
Dynamic Random Probing Expansion
with Quasi Linear Asymptotic

Complexity

Sonia Beläıd1(B), Matthieu Rivain1(B), Abdul Rahman Taleb1,2(B),
and Damien Vergnaud2,3(B)

1 CryptoExperts, Paris, France
{sonia.belaid,matthieu.rivain,abdul.taleb}@cryptoexperts.com

2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
damien.vergnaud@lip6.fr

3 Institut Universitaire de France, Paris, France

Abstract. The masking countermeasure is widely used to protect cryp-
tographic implementations against side-channel attacks. While many
masking schemes are shown to be secure in the widely deployed probing
model, the latter raised a number of concerns regarding its relevance
in practice. Offering the adversary the knowledge of a fixed number
of intermediate variables, it does not capture the so-called horizontal
attacks which exploit the repeated manipulation of sensitive variables.
Therefore, recent works have focused on the random probing model in
which each computed variable leaks with some given probability p. This
model benefits from fitting better the reality of the embedded devices.
In particular, Beläıd, Coron, Prouff, Rivain, and Taleb (CRYPTO 2020)
introduced a framework to generate random probing circuits. Their com-
piler somehow extends base gadgets as soon as they satisfy a notion called
random probing expandability (RPE). A subsequent work from Beläıd,
Rivain, and Taleb (EUROCRYPT 2021) went a step forward with tighter
properties and improved complexities. In particular, their construction
reaches a complexity of O(κ3.9), for a κ-bit security, while tolerating a
leakage probability of p = 2−7.5.

In this paper, we generalize the random probing expansion approach
by considering a dynamic choice of the base gadgets at each step in the
expansion. This approach makes it possible to use gadgets with high num-
ber of shares –which enjoy better asymptotic complexity in the expansion
framework– while still tolerating the best leakage rate usually obtained for
small gadgets. We investigate strategies for the choice of the sequence of
compilers and show that it can reduce the complexity of an AES imple-
mentation by a factor 10. We also significantly improve the asymptotic
complexity of the expanding compiler by exhibiting new asymptotic gad-
get constructions. Specifically, we introduce RPE gadgets for linear opera-
tions featuring a quasi-linear complexity as well as an RPE multiplication
gadget with linear number of multiplications. These new gadgets drop the
complexity of the expanding compiler from quadratic to quasi-linear.

Keywords: Random probing model · Masking · Side-channel
security · RPE

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13091, pp. 157–188, 2021.
https://doi.org/10.1007/978-3-030-92075-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92075-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-92075-3_6

158 S. Beläıd et al.

1 Introduction

Implementations of cryptographic algorithms may be vulnerable to the powerful
side-channel attacks. The latter exploit the power consumption, the electromag-
netic radiations or the temperature variations of the underlying device which
may carry information on the manipulated data. Entire secrets can be recovered
within a short time interval using cheap equipment.

Among the several approaches investigated by the community to counteract
side-channel attacks, masking is one of the most deployed in practice. Simulta-
neously introduced by Chari, Jutla, Rao, and Rohatgi [12] and by Goubin and
Patarin [16] in 1999, it consists in splitting the sensitive variables into n random
shares, among which any combination of n − 1 shares does not reveal any secret
information. When the shares are combined by bitwise addition, the masking
is said to be Boolean. In this setting, the linear operations can be very easily
implemented by applying on each share individually. Nevertheless, non-linear
operations require additional randomness to ensure that any set of less than n
intermediate variables is still independent from the original secret.

To reason on the security of masked implementations, the community has
introduced so-called leakage models. They aim to define the capabilities of the
attacker to formally counteract the subsequent side-channel attacks. Among
them, the probing model introduced in 2003 by Ishai, Sahai, and Wagner [18] is
probably the most widely used. In a nutshell, it assumes that an adversary is
able to get the exact values of up to a certain number of intermediate variables.
The idea is to capture the difficulty of learning information from the combina-
tion of noisy variables. Despite its wide use by the community [7,13,14,20,21],
the probing model raised a number of concerns regarding its relevance in prac-
tice [5,17]. It actually fails to capture the huge amount of information resulting
from the leakage of all manipulated data. As an example, it typically ignores
the repeated manipulation of identical values which would average the noise
and remove uncertainty on secret variables (see horizontal attacks [5]). Another
model, the noisy leakage model introduced by Prouff and Rivain and inspired
from [12], offers an opposite trade-off. Although it captures well the reality of
embedded devices by assuming that all the data leaks with some noise, it is
not convenient to build security proofs. To get the best from both worlds, Duc,
Dziembowski, and Faust proved in 2014 that a scheme secure in the probing
model is also secure in the noisy leakage model [15]. Nevertheless, the reduction
is not very tight in the standard probing model (considering a constant number
of probes) since the security level decreases as the size of the circuit increases
(i.e. a secure circuit C in the probing model is also secure in the noisy model but
loses at least a factor |C|, where |C| is the number of operations in the circuit).

The reduction from [15] relies on an intermediate leakage model, referred to
as random probing model. The latter benefits from a tight reduction with the
noisy leakage model which becomes independent of the size of the circuit. In
a nutshell, it assumes that every wire in the circuit leaks with some constant
leakage probability. This leakage probability is somehow related to the amount of
side-channel noise in practice. A masked circuit is secure in the random probing

Dynamic Random Probing Expansion 159

model whenever its random probing leakage can be simulated without knowledge
of the underlying secret data with a negligible simulation failure. In addition to
the attacks already captured by the probing model, the random probing model
further encompasses the powerful horizontal attacks which exploit the repeated
manipulations of variables in an implementation.

To the best of our knowledge, five constructions tolerate a constant leakage
probability so far [1,3,4,9,10]. The two former ones [1,4] use expander graphs
and do not make their tolerated probability explicit. In the third construction [3],
Ananth, Ishai, and Sahai develop an expansion strategy on top of multi-party
computation protocols. According to the authors of [9], their construction toler-
ates a leakage probability of around 2−26 for a complexity of O(κ8.2) with respect
to the security parameter κ. Finally, the two more recent constructions [9,10]
follow an expansion strategy on top of masking gadgets achieving the so-called
random probing expandability (RPE) notion. In a nutshell, every gate in the
original circuit is replaced by a corresponding gadget for some chosen number
of shares. The operation is repeated until the desired security level is achieved.
The improved gadgets of [10] make it possible to tolerate of leakage probability
of 2−7.5 for a complexity of O(κ3.9).

Our contributions. In this paper, we push the random probing expansion strat-
egy one step further by analyzing a dynamic choice of the base gadgets. While
the expanding compiler considered in [9,10] consists in applying a compiler CC
composed of base RPE gadgets a given number of times, say k, to the input
circuit: ̂C = CC(k)(C), we consider a dynamic approach in which a new com-
piler is selected at each step of the expansion from a family of base compilers
{CCi}i. This approach is motivated by the generic gadget constructions intro-
duced in [10] which achieve the RPE property for any number of shares n. While
the asymptotic complexity of the expanding compiler decreases with n, the tol-
erated leakage probability p also gets smaller with n, which makes those con-
structions only practical for small values of n. We show that using our dynamic
approach we can get the best of both worlds: our dynamic expanding compiler
enjoys the best tolerated probability as well as the best asymptotic complex-
ity from the underlying family of RPE compilers {CCi}i. We further illustrate
how this approach can reduce the complexity of a random probing secure AES
implementation by a factor 10 using a dynamic choice of the gadgets from [10].

This first contribution further motivates the design of asymptotic RPE gad-
gets achieving better complexity. While the asymptotic constructions introduced
in [10] achieve a quadratic complexity, we introduce new constructions achieving
quasi-linear complexity. We obtain this result by showing that the quasi-linear
refresh gadget from Battistello, Coron, Prouff, and Zeitoun [6] achieves a strong
random probing expandability (SRPE) which makes it a good building block
for linear RPE gadgets (addition, copy, multiplication by constant). We thus
solve a first issue left open in [10]. With such linear gadgets, the complexity
bottleneck of the expanding compiler becomes the number of multiplications in
the multiplication gadget, which is quadratic in known RPE constructions. We
then provide a new generic construction of RPE multiplication gadget featuring

160 S. Beläıd et al.

a linear number of multiplications. We obtain this construction by tweaking
the probing-secure multiplication gadget from Beläıd, Benhamouda, Passelègue,
Prouff, Thillard, and Vergnaud [8]. As in the original construction, our RPE
gadget imposes some constraint on the underlying finite field. We demonstrate
that for any number of shares there exist a (possibly large) finite field on which
our construction can be instantiated and we provide some concrete instantiations
for some (small) number of shares.

Using our new asymptotic gadget constructions with the dynamic expansion
approach we obtain random probing security for a leakage probability of 2−7.5

with asymptotic complexity of O(κ2). Moreover, assuming that the constraint
on the finite field from our multiplication gadget is satisfied, we can make this
asymptotic complexity arbitrary close to O(κ) which is optimal. In practice,
this means that securing circuits defined on large field against random probing
leakage can be achieved at a sub-quadratic nearly-linear complexity.

2 Preliminaries

Along the paper, we shall use similar notations and formalism as [9]. In partic-
ular, K shall denote a finite field. For any n ∈ N, we shall denote [n] the integer
set [n] = [1, n] ∩ Z. For any tuple x = (x1, . . . , xn) ∈ K

n and any set I ⊆ [n],
we shall denote x|I = (xi)i∈I . Any two probability distributions D1 and D2 are
said ε-close, denoted D1 ≈ε D2, if their statistical distance is upper bounded by
ε, that is

SD(D1;D2) :=
1
2

∑

x

|pD1(x) − pD2(x)| ≤ ε ,

where pD1(·) and pD1(·) denote the probability mass functions of D1 and D2.

2.1 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the
function K

n → K defined as

LinDec : (x1, . . . , xn) �→ x1 + · · · + xn ,

for every n ∈ N and (x1, . . . , xn) ∈ K
n. We shall further consider that, for every

n, � ∈ N, on input (x̂1, . . . , x̂�) ∈ (Kn)� the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂�) �→ (LinDec(x̂1), . . . , LinDec(x̂�)) .

Definition 1 (Linear Sharing). Let n, � ∈ N. For any x ∈ K, an n-linear
sharing of x is a random vector x̂ ∈ K

n such that LinDec(x̂) = x. It is said to be
uniform if for any set I ⊆ [n] with |I| < n the tuple x̂|I is uniformly distributed
over K

|I|. A n-linear encoding is a probabilistic algorithm LinEnc which on input
a tuple x = (x1, . . . , x�) ∈ K

� outputs a tuple x̂ = (x̂1, . . . , x̂�) ∈ (Kn)� such that
x̂i is a uniform n-sharing of xi for every i ∈ [�].

Dynamic Random Probing Expansion 161

An arithmetic circuit on a field K is a labeled directed acyclic graph whose
edges are wires and vertices are arithmetic gates processing operations on K.
We consider circuits composed of gates from some base B = {g : K� → K

m},
e.g., addition gates, (x1, x2) �→ x1 + x2, multiplication gates, (x1, x2) �→ x1 · x2,
and copy gates, x �→ (x, x). A randomized arithmetic circuit is equipped with
an additional random gate which outputs a fresh uniform random value of K.

In the following, we shall call an (n-share, �-to-m) gadget, a randomized
arithmetic circuit that maps an input x̂ ∈ (Kn)� to an output ŷ ∈ (Kn)m such
that x = LinDec(x̂) ∈ K

� and y = LinDec(ŷ) ∈ K
m satisfy y = g(x) for some

function g.

Definition 2 (Circuit Compiler). A circuit compiler is a triplet of algorithms
(CC,Enc,Dec) defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input an
arithmetic circuit C and outputs a randomized arithmetic circuit ̂C,

– Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ K
�

to an encoded input x̂ ∈ K
�′
,

– Dec (output decoding) is a deterministic algorithm that maps an encoded out-
put ŷ ∈ K

m′
to a plain output y ∈ K

m,

which satisfy the following properties:

– Correctness: For every arithmetic circuit C of input length �, and for every
x ∈ K

�, we have

Pr
(

Dec
(

̂C(x̂)
)

= C(x)
∣

∣ x̂ ← Enc(x)
)

= 1 , where ̂C = CC(C).

– Efficiency: For some security parameter κ ∈ N, the running time of CC(C) is
poly(κ, |C|), the running time of Enc(x) is poly(κ, |x|) and the running time
of Dec

(

ŷ
)

is poly(κ, |ŷ|), where poly(κ, �) = O(κe1�e2) for some constants e1,
e2.

2.2 Random Probing Security

Let p ∈ [0, 1] be some constant leakage probability parameter, a.k.a. the leakage
rate. In the p-random probing model, an evaluation of a circuit C leaks the
value carried by each wire with a probability p, all the wire leakage events being
mutually independent.

As in [9], we formally define the random-probing leakage of a circuit from
the two following probabilistic algorithms:

– The leaking-wires sampler takes as input a randomized arithmetic circuit C
and a probability p ∈ [0, 1], and outputs a set W , denoted as

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with
probability p to W (where all the probabilities are mutually independent).

162 S. Beläıd et al.

– The assign-wires sampler takes as input a randomized arithmetic circuit C,
a set of wire labels W (subset of the wire labels of C), and an input x, and
it outputs a |W |-tuple w ∈ K

|W |, denoted as

w ← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W
for an evaluation on input x.

Definition 3 (Random Probing Leakage). The p-random probing leakage
of a randomized arithmetic circuit C on input x is the distribution Lp(C,x)
obtained by composing the leaking-wires and assign-wires samplers as

Lp(C,x) id= AssignWires(C, LeakingWires(C, p),x) .

Definition 4 (Random Probing Security). A randomized arithmetic circuit
C with � · n ∈ N input gates is (p, ε)-random probing secure with respect to
encoding Enc if there exists a simulator Sim such that for every x ∈ K

�:

Sim(C) ≈ε Lp(C,Enc(x)) . (1)

2.3 Random Probing Expansion

In [3], Ananth, Ishai and Sahai proposed an expansion approach to build a
random-probing-secure circuit compiler from a secure multi-party protocol. This
approach was later revisited by Beläıd, Coron, Prouff, Rivain, and Taleb who
formalize the notion of expanding compiler [9].

The principle of the expanding compiler is to recursively apply a base com-
piler, denoted CC and which simply consists in replacing each gate of B in the
input circuit by the corresponding gadget. Assume we have n-share gadgets Gg

for each gate g in B. The base compiler CC simply consists in replacing each
gate g in these gadgets by Gg and by replacing each wire by n wires carrying a
sharing of the value. We thus obtain n2-share gadgets by simply applying CC to
each gadget: G

(2)
g = CC(Gg). This process can be iterated an arbitrary number

of times, say k, to an input circuit C:

C
CC−−−→ ̂C1

CC−−−→ · · · CC−−−→ ̂Ck .

The first output circuit ̂C1 is the original circuit in which each gate g is replaced
by a base gadget Gg. The second output circuit ̂C2 is the original circuit C in
which each gate is replaced by an n2-share gadget G

(2)
g . Equivalently, ̂C2 is the

circuit ̂C1 in which each gate is replaced by a base gadget. In the end, the output
circuit ̂Ck is hence the original circuit C in which each gate has been replaced
by a k-expanded gadget and each wire has been replaced by nk wires carrying
an (nk)-linear sharing of the original wire.

The expanding compiler achieves random probing security if the base gadgets
verify a property called random probing expandability [9]. We recall hereafter the
original definition of the random probing expandability (RPE) property for 2-
to-1 gadgets.

Dynamic Random Probing Expansion 163

Definition 5 (Random Probing Expandability [9]). Let f : R → R. An
n-share 2-to-1 gadget G : Kn × K

n → K
n is (t, f)-random probing expandable

(RPE) if there exists a deterministic algorithm SimG
1 and a probabilistic algo-

rithm SimG
2 such that for every input (x̂, ŷ) ∈ K

n × K
n, for every set J ⊆ [n]

and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J ′) ← SimG
1 (W,J)

out ← SimG
2 (W,J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡ (|I1| > t
)

and F2 ≡ (|I2| > t
)

verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (2)

with ε = f(p) (in particular F1 and F2 are mutually independent),
2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n − 1 otherwise,
3. the output distribution satisfies

out
id=
(

AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′
)

(3)

where ẑ = G(x̂, ŷ).

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1

simulator takes two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′
1

and J ′
2 satisfying the same property as J ′ in the above definition (w.r.t. J1 and

J2). The SimG
2 simulator must then produce an output including ẑ1|J ′

1
and ẑ2|J ′

1

where ẑ1 and ẑ2 are the output sharings. The RPE notion can also be simply
extended to gadgets with a single input: the SimG

1 simulator produces a single
set I so that the failure event (|I| > t) occurs with probability ε (and the SimG

2

simulator is then simply given x̂|I where x̂ is the single input sharing). We refer
the reader to [9] for the formal definitions of these variants.

Although the requirement of mutual independence for the failure events
might seem strong, it can be relaxed which leads to the notion of weak random
probing expandability. It is shown in [9] that this weaker notion actually implies
the RPE notion for some ε which is derivable from the (joint) probability of the
failure events.

The authors of [10] eventually introduced a tighter version the RPE security
property, namely the tight random probing expandability (TRPE). In this set-
ting, the failure events are re-define as Fj ≡ (|Ij | > min(t,W)

)

. Both RPE and
TRPE notions can be split into two sub-notions (that are jointly equivalent to
the original one) corresponding to the two possible properties of J ′ in Defini-
tion 5. Specifically, in (T)RPE1, the set J is constrained to satisfy |J | ≤ t and
J ′ = J , while in (T)RPE2, J ′ is chosen by the simulator such that J ′ ⊆ [n] and
|J ′| = n − 1.

164 S. Beläıd et al.

2.4 Complexity of the Expanding Compiler

Consider circuits with base of gates B = {g1, . . . , gβ} for which we have n-share
RPE gadgets {Gg}g∈B. Further denote Grandom the n-share random gadget which
generates n independent random values as a random n-sharing as well as CC the
circuit compiler based from those gadgets. To each gadget a complexity vector is
associated NG = (Ng1 , . . . , Ngβ

, Nr)T where Ngi
stands for the number of gates

gi and Nr for the number of random gates in the gadget G. Then the compiler
complexity matrix MCC is the (β + 1) × (β + 1) matrix defined as

MCC =
(

Ng1 | · · · | Ngβ
| NGrandom

)

with NGrandom = (0, . . . , 0, n)T .

Given a circuit C with complexity vector NC (which is defined as the gate-
count vector as for gadgets), compiling it with the base gadgets gives a circuit
̂C of complexity vector N

̂C = MCC · NC . It follows that the kth power of the
matrix M gives the gate counts for the level-k gadgets as:

Mk
CC = MCC · · · MCC

︸ ︷︷ ︸

k times

=
(

N (k)
g1

| · · · | N (k)
gβ

| N
(k)
Grandom

)

with N
(k)
Grandom

=

⎛

⎜

⎜

⎜

⎝

0
...
0
nk

⎞

⎟

⎟

⎟

⎠

where N
(k)
gi are the gate-count vectors for the level-k gadgets G

(k)
gi . Let us denote

the eigen decomposition of MCC as MCC = Q · Λ · Q−1, we get

Mk
CC = Q · Λk · Q−1 with Λk =

⎛

⎜

⎝

λk
1

. . .
λk

β+1

⎞

⎟

⎠

where λi are the eigenvalues of MCC. We then obtain an asymptotic complexity
of

| ̂C| = O(|C| ·
β+1
∑

i=1

|λi|k
)

= O(|C| · max(|λ1|, . . . , |λβ+1|)k
)

for a compiled circuit ̂C = CC(k)(C).
The complexity of the expanding compiler can be further expressed in terms

of the target random probing security level κ. This complexity is related to the
notion of amplification order that we recall hereafter.

Definition 6 (Amplification Order)

– Let f : R → R which satisfies

f(p) = cd pd + O(pd+ε)

as p tends to 0, for some cd > 0 and ε > 0. Then d is called the amplification
order of f .

Dynamic Random Probing Expansion 165

– Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves
(t, f)-RPE for f : R → R of amplification order d. Then d is called the
amplification order of G (with respect to t).

We stress that the amplification order of a gadget G is defined with respect
to the RPE threshold t. Namely, different RPE thresholds t are likely to yield
different amplification orders d for G (or equivalently d can be thought of as a
function of t).

As shown in [9], the complexity of the expanding compiler relates to the
(minimum) amplification order of the gadgets composing the base compiler CC.
If the latter achieve (t, f)-RPE with an amplification order d, the expanding
compiler achieves (p, 2−κ)-random probing security with an expansion level k
such that f (k)(p) ≤ 2−κ, which yields a complexity blowup of

| ̂C| = O(|C| · κe
)

with e =
log Nmax

log d
(4)

where
Nmax = max eigenvalues(MCC) , (5)

where eigenvalues(·) returns the tuple of eigenvalues (or modules of eigenvalues
in case of complex numbers) of the input matrix.

Let us slightly explicit the complexity with the 3-gate base B = {add, mult,
copy} as used in [9,10]. Considering that multiplication gates are solely used in
the multiplication gadget (NGadd,m = NGcopy,m = 0) which is the case in the
constructions of [9,10], it can be checked that (up to some permutation) the
eigenvalues satisfy

(λ1, λ2) = eigenvalues(Mac) , λ3 = NGmult,m and λ4 = n

where Mac is the top left 2 × 2 block matrix of MCC

Mac =
(

NGadd,a NGcopy,a

NGadd,c NGcopy,c

)

where Nx,y denotes the number of gates x in a gadget y, with m for the multi-
plication, a for the addition, and c for the copy. We finally get

| ̂C| = O(|C| · Nk
max

)

with Nmax = max(eigenvalues(Mac), NGmult,m, n) . (6)

As an illustration, the expanding compiler from [10] satisfies Nmax = 3n2 − 2n

and d = min(t+1,n−t)
2 which yields an asymptotic complexity of O(κe) with

e =
log(3n2 − 2n)

log(�(n + 1)/4
)
which tends to 2 as n grows. In comparison, in this work, we shall achieve a
quasi-linear complexity, i.e., Nmax = O(n log n).

166 S. Beläıd et al.

2.5 Tolerated Leakage Rate

Finally, we recall the notion of tolerated leakage rate which corresponds to the
maximum value p for which we have f(p) < p. This happens to be a necessary
and sufficient condition for the expansion strategy to apply with (t, f)-RPE
gadgets.

In practice, the tolerated leakage rate should be measured on concrete devices
and fixed accordingly. Hence the motivation to exhibit gadgets which tolerate
a high probability to cover any setting. So far, the asymptotic constructions
provide a trade-off between tolerated leakage rate and complexity. However, we
only know how to compute the former for small numbers of shares and the
bounds for larger values are not tight.

As an illustration, the instantiation proposed in [9] tolerates a leakage prob-
ability up to 2−7.80, while the instantiation of [10] tolerates 2−7.50, both for
3-share base gadgets.

3 Dynamic Random Probing Expansion

As recalled in Sect. 2, the principle of the expanding compiler is to apply a base
circuit compiler CC which is composed of base gadgets –one per gate type in the
circuit– several times, say k, to the input circuit: ̂C = CC(k)(C). The level of
expansion k is chosen in order to achieve a certain desired security level κ such
that f (k)(p) ≤ 2−κ.

In this section, we generalize this approach to choose the circuit compiler
dynamically at the different steps of the expansion. Let {CCi}i be a family of
circuit compilers, the dynamic expanding compiler for this family with respect
to the expansion sequence k1, . . . kμ, is defined as

̂C = CCkμ
μ ◦ CC

kμ−1
μ−1 ◦ . . . · · · ◦ CCk1

1 (C) . (7)

The idea behind this generalization is to make the most from a family of
RPE compilers {CCi}i which is defined with respect to the number of shares
ni in the base gadgets. If we assume that each compiler CCi with ni shares
achieves the maximum amplification order di = ni+1

2 , then the benefit of using
a compiler with higher number of shares is to increase the amplification order
and thus reduce the number of steps necessary to achieve the desired security
level κ. On the other hand, the tolerated leakage rate of existing constructions
decreases with ni. As we show hereafter, a dynamic increase of ni can ensure
both, the tolerated leakage rate of a small ni and the better complexity of a high
ni.

3.1 Dynamic Expanding Compiler

We formally introduce the dynamic expanding compiler hereafter.

Dynamic Random Probing Expansion 167

Definition 7 (RPE Compiler). Let B = {g : K
� → K

m} be an arithmetic
circuit basis. Let ni, t ∈ N, and let {Gg}g∈B be a family of (t, fg)-RPE ni-share
gadgets for the gate functionalities in B. The RPE compiler CCi associated to
{Gg}g∈B is the circuit compiler which consists in replacing each gate from a
circuit over B by the corresponding gadget Gg. Moreover,

– the expanding function of CCi is the function fi defined as

fi : p �→ max
g

fg(p)

– the amplification order of CCi is the integer di defined as

di = min
g

dg

where dg is the amplification order of fg,
– the gadget complexity of CCi is the integer si defined as

si = max
g

|Gg|

where |Gg| denotes the number of wires in the gadget Gg,
– the tolerated leakage rate of CCi is the real number qi ∈ [0, 1) such that

fi(p) < p for every p < qi.

In the following, we state the security and asymptotic complexity of the
dynamic expanding compiler. We start with a formal definition of this compiler:

Definition 8 (Dynamic Expanding Compiler). Let {CCi}i be a family of
RPE compilers with numbers of shares {ni}i. The dynamic expanding compiler
for {CCi}i with expansion levels k1, . . . , kμ, is the circuit compiler (CC,Enc,Dec)
where

1. The input encoding Enc is a
(∏μ

i=1 nki
i

)

-linear encoding.

2. The output decoding Dec is the
(∏μ

i=1 nki
i

)

-linear decoding mapping.
3. The circuit compilation is defined as

CC(·) = CCkμ
μ ◦ CC

kμ−1
μ−1 ◦ . . . · · · ◦ CCk1

1 (·) .

The following theorem states the random probing security of the dynamic
expanding compiler. The proof of the theorem is very similar to the proof of
RPE security (Theorem 2) from [9]. The main difference is that at each level of
the expansion, we can use a different expanding compiler with different sharing
orders. Besides that, the proof follows the same baselines as in [9]. The proof is
provided in the full version of this paper.

Theorem 1 (Security). Let {CCi}i be a family of RPE compilers with expand-
ing functions {fi}i. The dynamic expanding compiler for {CCi}i with expansion
levels k1, . . . , kμ is (p, ε)-random probing secure with

ε = fkμ
μ ◦ · · · ◦ fk1

1 (p) .

168 S. Beläıd et al.

We now state the asymptotic complexity of the dynamic expanding compiler
in the next theorem. The proof is given in the full version of this paper.

Theorem 2 (Asymptotic Complexity). Let {CCi}i be a family of circuit
compilers with complexity matrices {MCCi}i. For any input circuit C, the output
circuit ̂C = CCkμ

μ ◦ · · · · · · ◦ CCk1
1 (C) is of size

| ̂C| = |C| · O
(

μ
∏

i=1

λki
i

)

with λi := max eigenvalues(MCCi) . (8)

In the following, we shall call λi as defined above, the eigen-complexity of the
compiler CCi. We shall further call the product

∏μ
i=1 λki

i the complexity blowup
of the dynamic expanding compiler. We note that minimizing the complexity
blowup is equivalent to minimizing the log complexity blowup, which is

μ
∑

i=1

ki · log2(λi) . (9)

3.2 General Bounds for Asymptotic Constructions

The following theorem introduces general bounds on the tolerated leakage rate
and the expanding function of an RPE compiler with respect to its amplification
order and gadget complexity. The proof of the theorem is given in the full version
of this paper.

Theorem 3. Let CCi be an RPE circuit compiler of amplification order di and
gadget complexity si. The tolerated leakage rate qi of CCi is lower bounded by

qi ≥ q̄i :=
1
e

(

1
2 e

) 1
di−1

(

di

si

)1+ 1
di−1

(10)

For any p < q̄i, the expanding function fi of CCi is upper bounded by

fi(p) ≤ 2
(

si

di

)

pdi ≤ 2
(

e · si

di

)di

pdi . (11)

The lower bound q̄i on the tolerated leakage rate quickly converges to the
ratio e−1 · di/si as di grows. In other words, an RPE compiler family {CCi}i

indexed by the number of shares ni of its base gadgets tolerates a leakage prob-
ability which is linear in the ratio between its amplification order di and its
complexity si. For known families of RPE compilers from [10] this ratio is in
O(1/ni).

From Theorem 3, we obtain the following bound for the composition f
(k)
i .

The proof of the corollary is given in the full version of this paper.

Dynamic Random Probing Expansion 169

Corollary 1. Let CCi be an RPE compiler of expanding function fi, amplifica-
tion order di and gadget complexity si. For any p < q̄i as defined in (10), we
have

f
(k)
i (p) ≤

[

2
(

si

di

)]

(

1+ 1
di−1

)

dk−1
i

pdk
i ≤

⎡

⎢

⎣

(

2
1

di esi

di

)

(

1+ 1
di−1

)

p

⎤

⎥

⎦

dk
i

.

The following lemma gives an explicit lower bound on the expansion level
{ki}i to reach some arbitrary target probability pout = 2−κout from a given
input probability pin = 2−κin by applying CC

(ki)
i .

Lemma 1. Let pin = 2−κin < qi and pout = 2−κout ∈ (0, 1]. For any integer ki

satisfying
ki ≥ logdi

(κout) − logdi
(κin − Δi)

with

Δi :=
(

1 +
1

di − 1

)

(

1
di

+ log2
(esi

di

)

)

we have
f
(ki)
i (pin) ≤ pout = 2−κout .

In the above lemma, Δi represents a lower bound for κin which matches the
upper bound q̄i of pin = 2−κin . Assuming that si and di are both monotonically
increasing with i, we get that the threshold Δi tends towards log2

(

esi

di

)

.

From Lemma 1, we further get that the cost induced by the choice of the
compiler CCi to go from an input probability pin to a target output probability
pout is

ki · log2(λi) ≥ log2(λi)
log2(di)

(

log2(κout) − log2(κin − Δi)
)

(12)

(in terms of the log complexity blowup (9)). Note that this upper bound is
tight: it could be replaced by an equality at the cost of ceiling the term between
parentheses (i.e. the term corresponding to ki). We further note that the above
equation is consistent with the complexity analysis of the expanding compiler
provided in [9]. Indeed going from a constant leakage probability pin = p to a
target security level pout = 2−κ by applying ki times a single RPE compiler CCi,
we retrieve a complexity of O(κe) with e = log2(λi)

log2(di)
.

Equation (12) shows that using CCi to go from input probability pin to output
probability pout induces a log complexity cost close to

log2(λi)
log2(di)

(

log2(κout) − log2(κin)
)

provided that κin is sufficiently greater than Δi. So given the latter informal
condition, it appears that the parameter i minimizing the ratio log2(λi)

log2(di)
gives the

best complexity.

170 S. Beläıd et al.

Application. For the asymptotic construction introduced in [10], the RPE
compiler CCi features

– an amplification order di = O(ni),
– a gadget complexity si = O(n2

i),
– an eigen-complexity λi = O(n2

i).

For such a construction, the ratio log2(λi)
log2(di)

is decreasing and converging towards
2 as ni grows. On the other hand, Δi tends to log2(ni) which implies that CCi

should only be applied to an input probability lower than 1
ni

.

3.3 Selection of the Expansion Levels

In this section, we investigate the impact of the choice of the expansion levels
ki on the complexity of the dynamic expanding compiler. We first assess the
asymptotic complexity obtained from a simple approach and then provide some
application results for some given gadgets.

In the following CC0 shall denote an RPE compiler with constant parameters
while {CCi}i≥1 shall denote a family of RPE compilers indexed by a parameter
i. We do this distinction since the goal of the CC0 compiler shall be to tolerate
the highest leakage rate and to transit from a (possibly high) leakage probability
p to some lower failure probability pi which is in turn tolerated by at least one
compiler from {CCi}i.

A Simple Approach. We consider a simple approach in which the compiler
CC0 is iterated k0 times and then a single compiler CCi is iterated ki times.
The complexity blowup of this compiler is λk0

0 λki
i . The first expansion level k0 is

chosen to ensure that the intermediate probability pi := f
(k0)
0 (p) is lower than

q̄i (the lower bound on the tolerated leakage rate of CCi from Theorem 3). Then
ki is chosen so that f

(ki)
i ≤ 2−κ.

Concretely, we set κi := Δi + 1 which, by Lemma 1, gives

k0 =
⌈

logd0
(Δi + 1) − logd0

(log2(p) − Δ0)
⌉

, (13)

and
ki =

⌈

logdi
(κ)

⌉

= O(logdi
(κ)

)

. (14)

For some constant leakage probability p and some start compiler CC0 with
constant parameters, we get k0 = O(logd0

(Δi)
)

giving an asymptotic complexity
blowup of

O(λk0
0 λki

i

)

= O(Δe0
i κei

)

with e0 =
log2(λ0)
log2(d0)

and ei =
log2(λi)
log2(di)

. (15)

Then for any choice of i we get an asymptotic complexity blowup of O(κei
)

which
is the same asymptotic complexity as the standard expanding compiler with base

Dynamic Random Probing Expansion 171

compiler CCi. On the other hand, our simple dynamic compiler CC
(ki)
i ◦ CC

(k0)
0

tolerates the same leakage rate as CC0.

Using this simple approach we hence get the best of both worlds:

– a possibly inefficient RPE compiler CC0 tolerating a high leakage rate q0,

– a family of RPE compilers {CCi}i with complexity exponent ei = log2(λi)
log2(di)

decreasing with i.

We stress that for monotonously increasing λi and di, the asymptotic complex-
ity of our simple approach is O(κe) where e can be made arbitrary close to
limi→∞

log2(λi)
log2(di)

.

Application. To illustrate the benefits of our dynamic approach, we simply
get back to the experimentations on the AES implementation from [9]. The
authors apply either a 3-share or 5-share compiler repeatedly until they reach
their targeted security level. While using the 5-share compiler reduces the toler-
ated probability, we demonstrate that we can use both compilers to get the best
tolerated probability as well as a better complexity.

Figure 1 illustrates the trade-offs in terms of achieved security level and com-
plexity of the expansion strategy when using different compilers at each iteration
of the expansion. Starting from a tolerated leakage probability p (2−7.6 on the
left and 2−9.5 on the right), the empty bullets (◦) give this trade-off when only
the 3-share compiler is iterated. In this case, the final security function ε from
Theorem 1 is equal to f

(k3)
3 (p) if we consider f3 to be the failure function of the 3-

share compiler, for a certain number of iterations k3 which is written next to each
empty bullet on the figure. On the other hand, the black bullets (•) represent the
trade-offs achieved in terms of complexity and security levels while combining
both compilers with different numbers of iterations. In this case, we start the
expansion with a certain number of iterations k3 of the 3-share compiler, and
then we continue with k5 iterations of the 5-share compiler of failure function f5,
the final compiled circuit is then random probing secure with ε = f

(k5)
5 (f (k3)

3 (p))
for p ∈ {2−7.6, 2−9.5}. The number of iterations of the compilers is written next
to each black bullet in the format k3-k5.

For instance, starting from the best tolerated probability 2−7.6, the static
compiler from [9,10] requires 11 applications of the 3-share compiler to achieve
a security level of at least 80 bits. This effort comes with an overall complexity of
1017.52. Using our dynamic approach, we can combine the 3-share and the 5-share
to achieve this 80 bits security level for the same tolerated probability but with a
complexity of 1016.04. That would require 7 iterations of the 3-share compiler and
2 iterations of the 5-share compiler. Starting from the same leakage probability,
a security level of at least 128 bits is achieved also with 11 applications of the
3-share compiler with a complexity of 1017.52. In order to achieve at least the
same security, we would need more iterations of both compilers in the dynamic
approach. With 7 iterations of the 3-share compiler and 3 iterations of the 5-share
compiler, we get a complexity of 1017.62 which is very close to the complexity of

172 S. Beläıd et al.

security

complexity

6-3

7-2

6-4

7-3

◦

◦

◦

10

11

12

2−80 2−128 2−176 2−224 2−272

1016

1017

1018

1019

security

complexity

1-3

2-2

1-4

2-3

◦

◦

◦

5

6

7

2−80 2−128 2−176 2−224 2−272

1010

1011

1012

1013

Fig. 1. Complexity of random probing AES for different security levels for a tolerated
probability of 2−7.6 (left) or 2−9.5 (right).

the 3-share application alone, while achieving a security level of 231 bits. That
is, we almost double the security level achieved using 11 iterations of the 3-share
compiler with an almost equal complexity. For a tolerated probability of 2−7.6

and at least 128 bits of security, note that 11 applications of the 3-share compiler
yield a security order of 2−135 while both other trade-offs directly yield security
orders of 2−242 (6 iterations of 3-share and 4 iterations of 5-share) and 2−231

(7 iterations of 3-share and 3 iterations of 5-share), with one less iteration they
would be below 128 bits, which explains their more important complexity. The
same behavior can be observed with a starting tolerated leakage probability of
2−9.5 on the right.

The above results motivate the next contributions of this paper, namely find-
ing RPE compilers which achieve the maximal amplification orders and which
benefit from good asymptotic complexity (i.e. gadgets defined for any number
of shares n with amplification order increasing with n) in order to optimize the
security-efficiency trade-off and to tolerate the best possible leakage probabil-
ity. We showed this far that the tolerated leakage probability decreases with an
increasing number of shares n. So if we want to tolerate the best leakage proba-
bility, we would start with a few iterations of a compiler with a small number of
shares and which tolerates a good leakage probability (which can be computed
for instance with the verification tool VRAPS [9]), typically a 3-share construc-
tion. Meanwhile, after a few constant number of iterations, we can change to
a different compiler which benefits from a better asymptotic complexity (as
explained above with our simple approach). In the constructions from [10], the
bottleneck in terms of asymptotic complexity was from the linear gadgets (addi-
tion and copy). Thanks to the quasilinear refresh gadget we introduce later in
this paper, the bottleneck becomes the multiplication gadget (with n2 multipli-
cations), which we also improve in the following sections under some conditions
on the base field.

Dynamic Random Probing Expansion 173

4 Linear Gadgets with Quasi-Linear Complexity

In a first attempt, we aim to reduce the complexity of the linear gadgets that
are to be used in our dynamic compiler.

In [10], the authors provide new constructions of generic addition and copy
gadgets, using a refresh gadget Grefresh as a building block. The construction
works for any number of shares and the authors prove the RPE security of the
gadgets based on the security of Grefresh. In a nutshell, given a n-share refresh
gadget Grefresh, the authors construct a copy gadget Gcopy which on input sharing
(a1, . . . , an), outputs the sharings

(

Grefresh(a1, . . . , an), Grefresh(a1, . . . , an)
)

(16)

with two independent executions of Grefresh. The authors also construct an addi-
tion gadget Gadd which, on input sharings (a1, . . . , an) and (b1, . . . , bn), first
refreshes the inputs separately, then outputs the sharewise sum of the results

(

Grefresh(a1, . . . , an) + Grefresh(b1, . . . , bn)
)

. (17)

If the refresh gadget Grefresh is TRPE of amplification order d, the authors
show that Gcopy is also TRPE of amplification order d, and Gadd is TRPE of
amplification order at least �d/2
.

While the copy gadgets from [10] achieve an optimal amplification order, this
is not the case yet for addition gadgets and we first aim to fill this gap. Precisely,
we introduce a new property which, when satisfied by its inherent refresh gadget
Grefresh, makes the addition gadget TRPE with the same amplification order as
Grefresh. We then prove that this new property is actually satisfied by the refresh
gadget from [6] which has quasi-linear complexity O(n log n) in the sharing order
n. Using this refresh gadget as a building block, we obtain linear gadgets Gadd

and Gcopy with quasi-linear complexities.

Constructions of Linear Gadgets from a Stronger Building Block. We
first define our new property (as a variant of properties defined in [9,10]) which
proves to be a useful requirement for refresh gadgets when used as a building
block of linear gadgets.

Definition 9 (t-Strong TRPE2). Let G be an n-share 1-input gadget. Then
G is t-Strong TRPE2 (abbreviated t-STRPE2) if and only if for any set J ′ of
output shares indices and any set W of internal wires of G such that |W |+ |J ′| ≤
t, there exists a set J of output share indices such that J ′ ⊆ J and |J | = n − 1
and such that the assignment of the wires indexed by W together with the output
shares indexed by J can be perfectly simulated from the input shares indexed by
a set I of cardinality satisfying |I| ≤ |W | + |J ′|.
Remark 1. This new property directly implies the TRPE2 property with maxi-
mal amplification order introduced in [10]. Recall that G is t-TRPE2 with max-
imal amplification order if and only if for any set W of probed wires such that

174 S. Beläıd et al.

|W | < min(t + 1, n − t), there exists a set J of output shares indices such that
|J | = n − 1 and such that an assignment of the wires indexed by W and the
output shares indexed by J can be jointly perfectly simulated from input shares
indexed in a set I such that |I| ≤ |W |.

Having a refresh gadget which satisfies the property from Definition 9 results
in tighter constructions for generic addition gadgets as stated in Lemma 2. Its
proof is given in the full version of this paper.

Lemma 2. Let Grefresh be an n-share refresh gadget and let Gadd be the addition
gadget described in Eq. (17). Then if Grefresh is (t, f)-TRPE for any t ≤ n − 1
of amplification order d ≥ min(t + 1, n − t) and Grefresh is (n − 1)-STRPE2,
then Gadd is (t, f ′)-RPE (resp. (t, f ′)-TRPE) for any t ≤ n − 1 for some f ′ of
amplification order min(t + 1, n − t).

Instantiation of Linear Gadgets with Quasi-Linear Refresh Gadget. A
refresh gadget with O(n log n) complexity was introduced in [6]. In a nutshell, the
idea is to add a linear number of random values on the shares at each step, to split
the shares in two sets to apply the recursion, and then to add a linear number
of random values again. The algorithmic description of this refresh gadget can
be found in [6] or in the full version of the present paper. It was proven to be
(n − 1)-SNI in [6]. In Lemma 3, we show that this gadget is also (t, f)-TRPE of
amplification order min(t + 1, n − t) and that it satisfies (n − 1)-STRPE2. The
proof is given in the full version of this paper.

Lemma 3. Let Grefresh be the n-share refresh gadget described above from [6].
Then Grefresh is (t, f)-TRPE for some function f : R → R of amplification order
d ≥ min(t + 1, n − t). Grefresh is additionally (n − 1)-STRPE2.

Hence, we can instantiate the generic copy and addition gadgets described in (16)
and (17) using the above refresh gadget as Grefresh. We thus obtain RPE gadgets
Gadd and Gcopy enjoying optimal amplification order in quasi-linear complexity
O(n log n).

Regarding the asymptotic complexity of the expanding compiler, the eigen-
values λ1, λ2 from Sect. 2 are hence now both in O(n log n). At this point, only
the quadratic number of multiplications in the multiplication gadget still sepa-
rates us from a compiler of quasi-linear complexity. We tackle this issue in the
next section by constructing a generic multiplication gadget. We finally end up
with a full expanding compiler with quasi-linear asymptotic complexity.

5 Towards Optimal Multiplication Gadgets

In what follows we should distinguish two types of multiplication gates: regular
two-operand multiplications on K, that we shall call bilinear multiplications, and
multiplications by constant (or scalar multiplications) which have a single input
operand and the constant scalar is considered as part of the gate description.

Dynamic Random Probing Expansion 175

a
n

b
n

G
su

b
m
u
lt

c

m m

G
com

p
ress

d

n

Fig. 2. n-share multiplication gadget Gmult from two subgadgets Gsubmult and Gcompress

In previous works [9,10], the number of bilinear multiplications is the promi-
nent term of the expanding compiler’s complexity. While the most deployed
multiplication gadgets (e.g., [18]) require a quadratic number of bilinear mul-
tiplications in the masking order, the authors of [8] exhibited a probing secure
higher-order masking multiplication with only a linear number of bilinear mul-
tiplications. Their construction, which applies on larger fields, is built from the
composition of two subgadgets Gsubmult and Gcompress, as described in Fig. 2. In
a nutshell, on input sharings â and ̂b, the subgadget Gsubmult performs multi-
plications between the input shares of â and ̂b as well as linear combinations of
these products and it outputs a m-sharing ĉ of the product a · b where m ≥ n1.
Next, the compression gadget Gcompress compresses the m-sharing ĉ back into
an n-sharing ̂d of the product a · b.

The authors of [8] instantiate this construction with a sub-multiplication gad-
get which performs only O(n) bilinear multiplications and with the compression
gadget from [11]. In addition to bilinear multiplications their sub-multiplication
gadget additionally requires a quadratic number of linear operations (i.e., addi-
tion, copy, multiplications by a constant) and random generation gates.

In the following, we rely on the construction [8] with its gadget Gsubmult

which offers a linear number of bilinear multiplications to build a more efficient
RPE multiplication gadget. In order to use it in our expanding compiler, we
integrate an additional gate for the multiplication by a constant and discuss the
resulting asymptotic complexity. We additionally demonstrate that the compres-
sion gadget of [8] is not (n − 1)-SNI as claimed in the paper, and show that we
can rely on other simple and more efficient compression gadgets which satisfy
the expected properties.

5.1 Global Multiplication Gadget

We first define two new properties that Gsubmult and Gcompress will be expected
to satisfy to form a (t, f)-RPE multiplication gadget with the maximum ampli-
fication order from the construction [8].

Contrary to the usual simulation notions, the first partial -NI property dis-
tinguishes the number of probes on the gadget, and the number of input shares

1 In case of a sharewise multiplication for instance, we would have m = n2.

176 S. Beläıd et al.

that must be used to simulate them. It additionally tolerates a simulation failure
on at most one of the inputs (i.e., no limitation on the number of shares for the
simulation).

Definition 10 ((s, t)-partial NI). Let G be a gadget with two input sharings
â and ̂b. Then G is (s, t)-partial NI if and only any the assignment of any t

wires of G can be perfectly simulated from shares (ai)i∈I1 of â and (bi)i∈I2 of ̂b
such that |I1| ≤ s or |I2| ≤ s.

The second property is a variant of the classical TRPE property that we refer
to as comp-TRPE.

Definition 11 ((t, f)-comp-TRPE). Let G be a 1-to-1 gadget with m input
shares and n output shares such that m > n. Let t ≤ n − 1 and d = min(t +
1, n− t). Then G is (t, f)-comp-TRPE if and only if for all set of internal wires
W of G with |W | ≤ 2d − 1, we have:

1. ∀ J, |J | ≤ t a set of output share indices of G, the assignment of the wires
indexed by W and the output shares indexed by J can be jointly perfectly
simulated from the input shares of G indexed by a set I, such that |I| ≤ |W |.

2. ∃ J ′, |J ′| = n −1 a set of output share indices of G, such that the assignment
of the wires indexed by W and the output shares indexed by J ′ can be jointly
perfectly simulated from the input shares of G indexed by a set I, such that
|I| ≤ |W |.
Similarly to what was done in [8] for the SNI property, we can prove that the

composition of a gadget Gsubmult and Gcompress which satisfy well chosen proper-
ties results in an overall multiplication gadget which is (t, f)-RPE specifically for
any t ≤ n − 1 achieving the maximum amplification order d = min(t + 1, n − t).
This is formally stated in Lemma 4 which proof is given in the full version of
this paper.

Lemma 4. Consider the n-share multiplication gadget of Fig. 2 formed by a
2-to-1 multiplication subgadget Gsubmult of m output shares and a 1-to-1 com-
pression gadget Gcompress of m input shares such that m > n. Let t ≤ n − 1 and
d = min(t + 1, n − t). If

– Gsubmult is (d − 1)-NI and (d − 1, 2d − 1)-partial NI,
– Gcompress is (t, f)-comp-TRPE,

then the multiplication gadget Gmult is (t, f)-RPE of amplification order d.

5.2 Construction of Gcompress

In a first attempt, we analyze the compression function that was introduced
in [11] and used to build a multiplication gadget in [8]. As it turns out not to
be SNI or meet our requirements for the expanding compiler, we exhibit a new
and also more efficient construction in a second attempt.

Dynamic Random Probing Expansion 177

Gcompress from [8,11]. The authors of [8] use the [m : n]-compression gadget
introduced in [11] for any input sharing m, using a [2n : n]-compression sub-
gadget as a building block. In a nutshell, it first generates an ISW -refresh of
the zero n-sharing (w1, . . . , wn). Then, these shares are added to the input ones
(c1, . . . , cn) to produce the sequence of output shares (c1 + w1, . . . , cn + wn).

The compression gadget is claimed to be (n − 1)-SNI in [8]. However, we
demonstrate that it is not with the following counterexample. Let n > 2 and
i ∈ [n]. We consider the set composed of a single output share of the compression
procedure J = {(ci + wi) + cn+i} and the set of probes on the internal wires
W = {wi}. For the compression to be 2-SNI, we must be able to perfectly
simulate both the wires in W and J with at most |W | = 1 share of the input
ĉ. However, we can easily observe that (ci + wi) + cn+i − wi = ci + ci+n

requires the two input shares ci and ci+n to be simulated, which does not satisfy
the 2-SNI property. In conclusion, the above gadget is actually not SNI, and
interestingly it is not sufficient either for our construction, i.e. it does not satisfy
Definition 11. This observation motivates our need for a new compression gadget
which satisfies the necessary property for our construction.

New Construction for Gcompress. In Algorithm 1, we exhibit a new [m : n]-
compression technique using an m-share refresh gadget Grefresh as a building
block. We demonstrate in Lemma 5 that this new compression gadget satisfies
the necessary properties for our construction as long as m ≥ 2n. The proof is
given in the full version of this paper.

Algorithm 1: [m : n]-compression gadget
Input : (c1, . . . , cm) such that m ≥ 2n, m-share refresh gadget Grefresh

Output: (d1, . . . , dn) such that
∑n

i=1 di =
∑m

i=1 ci
K ← �m/n�;
(c′

1, . . . , c
′
m) ← Grefresh(c1, . . . , cm);

(d1, . . . , dn) ← (c′
1, . . . , c

′
n);

for i = 1 to K − 1 do
(d1, . . . , dn) ← (d1 + c′

1+i·n, . . . , dn + c′
n+i·n);

end
for i = 1 to m − K · n do

di ← di + c′
i+K·n;

end
return (d1, . . . , dn);

Lemma 5. Let Gcompress be the [m : n]-compression gadget from Algorithm 1
such that m ≥ 2n. If Grefresh is (m − 1)-SNI and (m − 1)-STRPE2, then
Gcompress is (t, f)-comp-TRPE (Definition 11).

178 S. Beläıd et al.

As shown in Sect. 4, the refresh gadget from [5] is actually (m − 1)-SNI and
(m − 1)-STRPE2 for any sharing order m. This gadget can then be used as
a building block for the [m : n]-compression gadget, giving it a complexity
of O(m log m) and satisfying the necessary properties. In addition, this further
provides an improvement over the complexity of the proposed gadget in [8] which
has a complexity of O(�m

n

n2) (because it performs a n-share ISW-refreshing

�m

n

 times, see [8] for more details on the algorithm).

5.3 Construction of Gsubmult

To complete the construction of the overall multiplication gadget, we now exhibit
relevant constructions for Gsubmult. We first rely on the construction from [8]
which happens to achieve the desired goal in some settings. While all the cases
are not covered by the state-of-the-art proposal, we then slightly modify the
construction to meet all our requirements. Both constructions rely on linear
multiplications that are not included yet on the expanding compiler. We thus
start with a construction for this additional linear gadget that we further denote
Gcmult.

Construction for Gcmult. We give a natural construction for Gcmult in Algo-
rithm 2 which simply multiplies each input share by the underlying constant
value and then applies a (t, f)-RPE refresh gadget Grefresh. Basically, with a
(T)RPE refresh gadget Grefresh, we obtain a (T)RPE linear multiplication gad-
get Gcmult as stated in Lemma 6. The proof is given in the full version of the
paper.

Algorithm 2: n-share multiplication by a constant
Input : sharing (a1, . . . , an), constant value ĉ, n-share refresh gadget Grefresh

Output: sharing (d1, . . . , dn) such that d1 + · · · + dn = c.(a1 + . . . + an)
(b1, . . . , bn) ← (c.a1, . . . , c.an);
(d1, . . . , dn) ← Grefresh((b1, . . . , bn));
return (d1, . . . , dn);

Lemma 6. Let Grefresh be a (t, f)-(T)RPE n-share refresh gadget of amplifica-
tion order d. Then Gcmult instantiated with Grefresh is (t, f ′)-(T)RPE of ampli-
fication order d.

Relying on an additional gate for the linear multiplication does not impact
the security analysis and the application of the compilation, but it modifies
the complexity analysis of the expanding compiler. From the analysis given
in Sect. 2.4, a complexity vector is associated to each base gadget NG =
(Na, Nc, Ncm, Nm, Nr)T where Na, Nc, Ncm, Nm, Nr stand for the number of

Dynamic Random Probing Expansion 179

addition gates, copy gates, constant multiplication gates, (bilinear) multipli-
cation gates and random gates respectively in the corresponding gadget. The
matrix MCC is now a 5 × 5 square matrix defined as

M =
(

NGadd | NGcopy | NGcmult | NGmult | NGrandom

)

including, for each vector, the number of linear multiplications. Five eigenvalues
λ1, λ2, λ3, λ4, λ5 are to be computed, i.e., one more compared to the expanding
compiler in the original setting.

We can consider as before that multiplication gates are solely used in Gmult

(NGadd,m = NGcopy,m = NGcmult,m = 0) and that constant multiplication gates
are eventually solely used in Gcmult and Gmult (NGadd,cm = NGcopy,cm = 0) which
is the case in the constructions we consider in this paper. It can be checked that
(up to some permutation) the eigenvalues satisfy

(λ1, λ2) = eigenvalues(Mac) , λ3 = NGcmult,cm , λ4 = NGmult,m and λ5 = n

where Mac is the top left 2 × 2 block matrix of MCC

Mac =
(

NGadd,a NGcopy,a

NGadd,c NGcopy,c

)

.

We get two complexity expressions for the expansion strategy

| ̂C| = O(|C| · Nk
max

)

(18)

with Nmax = max(eigenvalues(Mac), NGcmult,cm, NGmult,m, n) and with the secu-
rity parameter κ

| ̂C| = O(|C| · κe
)

with e =
log Nmax

log d
.

Note that exhibited construction for the linear multiplication gadget requires
NGcmult,cm = n linear multiplications. Hence λ3 = NGcmult,cm = λ5 =
NGrandom,r = n and the global complexity (18) can be rewritten as

| ̂C| = O(|C| · Nk
max

)

with Nmax = max(eigenvalues(Mac), NGmult,m)

if the number of multiplications is greater than n. The asymptotic complexity of
the RPE compiler is thus not affected by our new base gadget Gcmult. We now
describe our constructions of Gsubmult.

Gsubmult from [8]. The authors of [8] provide a (n − 1)-NI construction for
Gsubmult which outputs 2n − 1 shares while consuming only a linear number of
bilinear multiplications in the masking order. We first recall their construction
which relies on two square matrices of (n − 1)2 coefficients in the working field.
As shown in [8], these matrices are expected to satisfy some condition for the
compression gadget to be (n − 1)-NI. Since we additionally want the compression
gadget to be (d − 1, 2d − 1)-partial NI, we introduce a stronger condition and
demonstrate the security of the gadget in our setting.

180 S. Beläıd et al.

Let Fq be the finite field with q elements. Let γ = (γi,j)1≤i,j<n ∈
F
(n−1)×(n−1)
q be a constant matrix, and let δ = (δi,j)1≤i,j<n ∈ F

(n−1)×(n−1)
q

be the matrix defined by δi,j = 1 − γj,i for all 1 ≤ i, j < n − 1. Gsubmult takes
as input two n-sharings a and b and outputs the following a (2n − 1)-sharing c
such that:

• c1 =
(

a1 +
n
∑

i=2

(ri + ai)
)

·
(

b1 +
n
∑

i=2

(si + bi)
)

• ci = −ri ·
(

b1 +
n
∑

j=2

(δi−1,j−1sj + bj)
)

for i = 2, . . . , n

• ci+n−1 = −si ·
(

a1 +
n
∑

j=2

(γi−1,j−1rj + aj)
)

for i = 2, . . . , n

where ri and si are randomly generated values for all 2 ≤ i ≤ n. It can be easily
checked that Gsubmult performs 2n − 1 bilinear multiplications, and that it is
correct, i.e.

∑2n−1
i=1 ci =

∑n
i=1 ai ·∑n

i=1 bi.
In [8], the authors prove that a gadget is (n − 1)-NI if one cannot compute

a linear combination of any set of n − 1 probes which can reveal all of the n
secret shares of the inputs and which does not include any random value in its
algebraic expression. We refer to [8] for more details on this result.

Based on this result, the authors demonstrate in [8], that Gsubmult is (n−1)-
NI if the matrices γ and δ satisfy Condition 1 that we recall below.

Condition 1 (from [8]). Let � = (2(n − 1) + 4) · (n − 1) + 1. Let
In−1 ∈ F

(n−1)×(n−1)
q be the identity matrix, 0x×y ∈ F

x×y
q be a matrix of

zeros (when y = 1, 0x×y is also written 0x), 1x×y ∈ F
x×y
q be a matrix of

ones, Dγ ,j ∈ F
(n−1)×(n−1)
q be the diagonal matrix such that Dγ ,j,i,i = γj,i,

Tn−1 ∈ F
(n−1)×(n−1)
q be the upper-triangular matrix with just ones, and Tγ ,j ∈

F
(n−1)×(n−1)
q be the upper-triangular matrix for which Tγ ,j,i,k = γj,i for i ≤ k:

In−1 =

⎛

⎜

⎜

⎜

⎝

1 0 . . . 0
0 1 0
...

. . .
...

0 . . . 0 1

⎞

⎟

⎟

⎟

⎠

Dγ ,j =

⎛

⎜

⎜

⎜

⎝

γj,1 0 . . . 0
0 γj,2 0
...

. . .
...

0 . . . 0 γj,n−1

⎞

⎟

⎟

⎟

⎠

Tn−1 =

⎛

⎜

⎜

⎜

⎝

1 1 . . . 1
0 1 1
...

. . .
...

0 . . . 0 1

⎞

⎟

⎟

⎟

⎠

Tγ ,j =

⎛

⎜

⎜

⎜

⎝

γj,1 γj,1 . . . γj,1

0 γj,2 γj,2

...
. . .

...
0 . . . 0 γj,n−1

⎞

⎟

⎟

⎟

⎠

Dynamic Random Probing Expansion 181

We define the following matrices (with n′ = n − 1):

L =

(

1 01×n′ 01×n′ 01×n′ 01×n′ . . . 01×n′ 11×n′ 11×n′ . . . 11×n′

0n′ In′ 0n′×n′ In′ In′ . . . In′ Tn′ Tn′ . . . Tn′

)

M =
(

0n′ 0n′×n′ In′ In′ Dγ ,1 . . . Dγ ,n′ Tn′ Tγ ,1 . . . Tγ ,n′
)

Condition 1 is satisfied for a matrix γ if for any vector v ∈ F
�
q of Hamming

weight hw(v) ≤ n − 1 such that L · v contains no coefficient equal to 0 then
M · v �= 0n−1.

In the above condition, the matrices L and M represent the vectors of depen-
dencies for each possible probe. All the probes involving shares of â for matrix
γ (and symmetrically shares of ̂b for matrix δ) are covered in the columns of L
and M. Namely, the first column represents the probe a0. As it does not involve
any random, it results in a zero column in M. The next columns represents
the probes ai, then the probes ri. They are followed by columns for the probes
(ai + ri), then (ai + γj−1,i−1ri) (for 2 ≤ j ≤ n), then a1 +

∑k
i=2(ri + ai) (for

2 ≤ k ≤ n), and finally then a1 +
∑k

j=2(γi−1,j−1rj + aj) (for 2 ≤ i ≤ n and
2 ≤ k ≤ n). The above condition means that there is no linear combination of
(n − 1) probes which can include the expression of all of the input shares, and
no random variable.

From this result and by the equivalence between non-interference and tight
non-interference developed in [8], we conclude that Gsubmult is (d − 1)-NI for
d = min(t + 1, n − t) for any t ≤ n − 1. Lemma 4 also requires Gsubmult to
be (d − 1, 2d − 1)-partial NI to get an overall RPE multiplication gadget. For
Gsubmult to satisfy this second property, we need to rely on a stronger condition
for matrices γ and δ that we present in Condition 2.

Condition 2. Let z = (2(n − 1) + 4).(n − 1) + 1. Let In−1 ∈ F
(n−1)×(n−1)
q ,

0�×n ∈ F
�×n
q , 1�×n ∈ F

�×n
q , Dγ,j ∈ F

(n−1)×(n−1)
q , Tn−1 ∈ F

(n−1)×(n−1)
q , Tγ,j ∈

F
(n−1)×(n−1)
q and L and M the same matrices as defined in Condition 1.

Condition 2 is satisfied for a matrix γ if and only if for any vector v ∈ F
z
q

of Hamming weight hw(v) ≤ n − 1, and for any i1, . . . , iK ∈ [z] such that vi1 �=
0, . . . , viK

�= 0 and the corresponding columns i1, . . . , iK in L and in M have
no zero coefficient (i.e. there are K probes of the form a1 +

∑n
i=2(ri + ai) or

a1 +
∑n

j=2(γi−1,j−1rj + aj) for any i ∈ {2, . . . , n}), if M.v = 0, then we have
hw(L · v) ≤ hw(v) − K.

Based on this new condition, we can prove our second property Gsubmult, as
stated in Lemma 7. The proof is given in the full version of this paper.

Lemma 7. Let t ≤ n − 1 such that either n is even or t �= �n − 1
2

 and let

d = min(t+1, n− t). Let Gsubmult the multiplication subgadget introduced in [8].
If both matrices γ and δ satisfy Condition 2, then Gsubmult is (d − 1)-NI and
(d − 1, 2d − 1)-partial NI.

182 S. Beläıd et al.

The condition on t and n on Lemma 7 implies that the maximum amplification
order for the multiplication gadget cannot be achieved for an odd number of

shares (since the maximum order is reached when t = �n − 1
2

). This is not a
proof artifact but a limitation of the gadget Gsubmult with respect to the new
(d − 1, 2d − 1)-partial NI property. We can easily show that under this extreme
conditions on t and n, we have 2d − 1 = n. If we consider the instantiation of
Gsubmult for n = 3 input shares, we obtain the following 2n − 1 = 5 output
shares:

c1 = (a1 + (r2 + a2) + (r3 + a3)) · (b1 + (s2 + b2) + (s3 + b3))
c2 = −r2 · (b1 + (δ1,1 · s2 + b2) + (δ1,2 · s3 + b3))
c3 = −r3 · (b1 + (δ2,1 · s2 + b2) + (δ2,2 · s3 + b3))
c4 = −s2 · (a1 + (γ1,1 · r2 + a2) + (γ1,2 · r3 + a3))
c5 = −s3 · (a1 + (γ2,1 · r2 + a2) + (γ2,2 · r3 + a3))

To prove the (d − 1, 2d − 1)-partial NI property, we need to ensure that any
set of at most 2d − 1 = 3 probes can be perfectly simulated from at most
d − 1 = 1 shares of one of the input and any number of shares from the other
one. However, the three probes on c1, c3, c4 reveal information on each of their
sub-product. In particular, (a1 + (r2 + a1) + (r3 + a3)) (from c1), r3 (from c3)
and (a1 + (γ1,1 · r2 + a2) + (γ1,2 · r3 + a3)) (from c4) would reveal â. Similarly,
(b1 + (s2 + b2) + (s3 + b3)) (from c1), (b1 + (δ2,1 · s2 + b2) + (δ2,2 · s3 + b3)) (from
c3) and s2 (from c4) would reveal ̂b. Hence, the gadget is not (d − 1, 2d − 1)-
partial NI. This counterexample with 3 shares can be directly extended to any
odd number of shares.

This counterexample motivates a new construction for Gsubmult which would
cover all values for n and t. In the following, we slightly modify the construction
from [8] to achieve the maximum amplification order in any setting.

Remark 2. The current construction of Gsubmult outputs m = 2n − 1 shares,
which does not satisfy the requirement m ≥ 2n shares for the compression
gadget. Nevertheless, it is enough to add an artificial extra share c2n−1 equal to
zero between both building blocks. In particular, the compression gadget (and
subsequently and the refresh gadget) does not expect the input sharing to be
uniform to achieve the stated security properties.

New Construction for Gsubmult. As stated earlier, Lemma 7 does not hold
for Gsubmult in the case where n is odd and t = (n − 1)/2. In order to cover this
case, we propose a slightly modified version of Gsubmult with two extra random
values r0 and s0. In this version, we let γ = (γi,j)1≤i,j≤n ∈ F

n×n
q be a constant

matrix, and let δ ∈ F
n×n
q be the matrix defined by δi,j = 1−γi,j . The sub-gadget

Gsubmult outputs 2n + 1 shares:

• c1 =
(n
∑

i=1

(ri + ai)
)

·
(n
∑

i=1

(si + bi)
)

Dynamic Random Probing Expansion 183

• ci+1 = −ri ·
(n
∑

j=1

(δi,jsj + bj)
)

for i = 1, . . . , n

• ci+n+1 = −si ·
(n
∑

j=1

(γi,jrj + aj)
)

for i = 1, . . . , n

where ri and si are randomly generated values. It can be easily checked that
Gsubmult now performs 2n + 1 bilinear multiplications, and that it is correct,
i.e.

∑2n+1
i=1 ci =

∑n
i=1 ai ·∑n

i=1 bi.
We now need the following slightly modified version of Condition 2 on γ and

on δ, which instead of considering a linear combination of at most n − 1 probes
as in Condition 2, considers up to n probes:

Condition 3. Let z = (2n+4) ·n. Let In ∈ F
n×n
q be the identity matrix, 0�×n ∈

F
�×n
q be the matrix of zeros, 1�×n ∈ F

�×n
q be the matrix of ones, Dγ,j ∈ F

n×n
q be

the diagonal matrix such that Dγ,j,i,i = γj,i, Tn ∈ F
n×n
q be the upper triangular

matrix with just ones, Tγ,j ∈ F
n×n
q be the upper triangular matrix such that

Tγ,j,i,k = γj,i for i ≤ k. We define the following matrices:

L =
[

In 0n×n In In . . . In Tn Tn . . . Tn

]

M =
[

0n×n In In Dγ,1 . . . Dγ,n Tn Tγ,1 . . . Tγ,n

]

Then we say that γ satisfies Condition 3 if and only if

– for any vector v ∈ F
z
q of Hamming weight hw(v) ≤ n,

– for any i1, . . . , iK ∈ [z] such that vi1 �= 0, . . . , viK
�= 0 and the corresponding

columns i1, . . . , iK in L and in M have no zero coefficient (i.e. there are K

probes of the form a0 +
∑n−1

i=1 (ri + ai) or a0 +
∑n−1

j=1 (γi,jrj + aj) for any
i = 0, . . . , n − 1),

if M · v = 0, then we have hw(L · v) ≤ hw(v) − K.

Under this new condition, we obtain the following result, whose proof is
available in the full version.

Lemma 8. Let t ≤ n − 1 and d = min(t + 1, n − t). Let Gsubmult as defined
above with n-share inputs. If both matrices γ and δ satisfy Condition 3, then
Gsubmult is (d − 1)-NI and (d − 1, 2d − 1)-partial NI.

Remark 3. The number of output shares m = 2n + 1 of Gsubmult satisfies the
constraint required by Gcompress in Algorithm 1 (m ≥ 2n). We can thus use the
compression gadget Gcompress exactly as described in the algorithm on the input
sharing (c0, . . . , c2n), instantiated with the O(n log n) refresh gadget from Sect. 4.
Since the multiplication sub-gadget Gsubmult requires O(n) random values and
Gcompress requires O(n log n) random values from the refresh gadget, the overall
multiplication gadget Gmult also requires a quasi-linear number of random values
O(n log n).

184 S. Beläıd et al.

5.4 Instantiations

We first state the existence of a matrix γ which satisfies Condition 3 over any
finite field Fq for q large enough (with log(q) = Ω(n log n))2. The proof tech-
nique follows closely the proof of [8, Theorem 4.5] and makes use of the non-
constructive “probabilistic method”. Specifically, it states that if one chooses γ
uniformly at random in F

n log n
q , the probability that the matrix γ satisfies Con-

dition 3 is strictly positive, when q is large enough. It is important to note that
the proof relies on probability but the existence of a matrix γ which satisfies
Condition 3 (for q large enough) is guaranteed without any possible error.

Theorem 4. For any n ≥ 1, for any prime power q, if γ is chosen uniformly
in F

n×n
q , then

Pr[γ satisfies Condition 3] ≥ 1 − 2 · (12n)n · n · q−1 .

In particular, for any n ≥ 1, there exists an integer Q = O(n)n+1, such that for
any prime power q ≥ Q, there exists a matrix γ ∈ Fq

n×n satisfying Condition 3.

As when γ is uniformly random, so is δ, Theorem 4 immediately follows from
the following proposition and the union bound.

Proposition 1. For any n ≥ 1, for any prime power q, if γ is chosen uniformly
in F

n×n
q , then

Pr[γ satisfies Condition 3] ≥ 1 − (12n)n · n · q−1 .

In particular, for any n ≥ 1, there exists an integer Q = O(n)n+1, such that for
any prime power q ≥ Q, there exists a matrix γ ∈ F

n×n
q satisfying Condition 3.

The proof of this proposition is very technical but follows essentially the proof
of the analogous [8, Proposition 4.6]. It is provided in the full version of this
paper.

In [8], Beläıd et al.. presented examples of matrices which satisfy their con-
dition for 2 shares and 3 shares. Karpman and Roche [19] proposed afterwards
new explicit instantiations up to order n = 6 over large finite fields and up to
n = 4 over practically relevant fields such as F256. It is worth mentioning that
the matrices proposed in [19] are actually incorrect (due to a sign error) but
this can be easily fixed and we check that matrices obtained following [19] also
achieves our Condition 3. These matrices for 3, 4 and 5 shares are provided in
the full version of this paper.

2 Such large finite fields may actually be useful to build efficient symmetric primitives
(see for instance MiMC [2]).

Dynamic Random Probing Expansion 185

6 Improved Asymptotic Complexity

In the previous sections, we exhibit the construction of a multiplication gadget
Gmult which performs a linear number of multiplications between variables, and
a quadratic number of multiplications by a constant operations. Using the results
of Lemmas 5, 8 and 4, the constructed multiplication gadget is RPE and achieves
the maximum amplification order �n+1

2
 for any number of shares n.
Using the three linear gadgets proposed in Sect. 4 (Gadd, Gcopy, Gcmult) with

the O(n log n) refresh gadgets, and the proposed construction of the multiplica-
tion gadget Gmult, we get an expanding compiler with a complexity matrix MCC

of eigenvalues:

(λ1, λ2) = (n, 6n log(n) − 2n) , λ3 = n , λ4 = 2n + 1 and λ5 = n.

Hence we have Nmax = 6n log(n) − 2n = O(n log n).
Figure 3 illustrates the evolution of the complexity exponent with respect to

the number of shares n, for the best construction provided in [10] with quadratic
complexity for an expanding compiler (orange curve), and our new construction
with quasi-linear complexity (pink curve). While the best construction from [10]
yields a complexity in O(|C| · κe) for e close to 3 for reasonable numbers of
shares, the new expanding compiler quickly achieves a sub-quadratic complexity
in the same settings.

0 20 40 60
0

1

2

3

4

5

Number of shares n

E
xp

on
en

t
e

Nmax = O(n2), d = (n + 1)/2

Nmax = O(n log n), d = (n + 1)/2

Fig. 3. Evolution of the complexity exponent e = log(Nmax)/ log(d) with respect to
the number of shares n. The orange curve matches the instantiation from [10] with
quadratic asymptotic complexity (Nmax = O(n2)); the pink curve matches the new con-
struction with quasi-linear asymptotic complexity (Nmax = O(n log n)). (Color figure
online)

186 S. Beläıd et al.

7 Conclusion

In this paper we have put forward a dynamic expansion strategy for random
probing security which can make the most of different RPE gadgets in terms of
tolerated leakage probability and asymptotic complexity. We further introduce
new generic constructions of gadgets achieving RPE for any number of shares
n. When the base finite field of the circuit meets the requirement of our multi-
plication gadget, the asymptotic complexity of the obtained expanding compiler
becomes arbitrary close to linear, which is optimal.

As for concrete instantiations, our small example on the AES demonstrates
the benefits of our dynamic approach. Namely, it provides the best tolerated
probability (from the best suited compiler) while optimizing the complexity using
higher numbers of shares. Using two compilers with 3 and 5 shares instead of a
single one already reduces the complexity by a factor 10.

To go further in the concrete use of our expanding compiler, future works
could exhibit explicit constructions of matrices with (quasi)constant field size
for our multiplication gadget. One could also investigate further designs of RPE
multiplication gadgets with linear number of multiplications for arbitrary fields.
Another interesting direction is to optimize the tolerated leakage probability for
a set of (possibly inefficient) small gadgets to be used as starting point of the
expansion in our dynamic approach before switching to more (asymptotically)
efficient RPE gadgets.

References

1. Ajtai, M.: Secure computation with information leaking to an adversary. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 715–724. ACM Press (June
2011)

2. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 7

3. Ananth, P., Ishai, Y., Sahai, A.: Private circuits: a modular approach. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 427–455.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 15

4. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1/ log(n))
leakage rate. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II.
LNCS, vol. 9666, pp. 586–615. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 21

5. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 2

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-319-96878-0_15
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-53140-2_2

Dynamic Random Probing Expansion 187

6. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. Cryptology ePrint Archive,
Report 2016/540 (2016). https://eprint.iacr.org/2016/540

7. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 616–648.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

8. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part III. LNCS, vol. 10403, pp. 397–426. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63697-9 14

9. Beläıd, S., Coron, J.-S., Prouff, E., Rivain, M., Taleb, A.R.: Random probing secu-
rity: verification, composition, expansion and new constructions. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 339–368.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 12

10. Beläıd, S., Rivain, M., Taleb, A.R.: On the power of expansion: more efficient
constructions in the random probing model. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 313–343. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77886-6 11

11. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing
security. Cryptology ePrint Archive, Report 2016/321 (2016). https://eprint.iacr.
org/2016/321

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

13. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

14. Coron, J.-S., Rondepierre, F., Zeitoun, R.: High order masking of look-up tables
with common shares. Cryptology ePrint Archive, Report 2017/271 (2017). https://
eprint.iacr.org/2017/271

15. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

16. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

17. Groß, H., Stoffelen, K., De Meyer, L., Krenn, M., Mangard, S.: First-order masking
with only two random bits. In: Bilgin, B., Petkova-Nikova, S., Rijmen, V. (eds.)
Proceedings of ACM Workshop on Theory of Implementation Security Workshop,
TIS@CCS 2019, London, UK, November 11, 2019, pp. 10–23. ACM (2019)

18. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

19. Karpman, P., Roche, D.S.: New instantiations of the CRYPTO 2017 masking
schemes. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS,
vol. 11273, pp. 285–314. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03329-3 10

https://eprint.iacr.org/2016/540
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-77886-6_11
https://eprint.iacr.org/2016/321
https://eprint.iacr.org/2016/321
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-662-43933-3_21
https://eprint.iacr.org/2017/271
https://eprint.iacr.org/2017/271
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-030-03329-3_10
https://doi.org/10.1007/978-3-030-03329-3_10

188 S. Beläıd et al.

20. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

21. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://
doi.org/10.1007/11605805 14

https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14

	Dynamic Random Probing Expansion with Quasi Linear Asymptotic Complexity*-8pt
	1 Introduction
	2 Preliminaries
	2.1 Linear Sharing, Circuits, and Gadgets
	2.2 Random Probing Security
	2.3 Random Probing Expansion
	2.4 Complexity of the Expanding Compiler
	2.5 Tolerated Leakage Rate

	3 Dynamic Random Probing Expansion
	3.1 Dynamic Expanding Compiler
	3.2 General Bounds for Asymptotic Constructions
	3.3 Selection of the Expansion Levels

	4 Linear Gadgets with Quasi-Linear Complexity
	5 Towards Optimal Multiplication Gadgets
	5.1 Global Multiplication Gadget
	5.2 Construction of Gcompress
	5.3 Construction of Gsubmult
	5.4 Instantiations

	6 Improved Asymptotic Complexity
	7 Conclusion
	References

