = �j : Since Mi �= Mj , we must have at least one index a, such that

Mi[a] �= Mj [a], which implies that Xi[a] �= Xj [a]. Further, note that
Xi[a] �= Xk[b] for all (k, b) ∈ {i, j} × [�k − 1]. Then, by conditioning on
the value of Zk[b] for all (k, b) ∈ {i, j} × [�k − 1] \ {(i, a)}, we bound the
probability that chop1(Z

⊕
i ) = chop1(Z

⊕
i ) to at most 2/(2n − q − 2�max),

where the factor of 2 in the numerator is due to 1-bit chopping. There
are at most

(
q
2

)
choices for i, j, so in this case the probability is at most

q2/(2n − q − 2�max).
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(b) �i �= �j : Without loss of generality we assume that �i > �j . Then, applying
exactly the same argumentation as used in the preceding case with (i, a) =
(i, �i − 1), we can bound the probability in this case to at most q2/(2n −
q − 2�max).

Since the two cases are mutually exclusive, we have

Pr [BadZ|¬BadT] ≤ q2

(2n − q − 2�max)
. (18)

The result follows by summing up Eq. (17) and (18) and using q+2�max ≤ 2n−1.

�

Good Transcript: Fix a good transcript τ = (m̃, t̃, x̃, ỹ, 0, 0). Let σ′ := |x̃|.
Since, τ is good, we have (x̃, chop1(ỹ⊕)) � (ỹ, t̃). Then, we must have
|chop1(ỹ⊕)| = q. Further, x̃ ∩ chop1(ỹ⊕) = ∅ due to domain separation. Thus,
|x̃ ∪ chop1(ỹ⊕)| = q + σ′.

Real World: In the real world, the random permutation Π is sampled on exactly
q + σ′ distinct points. Thus, we have

Pr [R = τ ] =
1

(2n)q+σ′
. (19)

Ideal World: In the ideal world, first T̃ is sampled in with replacement fashion
from a set of size 2n. Then, exactly σ′ values are sampled corresponding to Ỹ in
without replacement fashion from a set of size 2n − q. Thus, we have

Pr [I = τ ] =
1

2nq
× 1

(2n − q)σ′
. (20)

On dividing Eq. (19) by (20), we get

Pr [R = τ ]
Pr [I = τ ]

≥ 1.

From H-coefficient Theorem 2.1 and Lemma 5.1, we get

Advprf
LightMAC-dsΠ

(A ) ≤ 2.5q2

2n
. (21)

Theorem 5.1 follows from Eq. (16) and (21).

6 Conclusion

In this paper we studied the single-key instance of LightMAC, an ISO/IEC
standard for lightweight message authentication codes. Our main contribution
is a query-length independent security bound for 1k-LightMAC. Specifically,
we showed that 1k-LightMAC achieves PRF security bound of O(q2/2n) while
(n − s) ≤ � ≤ (n − s)min{2n/4, 2s}. Further, we proposed a slight variant of
LightMAC, called LightMAC-ds that achieves security bound of O(q2/2n) while
� ≤ (n − s)2s−1.
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6.1 Future Directions in Reset-Sampling

To prove the security of 1k-LightMAC, we used a novel sampling approach, called
reset-sampling, that works as a subroutine within the H-coefficient proof setup.
Although this approach is at a very nascent stage, we believe that reset-sampling
could potentially be useful in deriving better security bounds for other single-
key constructions. Indeed, OMAC [10] – another popular and standardized MAC
algorithm – has a similar bottleneck as 1k-LightMAC, and might benefit from this
sampling approach. In the following, we briefly discuss a possible reset-sampling
approach for query-length independent security bounds for OMAC.

A simplified variant of OMAC for any message m ∈ ({0, 1}n)� can be defined
as follows: y[0] := 0n; for 1 ≤ i ≤ �−1, x[i] = m[i]⊕y[i−1] and y[i] = EK(x[i]);
x[�] = m[�] ⊕ y[� − 1] ⊕ 2EK(0n); and OMACEK

(m) := y[�] = EK(x[�]).
For all i ∈ [� − 1], x[i] and y[i] are referred as intermediate input and out-

put, respectively, and x[�] and y[�] are referred as the final input and output
respectively.

Suppose the adversary makes q queries. Given our analysis of 1k-LightMAC,
it is easy to observe that the most contentious issue is the event when some
intermediate input (res. output) collides with some final input (res. output).
Intuitively, this leads to a leakage of internal values to the adversary. However,
notice that this does not necessarily mean that the adversary can actually detect
and exploit this to mount an attack. This is precisely the point where reset-
sampling can help. As an example, consider the following sampling approach in
the ideal world:

– The ideal oracle faithfully answers the q queries in the online phase.
– Once the query-response phase is over:

• The ideal oracle samples the intermediate inputs/outputs by following the
OMAC definition, except for one small change: the intermediate outputs
are sampled outside the set of all final outputs. This helps in avoiding
collisions between some intermediate output and some final output.

• Now, we may have a situation where some intermediate input xi[a] collides
with some final input xj [�j ], which is an inconsistency.

• However, if xi[a + 1] is fresh, i.e., it does not collide with any other inter-
mediate/final input, then we can possibly reset yi[a] to yj [�j ] and redefine
xi[a + 1] := x′

i[a + 1] = mi[a + 1] ⊕ yj [�j ].
• This might result in a collision of the form x′

i[a + 1] = xk[b], but as
we have seen in case of 1k-LightMAC, the probability of such collisions
are easily bounded to O(q3�2/22n) by considering the compound event
xi[a] = xj [�j ] ∩ x′

i[a + 1] = xk[b]. There will be some more inconsistencies
arising due to the resetting. But we ignore them for the sake of brevity.

• Finally, the ideal oracle releases the intermediate inputs and outputs.

A more formal and rigorous analysis of OMAC using reset-sampling will most
probably require handling of several other bad events, and could be an interesting
future research topic. Although the above description is very succinct and rough,
it is expressive enough to demonstrate the idea of resetting. The technique is
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particularly useful for deriving improved bounds for single-key constructions,
as demonstrated for 1k-LightMAC and outlined for OMAC. Interestingly, the
dominating term in the bound of 1k-LightMAC is the collision probability. Indeed,
the bad events introduced due to reset sampling only contribute beyond-the-
birthday bound terms. In fact, this seems to be a general characteristic of reset
sampling based proof, as the additional bad events are generally joint events
involving two or more sources of randomness. Consequently, we believe that
reset sampling may, in future, find wide applications in the analysis of single-key
variant of BBB secure constructions, such as LightMAC+ [25], PMAC+ [21] etc.
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Abstract. A growing number of lightweight block ciphers are proposed
for environments such as the Internet of Things. An important contri-
bution to the reduced implementation cost is a block length n of 64 or
96 bits rather than 128 bits. As a consequence, encryption modes and
message authentication code (MAC) algorithms require security beyond
the 2n/2 birthday bound. This paper provides an extensive treatment
of MAC algorithms that offer beyond birthday bound PRF security for
both nonce-respecting and nonce-misusing adversaries. We study con-
structions that use two block cipher calls, one universal hash function
call and an arbitrary number of XOR operations. We start with the
separate problem of generically identifying all possible secure n-to-n-bit
pseudorandom functions (PRFs) based on two block cipher calls. The
analysis shows that the existing constructions EDM, SoP, and EDMD are
the only constructions of this kind that achieve beyond birthday bound
security. Subsequently we deliver an exhaustive treatment of MAC algo-
rithms, where the outcome of a universal hash function evaluation on the
message may be entered at any point in the computation of the PRF.
We conclude that there are a total amount of nine schemes that achieve
beyond birthday bound security, and a tenth construction that cannot
be proven using currently known proof techniques. For these former nine
MAC algorithms, three constructions achieve optimal n-bit security in
the nonce-respecting setting, but are completely insecure if the nonce
is reused. The remaining six constructions have 3n/4-bit security in the
nonce-respecting setting, and only four out of these six constructions still
achieve beyond the birthday bound security in the case of nonce misuse.

Keywords: PRF · Beyond birthday bound security · Faulty nonce
model · EDM · SoP · EDMD

1 Introduction

Message authentication code (MAC) algorithms are one of the fundamental
building blocks in cryptography. Given a message M , it allows a sender in pos-
session of a secret key K to compute an authentication tag T , which can then be
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M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13092, pp. 520–550, 2021.
https://doi.org/10.1007/978-3-030-92078-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92078-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-92078-4_18


Categorization of Faulty Nonce Misuse Resistant Message Authentication 521

verified by the receiver provided that it is also in possession of the key. The tag
should be hard to forge, i.e., without knowledge of the key, it should be compu-
tationally infeasible to compute the tag corresponding to any new message. In
this work, we will focus on nonce-based MAC algorithms. These functions take
as additional input a nonce N that is used to randomize the scheme.

1.1 Wegman-Carter

Undoubtedly one of the most influential nonce-based MAC algorithms to date
is due to Wegman and Carter [44], which was built on earlier work by Gilbert,
MacWilliams, and Sloane [19]. Their construction first processes the message
with a universal hash function H using a secret hash key, and subsequently
masks the output with a pseudorandom function (PRF) F evaluated on the
nonce:

WCK,Kh
(N,M) = FK(N) ⊕ HKh

(M).

The Wegman-Carter construction is proven to achieve n-bit security if H is an
ε-almost XOR universal hash function with small ε (ε ≈ 2−n), F is a PRF, and
the nonce is never repeated [44].

One concern with WC is that dedicated PRFs are difficult to construct. The
only exceptions are SURF [5], AES-PRF [31], and SipHash [1], which might ulti-
mately considered to be permutation-based as well. Pseudorandom permutations
(PRPs), on the other hand, are in abundance, but instantiating Wegman-Carter
with a PRP instead of a PRF – the resulting function is known as Wegman-
Carter-Shoup – only achieves close to birthday bound security [6,28,34,43]. This
bound may be on the edge of what is desired if the construction is instantiated
with a lightweight block cipher [2,3,8,10,16,20,42] with small block size n. For
example, it only takes approximately 232 · 64 bits of data (35 GB) to break
Wegman-Carter-Shoup with a 64-bit block cipher.

1.2 Nonce-Misuse Resistance

A second concern about the Wegman-Carter construction is its strict dependency
on the nonce. Any repetition of a single nonce will break the Wegman-Carter(-
Shoup) MAC [21,24]: it would result in two tags T = EK(N) ⊕ HKh

(M) and
T ′ = EK(N) ⊕ HKh

(M ′) for two different messages M,M ′ which might allow
an attacker to deduce information about Kh.

In order to solve this nonce-misuse problem, Cogliati and Seurin introduced
Encrypted Wegman-Carter with Davies-Meyer (EWCDM) [13]. EWCDM can
be seen as a Wegman-Carter construction, with a Davies-Meyer construction as
PRF, then followed by an encryption of the output. The security improvement
in EWCDM lies in the “protection” of the outcome of this construction by an
extra evaluation of a block cipher:

EWCDMK1,K2,Kh
(N,M) = EK2(EK1(N) ⊕ N ⊕ HKh

(M)).
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Cogliati and Seurin [13] proved that this construction achieves 2n/3-bit MAC
security in the nonce-respecting scenario and n/2-bit MAC security in the nonce-
misuse scenario. Mennink and Neves [30] proved almost n-bit PRF security of the
mode in the nonce-respecting scenario. Later, a dual variant of EWCDM, called
the Decrypted Wegman-Carter with Davies-Meyer (DWCDM), was introduced
by Datta et al. [15]. Instead of making the second block cipher call using another
independent key, DWCDM evaluates the block cipher in the inverse direction
using the same key.

While these MAC algorithms provide security beyond the birthday barrier,
most of them are only birthday bound secure if a nonce is reused. This might
occur, for example, if a stateless device chooses nonces uniformly at random
from a small set, if there is a faulty implementation of the cipher involved, or
otherwise. For example, Böck et al. performed an internet-wide scan [7] and
found 184 HTTPS servers that used a duplicate nonce for AES-GCM [29].

Dutta et al. [18] formalized the “faulty nonce model” for MAC algorithms. In
the faulty nonce model, one considers a nonce-based MAC as usual, but labels
a MAC query as “faulty” if it is performed for a repeated nonce. The authors
furthermore introduced the nonce-based Enhanced Hash-then-Mask (nEHtM).
At its base, nEHtM is a nonce-based variant of EHtM [32] where the random
salt is replaced by a nonce and the PRF by a block cipher:

nEHtMK,Kh
(N,M) = EK(0 ‖ N) ⊕ EK(1 ‖ (N ⊕ HKh

(M))).

Dutta et al. proved that nEHtM achieves 2n/3-bit security when the number
of faulty nonces is below 2n/3, and proved graceful security degradation of at
least n/2-bit security in the faulty model. Choi et al. [12] improved the security
bound to 3n/4-bit when the number of faulty nonces is below 23n/8, and also
proved graceful security degradation. Graceful degradation here means that the
actual security level is between 3n/4 (resp., 2n/3) and n/2, depending on the
total number of faulty queries that an adversary makes.

1.3 Our Contribution

In this work, we perform a general treatment of the design of block cipher based
MAC algorithms that achieve beyond birthday bound PRF security in the nonce-
respecting model. We subsequently consider how these schemes behave in the
faulty nonce model. We restrict our focus to MAC algorithms based on a single
universal hash function call on the input, two block cipher calls, and an arbi-
trary amount of XOR operations to combine the inputs and outcomes of the
cryptographic building blocks.

Before diving into MAC design, however, we make one step backwards. Hid-
den in EWCDM is an n-bit PRF construction called the Encrypted Davies-Meyer
construction EDM:

EDMK1,K2(N) = EK2(EK1(N) ⊕ N). (1)
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Although one cannot reduce security of EWCDM to that of EDM [13], the
proofs share similarities [13,30]. Likewise, nEHtM can be seen to hide the Sum
of Permutation construction SoP [4]:

SoPK1,K2(N) = EK1(N) ⊕ EK2(N). (2)

We can conclude that one might have little hope in designing a MAC algorithm
with beyond the birthday bound PRF security if that particular construction
with the universal hash function evaluation omitted is not a good PRF in the
first place. Therefore, in Sect. 3, we start with performing a general analysis of n-
to-n-bit PRF designs from two block cipher calls. We prove that, although there
are 26 constructions of that type to consider, for all but six of them, an attack in
the birthday bound or faster can be mounted. The six remaining schemes are,
perhaps unsurprisingly, EDM of (1), SoP of (2), the Encrypted Davies-Meyer
Dual construction EDMD [30]:

EDMDK1,K2(N) = EK2(EK1(N)) ⊕ EK1(N), (3)

and the natural siblings of these three schemes that consist of XORing the input
to the output.

Supported by these results, we go on to perform an exhaustive analysis of
all MAC algorithms that can be constructed from two block cipher calls with a
universal hash evaluation on the message. We prove that although there are 29

constructions of that type to consider, the quest leads to ten interesting MAC
algorithms: five are based on EDM, three on SoP, and two on EDMD. The
schemes are formalized in Sect. 4.

Out of these ten schemes, three of them are simply Wegman-Carter based on
the PRFs EDM, SoP, and EDMD, respectively. These achieve n-bit security, but
are completely insecure if the nonce is reused. The four remaining EDM-based
schemes and two remaining SoP-based schemes achieve 3n/4-bit security in the
nonce-respecting scenario, and four out these six schemes still achieve beyond the
birthday bound security in the case of nonce misuse. Note that there is always
a safety margin that must be taken into account. This means that when we talk
about 3n/4-bit security, only 23n/4−δ queries can be made, where δ is chosen such
that the resulting advantage of the distinguisher remains negligible. Currently
known proof techniques did not allow us to prove security of the final EDMD-
based scheme, which was already mentioned (without proof) by Nandi [35]. We
conjecture that this scheme has beyond birthday bound security against nonce-
respecting adversaries. Our results are performed in the faulty nonce model
of Dutta et al. [18] and are given in Sect. 4. These ten MAC algorithms are
compared in terms of their security and efficiency in Table 1.

In Fig. 1, we show the four constructions that still achieve beyond the birth-
day bound security in the case of nonce misuse: two are serial, while the other
two are parallel. The two serial constructions are new, and the two parallel con-
structions based on SoP are variants of the nEHtM construction of Dutta et
al. [18] that uses two independent keys. The parallel constructions still achieve
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Table 1. Comparison of the ten MAC algorithms, where µ is the number of faulty
nonces. Here, n is the block size and EK1 refers to the first block cipher evaluation in
the construction. EWCDM was shown to achieve n-bits security using an unverified
version of the mirror theory.

MAC Nonce-resp.
security (log2)

Nonce-misuse
security (log2)

Computing EK1

without M
Sequential/
parallel

Security
tightness

Note

FEDM
B1 n 0 � S Tight WC-with-

EDM [44]

F SoP
B1 n 0 � P Tight WC-with-

SoP [44]

FEDMD
B1 n 0 � S Tight WC-with-

EDMD [44]

FEDM
B2 3n/4 (n) n/2 � S Not (tight) EWCDM [13],

Thm. 2 ([30])

FEDM
B3 3n/4 n/2 � S Not Thm. 2

FEDM
B4 3n/4 3n/4 (µ < 2n/2) — S ? Thm. 3

FEDM
B5 3n/4 3n/4 (µ < 2n/2) — S ? Thm. 3

F SoP
B2 3n/4 3n/4 (µ ≤ 2n/4) � P ? Thm. 4

F SoP
B3 3n/4 3n/4 (µ ≤ 2n/4) � P ? Thm. 4

FEDMD
B2 ? ? � S — —

3n/4 security with μ ≤ 2n/4 faulty nonces. Surprisingly, for the two serial con-
structions, the security does not decrease as long as the number of faulty nonces
is below 2n/2. While parallel modes inherently profit most from modern parallel
architectures, the Comb scheduling technique introduced in [9] can solve this
problem even for serial modes on the server side. Besides, the serial structure
can be particularly suited for the design of efficient dedicated primitives [17,31],
while this is not the case for parallel modes. Therefore, an interesting conse-
quence of our results is the introduction of two new constructions FEDM

B4
and

FEDM
B5

, where the security of these constructions remains the same as long as
the number of faulty nonces is below 2n/2.

The security proofs in this work are performed using Patarin’s H-coefficient
technique [11,36,38], and using the mirror theory by Kim et al. [26]. We believe
that the security bounds of the two SoP-based MAC algorithms can be improved
by improving the mirror theory. The main security analysis is given in Sect. 5.3,
where we show the PRF security of these MAC algorithms, the analysis straight-
forwardly generalizes to MAC security.

2 Preliminaries

For n ∈ N, we denote by {0, 1}n the set of bit strings of length n. For two bit
strings X,Y ∈ {0, 1}n, we denote their bitwise addition as X ⊕ Y . We denote
by {0, 1}∗ the set of bit strings of arbitrary length. For a value Z, we denote by
z ← Z the assignment of Z to the variable z. For a finite set S, we denote by
s

$←− S the uniformly random selection of s from S. For an algorithm D and two
oracles O,P, we denote by DO the evaluation of D with oracle interaction to O,
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Fig. 1. Depiction of four MAC algorithms, where E is a block cipher and H a universal
hash function.

and by ΔD
(
O ;P

)
the advantage of D in distinguishing O from an oracle P.

For a primitive P , we denote by O[P ] the oracle O built on the primitive P . We
denote by [q] the shorthand notation for {1, . . . , q}. For two disjoint sets P and
Q, we denote their (disjoint) union as P � Q.

2.1 Block Ciphers

For k, n ∈ N, a block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n such
that for fixed key K ∈ {0, 1}k, EK(·) = E(K, ·) is a permutation on {0, 1}n.

Denote by Perm(n) the set of all permutations on {0, 1}n. The prp-security
of a block cipher E is measured by considering a distinguisher D that is given
forward access to either EK for secret key K

$←− {0, 1}k, or a random permutation
π

$←− Perm(n), and its goal is to determine which oracle it is given access to:

Advprp
E (D) =

∣∣∣Pr
[
K

$←− {0, 1}k : DEK = 1
]

− Pr
[
π

$←− Perm(n) : Dπ = 1
]∣∣∣ .

Note that we only consider the prp-security of block ciphers instead of the sprp-
security, where D would have access to the inverse of EK as well. The reason
for this is that the constructions that we analyze only evaluate the underlying
block ciphers in forward direction.
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2.2 Nonce-Based Pseudorandom Functions

For k, n ∈ N, a nonce-based pseudorandom function is a function F : {0, 1}k ×
{0, 1}n × {0, 1}∗ → {0, 1}n, that takes as input a key K ∈ {0, 1}k, a nonce
N ∈ {0, 1}n, a message M ∈ {0, 1}∗, and outputs a tag T ∈ {0, 1}n.

We define a perfectly random oracle Rand : {0, 1}n × {0, 1}∗ → {0, 1}n as a
function that for each new input in {0, 1}n × {0, 1}∗ generates a random string
of length n bits. The prf-security of a function F is measured by considering a
distinguisher D that is given access to either FK for secret key K

$←− {0, 1}k, or
the random oracle Rand:

Advprf
F (D) =

∣∣∣Pr
[
K

$←− {0, 1}k : DFK = 1
]

− Pr
[
DRand = 1

]∣∣∣ .

We call a query a faulty query if the distinguisher D has already queried its oracle
with the same nonce. The distinguisher D is allowed to make at most μ faulty
queries. We call D a nonce-respecting adversary if μ = 0, and nonce-misusing if
μ ≥ 1.

2.3 Universal Hash Functions

For n ∈ N, an universal hash function is a function H : Kh × {0, 1}∗ → {0, 1}n,
such that for fixed key Kh ∈ Kh, we have HKh

(·) = H(Kh, ·). We call H an
ε-almost XOR universal (ε-AXU) hash function [27] if for all distinct M,M ′ ∈
{0, 1}∗ and all C ∈ {0, 1}n, we have

Pr
[
Kh

$←− Kh : HKh
(M) ⊕ HKh

(M ′) = C
]

≤ ε.

Unfortunately, we cannot immediately use this probability bound to bound the
occurrence of the following event:

HKh1
(Mi) = HKh1

(Mj) ∧ HKh2
(Mj) = HKh2

(Mk) ∧ HKh1
(Mk) = HKh1

(Ml),

for Kh1 ,Kh2

$←− Kh. We cannot claim that the probability of this event is ε3 for
any fixed distinct Mi, Mj , Mk, and Ml, since the first and the last event are not
independent. We will use the following lemma in our security proofs.

Lemma 1 (alternating events lemma [12,23]). Let qi, qj , qk, ql, q ∈ N such
that qi, qj , qk, ql ≤ q. Let Xq = (X1, . . . , Xq) be a q-tuple of random variables,
and let Xqi ,Xqj ,Xqk ,Xql ⊆ Xq. For distinct i ∈ [qi], j ∈ [qj ], let Ei,j be events
associated with Xi ∈ Xqi and Xj ∈ Xqj , possibly dependent, which all hold with
probability at most ε. For distinct i ∈ [qi], j ∈ [qj ], k ∈ [qk], l ∈ [ql], let Fi,j,k,l be
events associated with Xi ∈ Xqi , Xj ∈ Xqj , Xk ∈ Xqk , and Xl ∈ Xql which all
hold with probability at most ε′. Moreover, the collection of events (Fi,j,k,l)i,j,k,l

is independent with the collection of event (Ei,j)i,j. Then,

Pr[∃i ∈ [qi], j ∈ [qj ], k ∈ [qk], l ∈ [ql], Ei,j ∧ Ek,l ∧ Fi,j,k,l] ≤ √
qiqjqkql · ε ·

√
ε′.
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Jha and Nandi [23] proved the alternating events lemma for qi, qj , qk, ql = q, the
lemma can straightforwardly be generalized to different qi, qj , qk, ql, a similar
proof for this is given in the bad transcripts analysis of the work by Choi et
al. [12]. Note that Lemma 1 can be used to solve the above-mentioned example
using the independent randomness of the hash keys Kh1 and Kh2 . For our con-
structions, we only have one hash key, hence we will use the randomly generated
output tags as our second source of randomness.

2.4 Double Collision Attack

We will rely on the double collision attack by Nandi [35]. We recall the result of
this attack in the following lemma.

Lemma 2 (double collision attack [35]). For k, n ∈ N, let F1: {0, 1}k ×
{0, 1}∗ → {0, 1}n and F2: {0, 1}k ×{0, 1}n → {0, 1}n be non-injective functions.
Consider F3K1,K2 := F2K2 ◦ F1K1 . There is a non-negligible constant c such
that for a distinguisher D making (1/

√
2) · 2n/2 queries, we have

Advprf
F3(D) ≥ c.

3 Generalized Fixed-Input-Length PRF Construction

We present a synthetic categorization of all beyond birthday bound secure fixed-
input-length PRFs from two block cipher calls and plain XOR operations.

Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. For a
binary 3 × 3 matrix A of the form

A =

⎛
⎝

a11 0 0
a21 a22 0
a31 a32 a33

⎞
⎠ , (4)

our target PRF FA : {0, 1}2k × {0, 1}n → {0, 1}n defined by A is described
in Algorithm 1 and given in Fig. 2. Note that any fixed-input-length PRF
F : {0, 1}n → {0, 1}n based on two block cipher calls can be represented by this
generic construction, omitting all possible constructions that can be obtained
by applying linear transformations to the variables. In total, we thus analyze
26 fixed-input-length PRFs. However for some A, the resulting PRF is clearly
not secure beyond the birthday bound. In Sect. 3.1, we first eliminate trivially
insecure matrices. Then, in Sect. 3.2 we reason about the remaining ones.

3.1 Trivial Matrices

We call a matrix “trivial” if it does not make proper use of one or both block
cipher calls. More formally, matrix A is called “non-trivial” if it satisfies the
following properties:
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Algorithm 1. PRF FA with A of (4)
Input: (K1,K2) ∈ {0, 1}2k, N ∈ {0, 1}n

Output: T ∈ {0, 1}n

1: u ← a11 · N
2: v ← EK1(u)
3: x ← a21 · N ⊕ a22 · v
4: y ← EK2(x)
5: T ← a31 · N ⊕ a32 · v ⊕ a33 · y
6: return T

⊕

EK1

⊕

EK2

⊕a11 · N Ta21 · N

u a22 · v

a31 · N

a32 · v

x a33 · y

Fig. 2. PRF FA based on two block ciphers EK1 and EK2 , and with A of (4).

(1) Each row of the matrix must contain at least one non-zero element. This
requirement ensures that at least one input is XORed to each of the three
XOR-operators. Note that the first two XOR-operations correspond respec-
tively to the inputs of the two block ciphers. If no inputs are XORed to
these XOR-operators, then the corresponding block cipher is independent of
the inputs to the PRF. In this case, the resulting PRF can be broken in at
most 2n/2 queries. The last XOR-operation corresponds to the output T , if
no inputs are XORed to this XOR-operator, then the resulting PRF outputs
a constant T for every query.

(2) Each column of the matrix must contain at least one non-zero element. This
requirement ensures that each of the three inputs N , v, and y is used at least
once.

We can derive the following four requirements from above properties:

a11 = 1, a33 = 1, a22 + a32 ≥ 1, a21 + a22 ≥ 1.

Notice that if a11 = 0, the block cipher EK1 is not used in the computation; if
a33 = 0, the block cipher EK2 is not used in the output; if a22 + a32 = 0, the
output of the block cipher EK1 is not used in the output; and if a21+a22 = 0, the
block cipher EK2 is not used in the computation. If one of the four requirements
is not satisfied, then the resulting PRF can be broken in at most 2n/2 queries.

Thus, in the remainder, we focus on matrices A of the following form:

A =

⎛
⎝

1 0 0
a21 a22 0
a31 a32 1

⎞
⎠ , (5)
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where a21 + a22 ≥ 1 and a22 + a32 ≥ 1 (ten schemes in total).

3.2 Generic Results for PRFs

Before we start with our generic analysis, we provide the following observation
to simplify our analysis: XORing the input N to the output T does not influence
the security of the PRF.

Proposition 1. Let A be any non-trivial matrix of the form (5). Let

A′ := A ⊕

⎛
⎝

0 0 0
0 0 0
1 0 0

⎞
⎠ .

For any distinguisher D, there exists a distinguisher D′ such that Advprf
FA

(D′) ≥
Advprf

FA′ (D) and Advprf
FA′ (D′) ≥ Advprf

FA
(D).

Proof. We only prove the part Advprf
FA′ (D′) ≥ Advprf

FA
(D), the part

Advprf
FA

(D′) ≥ Advprf
FA′ (D) is proven in a similar way. Let Ke = (K1,K2)

$←−
{0, 1}2k, and note that FA′ [EK1 , EK2 ](N) = FA[EK1 , EK2 ](N) ⊕ N . For any
distinguisher D whose goal is to distinguish the real world oracle FA[EK1 , EK2 ]
from the ideal world oracle ϕ

$←− Func(n), we can build a distinguisher D′ that
has access to either FA′ [EK1 , EK2 ] or ϕ, and that simulates D’s oracles. More
precisely, for each query N made by D, D′ queries its oracle for N to retrieve a
value T , and it returns T ⊕N to D. At the end, D′ relays the decision bit output
by D. Distinguisher D′ has at least the same success probability as D, and this
completes the proof. ��

We are left with matrices A of the form

A =

⎛
⎝

1 0 0
a21 a22 0
0 a32 1

⎞
⎠ , (6)

where a21 + a22 ≥ 1 and a22 + a32 ≥ 1. There are five options in total:

A1 =

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ , A2 =

⎛
⎝
1 0 0
1 1 0
0 0 1

⎞
⎠ , A3 =

⎛
⎝
1 0 0
1 0 0
0 1 1

⎞
⎠ , A4 =

⎛
⎝
1 0 0
0 1 0
0 1 1

⎞
⎠ , A5 =

⎛
⎝
1 0 0
1 1 0
0 1 1

⎞
⎠ . (7)

Clearly, FA1 is a cascade of two PRPs. This means that it does not have colli-
sions and can be distinguished from a random function ϕ in around 2n/2 queries.
Likewise, FA5 is a composition of two PRFs. More specifically, FA5 is equiva-
lent to a cascade of two Davies-Meyer constructions (taking into account that
x = N ⊕ v in the second Davies-Meyer construction), which is at most birth-
day bound secure due to Lemma 2. The remaining three functions for binary
matrices A2, A3, A4 are Encrypted Davies-Meyer [13], Sum of Permutation [4],
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and Encrypted Davies-Meyer Dual [30], respectively. All three constructions
have been proven to achieve optimal n-bit security using Patarin’s mirror the-
ory [33,37,39,40], and the Sum of Permutation and the Encrypted Davies-Meyer
Dual constructions have also been proven to achieve optimal n-bit security using
the chi-squared method [14]. We thus arrive at the following results.

Proposition 2. Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher. For x = 1, 5, consider FAx

of Algorithm 1 that is defined by binary
matrix Ax of (7).

(i) There is a distinguisher D making 2n/2 queries such that

Advprf
FA1

(D) ≥ 1 − 1
e
.

(ii) There is a non-negligible constant c such that for a distinguisher D making
(1/

√
2) · 2n/2 queries, we have

Advprf
FA5

(D) ≥ c.

Proof. For case (i), consider a distinguisher D that makes 2n/2 queries and oper-
ates as follows. For i = 1, . . . , 2n/2, it selects arbitrary N (i)’s to obtain T (i)’s.
If all T (i)’s are distinct, output 1. Otherwise, output 0. In the real world, FA1

behaves as a PRP, and thus Pr
[
DFA1 = 1

]
= 1. For the ideal world, we have

Pr [Dϕ = 1] = Pr
[
∩i,i′ T (i) �= T (i′)

]
≤ 1 −

(
1 − e−(q

2) 1
2n

)
= e−(q

2) 1
2n ,

where q = 2n/2.
The proof of case (ii) follows from Lemma 2. ��

Theorem 1. Let k, n ∈ N. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block cipher.
For x = 2, 3, 4, consider FAx

of Algorithm 1 that is defined by binary matrix Ax

of (7).

(i) Let ξ be any threshold, and for any distinguisher D making at most q ≤
2n/(67ξ2) queries, we have

Advprf
FA2

(D) ≤ q

2n
+

(
q

ξ+1

)

2nξ
.

(ii) For any distinguisher D making at most q queries, we have

Advprf
FA3

(D), Advprf
FA4

(D) ≤ q

2n
.

Proof. We refer to Mennink and Neves [30] for the proofs of security of FA2 and
FA4 , and to Dai et al. [14] for the proof of security of FA3 . ��
We conclude that EDM, SoP, and EDMD are the only three n-bit secure fixed-
input-length PRFs that can be build using two block cipher calls and XOR oper-
ations (modulo the reduction of Proposition 1 that consists of feed-forwarding
the input), and one should start from these fixed-input-length PRFs while build-
ing beyond birthday bound secure variable-input-length PRF algorithms.
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Algorithm 2. Nonce-based PRF FA∗ with A∗ of (8)
Input: (K1,K2) ∈ {0, 1}2k, Kh ∈ Kh, N ∈ {0, 1}n, M ∈ {0, 1}∗

Output: T ∈ {0, 1}n

1: u ← a11 · N ⊕ b1 · HKh(M)
2: v ← EK1(u)
3: x ← a21 · N ⊕ a22 · v ⊕ b2 · HKh(M)
4: y ← EK2(x)
5: T ← a31 · N ⊕ a32 · v ⊕ a33 · y ⊕ b3 · HKh(M)
6: return T

4 Generalized Nonce-Based PRF Construction

We consider how to generically construct a nonce-based PRF algorithm from
two block cipher calls and one universal hash function call.

Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. For a
binary 3 × 4 matrix A∗ of the form

A∗ =

⎛
⎝

a11 0 0 b1
a21 a22 0 b2
a31 a32 a33 b3

⎞
⎠ , (8)

our target nonce-based PRF FA∗ : {0, 1}2k × Kh × {0, 1}n × {0, 1}∗ → {0, 1}n

defined by A∗ is described in Algorithm 2 and given in Fig. 3. Note that any
nonce-based PRF F : {0, 1}n ×{0, 1}∗ → {0, 1}n based on two block cipher calls
and one universal hash function call can be represented by this generic construc-
tion, omitting all possible constructions that can be obtained by applying linear
transformations to the variables. In total, we thus analyze 29 nonce-based PRFs.
However for some A∗, the resulting construction is clearly not secure beyond the
birthday bound. In Sect. 4.1, we first eliminate trivially insecure matrices. Then,
we reason about the remaining ones.

4.1 Generic Results for Nonce-Based PRF Algorithms

Note that the reasoning of Sect. 3.1 also applies here: the distinguisher can elimi-
nate the effect of the universal hash function by keeping the message M constant.
Therefore, intuitively, a nonce-based PRF can only be secure if its underlying
fixed-input-length PRF is built on a non-trivial matrix. We therefore focus on
nonce-based PRF algorithm built on fixed-input-length PRFs from Eq. (6).

Thus, in the remainder, we focus on matrices A∗ of the following form:

A∗ =

⎛
⎝

1 0 0 b1
a21 a22 0 b2
0 a32 1 b3

⎞
⎠ , (9)
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⊕

EK1

⊕

EK2

⊕

HKh

a11 · N Ta21 · N

u a22 · v

a31 · N

a32 · v

x a33 · y

M

b2 · HKh(M)
b1 · HKh(M) b3 · HKh(M)

Fig. 3. Nonce-based PRF FA∗ based on two block ciphers EK1 , EK2 , and an universal
hash function HKh , and with A∗ of (8).

where a21 + a22 ≥ 1, a22 + a32 ≥ 1 and b1 + b2 + b3 ≥ 1. These options are:

A∗
1 =

⎛
⎝

1 0 0 b1
0 1 0 b2
0 0 1 b3

⎞
⎠ , A∗

2 =

⎛
⎝

1 0 0 b1
1 1 0 b2
0 0 1 b3

⎞
⎠ , A∗

3 =

⎛
⎝

1 0 0 b1
1 0 0 b2
0 1 1 b3

⎞
⎠ ,

A∗
4 =

⎛
⎝

1 0 0 b1
0 1 0 b2
0 1 1 b3

⎞
⎠ , A∗

5 =

⎛
⎝

1 0 0 b1
1 1 0 b2
0 1 1 b3

⎞
⎠ .

(10)

As in Sect. 3.2, nonce-based PRFs based on A∗
1 cannot achieve beyond birthday

bound security, as the distinguisher can make 2n/2 queries by keeping the mes-
sage M constant and observe no collision in the tag. Nonce-based PRFs based on
A∗

5 also cannot achieve beyond birthday bound security, as these constructions
can be seen as a cascade of two PRFs, and hence can be broken in the birthday
bound using Lemma 2.

In the following, we denote FEDM
Bx

, F SoP
Bx

, and FEDMD
Bx

as the nonce-based
PRFs based on matrices A∗

2, A∗
3, and A∗

4, respectively. For x = 0, . . . , 7, we will
consider all variants of Bx depending on the values of b1, b2, and b3.

B0 =
(
0 0 0

)
, B4 =

(
1 0 0

)
,

B1 =
(
0 0 1

)
, B5 =

(
1 0 1

)
,

B2 =
(
0 1 0

)
, B6 =

(
1 1 0

)
,

B3 =
(
0 1 1

)
, B7 =

(
1 1 1

)
.

(11)

4.2 Nonce-Based PRFs Based on A∗
2 (Encrypted Davies-Meyer)

In this section, we consider nonce-based PRFs based on the Encrypted Davies-
Meyer construction FEDM. Let k, n ∈ N, let E : {0, 1}k × {0, 1}n → {0, 1}n
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be a block cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function.
Consider generic construction FEDM

Bx
: {0, 1}2k ×Kh×{0, 1}n ×{0, 1}∗ → {0, 1}n:

FEDM
Bx

[EK1 , EK2 ,HKh
](N,M) =

EK2(EK1(N ⊕ b1 · HKh
(M)) ⊕ N ⊕ b2 · HKh

(M)) ⊕ b3 · HKh
(M),

(12)

with Bx ∈ {B0, B1, . . . , B7} of (11).
Here, FEDM

B2
is the EWCDM construction of Cogliati and Seurin [13], which

is shown to achieve 2n/3-bit security against nonce-respecting adversaries. Using
Patarin’s mirror theory, Mennink and Neves [30] have shown that FEDM

B2
also

achieves n-bit security against nonce-respecting adversaries. The function FEDM
B0

is trivially insecure and henceforth excluded. The function FEDM
B1

is a Wegman-
Carter construction with EDM as its underlying PRF, hence it is optimally n-bit
secure against nonce-respecting adversaries, and totally broken when the nonce is
reused. For the remaining six schemes, we show that four of these achieve beyond
birthday bound security against nonce-respecting distinguisher. Moreover, two
of these four constructions still provide the same amount of security in the faulty
nonce model when the number of faulty nonces is below 2n/2, and the security
drops to the birthday bound when 2n/2 faulty nonces are made. The security
of the other two constructions drops to birthday bound once a single nonce is
repeated.

Proposition 3. Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider
FEDM

Bx
of Eq. (12) for binary matrix Bx ∈ {B6, B7} of (11). There is a nonce-

respecting distinguisher D making 4 · 2n/2 queries such that

Advprf

FEDM
Bx

(D) ≥ 1 − 1
2n

.

Proof. The proof is given in the full version of the paper. ��

Proposition 4. Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider
FEDM

Bx
of Eq. (12) for binary matrix Bx ∈ {B2, B3} of (11). There is a distin-

guisher D making 2n/2 + 2 queries with 2 faulty nonces such that

Advprf

FEDM
Bx

(D) ≥ 1 − 1√
e

− 1
2n

.

Proof. The proof is given in the full version of the paper. ��

Proposition 5. Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider
FEDM

Bx
of Eq. (12) for binary matrix Bx ∈ {B4, B5} of (11). There is a distin-

guisher D making 2 · 2n/2 + 4 queries with 2n/2 faulty nonces such that

Advprf

FEDM
Bx

(D) ≥ 1 − 1√
e

− 1
2n

.
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Proof. The proof is given in the full version of the paper. ��

Theorem 2. Let k, n ∈ N. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block cipher,
and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider FEDM

Bx

of Eq. (12) for binary matrix Bx ∈ {B2, B3} of (11). For any nonce-respecting
distinguisher D making at most q ≤ 23n/4 queries, there exist distinguishers D′

1

and D′
2 with the same query complexity such that

Advprf

FEDM
B2

(D) ≤ Advprp
E (D′

1) + Advprp
E (D′

2) +
q2ε

2n

+
19q

4
3

2n
+

6q
8
3

22n
+

18q
7
3

22n
+

q2

22n
+

8q4

3 · 23n
,

Advprf

FEDM
B3

(D) ≤ Advprp
E (D′

1) + Advprp
E (D′

2) +
q2ε

2n
+ q

4
3 ε

+
18q

4
3

2n
+

6q
8
3

22n
+

18q
7
3

22n
+

q2

22n
+

8q4

3 · 23n
.

Proof. The proof is given in Sect. 5.3. ��

Theorem 3. Let k, n ∈ N. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block cipher,
and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider FEDM

Bx
of

Eq. (12) for binary matrix Bx ∈ {B4, B5} of (11). Let μ be a fixed parameter.
For any distinguisher D making at most q ≤ 23n/4 queries, and at most μ faulty
nonces, there exist distinguishers D′

1 and D′
2 with the same query complexity

such that

Advprf

FEDM
B4

(D) ≤ Advprp
E (D′

1) +Advprp
E (D′

2) +
μ2

2n
+ μ2ε +

q2ε

2n
+

q2ε

2n/2
+

q2
√

ε

2n

+ q
4
3 ε +

19q
4
3

2n
+

6q
8
3

22n
+

18q
7
3

22n
+

q2

22n
+

8q4

3 · 23n ,

Advprf

FEDM
B5

(D) ≤ Advprp
E (D′

1) +Advprp
E (D′

2) + 2μ2ε +
q2ε

2n
+

q2ε

2n/2
+

q2
√

ε

2n
+ 2q

4
3 ε

+
18q

4
3

2n
+

6q
8
3

22n
+

18q
7
3

22n
+

q2

22n
+

8q4

3 · 23n .

Proof. The proof is given in Sect. 5.3. ��

For Theorem 3, when μ is sufficiently smaller than 2n/2, FEDM
B4

and FEDM
B5

achieve
3n/4-bit security. Note that this optimal bound holds under the assumption that
ε is sufficiently small (ε ≈ 2−n) and the block cipher E is sufficiently PRP secure,
such that the other terms in the bound are dominating.

4.3 Nonce-Based PRFs Based on A∗
3 (Sum of Permutations)

In this section, we consider nonce-based PRFs based on the Sum of Permutations
construction F SoP. Let k, n ∈ N, let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
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cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider
generic construction F SoP

Bx
: {0, 1}2k × Kh × {0, 1}n × {0, 1}∗ → {0, 1}n:

F SoP
Bx

[EK1 , EK2 ,HKh
](N,M) =

EK1(N ⊕ b1 · HKh
(M)) ⊕ EK2(N ⊕ b2 · HKh

(M)) ⊕ b3 · HKh
(M),

(13)

with Bx ∈ {B0, B1, . . . , B7} of (11).
The function F SoP

B4
is symmetric to F SoP

B2
, and F SoP

B5
is symmetric to F SoP

B3
,

and hence F SoP
B4

and F SoP
B5

can be omitted. The function F SoP
B2

is the two keyed
variant of the nEHtM construction of Dutta et al. [18]. Dutta et al. have shown
that nEHtM based on a single key with domain separation achieves 2n/3-bit
security when 2n/3 faulty nonces are made, and its security degrades in a grace-
ful manner when the number of faulty nonces go beyond 2n/3. Later, Choi et
al. [12] have shown that single keyed nEHtM actually achieves 3n/4-bit secu-
rity when up to 23n/8 faulty nonces are made, and its security also degrades in
a graceful manner. Here, F SoP

B2
is the nEHtM construction based on two keys

without domain separation. The function F SoP
B0

is trivially insecure and hence-
forth excluded. The function F SoP

B1
is a Wegman-Carter construction with SoP as

its underlying PRF, hence it is optimally n-bit secure against nonce-respecting
adversaries, and totally broken when the nonce is reused. For the remaining four
schemes, we show that two of these schemes achieve beyond birthday bound
security, even in the case of nonce reuse.

Proposition 6. Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider
F SoP

Bx
of Eq. (13) for binary matrix Bx ∈ {B6, B7} of (11). There is a nonce-

respecting distinguisher D that making 4 · 2n/2 queries such that

Advprf

FSoP
Bx

(D) ≥ 1 − 1
2n

.

Proof. The proof is given in the full version of the paper. ��

Theorem 4. Let k, n ∈ N. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a block cipher,
and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider F SoP

Bx

of Eq. (13) for binary matrix Bx ∈ {B2, B3} of (11). Let μ ≤ q1/3. For any
distinguisher D making at most q ≤ 23n/4 queries, and at most μ faulty nonces,
there exist distinguishers D′

1 and D′
2 with the same query complexity such that

Advprf

FSoP
B2

(D) ≤ Advprp
E (D′

1) +Advprp
E (D′

2) +
μ2

2n
+ μ2ε +

q2ε

2n
+ 4μ2ε +

3μq3n/2ε

2n/2

+ q
4
3 ε +

18q
4
3

2n
+

6q
8
3

22n
+

18q
7
3

22n
+

q2

22n
+

8q4

3 · 23n ,

Advprf

FSoP
B3

(D) ≤ Advprp
E (D′

1) +Advprp
E (D′

2) + 2μ2ε +
q2ε

2n
+ 4μ2ε +

3μq3n/2ε

2n/2
+ q

4
3 ε

+
18q

4
3

2n
+

6q
8
3

22n
+

18q
7
3

22n
+

q2

22n
+

8q4

3 · 23n .
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Proof. The proof is given in Sect. 5.3. ��

In that case F SoP
B2

and F SoP
B3

achieve 3n/4-bit security with μ ≤ 2n/4. Although
both nEHtM based on a single key and based on two independent keys achieve
3n/4-bit security, the number of faulty nonces μ that can be made for our nEHtM
based on two keys is 2n/4 when q = 23n/4, which is less than 23n/8 for the case of
single keyed nEHtM. This follows from the comparison with the results in [12],
which is due to the version of mirror theory we are using here, since the versions
of mirror theory used by Dutta et al. [18] and Choi et al. [12] are for single
permutation, and cannot be applied for our nEHtM based on two keys. Our
result can be improved by improving the mirror theory for two permutations.
These optimal bounds again hold under the assumption that ε is sufficiently
small (ε ≈ 2−n) and the block cipher E is sufficiently PRP secure, such that the
other terms in the bound are dominating.

4.4 Nonce-Based PRFs Based on A∗
4 (Encrypted Davies-Meyer

Dual)

In this section, we consider nonce-based PRFs based on the Encrypted Davies-
Meyer Dual construction FEDMD. Let k, n ∈ N, let E : {0, 1}k×{0, 1}n → {0, 1}n

be a block cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function.
Consider generic construction FEDMD

Bx
: {0, 1}2k×Kh×{0, 1}n×{0, 1}∗ → {0, 1}n:

FEDMD
Bx

[EK1 , EK2 , HKh
](N, M) =

EK2 (EK1 (N ⊕ b1 · HKh
(M)) ⊕ b2 · HKh

(M)) ⊕ EK1 (N ⊕ b1 · HKh
(M)) ⊕ b3 · HKh

(M),
(14)

with Bx ∈ {B0, B1, . . . , B7} of (11).
Again, the function FEDMD

B0
is trivially insecure and henceforth excluded. The

function FEDMD
B1

is a Wegman-Carter construction with EDMD as its underlying
PRF, hence it is optimally n-bit secure against nonce-respecting adversaries,
and totally broken when the nonce is reused. For the remaining six schemes, we
provide birthday bound attacks for five out these six schemes.

Proposition 7. Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher, and H : Kh × {0, 1}∗ → {0, 1}n be an ε-AXU hash function. Consider
FEDMD

Bx
of Eq. (14) for binary matrix Bx ∈ {B3, B4, B5, B6, B7} of (11). There

is a non-negligible constant c such that for a distinguisher D making (1/
√

2)·2n/2

queries, we have

Advprf

FEDMD
Bx

(D) ≥ c.

Proof. These constructions can be seen as the composition of two random func-
tions. The proposition follows straightforwardly from Lemma 2. ��

We conclude that only FEDMD
B2

may achieve beyond birthday bound security.
However, for all four constructions, the output of their second permutation EK2

is XORed with its input, this makes it a non-trivial exercise to derive security
beyond the birthday bound for these constructions.
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5 Security Analysis

Our analysis is performed using the H-coefficients technique, recapped in
Sect. 5.1, and Patarin’s mirror theory, recapped in Sect. 5.2. The proof of Theo-
rem 2 and 3 on EDM-based algorithms, and the proof of Theorem 4 on SoP-based
algorithms, are given in Sect. 5.3.

5.1 H-coefficients Technique

We will use Patarin’s H-coefficient technique [11,36,38] for our security proofs.
Consider two oracles O and P, and a deterministic distinguisher D that has

query access to either of these oracles. The distinguisher’s goal is to distinguish
both worlds, and we denote by

Adv(D) =
∣∣Pr

[
DO = 1

]
− Pr

[
DP = 1

]∣∣

its advantage. We define a transcript τ which summarizes all query-response
tuples learned by D during its interaction with its oracle O or P. We denote by
XO and XP the probability distribution of transcripts when interacting with O
and P, respectively. We call a transcript τ ∈ T attainable if Pr[XP = τ ] > 0, or
in other words if the transcript τ can be obtained from an interaction with P.

Lemma 3 (H-coefficients technique [22]). Consider a deterministic distin-
guisher D. Define a partition T = Tgood � Tbad, where Tgood is the subset of T
which contains all the “good” transcripts and Tbad is the subset with all the “bad”
transcripts. Assume that there exists ε1 such that for all attainable τ ∈ Tgood:

Pr[XO = τ ]
Pr[XP = τ ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[XP ∈ Tbad] ≤ ε2. Then, we have

Adv(D) ≤ ε1 + ε2.

5.2 Mirror Theory

Patarin’s mirror theory [33,37,39,40] was popularized by Mennink and Neves [30]
and used to prove the optimal n-bit security of EDM and EWCDM. However,
in Patarin’s original work, the proof is highly complex and too difficult to verify,
and it contains several gaps. In recent years, many different versions of mirror
theory were presented [12,15,18,23,26]. We follow the description of the mirror
theory by Kim et al. [26].

Let G = (V,S) be a graph and let PQ ∈ S be an edge for P,Q ∈ V. If this
edge is labeled with λ ∈ {0, 1}n, then it means an equation P ⊕ Q = λ, while if
it is labeled with the symbol �=, then it means that P and Q are distinct (since

P and Q are from two independent sets). We write P
�
− Q when an edge PQ is

labeled with � ∈ {0, 1}n ∪ {�=}.
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Let G= denote the graph obtained by deleting all �=-labeled edges from G.
For � > 0 and a trail

L : P0

λ1− P1

λ2− . . .
λ�− P�

in G=, its label is defined as

λ(L) = λ1 ⊕ λ2 ⊕ . . . ⊕ λ�.

We decompose G= into its connected components:

G= = C1 � C2 � · · · � Cα � D1 � D2 � · · · � Dβ

for some α, β ≥ 0, where Ci denotes a component of size greater than 2, and Di

denotes a component of size 2. We will also write C = C1 � C2 � · · · � Cα and
D = D1 � D2 � · · · � Dβ . We call the graph G a nice graph if G satisfies the
following two restrictions.

Definition 1 (acyclic). G= contains no cycle.

Definition 2 (non-zero path label (NPL)). λ(L) �= 0 for any trail L of even
length � in G=.

Acyclic means that there is no linear combination of the equations that is inde-
pendent of the unknowns, and NPL means that there is no linear combination
of the equations that implies equality of two distinct unknowns. Given a nice
graph G = (V,S), where the vertex set V is partitioned into two disjoint parts
P and Q, a solution to G should satisfy all the λ-labeled equations in G=, while
all the variables in P (resp., Q) should take different values.

Lemma 4 (mirror theorem [26]). Let G be a nice graph, and let q and qc

denote the number of edges of G= and C, respectively. If q < 2n

8 , then the number
of solutions to G, denoted h(G), satisfies

h(G)2nq

(2n)|P|(2n)|Q|
≥ 1 − 9q2c

8 · 2n
− 3qcq

2

2 · 22n
− q2

22n
− 9q2cq

8 · 22n
− 8q4

3 · 23n
.

5.3 Proof of Theorem 2, 3, and 4

Recall that we consider the constructions FEDM
B2

, FEDM
B3

in Theorem 2 for any
nonce-respecting distinguisher, the constructions FEDM

B4
, FEDM

B5
in Theorem 3 for

any distinguisher making at most μ faulty nonces, and F SoP
B2

, F SoP
B3

in Theorem 4
for any distinguisher making at most μ faulty nonces. The first part of the
analyses of the three theorems is very similar. Only in Sect. 5.3.5 we consider
the three theorems (and thus six schemes) independently.

Let Ke = (K1,K2)
$←− {0, 1}2k, and Kh

$←− Kh. For F ∈ {EDM,SoP},
consider any distinguisher D that has access to either the real world oracle
FF

Bx
[EK1 , EK2 ,HKh

], with x = 2, . . . , 5 (resp., x = 2, 3) if F = EDM (resp.,
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F = SoP), or the ideal world oracle Rand. We first consider the case F = EDM.
Instead of replacing the block ciphers EK1 , EK2 by π1, π2, we replace them by
π1, π

−1
2 . As π1, π2 are drawn independently, these two constructions are provably

equally secure. However it is more convenient to reason about the latter one, as
an evaluation of the latter case can be viewed as the XOR of two permutations
in the middle of the function. Let π1, π

−1
2

$←− Perm(n). We have

Advprf

FEDM
Bx

(D)

≤ ΔD
(
FEDM

Bx
[EK1 , EK2 ,HKh

] ; Rand
)

≤ ΔD
(
FEDM

Bx
[π1, π

−1
2 ,HKh

] ; Rand
)

+ ΔD′
1

(
EK1 ; π1

)
+ ΔD′

2

(
EK2 ; π−1

2

)

= ΔD
(
FEDM

Bx
[π1, π

−1
2 ,HKh

] ; Rand
)

+ Advprp
E (D′

1) + Advprp
E (D′

2), (15)

for some distinguishers D′
1 and D′

2 with the same complexity as D. We focus on
the remaining distance in (15). As of now, we drop [π1, π

−1
2 ,HKh

] for readability,
and assume D is computationally unbounded and deterministic. The case of
F = SoP is similar, but we replace the block ciphers EK1 , EK2 by π1, π2.

5.3.1 Transcripts
D makes q queries to O ∈ {FF

Bx
,Rand}, and these are summarized in a transcript

τm = {(N (1),M (1), T (1)), . . . , (N (q),M (q), T (q))}.

After D’s interaction with the oracles, but before it outputs its decision, we
disclose the hash key Kh to the distinguisher. In the real world, this is the key
used in the hash function. In the ideal world, Kh is a dummy key that is drawn
uniformly at random. The complete view is denoted τ = (τm,Kh).

5.3.2 Attainable Index Mappings
In the real world, each query (N (i),M (i), T (i)) ∈ τ corresponds to an evaluation
of the oracle FF

Bx
. Note that each scheme consists of an evaluation of π1 and

an evaluation of π2, these are of the form X(i) �→ π1(X(i)) and Y (i) �→ π2(Y (i))
such that π1(X(i)) ⊕ π2(Y (i)) = Z(i). The values of X(i), Y (i), Z(i) are specific
for the particular construction under analysis (recall that currently we consider
six different constructions FEDM

B2
, FEDM

B3
, FEDM

B4
, FEDM

B5
and F SoP

B2
, F SoP

B3
at once),

and can be deduced from τ . This will also become clear in Sect. 5.3.5, where the
separate schemes are treated individually. The transcript τ defines q equations
on the unknowns, and these q equations are the following:

E =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π1(X(1)) ⊕ π2(Y (1)) = Z(1),

π1(X(2)) ⊕ π2(Y (2)) = Z(2),
...

π1(X(q)) ⊕ π2(Y (q)) = Z(q).
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In the above q equations, some of the unknowns may be equal to each
other. We have that π1(X(i)) �= π1(X(j)) if and only if X(i) �= X(j), and
π2(Y (i)) �= π2(Y (j)) if and only if Y (i) �= Y (j). No condition holds for π1(X(i))
versus π2(Y (i)), as these are defined by independent permutations. Thus,
{π1(X(i))}1≤i≤q and {π2(Y (i))}1≤i≤q are identified with two sets of unknowns

P = {P1, . . . , Pq1},

Q = {Q1, . . . , Qq2}.

with q1, q2 ≤ q. Since P and Q are defined by independent permutations, we
know that P and Q are independent. We connect Pj and Qj′ with a Z(i)-labeled
edge if π1(X(i)) = Pj and π2(Y (i)) = Qj′ for some i. Any pair of vertices in the
same set (either P or Q) are connected by a �=-labeled edge. In this way, we
obtain the transcript graph of τ on P � Q, and we denote it by Gτ .

5.3.3 Bad Transcripts
Informally, bad events are the properties which would make the mirror theory
inapplicable. One can only apply the mirror theory if the transcript graph Gτ

is (1) acyclic, (2) satisfies the NPL condition, and (3) the number of edges in C
(i.e., edges in the components of size greater than two) is not greater than qc, for
some parameter qc that will be defined later on. The first two conditions come
from Definitions 1 and 2, the last one is the condition on the number of edges
in C in Lemma 4. Stated differently, we need to say that τ is a bad transcript if
the corresponding transcript graph Gτ either includes a circle or a path of even
length with λ(L) = 0, or the number of edges in C exceeds qc.

The first two are implied if either of the following two events is set.

(i) Gτ contains an alternating circle of length 2 or an alternating path of length
2 such that λ(L) = 0,

(ii) Gτ contains an alternating path of length 4 starting at the X-shore, or it
contains an alternating path of length 4 starting at the Y -shore such that
λ(L) = 0.

We remark that it appears a bit odd to require the side-condition for the second
part of event (ii) only. However, it turns out that by releasing that condition
for this second part, we would not be able to derive a strong security bound
for constructions based on SoP (see Sect. 5.3.5 for more details). Fortunately, it
turns out that we can add this side-condition without problems, as negation of
above two conditions (i)–(ii) indeed imply (1) and (2). Together with the third
condition,

(iii) the number of edges in C is greater than qc,

these form the three conditions which a good transcript graph should satisfy.
In other words, we say that τ ∈ Tbad if and only if one of the above conditions
holds.

Below, we will describe these three sets of bad events in more detail, the bad
events for all six schemes are defined separately in the full version of the paper.
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Recalling that we denote by X(i) the i-th input to π1, Y (i) the i-th input to π2,
and Z(i) = π1(X(i)) ⊕ π2(Y (i)).

(i) This event is covered by AP2 = AP2a ∨ AP2b ∨ AP2c, defined as follows:

AP2a : ∃distinct (i, j) such thatX(i) = X(j) ∧ Y (i) = Y (j),

AP2b : ∃distinct (i, j) such that X(i) = X(j) ∧ Z(i) = Z(j),

AP2c : ∃distinct (i, j) such that Z(i) = Z(j) ∧ Y (i) = Y (j).

(ii) This event is covered by AP4 = AP4a ∨ AP4b, defined as follows:

AP4a : ∃ distinct (i, j, k, l) such thatX(i) = X(j) ∧ Y (j) = Y (k) ∧ X(k) = X(l),

AP4b : ∃ distinct (i, j, k, l) such thatY (i) = Y (j) ∧ X(j) = X(k) ∧ Y (k) = Y (l)

(∧ Z(i) ⊕ Z(j) ⊕ Z(k) ⊕ Z(l) = 0),

where Z(i) ⊕ Z(j) ⊕ Z(k) ⊕ Z(l) = 0 is the side condition of the event AP4b.
(iii) This event is covered by NC = NCa ∨ NCb, defined as follows:

NCa : |{(i, j) such that i �= j ∧ X(i) = X(j)}| ≥ qc/4,

NCb : |{(i, j) such that i �= j ∧ Y (i) = Y (j)}| ≥ qc/4.

A distinct pair of “half-colliding” queries such that either X(i) = X(j) or
Y (i) = Y (j) will add an edge to any component containing it, and make
the size of the component greater than two; hence the number of edges in
C cannot be twice as many as the number of half-collisions.

The probability that τ ∈ Tbad happens, is given by

Pr[τ ∈ Tbad] ≤ Pr[AP2] + Pr[AP4] + Pr[NC], (16)

where AP2 = AP2a∨AP2b∨AP2c, AP4 = AP4a∨AP4b, and NC = NCa∨NCb.

5.3.4 Ratio for Good Transcripts for FEDM
B2

, FEDM
B3

, FEDM
B4

, FEDM
B5

,
and F SoP

B2
, F SoP

B3

Consider an attainable transcript τ ∈ Tgood. We now lower bound Pr[XO = τ ]
and compute Pr[XP = τ ] in order to obtain a lower bound for the ratio of these
probabilities. We denote by compO(τ) (resp., compP(τ)) the set of oracles in the
real world (resp., the ideal world) that are compatible with τ . We first consider
the ideal world P, and obtain

Pr[XP = τ ] = Pr[Rand ∈ compP(τ)] =
1

|Kh| · 1
2nq

.

For the real world oracle O, the probability of obtaining τ is computed over
the randomness of π1 and π2. Now, fix a parameter qc (to be optimized later).
For a transcript graph Gτ , let G=

τ denote the graph obtained by deleting all
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�=-labeled edges from Gτ . Then G=
τ is a bipartite graph with q edges. By the

fact that the considered transcript τ is good, the induced graph Gτ (i) is acyclic,
(ii) satisfies the NPL condition, and (iii) the number of edges in C (i.e., edges in
the components of size greater than two) is not greater than qc. By Theorem 4
and since qc ≤ qc, the number of possible ways of fixing π1(X(i)) and π2(Y (i))
is lower bounded by (2n)|P|(2

n)|Q|
2nq (1 − ε1) where

ε1 =
9q2c

8 · 2n
+

3qcq
2

2 · 22n
+

q2

22n
+

9q2cq

8 · 22n
+

8q4

3 · 23n
. (17)

The probability that π1 and π2 realize each assignment is exactly
1/(2n)|P|(2n)|Q|. We thus obtain

Pr[XO = τ ]
Pr[XP = τ ]

≥ 1 − ε1.

5.3.5 Probability of Bad Transcripts for FEDM
B2

, FEDM
B3

, FEDM
B4

, FEDM
B5

,
and F SoP

B2
, F SoP

B3

The exact values of X, Y , and Z are, respectively,

MAC X Y Z

FEDM
B2 N T N ⊕ HKh(M)

FEDM
B3 N T ⊕ HKh(M) N ⊕ HKh(M)

FEDM
B4 N ⊕ HKh(M) T N

FEDM
B5 N ⊕ HKh(M) T ⊕ HKh(M) N

F SoP
B2 N N ⊕ HKh(M) T

F SoP
B3 N N ⊕ HKh(M) T ⊕ HKh(M)

Let qc ∈ N. We denote by I the set of all query indices i such that N (i) = N (j)

for some j �= i. One can see that |I| ≤ 2μ. Note that |I| = 0 for FEDM
B2

and
FEDM

B3
. We define by AP2F [Bx] (resp., AP4F [Bx] and NCF [Bx]) the bad event

AP2 (resp., AP4 and NC) for FEDM
Bx

with x = 2, . . . , 5, or F SoP
Bx

with x = 2, 3.
Note that we treat FEDM

B2
and FEDM

B3
for nonce-respecting distinguisher only,

hence the bad events AP2a, AP2b, AP4a, AP4b, and NCa do not appear for these
two constructions. We consider the bad events for each of the six construction
separately.
(i) An alternating circle of length 2 or an alternating path of length such that
λ(L) = 0.

– FEDM
B4

. We first consider the bad event AP2a. The probability that N (i) ⊕
HKh

(M (i)) = N (j)⊕HKh
(M (j)) happens for fixed i, j is ε, and the probability
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that T (i) = T (j) happens for fixed i, j is 1/2n. Summed over all q possible i’s,
and all q possible j’s, we have

Pr
[
AP2aEDM[B4]

]
≤ q2ε

2n
. (18)

We then consider the bad event AP2b. The probability that N (i) ⊕
HKh

(M (i)) = N (j) ⊕ HKh
(M (j)) happens for fixed i, j is ε. Assume that

i < j, which means that N (j) is a faulty nonce. Then the number of pairs
(i, j) such that N (i) = N (j) is at most μ2, and we have

Pr
[
AP2bEDM[B4]

]
≤ μ2ε. (19)

Bad event AP2c is similar to AP2b. However, the second event is T (i) = T (j),
which holds with probability 1/2n. Then the number of pairs (i, j) such that
N (i) = N (j) is at most μ2, and we have

Pr
[
AP2cEDM[B4]

]
≤ μ2

2n
. (20)

– FEDM
B5

. We first consider the bad event AP2a. The probability that N (i) ⊕
HKh

(M (i)) = N (j) ⊕ HKh
(M (j)) and T (i) ⊕ HKh

(M (i)) = T (j) ⊕ HKh
(M (j))

happens for fixed i, j is ε/2n. Summed over all q possible i’s, and all q possible
j’s, we have

Pr
[
AP2aEDM[B5]

]
≤ q2ε

2n
. (21)

The bad event AP2b is already analyzed in (19). We then consider the bad
event AP2c. The probability that T (i) ⊕ HKh

(M (i)) = T (j) ⊕ HKh
(M (j))

happens for fixed i, j is ε. Assume that i < j, which means that N (j) is a
faulty nonce. Then the number of pairs (i, j) such that N (i) = N (j) is at most
μ2, and we have

Pr
[
AP2cEDM[B5]

]
≤ μ2ε. (22)

– FEDM
B2

. Note that the X and Z values of FEDM
B2

are the reverse of those of
FEDM

B4
, and the Y value of the both constructions is the same. Hence the

analysis is the same as that for FEDM
B4

with μ = 0 because we consider nonce-
respecting dinstinguishers for FEDM

B2
.

– FEDM
B3

. Note that the X and Z values of FEDM
B3

are the reverse of those of
FEDM

B5
, and the Y value of the both constructions is the same. Hence the

analysis is the same as that for FEDM
B5

with μ = 0 because we consider nonce-
respecting dinstinguishers for FEDM

B3
.

– F SoP
B2

. Note that the X, Y , and Z values of F SoP
B2

are a reshuffling of the
X, Y , and Z values of FEDM

B4
. Hence we have that Pr

[
AP2SoP[B2]

]
=

Pr
[
AP2EDM[B4]

]
.
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– F SoP
B3

. Note that the X, Y , and Z values of F SoP
B3

are a reshuffling of the
X, Y , and Z values of FEDM

B5
. Hence we have that Pr

[
AP2SoP[B3]

]
=

Pr
[
AP2EDM[B5]

]
.

We have obtained

Pr
[
AP2EDM[B2]

]
≤ q2ε

2n
, (23)

Pr
[
AP2EDM[B3]

]
≤ q2ε

2n
. (24)

Pr
[
AP2EDM[B4]

]
, Pr

[
AP2SoP[B2]

]
≤ μ2

2n
+

q2ε

2n
+ μ2ε, (25)

Pr
[
AP2EDM[B5]

]
, Pr

[
AP2SoP[B3]

]
≤ 2μ2ε +

q2ε

2n
. (26)

(ii) An Alternating Path of Length 4. We want to recall that since we treat
FEDM

B2
and FEDM

B3
for nonce-respecting distinguisher only, alternating paths do

not appear for these two constructions. Thus, we only have to consider FEDM
B4

,
FEDM

B5
, F SoP

B2
, and F SoP

B3
.

– FEDM
B4

. We will use Lemma 1 to bound the event, with qi = qj = qk = ql = q.
We first consider the bad event AP4a. We denote Ei,j : N (i) ⊕ HKh

(M (i)) =
N (j) ⊕ HKh

(M (j)) (same for Ek,�), and Fi,j,k,� : T (j) = T (k). The probability
that Ei,j happens for fixed i, j is ε (same for Ek,�), and the probability that
Fi,j,k,� happens for fixed j, k is 1/2n. Summed over all possible i, j, k, �’s, we
have

Pr
[
AP4aEDM[B4]

]
≤ q2ε

2n/2
. (27)

Next, we consider the bad event AP4b, again with qi = qj = qk = ql = q.
We drop the side-condition Z(i) ⊕ Z(j) ⊕ Z(k) ⊕ Z(l) = 0 for simplicity. We
denote Ei,j : T (i) = T (j) (same for Ek,�), and Fi,j,k,� : N (j) ⊕ HKh

(M (j)) =
N (k) ⊕ HKh

(M (k)). The probability that Ei,j happens for fixed i, j is 1/2n

(same for Ek,�), and the probability that Fi,j,k,� happens for fixed j, k is ε.
Summed over all possible i, j, k, �’s, we have

Pr
[
AP4bEDM[B4]

]
≤ q2

√
ε

2n
. (28)

– FEDM
B5

. The analysis is identical to the one of FEDM
B4

. The only difference is
that we have Y = T ⊕ HKh

(M) instead of Y = T . However, we can still rely
on the randomness of T .

– F SoP
B2

and F SoP
B3

. Since the X and Y values are the same for these two con-
structions, we will consider these together. We first consider the bad event
AP4a. The number of queries using any repeated nonce is at most 2μ. This
means that the number of pairs (j, k) such that N (j) = N (i) for some i �= j
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and N (k) = N (l) for some k �= l is at most 4μ2. The probability that
N (j) ⊕ HKh

(M (j)) = N (k) ⊕ HKh
(M (k)) happens for fixed j, k is ε. Summed

over all possible j, k’s, we have

Pr[AP4aSoP[B2]] ≤ 4μ2ε. (29)

Next, we consider the bad event AP4b. Note that since the only randomness
we have is the universal hash key Kh, we will explicitly rely on the side event
Z(i) ⊕ Z(j) ⊕ Z(k) ⊕ Z(l) = 0. We will use Lemma 1 to bound this event. We
first consider the case that k > max{i, j, l} and the k-th query sets AP4b.
We denote Ei,j : N (i) ⊕HKh

(M (i)) = N (j) ⊕HKh
(M (j)) (same for Ek,l), and

Fi,j,k,l : T (i) ⊕ T (j) ⊕ T (k) ⊕ T (l) = 0. The probability that Ei,j happens for
fixed i, j is ε (same for Ek,l), and the probability that Fi,j,k,l happens for fixed
i, j, k, l is 1/2n. For each fixed k, and summed over q possible i’s, q possible
j’s, and q possible l’s, and since the k-th query makes an inner edge of the
trail, it should be a faulty query (there are μ possible k’s in total). Therefore
this case happens with probability at most

μ

√
q3

2n
ε.

Next, consider the case that l > max{i, j, k} and the l-th query makes AP4b.
We denote Ei,j : N (i) ⊕ HKh

(M (i)) = N (j) ⊕ HKh
(M (j)) (same for Ek,�),

and Fi,j,k,� : T (i) ⊕ T (j) ⊕ T (k) ⊕ T (l) = 0. The probability that Ei,j happens
for fixed i, j is ε (same for Ek,�), and the probability that Fi,j,k,� happens
for fixed i, j, k, l is 1/2n. For each fixed l (there are q possible l’s in total),
and summed over q possible i’s, 2μ possible j’s, and 2μ possible k’s, this case
happens with probability

2q

√
μ2q

2n
ε.

By symmetry, all other cases (i.e., i > max{j, k, l} and j > max{i, k, l}) are
also covered, we have

Pr[AP4bSoP[B2]] ≤ μ

√
q3

2n
ε + 2q

√
μ2q

2n
ε =

3μq3n/2ε

2n/2
. (30)

We have obtained

Pr
[
AP4EDM[B4]

]
, Pr

[
AP4EDM[B5]

]
≤ q2ε

2n/2
+

q2
√

ε

2n
, (31)

Pr
[
AP4SoP[B2]

]
, Pr

[
AP4SoP[B3]

]
≤ 4μ2ε +

3μq3n/2ε

2n/2
. (32)

(iii) The number of edges in C is greater than qc.

– FEDM
B4

. For NCa, X = N ⊕ HKh
(M). Using Markov inequality, we have:

Pr
[
NCaEDM[B4]

]
≤ 4q2ε

qc

. (33)



546 Y. L. Chen et al.

For NCb, Y = T . Using Markov inequality, we have:

Pr
[
NCbEDM[B4]

]
≤ 4q2

qc · 2n
. (34)

– FEDM
B5

. The bad event NCa is already analyzed in (33). For NCb, Y = T ⊕
HKh

(M). Using Markov inequality, we have:

Pr
[
NCbEDM[B5]

]
≤ 4q2ε

qc

. (35)

– FEDM
B2

. The analysis is the same as that for FEDM
B4

, except that NCa would
not happen due to X = N and μ = 0.

– FEDM
B3

. The analysis is the same as that for FEDM
B5

, except that NCa would
not happen due to X = N and μ = 0.

– F SoP
B2

. Assuming that qc/4 ≥ μ2 (qc will be chosen later on to satisfy this
condition), NCa would not happen. The bad event NCb is already analyzed
in (33).

– F SoP
B3

. Assuming that qc/4 ≥ μ2 (qc will be chosen later on to satisfy this
condition), NCa would not happen. The bad event NCb is already analyzed
in (33).

We have obtained

Pr
[
NCEDM[B2]

]
≤ 4q2

qc · 2n
, (36)

Pr
[
NCEDM[B3]

]
, Pr

[
NCSoP[B2]

]
, Pr

[
NCSoP[B3]

]
≤ 4q2ε

qc

, (37)

Pr
[
NCEDM[B4]

]
≤ 4q2ε

qc

+
4q2

qc · 2n
, (38)

Pr
[
NCEDM[B5]

]
≤ 8q2ε

qc

, (39)

Conclusion for Bad Events. Combining (23)–(26), (31)–(32), and (36)–(39) with
(16), we obtain

Pr
[
τEDM[B2] ∈ Tbad

]
≤ q2ε

2n
+

4q2

qc · 2n
,

Pr
[
τEDM[B3] ∈ Tbad

]
≤ q2ε

2n
+

4q2ε

qc

,

Pr
[
τEDM[B4] ∈ Tbad

]
≤ μ2

2n
+ μ2ε +

q2ε

2n
+

q2ε

2n/2
+

q2
√

ε

2n
+

4q2ε

qc

+
4q2

qc · 2n
,

Pr
[
τEDM[B5] ∈ Tbad

]
≤ 2μ2ε +

q2ε

2n
+

q2ε

2n/2
+

q2
√

ε

2n
+

8q2ε

qc

,
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Pr
[
τSoP[B2] ∈ Tbad

]
≤ μ2

2n
+ μ2ε +

q2ε

2n
+ 4μ2ε +

3μq3n/2ε

2n/2
+

4q2ε

qc

,

Pr
[
τSoP[B3] ∈ Tbad

]
≤ 2μ2ε +

q2ε

2n
+ 4μ2ε +

3μq3n/2ε

2n/2
+

4q2ε

qc

.

5.3.6 Conclusion
We will discuss the restrictions on the number of faulty queries for FEDM

B4
, FEDM

B5
,

and F SoP
B2

, F SoP
B3

. We have assumed that qc/4 ≥ μ2 for F SoP
B2

and F SoP
B3

. In order
to obtain 3n/4-bit security, we choose qc = 4q

2
3 . Above terms that include qc

get simplified as follows:

4q2ε

qc

= q
4
3 ε,

4q2

qc · 2n
=

q
4
3

2n
.

Based on this condition, we have μ ≤ q
1
3 for F SoP

B2
and F SoP

B3
, and there is

no restriction on μ for FEDM
B4

and FEDM
B5

. Using the H-coefficients Technique
(Lemma 3) with

ε1 =
18q

4
3

2n
+

6q
8
3

22n
+

18q
7
3

22n
+

q2

22n
+

8q4

3 · 23n
,

we obtain the results stated in Theorem 2, Theorem 3, and Theorem 4.

Acknowledgments. This work was supported in part by the Research Council KU
Leuven: GOA TENSE (C16/15/058). Yu Long Chen is supported by a Ph.D. Fellowship
from the Research Foundation - Flanders (FWO). The authors would like to thank the
anonymous reviewers for their comments and suggestions.

References

1. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 28

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013)

3. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

4. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increasing security
by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054132

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/BFb0054132


548 Y. L. Chen et al.

5. Bernstein, D.J.: SURF: simple unpredictable random function, April 1997
6. Bernstein, D.J.: Stronger security bounds for Wegman-Carter-Shoup authentica-

tors. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 10
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Ph.D. thesis, Université Paris 6, Paris, France, November 1991

37. Patarin, J.: On linear systems of equations with distinct variables and small block
size. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 299–321.
Springer, Heidelberg (2006). https://doi.org/10.1007/11734727 25

38. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

39. Patarin, J.: Introduction to mirror theory: analysis of systems of linear equalities
and linear non equalities for cryptography. Cryptology ePrint Archive, Report
2010/287 (2010)

40. Patarin, J.: Mirror theory and cryptography. Cryptology ePrint Archive, Report
2016/702 (2016)

https://doi.org/10.1007/978-3-319-63697-9
https://doi.org/10.1007/978-3-030-45721-1_16
https://doi.org/10.1007/978-3-030-45721-1_16
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-13858-4_13
https://doi.org/10.1007/978-3-319-49530-9
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-030-45721-1_8
https://doi.org/10.1007/11734727_25
https://doi.org/10.1007/978-3-642-04159-4_21


550 Y. L. Chen et al.

41. Robshaw, M., Katz, J. (eds.): CRYPTO 2016. LNCS, vol. 9814. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53018-4

42. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 23

43. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 24

44. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

https://doi.org/10.1007/978-3-662-53018-4
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/3-540-68697-5_24


Homomorphic Encryption
and Encrypted Search



Balanced Non-adjacent Forms

Marc Joye(B)

Zama, Paris, France
marc@zama.ai

Abstract. Integers can be decomposed in multiple ways. The choice
of a recoding technique is generally dictated by performance considera-
tions. The usual metric for optimizing the decomposition is the Hamming
weight. In this work, we consider a different metric and propose new mod-
ified forms (i.e., integer representations using signed digits) that satisfy
minimality requirements under the new metric. Specifically, we introduce
what we call balanced non-adjacent forms and prove that they feature a
minimal Euclidean weight. We also present efficient algorithms to pro-
duce these new minimal forms. We analyze their asymptotic and exact
distributions. We extend the definition to modular integers and show
similar optimality results. The balanced non-adjacent forms find natural
applications in fully homomorphic encryption as they optimally reduce
the noise variance in LWE-type ciphertexts.

Keywords: Integer recoding · Lattice cryptography · Fully
homomorphic encryption · Gadget decomposition · Noise control ·
Implementation

1 Introduction

Let B be an integer ≥ 2. Every positive integer k < Bn can be expressed
uniquely as k =

∑n−1
i=0 ki Bi with 0 ≤ ki < B. Integer B is referred to as

the radix and integers ki are called the digits. If the digit set is extended to
{−(B − 1), . . . , B − 1}, integer k can also be written under the form

k =
∑

i≥0

k′
i Bi with − (B − 1) ≤ k′

i ≤ B − 1 .

The corresponding representation (. . . , k′
2, k

′
1, k

′
0)B is called a modified radix-B

form for k. Modified radix-B forms are not unique. For example, (2, 2)4 and
(1,−2, 2)4 are two modified radix-4 forms for 10.

Signed-Digit Representations. Minimal representations using signed digits find
applications in the theory of arithmetic codes [24] and in fast arithmetic tech-
niques [22]. In these applications, the minimality requirement relates to the
Hamming weight of the representation (i.e., the number of nonzero digits). For
radix 2, Reitwiesner [35] proved that the so-called non-adjacent form (NAF) is
optimal in the sense that it has minimal Hamming weight among the modified
radix-2 forms. The general case was later addressed by Clark and Liang [10].
c© International Association for Cryptologic Research 2021
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They present a minimal representation for any signed-radix B. In that case,
Arno and Wheeler [2] precisely estimated that the average proportion of nonzero
digits is equal to (B − 1)/(B + 1).

The main application of non-adjacent forms in cryptography resides in fast
exponentiation [16]; in particular, in settings wherein the computation of an
inverse is inexpensive like in elliptic curve groups [30]. Non-adjacent forms were
further adapted to certain classes of elliptic curves by decomposing integers as
power sums of the Frobenius endomorphism [21,26,37]. Another extension of
the basic NAF representation is to consider a succession of w digits, at most
one of them being nonzero [32,37,39]. Yet another extension of the basic NAF is
to rely on certain digit sets of the form {0, 1, x} with representations featuring
the non-adjacency property [31]. Binary representations with respect to more
general digit sets of the form {0, 1, x, y, . . . , z} are investigated in [18]. Alternative
minimal modified radix-B forms for fast exponentiation, but enabling to scan
the exponent digits from the left to the right, are presented in [19,20,33].

Fully Homomorphic Encryption and Noise Propagation. A salient feature of
known constructions for fully homomorphic encryption [14,36] is the presence of
noise in the ciphertexts for security reasons. We refer the reader to [17] for an
excellent survey on homomorphic encryption.

Here is a simple illustration. Multiplying a noisy ciphertext by a scalar may
result in a ciphertext whose noise error exceeds tolerated bounds. A standard
trick to control the noise growth is to decompose the scalar with respect to a
(small) radix [3,4]. This technique has been applied in a number of fully homo-
morphic encryption schemes—at the heart of the encryption process or as an aux-
iliary tool for accompanying gadgets or procedures; see e.g. [1,4,6,7,9,13,15,28].

Let Enc denote a homomorphic encryption scheme. Imagine we need to eval-
uate c ← k · Enc(x) for some scalar k and ciphertext Enc(x). Instead of directly
computing c ← k · Enc(x), letting k =

∑n
i=0 k′

i Bi for a given radix B, we can
alternatively obtain c as

c ←
n∑

i=0

k′
i Enc(Bi x)

from the precomputed ciphertexts Enc(Bi x), for 0 ≤ i ≤ n.
Let us look at the noise propagation in this second approach. For a random

variable X, we respectively denote by E[X] and Var(X) its expectation and its
variance. Suppose that scalar k with |k| < Bn is drawn at random. Assum-
ing that the noise is centered and that its variance is bounded by the same
threshold σ2 in Enc(x) and Enc(Bi x), the noise present in c ← k · Enc(x)
has its variance bounded by (Var(k) + E[k]2)σ2 = E[k2]σ2 while the noise
present in c ← ∑n

i=0 k′
i Enc(Bi x) has its variance bounded by

(∑n
i=0(Var(k′

i) +
E[k′

i]
2)

)
σ2 =

(∑n
i=0 E[k′

i
2]

)
σ2. Observe that E[k2] = 1

3 (Bn − 1)Bn if k is uni-
form over {−Bn+1, . . . , Bn−1} and that k′

i ∈ {−B+1, . . . , B−1} if (k′
n, . . . , k′

0)
is a modified radix-B for k. Hence,

∑n
i=0 E[k′

i
2] is expected to be much smaller

than E[k2]; this is all the more true that
∑n

i=0 E[k′
i
2] is small. It is therefore of

interest to produce modified radix-B forms that minimize this latter bound in
order to contain the noise propagation in ciphertexts.
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Contributions. Not all signed-digit representations equally perform. We saw for
example that (2, 2)4 and (1,−2, 2)4 are two valid radix-4 representations for 10.
Another representation for 10 is (1,−1,−2)4, This paper seeks for modified
radix-B forms (k′

n, . . . , k′
0) that minimize the quantity

∑n
i=0 k′

i
2. Back to our

example, the form (1,−1,−2)4 is actually what we call a “balanced non-adjacent
form” and, as will be shown, constitutes an optimal choice for decomposing 10
in radix 4.

Our main results are:

– We define a new modified radix-B form that we call balanced non-adjacent
form (or BNAF in short). These forms get one’s name from the usual NAF
because for B = 2 they exhibit the non-adjacency property. We prove that
every integer has a BNAF and that the BNAF is unique.

– We propose a simple criterion to check whether or not a modified radix-B
form is a BNAF. Based on it, we present algorithms for producing BNAFs
on various input formats.

– We introduce the metric of Euclidean weight for modified radix-B forms and
prove that it is optimally met by BNAFs. Specifically, we show that among all
possible modified radix-B forms (k′

n, . . . , k′
0) for a given integer k, the BNAF

always minimizes the quantity
∑n

i=0 k′
i
2.

– We study statistical properties of BNAFs:
1. We use Markov chains to model the asymptotic behavior of the BNAF

recoding process and provide estimates for the occurrence probability for
the digits in a random BNAF.

2. We determine the exact distribution of BNAFs for n-digit random inte-
gers.

Outline of the Paper. The rest of the paper is organized as follows. In the next
section, we review some signed-digit representations. Section 3 is the core of
the paper. We define the BNAF and prove important and useful properties the
BNAF satisfies. In Sect. 4, we present a generic recoding algorithm. This algo-
rithm is used to analyze the probability distribution of the BNAF representation
under different settings. In Sect. 5, we extend the previous results to modular
representations. Finally, we demonstrate a number of cryptographic applications
in Sect. 6.

2 Balanced Signed-Digit Representations

Integers can always be recoded with digits in the set {−B0, . . . , B − 1 − B0} for
any integer 0 ≤ B0 < B. When B0 = �B/2�, the corresponding representation
is known as balanced modified radix-B form [12, Chapter 9]. Remarkably, such
a decomposition is at most one digit longer than the standard unsigned decom-
position. In particular, any nonnegative integer k < Bn can be recoded as a
balanced radix-B form having at most n + 1 digits.
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2.1 Odd Radices

If B is odd and B0 = �B/2� then −B0 = −B−1
2 and B − 1 − B0 = B−1

2 . In this
case, the corresponding form with digits in the balanced set {−B−1

2 , . . . , B−1
2 }

for a nonnegative integer k is easily obtained. Analogously to obtaining the
regular radix-B representation, the idea is to repeatedly divide by B, obtain the
corresponding remainder, and repeat the process with the resulting quotient.
The difference is that the remainders are chosen in the set {−B−1

2 , . . . , B−1
2 }

(instead of {0, . . . , B − 1}).

Example 1. Take B = 5 and consider the integer k = 93. Starting with 93, we
successively obtain 93 = 19 · 5 − 2, 19 = 4 · 5 − 1, 4 = 1 · 5 − 1, and 1 = 0 · 5 + 1.
The balanced modified radix-5 for k = 93 is therefore (1,−1,−1,−2)5.

2.2 Even Radices

The previous methodology similarly applies to an even value for B ≥ 4 [11,
§ 3]. It produces a valid modified radix-B representation, which is however not
[fully] balanced. The so-obtained digits k′

i belong to the set {−B
2 , . . . , B

2 − 1}.
This is the recoding typically used with the gadget decomposition; see e.g. [9,
Algorithm 1] for B a power of two.

Example 2. With radix B = 4, an application to k = 93 yields the representation
(1,−2,−2,−1, 1)4. Note that the digits are in the set {−2, . . . , 1}.

When the radix B is even, one has −B
2 ≡ B

2 (mod B). Digits −B
2 and B

2

can then be used interchangeably. By allowing remainders of B
2 , one can obtain

different representations using the digit set {−B
2 , . . . , B

2 }.

Example 3. Continuing with Example 2, one can check that (1, 2,−1, 1)4 is
another valid modified radix-4 representation for k = 93—but now with dig-
its in the set {−2, . . . , 2}.

3 Balanced Non-adjacent Forms

Here we introduce the balanced non-adjacent form and characterize its proper-
ties. This section mainly deals with integers; extensions to modular representa-
tions are covered in Sect. 5.

3.1 Definition

We start with the general definition.

Definition 1. Let B ≥ 2 be a radix. A modified radix-B representation

(. . . , k′
2, k

′
1, k

′
0)

for an integer k =
∑

i k′
i Bi is called a balanced non-adjacent form (BNAF) if

and only if, for all i,
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(C1) |k′
i| ≤ �B

2 �;
(C2) 0 ≤ k′

i · k′
i+1 ≤ �B

2 �(�B
2 � − 1

)
when |k′

i| = 	B
2 
.

Remark 1. Conditions (C1) and (C2) are exclusive when the radix is odd. For
an odd radix B, the definition of a BNAF simplifies to |k′

i| ≤ B−1
2 for all i.

For an even radix B, a pair of digits (k′
i+1, k

′
i) with |k′

i+1|, |k′
i| ≤ �B

2 � that
satisfies Condition (C2) is said admissible. Interestingly, the definition of a BNAF
for B = 2 coincides with the definition of the non-adjacent form (NAF): k′

i ∈
{−1, 0, 1} and k′

i · k′
i+1 = 0.

We present below a generic algorithm that converts any modified-radix form
(k′

n, . . . , k′
0) where k′

i ∈ {−(B − 1), . . . , B − 1} for an integer k with |k| < Bn

into a BNAF. The algorithm is valid for both even and odd radices.

Algorithm 1: Conversion algorithm
Input: Modified radix-B form (k′

n, . . . , k′
0) of an integer k =

∑n
i=0 k′

i Bi with
|k| < Bn

Output: BNAF(k) ← (k′
n, . . . , k′

0)

for i = 0 to n − 1 do
σi ← sign(k′

i);

if
(|k′

i| > �B
2
�) ∨ (

(|k′
i| = �B

2
�) ∧ ((−�B

2
� ≤ σi · k′

i+1 ≤ −1) ∨ (�B
2
� ≤

σi · k′
i+1 ≤ B − 1))

)
then

k′
i ← k′

i − σi · B;
k′
i+1 ← k′

i+1 + σi;

end if

end for

return (k′
n, . . . , k′

0)

Lemma 1. Algorithm 1 is correct.

Proof. We have to prove that, on input a modified radix-B of an integer k with
|k| < Bn, Algorithm 1 actually outputs a BNAF.

Iteration i of the for-loop at most modifies the values of digits k′
i and k′

i+1.
As will become apparent, all along the algorithm, it holds that:

– k′
i ∈ {−B, . . . , B} and k′

i+1 ∈ {−B +1, . . . , B −1} before entering iteration i;
– |k′

i| ≤ �B
2 � after exiting iteration i and the corresponding value for k′

i is
unchanged by the next iterations.

We introduce some notation for more clarity. Let (k′
n
(0)

, . . . , k′
0
(0)) denote the

input in Algorithm 1 of a modified radix-B form of an integer k =
∑n

j=0 k′
j
(0)

Bj ,

|k| < Bn. More generally, let (k′
n
(i)

, . . . , k′
0
(i)) denote the representation entering

iteration i in Algorithm 1—remark that (k′
n
(i+1)

, . . . , k′
0
(i+1)) also denotes the
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representation exiting iteration i. Moreover, we note that the algorithm is such
that

∑n
j=0 k′

j Bj always keeps equal to k; i.e.,
∑n

j=0 k′
j
(i+1)

Bj = k for all 0 ≤ i ≤
n−1. We also have σi = sign(k′

i
(i)). The output of Algorithm 1 is

∑n
j=0 k′

j
(n)

Bj .
With the new notation, the two above observations can be rewritten as:

– k′
i
(i) ∈ {−B, . . . , B} and k′

i+1
(i) ∈ {−B + 1, . . . , B − 1};

– |k′
i
(i+1)| ≤ �B

2 � and k′
i
(j) = k′

i
(i+1) for i + 1 < j ≤ n − 1.

The first observation and the relation k′
i
(j) = k′

i
(i+1) for i + 1 < j ≤ n − 1 are

easily verified by inspection of the algorithm. We now show that the relation
|k′

i
(i+1)| ≤ �B

2 � is verified. If |k′
i
(i)| > �B

2 � (i.e., k′
i
(i) ∈ {−B, . . . ,−�B

2 � − 1} ∪
{�B

2 � + 1, . . . , B}), it is updated as k′
i
(i+1) = k′

i
(i) − σi · B ∈ {−B + �B

2 � +
1, . . . , B − �B

2 � − 1} ⊆ {−�B
2 �, . . . , �B

2 �}. Observe also that when B is even and
|k′

i
(i)| = 	B

2 
 = �B
2 � and is updated then it becomes k′

i
(i+1) = k′

i
(i) − σi · B ∈

{±�B
2 �}. In all cases, the relation |k′

i
(i+1)| ≤ �B

2 � is therefore satisfied.
Since the for-loop iterates for i from 0 to n − 1 and since k′

i
(j) = k′

i
(i+1) for

j > i + 1, from the relation |k′
i
(i+1)| ≤ �B

2 �, it follows that Condition (C1) holds
true for all 0 ≤ i ≤ n − 1; i.e., |k′

i
(n)| ≤ �B

2 � for 0 ≤ i ≤ n − 1. It also holds true
for the output k′

n because the algorithm keeps invariant
∑n

j=0 k′
j
(i+1)

Bj = k;

hence, the condition |k| < Bn implies that the final output k′
n
(n) lies in {0, 1,−1}

and thus |k′
n
(n)| ≤ �B

2 � because B ≥ 2.
For even radices B, we need in addition to check that Condition (C2) is

fulfilled. We so assume that B is even and so �B
2 � = 	B

2 
 = B
2 . If the value of

k′
i
(i) entering iteration i satisfies |k′

i
(i)| < B

2 then this value remains unchanged
until the end of the algorithm; as a consequence, the output k′

i
(n) belongs to

{−B
2 +1, . . . , B

2 − 1}. If the value of k′
i
(i) entering iteration i satisfies |k′

i
(i)| > B

2

then it is updated as k′
i
(i+1) = k′

i
(i) − σi · B ∈ {−B

2 + 1, . . . , B
2 − 1} and will no

longer be modified by the subsequent iterations; as a consequence, the output
k′

i
(n) belongs to {−B

2 +1, . . . , B
2 −1}. For output values k′

i
(n) ∈ {−B

2 +1, . . . , B
2 −

1}, Condition (C2) is always valid. Hence, the only case that needs to be analyzed
is when the value of k′

i
(i) entering iteration i is ±B

2 . There are four sub-cases
according to the value of σi · k′

i+1
(i) entering iteration i.

– Sub-case 1: k′
i
(i) ∈ {±B

2 } and σi · k′
i+1

(i) ∈ {−B + 1, . . . ,−B
2 − 1}. In this

case, as seen from Algorithm 1, k′
i and k′

i+1 are not modified at iteration i.
Hence, the final output value for k′

i is k′
i
(n) = B

2 if σi = 1 and k′
i
(n) = −B

2

if σi = −1. Furthermore, since k′
i+1

(i+1) = k′
i+1

(i), if σi = 1 then k′
i+1

(i+1) ∈
{−B + 1, . . . ,−B

2 − 1} and so will be changed at iteration i + 1 to eventually
become the final output value k′

i+1
(n) = k′

i+1
(i+1) −σi+1 ·B ∈ {1, . . . , B

2 −1},
which satisfies Condition (C2). Likewise, if σi = −1 then k′

i+1
(i+1) ∈ {B

2 +
1, . . . , B − 1} and so will be changed at iteration i + 1 to eventually become
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k′
i+1

(n) = k′
i+1

(i+1) − σi+1 · B ∈ {−B
2 + 1, . . . ,−1}, which again satisfies

Condition (C2).
– Sub-case 2: k′

i
(i) ∈ {±B

2 } and σi ·k′
i+1

(i) ∈ {−B
2 , . . . ,−1}. In this case, both k′

i

and k′
i+1 are updated at iteration i as k′

i
(i+1) ← k′

i
(i)−σi ·B = −k′

i
(i) ∈ {∓B

2 }
and k′

i+1
(i+1) ← k′

i+1
(i) + σi. Hence, at the end of iteration i, the resulting

k′
i+1

(i+1) belongs to {−B
2 +1, . . . , 0} if σi = 1 and to {0, . . . , B

2 −1} if σi = −1.
In both cases, this value for k′

i+1
(i+1) being such that |k′

i+1
(i+1)| < B

2 , it won’t
be changed at iteration i + 1. Moreover, as the resulting k′

i
(n) = k′

i
(i+1) and

k′
i+1

(n) = k′
i+1

(i+1) have the same sign, the final output pair (k′
i+1

(n)
, k′

i
(n))

satisfies Condition (C2).
– Sub-case 3: k′

i
(i) ∈ {±B

2 } and σi · k′
i+1

(i) ∈ {0, . . . , B
2 − 1}. In this case, the

values of k′
i and k′

i+1 won’t be changed at iteration i nor at iteration i + 1.
The final output values are therefore k′

i
(n) = B

2 and k′
i+1

(n) ∈ {0, . . . , B
2 − 1}

if σi = 1, and k′
i
(n) = −B

2 and k′
i+1

(n) ∈ {−B
2 + 1, . . . , 0} if σi = −1. Both

cases satisfy Condition (C2).
– Sub-case 4: k′

i
(i) ∈ {±B

2 } and σi · k′
i+1

(i) ∈ {B
2 , . . . , B − 1}. In this case,

the values of k′
i and k′

i+1 are changed at iteration i as k′
i
(i+1) = −k′

i
(i) and

k′
i+1

(i+1) = k′
i+1

(i) + σi ∈ {B
2 + 1, . . . , B} if σi = 1 and ∈ {−B, . . . ,−B

2 − 1}
if σi = −1. In turn, k′

i+1
(i+1) will be changed at iteration i + 1 to eventually

become k′
i+1

(n) = k′
i+1

(i+1) − σi+1 · B = k′
i+1

(i+1) − σi · B. The final output
values are therefore such that k′

i
(n) = −B

2 and k′
i+1

(n) ∈ {−B
2 + 1, . . . , 0}

if σi = 1, and k′
i
(n) = B

2 and k′
i+1

(n) ∈ {0, . . . , B
2 − 1} if σi = −1. Again

Condition (C2) is satisfied.

This shows that Algorithm 1 is correct and produces a BNAF. ��

3.2 Properties

Although an integer can have several modified radix-B representations, the next
theorem states that it has exactly one BNAF.

Theorem 1. Every integer has a unique BNAF.

Proof. Lemma 1 shows that there exists a BNAF for every integer. Suppose
that an integer k possesses two different BNAF representations: k =

∑
i k′

i Bi

and k =
∑

i k′′
i Bi. Let i∗ denote the smallest index such that k′

i∗ �= k′′
i∗ . From

k =
∑

i k′
i Bi =

∑
i k′′

i Bi, we deduce that (k′
i∗ − k′′

i∗)Bi∗ ≡ 0 (mod Bi∗+1) and
thus k′

i∗ − k′′
i∗ ≡ 0 (mod B).

The cases of odd radix and even radix are treated separately.

1. Consider the case of an odd radix B. Since k′
i∗ �= k′′

i∗ , the relation k′
i∗ −k′′

i∗ ≡ 0
(mod B) implies k′

i∗ − k′′
i∗ = α B for some nonzero integer α. Since |k′

i∗ | ≤
�B
2 � = B−1

2 and |k′′
i∗ | ≤ �B

2 � = B−1
2 , it follows that |k′

i∗ − k′′
i∗ | ≤ B − 1. The

equation k′
i∗ −k′′

i∗ = α B has therefore no nonzero solution α. A contradiction.
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2. Consider now the case of an even radix B. Again, since by definition |k′
i∗ | ≤

�B
2 � = B

2 and |k′′
i∗ | ≤ �B

2 � = B
2 , and k′

i∗ �= k′′
i∗ , it thus follows from k′

i∗ −k′′
i∗ ≡

0 (mod B) that k′
i∗ = −k′′

i∗ = ±B
2 . Without loss of generality, we assume

that k′
i∗ = B

2 and k′′
i∗ = −B

2 . From
∑

i k′
i Bi ≡ ∑

i k′′
i Bi (mod Bi∗+2), we

deduce that (k′
i∗+1 −k′′

i∗+1)B +(k′
i∗ −k′′

i∗) ≡ 0 (mod B2). In turn, this yields
(k′

i∗+1 − k′′
i∗+1)B + B ≡ 0 (mod B2) and therefore k′

i∗+1 − k′′
i∗+1 + 1 ≡ 0

(mod B) ⇐⇒ k′′
i∗+1 ≡ k′

i∗+1 + 1 (mod B). Furthermore, as k′
i∗ = B

2 and
k′′

i∗ = −B
2 , we must have 0 ≤ k′

i∗+1 ≤ B
2 − 1 and −B

2 + 1 ≤ k′′
i∗+1 ≤ 0

to fulfill Condition (C2). From k′′
i∗+1 ≡ k′

i∗+1 + 1 (mod B), the requirement
0 ≤ k′

i∗+1 ≤ B
2 −1 leads to k′′

i∗+1 ∈ {1, . . . , B
2 }∪{−B

2 }, which contradicts the
condition −B

2 + 1 ≤ k′′
i∗+1 ≤ 0.

Consequently, the BNAF is unique. ��
Integers can have multiple modified radix-B forms. The notion of weight

relates an integer to its representation and enables to qualitatively distinguish
among different representations.

Definition 2. Given a base B ≥ 2, the Euclidean weight of an integer k is the
smallest value W such that there is a modified radix-B form

(k′
n, . . . , k′

0) such that
n∑

i=0

k′
i Bi = k and

n∑

i=0

k′
i
2 = W

for digits k′
i with |k′

i| < B.

The next theorem exhibits the main feature of the BNAF representation. It
states that the BNAF of an integer k, BNAF(k) = (k′

n, . . . , k′
0), minimizes the

quantity
∑n

i=0 k′
i
2. The BNAF representation is in that sense optimal.

Theorem 2. If (k′
n, . . . , k′

0) denotes the BNAF of an integer k then the
Euclidean weight of k is equal to

∑n
i=0 k′

i
2.

Proof. The proof relies on Algorithm 1.
We use the notation used in the proof of Lemma 1. We let (k′

n
(i)

, . . . , k′
0
(i))

denote the representation entering iteration i in Algorithm 1; we also let σi =
sign(k′

i
(i)). By abuse of language, for the representation (k′

n
(i)

, . . . , k′
0
(i)), we call

the quantity

W (i) =
n∑

j=0

(k′
j
(i))

2

the Euclidean weight of (k′
n
(i)

, . . . , k′
0
(i)) in Algorithm 1. The weight of the out-

put of Algorithm 1 is given by W (n).
We now show that W (n) ≤ W (0), namely that the Euclidean weight of the

output is smaller than or equal to the Euclidean weight of the input. Specifically,
we show that if the if-branching is executed at iteration i then there exists an
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index j with i < j ≤ n such that W (j) ≤ W (i); if it is not executed then obviously
W (i+1) = W (i).

If the if-branching is executed at iteration i, it follows that k′
i
(i+1) = k′

i
(i) −

σi B and k′
i+1

(i+1) = k′
i+1

(i) + σi. The other values are unchanged. This yields

W (i+1) − W (i) =
∑n

j=0
(k′

j
(i+1))2 −

∑n

j=0
(k′

j
(i))2 (*)

= (k′
i
(i+1))2 + (k′

i+1
(i+1))2 − (k′

i
(i))2 − (k′

i+1
(i))2

= −σiB(2k′
i
(i) − σiB) + σi(2k′

i+1
(i) + σi)

= −2B |k′
i
(i)| + B2 + 2σi k′

i+1
(i) + 1 .

The if-branching is executed at iteration i when (at least) one of the following
conditions is met:

1. |k′
i
(i)| > �B

2 �. There are several sub-cases.
(a) B is even. Then, since |k′

i
(i)| ≥ �B

2 � + 1 = B
2 + 1 and σi k′

i+1
(i) ≤ B − 1,

we get using (*)

W (i+1) − W (i) ≤ −2B(B
2 + 1) + B2 + 2(B − 1) + 1 = −1 < 0 ,

that is, W (i+1) < W (i). We have j = i + 1.
(b) B is odd and σi k′

i+1
(i) ≤ �B

2 �. When B is odd, we have �B
2 � = B−1

2 . This
case is similar to the previous one. We obtain from (*)

W (i+1) − W (i) ≤ −2B(B−1
2 + 1) + B2 + 2(B−1

2 ) + 1 = 0 .

We get W (i+1) ≤ W (i) and have j = i + 1.
(c) B is odd and σi k′

i+1
(i)

> �B
2 �. First, we note that σi k′

i+1
(i)

> �B
2 �

supposes i ≤ n − 2 because for i = n − 1 we have k′
i+1

(i) ∈ {0, 1,−1}
(|k| < Bn). If the condition σi k′

i+1
(i)

> �B
2 � holds, this can only occur if

σi = 1 and k′
i+1

(i)
> �B

2 � or if σi = −1 and k′
i+1

(i)
< −�B

2 �. Moreover,
since we have k′

i+1
(i+1) = k′

i+1
(i) + σi, we infer that σi+1 = σi. The if-

branching is executed at both iterations i and i+1. A double application
of (*) yields

W (i+2) − W (i)

= (−2B |k′
i+1

(i+1)| + B2 + 2σi+1 k′
i+2

(i+1) + 1)

+ (−2B |k′
i
(i)| + B2 + 2σi k′

i+1
(i) + 1)

≤ −2(B − 1) |k′
i+1

(i)| − 2B + 2B2 + 2 + 2(B − 1) − 2B(B−1
2 + 1)

≤ −2(B − 1) |k′
i+1

(i)| + B(B − 1)

≤ −2(B − 1)(B−1
2 + 1) + B(B − 1) = 1 − B

< 0 .
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Hence, we have W (i+2) < W (i) and so j = i + 2.
2. (|k′

i
(i)| = 	B

2 
) ∧ (−�B
2 � ≤ σi · k′

i+1
(i) ≤ −1). We assume w.lo.g. that B is

even because when, it is odd, the condition |k′
i
(i)| = 	B

2 
 implies |k′
i
(i)| > �B

2 �,
which is covered in the previous case. We so get from (*)

W (i+1) − W (i) ≤ −2B B
2 + B2 + 2(−1) + 1 = −1 < 0

and thus W (i+1) < W (i). We have j = i + 1.
3. (|k′

i
(i)| = 	B

2 
) ∧ (�B
2 � ≤ σi · k′

i+1
(i) ≤ B − 1). Here too, we assume w.l.o.g.

that B is even. We distinguish two sub-cases.
(a) σi · k′

i+1
(i)

> �B
2 � = B

2 . This case is analogous to Case 1c. We have
σi+1 = σi. A double application of (*) yields

W (i+2) − W (i) = (−2B |k′
i+1

(i+1)| + B2 + 2σi+1 k′
i+2

(i+1) + 1)

+ (−2B |k′
i
(i)| + B2 + 2σi k′

i+1
(i) + 1)

≤ −2(B − 1) |k′
i+1

(i)|
− 2B + 2B2 + 2 + 2(B − 1) − 2B(B

2 )

≤ −2(B − 1)(B
2 + 1) + B2 = 2 − B < 0 .

We have W (i+2) < W (i) and j = i + 2.
(b) σi · k′

i+1
(i) = �B

2 � = B
2 . Again, this requires σi+1 = σi. We thus have

k′
i+1

(i) = k′
i
(i) ∈ {±B

2 } or, equivalently, k′
i+1

(i) = k′
i
(i) = σi

B
2 . We let i∗

denote the smallest index such that i∗ > i + 1 and k′
i∗

(i) �= σi
B
2 . Note

that, for B �= 2, i∗ ≤ n because k′
n
(l) ∈ {0, 1,−1} for all 0 ≤ l ≤ n

since |k| < Bn, and consequently, k′
n
(l)

/∈ {±B
2 }. The same is true for

B = 2 because if k′
n−1

(l) ∈ {±B
2 } for some 0 ≤ l ≤ n then k′

n
(l) �= k′

n−1
(l)

since |k| < Bn. Moreover, note that i∗ ≤ n − 1 when σi k′
i∗

(i)
> B

2

because (k′
n
(l)

, k′
n−1

(l)
, k′

n−2
(l)) = (d, σi

B
2 , σi

B
2 ) for some digit d > σi

B
2

contradicts |k| < Bn.
We have k′

i
(i) = k′

i+1
(i) = · · · = k′

i∗−1
(i) = σi

B
2 and k′

i∗
(i) �= σi

B
2 . At

every subsequent iteration up to iteration i∗ − 1, it turns out that the
if-branching is executed, which results in

(k′
i∗

(i∗)
, k′

i∗−1
(i∗)

, . . . , k′
i+1

(i∗)
, k′

i
(i∗)) =

(
k′

i∗
(i) + σi,−σi(B

2 − 1), . . . ,−σi(B
2 − 1),−σi

B
2

)
.

The cases of σi k′
i∗

(i)
< B

2 and σi k′
i∗

(i)
> B

2 are treated separately.
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i. σi k′
i∗

(i)
< B

2 . In this case, we get

W (i∗) − W (i) = (k′
i∗

(i) + σi)2 +
∑i∗−1

l=i+1
(−σi(B

2 − 1))2

+ (−σi
B
2 )2 − (k′

i∗
(i))2 −

∑i∗−1

l=i
(σi

B
2 )2

= 2σi k′
i∗

(i) + 1 − (i∗ − i − 1)(B − 1)

≤ 2(B
2 − 1) + 1 − (B − 1) = 0

since i∗ ≥ i + 2. Hence, W (i∗) ≤ W (i) and we have j = i∗.
ii. σi k′

i∗
(i)

> B
2 . In this case, the if-branching is also executed at itera-

tion i∗. We get

W (i∗+1) − W (i) = (k′
i∗+1

(i) + σi)2 + (k′
i∗

(i) − σi(B − 1))2

+
∑i∗−1

l=i+1
(−σi(B

2 − 1))2 + (−σi
B
2 )2

− (k′
i∗+1

(i))2 − (k′
i∗

(i))2 −
∑i∗−1

l=i
(σi

B
2 )2

= 2σi k′
i∗+1

(i) + 1 − 2σi(B − 1) k′
i∗

(i)

+ (B − 1)2 − (i∗ − i − 1)(B − 1)

≤ 2(B − 1) + 1 − 2(B − 1)(B
2 + 1)

+ (B − 1)2 − (B − 1)
= 3 − 2B < 0 .

We so have W (i∗+1) < W (i) and j = i∗ + 1.

Theorem 1 teaches that the BNAF is unique. This means that, given an
integer k and any modified radix-B representation of that integer, Definition 1
always returns the same modified radix-B form for k, namely the BNAF of k.
Moreover, we just saw that the BNAF has an Euclidean weight that is smaller
than or equal to the Euclidean weight of the input modified radix-B form. This
implies that the BNAF representation has minimal Euclidean weight. In other
words, if (k′

n, . . . , k′
0) is the BNAF of k, |k| < Bn, then the Euclidean weight

of k is W =
∑n

i=0 k′
i
2. ��

4 Recoding Algorithm

4.1 Description

The BNAF of an integer k can be obtained directly from the definition by repeat-
edly dividing k by B (integer division); if Conditions (C1) or (C2) (cf. Defini-
tion 1) are invalidated then a correction is applied to the resulting digit (and
as well as to k). The “mod” operator in K mod B indicates the unique value in
{0, . . . , B − 1} that is congruent to K modulo B.
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Algorithm 2: BNAF recoding
Input: Integer k 
= 0
Output: BNAF(k) ← (k′

n, . . . , k′
0) with k′

i ∈ {−�B
2
�, . . . , �B

2
�} s.t.∑n

i=0 k′
i Bi = k

K ← k; i ← 0;
while (K 
= 0) do

k′
i ← K mod B; K ← (K − k′

i)/B;

if (k′
i > �B

2
�) ∨ (

(k′
i = �B

2
�) ∧ ((K mod B) ≥ �B

2
�)) then

k′
i ← k′

i − B; K ← K + 1;
end if
i ← i + 1;

end while

return (k′
i−1, . . . , k

′
0)

Remark 2. As indicated in Remark 1, Conditions (C1) and (C2) are exclusive
when radix B is odd. In this case, the if-branching in Algorithm 2 simply reads
as if (k′

i > �B
2 �) then.

4.2 Stochastic Analysis

This section studies the asymptotic behavior of the digits resulting from the
BNAF recoding.

If k′
i = K mod B then (K − k′

i)/B = �K/B�. Hence, we see that the output
value of k′

i is at each iteration completely determined by the current values of
K mod B and of �K/B� mod B. A pair of digits (e, d) is therefore sufficient to
describe each possible case.

It is useful to introduce some notation. We define the quantities Ki that
keep track of the successive values of K entering the for-loop at iteration i,
and represent Ki mod B2 as the pair (ei, di) with 0 ≤ di, ei < B such that
Ki mod B2 = ei B + di. By construction, we have

{
K0 = k

Ki+1 = Ki−k′
i

B for 0 ≤ i ≤ n − 1
.

Depending on the values of Ki mod B2 = (ei, di), there are different cases to
consider. This is detailed in Table 1.

From the last column in Tables 1(a) and 1(b), we remark that the knowledge
of (ei, di) only enables to obtain di+1. We have

di+1 = Ki+1 mod B =
(Ki − k′

i) mod B2

B
=

eiB + di − k′
i

B
(mod B)

=

{
ei if k′

i = di

ei + 1 (mod B) if k′
i = di − B

.
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Table 1. Output digit k′
i according to the pair (ei, di).

(a) Odd radix B

State (ei, di) k′
i (ei+1, di+1)

a-1.

{
0 ≤ di ≤ B−1

2

0 ≤ ei < B
di (∗, ei)

a-2.

{
B−1
2

< di < B

0 ≤ ei < B
di − B (∗, (ei + 1) mod B)

(b) Even radix B

State (ei, di) k′
i (ei+1, di+1)

b-1.

{
0 ≤ di < B

2

0 ≤ ei < B
di (∗, ei)

b-2.

{
di = B

2

0 ≤ ei < B
2

B
2

(∗, ei)

b-3.

{
di = B

2
B
2

≤ ei < B
−B

2
(∗, (ei + 1) mod B)

b-4.

{
B
2

< di < B

0 ≤ ei < B
di − B (∗, (ei + 1) mod B)

We also remark that if the radix-B digits forming k are uniformly random
over {0, . . . , B − 1} then so is ei+1; in other words, ei+1 can take any value
in {0, . . . , B − 1} with a probability of 1

B .
When B is odd (and thus �B

2 � = B−1
2 ), from Table 1(a), we have k′

i ← di ∈
{0, . . . , B−1

2 } or k′
i ← di − B ∈ {−B−1

2 , . . . ,−1}. We therefrom infer that each
digit is equiprobable in the recoding and so has an occurrence probability of
Pr[k′

i = d] = 1
B for any d ∈ {0, . . . , �B

2 �}.
When B is even, we obtain from Table 1(b) the following transition proba-

bilities. For State b-1, since di+1 = ei and 0 ≤ ei < B, there is a probability
of B/2

B = 1
2 to stay in State b-1 and a probability of 1/2

B = 1
2B to transition

to State b-2, and similarly of 1
2B to State b-3. The probability to transition to

State b-4 from State b-1 is thus of 1 − 1
2 − 1

2B − 1
2B = B−2

2B . For State b-2, since
di+1 = ei and 0 ≤ ei < B

2 , the transition is necessarily to State b-1. For State b-3,
since di+1 = ei+1 mod B and B

2 ≤ ei < B, there is a probability of B/2−1
B/2 = B−2

B

to transition to State b-4 and a probability of 1
B/2 = 2

B to transition to State b-1
(i.e., when ei = B − 1). Finally, for State b-4, since di+1 = ei + 1 mod B and
0 ≤ ei < B, there is a probability of B/2−1

B = B−2
2B to stay in State b-4 (i.e.,

when ei ∈ {B
2 , . . . , B − 2}), there is a probability of 1/2

B to transition either to
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State b-2 or b-3 (i.e., when ei = B
2 − 1), and there is a probability of B/2

B = 1
2

to transition to State b-1 (i.e., when ei ∈ {0, . . . , B
2 − 2} ∪ {B − 1}).

Schematically, we have the automaton depicted in the next figure.

b-1

b-2

b-3

b-41
2

1
2B

1
2B

B−2
2B

1

2
B

B−2
B

B−2
2B

1
2

1
2B

1
2B

Fig. 1. Transition probabilities among the different states for an even radix B.

The corresponding Markov matrix P where element (i, j) denotes the probability
for transitioning from State b-i to State b-j (1 ≤ i, j ≤ 4) is given by

P =

⎛

⎜
⎜
⎝

1
2

1
2B

1
2B

B−2
2B

1 0 0 0
2
B 0 0 B−2

B
1
2

1
2B

1
2B

B−2
2B

⎞

⎟
⎟
⎠ .

The companion stationary probability vector π = (π1, π2, π3, π4) satisfies πP =
π subject to

∑
1≤j≤4 πj = 1. We find

π =
(B2 + B + 2

2B(B + 1)
,

1
2(B + 1)

,
1

2(B + 1)
,
B − 2
2B

)
.

We can now estimate the occurrence probability of each digit. This is made
explicit in the next proposition.

Proposition 1. Let B ≥ 2 be a radix. Then a digit k′
i ∈ {−�B

2 �, . . . , �B
2 �} from

a uniformly random radix-B BNAF features the following distribution

Pr[k′
i = d] =

⎧
⎪⎨

⎪⎩

B+2
B+1

1
B if d = 0 and B is even

1
2(B+1) if d ∈ {−�B

2 �, �B
2 �} and B is even

1
B otherwise

where d ∈ {−�B
2 �, . . . , �B

2 �}.
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Proof. We already showed that Pr[k′
i = d] = 1

B when B is odd. We hence-
forth assume that B is even. Excluding the digit di = 0, States b-1 and b-4
in Table 1(b) are symmetric. We so deduce π1 = Pr[k′

i = 0] + π4 and thus
Pr[k′

i = 0] = B2+B+2
2B(B+1) − B−2

2B = B+2
B(B+1) . From Table 1(b), we also get Pr[k′

i =
B
2 ] = π2 = 1

2(B+1) and Pr[k′
i = −B

2 ] = π3 = 1
2(B+1) . For the remaining case (i.e.,

d /∈ {−B
2 , 0, B

2 }), we infer from States b-1 and b-4 in Table 1(b) (excluding 0)
that every digit is equiprobable and thus (π1−Pr[k′

i = 0])+π4 = (B−2)Pr[k′
i =

d | d /∈ {−B
2 , 0, B

2 }] ⇐⇒ Pr[k′
i = d | d /∈ {−B

2 , 0, B
2 }] = 2π4

B−2 = 1
B . ��

As a corollary, we can easily deduce the corresponding variance.

Corollary 1. Let B ≥ 2 be a radix. Then a digit k′
i in a uniformly random

radix-B BNAF satisfies

E[k′
i] = 0 and Var(k′

i) =

{
1
12 (B2 − 1) if B is odd
1
12

(B+2)(B2−B+1)
B+1 if B is even

.

Proof. This is immediate. We use the identity
∑T

t=1 t2 = 1
6T (T+1)(2T+1). From

its definition, since E[k′
i] =

∑
−�B

2 �≤d≤�B
2 � Pr[k′

i = d] d = 0 by symmetry, the

variance is given by Var(k′
i) =

∑
−�B

2 �≤d≤�B
2 � Pr[k′

i = d] d2 = 2
∑�B

2 �
d=1 Pr[k′

i =

d] d2. If B is odd, we get Var(k′
i) = 2 1

B

∑B−1
2

d=1 d2 = B2−1
12 . If B is even then

we get Var(k′
i) = 2 1

B

∑B
2 −1

d=1 d2 + 2 1
2(B+1) (

B
2 )2 = 1

12 (B − 1)(B − 2) + 1
4

B2

B+1 =
(B+2)(B2−B+1)

12(B+1) . ��

4.3 Exact Distribution

In this section, we consider the set of nonnegative integers whose standard
radix-B representation consists of at most n digits; that is, the set {0, . . . , Bn−1}.
The previous analysis shows that endowing this set with the uniform probability
measure results in a digit distribution for the BNAF satisfying

Pr[k′
i] ∼

{
1
B when B is odd
B+2
B+1

1
B when B is even

as n → ∞ .

For a finite value of n, when B is even, the exact digit distribution for 0
and ±B/2 oscillates around the asymptotic value according to the digit index.
Indeed, if (S1

(i), S2
(i), S3

(i), S4
(i)) denotes the probability vector wherein com-

ponent Sj
(i) represents the probability of being in State b-j at iteration i in

Algorithm 2 then

(S1
(i+1), S2

(i+1), S3
(i+1), S4

(i+1)) = (S1
(i−1), S2

(i−1), S3
(i−1), S4

(i−1))P

where P is the Markov matrix; see Sect. 4.2. For a uniformly random integer
k ∈ {0, . . . , Bn − 1}, letting BNAF(k) = (k′

n, . . . , k′
0), the least significant digit
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k′
0 is equiprobable amongst the possible values except for ±B

2 . Namely, we have
Pr[k′

0 = d] = 1
B if d ∈ {−B

2 + 1, . . . , B
2 − 1} and Pr[k′

0 = d] = 1
2B if d ∈ {±B

2 }.
We so deduce that (S1

(0), S2
(0), S3

(0), S4
(0)) = (12 , 1

2B , 1
2B , B−2

2B ). By induction,
we find

(S1
(i), S2

(i), S3
(i), S4

(i)) = (S1
(0), S2

(0), S3
(0), S4

(0))Pi

=
(1

2
+

Bi + (−1)i+1

Bi+1(B + 1)
,

Bi+1 − (−1)i+1

2Bi+1(B + 1)
,
Bi+1 − (−1)i+1

2Bi+1(B + 1)
,
B − 2
2B

)
.

Hence, since Pr
[
k′

i = B
2

]
= S2

(i) and Pr
[
k′

i = −B
2

]
= S3

(i), we obtain

Pr
[
k′

i = B
2

]
= Pr

[
k′

i = −B
2

]
=

1
2(B + 1)

− (−1)i+1 1
2Bi+1(B + 1)

.

In the same way, from the symmetry between State b-1 without 0 and State b-4,
we have S1

(i) + Pr
[
k′

i = 0
]

= S4
(i) and thus

Pr[k′
i = 0] =

1
B

+
Bi + (−1)i+1

Bi+1(B + 1)
=

B + 2
B(B + 1)

+ (−1)i+1 1
Bi+1(B + 1)

.

Furthermore, as the BNAF distribution is computed over the finite set of
integers in {0, . . . , Bn −1}, the exact digit distribution for the leading digits also
differs from the asymptotic distribution. Owing to the BNAF definition, when B
is even, the largest integer k∗ ∈ {0, . . . , Bn −1} having the most significant of its
BNAF equal to 0 has for BNAF (k′

n, k′
n−1, k

′
n−2, k

′
n−3, . . . ) = (0, B

2 , B
2 −1, B

2 , B
2 −

1, . . . ); that is, the BNAF starts with a leading 0 followed by a succession of the
digits (B

2 , B
2 − 1). We need to distinguish the cases of n even or n odd. If n is

even then BNAF(k∗) = (0, B
2 , B

2 −1, B
2 , B

2 −1, . . . , B
2 , B

2 −1), which corresponds
to k∗ =

∑(n−2)/2
i=0 (B

2 B + B
2 − 1)B2i = 1

2 (Bn − 1)+ 1
2

Bn−1
B+1 = 1

2Bn B+2
B+1 − B+2

2(B+1) .
If n is odd then BNAF(k∗) = (0, B

2 , B
2 − 1, B

2 , B
2 − 1, . . . , B

2 ) and thus k∗ =
B
2 Bn−1+

∑(n−3)/2
i=0 ((B

2 −1)B+B
2 )B2i = 1

2 (Bn−1)+ 1
2

Bn+1
B+1 = 1

2Bn B+2
B+1− B

2(B+1) .
As a consequence, it follows that

Pr[k′
n = 0] =

1
2Bn B+2

B+1 − B+2
2(B+1) + 1

Bn
=

1
2

B + 2
B + 1

+
1

2Bn
− 1

2Bn(B + 1)

when n is even, and

Pr[k′
n = 0] =

1
2Bn B+2

B+1 − B
2(B+1) + 1

Bn
=

1
2

B + 2
B + 1

+
1

2Bn
+

1
2Bn(B + 1)

when n is odd. Because k ∈ {0, . . . , Bn −1}, k′
n must be 0 or 1. In turn, we have

Pr[k′
n = 1] = 1 − Pr[k′

n = 0] = 1
2

B
B+1 − 1

2Bn + 1
2Bn(B+1) when n is even, and
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Pr[k′
n = 1] = 1

2
B

B+1 − 1
2Bn − 1

2Bn(B+1) when n is odd. The BNAF definition also
prohibits k′

n−1 to be equal to −B
2 when B is even—otherwise we would have

k′
n ≤ 0, which contradicts the range definition 0 ≤ k ≤ Bn − 1. As a result,

since −B
2 ≡ B

2 (mod B), the proportion of B
2 for k′

n−1 grows accordingly. We
so have Pr

[
k′

n−1 = −B
2

]
= 0 and Pr

[
k′

n−1 = B
2

]
=

(
1

2(B+1) − (−1)n 1
2Bn(B+1)

)
+

(
1

2(B+1) − (−1)n 1
2Bn(B+1)

)
= 1

B+1 − (−1)n 1
Bn(B+1) .

The case of an odd radix B is easier to deal with. We immediately have
Pr[k′

i = d] = 1
B for any d ∈ {−�B

2 �, . . . , �B
2 �}, 0 ≤ i ≤ n − 1. This clearly

appears from Algorithm 2; see Remark 2. For the most significant digit k′
n,

it can only take values in {0, 1} due to range restrictions—recall that input
integer k ∈ {0, . . . , Bn − 1}. Specifically, we have k′

n = 0 if k ∈ {0, . . . , Bn−1
2 }

and k′
n = 1 if k ∈ {Bn+1

2 , . . . , Bn − 1}. We so get Pr[k′
n = 0] = (Bn+1)/2

Bn and
Pr[k′

n = 1] = (Bn−1)/2
Bn .

Putting it all together, we proved the following result.

Theorem 3. Given a radix B ≥ 2, let (k′
n, . . . , k′

0) represent the BNAF of an
n-digit integer uniformly drawn at random in {0, . . . , B − 1}n. Then

– for an even radix B:

Pr[k′
i = d | 0 ≤ i ≤ n − 1]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
B

B+2
B+1 + (−1)i+1 1

Bi+1(B+1) if d = 0
1

2(B+1) − (−1)i+1 1
2Bi+1(B+1) if d ∈ {±B

2 } and i �= n − 1
1

(B+1) − (−1)n 1
Bn(B+1) if d = B

2 and i = n − 1

0 if d = −B
2 and i = n − 1

1
B otherwise

and

Pr[k′
n = d] =

⎧
⎪⎨

⎪⎩

1
2

B+2
B+1 + 1

2Bn + (−1)n+1 1
2Bn(B+1) if d = 0

1
2

B
B+1 − 1

2Bn − (−1)n+1 1
2Bn(B+1) if d = 1

0 otherwise

;

– for an odd radix B:

Pr[k′
i = d | 0 ≤ i ≤ n − 1] =

1
B

and Pr[k′
n = d] =

⎧
⎪⎨

⎪⎩

1
2 + 1

2Bn if d = 0
1
2 − 1

2Bn if d = 1
0 otherwise

where d ∈ {−�B
2 �, . . . , �B

2 �}. ��

5 Extensions

The balanced non-adjacent forms can be extended to modular representations.
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Definition 3. Let B ≥ 2 be a radix. If there exists a BNAF (k′
n−1, . . . , k

′
0) such

that

k ≡
n−1∑

i=0

k′
i Bi (mod Bn)

then (k′
n−1, . . . , k

′
0) is called a BNAF modulo Bn for k.

BNAF representations modulo Bn apply to integers in Z/Bn
Z. They equally

apply to discretized torus elements in B−n
Z/Z by noting that B−n

Z/Z ∼= Z/Bn
Z

Bn .
Indeed, a torus element τ ∈ B−n

Z/Z can always be rewritten as τ = k · B−n

where k ≡ ∑n−1
i=0 k′

i Bi (mod Bn). It is interesting to note that modular BNAFs
do not need one more digit in their encoding.

The next two theorems are straightforward generalizations of Theorem 1 and
Theorem 2.

Theorem 4. Every integer k has a BNAF modulo Bn. This BNAF, say
(k′

n−1, k
′
n−2, . . . , k

′
0), is unique—unless B is even and k′

n−1 ∈ {±B
2 }, in which

case (−k′
n−1, k

′
n−2, . . . , k

′
0) is also a BNAF modulo Bn for k. ��

Theorem 5. If (k′
n−1, . . . , k

′
0) is a BNAF modulo Bn of an integer k then the

Euclidean weight of k (mod Bn) is equal to
∑n−1

i=0 k′
i
2. ��

If k is an integer in {0, . . . , Bn−1} and if (k′
n, . . . , k′

0) ← BNAF(k), Theorem 3
tells that k′

n ∈ {0, 1}. More precisely, a close inspection of the proof shows that
k′

n = 0 whenever

– 0 ≤ k ≤ Bn−1
2 if B is odd, or

– 0 ≤ k ≤ Bn(B+2)−B−1−(−1)n

2(B+1) if B is even.

In all cases, we therefore have k′
n = 0 if 0 ≤ k ≤ �Bn

2 �. We define k = Bn −k and
let (k′

n, . . . , k′
0) ← BNAF(k). If �B

2 � + 1 ≤ k ≤ Bn − 1, we have by symmetry
k′

n = 0 since 0 ≤ Bn − k ≤ �Bn

2 � for �B
2 � + 1 ≤ k ≤ Bn − 1. Note also that

BNAF(−k) = −BNAF(k). The BNAF modulo Bn of an integer k can therefore
be defined as

{
BNAF(k mod Bn) if k mod Bn ≤ �Bn

2 �
BNAF

(
(k mod Bn) − Bn

)
otherwise

(**)

where the BNAF is obtained as per Algorithm 2. This alternative definition
makes the modular BNAF unique, except when B is even and k ≡ Bn

2 mod
Bn. In this latter case, there are two BNAFs modulo Bn:

(
B
2 , 0, . . . , 0

)
and

(−B
2 , 0, . . . , 0

)
.

Another benefit of the formulation (**) is that the distribution of the result-
ing BNAF digits is centered, provided that when B is even and k ≡ Bn

2

(mod Bn) one of the two forms
(

B
2 , 0, . . . , 0

)
or

(−B
2 , 0, . . . , 0

)
is returned at
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Algorithm 3: Modular BNAF recoding
Input: Integer k 
= 0 and n ≥ 1
Output: (k′

n−1, . . . , k
′
0) with k′

i ∈ {−�B
2
�, . . . , �B

2
�} s.t.

∑n−1
i=0 k′

i Bi ≡ k
(mod Bn)

K ← k mod Bn; i ← 0;

if (K > �Bn

2
�) ∨ (

(K = �Bn

2
�) ∧ (random() = 1)

)
then

K ← K − Bn;
end if
while (K 
= 0) do

k′
i ← K mod B; K ← (K − k′

i)/B;

if (k′
i > �B

2
�) ∨ (

(k′
i = �B

2
�) ∧ ((K mod B) ≥ �B

2
�)) then

k′
i ← k′

i − B; K ← K + 1;
end if
i ← i + 1;

end while

return (k′
i−1, . . . , k

′
0)

random; see Theorem 6. The corresponding algorithm is detailed in Algorithm 3.
Given an integer k and a power n, it outputs the BNAF modulo Bn of k. The
algorithm makes use of an internal routine random() that returns a uniformly
random bit.

We state exactly the occurrence probability of each digit in the modular
BNAF produced by Algorithm 3. We also state their expectation and variance.

Theorem 6. Given a radix B ≥ 2 and a power n, let (k′
n−1, . . . , k

′
0) represent

the BNAF modulo Bn of an integer uniformly drawn at random in {0, . . . , Bn−1}
as per Algorithm 3. Then

– for an even radix B:

Pr[k′
i = d | 0 ≤ i ≤ n − 1] =

⎧
⎪⎨

⎪⎩

1
B

B+2
B+1 + (−1)i+1 1

Bi+1(B+1) if d = 0
1

2(B+1) − (−1)i+1 1
2Bi+1(B+1) if d ∈ {±B

2 }
1
B otherwise

;

– for an odd radix B:

Pr[k′
i = d | 0 ≤ i ≤ n − 1] =

1
B

where d ∈ {−�B
2 �, . . . , �B

2 �}.
Proof. The theorem is a direct consequence of Theorem 3 using (**) and noting
that k′

n = 0. When B is even, the digits B
2 and −B

2 are equiprobable for k′
n−1

because of the random choice for k ≡ Bn

2 (mod Bn). We so infer from Theorem 3
that Pr

[
k′

n−1 = B
2

]
= Pr

[
k′

n−1 = −B
2

]
= 1

2(B+1) − (−1)n 1
2Bn(B+1) when B is

even. The other cases are immediate. ��
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Corollary 2. Given a radix B ≥ 2 and a power n, let (k′
n−1, . . . , k

′
0) represent

the BNAF modulo Bn of an integer uniformly drawn at random in {0, . . . , Bn −
1} as per Algorithm 3. Then any digit k′

i in the representation (k′
n−1, . . . , k

′
0)

satisfies

E[k′
i] = 0 and Var(k′

i) =

{
1
12 (B2 − 1) if B is odd
1
12

(B+2)(B2−B+1)
B+1 − (−1)i+1

4Bi−1(B+1) if B is even
.

Proof. The proof is analogous to that of Corollary 1. We have E[k′
i] = 0 because

the distribution is centered. For the variance, it then follows that Var(k′
i) =

2
∑�B

2 �
d=1 Pr[k′

i = d] d2. If B is odd, we get Var(k′
i) = 2 1

B

∑B−1
2

d=1 d2 = B2−1
12 and

if B is even, Var(k′
i) = 2 1

B

∑B
2 −1

d=1 d2 + 2
(

1
2(B+1) − (−1)i+1 1

2Bi+1(B+1)

)
(B
2 )2 =

1
12

(B+2)(B2−B+1)
B+1 − (−1)i+1

4Bi−1(B+1) . ��

6 Applications

As already mentioned in the introduction, a salient feature of lattice cryptosys-
tems, notably those based on LWE [34] and its variants [5,8,23,25,38], is the
presence of noise in the ciphertexts.

The noise can have different natures. It can be a parameter that is defined
at setup time to guarantee a certain security level. It can be a quantity that
evolves over time due to ciphertext evaluations as in fully homomorphic encryp-
tion. Finally, it can be algorithmic as the result of approximate computations or
numerical errors.

Gadget Decomposition. Informally, an LWE ciphertext c can be seen as a (d+1)-
dimensional vector such that its dot product with the key t = (−s, 1) (also
seen as a (d + 1)-dimensional vector) equals the input plaintext μ plus some
small noise error e. The noise term is typically removed by rounding. We write
c ← LWEs(μ) ∈ (Z/qZ)d+1. Ciphertext c can be multiplied by a small scalar k
to give an encryption of kμ. In order to support multiplication by an arbitrary
scalar k, the multiplier needs first to be decomposed.

We follow the presentation of [29]; see also [17, Section 3]. Given a radix B and
a level �, the so-called gadget vector is given by g = (1, B, . . . , B�−1) ∈ (Z/qZ)�

so that for any vector v ∈ (Z/qZ)� the product v·gᵀ yields a scalar k in Z/qZ. We
also consider the associated inverse transformation g−1 : Z/qZ → (Z/qZ)� such
that for any scalar k ∈ Z/qZ, we have g−1(k) · g

ᵀ = k and g−1(k) is “small”.
Explicitly, this inverse transformation replaces the input scalar by a (signed)
radix-B expansion:

g−1(k) = (k0, . . . , k�−1) such that k ≡ ∑�−1
i=0 ki Bi (mod q) .

From the basic LWE encryption scheme, an “extended” encryption scheme L̂WE
is built by LWE-encrypting individually each component of plaintext vector μ g:
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L̂WEs(μ) ← (LWEs(μ), LWEs(Bμ), . . . , LWEs(B�−1μ)). The LWE encryption of
k μ can then be obtained from L̂WEs(μ) as LWEs(kμ) ← g−1(k) · L̂WEs(μ)ᵀ.

For an LWE ciphertext c ← LWEs(μ), we let Err(c) denote the noise error
present in c. We can then write 〈c, t 〉 = μ+Err(c), where t = (−s, 1). We define
Ci := LWEs(Biμ) and C′ := g−1(k) · L̂WEs(μ)ᵀ. We so obtain

〈C′, t 〉 =
〈∑�−1

i=0 ki LWEs(Biμ), t
〉

=
∑�−1

i=0 ki 〈LWEs(Biμ), t 〉
=

∑�−1
i=0 ki(Bi μ + Err(Ci)) =

(∑�−1
i=0 kiB

i
)
μ +

∑�−1
i=0 Err(Ci))

= k μ +
∑�−1

i=0 kiErr(Ci) .

The noise present in C′ only amounts to Err(C′) =
∑�−1

i=0 kiErr(Ci)—this has to
be compared with the noise kErr(c) present in c ′ ← k LWEs(μ). Hence, using
the gadget decomposition, the error only grows logarithmically in q instead of
linearly. Furthermore, the gadget decomposition can accommodate any digit
expansion. As a consequence, selecting the BNAF for g−1(k) further improves
the situation since the variance Var(Err(C′)) is then minimal.

We note that the gadget decomposition applies to all LWE-type encryption
schemes. It also extends naturally to vectors and matrices as done for example
in the GSW encryption scheme [15] for the multiplication of ciphertexts.

Key Switching. LWE-type ciphertexts under a given key can be converted
into ciphertexts under another key in different parameter sets thanks to a key
switching procedure [6, § 1.2]. Its implementation requires key-switching keys:
they essentially consist of an encryption of the key components of the original
s = (s1, . . . , sd) with respect to the new key s ′. More precisely, using the previ-
ous notation, the d key switching keys are given ksk[j] ← L̂WEs ′(sj), 1 ≤ j ≤ d.
An input LWE ciphertext c ← LWEs(μ) := (a1, . . . , ad, b) is then turned into the
ciphertext

c ′ ← (0, . . . , 0, b) −
d∑

j=1

g−1(aj) ksk[j] .

We are back to a setting similar to the previous one. Letting g−1(aj) =
(aj,0, . . . , aj,�−1), ksk[j] = (ksk[j]0, . . . , ksk[j]�−1) and t ′ = (−s ′, 1), we can check
that

〈c ′, t ′〉 = 〈(0, . . . , 0, b), t ′〉 − ∑d
j=1〈g−1(aj) ksk[j], t ′〉

= b −
d∑

j=1

(
aj sj +

∑�−1
i=0 aj,iErr(ksk[j]i)

)

= 〈c, t 〉 −
d∑

j=1

�−1∑

i=0

aj,iErr(ksk[j]i) ,

that is, an LWE encryption of μ under key s ′—provided that the noise keeps
small.
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Here too, it is crucial to adopt the BNAF representation for the gadget
decomposition. The gain quickly becomes significant as the error not only is
amplified by the number � of levels but also by the dimension d of the input
ciphertext (typically of the order of 103 ≈ 210 at a 128-bit security level).

Fast Fourier Transform. Crandall and Fagin [11, § 3] empirically observe that
when floating-point FFTs are employed, it is advantageous to make use of bal-
anced representations. Indeed, they tend to reduce the convolution errors atten-
dant to floating-point arithmetic, including those resulting from round-off errors.
Algorithm 3 produces decompositions that are perfectly balanced: they on aver-
age have a zero mean; see Corollary 2. FFT techniques are well suited to module
lattices as a way to reduce the computation time in lattice cryptography [27].
They for example play a central role in the fast bootstrapping procedure of
FHEW [13] or of TFHE [9].
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Abstract. Encrypted multi-maps enable outsourcing the storage of a
multi-map to an untrusted server while maintaining the ability to query
privately. We focus on encrypted Boolean multi-maps that support arbi-
trary Boolean queries over the multi-map. Kamara and Moataz [Euro-
crypt’17] presented the first encrypted multi-map, BIEX, that supports
CNF queries with optimal communication, worst-case sublinear search
time and non-trivial leakage.

We improve on previous work by presenting a new construction
CNFFilter for CNF queries with significantly less leakage than BIEX,
while maintaining both optimal communication and worst-case sublin-
ear search time. As a direct consequence our construction shows addi-
tional resistance to leakage-abuse attacks in comparison to prior works.
For most CNF queries, CNFFilter avoids leaking the result sets for any
singleton queries for labels appearing in the CNF query. As an example,
for the CNF query of the form (�1 ∨ �2) ∧ �3, our scheme does not leak
the result sizes of queries to �1, �2 or �3 individually. On the other hand,
BIEX does leak some of this information. This is just an example of the
reduced leakage obtained by CNFFilter. The core of CNFFilter is a new
filtering algorithm that performs set intersections with significantly less
leakage compared to prior works.

We implement CNFFilter and show that CNFFilter achieves faster
search times and similar communication overhead compared to BIEX
at the cost of a small increase in server storage.

1 Introduction

In this work, we study the notion of structured encryption that was introduced by
Chase and Kamara [17]. Structured encryption (STE) is a general cryptographic
primitive that considers the scenario where a data owner (commonly referred to
as the client) wishes to store a data structure on a potentially untrusted server
such as a cloud storage provider. STE schemes should ensure that clients are
able to perform all necessary data structure operations correctly over the server-
stored encrypted data while ensuring that the adversarial server learns as little
information as possible.

For the full version of this paper, please see [38].
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The privacy goal of a STE scheme is to reveal little information about the
contents of the outsourced data structure as well as the operations that are
performed on the data structure. In an ideal world, these schemes would leak
no information about either the underlying data or the executed algorithms.
However, the only known ways to achieve this desired privacy is through the
use of extremely expensive cryptographic primitives such as oblivious RAM [24]
and/or fully homomorphic encryption [23]. In contrast, structured encryption
considers a more relaxed privacy requirement with the hope of achieving the
small overhead necessary for practical applications. In more detail, structured
encryption are defined by a leakage function that is an upper bound on the
information that may be learned by the adversarial server. As a result, some
schemes have larger than ideal leakage, but avoid using heavy cryptographic
primitives. However, we note that caution is necessary when picking leakage
functions as there have been many works (see [8,13,25–27,33,35,44] as some
examples) showing that various leakage profiles may be utilized by intelligent
adversaries to compromise privacy in certain settings.

In our work, we will focus on an important type of STE scheme called
encrypted multi-maps. An encrypted multi-map EMM structurally encrypts a
multi-map MM consisting of pairs (�, �v) of labels � and tuples �v of values. We
use the writing MM[�] to denote the tuple associated to label � by MM. We
focus on encrypted multi-maps due to its significance in a wide range of impor-
tant real-world applications. Encrypted multi-maps have been the basis of many
searchable encryption (or encrypted search) constructions. Searchable encryp-
tion was introduced by Song et al. [42] and enables a client to perform keyword
searches over a corpus of documents outsourced to a server. There has been a
long line of work (see [7,9,18] and references therein as examples) that consid-
ers single keyword search to determine a list of documents containing a single
queried keyword. There have been many subsequent works for improving effi-
ciency [14,21], dynamicity [32,36,43], forward and/or backward privacy [10,12],
suppressing leakage [30,31,40] and improving locality [5,16,19,20] to list some
examples. Faber et al. [22] build on [15] to obtain more complex queries such as
range, substring, and wildcard queries. There also has been work for efficiency
lower bounds for searchable encryption/structured encryption [11,39]. We note
that many of the above searchable encryption schemes are also encrypted multi-
map schemes. Chase and Kamara [17] introduced structured encryption, which
is an extension of encryption for general data structures beyond search indices.
Encrypted multi-maps are also used in encrypted relational databases where
clients wish to perform SQL queries over encrypted databases [29].

Many previous works consider the simplest setting of encrypted multi-map
schemes that enable clients to perform exact queries for a label � and return
the associated value tuple MM[�] if it exists. More recently, there has been work
on improving the utility of encrypted multi-map schemes by supporting more
complex and expressive queries. In our work, we focus on encrypted Boolean
multi-maps where the client queries a Boolean formula Φ over labels and the
result should be the set of values satisfying the formula Φ. For example, a query
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for formula Φ = �1 ∧ �2 asks for all values v such that (v ∈ MM[�1]) ∧ (v ∈
MM[�2]).

This problem has been studied in several works such as [15,37]. Kamara
and Moataz [28] presented BIEX1, the first non-interactive, encrypted Boolean
multi-map scheme with non-trivial leakage, optimal communication and worst-
case sublinear search time. In our work, we will present new constructions with
strictly smaller leakage and similar or better efficiency than all prior works.

1.1 Background and Goals

In this section, we present naive solutions and identify their shortcomings that
we address in our work. Before we begin, we denote the notion of volume as the
number of results that are associated with a specific query. We will also denote
this as the query volume. We will also utilize the notions of response-revealing
and response-hiding. Response-revealing encrypted multi-maps mean that the
responses to queries are revealed to the server in plaintext. Response-hiding
schemes ensure that the servers see responses in encrypted form and may only
infer the size of the response.

Naive Solutions. A simple construction to enable Boolean queries is to utilize
any response-hiding encrypted multi-map that can handle exact queries. For
any Boolean formula Φ over labels �1, . . . , �q, the client issues q queries, one for
each of �1, . . . , �q. The client receives all q result sets MM[�1], . . . ,MM[�q] and
evaluates Φ locally. The scheme is sub-optimal in terms of communication. For
example, if Φ is a conjunction, the size of the result set |MM[�1] ∩ . . . ∩ MM[�q]|
will be much smaller than the size of all q result sets, |MM[�1]| + . . . + |MM[�q]|.
Therefore, the server’s response is larger than necessary.

To obtain optimal communication, we consider another simple encrypted
Boolean multi-map that utilizes a response-revealing encrypted multi-map sup-
porting exact queries. The client once again issues q queries, one for each of
the q labels �1, . . . , �q. The server learns the responses of all q queries and
applies Φ before returning the result set to the client. The above construction
obtains optimal communication as the server response consists of exactly the
result set. Unfortunately, the leakage is horrible as the server learns all sets
MM[�1], . . . ,MM[�q] in plaintext.

The above solution can be extended to hide the plaintext values in a stan-
dard manner. Each value appearing in the multi-map will be stored as a tag
(a PRF evaluation) as well as an encryption under private keys held by the
client. All tags are computed under the same private key. The client issues q
queries for �1, . . . , �q and the server learns the tags and encryptions of all val-
ues in MM[�1], . . . ,MM[�q]. The tags suffice to perform arbitrary set operations
to apply the Boolean formula Φ since they are computed under the same key.
Communication remains optimal since the server will only return encryptions of
values that satisfy Φ. While the server does not learn the plaintext values in each
1 While BIEX considers Boolean searchable encryption, the basic construction is an

encrypted Boolean multi-map.
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of MM[�1], . . . ,MM[�q], the server learns the volumes of the singleton queries for
each of the labels �1, . . . , �q. Using the tags, the server can perform arbitrary set
intersections and unions over the q results MM[�1], . . . ,MM[�q] and not just the
ones needed for Φ. As a consequence, the server may also learn the volumes (i.e.,
result sizes) for any arbitrary Boolean queries over the q labels, �1, . . . , �q. Going
forward, we will refer to this last solution as the canonical naive solution.

Leakage. Given the above naive solutions, an important privacy goal of
encrypted Boolean multi-maps is to reduce the volume leakage for arbitrary
Boolean queries. Note that optimal communication schemes must leak the vol-
ume of the query Φ(�1, . . . , �q), and the goal is to limit the leakage of any addi-
tional volumes for queries that are related to the original query. Mapping this
back to the canonical naive solution, we note that, since the volumes of all sin-
gleton queries for labels �1, . . . , �q are revealed, an adversary can compute the
volume for queries Ψ(�1, . . . , �q) for any Boolean formula Ψ . For convenience,
we define the base query set of leakage for the canonical naive construction as
B = {�1, . . . , �q} and call the span Span(B), the set of all queries for which an
adversary can construct the volume from the volumes of the queries in the set B.
We will formally define the notion of the base query set of leakage later. In our
work, we improve the state-of-the-art by presenting non-interactive and efficient
schemes with the smallest volume leakage to our knowledge.

Beyond volume leakage, we note that many encrypted multi-map schemes
have non-trivial leakage about queries themselves. This leakage could include
whether two Boolean queries are identical, whether a label appears in two dif-
ferent Boolean queries, the structure of the Boolean query, etc. For simplicity,
we split off our analysis into the leakage of query volumes and all other leakage
unrelated to query volumes. In our work, we ensure that our constructions have
the same query leakage as prior works [15,28].

Efficiency Goals. Finally, we discuss our efficiency goals. We will aim for our
constructions to be non-interactive with optimal communication and worst-case
sublinear search times, while only incurring small additional storage overhead
compared to prior works. To obtain optimal communication, the response of the
server should be exactly the size of the query’s result and the client’s request
size should be independent of the server-stored multi-map. Worst-case sublin-
ear search time implies that the scheme should not unnecessarily process the
entire encrypted multi-map when answering queries. Finally, the storage over-
head should be small enough for practical usage.

1.2 Related Works

We survey existing constructions of encrypted Boolean multi-maps with smaller
leakage compared to the canonical naive solution discussed in Sect. 1.1.

OXT. Cash et al. [15] present the oblivious cross-tag (OXT) protocol that is a
non-interactive encrypted Boolean multi-map. OXT is able to handle all conjunc-
tive queries and Boolean queries in Searchable Normal Form (that is, of the form
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�1 ∧ Φ(�2, . . . , �q)) with worst-case sublinear search times. Unfortunately, queries
for many Boolean formulae may end up having linear search times. We note that
Faber et al. [22] extend OXT for more (but not all) Boolean queries including
range, substring and wildcard queries. The core cryptographic operation in OXT
are expensive public-key operations (exponentiation in a Diffie-Hellman group).
As a result, queries may end up being computationally expensive even for for-
mulae for which the algorithm operates on a sublinear portion of the database.

BlindSeer. Pappas et al. [37] present BlindSeer that handles all arbitrary
Boolean queries with worst-case sublinear search time unlike OXT. BlindSeer
encodes the underlying multi-map using a search tree combined with Bloom
filters. To traverse the tree during query time, BlindSeer utilizes secure compu-
tation to determine the next node in the search tree to visit. By using secure
computation, the majority of the core cryptographic operations in BlindSeer end
up being symmetric key operations. However, the search algorithm in BlindSeer
still ends up being slower than OXT as the secure computation techniques require
multiple rounds of client-server interactions (even if the majority of operations
are symmetric-key). Given this knowledge, it is clear that reducing interaction
is necessary for constructing efficient query algorithms.

BIEX. Kamara and Moataz [28] present BIEX that combines several good prop-
erties of both OXT and BlindSeer. In particular, BIEX is the first non-interactive
encrypted Boolean multi-map that is able to handle arbitrary Boolean queries
with worst-case sublinear search times and non-trivial leakage smaller than the
canonical naive solution. Furthermore, the search algorithms of BIEX utilize
only symmetric-key primitives. As a result, the search algorithm of BIEX is
more efficient than both OXT and BlindSeer.

For the leakage of BIEX, consider a CNF query Φ = D1 ∧ . . . ∧ Dm where
each clause Di is a disjunction (�i,1 ∨ . . . ∨ �i,qi). The base query set of leakage
(see discussion in Sect. 1.3) consists of all singleton labels appearing in the first
clause and all 2-conjunctions of labels with the first appearing in the first clause
and the second label appearing in the second clause onward:

{�1,i | i ∈ [q1]} ∪ {(�1,i ∧ �j,k) | i ∈ [q1], 2 ≤ j ≤ m, k ∈ [qj ]}.

While this is significantly smaller leakage than the canonical naive solution, it
includes all q1 singleton labels appearing in the first clause. In other words, the
leakage from querying Φ is at least as large as performing q1 exact queries for
all labels in the first clause, which is not ideal.

In our work, we present the first constructions with no singleton labels in the
base query set of leakage for all Boolean queries except for disjunctions (i.e.,
single-term CNF). Our constructions enjoy all the good properties of BIEX
including non-interaction, optimal response size, sublinear search time, and
exclusive use of symmetric-key primitives.

Relation to Leakage-Abuse Attacks. Finally, we discuss prior works on
leakage-abuse attacks on encrypted multi-maps (or encrypted search). The SPAR
final report [4] describes data sets and query distributions that arise from real
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life applications. Most prior works mainly consider either exact [8,13,27] or
range [25,26,33,35] queries. Given the lack of attacks, it may seem that reducing
leakage for Boolean queries is not important at first. However, it turns out that
the attacks for exact or range queries may also be applied in the Boolean query
setting.

Consider the leakage of BIEX as an example. For a CNF query, the adversary
learns the volumes of each of q1 labels in the first clause. In other words, the
adversary could simulate and obtain leakage of q1 exact queries using a single
Boolean query to BIEX. This means that exact query attacks may be applied to
encrypted Boolean multi-maps using fewer Boolean queries if we do not reduce
leakage. The same idea may be applied for range query attacks. Suppose that
labels come from an ordered set (such as the integers). i A single Boolean query
to BIEX with q1 labels means leakage for q1 ranges of length 1. In the worst
case when all q1 labels are consecutive in the ordered set (such as {1, . . . , q1}), a
single Boolean query to BIEX would end up leaking the volumes of O(q21) ranges
([i, j] where 1 ≤ i ≤ j ≤ q1).

With the above in mind, an important goal is to design encrypted Boolean
multi-maps that reduce leakage. By reducing leakage, we improve the chance of
our constructions resisting leakage-abuse attacks (both ones that are currently
known and ones that will be developed in the future). In this work, we present
constructions that avoid leaking volumes corresponding to either exact or range
queries for most Boolean queries. Therefore, our construction shows additional
resistance to leakage-abuse attacks in comparison to prior works.

1.3 Our Contributions

In our work, we present new encrypted Boolean multi-maps with reduced leakage
and similar or better efficiency compared to prior works. As our main technical
tool, we present a new filtering algorithm that uses only private-key primitives
and performs set intersections with small leakage. By utilizing this filtering algo-
rithm, we obtain new constructions for handling conjunctions and CNF queries
with reduced leakage and optimal communication complexity as the response to
a query contains exactly one ciphertext per each item in the response set. In
addition, our constructions are non-interactive and require sub-linear work.

To compare leakage, we will utilize the notion of a base query set of leakage.
Let B be the base query set of leakage for any construction. Then, the adversary
may recover volumes for any Boolean query Ψ in the span Span(B) of the base
query set of leakage B; that is, Span(B) consists of all formulae Ψ(x1, . . . , xt)
with xi ∈ B, for i = 1, . . . , t.

The worst leakage is obtained when B contains all singleton labels B =
{�1, . . . , �q} in which case Span(B) includes all Boolean formulae over the labels
�1, . . . , �q. This is the leakage obtained by the canonical naive solution.

Throughout our work, we will only consider constructions that satisfy all
the good properties of BIEX. Our constructions will be non-interactive, handle
arbitrary Boolean queries with worst-case sublinear computation and only utilize
symmetric key primitives.
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Our first construction ConjFilter supports conjunctive queries �1∧ . . .∧�q. We
will use ConjFilter as a building block when constructing an encrypted multi-map
for CNF queries. Even though it is only a building block, ConjFilter has smaller
leakage compared to all previous efficient solutions that support conjunctions.
Specifically, the base query set of leakage for ConjFilter is

{(�1 ∧ �2), (�1 ∧ �2 ∧ �3), (�1 ∧ �2 ∧ �4), . . . , (�1 ∧ �2 ∧ �q)}.

Theorem 1 (Informal). ConjFilter is a non-interactive scheme supporting con-
junctive queries that is adaptively-secure with optimal communication and worst-
case sub-linear search time. For a conjunctive query Φ = �1 ∧ . . .∧ �q, the adver-
sary may recover the volumes of all queries of the form Ψ(x1, . . . , xt) where each
xi ∈ {(�1 ∧ �2), (�1 ∧ �2 ∧ �3), . . . , (�1 ∧ �2 ∧ �q)} and Ψ is any Boolean query.

In particular, the queries whose volumes are leaked by ConjFilter is a sub-
set of those leaked by prior works. As an example of the reduced leakage
of ConjFilter, note that the adversary cannot recover the volume for any 2-
conjunctive queries beyond (�1 ∧ �2). In contrast, the base query set of leak-
age for prior non-interactive constructions OXT [15] and BIEX [28] consists of
{(�1∧�2), . . . , (�1∧�q)} that enables recovering volumes for many 2-conjunctions.
By playing with the base sets, one can find many queries whose volumes are
leaked by prior works, but not by ConjFilter.

Next, we present an encrypted Boolean multi-map CNFFilter that supports
CNF queries using ConjFilter as a building block. CNF queries are of the form
D1 ∧ . . . ∧ Dm where each clause Di is a disjunction (�i,1 ∨ . . . ∨ �i,qi) with qi

unique labels. The base query set of leakage for CNFFilter may be broken down
into two parts. The first part consists of all 2-conjunctions of labels from the
first and second clause:

B′ = {(�1,i ∧ �2,j) | i ∈ [q1], j ∈ [q2]}.

The second part consists of all 3-conjunctions of labels from the first clause,
second clause and the last label appearing in the third clause onward:

B′′ = {(b′ ∧ �k,l) | b′ ∈ B′, 3 ≤ k ≤ m, l ∈ [qk]}.

The base query set of leakage B of CNFFilter is equal to B = B′ ∪ B′′.

Theorem 2 (Informal). CNFFilter is a non-interactive scheme supporting
CNF queries that is adaptively-secure with optimal communication and worst-
case sub-linear search time. For a CNF query Φ = D1 ∧ . . . ∧ Dm where each
clause Di is a disjunction (�i,1 ∨ . . . ∨ �i,qi), the adversary may recover the vol-
umes of all queries of the form Ψ(x1, . . . , xt) where each xi ∈ B′ ∪ B′′ and Ψ is
a Boolean query.

For comparison, note that the base query set of leakage for BIEX consists of
all singleton labels appearing in the first clause and all 2-conjunctions of labels
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with the first appearing in the first clause and the second label appearing in the
second clause onward:

{�1,i | i ∈ [q1]} ∪ {(�1,i ∧ �j,k) | i ∈ [q1], 2 ≤ j ≤ m, k ∈ [qj ]}.

Note that for any CNF query Φ, the span of the base query set of leakage
of CNFFilter is a subset of the one of BIEX. As a simple example of reduced
leakage, unless the query is a disjunction, CNFFilter does not leak volumes for any
singleton queries unlike BIEX. Many more examples of queries whose volumes
are leaked by BIEX and not by CNFFilter may be found.

The above comparison only considered leakage resulting from one conjunc-
tive/CNF query. In practice, these constructions will answer and leak infor-
mation about multiple conjunctive/CNF queries. Consider the example of two
queries resulting in the base query sets of leakage B1 and B2. In the worst case,
the adversary may recover volumes of any queries of the form Φ(x1, . . . , xt),
where xi ∈ B1 ∪ B2. In other words, leakage may explode as more queries are
performed. Therefore, it is integral to minimize the base query set leakage for
individual queries.

Referring back to leakage-abuse attacks, CNFFilter does not leak volumes
about exact queries except when querying disjunctions. Furthermore, the base
query set of leakage for CNFFilter consists of only intersections ignoring dis-
junction queries. So, there is no leakage about range queries either as ranges
correspond to unions of one or more consecutive labels. As a result, CNFFilter
seems to be more resistant to known leakage-abuse attacks compared to BIEX.

Finally, we present a comparison of efficiency with our solution and BIEX. We
obtain all the same properties including non-interaction, sublinear search times
and only using symmetric-key primitives. From our implementation, we show
that CNFFilter obtains faster search times than BIEX. For storage, CNFFilter
only incurs 20% additional storage overhead compared to BIEX in exchange for
reduced leakage and faster search times.

Both ConjFilter and CNFFilter are proved adaptively secure in the ROM.
Note that the assumption of random oracles as well as their programmability
are required for adaptive security by previous works [15,28] as well. Non-adaptive
security for both constructions can instead be proved in the standard model.

1.4 Our Techniques

We present our new techniques used to construct ConjFilter and CNFFilter. The
core of our new technique is an improved filtering algorithm for conjunctions.

Conjunctions. We start by presenting the approach to handling conjunctive
queries used in previous works [15,28]2. Consider the conjunctive query �1 ∧
. . . ∧ �q. The main idea of prior works is to decompose the query into (q − 1)
2-conjunctions: (�1 ∧ �2) ∧ (�1 ∧ �3) ∧ . . . ∧ (�1 ∧ �q). Each of the (q − 1) 2-
conjunction queries are computed independently such that the resulting response

2 In [28], the authors only present a construction for CNF queries. To derive a con-
junction scheme, we consider the case where each disjunction clause is a single label.
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sets are all PRF evaluations under the key solely depending on label �1. Then,
the server returns the intersection of all q − 1 sets. In this way, the size of the
server’s response is proportional to the result of the query and thus optimal.

There are several drawbacks to using this approach. The scheme leaks the
volumes of the (q − 1) 2-conjunctions. As all response sets are PRF evalua-
tions under the same key, the adversary may learn volumes of more complex
queries. For example, the intersections of any two response sets yields the vol-
ume of a 3-conjunction. In general, the adversary can compute any Boolean
function over the response sets. That is, the base query set of leakage is
{(�1 ∧ �2), (�1 ∧ �3), . . . , (�1 ∧ �q)}. In terms of computation cost, the server
must perform computation on the order of |MM[�1 ∧ �2]| + . . . + |MM[�1 ∧ �q]|.
This is quite wasteful as the response set MM[�1 ∧ �2] is already a superset of
the final response. Ideally, the server’s computation should not need to be much
larger than |MM[�1 ∧ �2]|.

To address these drawbacks, while keeping the size of the server’s response
optimal, we present a new filtering algorithm that will be utilized by ConjFilter.
First, we compute the response set S2 := MM[�1 ∧ �2] such that each value
in S2 is a PRF evaluation under a key depending solely on label �1. Next, we
compute the intersection S3 := S2 ∩ MM[�1 ∧ �3] by directly filtering S2 and
removing elements of S2 that do not appear in MM[�1 ∧ �3]. To do this, we
maintain an additional data structure X that allows the server to check whether
a value v ∈ S2 belongs to MM[�1 ∧ �3] without retrieving the entire MM[�1 ∧ �3],
thereby avoiding volume leakage for the query �1 ∧ �3. We repeat this filtering
to compute each Si = Si−1 ∩ MM[�1 ∧ �i] until we compute the set Sq that is
the result for the original query.

At a high level, the data structure X is constructed as follows. For each label
pair (�a, �b) and for each value v ∈ MM[�a ∧ �b], X stores a double tag of v. A
double tag of v is computed by applying two successive PRF evaluations, where
the first evaluation is under the key solely depending on �a, say Kt

�a
, and the

second evaluation is under the key depending on �a and �b, say Kx
�a,�b

. Thus,
given a tag of v ∈ MM[�a ∧ �b] under the key Kt

�a
, the server can determine

whether v belongs to MM[�a ∧ �c] by simply applying PRF under the key Kx
�a,�c

and checking whether the resulting evaluation belongs to X . In particular, note
that the volume of MM[�a ∧ �c] is never revealed.

We note that the above filtering algorithm leaks volumes for only a subset
of queries whose volumes are leaked by prior works. In particular, the base
query set of leakage is {(�1 ∧ �2), (�1 ∧ �2 ∧ �3), . . . , (�1 ∧ �2 ∧ �q)}. As an
example of reduced leakage, note that the only 2-conjunction whose volume may
be recovered in ConjFilter is �1 ∧ �2 whereas the volume of (q−1) 2-conjunctions
of the form (�1 ∧ �2), . . . , (�1 ∧ �q) are leaked by prior works.

We note our filtering algorithm is reminiscent but starkly different from the
cross-tag protocols presented by Cash et al. [15]. In particular, our new filtering
algorithm only use symmetric key primitives (PRFs) while the cross-tag proto-
cols in [15] require public-key operations (i.e., exponentiation in a Diffie-Hellman
group).
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CNFs. Next, we show how to support CNF queries using the filtering algorithm
of ConjFilter as a building block. We start by reviewing the BIEX construc-
tion [28] for CNF queries. Consider a CNF query of the form D1∧ . . .∧D� where
Di = (�i,1∨ . . .∨�i,qi). In the first step, BIEX computes MM[D1]. The scheme for
computing disjunction D1 ends up leaking the volumes for q1 singleton queries
for labels �1,1, . . . , �1,q1 . The main problem is that there is no known scheme
supporting disjunctions that do not reveal singleton query volumes.

To avoid this leakage, CNFFilter combines the first two clauses D1 ∧ D2 that
may be rewritten as:

D1 ∧ D2 = (�1,1 ∨ . . . ∨ �1,q1) ∧ (�2,1 ∨ . . . ∨ �2,q2) = ∨
i∈[q1],j∈[q2]

(�1,i ∧ �2,j).

In other words, D1 ∧ D2 becomes a disjunction over q1q2 2-conjunction queries.
Next, we can apply the algorithm for computing disjunctions over the q1q2 2-
conjunction result sets to obtain S2 := MM[D1 ∧ D2]. While the volumes of all
2-conjunction sets are revealed, no volumes for singleton queries are leaked.

We apply the filtering algorithm again to incorporate the remaining clauses
D3, . . . , Dm, while keeping the server’s response, and thus communication, opti-
mal in size. If D3 = �3,1 ∨ . . . ∨ �3,q3 , then S2 ∩ MM[D3] = (S2 ∩ MM[�3,1]) ∪
. . . ∪ (S2 ∩MM[�3,q3 ]). At a high level, the filtering algorithm may be applied on
S2 for each of the labels �3,1, . . . , �3,q3 . By repeating this for each of the clauses
D3, . . . , Dm, the server successfully computes the set MM[D1 ∧ . . . ∧ Dm]. The
filtering scheme allows CNFFilter to avoid volume leakage for many queries.

CNFFilter also improves search times compared to BIEX. Recall that BIEX
initially computes the set MM[D1]. Instead, CNFFilter first computes the set
MM[D1 ∧ D2] that will later be filtered. As MM[D1 ∧ D2] is a subset of MM[D1]
and typically smaller, searching in CNFFilter ends up being faster than BIEX.

2 Preliminaries

2.1 Boolean Encrypted Multi-Maps

A multi-map data structure maintains a set of m label to value tuple pairs
MM = {(�t, �vt)}t∈[m], where each �i comes from the label universe U and �vi is
a tuple of values where each value comes from the value universe V. Different
labels may be associated with tuples of different length. We assume that all m
labels are unique. If any two labels are equal, then the two associated value
tuples may be combined into a single value tuple.

The multi-map data structure supports the query operation that receives a
multi-map MM = {(�t, �vt)}t∈[m] and a label � ∈ U as arguments. If there exists
t ∈ [m] such that �t = �, then the query returns �vt. Otherwise, the query returns
⊥. For convenience, if (�, �v) ∈ MM then we denote MM[�] = �v. If � does not
appear in MM, then MM[�] =⊥.

We consider the extended Boolean multi-map that enables more complex
query operations beyond simply retrieving the value tuple associated with a
label. More formally, a Boolean multi-map is associated with a supported class of
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Boolean formulae queries B over labels. We consider query classes: conjunctions
and CNFs. For the set of conjunctions of the form Φ = �1 ∧ . . . �q, the query for
Φ returns the intersection MM[�1] ∩ . . . ∩ MM[�q]. For the set of CNF queries of
the form Φ = (�1,1 ∨ . . .∨ �1,q1)∧ . . .∧ (�m,1 ∨ . . .∨ �m,qm), the query for Φ returns
the set of values (MM[�1,1]∪ . . .∪MM[�1,q1 ])∩ . . .∩(MM[�m,1]∪ . . .∪MM[�m,qm ]).
For convenience, we denote the result set for any query Φ by MM[Φ].

Next, we define the notion of an encrypted Boolean multi-map, which is the
structured encryption (STE) for Boolean multi-maps. Our STE definition of
encrypted Boolean multi-map will be non-interactive. That is, the query consists
of a single client request followed by the server’s reply.

Definition 1. Let B be a class of Boolean formulae. A non-interactive encrypted
Boolean multi-map Σ = (Setup,Token,Search,Resolve) for the class B consists
of the following four algorithms:

1. (msk, eBMM) ← Σ.Setup(1λ,MM): The setup algorithm is executed by the
client and takes as input the security parameter 1λ and a multi-map MM. It
outputs the master secret key msk and the encrypted multi-map eBMM. The
client keeps the master secret key msk while the encrypted multi-map eBMM
is sent to the server.

2. tokΦ ← Σ.Token(msk, Φ): The token generation algorithm is executed by the
client and receives the master secret key msk and a Boolean formula Φ ∈ B

as input. It returns the token tokΦ that is sent to the server.
3. ans ← Σ.Search(eBMM, tok): The search algorithm is executed by the server

and takes as input the token tok sent by the client and the encrypted multi-
map eBMM. It returns the encrypted answer ans that is sent to the client.

4. MM[Φ] ← Σ.Resolve(msk, ans): The resolve algorithm is executed by the client
and takes the encrypted answer ans sent by the server and the master secret
key msk. It computes the answer MM[Φ].

We impose the following natural correctness condition. For every MM and for
every Φ ∈ B, it holds that Σ.Resolve(msk,Search(eBMM, tok)) = MM[Φ], pro-
vided that (msk, eBMM) ← Σ.Setup(1λ,MM) and tok = Σ.Token(msk, Φ).

2.2 Security Notions

For encrypted Boolean multi-maps, we utilize the same security notions as typ-
ically done in structured encryption using leakage functions. The adversary’s
leakage is upper bounded by a pair L = (LSetup,LQuery) of leakage functions.
The leakage function LSetup provides an upper bound on the knowledge gained
by the adversarial server when given eBMM. LQuery is an upper bound on the
knowledge gained by the adversary when receiving a token from the client gen-
erated using the Token algorithm and when applying the token on the encrypted
multi-map in the Search algorithm.

To formalize the security notion, we use the simulation-based approach. We
present definitions for adaptive adversaries. We define the following real and
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ideal experiments with a stateful, honest-but-curious adaptive PPT adversary
A and a stateful, PPT simulator S for an encrypted Boolean multi-map Σ =
(Σ.Setup, Σ.Token, Σ.Search, Σ.Resolve) for a class B of Boolean formulae and
for leakage function L = (LSetup,LQuery).

RealaΣ,A(1λ):

1. The adversary A generates multi-map MM and passes it to the challenger C.
2. The challenger C executes (msk, eBMM) ← Σ.Setup(1λ,MM) and passes

eBMM to the adversary A.
3. For i = 1, . . . , poly(λ), the adversary A adaptively picks Boolean formula

query Φi ∈ B and sends it to the challenger C. Using Φi, the challenger C
executes toki ← Σ.Token(msk, Φi) and sends toki to the adversary A.

4. The adversary A outputs a bit b ∈ {0, 1}.

IdealaΣ,A,L,S(1λ):

1. The adversary A generates multi-map MM and passes it to the challenger C.
2. The simulator S receives LSetup(MM) and returns an encrypted multi-map

eBMM to the adversary A.
3. For i = 1, . . . , poly(λ), the adversary A adaptively picks Boolean formula

query Φi ∈ B and sends it to the challenger C. The simulator receives
LQuery(MM, Φ1, . . . , Φi−1) from C and computes toki which is returned to
the adversary A.

4. The adversary A outputs a bit b ∈ {0, 1}.

Definition 2. The non-interactive encrypted Boolean multi-map Σ is adap-
tively L-secure if there exists a stateful, PPT simulator S such that for all
adaptive, PPT adversaries A:

∣
∣Pr[RealaΣ,A(1λ) = 1] − Pr[IdealaΣ,A,L,S(1λ) = 1]

∣
∣ ≤ negl(λ).

For presentation, we split up query leakage LQuery into token leakage LToken

and search leakage LSearch. LToken encompasses all leakage derived by the adver-
sary viewing only the search token. LSearch contains all leakage from the adversary
applying the search token onto the encrypted multi-map. At a high level, LToken

reveals information about the query on its own such as the number of unique
labels, number of CNF clauses, etc. On the other hand, LSearch reveals infor-
mation about the underlying multi-map. In particular, the majority of LSearch

consists of volume leakage for a set of queries. Suppose Q is the set of all queries
whose volumes are leaked in LSearch. We denote the base query set of leakage S
such that all queries q ∈ Q may be written as a Boolean function f(x1, . . . , xt)
where each xi ∈ S. In other words, using the volumes of queries in S, one can
recover the volumes for all queries in Q.
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2.3 Encrypted Multi-maps

In our work, we will utilize response-revealing encrypted multi-maps sEMM
in a blackbox manner. As the name implies, response-revealing means that
the values in the response are revealed to the server in plaintext. In contrast,
response-hiding encrypted multi-maps ensure that the server sees each value in
an encrypted manner. At a high level, response-hiding schemes will reveal only
the number of values in a response as opposed to the response itself.

There are several non-interactive, adaptively-secure encrypted multi-maps
with minimal leakage such as 2Lev [15] or ZMF [28] that are response-revealing.
We now describe the efficiency and leakage properties of these schemes. For
an MM of size n, the sEMM output by the Setup algorithm uses storage of
Θ(n) ciphertexts. The Token algorithm results in a single ciphertext while the
resulting answer for a keyword � computed by the server using Search consists
of exactly the set MM[�] in plaintext. In terms of leakage, the setup leakage of
sEMM consists of the multi-set of all values that appear in the underlying multi-
map; we denote this leakage LSetup = vals(MM). As all values will be encryptions
in our constructions, the setup leakage of sEMM would only consists of the
number of values. The leakage during querying consists of the query repetition
pattern, qeq, describing which two queries are performed on the same label. For
a query sequence Q = (q1, q2, . . .), qeq(Q) is a |Q| × |Q| matrix M such that
M [i][j] = 1 if and only if i-th and j-th query in Q are equal. As the scheme is
response-revealing, the plaintext response, resp(MM, Q) = (MM[q1],MM[q2], . . .).
So, LQuery = (qeq, resp).

Theorem 3. If one-way functions exist, there exists a non-interactive,
response-revealing sEMM that is adaptively (LSetup,LQuery)-secure, uses Θ(n)
storage and O(|MM[�]|) ciphertexts of communication for a query to label �.

3 Conjunctive Queries

In this section, we present our new construction ConjFilter of an encrypted
Boolean multi-map supporting the class of conjunctive queries. ConjFilter is non-
interactive with optimal communication and sublinear search time. A formal
description of ConjFilter is found in Fig. 1.

3.1 Construction ConjFilter

ConjFilter follows BIEX [28] by pre-computing answers to all possible 2-
conjunction queries, but diverges from BIEX in the method used to compute
conjunctions. We start by describing the setup algorithm of ConjFilter.

Given an input multi-map MM = {(�i, �vi)}i∈[m], the setup of ConjFilter
constructs a multi-map MMp in the following way. The multi-map MMp will
store a tuple of values for each pair of labels (a, b) that appear in MM. The
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• (msk, eBMM) ← ConjFilter.Setup(1λ,MM = {(�i, �vi)}i∈[m]):
1. Randomly select PRF seeds Kp, Kt, Kx ← {0, 1}λ.
2. Randomly select encryption key Kenc ← {0, 1}λ.
3. Set MMp ← { }.
4. For all pairs (a, b) of labels appearing in MM:

(a) Compute tag seed Kt
a ← F (Kt, a).

(b) Compute encryption key Kenc
a,b ← F (Kp, a || b).

(c) Set MMp[(a, b)] ← ∅.
(d) For all v ∈ MM[a] ∩ MM[b]:

i. Compute tag taga,v ← F (Kt
a, v) and encrypted tag

etaga,b,v = Enc(Kenc
a,b , taga,v).

ii. Compute encrypted value evv = Enc(Kenc, v).
iii. Add (etaga,v, evv) to MMp[(a, b)].

5. Execute (mskp,EMMp) ← sEMM.Setup(1λ,MMp).
6. Initialize X = ∅.
7. For all pairs (a, b) of labels appearing in MM:

(a) Compute double-tag seed Kx
a,b = F (Kx, a || b).

(b) For all v ∈ MM[a] ∩ MM[b]:
i. Compute double tag F (Kx

a,b, taga,v) and add it to X .
8. Randomly permute X .
9. Return (msk = (Kp, Kx, Kenc, mskp),EMM = (EMMp, X )).

• tokΦ ← ConjFilter.Token(msk = (Kp, Kx, Kenc, mskp), Φ = (�1 ∧�2 ∧ . . .∧
�q)):
1. Compute tokp ← sEMM.Token(mskp, (�1, �2)).
2. Compute encryption key Kenc

�1,�2 ← F (Kp, �1 || �2).
3. For d = 3, . . . , q:

(a) Compute double-tag seed Kx
d = F (Kx, �1 || �d).

4. Return tokΦ = (tokp, Kenc
�1,�2 , Kx

3, . . . , K
x
q).

• ans ← ConjFilter.Search(tokΦ = (tokp, Kenc
�1,�2 , Kx

3, . . . , K
x
q),EMM =

(EMMp, X )):
1. Retrieve {(etagl, evl)}l∈[L] ← sEMM.Search(tokp,EMMp).
2. For l = 1, . . . , L:

(a) Compute tagl ← Dec(Kenc
�1,�2 , etagl).

3. Set ans ← ∅.
4. For l = 1, . . . , L:

(a) For d = 3, . . . , q:
i. Compute double tag dtagl,d ← F (Kx

l , tagd).
(b) If all dtagl,3, . . . , dtagl,q ∈ X , then add evl to ans.

5. Return ans.
• ans ← ConjFilter.Resolve((ev1, . . . , evr), msk = (Kp, Kx, Kenc, mskp)):

1. Return {Dec(Kenc, ev1), . . . ,Dec(K
enc, evr)}.

Fig. 1. Pseudocode for construction ConjFilter.

values in MMp will consists of pairs of an encrypted tag and an encrypted
value. For each v ∈ MM[a] ∩ MM[b], the tuple MMp[(a, b)] will store a pair
of encrypted tags and encrypted value for v. The tag for v stored in MMp[(a, b)]
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is computed as taga,v = F (Kt
a, v) where F is a PRF. Both the tag and value

are encrypted using an IND-CPA encryption scheme Enc to obtain the pair
(etaga,b,v, evv) := (Enc(Kenc

a,b , taga,v),Enc(Kenc, v)) that will be added to tuple
MMp[(a, b)]. Note that the seed Kt

a used to compute the tag depends solely on
the first label of the pair a, whereas the encryption key Kenc

a,b depends on both
labels. Kenc is a system-wide encryption key. Both Kt

a and Kenc
a,b are pseudoran-

domly generated to ensure that the client storage remains small. The multi-map
MMp is then encrypted using a response-revealing encrypted multi-map (see
Sect. 2.3) to construct EMMp that is sent to the server. In addition to EMMp,
ConjFilter will also construct a set X of double tags that will also be stored by
the server. For each pair of labels (a, b) and for each value v ∈ MM[a]∩MM[b], X
will store the double tag dtaga,b,v = F (Kx

a,b, taga,v), which is essentially a PRF
evaluation of the tag taga,v that was stored in the encrypted multi-map EMMp.
The PRF seed Kx

a,b will be pseudorandomly generated from a secret master key
and the labels a and b. X is the new structure of ConjFilter that enables filtering
in a way that reduces volume leakage.

To answer a query for conjunction �1∧ . . .∧�q, the client issues a query token
to EMMp for (�1, �2). As EMMp is response-revealing, the server will learn the
entry MMp[(�1, �2)] in plaintext. In addition, the client also sends the encryption
key Kenc

�1,�2
that enables the server to decrypt all encrypted tags that appear in

MMp[(�1, �2)]. As a result, the server may decrypt the encrypted tags in MM[�1∧
�2] to obtain set S2 = {(tag1, ev1), (tag2, ev2), . . .} of pairs of tags and encrypted
values. Note, the server may only decrypt encrypted tags but may not decrypt
the encrypted values. Next, we want to filter S2 to only keep pairs of tags and
encrypted values that correspond to values that appear in MM[�3]. To do this,
we utilize the set of double tags X . In the request, the client issues the PRF
seed Kx

�1,�3
for filtering S2 with MM[�3]. For each tagi in S2, the server computes

F (Kx
�1,�3

, tagi) and checks whether the PRF evaluation appears in X . The server
computes the set S3 ⊆ S2 such that S3 contains the pair (tagi, evi) from S2 if
and only if F (Kx

�1,�3
, tagi) ∈ X . We note that S3 consists only of the tag and

encrypted value pairs corresponding to values that appear in MM[�1 ∧ �2 ∧ �3].
As a result, the server successfully filters S2 to keep elements that also appear in
MM[�3]. By repeating the filtering algorithm for each �3, . . . , �q, the server will
exactly compute an encrypted version of MM[�1 ∧ . . . ∧ �q].

We note that handling singleton queries (1-conjunctions) of the form � is
a special case where only a single query to EMMp for entry � is issued by the
client. The server returns the response set that may be decrypted by the client
to obtain MM[�]. For convenience, we do not add this special case of Fig. 1 to
focus the pseudocode on the new techniques.

3.2 Efficiency

The encrypted multi-map of ConjFilter consists of two structures: EMMp and
X . Altogether, both structures store three objects for each value appearing in
MM[a]∩MM[b] for each pair of labels (a, b). Therefore, the encrypted multi-map
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ConjFilter requires server storage O(
∑

a,b∈U |MM[a] ∩ MM[b]|). The client only
stores O(1) PRF seeds and encryption keys.

For communication, consider a conjunctive query Φ over q labels. The token
tok for Φ contains a token for EMMp, a decryption key and q − 2 double-tag
seeds. As the token size of EMMp is O(1), we get that the total size of tokens
for ConjFilter is O(q). In particular, the token size is independent on the size of
the underlying multi-map. The server response size is optimal as there is exactly
one ciphertext returned for each value that appears in the response MM[Φ].

Finally, we consider the computational cost of the server performing the
query. Note, the server first computes a response set for the query MM[�1 ∧ �2].
Afterwards, the server filters the set for each of the other labels �3, . . . , �q. As
a result, the server computation becomes O(q · |MM[�1 ∧ �2]|). In the natural
setting that |MM[�1] ∩ MM[�2]| is sublinear in the size of the input multi-map,
ConjFilter performs sublinear work in the input multi-map.

3.3 Formal Description of Leakage for ConjFilter

In this section, we give a formal description of the leakage function for ConjFilter.
For our leakage descriptions, we consider an input multi-map MM and a sequence
Q = (Φ1, Φ2, . . .) of conjunctive queries, where the i-th query is the conjunction
Φi = (�i

1 ∧ . . . ∧ �i
qi). We split the information leaked by ConjFilter for an input

multi-map MM and a query sequence Q into three leakages:

1. The setup leakage, LSetup, learned by the adversary from viewing the
encrypted Boolean multi-map (EMMp,X );

2. The token leakage, LToken, learned by the adversary from viewing the tokens;
3. The search leakage, LSearch, learned by the adversary when applying the tokens

to the encrypted Boolean multi-map (EMMp,X ).

Query leakage, LQuery = (LToken,LSearch), is the union of token and search leakage.
Before presenting our leakage, we define the notion of repetition patterns.

Note that ConjFilter makes extensive use of PRFs to compute various cryp-
tographic objects. As PRF functions are deterministic, this means that these
objects might repeatedly appear several times in query tokens or during server
processing. In the description of the leakage of our constructions we will make use
of repetition patterns to encode information about the appearances of an object.
In general, suppose we have T occurrences of an object. For a fixed ordering of
the T occurrences, the repetition pattern will consist of a sequence of T integers,
one for each occurrence of the object. Each integer will correspond to the first
index of this object was encountered. Two entries of the sequence are equal if
and only if they correspond to the same instance of the object. An example of
the repetition pattern is the query equality pattern appearing in many encrypted
multi-map schemes (such as [31,40]) that reveals whether two queries are the
same as well as the first time this query was previously seen. We will utilize
repetition patterns for tags, double tags, decryption keys and PRF seeds used
to compute double tags.
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Setup Leakage. The setup leakage LSetup is the information learned by the
adversary from the encrypted multi-map EMMp and set X of double tags com-
puted by ConjFilter.Setup. We utilize a response-revealing encrypted multi-map
from Sect. 2.3. Recall that the setup leakage of EMMp is the set of values appear-
ing in the underlying input multi-map MMp. As all values are pairs of encryp-
tions, the leakage is simply the size of MMp. Each element of X is a PRF evalu-
ation. Therefore, the adversary learns no information beyond the size of X , that
is identical to the size of MMp. To complete the description, the setup leakage is
Lst
ConjFilter(MM) = N =

∑

�,�′∈U |MM[�] ∩ MM[�′]|, which is the size of MMp and
X .

Token Leakage. The token leakage consists of the information learned by the
adversary from tokens. First of all, note that the number of double tags in the
i-th token leaks the number of labels appearing in i-th query. We denote this
leakage function by #labels(Q) = (q1, . . . , q|Q|).

Next, we note that the encryption key in the token of the i-th query is pseudo-
randomly generated using the first two labels, �i

1 and �i
2, of the query. Therefore if

two queries share the first two labels, the corresponding tokens contain the same
encryption key. Thus EMMp leaks the encryption key repetition pattern denoted
by encryptionKeyRP. Formally, encryptionKeyRP is an array whose length is the
number of queries and encryptionKeyRP[i] is the smallest j ≤ i such that the i-th
and the j-th tokens contain the same encryption key.

Similarly, the leakage also consists of double tag PRF seed repetition patterns
denoted by doubleTagSeedRP. Similarly, doubleTagSeedRP is an array whose
length is the number of double-tag PRF seeds seen and each entry is an index
of when the corresponding double-tag PRF seed was first encountered.

A similar leakage is obtained from double tags. Consider two queries Φi and
Φj with the same first label such that the s-th label of Φi is equal to the t-th
label of Φj . That is,

�i
1 = �j

1 and �i
s = �j

t .

Then double-tag PRF seed Kx
i,s in the query token for Φi is equal to double-tag

PRF seed Kx
j,t in the query token for Φj . We encode these repetitions in array

doubleTagSeedRP where, for each (i, s), doubleTagSeedRP[i, s] = (j, t) where j ≤
i is the smallest index such that the j-th query has the same t-th label as
the s-th label of the i-th query. The token leakage is thus set to Lt

ConjFilter =
(#labels, encryptionKeyRP, doubleTagSeedRP).

Search Leakage. For search leakage, we note that the server sees in the plain-
text both tags and double tags. As a result, the search leakage consists of the
tag and double tag repetition patterns tagRP and doubleTagRP. The leakage
tagRP is an array whose length is equal to the number of tags seen. Each entry
corresponds to the index that the tag was first seen. The function doubleTagRP
is defined similarly for double tags.

When the tokens are applied to the Boolean encrypted multi-map, the adver-
sary sees tags (obtained by decrypting the encrypted tags from MMp) and the
double tags and which of them belongs to X . Thus the execution of search leaks
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the number and the repetition pattern tagRP of tags, and the number, the rep-
etition pattern doubleTagRP and the membership in X of the double tags.

Let us discuss what this tells us about MM and Q, starting from the tags.
The number Li of tags obtained from EMMp in the i-th search invocation

corresponds to the size of MM[�i
1 ∧�i

2]. To understand the tag repetition pattern,
note that the tag is a function of the first label of a query and of the actual
value v. Thus if the l1-th tag of query i1 is the same as the l2-th tag of query
i2, the two queries have the same first label, that is �i1

1 = �i2
1 , and there exists

v ∈ MM[�i1
1 ∧ �i2

1 ]. Therefore, by counting the number of common tags between
query i1 and query i2, it is possible to compute the size of

MM[�i1
1 ∧ �i1

2 ∧ �i2
1 ∧ �i2

2 ] = MM[�i1
1 ∧ �i1

2 ∧ �i2
2 ].

This can be extended to compute the size of conjunction of four or more labels
that come from queries with the same first label.

For the double tags, observe that a double tag is obtained from a tag and
a double-tag seed and thus associated repetition pattern doubleTagRP can be
obtained from the tag repetition pattern tagRP and the double-tag seed repe-
tition pattern doubleTagSeedRP. We include it in the leakage for convenience.
Membership in X of double tags can be encoded by q matrices MX1, . . . ,MXq,
one for each query, defined as follows:

MXi[l][d] =

{

1, if dtagl,d ∈ X for the i-th query;
0, otherwise.

By counting the number of 1’s in column d of MXi, one obtains the size of MM[�i
1∧

�i
2 ∧ �i

d]. This can be extended to the computation of the size of conjunctions of
four or more labels, by counting the number of common rows that contain 1 in
two or more columns.

Finally, we note that the server learns whether a double tag appears in the
set X or not. For each query Φi, we denote the leakage MXi as an array of length
|MMp[(�i

1, �
2
i )]| · (q − 2) with one entry for each double tag seen when processing

Φi. An entry of MXi is 1 if and only if the corresponding double tag appears in
X or not. Recall that a double tag is pseudorandomly generated based on two
labels (a, b) and a value v. If the corresponding MXi entry is 1, it means that
the value appears in the intersection of MM[a]∩MM[b]. Therefore, we have that
LSearch = (tagRP, doubleTagRP, {MXi}i∈[|Q|]).

We can re-interpret the volume leakage of LSearch to determine the base query
set of leakage with respect to a single conjunctive query �1 ∧ . . . ∧ �q. Note the
query to MM[�1 ∧ �2] reveals the volume of (�1 ∧ �2). The double tags reveal the
volumes of (�1∧�2∧�i) for all i ≥ 3. As all the sets of PRF evaluations are under
the same key, the adversary may perform arbitrary set intersections and unions
over the responses. Therefore, the adversary learns the volume of any query of
the form Ψ(x1, . . . , xt) where xi ∈ B = {(�1 ∧ �2), (�1 ∧ �2 ∧ �3), . . . , (�1 ∧ �2 ∧ �q)}
where B is the base query set of leakage. The above analysis works when the
query is a conjunction of two or more labels. For singleton label queries, the
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volume of the single queried label is leaked, which is unavoidable when insisting
on optimal download sizes.

The query leakage consists of both the token and search leakage, LQuery =
(LToken, LSearch). We prove the following theorem in the full version.

Theorem 4. ConjFilter is an adaptively (LSetup,LQuery)-secure encrypted
Boolean multi-map scheme that supports conjunctive queries in the random ora-
cle model.

3.4 Comparison with BIEX [28]

For completeness, we present a comprehensive overview of the techniques used in
BIEX in our full version. These similar ideas were also used in prior works such
as [15]. In terms of setup and token leakage, it turns out that both ConjFilter
and BIEX have identical leakage. The main difference in leakage occurs during
search time. To exhibit the differences, we start by comparing the set of plaintext
tags that are revealed to the server. For a query Φ = �1 ∧ . . . �q, ConjFilter
only reveals the tags appearing in the multi-map entry MMp[�1 ∧ �2]. On the
other hand, BIEX reveals all plaintext tags appearing in q −1 multi-map entries
MMp[�1 ∧ �2], . . . ,MMp[�1 ∧ �q]. As an immediate consequence, ConjFilter only
leaks volumes for a single 2-conjunction (�1 ∧ �2) while BIEX leaks volumes for
q − 1 2-conjunctions (�1 ∧ �2), . . . , (�1 ∧ �q).

Note that ConjFilter reveals double tags that do not exist in BIEX. The
leakage reveals whether the double tag corresponding to labels (�1, �i) and a value
v ∈ MM[�1∧�2] appears in X . Note this is true if and only if v ∈ MM[�1∧�2∧�i].
Therefore, ConjFilter ends up leaking the volumes of 3-conjunctions of the form
�1 ∧ �2 ∧ �i where i ∈ {3, . . . , q}. These are the only sets of PRF evaluations that
are leaked by ConjFilter on top of the 2-conjunction result �1 ∧ �2. As these sets
are evaluated under the same PRF key, the adversary may perform arbitrary
set operations over them to derive volumes of other queries. Therefore, the base
query set of leakage is {(�1 ∧ �2), (�1 ∧ �2 ∧ �3), . . . , (�1 ∧ �2 ∧ �q)}.

Going back to BIEX, the only sets of PRF evaluations leaked consist of 2-
conjunctions from the set {(�1∧�2), . . . , (�1∧�q)}. This ends up being the base set
of query leakage as all PRF evaluations are under the same key. It is easy to see
that the span of the base query set of leakage of ConjFilter is a subset of the span
of the base query set of leakage of BIEX. This means that BIEX ends up leaking
volumes of more queries. To see some concrete reduced leakage, BIEX already
leaks volumes of more 2-conjunctions than ConjFilter. Looking at 3-conjunctions,
ConjFilter leaks only 3-conjunctions of the form (�1 ∧ �2 ∧ �3), . . . , (�1 ∧ �2 ∧ �q).
On the other hand, BIEX leaks volumes for 3-conjunctions of the form �1∧�i ∧�j

where i < j ∈ {2, . . . , q}. Therefore, it is clear ConjFilter leaks volumes for less
3-conjunctions than BIEX. One can find many more queries for which volumes
are leaked by BIEX and not ConjFilter using the base sets. As leakage explodes
as more conjunctive queries are handled by BIEX and ConjFilter, the leakage
reduction on ConjFilter only gets better when considering leakage of multiple
conjunctive queries.
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As a caveat, we note that ConjFilter and BIEX leak volumes for identical
query sets in only two cases. The first case is singleton label queries where it is
necessary to leak the response size due to optimal communication requirements.
The other case is 2-conjunctions where both schemes leak only the volume of the
2-conjunctive query. For conjunctions with 3 or more labels, the set of queries
for which volumes are leaked for ConjFilter is always a strict subset of BIEX.

4 CNF Queries

In this section, we present CNFFilter, a construction supporting general CNF
queries that extends the filtering techniques of ConjFilter. The formal description
of CNFFilter may be found in Fig. 2.

4.1 Construction CNFFilter

The CNFFilter.Setup algorithm is identical to ConjFilter.Setup that computes the
encrypted multi-map EMMp and set X .

Next, we show how CNFFilter handles CNF queries using EMMp and X . We
start with the simple case of a CNF formulae Φ = D1 ∧D2 with only two clauses
where each clause Dd = �d,1 ∨ . . . ∨ �d,qd , for d = 1, 2. For all i ∈ {1, . . . , q1}, we
define the set Si as

Si := (MM[�1,i] ∩ MM[D2]) \
(

MM[�1,i] ∩ MM[D2] ∩
(

q1⋃

r=i+1

MM[�1,r]

))

.

Note that any two sets, Si and Sj , are disjoint as long as i �= j. Furthermore,
the union of all q1 sets is exactly MM[D1 ∧ D2]. In other words, S1, . . . , Sq1 is a
partition of MM[D1 ∧ D2] and this is crucial to obtain optimal communication.
Let us show how the search algorithm will compute the sets S1, . . . , Sq1 . Its
output will consists of the union of the q1 sets.

The client will issue tokens tok1, . . . , tokq1 to compute each of the sets
S1, . . . , Sq1 . The first part of toki corresponding to Si will be the q2 tokens
to query entries (�1,i, �2,j), for all j ∈ {1, . . . , q2}, in EMMp. Additionally, toki

will contain the encryption keys to decrypt all tags that appear in the tuples
MMp[(�1,i, �2,j)], for all j ∈ {1, . . . , q2}. As a result, the server will be able to
obtain the tags in the tuples MM[�1,i ∧ �2,1], . . . ,MM[�1,i ∧ �2,q2 ]. Using the tags,
the server may also compute the union of all q2 sets, which we denote as Si,
that is a superset of the final answer. Note, that Si is currently equal to the set
MM[�1,i] ∩ MM[D2]. Two different parts Si and Sj might not be disjoint at the
moment. For example, there might be a value v ∈ MM[�1,i]∩MM[�1,j ]∩MM[D2]
that appears in both Si and Sj . To ensure all parts are disjoint, and thus guar-
antee optimal communication, we filter each Si and remove all values that will
appear in sets Si+1, Si+2, . . . , Sq1 . If any value v appears in Si ∩ Sj , it must
appear in MM[�1,i ∧ �1,j ]. Therefore, we can use X to filter any values in Si that
also will also appear in Sj . To do this for any i < j, the client sends the PRF
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seed Kx
�1,i,�1,j

. The server computes the PRF evaluation of every tag in Si using
Kx

�1,i,�1,j
(i.e. the double tag). Every pair whose double tag appears in X may be

safely removed from Si as it will appear in Sj . After filtering all sets S1, . . . , Sq1 ,
the server obtains a partitioning of MM[D1 ∧ D2].

Next, we explain the extension to CNF queries with any number of clauses.
As described above, we have successfully retrieved the q1 sets S1, . . . , Sq1 whose
union is the answer to the query D1 ∧ D2. Given a new clause D3 = (�3,1 ∨ . . . ∨
�3,q3), we show how to compute the filtered sets S1 ∩MM[D3], . . . , Sq1 ∩MM[D3]
whose union corresponds to the response to the query D1 ∧ D2 ∧ D3. Recall
that all tags in each set Si are computed using a PRF seed depending solely on
label �1,i. It suffices to remove all items in Si that do not appear in any of the
sets MM[�1,i ∧ �3,1], . . . ,MM[�1,i ∧ �3,q3 ]. To do this, we once again use filtering
via the set X . The client will send the PRF seeds Kx

�1,i,�3,1
, . . . ,Kx

�1,i,�3,q3
and

applies each of them to each tag in Si and checks whether the resulting double
tag appears in X or not. If any value in Si whose corresponding q3 double tags
do not appear in X , the value will be removed from Si as it does not appear in
MM[D1 ∧D2 ∧D3]. By removing all these tags, the server successfully computes
Si ∧ D3 for all q1 sets. For a CNF query of the form D1 ∧ D2 ∧ . . . ∧ D�, we can
repeat the above filtering for all D3, . . . , D� to compute the final response.

We note the above description considers CNF queries with at least two
clauses. For the special case of a CNF query with a single clause, the query will
be a disjunction. In this case, we revert to the same algorithms for BIEX [28]. No
additional storage is necessary as BIEX only requires EMMp. To our knowledge,
there is no way to serve disjunctions without leaking volumes of singleton labels.
We leave it as an important open question to answer whether it is possible to
compute disjunctions without leaking volumes of singleton labels. We omit the
special case from the pseudocode in Fig. 2 to focus on our new techniques.

4.2 Efficiency

The storage of CNFFilter is identical to ConjFilter as they store the same struc-
tures EMMp and X . So, CNFFilter stores O(

∑

a,b∈U |MM[a] ∩MM[b]|) ciphertexts.
Moving on, we consider the costs of computing CNF queries of the form

Φ = D1 ∧ . . . ∧ D� where each Di is a disjunction over qi keys. For convenience,
we denote q = q1 + . . . + q�. The token for Φ contains a EMMp token and an
encryption key for each pair of keys (a, b) where a appears in the first clause D1

and b appears in the second clause D2. As a result, there are O(q1q2) such keys
and tokens. Additionally, for each key appearing in any of the clauses D3, . . . , D�

and each key appearing in the first D1, the token for Φ contains a PRF key. This
results in an additional O(q1 · (q − q1 − q2)) PRF keys. So, the token size of
CNFFilter is O(q1 · q) = O(q2), which is independent of the stored multi-map.
The server response size is optimal as there is exactly one ciphertext returned
for each value in the response MM[Φ].

In terms of server computation, the server computes response sets for all
queries of the form MM[a ∧ b] where a is a label from the clause D1 and b
is a label from the clause D2. We may upper bound the size of all these q1 · q2
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• (msk,EMM) ← CNFFilter.Setup(1λ,MM = {(�t, �vt)}t∈[m]):
1. Compute (msk,EMM) ← ConjFilter.Setup(1λ,MM).
2. Return (msk,EMM).

• tokΦ ← CNFFilter.Token(msk = (Kp, Kx, Kenc, mskp), Φ = D1∧. . .∧D�):
1. For d = 1, . . . , �, parse Dd as (�d,1 ∨ . . . ∨ �d,qd).
2. For i = 1, . . . , q1:

(a) For j = 1, . . . , q2:
i. Compute Kenc

i,j ← F (K, �1,i || �2,j).
ii. Compute tok

p
i,j ← sEMM.Token(mskp, (�1,i, �2,j)).

3. For i = 1, . . . , q1:
(a) For r = i + 1 . . . , q1:

i. Compute Kx
�1,i,�1,r

= F (Kx, �1,i || �1,r).
4. For d = 3, . . . , �:

(a) For i = 1, . . . , q1:
i. For r = 1, . . . , qd:
A. Compute Kx

�1,i,�d,r
= F (Kx, �1,i || �d,r).

5. Return ({(Kenc
i,j , tokpi,j)}(i,j)∈[q1]×[q2], {Kx

�1,i,�1,r
}i<r∈[q1]×[q1],

{Kx
�1,i,�3,j

}(i,j)∈[q1]×[q3], . . . , {Kx
�1,i,��,j

}(i,j)∈[q1]×[q�]).
• ans ← CNFFilter.Search(tokΦ,EMM = (EMMp, X )).

1. Parse tokΦ = ({(Kenc
i,j , tokpi,j)}(i,j)∈[q1]×[q2], {Kx

�1,i,�1,r
}i<r∈[q1]×[q1],

{Kx
�1,i,�3,j

}(i,j)∈[q1]×[q3], . . . , {Kx
�1,i,��,j

}(i,j)∈[q1]×[q�]).
2. For i = 1, . . . , q1: # Compute partition of D1 ∧ D2

(a) Set Si ← ∅.
(b) For j = 1, . . . , q2:

i. Set Si ← Si ∪ sEMM.Search(tokpi,j ,EMMp).
(c) Use decryption key Kenc

i,j to decrypt the first component of every
pair of Si and remove pairs from Si until all pairs have distinct
first component.

(d) Parse Si as {(tag1, ev1), . . . , (tag|Si|, ev|Si|)}.
(e) For each (tag, ev) ∈ Si:

i. Compute double tag dtagr ← F (Kx
�1,i,�1,r

, tag), for r =
i + 1, . . . , q1.

ii. If one of the double tags belongs to X , then remove the
pairs containing tag from Si.

3. For d = 3, . . . , �: # Filtering using clause Dd
(a) For i = 1, . . . , q1:

i. For each (tag, ev) ∈ Si:
A. Compute dtagj ← F (Kx

�1,i,�d,j
, tag), for j = 1, . . . , qd.

B. If one of dtag1, . . . dtagqd
belongs to X then, set S ←

S \ {(tag, ev)}.
4. Return all second components appearing in S = S1 ∪S2 ∪ . . .∪Sq1 .

That is, parse S as S = {(tag1, ev1), . . . , (tag|S|, ev|S|)} and return
ans = {ev1, . . . , ev|S|}.

• ans ← CNFFilter.Resolve(ans = {ev1, . . . , ev|ans|}, msk =
(Kp, Kx, Kenc, mskp))
1. Return Dec(Kenc, ev1), . . . ,Dec(K

enc, ev|ans|).

Fig. 2. Pseudocode for construction CNFFilter
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responses by O(q1 ·q2 · |MM[D1∧D2]|). Each tag that appears in the response set
is hashed using an additional PRF key depending on another label that appears
in any of the clauses D3, . . . , D�. This incurs an additional O((q − q1 − q2) ·
|MM[D1 ∧ D2]|) server computation. Altogether, the total server computation
is O(q · q1 · |MM[D1 ∧ D2]|) = O(q2 · |MM[D1 ∧ D2]). This is sublinear in the
input multi-map size as long as MM[D1∧D2] is sublinear in the input multi-map
size. On average, our scheme has smaller server computation as it depends only
on |MM[D1 ∧ D2] compared to BIEX whose server computation depends on the
size |MM[D1]| that is most likely larger. We show that our scheme has better
concrete server computation in our experiments in Sect. 5.

4.3 Formal Description of Leakage of CNFFilter

In this section, we give a formal description of the leakage for CNFFilter. We
will utilize the partitioning of leakage into setup LSetup, token LToken and search
LSearch leakage as done in ConjFilter.

Consider a multi-map MM = {(�t, �vt)}t∈[m] and a CNF query sequence Q =
(Φ1, . . . , Φ|Q|), where Φp = (Dp

1 ∧ . . . ∧ Dp
mp) consists of mp clauses. The d-th

clause Dp
d of Φp consists of qp

d labels, Dp
d = (�p

d,1 ∨ . . . ∨ �p
d,qp

d
).

Setup Leakage. As ConjFilter and CNFFilter have identical setup algo-
rithms, the setup leakages are also identical. Thus, LSetup(MM, Q) = N =
∑

�,�′∈U |MM[�] ∩ MM[�′]|.
Token Leakage. The token leakage consists of repetition patterns for both the
decryption keys and PRF seeds for double tags. denoted by encryptionKeyRP
and doubleTagSeedRP defined as follows. Each entry of encryptionKeyRP and
doubleTagSeedRP will correspond to the decryption key or PRF seeds unique
identifier. The token for the p-th query Φp contains one decryption key for
each pair consisting of a label from the first clause and a label from the
second clause. Therefore, for query Φp, encryptionKeyRPp contains an entry
encryptionKeyRPp[i, j] for each 1 ≤ i ≤ qp

1 and 1 ≤ j ≤ qp
2 . A repetition

encryptionKeyRPp[i, j] = encryptionKeyRPp′ [i′, j′] occurs if and only if

�p
1,i = �p′

1,i′ and �p
2,j = �p′

2,j′ .

In other words, the encryptionKeyRP tells us whether the first two clauses of two
queries share two labels.

The token for the p-th query Φp contains one double-tag seed for each pair
consisting of a label from the first clause and a label from a clause following
the second clause. Therefore, for query Φp, doubleTagSeedRPp contains an entry
doubleTagSeedRPp[i, d, j] for each 1 ≤ i ≤ qp

1 , 1 ≤ d ≤ lp, and 1 ≤ j ≤ qp
d. A

repetition doubleTagSeedRPp[i, d, j] = doubleTagSeedRPp′ [i′, d′, j′] occurs if and
only if

�p
1,i = �p′

1,i′ and �p
d,j = �p′

d,j′ .

In other words, the doubleTagSeedRP tells us whether the first clauses and the
d-th and d′-th clause of two queries share two labels.
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Search Leakage. The execution of the Search algorithm reveals both tags and
double tags. The tags are revealed after decrypting the response to the queries
MMp. The double tags are computed during filtering with the set X . As both
tags and double tags are pseudorandomly generated, they also leak repetition
patterns.

In addition, double tags leak membership in X which is encoded in the matri-
ces MX. Therefore, we have that

Lsr
CNFFilter(MM, Q) = (tagRP, doubleTagRP,MX).

Let us now see what Lsr
CNFFilter tells us about MM. In computing the response to

Φp, the number of tags obtained from each query to the underlying MMp gives the
volume of the 2-conjunction �p

1,i ∧ �p
2,j . In addition, observe that if the responses

to 2-conjunction (�p
1,i ∧�p

2,j) and to 2-conjunction (�p′
1,i′ ∧�p

2,j′) share a tag then it

must be the case that �p
1,i = �p′

1,i′ and that there exists v ∈ MM[�p
1,i ∧ �p

2,j ∧ �p
2,j′ ].

Therefore, by counting the number of common tags between the responses to
the two 2-conjunction one can obtain the volume of the 3-conjunction

(

�p
1,i ∧ �p

2,j

) ∧
(

�p′
1,i′ ∧ �p

2,j′

)

=
(

�p
1,i ∧ �p

2,j ∧ �p
2,j′

)

.

Clearly, tags appearing in the results of three or more 2-conjunctions give the
volume of conjunctions with four or more labels.

In sums, we can say that the tag repetition pattern leaks the volume of 2-
conjunctions, one for each query to MMp, that can be combined to compute the
volume of larger conjunctions.

The double-tag repetition pattern doubleTagRP can be computed from tagRP
and doubleTagSeedRP. Indeed, two double tags are equal iff they are obtained
by applying the same double-tag seed to the same tag (except with negligible in
λ probability). Therefore no further information is leaked by doubleTagRP.

Finally, let us look at the double-tag membership in X pattern. For each
query, the membership information MXp for query Φp has a matrix MXp

i,j for
each pair of label �p

1,i of the first clause and label �p
2,j of the second clause.

Matrix MXp
i,j has a row for each tag tag that is obtained by decrypting the

response to the query for MMp[�p
1,i ∧ �p

2,j ] and a column for each double-tag
seed dstag and MXp

i,j [tag, dstag] = 1 iff the corresponding double tag is found in
X . It is easy to see that the number of 1 in the column of double-tag seed for
�p
1,i and �p

1,r gives the volume of 3-conjunction (�p
1,i ∧ �p

2,j ∧ �p
1,r). Similarly the

columns of the double-tag seed for �p
1,i and �p

d,r gives the volume of 3-conjunction
(�p

1,i ∧ �p
2,j ∧ �p

d,r). And, as before, the volume of 3-conjunctions can be combined
together to obtain the volume of conjunction of size 4 or larger. In sums the
membership in X gives the volume of conjunctions of size 3 or larger.

We denote the query leakage as the combination of token and search leakage
LQuery = (LToken,LSearch). We prove the following theorem in the full version.

Theorem 5. CNFFilter is an adaptively (LSetup,LQuery)-secure encrypted
Boolean multi-map scheme that supports CNF queries in the random oracle
model.
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4.4 Comparing the Leakage

We now compare the leakage of our construction with the one of BIEX (a descrip-
tion of BIEX may be found in the full version).

We start by considering the tags that are revealed by CNFFilter. Consider a
CNF query with m clauses of the form (�1,1∨ . . .∨�1,q1)∧ . . .∧(�m,1∨ . . .∨�m,qm).
CNFFilter reveals the tags for all values in MM[�1,i ∧ �2,j ] for all label pairs of the
form (�1,i, �2,j). On the other hand, BIEX reveals all plaintext tags appearing in
MM[�1,i] for all labels �1,i. Additionally, it reveals all plaintext tags appearing in
MM[�1,i ∧ �j,k] for all label pairs of the form (�1,i, �j,k) where j ≥ 2.

Note that CNFFilter reveals double tags that do not exist in BIEX. The
leakage reveals whether the double tag corresponding to label pair (�1,i, �k,l)
and a value v ∈ MM[�1,i ∧ �2,j ] appears in X . Note that this is true if and only
if v ∈ MM[�1,i ∧ �2,j ∧ �k,l]. Therefore, CNFFilter ends up leaking the volumes
of 3-conjunctions of the form �1,i ∧ �2,j ∧ �k,l where k ≥ 3. These are the only
sets of PRF evaluations that are leaked by CNFFilter on top of the 2-conjunction
results �1,i ∧ �2,j . Therefore, the base query set of leakage is B′ ∪{(b′ ∧ �k,l) | b′ ∈
B′, 3 ≤ k ≤ m, l ∈ [qk]} where B′ = {(�1,i ∧ �2,j) | i ∈ [q1], j ∈ [q2]}.

On the other hand, the sets of PRF evaluations leaked by BIEX consist of
queries from the set {�1,i | i ∈ [q1]} ∪ {(�1,i ∧ �j,k) | i ∈ [q1], 2 ≤ j ≤ m, k ∈ [qj ]}.
This also turns out to be the base set of query leakage for BIEX.

It is easy to verify that the span of the base set of query leakage of CNFFilter
is a subset of the span of the base set of query leakage of BIEX. First, BIEX
leaks volumes for all singleton labels �1,i which CNFFilter doesn’t leak, unless
the query is a disjunction (recall that CNFFilter falls back to using BIEX in
this case). Additionally, while CNFFilter only leaks 2-conjunctions of the form
�1,i ∧ �2,j , BIEX leaks 2-conjunctions of the form �1,i ∧ �j,k for all j ≥ 2. Note
that the 3-conjunctions �1,i ∧ �2,j ∧ �k,l leaked by CNFFilter are also leaked by
BIEX since the server can compute this from the response sets of 2-conjunctions
�1,i ∧ �2,j and �1,i ∧ �k,l. Thus, it follows that CNFFilter does not leak more than
BIEX.

As a caveat, we note that CNFFilter and BIEX leak volumes for the same
set of queries in only two cases. The first case happens when the query is a
disjunction of the form �1 ∨ . . . ∨ �q, in which case CNFFilter falls back to the
default implementation of BIEX. The other case happens when the query is a
2-conjunction of the form �1 ∧ �2. In every other case, CNFFilter leaks strictly
less than BIEX.

5 Experiments

In this section, we present our experimental evaluation for our main construction,
CNFFilter, that supports CNF queries with reduced volume leakage. We start
by describing our experimental setup as well as the choice of parameters and
primitives for our construction. Afterwards, we compare with the construction
of BIEX described in [28].
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Using the results of these experiments, we will try to answer the following
question: how do the concrete efficiency costs of our construction CNFFilter com-
pare to the previous, state-of-the-art BIEX [28]?

Note that we will use multipliers to describe efficiency improvements. If con-
struction A is a 2x improvement over construction in B in computation, we mean
that construction A uses half the computation compared to construction B.

5.1 Setup of Experiments

Our experiments are conducted using the identical machines for both the client
and the server. The machines are Ubuntu PCs with 12 cores, 3.65 GHz Intel
Xeon E5-1650 and 32 GB of RAM. All experimental results that are reported
have standard deviations less than 10% of their average over 50 executions. All
network costs are measured at the application layer. Both our client and server
are implemented in C++ using the gRPC library [2].

Input Dataset. For our experiments, we utilize the Enron email dataset [34].
We parse the Enron email dataset using the Natural Language Toolkit (NLTK)
in Python [3]. Before indexing the dataset, we perform canonicalization and
stemming [41] using NLTK. Afterwards, we create a multi-map over the Enron
email dataset mapping keywords to email identifiers. In our experiments, we will
consider executing schemes over an input multi-map with a target number of
values n. To obtain an input multi-map of size n from the Enron email dataset,
we perform sampling in the following way. Pick emails uniformly at random and
add them to the multi-map until there are at least n total keyword-identifier
pairs in the multi-map.

Primitives. In all our experiments, we will utilize HMAC-SHA256 as our PRF
with 16 byte keys. For our symmetric encryption scheme, we utilize AES in CTR
mode with 16 byte keys. For the case of when encrypting pseudorandom values
that will never repeat, we will utilize AES in CTR mode with a fixed IV. Our
implementations utilize OpenSSL for both HMAC-SHA256 and AES. For the
underlying standard encrypted multi-map of Sect. 2.3, we utilize the response-
revealing 2Lev construction from [14] with parameters big block size B = 100
and small block size b = 8.

Selectivity of Clauses. In our experiments, we vary the selectivity of the
first and second clauses in the CNF queries while fixing the selectivities of the
remaining clauses. This is a reasonable setup as the search times of BIEX and
CNFFilter depend mainly on the selectivity of the first and second clauses.

5.2 Implementation of BIEX [28]

The BIEX construction was presented in [28] along with an implementation
in Java [1]. To provide a fair comparison with our C++ implementation of
CNFFilter, we re-implement BIEX in C++ with the same underlying primitives
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Table 1. Microbenchmarks for the search time of CNFFilter and BIEX [28] on randomly
chosen queries of the form D1 ∧D2 ∧D3 where each Di is a four label disjunction. The
leftmost column and the topmost row denote the number of values associated with each
label in the first and the second clause, respectively. The number of values associated
with labels in D3 are fixed to 10000. All search times are measured in milliseconds.

100 500 1,000 5,000 10,000

CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX

100 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

500 <0.01 0.24 <0.01 0.16 <0.01 0.08 <0.01 0.16 0.04 0.18

1000 <0.01 1.28 <0.01 1.22 <0.01 1.24 0.32 1.30 0.82 1.36

5000 <0.01 9.80 <0.01 9.98 0.64 10.18 3.01 10.72 5.01 11.30

10000 <0.01 21.84 0.46 20.34 1.16 21.98 5.44 22.36 9.46 22.76

as CNFFilter. All our reported results for BIEX will be using our C++ implemen-
tation. We note that the tags stored in the encrypted multi-map of BIEX will be
the first 8 bytes of the HMAC-SHA256 output. As tags are pseudorandom and
won’t collide (except with small probability), we encrypt tags using AES-CTR
mode with a fixed IV. All encryption and PRF keys used are 16 bytes long.
We did not implement their new underlying encrypted multi-map ZMF, filtering
optimization or online cipher HBC1 [6], as they mainly improve the underlying
encrypted multi-map which are used by both schemes in similar ways.

Compared to the Java implementation of BIEX [1], our C++ implementation
of BIEX runs 20x faster than results reported in [28]. Recall that the server
computation time depends on the selectivity of the first clause in the CNF query.
For a query of the form D1 ∧ . . . ∧ D� over q distinct labels and each Di is a
disjunction, then BIEX search algorithm runs in time O(q2 · |MM[D1]|). As the
size of MM[D1] grows, the server running time also grows as seen in Table 1.

5.3 Cost of CNFFilter

We also implement our construction CNFFilter in C++. The tags stored in the
encrypted multi-map and the double tags stored in X will be the first 8 bytes
of the HMAC-SHA256 output. As tags are pseudorandom and do not repeat
(except with small probability), we encrypt tags using AES-CTR mode with a
fixed IV. All encryption and PRF keys used in CNFFilter are 16 bytes long.

Recall that search computation time of CNFFilter depends on the selectivity
of the conjunction of the first two clauses of a CNF query. For a CNF query of the
form D1∧ . . .∧D� over q distinct labels, the running time of the search algorithm
of CNFFilter grows in the size of MM[D1 ∧ D2]. As MM[D1 ∧ D2] is a subset of
MM[D1], the running time of CNFFilter is expected to be faster than BIEX. Our
experimental results in Table 1 confirm these expectations by showing that the
search time of CNFFilter is at least 2x faster and may be more than 40x faster
compared to BIEX for the same queries and the same input multi-map.

For communication, both CNFFilter and BIEX obtain optimal download com-
munication complexity. In terms of upload communication costs (i.e. token size),
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Fig. 3. Search token sizes of CNFFilter and BIEX [28] for 3-clause CNFs D1 ∧ D2 ∧ D3

where the D1 and D2 contain 5 labels and the x-axis indicates the number of labels
in D3.

Table 2. Storage and setup time of CNFFilter and BIEX [28].

Input multi-map size in number of key-value pairs (n)

10,000 50,000 100,000 500,000 1,000,000

CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX CNFFilter BIEX

Storage size (MB) 115 95 480 401 941 773 4,661 3,702 16,408 13,173

Setup time (seconds) 3 2 13 8 24 13 137 72 662 308

CNFFilter requires smaller tokens compared to BIEX as shown in Fig. 3. Recall
that if the CNF query has q1 labels in the first clause and q total labels overall,
then BIEX executes q1 · (q − q1) queries to 2Lev. On the other hand, CNFFilter
performs only q1 · q2 2Lev queries where q2 is the number of labels in the sec-
ond clause. The remaining operations in CNFFilter involve hashing and checking
membership in X . These operations only require the client to send a PRF key
of 16 byte size. This is around 60% of the token size of performing a query to
2Lev. Therefore, CNFFilter obtains smaller token sizes.

Finally, we consider the storage costs of CNFFilter and BIEX. Both schemes
store an identical encrypted multi-map for all 2-conjunctions. In addition,
CNFFilter must also store the set of hashes X that does not exist in BIEX.
As a result, CNFFilter will have larger storage costs. However, the set X only
consists of double tags of 8 byte length. As a result, X occupies much smaller
space compared to the storage of the encrypted multi-map. This is observed
in Table 2 that shows CNFFilter only incurs a 20–25% increase in storage over
BIEX, which seems reasonable given the leakage, communication and server
computation improvements.

6 Conclusions

In this work, we continue work on designing encrypted Boolean multi-maps.
Our new construction CNFFilter mitigates volume leakage better than all previ-
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ous works while simultaneously achieving optimal communication and worst-case
sublinear search times. In terms of volume leakage reduction, CNFFilter substan-
tially improves upon the previous constructions.
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Abstract. The Brakerski-Gentry-Vaikuntanathan (BGV) and Braker-
ski/ Fan-Vercauteren (BFV) schemes are the two main homomorphic
encryption (HE) schemes to perform exact computations over finite fields
and integers. Although the schemes work with the same plaintext space,
there are significant differences in their noise management, algorithms
for the core homomorphic multiplication operation, message encoding,
and practical usability. The main goal of our work is to revisit both
schemes, focusing on closing the gap between the schemes by improving
their noise growth, computational complexity of the core algorithms, and
usability. The other goal of our work is to provide both theoretical and
experimental performance comparison of BGV and BFV.

More precisely, we propose an improved variant of BFV where the
encryption operation is modified to significantly reduce the noise growth,
which makes the BFV noise growth somewhat better than for BGV (in
contrast to prior results showing that BGV has smaller noise growth
for larger plaintext moduli). We also modify the homomorphic multipli-
cation procedure, which is the main bottleneck in BFV, to reduce its
algorithmic complexity. Our work introduces several other novel opti-
mizations, including lazy scaling in BFV homomorphic multiplication
and an improved BFV decryption procedure in the Residue Number
System (RNS) representation. We also develop a usable variant of BGV
as a more efficient alternative to BFV for common practical scenarios.

We implement our improved variants of BFV and BGV in PALISADE
and evaluate their experimental performance for several benchmark com-
putations. The experimental results suggest that our BGV implemen-
tation is faster for intermediate and large plaintext moduli, which are
often used in practical scenarios with ciphertext packing, while our BFV
implementation is faster for small plaintext moduli.
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1 Introduction

Homomorphic encryption (HE) is a powerful cryptographic primitive that enables
performing computations over encrypted data without having access to the secret
key. The HE research area has seen a lot of progress since the formulation of the
first fully homomorphic encryption construction by Gentry in 2009 [17], and the
schemes implemented in modern HE libraries are multiple orders of magnitude
faster than the initial implementation of Gentry’s scheme [18]. The most common
HE schemes are typically grouped into three classes based on the data types they
support computations on. The first class primarily works with Boolean circuits
and decision diagrams, similar to the original Gentry scheme, and includes the
FHEW and TFHE schemes [12,15]. The second class supports modular arithmetic
over finite fields, which typically correspond to vectors of integers mod t, where
t is a prime power commonly called as the plaintext modulus. The second class
is also sometimes used for small-integer arithmetic. This class includes Brakerski-
Gentry-Vaikuntantan (BGV) and Brakerski/Fan-Vercauteren (BFV) schemes [8,9,
16]. The third, and most recent, class supports approximate computations over
vectors of real and complex numbers, and is represented by the Cheon-Kim-Kim-
Song (CKKS) scheme [11]. All these schemes are based on the hardness of the
Ring Learning With Errors (RLWE) problem, where noise is added during encryp-
tion and key generation to achieve the hardness properties. The noise grows as
encrypted computations are performed, and the main functional parameter in all
these schemes, the ciphertext modulus Q, needs to be large enough to accommo-
date the noise growth, or a special bootstrapping procedure may be used to reset
the noise and keep the value of Q relatively small.

Our work focuses on the HE schemes of the second class. Although the BGV and
BFV schemes work with the same plaintext algebra, they use different strategies for
encoding the message composed of integers in Zt and controlling the noise. The
BGV scheme encodes the message in the least significant digit (LSD) of integers
in ZQ and applies the modulus switching technique to keep the noise magnitude
constant, i.e., it scales down Q by a factor that corresponds to the noise added
after the previous modulus switching call. The BFV scheme encodes the message
in the most significant digit (MSD) of integers in ZQ and uses a special form of
homomorphic multiplication, where ciphertext polynomials are multiplied with-
out modular reduction and then scaled down by Q/t. In BFV, the value of Q is
typically constant and the noise magnitude increases at a rate similar to how Q
decreases in BGV. The difference in noise management strategies between BGV and
BFV affects the noise growth and efficiency of the schemes. Costache and Smart
performed a noise growth comparison, which suggested that BGV has better noise
growth for larger t than BFV [13]. However, the authors did not examine the com-
putational complexity difference, and it has not been clear up to this moment how
the schemes compare in terms of practical performance, both from the perspective
of computational complexity and actual experimental measurements.

The main goal of this paper is to present improved variants of BFV and
BGV schemes, which also close the gap between the schemes. The other goal is
to compare the theoretical complexity of their primitive operations, and exper-
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imental performance of BGV and BFV for several different scenarios using our
software implementation in the PALISADE library [2].

Modified BFV Scheme. We propose two modifications for the BFV scheme. The
first modification deals with encryption, and the second modification revises the
homomorphic multiplication operation. The net effects of these modifications
are smaller noise growth and faster homomorphic multiplication in BFV.

The encryption in BFV can be represented as a · s + e + Δm (for simplicity,
we focus here on the secret-key formulation), where a is a uniformly random
ring element in cyclotomic ring RQ, s and e are the secret key and Gaussian
noise ring elements in R, m is a message in Rt, and Δ = �Q/t� is the scaling
factor. Our analysis shows that the difference between Δ and Q/t, which is
often described in terms of rt(Q) := Q − tΔ, brings about a significant error
(proportional to rt(Q)) that affects the first homomorphic multiplication and
increases the noise growth in BFV as compared to BGV for larger t. If this error is
removed, i.e., rt(Q) ≈ 0, the noise growth in BFV becomes the same, or actually
somewhat better, as in BGV. In view of this, our first modification suggested
for BFV is to replace the encryption operation in BFV with a · s + e +

⌈
Q
t m

⌋
,

which is a more natural choice as compared to the one in the original BFV. This
encryption function also significantly simplifies the noise analysis and estimates
for BFV homomorphic multiplication. Note that this modification can be likewise
applied to the original Brakerski LWE scheme [8].

The most expensive operation in BFV is homomorphic multiplication as it
requires a multiplication of two ciphertexts c1 and c2 without modular reduc-
tion, followed by scaling the results of the tensor product by t/Q. Algorith-
mically, this requires extending both ciphertexts to modulus QP , where P is
sufficiently larger than Q, performing a tensor product which involves expen-
sive Number Theoretic Transforms (NTTs), scaling down the result by Q/t, and
finally switching the scaling result from P to Q. We propose a more efficient pro-
cedure for homomorphic multiplication where the values of P ≈ Q, which saves
some expensive modulus extension operations and NTTs. The main idea is to
apply modulus switching to one of the ciphertexts, e.g., c2, to change it from Q
to P (denote it as c′

2), and then do scaling by t/P after the tensor product. This
removes the requirement for extending the scaling result from P to Q (it will
already be in Q) at the expense of doing a smaller number of modulus extensions
during the modulus switching of c2. The other benefit is that the tensor product
of c1 and c′

2 can be scaled by t/P directly in PQ, i.e., we have a tensor product
mod PQ instead of a tensor product without modular reduction.

We also introduce a leveled version of BFV homomorphic multiplication,
where ciphertexts modulo a larger modulus Q are internally scaled down to
a smaller modulus Q� (or P�), the standard homomorphic multiplication opera-
tions are performed, and then the results are scaled back up to Q. The benefit of
this approach is that the ciphertexts still look the same (modulo Q) outside the
homomorphic multiplication operations, but we get BGV-like benefits of working
with smaller moduli in multiplication. The combined effect of our improvements
in homomorphic multiplication is the speed-up of up to 4x, as compared to a
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prior state-of-the-art BFV implementation, when dealing with multiplications at
deeper levels of computation.

BFV Scheme Optimizations. We also introduce several algorithmic optimiza-
tions that equally apply to the classical BFV and our modified variant. The first
optimization is for the scenarios where we need to add multiple BFV ciphertexts
that were just obtained by BFV multiplication. The standard way is to perform
many expensive BFV multiplications and then add up the result. However, we can
delay the scaling by t/Q (or by t/P in our BFV variant) in each homomorphic
multiplication until the sum is computed, and then just do one scaling at the
end. This saves many expensive NTTs and modulus extension operations. We
denote this optimization as lazy scaling. The lazy scaling can be combined with
previously known lazy relinearization to push most of the expensive computa-
tions in a homomorphic multiplication, i.e., scaling and relinearization, to the
end, after the aggregation is done.

Some of the other optimizations apply to Residue Number Systems (RNS)
variants of BFV, where multi-precision integers in ZQ are split into vectors of
smaller integers using the Chinese Remainder Theorem (CRT) to perform oper-
ations efficiently using native (64-bit) integer types. The RNS variants are now
predominately used in practice, and are implemented in the SEAL [29], PAL-
ISADE [2], and Lattigo [1] software libraries. There are two main RNS variants of
BFV: the Bajard-Eynard-Hasan-Zucca (BEHZ) variant based on modular integer
arithmetic and Montgomery reductions and the Halevi-Polyakov-Shoup (HPS)
variant based on a combination of modular integer arithmetic and floating-point
approximations [5,21].

A significant limitation of the HPS approach is that high-precision (“long
double” or even quad-precision) floating-point arithmetic is required to support
larger CRT moduli: long doubles are needed for CRT moduli from 47 to 58 bits,
and quad-precision floats are needed for higher CRT moduli [21]. We introduce
a general-purpose digit decomposition technique (inspired by digit decomposi-
tion in key switching) and apply it to the HPS decryption procedure to add
support for arbitrary CRT moduli using only regular double-precision floating-
point arithmetic, thus overcoming this limitation of the HPS variant. This digit
decomposition technique can be applied to other mixed integer/floating-point
RNS operations to reduce precision requirements for floating-point arithmetic.

We also apply the full RNS variant of hybrid key switching [24] recently
proposed for the CKKS scheme to both BFV RNS variants, and demonstrate
how some auxiliary CRT moduli needed for homomorphic multiplication can be
reused for hybrid key switching. This key switching method has some benefits
(smaller noise growth, better efficiency for deeper computations) over the residue
decomposition key switching method previously used in both RNS variants of
BFV.

BGV Scheme Optimizations and Usability Improvements. We use the Gentry-
Halevi-Smart (GHS) variant of BGV as the basis for our BGV instantiation [20,23].
Although the original GHS variant performs some operations in RNS, it still
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uses multiprecision integer arithmetic for key switching and some scenarios of
modulus switching. For instance, although the GHS paper originally introduced
the hybrid key switching technique, the authors used multiprecision arithmetic
for the digit decomposition step. We apply the full RNS version of hybrid key
switching to our BGV instantiation and eliminate any multiprecision arithmetic
from our BGV implementation, thus significantly improving its efficiency.

One of the challenges in the GHS variant is the need to perform dynamic
noise estimation, which makes the BGV implementation less robust and usable as
compared to the BFV variants where noise estimation is typically needed only at
the parameter generation phase. We develop a more usable and robust variant
of BGV that is essentially as simple to use as the current BFV implementations.
This variant only needs to know the multiplicative depth and maximum number
of additions per level for many common scenarios. The main advantage of this
BGV variant is that it is significantly faster than our BFV implementations for
certain practical scenarios, yet its usability matches that of BFV.

Implementation and Performance Comparison. We implement the improved
variants of BFV and BGV in PALISADE, and provide their comparison for spe-
cific benchmark computations. To the best of our knowledge, this is the first
publicly available implementation of both schemes in the same software library.
We also perform theoretical comparison of the computational complexity for the
operations that differ between BFV and BGV.

The comparison results can be summarized as follows:

– Our improved variant of BFV has somewhat better noise growth than BGV, in
contrast to prior results for the original BFV scheme that showed better noise
growth for BGV at larger plaintext moduli [13].

– Our best variant of BFV is faster than BGV for small plaintext moduli, while
BGV is faster for intermediate and large plaintext moduli used in many prac-
tical scenarios.

– The speed-up in homomorphic multiplication of our best BFV variant com-
pared to a prior state-of-the-art RNS implementation of BFV goes up to 4x
for deeper computations.

Related work. Costache et al. further examine the difference between the noise
growth in BFV and BGV [14] to improve the analysis presented in [13]. They
explore an alternative heuristic noise analysis approach to obtain tighter noise
bounds. We point out that this new analysis has some inacurracies, e.g., the
effect of extra noise due to rt(Q) in BFV homomorphic multiplication is not
accounted for. We show that this extra noise determines the higher noise growth
in BFV for large plaintext moduli, and demonstrate how this noise is removed
in our BFV variant. Moreover, we show that this analysis can be carried out
independently of the chosen heuristic for noise analysis. The authors also do not
consider the difference in the complexity of homomorphic encryption operations
between BGV and BFV, which affects their conclusions. In view of the above, we
primarily compare our results with the prior work [13].
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The encoding of a message in the MSD of a ciphertext as �Q
t m� was already

used in the Key Encapsulation Mechanism (KEM) Kyber [7]. But in the case
of Kyber, the plaintext modulus t = 2, i.e., the coefficients of the messages are
either 0 or 1. Therefore, the messages can be recovered directly during decryption
by checking whether the coefficients are closer to �Q/2� or 0, and the noise is
not affected.

SEAL also independently added to v3.4.0 a modification of BFV encryption
similar to what we describe in our work [29]. However, no underlying noise
analysis was presented, and the prior paper related to SEAL [14] included noise
analysis inaccuracies involving the rounding term rt(Q), suggesting that the full
effect of this change was not well-understood.

Note that the FHEW and TFHE schemes can also support arithmetic over
finite fields for small plaintext moduli (typically up to 4 bits) [28], and can be
considered as an alternative to BGV and BFV for these scenarios. These schemes
support fast bootstrapping (the latency is much lower than for BGV and BFV boot-
strapping [22]), but their main limitation is the lack of support for CRT packing,
which makes the BGV/BFV approach much more appealing when large arrays of
numbers need to be computed on/bootstrapped because one ciphertext opera-
tion can perform thousands of integer operations at once.

Organization. The rest of the paper is organized as follows. In Sect. 2 we provide
the necessary background on BGV and BFV. In Sects. 3 and 4, we present our
improved variants of BFV and BGV, respectively. Section 5 includes the theoretical
comparison of the schemes, and discussion of the experimental results. Section 6
provides the conclusions and outlines the ideas for future work.

2 Background

All logarithms are expressed in base 2 if not indicated otherwise. Let N be a
power of two. We denote the 2N -th cyclotomic ring R = Z[X]/(XN + 1) and
RQ := R/QR.1 Ring elements are indicated in bold, e.g. a. For an integer
Q > 1, we identify the ring ZQ with (−Q/2, Q/2]∩Z as a representative interval
and for z ∈ Z, [z]Q ∈ ZQ denotes the centered remainder of z modulo Q,
while rQ(z) denotes the classical Euclidean remainder in [0, Q) ∩ Z. For x ∈ Q,
�x�, �x� and �x� denote the rounding to the lower, closest and higher integer,
respectively. We extend these notations to elements of R by applying them
coordinate-wise. For a = a0 + a1 · X + · · · + aN−1 · XN−1 ∈ R, we denote
the �∞ norm of a as ‖a‖∞= max0≤i<N{|ai|}. There exists a constant δR such
that ‖a · b‖∞≤ δR‖a‖∞‖b‖∞ for any (a, b) ∈ R2. It is well-known that for
R = Z[X]/(XN + 1), δR = N . However in practice this bound is only reached
with exponentially low probability. As shown in [21], the bound δR = 2

√
N

is much closer to what we observe experimentally, and can be used to achieve
1 More general cyclotomic rings are also supported, and all results of our work equally

apply to these non-power-of-two rings; please see [23] for more details on general
cyclotomic rings.
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tighter noise bounds. Another approach consists in estimating the noise size using
the canonical embedding norm [20], as currently done in HElib [23]. Nonetheless,
in this work we estimate the noise size using the expansion factor δR with the
method of [21] as it is simpler and precise enough for our purpose.

We use a ← χ to denote the sampling of a ∈ R according to a distribution
χ. χkey denotes the uniform ternary distribution, i.e., all the coefficients of a ←
χkey are selected uniformly and independently from {−1, 0, 1}. This distribution
is commonly used for secret key generation as it is the most efficient option
conforming to the HE standard [4]. χerr denotes a discrete Gaussian distribution
with standard deviation σerr, i.e. all the coefficients of a ← χerr are selected
independently from a truncated discrete Gaussian distribution with standard
deviation σerr. Truncated discrete Gaussian distributions are commonly used to
generate error polynomials to meet the desired hardness requirement [4]. We
assume that the polynomials sampled from χkey and χerr have their coefficients
bounded by Bkey = 1 and Berr = 6σerr, respectively. Although a Gaussian
distribution is not bounded by nature, the probability for a Gaussian coefficient
to be larger than Berr = 6σerr, is less than 2−30, therefore the two distributions
are very close in practice. UQ denotes the uniform distribution over RQ, where
every coefficient of a is sampled uniformly and independently from ZQ.

2.1 Plaintext Space

We are interested in the BGV and BFV homomorphic encryption schemes which
both share the same plaintext space Rt for some integer t > 1. Hence, the most
natural way to represent plaintext messages of these schemes is to think of them
as vectors of size N with their coefficients taken modulo t. However, Rt has many
algebraic properties, in particular when t = pr is a prime power with p coprime
to 2N . In this case Rt is actually a Zt-algebra, which means that it contains
a subring isomorphic to Zt. In this paper we focus on the case r = 1, where
t = p is a prime. The interested reader can nonetheless refer to [23] for further
details regarding the general case. Zt-algebra supports efficent Single-Instruction
Multiple-Data (SIMD) packing/batching. For more details on the packing, the
reader is referred to [30].

2.2 Homomorphic Encryption Schemes for Finite Field Arithmetic

The two schemes studied in this work: BGV and BFV are actually two instan-
tiations of the same idea, and share, therefore, many common features. First,
according to the desired security level λ and the targeted application, one starts
by selecting public parameters for the considered scheme: ring dimension N = 2d,
the plaintext modulus t, a ciphertext modulus Q and two probability distribu-
tions χkey and χerr on the ring R. In both cases, the secret key will be an element
s ← χkey. Note that BGV and BFV may be viewed as different modes of a unified
scheme, where the ciphertexts may be switched from one mode/scheme to the
other (see the full version for details).
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Original BGV Scheme. In 2011, Brakerski et al. designed a leveled homomor-
phic scheme, namely capable of evaluating circuits of arbitrary size, but known
beforehand [9]. The key tool of their construction is the modulus switching pro-
cedure which allows to switch a ciphertext ct encrypted under a modulus Q
to a smaller modulus Q′ in order to maintain the noise level “constant”. As a
consequence, one must select a chain of L + 1 moduli Q0 | Q1 | . . . | QL = Q
such that t and QL are coprime. The public key is formed as:

pk =
(
[a · s + te]QL

,−a
)

∈ R2
QL

,

which is equivalent to the Ring-LWE sample ([a/t · s + e]QL
, [−a/t]QL

) (since
t and QL are coprime) associated to s and QL with a ← UQL

and e ← χerr.
A ciphertext ct = (c0, c1) ∈ R2

Q corresponds to a degree 1 polynomial whose
coefficients lie in RQ. The message m ∈ Rt is hidden in the LSD of the first
coefficient c0 of the ciphertext as follows:

ct =
(
[[m]t + u · pk0 + te0]QL

, [u · pk1 + te1]QL

)

with u ← χkey and e0,e1 ← χerr. The noise contained in a ciphertext ct =
(c0, c1) appears explicitly once the ciphertext is evaluated on the secret key s:

c0 + c1 · s = [m]t + t(u · e + e1 · s + e0) = [m]t + tvfresh mod QL, (1)

where the term vfresh = u · e + e1 · s + e0 is the noise inherent to a “freshly”
encrypted ciphertext. Since Q0 | Q1 | . . . | QL, encryptions can be performed
equivalently at any level i, i.e., modulo Qi.

To decrypt a ciphertext ct = (c0, c1) ∈ R2
Qi

with i ∈ [0, L], one computes
m′ = [c0 +c1 ·s]Qi

and then outputs [m′]t. To ensure correctness of the decryp-
tion, the noise v must be “small enough” such that m′ = [m]t + tv does not
wrap-around modulo Qi. As a consequence, decryption remains correct as long
as:

‖v‖∞ <
Q0

2t
− 1

2
.

One can add two ciphertexts ct and ct′ encrypting m and m′, respectively,
at the same level i to yield:

c0 + c′
0 + (c1 + c′

1) · s = [m + m′]t + t(v + v′ + u) mod Qi,

with ‖u‖∞ ≤ 1. This means that

ctadd = ([c0 + c′
0]Qi

, [c1 + c′
1]Qi

)

is a level-i encryption of [m + m′]t and its noise is almost the sum of the noises
of ct and ct′:

‖vadd‖∞ = ‖v + v′ + u‖∞≤ ‖v‖∞ + ‖v′‖∞ + 1.
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Similarly to addition, we can multiply two level-i ciphertexts ct and ct′ to
obtain the following congruence modulo Qi:

(c0 + c1 · s) · (c′
0 + c′

1 · s) = [m · m′]t + t([m]t · v′ + v · [m′]t + tv · v′ + rm)

with [m]t · [m′]t = [m · m′]t + trm and ‖rm‖∞≤ δRt/2. This means that

ctmult = ([c0 · c′
0]Qi

, [c0 · c′
1 + c1 · c′

0]Qi
, [c1 · c′

1]Qi
) ∈ R3

Qi

is a degree-2 ciphertext encrypting [m · m′]t and its noise is bounded by

‖vmult‖∞ = ‖[m]t · v′ + v · [m′]t + tv · v′ + rm‖∞

≤ δRt

2
(2 ‖v‖∞ ‖v′‖∞ + ‖v‖∞ + ‖v′‖∞ + 1) .

Remark 1. The reader can notice that the degree, and thus the size, of a cipher-
text increases after each multiplication, increasing therefore the future commu-
nication and computational costs. Since this is something one wants to avoid in
practice, the degree-2 ciphertexts are “relinearized” after a homomorphic mul-
tiplication to degree-1 ciphertexts using a key-switching procedure (see the full
version).

The main issue with homomorphic multiplication is its quadratic noise
growth, which implies that by choosing QL ≈ ‖vfresh‖L

∞ one could only per-
form log2 L consecutive multiplications. The idea of modulus switching is to
reduce the size of the noise after each multiplication to keep it constant and
prevent the quadratic blow-up. This is achieved by scaling the ciphertext ct by
Qi/Qj for i < j, which scales down the noise by roughly the same factor. More
precisely, let ct = (c0, c1) be a level j ∈ (0, L] ∩ Z encryption of a message m
with noise v and let i be an integer smaller than j, then set:

δ =
(
t[−c0/t]Qj/Qi

, t[−c1/t]Qj/Qi

) ∈ R2.

Then one can compute

ct′ =
Qi

Qj
· (c0 + δ0, c1 + δ1) mod Qi.

Brakerski et al. showed that if ct = (c0, c1) is such that

∥∥[c0 + c1 · s]Qj

∥∥
∞ <

Qj

2
− tQj

2Qi
(1 + δRBkey),

then ct′ is an encryption of [Qi/Qjm]t whose noise v′ is bounded by

‖v′‖∞ ≤ Qi

Qj
‖v‖∞ + ‖vms‖∞

with ‖vms‖∞≤ (1+δRBkey)/2. Therefore by choosing the encryption parameters
such that performing modulus switching after a homomorphic multiplication
(plus a key-switching) brings the noise back to its initial level, one can perform
L consecutive multiplications instead of approximately log2 L initially.
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Gentry-Halevi-Smart (GHS) Variant of BGV. Since the modulus-switching pro-
cedure outputs an encryption of the message scaled by a factor [Qi/Qj ]t, Braker-
ski et al. proposed to choose the moduli Qi = 1 mod t. This approach, although
very convenient in theory, becomes challenging in practice when using a large t
since it reduces significantly the range of possible moduli for the Qi. As a conse-
quence, Gentry, Halevi, and Smart proposed to keep track of the scaling factor
for each ciphertext instead [20]. In particular, they suggested to encrypt [QLm]t
instead of [m]t in Eq. (1), which provides natural downscaling to [Qim]t as
modulus switching operations are applied. However in this case, one has to pay
attention when adding two ciphertexts with different scaling factors. Nonetheless
this can be achieved without impacting significantly the noise by following the
methodology of [25].

Gentry et al. also proposed several optimizations related to noise manage-
ment. The first one is to perform modulus switching after encryption and before
first multiplication, in order to reduce the noise from ‖vfresh‖∞ to ‖vms‖∞. The
second one is to perform modulus switching just before the next multiplication
instead of just after a multiplication. This permits to reduce the noise accu-
mulated due to other operations, such as additions or key switching, that are
performed between two subsequent multiplications.

Original BFV Scheme. In [8], Brakerski proposed a scale-invariant construc-
tion that achieves asymptotically the same noise growth as BGV, but does not
explicitly call the modulus-switching procedure, embedding it internally in the
homomorphic multiplication. Fan and Vercauteren then ported Brakerski’s con-
struction to the Ring-LWE setting [16], and the scheme is now commonly referred
to as BFV. The BFV scheme uses a public key

pk =
(
[a · s + e]Q ,−a

)
∈ R2

Q,

which corresponds exactly to a Ring-LWE sample associated to s and Q with
a ← UQ and e ← χerr. The main difference between BGV and BFV is that
BFV ciphertexts encode messages in their MSD instead of LSD:

ct =
(
[Δ[m]t + u · pk0 + e0]Q , [u · pk1 + e1]Q

)

with Δ = �Q/t�, u ← χkey and e0,e1 ← χerr. Similarly to BGV, the noise
contained in a ciphertext ct = (c0, c1) appears explicitly once the ciphertext is
evaluated on the secret key s:

c0 + c1 · s = Δ[m]t + u · e + e1 · s + e0 = Δ[m]t + vfresh mod Q,

where the “fresh” noise vfresh = u · e + e1 · s + e0 is the same as for BGV.
To decrypt the ciphertext ct, one needs to scale and round ct(s) by t/Q to

remove the factor Δ. Hence the decryption procedure requires computing

m′ =
⌊

t

Q
[c0 + c1 · s]Q

⌉
,
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and the decryption will be correct as long as:

‖v‖∞ <
Q

2t
− rt(Q)

2
. (2)

Note that the term rt(Q)/2 is the error inherited from the difference between
Δ−1 and t/Q: Δt/Q = 1 − rt(Q)/Q. Addition of two ciphertexts ct and ct′ is
done like in BGV, but the noise growth is slightly different since the carry of the
addition of the two messages is scaled by Δ:

c0 + c′
0 + (c1 + c′

1) · s = Δ[m + m′]t + v + v′ − rt(Q)u mod Q,

with ‖u‖∞ ≤ 1. This implies that

ctadd = ([c0 + c′
0]Q, [c1 + c′

1]Q)

is an encryption of [m + m′]t, and its noise is bounded by

‖vadd‖∞ = ‖v + v′ + rt(Q)u‖∞ ≤ ‖v‖∞ + ‖v′‖∞ + rt(Q). (3)

The BFV multiplication of two ciphertexts ct and ct′ is done differently, as
compared to BGV, since once the product is computed, it gets scaled by Δ2,
which has two important consequences. First, the product of ct and ct′ cannot
be reduced modulo Q, therefore it must be done in R, i.e., without any modular
reduction. Second, the product must be scaled down by t/Q ≈ Δ−1 to remove the
extra Δ factor and reduce the noise similarly to modulus switching in BGV. We
describe the two steps of the homomorphic multiplication separately. The first
part, called the tensoring, consists in computing the product of two ciphertexts
in R:

cttensor = (c0 · c′
0, c0 · c′

1 + c1 · c′
0, c1 · c′

1) ∈ R3.

When evaluating cttensor on the secret key, one obtains:

(c0 + c1 · s) · (c′
0 + c′

1 · s) = (Δ[m]t + v + Qk) · (Δ[m′]t + v′ + Qk′)

=
Q

t
Δ[m · m′]t +

Q

t
vtensor +

Q2

t
ktensor,

where

vtensor =
tv · v′

Q
+

tΔ
Q

([m]t · v′ + [m′]t · v) + t(v · k′ + v′ · k)

− rt(Q)
(

[m]t · k′ + [m′]t · k + rm +
Δ
Q

[m]t · [m′]t

)
,

ktensor = [m]t · k′ + [m′]t · k + tk · k′ + rm

with ‖rm‖∞ ≤ δRt/2 like for BGV. Also note that k = (c0+c1 ·s−Δ[m]t −v)/Q
and k′ = (c′

0+c′
1 ·s−Δ[m′]t−v′)/Q have their norm bounded by (δRBkey+3)/2.
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The scaling operation is done in RQ and outputs a result modulo Q:

ctscale =
[⌈

t

Q
cttensor

⌋]

Q

∈ R3
Q.

The scaling leads to

t

Q

(
ctensor0 + ctensor1 · s + ctensor2 · s2

)
= Δ [m · m′] + vtensor + Qktensor.

The rounding of scaled terms introduces an additional error vr such that

ctscale0 + ctscale1 · s + ctscale2 · s2 = Δ [m · m′] + vtensor + vr mod Q,

with ‖vr‖∞ ≤ (1 + δRBkey + δ2RB2
key)/2. Hence the total multiplication noise

vmult = vtensor + vr is bounded by

‖vmult‖∞ ≤ δRt

2

(
2 ‖v‖∞ ‖v′‖∞

Q
+
(
4 + δRBkey

)
(‖v‖∞ + ‖v′‖∞)

+ rt(Q)
(
δRBkey + 5

))
+

1 + δRBkey + δ2RB2
key

2
. (4)

For the same reasons as for BGV, one needs to perform a key-switching opera-
tion to relinearize the resulting degree-2 ciphertext. The key-switching procedure
is the same for both schemes, and we refer to the full version for further details.

2.3 RNS Representation

The Chinese Remainder Theorem (CRT) permits decomposing multi-precision
integers in ZQ into vectors of smaller integers to perform operations efficiently
using native (64-bit) integer data types. The integer CRT representation is also
often referred to as the Residue-Number-System (RNS) representation. As a
consequence, the ciphertext modulus is usually chosen as a product of “small”,
i.e., fitting in a machine word, co-prime moduli so that elements of RQ are
represented with their residues modulo the different qi’s. For BGV, we choose
Q = q0 · · · qL and we denote Qi = q0 · · · qi for 0 ≤ i ≤ L, where each qi =
1 mod 2N , to use the efficient NTT algorithm for the multiplication of elements
in RQ. For BFV, we choose Q = q1 · · · qk, with qi = 1 mod 2N for 1 ≤ i ≤ k and
similarly to BGV we denote Qi = q1 · · · qi for 1 ≤ i ≤ k. Note that we have chosen
different notations on purpose since in the original BGV the size of the moduli is
directly related to the noise reduction we want to achieve by modulus switching,
and is therefore dependent on the circuit one wants to evaluate. However, this
constraint can be removed by considering a granular approach with dynamic
noise estimation, as implemented in HElib [23] (see the discussion in Sect. 4 for
more details on dynamic vs static noise estimation in BGV). On the other hand,
in BFV the size of the moduli is independent of the circuit and, hence, the moduli
are usually chosen as large as possible within the limit of a machine word.
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When performing computations in RNS, and more particularly when imple-
menting BGV and BFV, it is sometimes needed to switch the RNS basis, i.e.,
convert a ∈ RQ from its residues modulo Q = q1 · · · qk to [a]Q modulo P for
some P = p1 · · · pk′ . This can be achieved using a basis extension formulated as

FastBaseExtension(a, Q, P ) =
k∑

i=1

[
a

(
Q

qi

)−1
]

qi

Q

qi
mod pj . (5)

Note that the basis extension does not yield [a]Q mod P but rather [a]Q +
uQ mod P with ‖u‖∞< k/2. When the result of this extension is divided by Q,
as in many procedures of BGV and BFV, the error caused by this Q-overflow
u can be neglected most of the times. However in certain cases, as in the
BFV decryption procedure, this overflow cannot be tolerated and needs to be
removed/corrected. This can be achieved either using integer instructions with
the so-called γ-correction technique of [5], or using floating-point instructions to
retrieve u as in [21] since

u =

⎢⎢⎢⎣
k∑

i=1

[
a

(
Q

qi

)−1
]

qi

1
qi

⎤
⎥⎥⎥

. (6)

The same problem occurs during BFV homomorphic multiplication, and if it is
not handled using either of the techniques of [5] or [21], the impact of u on the
noise growth will be significant [6].

2.4 Hybrid Key Switching in RNS

Key switching transforms a ciphertext ct = (c0, c1) ∈ R2
Q, which can be

decrypted with sA, into a ciphertext ct′ = (c′
0, c

′
1) ∈ R2

Q encrypting the same
message as ct, but decryptable with another secret key sB . This procedure is
needed to compute automorphisms (rotations) of the ciphertexts [19], or to relin-
earize ciphertexts after a homomorphic multiplication. Note that this procedure
adds a noise vks to the ciphertexts.

Several ways of performing the key-switching procedure have been found over
the years. The first one was formulated by Brakerski and Vaikuntanathan (BV)
in [10] and extended to RNS in [5]. This technique is based on digit decompo-
sition of one ring element in the ciphertext. Unfortunately the BV key switch-
ing requires a quadratic number of NTTs to be computed, and hence becomes
the main bottleneck of the scheme (asymptotically, and often in practice), and
causes a relatively large noise growth. In [20], Gentry, Halevi, and Smart pro-
posed another alternative for key switching. Their method, which we refer to as
the GHS key switching, has a smaller noise growth than BV, and is also more
efficient (asymptotically, and in many practical cases) since it only requires a
linear number of NTTs. The drawback of this method is that one either needs to
double the dimension N or reduce the size of Q by a factor of 2 for security rea-
sons. Gentry, Halevi, and Smart also presented a hybrid key switching technique,
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which combines BV digit decomposition and larger modulus from GHS to pro-
vide the best tradeoff between the two techniques. The RNS versions of hybrid
key switching were later derived for the CKKS scheme in [26] (for one small
special prime) and in [24] for the more general case. The hybrid key switching
technique [24] is the most efficient one in practice, both in terms of performance
and noise growth, as our detailed comparison of the BV, GHS, and Hybrid key
switching in the full version shows. Hence we use the hybrid key switching in
our implementation.

3 Improved BFV Scheme

One can notice from Eqs. (2), (3) and (4) that the noise of BFV is impacted
by the rt(Q) factor which does not appear in BGV. This factor causes faster
noise growth for BFV when using larger plaintext moduli, as compared to BGV.
In this section we show that this problem is not inherent to the MSD encoding
of BFV, but rather comes from the choice for its instantiation in [16] and prior
LWE-based Brakerski scheme [8]. We show that by instantiating the scheme
in a more natural way, we can get rid of this rt(Q) term. We also present a
modified homomorphic multiplication procedure that significantly improves the
complexity of BFV homomorphic multiplication, as compared to all prior variants
of BFV.

In this section, ct = (c0, c1) and ct′ = (c′
0, c

′
1) denote two BFV ciphertexts

encrypting, respectively, the messages [m]t and [m′]t with noise v and v′.

3.1 Noise Reduction

To fully understand the problem with faster noise growth in BFV for larger plain-
text moduli, let us examine more carefully the noise bound after a multiplication
in BFV (Eq. (4)). This bound can be simplified by analyzing only the dominant
terms, which determine the noise magnitude. More precisely, if we assume that
the two ciphertexts have their noise bounded by V , and Bkey = 1, the size of the
noise of their multiplication can be reasonably approximated by

δRt

(
(5 + δR) V +

rt(Q)
2

(δR + 5)
)

+
δ2R
2

≈ δ2Rt

(
V +

rt(Q)
2

)
. (7)

Since the noise grows significantly with homomorphic multiplications, V becomes
larger than rt(Q)/2 < t after we perform the first multiplication. However, this is
not necessarily true for the first multiplication itself since, like in BGV, the noise
of fresh ciphertexts in BFV is bounded by Berr(2δRBkey + 1) ≈ 2δRBerr. The
homomorphic encryption standard [4] recommends using an error distribution
with σerr = 3.2. Therefore, the noise of a fresh ciphertext can be estimated
as Vinit = 2 × 6 × 3.2 × 2

√
N < 77

√
N . Since in practice the dimension N

typically does not exceed 216, a fresh ciphertext always has its noise size not
higher than 14 bits, while rt(Q) can be as large as t. As a consequence, when
rt(Q) is larger than 215, it becomes responsible for the larger noise growth after
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the first multiplication in BFV. For instance, if t = 232 and rt(Q) ≈ t/2 ≈ 231,
the noise after the first multiplication will be at least 16 bits larger than in the
case when rt(Q) < Vinit. Note that this difference will not lead to a larger noise
growth on the next multiplications since, as shown in Eq. (7), the noise growth
after a multiplication is linear in V . However, this difference of 16+ bits will be
carried through until the end of the computation. In the case of t = 260, this
difference would become at least 44 bits.

The easiest way to circumvent this problem would be to choose the moduli
qi, as in the original BGV, i.e., such that qi = 1 mod t, which would lead to
rt(Q) = 1. However, for the same reasons as in BGV, this restriction would make
the finding of the moduli challenging for large t. Although it is possible to relax
this condition by choosing, for instance, rt(Q) <

√
N , i.e., finding rt(Q) through

trial and error, we believe this would be a patch rather than a real solution. We
show next that there is a more natural way to fix this problem.

Indeed, the rt(Q) term comes from the difference between Δ−1 and t/Q since
when computing Δt/Q (during decryption and homomorphic multiplication),
one obtains 1 − rt(Q)/Q. Therefore, to solve this issue we propose to modify
the original BFV encryption algorithm by encoding [m]t in the ciphertext in a
more natural way as �Q[m]t/t� instead of Δ[m]t. The first benefit is seen in the
decryption bound since now⌊

t

Q
[c0 + c1 · s]Q

⌉
=
⌊

t

Q

(
Q

t
[m]t + v + ε + kQ

)⌉
= [m]t +

⌊
t

Q
(v + ε)

⌉
+ tk

= [m]t +
⌊

t

Q
(v + ε)

⌉
mod t,

where k ∈ R and ε is the rounding error coming from �Q[m]t/t� = Q[m]t/t+ε,
such that ‖ε‖∞≤ 1/2. Therefore the decryption will be correct as long as:

t

Q
‖v + ε‖∞ <

1
2
,

which is satisfied if
‖v‖∞<

Q

2t
− 1

2
. (8)

Remark 2. Note that one can compute �Q[m]t/t� mod Q directly in RNS as
long as t and Q are coprime since⌊

Q[m]t
t

⌉
=

Q[m]t − [Qm]t
t

= − [Qm]t
t

mod Q.

The second benefit is observed in the addition since now we have

c0 + c1 · s + c′
0 + c′

1 · s =
Q

t
([m]t + [m′]t) + v + v′ + ε + ε′

=
Q

t
([m + m′]t + tu) + v + v′ + ε + ε′

=
Q

t
[m + m′]t + v + v′ + ε + ε′ mod Q.
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Hence the noise after a homomorphic addition is bounded by

‖vnew-add‖∞≤ ‖v‖∞ + ‖v′‖∞ + 1. (9)

Note that the decryption bound (8) and the addition bound (9) are now
exactly the same as for BGV.

The equations for homomorphic multiplication can be simplified the same
way. Denoting ṽ = v + ε, cttensor is computed as

(c0 + c1 · s) · (c′
0 + c′

1 · s) =
(

Q

t
[m]t + ṽ + kQ

)
·
(

Q

t
[m′]t + ṽ′ + k′Q

)

=
Q2

t2
[m · m′]t +

Q

t
vnew-tensor +

Q2

t
knew-tensor,

where

vnew-tensor = [m]t · ṽ′ + [m′]t · ṽ +
t

Q
ṽ · ṽ′ + t(ṽ · k′ + ṽ′ · k),

knew-tensor = [m]t · k′ + [m′]t · k + tk · k′ + rm.

Then after the scaling by t/Q and rounding, similarly to the original BFV scheme,
the noise of the multiplication is given by: vnew-mult = vnew-tensor + vr, and is
bounded by:

‖vnew-mult‖∞≤δRt

2

(
2 ‖ṽ‖∞ ‖ṽ′‖∞

Q
+
(
4 + δRBkey

)
(‖ṽ‖∞ + ‖ṽ′‖∞)

)

+
1 + δRBkey + δ2RB2

key

2
. (10)

We will see in Sect. 5 that this bound is similar to the bound for BGV.
Similarly to [27], we can derive a bound on the noise after having evaluated

a binary tree of depth L from (10). By assuming that the size of the noise of
ciphertexts is bounded by V before the first multiplication, the noise of the
resulting ciphertext will be bounded by

CL
1 V + C2

L−1∑
i=0

Ci
1 ≤ CL

1 V + LC2C
L−1
1

with C1 = δRt(5 + δRBkey) and C2 = (1 + δRBkey + δ2RB2
key)/2 + Vks where Vks

represents the noise added by the key-switching (see the full version).
Last we want to highlight further the similarity between BGV and BFV. Just

like in the GHS variant of BGV, one can encrypt a ciphertext ct in BFV using a
slightly larger modulus Qp and then rescale the ciphertext by 1/p, which will
have the same effect as modulus switching in BGV:

ctscale =
⌊

1
p
ct

⌉
mod Q,
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so that its noise after scaling is bounded by

‖vscale‖∞ ≤ ‖v‖∞
p

+
1
2p

+
1 + δRBkey

2
.

Therefore, like in BGV, this allows to reduce the noise of a freshly encrypted
to (1 + δRBkey)/2 ≈ δR/2. Note that the noise benefit of the BFV encryption
proposed in our work will become more significant as the fresh noise is sev-
eral bits larger than the modulus switching noise. Moreover, when using GHS or
Hybrid key switching, p can be chosen as one of the moduli of the key-switching
basis, and therefore this technique will not impact the selection of Ring-LWE
security parameters.

3.2 Modified Homomorphic Multiplication

In the previous subsection, we showed how to instantiate BFV in such a way that
it is not worse than BGV in terms of noise growth. Now the main difference left
between the two schemes is in the complexity of their homomorphic multiplica-
tion procedure. In a nutshell, in BGV the tensoring can be done directly modulo
Q while in BFV it must be done without any modular reduction. In practice,
this requires using a second RNS basis P = p1 · · · pk′ such that ct(s) · ct′(s′)
does not wrap around modulo PQ. More precisely, the critical part in practice
is to avoid the wraparound of the dominant term Qtk · k′ modulo P during the
scaling (see Sect. 2.2). This requires to choose P > tδ3RQ/4, which in practice is
satisfied by setting k′ = k +1 for the RNS instantiation. Algorithm 1 recalls the
original homomorphic multiplication procedure of BFV.

Algorithm 1 . Original BFV Multiplication Algorithm

procedure OriginalMult(ct = (c0, c1) ∈ R2
Q, ct′ = (c′

0, c
′
1) ∈ R2

Q)
Expand: ct ∈ R2

Q and ct′ ∈ R2
Q → ct ∈ R2

QP and ct′ ∈ R2
QP :

� ct(s) = Δ[m]t + v + Qk (mod RQP )
� ct′(s) = Δ[m′]t + v′ + Qk′ (mod RQP )

Tensor: cttensor = (c0 · c′
0, c0 · c′

1 + c1 · c′
0, c1 · c′

1) ∈ R3
QP :

� cttensor(s) = Q
t
Δ[m · m′]t + Q

t
vtensor + Q2

t
ktensor (mod RQP )

ScaleDown: ctscale = � t
Q
cttensor� ∈ R3

P

� ctscale(s) = Δ [m · m′]t + vtensor + Qktensor + vr (mod RP )
SwitchBasis: ctscale ∈ R3

P → ctscale ∈ R3
Q:

� ctscale(s) = Δ [m · m′]t + vtensor + vr (mod RQ)

We propose a new homomorphic multiplication algorithm, with a reduced
computational complexity. Instead of multiplying two ciphertexts modulo Q and
dealing with a multiple of Q2 modulo QP , the idea is to switch one of the two
ciphertexts to modulus P so that after the tensoring we obtain a multiple of
PQ that vanishes modulo PQ. As explained in the above paragraph, this would
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allow us to reduce the size of P since the original dominant term would now
disappear. More precisely, the procedure starts as usual with two ciphertexts
encrypted modulo Q:

ct(s) =
Q

t
[m]t + ṽ + kQ and ct′(s) =

Q

t
[m′]t + ṽ′ + k′Q.

with ṽ = v + ε and ṽ′ = v′ + ε′, like in Sect. 3.1.
Then one can perform the modulus switching of one of the two ciphertexts,

say ct, to convert it to modulus P by computing

ĉt =
⌊

P

Q
ct

⌉
mod P,

which satisfies:

ĉt(s) =
P

t
[m]t +

P ṽ

Q
+ kP + εround mod P,

where the rounding error εround = ĉt(s) − Pct(s)/Q has its norm bounded
by (1 + δRBkey)/2 as usual. From there, ĉt is expanded from P to QP , ct′ is
expanded from Q to QP , and one can perform the tensoring as usual to obtain

ĉttensor(s) =
PQ

t2
[m · m′]t +

P

t
v̂tensor +

QP

t
k̂tensor

+ εround ·
(

Q

t
[m′]t + ṽ′ + k′Q

)
mod PQ,

with v̂tensor = vnew-tensor from Sect. 3.1 and

k̂tensor = [m]t · k′ + [m′]t · k + rm ∈ R.

Note that this time k̂tensor does not contain a multiple of k ·k′. Then to get back
a valid ciphertext modulo Q, one must scale down the result by t/P , instead of
t/Q in the original case, which leads to

t

P
ĉttensor(s) =

Q

t
[m · m′]t + v̂tensor + Qk̂tensor +

tεround

P
·
(

Q

t
[m′]t + ṽ′ + k′Q

)
.

After the rounding, the multiple of Q will vanish modulo Q and one will
have to take into account the rounding error term vr of norm bounded by (1 +
δRBkey + δ2RB2

key)/2, which adds to the noise, like in the original BFV scheme.
Therefore, the noise of this variant of homomorphic multiplication is bounded
by

‖v̂new-mult‖∞ ≤ ‖vnew-mult‖∞+
tδR(δRBkey + 1)

2P

(
‖ṽ‖′

∞ +
Q(δRBkey + 4)

2

)
.

(11)
Notice that the only difference in the noise growth between Eq. (10) and Eq.
(11) is due to rounding error εround occuring during the first modulus switching.
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However, we can control the size of this noise with P . As explained in Sect. 3.1,
the norm of vnew-mult is dominated by δ2RtV , where V is the bound on the size of
the noise of ṽ and ṽ′. If we look carefully at the other term and choose P ≈ Q,
it will be dominated by δ3Rt/4. Since the noise of a fresh ciphertext, even scaled-
down after encryption, has always a size larger than δR/2, this error term will
add at most half a bit to the noise of the first multiplication in the worst case,
which can be considered as neglible in practice as a larger cushion is typically
added to the heuristic expression for δR, or, more precisely, δ3R in this case. This
means that one can choose P ≈ Q and hence k′ = k, instead of k′ = k +1 in the
original case, which reduces the size of P and still achieves the same noise growth
as in Sect. 3.1. We summarize our new multiplication algorithm in Algorithm 2.

Algorithm 2 . New BFV Multiplication Algorithm

procedure NewMult(ct = (c0, c1) ∈ R2
Q, ct′ = (c′

0, c
′
1) ∈ R2

Q)
ModSwitch: ct ∈ R2

Q → ĉt ∈ R2
P

Expand: ĉt ∈ R2
P → ĉt ∈ R2

QP and ct′ ∈ R2
Q → ct′ ∈ R2

QP

� ĉt(s) = P
t
[m]t + P

Q
ṽ + Pk + εround (mod RQP )

� ct′(s) = Q
t
[m′]t + ṽ′ + Qk′ (mod RQP )

Tensor: ĉttensor = (ĉ0 · c′
0, ĉ0 · c′

1 + ĉ1 · c′
0, ĉ1 · c′

1) ∈ R3
QP :

� ĉttensor(s) = QP
t2

[m · m′]t + P
t
v̂tensor + QP

t
k̂tensor (mod RQP )

ScaleDown: ctscale = � t
P
ĉttensor� ∈ R3

Q

� ctscale(s) = Q
t

[m · m′]t + v̂tensor + vr (mod RQ)

Remark 3. Notice that since one must scale the tensored ciphertext by t/P
instead of t/Q, it can be done directly in the basis Q. Therefore the homo-
morphic multiplication procedure requires 2 basis extensions from Q to P for
ct = (c0, c1) in the beginning, 4 more basis extensions to expand the two cipher-
texts ĉt = (ĉ0, ĉ1) and ct′ = (c′

0, c
′
1) from P and Q, respectively, to PQ. Finally

one needs 3 additional basis extensions from PQ to Q for ĉttensor ∈ R3
PQ to

perform the downscaling modulo Q. Thus it requires a total of 9 basis extensions
instead of 4 + 3 + 3 = 10 in the original BFV algorithm. Moreover, since P is
slightly smaller, each basis extension will be cheaper to compute.

Leveled BFV Multiplication. If one wants to make BFV even closer to BGV in
terms of performance, one could consider a “leveled” approach to BFV by working
with ciphertexts modulo Q� = q1 · · · q� and performing modulus switching as
the computation progresses. However, as in BGV, one would have to manage
ciphertexts at different levels and deal with more challenging noise estimation.

To keep the usability of BFV, we propose instead a “leveled” multiplication
that pre-scales both ciphertexts by Q�

Q (using internal modulus switching to
Q�), and then multiplies the result by Q

Q�
after the multiplication procedure. In

this case, the ciphertexts will always stay modulo Q outside the multiplication
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procedure, but the multiplication will be done internally modulo Q� < Q and
hence will be more efficient.

In this case, the noise of input ciphertexts after internal modulus switching
from Q to Q� will be equal to

v̂ =
Q�

Q
v + εround and v̂′ =

Q�

Q
v′ + ε′

round,

where εround and ε′
round have their norm bounded by (1 + δRBkey)/2 ≈ δR/2.

On the one hand, the main consideration here is to choose � such that Q�

Q ‖v‖∞
remains significantly larger than ‖εround‖∞ ≈ δR

2 , so that the noise brought
about by the modulus switching procedure will not significantly impact the over-
all noise growth. This is equivalent to

‖v‖∞ 
 QδR
2Q�

and ‖v‖′
∞ 
 QδR

2Q�
,

or in practice

‖v‖∞ > 8
QδR
Q�

and ‖v‖′
∞ > 8

QδR
Q�

. (12)

On the other hand, in order to gain as much as possible in efficiency, Q� must
be chosen as the smallest modulus satisfying inequalities (12). Theoretically this
requires to have a precise estimate of the average (or lower bound within a certain
confidence interval) noise size. But in practice it is enough to add a heuristic
“cushion” to our worst-case bound. See the full version for details.

Algorithm 3 . New Leveled BFV Multiplication Algorithm

procedure LeveledNewMult(ct = (c0, c1) ∈ R2
Q, ct′ = (c′

0, c
′
1) ∈ R2

Q)

ModSwitchDown: ĉt = �Q�
Q
ct� ∈ R2

Q�
and ĉt

′
= �Q�

Q
ct′� ∈ R2

Q�

� v̂ = Q�
Q

v + εround and � v̂′ = Q�
Q

v′ + ε′
round

ĉtm = NewMult(ĉt, ĉt
′
) ∈ R3

Q�

� ĉtm(s) = Q�
t

[m1m2]t + v̂m (mod RQ�)

ModSwitchUp: ctm = � Q
Q�

ĉtm� ∈ R3
Q

� ctm(s) = Q
t

[m1m2]t + vm (mod RQ)

� vm = Q
Q�

v̂m + vr

Remark 4. Note that this “leveled” optimization can be equally applied to key
switching. The only difference in this case would be to ensure that the noise
of the scaled ciphertext remains larger than the noise brought about by the
key-switching procedure itself.
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Table 1. Complexities of different multiplication methods.

# NTTs # integer-mult # floating-point-oper

MultOld 14k + 7 (10k2 + 26k + 9)n (10k + 3)n

MultNew 14k (9k2 + 15k)n 7kn

MultNewLeveled 14� (4k� + 5�2 + 2k + 18�)n (2k + 5�)n

Remark 5. Modulus switching from Q to Q� and then from Q� to P� in Algo-
rithm 3 can be combined into a single modulus switching from Q directly to
P�. This reduces the number of integer multiplications from (k� + �2 + 2�)n to
(k�+ �)n. Note that an approximate modulus switching (instead of an exact one
with a floating-point correction technique from [21]) can be employed by adding
extra log k bits to the noise estimate used for reducing the number of levels
inside homomorphic multiplication. Both exact and approximate procedures for
switching the moduli of ciphertexts between arbitrary RNS bases are described
in the full version.

Table 1 summarizes the computational complexities of different multiplica-
tion algorithms by assuming that the extension from Q to QP is performed using
the technique from [21] with floating-point operations.

Lazy Scaling in BFV Multiplication. An additional optimization can be imple-
mented by noticing that tensoring and scaling can be separated to optimize some
evaluation circuits. For example, consider the inner product circuit of two vec-
tors of ciphertexts. We evaluate it by multiplying (tensoring and scaling) the
pairs of ciphertexts and then adding the results (mod RQ). It is more efficient
to do this in a different way: first we apply the tensoring subroutine to the pairs
of ciphertexts, then add the results (mod RQP ), and finally perform the expen-
sive scaling subroutine only once. Indeed, after tensoring we already have the
information about the multiplicative noise vtensor, thus changing the order of
scaling and additions does not affect the vtensor noise. Moreover, as we perform
the scaling down only once instead of doing it for each pair of ciphertexts, the
total noise from the inner product is actually reduced. We call this technique lazy
scaling and describe the pseudocode in the full version. The experimental results
in the full version suggest that this optimization can speed up inner products by
more than 2x in practice.

3.3 Improved Decryption in the HPS RNS Variant

A significant practical limitation of the HPS approach is that high-precision
(“long double” or even quad-precision) floating-point arithmetic is required to
support larger CRT moduli [21]. We introduce a general-purpose digit decom-
position technique (inspired by digit decomposition in key switching) and apply
it to the HPS decryption procedure to add support for arbitrary CRT moduli
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using only regular double-precision floating-point arithmetic, hence overcoming
this limitation of the HPS variant.

The idea of HPS scaling [21] for decryption can be briefly explained as follows:
for x ∈ ZQ with CRT representation (x1, . . . , xk) we want to compute an integer
y = �t/Qx� ∈ Zt, and use a CRT composition formula to derive the following
expression:

y :=
⌈

t

Q
x

⌋
=

⎡
⎢⎢⎢

⎛
⎝

k∑
i=1

xi ·
[(

Q

qi

)−1
]

qi

· Q

qi
· t

Q

⎞
⎠− u · Q · t

Q

⎥⎥⎥⎦

=

⎡
⎣
⎡
⎢⎢⎢

⎛
⎝

k∑
i=1

xi ·
⎛
⎝
[(

Q

qi

)−1
]

qi

· t

qi

⎞
⎠
⎞
⎠
⎥⎥⎥⎦
⎤
⎦

t

=

[(
k∑

i=1

xi · ωi

)
+

⌈
k∑

i=1

xi · θi

⌋]

t

,

where

[(
Q

qi

)−1
]

qi

· t

qi
= ωi + θi with ωi ∈ Zt and θi ∈

[
−1

2
,
1
2

)
.

As we can only store approximate values θ̃i = θi + εi, the magnitude of the
error term |ε′|= |∑i xiεi| in the fractional part is limited by kqmεm, where
qm = maxi(qi) and εm = maxi(εi). If we restrict the floating-point precision to
“doubles”, which are natively supported by modern CPUs, we have to introduce
a constraint kqm < 251. To support larger CRT moduli, we need “long doubles”
or even quad-precision arithmetic: long doubles are needed for CRT moduli from
47 to 58 bits, and quad-precision floats are needed for higher CRT moduli [21].

Our main idea is to perform digit decomposition, somewhat similar to how
digit decomposition is done in BV key-switching, to replace the factor qm with
a smaller digit of it. For base Bs ∈ Z, Bs ≥ 2, let ds = �log(qm)/log(Bs)�. Let
xi =

∑ds−1
j=0 xi,j · Bj

s be the Bs base decomposition of xi. Then the expression
for y can be rewritten as

y =

⎡
⎣
⎡
⎢⎢⎢

⎛
⎝

k∑
i=1

ds−1∑
j=0

xi,j ·
⎛
⎝ t

qi
·
⎡
⎣
[(

Q

qi

)−1
]

qi

· Bj
s

⎤
⎦

qi

⎞
⎠
⎞
⎠
⎥⎥⎥⎦
⎤
⎦

t

=

⎡
⎣
⎛
⎝

k∑
i=1

ds−1∑
j=0

[xi,j · ωi,j ]t

⎞
⎠+

⎡
⎢⎢⎢

k∑
i=1

ds−1∑
j=0

xi,j · θi,j

⎥⎥⎥⎦
⎤
⎦

t

,

where
t

qi
·
⎡
⎣
[(

Q

qi

)−1
]

qi

· Bj
s

⎤
⎦

qi

= ωi,j+θi,j , with ωi,j ∈ Zt and θi,j ∈
[
−1

2
,
1
2

)
.

Note that ωi,j and θi,j are the new precomputation factors instead of ωi and θi.

Error Analysis. The magnitude of the error term |ε′|= |∑i,j xij
εi,j | is now

limited by
∣∣∣∑i,j xi,jεi,j

∣∣∣ < kdsBsεm. In practice, our moduli qi are normally
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bounded by 64 (or often by 60) bits. We have already considered the case
of kqm < 251. If kqm > 251, we can take ds = 2, Bs = 2�log2 qm/2�. Then
|ε′|< 2−19k < 1/4 for k < 217. Hence the floating-point error will have no effect
on the result for any practically reasonable value of k.

Complexity Analysis. The procedure takes kds floating-point multiplications,
kds modular integer multiplications, some modular additions, and one rounding
to compute �u�. However, if tkdsBs < 264, then we can replace modular multi-
plications and modular additions by plain integer multiplications and additions
respectively, and do one modular reduction at the end.

Remark 6. Note that this digit decomposition technique can be applied to other
mixed integer/floating-point RNS operations to reduce precision requirements
for floating-point arithmetic or avoid extra noise due to floating-point rounding.
For instance, it can be used in the scaling for homomorphic multiplication.

4 More Usable BGV Scheme

The practical use of the BGV scheme requires accurate dynamic noise estimation
to decide when the modulus operation should be executed, and what scaling
factor should be chosen for modulus switching [20]. Each modulus switching
decision may significantly impact the noise not only for the current operation,
but also for all subsequent operations. An error in a noise estimate may even-
tually lead even to a decryption failure. Therefore, fine-tuned noise estimation
techniques are used to estimate the noise for various operations (see [23] for a
more detailed discussion). In contrast, the BFV scheme is much more robust to
inaccuracies in noise estimation and typically only requires an upper bound on
the error for the desired multiplicative depth. This robustness of BFV is related
to the use of the MSD encoding and scaling down by a large factor Q/t during
BFV homomorphic multiplication, and the “fragility” of BGV is caused by the
LSD encoding and scaling down by a small factor, comparable in magnitude to
the noise incurred in operations after the previous modulus switching. For this
reason, many modern homomorphic encryption libraries implement BFV as the
scheme for finite fields, while only HELib and PALISADE (since quite recently)
provide efficient implementations of BGV.

We present an alternative approach for instantiating BGV, which does not
require dynamic noise estimation. For this instantiation, one only needs to specify
the multiplicative depth of the computation, maximum number of additions per
multiplicative level, and the number of additions and automorphisms before
first multiplication. Then all moduli QL, QL−1, . . . , Q1, Q0 are chosen so that a
small, constant level of noise can be maintained throughout the computation.
All modulus switching operations are automatically performed right before a
homomorphic multiplication. Conceptually, this BGV instantiation is similar in
usability to BFV, where only the multiplicative depth needs to be specified upfront
and all “modulus switching” operations are performed automatically.



Revisiting Homomorphic Encryption Schemes for Finite Fields 631

The logic for choosing the moduli is as follows. We start with a fresh encryp-
tion that has a noise ‖vfresh‖∞ = Berr(2δRBkey+1). Then we perform automor-
phism operations and additions, and apply modulus switching right before the
first multiplication. This additional modulus switching before first multiplica-
tion allows us to reset the noise to a value comparable to the modulus switching
noise, which will be the constant noise level ‖vc‖∞ we will maintain throughout
the computation. This can be expressed as

QL

QL+1
((nadd + 1) ‖vfresh‖∞ + nks ‖vks‖∞) +

1 + δRBkey

2
≤ ‖vc‖∞ ,

where nadd and nks are the numbers of additions and automorphism operations,
respectively, that are performed before first multiplication, and ‖vks‖∞ is the
bound on key switching noise. Note that here we introduced a new level and
corresponding new modulus QL+1 to account for an extra level we added before
first multiplication. It is best to choose QL+1/QL such that ‖vc‖∞ ≈ 1+δRBkey

to achieve the smallest constant error because this error will allow us to minimize
the subsequent values of Qi+1/Qi for most practical scenarios, hence resulting
in the minimum value of ciphertext modulus QL+1 (see the full version for more
details, and more general expression for optimal ‖vc‖∞).

Then for multiplication levels (from L to 1), we have to satisfy

Qi

Qi+1

(
(n′

add + 1)
δRt

2
(2 ‖vc‖2∞ + 2 ‖vc‖∞ + 1) + (n′

ks + 1) ‖vks‖∞

)

+
1 + δRBkey

2
≤ ‖vc‖∞ ,

where n′
add and n′

ks are the maximum numbers of additions and key switching
operations, respectively, allowed per any multiplication level (going from L down
to 1). For simplicity we use these maximum values across all levels so that
Qi+1/Qi could have roughly same value for all i ∈ {1, . . . , L − 1}. Note that for
Hybrid key switching and relatively large plaintext moduli, such as t = 216 + 1,
which is often used for CRT packing, the multiplication noise is always much
higher than ‖vks‖∞ (see derivations in the full version). Hence for this case we
can rewrite the expression as

Qi

Qi+1

(
(n′

add + 1)
δRt

2
(2 ‖vc‖2∞ + 2 ‖vc‖∞ + 1)

)
+

1 + δRBkey

2
≤ ‖vc‖∞ .

The last modulus Q0 is chosen such that decryption is correct for a ciphertext
with noise bounded by ‖vc‖∞. This implies that Q0 > 2t ‖vc‖∞ − t.

It is easy to show that once L, nadd, nks, n
′
add, and n′

ks (only needed for small
t) are given, all moduli Qi can be derived. First we compute Q0, then all values
Q1, . . . , QL, and finally we can find QL+1.

This logic is simple to implement and avoids any dynamic noise estimation
during the computation. It is also robust to inaccurate estimates as long as the
upper bound for δR is chosen appropriately, which is very similar to what is
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done for BFV. There is a cost for this simplicity and robustness. The moduli
QL+1 may be larger than the values obtained using the more granular app-
roach with dynamic noise estimation [23] because we use the maximum values
of n′

add and n′
ks over all intermediate levels. However, our experimental results

show that this instantiation of BGV can be significantly faster than the improved
BFV implementation described in Sect. 3.

Remarks on the RNS Instantiation. Recall that for original BGV, we choose Q =
q0 · · · qL and denote Qi = q0 · · · qi for 0 ≤ i ≤ L, where all qi = 1 mod 2N
and co-prime to each other. In the case of our BGV variant, an extra qL+1 is
introduced to reset the “fresh” noise to modulus switching noise. It is easy to
show that for this setup, Q0 = q0, Qi+1/Qi = qi+1, and QL+1/QL = qL+1.

The expressions for finding q0, qi, qL+1, where i ∈ {1, . . . , L}, can be written
as follows:

q0 > 2t ‖vc‖∞ − t, (13)

qi > 2
(

(n′
add + 1)

δRt

2
(2 ‖vc‖∞ + 2 +

1
‖vc‖∞

) + (n′
ks + 1)

‖vks‖∞
‖vc‖∞

)
, (14)

qL+1 > 2
(

(nadd + 1)
‖vfresh‖∞

‖vc‖∞
+ nks

‖vks‖∞
‖vc‖∞

)
,

where we take ‖vc‖∞ = 1 + δRBkey.

Handling Crosslevel Operations and Scaling Factors. The GHS variant imple-
mented in HELib uses ciphertext-specific scaling factors, which introduces some
complications that may affect the usability and may require additional scalar
multiplications to bring two ciphertexts to the same scaling factor. In our
BGV variant, we chose a simpler approach where the same scaling factor is used
for all ciphertexts at a specific level, which reduces the number of scalar multipli-
cations. This approach was originally introduced for the CKKS scheme in [25],
and in our work we adapt it to BGV.

5 Comparison of BFV and BGV

5.1 Noise Growth

When comparing BGV and BFV, it is convenient to use the leveled approach of
BGV, first comparing Q0, then Qi, and finally QL+1.

For Q0, our modified variant of BFV has identical noise as BGV, i.e., Eq. (8)
is exactly the same as Eq. (13).

For Qi+1/Qi, which corresponds to each multiplicative level, the dominant
term in the BFV expression given by Eq. (11) is δ2RtBkeyV , where V is the largest
of the errors in two multiplied ciphertexts. For BGV, Eq. (14) suggests that the
dominant term is 2δ2RtBkeyV . In other words, the expressions for BFV and BGV are
identical except for the extra multiplicative factor of 2. This factor appears in
BGV because we ensure that at each level the downscaled noise matches the added
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modulus switching noise, keeping the noise level constant at twice the modulus
switching noise (see the full version for details). In the case of BFV, the quadratic
noise (product of prior noises for each ciphertext) is negligible as we downscale
the ciphertext by a large factor Q/t, and we only observe the pure modulus
switching noise. In other words, BFV has a small benefit of using one bit less per
multiplication level.

There is also an extra advantage of BFV for small plaintext moduli, e.g., t = 2.
As the analysis in the full version shows, the key switching noise in this case
becomes comparable to multiplication noise for BGV, which implies higher values
of Qi+1/Qi. In contrast, the key switching noise may only affect the initial level
in BFV, as afterwards the accumulated noise from prior multiplications will be
much higher than additive key switching noise, which is independent of current
ciphertext noise. When we switch to larger plaintext moduli, this BFV advantage
disappears as the key-switching noise in BGV becomes negligible compared to
multiplication noise (as shown in the full version).

Using the (L + 1)-th level (qL+1 in the RNS version) is preferred in BGV to
achieve the smallest constant noise (twice the modulus switching noise). If
(L + 1)-th level is not used, then the fresh noise will make each Qi+1/Qi larger
by a factor ‖vfresh‖∞ /‖vc‖∞ ≈ 2Berr ≈ 37. Although one could use an auxil-
iary modulus in hybrid key switching during encryption instead (see the end of
Sect. 3.1), extra noise can be accumulated from additions and/or key switching
operations performed before first multiplication, which would increase all sub-
sequent Qi+1/Qi. So the least level of constant noise in BGV, and hence smallest
Qi+1/Qi, can be guaranteed only by introducing a relatively small extra “noise
budget” for pseudo-level L + 1. Note that in BFV it is best to use an auxiliary
modulus to reset the fresh noise to smaller modulus switching noise, without
increasing the ciphertext modulus (see Sect. 3.1). Hence no pseudo-level L+1 is
needed in BFV, which is another small advantage of BFV over BGV.

In summary, the improved variants of BFV and BGV presented in this work
have very similar noise growth, but BFV has some minor advantages over BGV,
resulting in somewhat reduced ciphertext moduli needed to support the same
computations.

5.2 Computational Complexity

The main difference between BFV and BGV in terms of computational complexity
is due to the scaling method used in the multiplication operation. As was previ-
ously mentioned, BFV uses the MSD encoding and scales down the tensor product
by a large Q/t factor, while BGV uses the LSD encoding technique to scale the
tensor product only by a relatively small factor, comparable to the noise of pre-
vious multiplication. Considering that the noise growth is very similar in both
schemes, one can expect that the computational complexity of BFV multiplica-
tion will be significantly higher. The purpose of this section is to quantify this
difference, and examine the effect of plaintext moduli on this difference. Note
that all other operations, such as addition and automorphism, use the same
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approach in both schemes, and do not have any significant difference in terms
of theoretical complexity. Hence we focus on the operation of multiplication.

The analysis in Sect. 3.2 shows that our leveled BFV multiplication takes
14� NTTs and (4k� + 5�2 + 2k + 18�)n integer multiplications (we ignore for
simplicity a much smaller contribution of floating-point operations). We also
add the computational cost of hybrid key switching used for relinearization as
there is a difference in its cost between BFV and BGV. For key-switching we
assume that the ciphertext element is decomposed into dnum = �/α digits,
i.e. each digit is considered modulo α moduli. The cost of relinearization for
BFV is 4� + 2α NTTs and n(3α� + 2dnum� + 2α + 5�) integer multiplications (see
the full version for details). Here, for simplicity of analysis we assume that �
is the same for leveled BFV multiplication and subsequent relinearization. The
total cost of multiplication and relinearization in BFV is 17� + 2α NTTs and
n(4k� + 5�2 + 2k + 23� + 3α� + 2dnum� + 2α) integer multiplications.

In the case of our BGV variant, the total cost of multiplication includes two
modulus switching operations for input ciphertexts, the tensor product, and,
finally, the relinearization. The cost of modulus switching is 4(�′ + 1) NTTs and
4n(�′ + 2) integer multiplications, where �′ is the number of CRT moduli after
modulus switching. The cost of tensor product is 4n�′ integer multiplications.
The cost of relinearization in the case of BGV is: 4�′ + 2α′ NTTs and n(3α′�′ +
2dnum�′+4α′+7�′) integer multiplications. Hence the total cost of multiplication
and relinearization is 8�′ +4+2α′ NTTs and n(3α′�′ +2dnum�′ +4α′ +15�′ +8)
integer multiplications.

One can observe that the number of NTTs needed for BFV multiplication
appears to be 2x or even higher than for BGV. But we should keep in mind that
typically �′ > �. For example, when t = 2, we can even have �′ > 3� since in
BFV we work with large (60-bit) moduli vs the moduli of size δ2Rt (less than 20
bits) in BGV. On the other hand, the cost of integer multiplications in BFV appears
to be significantly higher due to multiple basis extension operations. The above
may suggest that the complexity of BFV could be lower than for BGV at small
t, while more significant benefits of BGV are expected as t is increased, when
the ratio of �′/� becomes smaller than 2, which corresponds to the typical value
of t = 216 + 1 used for CRT packing. One could argue that this is essentially
due to the assumption that the computations modulo each CRT moduli are
implemented on different machine words, which is typically true for practical
implementations of homomorphic encryption. As a consequence, while BGV might
be practically slower than BFV at small t for classical implementations, we stress
that this is only due to the way the CRT representation is usually implemented
and that BGV still has a lower theoretical complexity than BFV even for small
plaintext moduli.

Remark 7. To reduce even further the computational cost of BGV, one could
trunk some CRT moduli together in the same 64-bit machine word. This would
allow one to divide the number of moduli �′, and thus of NTTs, by a factor of
2 when the moduli are smaller than 30 bits (t ≈ 211) and by a factor of 3 when
they are smaller than 20 bits (t ≈ 2).
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Fig. 1. Comparison of homomorphic multiplication runtimes for BFV and BGV variants
at various depths as a function of plaintext modulus t. Hybrid key switching with 3
digits, i.e., dnum = 3, was used, and N was set to 215.

5.3 Software Implementation and Experimentation Setup

We implemented all variants of BFV and BGV in PALISADE v1.10.4. The evalu-
ation environment was a commodity desktop computer system with an Intel(R)
Core(TM) i7-9700 CPU @ 3.00 GHz and 64 GB of RAM, running Ubuntu 18.04
LTS. The compiler was g++ 9.3.0. All experiments were executed in the single-
threaded mode.

PALISADE includes the implementation of both BEHZ and HPS variants
of BFV. The runtime results and noise growth for both variants are roughly the
same (as shown in Sect. 5.4). We chose the HPS variant as the main RNS variant
for our BFV modifications due to its relative simplicity. We denote our modified
BFV variant as BFV-NEW, our modified BFV variant with leveled multiplication
as BFV-NEW-LVL, and our BGV variant as BGV-NEW. Note that our implementation
does not trunk small CRT moduli in BGV for small values of t, i.e., it does not
include the optimization suggested in Remark 7.

5.4 Performance Comparison

Figure 1 illustrates the comparison of homomorphic multiplication runtimes for
the BFV and BGV variants developed in this work to the baseline for the prior state-
of-the-art BFV implementation of the HPS variant [21]. The first major obser-
vation is that BFV-NEW-LVL outperforms BGV-NEW for small plaintext moduli (at
least up to depth 20), while BGV-NEW runs significantly faster than BFV-NEW-LVL
for intermediate and large plaintext moduli, i.e., t = 216+1 and t = 230−218+1.
This observation is in agreement with our theoretical complexity analysis in
Sect. 5.2 since our implementation does not include the optimization suggested
in Remark 7, i.e., small moduli are not trunked together. The second significant
observation is that our best BFV variant, labeled as BFV-NEW-LVL, speeds up the
runtime of deeper multiplications (depth-20 for t = 2 and depth-10 for higher t)
by 3x-4x, as compared to the BFV baseline.
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Table 2 shows the comparison of noise growth and runtimes for a binary tree
computation ranging in multiplicative depth from 1 to 7. First, we want to point
out that the noise growth and runtimes for the BEHZ and HPS variants are
very close, with HPS having somewhat better runtime efficiency, which agrees
well with the noise analysis in [6] and runtime comparison in [3]. In view of this,
we chose HPS as the main variant for our BFV improvements (but similar gains
can be expected for the BEHZ variant). Our next observation is that BGV has a
slightly faster noise growth, as compared to all BFV variants, with the difference
in noise increasing with depth (as predicted in Sect. 5.1). Note that the orig-
inal BFV variants have somewhat higher noise (by almost constant number of
bits) as compared to our BFV variants because they do not use the technique of
encrypting with a slightly larger modulus Qp, followed with scaling by p. Our
final observation is that BGV-NEW has a minor speed-up over the best BFV variant
for the chosen plaintext modulus t = 216 +1. Note that the speed-up is observed
only for this or higher plaintext moduli, with BFV-NEW-LVL becoming faster for
t = 2 (see the full version for details). Tables in the appendix of the full ver-
sion also show the more significant effect of rt(Q) on noise magnitude at larger
plaintext moduli for the original BFV, as theoretically predicted in Sect. 3.

Table 2. Comparison of noise growth and runtimes of BFV and BGV variants for a

benchmark computation
∏2k

i=1 xi. Hybrid key switching with 3 digits, i.e., dnum = 3,
was used, t was set to 216+1, and λ ≥ 128. Here, e denotes the current noise magnitude,
log Q, the size of the BFV ciphertext modulus, and log QL, the equivalent ciphertext
modulus in BGV without the last CRT modulus qL+1.

k Original BFV Our BFV Our BGV

params BEHZ HPS params BFV-NEW BFV-NEW-LVL params BGV-NEW

log N log qi log Q log e Time (s) log e Time (s) log N log qi log Q log e Time (s) log e Time (s) log N log qi log QL log e Time (s)

1 13 31 62 45 0.011 44 0.01 13 59 59 36 0.004 35 0.004 13 33 58 34 0.005

2 13 47 94 66 0.034 66 0.03 13 45 90 63 0.025 63 0.025 13 33 91 67 0.02

3 14 43 129 102 0.24 103 0.21 14 41 123 95 0.19 96 0.18 13 33 124 100 0.063

4 14 53 159 131 0.52 132 0.45 14 52 156 125 0.4 125 0.39 13 33 157 133 0.17

5 14 48 192 158 1.41 161 1.2 14 47 188 155 1.07 155 1.04 14 34 196 171 0.8

6 14 56 224 189 2.85 189 2.44 14 55 220 184 2.18 184 2.13 14 34 230 205 2.03

7 14 51 255 221 7.61 220 6.51 14 50 250 214 5.98 214 5.73 14 34 264 239 4.86

Table 3 illustrates the comparison of noise growth and runtimes for a polyno-
mial evaluation benchmark. Our first observation is that BGV-NEW has a signifi-
cantly higher noise than all BFV variants because the moduli qi in this case require
extra room for the additions at each level (the deepest level has the most signifi-
cant effect on all qi’s). BGV-NEW again has a minor advantage in terms of runtime
as compared to our best BFV variant for t = 216 + 1, but BFV-NEW-LVL becomes
faster when we decrease t to smaller values (see the full version for details). Note
that for k = 8, BGV-NEW has a smaller ring dimension than all BFV variants,
which is an effect of the automated logic for hybrid key switching used in the
implementation, rather than a result of better noise growth in BGV (since log Q
in BFV is significantly smaller than log QL in BGV).
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Table 3. Comparison of noise growth and runtimes of BFV and BGV variants for a
benchmark computation

∏k
i=0 aix

i: |ai|< 16. Hybrid key switching with 3 digits, i.e.,
dnum = 3, was used, t was set to 216 +1, and λ ≥ 128. Here, e denotes the current noise
magnitude, log Q, the BFV ciphertext modulus, and log QL, the equivalent ciphertext
modulus in BGV without the last CRT modulus qL+1.

k Original BFV Our BFV Our BGV

params BEHZ HPS params BFV-NEW BFV-NEW-LVL params BGV-NEW

log N log qi log Q log e Time (s) log e Time (s) log N log qi log Q log e Time (s) log e Time (s) log N log qi log QL log e Time (s)

2 13 34 68 41 0.012 40 0.01 13 32 64 35 0.009 36 0.009 s 13 38 68 38 0.007

4 13 50 100 76 0.034 76 0.03 13 48 96 67 0.026 67 0.025 s 13 38 107 74 0.024

8 14 45 135 106 0.25 107 0.22 14 43 129 100 0.19 100 0.18 s 13 39 148 116 0.061

16 14 56 168 138 0.53 138 0.46 14 54 162 130 0.4 130 0.33 s 14 41 197 163 0.28

32 14 50 200 166 1.43 167 1.22 14 49 196 161 1.1 161 0.78 s 14 42 244 208 0.61

48 14 58 232 197 2.16 198 1.85 14 57 228 191 1.66 190 1.22 s 14 42 286 251 1.07

64 14 58 232 199 2.89 199 2.48 14 57 228 191 2.22 191 1.54 s 14 43 293 256 1.27

6 Concluding Remarks

Our theoretical analysis and experimental results show that the modified
BFV variant has somewhat better noise growth than BGV for all plaintext mod-
uli, though previous results suggested that BGV has a better noise growth than
BFV for larger plaintext moduli [13,14]. This result is mainly due to our mod-
ification of the BFV encryption procedure. The other major conclusion is that,
when the moduli of BGV are not trunked together, BFV is significantly faster for
small plaintext moduli, e.g., t = 2, with BGV becoming faster as the plaintext
modulus is increased.

The variant of BGV presented in this paper was mainly motivated by improv-
ing the usability of the scheme, which is known to be more challenging for use
than BFV. From this perspective, this BGV variant is as easy to use as the imple-
mentation of BFV in PALISADE. However, the usability also has some perfor-
mance cost, e.g., we have to choose the size of CRT moduli more conservatively.
It would be interesting to examine how the performance of our BGV variant com-
pares to the BGV design with dynamic noise estimation, which is implemented in
HElib. It would not be fair to compare the PALISADE implementation directly
with the HElib implementation as one would mostly observe the effect of differ-
ences in the efficiency of primitive ring operations, such as NTTs, rather than the
differences between the BGV variants. For a fair comparison, a PALISADE imple-
mentation of the dynamic-noise BGV variant would be needed. Another potential
improvement for BGV is to consider the idea of trunking multiple small CRT
moduli mentioned in Remark 7. We plan to examine both ideas in our future
work.
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Abstract. Homomorphic encryption (HE) is a promising cryptographic
primitive that enables computation over encrypted data, with a vari-
ety of applications including medical, genomic, and financial tasks. In
Asiacrypt 2017, Cheon et al. proposed the CKKS scheme to efficiently
support approximate computation over encrypted data of real num-
bers. HE schemes including CKKS, nevertheless, still suffer from slow
encryption speed and large ciphertext expansion compared to symmetric
cryptography.

In this paper, we propose a novel hybrid framework, dubbed RtF (Real-
to-Finite-field) framework, that supports CKKS. The main idea behind
this construction is to combine the CKKS and the FV homomorphic
encryption schemes, and use a stream cipher using modular arithmetic in
between. As a result, real numbers can be encrypted without significant
ciphertext expansion or computational overload on the client side.

As an instantiation of the stream cipher in our framework, we propose
a new HE-friendly cipher, dubbed HERA, and extensively analyze its secu-
rity and efficiency. The main feature of HERA is that it uses a simple ran-
domized key schedule. Compared to recent HE-friendly ciphers such as
FLIP and Rasta using randomized linear layers, HERA requires a smaller
number of random bits. For this reason, HERA significantly outperforms
existing HE-friendly ciphers on both the client and the server sides.

With the RtF transciphering framework combined with HERA at the
128-bit security level, we achieve small ciphertext expansion ratio with a
range of 1.23 to 1.54, which is at least 23 times smaller than using (sym-
metric) CKKS-only, assuming the same precision bits and the same level
of ciphertexts at the end of the framework. We also achieve 1.6µs and 21.7
MB/s for latency and throughput on the client side, which are 9085 times
and 17.8 times faster than the CKKS-only environment, respectively.

Keywords: Homomorphic encryption · Transciphering framework ·
Stream cipher · HE-friendly cipher

Jooyoung Lee—This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A
1047146).

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13092, pp. 640–669, 2021.
https://doi.org/10.1007/978-3-030-92078-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92078-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-92078-4_22


Transciphering Framework for Approximate Homomorphic Encryption 641

1 Introduction

Cryptography has been extensively used to protect data when it is stored (data-
at-rest) or when it is being transmitted (data-in-transit). We also see increasing
needs that data should be protected while it is being used, since it is often pro-
cessed within untrusted environments. For example, organizations might want
to migrate their computing environment from on-premise to public cloud, and
to collaborate with their data without necessarily trusting each other. If data is
protected by an encryption scheme which is homomorphic, then the cloud would
be able to perform meaningful computations on the encrypted data, supporting
a wide range of applications such as machine learning over a large amount of
data preserving its privacy.

Homomorphic Encryption (for Approximate Computation). An
encryption scheme that enables addition and multiplication over encrypted
data without decryption key is called a homomorphic encryption (HE) scheme.
Since the emergence of Gentry’s blueprint [27], there has been a large amount
of research in this area [10,18,25,29]. Various applications of HE to medical,
genomic, and financial tasks have also been proposed [15,17,37,45].

However, real-world data typically contain some errors from their true values
since they are represented by real numbers rather than bits or integers. Even in
the case that input data are represented by exact numbers without approxima-
tion, one might have to approximate intermediate values during data processing
for efficiency. Therefore, it would be practically relevant to support approxi-
mate computation over encrypted data. To the best of our knowledge, the CKKS
encryption scheme [16] is the only one that provides the desirable feature using
an efficient encoder for real numbers. Due to this feature, CKKS achieves good
performance in various applications, for example, to securely evaluate machine
learning algorithms on a real dataset [9,46].

Unfortunately, HE schemes including CKKS commonly have two technical
problems: slow encryption speed and large ciphertext expansion; the encryp-
tion/decryption time and the evaluation time of HE schemes are relatively slow
compared to conventional encryption schemes. In particular, ciphertext expan-
sion seems to be an intrinsic problem of homomorphic encryption due to the
noise used in the encryption algorithm. Although the ciphertext expansion has
been significantly reduced down to the order of hundreds in terms of the ratio
of a ciphertext size to its plaintext size since the invention of the batching
technique [28], it does not seem to be acceptable from a practical view point.
Furthermore, this ratio becomes even worse when it comes to encryption of a
short message; encryption of a single bit might result in a ciphertext of a few
megabytes.

Transciphering Framework for Exact Computation. To address the
issue of the ciphertext expansion and the client-side computational overload,
a hybrid framework, also called a transciphering framework, has been pro-
posed [45] (see Fig. 1). In the client-sever model, a client encrypts a message m
using a symmetric cipher E with a secret key k; this secret key is also encrypted
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Fig. 1. The (basic) transciphering framework. Homomorphic operations are performed
in the boxes with thick lines.

using an HE algorithm EncHE. The resulting ciphertexts c = Ek(m) and EncHE(k)
are stored in the server.

When the server wants to compute EncHE(m) (for computation over
encrypted data), it first computes EncHE(c) for the corresponding ciphertext
c. Then the server homomorphically evaluates E−1 over EncHE(c) and EncHE(k),
securely obtaining EncHE(m).

Given a symmetric cipher with low multiplicative depth and complexity, this
framework has the following advantages on the client side.

– A client does not need to encrypt all its data using an HE algorithm (except
the symmetric key). All the data can be encrypted using only a symmet-
ric cipher, significantly saving computational resources in terms of time and
memory.

– Symmetric encryption does not result in ciphertext expansion, so the com-
munication overload between the client and the server will be significantly
low compared to using any homomorphic encryption scheme alone.

All these merits come at the cost of computational overload on the server side.
That said, this trade-off would be worth considering in practice since servers are
typically more powerful than clients.

HE-friendly Ciphers. Symmetric ciphers are built on top of linear and non-
linear layers, and in a conventional environment, there has been no need to take
different design principles for the two types of layers with respect to their imple-
mentation cost. However, when a symmetric cipher is combined with BGV/FV-
style HE schemes in a transciphering framework, homomorphic addition becomes
way cheaper than homomorphic multiplication in terms of computation time and
noise growth. With this observation, efficiency of an HE-friendly cipher is eval-
uated by its multiplicative complexity and depth. In an arithmetic circuit, its
multiplicative complexity is represented by the number of multiplications (ANDs
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in the binary case). Multiplicative depth is the depth of the tree that represents
the arithmetic circuit, closely related to the noise growth in the HE-ciphertexts.
These two metrics have brought a new direction in the design of symmetric
ciphers: to use simple nonlinear layers at the cost of highly randomized linear
layers as adopted in the design of FLIP [44] and Rasta [21].

1.1 Our Contribution

The main contribution of this paper is two-fold. First, we propose a new tran-
sciphering framework for the CKKS scheme that supports approximate compu-
tation over encrypted data. Second, we propose a new stream cipher, dubbed
HERA (HE-friendly cipher with a RAndomized key schedule), to be built in our
framework. Using our new transciphering framework combined with HERA, real
numbers can be encrypted without significant ciphertext expansion or compu-
tational overload on the client side.

RtF Transciphering Framework. The transciphering framework in Fig. 1
does not directly apply to the CKKS scheme. The main reason is that it is
infeasible to design an HE-friendly (deterministic) symmetric cipher E operating
on real (or complex) numbers; if an HE-friendly symmetric cipher E over the real
field exists, then E is given as a real polynomial map, and any ciphertext will
be represented by a polynomial in the corresponding plaintext and the secret
key over R. Then, for given plaintext-ciphertext pairs (mi, ci), an adversary will
be able to establish a system of polynomial equations in the unknown key k.
The sum of ‖Ek(mi) − ci‖22 over the plaintext-ciphertext pairs also becomes a
real polynomial, where the actual key is the zero of this function. Since this
polynomial is differentiable, its (approximate) zeros will be efficiently found by
using iterative algorithms such as the gradient descent algorithm. By taking
multiple plaintext-ciphertext pairs, the probability of finding any false key will
be negligible.

In order to overcome this problem, we combine CKKS with FV which is
a homomorphic encryption scheme using modular arithmetic [25], obtaining a
novel hybrid framework, dubbed the RtF (Real-to-Finite-field) transciphering
framework. This framework inherits a wide range of usability from the previous
transciphering framework, such as efficient short message encryption or flexible
repacking of data on the server side. Additionally, our framework does not require
to use the complex domain for message spaces (as in the CKKS scheme), or any
expertise of the CKKS parameter setting on the client side.

In brief, the RtF framework works as follows. First, the client scales up and
rounds off real messages into Zt. Then it encrypts the messages using a stream
cipher E over Zt. This “E-ciphertext” will be sent to the server with an FV-
encrypted secret key of E, and stored there.

Whenever a “CKKS-ciphertext” is needed for any message m, the server
encrypts the E-ciphertext of m in coefficients, using the FV scheme. With the
resulting FV-ciphertext, say C, and the FV-encrypted key, the server homomor-
phically evaluates the stream cipher E and moves the resulting keystreams from
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slots to coefficients using SlotToCoeffFV. By subtracting this ciphertext from C,
the server obtains the FV-ciphertext of m in coefficients, not in slots. Finally,
in order to translate this FV-ciphertext into the corresponding CKKS-ciphertext
of m in slots, the server CKKS-bootstraps it. Since the message m should be
moved from the coefficients to the slots, the last step of the bootstrapping,
SlotToCoeffCKKS, can be omitted. As a result, the server will be able to approx-
imately evaluate any circuit on the CKKS-ciphertexts. Details of the framework
are given in Sect. 3.

Low-depth Stream Ciphers Using Modular Arithmetic. In the RtF
transciphering framework, a stream cipher using modular arithmetic is required
as a building block. There are only a few ciphers using modular arith-
metic [2,4,5,30], and even such algorithms are not suitable for our transciphering
framework due to their high multiplicative depths. In order to make our transci-
phering framework efficiently work, we propose a new HE-friendly cipher HERA,
operating on a modular space with low multiplicative depth.

Recent constructions for HE-friendly ciphers such as FLIP and Rasta use
randomized linear layers in order to reduce the multiplicative depth without
security degradation. However, this type of ciphers spend too many random
bits to generate random matrices, slowing down the overall speed on both the
client and the server sides. Instead of generating random matrices, we propose
to randomize the key schedule algorithm by combining the secret key with a
(public) random value for every round.

Implementation. We implement the RtF transciphering framework with the
stream cipher HERA in public repository1. In Sect. 5.2, we present the benchmark
of the client-side encryption in C++ and the server-side transciphering using the
Lattigo library. We also compare our framework to PEGASUS [40] and CKKS
only. In the full version of this paper [19], we compare HERA to existing HE-
friendly ciphers using the HElib library.

In summary, we achieve small ciphertext expansion ratio with a range of 1.23
to 1.54 on the client side, which is 23 times smaller than the (symmetric) CKKS-
only environment assuming similar precision and the same level of ciphertexts
at the end of the framework. When it comes to latency and throughput, we
achieve 1.6 μs and 21.7 MB/s on the client side, which is 9085 times and 17.8
times faster than the CKKS-only environment respectively. We refer to Sect. 5.2
for more details.

1.2 Related Work

Homomorphic Evaluation of Symmetric Ciphers. Since the transcipher-
ing framework has been introduced [45], early works have been focused on homo-
morphic evaluation of popular symmetric ciphers (e.g., AES [28], SIMON [39],
and PRINCE [23]). Such ciphers have been designed without any consideration on
their arithmetic complexity, so the performance of their homomorphic evaluation
1 https://github.com/KAIST-CryptLab/RtF-Transciphering.

https://github.com/KAIST-CryptLab/RtF-Transciphering
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was not satisfactory. In this line of research, LowMC [3] is the first construction
that aims to minimize the depth and the number of AND gates. However, it
turned out that LowMC is vulnerable to algebraic attacks [20,22,47], so it has
been revised later.2

Canteaut et al. [11] claimed that stream ciphers would be advantageous in
terms of online complexity compared to block ciphers, and proposed a new
stream cipher Kreyvium. However, its practical relevance is limited since the mul-
tiplicative depth (with respect to the secret key) keeps growing as keystreams
are generated. The FLIP stream cipher [44] is based on a novel design strategy
that its permutation layer is randomly generated for every encryption with-
out increasing the algebraic degree in its secret key. Furthermore, it has been
reported that FiLIP [43], a generalized instantiation of FLIP, can be efficiently
evaluated with the TFHE scheme [34]. Rasta [21] is a stream cipher aiming at
higher throughput at the cost of high latency using random linear layers, which
are generated by an extendable output function. Dasta [33], a variant of Rasta
using affine layers with lower entropy, boosts up the client-side computation. As
another variant of Rasta, Masta [31] operates on a modular domain, improving
upon Rasta in terms of the throughput of homomorphic evaluation.

Compression of HE Ciphertexts. In order to reduce the memory over-
head when encrypting short messages, Chen et al. [12] also proposed an efficient
LWEs-to-RLWE conversion method which enables transciphering to the CKKS
ciphertexts: small messages can be encrypted by LWE-based symmetric encryp-
tion with a smaller ciphertext size (compared to RLWE-based encryption), and
a collection of LWE ciphertexts can be repacked to an RLWE ciphertext to per-
form a homomorphic evaluation. Lu et al. [40] proposed a faster LWEs-to-RLWE
conversion algorithm in a hybrid construction of FHEW and CKKS, dubbed
PEGASUS, where the conversion is not limited to a small number of slots.

Chen et al. [13] proposed a hybrid HE scheme using the CKKS encoding
algorithm and a variant of FV. This hybrid scheme makes the ciphertext size a
few times smaller compared to using CKKS only, in particular, when the number
of slots is small. However, the ciphertexts from this hybrid scheme are of size
larger than tens of kilobytes, which limits its practical relevance.

2 Preliminaries

Notations. Throughout the paper, bold lowercase letters (resp. bold uppercase
letters) denote vectors (resp. matrices). For a real number r, �r� denotes the
nearest integer to r, rounding upwards in case of a tie. For an integer q, we
identify Zq with Z ∩ (−q/2, q/2], and for any real number z, [z]q denotes the
mod q reduction of z into (−q/2, q/2]. The notation �·� and [·]q are extended
to vectors (resp. polynomials) to denote their component-wise (resp. coefficient-
wise) reduction. For a complex vector x, its �p-norm is denoted by ‖x‖p. When

2 https://github.com/LowMC/lowmc/blob/master/determine rounds.py.

https://github.com/LowMC/lowmc/blob/master/determine_rounds.py
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we say �p-norm of a polynomial, it means that the �p-norm of the coefficient
vector of the polynomial.

Usual dot products of vectors are denoted by 〈·, ·〉. Throughout the paper,
ζ and ξ denote a 2N -th primitive root of unity over the complex field C, and
the finite field Zt, respectively, for fixed parameters N and t. We denote the
multiplicative group of Zt by Z

×
t . The set of strings of arbitrary length over a

set S is denoted by S∗. For two vectors (strings) a and b, their concatenation
is denoted by a‖b. For a set S, we will write a ← S to denote that a is chosen
from S uniformly at random. For a probability distribution D, a ← D will denote
that a is sampled according to the distribution D. Unless stated otherwise, all
logarithms are to the base 2.

2.1 Homomorphic Encryption

As the building blocks of our transciphering framework, we will briefly review
the FV and CKKS homomorphic encryption schemes of which security is based
on the hardness of Ring Learning With Errors (RLWE) problem [41,48]. For
more details, we refer to [16,25].

It is remarkable that FV and CKKS use the same ciphertext space; for a
positive integer q, an integer M which is a power of two, and N = M/2, both
schemes use

Rq = Zq[X]/(ΦM (X))

as their ciphertext spaces, where ΦM (X) = XN + 1. They also use similar algo-
rithms for key generation, encryption, decryption, and homomorphic addition
and multiplication. However, the FV scheme supports exact computation mod-
ulo t (which satisfies t ≡ 1 (mod M) throughout this paper), while the CKKS
scheme supports approximate computation over the real numbers by taking dif-
ferent strategies to efficiently encode messages.

Encoders and Decoders. The main difference between FV and CKKS comes
from their methods to encode messages lying in distinct spaces. The encoder
EcdFV� : Z�

t → Rt of the FV scheme is the inverse of the decoder DcdFV� defined
by, for p(X) =

∑�−1
k=0 akXkN/� ∈ Rt,

DcdFV� (p(X)) = (p(α0), · · · , p(α�−1)) ∈ Z
�
t,

where αi = ξ5
i·N/� (mod t) for 0 ≤ i ≤ �/2 − 1 and αi = ξ−5i−�/2·N/� (mod t)

for �/2 ≤ i ≤ � − 1.3

Let ΔCKKS be a positive real number (called a scaling factor in [16]). The
CKKS encoder EcdCKKS�/2 : C�/2 → R is the (approximate) inverse of the decoder
DcdCKKS�/2 : R → C

�/2, where for p(X) =
∑�−1

k=0 akXkN/� ∈ R,

DcdCKKS�/2 (p(X)) = Δ−1
CKKS · (p(β0), p(β1), · · · , p(β�/2−1)) ∈ C

�/2,

where βj = ζ5
j ·N/� ∈ C for 0 ≤ j ≤ �/2 − 1.

3 A primitive root of unity ξ exists if the characteristic t of the message space is an
odd prime such that t ≡ 1 (mod M).
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Algorithms. FV and CKKS share a common key generation algorithm. The
descriptions of those two schemes have also been merged, so that one can easily
compare the differences between FV and CKKS.

– Key generation: given a security parameter λ > 0, fix integers N , P , and
q0, . . . , qL such that qi divides qi+1 for 0 ≤ i ≤ L − 1, and distributions Dkey,
Derr and Denc over R in a way that the resulting scheme is secure against
any adversary with computational resource of O(2λ).
1. Sample a ← RqL

, s ← Dkey, and e ← Derr.
2. The secret key is defined as sk = (1, s) ∈ R2, and the corresponding

public key is defined as pk = (b, a) ∈ R2
qL

, where b = [−a · s + e]qL
.

3. Sample a′ ← RP ·qL
and e′ ← Derr.

4. The evaluation key is defined as evk = (b′, a′) ∈ R2
P ·qL

, where b′ =
[−a′ · s + e′ + Ps′]P ·qL

for s′ = [s2]qL
.

– Encryption: given a public key pk ∈ R2
qL

and a plaintext m ∈ R,
1. Sample r ← Denc and e0, e1 ← Derr.
2. Compute Enc(pk, 0) = [r · pk + (e0, e1)]qL

.
• For FV, EncFV(pk,m) = [Enc(pk, 0) + (ΔFV · [m]t, 0)]qL

, where ΔFV =
�qL/t�.

• For CKKS, EncCKKS(pk,m) = [Enc(pk, 0) + (m, 0)]qL
.

– Decryption: given a secret key sk ∈ R2 and a ciphertext ct ∈ R2
ql

,

DecFV(sk, ct) =
⌊

t

ql
[〈sk, ct〉]ql

⌉

;

DecCKKS(sk, ct) = [〈sk, ct〉]ql
.

– Addition: given ciphertexts ct1 and ct2 in R2
ql

, their sum is defined as

ctadd = [ct1 + ct2]ql
.

– Multiplication: given ciphertexts ct1 = (b1, a1) and ct2 = (b2, a2) in R2
ql

and
an evaluation key evk, their product is defined as

ctmult =
[
(d0, d1) +

⌊
P−1 · d2 · evk

⌉]
ql

,

where (d0, d1, d2) is defined by [(b1b2, a1b2 + a2b1, a1a2)]ql
when using CKKS

and
[⌊

t
ql

(b1b2, a1b2 + a2b1, a1a2)
⌉]

ql

when using FV.

– Rescaling (Modulus switching): given a ciphertext ct ∈ R2
ql

and l′ < l, its
rescaled ciphertext is defined as

Rescalel→l′(ct) =
[⌊

ql′

ql
· ct

⌉]

ql′
.
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2.2 Some Notable Homomorphic Operations

Bootstrapping for CKKS. The bootstrapping procedure for CKKS has been
actively studied recently [8,14,32,38]. Let ct be a CKKS-ciphertext of m(Y ) ∈
Z[Y ]/(Y � + 1) with respect to the secret key sk and the ciphertext modulus q,
where Y = XN/�, namely, m(Y ) = [〈ct, sk〉]q. In this case, m(Y ) has �/2 slots.
The CKKS bootstrapping aims to find a larger modulus Q > q and a ciphertext
ct′ such that m(Y ) = [〈ct′, sk〉]Q. It consists of five steps: ModRaise, SubSum,
CoeffToSlotCKKS, EvalMod, and SlotToCoeffCKKS.

– ModRaise: If we set t(X) = 〈ct, sk〉 ∈ R, then t(X) = q · I(X) + m(Y ) for
some I(X) ∈ R. ModRaise raises the ciphertext modulus to Q 
 q so that ct
is regarded as an encryption of t(X) with respect to modulus Q.

– SubSum: If N �= �, then SubSum maps I(X) to a polynomial in Y , that is,
q · I(X) + m(Y ) to (N/�) · (q · Ĩ(Y ) + m(Y )).

– CoeffToSlotCKKS: Since the message q·I(X)+m(Y ) is in the coefficient domain,
it requires homomorphic evaluation of the encoding algorithm to enable slot-
wise modulo q operation. CoeffToSlotCKKS performs homomorphic evaluation
of the inverse Discrete Fourier Transform (DFT) to obtain the ciphertext(s)
of EcdCKKS(q · I(X) + m(Y )).

– EvalMod: To approximate the modulo q operation, EvalMod homomorphi-
cally evaluates a polynomial approximation of f(t) = q

2π sin
(

2πt
q

)
. In recent

works [8,32], Chebyshev polynomial approximations are used.

– SlotToCoeffCKKS: It performs homomorphic evaluation of DFT to output a
ciphertext of m(Y ) back in its coefficient domain.

Operations in FV. In the FV scheme, there are two operations between slots
and coefficients.

– CoeffToSlotFV: It is a homomorphic evaluation of FV-encoding function. It
semantically puts the coefficients of a plaintext polynomial into the vector
of slots. It is done by multiplying the inverse Number Theoretic Transform
(NTT) matrix.

– SlotToCoeffFV: It is a homomorphic evaluation of FV-decoding function. It
semantically puts the slot vector of a message into the coefficients of the
plaintext polynomial. It is also done by multiplying the NTT matrix.

3 RtF Transciphering Framework

In this section, we describe how the RtF transciphering framework works, and
analyze the message precision of the framework.
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t

ncctr

mctr �Scale(·)� cctr

EncFV

EcdFV

Concat

k

ScaleFV
ctr = 0, . . . , B − 1

EvalFV(E, ·)

SlotToCoeffFV

{ncctr}ctr
ctr = 0, . . . , B − 1

HalfBoot

CKKS-encrypted message

Client Server

Offline

Online

Fig. 2. The RtF transciphering framework. Homomorphic encryption and evaluation is
performed in the boxes with thick lines. Operations in the boxes with rounded corners
do not use any secret information. The vertical dashed line distinguishes the client-side
and the server-side computation, while the horizontal dashed line distinguishes the
offline and the online computation. The client sends ciphertexts block by block, while
the server gathers B ciphertext blocks and recovers the CKKS-encrypted message of
the ciphertexts.

3.1 Overview of the Framework

Our RtF transciphering framework aims to replace the (basic) transciphering
framework in Fig. 1 to support CKKS, when equipped with any suitable stream
cipher. The overall design is depicted in Fig. 2. At a high level, we propose to use
a stream cipher operating on Z

n
t to encrypt real number messages on the client

side and to convert the ciphertexts into the corresponding CKKS ciphertexts on
the server side. In this regard, it is required to employ an additional HE scheme
which provides homomorphic evaluation of keystreams of the stream cipher over
the modulo t spaces efficiently, and we use FV for this purpose.
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The main idea of the RtF framework is to inject real messages into the coeffi-
cients of plaintext polynomials of FV and to delegate encoding/decoding to the
server via SlotToCoeff and CoeffToSlot for FV and CKKS which is described more
precisely as follows.

First, a message of real numbers mctr ∈ R
n is scaled into Z

n
t by multiplying by

a constant and rounding, and encrypted to cctr on the client side. After gathering
symmetric ciphertexts cctr’s from the client, the server generates a polynomial
C ∈ Rt whose coefficients are components of cctr’s. Then the polynomial is scaled
up into the FV ciphertext space by multiplying ΔFV, say C = (ΔFV · C, 0).4 On
the other hand, when the server evaluates the symmetric cipher, a bunch of the
keystream is FV-encrypted in slots. In order to match the domain of computation,
the server evaluates

SlotToCoeffFV : EncFV(EcdFV(z0, . . . , zN−1)) �→ EncFV(z0 + · · · + zN−1X
N−1)

after evaluation of the cipher, where (z0, . . . , zN−1) is the concatenated
keystream. Then, homomorphically computing

(ΔFV · C, 0) − EncFV(z0 + · · · + zN−1X
N−1),

we have EncFV(m0 + · · · + mN−1X
N−1), where (m0, . . . , mN−1) is the concate-

nated message. The next step is to convert the type of encryption to CKKS and
then to put the messages into slots, which can be done by HalfBoot.

In the bootstrapping procedure, there are five steps as follows:

ModRaise → SubSum → CoeffToSlotCKKS → EvalMod → SlotToCoeffCKKS.

HalfBoot basically follows the procedure of CKKS bootstrapping, except the final
SlotToCoeffCKKS step. Since the input ciphertext of HalfBoot contains the original
message (m0, . . . , mN−1) in coefficients rather than slots, it does not require to
move data in slots back to coefficients after EvalMod. Furthermore, with an
appropriate rescaling, HalfBoot gives an effect of full bootstrapping to enable
further approximate computations on the output CKKS ciphertexts.

3.2 Specification

For a fixed security parameter λ, all the other parameters for the FV and the
CKKS schemes will be set accordingly, including the degree of the polynomial
modulus N , the ciphertext moduli {qi}L

i=0 (used for both FV and CKKS), and
the FV plaintext modulus t. With these parameters fixed, we will describe how
the framework works, distinguishing four parts; initialization, client-side com-
putation, and offline/online server-side computation (see Fig. 2). The client-side
and server-side computations are described in Algorithm 1 and Algorithm 2,
respectively.

4 We note that cctr’s are in coefficients, not in slots.
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Algorithm 1: Client-side symmetric key encryption of the RtF transci-
phering framework
Input:

– Nonce ncctr ∈ {0, 1}λ

– Symmetric key k ∈ Z
n
t

– Tuple of messages mctr ∈ R
n

– Scaling factor δ

Output:

– Symmetric ciphertext cctr ∈ Z
n
t

1 zctr ← E(kctr, ncctr)
2 m̃ctr ← �δ · mctr�
3 cctr ← [m̃ctr + zctr]t
4 return cctr

Initialization. We use FV and CKKS with the same cyclotomic polynomial
of degree N , and the same public-private key pair (pk, sk). The public key pk
is shared by the server and the client. Let � be the number of used slots per
FV-ciphertext to encrypt k ∈ Z

n
t which satisfies n | � and � |N . To enable SIMD

evaluation for keystreams, we consider the following matrix of B duplications of
k.

Concat(k) := (k‖k‖ · · · ‖k)
︸ ︷︷ ︸

B-times

∈ Z
n×B
t .

The client can pack the coefficients of matrix Concat(k) column-wisely into one
glued column vector in Z

nB
t or row-by-row manner, which are called column-wise

and row-wise packing, respectively. The number of keystreams calculated in a
single ciphertext (resp. n ciphertexts) is B = �/n for column-wise packing (resp.
B = � for row-wise packing). We refer to the full version [19] for more details.

To summarize, the client computes

K := EncFV(pk,EcdFV(Concat(k))),

and sends K to the server. We note that this initialization phase can be done
only once at the beginning of the RtF framework. The client also generates a
random value nc ∈ {0, 1}λ and sends it to the server.

Client-side Computation. Given a nonce nc ∈ {0, 1}λ, a secret key k ∈ Z
n
t

of E, an n-tuple of real messages m = (m0, . . . , mn−1) ∈ R
n, and a scaling factor

δ > 0, the client executes the following encryption algorithm as described in
Algorithm 1.

The client computes keystream z = Ek(nc) ∈ Z
n
t . Then, the client scales the

message m by multiplying δ to every component of m. Rounding it off gives a
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Algorithm 2: Server-side homomorphic evaluation of decryption of the
RtF transciphering framework
Input:

– Set of nonces nc0, . . . , ncB−1 ∈ {0, 1}λ

– Homomorphically encrypted keys K = EncFV
(

EcdFV(Concat(k))
)

– Tuple of symmetric ciphertexts c = (c0, . . . , cB−1) ∈ (Zn
t )B

Output:

– CKKS-encrypted message M

1 V ← EvalFV(E, K, {ncctr}ctr)

2 Z ← SlotToCoeffFV(V)
3 C ← VecToPoly(c)
4 C ← (ΔFV · C, 0)
5 X ← [C − Z]q
6 X ← Rescale→0(X ) // Rescale to the lowest level

7 M ← HalfBoot(X )
8 return M

vector m̃ ∈ Z
n. If t and δ are appropriately chosen, the norm ‖m̃‖∞ can be

upper bounded by t/2. Finally, the client computes

c := [m̃ + z]t ,

and sends it to the server.

Offline Server-side Computation. Given a tuple of nonces (nc0, . . . ,
ncB−1) and the FV-encrypted key K, the server is able to construct a circuit
for the homomorphic evaluation of E, denoted by EvalFV(E, {ncctr}ctr, ·). The
circuit constructed for column-wise (resp. row-wise) packing method returns 1
ciphertext (resp. n ciphertexts) which packs �/n keystreams (resp. � keystreams).
With the FV-encrypted key K, the server homomorphically computes V :=
EvalFV(E, {ncctr}ctr,K). For ease of notation, we explain the remaining parts with
column-wise packing method. Denoting the concatenation of �/n keystreams by
(z0, . . . , z�−1) ∈ Z

�
t, the resulting FV-ciphertext V can be represented as

EncFV
(
EcdFV� (z0, . . . , z�−1)

)
.

Finally, the server computes

Z := SlotToCoeffFV(V) = EncFV

(
�−1∑

k=0

zkXk·N/�

)

.
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Online Server-side Computation. Given a tuple of symmetric ciphertexts
c = (c0, . . . , c�/n−1) ∈ (Zn

t )�/n, the server scales up c into FV-ciphertext space
to enable FV evaluation, namely

C := VecToPoly(c),
C := (ΔFV · C, 0),

where VecToPoly is defined by

VecToPoly : R
� −→ R[X]/(Φ2N (X))

(m0, . . . , m�−1) �→
�−1∑

k=0

mkXk·N/�.

Then, server computes X := [C − Z]q, where q is the ciphertext modulus of Z,
and rescales it to the lowest level of CKKS.

Now, the only remaining procedure is HalfBoot, which combines ModRaise,
SubSum, CoeffToSlotCKKS, and EvalMod sequentially. Denoting the scaled mes-
sage by (m̃0, . . . , m̃�/n−1) := (m̃0, . . . , m̃�−1) ∈ Z

�, the resulting ciphertext can
be represented as

X := EncCKKS

(
�−1∑

k=0

m̃kXk·N/�

)

.

Then, after ModRaise, we have

X ′ := EncCKKS

(
�−1∑

k=0

m̃kXk·N/� + q0 · I(X)

)

for some polynomial I(X) = r0 + · · · + rN−1X
N−1 ∈ R. By evaluating SubSum,

the polynomial I(X) becomes sparsely packed

Ĩ(X) =
N

�

�−1∑

k=0

rk·N/�X
k·N/�

and the message is scaled by N/�, say m̃k ← (N/�) · m̃k. Evaluating
CoeffToSlotCKKS gives two ciphertexts as follows.

Y0 = EncCKKS
(
EcdCKKS�/2 (m̃0 + q0r̃0, . . . , m̃�/2−1 + q0r̃�/2−1)

)

Y1 = EncCKKS
(
EcdCKKS�/2 (m̃�/2 + q0r̃�/2, . . . , m̃�−1 + q0r̃�−1)

)

where r̃k = (N/�) · rk·N/� for k = 0, 1, . . . , � − 1. If � �= N , then those two
ciphertexts can be packed in a ciphertext. As EvalMod evaluates the modulo-q0
operation approximately, EvalMod operation results in what we want.
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3.3 Message Precision

As the CKKS scheme adds some noise for every arithmetic operation, it is impor-
tant to analyze how close the output M of Algorithm 2 is to the original mes-
sage. In this section, we bound the error occurred in the RtF framework. First,
we bound the error in the middle state X in Algorithm 2.

Let m ∈ R
� be an (�/n)-concatenation of the client’s message as an input to

Algorithm 1 such that m̃ = �δ ·m� and ‖m̃‖∞ ≤ �t/2�, and let X be the state in
line 5 of Algorithm 2 before rescaling to zero level and HalfBoot in Algorithm 2.
If eeval ∈ R is an error from homomorphic evaluation of E with FV such that
‖eeval‖∞ < ΔFV/2 (i.e., the ciphertext is correctly FV-decryptable), then we have

∥
∥
∥
∥
∥
VecToPoly(m) − DecCKKS(X )

δΔFV

∥
∥
∥
∥
∥

∞
≤ 1

2δ
+

‖eeval‖∞
ΔFVδ

≤ 1
2δ

+
1
2δ

=
1
δ

since ‖m − m̃/δ‖∞ ≤ 1
2δ and [m̃]t = m̃. We remark that eeval depends on the

construction of E, which will be bounded appropriately for our new stream cipher
and proposed parameters for HE.

The change of the message precision in HalfBoot varies according to which
specific algorithm is used. We basically follow the work of Bossuat et al. [8] of
CKKS bootstrapping, and we describe the message precision using those results.

In the bootstrapping procedure, the most significant step is to approximate
modular reduction, which corresponds to EvalMod. As modular reduction itself
is not well-matched with polynomial approximation, the sine function is com-
monly used as a stepping-stone to evaluate modular reduction in bootstrapping
algorithms. As a result, there are two kinds of error to be considered in EvalMod:
one from distance between modular reduction and sine function, and the other
from polynomial approximation of the sine function.

The first one, from distance between modular reduction and the sine func-
tion, is mainly determined by the ratio of the bootstrapping scaling factor Δ′

to the modulus q0. Bootstrapping algorithms use scaling factor Δ′ larger than
default scaling factor ΔCKKS used for basic arithmetic, since approximating mod-
ular reduction induces much larger error. In this case, the distance between the
modular reduction and the sine function is bounded by Taylor’s theorem as
follows.

∣
∣
∣
∣
q0
Δ′

[
Δ′

q0
x

]

1

− q0
2πΔ′ sin

(
2πΔ′x

q0

)∣
∣
∣
∣ ≤ q0

2πΔ′ · 1
3!

(
2πΔ′

q0

)3

=
2π2

3

(
Δ′

q0

)2

(1)

provided that |x| ≤ 1.
The other error from polynomial approximation of the sine function is deter-

mined by the polynomial interpolation algorithms. In this step, Bossuat et al.
[8] adopt a specialized Chebyshev interpolation proposed by Han and Ki [32]
for sparse keys, and combine it with their optimization method, which is called
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errorless polynomial evaluation. The error bound is calculated based on the dis-
tribution of Chebyshev nodes which is empirically achieved, and we recommend
to see [32] for further discussion. Similarly to (1), this error bound also decreases
when Δ′/q0 gets smaller. Thus, we present an experimental result of correlation
between Δ′/q0 and the message precision in Table 1.

Table 1. This table presents experimental error of HalfBoot for various Δ′/q0. The
value ε is the mean error occurred by HalfBoot. The experiment is done by using
parameter Par-128 in Table 4 except Δ′/q0.

Δ′/q0 2−6 2−7 2−8 2−9 2−10 2−11 2−12

− log ε 11.29 13.29 15.30 17.29 19.28 21.24 22.73

In our transciphering framework, the value Δ′/q0 is approximately δ/t. The
plaintext modulus t should be larger than the number of precision bits, which
is the reason for ciphertext expansion in our framework. This expansion can be
reduced when arcsin is evaluated after the sine function.

After HalfBoot, we obtain a refreshed CKKS ciphertext of pre-determined
scale ΔCKKS as a result of RtF framework. Although we can freely choose the
final scale ΔCKKS, the message precision of the RtF framework cannot exceed log δ
bits. Hence it is enough to choose ΔCKKS 
 δN to ensure maximum precision
log δ against scaling error.

4 A New Stream Cipher over Zt

The RtF transciphering framework requires a stream cipher with a variable plain-
text modulus. In this section, we propose a new stream cipher HERA using mod-
ular arithmetic, and analyze its security.

4.1 Specification

A stream cipher HERA for λ-bit security takes as input a symmetric key k ∈ Z
16
t ,

a nonce nc ∈ {0, 1}λ, and returns a keystream knc ∈ Z
16
t , where the nonce is fed

to the underlying extendable output function (XOF) that outputs an element in
(Z16

t )∗. In a nutshell, HERA is defined as follows.

HERA[k, nc] = Fin[k, nc, r] ◦ RF[k, nc, r − 1] ◦ · · · ◦ RF[k, nc, 1] ◦ ARK[k, nc, 0]

where the i-th round function RF[k, nc, i] is defined as

RF[k, nc, i] = ARK[k, nc, i] ◦ Cube ◦ MixRows ◦ MixColumns
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and the final round function Fin is defined as

Fin[k, nc, r] =
ARK[k, nc, r] ◦ MixRows ◦ MixColumns ◦ Cube ◦ MixRows ◦ MixColumns

for i = 1, 2, . . . , r − 1 (see Fig. 3).

XOFnc

MC MR

X3

X3

... t

k

Fig. 3. The round function of HERA. Operations in the box with dotted (resp. thick)
lines are public (resp. secret). “MC” and “MR” represent MixColumns and MixRows,
respectively.

Key Schedule. The round key schedule can be simply seen as component-
wise product between a random value and the master key k, where the uni-
formly random value in Z

×
t is obtained from a certain extendable output func-

tion XOF with an input nc. Given a sequence of the outputs from XOF, say
rc = (rc0, . . . , rcr) ∈ (Z16

t )r+1, ARK is defined as follows.

ARK[k, nc, i](x) = x + k • rci

for i = 0, . . . , r, and x ∈ Z
16
t , where • (resp. +) denotes component-wise multi-

plication (resp. addition) modulo t. The extendable output function XOF might
be instantiated with a sponge-type hash function SHAKE256 [24].

Linear Layers. Each linear layer is the composition of MixColumns and
MixRows. Similarly to AES, MixColumns multiplies a certain 4 × 4-matrix to
each column of the state, where the state of HERA is also viewed as a 4 × 4-
matrix over Zt (see Fig. 4). MixColumns and MixRows are defined as in Fig. 5a
and Fig. 5b, respectively. The only difference of our construction from AES is
that each entry of the matrix is an element of Zt.
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Fig. 4. State of HERA. Each square stands for the component in Zt.
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Fig. 5. Definition of MixColumns and MixRows. For c ∈ {0, 1, 2, 3}, xij and yij are
defined as in Fig. 4.

Nonlinear Layers. The nonlinear map Cube is the concatenation of 16 copies
of the same S-box, where the S-box is defined by x �→ x3 over Zt. So, for
x = (x0, . . . , x15) ∈ Z

16
t , we have

Cube(x) = (x3
0, . . . , x

3
15).

For the bijectivity of S-boxes, it is required that gcd(3, t − 1) = 1.

Encryption Mode. When a keystream of k blocks (in (Z16
t )k) is needed for

some k > 0, the “inner-counter mode” can be used; for ctr = 0, 1, . . . , k − 1, one
computes

z[ctr] = HERA [k, nc‖ctr] (ic),

where ic denotes a constant (1, 2, . . . , 16) ∈ Z
16
t .

4.2 Design Rationale

Symmetric cipher designs for advanced protocols so far have been targeted at
homomorphic encryption as well as various privacy preserving protocols such
as multiparty computation (MPC) and zero knowledge proof (ZKP). In such
protocols, multiplication is significantly more expensive than addition, so a new
design principle has begun to attract attention in the literature: to use simple
nonlinear layers at the cost of highly randomized linear layers (e.g., FLIP [44]
and Rasta [21]). However, to the best of our knowledge, most symmetric ciphers
following this new design principle operate only on binary spaces, rendering it
difficult to apply them to our hybrid framework.
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One might consider literally extending FLIP [44] or Rasta [21] to modular
spaces. This straightforward approach will degrade the overall efficiency of the
cipher. Furthermore, unlike MPC and ZKP, linear maps over homomorphically
encrypted data may not be simply “free”. In order to use the batching techniques
for homomorphic evaluation, the random linear layers should be encoded into
HE-plaintexts, and then applied to HE-ciphertexts. Since multiplication between
(encoded) plaintexts and ciphertexts require O(N log N) time (besides many HE
rotations), randomized linear layers might not be that practical except that a
small number of rounds are sufficient to mitigate algebraic attacks. For this
reason, we opted for fixed linear layers.

In Table 2, we compare different types of linear maps to the (nonlinear) Cube
map in terms of evaluation time and noise budget consumption. This experiment
is conducted with the HE-parameters (N, �log q�) = (32768, 275) using row-wise
packing, where the noise budget after the initialization is set to 239 bits. In this
table, “Fixed matrix” and “Freshly-generated matrix” represent a non-sparse
fixed matrix, and a set of distinct matrices freshly generated over different slots,
respectively, where all the matrices are 16 × 16 square matrices and randomly
generated. We see that a freshly-generated linear layer takes more time than
Cube. A fixed linear layer is better than a freshly-generated one, but its time
complexity is not negligible yet compared to Cube. On the other hand, our linear
layer is even faster than (uniformly sampled) fixed linear layer due to its sparsity.

Table 2. Comparisons of different types of maps in terms of evaluation time and noise
budget consumption.

Time (ms) Consumed Budget (bits)

MixRows ◦ MixColumns 23.55 4

Fixed matrix 461.68 27

Freshly-generated matrix 4006.03 34.9

Cube 3479.07 86.4

The HERA cipher uses a sparse linear layer, whose design is motivated by the
MixColumns layer in AES, enjoying a number of nice features; it is easy to analyze
since its construction is based on an MDS (Maximum Distance Separable) matrix
and needs a small number of multiplications due to the sparsity of the matrix.
We design a Zt-variant of the matrix and use it in the linear layers; it turns
out to be an MDS matrix over Zt when t is a prime number such that t >
17. Instead of using ShiftRows of AES, HERA uses an additional layer MixRows
which is a “row version” of MixColumns to enhance the security against algebraic
attacks; the composition of two linear functions generates all possible monomials,
which makes algebraic attacks infeasible. Also, using MixRows mitigates linear
cryptanalysis; the branch number of the linear layer is 8 (see the full version
[19]) so that HERA does not have a high-probability linear trail.
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In the nonlinear layer, Cube takes the component-wise cube of the input.
The cube map is studied from earlier multivariate cryptography [42], recently
attracting renewed interest for the use in MPC/ZKP-friendly ciphers [2,4]. The
cube map has good linear/differential characteristics, whose inverse is of high
degree, mitigating meet-in-the-middle algebraic attacks.

As multiplicative depth heavily impacts on noise growth of HE-ciphertexts,
it is desirable to design HE-friendly ciphers using a small number of rounds.
One of the most threatening attacks on ciphers with low algebraic degrees is the
higher order differential attack. For a λ-bit secure (possibly non-binary) cipher,
the algebraic degree of the cipher should be at least λ − 1. However, the attack
is not available on randomized ciphers such as FLIP and Rasta.

To balance between efficiency and security, we propose a new direction: ran-
domizing the key schedule. A randomized key schedule (RKS) is motivated by
the tweakey framework [36]. In the tweakey framework, a key schedule takes as
input a public value (called a tweak) and a key, where an adversary is allowed
to take control of tweaks. On the other hand, RKS is a key schedule which takes
as input a randomized public value and a key together, where the random value
comes from a certain pseudorandom function. So, in our design, an adversary is
not able to freely choose the random value.

The design principle behind our RKS is simple: to use as small number of
multiplications as possible. One might consider simply adding a fresh random
value to the master key for every round. This type of key schedule might pro-
vide security against differential cryptanalysis, but it still might be vulnerable to
algebraic attacks and linear cryptanalysis. It is important to enlarge the number
of monomials in the first linear layer, while this candidate cannot obtain this
effect since an adversary is able to use the linear change of variables (see the
full version [19]). Based on this observation, we opt for component-wise multi-
plication. It offers better security on algebraic attacks and linear cryptanalysis.
For a traditional block cipher using fixed keys, outer affine layers do not affect
its overall security; when it comes to HERA, the first and the last affine layers,
combined with the randomized key schedule, increases the number of monomials.

The input constant ic = (1, 2, . . . , 16) consists of distinct numbers in Z
16
t ;

it will make a larger number of monomials in the polynomial representation of
the cipher (compared to using a too simple constant, say the all-zero vector),
enhancing security against algebraic attacks.

4.3 Security Analysis of HERA

In this section, we provide a summary of the security analysis of HERA (due to
the page limit). All the details are given in the full version [19]. Table 3 shows
the number of rounds to prevent each of the attacks considered in this section
according to the security level λ, where we assume that t > 216.

Assumptions and the Scope of Analysis. We limit the number of encryp-
tions under the same key up to the birthday bound with respect to λ, i.e., 2λ/2,
since otherwise one would not be able to avoid a nonce collision (when nonces
are chosen uniformly at random).
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Table 3. Recommended number of rounds with respect to each attack.

Attack λ

80 128 192 256

Trivial Linearization 4 5 6 7

GCD Attack 1 1 1 7

Gröbner Basis Attack 4 5 6 7

Interpolation Attack 4 5 6 7

Linear Cryptanalysis 2 4 4 6

In this work, we will consider the standard “secret-key model”, where an
adversary arbitrarily chooses a nonce, and obtains the corresponding keystream
without any information on the secret key. The related-key and the known-key
models are beyond the scope of this paper.

Since HERA takes as input counters, an adversary is not able to control the
differences of the inputs. Nonces can be adversarially chosen, while they are also
fed to the extendable output function, which is modeled as a random oracle. So
one cannot control the difference of the internal variables. For this reason, we
believe that our construction is secure against any type of chosen-plaintext attack
including (higher-order) differential, truncated differential, invariant subspace
trail and cube attacks. A recent generalization of an integral attack [7] requires
only a small number of chosen plaintexts, while it is not applicable to HERA
within the birthday bound.

The HERA cipher can be represented by a set of polynomials over Zt in
unknowns k0, . . . , k15, where ki ∈ Zt denotes the i-th component of the secret
key k ∈ Z

16
t . Since multiplication is more expensive than addition in HE schemes,

most HE-friendly ciphers have been designed to have a low multiplicative depth.
This property might possibly make such ciphers vulnerable to algebraic attacks.
With this observation, our analysis will be focused on algebraic attacks.

Trivial Linearization. Trivial linearization is to solve a system of linear
equations by replacing all monomials by new variables. When applied to the r-
round HERA cipher, the number of monomials appearing in this system is upper
bounded by

S =
3r
∑

i=0

(
16 + i − 1

i

)

.

Therefore, at most S equations will be enough to solve this system of equations.
All the monomials of degree at most 3r are expected to appear after r rounds
of HERA (as explained in detail in the full version [19]). Therefore, we can con-
clude that this attack requires O(S) data and O(Sω) time, where 2 ≤ ω ≤ 3. An
adversary might take the guess and determine strategy before trivial lineariza-
tion. However, this strategy will not be useful when t > 216.
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GCD Attack. The GCD attack seeks to compute the greatest common divisor
(GCD) of univariate polynomials, and it can be useful for a cipher operating on
a large field with its representation being a polynomial in a single variable. This
attack can be extended to a system of multivariate polynomial equations by
guessing all the key variables except one. For r-round HERA, the complexity
of GCD attack is estimated as O(t15r23r). For a security parameter λ ≤ 240,
HERA will be secure against the GCD attack even with a single round as long
as t > 216. If λ = 256, then the number of round should be at least 7.

Gröbner Basis Attack. The Gröbner basis attack is to solve a system of
equations by computing a Gröbner basis of the system. We analyze the security
of HERA against the Gröbner basis attack under the semi-regular assumption,
which is reasonable as conjectured in [26].

The degree of regularity of the system can be computed as the degree of the
first non-positive coefficient in the Hilbert series

HS(z) =
(
1 − z3

r
)m−16

(
3r−1∑

i=0

zi

)16

where r is the number of rounds and m is the number of equations. Since the
summation does not have any negative term, one easily see that the degree dreg

of regularity cannot be smaller than 3r. Therefore, the time complexity of the
Gröbner basis attack is lower bounded by

O

((
16 + 3r

3r

)2
)

.

Any variant based on the guess-and-determine strategy requires even higher
complexity when r ≤ 6. Even for r = 7, there is no significant impact on the
security.

Instead of a system of equations of degree 3r, one can establish a system of
16rk cubic equations in 16(r − 1)k + 16 variables, where k is the block length of
each query. In this case, the complexity is estimated as

O

((
16(r − 1)k + 16 + dreg(r, k)

dreg(r, k)

)ω)

.

In the full version [19], we compute the degree dreg(r, k) of regularity and esti-
mate the time complexity of the attack.

Interpolation Attack. The interpolation attack is to establish an encryption
polynomial in plaintext variables without any information on the secret key and
to distinguish it from a random permutation [35]. It is known that the data
complexity of this attack depends on the number of monomials in the polynomial
representation of the cipher.

For the r-round HERA cipher, let rc = (rc0, . . . , rcr) ∈ (Z16
t )r+1 be a

sequence of the outputs from XOF. For i = 0, . . . , r, rci is evaluated by a poly-
nomial of degree 3r−i. As we expect that the r-round HERA cipher has almost
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all monomials of degree ≤ 3r in its polynomial representation, the number of
monomials is lower bounded by

r∑

j=0

3j
∑

i=0

(
16 + i − 1

i

)

.

One might try to recover the secret key using the interpolation attack on r−1
rounds. However, HERA uses the full key material for every round. It implies that
the key recovery attack needs brute-force search for the full key space.

The inverse of the cube map is of degree (2t − 1)/3, so the degree of the
equation in the middle state will be too high to recover all its coefficients. So we
conclude that the meet-in-the-middle approach is not applicable to HERA.

Linear Cryptanalysis. Linear cryptanalysis typically applies to block ciphers
operating on binary spaces. However, linear cryptanalysis can be extended to
non-binary spaces [6]; for a prime t, the linear probability of a cipher E : Zn

t → Z
n
t

with respect to input and output masks a,b ∈ Z
n
t can be defined as

LPE(a,b) =
∣
∣
∣
∣Em

[

exp
{

2πi

t

(
− 〈a,m〉 + 〈b,E(m)〉

)}]∣
∣
∣
∣

2

,

where m follows the uniform distribution over Z
n
t . When E is a random permu-

tation, the expected linear probability is denoted by

ELPE(a,b) = EE[LPE(a,b)].

One might consider two different approaches in the application of linear
cryptanalysis on HERA according to how to take the input variables: the XOF
output variables or the key variables. In the first case, unlike traditional linear
cryptanalysis, the probability of any linear trail of HERA depends on the key
since it is multiplied to the input. It seems infeasible to make a plausible linear
trail without any information on the key material.

In the second case, the attack is reduced to solving an LWE-like problem as
follows; given pairs (nci,yi) such that HERA(k, nci) = yi, one can establish

〈b,yi〉 = 〈a,k〉 + ei

for some vectors a �= 0,b ∈ Z
n
t and error ei sampled according to a certain

distribution χ. It requires 1/ELPE(a,b) samples to distinguish χ from the uni-
form distribution [6]. The linear probability of r-round HERA is upper bounded
by (LPS)B�·� r

2 �, where LPS and B� denote the linear probability of the S-box
and the (linear) branch number of the linear layer, respectively. Therefore, the
data complexity for linear cryptanalysis is lower bounded approximately by
1/(LPS)B�·� r

2 �. Again, we have LPS ≤ 4/t as seen in the full version [19]. As
the branch number of the linear layer of HERA is 8 (as shown in the full ver-
sion [19]), we can conclude that r-round HERA provides λ-bit security against
linear cryptanalysis when

(
t

4

)8·� r
2 �

> 2λ.
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5 Implementation

In this section, we evaluate the performance of the RtF framework combined
with the HERA cipher in terms of encryption speed and ciphertext expansion.
The source codes of server-side computation are developed in Golang version
1.16.4 with Lattigo library [1] which implements RNS variants of the FV and
CKKS schemes. The source codes of client-side computation are developed in
C++17, using GNU C++ 7.5.0 compiler with AVX2 instruction set. XOF is
instantiated with SHAKE256 in XKCP library [49]. Our experiments are done in
AMD Ryzen 7 2700X @ 3.70 GHz single-threaded with 64 GB memory.

Additionally, we evaluate the performance of HERA combined with BGV only
in order to make a fair comparison with previous works. One can find the result
in the full version [19].

5.1 Parameter

The sets of parameters used in our implementation are given in Table 4, where

– λ is the security parameter;
– p is the number of precision bits of the RtF framework;
– L′ is the ciphertext level at the end of the framework;
– t is the plaintext modulus;
– r is the number of rounds of the symmetric ciphers;
– N is the degree of the polynomial modulus in the HE schemes;
– � is the number of slots in the FV scheme in the RtF framework;
– QP is the largest ciphertext modulus of the HE schemes including special

primes.

For the CKKS scheme, the message space is C
�/2.

In Table 4, we recommend secure parameters of HERA when combined with
the RtF framework. For the parameters related to bootstrapping, we follow the
choice of bootstrapping parameters in [8]. Specifically,

– the hamming weight h of the secret key is 192;
– the range K of the sine evaluation is 25;
– the number R of the double angle formula is 2;
– the degree dsin of the sine evaluation is 63;
– the degree darcsin of the inverse sine evaluation is 7, if necessary.

We also experiment the effect of the inverse sine evaluation [38]. The param-
eter names ending with a stands for the evaluation of the inverse sine function.
The parameter sets ending with s stands for a small number of slots. It uses 16
slots in order to evaluate HERA. Parameter q0/Δ

′ is the ratio of the first cipher-
text modulus q0 to the bootstrapping scaling factor Δ′ which is introduced in
Sect. 3.3. We use 128-bit secure HE parameters for all parameter sets. If an appli-
cation requires more depth with 80-bit security, then a few dozens of level can
be appended without raising N and degradation of security.
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Table 4. Selected sets of parameters used in our implementation. The rest of the
bootstrapping parameters is set to be (h, K, R, dsin, darcsin) = (192, 25, 2, 63, 0/7).

Set λ SKE HE

�log t� r log N log � �log QP � ΔCKKS q0/Δ
′ arcsin

Par-80 80 28 4 16 16 1533 240 512 ✗

Par-80a 80 25 4 16 16 1533 245 16 ✓

Par-80s 80 28 4 16 4 1533 240 512 ✗

Par-80as 80 25 4 16 4 1533 245 16 ✓

Par-128 128 28 5 16 16 1533 240 512 ✗

Par-128a 128 25 5 16 16 1533 245 16 ✓

Par-128s 128 28 5 16 4 1533 240 512 ✗

Par-128as 128 25 5 16 4 1533 245 16 ✓

Table 5. Performance of the RtF transciphering framework with HERA.

Set CER Client-side Server-side p log qL′

Lat Thrp Lat. Thrp

(μs) (MB/s) Off (s) On (s) (KB/s)

Par-80 1.54 1.520 22.86 98.56 16.84 5.066 17.22 500

Par-80a 1.24 1.443 26.62 91.09 20.68 5.412 19.13 375

Par-80s 1.53 1.520 22.95 71.89 13.23 0.0019 17.29 500

Par-80as 1.23 1.443 26.77 68.31 14.14 0.0020 19.25 375

Par-128 1.54 1.599 21.73 128.7 19.00 4.738 17.22 500

Par-128a 1.24 1.520 25.26 120.7 20.88 5.077 19.13 375

Par-128s 1.54 1.599 21.72 89.62 13.34 0.0018 17.21 500

Par-128as 1.23 1.520 25.26 84.02 14.31 0.0019 19.35 375

5.2 Benchmarks

We measure the performance of the RtF framework, distinguishing two different
parts: the client-side and the server-side as separated in Fig. 2. On the client-
side, the latency includes time for generating pseudorandom numbers (needed to
generate a single keystream in Z

16
t ), keystream generation from HERA, message

scaling, rounding and vector addition over Zt. The extendable output function
is instantiated with SHAKE256 in XKCP.

The server-side offline latency includes time for the randomized key sched-
ule, homomorphic evaluation of the keystreams from HERA, and SlotToCoeffFV.
HERA is homomorphically evaluated by using row-wise packing. The online
latency includes scaling up to FV-ciphertext space, the homomorphic subtrac-
tion, rescaling to the lowest level, and HalfBoot. We measure the latency until
the first HE-ciphertext comes out, while the throughput is measured until all
the 16 HE-ciphertexts come out. We note that our evaluation does not take into
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account key encryption since the encrypted key will be used over multiple ses-
sions once it is computed. For the same reason, the initialization process of the
HE schemes is not considered.

We summarize our implementation results in Table 5. This table includes
ciphertext expansion ratio (CER), time-relevant measurements, precision, and
homomorphic capacity. One can see that the parameters with arcsin (Par-a)
offer smaller CER while the remaining levels are less than other parameters.
On the other hand, the parameters with small slots (Par-s) take less time for
evaluation since the complexity of evaluating SlotToCoeffFV and CoeffToSlotCKKS

is affected by the number of slots.

Comparison. We compare the result to the recent implementation of LWEs-
to-RLWE conversions [40] and CKKS itself. The comparison is summarized in
Table 6. We run all those schemes by ourselves except the †-marked one. The
source codes of LWEs-to-RLWE conversion is taken from the OpenPegasus
library5. As OpenPegasus library does not include symmetric LWE encryp-
tion, we implement (seeded) symmetric LWE encryption with AVX2-optimized
SHAKE256. We use Lattigo library for CKKS encryption.

In this table, the security parameter λ is set to 128. For the fairness of
comparison, we try to make L′ equal. Regardless of �, the number of real number
messages encrypted on the client side using RtF and LWE is 16 and 1 respectively.
We evaluate the LWE encryption in LWEs-to-RLWE and the CKKS encryption
in CKKS-only environment as (seeded) symmetric encryptions since they offer
smaller ciphertext expansion ratio. For all experiments, we sample the domain
of each component of the message vector from uniform distribution over (−1, 1).
When computing the ciphertext expansion ratio, we use the formula log t/(p+1),
which excludes the effect of sending a public nonce. Multiple use of different
nonces can be dealt with a counter so that the effect of nonce to the ratio is
asymptotically zero.

Since the OpenPegasus library supports only selected sets of parameters in
terms of the number of slots and the ciphertext modulus (at the point of submis-
sion), we implemented LWEs-to-RLWE for N = 216 and � = 210 which does not
provide exactly the same functionality as ours with full available slots; we addi-
tionally implemented the RtF framework with HERA using the parameter � = 29

which processes the same number of data in order to make a fair comparison.
One can see that our RtF framework outperforms the LWEs-to-RLWE con-

version and the CKKS-only environment with respect to CER and client-side
performance, achieving the main purpose of the transciphering framework. On
the server-side, the RtF framework enjoys larger throughput at the cost of larger
latency due to the highly nonlinear structure of the HERA compared to LWE
encryption. We note that the CKKS-only environment requires no additional
computation since it uses CKKS-ciphertexts with nonzero level.

5 https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS.

https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS
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Table 6. Comparison of the RtF transciphering framework with HERA to LWEs-to-
RLWE conversion (denoted by LWE) and the CKKS-only environment. All the experi-
ments are done with 128-bit security. Parameter N in parentheses implies the dimen-
sion of LWE. The parameter p stands for the bits of precision. “−” indicates that the
previous work did not report the value.

Scheme N � Ctxt. Exp. Client Server p L′

Ctxt.
(KB)

Ratio Lat.
(μs)

Thrp.
(MB/s)

Lat.
(s)

Thrp.
(KB/s)

RtF 216 216 0.055 1.54 1.599 21.73 147.68 4.738 17.2 11

RtF 216 29 0.055 1.53 1.599 21.78 117.71 0.051 17.2 11

LWE [40] 216(210) 210 0.007 4.84 21.60 0.051 89.61 0.006 9.2 11

LWE [40]† 216(210) 213 0.007 – – – 51.71 – – 6

CKKS 214 214 640 35.31 14527 1.218 none 17.1 11

†: data is directly from the paper.
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Abstract. Fully Homomorphic Encryption (FHE) schemes enable to
compute over encrypted data. Among them, TFHE [8] has the great
advantage of offering an efficient method for bootstrapping noisy cipher-
texts, i.e., reduce the noise. Indeed, homomorphic computation increases
the noise in ciphertexts and might compromise the encrypted message.
TFHE bootstrapping, in addition to reducing the noise, also evaluates
(for free) univariate functions expressed as look-up tables. It however
requires to have the most significant bit of the plaintext to be known a
priori, resulting in the loss of one bit of space to store messages. Further-
more it represents a non negligible overhead in terms of computation in
many use cases.

In this paper, we propose a solution to overcome this limitation, that
we call Programmable Bootstrapping Without Padding (WoP-PBS).
This approach relies on two building blocks. The first one is the multi-
plication à la BFV [13] that we incorporate into TFHE. This is possible
thanks to a thorough noise analysis showing that correct multiplications
can be computed using practical TFHE parameters. The second build-
ing block is the generalization of TFHE bootstrapping introduced in this
paper. It offers the flexibility to select any chunk of bits in an encrypted
plaintext during a bootstrap. It also enables to evaluate many LUTs
at the same time when working with small enough precision. All these
improvements are particularly helpful in some applications such as the
evaluation of Boolean circuits (where a bootstrap is no longer required
in each evaluated gate) and, more generally, in the efficient evaluation
of arithmetic circuits even with large integers. Those results improve
TFHE circuit bootstrapping as well. Moreover, we show that bootstrap-
ping large precision integers is now possible using much smaller param-
eters than those obtained by scaling TFHE ones.

Keywords: FHE · TFHE · Bootstrapping

1 Introduction

Fully Homomorphic Encryption (FHE) is a family of encryption schemes allow-
ing to perform computation over encrypted data. FHE schemes use noisy cipher-
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texts for security reasons, i.e., ciphertexts containing some randomness. This
noise grows after every performed homomorphic operation, and, if not controlled,
can compromise the message and prevent the user from decrypting correctly. A
technique called bootstrapping and introduced by Gentry [14] allows to reduce
the noise, by mean of a public key called bootstrapping key. By using bootstrap-
ping frequently, thus reducing the noise when needed, one can perform as many
homomorphic operations as she wants, but it remains an expensive technique,
both in terms of execution time and memory usage.

Nowadays, the most practical FHE schemes are based on the hardness
assumption called Learning With Errors (LWE), introduced by Regev in
2005 [20], and on its ring variant (RLWE) [19,22]. Even if bootstrapping is
possible for all these schemes, some of them (such as BGV [3], BFV [2,13] and
CKKS [6]) actually avoid it because the technique remains a bottleneck. These
schemes make use of RLWE ciphertexts exclusively and adopt a leveled app-
roach, which consists in choosing parameters that are large enough to tolerate
all the noise produced during the computation. These schemes take advantage
of SIMD encoding [21] to pack many messages in a single ciphertext and per-
form the homomorphic evaluations in parallel on all of these messages at the
same time, and they naturally perform homomorphic multiplications between
RLWE ciphertexts by doing a (tensor) product followed by a relinearization/key
switching.

TFHE [7–9] is also an (R)LWE-based FHE scheme which differentiates from
the other (R)LWE-based cryptosystems because it supports a very efficient
bootstrapping technique. TFHE was originally proposed as an improvement of
FHEW [12], a GSW [15] based scheme with a fast bootstrapping for the evalu-
ation of homomorphic Boolean gates. Apart from improving FHEW bootstrap-
ping, TFHE also introduces new techniques in order to support more functional-
ities than the ones proposed by FHEW and to improve homomorphic evaluation
of complex circuits. TFHE efficiency comes in part from the choice of a small
ciphertext modulus which allows to use CPU native types to represent a cipher-
text both in the standard domain and in Fourier domain. This is what we call
the TFHE context.

TFHE encrypts messages in the most significant bits, meaning a message
m ∈ Z is rescaled by a factor Δ ∈ Z before being reduced modulo q. The small
noise e ∈ Z is added in the least significant bit, so a noisy plaintext looks like
Δ · m + e mod q. In this paper, when we refer to bits of precision, we mean the
quantity p = log2(

q
Δ ). We illustrate this in Fig. 1. Note that if m > 2p some of

the information in m will be lost because of the modulo q.
TFHE bootstrapping is very efficient, but also programmable, meaning that

a univariate function can be evaluated at the same time as the noise is being
reduced. It is often called programmable bootstrapping [10,11] and noted PBS.
The function to be evaluated is represented as a look-up table (LUT) and the
bootstrapping rotates this table (stored in an encrypted polynomial) in order
to output the correct element in the table. The LUT has to have redundancy
(each coefficient is repeated a certain amount of time consecutively) in order to
remove the input ciphertext noise during the PBS.
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m
precision = 7 bits

e

q

MSB

Δ 0

LSB

Fig. 1. In TFHE, messages are encoded in the most significant bits (MSB), and so it
is rescaled by a scaling factor Δ, while the error appears in the least significant bits
(LSB). The precision is log2(

q
Δ

), i.e 7 bits in the figure.

A multi-output version of the PBS is described in [4] allowing the evalu-
ation of multiple (negacyclic) functions {fi}i over one encrypted input. Each
function fi is encoded as a LUT in a polynomial Pi. One can find a shared
polynomial Q such that we can decompose each Pi as Q · P ′

i and compute
CTout ← PBS(ctin,BSK, Q). Then, one needs to multiply CTout by each of P ′

i

and sample extract the resulting ciphertexts. One would have obtained the eval-
uation of each function. One drawback of this method is that the noise inside
the i-th output ciphertexts depends on P ′

i .
A recent paper revisits the TFHE bootstrapping [16]. It gives two algorithms

and a few optimizations to compute programmable bootstrapping on large pre-
cision ciphertexts encrypting one message decomposed in a certain base. Those
algorithms could be used to homomorphically compute multivariate functions if
we call them with the right lookup tables.

The BGV/BFV/CKKS leveled approach is very convenient when the circuit
that has to be homomorphically evaluated is small in terms of multiplicative
depth, but also known in advance. When multiple inputs have to be evaluated
with the same circuit at once, this approach is also very good in terms of amor-
tized computation time. However, when the circuit is deep and unknown a priori,
the TFHE approach is more convenient.

A recent work by Boura et al., called Chimera [1], tries to take advantage of
both approaches, by building bridges between FHE schemes (TFHE, BFV and
CKKS), in order to switch between them depending on which functionality is
needed.

TFHE and its fast PBS are very powerful, but have some limitations:

A In general, to correctly bootstrap a ciphertext, its encrypted plaintext needs
to have its first Most Significant Bit (MSB) set to zero (or at least known).
The only exception is when the univariate function evaluated is negacyclic.

B One cannot bootstrap efficiently a message with a large precision (e.g., more
than 6 bits). The number of bits of the message we bootstrap is strictly related
to the dimension N of the ring chosen for the PBS. This means that the more
we increase the precision, the more we have to increase the parameter N , and
the slower the computation is.

C The PBS algorithm is not multi-thread friendly. Indeed, it is a loop working
on an accumulator.
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D There exists no native multiplication between two LWE ciphertexts. There are
two approaches to multiply LWE ciphertexts: (i) use two programmable boot-
strappings to evaluate the function x �→ x2

4 so we can build the multiplication

x · y = (x+y)2

4 − (x−y)2

4 ; (ii) use 1 or more TFHE circuit bootstrappings [8,
Alg. 6] in order to convert one of the inputs into a GGSW (if not given as
input) and then performing an external product. Since both techniques use
PBS, they both suffer from limitations A and B.

E Because of limitations A and B it is not possible, in an efficient manner, to
homomorphically split a message contained in a single ciphertext into several
ciphertexts containing smaller chunks of the original message.

F The PBS can evaluate only a single function per call. Using the [4] trick, we
can evaluate multiple Look-Up Tables at the same time, but the output will
have an additional amount of noise which depends on the function evaluated.

G TFHE gate bootstrapping represents a very easy solution for evaluating
homomorphic Boolean circuits. However, this technique requires a PBS for
each binary gate, which results in a costly execution. Furthermore, when we
want to apply a similar approach to the arithmetic circuit with bigger integers
(more than 1 bit), TFHE does not provide a solution.

H TFHE circuit bootstrapping requires � PBS followed by many key switchings
which is quite time consuming.

Contributions. In this paper we overcome the above-mentioned TFHE limita-
tions. First, we generalize TFHE PBS so it can evaluate several functions at
once without additional computation or noise. This approach is possible when
the message to bootstrap is small enough. It overcomes limitation F and enables
to compute a single generalized PBS when computing a circuit bootstrapping
instead of � PBS, overcoming limitation H. Circuit bootstrapping is particularly
interesting in the leveled evaluation of Look-Up Tables, as shown in [8].

Furthermore, we thoroughly study the noise growth when computing a ten-
sor product followed by a relinearization (i.e., the BFV-like multiplication) and
found parameters compatible with the TFHE context representing a new way of
computing LWE multiplications in TFHE. This multiplication is efficient and
does not require a PBS which overcomes limitation D. We also propose a packed
use of this algorithm to compute several LWE products at once or a sum of sev-
eral LWE products at once. Our noise analysis is also valid for BFV-like schemes
and can help estimate the noise growth there.

From this multiplication, we define a new PBS procedure that does not require
the MSB to be set to zero, overcoming limitation A. This new procedure is
composed of few generalized PBS that can be computed in parallel which makes
it more multi-thread compatible (limitation C). Observe that, differently from
Chimera, which builds bridges to move between different schemes, we add the
support for a BFV-like multiplication into TFHE, in order to remove some of
the TFHE limitations. In this way, we don’t need to switch between schemes,
and we can remain all the time in the TFHE context.

From this new PBS we are able to homomorphically decompose a plaintext
from a single ciphertext into several ciphertexts encrypting blocks of the input
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plaintext, overcoming limitation E, and also relax the need for PBS at every
gate in the gate bootstrapping and its generalization, overcoming limitation G.

From this new decomposition algorithm and the Tree-PBS algorithm [16], we
are able to create a fast PBS for larger input messages, overcoming limitation B.
We can also in an even faster manner refresh the noise (bootstrap, not PBS) in
a ciphertext from this new decomposition algorithm.

2 Background and Notations

The parameter q is a positive integer and represents the modulo for the integers
we are working with. We note Zq the ring Z/qZ. The parameter N is a power of 2
and represents the size of polynomials we are working with. We note Rq the ring
Zq[X]/(XN +1). A Gaussian distribution with a mean set to zero and a standard
deviation set to σ is written χσ. We use the symbol || for concatenation. When
ι is an integer, we note by [·]ι the reduction modulo ι and by �·�ι the rounding
then the reduction modulo ι. We refer to the most (resp. least) significant bits
of an integer as MSB (resp. LSB). We alse refer to look-up tables as LUT. The
(computational) complexity of an algorithm Alg, potentially dependent on some
parameters p1, · · · , pn, is denoted C

p1,··· ,pn

Alg .

Remark 1. Observe that in this paper we use different notations compared to
TFHE [7–9]. In TFHE, the message and ciphertext spaces are expressed by using
the real torus T = R/Z. On a computer, they implemented T by using native
arithmetic modulo 232 or 264, which means that they work on Zq (with q = 232

or q = 264). This is why we prefer to use Zq instead of T, as already adopted
in [10]. It is made possible because there is an isomorphism between Zq and
1
q Z/Z as explained in [1, Sect. 1].

LWE, RLWE and GLWE Ciphertexts. A GLWE ciphertext of a message M ∈ Rq

with the scaling factor Δ ∈ Zq under the secret key S ∈ Rk
q is defined as follows:

CT = (A1, · · · , Ak, B =
k∑

i=1

Ai · Si + �M · Δ�q + E) = GLWES(M · Δ) ∈ Rk+1
q

such that S = (S1, · · · , Sk) ∈ Rk
q is the secret key with coefficients either sampled

from a uniform binary, uniform ternary or Gaussian distribution, {Ai}k
i=1 are

polynomials in Rq with coefficients sampled from the uniform distribution in Zq,
E is an noise (error) polynomial in Rq such that its coefficients are sampled from
a Gaussian distributions χσ. The parameter k is a positive integer and represents
the number of polynomials in the GLWE secret key. To simplify notations, we
sometimes define Sk+1 as −1.

A GLWE ciphertext with N = 1 is an LWE ciphertext and in this case we
consider the parameter n = k for the size of the LWE secret key and we note
both the ciphertext and the secret with a lower case e.g. ct and s. A GLWE
ciphertext with k = 1 and N > 1 is an RLWE ciphertext.
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Lev, RLev and GLev Ciphertexts. A GLev ciphertext with the base B ∈ N
∗ and

� ∈ N
∗ levels, of a message M ∈ Rq under the GLWE secret key S ∈ Rk

q is
defined as the following vector of GLWE ciphertexts:

CT = (CT1, · · · ,CT�) = GLevB,�
S (M) ∈ R�×(k+1)

q

where CTi=GLWES(M · q

Bi ) is a GLWE ciphertext.
A GLev ciphertext with N = 1 is a Lev ciphertext and in this case we consider

the parameter n = k for the size of the LWE secret key. A GLev ciphertext with
k = 1 and N > 1 is a RLev ciphertext.

Decomposition Algorithms. The decomposition algorithm in the integer base
B ∈ N

∗ with � ∈ N
∗ levels is written dec(B,�) and takes as input an integer

x ∈ Zq and output a decomposition vector of integers (x1, · · · , x�) ∈ Z
�
q such

that:

〈
dec(B,�)(x),

( q

B1
, · · · ,

q

B�

)〉
=

⌊
x · B

�

q

⌉
· q

B�
∈ Zq

Note that this decomposition starts from the MSB. When we apply this
decomposition on a vector of integers, we end up with a vector of decomposition
vector of integers.

We can also decompose an integer polynomials X ∈ Rq into a decomposition
vector of polynomials (X1, · · · ,X�) ∈ R�

q such that:

〈
dec(B,�)(X),

( q

B1
, · · · ,

q

B�

)〉
=

⌊
X · B

�

q

⌉
· q

B�
∈ Rq

When we apply this decomposition on a vector of polynomials, we end up
with a vector of decomposition vectors of polynomials.

Key Switching. A technique that is often used in FHE, called key switching,
allows to change parameters and keys in the ciphertext. The key switching makes
the noise grow and is performed using a so-called key-switching key which is a
public key composed of encryptions of secret key elements.

There are different types of key switchings: we will quickly list and
describe the ones that are interesting for the understanding of the paper.
The LWE-to-GLWE key-switching key is noted KSK and is equal to KSK=

{CTi=GLevB,�

S′ (si)}1≤i≤n
, where s = (s1, . . . , sn) ∈ Z

n
q is the input LWE secret

key and S′ = (S′
1,...,S′

k)∈Rk
q is the output GLWE secret key.

– CTout ← PrivateKS({cti}i∈{1,...,p},KSK) : allows to apply a private lin-
ear function f :(Z/qZ)p−→Z/qZ[X] over p LWE ciphertexts {cti=LWEs(m1)}i∈{1,...,p}
and creates a GLWE ciphertext CTout=GLWES′ (f(m1,··· ,mp)). For more details
check [8, Algorithm 2].
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– CTout ← PublicKS({cti}i∈{1,...,p},KSK, f) : is a public version of the previ-
ous key switching, i.e., a key switching with a public linear function f . For
more details check [8, Algorithm 1]. The key switching used in TFHE PBS
is a public key switching, where the function f is the identity function and
the output GLWE is instantiated with k = n′ and N = 1 (i.e., as an LWE
instance).

– CTout ← PackingKS({ctj}p
j=1, {ij}p

j=1,KSK) : is a (public) key switching

procedure enabling to pack several LWE ciphertexts into one GLWE. It takes
as input a set of p LWE ciphertexts as well as a set of p indexes. Given the
set of indexes {ij}p

j=1, the function f has the following shape: f({mj}p
j=1)−→

∑p
j=1 mj ·Xij .

GSW, RGSW and GGSW Ciphertexts. A GGSW ciphertext with the base B ∈
N

∗ and � ∈ N
∗ levels, of a message M ∈ Rq under the GLWE secret key S=

(S1,··· ,Sk)∈Rk
q is defined as the following vector of GLev ciphertexts:

CT =
(
CT1, · · · ,CTk+1

)
= GGSW

(B,�)
S (M) ∈ R(k+1)×�×(k+1)

q

where CTi=GLev(B,�)
S (−Si·M) is a GLev ciphertext. Remember that we note

Sk+1=−1.
A GGSW ciphertext with N = 1 is a GSW ciphertext, and a GGSW cipher-

text with k = 1 and N > 1 is a RGSW ciphertext.

TFHE PBS. The bootstrapping of TFHE has a double functionality: it reduces
the noise in the ciphertexts and at the same time evaluates a univariate function.
We call it PBS for programmable bootstrapping. In order to be performed, the
PBS uses a so called bootstrapping key, i.e., a list of GGSW encryptions of the
elements of the secret key used to encrypt the input LWE (noisy) ciphertext of
the PBS. The procedure is composed of three major steps:

– Modulus Switching : the input LWE ciphertext in Z
n+1
q is converted into a

ciphertext in Z
n+1
2N ;

– Blind Rotation: a GLWE encryption of a redundant LUT 1 is rotated (by using
a loop of CMux operations [9]) according to the LWE ciphertext produced in
the previous step and the public bootstrapping key;

– Sample Extraction: the constant coefficient of the GLWE output of the pre-
vious step is extracted as a LWE ciphertext.

TFHE Circuit Bootstrapping. In 2017, TFHE authors propose a technique called
citcuit bootstrapping [8, Algorithm 6], to convert an LWE ciphertext into a

1 A redundant LUT is a LUT corresponding to a function f , whose entries are redun-
dantly represented inside the coefficients of a polynomial in Rq. In practice, the
redundancy consists in a r times (with r a system parameter) repetition of the entries

f(i) of the LUT with a certain shift: Pf = X−r/2 · ∑N/r−1
i=0 Xi·r ·

(∑r−1
j=0 f(i) · Xj

)
.

The redundancy is used to perform the rounding operation during bootstrapping.
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GGSW ciphertext, and to reduce its noise at the same time. The circuit boot-
strapping is composed by a series of � TFHE PBS, followed by a list of (k + 1)�
private key switching procedures. The goal is to build one by one all the GLWE
ciphertexts composing the output GGSW.

3 Building Blocks

In this section we describe two building blocks: the LWE multiplication, that
uses an existing GLWE multiplication together with some key switchings and
sample extraction, and a generalized version of TFHE PBS. Both techniques are
necessaries in order to build our constructions in the rest of the paper.

3.1 LWE Multiplication

We first recall the multiplication algorithm for GLWE ciphertexts in Algorithm 1.
It is composed of a tensor product followed by a relinearization and is widely
used in the literature [13] (we recall the GLWE [3] algorithm, instead of the
more limited RLWE version). Since this algorithm is largely used in the rest
of the paper, we thoroughly study its noise growth and provide a formal noise
analysis where Var(S) is the variance of a GLWE secret key polynomial S ∈ Rq,
Var(S′

even) (resp. Var(S′
odd)) is the variance of even (resp. odd) coefficients in S2 and

Var(S′′) is the variance of coefficients in Si·Sj which is the product between two
independent secret key polynomials Si, Sj ∈ Rq. We provide concrete crypto-
graphic parameters depending on the precision and the multiplicative depth in
the Table 1.

Table 1. Parameters depending on the GLWE multiplicative depth and the precision.

Precision 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Max. depth 32 16 16 8 8 8 8 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2

log2(N) 12 11 12 11 11 12 12 11 11 11 12 12 12 11 11 11 11 11 11 11 12 12 12 12

log2(B) 8 5 8 12 10 8 8 20 17 15 17 17 8 30 30 20 20 20 20 20 20 20 20 20

� 8 10 8 4 5 8 8 2 3 3 3 3 8 1 1 2 2 2 2 2 2 2 2 2

Theorem 1 (GLWE multiplication). Let CT1 =GLWES(PT1)∈Rk+1
q and CT2 =

GLWES(PT2)∈Rk+1
q be two GLWE ciphertexts, encrypting respectively PT1 =M1Δ1

∈Rq and PT2 =M2Δ2 ∈Rq, under the same secret key S=(S1,...,Sk)∈Rk
q , with

noise sampled respectively from χσ1 and χσ2 . Let RLK=
{
CTi,j =GLev(B,�)

S (Si·Sj)∈
R�×(k+1)

q }1≤j≤i

1≤i≤k
be a relinearization key for the GLWE secret key S, with noise

sampled from χσRLK .
Algorithm 1 computes a new GLWE ciphertext CT encrypting the product

PT1·PT2/Δ∈Rq where Δ=min(Δ1,Δ2) (a scaling factor), under the secret key S,
with a noise variance VarGLWEMult estimated by the following formula:
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VarGLWEMult = N
Δ2

(
Δ2

1||M1||2∞σ2
2+Δ2

2||M2||2∞σ2
1+σ2

1σ2
2

)

+ N
Δ2

(
q2−1
12

(
1+kNVar(S)+kNE

2(S)
)
+ kN

4 Var(S)+ 1
4 (1+kNE(S))2

)

(σ2
1+σ2

2)

+ 1
12+ kN

12Δ2 ·
(
(Δ2−1)·

(
Var(S)+E

2(S)
)
+3·Var(S)

)
+ k(k−1)N

24Δ2 ·
(
(Δ2−1)·

(
Var(S′′)+E

2(S′′)
)
+3·Var(S′′)

)

+ kN
24Δ2 ·

(
(Δ2−1)·

(
Var(S′

odd)+Var(S′
even)+2·E

2(S′
mean)

)
+3·(Var(S′

odd)+Var(S′
even))

)
+k�Nσ2

RLK· (k+1)
2 · B

2+2
12

+ kN
2

(
q2

12B2�
− 1

12

)(
(k−1)·(Var(S′′)+E

2(S′′
mean))+Var(S′

odd)+Var(S′
even)+2E

2(S′
mean)

)

+ kN
8 ·((k−1)·Var(S′′)+Var(S′

odd)+Var(S′
even)).

(1)
Let k∗ =

k(k+1)
2 and k+ =

(k+1)(k+2)
2 . The complexity of the algorithm is:

C
(k,�,n,N)
GLWEMult = C

(k,N)
TensorProduct + C

(k,�,N)
Relin , with

C
(k,N)
TensorProduct = 2(k + 1)CFFT + k

+
CiFFT + (k + 1)

2
NCmultFFT + k

∗
NCaddFFT, and

C
(k,�,N)
Relin = N�k

∗
Cdec + k

∗
�CFFT + k

∗
�(k + 1)NCmultFFT + (k

∗
� − 1)(k + 1)NCaddFFT + (k + 1)CiFFT

(2)

Proof (sketch). In the proof, we compute the decryption of the resulting cipher-
text, obtaining the message plus the noise so we can estimate its variance. The
detailed computation leading us to the aforementioned noise formula is provided
in the full version of the paper. �	

The same Algorithm 1 can be adapted in order to perform a GLWE square:
the square is more efficient since R′

i,j and A′
i are computed with a single mul-

tiplication instead of two. For more details, we refer to the full version of the
paper.

3.1.1 Single LWE Multiplication
We now define Algorithm 2 for homomorphically multiply two LWE ciphertexts.
It requires the sample extraction procedure, which is an algorithm adding no
noise to the ciphertext and consisting in simply rearranging some of the coef-
ficients of the GLWE input ciphertext to build the output LWE ciphertext
encrypting one of the coefficients of the input polynomial plaintext. The sam-
ple extraction is described in [9, Sect. 4.2] for RLWE inputs, and can be easily
extended to GLWE ones. Due to page constraint, this algorithm is described in
the full version of the paper.

Theorem 2 (LWE-to-GLWE Packing Key Switch). We start with the
simplest case were we pack a single LWE ciphertext. Let ctin = LWEs(m·Δ)∈
Z

n+1
q be an LWE ciphertext encrypting m·Δ∈Zq, under the LWE secret

key s = (s1, . . . , sn) ∈ Z
n
q , with noise sampled respectively from χσ.

Let S′ be a GLWE secret key such that S′ = (S′
1,...,S′

k) inRk+1
q . Let KSK=

{CTi =GLevB,�

S′ (si)∈R�×(k+1)
q }1≤i≤n

be a key switching key from s to S′ with noise
sampled from χσKSK .

There are two different variances after a packing key switch: one for the
coefficient we just filled written Varfill and another for the empty coefficients
Varemp. Those variances are estimated by:

Var(1)fill = σ
2
+ n ·

(
q2

12B2�
− 1

12

)

·
(
Var(si) + E

2
(si)
)
+

n

4
· Var(si) + n · � · σ

2
KSK · B2 + 2

12

Var(1)emp = n · � · σ
2
KSK · B2 + 2

12

(3)
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Algorithm 1: CT ← GLWEMult (CT1,CT2,RLK)

Context:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S = (S1, . . . , Sk) ∈ Rk
q : a GLWE secret key

Δ = min (Δ1, Δ2) ∈ Zq

PT1 = M1Δ1 ∈ Rq

PT2 = M2Δ2 ∈ Rq

Input:

⎧
⎪⎪⎨

⎪⎪⎩

CT1 = GLWES (PT1) = (A1,1, · · · , A1,k, B1) ∈ Rk+1
q

CT2 = GLWES (PT2) = (A2,1, · · · , A2,k, B2) ∈ Rk+1
q

RLK =
{
CTi,j = GLev(B,�)

S (Si · Sj)
}1≤j≤i

1≤i≤k
: a relinearization key for S

Output: CT = GLWES

(
PT1·PT2

Δ

)
∈ Rk+1

q

1 begin
/* Tensor product */

2 for 1 ≤ i ≤ k do

3 T ′
i ←

[⌊
[A1,i·A2,i]Q

Δ

⌉]

q

4 end
5 for 1 ≤ i ≤ k, 1 ≤ j < i do

6 R′
i,j ←

[⌊
[A1,i·A2,j+A1,j ·A2,i]Q

Δ

⌉]

q

7 end
8 for 1 ≤ i ≤ k do

9 A′
i ←

[⌊
[A1,i·B2+B1·A2,i]Q

Δ

⌉]

q

10 end

11 B′ ←
[⌊

[B1·B2]Q
Δ

⌉]

q

/* Relinearization */
12 CT ←

(
A′

1, · · · , A′
k, B′)+

∑k
i=1

〈
CTi,i, dec(B,�) (T ′

i

)〉
+
∑1≤j<i

1≤i≤k

〈
CTi,j · dec(B,�)

(
R′

i,j

)〉

13 end

When we pack 1 ≤ α ≤ N LWE ciphertexts, we have Var(α)
fill =Var(1)fill +(α−1)·Var(1)emp

and Var(α)
emp=α·Var(1)emp The complexity of the algorithm is:

C
(α,�,n,k,N)
PackingKS = α�nCdec + α�n(k + 1)NCmul + ((α�n − 1)(k + 1)N + α)Cadd

Proof (sketch). In the proof, we compute the decryption of the resulting cipher-
text, obtaining the message plus the noise so we can estimate the two variances.
The detailed computation leading us to the aforementioned noise formulas are
provided in the full version of the paper. �	

Theorem 3 (LWE Multiplication). Let ct(1) = LWEs(m1·Δ1) and ct(2) =

LWEs(m2·Δ2) be two LWE ciphertexts, encrypting respectively m1·Δ1 and m2·Δ2,
both encrypted under the LWE secret key s = (s1, . . . , sn), with noise sampled
respectively from χσ1 and χσ2 . Let KSK={CTi =GLevB,�

S′ (si)}1≤i≤n
a key switching

key from s to S′ where S′ = (S′
1,...,S′

k), with noise sampled from χσKSK . Let RLK be
a relinearization key for S′, defined as in Theorem 1.

Algorithm 2 computes a new LWE ciphertext ctout, encrypting the product
m1·m2·Δout, where Δout =max(Δ1, Δ2), under the secret key s′. The variance of the
noise in ctout can be estimated by replacing the variances σ1 and σ2 in the RLWE
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Algorithm 2: ctout ← LWEMult (ct1, ct2,RLK,KSK)

Context:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s = (s1, · · · , sn) ∈ Z
n
q : the LWE input secret key

s′ = (s′
1, · · · , s′

kN ) ∈ Z
kN
q : the LWE output secret key

S′ =
(
S′
1, . . . , S′

k

) ∈ Rk
q : a GLWE secret key

∀1 ≤ i ≤ k, S′
i =
∑N−1

j=0 s′
(i−1)·N+j+1Xj ∈ Rq

Δout = max(Δ1, Δ2) ∈ Zq

Input:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ct1 = LWEs(m1 · Δ1) ∈ Z
n+1
q

ct2 = LWEs(m2 · Δ2) ∈ Z
n+1
q

RLK : a relinearization key for S′ as defined in Algorithm 1

KSK =
{
CTi = GLevB,�

S′ (si)
}

1≤i≤n
: a key switching key from s to S′

Output: ctout = LWEs′ (m1 · m2 · Δout) ∈ Z
kN+1
q

1 begin
/* KS from LWE to GLWE */

2 CT1 = GLWES′ (m1 · Δ1) ← PackingKS({ct1}, {0},KSK) ;
3 CT2 = GLWES′ (m2 · Δ2) ← PackingKS({ct2}, {0},KSK) ;

/* GLWE multiplication: Tensor product + Relinearization */
4 CT = GLWES′ (m1 · m2 · Δout) ← GLWEMult(CT1,CT2,RLK)

/* Sample extract the constant term */
5 ctout = LWEs′ (m1 · m2 · Δout) ← SampleExtract (CT, 0)

6 end

multiplication (Formula 1, Theorem 1) with the variance estimated after a pack-
ing key switch (Formula 3, Theorem 2). The complexity is:

C
(�KS,�RL,n,k,N)
LWEMult = 2 · C

(1,�KS,n,k,N)
PackingKS + C

(k,�RL,n,N)
GLWEMult + C

(N)
SampleExtract

3.1.2 Packed Products and Packed Sum of Products
It is possible to use algorithm 2 to compute with a single multiplication several
products, or several squares, or a sum of several products, or even a sum of
several squares.

These four functionalities can be easily achieved by slightly modifying Algo-
rithm 2. In the case of PackedMult and PackedSumProducts, the algo-
rithm take in input two sets of LWE ciphertexts

{
ct(1)i

}
=
{
LWEs(m

(1)
i ·Δ1)

}

0≤i<α

and
{
ct(2)i

}
=
{
LWEs(m

(2)
i ·Δ2)

}

0≤i<α
:

1. PackedMult: the goal is to compute LWE encryptions of the products
m

(1)
i ·m(2)

i ·Δout, where Δout =max(Δ1, Δ2). The two input sets are packed with a
packing key switch into two GLWE ciphertexts with indexes L1 = {0,1,2,··· ,α−1}
and L2 = {0, α, 2α, ··· , (α − 1)α} respectively. The resulting GLWE ciphertexts are
multiplied with the GLWE multiplication (Algorithm 1) and finally all the
coefficients at indexes i · (α + 1) (for 0 ≤ i < α) are extracted.

2. PackedSumProducts: the goal is to compute a LWE encryption of the
sum of products ∑α−1

i=0 m
(1)
i ·m(2)

i ·Δout, where Δout =max(Δ1,Δ2). The two input
sets are packed with a packing key switch into two GLWE ciphertexts with
indexes L1 = {0, 1, 2, ··· , α − 1} and L2 = {α − 1, α − 2, α − 3, ··· ,0} respectively. The
resulting GLWE ciphertexts are multiplied with the GLWE multiplication
(Algorithm 1) and finally the coefficient at index α − 1 is extracted.
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Note that it is possible to compute packed squares and a packed sum of
squares if the two LWE input sets are equal. It is also possible to compute
squares and a sum of squares by computing a RLWE multiplication between an
RLWE ciphertext and itself. In that case, a single set of LWE input in provided
{cti} = {LWEs(mi · Δ)}0≤i<α:

1. PackedSquares: the goal is to compute LWE encryptions of the squares
m2

i ·Δ. The input set is packed with a packing key switch into a GLWE cipher-
text with indexes L = {20 − 1, 21 − 1, 22 − 1, ··· , 2α−1 − 1}. The resulting GLWE
ciphertext is squared by using the GLWE square algorithm and finally all
the coefficients at indexes 2i+1 − 2 (for 0 ≤ i < α) are extracted.

2. PackedSumSquares: the goal is to compute a LWE encryption of the sum
of squares ∑α−1

i=0 m2
i ·2Δ. To achieve this goal, the input set is packed with

a packing key switch into a GLWE ciphertext with redundancy, using two
indexes sets L1 = {0, 1, 2, ··· , α − 1} and L2 = {2α − 1, 2α − 2, 2α − 3, ··· , α}. The result-
ing GLWE ciphertext is squared by using the GLWE square algorithm and
finally the coefficient at index 2α − 1 is extracted.

Note that we could also compute packed products and a packed sum of
products with a GLWE square algorithm by changing L , L1 and L2 and also
extracting different coefficients. Also note that for these four algorithms, there
are restrictions regarding the maximum value that α can take each time. We
provide more details in the the full version of the paper.

3.2 Generalized PBS

We propose a more versatile algorithm for the PBS where we are able to boot-
strap a precise chunk of bits, instead of only the MSB as described in TFHE,
and to also apply several function evaluations at once. We describe this gen-
eralization in Algorithm 3. We introduce two new parameters, κ and ϑ, which
redefine the modulus switching step of TFHE PBS. In particular, κ defines the
number of MSB that are not considered in the PBS, while 2ϑ defines the number
of functions that can be evaluated at the same time in a single generalized PBS.

The two parameters κ and ϑ are illustrated in Fig. 2, where “input” repre-
sents the plaintext (with noise) that is encrypted the input ciphertext of the
modulus switching, and “output” illustrates the plaintext (with noise) that is
encrypted inside the output ciphertext (after modulus switching). The first κ

MSB will not impact the following steps of the generalized PBS and ϑ bits will be
set to 0 in order to encode 2ϑ functions in the LUT stored in Pf (see Sect. 4.3 for
more details). Observe that the case (κ, ϑ) = (0, 0) corresponds to the original
TFHE PBS.

We also define the “plaintext modulus switching” function written
PTModSwitch to recover the plaintext of the encrypted output of a modulus
switching algorithm. Let m ∈ Zq be a message, Δ ∈ Zq its scaling factor, κ ∈ Z

and ϑ ∈ N the parameters of a modulus switching. We define q′ = q
Δ2κ . The case

where κ ≥ 0 is illustrated in Fig. 3. We defined (β,m′)←PTModSwitchq(m,Δ,κ,ϑ)∈
{0,1}×N as follow:
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Input:

m̄ m e

κ 2N
ϑ

Output:

m

2N
ϑ

Fig. 2. Modulus switching operation in the generalized PBS (Algorithm 3): on top of
the figures we illustrate the data (m̄, m, e), on the bottom the dimensions (κ, 2N , ϑ).

If κ ≥ 0 :

{
m′ = m mod q′

2

if m mod q′ < q′
2 , β = 0, else β = 1

Else :

{
m′ = m

β is a random bit

Output:

m

β m′

2N
ϑ

Fig. 3. Plaintext after the modulus switching from the generalized PBS (Algorithm 3)
where κ ≥ 0: on top of the figure we illustrate the data(m, β, m′), on the bottom the
dimensions (2N , ϑ).

Note that for simplicity purpose, we provide the generalized PBS noise for-
mula only for binary secret keys. However, in the full version of the paper we
provide formulas as well as proofs for more key distributions (binary, ternary
and Gaussian).

Theorem 4 (Generalized PBS). Let s=(s1,··· ,sn)∈Z
n
q be a binary LWE

secret key. Let S′ = (S′
1,...,S′

k)∈Rk
q be a GLWE binary secret key such that S′

i =
∑N−1

j=0 s′
(i−1)·N+j+1·Xj, and s′ = (s′

1, · · · , s′
kN ) be the corresponding binary LWE

secret key. Let Pf be a r-redundant LUT for a function f :Z→Z and Δout be the
output scaling factor. Let (κ, ϑ) be the two integer variables defining (along
with N) the window size to be modulus switched, such that q2ϑ

Δin2
κ <2N, and let

(β,m′)=PTModSwitchq(m,Δin,κ,ϑ)∈ {0,1}×N.
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Then Algorithm 3 takes as input a LWE ciphertext ctin = LWEs(m·Δin)∈Z
n+1
q with

noise distribution from χσin , a bootstrapping key BSK=
{
CTi =GGSWB,�

S′ (si)
}n

i=1
from

s to S′ and a (possibly trivial) GLWE encryption of Pf ·Δout, and returns an LWE
ciphertext ctout under the secret key s′, encrypting the message (−1)β ·f(m′)·Δout if
and only if the input noise has variance σ2

in <
Δ2

in
4Γ2 − q′2

12w2 + 1
12 − nq′2

24w2 − n
48 , where Γ

is a variable depending on the probability of correctness defined as P = erf
(

Γ√
2

)
,

w =2N ·2−ϑ and q′ = q·2−κ.
The output noise after the generalized PBS is estimated by the formula:

Var(PBS) = n�(k + 1)N
B2 + 2

12
Var(BSK) + n

q2 − B2�

24B2�

(

1 +
kN

2

)

+
nkN

32
+

n

16

(

1 − kN

2

)2

.

The complexity of Algorithm 3 is the same as the complexity of TFHE boot-
strapping [9], i.e.,

C
(n,�,k,N)
GenPBS = C

(n)
ModulusSwitching + nC

(n,�,k,N)
CMUX C

(N)
SampleExtract with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
(n)
ModulusSwitching = (n + 1)CScale&Round

C
(n,�,k,N)
CMUX = (k + 1)(n + 1)C

(N)
Rotation + 2n(k + 1)NCAdd + C

(n,�,k,N)
ExternalProduct

C
(n,�,k,N)
ExternalProduct = n�(k + 1)NCdec + n�(k + 1)CFFT + n(k + 1)�(k + 1)NCmultFFT+

+n(k + 1)(�(k + 1) − 1)NCaddFFT + n(k + 1)CiFFT

Proof (sketch). In the proof, we compute the decryption of the resulting cipher-
text, obtaining the message plus the noise so we can estimate its variance. The
detailed proof of this theorem is provided in the full version of the paper. �	

4 Upgraded Bootstrapping

This section describes our main contributions, i.e., the WoP-PBS (PBS without
a bit of padding) and the PBS evaluating multiple look-up tables at the same
time (we call this algorithm PBSmanyLUT).

4.1 WoP-PBS First Version

A big constraint with TFHE PBS is the negacyclicity of the rotation of the LUT.
It implies a need of a padding bit (as mentioned in Limitation A). We propose a
solution to remove that requirement, by using the aforementioned LWE multi-
plication (Algorithm 1) and the generalized PBS (Algorithm 3). This new boot-
strapping is called the programmable bootstrapping without padding (WoP-PBS)
and a first version is described in Algorithm 4.

Theorem 5 (PBS Without Padding (V1)). Let s=(s1,··· ,sn)∈Z
n
q be a binary

LWE secret key. Let S′ = (S′
1,...,S′

k)∈Rk
q be a GLWE secret key such that S′

i =
∑N−1

j =0 s′
(i−1)·N+j+1Xj∈Rq, and s′ =(s′

1,··· ,s′
kN )∈Z

kN
q be the corresponding binary LWE

key. Let Pf ∈Rq (resp. P1∈Rq) be a r-redundant LUT for the function f : Z �→ Z,
(resp. the constant function x �→ 1) and Δout ∈ Zq be the output scaling factor.
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Algorithm 3: ctout ← GenPBS (ctin,BSK,CTf , κ, ϑ)

Context:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = (s1, · · · , sn) ∈ Z
n
q : the LWE input secret key

s′ = (s′
1, · · · , s′

kN ) ∈ Z
kN
q : the LWE output secret key

S′ =
(
S′
1, . . . , S′

k

) ∈ Rk
q : a GLWE secret key

∀1 ≤ i ≤ k, S′
i =
∑N−1

j=0 s′
(i−1)·N+j+1Xj ∈ Rq

Pf ∈ Rq : a r-redundant LUT for x �→ f(x)

Δout ∈ Zq : the output scaling factor

f : Z → Z : a function

(β, m′) = PTModSwitchq(m, Δin, κ, ϑ) ∈ {0, 1} × N

Input:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ctin = LWEs(m · Δin) = (a1, · · · , an, an+1 = b) ∈ Z
n+1
q

BSK =
{
CTi = GGSWB,�

S′ (si)
}n

i=1
: a bootstrapping key from s to S′

CTf = GLWES′ (Pf · Δout) ∈ Rk+1
q

(κ, ϑ) ∈ Z × N : define along with N the chunk of the plaintext to bootstrap

Output: ctout = LWEs′
(
(−1)β · f

(
m′) · Δout

)
if we respect requirements in Theorem 4

1 begin
/* modulus switching */

2 for 1 ≤ i ≤ n + 1 do

3 a′
i ←

[⌊
ai·2N·2κ−ϑ

q

⌉

· 2ϑ

]

2N

4 end

/* blind rotate of the LUT */

5 CT ← BlindRotate
(
CTf , {a′

i}n+1
i=1 ,BSK

)
;

/* sample extract the constant term */
6 ctout ← SampleExtract (CT, 0)

7 end

Let CTf be a (possibly trivial) GLWE encryption of Pf ·Δout and CT1 be a trivial
GLWE encryption of P1·Δout. Let (κ, ϑ) ∈ Z×N be the two integer variables defin-
ing (along with N) the chunk of the plaintext that is going to be bootstrapped,
such that q2ϑ

Δin2
κ <2N, and let (β,m′)=PTModSwitchq(m,Δin,κ,ϑ)∈{0,1}×N.

Let KSK=
{
CTi =GLev(B,�)

S′ (s′
i)
}

1≤i≤n
be a key switching key from s′ to

S′, with noise sampled respectively from χσ(1) and χσ(2) . Let RLK=
{
CTi,j =GLev(B,�)

S′ (S′
i·S′

j)
}1≤j≤i

1≤i≤k
be a relinearization key for S′, defined as in The-

orem 1. Let BSK=
{
CTi =GGSWB,�

S′ (si)
}n

i=1
be a bootstrapping key from s to S′.

Then the Algorithm 4 takes in input a LWE ciphertext ctin = LWEs(m·Δin)∈Z
n+1
q

where ctin =(a1,··· ,an,an+1 = b), with noise sampled from χσin , and returns an LWE
ciphertext ctout∈Z

kN+1
q under the secret key s′ encrypting the messages f(m′)·Δout

if and only if the input noise has variance verifying Theorem 3.
The output ciphertext noise variance verifies Var(WoP-PBS1)=Var(LWEMult)

with input variances for the LWE multiplication (Algorithm 2) defined as σi =

Var(GenPBS), for i ∈ {1, 2}.
The complexity of Algorithm 4 is:

C
(n,�PBS,k1,N1,�KS,�RL,k2,N2)
WoP-PBS1

= 2C
(n,�PBS,k1,N1)
GenPBS + C

(�KS,�RL,N1,k2,N2)
LWEMult

Proof (Sketch). We only provide a proof of correctness of the algorithm, consid-
ering that the noise and the complexity are directly deduced from the GenPBS
and LWEMult algorithms. Both of the GenPBS are applied with the same
parameters except for the evaluated function (Pf or P1). Thus, in both cipher-
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Algorithm 4: ctout ← WoP-PBS1(ctin,BSK,RLK,KSK, Pf , Δout, κ, ϑ)

Context:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = (s1, · · · , sn) ∈ Z
n
q

s′ = (s′
1, · · · , s′

kN ) ∈ Z
kN
q

S′ =
(

S′(1), . . . , S′(k)
)

∈ Rk
q

∀1 ≤ i ≤ k, S′(i) =
∑N−1

j=0 s′
(i−1)·N+j+1Xj ∈ Rq

f : Z → Z : a function

P1 ∈ Rq : a redundant LUT for x �→ 1

(β, m′) = PTModSwitchq(m, Δ, κ, ϑ) ∈ {0, 1} × N

CTf = GLWES′ (Pf · Δout) ∈ Rk+1
q (might be a trivial encryption)

CT1 ∈ Rk+1
q : a trivial encryption of P1 · Δout

Input:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ctin = LWEs(m · Δin) = (a1, · · · , an, an+1 = b) ∈ Z
n+1
q

BSK =
{
BSKi = GGSW(B,�)

S′ (si)
}

1≤i≤n
: a bootstrapping key from s to S′

RLK =
{
CTi,j = GLev(B,�)

S′
(

S′
i · S′

j

)}1≤j≤i

1≤i≤k
: a relinearization key for S′

KSK =
{
CTi = GLev(B,�)

S′
(
s′

i

)}

1≤i≤kN
: a key switching key from s′ to S′

Pf ∈ R : a redundant LUT for x �→ f(x)

Δout ∈ Zq : the output scaling factor

(κ, ϑ) ∈ Z × N : define along with N the window size

Output: ctout = LWEs′ (f(m′) · Δout) if we respect requirements in Theorem 5
1 begin

/* Compute two PBS in parallel: */

2 ctf = LWEs′ ((−1)β · f(m′) · Δout) ← GenPBS (ctin,BSK,CTf , κ − 1, ϑ) ;

3 ctSign = LWEs′ ((−1)β · Δout) ← GenPBS (ctin,BSK,CT1, κ − 1, ϑ) ;

/* Compute the multiplication */
4 ctout ← LWEMult(ctf , ctSign,RLK,KSK);
5 end

texts ctf and ctSign the value of β is the same. Then, ctout = LWEs((−1)2β ·f(m′)·Δout)=

LWEs(f(m
′)·Δout). �	

Remark 2. Observe that, in Algorithm 4 we set KSK as a key switching key for
s′ to S′ where s′ is the LWE secret key composed of the coefficients in S′. In
practice, the key switching can be done to a key S′′, that has nothing to do with
s′. In this case, the RLK should be adapted as well to the key S′′.

It shall be noticed that in Algorithm 4:

– The two GenPBS have the same input ciphertext. To make the evaluation
more efficient (evaluating a single bootstrapping instead of two), it is possible
to use either the multi-value bootstrap described in [4], which will be faster
but at the cost of a higher output noise. Another option would be to take
advantage of the PBSmanyLUT, that we describe in detail in Algorithm 6
if the input message is small enough (cf. Remark 3).

– There could be only one key switching done in LWEMult (instead of two) if
one of the two inputs is provided as a GLWE ciphertext (one GenPBS does
not perform the final sample extraction).

– The LWEMult on line 4 can be replaced be a MultSquareLWE which is
faster.

These improvements could impact both increase the noise but improve the
complexity of the algorithm.
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4.2 WoP-PBS Second Version

Another big constraint with TFHE PBS is that the polynomial size is directly
linked to the size of the message we want to bootstrap (as mentioned in Limita-
tion B). The smallest growth of the polynomial size slows down the computation
by more than a factor 2 as TFHE PBS complexity is proportional to the FFT
complexity: N log2(N) with N the polynomial size. Keeping that in mind, we
offer a different way to perform a bootstrap without padding in Algorithm 5
which can be more efficient in a multi-threaded machine. The main idea behind
this Algorithm is to write a message m as β||m′ with β the most significant bit
and m′ the rest of the message. The function f to be computed is broken into
two functions: f0 and f1. We want f0 if β is equal to 0 and f1 if β = 1. We
use β as an encrypted decision bit, so we can choose between f0(m′) or f1(m′)
thanks to the LWEMult algorithm.

We give the complete set of cryptographic parameters for different precisions
in the full version of the paper. In a nutshell, for precisions from 1 to 5 bits, we
use log2(N) = 11 and for 6 and 7 bits of precisions, we use log2(N) = 12.

Algorithm 5: ctout ← WoP-PBS2(ctin,BSK,RLK,KSK, Pf , Δout, κ, ϑ)

Context:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = (s1, · · · , sn) ∈ Z
n
q

s′ = (s′
1, · · · , s′

kN ) ∈ Z
kN
q

S′ =
(

S′(1), . . . , S′(k)
)

∈ Rk
q

∀1 ≤ i ≤ k, S′(i) =
∑N−1

j=0 s′
(i−1)·N+j+1Xj ∈ Rq

f0(x) = f(x) = f1(x − p) for a certain p

(β, m′) = PTModSwitchq(m, Δ, κ, ϑ) ∈ {0, 1} × N

P1 ∈ Rq : as defined in Algorithm 4

CTfi
= GLWES′

(
Pfi

· Δout
) ∈ Rk+1

q (might be a trivial encryption)

CT1 ∈ Rk+1
q : a trivial encryption of P1 · Δout

2
Pf0 , Pf1 ∈ Rq : redundant LUTs of the two halves of Pf

Input:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ctin = LWEs(m · Δin) = (a1, · · · , an, an+1 = b) ∈ Z
n+1
q

BSK,KSK,RLK : as defined in Algorithm 4

Pf ∈ Rq : a redundant LUT for x �→ f(x)

Δout ∈ Zq : the output scaling factor

(κ, ϑ) ∈ Z × N : define along with N the window size

Output: ctout = LWEs′ (f(m′) · Δout) if we respect requirements in Theorem 6
1 begin

/* Compute in parallel 3 PBS: */

2 ctf0 = LWEs′ ((−1)β · Δout · f0(m
′)) ← GenPBS(ctin,BSK,CTf0 , κ, ϑ) ;

3 ctf1 = LWEs′ ((−1)β · Δout · f1(m
′)) ← GenPBS(ctin,BSK,CTf1 , κ, ϑ) ;

4 ctSign = LWEs′ ((−1)β · Δout
2 ) ← GenPBS(ctin,BSK,CT1, κ, ϑ) ;

/* Compute two sums in parallel: */

5 ctβ0 = LWEs′ ((1 − β) · Δout) ← ctSign + (0, Δout
2 ) ;

6 ctβ1 = LWEs′ (−β · Δout) ← ctSign − (0, Δout
2 ) ;

/* Compute two multiplications in parallel: */
7 ctβ·f0 ← LWEMult(ctf0 , ctβ0 ,RLK,KSK) ;

8 ctβ·f1 ← LWEMult(ctf1 , ctβ1 ,RLK,KSK) ;

/* Add the previous results: */
9 ctout ← ctβ·f0 + ctβ·f1 ;

10 end
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Theorem 6 (PBS Without Padding (V2)). Let f0 and f1 be the two func-
tions representing f such that f0(x) = f(x) = f1(x−p) for a certain p ∈ N. Then,
under the same hypothesis of Theorem 5, the Algorithm 5 takes in input a LWE
ciphertext ctin = LWEs(m·Δin)= (a1,··· ,an,an+1=b), with noise from χσin , and returns in
output a LWE ciphertext ctout under the secret key s′ encrypting the messages
f(m′)·Δout if and only if the input noise has variance verifying the Theorem 3.

The output ciphertext noise variance verifies Var(WoP-PBS2)=2·Var(LWEMult)

with input variances for the LWEMult defined as σi=Var(GenPBS), for i ∈ {1, 2}.
The complexity of Algorithm 4 is:

C
(n,�PBS,k1,N1,�KS,�RL,k2,N2)
WoP-PBS2

= 3C
(n,�PBS,k1,N1)
GenPBS + 2C

(�KS,�RL,N1,k2,N2)
LWEMult + (N2 + 3)Cadd

Proof (Sketch). We have ctβ0 = LWEs′ (Δout
2 ((−1)β+1)). If β = 0, then ctβ0 =

LWEs′ (Δout) else ctβ0 = LWEs′ (0). Then, ctβ0 = LWEs′ ((1−β)Δout). Similarly, we obtain
ctβ1 = LWEs′ ((−β)Δout). The output ciphertext ctout is then equal to LWEs′ (((−1)β(1−
β)Δoutf0(m

′)+(−1)β(−β)Δoutf1(m
′). Thus, if β = 0, ctout = f0(m

′) else ctout = f1(m
′), as

expected. �	
It shall be noticed that in Algorithm 5:

– The three GenPBS have the same input ciphertext. As we observed for Algo-
rithm 4, to make the evaluation more efficient by evaluating a single boot-
strapping instead of three, it is possible to use either the multi-value bootstrap
described in [4] or to take advantage of the PBSmanyLUT (Algorithm 6
and cf. Remark 3).

– We could remove two key switches (among four) as explained for the
WoP-PBS1.

– To improve both performance and noise, in practice, we can do a lazy relin-
earization as described in [18], i.e., the step of relinearization of the two
LWEMult will be done after the final addition.

– The two LWEMult followed by the final addition can be replaced by a
PackedSumProducts (described in the full version of the paper).

These improvements could increase the noise but also improve the complexity
of the algorithm.

4.3 A Multi-output PBS

We are able to extract any chunk of the encrypted plaintext with ϑ, κ and N .
When possible, one can define a smaller chunk for the plaintext by trimming
the bound in the LSB using a ϑ > 0. It means that after the modulus switching
there are ϑ LSB set to 0. More formally, after the modulus switching, a plaintext
m∗ will be of the form m∗ = m · Δ + e · 2ϑ ∈ Zq.

Thank to the ϑ LSB set to 0 in the plaintext, one can evaluate 2ϑ functions
at the cost of only one GenPBS without increasing the noise compared to a
regular TFHE PBS. The procedure is described in Algorithm 6.

The form of the LUT polynomial is set accordingly to the ϑ parameter so that
it contains up to 2ϑ functions. As for TFHE bootstrapping, one needs to have
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Algorithm 6: ct1, . . . , ct2ϑ ← PBSmanyLUT(ctin,BSK, P(f1,...f2ϑ ), Δout, κ, ϑ)

Context: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = (s1, . . . , sn) ∈ Z
n
q

s′ = (s′
1, . . . , s′

kN ) ∈ Z
kN
q

S′ =
(

S′(1), . . . , S′(k)
)

∈ Rk
q

∀1 ≤ i ≤ k, S′(i) =
∑N−1

j=0 s′
(i−1)·N+j+1Xj ∈ Rq

f1, . . . , f2ϑ : Z → Z

(β, m′) = PTModSwitchq(m, Δ, κ, ϑ) ∈ {0, 1} × N

CT(f1,...,f
2ϑ ) = GLWES′

(
P(f1,...,f

2ϑ ) · Δout

)
(might be a trivial encryption)

Input:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ctin = LWEs(m · Δin) = (a1, · · · , an, an+1 = b) ∈ Z
n+1
q

BSK =
{
BSKi = GGSW(B,�)

S′ (si)
}

1≤i≤n

P(f1,...,f
2ϑ ) : a redundant LUT for : x �→ f1(x)|| . . . ||f2ϑ (x)

(κ, ϑ) ∈ Z × N : define along with N the window size

Output: ct1, . . . , ct2ϑ such that ctj = LWEs′
(
(−1)β · fj(m

′) · Δout

)

1 begin
/* modulus switching */

2 for 1 ≤ i ≤ n + 1 do

3 a′
i ←

[⌊
ai·2N·2κ−ϑ

q

⌉

· 2ϑ

]

2N

4 end

/* blind rotate of the LUT */

5 CT ← BlindRotate
(
CT(f1,··· ,f

2ϑ ), {a′
i}1≤i≤n+1,BSK

)
;

/* sample extract the first 2ϑ terms (coeffs. from 0 to 2ϑ − 1) */

6 for 1 ≤ j ≤ 2ϑ do
7 ctj ← SampleExtractj−1 (CT)
8 end

9 end

redundancy in the LUT to remove the input noise. Each block of functions (i.e.,
the sequence of fi, i ∈ [1, 2ϑ] coefficients) is repeated all along the polynomial.
The LUT can be build as follow:

P(f1,...,f
2ϑ ) = X

N
2p

p−1∑

j=0

X
j N

p

N
p2ϑ

−1
∑

k=0

X
k·2ϑ

2ϑ−1∑

i=0

fi+1(j)X
i
, with p =

q

Δin · 2κ+1

By doing so, one can sample extract at the end 2ϑ coefficients which leads
to 2ϑ output ciphertexts, one for each evaluated functions. By neglecting the
computational cost of the ϑ sample extractions, the complexity is the same than
for a PBS evaluating only one function. The noise is also not impacted.

This method is particularly efficient when the polynomial size is constrained
by the desired output noise. If the polynomial size is chosen large enough, there
will be bits set to zero between the modulus switching noise and the message.
This new method allows to exploit these bits to compute different functions on
the same input ciphertext.

Theorem 7 (Multi-output PBS). Let s = (s1, · · · , sn) ∈ Z
n
q be a binary

LWE secret key. Let S′ = (S′
1,...,S′

k)∈Rk
q be a GLWE secret key such that S′

i =
∑N−1

j=0 s′
(i−1)·N+j+1Xj∈Rq, and s′ =(s′

1,··· ,s′
kN )∈Z

kN
q be the corresponding LWE key.
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Let P(f1,...f
2ϑ )∈Rq be a r-redundant LUT for the functions x�→f1(x)||...||f2ϑ (x) and

Δout ∈ Zq be the output scaling factor. Let (κ, ϑ) ∈ Z × N be the two integer
variables defining (along with N) the window size to be modulus switched, such
that q2ϑ

Δin2
κ < 2N, and let (β,m′)=PTModSwitchq(m,Δin,κ,ϑ).

Then, the Algorithm 6 takes in input a LWE ciphertext ctin = LWEs(m·Δin)=

(a1,··· ,an,an+1 = b), with noise distribution from χσin , a bootstrapping key BSK=
{
CTi =GGSWB,�

S′ (si)
}n

i=1
from s to S′ and a (trivial) GLWE encryption of Pf ·Δout,

and returns in output 2ϑ LWE ciphertexts {ctj}
j∈[0,2ϑ] under the secret key s′

encrypting the messages (−1)β ·fj(m′)·Δout if and only if the input noise has vari-
ance verifying the Theorem 3.

The complexity of the algorithm is:

C
(n,�,k,N,ϑ)
PBSmanyLUT = C

(n,�,k,N)
GenPBS + 2

ϑ
C

(N)
SampleExtract

Proof. The proof is the mainly the same as the one from the GenPBS (provided
in the full version of the paper). Let p = q

Δin·2κ+1 be the number of possible values
for each fi, i ∈ [0, 2ϑ]. Let m ∈ [0, p − 1] be a plaintext value. The polynomial
P(f0,··· ,f2ϑ ) encodes the following LUT:

⎛

⎜
⎜
⎜
⎝

..., f1(m), ..., f
2ϑ (m), ..., f1(m), ..., f

2ϑ (m)
︸ ︷︷ ︸

N/p elements

, f1(m + 1), ..., f
2ϑ (m + 1), ..., f1(m + 1), ..., f

2ϑ (m + 1)
︸ ︷︷ ︸

N/p elements

, ...

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
p blocks

From the GenPBS, ϑ bits are set to 0. Then, by construction of the LUT,
LUT(f0,··· ,f

2ϑ )[m
∗+i] = fi+1(m

′) for i ∈ [0, 2ϑ −1], so that sample extracting gives the
expected result. �	
Remark 3. Observe that PBSmanyLUT and WoP-PBS algorithms can be
combined in two different ways:

1. Using PBSmanyLUT to improve WoP-PBS: In WoP-PBS1, the ctSign

and each ctfi
resulting from distinct GenPBS can be evaluated at once by

using a single PBSmanyLUT. Similarly, in WoP-PBS2, ctSign and each
ctf0,i

and ctf1,i
could be evaluated at once. In both cases, this variant can be

applied only if the polynomial size chosen for the WoP-PBS is large enough
to allow multiple LUT evaluations (i.e, if precision is not yet a bottleneck
condition): this variant of the WoP-PBS will improve the complexity of the
algorithm, without impacting the noise growth.

2. Using WoP-PBS to improve PBSmanyLUT: The PBSmanyLUT algo-
rithm implicitly performs a GenPBS with a special modulus switching. This
GenPBS can actually be replaced by a WoP-PBS (with the same spe-
cial modulus switching) as a WoP-PBS performs the same operation as
GenPBS, without the bit of padding constraint. This technique is what we
call WoPBSmanyLUT.

Remark 4. A technique to evaluate many LUTs at the same time by performing
a single TFHE bootstrapping (plus a bunch of polynomial multiplications per
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LUT) has been already proposed in [4] and used in [16]. Their technique does not
impose a strong constraint on the polynomial size used for the bootstrapping,
however it results in a larger output noise, that strictly depends on the function
that is evaluated. If the noise constraints at the output of the bootstrapping are
a problem, the technique of [4] will require to increase the polynomial size.

Our new PBSmanyLUT is a better alternative to this technique in some
situations as the output noise will be independent of the function evaluated. But
this comes at the cost of having enough space for the evaluation of the different
LUTs (i.e., ϑ bits on the modulus switching to evaluate 2ϑ functions so a large
enough polynomial size N must be chosen). If we already are working with large
enough polynomials, there is no computation overhead nor noise growth when
replacing a GenPBS by a PBSmanyLUT.

5 Applications

In this section we present some of the applications that take advantage from our
new techniques. In particular, we show that:

– Using a combination of LWEMult and GenPBS improves the gate boot-
strapping technique of TFHE [9], because it allows to perform leveled binary
operations between bootstrappings (instead of bootstrapping every single
gate).

– The improved gate bootstrapping technique can be extended in order to
evaluate arithmetic circuits with larger precision, by using a combination
of LWEMult and WoP-PBS (or its variants).

– Using the PBSmanyLUT technique allows to improve the Circuit Boot-
strapping of TFHE by a factor �, without affecting the noise growth.

– The WoP-PBS technique (and its variants) can be used to bootstrap on
larger precision inputs.

5.1 Fast Arithmetic

We start by describing an improvement of FHE Boolean circuit evaluation. Then,
we extend it to arithmetic circuits dealing with integers encoded in more than a
single bit. Finally, we describe how to use the later to build exact computation
on bigger encrypted integers.

5.1.1 Fast Boolean Arithmetic
In TFHE [7], authors improve techniques proposed in FHEW [12] to perform
fast homomorphic evaluation of Boolean circuits and called this feature gate
bootstrapping. It is very easy to use, because it performs one bootstrapping for
each bivariate Boolean gate evaluated: there is no need to be careful with the
noise management anymore because each gate reset the noise systematically.
This also makes the conversion between the cleartext Boolean circuits and the
encrypted circuits quite straightforward in practice.
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However, performing a bootstrapping at each bivariate Boolean gate is very
expensive when we want to evaluate large circuits and seem unnecessary. One
idea to make the evaluation more efficient would be to mix the bootstrapping with
some leveled operations, at the cost of loosing the ease of not caring about noise
growth. But this idea cannot be immediately applied when it comes to gate boot-
strapping: in fact, the bootstrapping also takes care of ensuring a fixed encoding
in the ciphertexts, that may not be ensured if we introduce leveled operations.
Furthermore, TFHE can only evaluate linear combinations between LWE cipher-
texts; non linear operations would require the use of bootstrapping or of a non
native product between LWE ciphertexts (e.g., an external product which is not
composable because it makes use of different input ciphertext types). This is espe-
cially problematic when we want to evaluate an AND gate, for instance.

To be more clear, in gate bootstrapping, messages are encoded with what we
call one “bit of padding”: meaning that we know that the MSB of the plaintext
(without noise) is set to zero. This bit is used to perform a linear combination
while preserving the (plaintext) MSB of this combination so we can bootstrap it
(the function is negacyclic, so do not need an additional bit of padding) and get
a correct result. Roughly speaking, the initial linear combination evaluates the
linear part of the gate and consumes the bit of padding, while the bootstrapping
takes care of the evaluation of the non-linear part of the gate, reduces the noise
and brings the bit of padding back to be able to perform a future operation.

We propose a novel approach based on the GenPBS and LWEMult which
removes both the constraint of padding bits and the difficulties with the non-
linear leveled evaluations. Thus, this offers the possibility of computing series
of Boolean gates without the need of computing a bootstrap for every gate.
A GenPBS should only be computed to reduce the noise when needed. In
Lemma 1, we only describe some of the most common Boolean gates (i.e.,
XOR,NOT and AND), whose combination offers functional completeness. The
other gates can be obtained by combining these operations.

Lemma 1. Let bi ∈ {0, 1} such that cti=LWEs(bi· q
2 )∈Z

n+1
q , for i ∈ {1, 2}. Let(

0, q
2

) ∈ Z
n+1
q be a trivial LWE ciphertext. Then, the following equalities between

Boolean gates and homormorphic operators hold:

ct1 XOR ct2 = ct1 + ct2
ct1 AND ct2 = LWEMult(ct1, ct2,RLK,KSK)

NOT ct1 = ct1 +

(

0,
q

2

)

Proof (Sketch). A bit is naturally encoded as a 0 (resp. q
2 ) if its value is 0 (resp.

1). Then the Boolean gates XOR and NOT stem from that encoding. The
AND is a direct application of the LWEMult. �	

The noise increases after each computed gate since no bootstrap is performed.
Then, after chaining many of them, a noise reduction might be required. We
propose two simple processes exploiting the GenPBS with the (negacyclic) sign
function.
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Lemma 2. Let ctin be a LWE ciphertext resulting from a Boolean circuit with
gates defined as in Lemma 1. Then, each of the following operators allows to
bootstrap the ciphertext during the Boolean circuit evaluation:

ctout ← GenPBS(ctin,BSK, P1 · XN/2,Δout =
q

4
, κ = 0, ϑ = 0) +

(
0,

q

4

)
(4)

ctout ← GenPBS(ctin,BSK, Pf =

3N
4 −1∑

i=N
4

Xi,Δout =
q

2
, κ = −1, ϑ = 0) (5)

Proof. The first method 4 uses GenPBS with the parameters Δout =
q
4 ,κ =0,ϑ=

0 and Pf =P1∗XN/2. The output of the GenPBS gives cttmp = LWEs(± q
4 ). Then,

depending on the sign, the term cttmp+(0, q
4 ) is equal to LWEs(0) or cttmp = LWEs(

q
2 ).

The second approach 5 uses other parameters for the modulus switching
which can be seen as shifted of one bit, i.e., κ = −1, ϑ = 0 and Δout = q

2 . In
this case, the sign does not impact the value of the encoded bit, since ±0 = 0
and ± q

2 = q
2 . Then, evaluating GenPBS with the function Pf =

∑ 3N
4 −1

i= N
4

Xi and
Δout =

q
2 , we obtain ctout = LWEs(±0) or LWEs(± q

2 ). �	

5.1.2 Modular Power of 2 Arithmetic
We generalize the faster Boolean circuit method (described in Lemma 1) to
any power of two modular integer circuits. This enables a more efficient exact
arithmetic modulo 2p for some integer p. For i ∈ {1, 2}, let cti = LWEs(mi · q

2p ) be
a LWE ciphertext encrypting the message mi ∈ �0, 2p� (i.e., mi has a precision
of p bits). As in the case of faster Boolean arithmetic, we define three natural
homomorphic operators to mimic modular 2p arithmetic: the addition (Add2p)
that is evaluated as an homomorphic LWE addition, the multiplication (Mul2p)
that is evaluated as a LWEMult, and the unary opposite (Opp2p) that is
obtained by simply negating the LWE input.

When we deal with integers encoded with more than one bit, functions we
have to apply during a PBS are no longer negacyclic. It means that without a
WoP-PBS we would have to have at least 2 bits of padding (one for a linear
combination and another one for the PBS with non-negacyclic function evalua-
tion). This results in a big N when we want to work with larger powers of two.
With a WoP-PBS, we do not need to have bits of padding. Then, we can simply
compute leveled additions and multiplications, and only use a WoP-PBS when
we have to reset the noise to a lower level.

5.1.3 From Power of 2 Modular Arithmetic to Exact Integer Arith-
metic

We now present some operators allowing to extend homomorphic computation
modulo a power of two modular to bigger integer arithmetic. To do so, we will
use a few LWE ciphertexts to represent a single big integer. These required oper-
ations offer the possibility to compute an exact integer multiplication between
two LWE ciphertexts as in Sect. 5.1.2 and keeping the LSB of the computation.
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However, we also need to be able to recover the MSB of additions and multi-
plications for carry propgation when we deal with big integers encrypted with
several ciphertexts. The operators keeping the MSB of the computation between
two messages m1,m2∈�0,2p� are defined as: AddMSB

2p :(m1,m2) �→�m1+m2
2p � mod 2p

and MulMSB
2p :(m1,m2) �→�m1·m2

2p � mod 2p and their implementation is described in
Algorithm 7.

In Algorithm 7, to improve efficiency, we can remove both PublicKS and
include them in the relinearization steps of the previous WoP-PBS. If param-
eters allow it, one might also replace Lines 6 and 7 of Algorithm 7 by a single
WoP-PBS to extract the MSB directly.

Algorithm 7: ctout← AddMSB
2p MulMSB

2p (ct1,ct2,BSK,KSK1,KSK2,RLK)

Context:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = (s1, · · · , sn) ∈ Z
n
q

s′ = (s′
1, · · · , s′

kN ) ∈ Z
kN
q

S′ =
(

S′(1), . . . , S′(k)
)

∈ Rk
q

∀1 ≤ i ≤ k, S′(i) =
∑N−1

j=0 s′
(i−1)·N+j+1Xj ∈ Rq

Δ = q
2p ∈ Zq

0 ≤ m1, m2 < 2p

PId : a redundant LUT for x �→ x (identity function)

Input:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct1 = LWEs(m1 · Δ) ∈ Z
n+1
q

ct2 = LWEs(m2 · Δ) ∈ Z
n+1
q

BSK =
{
BSKi = GGSW(B,�)

S′ (si)
}

1≤i≤n
: a bootstrapping key from s to S′

KSK1 =
{
CTi = GLev(B,�)

S′
(
s′

i

)}

1≤i≤kN
: a key switching key from s′ to S′

KSK2 =
{
cti = Lev(B,�)

s

(
s′

i

)}

1≤i≤kN
: a key switching key from s′ to s

RLK =
{
CTi,j = GLev(B,�)

S′
(

S′
i · S′

j

)}1≤j≤i

1≤i≤k
: a relinearization key for S′

Output: ctout = LWEs

([⌊
m1+m2

2p

⌋]

2p
· Δ
)

ctout = LWEs

([⌊m1·m2
2p

⌋]
2p · Δ

)

1 begin
/* add p bits of padding */

2 ct′1 ← WoP-PBS(ct1,BSK,RLK,KSK1, PId, Δ/2p, 0, 0);

3 ct′2 ← WoP-PBS(ct2,BSK,RLK,KSK1, PId, Δ/2p, 0, 0);

/* compute the operation */

4 ct′ ← ct′1 + ct′2 ct′ ← LWEMult(ct′1, ct′2,RLK,KSK1) ;

/* key switch */

5 ct′′ ← PublicKS(ct′,KSK2, Id) ;

/* extract the LSB */

6 ct′LSB ← WoP-PBS(ct′′,BSK,RLK,KSK1, PId, Δ/2p, p, 0);

/* subtract the LSB to only keep the MSB */

7 ct ← ct′ − ct′LSB ;

/* key switch */
8 ctout ← PublicKS(ct,KSK2, Id) ;

9 end

Lemma 3 (MSB operations). For i ∈ {1, 2}, let cti = LWEs(mi·Δ) be two LWE
ciphertexts, encrypting mi · Δ with 0 ≤ mi < 2p and Δ= q

2p , both encrypted
under the same secret key s = (s1, . . . , sn) ∈ Z

n
q , with noise sampled in χσi

. Let
BSK,KSK,RLK be defined as in Theorem 5.
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Then, Algorithm 7 is able to compute a new LWE ciphertext ctout, encrypting
the MSB of the sum, i.e., the carry, [�m1+m2

2p �]2p ·Δ (resp. a new LWE ciphertext
ctout, encrypting the MSB of the product [�m1·m2

2p �]2p ·Δ), under the secret key
s′. The variance of the noise of ctout can be estimated by composing the noise
formulas of the different operations composing the algorithm.

The complexity of Algorithm 7 is:

C
(n,�PBS,k1,N1,�KS,�RL,k2,N2)

AddMSB
2p

= 3C
(n,�PBS,k1,N1,�KS,�RL,k2,N2)
WoP-PBS + 2C

(1,�KS,k2N2,1,n)
PublicKS

+ 2(N2 + 1)Cadd

C
(n,�PBS,k1,N1,�KS,�RL,k2,N2)

MulMSB
2p

= 3C
(n,�PBS,k1,N1,�KS,�RL,k2,N2)
WoP-PBS + 2C

(1,�KS,k2N2,1,n)
PublicKS

+ (N2 + 1)Cadd + C
(�KS,�RL,k2N2,1,k2N2)
LWEMult

(6)

Proof (sketch). The first two WoP-PBS of the algorithm send the two messages
m1 and m2 to a lower scaling factor q

22p . This way, when the leveled addition
(resp. the LWEMult) operation is performed, the new precision 2p will be able
to store the entire (both MSB and LSB) exact result. The third WoP-PBS
is used to extract only the LSB of the result, that will be subtracted from the
result of the previous computation to obtain an encryption of the MSB at scaling
factor q

2p , i.e, ready to be used in the following computation. Observe that the
PublicKS are used in order to switch the secret key in order to be compatible
with the following operation. �	

5.2 Faster Circuit Bootstrapping

In TFHE [8], authors present a technique called circuit bootstrapping, that allows
to convert an LWE ciphertext into an GGSW ciphertext. The circuit bootstrap-
ping is necessary for leveled evaluations using the external product: the latter’s
inputs are both GLWE and GGSW ciphertexts, while its output is a GLWE
ciphertext. To sum up, circuit bootstrapping allows to build a new GGSW
ciphertext from an LWE ciphertext so one can use it as input to an external
product for instance.

The authors of [8] observe that a GGSW ciphertext, encrypting a message
μ ∈ Z (μ is binary in their application) under the secret key S=(S1,...,Sk,Sk+1=−1),
is composed by (k+1)� GLWE ciphertexts encrypting μ·Si · q

Bj , for 1 ≤ i ≤ k+1
and 1 ≤ j ≤ �. As already mentioned in Sect. 2, the goal of circuit bootstrapping
is to build one by one all the GLWE ciphertexts composing the output GGSW.
In order to do that, it performs the following two steps:

– The first step performs � independent TFHE PBS to transform the input
LWE encryption of μ into independent LWE encryptions of μ · q

Bj .
– The second step performs a list of (k + 1)� private key switchings from LWE

to GLWE to multiply the messages μ · q
Bj obtained in the first step by the

elements of the secret key Si, and so to obtain the different lines of the output
GGSW.
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Table 2. Generalization of TFHE gate bootstrapping.

Gate bootstrap
TFHE

Binary
arithmetic
(p = 1) as in
Sect. 5.1.1

Integer arithmetic
(p > 1)
generalization in
Sect. 5.1.3

Opp2p Negation Addition with
a constant

Negation

Add2p Bootstrapped XOR Homomorphic
Add

Homomorphic Add

AddMSB
2p Bootstrapped AND MultLWE 3 WoPBS + 2

Homomorphic Add
+ 2 public key
switch

Mul2p Bootstrapped AND MultLWE MultLWE

MulMSB
2p x �→ 0 x �→ 0 3 WoPBS +

MultLWE +
Homomorphic Add
+ 2 public key
switch

Noise
reduction
frequency

PBS at each gate PBS when
necessary

WoPBS when
necessary

Here, we propose a faster method based on the PBSmanyLUT algorithm
(Algorithm 6). In a nutshell, the idea is to replace the � PBS of the first step by
only one PBSmanyLUT (that costs exactly the same as a one of the � original
PBS and do not increase the noise). Since the most costly part of the circuit
boostrapping is due to the PBS part, the overall complexity is then roughly
reduced by a factor �. In [8], � = 2, so we have an improvement of a factor 2 on
the PBS part, without any impact on the noise.

Lemma 4. Let consider the circuit boostrapping algorithm as described in [8,
Alg. 11]. The � independent bootstrappings (line 2) could be replaced by:

⎧
⎨

⎩

{cti}i∈[1,�] ← PBSmanyLUT(ctin,BSK, P · XN/2ρ+1
, 1, κ = 0, ρ = �log2(�)
)

∀i ∈ [1, �], cti +
(
0, q

2Bi

)

with P (X) =

N
2ρ −1
∑

i=0

2ρ−1∑

j=0

q

2Bj
X

2ρ·i+j
.

Proof. By calling PBSmanyLUT with ρ = 
log2(�)�, we are able to compute
� PBS in parallel. The polynomial P represents the LUT:

⎛

⎜
⎜
⎝

q

2B1
, . . . ,

q

2B�
, 0, . . . , 0

︸ ︷︷ ︸
2ρ elements

,
q

2B1
, . . . ,

q

2B�
, 0, . . . , 0

︸ ︷︷ ︸
2ρ elements

, . . . ,
q

2B1
, . . . ,

q

2B�
, 0, . . . , 0

︸ ︷︷ ︸
2ρ elements

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
N′=N/2ρ elements
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In the end, for i ∈ [1, �], cti=LWES(± q

2Bi ), with the sign depending on the plaintext
value. By adding the trivial ciphertext (0, q

2Bi ) to the cti, we either get cti=

LWES(
q

Bi ) or LWES(0), as expected. �	

5.3 Large Precision Without Padding (Programmable)
Bootstrapping

We first describe a way to efficiently bootstrap an LWE ciphertext with larger
precision and then show how to also compute a PBS on such ciphertexts. These
algorithms do not require the input LWE ciphertext to have a bit of padding.

5.3.1 Larger Precision Without Padding Bootstrapping
We introduce a new procedure in Algorithm 8 to homomorphically decompose a
message encrypted inside a ciphertext in α ciphertexts each encrypting a small
chunk of the original message. The key of the efficiency of this algorithm is
to begin by extracting the least significant bits instead of the most significant
bits. To do so, we use the previously introduced parameter κ to remove some of
the most significant bits of the input message m and apply the bootstrapping
algorithm on the remaining bits as described in Subsect. 3.2. The bootstrapping
algorithm must be a WoP-PBS (Algorithm 4 or 5) as the value of most signif-
icant bit is not guaranteed to be set to zero. This procedure allows us to obtain
an encryption of the least significant bits of the message. Next, by subtracting
this result to the input ciphertext, we remove the least significant bits of the
input message. This gives a new ciphertext encrypting only the most significant
bits of the input message. From now on, this procedure is then repeated on the
resulting ciphertext until we obtain α ciphertexts, each encrypting miΔi such
that minΔin =

∑α−1
i=0 miΔi. This process is somehow similar to the approach called

Digit Extraction applied on the BGV/BFV schemes, presented in [5,17].
This entails a significantly better complexity than the solution explained in

the Limitation E as each bootstrap only needs a ring dimension big enough to
bootstrap correctly the number of bits of each chunk instead of having to be big
enough to bootstrap correctly the total number of bits of the input ciphertext.

Efficiency might be improved within the multiplication inside each
WoP-PBS by adding a keyswitching during the relinearization step to reduce
the size of the LWE dimension. As the complexity of the WoP-PBS depends
on this LWE dimension, this will result in a faster version of Algorithm 8.

Lemma 5. Let ctin = LWEs(min·Δin)∈Z
n+1
q be a LWE ciphertext, encrypting min·Δin∈

Zq. under the LWE secret key s = (s1, . . . , sn) ∈ Z
n
q , with noise sampled from

χσ. Let BSK,KSK and RLK as defined in Theorem 5. Let L ={di}i∈[0,α−1] with
di∈N

∗ s.t. Δin2
∑α−1

i=0 di ≤q be the list defining the bit size of each output chunk.
Algorithm 8 computes α ∈ N∗ new LWE ciphertexts {ctout,i}i∈[0,α−1], where
each one of them encrypts mi·Δi, where Δi =Δin·2

∑i−1
j=1 dj , under the secret key

s′. The variances of the noise is Var(ctout,i)=Var(WoP-PBS). The complexity is:
C

(n,�PBS,k1,N1,�KS,�RL,α)
Decomp =αC

(n,�PBS,k1,N1,�KS,�RL,1,n)
WoP-PBS1

+α(n+1)Cadd +(
α(α+1)

2 )Cadd.
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Algorithm 8: ctout ← Decomp(ctin,BSK,RLK,KSK,L )

Context:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = (s1, · · · , sn) ∈ Z
n
q

s′ = (s′
1, · · · , s′

N ) ∈ Z
kN
q

S′ =
(

S′(1), . . . , S′(k)
)

∈ Rk
q

∀1 ≤ i ≤ k, S′(i) =
∑N−1

j=0 s′
(i−1)·N+j+1Xj ∈ Rq

{Pfi
}i∈[0,α−1] : LUTs for the functions fi

∀i ∈ [1, α − 1], Δi = Δin · 2
∑i−1

j=1 dj ≤ q

Δ0 = Δin, minΔin =
∑α−1

i=0 miΔi

Input:

⎧
⎪⎨

⎪⎩

ctin = LWEs(min · Δin) ∈ Z
n+1
q

BSK,KSK,RLK : as defined in Algorithm 4

L = {di}i∈[0,α−1] with di ∈ N
∗

Output: {ctout,i = LWEs′ (mi · Δi)}i∈[0,α−1]

1 begin
2 ct ← ctin
3 for i ∈ [0, α − 1] do

4 κi ←∑α−1
j=i+1 dj

5 ctout,i ← WoP-PBS(ct,BSK,RLK,KSK, Pfi
, Δi, κi, 0)

6 ct ← ct − ctout,i
7 end

8 end

An immediate application of Algorithm 8 is a high precision bootstrap algo-
rithm. By using the decomposition and then adding each ctout,i, one can get -
with the right parameters- a noise smaller than the one of the input ciphertext.

5.3.2 Larger Precision WoP-PBS
The Tree-PBS and the ChainPBS algorithms introduced in [16] allow to
compute large precision programmable bootstrappings assuming that the input
ciphertexts are already decomposed in chunks. In a nutshell, the idea behind
the Tree-PBS is to encode a high-precision function in several LUTs. The first
input ciphertext is used to select a subset among all the LUTs. This subset is
then rearranged thanks to a key switching to build new encrypted LUTs. The
previous steps can be repeated on the second input ciphertext, and so on. The
Tree-PBS relies on the multi-output bootstrap from [4].

Thanks to the Algorithm 8, we are able to efficiently decompose a ciphertext.
This allows to quickly switch from one representation (one ciphertext for one
message) to another (e.g., several ciphertexts for one message) before calling the
Tree-PBS or the ChainPBS algorithms. Moreover, we can replace the calls to
PBS in both of the algorithms by a WoP-PBS. This relaxes the need to call
Tree-PBS or ChainPBS with ciphertexts having a bit of padding. We call these
two algorithms respectively the Tree-WoP-PBS and the Chained-WoP-PBS.
Note that these algorithms can also be used to implement the AddMSB

2p and
MulMSB

2p operators.

6 Conclusion

This paper extends TFHE by exceeding some of its limitations. In particular,
we present a new technique that allows to bootstrap messages without requiring
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a bit of padding, taking advantage of the GLWE multiplication (tensor product
plus relinearization) and of our generalized version of TFHE’s PBS. The latter
additionally allows to evaluate multiple LUTs in a single PBS for free when pos-
sible. These two techniques are particularly interesting when used to improve
both the gate bootstrapping and the circuit bootstrapping techniques of TFHE.
Thank to this new programmable bootstrapping, there is no need to compute a
systematic PBS in every homomorphic Boolean gates as leveled additions and
multiplications can be evaluated between when noise allows it. Additionally, the
evaluation of Boolean circuits can be extended in order to support the evalua-
tion of larger powers of 2 modular arithmetic and exact integer arithmetic. The
circuit bootstrapping can be drastically improved, by replacing the evaluation of
multiple PBS in the algorithm by a single PBSmanyLUT (that costs exactly
as a PBS), without affecting the noise growth. Finally, we introduce two new
efficient methods to bootstrap ciphertexts with large precision: a bootstrapping
method to bring the noise down as well as a programmable bootstrapping eval-
uating univariate functions.

Open Problems. All the new techniques proposed improve the state of the
art by adding new features to TFHE and getting rid of some of its constraints.
However, many enhancements could be added. In particular, one of the major
bottleneck concerns the computation of the negacyclic convolutions of polyno-
mials. The most efficient method based on the FFT inherently adds noise to
ciphertext due to the use of floating points over 64 bits. When applied with
larger floating point representation, the performances collapse. Thus, the study
of alternative methods compatible with the TFHE parameters might improve
the practical performances.
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16. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
TFHE. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2) (2021)

17. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 25

18. Lee, Y., Lee, J., Kim, Y.S., Kang, H., No, J.S.: High-precision and low-complexity
approximate homomorphic encryption by error variance minimization. Cryptology
ePrint Archive, Report 2020/1549 (2020). https://eprint.iacr.org/2020/1549

19. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, 2005. ACM (2005)

21. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)
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