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Abstract. Selective opening attacks (SOA) (for public-key encryption,
PKE) concern such a multi-user scenario, where an adversary adaptively
corrupts some fraction of the users to break into a subset of honestly
created ciphertexts, and tries to learn the information on the messages
of some unopened (but potentially related) ciphertexts. Until now, the
notion of selective opening attacks is only considered in two settings:
sender selective opening (SSO), where part of senders are corrupted
and messages together with randomness for encryption are revealed; and
receiver selective opening (RSO), where part of receivers are corrupted
and messages together with secret keys for decryption are revealed.

In this paper, we consider a more natural and general setting for selec-
tive opening security. In the setting, the adversary may adaptively cor-
rupt part of senders and receivers simultaneously, and get the plaintext
messages together with internal randomness for encryption and secret
keys for decryption, while it is hoped that messages of uncorrupted par-
ties remain protected. We denote it as Bi-SO security since it is reminis-
cent of Bi-Deniability for PKE.

We first formalize the requirement of Bi-SO security by the simulation-
based (SIM) style, and prove that some practical PKE schemes achieve
SIM-Bi-SO-CCA security in the random oracle model. Then, we suggest
a weak model of Bi-SO security, denoted as SIM-wBi-SO-CCA security,
and argue that it is still meaningful and useful. We propose a generic
construction of PKE schemes that achieve SIM-wBi-SO-CCA security in
the standard model and instantiate them from various standard assump-
tions. Our generic construction is built on a newly presented primitive,
namely, universalκ hash proof system with key equivocability, which may
be of independent interest.

Keywords: Public key encryption · Multi-user security · Selective
opening security · Simulation-based security · Chosen-ciphertext
security

1 Introduction

Public key encryption (PKE) is a fundamental tool to protect messages sent over
a public channel. Usually, a PKE scheme is used in an open system with multi-
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users. The system contains multiple, say n, users, each with a public key/secret
key pair, i.e., there are n public keys in the system. Anyone (even not registered
in the system) can send messages over the public channel to a user securely via
encrypting the message under the user’s public key. Thus, each public key will
be used for multiple, say k, times during the lifetime of the system.

Selective Opening Attacks. Currently, the standard security for PKE schemes
is the so-called “Chosen-ciphertext attack (CCA) security”, which allows the
attacker to learn the decryption of its selected ciphertexts. Generally, PKE
schemes are designed to guarantee security of all messages in the system against
a CCA attacker under the assumption that internal status of all users are prop-
erly protected. This assumption, however, will be challenged in some real-world
scenarios:

– The attacker may corrupt the senders and learn their messages and the
encryption randomness.

– The attacker may corrupt the receivers and learn their secret keys. With the
receivers’ secret keys, the attacker is able to decrypt all ciphertexts sent to
the receivers and obtain the messages.

While it is hopeless to protect those opened messages, one natural question is
whether the unopened messages are still well protected. The above attacks are
called selective opening attacks. Surprisingly, it is proved that standard security
notion (i.e., CCA security) is not able to guarantee security against selective
opening attacks (SO security) [2,17,18].

The notion of SO security for PKE was firstly formalized by Bellare et al. [3]
at EUROCRYPT 2009. To date, two settings have been considered for SO secu-
rity: sender corruption [3] and receiver corruption [2]. In the sender corruption
setting, part of senders are corrupted, with the corruption exposing their coins
and messages. In the receiver corruption setting, part of receivers are corrupted,
with corruption exposing their secret keys and messages. We denote SO security
in the sender-corruption setting and in the receiver-corruption setting by SSO
security and RSO security, respectively.

Furthermore, for each setting, there are two types of definitions for SO secu-
rity: indistinguishability-based (IND) SO security and simulation-based (SIM)
SO security. IND-SO security requires that no efficient adversary can distinguish
the uncorrupted users’ ciphertexts from the encryption of fresh messages, which
are sampled according to a conditional probability distribution (conditioned on
the opened ciphertexts, which means the ciphertexts of the corrupted parties). In
other words, IND-SO security requires that the considered message distributions
should be efficiently conditionally re-samplable [3]. SIM-SO security requires that
anything, which can be computed efficiently from the ciphertexts, the opened
messages as well as the corrupted information, can also be computed efficiently
only with the opened messages. SIM-SO security imposes no limitation on the
message distributions.

Motivations. Previous works on SIM-SO-CCA secure PKE schemes only pro-
vide either sender selective opening security [3,9,14,16,20,21,25–27], or receiver
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selective opening security [2,11,12,19,23,32]. However, it is rarely possible to
predict whether the attacker will corrupt the senders or the receivers before-
hand in practice. Moreover, most of the previous works about RSO security
only focused on the single-challenge setting, i.e., each public key can only be
used once to produce a single ciphertext. This is very unrealistic in practice.1

Based on the above facts, the following question is raised naturally: How to
define security models to capture the practical requirements of selective opening
security in the multi-user scenario, and provide secure PKE schemes in the new
models?

Our Contributions. In this paper, for a multi-user system with multiple pub-
lic keys where each public key will be used multiple times, we give a new secu-
rity definition of SO security, denoted as SIM-Bi-SO-CCA security. In the secu-
rity model, the adversary may adaptively corrupt some fraction of senders and
receivers simultaneously, and get the plaintext messages together with internal
randomness for encryption and secret keys for decryption, while it is hoped that
messages of uncorrupted parties remain protected. (The definition is reminiscent
of Bi-Deniability [29] for PKE.) We prove that some practical PKE schemes
achieve SIM-Bi-SO-CCA security in the random oracle model.

Then, we suggest a weak model of SIM-Bi-SO-CCA security, denoted as
SIM-wBi-SOk-CCA security (k ∈ N), where (i) the adversary has to specify
whether it is going to corrupt the senders or the receivers after receiving the
public keys and before seeing the challenge ciphertexts, and (ii) if the adversary
chooses to corrupt some fraction of the receivers, it is just allowed to corrupt
the receivers whose public keys are employed for encryption at most k times.
We stress that the weak model is still meaningful and useful because it provides
the original SIM-SSO-CCA security and SIM-RSO-CCA security simultaneously.
Furthermore, we show that SIM-wBi-SOk-CCA security is strictly stronger than
SIM-SSO-CCA security and SIM-RSO-CCA security. We also stress that the
recently proposed SIM-RSOk-CCA security notion [32] is a special case of our
SIM-wBi-SOk-CCA security.

Finally, we propose a generic construction of PKE that achieves SIM-wBi-
SOk-CCA security in the standard model and instantiate it from various stan-
dard assumptions. Our generic construction is built on a new variant of hash
proof system (HPS), which should additionally satisfy the universalk+1 prop-
erty and key equivocability. The technical overview of the generic construction
is given in Sect. 4.1. We also explore the existence of universalk+1 HPS with key
equivocability and provide instantiations from either the DDH assumption or
the DCR assumption.

Related works. Since proposed by Bellare et al. in [3], selective opening secure
PKE has been extensively studied.

For SSO security, Bellare et al. in [3] firstly showed that any lossy encryption
is IND-SSO-CPA secure. IND-SSO-CCA secure PKE schemes were constructed

1 Very recently, Yang et al. [32] formalized the notion of RSO security in the multi-
challenge setting. But their work only considers the receiver corruption setting.



Simulation-Based Bi-Selective Opening Security for Public Key Encryption 459

from All-But-N lossy trapdoor functions [13] or All-But-Many lossy trapdoor
functions [5,16,21,25]. If this lossy encryption has an efficient opener, then the
resulting PKE scheme can be proven to be SIM-SSO-CCA secure as shown in [3].
Fehr et al. [9] showed an approach, employing extended hash proof system and
cross-authentication code (XAC), to build SIM-SSO-CCA secure PKE schemes.
As pointed out in [20], a stronger property of XAC is needed to make the proof
rigorous. Following this line of research, a generic construction of SIM-SSO-CCA
secure PKE, from a special kind of key encapsulation mechanism (KEM) and
a strengthened XAC, was proposed in [26] and then extended to achieve tight
security in [27]. As showed in [14,15], some practical PKE constructions also
enjoy SIM-SSO-CCA security.

For RSO security, Hazay et al. [12] showed that SIM-RSO-CPA secure PKE
can be built from non-committing encryption for receiver (NCER) [6], and IND-
RSO-CPA secure PKE can be built from a tweaked variant of NCER. IND-
RSO-CCA secure PKE schemes were proposed in [23]. SIM-RSO-CCA secure
PKE was constructed using indistinguishability obfuscation (iO) in [22], and
constructed based on standard computational assumptions in [11,19]. Recently,
Yang et al. [32] formalized the notion of multi-challenge RSO security (RSOk

security), proved that SIM-RSO security is not enough to guarantee SIM-RSOk

security (k > 1), and showed SIM-RSOk-CPA/CCA secure PKE constructions.

Roadmap. In the rest part of this work, we give some preliminaries in Sect. 2.
We introduce the formal definitions for SIM-Bi-SO-CCA security and SIM-wBi-
SOk-CCA security (k ∈ N), and show that SIM-wBi-SOk-CCA security is strictly
stronger than SIM-SSO-CCA and SIM-RSO-CCA security in Sect. 3. Next, we
introduce the main building block, namely, universalκ HPS with key equivoca-
bility, and present a generic construction of PKE scheme that achieves SIM-wBi-
SOk-CCA security in the standard model in Sect. 4. Finally, we show that some
practical PKE schemes achieve SIM-Bi-SO-CCA security in the random oracle
model, in Sect. 5.

2 Preliminaries

Notations. Throughout this paper, let λ ∈ N denote the security parameter.
For n ∈ N, let [n] denote the set {1, 2, · · · , n}. For a finite set S, we use |S| to
denote the size of S; we use s ← S to denote the process of sampling s uniformly
from S. For a distribution Dist, x ← Dist denotes the process of sampling x from
Dist.

We use boldface to denote vectors, e.g., x. We use x[i] to denote the i-th
component of x.

For a probabilistic algorithm A, let RA denote the randomness space of A.
We let y ← A(x; r) denote the process of running A on input x and inner
randomness r ∈ RA and outputting y. We write y ← A(x) for y ← A(x; r) with
uniformly chosen r ∈ RA. We write PPT for probabilistic polynomial-time. For
a function f(λ), we write that f(λ) ≤ negl(λ) if it is negligible.
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For two distributions Dist1 and Dist2, the statistical distance between Dist1
and Dist2 is defined as

Δ(Dist1,Dist2) :=
1
2

∑

x

| Pr
X1←Dist1

[X1 = x] − Pr
X2←Dist2

[X2 = x]|.

We say that Dist1 and Dist2 are statistically indistinguishable (denoted by
Dist1

s≈ Dist2), if Δ(Dist1,Dist2) is negligible.

Collision-resistant hash. We recall the definition of collision-resistant hash
function here.

Definition 1 (Collision-resistant hash function). A family of collision-
resistant hash function H, with domain Dom and range Rge, is a family of
functions having the following property: for any PPT algorithm A, its advantage
AdvCR

H,A(λ) := Pr[H ← H; (x, x′) ← A(H) : x �= x′ ∧H(x) = H(x′)] is negligible.

Efficiently samplable and explainable domain. In this paper, some of the
domains are required to be efficiently samplable and explainable [9]. We recall
its definition as follows.

Definition 2 (Efficiently samplable and explainable domain). We say
that a domain Dom is efficiently samplable and explainable, if there are two
PPT algorithms (Sample,Explain):

– Sample(Dom; r): On input a domain Dom with uniformly sampled r ←
RSample, Sample outputs an element which is uniformly distributed over Dom.

– Explain(Dom, x): On input Dom and x ∈ Dom, Explain outputs r which is
uniformly distributed over the set {r ∈ RSample | Sample(Dom; r) = x}.

This notion can be relaxed by allowing a negligibly small error probability (which
includes that sampling algorithms may produce near-uniform output).

Cross-authentication code. The notion of �-cross-authentication code (XAC)
was proposed by Fehr et al. [9], and later adapted to strong and semi-unique
XAC in [24].

Definition 3 (�-Cross-authentication code). For � ∈ N, an �-cross-
authentication code (�-XAC) XAC, associated with a key space XK and a
tag space XT , consists of three PPT algorithms (XGen, XAuth, XVer). Algo-
rithm XGen(1λ) generates a uniformly random key K ∈ XK, deterministic algo-
rithm XAuth(K1, · · · ,K�) produces a tag T ∈ XT , and deterministic algorithm
XVer(K,T ) outputs b ∈ {0, 1}. The following properties are required:

• Correctness: For all i ∈ [�], failXAC(λ) := Pr[XVer(Ki,XAuth(K1, · · · ,
K�)) �= 1] is negligible, where K1, · · · ,K� ← XGen(1λ) in the probability.
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• Security against impersonation and substitution attacks: AdvIMP
XAC (λ)

and AdvSUB
XAC (λ) as defined below are both negligible: AdvIMP

XAC (λ) :=
max
i,T ′

Pr[K ← XGen(1λ) : XVer(K,T ′) = 1], where the max is over all i ∈ [�]

and T ′ ∈ XT , and

AdvSUB
XAC (λ) := max

i,K �=i,F
Pr

⎡

⎣
Ki ← XGen(1k)
T = XAuth((Kj)j∈[�])
T ′ ← F (T )

:
T ′ �= T

∧

XVer(Ki, T
′) = 1

⎤

⎦ ,

where the max is over all i ∈ [�], all K �=i := (Kj)j �=i ∈ XK�−1 and all possibly
randomized functions F : XT → XT .

Definition 4 (Strong and semi-unique �-XAC). For � ∈ N, we say that an
�-XAC XAC is strong and semi-unique, if it has the following two properties:

• Strongness: There is a PPT algorithm ReSamp, which takes i ∈ [�], K�=i

and T as input (where K1, · · · ,K� ← XGen(1λ) and T = XAuth((Kj)j∈[�]))
and outputs K ′

i, such that K ′
i and Ki are statistically indistinguishable, i.e.,

StDSTRN
XAC (λ) := Δ(K ′

i,Ki)

=
1
2

∑

K∈XK
|Pr[K ′

i = K|(K �=i, T )] − Pr[Ki = K|(K �=i, T )]|

is negligible, where the probabilities are taken over Ki ← XGen(1λ), condi-
tioned on (K �=i, T ), and the randomness of ReSamp.

• Semi-uniqueness: The key space XK can be written as Ka × Kb. Given
a tag T ∈ XT and Ka ∈ Ka, there is at most one Kb ∈ Kb such that
XVer((Ka,Kb), T ) = 1.

3 Bi-SO Security for PKE

Previous security notions of SOA for PKE only consider either sender corruption
setting or receiver corruption setting. We consider a more natural and general
setting for selective opening security. In the setting, the adversary may adaptively
corrupt part of senders and receivers simultaneously. We denote it as Bi-SO
security since it is reminiscent of Bi-Deniability [29] for PKE.

For a multi-user system with multiple public keys where each public key will
be used many times, we firstly give the most natural security notion of Bi-SO
security, denoted as SIM-Bi-SO-CCA security. Then, we suggest a weak model
of SIM-Bi-SO-CCA security, denoted as SIM-wBi-SOk-CCA security (k ∈ N).
The weak model is still meaningful and useful because it provides the original
SIM-SSO-CCA security and SIM-RSO-CCA security simultaneously. Finally, for
completeness, we show that SIM-wBi-SOk-CCA security is strictly stronger than
SIM-SSO-CCA and SIM-RSO-CCA security.
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3.1 Security Definitions

Simulation-based Bi-SO security. In the Bi-SO setting, some of the senders
and some of the receivers may be corrupted simultaneously, and each public key
may be used to encrypt multiple messages. The formal definition is as follows.

Definition 5 (SIM-Bi-SO-CCA). We say that a PKE scheme PKE =
(Setup,Gen,Enc,Dec)2 is SIM-Bi-SO-CCA secure, if for any PPT adversary A,
there exists a PPT simulator S, such that for any PPT distinguisher D,

AdvSIM-Bi-SO-CCA
PKE,A,S,D (λ) := |Pr[D(ExpBi-SO-real

PKE,A (λ)) = 1]

− Pr[D(ExpBi-SO-ideal
PKE,S (λ)) = 1]|

is negligible, where both ExpBi-SO-real
PKE,A (λ) and ExpBi-SO-ideal

PKE,S (λ) are defined in
Fig. 1.

ExpBi-SO-real
PKE,A (λ):

pp ← Setup(1λ); n := 0
C = ∅; (M, s1) ← AMkRec,Dec

1 (pp)
M := (m1, · · · ,mn) ← M
For i = 1 to n:

For j = 1 to |mi|:
ri[j] ← R
ci[j] ← Enc(pki,mi[j]; ri[j])
C := C ∪ {(i, ci[j])}

(IS , IR, s2) ← ADec
2 ((c1, · · · , cn), s1)

out ← ADec
3 ((ri[j],mi[j])(i,j)∈IS

,

(ski,mi)i∈IR , s2)
Return (M , M, IS , IR, out)

MkRec():

n := n + 1; (pkn, skn) ← Gen(pp)
Return pkn

ExpBi-SO-ideal
PKE,S (λ):

(M, s1) ← SSimMkRec
1 (1λ)

M := (m1, · · · ,mn) ← M
len := ((|m∗

i |, |m∗
i [1]|, · · · , |m∗

i [|m∗
i |]|)i∈[n])

(IS , IR, s2) ← S2(len, s1)
out ← S3((mi[j])(i,j)∈IS

, (mi)i∈IR , s2)
Return (M , M, IS , IR, out)

SimMkRec():

n := n + 1
Return ⊥

Dec(i, c):

If (i > n) ∨ ((i, c) ∈ C): return ⊥
Return Dec(ski, c)

Fig. 1. Experiments for defining SIM-Bi-SO-CCA security of PKE. In these two exper-
iments, we require that IS ⊂ {(i, j) | i ∈ [n], j ∈ [|mi|]} and IR ⊂ [n].

2 Note that both SIM-Bi-SO-CCA and SIM-wBi-SOk-CCA security capture the secu-
rity requirements in a multi-user scenario, where multiple public/secret key pairs
are involved. In this setting, some global information is needed to be generated by
a global algorithm Setup, as done in previous works about multi-user security, such
as [1].
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Note that in the real experiment, the total number of public keys and the
times that each public key is used for encryption are completely determined by
the adversary.

Remark 1. One can generalize both SIM-Bi-SO-CCA and SIM-wBi-SOk-CCA
security to a new version that the adversary is allowed to make multiple selective
opening queries adaptively. We stress that all the PKE constructions presented
in this paper also achieve the generalized security.

Simulation-based weak Bi-SO security. Now we introduce a weak model
of SIM-Bi-SO-CCA security, which we denote as SIM-wBi-SOk-CCA security
(k ∈ N). The differences between these two security models are that in the
real experiment of SIM-wBi-SOk-CCA security: (i) the adversary has to specify
whether it is going to corrupt some fraction of the senders or the receivers,
before seeing the challenge ciphertexts; (ii) if the adversary chooses to corrupt
some fraction of the receivers, it is just allowed to corrupt the receivers whose
public keys are used for encryption at most k times. The formal definition is as
follows.

Definition 6. (SIM-wBi-SOk-CCA). For any k ∈ N, we say that a PKE
scheme PKE = (Setup,Gen,Enc,Dec) is SIM-wBi-SOk-CCA secure, if for any
PPT adversary A, there exists a PPT simulator S, such that for any PPT dis-
tinguisher D,

AdvSIM-Bi-SO-CCA
PKE,A,S,D (λ) := |Pr[D(ExpBi-SO-real

PKE,A (λ)) = 1]

− Pr[D(ExpBi-SO-ideal
PKE,S (λ)) = 1]|

is negligible, where both ExpwBi-SO-real
PKE,A,k (λ) and ExpwBi-SO-ideal

PKE,S,k (λ) are defined in
Fig. 2.

In both ExpwBi-SO-real
PKE,A,k (λ) and ExpwBi-SO-ideal

PKE,S,k (λ), we use β = 0 (resp. β = 1)
to represent that adversary A/simulator S chooses to corrupt some of the senders
(resp. receivers). We stress that in ExpwBi-SO-real

PKE,A,k (λ), when A1 outputs β = 0, the
parameter k puts no restrictions on sender corruptions I; and when A1 outputs
β = 1, A2 is allowed to corrupt the receivers whose public keys are used for
encryption at most k times (i.e., I ⊂ {i ∈ [n] | |mi| ≤ k}).

Note that the original SIM-SSO-CCA security [9,13] and SIM-RSO-CCA
security [11,19] are both special cases of SIM-wBi-SOk-CCA security. Specifi-
cally, the original SIM-SSO-CCA security is SIM-wBi-SOk-CCA security when
A1 always outputs β = 0 and queries the MkRec oracle only once,3 and the
original SIM-RSO-CCA security is SIM-wBi-SOk-CCA security when A1 always
outputs β = 1 and |m1| = · · · = |mn| = 1 (note that the latter implicitly sug-
gests k = 1). Hence, for a SIM-wBi-SOk-CCA secure PKE scheme, it achieves
the original SIM-SSO-CCA and SIM-RSO-CCA (and even SIM-RSOk-CCA)
security simultaneously.
3 The SIM-SSO-CPA security notion presented in [4] allows the adversary to query

the MkRec oracle multiple times.
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ExpwBi-SO-real
PKE,A,k (λ):

pp ← Setup(1λ); n := 0
C = ∅; (β, M, s1) ← AMkRec,Dec

1 (pp)
M := (m1, · · · ,mn) ← M
For i = 1 to n:

For j = 1 to |mi|:
ri[j] ← R
ci[j] ← Enc(pki,mi[j]; ri[j])
C := C ∪ {(i, ci[j])}

(I, s2) ← ADec
2 ((c1, · · · , cn), s1)

If β = 0: Open := (ri[j],mi[j])(i,j)∈I
If β = 1: Open := (ski,mi)i∈I
out ← ADec

3 (Open, s2)
Return (β,M , M, I, out)

MkRec():

n := n + 1; (pkn, skn) ← Gen(pp)
Return pkn

ExpwBi-SO-ideal
PKE,S,k (λ):

(β, M, s1) ← SSimMkRec
1 (1λ)

M := (m1, · · · ,mn) ← M
len := ((|m∗

i |, |m∗
i [1]|, · · · , |m∗

i [|m∗
i |]|)i∈[n])

(I, s2) ← S2(len, s1)
If β = 0: Open := (mi[j])(i,j)∈I
If β = 1: Open := (mi)i∈I
out ← S3(Open, s2)
Return (β,M , M, I, out)

SimMkRec():

n := n + 1
Return ⊥

Dec(i, c):

If (i > n) ∨ ((i, c) ∈ C): return ⊥
Return Dec(ski, c)

Fig. 2. Experiments for defining SIM-wBi-SOk-CCA security. Here in both
ExpwBi-SO-real

PKE,A,k (λ) and ExpwBi-SO-ideal
PKE,S,k (λ), we require that (i) β ∈ {0, 1}, and (ii) when

β = 0, I ⊂ {(i, j) | i ∈ [n], j ∈ [|mi|]}, and when β = 1, I ⊂ {i ∈ [n] | |mi| ≤ k}.

Very recently, Yang et al. [32] introduced an enhanced security notion of
RSO, SIM-RSOk-CCA security (k ∈ N), for PKE. We notice that their SIM-
RSOk-CCA security is a special case of SIM-wBi-SOk-CCA security as well.
Specifically, SIM-RSOk-CCA security is SIM-wBi-SOk-CCA security when A1

always outputs β = 1.

3.2 Separation of SIM-wBi-SOk-CCA and SIM-SSO-CCA
and SIM-RSO-CCA

Now we show that SIM-wBi-SOk-CCA security is strictly stronger than SIM-
SSO-CCA security and SIM-RSO-CCA security. Our conclusion is derived from
the fact that SIM-wBi-SOk-CCA security implies SIM-SSO-CCA and SIM-RSO-
CCA security simultaneously, and SIM-SSO-CCA and SIM-RSO-CCA security
do not imply each other. Actually, we have stronger conclusions:

(1) Supposing that the κ-Linear assumption holds (κ ∈ N), SIM-SSO-CCA secu-
rity does not imply SIM-RSO-CPA security;

(2) Supposing that the DDH or DCR assumption holds, SIM-RSO-CCA security
does not imply SIM-SSO-CPA security.
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SIM-SSO-CCA � SIM-RSO-CPA. Bellare et al. [2] introduced the notion
of decryption verifiability for PKE, and showed that assuming the existence of a
family of collision-resistant hash functions, which can be constructed under the
discrete-logarithm assumption [10], any decryption-verifiable PKE scheme is not
SIM-RSO-CPA secure [2, Theorem 5.1]4.

Informally, a PKE scheme PKE = (Setup,Gen,Enc,Dec) is called decryption-
verifiable, if it is infeasible to generate (pk, sk0, sk1, c,m0,m1) such that (i) m0 �=
m1, (ii) both sk0 and sk1 are valid secret keys corresponding to pk, and (iii)
Dec(sk0, c) = m0 and Dec(sk1, c) = m1. We note that (i) and (iii) implicitly
suggest that sk0 �= sk1. In other words, for any PKE scheme, if each of its
public key uniquely determines its corresponding secret key, then it must be
decryption-verifiable.

We notice that the κ-Linear-based SIM-SSO-CCA secure PKE scheme pro-
posed by Liu and Paterson [26] is such a decryption-verifiable PKE scheme.
Generally, a public key of the κ-Linear-based Liu-Paterson scheme is of the
form (gy, (gxθ , gxθαθ , gxθβθ )θ∈[κ]), where g is a generator of a cyclic group G

of prime order q and (y, (xθ, αθ, βθ)θ∈[κ]) ∈ (Zq)3κ+1, and the corresponding
secret key is (αθ, βθ, x

−1
θ y)θ∈[κ]. It’s obvious that the public key uniquely deter-

mines its corresponding secret key. So the κ-Linear-based Liu-Paterson scheme is
decryption-verifiable. According to [2, Theorem 5.1], we conclude that assuming
the existence of a family of collision-resistant hash functions, the κ-Linear-based
Liu-Paterson scheme is not SIM-RSO-CPA secure.

For completeness, we recall the formal definition of decryption verifiability
[2] and the κ-Linear-based Liu-Paterson scheme [26] in the full version of this
paper.

SIM-RSO-CCA � SIM-SSO-CPA. As pointed out in [2, Theorem 4.1],
the DDH-based Cramer-Shoup scheme [7] is not SIM-SSO-CPA secure. On the
other hand, Huang et al. [19] and Hara et al. [11] showed that this PKE scheme
(for single-bit message) achieves SIM-RSO-CCA security. This fact suggests that
when the DDH assumption holds, SIM-RSO-CCA security does not imply SIM-
SSO-CPA security. With similar analysis, this conclusion can be extended to the
case that the DCR assumption holds.

4 PKE with SIM-wBi-SOk-CCA Security

In this section, we propose a PKE scheme achieving SIM-wBi-SOk-CCA security.
We firstly introduce a new primitive, universalκ HPS with key equivocability for
any polynomially bounded function κ, and provide concrete constructions for it
from the DDH assumption and the DCR assumption respectively. Then, with

4 Both [2, Theorem 5.1] and [2, Theorem 4.1] only hold in the the auxiliary input model
(i.e., in the experiments defining SIM-RSO-CPA and SIM-SSO-CPA security, both
the adversary and the simulator get an auxiliary input). So do our counterexamples
in this section. These counterexamples may be modified with the technique proposed
in [2, Sec. 6] to drop the auxiliary inputs.
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this new primitive as a building block, we show our PKE construction and prove
that it meets SIM-wBi-SOk-CCA security in the standard model.

In order to make our idea more understandable, we firstly provide a technique
overview before going into the details.

4.1 Technique Overview

In the real experiment of SIM-wBi-SOk-CCA security, the bit β is used to indi-
cate whether the adversary wants to corrupt some fraction of the senders (β = 0)
or the receivers (β = 1), and the adversary does not specify the value of β until
it sees public keys (pki)i∈[n] via querying the oracle MkRec. Hence, to prove SIM-
wBi-SOk-CCA security, when β = 0, we need to somehow generate malformed
ciphertexts for (pki)i∈[n], such that they can be opened in the sense of SSO (i.e.,
exposing the messages and the corresponding randomness to the adversary); and
when β = 1, we need to somehow generate malformed ciphertexts for (pki)i∈[n],
such that they can be opened in the sense of RSO (i.e., exposing the messages
and the corresponding secret keys to the adversary).

Our scheme, encrypting �-bit messages, is inspired by the works of [9,
20,24]. The public/secret key pair is � pairs of public and secret keys (i.e.,
(hpkγ , hskγ)γ∈[�]) of a hash proof system (HPS) HPS [8]. Informally, to encrypt
a message m = (m1, · · · ,m�) ∈ {0, 1}�, the encryption algorithm sets that for
each γ ∈ [�],

{
If mγ = 0 : xγ ← X ; Kγ ← Ksp

If mγ = 1 : xγ ← L; Kγ = PubEv(hpkγ , xγ , wγ)

where L ⊂ X and X are both finite sets generated with a hard subset member-
ship problem, PubEv is the public evaluation algorithm of HPS, wγ is a witness
for xγ ∈ L, and Ksp is the range of PubEv. Then, we use a strengthened cross-
authentication code (XAC) to “glue” x1, · · · , x� together, obtaining a XAC tag
T . So the generated ciphertext corresponding to m is c = (x1, · · · , x�, T ). To
decrypt a ciphertext c = (x1, · · · , x�, T ), the decryption algorithm firstly com-
putes that (Kγ = SecEv(hskγ , xγ))γ∈[�], where SecEv is the secret evaluation
algorithm of HPS, and then for each γ ∈ [�], sets mγ = 1 if and only if T is
verified correctly by Kγ (via the verification algorithm of XAC).

Now we turn to the security proof. In order to prove SIM-wBi-SOk-CCA
security, we need to construct a PPT simulator S, such that the ideal experiment
and the real experiment are indistinguishable. In particular, we need to generate
some malformed ciphertexts (before seeing the real messages), such that they
are computationally indistinguishable from the real challenge ciphertexts, and
meanwhile can be efficiently opened according to the value of β.

If β = 0, we need to generate malformed ciphertexts c = (x1, · · · , x�, T ), and
then open them according to the real messages m = (m1, · · · ,m�), by providing
random coins which can be used to encrypt the real messages to recover the
malformed ciphertexts. We generate the malformed ciphertexts with encryptions
of � ones, i.e., for each γ ∈ [�], xγ ← L ⊂ X and Kγ = PubEv(hpkγ , xγ , wγ) ⊂
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Ksp. Hence, after generating these malformed ciphertexts, to open a ciphertext,
for each γ ∈ [�], if the real message bit mγ = 1, the random coin (i.e., wγ)
employed to generate (xγ ,Kγ) can be returned directly; if mγ = 0, return the
random coin which is generated by explaining xγ as a random element sampled
from X , and explaining Kγ as a random key sampled from Ksp.

Now, we show that a real challenge ciphertext can be substituted with the
malformed ciphertext without changing the adversary’s view significantly. For
γ = 1 to �,

1) We modify the decryption procedure of the decryption oracle, such that
it does not make use of hskγ . More specifically, for a decryption query
c′ = (x′

1, · · · , x′
�, T

′), if x′
γ /∈ L, the decryption oracle directly sets mγ = 0.

The statistical properties of HPS and strengthened XAC guarantee that this
modification does not change the adversary’s view significantly.

2) If mγ = 0, the randomly sampled Kγ is replaced with Kγ = SecEv(hskγ , xγ).
The perfect universality of HPS guarantees that this change is imperceptible
to the adversary.

3) If mγ = 0, Kγ is updated again via the resampling algorithm of strength-
ened XAC. The statistical property of strengthened XAC guarantees that
this modification does not change the adversary’s view significantly.

4) The decryption procedure of the decryption oracle is changed to work with the
original decryption rules. The statistical properties of HPS and strengthened
XAC guarantee that this modification is imperceptible to the adversary.

5) If mγ = 0, xγ ← L instead of uniformly sampling from X . The underly-
ing subset membership problem of HPS guarantees that this change is also
imperceptible to the adversary.

Note that these substitutions only consider the situation that a single public
key is used to encrypt a single message. Fortunately, we can extend it to the
situation that there are n public keys (for any n ∈ N), and each public key is
employed to encrypt multiple messages.

If β = 1, we need to generate malformed ciphertexts, and then open them
according to the real messages, by providing valid secret keys which can be
used to decrypt the malformed ciphertexts to obtain the messages. Note that a
public key of this scheme is of the form pk = (hpk1, · · · , hpk�), and the corre-
sponding secret key is sk = (hsk1, · · · , hsk�). Hence, informally, what we need
is to generate a malformed ciphertext without seeing the message, such that
for any message m = (m1, · · · ,m�) ∈ {0, 1}�, we can generate some secret key
sk′ = (hsk′

1, · · · , hsk′
�) satisfying that (i) sk′ is a valid secret key corresponding

to pk (i.e., for all γ ∈ [�], hsk′
γ is a valid HPS secret key corresponding to hpkγ);

(ii) decrypting the malformed ciphertext with sk′ will lead to m.
We try to generate such a malformed ciphertext c = (x1, · · · , x�, T ). For each

γ ∈ [�], if xγ ∈ L (with a witness wγ), all the HPS secret keys corresponding
to hpkγ will lead to the same K̃γ = PubEv(hpkγ , xγ , wγ) = Kγ . In other words,
for any fixed ciphertext (· · · , xγ , · · · , T ), no matter what the secret key is, the
decryption of this ciphertext will lead to the same mγ . So it’s impossible to open
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the malformed ciphertext successfully when mγ = 1−mγ . Hence, our malformed
ciphertexts focus on the case c = (x1, · · · , x�, T ) that x1, · · · , x� ∈ X \ L. On
the other hand, if Kγ is uniformly sampled, it seems unlikely to decrypt the
ciphertext to recover the original message when mγ = 1 due to the property of
XAC. So our malformed ciphertexts further focus on the case c = (x1, · · · , x�, T )
that for all γ ∈ [�], xγ ∈ X \ L and Kγ = SecEv(hskγ , xγ).

We stress that in the real experiment of SIM-wBi-SOk-CCA security, the
adversary is just allowed to corrupt the receivers whose public keys are used
for encryption at most k times. So for simplicity, here we only consider the
case that pk = (hpk1, · · · , hpk�) is used to encrypt exactly k messages (i.e.,
mj = (mj,1, · · · ,mj,�) ∈ {0, 1}� (j ∈ [k])). More specifically, for each γ ∈ [�],
hskγ is used k times (note that we use sk to generate the malformed cipher-
texts), generating k ciphertext parts (i.e., K1,γ = SecEv(hskγ , x1,γ), · · · ,Kk,γ =
SecEv(hskγ , xk,γ)). In other words, to generate the k malformed ciphertexts, for
each γ ∈ [�], we need to

(i) compute SecEv(hskγ , x1,γ), · · · ,SecEv(hskγ , xk,γ) for some x1,γ , · · · , xk,γ ∈
X \ L before seeing the messages;

(ii) generate a HPS secret key hsk′
γ such that SecEv(hsk′

γ , xj,γ) =
SecEv(hskγ , xj,γ) if mj,γ = 1, and SecEv(hsk′

γ , xj,γ) �= SecEv(hskγ , xj,γ)
if mj,γ = 0.

However, there is no algorithm for HPS which can generate two HPS secret keys
(i.e. hskγ and hsk′

γ) meeting the above requirements. Therefore, we introduce the
following new property, which we call “key equivocability”, of HPS. Informally,
we require that there is an efficient algorithm SampHsk and a trapdoor td, such
that for any x1, · · · , xk ∈ X \ L, the following two distribution ensembles, Distk0
and Distk1 , are statistically indistinguishable:

Distk0 : = {(hsk,K1, · · · ,Kk, hpk)
∣∣hsk ← SK; hpk = μ(hsk);
∀j ∈ [k] :

Kj ← Ksp if mj = 0;
Kj = SecEv(hsk, xj) if mj = 1}, (1)

Distk1 : = {(hsk′,K1, · · · ,Kk, hpk)
∣∣hsk ← SK; hpk = μ(hsk);
(Kj = SecEv(hsk, xj))j∈[k];
hsk′ ← SampHsk(hsk, td, {xj}j∈[k])}. (2)

We stress that this property requires that no information about hsk beyond hpk
is leaked. Similar to the proof of case β = 0, we introduce a modification to
the decryption oracle before employing the key equivocability of HPS in order
to make sure that nothing about hsk beyond hpk is leaked. For any decryption
query (x′

1, · · · , x′
�, T

′) and any γ, if x′
γ ∈ X \L, the decryption oracle sets mγ = 0

directly. However, we note that in the SIM-wBi-SOk-CCA security model, each
public key is used to encrypt k messages. As a result, hsk may be employed k
times, i.e., to compute SecEv(hsk, x1), · · · ,SecEv(hsk, xk) for some x1, · · · , xk.
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So the perfect universality2 of HPS [8] is not enough to guarantee that the
modification to the decryption oracle is imperceptible to the adversary. To solve
this problem, we introduce another property, perfect universalityk+1, for HPS.
Roughly speaking, HPS is called perfectly universalk+1, if for any x1, · · · , xk+1 ∈
X \ L and any K ′ ∈ Ksp, even given (hpk,SecEv(hsk, x1), · · · ,SecEv(hsk, xk)),
the probability that SecEv(hsk, xk+1) = K ′ is 1

|Ksp| .
With the help of this new variant of HPS, we can use algorithm SampHsk to

open the aforementioned equivocable ciphertexts c = (x1, · · · , x�, T ) where for
each γ ∈ [�], xγ ∈ X \ L and Kγ = SecEv(hskγ , xγ), successfully. Now, we show
that a real challenge ciphertext can be substituted with the malformed ciphertext
without changing the adversary’s view significantly. A high-level description of
the substitution is presented as follows.

1) We use the secret keys to generate the challenge ciphertexts, instead of the
public keys. The statistical property of HPS guarantees that this change is
imperceptible to the adversary.

2) All the xj,γ (j ∈ [k], γ ∈ [�]) are sampled from X \L, instead of being sampled
from L (when mj,γ = 1). The underlying subset membership problem of HPS
guarantees that this change is also imperceptible to the adversary.

3) Note that sk = (hsk1, · · · , hsk�) is employed to encrypt mj =
(mj,1, · · · ,mj,�) ∈ {0, 1}� (j ∈ [k]), and specifically, for each γ ∈ [�], hskγ

is used to handle m1,γ , · · · ,mk,γ , as shown in Fig. 3. For each γ ∈ [�], employ
hskγ to compute Kj,γ when mj,γ = 0 (for all j ∈ [k]). The key equivocability
of HPS guarantees that this modification does not change the adversary’s
view significantly.

Fig. 3. Relations among sk and m1, · · · , mk

4.2 Universalκ Hash Proof System with Key Equivocability

Now we introduce the main building block, namely, universalκ HPS with key
equivocability, for any polynomially bounded κ, and show concrete constructions
for it.

The definition. For any polynomially bounded function κ, we provide a defi-
nition of universalκ HPS with key equivocability, which enhances the standard
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HPS [8] with key equivocability and universalκ property. It works on a strength-
ened version of subset membership problem SSMP, which defines some additional
languages and provides a trapdoor to recognize elements from these languages.

Definition 7 (Strengthened Subset Membership Problem). A strength-
ened subset membership problem (SSMP) SSMP consists of five PPT algorithms
(SSmpG,SSmpX,SSmpL,SSmpLS,SSmpChk):

– SSmpG(1λ, k): On input 1λ and polynomially bounded k > 0, algorithm
SSmpG outputs a system parameter prm and a trapdoor td. The parameter
prm defines 2k + 2 sets (X ,L,L1, · · · ,L2k), where X is an efficiently recog-
nizable finite set, L ⊂ X , and L1, · · · ,L2k are distinct subsets of X \ L. For
simplicity of notation, we write

prm = (X ,L,L1, . . . ,L2k)

when employing HPS for SSMP to construct PKE schemes.
– SSmpX(prm): On input prm, SSmpX outputs a uniformly chosen x←X .
– SSmpL(prm): On input prm, SSmpL samples x←L with randomness w ∈

RSSmpL, and outputs (x,w). We say that w is a witness for x ∈ L.
– SSmpLS(prm, i ∈ [2k]): On input prm and i ∈ [2k], SSmpLS outputs a uni-

formly chosen xi←Li.
– SSmpChk(prm, td, x): On input prm, td and x, SSmpChk outputs an integer

[0, 2k] or an abort symbol ⊥.

Also, it satisfies the following properties:

– Hardness. For all i ∈ [2k], for any PPT distinguisher D, the following
advantages are all negligible,

AdvHARD-1
SSMP,D,i(λ) := |Pr[D(prm, xX ) = 1] − Pr[D(prm, xi) = 1]|,

AdvHARD-2
SSMP,D,i(λ) := |Pr[D(prm, xL) = 1] − Pr[D(prm, xi) = 1]|,

where the probabilities are over prm ← SSmpG(1λ, k), xX ← SSmpX(prm),
(xL, w) ← SSmpL(prm), and xi ← SSmpLS(prm, i).5

– Sparseness. The probability

SparSSMP(λ) := Pr[(prm, td) ← SSmpG(1λ, k);xX ← SampX(prm) : xX ∈ L]

is negligible.
– Explainability. The finite set X is an efficiently samplable and explainable

domain (as defined in Definition 2).
– Sampling Correctness. Let (prm, td) ← SSmpG(1λ, k). Then the distri-

butions of the outputs of SSmpX(prm), SSmpL(prm), and SSmpLS(prm, i)
(i ∈ [2k]) are statistically indistinguishable from uniform distributions over
X , L and Li (i ∈ [2k]) respectively.

5 Note that a hard SSMP is also a hard SMP, since a simple hybrid argument shows
that for any PPT distinguisher D, |Pr[D(prm, xX ) = 1] − Pr[D(prm, xL) = 1]| ≤
AdvHARD-1

SSMP,D,1(λ) + AdvHARD-2
SSMP,D,1(λ).
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– Checking Correctness. For any (prm, td) generated by SSmpG, if x ∈ L,
then SSmpChk(prm, td, x) = 0; if there exists i ∈ [2k] s.t. x ∈ Li, then
SSmpChk(prm, td, x) = i; otherwise, SSmpChk(prm, td, x) =⊥.

Remark 2. The additional trapdoor, generated by SSmpG, will also be used in
the key equivocability property (see Definition 10) of HPS.

Definition 8 (Hash Proof System [8]). A hash proof system HPS for a
SSMP SSMP consists of three PPT algorithms (PrmG, PubEv, SecEv):

– PrmG(prm): Given prm, which is generated by SSmpG(1λ, k) and defines 2k+2
sets (X ,L,L1, . . . ,L2k), algorithm PrmG outputs a parameterized instance
prmins := (Ksp,SK,PK, Λ(·), μ), where Ksp, SK, PK are all finite sets, Λ(·) :
X → Ksp is a family of hash functions indexed with secret hash key hsk ∈ SK,
and μ : SK → PK is an efficiently computable function.

– SecEv(hsk, x): On input hsk ∈ SK and x ∈ X , the deterministic secret eval-
uation algorithm SecEv outputs a hash value K = Λhsk(x) ∈ Ksp.

– PubEv(hpk, x, w): On input hpk = μ(hsk) ∈ PK, x ∈ L and a witness w for
x ∈ L, the deterministic public evaluation algorithm PubEv outputs a hash
value K = Λhsk(x) ∈ Ksp.

Also, it should be

– Projective. For any hsk ∈ SK and any x ∈ L with witness w, the hash
value Λhsk(x) is uniquely determined by hpk = μ(hsk) and x, concretely, we
require that SecEv(hsk, x) = PubEv(hpk, x, w).

– Perfectly Universal. For all prm generated by SSmpG(1λ), all possible
prmins ← PrmG(prm), all hpk ∈ PK, all x ∈ X \ L, and all K ∈ Ksp,
the probability Pr[Λhsk(x) = K | μ(hsk) = hpk] = 1

Ksp
, where the probability

is over hsk ← SK.

Definition 8 is the same as the original definition of HPS in [8]. In our PKE
construction, we further require that Ksp is efficiently samplable and explainable.
Besides, we require HPS to have the following two properties.

Definition 9 (Perfectly Universalκ). For any polynomial κ, we say that HPS
is perfectly universalκ, if for all prm generated by SSmpG(1λ, k), all possible
prmins ← PrmG(prm), all hpk ∈ PK, all pairwise different x1, · · · , xκ ∈ X \ L,
and all K1, · · · ,Kκ ∈ Ksp,

Pr
[
Λhsk(xκ) = Kκ

∣∣∣∣
μ(hsk) = hpk

Λhsk(x1) = K1, · · · , Λhsk(xκ−1) = Kκ−1

]
= 1

|Ksp| ,

where the probability is over hsk ← SK.

Definition 10 (Key Equivocability). We say that HPS is key equivocable,
if there is a PPT algorithm SampHsk, which takes (hsk, td, x1, · · · , x2k) as input
and outputs another secret key hsk′, such that for all possible (prm, td) ←
SSmpG(1λ, k), all possible prmins = (Ksp,SK,PK, Λ(·), μ) ← PrmG(prm), all
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permutations P : [2k] → [2k], and all (x1, · · · , x2k) ∈ X 2k satisfying that
xi ∈ LP(i), Δ(Dist0,Dist1) is negligible, where Dist0 and Dist1 are defined in
Fig. 4.

Dist0: Dist1:
hsk ← SK; hpk = μ(hsk) hsk ← SK; hpk = μ(hsk)
For i = 1 to k : For i = 1 to 2k :

Ki = SecEv(hsk, xi) Ki = SecEv(hsk, xi)
For i = k + 1 to 2k : hsk ← SampHsk(hsk, td, x1, · · · , x2k)

Ki ← Ksp Return (hsk , hpk, K1, · · · , K2k)
Return (hsk, hpk, K1, · · · , K2k)

Fig. 4. Distributions for defining key equivocability of HPS.

Instantiation from DDH. Now we present our instantiation of universalκ
HPS with key equivocability from the DDH assumption. The definition of the
DDH assumption will be recalled in Appendix A.

Let λ be the security parameter and let k, κ be positive integers that are
polynomial in λ. Let G be a multiplicative cyclic group of prime order q and let
g be a generator of G. Let Γ : G

2k+1 → Z
2k+1
q be an injective function, which

can be extended from the injective function in the constructions of HPS in [8]
directly.

We construct a strengthened subset membership problem SSMP1 =
(SSmpG,SSmpX,SSmpL,SSmpLS,SSmpChk) as follows:

– SSmpG. On input a security parameter λ and an integer k, the parameter
generation algorithm first samples ai←Zq and computes gi = gai for i ∈
[2k + 1]. Then it sets:

X = {u1, . . . , u2k+1 | ∀i ∈ [2k + 1], ui ∈ G}

L = {gw
1 , . . . , gw

2k+1 | w ∈ Zq}
and for i ∈ [2k], it sets:

Li = {gw1
1 , . . . , g

w2k+1
2k+1 | w,w′ ∈ Zq, w �= w′,

wi = w′,∀j ∈ [2k + 1]\{i}, wj = w}

The public parameter prm = (G, q, g, g1, . . . , g2k+1) and the trapdoor td =
(a1, . . . , a2k+1)

– SSmpX. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1), the algo-
rithm samples ui←G for i ∈ [2k + 1] and outputs x = (u1, . . . , u2k+1).

– SSmpL. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1), the algo-
rithm samples w←Zq and outputs x = (gw

1 , . . . , gw
2k+1) and the witness w.
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– SSmpLS. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1) and an
integer i ∈ [2k], the algorithm samples w←Zq and w′←Zq s.t. w �= w′.
Then it computes uj = gw

j for j ∈ [2k + 1]\{i} and ui = gw′
i and outputs

(u1, . . . , u2k+1).
– SSmpChk. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1), a trap-

door td = (a1, . . . , a2k+1), and x = (u1, . . . , u2k+1), the algorithm first com-

putes vj = u
a−1

j

j for j ∈ [2k + 1]. It outputs 0 if v1 = v2 = . . . = v2k+1. It
outputs j if there exists some j ∈ [2k] s.t. vj = vj′ for all j, j′ ∈ [2k]\{j} and
vj �= v2k+1. Otherwise, it outputs ⊥.

Also, we construct the HPS HPS1 = (PrmG,PubEv,SecEv,SampHsk) for
SSMP1 as follows:

– PrmG. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1), the algo-
rithm defines Ksp = G, SK = Z

(2k+1)×κ×(2k+1)
q , and PK = G

(2k+1)×κ.
Then for any hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1] ∈ SK and any x =
(u1, . . . , u2k+1) ∈ X , it defines the map Λ from SK × X to Ksp as

Λhsk(x) =
∏

h∈[2k+1],i∈[κ],j∈[2k+1]

u
sh,i,j ·αi−1

h
j

where (α1, . . . , α2k+1) = Γ (x). Also, for any hsk = (sh,i,j)h∈[2k+1],

i ∈ [κ], j ∈ [2k + 1] ∈ SK, it defines the map μ from SK to PK as

μ(hsk) = (ph,i)h∈[2k+1],i∈[κ] = (
∏

j∈[2k+1]

g
sh,i,j

j )h∈[2k+1],i∈[κ]

– SecEv. On input a secret key hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1] ∈ SK and x =
(u1, . . . , u2k+1) ∈ X , the secret evaluation algorithm outputs K = Λhsk(x).

– PubEv. On input a public key hpk = (ph,i)h∈[2k+1],i∈[κ] ∈ PK, x =
(u1, . . . , u2k+1) ∈ L and a witness w, the public evaluation algorithm com-

putes (α1, . . . , α2k+1) = Γ (x) and outputs K =
∏

h∈[2k+1],i∈[κ] p
w·αi−1

h

h,i .
– SampHsk. On input a secret key hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1], a trap-

door td = (a1, . . . , a2k+1), and 2k inputs (x� = (u�,1, . . . , u�,2k+1))�∈[2k], the
algorithm works as follows:
1. For � ∈ [2k], it computes p[�] = SSmpChk(prm, td, x�).
2. It outputs ⊥ if there exists � ∈ [2k] s.t. p[�] �∈ [2k] or there exist distinct

�1, �2 ∈ [2k] s.t. p[�1] = p[�2].
3. For h ∈ [2k + 1], i ∈ [κ], j ∈ {p[1], . . . ,p[k]}, it sets s′

h,i,j = sh,i,j .
4. For h ∈ [2k + 1], i ∈ [κ], j ∈ {p[k + 1], . . . ,p[2k]}, it samples s′

h,i,j←Zq.
5. For h ∈ [2k + 1], i ∈ [κ], it sets s′

h,i,2k+1 = (
∑

j∈[2k+1] ajsh,i,j −
∑

j∈[2k] ajs
′
h,i,j) · a−1

2k+1.
6. It outputs hsk′ = (s′

h,i,j)h∈[2k+1],i∈[κ],j∈[2k+1].

Theorem 1. Assuming the DDH assumption holds, SSMP1 is a strengthened
subset membership problem with hardness, sparseness, explainability, and cor-
rectness.
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Theorem 2. HPS1 is a perfect universalκ HPS with key equivocability.

Proofs of Theorem 1 and Theorem 2 are provided in the full version.

Instantiation from DCR. We present our instantiation of universalκ HPS
with key equivocability from the DCR assumption as follows. The definition of
the DCR assumption will be recalled in Appendix A.

Let λ be the security parameter and let k, κ be positive integers that are
polynomial in λ. We construct a strengthened subset membership problem
SSMP2 = (SSmpG,SSmpX,SSmpL,SSmpLS,SSmpChk) as follows:

– SSmpG. On input a security parameter λ and an integer k, the parameter
generation algorithm first samples primes p′, q′, p, q s.t. p = 2p′ + 1 and q =
2q′ +1. Then it computes N = pq and N ′ = p′q′. Let Z

∗
N2 = GN ·GN ′ ·G2 ·T,

where GN , GN ′ , G2, T are defined as in Appendix A. Define X = GN · GN ′ · T
and L = GN ′ · T. Define χ : ZN2 → ZN as χ(a) = �a/N�. Let Γ : X

2k →
Z
2k
�N2/2	 be an injective function, which can be extended from the injective

function in the constructions of HPS in [8] directly. Also, let g ∈ Z
∗
N2 be a

fixed generator of L.
Then it sets:

X = {u1, . . . , u2k | ∀j ∈ [2k], uj ∈ X},

L = {gr1 , . . . , gr2k | ∀j ∈ [2k], rj ∈ Z2N ′},

and for i ∈ [2k], it sets:

Li = {u1, . . . u2k | ui ∈ X\L,∀j ∈ [2k]\{i}, rj ∈ Z2N ′ , uj = grj }.

The public parameter prm = (N, g) and the trapdoor td = N ′.
– SSmpX. On input a public parameter prm = (N, g), the algorithm samples

uj←X for j ∈ [2k] and outputs x = (u1, . . . , u2k).
– SSmpL. On input a public parameter prm = (N, g), the algorithm samples

rj←Z�N/2	 for j ∈ [2k] and outputs x = (gr1 , . . . , gr2k) and the witness
(r1, . . . , r2k).

– SSmpLS. On input a public parameter prm = (N, g) and an integer i ∈ [2k],
the algorithm samples rj←Z�N/2	 for j ∈ [2k]\{i} and ui←X. Then it com-
putes uj = grj for j ∈ [2k]\{i} and outputs x = (u1, . . . , u2k).

– SSmpChk. On input a public parameter prm = (N, g), a trapdoor td = N ′,
and x = (u1, . . . , u2k), the algorithm first computes vj = u2N ′

j for j ∈ [2k].
It outputs 0 if v1 = v2 = . . . v2k = 1. It outputs j if there exists j ∈ [2k] s.t.
vj = 1 for all j ∈ [2k]\{j} and vj �= 1. Otherwise, it outputs ⊥.

Also, we construct the HPS HPS2 = (PrmG,PubEv,SecEv,SampHsk) for
SSMP2 as follows:

– PrmG. On input a public parameter prm = (N, g), the algorithm defines
KSP = ZN , SK = Z

(2k)×(κ)×(2k)
�N2/2	 , and PK = L

(2k)×(κ)×(2k). Then for any
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hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k] ∈ SK and any x = (u1, . . . , u2k) ∈ X , it defines
the map Λ from SK × X to Ksp as

Λhsk(x) = χ(
∏

h∈[2k],i∈[κ],j∈[2k]

u
sh,i,j ·αi−1

h
j )

where (α1, . . . , α2k) = Γ (x). Also, for any hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k] ∈
SK, it defines the map μ from SK to PK as

μ(sk) = (ph,i,j)h∈[2k],i∈[κ],j∈[2k] = (gsh,i,j )h∈[2k],i∈[κ],j∈[2k].

– SecEv. On input a secret key hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k] ∈ SK and x =
(u1, . . . , u2k) ∈ X , the secret evaluation algorithm outputs K = Λhsk(x).

– PubEv. On input a public key hpk = (ph,i,j)h∈[2k],i∈[κ],j∈[2k] ∈ PK,
x = (u1, . . . , u2k) ∈ L and a witness (r1, . . . , r2k), the public eval-
uation algorithm computes (α1, . . . , α2k) = Γ (x) and outputs K =

χ(
∏

h∈[2k],i∈[κ],j∈[2k] p
rj ·αi−1

h

h,i,j ).
– SampHsk. On input a secret key hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k], a trapdoor

td = N ′, and 2k inputs (x� = (u�,1, . . . , u�,2k))�∈[2k], the algorithm works as
follows:
1. For � ∈ [2k], it computes p[�] = SSmpChk(prm, td, x�).
2. It outputs ⊥ if there exists � ∈ [2k] s.t. p[�] �∈ [2k] or there exist distinct

�1, �2 ∈ [2k] s.t. p[�1] = p[�2].
3. For h ∈ [2k], i ∈ [κ], j ∈ {p[1], . . . ,p[k]}, it sets s′

h,i,j = sh,i,j .
4. For h ∈ [2k], i ∈ [κ], j ∈ {p[k + 1], . . . ,p[2k]}, it samples t←ZN and uses

the Chinese remainder theorem to compute s′
h,i,j ∈ Z2NN ′ s.t. s′

h,i,j = t
mod N and s′

h,i,j = sh,i,j mod 2N ′.
5. It outputs hsk′ = (s′

h,i,j)h∈[2k],i∈[κ],j∈[2k].

Theorem 3. Assuming the DCR assumption holds, SSMP2 is a strengthened
subset membership problem with hardness, sparseness, explainability, and cor-
rectness.

Theorem 4. HPS2 is a perfect universalκ HPS with key equivocability.

Proofs of Theorem 3 and Theorem 4 are similar to proofs of Theorem 1 and
Theorem 2. So, we omit the details here. Note that SSMP2 only achieves a statis-
tical sampling correctness while SSMP1 achieves a perfect sampling correctness.

4.3 SIM-wBi-SOk-CCA Secure PKE Construction

For any polynomially bounded function k > 0, we propose a PKE scheme
achieving SIM-wBi-SOk-CCA security. Our construction is built from a per-
fectly universalk+1 HPS with key-equivocability, and a strong and semi-unique
XAC. The details are as follows.

Let SSMP = (SSmpG,SSmpX,SSmpL,SSmpLS,SSmpChk) be a hard SSMP.
Let HPS = (PrmG,PubEv,SecEv,SampHsk) be a perfectly universalk+1 and key
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equivocable HPS for SSMP, such that all the Ksp generated by PrmG can be
written as Ka ×Kb. For � ∈ N and any prmins = (Ksp,SK,PK, Λ(·), μ) generated
by PrmG, let XACprmins = (XGen,XAuth, XVer,ReSamp) be a strong and semi-
unique (� + 1)-XAC with key space XK = Ksp = Ka × Kb and tag space XT ,
and Hprmins : (X × PK)� → Kb be a family of collision-resistant hash functions.
Our PKE scheme PKE = (Setup,Gen,Enc,Dec) (for �-bit messages) is defined in
Fig. 5.

Setup(1λ) :
(prm := (X , L, L1, · · · , L2k), td) ← SSmpG(1λ, k)
prmins = (Ksp = Ka × Kb, SK, PK, Λ(·), μ) ← PrmG(prm); H ← Hprmins; Ka ← Ka

Return pp := (prm, prmins,H, Ka)
Gen(pp) :
Parse prmins = (Ksp, SK, PK, T , Λ(·), μ)
(hskγ)γ∈[ ] ← (SK) ; (hpkγ = μ(hskγ))γ∈[ ]; pk := (hpkγ)γ∈[ ]; sk := (hskγ)γ∈[ ]

Return (pk, sk)
Enc(pk = (hpkγ)γ∈[ ], m) :

Parse m = (m1, · · · , m ) ∈ {0, 1}
r := (r(X )

γ , r
(K)
γ , wγ)γ∈[ ] ← (RSSmpX × RSample × RSSmpL)

For γ = 1 to :
If mγ = 0: xγ ← SSmpX(prm; r(X )

γ ); Kγ ← Sample(Ksp; r
(K)
γ )

If mγ = 1: xγ ← SSmpL(prm;wγ); Kγ = PubEv(hpkγ , xγ , wγ)
Kb = H(pk, x1, · · · , x ); K +1 = (Ka, Kb); T = XAuth(K1, · · · , K +1)
Return c = (x1, · · · , x , T )

Dec(sk = (hskγ)γ∈[ ], c = (x1, · · · , x , T )) :

Kb = H(pk, x1, · · · , xl)
If XVer((Ka, Kb), T ) = 0: m1 = · · · = m = 0; return m = (m1, · · · , m )
For γ = 1 to :

Kγ = SecEv(hskγ , xγ); mγ = XVer(Kγ , T )
Return m = (m1, · · · , m )

Fig. 5. Construction of PKE.

Correctness. For γ ∈ [�], if mγ = 1, then Kγ = Kγ by completeness of HPS,
so mγ = Xver(Kγ , γ, T ) = 1 except with probability failXAC(λ) by correctness of
XAC. On the other hand, if mγ = 0, subset sparseness of SSMP and perfect uni-
versality of HPS guarantee that with overwhelming probability, Kγ is uniformly
random, even given pk, c and m. In this case, mγ = XVer(Kγ , T ) = 0 except
with probability AdvIMP

XAC (λ). So, correctness of PKE follows by a union bound
over γ ∈ [�].
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Security. Formally, we have the following theorem, the formal proof of which
is provided in the full version.

Theorem 5. For any polynomial function k > 0, PKE is SIM-wBi-SOk-CCA
secure.

5 PKE with SIM-Bi-SO-CCA Security

In [14], Heuer et al. showed that a generic construction of DHIES [31] meets SIM-
SSO-CCA security in the random oracle model. In this section, we show that a
variant of the generic construction actually achieves SIM-Bi-SO-CCA security
in the random oracle model.

Building blocks. We simply recall the definitions of key encapsulation mecha-
nism (KEM) and message authentication code (MAC) as follows.

Key Encapsulation Mechanism. A KEM scheme, associated with a session
key space KKEM and a ciphertext space CKEM, is a tuple of PPT algorithms
KEM = (KemGen,Encap,Decap). The key generation algorithm KemGen takes 1λ

as input, and outputs a public/secret key pair (pk, sk). The encapsulation algo-
rithm Encap takes pk as input, outputs (K, c) ∈ KKEM×CKEM. The decapsulation
algorithm Decap, taking sk and c as input, outputs a value in KKEM∪{⊥}. Stan-
dard correctness is required. Similar to [14], without loss of generality we assume
that Encap uniformly samples K ← KKEM. We also assume that |KKEM| ≥ 2λ

and |CKEM| ≥ 2λ.
We say that KEM has unique encapsulations, if for any (pk, sk) generated by

KemGen, and for any ciphertexts c, c′ satisfying Decap(sk, c) = Decap(sk, c′) �=
⊥, c = c′.

The security notion, one-way security in the presence of a plaintext-checking
oracle (OW-PCA security) [28], is recalled in the full version.

Message Authentication Code. A MAC scheme, associated with a key space
KMAC, is a tuple of PPT algorithms MAC = (MacGen,Auth,Verf). The key gen-
eration algorithm MacGen takes 1λ as input and outputs a key K ∈ KMAC. The
authentication algorithm Auth takes K and a message m as input, outputs a tag
t. On input (K,m, t), the verification algorithm Verf outputs a bit b′ ∈ {0, 1}.
Standard correctness is also required here.

MAC is called deterministic, if Auth is deterministic. For a deterministic MAC,
MAC is called injective, if Auth is an injective function (i.e., for any K ∈ KMAC

and any m �= m′, Auth(K,m) �= Auth(K,m′)).
The security notion of strong unforgeability under one-time chosen message

attacks (sUF-OT-CMA security) is recalled in the full version.

PKE Construction. Let KEM = (KemGen,Encap,Decap) be an OW-PCA
secure KEM scheme, having unique encapsulations, associated with a session
key space KKEM and a ciphertext space CKEM, where Encap uniformly samples
K, |KKEM| ≥ 2λ and |CKEM| ≥ 2λ. Let MAC = (MacGen,Auth,Verf) be a deter-
ministic, injective MAC scheme, associated with a key space KMAC, achieving
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Setup(1λ) :
Return pp := 1λ

Gen(pp = 1λ) :
(pkkem, skkem) ← KemGen(1λ); pk := pkkem; sk := (pkkem, skkem)
Return (pk, sk)

Enc(pk = pkkem, m) :
r ← REncap; (K, ckem) ← Encap(pkkem; r); (Ksym, Kmac) = HRO(K)
csym = Ksym ⊕ m; t = Auth(Kmac, (pkkem, ckem, csym))
Return c = (ckem, csym, t)

Dec(sk = (pkkem, skkem), c = (ckem, csym, t)) :
K = Decap(skkem, ckem); (K

sym
, K

mac
) = HRO(K)

If Verf(K
mac

, (pkkem, ckem, csym), t) = 0: return ⊥
Return m = csym ⊕ K

sym

Fig. 6. Construction of PKEK-M.

sUF-OT-CMA security. Let HRO : KKEM → {0, 1}� × KMAC be a hash function.
Our PKE scheme PKEK-M = (Setup,Gen,Enc,Dec), associated with a message
space {0, 1}�, is defined in Fig. 6.

The correctness analysis of this scheme is trivial. Now we turn to its security
analysis. Formally, we have the following theorem. Note that, in our construction,
a valid ciphertext contains a tag t generated on (pkkem, ckem, csym), where in
[14], the tag t is only generated on csym. We stress that this crucial modification
makes our construction achieve SIM-Bi-SO-CCA security. The intuition for the
security proof and details are provided in the full version.

Theorem 6. If KEM has unique encapsulations and is OW-PCA secure, MAC
is deterministic, injective and sUF-OT-CMA secure, and HRO is modeled as a
random oracle, then PKEK-M is SIM-Bi-SO-CCA secure in the random oracle
model.
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A Cryptographic Assumptions

The DDH Assumption. Let G be a cyclic group of prime order q with a gen-
erator g. The DDH assumption requires that it is hard to distinguish (ga, gb, gc)
and (ga, gb, gab), where a, b, c←Zq.

The DCR Assumption. Now, we recall the Decision Composite Residuosity
(DCR) assumption [30] and some useful facts about it shown in [8].

Let p, q, p′, q′ be primes such that p = 2p′ + 1 and q = 2q′ + 1. Let N = pq
and N ′ = p′q′. Then the group Z

∗
N2 can be decomposed as the direct product

GN · GN ′ · G2 · T, where GN ′ and G2 are cyclic groups of order N ′ and order 2
respectively; GN is a cyclic group of order N generated by ξ = (1+N) mod N2;
and T is the order-2 subgroup of Z

∗
N2 generated by (−1 mod N2). Note that

ξa = (1 + aN) mod N2 for a ∈ {0, 1, · · · , N}.
The DCR assumption requires that it is hard to distinguish a random element

in Z
∗
N2 and a random element in GN ′ · G2 · T.

Next, define X = GN · GN ′ · T. The set X is an efficiently samplable and
explainable domain, where the sample algorithm and the explain algorithm work
as follows:

– Sample: The sample algorithm proceeds as follows:
1. For i ∈ [1, 160]:

(a) x←ZN2

(b) If the Jacobi symbol ( x
N ) = 1: output x.

2. Output ⊥.
– Explain: on input an element x ∈ X, the explain algorithm proceeds as follows:

1. Set r to be an empty string.
2. For i ∈ [1, 160]:

(a) Sample b←{0, 1}.
(b) If b = 1, append x to r and outputs r.
(c) Otherwise, sample an element x′←ZN2 s.t. the Jacobi symbol (x′

N ) =
−1 and append x′ to r.

3. Output ⊥.

Note that as |X|
|Z∗

N2 | = 1/2, the expected repetition in the sample algorithm is

about 2 and the probability that the sample algorithm outputs ⊥ is 1
2160 , which

is negligible. Also, it is easy to see the probability that the explain algorithm
outputs ⊥ is also 1

2160 , which is negligible.
Also, define χ : ZN2 → ZN as χ(a) = �a/N�. For any fixed x ∈ X, χ(xξc) is

uniform in ZN if c←ZN .
Finally, define L = GN ′ · T. It is easy to create a generator g for L by first

sampling a random element μ ∈ Z
∗
N2 and then computing g = −μ2N . Besides,

the DCR assumption implies that a random element in X is computationally
indistinguishable from a random element in L.
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