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Abstract. We present Séta (To be pronounced [Se:t6] meaning “walk”
in Hungarian.), a new family of public-key encryption schemes with post-
quantum security based on isogenies of supersingular elliptic curves. It
is constructed from a new family of trapdoor one-way functions, where
the inversion algorithm uses Petit’s so called torsion attacks on SIDH
to compute an isogeny between supersingular elliptic curves given an
endomorphism of the starting curve and images of torsion points. We
prove the OW-CPA security of Séta and present an IND-CCA variant
using the post-quantum OAEP transformation. Several variants for key
generation are explored together with their impact on the selection of
parameters, such as the base prime of the scheme. We furthermore for-
malise an “uber” isogeny assumption framework which aims to gener-
alize computational isogeny problems encountered in schemes including
SIDH, CSDIH, OSIDH and ours. Finally, we carefully select parameters
to achieve a balance between security and run-times and present exper-
imental results from our implementation.
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1 Introduction

Isogeny-based cryptography. Recent years have seen an increasing interest in cryp-
tosystems based on supersingular isogeny problems as appropriate candidates for
post-quantumcryptography.The latter has received greater focus due to the recent
standardization process initiated by NIST.1

More precisely, the central problem of isogeny-based cryptography is, given
two elliptic curves, to compute an isogeny between them. For the right choice
of parameters, the best quantum algorithms for solving this problem still run
in exponential time [5]. Variants of this problem have been used to build prim-
itives such as hash functions [10], encryption schemes [2,23], key encapsulation
mechanism (KEM)s [2] and signatures [16,21].

Encryption schemes. The first key agreement and public-key encryption (PKE)
scheme based on isogenies of ordinary elliptic curves was independently dis-
covered by Couveignes [15] and Rostovtsev and Stolbunov [34,37]. It follows a
“Diffie–Hellman-like” structure: Alice and Bob start from a public curve E0 and
choose random secret isogenies ϕA, ϕB to reach curves EA, EB . They then send
the curves to each other and finally use their respective secrets to arrive at a
common curve EAB . It is then immediate to transform the key agreement into
a CPA-secure PKE by following El Gamal’s blueprint.

In 2011, Jao and De Feo [23] introduced SIDH, a key agreement protocol
based on isogenies of supersingular curves, inspired both by the Couveignes–
Rostovtsev–Stolbunov scheme and by the hash function of Charles, Goren and
Lauter [10]. In the supersingular case, however, isogenies do not have a natural
commutative property, meaning that, for example, the result of applying Bob’s
isogeny ϕB to Alice’s curve EA cannot be meaningfully defined without some
extra constraints. To solve this, Jao and De Feo proposed sending additional
information in the protocol in the form of images of torsion points under the
secret isogenies. With the help of these points, they ensured that each party
could evaluate their secret isogeny on the other’s curve.

However, the isogeny problem upon which the security of the scheme is based
now differs from the original problem in certain ways. Most importantly, the
adversary has access to the image of certain torsion points under a secret isogeny.
Galbraith, Petit, Shani and Ti [20] were the first to exploit this extra information
in an active attack showing that one cannot use static keys in SIDH. Then, two
further works studied the generic problem of finding isogenies if the action of the
isogeny on some torsion is known [17,33]. These look at two different scenarios:

1. The starting curve is E0 : y2 = x3 + x;
2. The starting curve is chosen by the adversary;

Let p be a prime number; for simplicity we restrict to supersingular elliptic
curves defined over Fp2 . Let A be the degree of some secret isogeny ϕ and
1 U.S. Department of Commerce, National Institute of Standards and Technology, Post-

Quantum Cryptography project, 2016. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography, last retrieved September 13th, 2019.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
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let B be the order of a torsion group on which the action of ϕ is known. In
the first case [17] gives a polynomial-time algorithm to compute ϕ whenever
B >

√
pA2. In the second case it shows how to construct special starting curves

(called backdoor curves) for which backdoor information is known, in the form
of an endomorphism of the curve, which enables a polynomial-time algorithm to
compute ϕ whenever B > A2.

In SIDH one has A ≈ B ≈ √
p so these algorithms do not lead to an attack.

However [17] also shows that, if an adversary is allowed to choose the starting
curve, then even in the SIDH setting it is possible to mount key-recovery attacks
which take exponential time, yet are faster than known algorithms [17, Corollary
32]. In anticipation of potential further cryptanalysis progress, it is desirable to
design alternative cryptographic protocols that rely on different isogeny prob-
lems. An example of this is the CSIDH scheme [9] (and its variants [19,31]),
a key agreement protocol that relies on the original isogeny problem, but is
restricted to supersingular elliptic curves over Fp, and can be solved in quantum
subexponential time.

These results show that any relaxation of the assumptions used in building
isogeny-based PKE schemes and KEMs is of interest from a theoretical point of
view, and could become crucial if further cryptanalysis progress occurs.

Our contributions. Our main contribution is to turn the attack described
in [17] into a PKE by using the special starting curves mentioned above as
public keys. The associated secret key can be derived from an endomorphism
of the curve with a specific minimal polynomial. More precisely, one can use
any special curve whose endomorphism ring has a particular quadratic order
embedded into it. Using such a starting curve, one can design a PKE where a
message corresponds to an isogeny and a ciphertext contains the codomain of the
isogeny together with images of the torsion points under the isogeny. Decryption
is then performed using the algorithm which recovers the secret isogeny using
the techniques developed in [33] and [17].

Choosing parameters for our scheme is not obvious due to the following rea-
son. Even though trapdoor curves can be constructed in polynomial time, in
practice this can be very costly. This is acceptable for a backdoor, but not for
a PKE for which key generation should be routine computation. The expensive
step is to generate a supsersingular elliptic curve with a prescribed endomor-
phism ring. We utilize techniques from SQISign [16] where one uses special
primes to substantially speed up the procedure of generating starting curves.
Furthermore, the worst-case complexity of torsion-point attacks is dependent on
the number of prime factors of the isogeny degree. We therefore impose extra
conditions on the quadratic order to avoid timing attacks that this could imply.

We also present variants for constructing backdoor curves which allow for
slightly different decryption mechanisms. Namely one can either construct the
starting curve directly and then compute a backdoor, or instead choose a secret
backdoor curve first and then apply a secret walk to it. We discuss trade-offs
between security, key size and speed in this context.

We emphasize that just knowing the equation of the starting curve and a
description of the quadratic order embedded in it does not seem to be help-
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ful without the concrete knowledge of an endomorphims realizing this embed-
ding. We formalize this idea in what we call the uber isogeny problem or O-UIP
(Problem 5.1): suppose that one knows that a certain quadratic order O is embed-
ded in the endomorphism ring of two curves E0, Es, and that and that a concrete
embedding of E0 is also given in input, the problem is to find an isogeny between
E0 and ES corresponding to a O-ideal. The formulation of this O-UIP is inspired
from the key recovery problem in CSIDH [9, Problem 10]. We show that SIDH,
OSIDH [12] and our PKE scheme also rely implicitly on various instances of this
assumption. We also provide an analysis on the difficulty of this problem.

Finally, we present an implementation of our scheme which includes searching
for an appropriate base prime and measuring key generation and encryption/de-
cryption speeds. Written in C, our implementation reuses some of the codebase
of SQISign and improves the efficiency of several steps crucial for Séta compu-
tations.

In Sect. 2 we recall basic properties of supersingular elliptic curves and the
SIDH protocol. Furthermore, we discuss backdoor curves (which in this context
we rename as trapdoor curves) in more detail. In Sect. 3 we introduce our one-
way function and PKE Séta. In Sect. 4 we show how one can generate keys
efficiently for Séta. In Sect. 5 we introduce the uber isogeny assumption, discuss
its relation to other studied isogeny problems and provide some analysis of its
hardness. In Sect. 6 we provide details of our implementation.

2 Preliminaries

We denote the computational security parameter by λ. We write PPT for proba-
bilistic polynomial time. The notation y ← A(x; r) means that the algorithm A,
with input x and randomness r, outputs y. The notation Pr[sampling : event]
means the probability of the event on the right happening after sampling ele-
ments as specified on the left. Given a set S, we denote sampling a uniformly
random element x of S by x

$← S. A probability distribution X has min-entropy
H∞(X) = b if any event occurs with probability at most 2−b. Given an integer
n =

∏
i �ei

i , where the �i are its prime factors, we say that n is B-powersmooth
if �ei

i < B for all i. We denote by Zn the set of residue classes modulo n.

2.1 Quaternion Algebras and Endomorphism Rings of Supersingular
Elliptic Curves

A quaternion algebra is a four-dimensional central simple algebra over a field K.
When the characteristic of K is not 2, then A admits a basis 1, i, j, ij such that
i2 = a, j2 = b, ij = −ji where a, b ∈ K\{0}. The numbers a, b characterise
the quaternion algebra up to isomorphism, thus we denote the aforementioned
algebra by the pair (a, b). A quaternion algebra is either a division ring or it is
isomorphic to M2(K), the algebra of 2 × 2 matrices over K.

Let A be a quaternion algebra over Q. Then A ⊗ Qp is a quaternion algebra
over Qp (the field of p-adic numbers) and A ⊗ R is a quaternion algebra over
the real numbers. A is said to split at p (resp. at ∞) if A ⊗ Qp (resp. A ⊗ R)
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is a full matrix algebra. Otherwise it is said to ramify at p (resp. at ∞). A
quaternion algebra over Q is split at every but finitely many places, and the list
of these places defines the quaternion algebra up to isomorphism. An order in a
quaternion algebra over Q is a four-dimensional Z-lattice which is also a subring
containing the identity (it is the non-commutative generalization of the ring of
integers in number fields). A maximal order is an order that is maximal with
respect to inclusion.

The endomorphism ring of a supersingular elliptic curve over Fp2 is a maximal
order in the quaternion algebra Bp,∞, which ramifies at p and at ∞. Moreover,
for every maximal order in Bp,∞ there exists a supersingular elliptic curve whose
endomorphism ring is isomorphic to it.

It is easy to see that, when p ≡ 3 (mod 4), this quaternion algebra is iso-
morphic to the quaternion algebra (−p,−1). In that case, the integral linear
combinations of 1, i, ij+j

2 , 1+i
2 form a maximal order O0 which corresponds to

an isomorphism class of supersingular curves, namely the class of curves with
j-invariant 1728 (e.g. the curve E : y2 = x3+x). It is easy to see that all elements
ai + bj + cij + d with a, b, c, d ∈ Z are contained in O0.

2.2 Class Group Action on the Set of Supersingular Curves

We briefly recall the main definitions and properties related to the class group of
quadratic imaginary orders and their link with supersingular elliptic curves. We
say that a curve E admits an embedding of a quadratic imaginary order O, if
there exists a subring of End(E) that is isomorphic to O. We say this embedding
is primitive or optimal if this isomorphism cannot be extended to a super-order of
O. We write EO for the set of supersingular elliptic curves admitting a primitive
embedding of O (up to isomorphisms). Following [12], we also call a primitive
embedding of O in End(E) an O-orientation on E. Through the usual Deuring
correspondence, O-ideals can be identified with isogenies. For any such ideal
a, we write ϕa : E → a � E for the corresponding isogeny. The property that
a � E ∼= b � E when a and b are in the same ideal class proves that � defines
a group action of the class group Cl(O) on EO. The class number h(O) is the
cardinality of Cl(O). In full generality, we cannot say much more on #EO than
the classical Proposition 2.1.

Proposition 2.1. Let K be a quadratic imaginary field and let O be a quadratic
order inside K. When p does not split in K, the number of distinct embeddings
of O inside maximal orders of the quaternion algebra Bp,∞ is exactly Cl(O). In
particular, #EO ≤ h(O).

In general, Proposition 2.1 does not help in estimating #EO precisely because
we do not know how to estimate the number of different embeddings of O into
the same maximal order in Bp,∞. We provide examples of cases where more
precise properties can be stated in Sects. 5.2 and 5.3.

When p splits in the field K, then EO is empty (the curves admitting an
O-orientation are ordinary). In the remaining of this article, we consider that
we are never in this case to simplify the notations and statements.
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Any quadratic order O can be written as O = Z + fO0 where O0 is another
quadratic order (not necessarily distinct from O) and f is often called the con-
ductor of O. When the conductor is one, we say that the quadratic order is
maximal. In [29], it was shown that these conductors can be tied to isogenies.

Proposition 2.2. Let O = Z + fO0 be a quadratic order and let E be a super-
singular curve defined over Fp2 . If E is in EO, then there exists an isogeny of
degree f between E and a supersingular curve E0 ∈ EO0 . Conversely, when there
exists an isogeny of degree f between E and a supersingular curve E0 ∈ EO0 ,
then E is in EZ+f ′O0 for some f ′ dividing f .

In Proposition 2.2, we say that the isogeny ϕ : E0 → E of degree f is
descending when f ′ = f . Let ϕ : E0 → E be a descending isogeny of degree f , the
embedding of O in End(E) in Proposition 2.2 is obtained with endomorphisms
of the form [d] + ϕ ◦ α0 ◦ ϕ̂ with d ∈ Z and α0 in the embedding of O0 inside
End(E0). Similar endomorphisms are constructed in torsion point attacks against
SIDH variants [27,33], and they underlie the decryption mechanism of the Séta
encryption scheme.

2.3 SIDH and SIKE

Here we give a high level description of SIDH and SIKE. We start with the
original SIDH protocol of Jao and De Feo [23]. In the setup one chooses two
small primes �A, �B and a prime p of the form p = �eA

A �eB

B f − 1, where f is
a small cofactor and eA and eB are large (in SIKE [2] they use �eA

A = 2216,
�eB

B = 3137 and f = 1). Let E be a fixed supersingular curve, for example,
assuming p = 3 mod 4, the elliptic curve with j-invariant 1728.2 Let PA, QA be
a basis of E[�eA

A ] and let PB, QB be a basis of E[�eB

B ]. The protocol is as follows:

1. Alice chooses a random cyclic subgroup of E[�eA

A ] generated by A = [xA]PA +
[yA]QA and Bob chooses a random cyclic subgroup of E[�eB

B ] generated by
B = [xB ]PB + [yB ]QB .

2. Alice computes the isogeny ϕA : E → E/〈A〉 and Bob computes the isogeny
ϕB : E → E/〈B〉.

3. Alice sends the curve E/〈A〉 and the points ϕA(PB) and ϕA(QB) to Bob, and
Bob similarly sends (E/〈B〉, ϕB(PA), ϕB(QA)) to Alice.

4. Alice and Bob both use the images of the torsion points to compute the
shared secret which is the curve E/〈A,B〉 (e.g. Alice can compute ϕB(A) =
[xA]ϕB(PA) + [yA]ϕB(QA) and E/〈A,B〉 = EB/〈ϕB(A)〉).
This key exchange protocol also leads to a PKE scheme in the same way

as the Diffie–Hellman key exchange leads to ElGamal encryption. Let Alice’s
private key be the isogeny ϕA : E → E/〈A〉 and her public key be the curve
E/〈A〉 together with the images of the torsion points ϕA(PB) and ϕA(QB).
Encryption and decryption work as follows:
2 Jao and De Feo do not specify a particular curve, and recommend to pick one using

Bröker’s algorithm [8], however there appears to be no advantage in doing so, and
thus SIKE opts for j = 1728 for simplicity.
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1. To encrypt a bitstring m, Bob chooses a random subgroup generated by B =
[xB ]PB + [yB ]QB and computes the corresponding isogeny ϕB : E → E/〈B〉.
He computes the shared secret E → E/〈A,B〉 and hashes the j-invariant of
E/〈A,B〉 to a binary string s. The ciphertext corresponding to m is the tuple
(E/〈B〉, ϕB(PA), ϕB(QA), c := m ⊕ s)

2. In order to decrypt Bob’s message, Alice computes E/〈A,B〉 and from this
information computes s. Then she retrieves the message by computing c ⊕ s.

This PKE scheme is IND-CPA secure [2,23]. In the SIKE submission [2], it is
transformed using the constructions in [22, Section 3] to produce an IND-CCA
secure KEM in the random oracle model (ROM).

2.4 Trapdoor Curves

Let E1, E2 be supersingular elliptic curves over Fp2 and let φ : E1 → E2 be an
isogeny of degree D. First we recall the following algorithmic problem:

Problem 2.3 (SSI-T). Let D and N be smooth coprime integers. Let φ : E1 → E2

be a secret isogeny of degree D. Assume that we know the action of φ on E1[N ].
Compute φ.

Remark 2.4. The SSI-T problem is a generalization of the CSSI introduced in
[23] (Problem 5.6) where D and N are prime powers of the same size.

The SSI-T problem makes sense for any D,N which are coprime and sufficiently
smooth. However, in many cases the size of the input is superlinear in p thus
has no practical relevance. Thus from now on we restrict to instances where the
D and N -torsion are efficiently representable:

Definition 2.5. Let N be an integer and let p be a prime number. Let E be
a supersingular elliptic curve defined over Fp2 . We call E[N ] efficiently repre-
sentable if representing points in E[N ] requires polynomial space in log p = O(λ).

Remark 2.6. In particular E[N ] is efficiently representable whenever N is pow-
ersmooth or N divides pc − 1 for some small c. In this paper we will mainly
consider instances where N is smooth and divides p2 − 1.

We recall (slightly modified version of) [17, Theorem 3] how finding a certain
endomorphism of E2 relates to finding the secret isogeny φ:

Theorem 2.7. Let φ : E1 → E2 be a secret isogeny of degree D. Assume that
E[N ] and E[D] are efficiently representable for any supersingular curve E and
that the action of φ on E1[N ] is given. Suppose furthermore, that we know θ ∈
End(E1) and d, e ∈ Z such that the trace of θ is 0 and deg(φ◦θ ◦ φ̂+[d]) = N2e.
Let M be the largest divisor of D such that E2[M ] ⊂ ker(φ◦θ ◦ φ̂)∩E2[D]. Let k
be the number of distinct prime divisors of M . Then we can compute φ in time
O∗(2k

√
e) .
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Proof. We sketch the proof of the theorem. Let τ = φ◦ θ ◦ φ̂+[d]. Then if ker(τ)
is cyclic, then τ = ψ′ ◦ η ◦ ψ where deg(ψ) = deg(ψ′) = N and deg(η) = e and
the kernels of ψ and ψ′ are cyclic. In [17, Theorem 3] it is shown that ker(τ)
is always cyclic if N is odd and if N is even then τ = ψ′ ◦ η ◦ ψ ◦ [K] where
deg(ψ) = deg(ψ′) = N/K, deg(η) = e and K = 1 or K = 2.

Then one can compute ψ and K using the torsion point information and ψ′

using the observation that ker(ψ̂′) = τ(E2[B]). The isogeny η can be computed
by a meet-in-the-middle algorithm. Once τ is computed, one can compute φ by
looking at G = ker(φ ◦ θ ◦ φ̂) ∩ E2[D]. If M = 1 then G is cyclic and can be
recomputed easily. If not, then one can use [Sect. 4.3][33] to recover τ . The cost
of this step is O∗(2k) where k is the number of prime factors of M .

Remark 2.8. Theorem 2.7 in particular implies that one can recover φ in O∗(
√

e)
whenever the number of distinct prime divisors of D (and hence M) is smaller
than log log p. In Sect. 3.3, we introduce a condition on the quadratic order Z[θ]
to ensure that M is always equal to 1.

The key ingredient to Theorem 2.7 is the knowledge of θ. When M = 1
(which will be the case for the concrete inversion procedure in Algorithm 1), all
we really need is the action of θ on E1[N ]. Indeed, from the sketch of proof of
Theorem 2.7, we see that in that case θ is only used to compute the kernel of the
two isogenies ψ and ψ′ of degree N . These kernels are computed by evaluating
the N -torsion τ = φ ◦ θ ◦ φ̂ + [d] which can be done with the action of θ and φ
on E1[N ].

Note the action of θ on E1[N ] is hard to recover from E1 only. This motivates
a notion of (D,N)-trapdoor T to encompass any kind of information that enables
the computation described in the proof of Theorem 2.7.

Definition 2.9. Let p be a prime number and let D and N be coprime smooth
integers. Then a tuple (E, T ) is called a (D,N)-trapdoor curve if one can use
T to solve any instance of the SSI-T problem (with parameters D,N, p) with
starting curve E in polynomial time. We sometimes call T the trapdoor.

In [17] the authors introduces a polynomial-time algorithm for constructing
(D,N)-trapdoor curves whenever N > D2 and the number of prime divisors of
D < log log p. The main idea is to reproduce the set-up of Theorem 2.7. Thus,
if one can construct a supersingular elliptic curve E together with an endomor-
phism θ ∈ End(E) verifying the requirements of Theorem 2.7, and compute the
action of this endomorphism θ on E[N ], then one can solve SSI-T in polynomial
time (by finding an e which is sufficiently small).

The conditions put on θ in Theorem 2.7 are essentially conditions on the
minimal polynomial of θ, meaning that every trace zero element in the quaternion
algebra whose norm is B2e−d2

A2 can be used as a suitable θ. This implies that
potential (D,N)-trapdoor curves are obtained from curves in EO for quadratic

order O of the form Z

(√
N2e−d2

D2

)

.



Séta: Supersingular Encryption from Torsion Attacks 257

We briefly sketch how θ can be generated. Since Tr(θ) = 0, it can be written
as ci + bj + aij over Bp,∞. Then the degree of τ is D2(p2a + p2b + c2) + d2.
Observe that a, b, c can be rational numbers but since θ is an integral element
its norm p2a2 + p2b2 + c2 must be an integer. So one has to find d, e such that
N2e − d2 is divisible by D2 and is positive.

This can be achieved when N > D2. Let Δ = N2e−d2. Then one has to find
a rational solution to the equation p2a2+p2b2+c2 = Δ, which exists whenever Δ
is a quadratic residue modulo p (if that is not the case one chooses a different d
and e). A solution can be found using Denis Simon’s algorithm [36]. From there,
we can find a maximal order O containing θ and then compute a supersingular
elliptic curve whose endomorphism ring is isomorphic to O (see Algorithm 3 in
Sect. 4.2). After that, the action of θ on the N -torsion can be found using an
explicit representation of O. All these operations can be done in polynomial time
(see Algorithms 2 and 3 for more details), leading to the following theorem:

Theorem 2.10. Let p be a prime number and let D and N be smooth coprime
integers such that N > D2 and the number of distinct prime divisors of D
is smaller than log log p. Then there exists a polynomial-time algorithm which
outputs a (D,N)-trapdoor curve E with the following information:

– The j-invariant of E.
– Integers d, e with e = O(log(p)).
– A basis P,Q of E[N ] and the points θ(P ), θ(Q) for a trace 0 endomorphism

θ such that deg([D]θ + [d]) = N2e.

3 Séta Trapdoor One Way Function and Public Key
Encryption Scheme

In this section we describe a general trapdoor one-way function where the main
idea is to turn the attacks from [17] into a trapdoor mechanism.

We first generalise the CGL hash function and we describe a trapdoor sub-
family of this generalization. We then provide more details on key generation,
evaluation and inversion. We finally describe the Séta public key encryption
scheme and its CCA version.

3.1 Generalised Charles-Goren-Lauter Hash Function

We generalise the CGL hash function family introduced in [10]. To select a hash
function from this family, one selects a j-invariant j ∈ Jp which canonically fixes
a curve E/Fp2 with j(E) = j. There are � + 1 isogenies of degree � connecting
E to other vertices. These � + 1 vertices can be ordered in a canonical way and
a canonical one of them can be ignored. Then, given a message m = b1b2 . . . bn,
with bi ∈ [�], hashing starts by choosing a degree-� isogeny from E according
to symbol b1 to arrive at a first curve E1. Not allowing backtracking, there are
then only � isogenies out of E1 and one is chosen according to b2 to arrive at a
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second curve E2. Continuing in the same way, m determines a unique walk of
length n. The output of the CGL hash function hj is then the j-invariant of the
final curve in the path, i.e. hj(m) := j(En), where the walk starts at vertex j
and is defined as above. We see that starting at a different vertex j′ results in a
different hash function hj′ .

We modify this hash function family in three ways. First, we consider a
generalisation where we do not ignore one of the �+1 isogenies from the starting
curve E. That is, we take inputs m = b1b2 . . . bn where b1 ∈ [� + 1] and bi ∈ [�]
for 2 ≤ i ≤ n; this introduces a one-to-one correspondence between inputs and
cyclic isogenies of degree �n originating from E.

Secondly, we consider a generalisation where the walk takes place over multi-
ple graphs G�i . Given an integer D =

∏n
i=1 �ei

i where the �i are prime factors, we
introduce the notation μ(D) :=

∏n
i=1(�i + 1) · �ei−1

i . We then take the message
m to be an element of

[μ(D)] =
{

(m1, . . . , mn)
∣
∣
∣
∣
mi = bi1bi2 . . . biei

, bi1 ∈ [�i + 1], bij ∈ [�i]
for 2 ≤ j ≤ ei, for 1 ≤ i ≤ n

}

where each mi is hashed along the graph G�i . To ensure continuity, the j-
invariants are chained along the hash functions, that is, we write ji = hji−1(mi),
where ji−1 is the hash of mi−1. Thus, only j = j0 parameterizes the over-
all hash function. As before, this generalization returns the final j-invariant
jn = hjn−1(mn) as the hash of m.

Thirdly, we also modify the CGL hash function to return the images of two
canonically defined torsion points Pj and Qj of order N under the D-isogeny
ϕm : Ej → Ejn .

We call the resulting hash function family generalized CGL or G-CGL, and
we denote it by Hp,D,N , namely

Hp,D,N =
{

hD,N
j : m �→ (j(En), ϕm(Pj), ϕm(Qj)) | j ∈ Jp

}
.

3.2 A Trapdoor Function Family from the G-CGL Family

Given p,D and N , let JT,p ⊂ Jp be the set of j-invariants of (D,N)-trapdoor
curves defined over Fp2 (see Definition 2.9). By definition of a trapdoor curve,
for any jT ∈ JT,p, the hash function hD,N

jT
can be inverted using the trapdoor

information. We hence obtain the following family of trapdoor functions:

Fp,D,N
T =

{
fD,N

jT
: m �→ (j(En), ϕm(PjT ), ϕm(QjT )) | jT ∈ JT,p

}
,

where fD,N
jT

:= hD,N
jT

.

Injectivity. We observe that, for a proper choice of parameters, the functions are
injective.

Lemma 3.1. Let N2 > 4D. Then for any jT ∈ JT,p, fD,N
jT

is injective.
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Proof. Let N2 > 4D and jT ∈ JT,p, suppose that a function fD
jT

is not injective,
i.e. that there are two distinct isogenies ϕ and ϕ′ of degree D from EjT to
Ec, corresponding to two distinct messages, with the same action on EjT [N ],
implied by the colliding images of PjT and QjT . Then, following [30, Section 4],
their difference is also an isogeny between the same curves whose kernel contains
the entire N -torsion. This, together with [35, Lemma V.1.2], implies that 4D ≥
deg(ϕ − ϕ′) ≥ N2. Taking N2 > 4D ensures that in fact ϕ = ϕ′ and therefore
that fD,N

jT
is injective. ��

One-wayness. One-wayness of our function family relies on Problem 3.2 below.
This problem is a variant of the CSSI problem introduced in [23], with the
difference that the starting j-invariant is chosen at random from JT,p (instead
of being fixed) and only the min-entropy of the distribution is specified.

Problem 3.2 (Trapdoor computational supersingular isogeny (TCSSI) problem).
Given p and integers D and N , let jT be a uniformly random element of JT,p and
ϕm : EjT → Em be a random isogeny of degree D sampled from a distribution
X with min-entropy H∞(X) = O(λ). Let {PjT , QjT } be a basis of the torsion
group EjT [N ]. Given EjT , PjT , QjT , Em, ϕm(PjT ) and ϕm(QjT ), compute ϕm.

Lemma 3.3. Let jT be a uniformly random element of JT,p. Then the func-
tion fD,N

jT
∈ Fp,D,N

T is (quantum) one-way under the (quantum) hardness of
Problem 3.2.

Proof. It is easy to check that the distribution of isogenies resulting from hash-
ing a uniform m∗ $← [μ(D)] has the required entropy; hence the reduction is
immediate. ��

3.3 Inversion

In this section, we concretely show how to use methods from [17] to invert a
given function fD,N

jT
∈ Fp,D,N

T with trapdoor information T . We assume that D
is odd and that gcd(D,N) = 1. We take EjT a supersingular curve inside EO

where O is the quadratic order Z[
√

(N2e − d2)/D2] for some integers d, e. We
write θ for the endomorphism of End(EjT ) such that Z[θ] ∼= O. Let us also take
a basis PjT , QjT of EjT [N ]. If we define T as e, d, PJT

, QjT , θ(PjT ), θ(QjT ), then
EjT , T is a (D,N)-trapdoor curve as produced in Theorem 2.10.

To make the inversion mechanism efficient on all inputs, we require the addi-
tional condition that the discriminant Δ of O is a quadratic nonresidue modulo
every prime divisor of D. The concrete statement can be found in Lemma 3.4.
We explain how to generate Ej,T , O and T in Sects. 4.1 and 4.2. We are given
(jm, Pm, Qm) as the output of fD,N

jT
for some input m, which we want to

recover. Let the isogeny corresponding to m be denoted by φm. We assume
that Pm = φm(PjT ) and Qm = φm(QjT ). Let τ := φm ◦ θ ◦ φ̂m + [d] and let
G := ker(τ − [d]) ∩ Em[D].
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Algorithm 1 Computing inverses
Require: jT ∈ JT,p, a trapdoor T and c.
Ensure: m ∈ [μ(D)] such that fD,N

jT
(m) = c.

1: Parse c as (jm, Pm, Qm) ∈ Fp2 × (Fp2)2 × (Fp2)2.
2: Parse T as e, d, PJT

, QjT , θ(PjT ), θ(QjT ).
3: Compute the canonical curve Em having j-invariant jm.
4: Let τ = φm ◦ θ ◦ φ̂m + [d] ∈ End(Em). 
 Choices of θ and d ensure

deg τ = N2e.
5: Compute τ as described in the proof of Theorem 2.7.
6: Compute ker(φm ◦ θ ◦ φ̂m) ∩ Em[D] = ker(τ − [d]) ∩ Em[D] = ker(φ̂m).
7: Compute ker(φm) using ker(φ̂m).
8: return m ∈ [μ(D)] that corresponds to ker(φm).

Lemma 3.4. If Δ = Disc O is a non-quadratic residue, the group G is cyclic
and equal to ker(φ̂).

Proof. It is clear that ker(φ̂m) ⊂ G since it is contained in ker(φm ◦ θ ◦ φ̂m) and
in Em[D] as well. We now show that G is cyclic. Let M be the largest divisor
of D such that Em[M ] ⊂ G. Then φm can be decomposed as φD/M ◦ φM . Then
by [33, Lemma 5] the kernel of φM is fixed by θ. In the proof of [33, Lemma 6]
it is shown that a subgroup of EjT [M ] can only be fixed by an endomorphism θ
if Tr(θ)2 − 4 deg(θ) = Disc Z[θ] = Δ is a square modulo M . Thus, the quadratic
residuosity condition on Δ ensures that M = 1 which implies that G is cyclic.
The order of G is a divisor of D since G is cyclic and every element of G has
order dividing D. However, G contains ker(φ̂m) which is a group of order D.
This implies that G = ker(φ̂m). ��

The group G = ker(φ̂) can be computed by solving a double discrete loga-
rithm problem, which is efficient as D is smooth. We summarize the steps needed
for inverting the one-way function in Algorithm 1.

In [17] it is shown that Algorithm 1 runs in polynomial time whenever Em[D]
is efficiently representable and Δ = Disc Z[θ] is as in Lemma 3.4.

3.4 Séta Public Key Encryption

We now build Séta, a Public Key Encryption scheme using the trapdoor one-way
function family of Sect. 3.2, and we show that it is OW-CPA secure. Concretely,
we define the Séta PKE scheme as the tuple (KGen,Enc,Dec) of PPT algorithms
described below.

Parameters. Let λ denote the security parameter. Let p be a prime such that
p2 − 1 = DNf where D, N are smooth integers and f is a small co-factor such
that 22λ < D, D2 < N . We let params = (λ, p,D,N).

Key generation. The KGen(params) algorithm proceeds as follows:
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1. Compute a uniformly random (D,N)-trapdoor supersingular elliptic curve
(EjT , T ) defined over Fp2 using Algorithms 2 and 3 (see Sect. 4).

2. Set pk := (jT ) and sk := T .
3. Return (pk, sk).

Encryption. The Enc(params, pk,m) algorithm proceeds as follows. For a given
m ∈ {0, 1}nm , where nm = �log2 μ(D)�, first cast m as an integer in the set
[μ(D)] and then:

1. Parse pk = jT ∈ JT,p.
2. Compute (jm, Pm, Qm) ← fD,N

jT
(m).

3. Return c = (jm, Pm, Qm).

Decryption. The Dec(params, pk, sk, c) algorithm proceeds as follows:

1. Given params, sk and c, parse c as (jc, Pc, Qc) ∈ Fp2 × (Fp2)2 × (Fp2)2; if that
fails, return ⊥.

2. Follow Algorithm 1 to recover m̃ ∈ [μ(D)]; if this fails, set m̃ = ⊥.
3. If ⊥ was recovered, return ⊥.
4. Otherwise, from m̃ ∈ [μ(D)], recover m ∈ {0, 1}nm and return it.

Theorem 3.5. Let p be a prime, let D and N be integers such that D2 < N .
Suppose that the output distribution of Algorithm 3 is statistically close to uni-
form. Let EjT be an output of Algorithm 3. If Problem 3.2 with p,D,N,EjT and
X such that H∞(X) = λ is hard for quantum PPT adversaries, then the PKE
scheme above is quantum one-way chosen-plaintext attack (OW-CPA) secure.

Proof. Let M = {0, 1}nm denote the message space of the encryption scheme,

with nm = O(λ). We see that a randomly sampled m
$← M directly embedded

as an integer m ∈ [μ(D)] yields a distribution Y with min-entropy H∞(Y ) ≥ λ
on isogenies of degree D starting from EjT . The challenge of opening a given
ciphertext c then reduces to recovering the secret isogeny of Problem 3.2 with
X = Y . ��

3.5 IND-CCA Encryption Scheme

We obtain an IND-CCA secure PKE scheme by applying the generic post-
quantum OAEP transformation [38, Section 5] (see Appendix A) to Séta, for
which we prove that our function fD,N

jT
is quantum partial-domain one-way.

Definition 3.6. Let k1, k0 and nc be integers. A family F of functions f :
{0, 1}λ+k1 × {0, 1}k2 → {0, 1}nc is partial domain one-way if for any polyno-
mial time adversary A, the following advantage is negligible in λ:

Advλ(A) = Pr
[
s′ = s; s′ ← A(1λ, y), y ← f(s, t), (s, t) $← A × B, f ← F

]
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Lemma 3.7. Let jT be a uniformly random element of JT,p. The function fD,N
jT

defined in Sect. 3.2 is a quantum partial-domain one-way function, under the
hardness of Problem 3.2.

Proof. We note that in our case, partial domain inversion is the same as domain
inversion where only the first part of the path is required. More precisely, factor D
as D1 · D2 such that gcd(D1,D2) = 1, 2λ+k1 ≤ μ(D1) and 2k0 ≤ μ(D2) (where
λ + k0 + k1 is the bit-length of input strings) and then embed each of s and
t into μ(D1) and μ(D2) respectively. Then we can set fD,N

jT
(s, t) := fD2,N

j1
(t)

where (j1, P1, Q1) = fD1,N
jT

(s) and fD2,N
j1

uses {P1, Q1} as basis of Ej1 [N ]. Since
2λ+k1 ≤ μ(D1), then recovering s from y = fD,N

jT
(s, t) is hard under the same

assumption as Theorem 3.5 with D replaced by D1. ��
Theorem 3.8 ([38], Theorem 2). If fD,N

jT
is a quantum partial-domain one-

way function, then the OAEP-transformed scheme is IND-CCA secure in the
quantum random oracle model (QROM).

4 Key Generation Variants

In this section we describe various methods for generating keys for Séta. We
first describe Algorithm 2, which can generate integers d, e so that Δ = Disc O,
where O = Z[

√
(N2e − d2)/D2], satisfies the quadratic residuosity conditions

imposed Sect. 3.3. Then, we present two options for generating a uniformly ran-
dom supersingular elliptic curve inside EO together with the remaining part of
the trapdoor information T . Algorithm 3 treats the generic case, and Algorithm 4
focuses on computing a (DDs, N)-trapdoor curve from a (D,N)-trapdoor curve
and a random walk of degree Ds.

4.1 Computing the Trapdoor Information

We recall that the required condition is that Δ = Disc O = −4N2e−d2

D2 must be
negative and a quadratic non-residue modulo every prime dividing D and also
modulo p. For simplicity, we fix e = 1 and look for d of a special form. This is
described in Algorithm 2.

Lemma 4.1. If d, e is the output of Algorithm 2, then N2e−d2

D2 is a quadratic
non-residue modulo all �i.

Proof. Let ri, s�i , T and u be as in Algorithm 2. Let r be an integer such that
r ≡ ri (mod �i). Then we show that for every i, the integer −N2e+(D2r+u)2

D2 is
not a quadratic residue modulo �i which implies that −N2e−d2

D2 is not a quadratic
residue modulo every �i since T� + r ≡ ri (mod �i) for every integer �. We have
that

−N2e + (D2r + u)2

D2
=

−N2e + u2

D2
+ D2r2 + 2ur.
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Algorithm 2 Computing the integers d, e

Require: D,N, p as above. Let S be the product of primes dividing D.
Ensure: (d, e) such that −N2e−d2

D2 < 0 is a quadratic non-residue modulo every
prime dividing D and is a quadratic non-residue modulo p.

1: Set e = 1.
2: Find u such that u2 ≡ N2e (mod D2).
3: for every prime �i dividing D do
4: Let s�i be a quadratic non-residue modulo �i.
5: ri ← (s�i − −N2e+u2

D2 )(2u)−1 (mod �i).

6: Compute a residue r modulo S with the property that r ≡ ri (mod �i).
7: � ← 0.
8: d ← D2(S� + r) + u.
9: A ← N2e−d2

D2 .
10: if A < 0 then
11: return ⊥
12: if A is not a square modulo p then
13: � ← � + 1.
14: go to Step 8.
15: return (d, e)

By our choice of r we have that

−N2e + u2

D2
+ D2r2 + 2ur ≡ −N2e + u2

D2
+ 2uri ≡ s�i (mod �i),

which is a quadratic nonresidue by the choice of s�i . ��
Lemma 4.2. Let S be the product of all primes dividing D. If N > D2S, then
Algorithm 2 returns a correct pair (d, e) with probability higher than 1−2− N

SD2 +1

under plausible heuristic assumption.

Proof. Since u is found by solving an equation modulo D2, we obtain u < D2.
Similarly we have r < S. Under plausible heuristic assumptions, we can estimate
to 1/2 the probability that the quadratic reduosity condition on A is satisfied.
Thus, we obtain a bound on the failure probability by counting how many values
� can be tried before A becomes negative. With the conservative bound that
D2r + u ≈ D2S, we obtain that we can try N−D2S

DS2 different values for small d,
which gives the result.

Correctness of the result follows from Lemma 4.1.
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4.2 Trapdoor Curve Generation

Now we focus on generating a random supersingular elliptic curve whose endo-
morphism ring contains an embedding of O = Z[

√
(N2e − d2)/D2 for d, e out-

puts of Algorithm 2. In [17, Section 5.1] it is discussed how one can generate a
specific curve inside EO. Essentially, this is achieved by computing a maximal
order O containing the suborder O (with [40, Algorithm 7.9]) and then com-
puting a supersingular elliptic curve whose endomorphism ring is isomorphic to
O (with [18, Algorithm 12]). This procedure can be made concretely efficient
with the algorithms from [16] under some conditions on the prime p that partly
underlie the choice of prime described in Sect. 6.2. However, this procedure is
essentially deterministic, so an adversary knowing the quadratic order O can
just recompute the same trapdoor curve. The point of this subsection is to show
how to randomize the procedure.

We obtain randomization by first generating a curve with the deterministic
procedure and then applying the action of a random class group element to
derive another random curve with the same embedding. This operation would
be costly if it required to compute a lot of isogenies. However, we can do it over
the quaternions at a negligible cost before applying the translation algorithm
from maximal orders to elliptic curves.

For concrete randomization, we use the fact (see [24]) that there exists a
bound B (polynomial in p) for which the graph whose vertices are curves in EO

and edges are isogenies of prime degree smaller than B is an expander graph.
The fast mixing property of expander graphs implies that the distribution of
curves obtained after a random walk of fixed length quickly converges to the
uniform distribution as the length of the walk grows. More precisely, for any δ
we can find a length ε (logarithmic in the size of the graph and δ) for which
the statistical distance between the random walk distribution and the uniform
distribution is less than δ. So once the length ε (corresponding to a sufficiently
small δ) has been set, for any starting curve E0 in EO the curve

∏n
i=1 l

εi
i � E0

where l1, . . . , ln are prime ideals above the n prime �1, . . . , �n smaller than B
that are split in O and (ε1, . . . , εn) is uniformly random among the vectors in
Z

n such that
∑n

i=1 |εi| = ε, is statistically close to a uniformly random element
in EO. This result underlies Algorithm 3.

Proposition 4.3. Algorithm 3 is correct and terminates in polynomial time.

Proof. All the sub-algorithms run in polynomial-time and by choice of B and ε,
the number of iterations in the loop is also polynomial.

It is easy to verify that the ideal I corresponds through the Deuring corre-
spondence to the isogeny ϕli . Thus, our method simulates a random walk over
the graph that we described at the beginning of this section. For the reasons
explained there, the curve EjT obtained in the end is statistically close to a
random element in EO. ��
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Algorithm 3 Generating the trapdoor curve from a quadratic order O

Require: A prime p, an integer N , a quadratic order O, a bound B, a length
ε.

Ensure: A uniformly random curve EjT ∈ EO, a basis PjT , QjT of EjT [N ], and
θ(PjT ), θ(QjT ) with θ ∈ End(EjT ) such that Z[θ] ∼= O.

1: Find a max. order O ⊂ Bp,∞ with O embedded in O with the alg. from [17].
2: Compute �1, . . . , �n the n primes split in O smaller than B.
3: Select a random vector (ε1, . . . , εn) in Z

n with L1 norm equal to ε.
4: Set OjT = O.
5: for 1 ≤ i ≤ n do
6: Compute αi ∈ O such that li = O〈αi, �i〉 is a prime ideal above �i.
7: for 1 ≤ j ≤ |εi| do
8: Compute the ideal I = OjT 〈αi, �i〉.
9: Set OjT as the right order of I.

10: Compute the curve EjT from OjT with [18, Algorithm 12].
11: Compute a canonical basis PjT , QjT of EjT [N ].
12: Select the correct element θ ∈ OjT such that O ∼= Z[θ].
13: Use the representation of OjT obtained from the execution of [18, Algorithm

12] to compute θ(PjT ), θ(QjT ).
14: return EjT , PjT , QjT of EjT [N ], θ(PjT ), θ(QjT ).

4.3 Constraints on the Prime

In Séta, we compute and evaluate isogenies of degree D and N . Hence we always
require that D and N are smooth and that the DN -torsion groups are efficiently
representable, i.e., that they are defined on extensions of Fp2 of small degree.
For example, if we require that E[DN ] ⊂ E(Fp4), then DN must divide p2 − 1.
The smoothness bound B1 of D impacts the efficiency of encryption and the
smoothness bound B2 of N impacts the efficiency of decryption. For a given
security level λ, we require 22λ < D in order to protect the scheme against the
meet-in-middle attack.

Since we have the range D2 < D2S < D3 depending on the value of S
(product of primes dividing D), and that Lemma 4.2 implies that N > D2S
then we can estimate that the value DN will be between 26λ and 28λ. If we
want DN dividing p2 − 1, we can estimate that the minimum size for the prime
p will be between 3λ and 4λ bits. The actual size will depend on the size of
(p2 − 1)/DN .

Besides encryption and decryption, key generation also restricts the types
of primes to be used in Séta. Indeed, Step 10 and Step 13 of Algorithm 3 use
[18, Algorithm 12], which in turn uses the KLTP Algorithm [26]. Although this
algorithm runs in polynomial time, it is not practical in general; the variant
introduced in [16] achieves much greater efficiency, provided that p2 −1 is of the
form p2 − 1 = lfN2f2, where � is a small prime, N2 > p3/2 is a smooth integer
co-prime to � and f2 is a cofactor. We refer to [16, §8] for more details; a concrete
method to select Séta-friendly primes is described in Sect. 6.2.
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Algorithm 4 Computing a (D,N)-trapdoor curve from a (DsD,N)-trapdoor
curve where Ds ≈ 22λ is a smooth integer
Require: a (DsD,N)-trapdoor curve (EjT , T ) where T = (θ(PjT ), θ(QjT ), d, e).
Ensure: a (D,N)-trapdoor curve (Es, T

′).
1: Sample a uniformly random isogeny φs : Eθ,j → Es of degree Ds .
2: Compute T ′ = (θ′(Ps), θ′(Qs), d, e) where θ′ = φs ◦ θ ◦ φ̂s and {Ps, Qs} is a

canonical basis of Es[N ]..
3: return (Es, T

′)

4.4 Alternative Key Generation

We describe an alternative method for computing trapdoor curves and suggest a
variant of the key generation algorithm for Séta. The main idea is to perform a
random secret walk from a publicly available trapdoor curve. The method relies
on the following proposition.

Proposition 4.4. Let p be a prime, let Ds, D and N be three smooth integers.
Let (EjT , T ) where T = (θ(PjT ), θ(QjT ), d, e) be a (DsD,N)-trapdoor curve. Let
φs : EjT → Es be an isogeny of degree Ds. Set T ′ = (θ′(Ps), θ′(Qs), d, e) where
θ′ = φs ◦ θ ◦ φ̂s and {Ps, Qs} is a canonical basis of Es[N ]. Then (Es, T

′) is a
(D,N)-trapdoor curve.

Proof. Since we know the action of θ on the torsion group EjT [N ] and φs, then
we can efficiently evaluate θ′ = φs◦θ◦φ̂s on Es[N ]. Since (EjT , T ) is a (DsD,N)-
trapdoor curve, then Tr(θ) = 0 and θ̂ = −θ. Hence

Tr(θ′) = φs ◦ θ ◦ φ̂s + ̂
φs ◦ θ ◦ φ̂s = φs ◦ θ ◦ φ̂s − φs ◦ θ ◦ φ̂s = 0.

It follows that

deg([D]θ′ + [d]) = D2 deg(θ′) + d2 = D2D2
s deg(θ) + d2 = N2e.

By Theorem 2.10, (Es, T
′) is a (D,N)-trapdoor curve. ��

Relying on Proposition 4.4, Algorithm 4 computes (D,N)-trapdoor curves when
given a (DsD,N)-trapdoor curve.

Lemma 4.5. Algorithm 4 is correct and runs in polynomial time.

Proof. The correctness of Algorithm 4 follows from Proposition 4.4. Step 1 of
Algorithm 4 consists of a degree Ds isogeny computation. Since Ds is smooth,
then Step 1 runs in polynomial time. Step 2 consists of an evaluation of φs◦θ◦φ̂s

on Ps and Qs. One evaluate φ̂s(Ps) and express it as a linear combination of PjT

and Qj to recover θ
(
φ̂s(Ps)

)
, then on evaluates φs

(
θ
(
φ̂s(Ps)

))
. Similarly, one

evaluates φs

(
θ
(
φ̂s(Qs)

))
. All these steps run in polynomial time since Ds and

N are smooth integers.

A variant of the Séta setup and key generation is described as follows.
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Parameters. Let λ denote the security parameter. Let p be a prime such that
p2 −1 = DsDNf where Ds, D, N are smooth integers and f is a small co-factor
such that 22λ < D ≈ Ds, D2

sD2 < N . Compute a (DsD,N)-trapdoor curve
(EjT , T ) using Algorithm 3. We let params = (λ, p,Ds,D,N,EjT , T ).

Key generation. The KGen(params) algorithm proceeds as follows:

1. Compute a random (D,N)-trapdoor curve (Es, T
′) using Algorithm 4 with

(EjT , T ) as input.
2. Set pk := (js) and sk := T ′.
3. Return (pk, sk).

The advantage of this variant is the fact the key generation algorithm does not
use Algorithm 3, hence most of the requirements on p enumerated in Sect. 4.3 can
be relaxed. This implies having more freedom in the choice of D and N , for which
we could opt for powers of very small primes. Mostly, less good SQISign primes
would be admissible for this variant, which is not the case in the original Séta
described in Sect. 3.4, since its key generation uses Algorithm 3 which requires
good Séta primes in order to be practically efficient. This variant is hence a
good alternative to the Séta key generation, given the fruitless search of good
cryptographic size SQI-Sign primes.

On the other hand, using less good SQISign primes implies that generating
the (DsD,N)-trapdoor curve (EjT , T ) in the parameters generation is less effi-
cient. But since this parameter generation is run once and for all, then this does
not constitute a considerable drawback.

The main drawback of this key generation method is the considerably large
size of the base prime p. In fact, p needs to satisfy p2 − 1 = DsDNf where
f is a small co-factor, and Ds ≈ D ≈ 22λ such that attacking the isogeny
φs : EjT → Es or φm : Es → Em are equivalent with respect to the meet in
the middle attack. Considering the fact that N > (DsD)2, then N > 28λ and
212λ < DsDN ≤ p2−1, as opposed to 26λ < ND < p2−1 in Séta (see Sect. 4.3).
It follows that the bit size of p2 −1 practically doubles when we use Algorithm 4
for key generation.

5 “Uber” Isogeny Assumption

In this section, we introduce a generic framework, which we label Uber Isogeny
assumption in analogy to [7], aiming at generalizing isogeny computation
problems encountered in the main families of isogeny-based schemes such as
SIDH [23], CSIDH [9], OSIDH [12] and Séta (presented in this work).

The uber isogeny problem does not directly underlie the security of these
various schemes (in the sense that no formal reduction is yet known). However,
for each of these protocols there exists a set of parameters for which if one can
solve the uber isogeny problem, then one can break the scheme. At a higher-level,
our new problem can be seen as a generic key recovery problem.

By introducing this new assumption our goal is twofold. First, we highlight
the proximity between the various isogeny schemes and we provide a common
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target for cryptanalysis. Second, the generic attack that we describe in Sect. 5.3
gives a lower-bound on the security of any future scheme whose security may be
related to our uber assumption in a similar manner as SIDH, CSIDH, OSIDH
and Séta.

5.1 The New Generic Problem

The principal mathematical structure behind the uber isogeny problem is the
group action at the heart of the CSIDH protocol and all the following works. In
the isogeny setting, these group actions emerge through class groups of quadratic
orders. The main definitions and properties were introduced in Sect. 2.2.

Problem 5.1 (O-Uber Isogeny Problem ( O − UIP )). Let p > 3 be a prime
and let O be a quadratic order of discriminant Δ. Given E0, Es ∈ EO and an
explicit embedding of O into End(E0) (i.e. the knowledge of α0 ∈ End(E0) such
that Z[α0] ∼= O), find a powersmooth ideal a of norm coprime with Δ such that
[a] ∈ Cl(O) is such that Es

∼= a ∗ E0.

Remark 5.2. In Problem 5.1, the powersmoothness condition on the norm is to
ensure that the resulting isogeny can always be computed in polynomial time.
In some special cases where the form of the prime p enables to compute some
smooth isogenies in polynomial time, this condition might be relaxed a little bit.

5.2 Relation with Various Isogeny-Based Constructions

We start with the link with CSIDH [9] which is quite obvious. We state the
CSIDH key recovery problem below [9, Problem 10].

Problem 5.3. Given two supersingular elliptic curves E, E0 defined over Fp with
the same Fp-rational endomorphism ring O, find an ideal a of O such that
[a] � E = E0 . This ideal must be represented in such a way that the action of
a on any curve can be evaluated efficiently, for instance a could be given as a
product of ideals of small norm.

Proposition 5.4. When p = 3 mod 4 and Δ = −4p, Problem 5.1 is equivalent
to the CSIDH key recovery Problem 5.3.

Proof. In the case of CSIDH, the curves admitting an embedding of Z[
√−p] ∼=

Z[π] in their endomorphism rings are the curves defined over Fp (i.e. left stable by
π the Frobenius morphism). Then, it is quite clear that Problem 5.1 is equivalent
to Problem 5.3.

The OSIDH protocol [12] is a generalization of CSIDH where Z[π] is replaced
by a larger class of quadratic orders. The link between OSIDH and Problem 5.1
is also straightforward. Let us fix some notations3 for this protocol and briefly
3 These notations do not exactly agree with the ones introduced in [12] because we

want to hightlight the link with our O-IOP.
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recall the principle. The OSIDH key exchange protocol starts from a descending
chain of �-isogenies of size n that we write ϕ0 : F0 → E0 where F0 admits a
O0-orientation (i.e. an embedding of O0 inside End(E0). From there, ϕ0 induces
an O-orientation on E0. The secret keys of Alice and Bob are O-ideals a, b whose
action on E0 will lead to curves EA = a∗E0 and EB = b∗E0. These curves have
also a O-orientation which implies the existence of �n-isogenies ϕA : F0 → EA

and ϕB : F0 → EB as in Proposition 2.2. Alice public key will be EA together
with some torsion points (which will allow Bob to compute b � EA).

Proposition 5.5. When O0 is a quadratic order of class number 1 and O =
Z+�nO0, then if there exists a PPT algorithm that can break Problem 5.1, there
is a PPT algorithm that can recover the keys of the OSIDH protocol presented
in [12].

Proof. From the definition of the group action of Cl(O) on the curves having
an O-orientation (see [12]), finding a smooth ideal c such that EA = c ∗ E0 is
enough to recover the secret key.

Note that we do not have equivalence in Proposition 5.5 because the OSIDH
public keys include more information than just curves. This will be the same for
SIDH and Proposition 5.7.

For SIDH, we write4 F0 for the common starting curve. In SIDH, recovering
the secret key from the public key is equivalent to the computational supersin-
gular isogeny problem (CSSI), see [23] that we state in Problem 5.6.

Problem 5.6. Let �A be a small prime number and A = �eA

A for some exponent
eA. Let ϕA : F0 → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉, where
mA and nA are chosen at random from Z/AZ (where at least one is in Z/AZ

×.
Given EA and the values ϕA(PB), ϕA(QB) for P,B,QB a basis of F0[B] find a
generator RA of ker ϕA.

The proposition below requires a bit more work as the link between SIDH
and group actions is less obvious.

Proposition 5.7. Assume that F0 admits an O0-orientation with O0 a maxi-
mal quadratic order of class number 1. If there exists a PPT algorithm solving
Problem 5.1 for O = Z + A′O0 where A′ divides A, then there exists a PPT
algorithm that breaks the CSSI problem with overwhelming probability.

Proof. First, note that A is chosen so that the kernel points of A-isogenies have
a polynomial-size representation. Then, since A is also smooth, the discrete loga-
rithms can be solved in polynomial time in the A-torsion and isogenies of degree
A can be computed in polynomial time.

For the rest of this proof, let us write α the endomorphism of F0 such that
Z[α] realizes the embedding of O0 inside End(F0).

4 Once again, we highlight that these notations are unusual and were chosen to empha-
size the link with Problem 5.1.
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If the curve EA is A-isogenous to F0, then EA admits an embedding of
Z + AO0. This embedding is not necessarily primitive but we know there exists
A′ dividing A such that O = Z+A′O0 admits a primitive embedding in End(EA)
(see Proposition 2.2). Conversely, since the class number of O0 is 1, then any
Z + A′O0-orientation on EA implies the existence of an A′-isogeny between EA

and F0. Let us write ϕA′ : F0 → EA this isogeny of degree A′. Then ϕA, the
secret isogeny in Problem 5.6 is the composition of ϕA with an endomorphism
θA of O0 of degree A/A′. Since A/A′ is a power of �A, there are two possibilities
for θA. Thus, the difficulty lies in recovering ϕA′ .

We can generate a curve E0 in EZ+A′O0 by generating ϕ0 : F0 → E0 a
descending isogeny of degree A′. Any ideal a such that EA = a ∗ E0 can be
interpreted as an isogeny ϕa : E0 → EA of degree n(a). The proof is concluded
by the fact that ker ϕ̂A′ = ϕa(ker ϕ̂0), which we prove below. Once ker ϕ̂A′ has
been computed, is easy to recover ker ϕA′ = ϕ̂A′(EA[A′]) and find a solution to
the CSSI as we explained above.

To prove ker ϕ̂A′ = ϕa(ker ϕ̂0), we need to understand how the fact that a is
an O-ideal translates on the action of ϕa on ϕ̂0. As explained in Proposition 2.2
and the following paragraph, the embedding of O in E0 (resp. EA) is obtained
as Z[ϕ0 ◦ α ◦ ϕ̂0] = Z[θ0] (resp. Z[ϕA′ ◦ α ◦ ϕ̂A′ ] = Z[θA′ ]). By definition of a
being an O-ideal, we have that ϕa(ker θ0) = ker θA. Thus, we need to prove
that ker θ0 ∩ E0[A′] = ker ϕ̂0 and ker θA′ ∩ EA[A′] = ker ϕ̂A (note that this
property is exactly what underlies the inversion mechanism in Sect. 3.3). We
will do it for θ0, the property for θA′ holds for the exact same reasons. It is clear
from the definition of θ0 = ϕ0 ◦ α ◦ ϕ̂0 that we have ker ϕ̂0 ⊂ ker θ0. Let us take
P ∈ EA[A′]�ker ϕ̂0, then Q = ϕ̂0(P ) ∈ ker ϕ0�〈0〉. If we assume that P ∈ ker θ0,
it implies that α(Q) ∈ ker ϕ0. Since ker ϕ0 is cyclic, we have that α(Q) = λQ
for some λ ∈ Z. This contradicts the fact that ϕ0 is descending. Indeed, if we
write ϕQ, the isogeny of kernel generated by Q, we have ϕ0 = ψ0 ◦ ϕQ for some
isogeny ϕQ and the condition α(Q) = λQ implies that ϕQ is not descending and
so ϕ0 would not be descending, which is a contradiction. Thus, we have proven
that ker θ0 ∩ E0[A′] = ker ϕ̂0 and this concludes the proof asexplained above.

We refer to Sect. 3 for the full details and notations about Séta. We write O ∼=
Z[

√
(N2e − d2)/D2] ∼= Z[θ] and assume that e, d,O are public. This assumption

is plausible as the procedure described in Algorithm 2 is essentially deterministic.

Proposition 5.8. If there exists a PPT algorithm solving Problem 5.1 for O,
then there exists a PPT algorithm that takes a Séta public key Es and recovers
a trapdoor T such that EjT , T is a (D,N)-trapdoor curve.

Proof. Let EjT be a Séta public key. By applying Algorithm 3 in O and adding
the integers e, d a (D,N)-trapdoor curve E0, T0 can be found in polynomial time
with E0 ∈ EO. Thus, we can apply the PPT solver for Problem 5.1 on E0 and EjT

to compute an isogeny ϕa : E0 → EjT corresponding to a O ideal a. If we write
θ0 ∈ End(E0) and θ ∈ End(EjT ) the endomorphisms such that O ∼= Z[θ0] ∼=
Z[θ]. Then, by definition of O-ideals, we have that θ ◦ ϕa = ϕa◦. So if T0 =
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e, d, P0, Q0, θ0(P0), θ0(Q0), then T = e, dϕa(P0), ϕa(Q0), ϕa(θ0(P0)), ϕa(θ0(Q0))
is such that EjT , T is a (D,N)-trapdoor curve.

We finish this section by proving that some instances of Problem 5.1 are
related to the more generic isogeny problem of finding a smooth isogeny between
any two supersingular curves (Problem 5.9 below). For that it suffices to show
that there exists some quadratic order that is embedded inside the endomor-
phism ring of any supersingular curve.

Problem 5.9. Let p > 3, be a prime number. Given E1,E2 two distinct supersin-
gular curves over Fp2 . Find ϕ : E1 → E2, an isogeny of powersmooth degree.

Proposition 5.10. There is an absolute constant c > 0 such that the following
holds. Let O be a quadratic order of conductor �e inside O0 a maximal quadratic
order, such that � is inert in O0, and e ≥ c log�(p). If there exists a PPT algo-
rithm that can break Problem 5.1, then there is a PPT algorithm that breaks
Problem 5.9.

Proof. From the fact that the �-isogeny graph is Ramanujan, and the rapid
mixing of non-backtracking random walks in expander graphs [1], we deduce that
for e = Ω(log�(p)), there exists a non-backtracking path of degree �e between
any two supersingular curves in the graph.

In particular, if E0 is any O0-orientable curve, there exists a cyclic isogeny of
degree �e from E0 to any other E, and since � is inert in O0, this isogeny must
be a sequence of descending isogenies. This implies that any E is O-orientable.
Thus, if we write E1 and E2, the two curves in the generic isogeny problem,
then we can construct a middle curve E0 with an explicit embedding of O, then
use the PPT algorithm to find paths between E0, E1 and E0, E2, and finally
concatenate the two paths to obtain a path between E1 and E2 of powersmooth
degree.

5.3 Analysis of the Uber Isogeny Assumption

In this section we investigate the complexity of solving Problem 5.1. We are
going to see that there are various special cases leading to various complexities.

We start by giving a generic estimate which can be seen as the worst case
complexity.

A first upper bound: exhaustive search. The simplest method to solve
Problem 5.1 is to apply an exhaustive search, for instance by selecting a set of
small primes �i all split in O and trying all combinations of

∏
lei
i �E0 until one is

isomorphic to Es, where each li is a prime ideal above �i. The expected running
time of this algorithm is in O(#EO). The best generic bound on the size of this
set is given in Proposition 2.1.

The classical estimate h(O) = Θ(
√

Δ) gives a first upper-bound on the com-
plexity to solve Problem 5.1. In particular, it shows that solving Problem 5.1 is
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easy when the discriminant Δ is small. However, when Δ grows, it is harder to
estimate how this bound reflects on the actual complexity of the problem.

There are some special cases for which we can be a bit more precise than
Proposition 2.1. For instance, when the discriminant are short, the following
Theorem from Kaneko [25] can be applied to derive a precise statement.

Theorem 5.11. Take two distinct quadratic orders O1,O2 of discriminants
Δ1,Δ2 embedded optimally in the same maximal order inside the quaternion
algebra ramified exactly at p and ∞. If we have Q(

√
Δ1) ∼= Q(

√
Δ2), then

Δ1Δ2 ≥ p2.

Applying Theorem 5.11 to the discriminants Δ ≤ p, we see that there cannot be
two distinct embeddings of O inside the same maximal order, thus proving that
#EO = h(O). Thus, in that case, we know that the exhaustive search method
described above has asymptotic complexity Θ(

√
Δ).

Another example is given in the proof of Proposition 5.10, where we saw
that there are some values of Δ for which we know that EO is exactly the set of
supersingular curves. More generally, the link between the conductor of O and
isogenies (Proposition 2.2) allows us to obtain some better estimates on the size
of EO by using the expander properties of isogeny graphs.

The case of CSIDH. (Proposition 5.4) has received a lot of attention from the
community ( [6,9,11,32] since it was the first scheme that naturally fits into this
framework. In fact, there are improvements over the exhaustive search strategy
in both the classical and quantum settings. The main ingredient behind these
speed-ups is the ability for anyone to obtain a concrete embedding (through the
Frobenius morphism) of O = Z[

√−p] inside End(E) for any E ∈ EO. In particu-
lar, computing a � E becomes easy for any E ∈ EO when a has smooth norm. In
the classical setting, this implies a quadratic speed-up over the generic exhaus-
tive search by using a meet-in-the-middle technique (see [9]). In the quantum
setting, the speed-up is even more radical, as it creates a malleability oracle (see
[28]) that reduces CSIDH’s security to an instance of the hidden shift problem
which can be solved in quantum sub-exponential time as described in [6,32] for
instance.

Note that neither of these attacks can be used in the generic case as it seems
hard to obtain this malleability oracle for other group actions. For instance, in
OSIDH [12] the public keys are made of a curve E and some torsion points to
make possible the computation of a�E for some secret ideal a. These additional
torsion points are not needed in CSIDH because they can be easily computed.

Smooth conductor inside a maximal quadratic order. A better algorithm
also exists when the conductor f of O is smooth. By Proposition 2.2, there exists
an isogeny of degree f between any curve E ∈ EO and any curve in EO0 , where
O0 is the quadratic maximal order containing O. Let E0, Es given by in an
instance of Problem 5.1, and let us write ϕ0 : F0 → E0 and ϕs : Fs → Es the
two isogenies of degree f .
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The alternative resolution method enumerates through all possible Fs =
a0 � F0 in EO0 then tries to find ϕs of degree f . Since f is smooth, we can apply
a meet-in-the-middle technique to reduce this part to O(

√
f). Once ϕs : Fs → Es

and a O0-ideal a0 such that Fs = a0 � F0 has been found, we can compute a
O-ideal such that Es = a � E0 as described in [12, Section 5.1].

If we write Δ = f2Δ0 where Δ0 is the fundamental discriminant of O0.
The complexity of this algorithm is Θ(

√
f
√

Δ0) which is better than Θ(
√

Δ) =
Θ(f

√
Δ0).

Other cases. When we are not in one of the above cases, there is no known
improvement over the exhaustive search (classically or quantumly). Thus, the
presumed security entirely relies on the size of EO. In that regard, the cases
where the conductor of O is big might give more confidence in the difficulty of
Problem 5.1 as the size of EO is tied to the number of isogenies of a given degree
between distinct pair of curves. In comparison, the distribution of embeddings
of a maximal quadratic order of big discriminant (i.e. above the bound in The-
orem 5.11) have been less studied. As of yet, there are no reason to believe that
there exists such quadratic orders that would be embedded in only a small por-
tion of all the supersingular curves but not enough work has been done on the
question to reach a definitive conclusion.

6 Implementation

We implemented the version of Séta where the starting curve (EjT , T ) is a
(D,N)-trapdoor curve, i.e., the secret key does not contain a random walk,
as described in Sect. 4.2. Our implementation is written in pure C, reusing large
parts of the codebase of SQISign5; in particular we depend on GMP 6.2.1 for
integer arithmetic, Pari 2.13 for quaternion arithmetic [39], and we adapt the so
called velusqrt code for isogeny evaluation [4]6. Our code is avaible at https://
github.com/seta-isogeny-encryption/seta.

6.1 Main Building Blocks

Key generation consists of two parts. Finding a suitable θ in its quaternion
form and then finding a supersingular elliptic curve whose endomorphism ring
contains θ. The difficult part of this procedure in practice is a subroutine for
finding a supersingular elliptic curve whose endomorphism ring is isomorphic to
a particular maximal order O. For this step we reused a substantial amount of
the code used for SQISign [16].

Encryption consists in the evaluation of an isogeny of degree D at points of
order N . In order to make this efficient we choose parameters where D has small
prime factors and both D and N divide p2 − 1 to avoid using extension fields.

5 https://github.com/SQISign/sqisign.
6 https://velusqrt.isogeny.org/software.html.

https://github.com/seta-isogeny-encryption/seta
https://github.com/seta-isogeny-encryption/seta
https://github.com/SQISign/sqisign
https://velusqrt.isogeny.org/software.html
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Decryption also uses evaluations of isogenies, but here isogenies of degree N
are evaluated. Furthermore, decryption requires some linear algebra modulo D
(when computing the intersection ker(τ − [d]) ∩ Em[D]) and modulo N (when
computing the isogenies ψ and ψ′). In these steps one uses subroutines for solving
discrete logarithms but due to N and D being smooth, this step is negligible
compared to other computations.

6.2 Prime Search

To efficiently implement Séta, it is necessary to select a prime satisfying the
many constraints mentioned in Sect. 4.3. To maximise efficiency of encryption
and decryption, while maintaining reasonably efficient key generation, we opted
to search for a prime satisfying the following constraints: (1) p2 − 1 = DN , with
both D and N smooth; (2) D ≈ 22λ and N ≈ 24λ; and (3) D has as few prime
factors as possible.

There are currently three known techniques to search for primes such that
p2 − 1 is smooth, all discussed in [14]. Of these, the most apt to satisfy the
constraint that D has few prime factors was introduced by Costello in [13]: fix
an exponent n > 1, and sieve the space of integers p = 2xn −1 until one is found
such that both p + 1 = 2xn and p − 1 = 2(xn − 1) are smooth.

Thanks to this technique, D can be taken as a factor of p + 1, and has thus
much fewer prime factors than a generic smooth prime of the same size. The
drawback of the technique is that, as n increases, the search space decreases, to
the point where no smooth integers may be found.

Concretely, for λ = 128, we fixed n = 12 and we sieved within the
space 232 < x < 233, i.e., 2385 < p < 2397. This yielded four primes with
largest factor bounded by 225, and three with bound 226, corresponding to
x = 4679747572, 4845958752, 4966654633, 5114946480, 6334792777, 8176556533,
8426067021. Unfortunately, the search space was fully explored, meaning that
no better primes exist for n = 12.

The relatively large smoothness bounds negatively affect performance of all
algorithms in Séta. Unfortunately, it appears to be difficult to find better primes
given current knowledge. Even dropping the constraint on the number of prime
factors of D, the best algorithms known today can hardly beat a 220 smoothness
bound for a prime of 384 bits [14, Table 3].

6.3 Experimental Results

We ran experiments on a 4.00 GHz Quad-Core Intel Core i7, using a single core.
We used the prime p = 2 · 842606702112 − 1, and the smooth factors

D =4312 · 8471911,

N =321 · 5 · 7 · 13 · 17 · 19 · 23 · 73 · 25712 · 313 · 1009 · 2857 · 3733 · 5519 · 6961
· 53113 · 499957 · 763369 · 2101657 · 2616791 · 7045009 · 11959093
· 17499277 · 20157451 · 33475999 · 39617833 · 45932333.
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The key generation was ran only once, and took 10.43 h. The encryption pro-
cedure took 4.63 s, and the decryption took 10.66 min, averaged over six runs.
The decryption time is almost entirely devoted to the evaluation of isogenies of
degrees the largest factors of N .

7 Further Work and Conclusion

The efficiency of the scheme essentially depends on the prime factorization of
D. We have managed to keep all computations within Fp2 but D still has large
prime factors. In principle, one can construct trapdoor curves whenever N > D2

so in particular when ND divides p − 1 and N = 2k,D = 3l. The bottleneck
here is the generation of the trapdoor curve which is rather inefficient, despite its
polynomial complexity. Note that generating the curve does not affect the speed
of encryption and decryption, it only affects the speed of key generation. Thus if
one devised a more efficient version of the KLPT algorithm which speeds up the
maximal order to elliptic curve mapping algorithm, then one could derive a much
more efficient scheme. We estimate that in the best case, one could get a scheme
which is only 5 times slower than SIDH. Another interesting research direction
is whether one could build upon our Séta scheme and derive more advanced
primitives. The framework of Séta has certain advantages in this context when
compared to SIDH. First, Séta is based on a trapdoor one-way function which
could be useful in building signature schemes. Second, SIDH-based constructions
are more likely to need a trusted setup to avoid backdoor curve attacks such as
the one described in [3, Section 6]. Finally, public key validation is easy in the
context of Séta which could be used to build non-interactive key exchange or
counteract fault attacks.

This work presents the OW-CPA PKE scheme Séta, built upon a generalized
version of the isogeny-based CGL hash function family. To do so, we made use
of a “torsion-point attack” against SIDH-like schemes [33] and transformed this
into a decryption mechanism which recovers a message encrypted as a secret
isogeny between a trapdoor starting curve and a final ciphertext curve. An IND-
CCA variant is constructed using the post-quantum OAEP transform and both
security properties are proven to reduce to the TCSSI problem, derived from the
CSSI problem introduced in [23]. We then discussed the key generation in terms
of computing trapdoor information, the corresponding curve generation, and of
the constraints that this does or does not place on the base prime of the scheme;
we also proposed an alternative method for these computations. Of independent
interest, we formalized the “uber isogeny asumption” and discussed its relation
with existing isogeny-based schemes, such as CSIDH, OSDIH and SIDH, before
analyzing its complexity. Finally, we presented implementation results for both
the search of a well-suited base prime and for key-generation, encryption and
decryption experiments.

Acknowledgments. We would like to thank the anonymous reviewers for their
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by EPSRC grant EP/S01361X/1. Péter Kutas was also supported by the Ministry
of Innovation and Technology and the National Research, Development and Innova-
tion Office within the Quantum Information National Laboratory of Hungary. Cyprien
Delpech de Saint Guilhem’s work was supported by ERC Advanced Grant ERC-2015-
AdG-IMPaCT, by DARPA under contract No. HR001120C0085, and by CyberSecurity
Research Flanders with reference number VR20192203.

A Post-quantum OAEP transformation

We present here the post-quantum OAEP generic transformation we used in
Sect. 3.5.

Let
f : {0, 1}λ+k1 × {0, 1}k0 → {0, 1}nc

be an invertible injective function. The function f is the public key of the scheme,
its inverse f−1 is the secret key. The scheme makes use of three hash functions

G : {0, 1}k0 → {0, 1}k−k0 ,

H : {0, 1}k−k0 → {0, 1}k0 ,

H ′ : {0, 1}k → {0, 1}k,

modelled as random oracles, where k = λ+ k0 + k1. Given those, the encryption
scheme is defined as follows:

– Enc: given a message m ∈ {0, 1}λ, choose r
$← {0, 1}k0 and set

s = m||0k1 ⊕ G(r), t = r ⊕ H(s),
c = f(s, t), d = H ′(s||t),

and output the ciphertext (c, d).
– Dec: given a ciphertext (c, d), use the secret key to compute (s, t) = f−1(c).

If d �= H ′(s||t) output ⊥. Otherwise, compute r = t⊕H(s) and m = s⊕G(r).
If the last k1 bits of m are 0, output the first n bits of m, otherwise output ⊥.
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Séta: Supersingular Encryption from Torsion Attacks 277

5. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 25

6. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

7. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3
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