
Lattice-Based Group Encryption with Full
Dynamicity and Message Filtering Policy

Jing Pan1,2, Xiaofeng Chen1,2(B), Fangguo Zhang3,4, and Willy Susilo5

1 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an 710071, China

jinglap@aliyun.com, xfchen@xidian.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou 510006, China
isszhfg@mail.sysu.edu.cn

4 Guangdong Province Key Laboratory of Information Security Technology,
Guangzhou 510006, China

5 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, NSW 2522, Australia

wsusilo@uow.edu.au

Abstract. Group encryption (GE) is a fundamental privacy-preserving
primitive analog of group signatures, which allows users to decrypt spe-
cific ciphertexts while hiding themselves within a crowd. Since its first
birth, numerous constructions have been proposed, among which the
schemes separately constructed by Libert et al. (Asiacrypt 2016) over
lattices and by Nguyen et al. (PKC 2021) over coding theory are post-
quantum secure. Though the last scheme, at the first time, achieved the
full dynamicity (allowing group users to join or leave the group in their
ease) and message filtering policy, which greatly improved the state-of-
affairs of GE systems, its practical applications are still limited due to the
rather complicated design, inefficiency and the weaker security (secure in
the random oracle model). In return, the Libert et al.’s scheme possesses
a solid security (secure in the standard model), but it lacks the previous
functions and still suffers from inefficiency because of extremely using
lattice trapdoors. In this work, we re-formalize the model and security
definitions of fully dynamic group encryption (FDGE) that are essentially
equivalent to but more succinct than Nguyen et al.’s; Then, we provide
a generic and efficient zero-knowledge proof method for proving that a
binary vector is non-zero over lattices, on which a proof for the Pro-
hibitive message filtering policy in the lattice setting is first achieved (yet
in a simple manner); Finally, by combining appropriate cryptographic
materials and our presented zero-knowledge proofs, we achieve the first
lattice-based FDGE scheme in a simpler manner, which needs no any lat-
tice trapdoor and is proved secure in the standard model (assuming inter-
action during the proof phase), outweighing the existing post-quantum
secure GE systems in terms of functions, efficiency and security.

Keywords: Lattice cryptography · Group encryption · Full
dynamicity · Message filtering · Zero-knowledge

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 156–186, 2021.
https://doi.org/10.1007/978-3-030-92068-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_6

Lattice-Based Group Encryption with Full Dynamicity 157

1 Introduction

Group encryption (GE), introduced by Kiayias, Tsiounis and Yung (KTY) [21] as
the natural encryption analog of group signature (GS) that was first conceptual-
ized by Chaum and van Heyst [16], is a fundamental anonymity primitive that
allows anonymizing valid decryptors within a population of certified users. Since
the pioneering work [21], GE has found a wide range of applications (see, e.g.,
[21,25,35]) in filtering malformed encrypted emails, building oblivious retriever
storage systems, trusted third parties as well as hierarchical group signatures
[42]. Because of the duality, these two primitives share some common design ideas
in offering user memberships and generating anonymous signatures/ciphertexts.

In the design of these two anonymity primitives, to build a group of certified
users is a key component. In general, there are three types of groups optional forGS:
The simplest choice is the static group [6], in which the group population is fixed at
the setup phase and the public/private key pairs of group members are assigned by
the group manager (GM) as memberships; The partially dynamic group [7,22,40]
is then introduced to support dynamic and concurrent user enrollments but deny
membership revocation. In such a group, a prospective user generates a key pair
on his own, and then becomes a valid group member only when his application
for joining the group is accepted by the GM, who computes a signature on user’s
public key and returns it back as the membership. Despite an essential function-
ality, support for membership revocation is quite challenging to realize in an effi-
cient manner, since it requires that the signing algorithm is disabled for revoked
users and no significant increase for workloads of other parties (i.e., managers, non-
revoked users and verifiers) is seen. To address this problem, several approaches
[8,11,12,36] have been suggested, resulting into the fully dynamic groups [9], where
membership revocation is additionally allowed.

Unlike the context of group signature, theGE always uses the partially dynamic
group in its design since its first formalization [21] for security reasons. This type
of group allows prospective users dynamically and concurrently to join the group,
but any valid application for revoking membership is rejected, which is quite unsat-
isfactory in the realistic world. In fact, group signatures with full dynamicity have
attracted much attention and have been constructed both on pairing assump-
tions [28,33] and lattice assumptions [31]. To change this situation, in PKC 2021,
Nguyen et al. [35] first considered the full dynamicity in the context of group
encryption and proposed a code-based instantiation secure in the random ora-
cle model. In their design, they also first considered the message filtering policies
which are quite useful for practical applications of GE systems. However, their for-
malization of FDGE is adapted directly from that of fully dynamic group signature
[9] and hard to understand. Moreover, the construction is rather complicated and
inefficient even in the random oracle model. Therefore, it is encouraging to design
a group encryption that captures the full dynamicity, message filtering policy and
a solid security in a relatively simple manner.

Our Contributions. Motivated by the above discussion, we reconsider the
full dynamicity in the context of group encryption, and propose a lattice-based

158 J. Pan et al.

instantiation in a simpler manner that shares the same functions as the existing
FDGE scheme [35] and meanwhile outweighs all available post-quantum secure
schemes [25,35] in terms of functions, efficiency and security. Our contributions
are summarized as follows:

– By introducing appropriate ingredients into the KTY model that supports
dynamic user enrollments but denies membership revocations, we re-formalize
the model and security requirements of FDGE that are essentially equal to
but more succinct and understandable than the currently existing model.

– We provide a generic and efficient zero-knowledge proof method for demon-
strating that some binary vector is non-zero over lattices, on which we first
achieve a lattice-based proof (also generic and efficient) for Prohibitive mes-
sage filtering policy. Both proofs will serve for our subsequent construction.

– By making use of appropriate cryptographic materials and the presented zero-
knowledge proofs, we achieve the first lattice-based group encryption secure
in the standard model and with full dynamicity in a free-of-trapdoor manner,
which meets our formalized model and outweighs all existing post-quantum
secure GE schemes in terms of functions and efficiency.

Related Work. The privacy-preserving cryptography has been an extremely
active research area in the last decades. As one of the fundamental anonymity
primitives, group encryption thus has attracted noticeable attention in recent
years. The relevant concepts and definitions were first introduced by Kiayias,
Tsiounis and Yung [21], who also then put forth a modular design consisting
of zero-knowledge proofs, digital signatures (e.g., [13]) and anonymous CCA2-
secure public-key encryptions (e.g., [37]). Later, Cathalo et al. [15] designed a
non-interactive scheme in the standard model for the goal of optimizing the
number of rounds. Similarly, over weaker assumptions, Aimani et al. [1] pro-
posed more practical schemes by utilizing succinct approaches to protect the
identity of group members. For sake of balancing better privacy vs. safety, Lib-
ert et al. [29] supposed a variant with public traceability to specific ciphertexts,
which was inspired from traceable signatures [20]. Further, to strengthen secrecy,
Izabachène et al. [19] constructed traceable variants that are free of subliminal
channels, stressing confidentiality, anonymity and traceability. However, all these
instantiations are proposed over number-theoretic assumptions and are vulnera-
ble under quantum attacks. This situation has been unchanged until Libert et al.
[25] proposed the currently only existing lattice-based scheme recently.

What should be noted out is that, all the group encryptions discussed above
only offer partial dynamicity that allows concurrent user enrollments but denies
membership revocations, which is quite unsatisfactory in the most realistic appli-
cations. To end this situation, more currently, Nguyen et al. [35] proposed a
fully dynamic group encryption scheme secure in the random oracle from coding
theory, where they also achieved the message filtering policies. However, their
model is directly adapted from that of fully dynamic group signature [9] and
is tedious. Moreover, the proposed scheme is rather complicated and inefficient
together with provable security in the random oracle model. This motivates us

Lattice-Based Group Encryption with Full Dynamicity 159

to construct a fully dynamic group encryption, in a simple manner, that share
practical functions similar to the scheme [35] while obtaining high efficiency and
solid security (against quantum attacks).

Organization. In the forthcoming sections, we briefly recall the needed lattice
techniques and cryptographic blocks in Sect. 2. The formalized model of FDGE
is given in Sect. 3. Section 4 describes our new techniques used for demonstrat-
ing inequalities of binary vectors and the underlying zero-knowledge argument
system. In Sect. 5, we describe our scheme that captures all desired properties,
of which analysis is given. Finally, Sect. 6 concludes our work.

2 Preliminaries

Notations. For any positive integers n ≥ k, we denote the set {1, ..., n} by
[n], the set {k, ..., n} by [k, n]. All vectors are written as bold lower-case letters
in the column form, and matrices as bold upper-case letters. For b ∈ R

n and
B ∈ R

n×m with columns (bi)i, their Euclidean l2 norms are respectively written
as ‖b‖ and ‖B‖ = maxi≤m‖bi‖. If a given set S is finite, we let U(S) to denote
the uniform distribution over it and use x ←↩ D to represent the sampling action
according to the distribution D. For two same-size binary vectors x and y, we use
dH(x,y) to denote their Hamming distance, which is equal to l1 norm ‖x⊕y‖1.

2.1 Lattices and Computational Problems

As in [14,18], we use the notations L to denote lattices defined by Λ⊥
q (A) := {e ∈

Z
m| A · e = 0n mod q} or Λu

q (A) := {e ∈ Z
m| A · e = u mod q} w.l.o.g., where

A ∈ Z
n×m
q . Accordingly, use the notation DL,σ,c to denote the discrete Gaussian

distributions of the support L, center c ∈ R
m and parameter σ > 0, which is

defined by DL,σ,c(x) = ρσ,c(x)
ρσ,c(L) for each x ∈ L where ρσ,c(x) = exp(−π‖x −

c‖2/σ2) is the Gaussian function over R
m. When c = 0, we also write the

Gaussian distributions as DL,σ for short. The following fact ensures that the
outputs of the discrete Gaussian distribution are always short.

Lemma 1. ([3]) Given any L ⊆ R
n and σ > 0, Prb←↩DL,σ

[‖b‖ ≤ √
nσ] ≥

1 − 2−Ω(n).

For appropriate parameters, the syndrome u = A · e with A ∈ Z
n×m
q and

e ∈ Z
m
q is nearly uniform over Z

n
q .

Lemma 2. ([18]) Given positive integers n, q with q prime, let m ≥ 2n log q and
s ≥ ω(

√
log m). Then for any A ←↩ U(Zn×m

q), the distribution of the syndrome
u = A ·e mod q is within negligible distance to the uniform distribution over Z

n
q ,

where e ←↩ DZm,s.

The computational lattice problems and associated hardness claims used in
this work are stated as follows.

160 J. Pan et al.

Definition 1 (SIS). Given appropriate positive integers n,m, q, β, the
SISn,m,q,β problem is defined as: for any A←↩ U(Zn×m

q), search a non-zero vector
x ∈ Z

m such that A · x = 0 and ‖x‖ ≤ β.

By choosing appropriate parameters, the standard worst-case lattice problem
SIVPγ can be reduced to the average-case SISn,m,q,β problem. Such an example is
followed by setting m,β = poly(n); q ≥ √

nβ and γ = ˜O(
√

nβ) (e.g., [2,18,32]).

Definition 2 (LWE). Given appropriate positive integers n,m, q, and a prob-
ability distribution on Z denoted as χ. For secret s ∈ Z

n
q , define As,χ as the

distribution generated by sampling a ←↩ U(Zn
q) and e ←↩ χ, and returning (a,

aT· s+e) ∈ Z
n
q × Zq. The goal of LWEn,q,χ is to distinguish m samples from

As,χ and m samples from U(Zn
q × Zq), respectively.

For prime power q, one can build a discrete integer distribution χ bounded
by B ≥ √

nω(log n), for which there exists an efficient reduction from the
SIVP

˜O(nq/B) problem to the LWEn,q,χ problem (e.g., [10,38,39]).

2.2 LNWX Lattice-Based Accumulators

The LNWX accumulator [31] is an updatable variant opposed to the static coun-
terpart [26], and we will use it in our construction to achieve dynamic group users
enrollments and membership revocations. The accumulator is built on a family
of hash functions H = {hA|A ∈ Z

n×m
q } with A =

[

A0|A1

]

∈ Z
n×m
q which hash

(u0,u1) ∈ ({0, 1}nk)2 into hA(u0,u1) = bin
(

A0 ·u0 +A1 ·u1 mod q
)

∈ {0, 1}nk.
Its security is ensured by the hardness of the SIS problem.

Informally, as in [4,12,36], the accumulator is defined by the algorithms
(TSetup,TAcc,TWitness,TVerify,TUpdate). Namely, for a Merkle-tree with N =
2	 leaves, algorithm TSetup takes a random A ∈ Z

n×m
q to form a hash function

hA; Algorithm TAcc accumulates all values R = {d0, ...,dN−1} of each length
nk on leaves into the root u via the recursive computations shown as ub1,...,bi

=
hA(ub1,...,bi,0,ub1,...,bi,1) for any node at depth i ∈ [�] and u = hA(u0,u1), where
(b1, ..., bi) ∈ {0, 1}i; Algorithm TWitness returns ⊥ if d /∈ R, otherwise computes
the witness w =

(

(j1, ..., j), (uj1,...,j�−1,j̄�
, ...,uj1,j̄2 ,uj̄1)

)

∈ {0, 1}	 ×
(

{0, 1}nk
)	

demonstrating that d = dj ∈ R for some j ∈ [0, N − 1] with bin(j) = (j1, ..., j),
where b̄ denotes the bit 1 − b for a chosen bit b; Then, given a witness
w =

(

(j1, ..., j), (w	, ...,w1)
)

∈ {0, 1}	 ×
(

{0, 1}nk
)	, and set v	 = d, algo-

rithm TVerify computes the path v	−1, ...,v0 ∈ {0, 1}nk via the recursive for-
mula vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1,vi+1) for any j ∈ [0, N − 1]
and i ∈ [� − 1] with initial setting u = v0; Finally, when a value at position j is
replaced by p, algorithm TUpdate(bin(j),p) efficiently updates the accumulator
by simply updating the hash values of nodes on path from the specific leaf to
the root, then the algorithm TWitness outputs the updated paths and maintains
other values unchanged.

Lattice-Based Group Encryption with Full Dynamicity 161

2.3 GPV Dual Encryption

The GPV encryption presented in [18] features the public-key anonymity and
is efficient because of being free of lattice trapdoors. We now recall a variant
that would be used in our construction. Choose positive integers n and q ≥ 2
and set k = �log q� and m = 2nk. Select a random public matrix A ∈ Z

n×m
q .

Given a Gaussian parameter σ, a Gaussian distribution DZm,σ and an error
distribution χm, one samples a short matrix E from Dm

Zm,σ as the secret key
sk, and computes a corresponding public matrix U = A · E ∈ Z

n×m
q as the

public key pk. To encrypt a message m ∈ {0, 1}m, one samples a random vector
s ←↩ U({0, 1}n) and two random vectors x,y ←↩ χm to compute the ciphertext
c = (c1, c2) as: c1 = A� · s + x, c2 = U� · s + y + m · � q

2. When the decryptor
wants to recover the message m, he uses the preserved key sk = E to compute
�(c2 − E� · c1)/ q

2.

2.4 Zero-Knowledge Argument of Knowledge

A zero-knowledge argument system of knowledge (ZKAoK) is a two-party inter-
active protocol, where a prover P triggers a proof to convince the verifier V that
he knows a witness of the specific statement while not revealing any additional
information. More formally, given an NP relation defined by a set of statements-
witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗, the associated ZKAoK is defined via
an interactive game 〈P,V〉 with completeness δc and soundness error δs as:

• Completeness. For any given (y, w) ∈ R, Pr[〈P(y, w),V(y)〉 �= 1] ≤ δc.
• Soundness. Given any (y, w) /∈ R,∀ PPT ̂P: Pr[〈 ̂P(y, w),V(y)〉 = 1] ≤ δs.

In the lattice setting, the Stern-like argument system [41] is a generic frame-
work with statistical ZK property and soundness 2/3, and has been widely
applied in the constructions of advanced cryptographic schemes [23,25,26,30]. Its
key idea is to use “decomposition-extension-permutation” techniques to trans-
form the targeted NP relations into those suitable for the framework, which in
general increases double to four times communication cost and makes the system
quite inefficient in practice together with soundness 2/3. In this work, we use
a currently presented framework referred as Yang et al.’s argument system [43]
which uses novel techniques to capture the computational ZK property and an
inverse polynomial soundness. Let us recall it below.

The Abstraction of the Argument System. The desired ZKAoK system
provided in Sect. 4 is covered within the following abstraction:

R = {(M,y), (x) : M · x = y ∧ x ∈ cond}, (1)

where M,y are the public matrix and vector, respectively, and the vector x
is the secret witness, additionally cond represents the set of conditions that
x should satisfy, which covers all possible constraints such as short vectors,
quadratic relations. Actually, the set cond is always equally represented by a
set M = {(h, i, j)} consisting of index tuples of x that satisfy the relation
x[h] = x[i] · x[j].

162 J. Pan et al.

3 Model and Security Requirements of Fully Dynamic
Group Encryption

In this section, by introducing a time factor and a group updating algorithm into
the KTY model [21], also taking less oracles than that of [35], we provide the
formalized model and security definitions of the fully dynamic group encryption
(FDGE) primitive, which are appropriately upgraded and modified from the KTY
model [21] that is only suitable for partially dynamic groups.

Like the KTY model [21], the FDGE also involves several parties: a group
manager (GM) that managers a group of users, an opening authority (OA) that
is empowered to revoke the anonymity of recipients should the misbehavior arise,
and a set of prospective users as well as a sender producing well-formed cipher-
texts for certified group members. In the forthcoming model, users join/leave the
group under the permission of GM who can regularly edit and publish authen-
tic group information infoτ at growing epoch τ , thereby anyone can learn the
knowledge about changes of the group including, current/excluded group mem-
bers. Additionally, by comparing two group information infoτ1 and infoτ2 under
the convention that τ1 < τ2 if infoτ1 is published before infoτ2 , one can even
identify revoked users at the recent epoch. The formalized fully dynamic group
encryption is defined via the following tuple of algorithms:

• SETUP(λ): This algorithm consists of three procedures and generates group
public key gpk = (pp, pkGM, pkOA) as follows:

– SETUPinit(1λ): On input the security parameter λ, output public param-
eters pp.

– SETUPGM(pp): Given pp, output the GM’s key pair (pkGM, skGM).
– SETUPOA(pp): Given pp, output a key pair (pkOA, skOA) for the OA.

An interaction occurs between the GM and the OA, successfully creating group
public key gpk at its end, while the GM initializes the group information info
and the registration table reg.

• UKGEN(pp): On input pp, this algorithm produces a user key pair (pkU, skU).
• 〈JOIN(skU), ISSUE(skGM)〉(infoτ , gpk, pkU): This is an interaction run by the

GM and a prospective user at epoch τ , whose successful completion enrolls
a new group member with an identifier uid and makes the algorithm JOIN
and algorithm ISSUE store group member secret key sk[uid] and public key
certificate certpkU in the table reg with same index, respectively.

• GUPDATE(gpk, skGM, infoτcurrent ,S, reg): Given gpk, skGM, infoτcurrent , table
reg, a set S of active users to be removed, GM runs this algorithm to gen-
erate new group information infoτcurrent+1 and update the table reg, while
advancing the epoch and outputting ⊥ if there is no change to the group.

• 〈Gr,R, sampleR〉(pp): Given pp, procedure sampleR samples a statement-
witness pair (x,w) ∈ R by using the key pair (pkR, skR) itself produced
by procedure Gr, where skR may be empty in the most of real realizations.

Lattice-Based Group Encryption with Full Dynamicity 163

• ENC(gpk, pkU, certU, infoτ , x, w, L): This algorithm is executed by sender to
compute a group encryption Ψ on witness w with a label L under some public
key pkU. It returns ⊥ if the target group user is inactive at epoch τ .

• DEC(skU, Ψ, L): The target receiver decrypts the ciphertext Ψ via this algo-
rithm.

• OPEN(skOA, infoτ , reg, Ψ, L): This algorithm is run by OA to return an iden-
tity uid of a group member who has secret information to decrypt the cipher-
text together with a proof π attributing Ψ to user uid or to return (⊥, π) if it
fails to trace the receiver.

• 〈P(pkU, certU, w, coinsΨ),V(πΨ)〉(gpk, infoτ , x, Ψ, L): This is an interactive
procedure run between sender and verifier which, given inputs, convinces
verifier that the ciphertext Ψ is well-formed and is actually generated for one
of active group members at epoch τ .
For security requirements, as in [21], the FDGE scheme considers correctness,
message secrecy, anonymity and soundness, whose definitions are given via
corresponding experiments below, respectively.

Correctness asks that a ciphertext generated by a genuine sender is always
decrypted successfully by algorithm DEC, and that procedure OPEN can always
identify the receiver, as well as produces a proof that can be accepted by verifier.

Definition 3. The correctness is satisfied if the following experiment returns 1
with negligible probability.

Experiment Expcorr(λ)

pp ← SETUPinit(1λ); (pkR, skR) ← GR(1λ); (x,w) ← sampleR(pkR, skR);
(pkGM, skGM) ← SETUPGM(pp); (pkOA, skOA) ← SETUPOA(pp);
〈pk, sk, certpk|uid, pk, certpk, infoτ 〉 ← 〈Juser, JGM(skGM)〉(pkGM, infoτ);
if IsActive(infoτ , reg, uid) = 0, return 0.
Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w,L);
πΨ ← P(pkGM, pkOA, pk, certpk, infoτ , x, w, Ψ, L, coinsΨ).
if

(

(w �= DEC(sk, Ψ,L))∨(pk �= OPEN(skOA, infoτ , reg, Ψ, L))
∨(V(pkGM, pkOA, infoτ , x, Ψ, L, πΨ)=0)

)

then return 0 else return 1.

Message Secrecy demands that it is difficult for any PPT adversary to dis-
tinguish a ciphertext generated by a random plaintext from a one done by a
specific relation pair, even if the adversary can corrupt all parties except the
honest receiver via accessing to the following stateful and stateless oracles:

– DEC(sk,·): is a stateless decryption oracle with a restriction not to decrypt a
ciphertext-label pair (Ψ,L) termed as DEC¬〈Ψ,L〉.

– CHb
ror(λ, pk, τ, w, L): is a one-time oracle used for generating real-or-random

challenge ciphertexts according to the choice of coin b at epoch τ . It returns
(Ψ, coinsΨ) with Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w, L) if b = 1. Oth-
erwise, return (Ψ, coinsΨ) with Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w′, L)
where w′ is a uniformly random plaintext of length O(λ) sampled in the
plaintext space, and coinsΨ represents the random coins used to compute Ψ .

164 J. Pan et al.

– PROVEb
P,P′(pkGM, pkOA, pk, certpk, infoτ , x, w, Ψ, L, coinsΨ): is a stateful oracle

that generates an actual proof πΨ or a simulated proof π′
Ψ for epoch τ by

running the real prover P when b = 1 and running the simulator P ′ else wise.
It can be invoked a polynomial number times.

The usage of these oracles describes a experiment where the whole system is
under the control of adversary except the member chosen as recipient. It shows
the advantage of the adversary in mounting the attack against message secrecy.

Definition 4. The message secrecy is achieved if, for any PPT adversary, the
absolute difference of probability of outputting 1 between the following experi-
ments Expsec−1

A (λ) and Expsec−0
A (λ) is negligible.

Experiment Expsec−b
A (λ)

pp ← SETUPinit(1λ); (aux, pkGM, pkOA) ← A(pp);
〈pk, sk, certpk|infoτ , aux〉 ← 〈Juser,A(aux)〉(pkGM, infoτ);
(aux, x, w, L, pkR) ← ADEC(sk,·)(aux); if (x,w) /∈ R then return 0;
b ←↩ {0, 1}; (Ψ, coinsΨ) ← CHb

ror(λ, pk, τ, w, L);
b′ ← APROVEb

P,P′ (pkGM,pkOA,pk,certpk,infoτ ,x,w,Ψ,L,coinsΨ),DEC¬〈Ψ,L〉(sk,·)(aux, Ψ);
Return b′.

Anonymity requires that it is infeasible for any PPT adversary to distinguish
ciphertexts computed under two valid public keys of its choice, even if it controls
the entire system except the OA and two well-behaved users via accessing the
following oracles:

– CHb
anon(pkGM, pkOA, pk0, pk1, infoτ , w, L): is a challenge oracle that returns

a pair (Ψ, coinsΨ) consisting of a ciphertext Ψ ← ENC(pkGM, pkOA, pkb,
certpkb

, infoτ , w, L) and the coin tosses coinsΨ used for generating Ψ when
a plaintext w and two possible public keys pk0, pk1 are given.

– USER(pkGM, τ): is a stateful oracle that simulates two instantiations of Juser
via valid certificates {certpkb

}1b=0 supplied by adversarial GM in string keys at
epoch τ , where honest outputs termed as {(pkb, skb, certpkb

)}1b=0 are stored.
– OPEN(skOA, infoτ , reg, ·): is a stateless oracle that executes opening operation

on behalf of OA for the received ciphertext and reveals the identity of the
receiver.

These above oracles can be used in a experiment that models the anonymity
property, which reveals the advantage of adversary in this attack game.

Definition 5. The FDGE scheme satisfies anonymity if, for any PPT adver-
sary, the absolute difference of probability of outputting 1 between the following
experiments Expanon−1

A (λ) and Expanon−0
A (λ) is negligible.

Experiment Expanon−b
A (λ)

pp ← SETUPinit(1λ); (pkOA, skOA) ← SETUPOA(pp);
(aux, pkGM) ← A(pp, pkOA); aux ← AUSER(pkGM,τ),OPEN(skOA,infoτ ,reg,·)(aux);

Lattice-Based Group Encryption with Full Dynamicity 165

if keys �= (pk0, sk0, certpk0 , pk1, sk1, certpk1 , infoτ) (aux) then return 0;
(aux, x, w, L, pkR) ← AOPEN(skOA,infoτ ,τ,·),DEC(sk0,·),DEC(sk1,·)(aux);
if (x,w) /∈ R return 0; b ←↩ {0, 1}; (Ψ, coinsΨ) ← CHb

anon(pkGM, pkOA, pk0, pk1,
infoτ , w, L);
b′ ← AP(pkGM,pkOA,pkb,certpkb ,infoτ ,x,w,Ψ,L,coinsΨ),OPEN¬〈Ψ,L〉(skOA,infoτ ,reg,·),

DEC¬〈Ψ,L〉(sk0,·),DEC¬〈Ψ,L〉(sk1,·)(aux, Ψ). Return b′.

Soundness requires that it is infeasible for any PPT adversary to produce a
convincing valid ciphertext that opens to unregistered group member or invalid
public key, even if it can choose OA’s key, and is given access to the REG oracle.
In the following, database,PK and C are respectively used to represent the sets
of registered public keys, valid keys and valid ciphertexts.

Definition 6. An FDGE scheme is sound if, for any PPT adversary, the exper-
iment below returns 1 with negligible probability. Experiment Expsound

A (λ)

pp ← SETUPinit(1λ); (pkOA, skOA) ← SETUPOA(pp);
(pkGM, skGM) ← SETUPGM(pp);
(pkR, x, Ψ, πΨ , pkGM, aux, infoτ) ← AREG(skGM,·)(pp, pkGM, pkOA, skOA, infoτ);
if V(Ψ,L, πΨ , pkGM, pkOA, infoτ) = 0 return 0;
pk ← OPEN(skOA, infoτ , reg, Ψ, L); if

(

(pk /∈ database) ∨ (pk /∈ PK) ∨
(Ψ /∈ Cx,L,pkR,pkGM,pkOA,pk)

)

then return 1 else return 0.

To meet the above security requirement that pk must belong to the language
of valid public keys, we use the Gaussian short vectors as shown in Sect. 5.1 to
generate dense space for public keys, which simplifies our definitions.

4 The Underlying Zero-Knowledge Layer

In this section, we first introduce the needed decomposition techniques in
Sect. 4.1. Then, we provide two generic and efficient zero-knowledge proofs for
inequality relations of binary vectors (one is for non-zero binary vectors, and
the other is for Hamming distance) that can work well in any lattice-based ZK
framework and serve for our argument system. Finally, based on the techniques
prepared in previous sections, we establish the argument system in Sect. 4.3
in the Yang et al.’s framework [43] recalled in Sect. 2.4. The argument system
obtains great efficiency gains compared to that run in the Stern-type framework
[41] since our system avoids using the “decomposition-extension-permutation”
techniques (which at least increases the witness size double to four times) and
also avoids repeating the protocol hundreds times (which incurs a drastic increase
in communication cost) towards a negligible soundness as in [41].

4.1 Warm-Up: Decompositions

We briefly recall several decomposition techniques from [24,30] that would be
used in constructing our argument system. We start with the integer decompo-
sition function, i.e., for any non-negative integer i, let δi = �log(i + 1), define

166 J. Pan et al.

bin(i) = (i(1), ..., i(δi))� ∈ {0, 1}δi and gδi
= (1, 2, ..., 2δi−1), then it follows that

i =
∑δi

j=1 2j−1 · i(j) = gδi
· bin(i).

To decompose any integer i ∈ [0, β] for a positive integer β, set
δβ : = �log2(β + 1) and compute an integer sequence {β1, ..., βδβ

} via βj =

�β+2j−1

2j �,∀j ∈ [1, δβ]. Then, we have i =
∑δβ

j=1 βj · i(j) = g′
δβ

· bin′(β), where
g′

δβ
= (β1, ..., βδβ

) and bin′
β(i) = (i(1), ..., i(δβ)) ∈ {0, 1}δβ which is a binary

tuple computed in an interactive manner. This defines an integer decomposition
function as idecβ(i) = (i(1), ..., i(δβ))� ∈ {0, 1}δβ for any integer i ∈ [0, β]. Com-
bining with Hm,β = Im ⊗ g′

δβ
, we can similarly define decomposition functions

for vectors and matrices (see, [25,26]):

• vdecm,β : [0, β]m → {0, 1}mδβ maps any β-bounded non-negative vector v =
(v1, ..., vm)� to (idecβ(v1)

�‖ ... ‖idecβ(vm)�)� by applying idecβ(·) to each
entry of v, which holds that Hm,β · vdecm,β(v) = v.

• mdecn,m,q : Zm×n
q → {0, 1}nmδq−1 maps a matrix X= [x1| ... |xn] ∈ Z

m×n
q

to the size-nmδq−1 binary vector (vedcm,q−1(x1)
�‖ ... ‖vedcm,q−1(xn)�)

�

by imposing vdecm,q−1(·) on the each column of X and concatenating the
obtained binary vectors in the increasing order of the indexes of columns.

We note that, hereunder this section, when needing to decompose a bounded-
β vector v ∈ [−β, β]m, we will first lift it to v + β ∈ [0, 2β]m, then perform
vdecm,2β(·) on the transformed vector where β = (β, ..., β) consists of m’s β,
with taking appropriate modifications for the involved matrices and vectors. This
transformation-and-decomposition strategy will be quite useful for the construc-
tion of our ZK argument system.

4.2 Proving Inequality Relations for Binary Vectors

In this section, we first provide a ZK proof for demonstrating a binary vector p
is non-zero (used to demonstrate a group user is activated) that can efficiently
work well in any lattice-based ZK framework, on which we construct a ZK proof
for the Prohibitive message filtering policy (used to demonstrate the validity of
the encrypted witness) which is achieved over lattices at the first time and is
generic and efficient. Startlingly, our proof methods can be extended to prove
inequalities of general vectors, thus it is independent of interest.

Proving Binary Vectors p �= 0. Let n, q be positive integers with n < q and
p ∈ {0, 1}n, our aim is to prove the secret p �= 0 in the Yang et al.’s framework
[43]. Actually, this problem has been solved in the Stern-like framework [31]
in spite of inefficiency and worse usability (i.e., it can not work in the Yang
et al.’s framework [43]), where the system was established by appending n − 1
“dummy” entries to extend the targeted vector p ∈ {0, 1}n to p′ ∈ {0, 1}2n−1

of Hamming weight n exactly and running the Stern-like protocol. To handle
the task in the Yang et al.’s framework [43], one may find a possible solution
in [27] where numerous lattice-based range arguments were developed to prove

Lattice-Based Group Encryption with Full Dynamicity 167

private integer relations such as X ∈ [α, β] for public integers α, β ≥ 0. But the
techniques used there are invalid in proving that one knows at least a private
Xj among a given set {X1, ...,Xn} each of which is bounded by [αi, βi] with
i ∈ [n] satisfies that αj < Xj ≤ βj , which essentially generalizes our problem
when setting p = (X1, ...,Xn)� and αi = 0 and βi = 1 for all i ∈ [n]. We now
develop new techniques to address this problem.

An important observation is that, the task to prove p �= 0 is equivalent to
that proving that there is at least an entry of p is > 0. To end this, intuitively,
it suffices to prove the p’s Hamming weight is ≥ 1. In the following, we provide
two efficient solutions, where the first is somewhat tedious, and then second is
succinct and will be applied in the construction of our argument system.

Let Jn = (1, ..., 1)� ∈ Z
n
q of which all entries are 1’s. Suppose that the

Hamming weight of binary vector p is ≥ 1, then we can establish our argument
system by proving that one knows a complementary binary vector q ∈ {0, 1}n

with Hamming weight ≤ n − 1 such that p + q = Jn mod q. The inequality can
be solved by decomposing J�

n · q via the vector g′
δβ

with setting β = n − 1 as
in Sect. 4.1. Then, it suffices for a prover to prove that he knows private vectors
p,q ∈ {0, 1}n and q′ ∈ {0, 1}δn−1 such that the following conditions hold:

{

p + q = Jn mod q,

J�
n · q = g′

δn−1
· q′ mod q.

(2)

Note that the above solution not only works well in the Yang et al.’s frame-
work [43] but does well in the Stern-like framework [31], and is more efficient
when used in the previous framework. In fact, to further achieve efficiency gains,
we can directly go to prove the Hamming weight of p is ≥ 1, i.e., go to prove
J�

n · p ≥ 1. Interestingly, we observe that the proof for this relation can be
reduced to that one knows a secret non-negative integer b ≤ n − 1 such that
J�

n ·p = 1+b. Combining with the decomposition techniques defined in Sect. 4.1,
we equally write the relation as (assuming a private vector q ∈ {0, 1}δn−1)

J�
n · p − g′

δn−1
· q = 1 mod q. (3)

The last above solution is more efficient since it saves 50% size compared to
the previous one, and both present solutions are generic and more efficient when
working in [43] than that of [31]. Besides, our solutions can be readily extended
to prove that one knows a private x having l∞ or l2 norm bounded by [α, β]
with integers α, β ≥ 0.

Proving Bounded Hamming Distance. In general, there two commonly
used message filtering policies termed as “Permisive” and “Prohibitive”. Our task
is to establish the argument system for the latter, and that for previous is trivial
and is omitted in this work. Given positive integers m ≥ t ≥ d, and binary
vectors m ∈ {0, 1}m and yi ∈ {0, 1}t with i ∈ [m − t + 1], we use yi � m to
mean that yi is a substring of m, i.e., there exist strings xi, zi ∈ {0, 1}≤m−t

168 J. Pan et al.

such that [x�
i |y�

i |z�
i]� = m. Actually, the relation yi � m is equivalent to the

equality Bi · m = yi where Bi ∈ Z
t×m
q is a public matrix of the form [0|It|0].

Now we define the message filtering policy “Prohibitive” used in this work:

Rprohi = {((si)e
i=1,m) ∈ ({0, 1}t)e × {0, 1}m : dH(si,y) ≥ d,∀i ∈ [e],∀y � m)}.

To build an argument system for the relation Rprohi, we begin with building a
system for the simple relation dH(x,y) ≥ d with x,y ∈ {0, 1}n being public
and secret. In the context of lattices, the proof is needed to be proceeded in
mod q (involved with the dimension n for security, e.g., q ≥ √

n) instead of
mod 2, which is always an open problem. Now we use a novel idea to address
it. For any x, y ∈ {0, 1}, we observe that x ⊕ y = x + y − 2x · y, which follows
that x ⊕ y = x + y − 2(x1 · y1, ..., xn · yn)� for binary vectors x = (x1, ..., xn)�

and y = (y1, ..., yn)�. Then, the task to prove dH(x,y) ≥ d can be reduced to
proving ‖x+y−2(x1 ·y1, ..., xn ·yn)�‖1 ≥ d. By extending the proof method just
developed above, in the setting of mod q, our task is reduced to proving that we
hold a secret vector z ∈ {0, 1}δn−d such that the following equation holds:

J�
n · (x + y − 2(x1 · y1, ..., xn · yn)�) − g′

δn−d
· z = d mod q.

Based on the above result, for each i ∈ [e], j ∈ [m − t + 1], let si =
(si,1, ..., si,t)�, yj = Bj · m with yj = (yj,1, ..., yj,t) and B�

j,1, ...,B
�
j,t be the

row vectors of Bj (which essentially ensures that yj,k = B�
j,k · m). Then, the

task to prove the relation Rprohi is equal to proving that one knows secret vec-
tors zi,j ∈ {0, 1}δm−d such that (∀i ∈ [e], j ∈ [m − t + 1]):

J�
n · (si + Bj · m − 2(si,1 · B�

j,1, ..., si,t · B�
j,t)

� · m) − g′
δm−d

· zi,j = d mod q. (4)

Then, let Bi,j = J�
n · (Bj − 2(si,1 · B�

j,1, ..., si,t · B�
j,t)

�) ∈ Z
1×m
q and

di,j = d + J�
n · si ∈ Zq, which is followed by B[i] = [B�

i,1, ...,B
�
i,m−t+1]

� ∈
Z
(m−t+1)×m
q and B = [B�

[1], ...,B
�
[e]]

� ∈ Z
(m−t+1)e×m
q . Accordingly, build z[i] =

[z�
i,1, ..., z

�
i,m−t+1]

� ∈ Z
(m−t+1)δm−d
q , z = [z�

[1], ..., z
�
[e]]

� ∈ Z
(m−t+1)eδm−d
q , and

d[i] = [di,1, ..., di,m−t+1]� ∈ Z
m−t+1
q and d = [d�

[1], ...,d
�
[e]]

� ∈ Z
(m−t+1)e
q . Com-

bining with the definition Ig′ = I(m−t+1)e ⊗ g′
δm−d

, the relation Rprohi is equally
written as:

[B, Ig′] ·
(

m
z

)

= d mod q. (5)

Run the above result in the Yang et al.’s framework [43], then the argument
for bounded Hamming distance is established. It is seen that the above proof
method is also generic and efficient.

4.3 The Underlying ZKAoK

We now state our argument system under the abstract framework provided in [43]
as recalled in Sect. 2.4 for a wide of lattice relations to fulfill our intricate task.

Lattice-Based Group Encryption with Full Dynamicity 169

Given the same settings of parameters as in Sect. 5.1, let bin(j) = (j1, ..., j) ∈
{0, 1}	, j = bin(j)�, A = [A1|A2] and aj,i = mdecn,m,q(U�

j,i) for each i ∈ {1, 2}.

As in [26,31], take the operator ext(·, ·) to express ext(b,v) =
(

b̄ · v
b · v

)

. Our

protocol can be summarized as follows:

Public Input: Matrices A, G, F, B, Arec, Aoa, Uoa,1, Uoa,2, I′
g, and vectors

uτ , Jnk, g′
δnk−1

, {c(1)rec,i, c
(2)
rec,i, c

(1)
oa,i, c

(2)
oa,i}i∈{1,2},d.

Prover’s Goal: Prove possession of the secret inputs in the following system
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j = (j1, ..., j)�,
(

pj , (w
(j)
	 , ...,w(j)

1)
)

∈ ({0, 1}nk)	+1 with pj �= 0,

qj ∈ {0, 1}δnk−1 ,aj,1,aj,2 ∈ {0, 1}nmk,

m ∈ {0, 1}m, z ∈ {0, 1}(m−t+1)eδm−d ,

i = 1, 2 : srec,i, soa,i ∈ {0, 1}n,

xrec,i,yrec,i,xoa,i ∈ [−B,B]m,yoa,i ∈ [−B,B]	

(6)

such that the following system of modular linear equations holds:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

G · uτ = A · ext(j1,v(j)
1) + A · ext(j̄1,w(j)

1) mod q,v(j)
	 = pj ,

i ∈ [1, � − 1] :
0 = A · ext(ji+1,v

(j)
i+1) + A · ext(j̄i+1,w

(j)
i+1) + (−G) · v(j)

i mod q,

1 = J�
nk · pj + (−g′

δnk−1
) · qj mod q,

0 = G · pj + (−F) · (a�
j,1||a�

j,2)
� mod q,

r = {1, 2} : c(1)rec,r = A�
rec · srec,r + xrec,r mod q,

c(2)rec,r = U�
j,r · srec,r + yrec,r + m · � q

2 mod q,

d = [B, I′
g] · [m�, z�]� mod q,

c(1)oa,r = A�
oa · soa,r + xoa,r mod q,

c(2)oa,r = U�
oa,r · soa,r + yoa,r + j · � q

2 mod q,

(7)

To proceed the proof, we first build two argument systems Π1 suitable for
accumulator values problem and plain encryption, and Π2 suitable for encryption
with hidden matrices, respectively, then establish the final system ΠGE which
covers all the above involved relations. The concrete steps are made as follows:

Build System Π1. This system covers (� + 6) equations consisting of the first
(� + 2) and the last four ones from the above equation system (7). Our task is
to construct a ZKAoK system for the following relation:

R1 = {(M1,y1), (x1) : M1 · x1 = y1 ∧ x1 ∈ cond1}. (8)

In the above, the matrix M1 consists of the involved public matrices and
vectors {A,G,Jnk,g′

δnk−1
,F,Aoa,Uoa,1,Uoa,2} by an appropriate arrangement,

and vectors x1 and y1 are similarly made by private inputs {j, {vi}i, {wi}i,

pj ,qj ,q′
j , {soa,i}i, {xoa,i}i, {yoa,i}i} and public vectors {G · uτ ,Jnk, {c(1)oa,i,

170 J. Pan et al.

c(2)oa,i}i}, and the cond1 is the set of conditions that the private inputs should meet
given in system (6). We now describe the constructions of desired variables.

We achieve our goal by a sequence of steps. Let b1,b2 be constant vectors,
respectively, of the form b1 = (B, ..., B)� ∈ Z

m
q and b2 = (B, ..., B)� ∈ Z

	
q.

Then, conduct the following.

1. Transform the inputs bounded by some positive integer to ones with non-
negative entries. Concretely, for each i ∈ {1, 2}, set x′

oa,i = xoa,i + b1 ∈
[0, 2B]m, and y′

oa,i = yoa,i + b2 ∈ [0, 2B]	.
2. Decompose the above newly transformed vectors x′

oa,i,y
′
oa,i. For each i ∈

{1, 2}, apply the operator vdec(·) defined in Sect. 4.1 to the above targeted
vectors to produce binary vectors x′′

oa,i,y
′′
oa,i of size mδ2B and �δ2B , respec-

tively, such that x′
oa,i = Hm,2B · x′′

oa,i and y′
oa,i = H	,2B · y′′

oa,i.

3. Modify the involved public vectors accordingly. For each i ∈ {1, 2}, set c(1)
′

oa,i =

c(1)oa,i + b1 and c(2)
′

oa,i = c(2)oa,i + b2.
4. Rewrite the first � equations. For each i ∈ [1, �], by A = [A1|A2] and the

operator ext(·, ·), we have A · ext(ji,v
(j)
i)+A · ext(j̄i,w

(j)
i) = A1 ·vi + (A2 −

A1) ·jivi +A2 ·wi +(A1−A2) ·jiwi. Let A(1,2) = [A1|A2−A1|A2|A1−A2],
A[1,2] = [−G|03|A1|A2 − A1|A2|A1 − A2] (where 03 means a block of form

[0|0|0] ∈ (Zn×m
q)3) and u′ = [(G·uτ)�|0�]�, set a matrix A[1,] =

⎛

⎜

⎝

A(1,2)

A[1,2]

. . .

⎞

⎟

⎠

consisting of a A(1,2) and (� − 1)’s A[1,2] such that, for each i ∈ [2, � − 1], the
component −G from the i-th block A[1,2] and the component A1 from the
last block A(1,2) or from the last A[1,2] are in the same column. Accordingly,
for each i ∈ [1, �], we set xi,vi,wi

= [v�
i |(jivi)�|w�

i |(jiwi)�]�, and further
set x	,v,w = [x�

1,v1,w1
| · · · |x�

	,v�,w�
]�, which gives that u′ = A[1,] · x	,v,w.

After the above treatments, the targeted system is equally changed as:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u′ = A[1,] · x	,v,w,

1 = J�
nk · pj + (−g′

δnk−1
) · qj ,

0 = G · pj + (−F) · [a�
j,1|a�

j,2]
� mod q,

i ∈ {1, 2} : c(1)
′

oa,i = Aoa · soa,i + Hm,2B · x′′
oa,i mod q,

c(2)
′

oa,i = U�
oa,i · soa,i + H	,2B · y′′

oa,i + j · � q
2� mod q.

(9)

Basing on the above preparations, we obtain the desired variables as follows:

1. Build the public matrix M1 and the public vector y1. Set A′ :=
A[1,	−1],A′

1 := A2 − A1,A′
2 := A1 − A2, I′

	 := � q
2� · I	, g′ := −g′

δnk−1
,

F′ := −F, G′ := −G and H′
k := Hk,2B with k ∈ {�,m}. Use the matrices in

(9) to construct the desired matrix M1 and vector y1 as (here we abuse nota-
tion and use [A

′�|G′�]� to represent that the matrix G′ and the component
A1 from the last row of A′ are in the same column)

Lattice-Based Group Encryption with Full Dynamicity 171

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A′ 03 0 0 0 0 0 0 0 0 0 0 0 0 0

0 G′ 03 A1 A′
1 A2 A′

2 0 0 0 0 0 0 0 0 0

0 0 03 0 0 0 0 J�
nk g′ 0 0 0 0 0 0 0

0 0 03 0 0 0 0 0 0 Aoa H′
m 0 0 0 0 0

I′
� 0 03 0 0 0 0 0 0 U�

oa,1 0 H′
� 0 0 0 0

0 0 03 0 0 0 0 0 0 0 0 0 Aoa H′
m 0 0

I′
� 0 03 0 0 0 0 0 0 0 0 0 U�

oa,2 0 H′
� 0

0 0 03 G 0 0 0 0 0 0 0 0 0 0 0 F′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′

1

c
(1)′
oa,1

c
(2)′
oa,1

c
(1)′
oa,2

c
(2)′
oa,2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. Build the private input x1. Arrange the modified private inputs shown
in the system (9), establish the desired private vector x1 = (j�,x�

	,v,w,

q�
j , s�

oa,1,x
′′�
oa,1,y

′′�
oa,1, s

�
oa,2,x

′′�
oa,2,y

′′�
oa,2,a

�
j,1,a

�
j,2)

� with size n1, where n1 =
� + 2n + δnk−1 + 2(m + �)δ2B + 4�nk + 2nmk.

3. Build the set of conditions cond1. Let M1 be the set of triple indexes (h, i, l)
of x1 with h, i, l ∈ [n1] such that x1[h] = x1[i] ·x1[l]. The set M1 is equivalent
to the set cond1. We now state the structure of M1:
a. Observe that all entries of x1 are binary, we note that the choices (h, i, l) =

(i, i, i)i∈[n1] are in the set M1.
b. Now consider the corresponding choices of M1 for jivi, jiwi for all i ∈ [�]:

for jivi, the choices consist of (h, i, l) = (� + (4i′ − 3)nk + l′, i′, � + (4i′ −
4)nk + l′)i′∈[],l′∈[nk]. Whereas, for jiwi, the desired indexes are given by
(h, i, l) = (� + (4i′ − 1)nk + l′, i′, � + (4i′ − 2)nk + l′)i′∈[],l′∈[nk].

This constructs the argument system Π1 for the relation R1, and by running the
protocol in Sect. 4.3, the desired argument system is obtained.

Build System Π2. This system covers the remaining five equations from the
system (7). Our task is to construct a similar ZKAoK system for the following
relation:

R2 = {(M2,y2), (x2) : M2 · x2 = y2 ∧ x2 ∈ cond2}. (10)

As in the above system Π1, the involved variables are respectively defined. We
take similar strategies to proceed the present task.

1. For each i ∈ {1, 2}, transform the private inputs xrec,i,yrec,i to ones that
only have non-negative entries. Concretely, set x′

rec,i = xrec,i + b1,y′
rec,i =

yrec,i + b1,∈ [0, 2B]m.
2. Decompose the above newly generated vectors. For each i ∈ {1, 2}, impose

the function vdec(·) on these vectors, respectively, to yield size-mδ2B binary
vectors x′′

rec,i and y′′
rec,i such that x′

rec,i = Hm,2B · x′′
rec,i,y

′
rec,i = Hm,2B · y′′

rec,i.

172 J. Pan et al.

3. Change the corresponding public matrices and vectors. Consider the decom-
position of U�

j,i · srec,i with i = 1, 2. Let U�
j,i = [u(1)�

j,i |...|u(n)�
j,i] ∈ Z

m×n
q

and srec,i = (s(1)rec,i, ..., s
(n)
rec,i)

� ∈ {0, 1}n. In light of operators vdec(·) and

mdec(·), we have U�
j,i · srec,i = Σn

t=1u
(t)�
j,i · s

(t)
rec,i = Σn

t=1Hm,q−1 · a(t)
j,i · s

(t)
rec,i =

Hm,q−1 ·s�
rec,i,mk ·aj,i, where a(t)

j,i ∈ {0, 1}mk is the binary decomposition of the

vector u(t)�
j,i and srec,i,mk = (

mk′s times
︷ ︸︸ ︷

s
(1)
rec,i, ..., s

(1)
rec,i, ...,

mk′s times
︷ ︸︸ ︷

s
(n)
rec,i, ..., s

(n)
rec,i)

�. Additionally,

for all i = 1, 2, set vectors as: c(1)
′

rec,i = c(1)rec,i + b1 and c(2)
′

rec,i = c(2)rec,i + b1.

After making the above treatments, the targeted system is equally changed as:
⎧

⎪

⎨

⎪

⎩

i ∈ {1, 2} : c(1)
′

rec,i = A�
rec · srec,i + Hm,2B · x′′

rec,i mod q,

c(2)
′

rec,i = Hm,q−1 · s�
rec,i,mk · aj,i + Hm,2B · y′′

rec,i + m · � q
2 mod q,

d = [B, I′
g] · [m�, z�]� mod q,

(11)

This proceeds the following constructions of variables.

1. For simplicity, let H′′
m = Hm,q−1 and I′

m = � q
2�Im. Similar to what in system

Π1, build the public matrix M2 and the public vector y2 as

⎛

⎜

⎜

⎜

⎜

⎝

0 A�
rec 0 H′

m 0 0 0 0 0 0 0
0 0 H′′

m 0 H′
m 0 0 0 0 I′

m 0
0 0 0 0 0 A�

rec 0 H′
m 0 0 0

0 0 0 0 0 0 H′′
m 0 H′

m I′
m 0

0 0 0 0 0 0 0 0 0 B I′
g

⎞

⎟

⎟

⎟

⎟

⎠

and

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c(1)
′

rec,1

c(2)
′

rec,1

c(1)
′

rec,2

c(2)
′

rec,2

d

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

2. Build the private input x2. According to the public variables M2 and
y2 above, we build the private vector x2 = (a�

j,1,a
�
j,2, s

�
rec,1, (s

�
rec,1,mk ·

aj,1)�,x
′′�
rec,1,y

′′�
rec,1, s

�
rec,2, (s

�
rec,2,mk · aj,2)�,x

′′�
rec,2,y

′′�
rec,2,m

�, z�)� which has
size n2 = m + 2n + 2m(k + nk + 2δ2B) + (m − t + 1)eδm−d.

3. Consider the set of conditions cond2. Similarly, let M2 be the set of triple
indexes (h, i, l) of x2 with h, i, l ∈ [n2] such that x2[h] = x2[i] · x2[l]. It can
be seen that the defined set of indexes is equal to the original set cond2. Now
we present the structure of set M2:
a. Observe that all components of x2 are binary vectors, which gives that

such indexes (h, i, l) = (i, i, i) with i ∈ [n2] are in cond2.
b. In addition, the hidden matrix constraint in the original system is equally

to the conditions s�
rec,i,mkaj,i = s�

rec,i,mk · aj,i for each i ∈ {1, 2} as in
system (11). This allows us to compute another choice of indexes (h, i, l) =
(2nmk + n + (i′ − 1)mk + l′, 2nmk + i′, l′)i′∈[n],l′∈[mk] ∪ (3nmk + 2n +
2mδ2B + (i′ − 1)mk + l′, 3nmk + n + 2mδ2B + i′, nmk + l′)i′∈[n],l′∈[mk].

This completes the task of constructing argument system Π2 by running the
protocol given in Sect. 4.3.

Lattice-Based Group Encryption with Full Dynamicity 173

Build System ΠGE. The final system is the desired one which covers the system
Π1 and the system Π2 simultaneously, whose definition is shown as follows:

RGE = {(M,y), (x) : M · x = y ∧ x ∈ cond}. (12)

To build the system, we write M1 = [M1,1|M1,2] and M2 = [M2,1|M2,2], then

build M =
(

M1,1 M1,2 0
0 M2,1 M2,2

)

, where the blocks M1,2 and M2,1 respectively

represent the last column and the first column of M1 and M2. Accordingly, we

build x =
(

x1

x2/{[a�
j,1|a�

j,2]
�}

)

, y =
(

y1

y2

)

and cond = cond1 ∩ cond2, then a

system that is suitable for the framework established in [43] is obtained. Now
the family M of triples corresponding to the set cond is somewhat modified, i.e.,
M = M1 ∪ M′

2, where M′
2 = {(h, i, l)} = {(i, i, i)}i∈[n1+1,n1+n2−2nmk] ∪ (n1 +

n+(i′ −1)mk+ l′, n1+i′, n1−2nmk+ l′)i′∈[n],l′∈[mk]∪(n1+nmk+2n+2mδ2B +
(i′ − 1)mk + l′, n1 +nmk +n+2mδ2B + i′, n1 −nmk + l′)i′∈[n],l′∈[mk]. Then, the
prover runs an interactive protocol with the verifier as shown in [43], and the
desired ZKAoK system is established.

5 Our Fully Dynamic Lattice-Based Group Encryption

This section describes how to make use of the LNWX accumulator [31], GPV
dual encryption [18] and the ZKAoK system built in Sect. 4 to construct our
fully dynamic lattice-based group encryption in a relatively simple manner. In
our design, this scheme first achieves the “Prohibitive” message filtering policy in
the lattice setting and is free of lattice trapdoors throughout the design, resulting
into great efficiency gains. All of these efforts yield a much more practical group
encryption, also secure against the potential quantum attacks. We now briefly
interpret the overview of our techniques.

Our inspiration begins with a main observation that, by using an updatable
accumulator [31], one can directly upgrade the static group signature scheme
[26] to one offering full dynamicity [31] at a reasonable cost, where the GM
creates and revokes group membership via altering the hash value p of user’s
public key (non-zero for activated users and 0 otherwise). Following the idea,
combining with the GPV dual encryption [18], we consider: For a group of
N = 2	 members, given Arec ∈ Z

n×m
q , users sample two random short matri-

ces Ej,1,Ej,2 ∈ Z
m×m
q from a given Gaussian distribution to generate nearly

uniform Uj,i = A · Ej,i ∈ Z
n×m
q with i ∈ {1, 2}, resulting secret/public key

pairs (skj , pkj) = (Ej,1, (Uj,1,Uj,2)) with hash values pj = bin(F · [a�
j,1|a�

j,2]
�) ∈

{0, 1}nk where aj,i = mdecn,m,k(U�
j,i) ∈ {0, 1}nmk. Then, the manager builds an

efficiently updatable tree on top of values p0, · · · ,pN−1 and publishes the tree
root u as well as the witness for the fact pj was accumulated in u. Particularly,
the GM conducts: (i)-For an invalid user who has not joined the group or has
been excluded from the group, set the j-th leaf value pj as 0; (ii)-For a valid
user who joins the group and has not left the group, set the corresponding value

174 J. Pan et al.

as pj , the hash value of the public key pkj ; (iii)-With these rules, the GM can
build an efficiently updatable tree with comparative complexity O(log N), for
which he only needs to alter the values at specific leaves and along their paths
to the root rather than to reconstruct the whole tree when group information
changes. These executions guarantee that all active users (with p �= 0) in the
given epoch can be accumulated into the dynamic root while no any inactive
user cannot, which effectively separates active users who can receive the valid
ciphertexts from those who cannot in any growing epoch.

When moving to the stage of generating a group encryption, the sender
fetches the public key (Uj,1,Uj,2) and the associated membership witness w(j)

of the target group member from group information, then samples a witness in
light of the given Prohibitive message filtering policy and computes the ciphertext
(we apply the Naor-Yung transformation technique [34] for CCA-2 security) and
an associated proof which shows that the ciphertext is well-formed and pj �= 0.
In order for the proof to work in the Yang et al.’s ZK framework [43], we use the
proof techniques we just provided in Sect. 4.2 and then resort to the argument
system built in Sect. 4.3.

We also note that the dynamicity described in [31] is de facto limited to
once enrollment and once revocation. To realize stronger dynamicity that users
are allowed to join or leave the group at will, some modifications on procedures
〈JOIN, ISSUE〉 and GUPDATE are needed. Concretely, we take some significant
modifications for the procedures of user registering and user leaving, such that
group users indeed obtain the expected dynamicity as long as their reasonable
applications are accepted by the GM.

5.1 Description of the Scheme

As in [35], we assume that our scheme allows encrypting witness m ∈ {0, 1}m

that meets both message filtering policies termed as Permissive1 and Prohibitive
(shown in Sect. 4.2), which use constraints stronger than those used in [21,25].
For simplicity, we only take the latter policy in our scheme. Procedures of con-
structing the FDGE scheme are shown as follows.

• SETUPinit (1λ): This algorithm conducts the following:
– Set the possibly maximum number of group users as N = 2	 = poly(λ).
– Select integer n = O(λ) and prime q = ˜O(n2). Let k = �log q, m = 2nk.
– Pick a discrete distribution χ over Z of the bound B =

√
nω(log n).

– Select a Gaussian parameter σ = Ω(
√

n log q log n), and build a discrete
Gaussian distribution DZ,σ with upper bound β = σ · ω(log n).

– Take public parameters ppCOM for the homomorphic commitment scheme
like [5] which serves as a key building block in the construction of the
interactive game 〈P,V〉.

– Pick a random matrix F←↩ Zn×2nmk
q which hashes users’ public keys from

Z
n×2m
q to Z

n
q .

1 It is defined as Rpermi = {((si)
e
i=1,m) ∈ ({0, 1}t)e × {0, 1}m : ∃i ∈ [e]s.t.si � m}.

Lattice-Based Group Encryption with Full Dynamicity 175

– Set a gadget matrix G = In ⊗ gk with the definition given in Sect. 4.1.
Pick matrices Arec,Aoa ←↩ U(Zn×m

q) that will be used to generate public
keys for group users and the opening authority, respectively.

Output

pp= {N, �, λ, n, q, k,m,B, χ, σ, β, ppCOM,F,G,Arec,Aoa}.
• SETUPGM (pp): This algorithm picks a random matrix A = [A1|A2] ←↩

Z
n×m
q consisting of two same-size matrices, and samples skGM ←↩ {0, 1}m and

computes pkGM = A · skGM, resulting a key pair (pkGM, skGM) for the GM.
Here, we take pkGM as an identifier of the group and assume that only the
GM (i.e., the party holding skGM) can edit and publish the group information.

• SETUPOA (pp): This procedure samples two short secret matrices Eoa,i with
i ∈ {1, 2} from the distribution D	

Zm,σ to generate two corresponding matrices
Uoa,i = Aoa · Eoa,i ∈ Z

n×	
q , which forms the secret key skOA = Eoa,1 ∈ Z

m×	
q

and the public key pkOA = (Uoa,1,Uoa,2) ∈ (Zn×	
q)2 for the OA.

When GM receives pkOA sent from the OA, it executes the following:
1. Build table reg: =({reg[j][i]}j∈[0,N−1],i∈{1,2}) initialized as reg[j][1] =

0nk and reg[j][2] = 0. Note that the former records the user’s registered
public key, while the latter stores the epoch at which an execution of
joining protocol is performed.

2. Build a Merkle tree T on top of {reg[j][1]}j∈[0,N−1] whose initial values
are zero and then changed with users’ public keys by the GM when one
successfully joins the group or the group executes an updating operation.

3. Set the counter of users c := 0.
Then, GM outputs gpk = (pp, pkGM, pkOA) and publicizes the initial group
information info = ∅, while T as well as c is kept by him self.

• UKGEN(pp): For each j ∈ [0, N − 1] and each i ∈ {1, 2}, user Uj samples
two secret matrices Ej,i from the Gaussian distribution Dm

Zm,σ to generate
two corresponding public matrices Uj,i = Arec · Ej,i ∈ Z

n×m
q , which forms

the secret key skj = Ej,1 ∈ Z
m×m
q and the public key pkj = (Uj,1,Uj,2) ∈

(Zn×m
q)2. Then, the user computes a hash value pj = bin(F · (a�

j,1||a�
j,2)

�) ∈
{0, 1}nk with aj,i = mdecn,m,q(U�

j,i) ∈ {0, 1}nmk for each i ∈ {1, 2}. We note
that all honestly generated pkj ’s are non-zero and pairwise distinct, since the
probability that users take zero-matrix Uj,i or same matrix (i.e., Uj,i = Uj′,i′

for some j �= j′ or i �= i′), or finds a collision for hash function F is negligible
(due to the assumed hardness of the SIS problem).

• 〈JOIN(sk); ISSUE(skGM)〉(gpk, pk, infoτ): Let S0 be a set of indexes i of
which associated public keys of group users are zero, with the initialization
{reg[j][1]}. When a user holding key pair (pk, sk) with binary hash p wants
to join the group at the epoch τ , he sends p to the GM who proceeds the
following procedures with him after the request is accepted:
1. GM picks a random j ∈ S0 and sets a member identifier bin(j) ∈ {0, 1}	

for the user, and executes the following:
– Update T by running procedure TUpdateA(bin(j),pj).

176 J. Pan et al.

– Register the user to table reg as reg[j][1] := pj .
– Update the set S0 := S0 − {j}, increase the counter c := c + 1.

2. When specific enrollment requests at a same epoch are ending, basing
on the above updated results (note that the update process is essentially
like that of running algorithm TAccA(·) on reg[·][1] = {reg[j][1]}j for
the generation of root value u, thus same results are led), the GM runs
algorithm TWitnessA(reg[·][1],pj) to output a witness

w(j) =
(

(j1, ..., j) ∈ {0, 1}	, (w(j)
	 , ...,w(1)

1) ∈ ({0, 1})	
)

to the fact that pj is accumulated in u.
3. User checks the validity of w(j) by algorithm TVerifyA(u,pj , w

(j)) and
outputs ⊥ if it is unaccepted. Otherwise, set witj = (u, w(j)) as the witness
of pkj being accumulated into the root u, which plays the similar role to
a certificate of public key issued by the GM.

• GUPDATE(gpk, skGM, infoτcurrent ,S, reg): GM updates the group information
while advancing the epoch by running this algorithm as follows.
1. Let S be a set of verified public keys of group users to be removed. If

S = ∅, go to Step 2. Otherwise, let S = {reg[ji][1]}r
i=1 for some r ∈ [1, N]

and ji ∈ [0, N − 1] for all i ∈ [r], then GM runs TUpdateA(bin(ji),0nk) to
update the tree T , followed by S0 := S0

⋃

S.
2. By construction, each zero-value leaf in T corresponds to an inactive user,

i.e., one that is revoked or has not yet got membership. This means that
only active users capable of decrypting well-formed ciphertexts generated
in the new epoch τnew will have non-zero hash values of public keys {pj}j ,
that are accumulated in the root uτnew of the updated tree.
For each j, let w(j) ∈ {0, 1}	 × ({0, 1}nk)	 be the witness showing that pj

is accumulated in uτnew . GM publishes the updated group information:

infoτnew =
(

uτnew , {w(j)}j

)

.

As described below, in order to verify ciphertexts bound to epoch τ , the
verifier only needs to download the first component uτ of size ˜O(λ) bits.
Meanwhile, to compute a well-formed ciphertext, it is sufficient for sender to
download the witness of size ˜O(�λ) of some active user.

• 〈Gr, sampleR〉: Algorithm Gr outputs parameters (t, e) for the Prohibitive pol-
icy to form (pkR, skR)= ((t, e), ε). Then algorithm sampleR takes pkR as
input, and returns a set {s1, ..., se} ∈ ({0, 1}t)e and a witness m ∈ {0, 1}m

such that they hold for the relation Rprohi (i.e., meet the Eq. (5)).
• ENC(pkGM, pkOA, pkj ,witj , infoτ , {si}e

i=1,m, L): To encrypt the sampled wit-
ness m with the group information infoτ at epoch τ , sender first checks
whether a witness associated with bin(j) is contained in infoτ . If it is not
this case, return ⊥. Otherwise, the sender downloads uτ and some witness
(bin(j), (w	, ...,w1)) from infoτ , then parses pkOA as (Uoa,1,Uoa,2) and witj
as (uτ , w(j)) for some j ∈ [0, N − 1], and proceeds as follows.

Lattice-Based Group Encryption with Full Dynamicity 177

1. Encrypt the witness m ∈ {0, 1}m under Uj ’s public key pkj ∈ (Zn×m
q)2.

For each i ∈ {1, 2}, randomly take a tuple (srec,i,xrec,i,yrec,i) ∈
U({0, 1}n) × (χm)2 to form the private parameter set randrec =
(srec,i,xrec,i,yrec,i)i∈{1,2}. Compute the corresponding ciphertext crec,i =
(c(1)rec,i, c

(2)
rec,i) ∈ (Zm

q)2 as

c(1)rec,i = A�
rec ·srec,i +xrec,i mod q, c(2)rec,i = U�

j,i ·srec,i +yrec,i +m ·�q

2
, (13)

which follows the ciphertext crec = (crec,1, crec,2) ∈ (Zm
q × Z

m
q)2.

2. Encrypt the user identifier j ∈ {0, 1}	 of user Uj by taking simi-
lar operations as above. First take a random tuple (soa,i,xoa,i,yoa,i) ∈
U({0, 1}n)×χm ×χ	 for each i ∈ {1, 2}, which forms the private random-
ness set randoa = (soa,i,xoa,i,yoa,i)i. Compute the corresponding cipher-
text coa,i = (c(1)oa,i, c

(2)
oa,i) ∈ (Zm

q × Z
	
q) as

c(1)oa,i = A�
oa · soa,i + xoa,i mod q, c(2)oa,i = U�

oa,i · soa,i + yoa,i + j · �q

2
, (14)

which follows the identity ciphertext coa = (coa,1, coa,2) ∈ (Zm
q × Z

	
q)

2.
Finally, put the above ciphertexts together, we obtain the ciphertext Ψ =
(

crec, coa
)

and the state information coinsΨ =
(

randrec, randoa
)

.
• DEC(skj , Ψ, L): This algorithm takes the following steps to decrypt Ψ :

1. Parse the secret key skj as Ej,1 and the ciphertext Ψ as
(

crec, coa
)

.
2. Use the secret key Ej,1 to proceed the decryption of crec as

m =
⌊(

c(2)rec,1 − E�
j,1 · c(1)rec,1

)

/
⌊q

2

⌉⌉

. (15)

Then, output m if it satisfies the relation Rprohi. Otherwise, return ⊥.
• OPEN(skOA, infoτ , reg, Ψ, L): This algorithm decrypts the ciphertext coa =

(coa,1, coa,2) by proceeding the following steps:
1. Parse the secret key skoa as Eoa,1 and the ciphertext Ψ as

(

crec, coa
)

.
2. To reveal the targeted recipient, use Eoa,1 to decrypt the coa,1 as

j′ =
⌊(

c(2)oa,1 − E�
oa,1 · c(1)oa,1

)

/
⌊q

2

⌉⌉

. (16)

3. Check that whether the group information infoτ includes a witness con-
taining j′ or not, and return ⊥ if it is not this case.

4. Let j′ ∈ [0, N − 1] be the integer whose binary decomposition is j′, if
reg[j′][1] = 0nk in table reg, then return ⊥.

• 〈P(pkj ,witj ,m, coinsΨ),V(πΨ)〉(gpk, infoτ , {si}e
i=1, Ψ, L): Given the common

inputs gpk, infoτ , {si}e
i=1, Ψ and L. The prover’s secret inputs consist of a wit-

ness m ∈ {0, 1}m, pkj = (Uj,1,Uj,2) ∈ (Zn×m
q)2, certificate witj = (uτ , w(j))

and random coins coinsΨ =
(

srec,i,xrec,i,yrec,i; soa,i,xoa,i,yoa,i

)

i∈{1,2}, while
the verifier takes πΨ as its private input.
The prover constructs a zero-knowledge argument system πΨ to convince the
verifier that the secret inputs he makes satisfy the following conditions (details
of which are shown in Sect. 4):

178 J. Pan et al.

– G · pj = F · (a�
j,1||a�

j,2)
� mod q.

– TVerifyA
(

u,pj , w
(j)

)

= 1 and pj �= 0.
– Witness m satisfies the relation Rprohi defined in Sect. 4.2.
– For each i ∈ {0, 1}, vectors srec,i, soa,i are of the form {0, 1}, and vectors

xrec,i,yrec,i,xoa,i,yoa,i have infinity B-bounded norm.
– Equations of (13) and (14) hold.

Correctness. The correctness of the proposed group encryption follows from
correctly decrypting the GPV dual ciphertexts, which may cause some decryp-
tion errors. Indeed, during the decryption procedure of DEC(skj , Ψ,L), we have:

c(2)rec,1 − E�
j,1 · c(1)rec,1 = yrec,1 − E�

j,1 · xrec,1 + m ·
⌊q

2

⌋

. (17)

Note that ‖xrec,1‖∞ and ‖yrec,1‖∞ both have upper bound B, and ‖Ej,1‖∞ is
bounded by β. Then ‖yrec,1 −E�

j,1 ·xrec,1‖∞ ≤ B +mβB and is further bounded
by ˜O(n1.5) which is smaller than q/5 = ˜O(n2). As a result, the decryption
algorithm returns m with overwhelming probability. This gives the correctness
of DEC(skj , Ψ,L). For OPEN(skOA, Ψ,L), a similar analysis is proceeded and
‖yoa,1 − E�

oa,1 · xoa,1‖∞ is also bounded by ˜O(n1.5).
Finally, we argue that if a sender honestly follows all the prescribed algo-

rithms for the specific certified group user, valid witness-vectors to be used in
the protocol 〈P,V〉 are able to be computed and the present proof is accepted
by the verifier, thanks to the completeness of the argument system in Sect. 4.3.

5.2 Analysis of the Scheme

Security Analysis. We provide provable security analysis for our scheme under
the SIS and LWE hardness assumptions via the classical reduction methods.
These security results and associated proofs are shown in the following.

Theorem 1. The anonymity is satisfied if the LWEn,q,χ assumption holds.

Proof. We prove the anonymity using a sequence of indistinguishable games,
where we begin with running the experiment Expanon−0

A and end with the exper-
iment Expanon−1

A from Definition 5 to show that the advantage for the adversary
succeeding in the last game is negligible. For simplicity, hereunder we take PPT
algorithms A and B as the adversary and challenger, respectively, and denote
by Wi the event that the adversary A returns b′ = 1 in game i.

Game 1: This is the real experiment Expanon−0
A except that B retains Eoa,2,

which makes no any difference in the adversary’s view since Eoa,2 is not used
in the following real experiment. Concretely, the challenger B publicizes the
parameters pp containing Arec,Aoa ∈ Z

n×m,F ∈ Z
n×2nmk
q as a part, and sends

the opening public key pkOA = (Uoa,1,Uoa,2) ∈ (Zn×m
q)2 to A who certifies the

honest group members on behalf of GM by invoking the USER oracle. Specially,
after receiving two users’ public keys pk0 = (U0,1,U0,2) ∈ (Zn×m

q)2 and pk1 =

Lattice-Based Group Encryption with Full Dynamicity 179

(U1,1,U1,2) ∈ (Zn×m
q)2 of challenger’s choice, A registers the keys in the table

reg and conducts a number of queries w.r.t. opening and decryption algorithms,
whose response is handled by B by using skOA = Eoa,1 and sk0 = E0,1, sk1 = E1,1.
Then, the adversary moves to the challenge phase to provide a valid witness
m ∈ {0, 1}m satisfying the Prohibitive for challenge. In return, the challenger
takes the bit b = 0 and computes a group encryption Ψ∗ = (c∗

rec, c
∗
oa) of the

witness m under pkb = (Ub,1,Ub,2), and the user identity jb = j0 under pkoa =
(Uoa,1,Uoa,2) with coa = (coa,1, coa,2), which follows real proofs π∗

Ψ∗ of Ψ∗ and
queries of opening and decryption under the natural restrictions of the security
definition. When A halts, it returns a bit b′ ∈ {0, 1} and the challenger B returns
1 iff b′ = b. Otherwise, B outputs 0 indicating that the adversary fails in this
game, which gives the success probability Pr[W1 = 1].

Game 2: This game is like Game 1 except one change in executing the ciphertext
opening oracle OPEN(skoa, .). Concretely, B uses Eoa,2 ∈ Z

m×	
q instead of skoa =

Eoa,1 ∈ Z
m×	
q to decrypt coa among the ciphertext Ψ = (crec, coa). It can be seen

that, in the A’s view, this game is the same as Game 1 until the event F1 that A
queries the opening oracle OPEN(skoa, .) for a ciphertext Ψ = (crec, coa,1, coa,2)
where coa,1, coa,2 encrypt two distinct �-size identities. By the soundness of our
argument presented in Sect. 4.3, Pr[W2] − Pr[W1] is bounded by Pr[F1] which
itself is bounded by Advsound

B (λ).

Game 3: This game is identical to Game 2 except a modification in the genera-
tion of proofs π∗

Ψ∗ . Instead of employing the real random coins coins∗
Ψ = ({s∗

rec,i}i,
{x∗

rec,i}i, {y∗
rec,i}i, {s∗

oa,i}i, {x∗
oa,i}i, {y∗

oa,i}i) used for Ψ∗ to generate proofs, we
employ the zero-knowledge simulator of argument system described in Sect. 4.3
once invoking PROVEb

P,P′ after the challenge phase (note that, given trusted
public parameters, the computationally indistinguishable simulation is achieved
via the techniques [17] without increasing the number of rounds). Here the com-
putational ZK property ensures that, for any PPT adversary, the change is unno-
ticed: |Pr[W3] − Pr[W2]| ∈ negl(λ).

Game 4: This game is same as Game 3 except that we modify the generation of
Ψ∗ = (c∗

rec, c
∗
oa) with c∗

oa = (c∗
oa,1, c

∗
oa,2) by encrypting a random size-� identity j1

as c∗
oa,1, while still retaining c∗

oa,2 for the encryption of the index j0 corresponding
to user U0. By the semantic security of GPV dual encryption [18] (assuming the
hardness of LWE problem) for public key pkoa = (Uoa,1,Uoa,2), this game is
identical to Game 3, i.e., |Pr[W4] − Pr[W3]| ≤ AdvLWE(λ).

Game 5: This game makes one change by switching back to the application
of Eoa,1 ∈ Z

m×	
q for the OPEN(skoa, ·) queries with discarding Eoa,2, and the

modification is invariant to the adversary except the event F2, where the queries
to the DEC for a valid ciphertext Ψ containing c∗

oa,1, c
∗
oa,2 encrypting distinct

�-size identities j0 and j1, happens. But, the occurrence of F2 implies that the
simulation soundness of the underlying ZKAoK system used to generate ΠGE is
broken. This results into |Pr[W5 = 1] − Pr[W4 = 1]| ≤ Advsound

ΠGE
(λ) = negl(λ).

Game 6: Here, this experiment performs a modification to the Game 5 only by
taking coa,2 as the encryption of j1 for the challenge ciphertext Ψ∗ = (c∗

rec, c
∗
oa)

180 J. Pan et al.

with c∗
oa = (c∗

oa,1, c
∗
oa,2). Note that this change is unnoticed to A due to the

semantic security the encryption shares for public key Uoa,2, and also for the
application of Eoa,1 to the OPEN, we have |Pr[W6 = 1] − Pr[W5 = 1]| = negl(λ).

Game 7: This experiment generates a real proof for ciphertext Ψ∗ = (c∗
rec, c

∗
oa)

instead of using simulated proof, which is the only modification different from
Game 6. The computational zero-knowledgeness of the underlying ZKAoK
system makes the difference between Game 6 and Game 7 negligible, i.e.,
Pr[W6 = 1] ≈ Pr[W7 = 1]. This is actually the experiment Expanon−1

A (λ), which
directly leads that Pr[W7 = 1] = Expanon−1

A (λ). By these above games, we have
|Expanon−1

A (λ) − Expanon−0
A (λ)| = negl(λ). This proves the anonymity. ��

Theorem 2. The message secrecy is satisfied if the LWEn,q,χ assumption holds.

Proof. In a similar manner to that used in proving Theorem 1, we complete the
proof via a sequence of indistinguishable games in which the first one is exactly
the experiment Expsec−1

A which generates a real ciphertext and an associated
real proof while the last one is the experiment Expsec−0

A that outputs a random
ciphertext and an associated simulated proof. For simplicity, we use A,B to
represent the adversary and challenger, respectively. In addition, we also denote
by Wi the event that the adversary A returns b′ = 1 in game i.

Game 1: This is the real experiment Expsec−1
A except that B retains Ej,2, which

makes no any difference in the adversary’s view since Ej,2 is not used in the
following real experiment. Concretely, A is first fed with public parameters pp
including Arec ∈ Z

n×m
q by challenger. Then, under its whole control, the adver-

sary generates public keys pkOA = (Uoa,1,Uoa,2) ∈ (Zn×m
q)2 and pkGM, and trig-

gers the JOIN protocol with the challenger to register and certify the public key
pkj = (Uj,1,Uj,2) ∈ (Zn×m

q)2 for some honest receiver of the challenger’s choice.
After that, the adversary A makes a polynomial number of queries to DEC oracle
which is faithfully handled by the challenger using Ej,1. Then, A provides a valid
witness m ∈ {0, 1}m satisfying the Prohibitive for challenge. Subsequently, the
challenger take b = 1 and computes a ciphertext Ψ∗ = (c∗

rec, c
∗
oa) which contains

a group encryption of the real plaintext m under pkj and returns it back as
a challenger ciphertext. Then, a polynomial number of real proofs π∗

Ψ∗ which
are associated with the challenge ciphertext Ψ∗ are followed, and the decryption
oracle with obvious restrictions is further granted. After doing this, A halts this
game and outputs its guess bit b′ ∈ {0, 1}.

Game 2: This game is identical to Game 1 except one change in handling the
ciphertext decryption oracle DEC(skj , .). Concretely, B uses Ej,2 ∈ Z

m×m
q instead

of skj = Ej,1 ∈ Z
m×m
q to decrypt crec among the ciphertext Ψ = (crec, coa). In the

A’s view, this game is the same as Game 1 until the event F3 that A queries a
ciphertext Ψ = (crec,1, crec,2, coa) where crec,1, crec,2 encrypts two distinct m-size
messages. By the soundness of our argument presented in Sect. 4.3, Pr[W2] −
Pr[W1] is bounded by Pr[F3] ≤ Advsound

B (λ).

Game 3: This game is like Game 2 except a modification in generating proofs
π∗

Ψ∗ . Instead of employing the real random coins coins∗
Ψ = ({s∗

rec,i}i, {x∗
rec,i}i,

{y∗
rec,i}i, {s∗

oa,i}i, {x∗
oa,i}i, {y∗

oa,i}i) used for Ψ∗ to generate proofs, we rather

Lattice-Based Group Encryption with Full Dynamicity 181

to apply the zero-knowledge simulator presented in Sect. 4.3 once invoking
PROVEb

P,P′ after the challenge phase (i.e., given trusted public parameters, the
computationally indistinguishable simulation is achieved with the techniques
[17]). Here the computational ZK property ensures that, for any PPT adversary,
the change is unnoticed: |Pr[W3] − Pr[W2]| ∈ negl(λ).

Game 4: In this game, we modify the generation of Ψ∗ = (c∗
rec, c

∗
oa) with c∗

rec =
(c∗

rec,1, c
∗
rec,2) by encrypting a random size-m message m′ ∈ Rpro as c∗

rec,1, while
still retaining c∗

rec,2 for the encryption of m ∈ Rpro. By the semantic security of
GPV dual encryption [18] (under the hardness assumption of the LWE problem)
for public key pkj = (Uj,1,Uj,2), this game is identical to Game 3, i.e., |Pr[W4]−
Pr[W3]| ≤ AdvLWE(λ).

Game 5: This game makes one change by switching back to the application of
Ej,1 ∈ Z

m×m
q for the DEC(skj , ·) queries with discarding Ej,2, and the modifica-

tion is invariant to the adversary except the event F4, where the queries to the
DEC for a valid ciphertext Ψ containing c∗

rec,1, c
∗
rec,2 encrypting distinct messages

satisfied the RPro relation, happens. But, the occurrence of F4 implies that the
simulation soundness of the underlying ZKAoK system used to generate ΠGE is
broken. This results into |Pr[W5 = 1] − Pr[W4 = 1]| ≤ Advsound

ΠGE
(λ) = negl(λ).

Game 6: Here, this experiment performs a modification to the Game 5 only by
taking crec,2 as the encryption of m′ ∈ RPro for the challenge ciphertext Ψ∗ =
(c∗

rec, c
∗
oa) with c∗

rec = (c∗
rec,1, c

∗
rec,2). Note that this change is unnoticed to A due

to the semantic security the encryption shares for public key Uj,2, and also for
the application of Ej,1 to the DEC, we have |Pr[W6 = 1]−Pr[W5 = 1]| = negl(λ).

Game 7: Here, this experiment generates a real proof for ciphertext Ψ∗ =
(c∗

rec, c
∗
oa) instead of using simulated proof, which is the only modification differ-

ent to Game 6. The computational zero-knowledgeness of the underlying ZKAoK
system makes the difference between Game 6 and Game 7 negligible, i.e., Pr[W6 =
1] ≈ Pr[W7 = 1].This is actually the experimentExpsec−0

A (λ), which directly leads
that Pr[W7 = 1] = Expsec−0

A (λ). Thus, we have |Expsec−1
A (λ) − Expsec−0

A (λ)| =
negl(λ), which proves the message security. ��
Theorem 3. The scheme is sound assuming that the SIS assumption holds.

Proof. It suffices for us to prove these facts: for a given message filtering policy
Prohibitive, a ciphertext Ψ∗ = (crec∗ , coa∗), a Label L and an associated with
proof Ψ∗, the public key associated with the identity revealed by the adversary
is valid, certified, unique and the provided ciphertext Ψ∗ is encrypted under this
key. By the Lemma 2, the distribution of public keys is uniform, which ensures
the public key is dense. In other words, the public is valid. In addition, the
public key is unique since an occurring collision breaks the injective property of
the mapping F · [a�

1 |a�
2]. Thus, we only need to prove the other two cases.

a. The public key is certified (activated). If not, for some j ∈ [0, N − 1], there is
an associated binary vector pj �= 0 being accumulated into the published root
value u, but it is not equal to any value bin(F · [a�

1 |a�
2]), which contradicts

the security of the accumulator.

182 J. Pan et al.

b. The ciphertext is actually an encryption of witness m under this public key.
If not, this event implies a breach in the computational soundness of our
argument system and the binding property of the commitment scheme, which
breaks the assumed hardness of the SIS problem. ��

Efficiency Analysis. It can be seen that all algorithms used for the construc-
tion of the present group encryption are polynomially effective. The efficiency
evaluation of the scheme is shown as follows.

– The public key of GM is a vector with bit-size ˜O(λ), and that of OA and
users are respectively a matrix of bit-size ˜O(λ2).

– The GM’s secret key is given by a bit string of size ˜O(λ), and the secret keys
of OA and users are respectively a small-norm matrix of bit size ˜O(λ2).

– The ciphertext Ψ consists of crec = (crec,1, crec,2) ∈ (Zm
q × Z

m
q)2 and coa =

(coa,1, coa,2) ∈ (Zm
q × Z

	
q)

2, which leads the total bit size ˜O(λ + �).
– The communication cost of the protocol 〈P,V〉 largely relies on the bit-size

of witness x with size n2 = m + 2n + 2m(k + nk + 2δ2B) + (m − t + 1)eδm−d

shown in Sect. 4.3, which leads ˜O(λ2) bit-size.

In Table 1, given a security parameter λ, let N = 2	, κ and Σ be the group
size, the number of protocol repetitions and a one-time signature, respectively, we
give a somewhat rough comparison between our scheme and the currently existing
post-quantum secure group encryption schemes [25] (lattice-based variant) and
[35] (code-based variant) in terms of functionality, efficiency and security. In the
solid security, the full dynamicity is achieved with a highly reasonable cost: theGM
only needs to update values of size ˜O(�λ) when group information changes.

Table 1. Comparison between schemes [25,35] and ours

Scheme GM OA U Ciph. Commu. Dynam. Model

pk sk pk sk pk sk

[25] ˜O(�λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ) + |Σ| κ ˜O(λ2) partial Std.

[35] ˜O(λ) ˜O(λ) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) κ ˜O(λ2) full RO.

Ours ˜O(λ) ˜O(λ) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ) ˜O(λ2) full Std.

To better understand the advantage of our design, we also give a slightly
concrete efficiency comparison between our scheme and the post-quantum safe
schemes [25] and [35] for a same group size N = 210 toward the 80-bit security.
By using the security analysis techniques shown in [35,43, and references therein],
we choose the trade-off parameters as (n, q) = (2795, 1125899906842679 ≈ 250),
(n, k1, t1, k2, t2,m, tm, p, t, k) = (8192, 7997, 7, 7711, 18, 238, 279, 1024, 64, 10) and
(n, q, t, e, d) = (222, 524309 ≈ 219, 64, 10, 10) for these schemes and ours, respec-
tively. The results are shown in Table 2 where all the sizes of keys, ciphertexts and
communication cost are almost highly superior than those of previous schemes.
Particularly, our scheme obtains the drastic efficiency gains compared to [25] due
to the free-of-trapdoor design. Besides, the group update cost of [35] and ours
is 10.00 KB and 5.15 KB, respectively.

Lattice-Based Group Encryption with Full Dynamicity 183

Table 2. Efficiency comparison between schemes [25,35] and ours

GM OA U Ciph. Commu.

pk sk pk sk pk sk

[25] 68.60 GB 482.55 GB 2.37 GB 38.86 GB 2.37 GB 38.86 GB 2.36 TB 3728 TB

[35] 1.00 KB 32.00 GB 15.62 MB 46.86 MB 15.06 MB 45.24 MB 4.00 KB 66107 TB

Ours 0.54 KB 1.08 KB 10.85 KB 129.50 KB 9.40 MB 112.30 MB 0.13 MB 10.32 GB

6 Conclusion

In this paper, we provide a re-formalized definition and security model of FDGE
that is essentially equal to but more succinct than that of [35]. Then, we provide
two generic and efficient zero-knowledge proof methods for demonstrating the
inequalities of binary vectors, which can be readily extended to the case of gen-
eral vectors. Finally, combining the appropriate cryptographic materials and the
proof techniques just presented, we achieve the first lattice-based group encryp-
tion system which meanwhile offers the full dynamicity and the message filtering
policy. Our scheme is constructed in a simpler manner and nearly outweighs the
post-quantum secure ones [25,35] in terms of functions, efficiency and security.

Acknowledgement. This work has been supported by National Cryptography Devel-
opment Fund (No. MMJJ20180110), National Natural Science Foundation of China
(No. 61960206014), (No. 62121001) and (No. 61972429), and Guangdong Major Project
of Basic and Applied Basic Research (No. 2019B030302008).

References

1. El Aimani, L., Joye, M.: Toward practical group encryption. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp.
237–252. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-
1 15

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(1), 625–635 (1993)

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

https://doi.org/10.1007/978-3-642-38980-1_15
https://doi.org/10.1007/978-3-642-38980-1_15
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/3-540-39200-9_38

184 J. Pan et al.

7. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS,
pp. 168–177. ACM (2004)

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584. ACM (2013)

11. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 15

12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

13. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

15. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization in
the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
179–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 11

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

17. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

19. Izabachène, M., Pointcheval, D., Vergnaud, D.: Mediated traceable anonymous
encryption. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS,
vol. 6212, pp. 40–60. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14712-8 3

20. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

21. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76900-2 11

22. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Secur. Netw. 1(1/2), 24–45 (2006)

23. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,

https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/3-540-44586-2_15
https://doi.org/10.1007/3-540-44586-2_15
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-642-14712-8_3
https://doi.org/10.1007/978-3-642-14712-8_3
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/978-3-540-76900-2_11

Lattice-Based Group Encryption with Full Dynamicity 185

vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

24. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

25. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 4

26. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

27. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge argu-
ments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 24

28. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 36

29. Libert, B., Yung, M., Joye, M., Peters, T.: Traceable group encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 592–610. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54631-0 34

30. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

31. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

32. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

33. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 26

34. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: ACM, pp. 427–437. ACM (1990)

35. Nguyen, K., Safavi-Naini, R., Susilo, W., Wang, H., Xu, Y., Zeng, N.: Group
encryption: full dynamicity, message filtering and code-based instantiation. In:
Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 678–708. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75248-4 24

36. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-53890-6_4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-54631-0_34
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-030-75248-4_24
https://doi.org/10.1007/978-3-540-30574-3_19

186 J. Pan et al.

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

38. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC, pp. 333–342. ACM (2009)

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005)

40. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the security of
dynamic group signatures: preventing signature hijacking. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 715–732. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 42

41. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

42. Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 446–458. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 37

43. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/11523468_37
https://doi.org/10.1007/978-3-030-26948-7_6

	Lattice-Based Group Encryption with Full Dynamicity and Message Filtering Policy*-8pt
	1 Introduction
	2 Preliminaries
	2.1 Lattices and Computational Problems
	2.2 LNWX Lattice-Based Accumulators
	2.3 GPV Dual Encryption
	2.4 Zero-Knowledge Argument of Knowledge

	3 Model and Security Requirements of Fully Dynamic Group Encryption
	4 The Underlying Zero-Knowledge Layer
	4.1 Warm-Up: Decompositions
	4.2 Proving Inequality Relations for Binary Vectors
	4.3 The Underlying ZKAoK

	5 Our Fully Dynamic Lattice-Based Group Encryption
	5.1 Description of the Scheme
	5.2 Analysis of the Scheme

	6 Conclusion
	References

