
Mehdi Tibouchi
Huaxiong Wang (Eds.)

LN
CS

 1
30

93

27th International Conference on the Theory
and Application of Cryptology and Information Security
Singapore, December 6–10, 2021
Proceedings, Part IV

Advances in Cryptology –
ASIACRYPT 2021

Lecture Notes in Computer Science 13093

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7410

https://springerlink.bibliotecabuap.elogim.com/bookseries/7410

Mehdi Tibouchi • Huaxiong Wang (Eds.)

Advances in Cryptology –

ASIACRYPT 2021
27th International Conference on the Theory
and Application of Cryptology and Information Security
Singapore, December 6–10, 2021
Proceedings, Part IV

123

Editors
Mehdi Tibouchi
NTT Corporation
Tokyo, Japan

Huaxiong Wang
Nanyang Technological University
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-92067-8 ISBN 978-3-030-92068-5 (eBook)
https://doi.org/10.1007/978-3-030-92068-5

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2736-2963
https://orcid.org/0000-0002-7669-8922
https://doi.org/10.1007/978-3-030-92068-5

Preface

Asiacrypt 2021, the 27th Annual International Conference on Theory and Application
of Cryptology and Information Security, was originally planned to be held in Singapore
during December 6–10, 2021. Due to the COVID-19 pandemic, it was shifted to an
online-only virtual conference.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 341 submissions from all over the world, and the Program
Committee (PC) selected 95 papers for publication in the proceedings of the confer-
ence. The two program chairs were supported by a PC consisting of 74 leading experts
in aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. The two program chairs were not allowed to submit a paper, and PC
members were limited to two submissions each. There were approximately 363
external reviewers, whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 233 submissions to proceed to the second round
and the authors were then invited to provide a short rebuttal in response to the referee
reports. The second round involved extensive discussions by the PC members.

Alongside the presentations of the accepted papers, the program of Asiacrypt 2021
featured an IACR distinguished lecture by Andrew Chi-Chih Yao and two invited talks
by Kazue Sako and Yu Yu. The conference also featured a rump session which
contained short presentations on the latest research results of the field.

The four volumes of the conference proceedings contain the revised versions of the
95 papers that were selected, together with the abstracts of the IACR distinguished
lecture and the two invited talks. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Via a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “On the Hardness of the NTRU
problem” by Alice Pellet-Mary and Damien Stehlé (which received the best paper
award); “A Geometric Approach to Linear Cryptanalysis” by Tim Beyne (which
received the best student paper award); and “Lattice Enumeration for Tower NFS: a
521-bit Discrete Logarithm Computation” by Gabrielle De Micheli, Pierrick Gaudry,
and Cécile Pierrot. The authors of all three papers were invited to submit extended
versions of their manuscripts to the Journal of Cryptology.

Many people have contributed to the success of Asiacrypt 2021. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge

and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions. We are greatly indebted to Jian Guo, the
General Chair, for his efforts and overall organization. We thank San Ling and Josef
Pieprzyk, the advisors of Asiacrypt 2021, for their valuable suggestions. We thank
Michel Abdalla, Kevin McCurley, Kay McKelly, and members of IACR’s emergency
pandemic team for their work in designing and running the virtual format. We thank
Chitchanok Chuengsatiansup and Khoa Nguyen for expertly organizing and chairing
the rump session. We are extremely grateful to Zhenzhen Bao for checking all the

files and for assembling the files for submission to Springer. We also thank
Alfred Hofmann, Anna Kramer, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2021 Mehdi Tibouchi
Huaxiong Wang

vi Preface

Organization

General Chair

Jian Guo Nanyang Technological University, Singapore

Program Committee Co-chairs

Mehdi Tibouchi NTT Corporation, Japan
Huaxiong Wang Nanyang Technological University, Singapore

Steering Committee

Masayuki Abe
Lynn Batten
Jung Hee Cheon
Steven Galbraith
D. J. Guan
Jian Guo
Khalid Habib
Lucas Hui
Nassar Ikram
Kwangjo Kim
Xuejia Lai
Dong Hoon Lee
Satya Lokam
Mitsuru Matsui (Chair)
Tsutomu Matsumoto
Phong Nguyen

Dingyi Pei
Duong Hieu Phan
Raphael Phan
Josef Pieprzyk (Vice Chair)
C. Pandu Rangan
Bimal Roy
Leonie Simpson
Huaxiong Wang
Henry B. Wolfe
Duncan Wong
Tzong-Chen Wu
Bo-Yin Yang
Siu-Ming Yiu
Yu Yu
Jianying Zhou

Program Committee

Shweta Agrawal IIT Madras, India
Martin R. Albrecht Royal Holloway, University of London, UK
Zhenzhen Bao Nanyang Technological University, Singapore
Manuel Barbosa University of Porto (FCUP) and INESC TEC, Portugal
Lejla Batina Radboud University, The Netherlands
Sonia Belaïd CryptoExperts, France
Fabrice Benhamouda Algorand Foundation, USA
Begül Bilgin Rambus - Cryptography Research, The Netherlands
Xavier Bonnetain University of Waterloo, Canada
Joppe W. Bos NXP Semiconductors, Belgium

Wouter Castryck KU Leuven, Belgium
Rongmao Chen National University of Defense Technology, China
Jung Hee Cheon Seoul National University, South Korea
Chitchanok

Chuengsatiansup
The University of Adelaide, Australia

Kai-Min Chung Academia Sinica, Taiwan
Dana Dachman-Soled University of Maryland, USA
Bernardo David IT University of Copenhagen, Denmark
Benjamin Fuller University of Connecticut, USA
Steven Galbraith The University of Auckland, New Zealand
María Isabel González

Vasco
Universidad Rey Juan Carlos, Spain

Robert Granger University of Surrey, UK
Alex B. Grilo CNRS, LIP6, Sorbonne Université, France
Aurore Guillevic Inria, France
Swee-Huay Heng Multimedia University, Malaysia
Akinori Hosoyamada NTT Corporation and Nagoya University, Japan
Xinyi Huang Fujian Normal University, China
Andreas Hülsing Eindhoven University of Technology, The Netherlands
Tetsu Iwata Nagoya University, Japan
David Jao University of Waterloo and evolutionQ, Inc., Canada
Jérémy Jean ANSSI, France
Shuichi Katsumata AIST, Japan
Elena Kirshanova I. Kant Baltic Federal University, Russia
Hyung Tae Lee Chung-Ang University, South Korea
Dongdai Lin Institute of Information Engineering, Chinese Academy

of Sciences, China
Rongxing Lu University of New Brunswick, Canada
Xianhui Lu Institute of Information Engineering, Chinese Academy

of Sciences, China
Mary Maller Ethereum Foundation, UK
Giorgia Azzurra Marson NEC Labs Europe, Germany
Keith M. Martin Royal Holloway, University of London, UK
Daniel Masny Visa Research, USA
Takahiro Matsuda AIST, Japan
Krystian Matusiewicz Intel Corporation, Poland
Florian Mendel Infineon Technologies, Germany
Nele Mentens Leiden University, The Netherlands, and KU Leuven,

Belgium
Atsuko Miyaji Osaka University, Japan
Michael Naehrig Microsoft Research, USA
Khoa Nguyen Nanyang Technological University, Singapore
Miyako Ohkubo NICT, Japan
Emmanuela Orsini KU Leuven, Belgium
Jiaxin Pan NTNU, Norway
Panos Papadimitratos KTH Royal Institute of Technology, Sweden

viii Organization

Alice Pellet–Mary CNRS and University of Bordeaux, France
Duong Hieu Phan Télécom Paris, Institut Polytechnique de Paris, France
Francisco

Rodríguez-Henríquez
CINVESTAV, Mexico

Olivier Sanders Orange Labs, France
Jae Hong Seo Hanyang University, South Korea
Haya Shulman Fraunhofer SIT, Germany
Daniel Slamanig AIT Austrian Institute of Technology, Austria
Ron Steinfeld Monash University, Australia
Willy Susilo University of Wollongong, Australia
Katsuyuki Takashima Waseda University, Japan
Qiang Tang The University of Sydney, Australia
Serge Vaudenay EPFL, Switzerland
Damien Vergnaud Sorbonne Université and Institut Universitaire

de France, France
Meiqin Wang Shandong University, China
Xiaoyun Wang Tsinghua University, China
Yongge Wang UNC Charlotte, USA
Wenling Wu Institute of Software, Chinese Academy of Sciences,

China
Chaoping Xing Shanghai Jiao Tong University, China
Sophia Yakoubov Aarhus University, Denmark
Takashi Yamakawa NTT Corporation, Japan
Bo-Yin Yang Academia Sinica, Taiwan
Yu Yu Shanghai Jiao Tong University, China
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Behzad Abdolmaleki
Gorjan Alagic
Orestis Alpos
Miguel Ambrona
Diego Aranha
Victor Arribas
Nuttapong Attrapadung
Benedikt Auerbach
Zeta Avarikioti
Melissa Azouaoui
Saikrishna Badrinarayanan
Joonsang Baek
Karim Baghery
Shi Bai
Gustavo Banegas
Subhadeep Banik

James Bartusek
Balthazar Bauer
Rouzbeh Behnia
Yanis Belkheyar
Josh Benaloh
Ward Beullens
Tim Beyne
Sarani Bhattacharya
Rishiraj Bhattacharyya
Nina Bindel
Adam Blatchley Hansen
Olivier Blazy
Charlotte Bonte
Katharina Boudgoust
Ioana Boureanu
Markus Brandt

Organization ix

Anne Broadbent
Ileana Buhan
Andrea Caforio
Eleonora Cagli
Sébastien Canard
Ignacio Cascudo
Gaëtan Cassiers
André Chailloux
Tzu-Hsien Chang
Yilei Chen
Jie Chen
Yanlin Chen
Albert Cheu
Jesús-Javier Chi-Domíguez
Nai-Hui Chia
Ilaria Chillotti
Ji-Jian Chin
Jérémy Chotard
Sherman S. M. Chow
Heewon Chung
Jorge Chávez-Saab
Michele Ciampi
Carlos Cid
Valerio Cini
Tristan Claverie
Benoît Cogliati
Alexandru Cojocaru
Daniel Collins
Kelong Cong
Craig Costello
Geoffroy Couteau
Daniele Cozzo
Jan Czajkowski
Tianxiang Dai
Wei Dai
Sourav Das
Pratish Datta
Alex Davidson
Lauren De Meyer
Elke De Mulder
Claire Delaplace
Cyprien Delpech de Saint Guilhem
Patrick Derbez
Siemen Dhooghe
Daniel Dinu
Christoph Dobraunig

Samuel Dobson
Luis J. Dominguez Perez
Jelle Don
Benjamin Dowling
Maria Eichlseder
Jesse Elliott
Keita Emura
Muhammed F. Esgin
Hulya Evkan
Lei Fan
Antonio Faonio
Hanwen Feng
Dario Fiore
Antonio Florez-Gutierrez
Georg Fuchsbauer
Chaya Ganesh
Daniel Gardham
Rachit Garg
Pierrick Gaudry
Romain Gay
Nicholas Genise
Adela Georgescu
David Gerault
Satrajit Ghosh
Valerie Gilchrist
Aron Gohr
Junqing Gong
Marc Gourjon
Lorenzo Grassi
Milos Grujic
Aldo Gunsing
Kaiwen Guo
Chun Guo
Qian Guo
Mike Hamburg
Ben Hamlin
Shuai Han
Yonglin Hao
Keisuke Hara
Patrick Harasser
Jingnan He
David Heath
Chloé Hébant
Julia Hesse
Ryo Hiromasa
Shiqi Hou

x Organization

Lin Hou
Yao-Ching Hsieh
Kexin Hu
Jingwei Hu
Zhenyu Huang
Loïs Huguenin-Dumittan
Arnie Hung
Shih-Han Hung
Kathrin Hövelmanns
Ilia Iliashenko
Aayush Jain
Yanxue Jia
Dingding Jia
Yao Jiang
Floyd Johnson
Luke Johnson
Chanyang Ju
Charanjit S. Jutla
John Kelsey
Taechan Kim
Myungsun Kim
Jinsu Kim
Minkyu Kim
Young-Sik Kim
Sungwook Kim
Jiseung Kim
Kwangjo Kim
Seungki Kim
Sunpill Kim
Fuyuki Kitagawa
Susumu Kiyoshima
Michael Klooß
Dimitris Kolonelos
Venkata Koppula
Liliya Kraleva
Mukul Kulkarni
Po-Chun Kuo
Hilder Vitor Lima Pereira
Russell W. F. Lai
Jianchang Lai
Yi-Fu Lai
Virginie Lallemand
Jason LeGrow
Joohee Lee
Jooyoung Lee
Changmin Lee

Hyeonbum Lee
Moon Sung Lee
Keewoo Lee
Dominik Leichtle
Alexander Lemmens
Gaëtan Leurent
Yannan Li
Shuaishuai Li
Baiyu Li
Zhe Li
Shun Li
Liang Li
Jianwei Li
Trey Li
Xiao Liang
Chi-Chang Lin
Chengjun Lin
Chao Lin
Yao-Ting Lin
Eik List
Feng-Hao Liu
Qipeng Liu
Guozhen Liu
Yunwen Liu
Patrick Longa
Sebastien Lord
George Lu
Yuan Lu
Yibiao Lu
Xiaojuan Lu
Ji Luo
Yiyuan Luo
Mohammad Mahzoun
Monosij Maitra
Christian Majenz
Ekaterina Malygina
Mark Manulis
Varun Maram
Luca Mariot
Loïc Masure
Bart Mennink
Simon-Philipp Merz
Peihan Miao
Kazuhiko Minematsu
Donika Mirdita
Pratyush Mishra

Organization xi

Tomoyuki Morimae
Pratyay Mukherjee
Alex Munch-Hansen
Yusuke Naito
Ngoc Khanh Nguyen
Jianting Ning
Ryo Nishimaki
Anca Nitulescu
Kazuma Ohara
Cristina Onete
Jean-Baptiste Orfila
Michele Orrù
Jong Hwan Park
Jeongeun Park
Robi Pedersen
Angel L. Perez del Pozo
Léo Perrin
Thomas Peters
Albrecht Petzoldt
Stjepan Picek
Rafael del Pino
Geong Sen Poh
David Pointcheval
Bernardo Portela
Raluca Posteuca
Thomas Prest
Robert Primas
Chen Qian
Willy Quach
Md Masoom Rabbani
Rahul Rachuri
Srinivasan Raghuraman
Sebastian Ramacher
Matthieu Rambaud
Shahram Rasoolzadeh
Krijn Reijnders
Joost Renes
Elena Reshetova
Mélissa Rossi
Mike Rosulek
Yann Rotella
Joe Rowell
Arnab Roy
Partha Sarathi Roy
Alexander Russell
Carla Ráfols

Paul Rösler
Yusuke Sakai
Amin Sakzad
Yu Sasaki
Or Sattath
John M. Schanck
Lars Schlieper
Martin Schläfer
Carsten Schmidt
André Schrottenloher
Jacob Schuldt
Jean-Pierre Seifert
Yannick Seurin
Yaobin Shen
Yixin Shen
Yu-Ching Shen
Danping Shi
Omri Shmueli
Kris Shrishak
Hervais Simo Fhom
Luisa Siniscalchi
Daniel Smith-Tone
Fang Song
Pratik Soni
Claudio Soriente
Akshayaram Srinivasan
Douglas Stebila
Damien Stehlé
Bruno Sterner
Christoph Striecks
Patrick Struck
Adriana Suarez Corona
Ling Sun
Shi-Feng Sun
Koutarou Suzuki
Aishwarya T
Erkan Tairi
Akira Takahashi
Atsushi Takayasu
Abdul Rahman Taleb
Younes Talibi Alaoui
Benjamin Hong Meng Tan
Syh-Yuan Tan
Titouan Tanguy
Alexander Tereshchenko
Adrian Thillard

xii Organization

Emmanuel Thomé
Tyge Tiessen
Radu Titiu
Ivan Tjuawinata
Yosuke Todo
Junichi Tomida
Bénédikt Tran
Jacques Traoré
Ni Trieu
Ida Tucker
Michael Tunstall
Dominique Unruh
Thomas Unterluggauer
Thomas van Himbeeck
Daniele Venturi
Jorge Villar
Mikhail Volkhov
Christine van Vredendaal
Benedikt Wagner
Riad Wahby
Hendrik Waldner
Alexandre Wallet
Junwei Wang
Qingju Wang
Yuyu Wang
Lei Wang
Senpeng Wang
Peng Wang
Weijia Wang
Yi Wang

Han Wang
Xuzi Wang
Yohei Watanabe
Florian Weber
Weiqiang Wen
Nils Wisiol
Mathias Wolf
Harry H. W. Wong
Keita Xagawa
Zejun Xiang
Jiayu Xu
Luyao Xu
Yaqi Xu
Shota Yamada
Hailun Yan
Wenjie Yang
Shaojun Yang
Masaya Yasuda
Wei-Chuen Yau
Kazuki Yoneyama
Weijing You
Chen Yuan
Tsz Hon Yuen
Runzhi Zeng
Cong Zhang
Zhifang Zhang
Bingsheng Zhang
Zhelei Zhou
Paul Zimmermann
Lukas Zobernig

Organization xiii

Contents – Part IV

Lattice Cryptanalysis

NTRU Fatigue: How Stretched is Overstretched? . 3
Léo Ducas and Wessel van Woerden

Faster Dual Lattice Attacks for Solving LWE with Applications
to CRYSTALS . 33

Qian Guo and Thomas Johansson

Lattice Sieving via Quantum Random Walks . 63
André Chailloux and Johanna Loyer

A Systematic Approach and Analysis of Key Mismatch Attacks
on Lattice-Based NIST Candidate KEMs . 92

Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu,
and Jintai Ding

Post-Quantum Cryptography

Gladius: LWR Based Efficient Hybrid Public Key Encryption with
Distributed Decryption. 125

Kelong Cong, Daniele Cozzo, Varun Maram, and Nigel P. Smart

Lattice-Based Group Encryption with Full Dynamicity and Message
Filtering Policy . 156

Jing Pan, Xiaofeng Chen, Fangguo Zhang, and Willy Susilo

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring:
QR-UOV . 187

Hiroki Furue, Yasuhiko Ikematsu, Yutaro Kiyomura,
and Tsuyoshi Takagi

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption
and Other Optimizations . 218

Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plancon,
and Gregor Seiler

Séta: Supersingular Encryption from Torsion Attacks 249
Luca De Feo, Cyprien Delpech de Saint Guilhem, Tako Boris Fouotsa,
Péter Kutas, Antonin Leroux, Christophe Petit, Javier Silva,
and Benjamin Wesolowski

SHealS and HealS: Isogeny-Based PKEs from a Key Validation Method
for SIDH . 279

Tako Boris Fouotsa and Christophe Petit

Advanced Encryption and Signatures

Adaptive Security via Deletion in Attribute-Based Encryption:
Solutions from Search Assumptions in Bilinear Groups 311

Rishab Goyal, Jiahui Liu, and Brent Waters

Public Key Encryption with Flexible Pattern Matching 342
Élie Bouscatié, Guilhem Castagnos, and Olivier Sanders

Bounded Collusion ABE for TMs from IBE. 371
Rishab Goyal, Ridwan Syed, and Brent Waters

Digital Signatures with Memory-Tight Security
in the Multi-challenge Setting . 403

Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu

(Compact) Adaptively Secure FE for Attribute-Weighted Sums
from k-Lin . 434

Pratish Datta and Tapas Pal

Boosting the Security of Blind Signature Schemes 468
Jonathan Katz, Julian Loss, and Michael Rosenberg

Zero-Knowledge Proofs, Threshold and Multi-Signatures

PrORAM: Fast Oðlog nÞ Authenticated Shares ZK ORAM 495
David Heath and Vladimir Kolesnikov

Compressed R-Protocols for Bilinear Group Arithmetic Circuits
and Application to Logarithmic Transparent Threshold Signatures 526

Thomas Attema, Ronald Cramer, and Matthieu Rambaud

Promise R-Protocol: How to Construct Efficient Threshold ECDSA
from Encryptions Based on Class Groups. 557

Yi Deng, Shunli Ma, Xinxuan Zhang, Hailong Wang, Xuyang Song,
and Xiang Xie

The One-More Discrete Logarithm Assumption in the Generic
Group Model . 587

Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez

xvi Contents – Part IV

Verifiably-Extractable OWFs and Their Applications
to Subversion Zero-Knowledge . 618

Prastudy Fauzi, Helger Lipmaa, Janno Siim, Michał Zając,
and Arne Tobias Ødegaard

Chain Reductions for Multi-signatures and the HBMS Scheme 650
Mihir Bellare and Wei Dai

Authenticated Key Exchange

Symmetric Key Exchange with Full Forward Security
and Robust Synchronization . 681

Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager,
and Lise Millerjord

Security Analysis of CPace . 711
Michel Abdalla, Björn Haase, and Julia Hesse

Modular Design of Role-Symmetric Authenticated Key
Exchange Protocols . 742

Yuting Xiao, Rui Zhang, and Hui Ma

Author Index . 773

Contents – Part IV xvii

Lattice Cryptanalysis

NTRU Fatigue: How Stretched
is Overstretched?

Léo Ducas(B) and Wessel van Woerden(B)

Cryptology Group, CWI, Amsterdam, The Netherlands
{leo.ducas,wvw}@cwi.nl

Abstract. Until recently lattice reduction attacks on NTRU lattices
were thought to behave similar as on (ring-)LWE lattices with the same
parameters. However several works (Albrecht-Bai-Ducas 2016, Kirchner-
Fouque 2017) showed a significant gap for large moduli q, the so-called
overstretched regime of NTRU.

With the NTRU scheme being a finalist to the NIST PQC competition
it is important to understand —both asymptotically and concretely—
where the fatigue point lies exactly, i.e. at which q the overstretched
regime begins. Unfortunately the analysis by Kirchner and Fouque is
based on an impossibility argument, which only results in an asymptotic
upper bound on the fatigue point. It also does not really explain how
lattice reduction actually recovers secret-key information.

We propose a new analysis that asymptotically improves on that of
Kirchner and Fouque, narrowing down the fatigue point for ternary
NTRU from q ď n2.783`o(1) to q “ n2.484`o(1), and finally explaining
the mechanism behind this phenomenon. We push this analysis further
to a concrete one, settling the fatigue point at q « 0.004 · n2.484, and
allowing precise hardness predictions in the overstretched regime. These
predictions are backed by extensive experiments.

1 Introduction

1.1 Context

One should certainly recognize that in the field of lattice-based cryptography
the NTRU cryptosystem of Hoffstein, Pipher and Silverman [HPS98,CDH+20]
was particularly ahead of its time. After two decades spent basing cryp-
tography [Ajt99,Reg05,SSTX09] on the worst-case hardness of lattice prob-
lems and concretising this theory into practical cryptosystems for standardisa-
tion [PAA+19,SAB+20,DKR+20], it is quite remarkable to see these construc-
tions landing not so far away from the original design of NTRU (q-ary lattices,
module structure over similar polynomial rings). In fact, it was even discovered
a posteriori, that, up to the choice of parameters, the NTRU scheme itself can
also be supported by worst-case hardness [SS11].

Regarding cryptanalysis, it was only recently discovered that the security
of NTRU is in fact more subtle than the problem of finding a single unusually
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 3–32, 2021.
https://doi.org/10.1007/978-3-030-92068-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_1

4 L. Ducas and W. van Woerden

short vector in a lattice. The first dent in this status quo came in 2016, from
two concurrent works work of Albrecht et al., and Cheon et al. [ABD16,CJL16],
which exploits the specific algebraic structure of the NTRU lattice to improve
upon pure lattice reduction attacks1. This approach was shown to be applicable
when the modulus q is large enough (say, super-polynomial), a regime coined
“overstretched”.

Shortly thereafter Kirchner and Fouque [KF17] showed that this improved
complexity does not require any algebraic structure, and is instead rooted in
the purely geometrical fact that the NTRU lattice contains an unusually dense
sublattice of large dimension, i.e. a sublattice of small determinant.2 They also
go further in their analysis, and conclude that moduli q as small as n2.783`o(1)

already belong to the overstretched regime —for random ternary secrets. In
particular, for q larger than this bound, the security of NTRU is significantly
less than that of Learning With Errors [Reg04] and of its Ring variant [SSTX09,
LPR13] using similar parameters.3

However, it is not so clear from the analysis of Kirchner and Fouque whether
this asymptotic quantity n2.783`o(1) is an estimate or merely an upper bound
on the fatigue point, that is the value of q separating the standard regime from
the overstretched regime. Their analysis is based on a lemma of Pataki and
Tural [PT08], that constraints the shape of lattice basis in terms of the volume
of their sublattices. While it allows to conclude that the dense sublattice must
be discovered after reducing the lattice basis beyond these constraints, it does
not really explain how lattice reduction ends up discovering the dense sublattice,
nor does it exclude that the discovery could happen earlier.

So far, it has been generally considered that only advanced schemes
—requiring very large q— such as NTRU-based Homomorphic Encryp-
tion [BLLN13] or candidate cryptographic multi-linear maps [GGH13] could be
affected by this overstretched regime. Yet, because the analysis of Kirchner and
Fouque is only asymptotic, and because it may only provide an upper bound on
the fatigue point, there is at the moment little documented evidence that the
overstretched regime may not in fact extend further down, maybe down to the
NTRU encryption scheme itself [HPS98,CDH+20]! Admittedly, this seems like a
far fetched concern: asymptotically this scheme chooses q “ O(n), with a hidden
constant between 4 and 5 in practice. However, this scheme being now a finalist
of the NIST standardisation process for post-quantum cryptography, it appears
rather imperious to refine our understanding of the phenomenon, and to finally
close this pending question.

We found further motivation to go down this rabbit hole by measuring
the concrete value of fatigue point experimentally. Until now, all documented

1 Though the idea had been inconclusively considered already in 2002 by Gentry,
Jonsson, Nguyen Stern and Szydlo as reported in [GS02, Sect. 6].

2 Note that one may associate a short vector to a dense sublattice of dimension 1.
3 In fact, the presence of n rotations of the secret key already implies a minor secu-

rity degradation compared to (Ring)-LWE already in the standard regime [MS01,
DDGR20].

NTRU Fatigue: How Stretched is Overstretched? 5

Fig. 1. Progressive BKZ with 8 tours per blocksize on matrix NTRU instances with
parameters n “ 127, σ2 “ 2

3
for several moduli q. Left: the first blocksize β at which

Progressive BKZ detects the Secret Key Recovery (SKRκ) or Dense Sublattice Discov-
ery (DSDκ) event. We did 10 runs per modulus q. For the 2016-estimates, we use the
geometric series assumption (GSA) for the shape of the basis and a probabilistic model
for the discovery of the secret vector (see Sect. 2.4). Right: the positions κ at which a
secret key or dense sublattice vector are detected over 80 runs per modulus.

experiments on the overstretched regime [ABD16,KF17,LW20] have focused on
rather large values of q, and only used weak lattice reduction (LLL [LLL82], BKZ
with blocksize 20): their goal was to demonstrate the claimed general behaviour
when parameters are far in the overstretched regime. On the contrary, we focus
our attention to the fatigue point for this preliminary experiment. That is, we
ran strong reduction (progressive-BKZ [Sch87,AWHT16] up to blocksize 60)
until a vector related to the secret key appeared for a range of moduli q. We
distinguished the standard regime from the overstretched regime by classifying
according to which event occurs first

– Secret Key Recovery (SKRκ): a vector as short as a secret key vector is
inserted in the basis at any given position κ.

– Dense Sublattice Discovery (DSDκ): a vector strictly longer than the secret
key but belonging to the dense sublattice generated by the secret key is
inserted in the basis at any given position κ.

The result (Fig. 1) is rather striking: for n “ 127, we start seeing a deviation
from the standard regime for q as small as 700, while a naive interpretation of
the prediction by Kirchner and Fouque [KF17] would suggest a fatigue point at
q « n2.783 « 700 000. We can conclude either that the asymptotic bound is not
tight, or that the hidden asymptotic term (the o(1) in n2.783`o(1)) is significantly
negative in practice. In any case, the bound of Kirchner and Fouque does not
seem to provide accurate concrete predictions.

Remark. At this point, we should clarify why the DSD event should essentially
be considered a successful attack. First, for q not too much larger than the fatigue
point, an SKR event typically quickly follows after the DSD event; what happens

6 L. Ducas and W. van Woerden

is that DSD events cascade, until the full dense sublattice has been extracted:
the first half of the reduced basis precisely generates the dense sublattice. Lattice
reduction will happen independently on each half of the basis, meaning that the
dimension of the search space for the secret key has effectively been halved, and
therefore making the problem much easier.

However, as q increases, DSD becomes easier and easier, to the point that
it becomes even easier than secret key recovery within the dense sublattice. In
other terms, there is a superstretched regime for larger q, where DSD does not
directly lead to SKR.

Nevertheless, we argue —essentially rephrasing [ABD16]— that the DSD
event is typically sufficient for an attack. First, the dense sublattice vector discov-
ered is of length significantly lower than q; in an FHE scheme such as [BLLN13]
it is sufficient to decrypt fresh ciphertexts.4 Secondly, in the case of cyclotomic
or circulant NTRU, it is possible to recover the secret key from the dense sublat-
tice by other means than pure lattice reduction; in particular the recent line of
work on the principal ideal-SVP [EHKS14,CDPR16,BEF+17] showed that this
can be done classically in sub-exponential time exp(Õ(

√
n)) and quantumly in

polynomial time.

1.2 Our Work

Having identified precisely what event distinguishes the standard regime of
NTRU from its overstretched regime, we may now proceed to a refined anal-
ysis, and determine precisely both the fatigue point and the precise cost5 of
attacks in the overstretched regime. Our refined analysis diverges from the one
of Kirchner and Fouque [KF17] on the following points:

1. we exploit the fact that BKZ runs SVP on large blocks (β ě 2) not only to
deduce the shape of the basis, but also to actually discover dense sublattice
vectors,

2. we do not solely focus on the behaviour at position κ “ n ´ β ` 1 out of
d “ 2n dimensions, but instead predict the most relevant position,

3. we propose an average-case analysis of volumes of the relevant lattices and
sublattices, leading to a concrete prediction rather than a worst-case bound,

4. we also validate our intermediate and final predictions quantitatively with
extensive experiments.

We note that contributions 1 and 2 alone already give us an important asymp-
totic result: the fatigue point of NTRU is indeed lower than predicted by Kirchner
and Fouque, namely, it should happen at q “ n2.484`o(1) instead of n2.783`o(1).

4 The secret key being shorter is only required to deal with ciphertexts obtained by
homomorphic computation.

5 In this work, we only measure cost of lattice reduction in terms of the required BKZ
blocksize; the computational cost of BKZ is essentially an orthogonal question.

NTRU Fatigue: How Stretched is Overstretched? 7

Furthermore, our concrete average case analysis also differentiates the cir-
culant version of NTRU [HPS98] from its matrix version [CG05,GGH+19]. We
note minor deviations in the concrete analysis of volumes of relevant sublattices,
that on average slightly favours the attacker in the matrix case, but also shows
a larger variance in the concrete hardness of the circulant case.

In summary: we achieve an explicative and predictive model for the fatigue of
NTRU, with concrete predictions confirmed in practice. In particular, the fatigue
point is estimated to be at q « 0.004 · n2.484 for n ą 100. All our artefacts for
experiments and predictions are open-source and can be accessed at https://
github.com/WvanWoerden/NTRUFatigue. These are based on the FPLLL and
FPyLLL libraries [dt21a,dt21b].

Impact. We wish to clarify that this work does not contradict the concrete secu-
rity of the NTRU candidate to the NIST competition [CDH+20]; on the contrary,
we close a pending question regarding a potential vulnerability.

Limitation: the Lucky-Lifts. During our experiments, we also noted rare occur-
rence of DSD events that qualitatively differ from what we expected. Namely,
the vector from the dense sublattice was found at positions κ quite larger than
what was predicted by our model. More remarkable, these vectors were extremely
unbalanced: their 2n ´ κ last (Gram-Schmidt) coordinates were much smaller
than the κ first coordinates We call these DSD events lucky-lifts (DSD-LL), while
the one we model and mostly observe are called after the Pataki-Tural Lemma
(DSD-PT). Despite those two phenomena being very distinct, they nevertheless
occured for the same BKZ blocksizes β, at least in the range of parameters we
could experiment with.

It could very well be that these rare DSD-LL events are just artefacts of the
modest parameters of our experiments and that these events vanish as the dimen-
sion grows. Yet, as they seem of a very different nature, a definitive conclusion
would require a dedicated study.

1.3 Organisation

We introduce some preliminaries, the NTRU lattice, and the state-of-the-art
estimates in Sect. 2. In Sect. 3 we introduce our new DSD-PT estimate and give
an asymptotic analysis. In Sect. 4 we give an average-case analysis to construct
a concrete estimator. In the final Sect. 5 we compare our estimate with experi-
ments.

https://github.com/WvanWoerden/NTRUFatigue
https://github.com/WvanWoerden/NTRUFatigue

8 L. Ducas and W. van Woerden

2 Preliminaries

2.1 Notation and Distributions

All vectors and matrices are denoted by bold lower and upper case letters respec-
tively. All vectors are column-vectors and we write B “ [b0, . . . ,bn´1] for a
matrix where the i-th column vector is bi. If a matrix B P R

dˆn has full rank
n we denote by L(B) :“ {Bx : x P Z

n} the lattice spanned by the columns
of B. We call a lattice vector v P L primitive if it is not a strict integer multi-
ple of another lattice vector. For a basis B and i P {0, . . . , d ´ 1} we define πi

as the orthogonal projection away from b0, . . . ,bi´1, and the Gram-Schmidt
vectors as b̊0, . . . , b̊d´1 where b̊i :“ πi(bi). We write B[l:r) for the matrix
[πl(bl), . . . , πl(br´1)], and denote the projected6 sublattice L(B[l:r)) as L[l:r)

when the basis is clear from the context. We denote the Euclidean norm of a
vector v by ‖v‖ and the volume of a lattice by vol(L(B)) :“ ∏n´1

i“0 ‖b̊i‖. We
write λ1(L) :“ min

vPL\{0}
‖v‖ for the first minimum of a lattice L. For a lattice L

we denote the dual lattice as L˚ :“ {w P span(L) : 〈w,v〉 P Z for all v P L}. We
use ‘claim’ to refer to an informal statement based on heuristics.

We denote the continuous centered Gaussian (normal) distribution with vari-
ance σ2 by χσ2 . We denote the unit sphere over k coordinates as Sk´1 and call
the uniform distribution over Sk´1 the spherical distribution. We write Bd

1 for the
d-dimensional unit ball. We write the chi-square distribution with k degrees of
freedom as χ2

k,σ2 :“ ∑k
i“1 X2

i , where X1, . . . , Xk are independently distributed
as χσ2 . The chi-square distribution has expectation kσ2, but for our concrete
estimates we consider the log-expectation.

Lemma 2.1. Let X be distributed as χ2
k,σ2 , then

E [ln (X)] “ ln(2σ2) ` ψ(k{2),
where ψ(x) :“ Γ ′(x){Γ (x) is the digamma function.

2.2 NTRU and Lattice Attacks

We start with the historical definition of NTRU.

Definition 2.2 (NTRU). Let n be prime, q a positive integer and let f , g P
(Z{qZ)[X] be polynomials of degree n with small coefficients sampled from some
distribution χ under the condition that f is invertible in Rq :“ (Z{qZ)[X]{(Xn´
1). The pair (f , g) forms the secret key, and the public key is defined as h :“
g{f mod Rq. The NTRU problem is to recover any rotation (Xif ,Xig) of the
secret key from h.

For NTRUencrypt [HPS98,CDH+20] f and g have ternary coefficients, with
a fixed number of about n{3 of each value in {´1, 0, 1}. For our analysis we

6 When l “ 0, no projection is applied, and L[0:r) is simply a sublattice of L.

NTRU Fatigue: How Stretched is Overstretched? 9

consider the case where each coefficient is sampled from a discrete Gaussian
over Z with some variance σ2 ą 0. For simplicity the ternary case is treated as
a discrete Gaussian with variance σ2 “ 2

3 .
More generally we consider a matrix description of NTRU where the polyno-

mials are replaced by matrices F ,G,H P Z
nˆn such that H :“ G · F´1 mod q

[CG05,GGH+19]. Variants of NTRU, e.g. based on different algebraic rings
[BBC+20], can be encoded in the structure of the matrices. For example,
the original problem can be encoded by setting Fi,j :“ f(i`j mod n) where
f “ ∑n´1

i“0 fiX
i, for each polynomial respectively. We call the original vari-

ant circulant NTRU, based on the resulting shape of the matrices F ,G, and we
treat f , g as n-dimensional vectors. We also consider the variant, called matrix
NTRU, where the matrices F ,G have no extra structure and the coefficients are
independently sampled from a discrete Gaussian.

To reduce the NTRU problem to a lattice problem we define the NTRU
lattice, which contains a particularly dense sublattice generated by the secret
key.

Definition 2.3. Let (n, q,F ,G,H) be an NTRU instance. We define the NTRU
lattice as

LH ,q :“
(

qIn H
0 In

)

· Z2n,

and its (secret) dense sublattice of rank n by:

LGF :“ BGF · Zn Ă LH ,q,where BGF :“
(
G
F

)

.

Solving the NTRU problem is equivalent to recovering the dense sublattice
basis BGF “ [G;F] up to some permutation of the columns. For uniformity of
notation we will denote such a column by (g|f). These column vectors have a
length of about ‖(g|f)‖ « √

2nσ2, which for common parameters is much shorter
than the expected minimal length λ1(LH ,q) « √

nq{(πe) of the full lattice LH ,q

for a truly uniform random H P (Z{qZ)nˆn. To recover the secret key we thus
have to find these exceptionally short vectors in the full lattice LH ,q.

In [CS97] Coppersmith and Shamir showed that we can slightly relax the
problem as any small vector from the dense sublattice LGF is enough to decode
a message. We therefore focus our analysis on the recovery of elements from
LGF , and not (directly) on the full secret basis BGF . To recover short vectors
we resort to lattice reduction.

2.3 Lattice Reduction

Any lattice L “ L(B) with basis B P R
dˆd has (for d ą 1) an infinite number of

other bases B ·U with U P GLd(Z). The goal of lattice reduction is to find a good
basis: the basis vectors are preferably short and somewhat orthogonal. Looking
at the Gram-Schmidt vectors b̊0, . . . , b̊d´1 we have the invariant

∏d´1
i“0 ‖b̊i‖ “

10 L. Ducas and W. van Woerden

det(B) “ vol(L) which is independent of the basis. Therefore decreasing the
length of the first basis vector b0 “ b̊0 forces some of the other Gram-Schmidt
vectors to increase in length. We call these lengths (‖b̊i‖)i“0,...,d´1 the profile of
a basis B. A good basis has a well balanced profile; in particular one that does
not decrease too fast.

The most famous lattice reduction algorithm is the polynomial time LLL
algorithm, which gives some guarantees on the slope of an LLL-reduced basis.
We consider a generalisation, namely the BKZ algorithm, that gives a flatter
slope, but at a higher cost. A basis is BKZ reduced with blocksize β if b̊κ is
a shortest vector of the projected sublattice L[κ:min(κ`β,d)) at each position κ.
LLL-reduction corresponds to the case that β “ 2.

Definition 2.4 (BKZ). A basis B “ [b0, . . . ,bd´1] is called BKZ-β reduced if

‖b̊κ‖ “ λ1(L[κ:min (κ`β,d))) for all κ “ 0, . . . , d ´ 1.

A BKZ-reduced basis has several provable bounds on the slope of the profile. In
the context of cryptanalysis we are more interested in the average-case behaviour
and thus we fall back on heuristics to describe the shape of a BKZ-reduced
profile. The most commonly used heuristic for lattices is the Gaussian Heuristic,
that states that for a measurable volume V the number of lattice points |L X V|
approximately equals vol(V){ vol(L). Applying this to a ball allows to estimate
the first minimum of a lattice.

Heuristic 2.5. Let L be a d-dimensional lattice with volume vol(L). The expec-
tation of the first minimum λ1(L) under the Gaussian Heuristic is given by

gh(L) :“ vol(L)1{d

vol(B1)1{d « √
d{(2πe) · vol(L)1{d.

We also denote gh(d) « √
d{(2πe) for the expected first minimum of a

d-dimensional lattice with volume 1.

Applying the above heuristic to the value of ‖b̊κ‖ “ λ1(L[κ:min (κ`β,d)))
at each position κ gives us relations between the Gram-Schmidt lengths
‖b̊0‖ , . . . ,

∥
∥b̊d´1

∥
∥. Solving these relations for β ! d shows that ‖b̊κ‖ { ‖b̊κ`1‖ «

αβ for some constant αβ only depending on β. So heuristically the profile forms a
geometric series. This is made more precise by the Geometric Series Assumption.

Heuristic 2.6 (Geometric Series Assumption (GSA)). Let B be a BKZ-β
reduced basis, then the profile satisfies

ln(‖b̊i‖) “ d ´ 1 ´ 2i
2

· ln(αβ) ` ln(det(B))
d

,

where αβ “ gh(β)2{(β´1).

NTRU Fatigue: How Stretched is Overstretched? 11

The GSA is reasonably precise for say β ě 50 and a not too large blocksize β ! d
compared to the lattice dimension.

The BKZ algorithm (see Algorithm 1) computes a BKZ-reduced basis from
any other basis. The algorithm greedily attempts to satisfy the BKZ condition at
each position by computing a shortest vector in each block B[κ:min (κ`β,d)), and
replacing the basis vector bκ accordingly. This makes the basis BKZ-β reduced
at position κ, but might invalidate the condition at other positions. Applying
this once to all positions κ “ 0, . . . , d ´ 2 is called a tour. The BKZ algorithms
repeats such tours until the basis remains unchanged and is thus BKZ-reduced.

Algorithm 1: The BKZ algorithm.
Data: A lattice basis B, blocksize β.
while B is not BKZ-β reduced do

for κ “ 0, . . . , d ´ 2 do // A single BKZ-β tour
w ← a shortest vector in L (

B[κ:min (κ`β,d))

)
;

Lift w to a full vector v P L (
B[0:min (κ`β,d))

)
s.t. πκ(v) “ w;

Insert v in B at position κ and use LLL to resolve linear
dependencies;

The number of tours is polynomially bounded, and in practice not much
improvement is attained after say a few dozen tours. The cost of BKZ is thus
mainly dominated by the exponential (in β) cost of finding a shortest vector
in a β-dimensional lattice. Progressive BKZ reduces this cost in practice, where
instead of running many tours of BKZ-β, one runs only a few tours for increasing
β′ “ 2, 3, . . . , β.

For our experiments we also added a hook to BKZ, using secret key infor-
mation, to detect if a vector v is part of the dense sublattice LGF and to abort
early if this is the case.

While the Geometric Series Assumption gives a good first order estimate
of the basis profile after BKZ-reduction, it is known to be inaccurate in small
dimensions or when the dimension is only a small multiple of the blocksize.
Additionally it does not account for the slower convergence when running pro-
gressive BKZ with only a few tours. To resolve this problem [CN11] introduced
a BKZ simulator based on the Gaussian Heuristic, that was later refined in
[YD17,BSW18]. These allow for accurate and efficient predictions of the profile
shape for random lattices, even for progressive BKZ with a limited number of
tours.

Behaviour on q-ary lattices. While by now the behaviour of BKZ on random
lattices is reasonably understood, this is less the case for q-ary lattices (for certain
parameters) such as the NTRU lattice LH ,q.

Definition 2.7 (q-ary lattices). A lattice L of dimension d is said to be q-ary
if for some q ą 0 we have

qZd Ă L Ă Z
d.

12 L. Ducas and W. van Woerden

Note that the first n basis vectors of LH ,q are orthogonal q-vectors (q, 0, . . . , 0),
(0, q, 0, . . . , 0), . . ., and so the initial basis profile starts with ‖b̊0‖ “ · · · “
‖b̊n´1‖ “ q. Additionally after projecting away from these q-vectors, the
remaining basis vectors are again orthogonal with length 1, and thus we have
‖b̊n‖ “ · · · “ ∥

∥b̊d´1

∥
∥ “ 1. Note that in the BKZ algorithm the length of b0 can

not increase, and is thus always at most q. Also b1 can not increase in length if
b0 remains unchanged, and so on. For dual-BKZ or the self-dual LLL the profile
lengths can not drop below 1 anywhere by the same reasoning. Still LLL and
BKZ guarantee that the profile slope in the middle is not too steep. So after
LLL reduction the profile must be flat at the start and end, and have a sloped
part in the middle, we call this a Z-shape [AD21]. Because BKZ is not self-dual
we do not have any guarantee that the last profile elements do not drop below
1, however we could for example run BKZ only on an appropriate middle con-
text L[n´m:n`m) to force this behaviour. With this description one would expect
the middle part to follow the GSA, leading to an alternative heuristic for q-ary
lattices.

Heuristic 2.8 (ZGSA). Let B be a basis of a 2n-dimensional q-ary lattice L
with n q-vectors. After BKZ-β reduction the profile has the following shape:

‖b̊i‖ “
⎧
⎪⎨

⎪⎩

q if i ď n ´ m,
√

q · α
2n´1´2i

2
β , if n ´ m ă i ă n ` m ´ 1,

1, if i ě n ` m ´ 1,

where αβ “ gh(β)2{(β´1), and m “ 1
2 ` ln(q)

2 ln(αβ)
.

Again this gives us a good first order estimate. Asymptotically setting β “ B · n
and q “ nQ, we obtain ln(αβ) “ ln(n)

B·n ` O
(
n´1

)
, and m “ 1

2QB · n ` O
(

n
ln(n)

)
.

2.4 Estimates

The main question of our work is to better understand how BKZ recovers the
dense sublattice LGF from an NTRU lattice LH ,q. Several works exist that
give estimates on the blocksize β for which BKZ successfully recovers the secret
key (g,f), or more generally a vector from the dense sublattice. We discuss
the state-of-the-art estimates, one known as the 2016 Estimate [ADPS16] with
further refinements [DDGR20,PV21], and one by Kirchner and Fouque [KF17].

While the 2016 Estimate already gives a clear explanation how BKZ recovers
a suitable vector, the Kirchner and Fouque estimate is only based on an impos-
sibility result. To be more precise about what we mean with recovery we define
the following two events.

Definition 2.9 (BKZ Events). For a BKZ run on an NTRU lattice L with
dense sublattice LGF we define two events:

1. Secret Key Recovery (SKR): The first time one the secret keys (g|f) is
inserted.

NTRU Fatigue: How Stretched is Overstretched? 13

2. Dense Sublattice Discovery (DSD): The first time a dense lattice vector
v P LGF strictly longer than the secret key(s) is inserted.

We further specify SKRκ and DSDκ when the insertion takes place at position
κ in the basis.

2016 Estimate [ADPS16] for SKR. The 2016 Estimate is aimed at the more
general problem of detecting an unusually short vector in a lattice. To obtain an
estimate for the NTRU problem, and more specifically the SKR event, we apply
it to the unusually short vector (g|f) P LH ,q.

Claim 2.10 (SKR – 2016 Estimate). Let L be a lattice of dimension d and
let v P L be a unusually short vector ‖v‖ ! gh(L). Then under the Geometric
Series Assumption BKZ recovers v if

√
β{d · ‖v‖ ă √

αβ
2β´d´1 · vol(L)1{d,

where αβ “ gh(β)2{(β´1).

The left hand side of the inequality is an estimate for ‖πd´β(v)‖, while the right
hand size is the expected norm of b̊d´β under the GSA. When the inequality is
satisfied we expect that the shortest vector in L[d´β:d) is in fact (a projection
of) the unusually short vector, and thus it is inserted by BKZ at position d ´ β.

For q-ary lattices we can easily change the estimate to make use of the ZGSA
instead, although for successful blocksizes b̊d´β will not lie on the flat tail-part,
and thus this will not change anything. Additionally for q-ary lattices it can
be beneficial to apply the estimate not to the full lattice but on some projected
sublattice L[i:d) for i ď n; the left hand side of the equation is expected to remain
unchanged, while the right hand side might decrease as vol(L) loses a factor qi.
Note that we do not necessarily have to explicitly let BKZ act on this projected
sublattice, as BKZ already does this naturally.

Asymptotics. Consider the NTRU lattice LH ,q and suppose that q “ Θ(nQ),
‖v‖ “ ‖(g,f)‖ “ Θ(nS) and β “ (B ` o(1))n. Applying the 2016 Esti-
mate the right hand side of the inequality is minimised when only keeping
k “ min

(
(
√
2BQ ´ 1)n, n

)
of the q-vectors, so by applying the estimate to the

projected sublattice LH ,q
[n´k:2n). For S ě 1 we have k “ n, and solving the equa-

tion gives B “ 2
Q`2´2S . For S ă 1 we have k “ (

√
2BQ ´ 1)n, and solving gives

B “ 2Q
(Q`1´S)2 . Note in particular that in terms of q we require a blocksize of

β “ Θ̃ (n{ ln(q)).

Refinements. The 2016 Estimate gives a clear explanation on how and where the
secret vector is recovered. This also allows to further refine the estimate and give
concrete predictions. For example by using a BKZ-simulator instead of the GSA,
and by accounting for the probability that after the projection ‖πd´β(v)‖ has
been found, it is successfully lifted to the full vector v. Also instead of working

14 L. Ducas and W. van Woerden

with the expected length of the projection, we can directly model the probability
distribution under the assumption that v is distributed as a Gaussian vector.
Such refinements were applied in [DDGR20,PV21], and the resulting concrete
predictions match with experiments to recover an unusually short vector. In this
work, we use the (Z)GSA for the basis shape, but adjusting the slope to account
for the speed of convergence using experimentally determined values. However,
we do use the advanced probabilistic model for the detection and lifting of the
short vector.

For NTRU there is not just a single unusually short vector, but there are
n “ d{2 of them, which makes it more likely that at least one of them is recov-
ered. Because the refined concrete estimator already works with a probability
distribution, we can easily take multiple vectors into account. The resulting pre-
dictions for the SKR event match the experiments reasonably well for smallish
q as can be seen in Fig. 1. For large q, the so-called overstretched regime, the
estimate is however too pessimistic.

Kirchner–Fouque Estimate [KF17] for DSD. In 2016 Albrecht, Bai and
Ducas [ABD16] showed that for very large values of q one can mount an alge-
braic subfield attack on the cyclotomic NTRU problem with sub-exponential or
even polynomial complexity. This allowed them to break several homomorphic
encryption schemes that relied on NTRU in the overstretched regime.

However soon after, Kirchner–Fouque [KF17] showed that this elaborate alge-
braic attack was unnecessary: (dual-)BKZ already behaves much better in this
regime than the 2016 Estimate predicts, leading to the same asymptotic improve-
ments. The key idea behind their analysis is that in the overstretched regime the
NTRU lattice LH ,q contains an exceptionally dense sublattice LGF of low vol-
ume. This gives a constraint on the basis profile via the following lemma by
Pataki and Tural.

Lemma 2.11 (Pataki and Tural [PT08]). Let L be a d-dimensional lattice
with basis b0, . . . ,bd´1. For any k-dimensional sublattice L′ Ă L we have

vol(L′) ě min
J

∏

jPJ

∥
∥b̊j

∥
∥ ,

where J ranges over the k-size subsets of {0, . . . , d ´ 1}.
Applying Lemma 2.11 to the n-dimensional sublattice LGF Ă LH ,q, and assum-
ing a non-increasing profile, we obtain an upper bound on the volume of LH ,q

[n:2n).
Assuming the ZGSA the latter volume increases when running BKZ-β for
increasing blocksizes, eventually contradicting the upper bound. This allows us
to detect if a q-ary lattice is in fact an NTRU lattice, but additionally Kirchner–
Fouque argue that BKZ must somehow have detected the dense sublattice after
this point. Based on this impossibility argument they introduced the following
estimate.

Claim 2.12 (DSD – Kirchner–Fouque Estimate). Let LH ,q be an NTRU
lattice of dimension 2n, with dense sublattice LGF Ă LH ,q. Under the Z-shape

NTRU Fatigue: How Stretched is Overstretched? 15

Geometric Series Assumption BKZ-β triggers the DSD event if

vol(LGF) ă q
m´1

2 · α
´ 1

2 (m´1)2

β ,

where αβ “ gh(β)2{(β´1), and m “ 1
2 ` ln(q)

2 ln(αβ)
.

To apply this estimate we can bound vol(LGF) using the Hadamard inequality
by ‖(g|f)‖n. As a first approximation this is reasonably tight because the secret
basis BGF is close to orthogonal.

Asymptotics. Consider the NTRU lattice LH ,q and suppose that q “ Θ(nQ),
‖(g,f)‖ “ Θ(nS) and β “ (B`o(1))n. We apply the Kirchner–Fouque Estimate
using that m « BQ

2 n and αβ « (Bn)1{(Bn). The left hand side of the inequality

is bounded by nnS`o(n) and the right hand side equals n
BQ2

8 n`o(n); solving gives
B ě 8S

Q2 . Note that in terms of q we require a blocksize of β “ Θ̃
(
n{ ln2(q)),

improving upon the 2016 Estimate by a factor ln(q). So for large enough q the
Kirchner–Fouque Estimate predicts a lower successful blocksize than the 2016
Estimate. We call the value of q for which BKZ starts to behave better than
predicted by the 2016 Estimate the fatigue point. For the common situation
that S “ 1

2 , e.g. when each secret coefficient has standard deviation σ “ Θ(1),
the Kirchner–Fouque Estimate predicts that the fatigue point lies at some q ď
n2.783`o(1).

3 A New Estimate

3.1 Preliminary Experiments

Both the 2016 Estimate and the Kirchner–Fouque Estimate analyse an event
that leads to successful recovery of a vector of the dense NTRU sublattice. This
only gives an upper bound on the hardness; a different event leading to the
recovery might happen at a lower blocksize. Additionally the Kirchner–Fouque
Estimate is only based on an impossibility result and gives no explanation as to
how BKZ actually recovers a vector from the dense sublattice. In order to derive
a tight estimate we first run experiments to track down at which point a dense
sublattice vector is actually found during the BKZ tours, i.e. when the DSDκ

event is triggered and at what position. Then we model this event in order to
hopefully derive a tight estimate.

We run progressive BKZ on NTRU lattices LH ,q for fixed parameters n “
127, σ2 “ 2

3 , and several moduli q. For each BKZ insertion at position κ we check
if the inserted vector belongs to the dense sublattice LGF , and thereby if the
SKRκ or DSDκ event takes place, after which we stop.

The results are shown in Fig. 1. We take a closer look at the observed SKRκ

and DSDκ events and where they are triggered. We can group our observations
in three typical circumstances.

16 L. Ducas and W. van Woerden

– SKR-2016. The SKRκ event is mostly triggered for small values of q, and this
mostly happens at the position κ “ 2n ´ β, so in the last block [2n ´ β : 2n),
or slightly earlier. This coincides exactly with the SKR2n´β event as predicted
by the 2016 Estimate [ADPS16,AGVW17].

– DSD-PT. The DSDκ event is mostly triggered at positions κ “ n ` k ´ β
for 0 ă k ! n. The inserted dense vector v is often significantly longer than
the secret key but still shorter than the q-vectors. On closer inspection the
projected length ‖πn`k´β(v)‖ is close to the expected length

√
β

n`k ‖v‖ for
all instances, more specifically the length of v is well balanced over the Gram-
Schmidt directions b̊0, . . . , b̊n`k´1. We name these events after the Pataki–
Tural Lemma (DSD-PT).

– DSD-LL. For a few instances the DSDκ event is triggered at large positions
κ, up to 2n´β. The inserted dense vector v is again significantly longer than
the secret key, but it has an unexpectedly short projection πκ(v) on the BKZ
block [κ : κ ` β). We call these events lucky-lifts (DSD-LL).

The DSD-LL event could potentially be explained by the relatively large amount
of shortish vectors in the close to orthogonal dense sublattice LGF compared to
what one would expect based on the Gaussian Heuristic. These many vectors
might compensate for the low probability event that: (1) such a long vector has
such a short projection, and (2) the projected vector is correctly lifted by Babai’s
nearest plane algorithm (thus a lucky lift). The DSD-LL event remains rare for
all parameters we used in our experiments, and the successful blocksizes do not
seem to deviate from the DSD-PT events. Although we think this circumstance
deserves further analysis we therefore base our estimate on the more common
DSD-PT event.

For the DSD-PT event the projected length ‖πn`k´β(v)‖ is close to√
β

n`k ‖v‖, and thus the inserted dense vector v must in fact be (close to) a

shortest vector of the intersected sublattice LH ,q
[0:n`k) X LGF . If not, the short-

est vector would typically have an even smaller projection and would thus be
inserted instead. For ease of analysis we therefore assume that v is a shortest
vector of LH ,q

[0:n`k) X LGF . In short our new estimate can be described as follows.

Claim 3.1 (DSD-PT estimate). A tour of BKZ-β triggers the DSD event if

πn`k´β(v) ă ∥
∥b̊n`k´β

∥
∥ ,

where v is a shortest vector of LH ,q
[0:) X LGF for some 0 ă k ď n.

3.2 Asymptotic Analysis

We denote the intersected sublattice by LGF
X[0:r) :“ LH ,q

[0:r)XLGF . To directly apply
Claim 3.1 we are interested in the length of v, and thus the value of λ1

(LGF
X[0:n`k)

)
.

We break down the analysis into several steps. In order to obtain a bound on

NTRU Fatigue: How Stretched is Overstretched? 17

the first minimum we first compute a bound on the volume of the intersection
LGF

X[0:n`k) in terms of the basis profile and the volume of LGF . Together with the
GSA and a simple bound for vol(LGF) we can then apply Minkowski’s bound on
the first minimum. By optimising κ “ n ` k ´ β we obtain our new asymptotic
estimate.

Intersection. To understand the behaviour of the volume of the intersected
lattice we first need a small technical Lemma.

Lemma 3.2 ([DDGR20]). Given a lattice L with volume vol(L), and a prim-
itive vector v with respect to L˚. Let vK denote the subspace orthogonal to v.
Then L X vK is a lattice with volume vol(L X vK) “ ‖v‖ · vol(L).
The following Lemma generalises the Pataki–Tural Lemma on which the estimate
of Kirchner–Fouque is based. More specifically the Pataki–Tural Lemma only
considers the case where the intersection is always trivial (s “ 0).

Lemma 3.3 (Generalisation of [PT08]). Let L be a d-dimensional lattice
with basis b0, . . . ,bd´1, and consider the sublattice L[0:s). For any n-dimensional
sublattice L′ Ă L we have

vol(L[0:s) X L′) ď vol(L′) ·
⎛

⎝min
J

∏

jPJ

∥
∥b̊j

∥
∥

⎞

⎠

´1

,

where k :“ dim(L[0:s) X L′) and J ranges over the (n ´ k)-size subsets of
{s, . . . , d ´ 1}.
Proof. We write L′

X[0:r) :“ L[0:r) X L′. For j “ k, . . . , n we define sj P {s, . . . , d}
as the maximal index such that dim

(
L′

X[0:sj)

)
“ j, i.e. we obtain the following

strict chain of sublattices:

L′
X[0:s) “ L′

X[0:sk)
Ĺ L′

X[0:sk`1)
Ĺ · · · Ĺ L′

X[0:sn) “ L′.

Fix j P {k, . . . , n ´ 1}. Because the basis vectors b0, . . . ,bd´1 are linearly inde-
pendent we have that L′

X[0:s(j`1))
“ L′

X[0:sj`1). This allows us to focus on the
volume decrease from index sj ` 1 to sj , for which we know that

L′
X[0:sj)

“ L′
X[0:sj`1) X (b̊sj

)K,

where (b̊sj
)K denotes the subspace orthogonal to b̊sj

. The corresponding dual

basis of b0, . . . ,bsj
contains a dual vector d P L˚

[0:sj`1) of length
∥
∥b̊sj

∥
∥´1 with

span(d) “ span(b̊sj
). Let π be the orthogonal projection onto span

(L′
X[0:sj`1)

)
,

then π(d) P (L′
X[0:sj`1)

)˚. Let m P Zě1 be such that π(d){m is primitive w.r.t.
(L′

X[0:sj`1)

)˚, then by Lemma 3.2 we obtain:

vol
(
L′

X[0:sj)

)
“ vol

(
L′

X[0:sj`1)

)
· ‖π(d){m‖ ď vol

(
L′

X[0:sj`1)

)
·
∥
∥
∥b̊sj

∥
∥
∥

´1

.

We conclude the proof by chaining the above inequality for j “ k, . . . , n ´ 1. ��

18 L. Ducas and W. van Woerden

Before recovering a dense lattice vector we heuristically assume that there is no
special relation between the current lattice basis and the dense sublattice. More
specific we can consider that the span of b0, . . . ,bn´1 and that of LGF behave
like random n-dimensional subspaces, and thus they have a trivial intersection
with high probability in the 2n-dimensional space. As a direct result we have
that dim

(
LGF

X[0:n`k)

)
“ k for k “ 0, . . . , n. Applying this to Lemma 3.3 we obtain

the following corollary.

Corollary 3.4. Let LH ,q be an NTRU lattice with dense sublattice LGF of
dimension n, if dim

(
LGF

X[0:n`k)

)
“ k for some k ě 0, then

vol
(
LGF

X[0:n`k)

)
ď vol

(LGF
) ·

⎛

⎝
d´1∏

j“n`k

∥
∥b̊j

∥
∥

⎞

⎠

´1

.

Note that Corollary 3.4 already shows that the new estimate can not be worse
than the Kirchner–Fouque Estimate. Namely if the Kirchner–Fouque Estimate
is triggered, then for intersection dimension k “ 1 the right hand side is smaller
than ‖b̊n‖. Assuming a non-decreasing profile we then have λ1

(LGF
X[0:n`1)

) “
vol

(LGF
X[0:n`1)

) ď ‖b̊n‖ ď ∥
∥b̊n`1´β

∥
∥, which implies that BKZ-β would find a

dense sublattice vector in this block (or earlier).

Volume Dense Sublattice. To use Corollary 3.4 we also need to bound the
volume of the dense sublattice LGF . Because the secret basis is close to orthog-
onal the Hadamard Inequality vol(LGF) ď ‖(g|f)‖n is sufficient as a first order
approximation.

Conclusion. To obtain a heuristic asymptotic estimate we will assume that
before finding a dense lattice vector the basis follows the ZGSA shape.

Claim 3.5. The BKZ algorithm with blocksize β “ Bn applied to an NTRU
instance with parameters q “ Θ(nQ), ‖(g|f)‖ “ O(nS) triggers the DSD event
if

B “ 8S
Q2 ` 1

` o(1).

Justification. By the Hadamard Inequality we have ln(vol(LGF)) ď Sn ln(n) `
O(n). Let k :“ Kn ą 0. Heuristically we expect that dim(LH ,q

[0:n`k) X LGF) “ k,
and thus by Corollary 3.4 and by assuming the ZGSA we obtain a bound on the
volume of the intersected sublattice:

ln(vol(LH ,q
[0:n`k) X LGF)) ď Sn ln(n) ´ 1

2

n`m´1∑

i“n`k

(

Q ` 2n ´ 1 ´ 2i
Bn

)

ln(n) ` O(n)

“ Sn ln(n) ´ (BQ ´ 2K)2

8B n ln (n) ` O(n)

NTRU Fatigue: How Stretched is Overstretched? 19

By Minkowski’s bound we bound the first minimum using the above volume

ln(λ1(LH ,q
[0:n`k) X LGF)) ď 1

2
ln(Kn) ` ln(vol(LH ,q

[0:n`k) X LGF))

Kn
` O(1)

ď
(

´ (BQ ´ 2K)2

8BK ` S
K ` 1

2

)

ln (n) ` O(1).

After projecting onto the block [n ` k ´ β : n ` k) the above short vector does
not increase in length.7 BKZ detects the projected dense lattice vector in this
block if the length is less than

∥
∥b̊n`k´β

∥
∥ “ (

1
2Q ` B´K

B
)
ln(n) ` O(1). Solving

for B shows that this is the case when

B ě 2
√
(2S ´ K)2 ` K2Q2 ` 2(2S ´ K)

Q2
.

When K “ 4S
Q2`1 the right hand side is minimised and we obtain that BKZ

detects the projected dense lattice vector when B ě 8S
Q2`1 , which concludes

the claim. This routine computation can be verified symbolically via our sage
notebook claim3_5.ipynb. 	

Our new estimate gives an asymptotic improvement over the Kirchner–
Fouque Estimate (8S

Q2). Asymptotically the optimal position is at κ “ n`k´β «
n ´ 1

2β. Interestingly, if we do not optimize k and only consider k “ O(1) we
obtain the same asymptotic estimate as Kirchner–Fouque, which again empha-
sizes that we generalised their analysis.

For the fatigue point we compare the relative blocksize of 8S
Q2`1 to that of

the 2016 Estimate given by 2Q
(Q`1´S)2 for S ă 1 and by 2

Q`2´2S for S ě 1. For
ternary secrets (S “ 1

2) this narrows down the fatigue point from q ď n2.783`o(1)

to q “ n2.484`o(1) compared to the Kirchner–Fouque Estimate. This is still far
above the (sub)linear parameters used for NTRU encryption schemes, and thus
asymptotically we can close the pending question if these parameters fall in the
weaker overstretched regime or not. In practice however we do observe fatigue
points that are significantly lower than the naive value of q “ n2.484, which
motivates a concrete analysis with concrete predictions (Fig. 2).

4 Concrete Analysis

In this section we consider a concrete analysis of our new DSD-PT estimate,
based on simple heuristics, to better predict the behaviour in practice, and
to show that our analysis matches experiments and is thus likely to be tight.
The first order asymptotics shown in Sect. 3.2 will remain unchanged, but the
differences are significant for practical parameters. Again we split the analysis

7 One may also be concerned that the short vector would collapse to 0 after projection
onto the block [n ` k ´ β : n ` k), but this becomes increasingly unlikely as the
dimension β of the block grows.

20 L. Ducas and W. van Woerden

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Q = log(q)/ log(n)

0.0

0.2

0.4

0.6

0.8

1.0
B
=

β
/n

New fatigue point
Q = 2.484

Old fatigue point
Q = 2.783

SKR – 2016 Estimate
DSD-PT – Kirchner-Fouque
DSD-PT – Our work

Fig. 2. Comparison of asymptotic estimates and new fatigue point for n → 8 when
the secret key coefficients have standard deviation σ “ Θ(1).

into several steps, but now derive heuristic expectations instead of loose upper
bounds.

We assume that lattice vectors we encounter follow the Gaussian heuristic,
and thus in particular that vectors are spherically distributed after normalisa-
tion. When projecting such vectors to a lower dimension they become shorter.
The following Lemma shows how much shorter we expect them to become.

Lemma 4.1. Let x P Sd´1 follow a spherical distribution, and let πV : Rd → V
be a projection to some k-dimensional subspace V Ă R

d, then

E[ln(‖πV (x)‖)] “ 1
2
(ψ(k{2) ´ ψ(d{2)).

Proof. Let X0, . . . , Xd´1 be standard normal random variables, then the vector

x “ (x0, . . . , xd´1), with xj “ Xj{
√∑d´1

i“0 X2
i , is spherically distributed. With-

out loss of generality we can assume that πV projects onto the first k-coordinates.
Then we conclude by Lemma 2.1 that

E[ln(‖πV (x)‖)] “ 1
2
E

[

ln

(∑k´1
i“0 X2

i
∑d´1

i“0 X2
i

)]

“ 1
2
E

[

ln

(
k´1∑

i“0

X2
i

)]

´ 1
2
E

[

ln

(
d´1∑

i“0

X2
i

)]

“ 1
2
(ψ(k{2) ´ ψ(d{2)).

��

4.1 Intersection

We start by giving a concrete average-case estimate for the intersection volumes.
Assuming that projections behave as random we obtain the following concrete
estimate.

NTRU Fatigue: How Stretched is Overstretched? 21

Claim 4.2. Let L be a 2n-dimensional NTRU lattice with dense sublattice LGF ,
before the DSD event is triggered we have for k “ 1, . . . , n that dim

(
LGF

X[0:n`k)

)
“

k, and

E[ln vol(LGF
X[0:n`k))] “ ln vol(LGF) ´

⎛

⎝
2n´1∑

j“n`k

ln
∥
∥b̊j

∥
∥

⎞

⎠

`
n∑

l“k`1

ψ

(
l

2

)

´ ψ

(
n ` l

2

)

` ζ ′(l)
ζ(l)

,

where ζ(l) :“ ∑8
m“1

1
ml is the Riemann zeta function and ζ ′(l) :“ ∑8

m“1
ln(m)

ml

its derivative.

Justification. We follow the proof of Lemma 3.3. It is tight except for the length
decrease from ‖d‖ to the projected and primitive vector ‖π(d)‖ {m. Note that
when obtaining ln vol

(
LGF

X[0:n`l´1)

)
from ln vol

(
LGF

X[0:n`l)

)
for some l “ k `

1, . . . , n, the dual vector d lives in a (n ` l)-dimensional space and is projected
to an l-dimensional space. Heuristically we assume that the normalisation of d is
spherically distributed (or that π projects to a random l-dimensional subspace).
By Lemma 4.1 the log-expected decrease in length from this projection then
equals

E [ln(π(‖d‖)) ´ ln(‖d‖)] “ ψ

(
l

2

)

´ ψ

(
n ` l

2

)

.

To conclude we also have to include the primitivity of π(d) and thus the log-
expectation of m ě 1 such that π(d){m is primitive. For any basis d0, . . . ,dl´1

and π(d) “ ∑l´1
i“0 xidi, we have m “ gcd(x0, . . . , xl´1). Heuristically we assume

that the absolute coefficients |x0|, . . . , |xl´1| are random integers in the interval
{1, . . . , B} and we let B → 8. For l ě 2 we have (see e.g. [DE+04])

PxP{1,...,B}l [gcd(x0, . . . , xl´1) “ m] “ 1
ζ(l)

· 1
ml

` O(ln(B){(Bml´1)),

where the Riemann zeta function ζ(l) “ ∑8
m“1

1
ml is just the normalisation

factor. From this we conclude that

lim
B→8 ExP{1,...,B}l [ln gcd(x0, . . . , xl´1)] “ lim

B→8
1

ζ(l)

B∑

m“1

[
ln(m)

ml
` O

(
ln(m) ln(B)

Bml´1

)]

“ ´ζ′(l)
ζ(l)

for l ě k ` 1 ě 2. 	

22 L. Ducas and W. van Woerden

Fig. 3. Experimental values of ln vol
(LGF

X[0:n`k)

)
versus Claim 4.2 for circulant and

matrix NTRU respectively. For each variant we used 256 LLL reduced NTRU lattices
with parameters q “ 257, n “ 79, σ2 “ 2

3
and computed the intersection for each k.

Validation. To validate Claim 4.2 we computed the actual intersection volumes
vol

(
LGF

X[0:n`k)

)
for LLL reduced NTRU instances. We observed here, and also

in further experiments, that the dimension assumption dim
(
LGF

X[0:n`k)

)
“ k

holds before we get close to triggering the DSD event. Figure 3 shows that our
prediction perfectly matches the experiments for matrix NTRU. For circulant
NTRU we see both that the expectation is slightly off and that the variance
is much higher. The higher variance can be explained from the fact that the
projections are very much dependent due to the circulant structure; in fact a
closer inspection shows that for k close to n the differences with the prediction
are highly correlated. We were not able to explain the error in the predicted
expectation, but it seems to be caused by the circulant structure in combination
with the Z-shape: the error decreased and eventually disappeared for large values
of q and σ, for which the Z-shape disappeared (and before the DSD event was
triggered). A maximal log-error of 2.5 is reached at k “ 1. Note that a log-error
of ε on vol

(LGF
X[0:n`k)

)
translate into a factor of eε{k on the predicted length for

the shortest vector. Except for very small k, this error appears benign.

4.2 Dense Sublattice

In this section we give a concrete estimate for the expected volume of the dense
NTRU sublatice LGF . Directly from the construction we obtain a basis [G|F]
of LGF , with F invertible. We consider two cases, that of regular NTRU where
F and G are circulant matrices, and that of matrix NTRU, where all entries
are independently sampled. For both constructions the entries are sampled from
independent discrete Gaussians over Z, with some standard deviation σ ą 0.
As the only heuristic we assume that the individual entries in fact follow a
continuous Gaussian instead of the discrete one.

NTRU Fatigue: How Stretched is Overstretched? 23

Matrix NTRU. We start with matrix NTRU, where we heuristically assume
that all 2n ˆ n coefficients of the basis [G|F] are sampled according to indepen-
dent continuous Gaussians with standard deviation σ. Under this heuristic we
can derive an exact expression for the expected log-volume of the dense sublat-
tice.

Lemma 4.3. Let [G|F] be a basis of the lattice LGF where all sampled entries
are i.i.d. continuous Gaussians with standard deviation σ ą 0, then

E[ln(vol(LGF))] “ 1
2
n

(
ln(2σ2) ` ψ(n)

) `
n´1∑

i“0

[

ψ

(
2n ´ i

2

)

´ ψ(n)
]

.

Proof. By Lemma 2.1 the log-expectation of the norm of each basis element
equals (ln(2σ2)`ψ(n)){2. Note that the i-th Gram-Schmidt vector b̊i is obtained
after projecting the i-th basis vector orthogonally away from an i-dimensional
subspace, and thus onto a 2n ´ i dimensional subspace. However after normal-
isation the basis vectors follow a spherical distribution and thus by Lemma 4.1
we have

E[ln ‖b̊i‖] “ (ln(2σ2) ` ψ(n)){2 ` ψ

(
2n ´ i

2

)

´ ψ(n).

We conclude by noting that E[ln(vol(LGF))] “ ∑n´1
i“0 E[ln ‖b̊i‖]. ��

Fig. 4. Experimental values of ln(vol(LGF)) versus Lemma 4.3 for matrix NTRU with
discrete Gaussians and variance σ2 “ 2

3
. For each parameter n we generated 512

instances.

Circulant NTRU. For circulant NTRU both G and F in the basis [G|F] are
circulant matrices. Again we replace discrete with continuous Gaussians. The
eigenvalues and eigenvectors of a circulant matrix are well known and we use
this to obtain an exact expression for the expected volume of the dense sublattice.

24 L. Ducas and W. van Woerden

Lemma 4.4. Let [G|F] be a basis of the lattice LGF where G,F are circulant
and all sampled entries are i.i.d. continuous Gaussians with standard deviation
σ ą 0, then

E[ln(vol(LGF))] “ 1
2
n

(
ln(2nσ2) ` ψ(1)

) ` 1
2
(n ´ 1)(1 ´ ln(2)).

Proof. For nˆn circulant matrices G,F the eigenvectors are identical and given
by vj :“ (1, ωj , ω2j , ω(n´1)j) for j “ 0, . . . , n ´ 1, where ω :“ e2πi{n P C is a
primitive n-th root of unity. Suppose that the circulant matrix G is generated
by the vector c “ (c0, . . . , cn´1), then the corresponding eigenvalues are given by
the DFT coefficients of c, namely λj :“ c0 ` cn´1ω

j ` . . . ` c1ω
(n´1)j . We have

that λ0 “ ∑n´1
j“0 cj , and thus λ0 follows a Gaussian distribution with variance

nσ2, and in particular λ2
0 ∼ χ2

1,nσ2 . Additionally for j “ 1, . . . , n´1 we can write
λj “ X ` i · Y P C where X,Y P R are both linear combinations of the ci’s and
thus (X,Y) follows a jointly Gaussion distribution. A simple computation shows
that X and Y both have variance nσ2{2 and that they are uncorrelated, which for
Gaussians implies that they are independent [PS89, p. 212]. So |λj |2 “ X2`Y 2 ∼
χ2
2,nσ2{2. Note that all circulant matrices have the same eigenvectors and thus

the squared singular values of the concatenation of two circulant matrices are
the sum of the squared absolute eigenvalues. So [G|F] has one squared singular
value s20 distributed as χ2

1,nσ2 ` χ2
1,nσ2 “ χ2

2,nσ2 , and n ´ 1 squared singular
values s21, . . . , s

2
n´1 distributed as χ2

2,nσ2{2 ` χ2
2,nσ2{2 “ χ2

4,nσ2{2. By Lemma 2.1
they have a log-expectation of

E[ln s20] “ ln(2nσ2) ` ψ(1), and E[ln s2j] “ ln(nσ2) ` ψ(2)

for j “ 1, . . . , n ´ 1. We conclude by noting that E[ln(vol(LGF))] “
1
2

∑n´1
i“0 ln(s2i). ��

Fig. 5. Experimental values of ln(vol(LGF)) versus Lemma 4.4 for circulant NTRU
with discrete Gaussians and variance σ2 “ 2

3
. For each parameter n we generated 512

instances.

NTRU Fatigue: How Stretched is Overstretched? 25

Validation. To validate our concrete estimate for vol(LGF) we generated the
NTRU sublattice for several dimensions and computed its volume. We sample
the secret coefficients following a discrete Gaussian with variance σ2 “ 2

3 and
ran experiments for both matrix NTRU and circulant NTRU. In Figs. 4 and 5
we see that the predictions from Lemmas 4.3 and 4.4 perfectly fit the observed
volumes in all dimensions. We do note that the variance is quite significant for
the circulant case, but it can be fully explained by the computed eigenvalue
distributions in the proof of Lemma 4.4.

4.3 Further Refinements

We discuss some further refinements, some of which were already successfully
applied to the 2016 Estimate [AGVW17,DDGR20,PV21].

Gaussian Heuristic. For our asymptotic analysis we used Minkowski’s bound
to estimate the length λ1

(
LGF

X[0:n`k)

)
in terms of the volume vol

(
LGF

X[0:n`k)

)
. A

natural way to obtain a concrete estimate for the expected minimal length is by
assuming that the intersection LGF

X[0:n`k) follows the Gaussian Heuristic and thus
for our prediction we assume that

λ1

(
LGF

X[0:n`k)

)
“ gh(LGF

X[0:n`k)) « √
k{(2πe) · vol

(
LGF

X[0:n`k)

)1{k
.

We should however be careful with this assumption, as in fact it is false for k “ n.
E.g. the above predicts that λ1(LGF) « √

n{(2πe) ·
√
2nσ2, while we know

that λ1(LGF) “ ‖(g,f)‖ « √
2nσ2, a factor Θ(

√
n) shorter than predicted.

The reason for this is that the dense sublattice is up to rotation and scaling
very similar to the orthogonal lattice Z

n, precisely the lattice for which it is
well known that the Gaussian Heuristic is false. For small k ! n we do observe
that the intersected lattice LGF

X[0:s) follows the Gaussian Heuristic; the orthogonal
structure seems to be broken by the intersection. However we do not have a clear
idea how large k can become before the orthogonal structure returns and the
minimal length stops following the prediction from the Gaussian Heuristic. We
think this behaviour deserves some further investigation, e.g. if the transition is
very sudden or not, and we leave it as an open problem. This near-orthogonality
of LGF

X[0:s) may be critical to model the DSD-LL events.

Probabilities. So far we have only considered expectations of volumes and projec-
tions. While this is enough to give a rough concrete estimate we want to be more
precise. Success probabilities can accumulate up over multiple BKZ blocks and
(progressive) tours, possibly leading to success at much lower blocksizes than
the rough estimate. We continue using the expected values for the volume of
the dense sublattice and the intersection volumes to obtain the expected length
λ1

(LGF
X[0:s)

)
of the dense sublattice vector via the Gaussian Heuristic. However

we then model the short dense sublattice vector v P LGF
X[0:s) as an s-dimensional

Gaussian vector with the same expected length; allowing us to compute the

26 L. Ducas and W. van Woerden

exact probability that
∥
∥πs´β(v)

∥
∥ ď ∥

∥b̊s´β‖ using the CDF of the chi-square
distribution with β degrees of freedom.

Up to now we have ignored the probability that after πs´β(v) is inserted, it
is also correctly lifted to the full vector v by later BKZ tours. While this almost
always happens for higher blocksizes, it is not so likely for lower blocksizes, and
ignoring this leads to overly optimistic predictions. For BKZ-β to successfully lift
or eventually pull the vector v to the front it should also satisfy ‖πi(v)‖ ď ‖b̊i‖
for all i “ s ´ 2β ` 1, s ´ 3β ` 2, These conditions are not independent
which makes them hard to compute exactly. We simplify the computation by
only considering the dependence for consecutive positions i, i ´ β ` 1 as done
in [DDGR20]. We iteratively run our estimator for progressive β “ 2, 3, . . . and
take account of all probabilities assuming that all tours behave completely inde-
pendently. Our new concrete estimate will be the expected successful blocksize.
Additionally this allows us to combine both the (probabilistic) SKR 2016 Esti-
mate and our new DSD-PT estimate in a single estimator. With some more
administration we can also predict the distribution of the successful location κ,
and predict the probability that the SKR event happens before the DSD event.

BKZ Shape for Low Blocksizes. While the formulas for the (Z)GSA slope αβ

and the expected first minimum gh(β) convert to the experimental values for
large blocksizes of say β ě 50, they are not as accurate for small β. As expected
the convergence is worse for progressive BKZ when we only use a few tours
of each blocksize. We ran some experiment on random low dimensional q-ary
lattices to obtain practical estimates for gh(β) with β ď 50. Earlier works about
the 2016 Estimate resorted to BKZ simulators to predict the BKZ shape, which
account for the number of tours and also the special shape of the head and tail
that do not perfectly follow the GSA shape. Together with the earlier mentioned
refinements this resulted in very precise predictions [DDGR20,PV21]. However
how BKZ acts on a Z-shaped basis is much less understood [AD21] and as of
yet there are no accurate BKZ simulators. Understanding the behaviour and
creating an accurate simulator would be very interesting, but is out of the scope
of this work. We continue using the ZGSA, but we resort to experimental values
for αβ obtained by running BKZ on random q-ary lattices for large q. To remain
consistent we also do not use a simulator for the GSA shape, and accept the
small discrepancy between the predictions and practical experiments.

5 Experimental Verification

In this section we experamentally confirm our predicitions. Further detailed
experimental data and discussion is given in the eprint version8.

5.1 Successful Blocksize

We start with comparing our concrete predictions to the preliminary experiment
from Sect. 3.1. We ran progressive BKZ with 8 tours on matrix NTRU instances
8 Section 5.2 in https://eprint.iacr.org/2021/999.

https://eprint.iacr.org/2021/999

NTRU Fatigue: How Stretched is Overstretched? 27

Fig. 6. Experiment versus prediction for progressive BKZ with 8 tours on matrix NTRU
instances with parameters n “ 127, σ2 “ 2

3
for several moduli q. We did 10 runs per

modulus q.

with parameters n “ 127, σ2 “ 2
3 for several moduli q. In Fig. 6 we show the

blocksizes at which the SKR or DSD event is first detected, and compare them
to our concrete estimator. We ran the estimator three times for each modulus q:
only accounting for SKR, only accounting for DSD-PT, and accounting for both.
Note that the combined estimate can be strictly lower than both the first two
because the probabilities to succeed accumulate over both events. We calibrated
the values of αβ by running the same BKZ routine on (2 ·127)-dimensional q-ary
lattices with q « 220.

We observe that the experiments match the estimates reasonably well, with
an average blocksize error of less than 2 for the DSD events and less than 3 for
the SKR events. We shortly discuss potential sources of the small errors error.

– We do not actually run the classical BKZ algorithm, but the BKZ 2.0 algo-
rithm as it is more feasible to run for large blocksizes. One part of the latter
algorithm is that in each BKZ block [κ : κ ` β) the last β ´ 1 vectors are
randomised before finding a short projected vector. This temporarily breaks
the GSA shape and results a small ‘bump’ in the profile that is pushed to the
right during a tour. On average we measured at the SKR events a log-increase
of 0.048 on the value of ‖b̊κ‖ compared to the GSA (while the rest of the basis
matches very closely). Although anecdotal, adjusting our estimator with this
offset of 0.048 resulted in very close predictions for the SKR events.

– For small blocksizes β ď 30 we see that our DSD-PT estimate is slightly pes-
simistic compared to the experiments. However the successful profile slope αβ

(computed from the profile at the moment of detection) does closely match

28 L. Ducas and W. van Woerden

the predicted slope αβpred
, pointing to a wrong calibration of the slope param-

eter for very low blocksizes. Note that the non-flat part of the Z-shape in our
experiments has size less than the 2 · 127 dimensional lattice used for cali-
bration, which plausibly explain why the slope converges more quickly than
expected.

5.2 Fatigue Point

Our concrete estimator follows the experiments reasonably well and thus we can
use it to estimate the concrete fatigue point for dimensions that are not feasible in
practice. To verify our estimate of the fatigue point we also did some experiments
in dimensions that are still feasible. For this we ran a soft binary search, only
decreasing the interval length by 3{4 so as not view a probabilistic result as a
definitive answer. More specifically, starting with a range of [qmin, qmax] we ran
an experiment for a prime q « (qmin ` qmax){2. If it succeeds with an SKR event
we update qmin to (qmin ` q){2 ` 1, if it succeeds with a DSD event we update
qmax to (qmax ` q){2 ´ 1. We repeat this until the interval does not contain any
prime and we return (qmin ` qmax){2 as a rough estimate of the fatigue point.
We averaged this over 20 experiments for each parameter n. We chose for matrix
NTRU because of the lower variance in the hardness of these instances.

We compared this to our prediction. Because the estimator accounts for prob-
abilities of events, we can predict for which value of q about 50% of the instances
succeeds with a DSD event. Because it would be unreasonable to calibrate the

Fig. 7. Concrete fatigue point versus asymptotics using progressive BKZ with 8 tours
on matrix NTRU instances with variance σ2 “ 2

3
. The 0.5 percentile line shows for

which q we estimate that the DSD event is triggered before the SKR event for about
50% of the instances.

NTRU Fatigue: How Stretched is Overstretched? 29

Fig. 8. Experiment versus prediction for progressive BKZ with 8 tours on matrix NTRU
instances with parameters n “ 113, σ2 “ 2

3
for several moduli q. We did 100 runs per

modulus q and the plot shows the ratio of these runs succeeding with a DSD event
(before an SKR event).

low blocksize slope values αβ for each dimension we reused those of the 2 · 127
dimensional q-ary lattice from an earlier experiment. This might make the esti-
mates a bit less precise for n ! 127, and n � 127 if the successful blocksize is
small around the fatigue point.

The results are shown in Fig. 7 and plotted against Cn2.484 for several con-
stants C. Remarkably the experiments and concrete predictions closely follow the
asymptotics already for reasonably small values of n. A loglog-linear regression
of the 50% DSD-PT estimate over all primes 199, . . . , 499 gives 0.0034 · n2.506.
Restricting the exponent to 2.484 gives 0.0038 · n2.484 with a log-standard devi-
ation of only 0.006.

The experimental average appears slightly higher than the estimator predic-
tion for 50% DSD - 50% SKR. The main reason for this seems to be that the
estimator is slightly pessimistic for detecting the SKR event, as already observed
and explained in Sect. 5.1. Another small detail is that the binary search is
slightly biased to higher values of q because at each iteration we pick the next
prime after (qmin ` qmax){2.

5.3 Zoom on the Fatigue Point: A Smooth Probabilistic Transition

We take a closer look at the transition from the non-overstretched to the over-
stretched regime. For this we ran several experiments on matrix NTRU instances
with parameters n “ 113, σ2 “ 2

3 for several moduli q, with 100 runs each. We
compare the DSD success ratio with our probabilistic concrete estimate. The
results are shown in Fig. 8. Just as in Fig. 7 we see a shift between the experi-
ment and prediction, which can again be explained by our SKR estimator being
too pessimistic. Note however that while the discrepancy looks significant in this
zoomed plot, it only emphasises a small error of about 2 block sizes between the
experiments and our predictions. Ignoring this shift the shape of the predicted
transition matches the experiments very well.

30 L. Ducas and W. van Woerden

Acknowledgements. We would like to thank Martin Albrecht and Paul Kirchner for
valuable comments and discussions. The research of L. Ducas was supported by the
European Union’s H2020 Programme under PROMETHEUS project (grant 780701)
and the ERC-StG-ARTICULATE project (no. 947821). W. van Woerden is funded by
the ERC-ADG-ALGSTRONGCRYPTO project (no. 740972).

References

[ABD16] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4_6

[AD21] Albrecht, M., Ducas, L.: Lattice attacks on NTRU and LWE: a history of
refinements. Cryptology ePrint Archive, Report 2021/799 (2021). https://
eprint.iacr.org/2021/799

[ADPS16] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: USENIX Security 2016, pp. 327–343. USENIX
Association (2016)

[AGVW17] Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the
expected cost of solving uSVP and applications to LWE. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_11

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In: Wie-
dermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48523-6_1

[AWHT16] Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3_30

[BBC+20] Bernstein, D.J., et al.: NTRU Prime. Technical report, National Institute
of Standards and Technology (2020)

[BEF+17] Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Comput-
ing generator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7_3

[BLLN13] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-
based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC
2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45239-0_4

[BSW18] Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2_13

[CDH+20] Chen, C., et al.: NTRU. Technical report, National Institute of Standards
and Technology (2020)

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://eprint.iacr.org/2021/799
https://eprint.iacr.org/2021/799
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-030-03326-2_13

NTRU Fatigue: How Stretched is Overstretched? 31

[CDPR16] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators
of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5_20

[CG05] Coglianese, M., Goi, B.-M.: MaTRU: a new NTRU-based cryptosystem.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 232–243. Springer, Heidelberg (2005). https://
doi.org/10.1007/11596219_19

[CJL16] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and
cryptanalysis of the ggh multilinear map without a low-level encoding of
zero. LMS J. Comput. Math. 19(A), 255–266 (2016)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
25385-0_1

[CS97] Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0_5

[DDGR20] Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side infor-
mation: attacks and concrete security estimation. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_12

[DE+04] Diaconis, P., Erdös, P., et al.: On the distribution of the greatest com-
mon divisor. In: A festschrift for Herman Rubin, pp. 56–61. Institute of
Mathematical Statistics (2004)

[DKR+20] D’Anvers, J.: SABER. Technical report, National Institute of Standards
and Technology (2020)

[dt21a] The FPLLL development team. FPLLL, a lattice reduction library, Ver-
sion: 5.4.1 (2021). https://github.com/fplll/fplll

[dt21b] The FPLLL development team. fpylll, a Python wraper for the fplll lattice
reduction library, Version: 0.5.6 (2021). https://github.com/fplll/fpylll

[EHKS14] Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm
for computing the unit group of an arbitrary degree number field. In: 46th
ACM STOC, pp. 293–302. ACM Press (2014)

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9_1

[GGH+19] Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic
encryption for finite automata. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11922, pp. 473–502. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34621-8_17

[GS02] Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature
scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
46035-7_20

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/11596219_19
https://doi.org/10.1007/11596219_19
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-030-56880-1_12
https://github.com/fplll/fplll
https://github.com/fplll/fpylll
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-030-34621-8_17
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/BFb0054868

32 L. Ducas and W. van Woerden

[KF17] Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched
NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7_1

[LLL82] Lenstra, A.K., Lenstra, H.W., Jr., Lovász, L.: Factoring polynomials with
rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. J. ACM 60(6), 43:1–43:35 (2013). Preliminary ver-
sion in Eurocrypt 2010

[LW20] Lee, C., Wallet, A.: Lattice analysis on MiNTRU problem. Cryptology
ePrint Archive, Report 2020/230 (2020). https://eprint.iacr.org/2020/230

[MS01] May, A., Silverman, J.H.: Dimension reduction methods for convolution
modular lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146,
pp. 110–125. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44670-2_10

[PAA+19] Poppelmann, T., et al.: NewHope. Technical report, National Institute of
Standards and Technology (2019)

[PS89] Papoulis, A., Saunders, H.: Probability, random variables and stochastic
processes (1989)

[PT08] Pataki, G., Tural, M.: On sublattice determinants in reduced bases. arXiv
preprint arXiv:0804.4014 (2008)

[PV21] Postlethwaite, E.W., Virdia, F.: On the success probability of solving
unique SVP via BKZ. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710,
pp. 68–98. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75245-3_4

[Reg04] Regev, O.: Quantum computation and lattice problems. SIAM J. Comput.
33(3), 738–760 (2004). Preliminary version in FOCS 2002

[Reg05] Regev, O., et al.: On lattices, learning with errors, random linear codes,
and cryptography. In: 37th ACM STOC, pp. 84–93. ACM Press (2005)

[SAB+20] Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Insti-
tute of Standards and Technology (2020)

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53, 201–224 (1987)

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-20465-4_4

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7_36

[YD17] Yu, Y., Ducas, L.: Second order statistical behavior of LLL and BKZ. In:
Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 3–22.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_1

https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://eprint.iacr.org/2020/230
https://doi.org/10.1007/3-540-44670-2_10
https://doi.org/10.1007/3-540-44670-2_10
http://arxiv.org/abs/0804.4014
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-319-72565-9_1

Faster Dual Lattice Attacks for Solving
LWE with Applications to CRYSTALS

Qian Guo(B) and Thomas Johansson(B)

Department of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{qian.guo,thomas.johansson}@eit.lth.se

Abstract. Cryptosystems based on the learning with errors (LWE)
problem are assigned a security level that relates to the cost of generic
algorithms for solving the LWE problem. This includes at least the so-
called primal and dual lattice attacks. In this paper, we present an
improvement of the dual lattice attack using an idea that can be traced
back to work by Bleichenbacher. We present an improved distinguisher
that in combination with a guessing step shows a reduction in the overall
complexity for the dual attack on all schemes. Our second contribution is
a new two-step lattice reduction strategy that allows the new dual lattice
attack to exploit two recent techniques in lattice reduction algorithms,
i.e., the “dimensions for free” trick and the trick of producing many short
vectors in one sieving. Since the incompatibility of these two tricks was
believed to be the main reason that dual attacks are less interesting, our
new reduction strategy allows more efficient dual approaches than primal
attacks, for important cryptographic parameter sets.

We apply the proposed attacks on CRYSTALS-Kyber and
CRYSTALS-Dilithium, two of the finalists in the NIST post-quantum
cryptography project and present new lower complexity numbers, both
classically and quantumly in the core-SVP model. Most importantly,
for the proposed security parameters, our new dual attack with refined
lattice reduction strategy greatly improves the state-of-the-art primal
attack in the classical gate-count metric, i.e., the classical Random Access
Machine (RAM) model, indicating that some parameters are really on
the edge for their claimed security level. Specifically, the improvement
factor can be as large as 15 bits for Kyber1024 with an extrapolation
model (Albrecht et al. at Eurocrypt 2019). Also, we show that Kyber768
could be solved with classical gate complexity below its claimed secu-
rity level. Last, we apply the new attack to the proposed parameters
in a draft version of Homomorphic Encryption Standard (see https://
homomorphicencryption.org) and obtain significant gains. For instance,
we could solve a parameter set aiming for 192-bit security in 2187.0

operations in the classical RAM model. Note that these parameters are
deployed in well-known Fully Homomorphic Encryption libraries.

Keywords: Lattice-based cryptography · NIST post-quantum
cryptography standardization · Dual attacks · CRYSTALS · Learning
with errors · Fast fourier transform · Fully homomorphic encryption

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 33–62, 2021.
https://doi.org/10.1007/978-3-030-92068-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_2&domain=pdf
https://homomorphicencryption.org
https://homomorphicencryption.org
https://doi.org/10.1007/978-3-030-92068-5_2

34 Q. Guo and T. Johansson

1 Introduction

The LWE problem was introduced by Regev [51] and has quickly become one of
the main problems in cryptography. One reason is the fear of future quantum
computers being able to solve the factoring and discrete log problems efficiently.
In the search for new future cryptographic schemes not based on the previous
standard problems factoring and discrete log, the LWE problem has received
a central role. One advantage for LWE is that this problem is claimed to be
as hard as worst-case approximation problems in lattices, such as the shortest
vector problem (SVP) [25,49]. Another reason for the importance of LWE is
its usefulness in a variety of cryptographic constructions and primitives. This,
in particular, includes Fully Homomorphic Encryption (FHE), which is a very
important primitive that allows operations on encrypted data without decrypting
it. The most efficient FHE schemes today are constructed using LWE or some
version of the problem as the underlying difficult problem. Examples of such
FHE schemes can be found in [2,4,26,27,36].

Returning to the post-quantum scenario, the need for new cryptographic
primitives has been identified and in 2015 NIST started the project which we
refer to as the NIST PQC standardization process [5]. The goal was to accept
candidates for public-key encryption schemes (PKE), key encapsulation mecha-
nisms (KEM), and digital signature schemes, and then to evaluate their security
under the assumption that quantum computations can be done. In the end, a
few proposals will be selected for possible standardization. The project has now
entered the third round, where in the move to each round the number of candi-
dates has been reduced. Many of the candidates in the project as a whole as well
as among the remaining round 3 candidates, are based on some LWE-related
problem. The round 3 candidates are split in two groups, being the main and
the alternate ones.

Proposals are giving parameters in relation to target security categories.
Among the 5 defined security categories, category 1, 3 and 5 correspond to
the complexity of exhaustive key search on AES with key size 128, 192, and 256,
respectively. A proposal with parameters given for category 1 thus has to meet
the requirement that any attack on the scheme requires a complexity larger than
or comparable to the complexity of exhaustive key search on AES with key size
128.

Any cryptosystem based on the learning with errors (LWE) problem can be
assigned a security level that corresponds to the lowest cost among any possible
attack, which includes generic algorithms for solving the LWE problem. Possible
algorithms include at least the so-called primal and dual lattice attacks. These
attacks make use of the BKZ lattice reduction algorithm [31], which in turn uses
as a subroutine a solver for SVP in projected sublattices (also referred to as
blocks). Connected to both the primal and dual lattice attacks is the cost of per-
forming them, which relates to the cost of running the BKZ algorithm. Due to
the somewhat complicated nature of the BKZ algorithm, there has been several
different cost models used in previous literature [11]. The cost model can either
be an expression for the asymptotic behaviour of the cost of running BKZ, or

Faster Dual Lattice Attacks for Solving LWE 35

it can be an attempt to express the actual complexity in number of operations
of some kind. As we are interested in the actual complexity, we use cost models
for this latter case. Another distinguishing factor is the choice of the subrou-
tine for solving SVP in projected sublattices inside BKZ, which can be either
enumeration or lattice sieving [44,45]. Sieving gives the better performance but
requires more memory. Established cost models for BKZ are used by designers
to evaluate the cost of different attacks on their design which in turn gives an
indication of the expected security level.

Briefly, we may describe LWE as the problem of recovering a secret vector
s ∈ Z

n
q after receiving (A,b) for which b = As+ e, where A is an m×n matrix

with entries in Zq and e ∈ Z
m
q . It is also assumed that both the noise vector e

as well as the secret s ∈ Z
n
q itself are small. It means that the entries are small

in relation to Zq = {−(q−1)
2 , . . . , (q−1)

2 } (for q odd prime). In the dual attack,
the idea is to find short vectors in the dual lattice defined as Λ′ = {(x,y) ∈
Z

m × Z
n : ATx = y mod q}. For each short vector, denote it (w,v), we can

observe that wT · b = vT · s+wT · e is somewhat small. So with enough short
vectors from Λ′ we get a distinguisher that can separate whether b is from the
LWE distribution or whether b is from a uniform distribution. The distinguisher
is used in combination with a guessing step where a few entries of the secret s
are guessed and corresponding positions are excluded from A. If the guess is
correct, b will come from the LWE distribution but if the guess is wrong then
b will be from a uniform distribution (or close to). In this way the distinguisher
will recover the guessed entries of s and eventually the full secret is recovered.

1.1 Contributions

In this paper, we present an improvement of the dual lattice attack using an
idea that can be traced back to work by Bleichenbacher [22,23] on attacking
on ECDSA. We present an improved distinguisher that in combination with a
guessing step shows a reduction in the overall complexity for the dual attack on
all schemes. This results in a strictly better dual attack than previous ones.

The main idea is to reduce the FFT distinguisher over a very large alphabetic
size q to another distinguisher with a very small alphabetic size, say of only size
2 (or 3 for certain proposals where q is not a prime but a power of 2). We design
a new mapping technique to map the secret points close to one point in a set of
points equally dividing the cycle. Then one can apply the new FFT techniques to
accelerate the guessing procedure in a combination of guessing some entries only
modulo 2. From an implementation point of view, the transform step can be more
efficiently implemented through a Fast Walsh-Hadamard transform (FWHT)
instead of the standard FFT approach.

The complexity reduction depends on the attacked scheme. In particular,
we apply the proposed dual attack on CRYSTALS-Kyber and CRYSTALS-
Dilithium in the NIST post-quantum cryptography project and present new
lower complexity numbers measured in the core-SVP model (see the second and
the third columns in Table 1).

36 Q. Guo and T. Johansson

Table 1. The complexity comparison on the security parameter sets of the round-3
CRYSTALS. Cost is given in log2 of operations.

Classical core-SVP Refined classical attacks (gates)

Claim [52] New Claim [52] New NIST [6]
Kyber512 118 115 151 147 143
Kyber768 182 174 215 205 207
Kyber1024 256 243 287 272 272

Claim [46] New Claim [46] New NIST [6]
Dilithium-II 123 122 159 154 146
Dilithium-III 182 179 217 210 207
Dilithium-V 252 246 285 274 272

We also investigate the complexity of the new attack in the classic gate-
count metric, i.e., the Random Access Machine (RAM) model. This model
is more interesting in the NIST Post-Quantum Cryptography Standardization
Project because it is difficult to determine if the classical complexity of 2174 in
the core-SVP model meets the security requirement for NIST-3 defined as 2205

classic gates. The official documents of round-3 Kyber and Dilithium set their
security parameters by counting the classical gates of primal attacks. One main
obstacle is to measure the classic cost in the RAM model of the Nearest Neighbor
Search used in lattice sieving, which is addressed by Albrecht et al. in [14]. The
designers of Kyber and Dilithium dismiss the dual attack because “..First, most
of those vectors are larger by a factor

√
4/3, secondly the trick of exploiting

all those vectors is not compatible with the ‘dimension for free’ trick..” (cited
from [46]).

We show in this paper that dual attacks could be more efficient in the classical
gate-count metric even if most of short vectors obtained are larger by a factor√
4/3. Our novel idea is a new two-step lattice reduction strategy that could

exploit both the “dimension for free” (d4f) trick and the “exploiting many short
vectors in one sieving” (msv) trick. Furthermore, since BKZ typically includes
calling an SVP oracle for many times, we can sieve in the second step with a
larger dimension to balance the costs of the two steps. From this perspective,
we exploit the d4f trick twice and also produce an exponential number of short
vectors. Similar to the official documents of CRYSTALS [46,52], we employ the
analysis from [14] to evaluate the sieving cost in the classical RAM model.

The classical complexity comparisons in the gate-count metric for
CRYSTALS-Kyber and CRYSTALS-Dilithium are shown in the last columns
of Table 1. The gain is generally significant and could be as large as 15 bits for
Kyber1024; some parameters, therefore, are really on the edge for their claimed
security level. Last, we show that Kyber768 could be solved with complexity
below its claimed security level in the gate-count metric.

Faster Dual Lattice Attacks for Solving LWE 37

Lastly, we show that the new dual attack with refined lattice reduction strat-
egy could solve certain parameter sets in a draft version of the Homomorphic
Encryption Standard [7] faster than the claimed security levels under the clas-
sical RAM model.

Remarks. This algorithmic improvement has very wide applications in lattice-
based cryptography—lattice-based proposals need to recheck their security
parameter sets for the dual attack. It could lead to a security problem if the
original security margin is small. On the other hand, the reported complexity
numbers in the classical RAM model assume that the cost of one RAM query
is constant. These complexity numbers will increase if a more realistic memory
access cost model is taken into consideration. Further research on this is beyond
the scope of the paper.

1.2 Related Works

There are a few different classes of algorithms for solving LWE problems, see
e.g. [16]. The algebraic method of Arora-Ge [18] and its extension using Gröbner
basis techniques [8] is a powerful method when applicable. The combinatorial
approach called BKW [24] and its many extensions [10,38,41] is another app-
roach that for some parameter choices can be the most efficient solver for LWE.
However, in general both these methods require a larger number of samples than
what is available in the cryptanalysis of LWE-based constructions of KEMs, sig-
natures, or FHEs. So the security of such constructions is almost always derived
by analyzing the cost of attacks based on lattice reduction. These attacks are
either the primal attacks, where one finds the solution by solving a decoding
problem in the lattice, or reduce it to solving unique SVP [13,44,45].

The second type of lattice attack is the dual lattice attacks [47]. The basic
form of the attack builds a distinguisher from many short vectors in the dual
lattice. However, by simply guessing a part of the secret this is turned into a
recovery of the secret vector. An efficient guessing procedure can be achieved by
use of the Fast Fourier Transform [33]. Various improvements can be achieved if
the secret is small and sparse [9,28,32], which is often the case in constructions,
in particular for FHE constructions.

To the best of our knowledge, Albrecht [9] firstly studied the problem of
efficiently producing many short vectors in the dual lattice attacks. He proposed
an amortization approach using re-randomization and lattice reductions with a
smaller dimension, but his approach is more heuristic and has worse performance
compared with our new two-step lattice reduction approach with sieving.

Independently of this work, the paper [35] was recently posted on eprint. This
work also considers the dual attack but in our understanding it uses an idea of
generating LWE instances with bigger noise that correspond to a fraction of
the secret vector, a different approach to the ideas suggested in this paper. Our
approach of reducing the FFT distinguisher over a very large alphabetic size q
to another distinguisher with a very small alphabetic size have some similarity

38 Q. Guo and T. Johansson

to work by Bleichenbacher [22] on attacking on ECDSA. In [29] a similar but
different reduction was used in connection with implementing the BKW algo-
rithm.

Finally, these attacks can sometimes be used in the form of hybrid lattice
reduction attacks as introduced in [40]. Such attacks combine a meet-in-the-
middle approach and/or guessing with lattice reduction and this can sometimes
be the best attack [28,42,53].

Notes. We found another independent work [21] on eprint (posted on Feb
12, 2021) studying dual attacks on round-3 lattice-based primitives in the core-
SVP model. Also focusing on the core-SVP model, a first version of our paper
was submitted to Eurocrypt 2021 (with deadline on Oct 8th, 2020). Similar
to [35], the work [21] studies exhaustive guessing in the dual lattice attacks.
We additionally propose a novel FFT distinuisher to further reduce the solving
complexity. Our second main contribution, i.e., a new two-step lattice reduction
algorithm allowing us to exploit the recent advances in lattice algorithms, and the
corresponding complexity results in the classical RAM model are not discussed
in [21,35].

1.3 Organization

The remaining of the paper is organized as follows. We first introduce some
preliminaries in Sect. 2, and present the newly proposed FFT distinguisher in
Sect. 3. We then apply this new distinguisher to improve the general dual lattice-
reduction approach in Sect. 4, which is followed by its applications to CRYSTALS
in the core-SVP model in Sect. 5. We then present the new two-step reduction
idea and the refined classic attacks beyond the core-SVP estimation in Sect. 6.

Its application to FHE parameters is shown in Sect. 7. The theory is validated
by experimental verification in Sect. 8. We lastly conclude the paper in Sect. 9.

2 Preliminaries

We denote vectors in lower-case bold, e.g. a, and matrices in upper-case bold,
e.g. A. All vectors are column vectors by default. We denote aT (or AT) its
transpose for a vector a (or matrix A). The matrix In is an identity matrix
with dimension n × n. The inner product of two vectors a and b with the same
dimension is denoted by 〈a,b〉. For a vector a with dimension n, we denote its
i-th entry as ai, for 0 ≤ i ≤ n − 1, and define its norm as

‖a‖ =

√√
√√

n−1∑

i=0

a2
i .

For a complex number x ∈ C, we denote Re(x) its real part. Let θq be the
q-th root of unity, i.e., the complex number exp(2πi0/q), where i20 = −1. We
also write it as θ if there is no ambiguity.

Faster Dual Lattice Attacks for Solving LWE 39

2.1 LWE

The Learning with Errors problem is defined as follows.

Definition 1 ([51]). Let n be a positive integer, q a prime, and let X be an
error distribution. Fix s to be a secret vector in Z

n
q , chosen according to a uniform

distribution. Denote by Ls,X the probability distribution on Z
n
q × Zq obtained by

choosing a ∈ Z
n
q uniformly at random, choosing an error e ∈ Zq according to X

and returning
(a, z) = (a, 〈a, s〉 + e)

in Z
n
q ×Zq. The (search) LWE problem is to find the secret vector s given a fixed

number of samples from Ls,X .

The definition above gives the search LWE problem, and one could similarly
define the decision LWE problem to distinguish between samples drawn from
Ls,X and a uniform distribution on Z

n
q × Zq.

The error distribution X is usually selected as the discrete Gaussian distri-
bution on Zq with mean 0 and variance σ2, obtained by assigning a probability
proportional to exp(−x2

2σ2) to each x ∈ Z and then accumulating the probabil-
ity mass function over all integers in each residue class modulo q. The error
distribution is also denoted as Xσ. One useful heuristic assumption is that the
sum of two independent random variables X1 and X2 drawn from Xσ1 and Xσ2

respectively is drawn form X√
σ2
1+σ2

2
.

It is proven in [25] that LWE with small secrets remains hard, so many
cryptosystems base their security on these variants such as LWE with binary or
ternary secrets.

2.2 Dual Lattice Attacks

A lattice L is a discrete subgroup of Rd. Let the columns b0, . . . ,bd−1 be linearly
independent, and then it is a basis of the lattice {∑ vibi|vi ∈ Z}. In lattices, a
central hard problem is to find a non-zero shortest vector in this lattice, which
is called the shortest vector problem (SVP).

In the dual attack, the aim is to find a short vector (w,v) in the dual lattice
L′ = {(x,y) ∈ Z

m × Z
n : ATx = y mod q}. Thus, given a sequence of LWE

instances (A, b) s.t., b = As+ e, we have that

wT · b = wT · (A I)
(
s
e

)
= (vT wT)

(
s
e

)
,

which is small and can be distinguished from the uniform. Therefore, the problem
is transformed to finding a short column vector in the lattice

B =
(
Im 0
AT qIn

)

The efficiency of the dual lattice attacks highly depends on how short the
found vectors are. We have the following lemma to measure the advantage of the
distinguishing problem.

40 Q. Guo and T. Johansson

Lemma 1 ([44]). Given an LWE instance characterized by n, q, σ and a vector
h with length l such that hTA = 0 (mod q), the advantage of distinguishing
〈h, e〉 from random is close to

ε = exp
(−2π2τ2

)
,

where τ = lσ
q .

It is also known from statistical theory that if O (
1/ε2

)
independent such sam-

ples are available, the success probability for the distinguisher is close to 1.

2.3 Cost Model for BKZ

To achieve high-quality short vectors, we normally use a class of lattice reduction
algorithms called BKZ, an iterative, block-wise algorithm for basis reduction.
This algorithm solves an SVP problem with a small dimension β and is denoted
BKZβ,d, where d is the dimension of the lattice. The time complexity of BKZβ,d

is denote T (BKZβ,d).
For a lattice L, BKZβ,d produces vectors with length

‖v‖ = δd
0 · vol(L) 1

d , (1)

where δ0 ≈
(

β
2πe (πβ)

1
β

) 1
2(β−1)

(see [30] for details), and vol(L) is defined as the
volume of the lattice L.

There are several models to estimate the time complexity of BKZβ,d, which
are generally classified into two categories depending on the method to imple-
ment the SVP solver in the BKZ reduction. Here we mainly focus on the sieving
approach, the most relevant one for choosing security parameters ([12,34]).

The first model we discuss is the core-SVP model, which was proposed in [17]
and is then used in many candidates in the NIST Post-Quantum Cryptography
Standardization Project, such as NewHope [50], CRYSTALS-Kyber [52], and
CRYSTALS-Dilithium [46]. In the core-SVP model, the classic complexity of
BKZ reduction T (BKZβ,d) can be estimated as 20.292β and the quantum com-
plexity is 20.265β . This simplified model is definitely useful and allows us to
compare the security strength of different lattice-based candidates. However,
this model is far from being accurate when considering the security requirement
from NIST, which is defined by the gate complexity.

Another model is the gate-count metric, i.e., the cost in the Random Access
Machine (RAM) model, which has been studied for the primal lattice attack in the
round-3 versions of CRYSTALS-Kyber [52] and CRYSTALS-Dilithium [46]. They
use the results from [14] as a black-box to estimate how many gates are required in
one operation called ‘AllPairSearch’. The overall sieving cost can then be estimated
according to the current understanding on sieving algorithms [12,34].

Faster Dual Lattice Attacks for Solving LWE 41

2.4 The Classic FFT Distinguisher

We now assume for an LWE problem with reduced dimension t, i.e., we have a
list of m LWE samples (aj , bj), where

bj =
t−1∑

i=0

ai,jsi + ej mod q,

for j = 1..m.
The normal approach to use the FFT is to classify the samples by aj and

compute
f(aj) =

∑

j0∈I(aj)

θbj0 , (2)

where I(aj) is the index set such that aj0 = aj for j0 ∈ I(aj).
Then we compute

F (s̃) =
∑

aj

f(aj)θ− ∑t−1
i=0 ai,j s̃i , (3)

for all possible s̃ by using the Fast Fourier Transformation (FFT), and return
the guessed secret to be s0 s.t.,

s0 = argmax
s̃

Re(F (s̃)), (4)

where Re(F (s̃)) is the real part of F (s̃).
For the right guess, the computed F (s) is exactly

m∑

j=1

θej ,

having a large real part since ej is sampled from a discrete gaussian distribution.
For a wrong guess, the value

Re(
m∑

j=1

θe′
j) → 0,

since e′
j is uniformly distributed over Zq.

Note that the FFT distinguisher has performance close to the optimal dis-
tinguisher (see [39]). With the distinguishing advantage ε defined in Lemma 1,
we could bound the required number of samples by

O
(
ln(qt)

ε2

)
,

since we need to statistically determine the secret from qt hypotheses. Similar
formulas without the asymptotic notation can be obtained via Hoeffding’s bound
in [33].

42 Q. Guo and T. Johansson

The complexity for the Fast Fourier Transform with size t is
O (qt · t · log2(q)). This complexity quickly becomes prohibitively high since in
lattice-based schemes when increasing the FFT size, as the parameter q is typi-
cally chosen as a large integer. Thus, the length of the partial secret vector that
can be guessed via the FFT is rather small, highly limiting the gain of applying
the FFT technique.

3 A New FFT Distinguisher

In this section, we describe a new distinguisher with the FFT technique, where
the underlying idea is similar to that of Bleichenbacher’s attacks on ECDSA [23].
We pick an integer γ much smaller than q and attempt to recover one secret entry
(si mod γ) rather than the exact value of si. Thus, the complexity of the FFT
with dimension t is reduced from O (qt · t · log2(q)) to O (γt · t · log2(γ)), thereby
allowing us to reach a much larger dimension when a certain computational
resource is assumed.

If γ is chosen to be 2, then the employed Fast Fourier Transform is actually a
Fast Walsh-Hadamard Transform over the complex field. For simplicity, we use
the term Fast Fourier Transform (FFT) throughout the paper.

3.1 New Transformation Technique

Let γ be a small element in the ring Zq such that γ · ρ = ±1 mod q, for some
element ρ. So γ−1 is well-defined, i.e., being ρ or −ρ. To be more specific, the
field size q is typically chosen as a prime or a power-of-two integer. When q is a
prime, we could pick γ = 2; for the latter case we pick γ = 3. Now we take the
q prime case as an instance to show how this distinguisher works.

We can rewrite the LWE samples as (âj , bj) such that,

bj =
t−1∑

i=0

âi,j ŝi + ej mod q,

where ŝ = γ−1s mod q and âj = γaj mod q. Note that we assume γ = 2.
We then write the equations in the real set R, i.e.,

bj =
t−1∑

i=0

âi,j ŝi + ej + lj · q,

for each LWE sample. We could then apply some reduction techniques such as
lattice reduction algorithms to make âi,j small. We have that

bj =
t−1∑

i=0

âi,j(q + 1)/2 · si + ej + lj · q

=
t−1∑

i=0

âi,j · q/2 · si +
t−1∑

i=0

âi,j/2 · si + ej + lj · q. (5)

Faster Dual Lattice Attacks for Solving LWE 43

Let us compute

F (s mod 2) =
m−1∑

j=0

θbj−∑t−1
i=0 âi,j ·q/2·si =

m−1∑

j=0

θbj · exp(−
t−1∑

i=0

âi,j · si · 2πi0/2).

Here we use the notation F (s mod 2) to define the above computation, so the
function F (·) is different from the one used in Sect. 2.4.

For the right guess, from Eq. (5), the computed value is

m−1∑

j=0

θ
∑t−1

i=0 âi,j/2·si+ej =
m−1∑

j=0

exp

(

2πi0/q · (1
2

·
t−1∑

i=0

âi,j · si + ej)

)

, (6)

which is biased if âi,j is small. The reason is that the standard deviations of the
random variables si and ej are small. Otherwise, the computed value is close to
0 (see Fig. 1 for a graphical illustration). Note that the noise for the t positions
(for 0 ≤ i ≤ t − 1) involved in the Fast Fourier Transform, i.e.

∑t−1
i=0 âi,j · si is

reduced (see Eq. (6)).
We next show a smart approach to perform the computation for all possible

guesses using the FFT technique. Since (−1)2 = 1, we could further classify θbj

into 2t groups according to the vector c = (âj (mod 2)) and define

f(c) =
∑

j0∈I(c)

θbj0 .

Here I(c) is the index set such that âj0 (mod 2) is equal to c for j0 ∈ I(c).
We then have the following equation

F (s mod 2) =
∑

c

f(c)(−1)−〈c,s〉. (7)

We exhaustively guess all the binary vector s̃ ∈ Z
t
2 and compute the correspond-

ing F (s̃). This procedure can be done in O(m+ t · 2t) via using the Fast Fourier
Transform. The guessed vector is a binary vector s0 ∈ Z

t
2 s.t.,

s0 = argmax
s̃∈Z

t
2

Re(F (s̃)), (8)

where Re(F (s̃)) is the real part of F (s̃). With sufficient samples, the guessed
vector should be (s mod 2).

Up to this point, the attacker has recovered t bits of the secret information,
which is the most difficult part. If we write s = 2 · s′ + s0 and recover the value
of s0, then the norm of s′ is smaller by a factor of almost 2 compared to s. Let
bj = 〈aj , s〉 + ej mod q, and we rewrite it as

bj − 〈aj , s0〉 = 〈2aj , s′〉 + ej mod q.

Thus, we have a new LWE problem with secret s′. Since ‖s′‖ is much smaller if
we recover a sufficient number of bits, which is true for the parameters discussed

44 Q. Guo and T. Johansson

later, the cost of recovering the remaining secret by iteratively calling the dual
approach is negligible.

The Gain. We present a simple example to discuss the pros and cons when
comparing the new FFT distinguisher with the classic FFT distinguisher. Let
q be a prime of size about 212 and assume that the complexity constraint only
allows to perform the classic FFT distinguisher with dimension 2. Thus, two
positions are zeroed-out by this distinguisher. Applying the new FFT distin-
guisher with γ = 2, we could instead reduce 24 positions, but a certain amount
of noise remains in each reduced position.

Another small (or practical) gain is that the new FFT distinguisher allows
more flexible parameter selections to meet the time complexity constraint. For
the classical FFT distinguisher, the complexity increases by a factor of about q
if the FFT size is increased by one, which is much larger than the factor, i.e.,
γ, increased for the new FFT distinguisher.

3.2 The Distinguishing Property

We show the visual explanation of the distinguishing property in Fig. 1. The
FFT distinguisher computes the value

Re(
m∑

j=1

θ
Xj

2q),

where Xj = Yj + Ej and Ej is drawn from a discrete Gaussian X2σ over Z2q.
The random variable Yj = λ · q is 0 for the right guess. For the wrong guess, the
variable λ is uniformly distributed over Z2 and the FFT distinguisher computes
Re(

∑m
j=1 θ

Xj

2q) → 0, due to the symmetry. We verified numerically that this is
true for the relevant parameters in this paper since âi,j drawn from a reason-
ably small discrete Gaussian still ensures that âi,j (mod 2) is very close to the
uniform.

Both the new distinguisher and the classic FFT distinguisher are estimating
1
m

∑m
j=1 cos(θ

Xj), with E[cos(θXj)] having the same value away from 0 for the
right guess and E[cos(θXj)] = 0 for the wrong guess. Hoeffding’s bound could
then be applied, implying that the data complexity of the new distinguisher can
be estimated in a similar manner to the classic FFT distinguisher.

4 Improving the Dual Lattice-Reduction Approach

The new distinguisher is now put into a framework of a dual attack to present a
full LWE solving algorithm. The general steps of the new algorithm are described
in Algorithm 1.

Faster Dual Lattice Attacks for Solving LWE 45

0

(a) The right guess case.

0q

(b) The wrong guess case.

Fig. 1. Graphical representation of the new distinguishing property (γ = 2).

Algorithm 1. New dual algorithm for solving LWE.
Input: The m LWE samples.
Output: A partial secret vector.
1: Map the entries in the matrix A as described in Eq. (9).
2: Find sufficiently many short vectors in the lattice L via lattice reductions, where

L is the lattice formed in Eq. (10).
3: Guess the last t1 positions of s exhaustively.
4: Use the new FFT procedure to guess the last t unknown entries in s mod γ.

Assume that the secret variables are distributed as a discrete gaussian dis-
tribution with standard deviation σ and the noise variables is distributed as a
discrete gaussian distribution with standard deviation c · σ. The general idea is
that we assume for ta = t + t1 positions to be determined partially or fully in
one run of the algorithm. Once the secret is partially determined, the problem
of recovering the remaining positions of the secret is of much lower complexity
and hence this part is discarded in the analysis1.

We exhaustively guess the last t1 positions in the secret. This may become
beneficial if e.g. the secret variables take values in a very small alphabet. We
write

A =
(
A0 Â1 A2

)
,

where Â1 is an m × t matrix, and A2 an m × t1 matrix, respectively. Here A0

is the matrix that corresponds to the remaining positions that are not directly
affected by our procedure.

We perform the transformation and obtain

A1 = γÂ1 mod q, (9)

1 For all parameter choices used in this paper (where t1 and t are somewhat large),
the statement is true as knowledge of t1 entries and t bits then reduces the difficulty
of the remaining problem considerably. For example, considering the parameters for
solving Kyber768 in the classical RAM model (see Table 5), the cost of solving the
remaining problem can be bounded by 2188, which is negligible compared to the
main cost of 2205.

46 Q. Guo and T. Johansson

so we have a new matrix of
(
A0 A1 A2

)
. The contribution from the t1 positions

that are exhaustively guessed, corresponding to the A2, is just computed and
subtracted from b and can thus be removed.

According to the analysis in the previous section, if we use the FFT to guess
the t values that are secret si (mod γ), then the noise from these t positions are
reduced by a factor of γ. We can thus search for a short vector (w,v0,v1) in the
lattice L constructed as

{(cx,y0,y1/γ) ∈ cZm × Z
n−ta × 1

γ
Z

t : (A0 A1)Tx =
(
y0

y1

)
mod q} (10)

to balance the noise from each position. The lattice has dimension d = m+n−t1
and volume cm · qn−t1

γt with high probability. This scaling trick is similar to [19].
If we compute (w/c)T ·b, then the final noise after partial guessing and FFT

is formed as

e = (w/c)T (A0 A1)
(

s0
1
γ s1

)
+ 〈w/c, e〉 = 〈w/c, e〉 + 〈v0, s0〉 + 〈γ · v1, s1〉 · 1

γ
.

Assume that the norm of the short vector (w,v0,v1) is l. The noise size is
estimated as σ · l, since the standard deviation of each entry in e (s) is cσ (σ).

For a BKZ reduction BKZβ,d, the shortest vector produced is expected to be

of size l = δd
0 · (cm·qn−t1

γt)
1
d , where δ0 ≈

(
β

2πe (πβ)
1
β

) 1
2(β−1)

. For the decision-LWE
problem, the advantage is estimated as

ε = exp(−2π2τ2),

where τ = σ·l
q .

Note that this is a general setting and for the schemes studied in this paper,
i.e. CRYSTALS-Kyber and CRYSTALS-Dilithium, the constant c is always set
to be 1.

4.1 Complexity Analysis

We present the complexity analysis of the new algorithm.

Bounded Secret Distribution. In many lattice-based primitives, the secret
vector entries are chosen from an bounded alphabet of size B. For instance, the
value B is 3 if the secret is ternary. We also assume that a lattice reduction
algorithm could produce many (say N(β)) short vectors simultaneously with
length l = cs · δd

0 · (cm·qn−t1

γt)
1
d , where cs is a small constant. If cs = 1, we assume

that all the short vectors are as short as the shortest vector obtained from a BKZ
reduction, which is definitely optimistic. Let the required number of samples for
successful distinguishing be

N ≥ c0 · ln(γt · Bt1)
ε2

, (11)

Faster Dual Lattice Attacks for Solving LWE 47

where c0 is a constant factor2 chosen as 4 and the factor ln(γt · Bt1) comes from
the fact that the FFT distinguisher finds the secret among γt ·Bt1 hypotheses. To
count the overall complexity of the new algorithm, we accumulate the complexity
of different steps.

– The first step is a mapping for a small matrix with negligible cost.
– The second step involves max(1, N

N(RED)) lattice reduction steps to pro-
duce sufficiently many short vectors, where N(RED) denotes the number
of short vectors produced via one lattice reduction. Thus, the complexity
is T (RED) · max(1, N

N(RED)), where T (RED) denotes the complexity for one
reduction procedure.

– We then guess t1 positions with Bt1 possibilities in total. For each guess,
the inner product of the guessed partial secret key and the corresponding
coefficient vector needs to be subtracted for N samples outputted from the
previous lattice reduction procedure and a large FFT transform with size t
needs to be performed. For each FFT transform, the complexity is t·γt ·log2 γ.

The exhaustive guessing approach could be done using a trick of storing
intermediate values in memory. Now assuming that we need to compute b−〈a, s〉,
where s run through all the vectors of length t1 and each entry in s has B choices.
Notice that this computation needs to be done for N times since we have N short
vectors from the previous lattice reductions.

We first build a table by computing B · t1 vectors of length N with entry aisi

for 0 ≤ i ≤ t1 − 1 and si runs through all B choices. The cost B · t1 · N is much
smaller than Bt1 · N for our targeted parameters; we, therefore, omit this cost
in the complexity formula.

We could then enumerate all the possible s and build an enumeration tree of
depth t1. The starting point is an all-zero vector and the computation is trivial.
The output b of the all-zero guess of s is placed in a leaf node and all the nodes
in the path from the root to this all-zero leaf store the same vector b of length
N . Afterwards, the computation of a new guess is only to add the vector stored
in the parent node and a vector from a look-up table, which costs roughly N
operations. Note that it is unnecessary to store all the enumeration tree, since
only the vector in its parent node is needed to compute the vector in the new
node. The memory cost of this enumeration is at most O(t1 · N).

This technique is a general method used in different scenarios such as Infor-
mation Set Decoding. As the complexity of the exhaustive guessing procedure
can be bounded by the size of the guessing tree, the overall complexity is then
estimated as

C = T (RED) · max(1,
N

N(RED)
) + Bt1 · (N + t · γt · log2 γ). (12)

2 For solving the Learning Parity with Noise (LPN) problem, this constant is chosen
to be 4, which is verified in [37]. We adopt this setting and verify it via experiments
in Sect. 8. Theoretical results [33,35] from Hoeffding’s inequality bounds this value
by roughly 8 multiplying some other terms related to the success probability.

48 Q. Guo and T. Johansson

Another Optimization Trick. One general optimization trick is to guess a
fixed number of most probable choices in the alphabet and take into account the
probability P0 that the partial secret is one of the guessed vectors. Thus, in such
an approach the overall complexity can be estimated as C

P0
.

In lattice research, we usually pick the secret pattern with bounded Euclidean
distance. Now assuming the number of guessed patterns is N(guess), we have
the following theorem to bound the complexity of the new algorithm.

Theorem 1. Let n, q, σ, c be the parameters for the LWE problem and m be the
number of LWE samples used. Let t1 be the guessing positions and t be the FFT
size. Let the constants c0, cs and γ be as defined before. Assume that the lattice
reduction algorithms include BKZ reductions BKZβ,d to produce a reduced basis
with good quality and one reduction procedure can produce N(RED) short vectors

with norm l = cs ·δd
0 ·(cm·qn−t1

γt)
1
d , d = m+n−t1 and δ0 ≈

(
β

2πe (πβ)
1
β

) 1
2(β−1)

. Let
T (RED) denote the complexity for one reduction procedure and N the required
number of short vectors for the distinguisher. Let N(guess) be the number of
guessed patterns in the exhaustively guessing step.

The time complexity of the new algorithm can be estimated as C
P0

, where P0

is the probability that the partial secret is one of the guessed vector and,

C = T (RED) · max(1,
N

N(RED)
) + N(guess) · (N + t · γt · log2 γ), (13)

supposing that

N ≥ c0 · ln(γt · N(guess))
ε2

,

where ε = exp(−2π2τ2) and τ = σ·l
q .

Remarks. We describe a general formula for estimating the complexity of the
new dual attack in Theorem 1. We mainly discuss two types of cost models in
this paper, i.e., the core-SVP model and the classical RAM model (also called
the gate-count model in the official documents of CRYSTALS). In different mod-
els, many functions, such as T (RED), N(RED), and l, need to be specified. For
instance, a typical assumption in the core-SVP model is that a BKZ procedure
BKZβ,d could produce 20.2075β short vectors that are as short as the shortest one.
In the RAM model, we use more realistic settings where T (RED) and N(RED)
are studied in [14], and the produced short vectors are larger by a factor of

√
4/3

than the shortest one. Note that the latter assumption is suggested by theoretical
analysis in [48], and is extensively verified in recent works [12,15,34].

5 Application to CRYSTALS

In this section we discuss the application of the algorithm to two of the seven
finalists, i.e., CRYSTALS-Kyber [52] and CRYSTALS-Dilithium [46], in the

Faster Dual Lattice Attacks for Solving LWE 49

NIST Post-Quantum Cryptography Standardization Project, under the core-
SVP estimation model. In the core-SVP model, the lattice reduction procedure
is one BKZ reduction, denoted BKZβ,d, with time complexity 20.292β for a classic
computer and 20.265β for a quantum computer. Such a reduction step is supposed
to output 20.2075β short vectors with size as short as the shortest one. Thus, in
this model T (RED) is 20.292β for a classic computer and is 20.265β for a quantum
computer, N(RED) = 20.2075β , and l = cs · δd

0 · (cm·qn−t1

γt)
1
d with cs = 1.

These two cryptosystems are both from the “Cryptographic Suite for Alge-
braic Lattices” (CRYSTALS) [1], thus sharing similar designs. We fix γ to be
2 since in CRYSTALS the parameter q is always selected as an odd prime. We
also know c = 1 since the secret distributions are the same as the noise ones.

The security of Kyber and Dilithium is related to solving LWE problems
with different parameters. We numerically investigate the concrete complexity
for solving the transformed LWE problems in the core-SVP model and show the
estimation in Tables 2 and 4.

Table 2. The complexity estimation on the security parameters of CRYSTALS-Kyber
in the core-SVP model. Here n is the dimension when transforming the key-recovery
problem to an LWE problem and q is the alphabetic size. Cost is given in log2 of
operations. Here γ = 2.

Kyber512 Kyber768 Kyber1024

Claimed security level NIST-1 NIST-3 NIST-5

n 512 768 1024
q 3329 3329 3329
η 3 2 2

Classical core-SVP
Claim [52] 118 182 256
Sect. 5 115 174 243
BKZ block-size β 394 595 829
Guessing size t1 10 23 32
FFT size t 75 113 163

Quantum core-SVP
Claim [52] 107 165 232
Sect. 5 105 160 223
BKZ block-size β 397 602 840
Guessing size t1 7 15 21
FFT size t 72 117 163

Kyber. CRYSTALS-Kyber [52] is an IND-CCA2-secure KEM in the finalists
of the NIST Post-Quantum Cryptography Standardization Project. We describe

50 Q. Guo and T. Johansson

the detailed parameter sets of Kyber in Table 2. The scheme fixes the alphabetic
size to 3329. In the round-3 specification, each secret/noise entry is sampled
from a centered binomial distribution Bη, where Bη is implemented as

1. Sample (a1, . . . , aη, b1, . . . , bη) ←$ {0, 1}2η;
2. Output

∑η
i=1(ai − bi).

For Kyber768 and Kyber1024, the secret and noise distributions are set to
be B2, while the distributions are B3 for Kyber512. The distribution of B2 is
shown in Table 3.

Table 3. The distribution of B2.

0 ±1 ±2

Probabilities 3
8

1
4

1
16

We could have an efficient approach to guess a vector of dimension t1 with
entries sampled from B2 for Kyber768 and Kyber1024. For such a vector, we
numerically compute the distribution of the norm of the vector. We pick a bound
R to ensure that the probability that the norm of the vector is smaller than R
is larger than P0. In our estimation, we fix P0 to be 0.9 to reduce the cost of
searching for the optimal parameter. We could then count N(guess), the number
of patterns that the norm is no larger than R. This optimization trick could offer
a small gain of less than 1 bit for the targeted parameter sets.

We see from Table 2 that our new attack could have a gain in the core-SVP
model as large as 13 bits classically and 9 bits with quantum computers, for
Kyber1024. The gain is also significant for Kyber768.

Dilithium. CRYSTALS-Dilithium [46] is an EUF-CMA-secure digital signature
algorithm in the finalists of the NIST Post-Quantum Cryptography Standardiza-
tion Project. It has a large alphabetic size q = 8380417 and a larger dimension
(than Kyber) for the same security level. For Dilithium-2 and Dilithium-5, the
secret/noise distributions are set to be S2, while they are S4 for Dilithium-3.
Here Sη is the uniform distribution over integers in [−η, η]. Under the core-
SVP model, we describe in detail the attack complexity on parameter settings of
Dilithium in Table 4. This table shows that we could improve the state-of-the-art
attacks for all the three parameter sets, though the gain is smaller than that for
Kyber.

6 Beyond Core-SVP Estimation

In the previous section, we have shown the improvement from the new dual
attacks in the core-SVP model. However, it is unclear to compare these numbers

Faster Dual Lattice Attacks for Solving LWE 51

Table 4. The complexity of the new attack on the security parameters of CRYSTALS-
Dilithium in the core-SVP model. The value n is the dimension of the transformed
LWE problem, q the alphabetic size and η the parameter in the noise generation of Sη.
Cost is given in log2 of operations. Here γ = 2.

Dilithium-2 Dilithium-3 Dilithium-5

Claimed security level NIST-2 NIST-3 NIST-5

n 1024 1280 1792
q 8380417 8380417 8380417
η 2 4 2

Classical core-SVP
Claim [46] 123 182 252
Sect. 5 122 179 246
BKZ block-size β 417 613 842
Guessing size t1 13 15 29
FFT size t 75 116 163

Quantum core-SVP
Claim [46] 112 165 229
Sect. 5 111 163 225
BKZ block-size β 419 616 848
Guessing size t1 9 10 19
FFT size t 76 116 164

with the security requirements from NIST. In the official documents of round-3
Kyber and Dilithium, the designers also presented security numbers in the gate-
count metric. They, however, excluded the analysis against dual attacks since
“..First, most of those vectors are larger by a factor

√
4/3, secondly the trick of

exploiting all those vectors is not compatible with the ‘dimension for free’ trick
of [34]..” (cited from [46]).

We in this section investigate the complexity of our new dual attacks in the
gate-count metric and show that dual attacks could be more efficient even if
most of short vectors obtained are larger by a factor

√
4/3. The novel idea is

rather simple – we propose a new two-step lattice reduction algorithm where
the first and second steps exploit the “dimension for free” (d4f) gain and the
“many short vectors” (msv) gain, respectively. Also, a BKZ procedure typically
includes calling an SVP oracle for many times. Thus, in the second step we could
perform a sieving algorithm with a larger dimension to balance the costs of the
two steps. From this perspective, we exploit the d4f trick twice and also produce
an exponential number of short vectors.

6.1 A New Lattice Reduction Strategy

We describe the new two-step lattice reduction algorithm. The framework is
shown in Algorithm 2. The first step is just a BKZ reduction where the d4f

52 Q. Guo and T. Johansson

Algorithm 2. Two-step Lattice Reduction
Input: A lattice.
Output: A list of short vectors.
1: Do BKZ reductions with size β. Then we obtain a reduced basis with a short vector

b0 as the first vector in the basis.
2: For the lattice L′ generated by the first β0 vectors in the reduced basis, we perform

a sieving step and get a list of N(β0) short vectors with size no larger than
√

4/3 ·
λ1(L′), where λ1(L′) is the shortest vector in the lattice L′.

gain could be exploited, meaning that for a BKZ reduction BKZβ,d, the actual
costs correspond to a smaller β′. We use this step to improve the quality of the
reduced basis.

Exploiting the d4f Gain. It is observed in [34] that the SVP in dimension β
could be solved using a sieve in dimension β′ = β−d4f , where d4f = Θ(β/ log β).
Actually, this d4f gain comes from the fact that one sieving procedure could
produce many short vectors. In [34], an “optimistic” estimation for d4f is given
as

d4f =
β log(4/3)

log(β/(2πe))
. (14)

This estimation is asymptotic and denoted by the Asymptotic Model. However, it
is shown in [12] that the G6K sieve framework can achieve a larger dimension for
free via a technique called “on the fly” lifting. By extrapolating from experimental
data, they set d4f as

d4f = 11.46 + 0.0757 · β. (15)

We denote the latter extrapolated estimation the G6K Model.

Exploiting the msv Gain. The second step is just one sieving procedure on
the lattice L′ generated by the first β0 vectors in the reduced basis outputted
by the previous step. We could then get a list of N(β0) short vectors with size
no larger than

√
4/3 · λ1(L′), where λ1(L′) is the shortest vector in the lattice

L′. One important problem is thus to estimate the value of λ1(L′).
As we already know a short vector b0 in the lattice L′, we could use ‖b0‖

to upper-bound the value of λ1(L′). One could also use Gaussian Heuristics
to estimate the value of λ1(L′). Note that the two approaches lead to quite
close complexity numbers (see Sect. 6.3 for details). The number of short vectors
produced is denoted N(β0), where N(β0) = 1/Caps(β0, π/3) and Caps(β0, π/3) is
the probability that a vector randomly drawn from the unit sphere of dimension
(β0 − 1) has angle at most π/3 with some fixed vector. The number N(β0) can
be concretely estimated from the source code in the appendix of [14].

Faster Dual Lattice Attacks for Solving LWE 53

6.2 Complexity Analysis

We analyze the complexity of the algorithm in the gate-metric count model.
Let the lattice dimension be d = m + n − t1. Theorem 1 could also apply since
the structure of the dual algorithm is unchanged, but the terms T (RED) and
N(RED) and the length of the short vectors need to be updated.

We use a similar approach to that in round-3 Kyber [52] and Dilithium [46]
for analyzing the cost of sieving and BKZ in the gate-metric count. To be more
specific, we employ the analysis in [14] of the gate count of a ‘AllPairSearch’
operation for different sieving dimensions. We build a table with table entry
GT (β) storing this cost in gate count metric for dimension β.

Also, similar to [52], we assume that the ‘AllPairSearch’ operation needs to
be called only once using progressive sieving [34,43], and define the progres-
sivity overhead cpo = 1/(1 − 2−0.292) = 5.46, i.e., the limit of ratio between∑

i≤b 2
0.292i+o(i) and 20.292b+o(b) as b grows. We estimate T (RED) as follows.

– For the first BKZ size β, we compute the sieving dimension β′ = β − d4f

and could check the GT table to have the complexity GT (β′). Similar to the
analysis in [52], the complexity for BKZ is (d − β)c2poGT (β′).

– For the second step of the reduction, as the basis has been well-reduced by the
first BKZ reduction and the d4f gain is no longer achieved, we do progressive
sieving and the sieving complexity is estimated as cpo · GT (β0) for a sieving
dimension β0. So we set (d−β)cpo ·GT (β′) ≈ GT (β0) to balance the cost, and
produce N(β0) short vectors. We could achieve a slightly larger dimension of
β0 than β′. Also, the term N(RED) is equal to N(β0), estimated with the
concrete analysis from [14].

Thus, one new two-step reduction algorithm will cost

T (RED) = (d − β)c2po · GT (β′) + cpo · GT (β0).

The short vectors are as short as
√
4/3 · λ1(L′), where λ1(L′) can be estimated

using the Gaussian Heuristic or be upper-bounded by

‖b0‖ = δd
0 · (c

m · qn−t1

γt
)

1
d .

We have δ0 ≈
(

β
2πe (πβ)

1
β

) 1
2(β−1)

. For Kyber and Dilithium, the constant c is
always 1 and γ is 2 since the secret and noise distributions are the same and q
is a prime.

When analyzing the primal attacks in the official documents of CRYSTALS,
the designers use BKZ simulators to replace the simple geometric-series assump-
tion, mainly due to its inaccuracy caused by the “tail” phenomenon. The sit-
uation is different in our dual lattice attack where the “head” phenomenon of
BKZ reduction is the most important. Bai et al. in [20] stated that “Our simu-
lator, which accurately predicts the head phenomenon, suggests that the head

54 Q. Guo and T. Johansson

phenomenon vanishes when the block-size becomes large.. Quantitatively, the
phenomenon has almost fully disappeared for β ≈ 200”.

The focus of the paper is to assess the strength of the security parameters
proposed in various cryptographic primitives with the BKZ block-size β � 200.
Thus, the geometric-series assumption is accurate, and we stick with it mainly
due to its simplicity. It could be more accurate to instead use BKZ simulators
when discussing the complexity of solving smaller LWE instances (with the BKZ
block-size β 200).

Table 5. The gate complexity comparison on the security parameters of CRYSTALS-
Kyber. Here n is the dimension when transforming the key-recovery problem to an
LWE problem and q is the alphabetic size. Cost is given in log2 of operations. Here
γ = 2.

Kyber512 Kyber768 Kyber1024

Claimed security level NIST-1 NIST-3 NIST-5

n 512 768 1024
q 3329 3329 3329
η 3 2 2

Claim [52] 151.5 215.1 287.3

Sect. 6
Asymptotic Model 148.3 207.3 275.4
BKZ block-size β 398 604 848
BKZ sieving dimension β′ = β − d4f 361 555 785
Second sieving dimension β0 400 596 827
Guessing size t1 20 36 45
FFT size t 78 118 166
G6K Model [12] 147.1 205.2 272.3
BKZ block-size β 399 606 850
BKZ sieving dimension β′ = β − d4f 357 548 774
Second sieving dimension β0 396 589 816
Guessing size t1 20 36 45
FFT size t 77 116 164

Required by NIST 143 207 272

6.3 Results

We show in Tables 5 and 6 the estimated complexity in the classical RAM model
(also called gate-count metric in the official documents of CRYSTALS) for the
security parameter sets of round-3 Kyber and Dilithium. The gain compared
with the primal lattice attack is generally significant, ranging from 4 bits to 15

Faster Dual Lattice Attacks for Solving LWE 55

Table 6. The gate complexity of the new attack on the security parameters of round-3
CRYSTALS-Dilithium. The value n is the dimension of the transformed LWE problem,
q the alphabetic size and η the parameter in the noise generation of Sη. Cost is given
in log2 of operations. Here γ = 2.

Dilithium-2 Dilithium-3 Dilithium-5

Claimed security level NIST-2 NIST-3 NIST-5

n 1024 1280 1792
q 8380417 8380417 8380417
η 2 4 2

Claim [46] 158.6 216.7 285.4

Sect. 6
Asymptotic Model 155.4 212.9 278.1
BKZ block-size β 418 620 853
BKZ sieving dimension β′ = β − d4f 380 570 790
Second sieving dimension β0 424 616 837
Guessing size t1 25 24 41
FFT size t 81 126 167
G6K Model [12] 153.8 210.4 274.4
BKZ block-size β 418 621 854
BKZ sieving dimension β′ = β − d4f 374 562 774
Second sieving dimension β0 418 608 824
Guessing size t1 26 24 41
FFT size t 80 120 165

Required by NIST 146 207 272

bits in the G6K Model (and from 3 bits to 12 bits in the Asymptotic Model),
and the gain in the gate-count metric is larger than that in the core-SVP model,
since in the prior model we could have a larger guessing size and also a larger
FFT size.

These two tables show that some parameter sets such as Kyber512, Dilithium-
2 and Dilithium-3 have a rather limited security margin, some such as Kyber1024
and Dilithium-5 are really on the edge, and the parameter set Kyber768 fails3
to achieve the security requirement from NIST. In these tables, we use ‖b0‖
to upper-bound the value of λ1(L′). We also employ the Gaussian Heuristics
to estimate λ1(L′) and obtain similar complexity numbers. For instance, the
complexity of solving Kyber768 increases from 205 bits to 206 bits, but is still
below its claimed security level.

3 One may argue that the extrapolated G6K Model could be optimistic when the
dimension is large. As the log2 of the gate count in the Asymptotic Model is so close
to the NIST requirement (207.3 v.s. 207) for Kyber768, however, a small number of
extra dimensions for free could make the scheme insufficient for its claimed security
level.

56 Q. Guo and T. Johansson

Table 7. The complexity comparison for the security parameters in the Homomorphic
Encryption Standardization draft aiming for classic security. Here n is the dimension
when transforming the key-recovery problem to an LWE problem and q is the alpha-
betic size. Cost is given in log2 of operations. The secret distribution is a uniform
distribution from {−1, 0, 1}. The columns of uSVP, dec, and dual represent the com-
plexity of the methods of uSVP, decoding, and dual, respectively, stated in the official
documents of the Homomorphic Encryption Standard [7]. Here we pick γ = 3.

Security Level n log2(q) uSVP dec dual New Dual
(from [7]) (RAM model)

128 1024 27 131.6 160.2 138.7 131.6
192 1024 19 193.0 259.5 207.7 187.0
256 1024 14 265.6 406.4 293.8 251.1

This new method can be partially understood as a time-memory trade-off
trick since we use a sieving procedure with larger dimension (i.e., β0) to produce
more short vectors. We also have some other memory costs such as the cost for
the FFT procedure. However, these costs are negligible compared with the cost
of the main sieving step.

7 Application to the Homomorphic Encryption Standard

The Homomorphic Encryption Standard [7] was initiated by several famous
researchers/research groups in this area during the Homomorphic Encryption
Standardization Workshop [3], hosted at Microsoft Research in Redmond. It
suggests security parameters at security level of 128, 192, and 256, respectively.

In the suggested parameter settings, the standard deviation of the noise vari-
able is chosen to be 3.2. The secret distribution could be uniform, the same as
noise, or the bounded size in {−1, 0, 1}. We focus on the bounded secret case
since it is the main parameter choice of many important implementations (e.g.,
the default parameters in the Microsoft SEAL [4]) that could lead to preferable
performance.

We set γ = 3, and the complexity comparison for the security parameters
aiming for classic security is shown in Table 7. We only consider the classic gate
complexity, i.e., the cost in the Random Access Machine (RAM) model and we
fix n to be 1024. The improvement factors vary for different parameter sets. For
a parameter set designed for 256-bit security, the new dual approach with the
refined lattice reduction strategy could lead to a security loss of about 5 bits.

Faster Dual Lattice Attacks for Solving LWE 57

8 Experimental Verification

In this section we experimentally verify the theoretical complexity estimation.
The assumptions in lattice reduction algorithms, such as the d4f gain and the
msv gain, have been verified in previous research [12,15,34]. Thus, we mainly
perform experimental validation of the success rate of the new FFT distinguisher.

We have generated the samples in Zq s.t.,

bj =
t−1∑

i=0

âi,j · q + 1
2

· si,+ej ,

in the simulation, where each âi,j was generated from a discrete Gaussian dis-
tribution Xσ1 and ej was from another discrete Gaussian distribution Xσ2 . We
then implemented the new distinguisher to recover the secret vector of length
t. These experiments simulate the processing steps after receiving many short
vectors from the BKZ reduction algorithms. The alphabetic size q is set to be
3329, the same value as that in CRYSTALS-Kyber. For simplicity, we generated
si from a uniform distribution in Z2. Note that, for parameter sets in public key
encryption primitives, the secret si is usually set to be small and the variables
âi,j and ej are (a sum of) entries from reduction algorithms, thus being wide.

We aim to verify in the experiments that

1. the sample complexity estimation in Eq. (11) is correct;
2. and it is sufficient to choose c0 to be 4 to ensure a high success probability.

For the first purpose, we designed two types of experiments with different values
of σ1 and σ2, since different noise parts contribute to the final noise with different
weights (scales) according to our theoretical analysis. For the second purpose,
we ran experiments with sample complexity computed by Eq. (11) where c0 is
set to 1, 2 and 4, respectively.

In each experiment, we chose a typical key with length t and weight t
2 and

ran the simulation test for 1000 times. The success probabilities in simulation
are shown in Table 8. The experimental data match the theoretical prediction
from Eq. (11) very well. To be more specific, the success probabilities are always
100% in our experiments when the value c0 is set to 4. We already ensure a high
success probability (of 95%) when setting c0 = 2.

In addition, we have simulated the success probability when generating a new
key in each run of the test. The secret entry si, as before, was generated from a
uniform distribution in Z2, but the weight of the secret vector was not controlled.
Thus, the error probability could be slightly higher if the weight of the secret is
high. We have only run Type-II experiments with the FFT dimension 8 and
16, respectively, and performed 10000 tests in each setting. The coefficient c0 is
set to 4, the value in the theoretical prediction. We succeeded 9979 times for
t = 8 and 9975 times for t = 16, strongly supporting our theoretical estimation.

58 Q. Guo and T. Johansson

Table 8. Experimental success probabilities with the novel FFT distinguisher. Here
γ = 2 and the prime field size q is 3329. The value t is the FFT dimension and c0 is
the coefficient in Eq. (11). The rows with c0 = 4 correspond to the experiments with
number of samples predicted by our theory.

t c0 #(samples) #(success) #(test) success rate
log2(·)

Type-I experiments (σ1 = 700, σ2 = 1350)
8 4 16.36 1000 1000 100%

2 15.36 976 1000 97.6%

1 14.36 701 1000 70.1%

12 4 18.20 1000 1000 100%

2 17.20 990 1000 99.0%

1 16.20 741 1000 74.1%

16 4 19.87 1000 1000 100%

2 18.87 999 1000 99.9%

1 17.87 770 1000 77.0%

Type-II experiments (σ1 = 500, σ2 = 1500)
8 4 17.32 1000 1000 100%

2 16.32 956 1000 95.6%

1 15.32 677 1000 67.7%

12 4 18.55 1000 1000 100%

2 17.55 979 1000 97.9%

1 16.55 686 1000 68.6%

16 4 19.60 1000 1000 100%

2 18.60 991 1000 99.1%

1 17.60 651 1000 65.1%

9 Concluding Remarks

We have presented a novel fast dual-type lattice attack for solving the LWE
problem, based on two main contributions. Firstly, we have proposed a new
efficient distinguisher using the FFT technique with a small alphabetic size.
Secondly, we have described a new two-step reduction strategy that first uses
a BKZ reduction for a high-quality lattice basis and then employs a progres-
sive sieving step to produce many short vectors. This new reduction framework
allows us to take into account the recent advances in lattice algorithms, such
as the “dimensions for free” trick and more precise gate estimations on nearest
neighbor search. The proposed new algorithm improves the complexity of solving
the security parameter sets in the round-3 submissions of CRYSTALS-Kyber and
CRYSTALS-Dilithium in both the core-SVP model and the gate-count metric.
This new algorithm could recover the secret key of Kyber768 with classical gate
complexity below its claimed security level under a model in [12] extrapolated

Faster Dual Lattice Attacks for Solving LWE 59

from experimental data. Also, this new algorithm could improve the best-known
attacks on certain FHE parameters. This new dual attack has rather wide appli-
cations and could affect many lattice-based primitives.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments. This work was supported in part by the Swedish Research
Council (Grant No. 2019-04166), by the Swedish Foundation for Strategic Research
(Grant No. RIT17-0005), and by the Wallenberg Autonomous Systems and Software
Program (WASP). The computations/simulations were enabled by resources provided
by LUNARC.

References

1. Cryptographic suite for algebraic lattices. https://pq-crystals.org/index.shtml.
Accessed 31 Aug 2020

2. HElib. https://github.com/homenc/HElib. Accessed 31 Aug 2020
3. Homomorphic encryption standardization workshop. https://www.microsoft.

com/en-us/research/event/homomorphic-encryption-standardization-workshop/.
Accessed 07 Oct 2020

4. Microsoft SEAL. https://www.microsoft.com/en-us/research/project/microsoft-
seal. Accessed 31 Aug 2020

5. NIST post-quantum cryptography standardization. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-
Standardization. Accessed 24 Sept 2018

6. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf.
Accessed 18 Feb 2021

7. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report.
HomomorphicEncryption.org, Toronto, Canada (2018)

8. Albrecht, M., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems (2014)

9. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6_4

10. Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

11. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0_19

12. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general Sieve Kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25

13. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12160-4_18

https://pq-crystals.org/index.shtml
https://github.com/homenc/HElib
https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/
https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/
https://www.microsoft.com/en-us/research/project/microsoft-seal
https://www.microsoft.com/en-us/research/project/microsoft-seal
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-12160-4_18

60 Q. Guo and T. Johansson

14. Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Estimating
quantum speedups for lattice sieves. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 583–613. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_20

15. Albrecht, M.R., Heninger, N.: On bounded distance decoding with predicate:
breaking the “lattice barrier” for the hidden number problem. IACR Cryptol. ePrint
Arch. 2020, 1540 (2020). https://eprint.iacr.org/2020/1540

16. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. M. Cryptol. 9(3), 169–203 (2015)

17. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016: 25th USENIX
Security Symposium, 10–12 August 2016, pp. 327–343. USENIX Association,
Austin, TX, USA (2016)

18. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34

19. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5_21

20. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head con-
cavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03326-2_13

21. Bi, L., Lu, X., Luo, J., Wang, K., Zhang, Z.: Hybrid dual attack on LWE with
arbitrary secrets. Cryptology ePrint Archive, Report 2021/152 (2021). https://
eprint.iacr.org/2021/152

22. Bleichenbacher, D.: On the generation of DSA one-time keys. Presentation at cryp-
tography research, Inc., San Francisco, CA (2007)

23. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.
Presentation at IEEE P1363 Working Group Meeting (2000)

24. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM (JACM) 50(4), 506–519 (2003)

25. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, 1–4 June 2013, pp. 575–584.
ACM Press, Palo Alto, CA, USA (2013)

26. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd Annual Symposium on Foundations
of Computer Science, 22–25 October 2011, pp. 97–106. IEEE Computer Society
Press, Palm Springs, CA, USA (2011)

27. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9_29

28. Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE
with binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle
attack. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016.
LNCS, vol. 9646, pp. 24–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-31517-1_2

https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://eprint.iacr.org/2020/1540
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://eprint.iacr.org/2021/152
https://eprint.iacr.org/2021/152
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-319-31517-1_2
https://doi.org/10.1007/978-3-319-31517-1_2

Faster Dual Lattice Attacks for Solving LWE 61

29. Budroni, A., Guo, Q., Johansson, T., Mårtensson, E., Wagner, P.S.: Making the
BKW algorithm practical for LWE. In: Bhargavan, K., Oswald, E., Prabhakaran,
M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 417–439. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-65277-7_19

30. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. Ph.D. thesis, Paris 7 (2013)

31. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

32. Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-middle
attack on sparse and ternary secret LWE. IEEE Access 7, 89497–89506 (2019)

33. Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–
202. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_8

34. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_5

35. Espitau, T., Joux, A., Kharchenko, N.: On a hybrid approach to solve small secret
LWE. Cryptology ePrint Archive, Report 2020/515 (2020). https://eprint.iacr.org/
2020/515

36. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

37. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. J. Cryptol.
33(1), 1–33 (2020)

38. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice
codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_2

39. Guo, Q., Mårtensson, E., Wagner, P.S.: On the sample complexity of solving LWE
using BKW-style algorithms. In: IEEE International Symposium on Information
Theory, ISIT 2021, Melbourne, Australia, 12–20 July 2021, pp. 2405–2410. IEEE
(2021). https://doi.org/10.1109/ISIT45174.2021.9518190

40. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9

41. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6_3

42. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7_1

43. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3_14

44. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

https://doi.org/10.1007/978-3-030-65277-7_19
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-662-46800-5_8
https://doi.org/10.1007/978-3-319-78381-9_5
https://eprint.iacr.org/2020/515
https://eprint.iacr.org/2020/515
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1109/ISIT45174.2021.9518190
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-79063-3_14
https://doi.org/10.1007/978-3-642-19074-2_21

62 Q. Guo and T. Johansson

45. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4_19

46. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report. National
Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

47. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

48. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptol. 2(2), 181–207 (2008). https://doi.org/10.1515/JMC.
2008.009

49. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on
Theory of Computing, 31 May–2 Jun 2009, pp. 333–342. ACM Press, Bethesda,
MD, USA (2009)

50. Poppelmann, T., et al.: NewHope. Technical report. National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

51. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory of
Computing, 22–24 May 2005, pp. 84–93. ACM Press, Baltimore, MA, USA (2005)

52. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report. National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

53. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse and ternary secret
LWE. IACR Cryptol. ePrint Arch. 2019, 1019 (2019)

https://doi.org/10.1007/978-3-642-36095-4_19
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Lattice Sieving via Quantum Random
Walks

André Chailloux(B) and Johanna Loyer(B)

Inria de Paris, EPI COSMIQ, Paris, France
{andre.chailloux,johanna.loyer}@inria.fr

Abstract. Lattice-based cryptography is one of the leading proposals
for post-quantum cryptography. The Shortest Vector Problem (SVP) is
arguably the most important problem for the cryptanalysis of lattice-
based cryptography, and many lattice-based schemes have security claims
based on its hardness. The best quantum algorithm for the SVP is due
to Laarhoven [Laa16] and runs in (heuristic) time 20.2653d+o(d). In this
article, we present an improvement over Laarhoven’s result and present
an algorithm that has a (heuristic) running time of 20.2570d+o(d) where d
is the lattice dimension. We also present time-memory trade-offs where
we quantify the amount of quantum memory and quantum random access
memory of our algorithm. The core idea is to replace Grover’s algorithm
used in [Laa16] in a key part of the sieving algorithm by a quantum
random walk in which we add a layer of local sensitive filtering.

1 Introduction

Lattice-based cryptography is one of the most appealing modern public-key cryp-
tography. It has worst case to average case reductions [Ajt96], efficient schemes
and allows more advanced primitives such as fully homomorphic encryption
[Gen09]. Another important aspect is that lattice based problems are believed to
be hard even for quantum computers. Lattice-based cryptography is therefore
at the forefront of post-quantum cryptography, especially in the NIST post-
quantum standardization process. It is therefore very important to put a large
effort on quantum cryptanalysis and to understand the quantum hardness of
lattice problems in order to increase our trust in these post-quantum solutions.

For a given lattice L, the Shortest Vector Problem (SVP) asks to find a short
vector of this lattice. Solving the SVP is arguably the most important prob-
lem for the cryptanalysis of lattice-based cryptography. Additionally to its own
importance, it is used as a subroutine in the BKZ algorithm, which is often the
best attack on lattice-based schemes. There are two main families of algorithms
for SVP: enumeration algorithms [FP85,Kan83,Poh81] which are asymptotically
slow but have small memory requirements, and sieving algorithm which have the
best asymptotic complexities but have large memory requirements. For finding
very small vectors, which is required by the BKZ algorithm, sieving algorithms
are currently the most efficient algorithms despite their large memory require-
ments. Indeed, in the SVP challenge, the 10 top performances are done by sieving
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 63–91, 2021.
https://doi.org/10.1007/978-3-030-92068-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_3

64 A. Chailloux and J. Loyer

algorithms and the current record (since February 2021) solves SVP for d = 1801.
However, for large approximation factors, enumeration algorithms are more effi-
cient and these 2 methods are both of wide interest.

For a lattice L of dimension d, sieving algorithms solve SVP classically in time
20.292d+o(d) (with a heuristic analysis) using the local filtering technique intro-
duced in [BDGL16]. Laarhoven presented a quantum equivalent of this algorithm
that runs in time 20.265d+o(d) while using as much space as in the classical set-
ting, namely 20.208d+o(d). The BKZ algorithm is the most efficient known attack
against all lattice-based schemes which were chosen at the third round of NIST
standardization process2. These two exponents are used for determining the num-
ber of bits of security in all these schemes hence improving the time exponent
for SVP has direct implications on the security claims of these schemes.

Related Work. Heuristic sieving algorithms were first introduced by Nguyen
and Vidick [NV08] that presented an algorithm running in time 20.415d+o(d) and
using 20.2075d memory. A more efficient sieve in practice but with the same
asymptotic running time was presented in [MV10]. Then, there has been improve-
ments by considering k-sieve algorithms [WLTB11,ZPH14,Laa16]. Also, several
works showed how to use nearest neighbor search to improve sieving algorithms
[LdW15,Laa15,BL16]. The best algorithm [BDGL16] runs in time 20.292d+o(d)

and uses locality-sensitive filtering.
In the quantum setting, quantum analogues of the main algorithms for sieving

were studied [LMvdP15,Laa16]. The best algorithm runs in time 20.265d+o(d)

and is the quantum analogue of [BDGL16]. There has been two more recent
works on quantum sieving algorithms. First, quantum variants of the k-sieve
were studied in [KMPM19], giving interesting time-space trade-off and a recent
article [AGPS20] studied more practical speedups of these quantum algorithms,
i.e. when do these gains in the exponent actually translate to quantum speedups.

Contributions. In this article, we study and improve the asymptotic complex-
ity of quantum sieving algorithm for SVP. This is the first improvement on
the asymptotic running time3 of quantum sieving algorithms since the work of
Laarhoven [Laa16].

It is not a priori clear how to use quantum random walks to adapt the
algorithm from [BDGL16]. This algorithm is divided into a pre-processing phase
and a query phase. In this query phase, we have several points that are in a filter
F , which means here that there are close to a specific point. We are then given
a new point �v and we want to know whether there exists a point �w ∈ F such
1 The SVP challenge can be accessed here https://www.latticechallenge.org/svp-

challenge.
2 At this stage, there are 3 encryption schemes/key encapsulation mechanisms:

KYBER, NTRU and SABER as well as two signature schemes: DILITHIUM and
FALCON.

3 We are talking here only about the asymptotic running time, there are other metrics
of interest that have been covered in [KMPM19,AGPS20] where there were some
improvements.

https://www.latticechallenge.org/svp-challenge
https://www.latticechallenge.org/svp-challenge

Lattice Sieving via Quantum Random Walks 65

that ‖�v ± �w‖ is smaller than min{‖�v‖ , ‖�w‖}4. Then we do not know how to do
better here than Grover’s algorithm, which takes time

√|F |. On the other hand,
if instead of this query framework, we start from a filter F and we want to find
all the pairs �v, �w, then we can apply a quantum random walk.

Even within this framework, there are many ways of constructing quantum
random walks and most of them do not give speedups over [Laa16]. What we
show is that by adding proper additional information in the vertices of the ran-
dom walk, in particular by adding another layer of filters within the vertices of
the graph on which we perform the quantum walk, we can actually get some
improvement over Grover’s algorithm and achieve our speedups.

Presentation of Our Contributions. Our main theorem is an improvement of the
best asymptotic quantum heuristic running time for the SVP bringing down the
asymptotic running time from 20.2653d+o(d) (Laarhoven’s algorithm [Laa16]) to
20.2570d+o(d).

Theorem 1. Our algorithm using quantum random walks solves the SVP on
dimension d which heuristically solves SVP on dimension d in time 20.2570d+o(d),
uses QRAM of maximum size 20.0767d, a quantum memory of size 20.0495d and
a classical memory of size poly(d) · 20.2075d.

Our results are in the QRAM model where QRAM operations can be done
efficiently. Notice that Laarhoven’s result is in this model so our results are
directly comparable to his. We can see that additionally to improving the best
asymptotic running time, this algorithm uses much less quantum resources (both
quantum memory and quantum RAM) than its running time which makes it
fairly practical. This theorem can also be helpful if we want to optimize other
performance measures. For example, it has been argued that having efficient
QRAM operations is too strong and that performing a QRAM operation should
require time at least r1/3 where r is the number of QRAM registers. In this model,
the best running time was 20.2849d+o(d) (this is still using Laarhoven’s algorithm
but the result has been explicitly stated in [AGPS20]). As a consequence of
Theorem 1, we have the following

Corollary 1. In the model where quantum random access to a memory of size
r can be done in time r1/3, our quantum algorithm solves SV P on dimension d
in time 20.2826d+o(d).

Proof. This is a direct consequence of Theorem 1 where in this model, the run-
ning time is 20.2570d+o(d) · (

20.0767d
)1/3 = 20.2826d+o(d). ��

We also present two trade-offs: a quantum memory-time trade-off and a
QRAM-time trade-off. For a fixed amount of quantum memory, our algorithm
performs as follows.

4 We remain a bit imprecise and informal here as we haven’t properly described sieving
algorithms yet.

66 A. Chailloux and J. Loyer

Theorem 2 (Trade-off for fixed quantum memory). Our algorithm using
quantum random walks solves the SVP on dimension d which, for a parameter
M ∈ [0, 0.0495], heuristically runs in time 2τM d+o(d), uses QRAM of maximum
size 2γM d and quantum memory of size 2μM d and a classical memory of size
poly(d) · 20.2075d where

τM ∈ 0.2653 − 0.1670M + [−2·10−5; 4·10−5]

γM ∈ 0.0578 + 0.3829M − [0; 2·10−4] ; μM = M.

With this theorem, we obtain for M = 0 the quantum running time of
Laarhoven’s quantum algorithm and, for M = 0.0495, the result of Theorem 1.
We now present our second trade-off theorem where we fix the amount of QRAM.

Theorem 3 (Trade-off for fixed QRAM). Our quantum algorithm using
quantum random walks solves SVP on dimension d which for a parameter M ′ ∈
[0, 0.0767] heuristically runs in time 2τM′ d+o(d), uses QRAM of maximum size
2γM′ d, a quantum memory of size 2μM′ d and uses a classical memory of size
poly(d) · 20.2075d where

τM ′ ∈ 0.2925 − 0.4647M ′ − [0; 6·10−4] ; γM ′ = M ′

μM ′ ∈ max{2.6356(M ′ − 0.0579), 0} + [0; 9·10−4].

With this theorem, we obtain for M ′ = 0, the best classical exponent of
[BDGL16] (we can actually show the algorithm uses no quantum resources in
this case). For M ′ = 0.0577, we retrieve Laarhoven’s quantum exponent and for
M ′ = 0.0767, we get Theorem 1.

Organisation of the Paper. In Sect. 2, we present preliminaries on Quantum com-
puting. In Sect. 3, we then present sieving algorithm, as well as useful statements
on lattices. In Sect. 4, we present the general framework we use for sieving algo-
rithm. Next, we use and perform a first study of its complexity in Sect. 5, whose
Sect. 6 improves. In Sect. 7, we present the space-time trade-offs. We perform a
final discussion in Sect. 8 and talk about parallelization of our algorithm as well
as possible improvements.

2 Quantum Computing Preliminaries

2.1 Quantum Circuits

We consider here quantum circuits consisting of 1 and 2 qubit gate, without any
locality constraint, meaning that we can apply a 2 qubit gate from a universal
set of gates to any pair of qubits in time5 1. We use the textbook gate model
5 We are only interested in asymptotic running time here so we are not interested in

the choice of this universal gate set, as they are all essentially equivalent from the
Solovay-Kitaev theorem (see [NC00], Appendix 3).

Lattice Sieving via Quantum Random Walks 67

where the running time of a quantum circuit is just the number of gates used.
The width of a circuit is the number of qubits it operates on, including the
ancilla qubits. This quantity is important as it represents the number of qubits
that have to be manipulated simultaneously and coherently. We will also call
this quantity quantum memory.

When we will know much more precisely how quantum architectures look like,
it will be possible to make these models more precise and replace the gate model
with something more adequate. The gate model is still the most widely used in
the scientific community and is very practical to compare different algorithms.
We will use the gate model as our main model for computing quantum times but
we will also include other interesting quantum figures of merit, such as quantum
memory or Quantum Random Access Memory usage.

2.2 Quantum Random Access Memory

Quantum Random Access Memory (denoted hereafter QRAM) is a type of quan-
tum operation which is not captured by the circuit model. Consider N registers
x1, . . . , xN ∈ {0, 1}d stored in memory. A QRAM operation consists of applying
the following unitary

UQRAM : |i〉|y〉 → |i〉|xi ⊕ y〉.
We say that we are in the QRAM model if the above unitary can be constructed
efficiently, typically in time O(d + log(N)).

QRAM operations are theoretically allowed by the laws of quantum mechan-
ics and there are some proposals for building efficiently QRAM operations, such
as [GLM08], even though its robustness has been challenged in [AGJO+15]. The
truth is that it very premature to know whether QRAM operations will be effi-
ciently available in quantum computers. This would definitely require a major
hardware breakthrough but as does quantum computing in general.

While our results are mainly in the QRAM model, we also discuss other
metrics where the cost of a QRAM operation is not logarithmic in N but has a
cost of Nx for a constant x.

2.3 Grover Algorithm

One formulation of Grover’s search problem [Gro96] is the following. We are
given a list of data x1, . . . , xr, with xi ∈ E. Given a function f : E → {0, 1}, the
goal is to find an i such that f(xi) = 1, and to output “no solution” if there are
no such i. Let Sol = {i ∈ [r] : f(xi) = 1}.

Classically, we cannot solve this problem with a better average complexity
than Θ(r

|Sol|) queries, which is done by examining random xi one by one until
we find one whose image is 1 through f . Quantum computing allows a better

complexity. Grover’s algorithm solves this search problem in O

(√
r

|Sol|

)
queries

to f . Applying Grover’s algorithm this way requires efficient QRAM access to
the data x1, . . . , xr.

68 A. Chailloux and J. Loyer

2.4 Quantum Random Walks

We present here briefly quantum random walks (QRW). There are several vari-
ants of QRW and we will use the MNRS framework, first presented in [MNRS11].

We start from a graph G = (V, E) where V is the set of vertices and E ⊆
V × V is the set of edges. We do not allow self loops which means that ∀x ∈
V, (x, x) /∈ E and the graph will be undirected so (x, y) ∈ E ⇒ (y, x) ∈ E. Let
also N(x) = {y : (x, y) ∈ E} be the set of neighbors of x. We have a set M ⊆ V
of marked elements and the goal of a QRW is to find v ∈ M .

Let ε = |M |
|V | be the fraction of marked vertices and let δ be the spectral gap

of G6. For any vertex x, we define |px〉 =
∑

y∈N(x)
1√

|N(x)| |y〉. We also define

|U〉 = 1√
|V |

∑
x∈V |x〉|px〉. We now define the following quantities:

– SETUP cost S: the SETUP cost S is the cost of constructing |U〉.
– UPDATE cost U : here, it is the cost of constructing the unitary

UUPDATE : |x〉|0〉 → |x〉|px〉.

– CHECK cost C: it is the cost of computing the function fCHECK : V → {0, 1}
where fCHECK(v) = 1 ⇔ v ∈ M .

Proposition 1 [MNRS11]. There exists a quantum random walk algorithm that
finds a marked element v ∈ M in time

S + 1√
ε

(
1√
δ

U + C
)

.

Quantum Random Walks on the Johnson Graph. A very standard graph
on which we can perform QRW is the Johnson graph J(n, r). Each vertex v con-
sists of r different (unordered) points x1, . . . , xr ∈ [n] as well as some additional
data D(v) that depends on the QRW we want to perform.

v = (x1, . . . , xr, D(v)) and v′ = (x′
1, . . . , x′

r, D(v′)) form an edge in J(n, r) iff.
we can go from (x1, . . . , xr) to (x′

1, . . . , x′
r) by removing exactly one value and

then adding one value. The Johnson graph J(n, r) has spectral gap δ = n
r(n−r) ≈

1
r when r � n [dW19].

The additional data D(v) here is used to reduce the checking time C with
the drawback that it will increase the update time U . Johnson graphs were often
used, for example when trying to solve the element distinctness problem [Amb07],
but also for the subset-sum problem [BJLM13,HM18,BBSS20] or for code-based
problems [KT17].

6 For a regular graph, if λ1 > · · · > λ|V | are the eigenvalues of the normalized adja-
cency matrix of G, then δ = λ1 − maxi=2...n |λi|.

Lattice Sieving via Quantum Random Walks 69

Quantum Data Structures. A time analysis of quantum random walks on
the Johnson graph was done in [Amb07] when studying the element distinctness
problem. There, Ambainis presented a quantum data structure that uses effi-
cient QRAM that allows in particular insertion and deletion in O(log(n)) time
where n is the database size while maintaining this database in quantum super-
position. Another paper on quantum algorithm for the subset problem using
quantum random walks [BJLM13] also presents a detailed analysis of a quantum
data structure based on radix trees to perform efficient insertion and deletion
in quantum superposition. All of these data structures require as much QRAM
registers as the number of registers to store the whole database and this running
time holds only in the QRAM model. In our work, we will use such a quantum
data structure and refer to the above two papers for explicit details on how to
construct them.

3 Lattice and Geometric Preliminaries

Notations. Let d be a positive integer. The norm ‖·‖ we use throughout
this paper is the Euclidian norm, so for a vector �v = (v1, . . . , vd) ∈ R

d,
‖�v‖ =

√∑d
i=1 v2

i . The inner product of �v = (v1, . . . , vd) and �w = (w1, . . . , wd)
is 〈�v, �w〉 :=

∑d
i=1 viwi. The non-oriented angle between �v and �w is denoted

θ(�v, �w) := arccos
(

〈�v, �w〉
‖�v‖‖ �w‖

)
. We denote the d-dimensional sphere of radius R by

Sd−1
R := {�v ∈ R

d : ‖�v‖ = R}, and Sd−1 := Sd−1
1 . Throughout the paper, for a

known integer d, we will write N := (
√

4/3)d. The meaning of this number N
is detailed in Sect. 3.1.

Lattices and SVP. The d-dimensional lattice L ⊂ R
m generated by the basis B =

(b1, ..., bn) with ∀i, bi ∈ R
m is the set of all integer linear combinations of its basis

vectors: L(B) =
{ ∑d

i=1 λi bi, λi ∈ Z

}
. Given a basis of a lattice L, the Shortest

Vector Problem (SVP) asks to find a non-zero vector in L of minimal norm. SVP
is known to be NP-hard [Ajt98]. This problem and its derivatives (SIS, LWE)
have been used in several public-key cryptosystems, specifically as candidate for
quantum-resistant cryptography [DKL+19,FHK+19,CDH+19]. Thereby, one of
the most important ways to know their security and choose parameters is to
estimate the computational hardness of the best SVP-solving algorithms.

3.1 An Overview of Sieving Algorithms for SVP

The algorithm LLL [LLL82] returns a reduced basis of a lattice in a polynomial
time. However it is not sufficient to solve SVP. All the fastest known algorithms
to solve SVP run in exponential time. A first method is enumeration [Kan83],
that solves deterministically SVP using low space but in super-exponential time
in the lattice dimension d.

70 A. Chailloux and J. Loyer

Another method, which will interest us in this article, is lattice sieving
[NV08,MV10]. They are heuristic algorithms that probably solve SVP in time
and space 2Ω(d). To this day, the best complexity for sieving in the QRAM
model is obtained by quantum hypercone LSF [Laa16] in 20.2653d+o(d) time and
20.2075d+o(d) space. Another algorithm [KMPM19] uses k-lists to solve SVP in
20.2989d+o(d) time and 20.1395d+o(d) space.

The NV-sieve. The NV-sieve [NV08] is a heuristic algorithm. It starts with a
list of lattice vectors, that we can consider of norm at most 1 by normalization.
Given this list and a constant γ < 1, the NV-sieve returns a list of lattice vectors
of norm at most γ. It iteratively builds lists of shorter lattice vectors by applying
a sieve. This sieve step consists in computing all the sums (plus and minus) of
two list vectors, and fills the output list with those which have norm at most
γ. For γ tending to 1, two vectors form a reducing pair - i.e. their sum is of
norm at most γ - iff. they are of angle at most π/3. The first list of lattice
vectors can be sampled with Klein’s algorithm [Kle00] for example. A list size
of N1+o(1) = (

√
4/3)d+o(d) suffices to have about one reducing vector in the list

for each list vector, as stated in [NV08]. Because of the norms of the list vectors
reduces with a factor by γ < 1 at each application of the algorithm, the output
list will hopefully contain a non-zero shortest lattice vector after a polynomial
number of application of the NV-sieve.

NNS and Application to Lattice Sieving. A logic improvement of this algorithm
is to use Neighbor Nearest Search (NNS) [IM98] techniques. The NNS problem is:
given a list L of vectors, preprocess L such that one can efficiently find the nearest
vector in L to a target vector given later. Used in the NV-sieve, the preprocessing
partitions the input list in several buckets of lattice points, each bucket being
associated with a hash function. The algorithm will only sum vectors from a
same bucket, which are near to each other, instead of trying all pairs of vectors.

Locality-Sensitive Hashing (LSH). A method to solve NNS is locality-sensitive
hashing (LSH) [IM98]. An LSH function is a hash-function that have high prob-
ability to collide for two elements if they are close, and a low one if they are far.
Several categories of LSH functions exists: hyperplane LSH [Cha02], hypercone
or spherical LSH [AINR14,AR15] and cross-polytope LSH [TT07].

Locality-Sensitive Filtering (LSF). More recently, [BDGL16] improved NNS solv-
ing by introducing locality-sensitive filtering (LSF). LSF functions, called filters,
map a vector �v to a boolean value: 1 if �v survives the filter, and 0 otherwise.
These filters are instantiated by hypercone filters, which correspond to spherical
caps centered around points which form an efficiently decodable code on the
sphere (the efficient decodability part ensures that we can efficiently determine
whether a point is in a filter or not). We present now geometrical preliminaries
that will allow us to describe more formally these algorithms.

Lattice Sieving via Quantum Random Walks 71

3.2 Geometrical Preliminaries

Spherical Caps/Hypercone Filters. We define the spherical cap of center �v
and angle α as follows:

H�v,α := {�x ∈ Sd−1 | θ(�x,�v) � α}.

We will use spherical caps to filter points that are close to a center �v and we
will sometimes use the term filter or hypercone filter to descibe a spherical cap.

Proposition 2 [MV10]. For an angle α ∈ [0, π/2] and �v ∈ Sd−1, the ratio of
the volume of a spherical cap H�v,α to the volume of the sphere Sd−1 is

Vd(α) := poly(d) · sind(α).

Proposition 3 [BDGL16]. For an angle α ∈ [0, π/2] and two vectors �v, �w ∈
Sd−1 such that θ(�v, �w) = θ, the ratio of the volume of a wedge H�v,α ∩ H�w,α to
the volume of the sphere Sd−1 is

Wd(α, θ) := poly(d) ·
(

1 − 2 cos2(α)
1 + cos(θ)

)d/2

.

If we consider any vector �w ∈ Sd−1 and Nρ0 random points �s1, . . . , �sNρ0 in
H�v,α for ρ0 := Vd(α)

Wd(α,θ) ; then this proposition implies that there exists, with
constant probability, an i ∈ [Nρ0] such that �si ∈ H�w,α.

Reducing Vectors at the Border of a Spherical Cap. The idea a first putting
vectors in a spherical cap is that 2 vectors �x0, �x1 ∈ H�s,α have a larger probability
of being reducible (i.e. θ(�x0, �x1) ≤ π/3) than random vectors. We quantify this
now. We first define the border of a filter

B�s,α := {�x ∈ Sd−1 | θ(�x,�s) = α}.

Working with points on the border makes the calculations easier. We argue later
that random points in a spherical cap H�v,α are actually very close to the border,
so this result will approximately be also true for random points in a spherical
cap.

Proposition 4. Let �x0, �x1 ∈ B�s,α. This means we can write

�x0 = cos(α)�s + sin(α)�y0 (1)
�x1 = cos(α)�s + sin(α)�y1 (2)

with �y0, �y1 of norm 1 and orthogonal to �s. We have for α ∈ (0, π/2]

θ(�y0, �y1) � 2 arcsin
(1

2 sin(α)
) ⇐⇒ θ(�x0, �x1) � π

3 .

72 A. Chailloux and J. Loyer

Proof. We denote for simplicity θy := θ(�y0, �y1). By subtracting Eqs. 2 from 1
and then by squaring, we have

‖�x0 − �x1‖2 � 1 ⇔ sin2(α)‖�y0 − �y1‖2 � 1

⇔ sin2(α)(2 − 2 cos(θy)) � 1

⇔ cos(θy) � 1 − 1
2 sin2(α)

⇔ θy � arccos
(
1 − 1

2 sin2(α)
)
= 2arcsin

(1
2 sin(α)

)
, true for α ∈ (0, π/2].

��
These �y0, �y1 will be called residual vectors. If �x0, �x1 are random points in the

border then the �y0, �y1 are called the residual points and are random points of
Sd−1 (the sphere of dimension d − 1 of points orthogonal to �s). From there, we
have

Corollary 2. Let α ∈ (0, π/2] and a random pair of vectors �x0, �x1 ∈ B�s,α. The
probability that the pair is reducing is equal to Vd−1(θ∗

α), with

θ∗
α := 2 arcsin

(1
2 sin(α)

)
.

Notice that we have Vd−1 because we work with residual vectors (orthogonal
to �s) but since Vd and Vd−1 are asymptotically equivalent, we will keep writing
Vd(θ∗

α) everywhere for simplicity.

Probabilistic Arguments. We first recall the multiplicative Chernoff bound.

Proposition 5 (Multiplicative Chernoff bound, see for example
[TKM+13]). Suppose X1, ..., XM are independent random variables taking values
in {0, 1}, Y =

∑M
i=1 and δ > 0. We have

Pr[Y ≥ (1 + δ)E[Y]] ≤ e− δ2E[Y]
3 .

We now present a direct application of this bound which we will use in our
analysis. Consider a set S = �s1, . . . , �sM points taken from the uniform distribu-
tion on the sphere Sd−1 and �v another point randomly chosen on the sphere. Fix
also an angle α ∈ (0, π/2). We have the following statements:

Proposition 6. ∀i ∈ [M], Pr[�v ∈ H�si,α] = Pr[�si ∈ H�v,α] = Vd(α).

Proof. Immediate by definition of Vd(α) considering that both �v and �si are
uniform random points on the sphere. ��

From the above proposition, we immediately have that E[|S ∩ H�v,α|] =
MVd(α). We now present a standard concentration bound for this quantity.

Lattice Sieving via Quantum Random Walks 73

Proposition 7. Assume we have MVd(α) = Nx with x > 0 an absolute con-
stant. Then

Pr[|S ∩ H�v,α| ≥ 2Nx] ≤ e− Nx

3 .

Proof. Let Xi be the random variable which is equal to 1 if �si ∈ H�v,α and is
equal to 0 otherwise. Let Y =

∑M
i=1 Xi so E[Y] = Nx. Y is equal to the quantity

|S ∩ H�v,α|. A direct application of the multiplicative Chernoff bound gives

Pr[Y ≥ 2Nx] ≤ e− Nx

3

which is the desired result. ��

Random Product Codes (RPC). We assume d = m·b, for m = O(polylog(d))
and a block size b. The vectors in R

d will be identified with tuples of m vectors
in R

b. A random product code C of parameters [d, m, B] on subsets of Rd and
of size Bm is defined as a code of the form C = Q · (C1 × C2 × · · · Cm), where
Q is a uniformly random rotation over R

d and the subcodes C1, ..., Cm are sets
of B vectors, sampled uniformly and independently random over the sphere√

1/m · Sb−1, so that codewords are points of the sphere Sd−1. We can have a
full description of C by storing mB points corresponding to the codewords of
C1, . . . , Cm and by storing the rotation Q. When the context is clear, C will
correspond to the description of the code or to the set of codewords. Random
product codes can be easily decoded in some parameter range:

Proposition 8 ([BDGL16]). Let C be a random product code of parameters
[d, m, B] with m = log(d) and Bm = NO(1). For any �v ∈ Sd−1 and α ∈ [0, π/2],
one can compute H�v,α ∩ C in time No(1) · |H�v,α ∩ C|.

4 General Framework for Sieving Algorithms Using LSF

We present here a general framework for sieving algorithms using LSF. We
present here one sieving step where we start from a list L of N ′ = N1+o(1)

lattice vectors of norm 1 and output N ′ lattice vectors of norm γ < 1. Siev-
ing algorithms for SVP then consists of applying this subroutine poly(d) times
(where we renormalize the vectors at each step) to find at the end a small vector.
We can actually take γ very close to 1 at each iteration, and we refer for example
to [NV08] for more details. This framework will encompass the best classical and
quantum sieving algorithms.

74 A. Chailloux and J. Loyer

Algorithm 1. Sieving algorithms using LSF with parameter c

Input: a list L of N ′ = N1+o(1) lattice vectors of norm 1, a constant γ < 1 and
parameter c ∈ (0, 1).
Output: a list L′ of N ′ lattice vectors of norm at most γ.
Algorithm:

L′ := {} (empty list)
while |L′| ≤ N ′ do

Sample a random product code C of parameter [d, log(d), N
1−c

log(d)]. Let
�s1, . . . , �sN1−c be the code points of C and let α ∈ [π/3, π/2] st. Vd(α) = 1

N1−c .
for �v in L do

Add �v to its α-filter’s buckets fα(�si)
for each i ∈ [N1−c] do

S ← FindAllSolutions(fα(�si), γ)
L′ := L′ ∪ S

return L′

The FindAllSolutions(fα(�si), γ) subroutine starts from a list of vectors
�x1, . . . , �xNc ∈ fα(�si) and outputs all vectors of the form �xi ± �xj (with i �= j)
of norm less than γ. We want to find asymptotically all the solutions and not
strictly all of them. Let’s say here we want to output half of them. Sometimes,
there are no solutions so the algorithm outputs an empty list.

4.1 Analysis of the Above Algorithm

Heuristics and Simplifying Assumptions. We first present the heuristic
arguments and simplifying assumptions we use for our analysis.

1. The input lattice points behave like random points on the sphere Sd−1. Also,
at each step of the sieving process, the points of the list L behave like random
points on the sphere. The relevance of this heuristic has been studied and
confirmed in a few papers starting from the initial NV-sieve [NV08].

2. The code points of C behave like random points of the sphere Sd−1. This was
argued in [BDGL16], see for instance Lemma 5.1 and Appendix C therein.

3. We assume that a random point in fα(�si) is on the border of the filter, i.e.
that it can be written �x = cos(α)�si + sin(α)�y with �y⊥�si and of norm 1. As
we argue below, this will be approximately true with very high probability.

In order to argue point 3, notice that for any angle α ∈ (π/4, π/2) and ε > 0,
we have Vd(α) � Vd(α−ε). Indeed, for an angle ε > 0, Vd(α−ε) = sind(α−ε) =
Vd(α) · (ε′)d with ε′ = cos ε − sin ε cosα

sinα < 1 for α > ε. So the probability for a
point to be at angle α with the center of the cap is exponentially higher than to
be at angle α − ε. That justifies that with very high probability, points in fα(�si)
lie very close to the border of the cap and hence justifies point 3.

Lattice Sieving via Quantum Random Walks 75

Completion. We start from a list L of N ′ points. The heuristic states that
each point in L is modeled as a random point on the sphere Sd−1 so each pair of
points �x, �x′ ∈ L reduces with probability Vd(π/3) = 1

N . Since there are N ′(N ′−1)
2

pairs of points in L, we have on average N ′(N ′−1)
2N pairs in L that are reducible.

We can take for example N ′ = 6N to ensure that there are on average ≈ 3N ′

pairs. Therefore, each time we find a random reducible pair, with probability at
least 3N ′−|L′|

3N ′ ≥ 2/3, it wasn’t already in the list L′.

Time Analysis. From Corollary 2, we have that for an α-filter that has N c

points randomly distributed in this filter, the expected number of reducing pairs
is N2c · Vd−1(θ∗

α). We now present the full time analysis of the above algorithm.

Proposition 9. Consider Algorithm 1 with parameter c ∈ [0, 1] and associ-
ated angle α ∈ [π/3, π/2] satisfying Vd(α) = N−(1−c). Let ζ such that N ζ =
N2c ·Vd−1(θ∗

α). The above algorithm runs in time T = NBREP ·(INIT+FAS) where

NBREP = max{1, N c−ζ+o(1)} ; INIT = N1+o(1) ; FAS = N1−cFAS1

where FAS1 the running time of a single call to the FindAllSolutions subroutine.

Proof. We first analyze the two for loops. INIT is the running time of the first
loop. For each point �v ∈ L, we need to compute H�v,α ∩ C and update the
corresponding buckets fα(�si). We have |C| = N1−c and we chose α such that
Vd(α) = N−(1−c), so the expected value of |H�v,α∩C| is 1. For each point �v, we can
compute H�v,α ∩ C in time No(1)|H�v,α| using Proposition 8. From there, we can
conclude that we compute the filter for the N ′ points in time INIT = N1+o(1).

The second loop runs in time FAS = N1−cFAS1 by definition. After this loop,
the average number of solutions found is N ζ for each call to FindAllSolutions
so N1−c+ζ in total (notice that we can have ζ < 0, which means that we can
find on average much less that one solution for each call of FindAllSolutions).
We run the while loop until we find N ′ solutions so we must repeat this process
NBREP = max{1, N1−(1−c+ζ)+o(1)} = max{1, N c−ζ+o(1)} times. ��

This formulation of sieving algorithms is easy to analyze. Notice that the
above running time depends only on c (since α can be derived from c and ζ can
be derived from c, α) and on the FindAllSolutions subroutine. We now retrieve
the best known classical and quantum sieving algorithm in this framework.

Best Classical Algorithm. In order to retrieve the time exponent of [BDGL16],
we take c → 0, which implies α → π/3. We can compute θ∗

π/3 ≈ 1.23rad ≈ 70.53◦

and ζ = −0.4094. In this case, we have FAS1 = O(1). From the above proposition,
we get a total running time of T = N1.4094+o(1) = 20.2925d+o(d).

Best Quantum Algorithm. In order to retrieve the time exponent of [Laa16], we
take c = 0.2782. This value actually corresponds to the case where ζ = 0, so we

76 A. Chailloux and J. Loyer

have on average one solution per α-filter. For the FindAllSolutions subroutine,
we can apply Grover’s algorithm on pairs of vectors in the filter to find this
solution in time

√
N2c = N c (there are N2c pairs) so FAS1 = N c. Putting this

together, we obtain T = N1+c+o(1) = N1.2782+o(1) = 20.2653d+o(d).
In the next section, we show how to improve the above quantum algorithm.

Our main idea is to replace Grover’s algorithm used in the FindAllSolutions
subroutine with a quantum random walk. In the next section, we present the
most natural quantum walk which is done over a Johnson graph and where a
vertex is marked if the points of a vertex contain a reducible pair, in a similar
way than for element distinctness. We then show in a later section how this
random walk can be improved by relaxing the condition on marked vertices.

5 Quantum Random Walk for the FindAllSolutions
Subroutine: A First Attempt

5.1 Constructing the Graph

We start from an unordered list �x1, . . . , �xNc of distinct points in a filter fα(�s)
with α satisfying Vd(α) = 1

N1−c . Let Lx be this list of �xi. For each i ∈ [N c],
we write �xi = cos(α)�s + sin(α)�yi where each �yi is of norm 1 and orthogonal
to �s. Recall from Proposition 4 that a pair (�xi, �xj) is reducible iff. θ(�yi, �yj) =
θ∗

α = 2 arcsin(1
2 sin(α)). We will work only on the residual vectors �yi and present

the quantum random walk that finds pairs �yi, �yj such that θ(�yi, �yj) = θ∗
α more

efficiently than with Grover’s algorithm. Let Ly = �y1, . . . , �yNc be the list of all
residual vectors.

The quantum walk has two extra parameters c1 ∈ [0, c] and c2 ∈ [0, c1]. From
these two parameters, let β ∈ [π/3, π/2] st. Vd(β) = N c2−c1 and ρ0 st. Nρ0 =

Vd(β)
Wd(β,θ∗

α) . We start by sampling a random product code C2 with parameters

[(d − 1), log(d − 1), N
ρ0+c1−c2
log(d−1)] which has therefore Nρ0+c1−c2 = 1

Wd(β,θ∗
α) points

denoted �t1, . . . ,�tNρ0+c1−c2 . We perform our quantum random walk on a graph
G = (V, E) where each vertex v ∈ V contains:

– An unordered list Lv
y = �y1, . . . , �yNc1 of distinct points taken from Ly.

– For each �ti ∈ C2, we store the list of elements of Jv(�ti) := fβ(�ti) ∩ Lv
y. For

each �ti, we do this using a quantum data structure that stores Jv(�ti) where
we can add and delete efficiently in quantum superposition. This can be done
with QRAM. Notice that we have on average

|Jv(�ti)| = N c1 ·Vd(β) = N c2 ,

and we need to store in total |C2|·N c2 = N c1+ρ0 such elements in total for
each vertex.

– A bit that says whether the vertex is marked (we detail the marked condition
below).

Lattice Sieving via Quantum Random Walks 77

The vertices of G consists of the above vertices for all possible lists Lv
y. We

have (v, w) ∈ E if we can go from Lv
y to Lw

y by changing exactly one value. In
order words

(v, w) ∈ E ⇔ ∃�yold ∈ Lv
y and �ynew ∈ Ly\Lv

y st. Lw
y =

(
Lv

y\{�yold}) ∪ {�ynew}.

This means the graph G is exactly a Johnson graph J(N c, N c1) where each
vertex also has some additional information as we described above. Once we find
a marked vertex, it contains a pair (�yi, �yj) such that θ(�yi, �yj) ≤ θ∗

α from which
we directly get a reducible pair (�xi, �xj).

Condition for a Vertex to be Marked. We define the following subsets of vertices.
We first define the set M0 vertices for which there exists a pair of points which
is reducible.

M0 := {v ∈ V : ∃�yi, �yj �= �yi ∈ Lv
y, θ(�yi, �yj) ≤ θ∗

α}.

Ideally, we would want to mark each vertex in M0, however this would induce a
too large update cost when updating the bit that specifies whether the vertex is
marked or not. Instead, we will consider as marked vertices subsets of M0 but for
which the update can be done more efficiently, but losing only a small fraction
of the marked vertices. For each Jv(�ti), we define J̃v(�ti) which consists of the
first 2N c2 elements of Jv(�ti)7 and if |Jv(�ti)| ≤ 2N c2 , we have J̃v(�ti) = Jv(�ti).
We define the set of marked elements M as follows:

M := {v ∈ V : ∃�t ∈ C2, ∃�yi, �yj �= �yi ∈ J̃v(�t), st. θ(�yi, �yj) ≤ θ∗
α}.

The reason for using such a condition for marked vertices is that when we
will perform an update, hence removing a point �yold from a vertex and adding a
point �ynew, we will just need to look at the points in J̃v(�t) for �t ∈ fβ(�ynew) ∩ C2
which can be done faster than by looking at all the points of the vertex. If we
used Jv(�t) instead of J̃v(�t) then the argument would be simpler but we would
only be able to argue about the average running time of the update but the
quantum walk framework require to bound the update for any pair of adjacent
vertices8. Also notice that each vertex still contain the sets Jv(�ti) (from which
one can easily compute J̃v(�ti)).

7 We consider an global ordering of elements of Ly, for example with respect to their
index, and Jv(�ti) consists of the 2Nc2 elements of Jv(�ti) which are the smallest with
respect to this ordering.

8 This problem arises in several quantum random walk algorithms, for example for
quantum subset-sum algorithms. One solution is to use a heuristic that essentially
claims that we can use the average running time of the update cost instead of the
worst case. In our case, we don’t need this heuristic as we manage to bound the
update cost in the worst case. We refer to [BBSS20] for an interesting discussion on
the topic.

78 A. Chailloux and J. Loyer

5.2 Time Analysis of the Quantum Random Walk on This Graph

We are now ready to analyze our quantum random walk, and compute its dif-
ferent parameters. Throughout our analysis, we define K(�yi) := fβ(�yi) ∩ C2 and
we have on average

|K(�yi)| = Nρ0+c1−c2 · Vd(β) = Nρ0 .

Using Proposition 7, we have for each i,

Pr[|K(�yi)|] > 2Nρ] ≤ e− Nρ0
3 (3)

and using a union bound, we have for any absolute constant ρ0 > 0:

Pr[∀i ∈ [N c], |K(�yi)| ≤ 2Nρ] ≥ 1 − N ce− Nρ0
3 = 1 − o(1). (4)

So for a fixed α-filter, we have with high probability that each |K(�yi)| is bounded
by 2Nρ0 and we assume we are in this case. The sets K(�yi) can hence be con-
structed in time Nρ0+o(1) using the decoding procedure (Proposition 8) for C2.

Setup Cost. In order to construct a full vertex v from a list Lv
y = �y1, . . . , �yNc1 , the

main cost is to construct the lists Jv(�ti) = fβ(�ti) ∩ Lv
y. To do this, we start from

empty lists Jv(�ti). For each �yi ∈ Lv
y, we construct the list K(�yi) = fβ(�yi) ∩ C2

and for each codeword �tj ∈ K(�yi), we add �yi in Jv(�ti).
This takes time N c1 ·Nρ0+o(1). We can perform a uniform superposition of

the vertices by performing the above procedure in quantum superposition. This
can also be done in N c1 ·Nρ0+o(1) since we use a quantum data structure that
performs these insertions in Jv(�ti) efficiently. So in conclusion,

S = N c1+ρ0+o(1).

Update Cost. We show here how to go from a vertex v with associated list Lv
y

to a vertex w with Lw
y =

(
Lv

y\{�yold}) ∪ {�ynew}. We start from a vertex v so we
also have the lists Jv(�ti) = fβ(�ti) ∩ Lv

y.
In order to construct the lists Jw(�ti), we first construct K(�yold) = fβ(�yold)∩C2

and for each �ti in this set, we remove �yold from Jv(�ti). Then, we construct
K(�ynew) and for each �ti in this set, we add �ynew to Jv(�ti), thus obtaining all
the Jw(�ti). Constructing the two lists takes time on average Nρ0+o(1) and we
then perform at most 2Nρ0 deletion and insertion operations which are done
efficiently. These operations take Nρ0+o(1) deletions and insertions, which can
be done efficiently.

If v was marked and �yold is not part of the reducible pair then we do not
change the last registers for Lw

y . If v was not marked, then we have to ensure
that adding �ynew doesn’t make it marked. So we need to check whether there
exists �y′ �= �ynew such that

∃�t ∈ C2, �ynew, �y0 ∈ J̃w(�t) and (�ynew, �y0) are reducible.

Lattice Sieving via Quantum Random Walks 79

If such a point �y0 exists, it necessarily lies in the set ∪�t∈K(�ynew)J̃
v(�t) which is of

size at most 2Nρ ·2N c2 = 4Nρ0+c2 . We perform a Grover search on this set to
determine whether there exists a �y0 ∈ ∪�t∈C2

J̃v(�t) that reduces with �ynew, and
this takes time N

ρ0+c1+o(1)
2 . In conclusion, we have that the average update time

is
U = Nρ0+o(1) + N

ρ0+c2+o(1)
2 ≤ Nmax{ρ0,

ρ0+c2
2 }+o(1).

Checking Cost. Each vertex has a bit that says whether it is marked or not so
we have

C = 1.

Computing the Fraction of Marked Vertices Epsilon. We prove here the following
proposition

Proposition 10. ε ≥ Θ
(
min

{
N2c1Vd(β), 1

})
.

Proof. We consider a random vertex in the graph and lower bound the proba-
bility that it is marked. A sufficient condition for a vertex v to be marked is if
it satisfies the following 2 events :

– E1 : ∃�t ∈ C2, ∃�yi, �yj �= �yi ∈ Jv(�t), st. θ(�yi, �yj) ≤ θ∗
α.

– E2 : ∀�t ∈ C2, |Jv(�t)| ≤ 2N c2 .

The second property implies that ∀�t ∈ C2, Jv(�t) = J̃v(�t) and in that case, the
first property implies that v is marked. We now bound the probability of each
event

Lemma 1. Pr[E1] ≥ Θ
(
min

{
N2c1Vd(β), 1

})
.

Proof. For a fixed pair �yi, �yj �= �yi ∈ Lv
y, we have Pr[θ(�yi, �yj) ≤ θ∗

α] = Vd(θ∗
α).

Since there are Θ(N2c1) such pairs, if we define the event E0 as: ∃�yi, �yj �= �yi ∈
Lv

y, st. θ(�yi, �yj) ≤ θ∗
α, we have

Pr[E0] ≥ Θ
(
min

{
N2c1Vd(β), 1

})
.

Now we assume E0 holds and we try to compute the probability that E1 is true
conditioned on E0. So we assume E0 and let �yi, �yj �= �yi ∈ Lv

y, st. θ(�yi, �yj) ≤ θ∗
α.

For each code point �t ∈ C2, we have

Pr[�yi, �yj ∈ Jv(�t)] = Pr[�t ∈ H�yi,β ∩ H�yj ,β] = Wd(β, θ∗
α).

Therefore, we have

Pr[∃�t ∈ C2, �yi, �yj ∈ Jv(�t)] = 1 − (1 − Wd(β, θ∗
α))|C2|. (5)

Since |C2| = 1
Wd(β,θ∗

α) , we can conclude

Pr[E1|E0] ≥ Pr[∃�t ∈ C2, �yi, �yj ∈ Jv(�t)] = 1 − (1 − Wd(β, θ∗
α))|C2| ≥ Θ(1),

which implies Pr[E1] ≥ Pr[E1|E0]· Pr[E0] ≥ Θ
(
max

{
N2c1Vd(β), 1

})
. ��

80 A. Chailloux and J. Loyer

Lemma 2. Pr[E2] ≥ 1 − |C2|e− Nc2
3 .

Proof. For each �t ∈ C2, we have using Proposition 7 that Pr[|Jv(�t)| ≤ 2N c2] ≥
1 − e− Nc2

3 . Using a union bound, we have

Pr[∀�t ∈ C2, |Jv(�t)| ≤ 2N c2] ≥ 1 − |C2|e− Nc2
3 .

��
We can now finish the proof of our Proposition. We have

ε ≥ Pr[E1 ∧ E2] ≥ Pr[E1] + Pr[E2] − 1

≥ Θ
(
max

{
N2c1Vd(β), 1

}) − |C2|e− Nc2
3

≥ Θ
(
max

{
N2c1Vd(β), 1

})

The last inequality comes from the fact that |C2|e− Nc2
3 is vanishing doubly

exponentially in d (N is exponential in d) so it is negligible compared to the first
term and is absorbed by the Θ(·). ��

Computing the Spectral Gap Delta. We are in a J(N c, N c1) Johnson graph so
we have

δ ≈ N−c1 .

Running Time of the Quantum Walk. The running time T1 of the quantum walk
is (omitting the o(1) terms and the O(·) notations)

T1 = S + 1√
ε

(
1√
δ

U + C
)

= N c1+ρ0 + 1
max{1, N c1

√Vd(θ∗
α)}

(
Nmax{ρ0,

ρ0+c2
2 }+ c1

2

)

In this running time, we can find one marked vertex with high probability if it
exists. We repeat this quantum random walk until we find max{ Nζ

2 , 1} solutions.

Algorithm for the FindAllSolutions procedure

Pick a random product code C2.
while the number of solutions found is < Nζ

2 :
Run our QRW to find a solution and add it to the list of solutions

if it hasn’t been found.

For ζ > 0, there are N ζ different solutions that can be found in each α-filter.
Each time we find a solution, since the list of solutions found is < Nζ

2 . Therefore,
the probability that each solutions found by the QRW is new is at least 1

2 . We
have therefore

Lattice Sieving via Quantum Random Walks 81

FAS1 = max{N ζ , 1} · T1.

If ζ > 0, our algorithm finds Θ(N ζ) solutions in time N ζT1 and if ζ ≤ 0, our
algorithm finds 1 solution in time T1 with probability Θ(N−ζ).

5.3 Memory Analysis

Classical Space. We have to store at the same time in classic memory the N list
vectors of size d, and the buckets of the α-filters. Each vector is in No(1) α-filter,
so our algorithm takes classical space N1+o(1).

Memory Requirements of the Quantum Random Walk. Each vertex v of the
graph stores all the Jv(�ti) which together take space N c1+ρ0 . We need to store
a superposition of vertices so we need N c1+ρ0 quantum registers and we need
that same amount of QRAM because we perform insertions and deletions in the
database in quantum superposition. All the operations require QRAM access to
the whole list Ly which is classically stored and is of size N c. Therefore, we also
require N c QRAM.

5.4 Optimal Parameters for This Quantum Random Walk

Our algorithm takes in argument three parameters: c ∈ [0, 1], c1 ≤ c and c2 ≤ c1
from which we can express all the other variables we use: α, θ∗

α, β, ρ0 and ζ. We
recall these expressions as they are scattered throughout the previous sections:

– α: angle in [π/3, π/2] that satisfies Vd(α) = 1
N1−c .

– θ∗
α = 2 arcsin(1

2 sin(α)).
– β: angle in [π/3, π/2] that satisfies Vd(β) = 1

Nc1−c2 .
– ρ0: non-negative real number such that Nρ0 = Vd(β)

Wd(β,θ∗
α) .

– ζ: real number such that N ζ = N2cVd(θ∗
α).

Plugging the value of FAS1 from the end of Sect. 5.2 in Proposition 9, we find
that the total running time of our quantum sieving algorithm with parameters
c, c1, c2 is

T = N
c−ζ

(

N + N
1−c max{N

ζ
, 1}

(

N
c1+ρ0 +

1

max{1, Nc1
√

Vd(θ∗
α)}

(
N

max{ρ0,
ρ0+c2

2 }+ c1
2

)))

.

We ran a numerical optimization over c, c1, c2 to get our optimal running
time, summed up in the following theorem.

Proposition 11. Our algorithm with parameters

c ≈ 0.3300 ; c1 ≈ 0.1952 ; c2 ≈ 0.0603

82 A. Chailloux and J. Loyer

heuristically solves SVP on dimension d in time T = N1.2555+o(1) = 20.2605d+o(d),
uses QRAMM of maximum size N0.3300+o(1) = 20.0685d+o(d), a quantum memory
of size N0.2555+o(1) = 20.0530d+o(d) and uses a classical memory of size N1+o(1) =
20.2075d+o(d).

With these parameters, we obtain the values of the other parameters:

α ≈ 1.1388rad ≈ 65.25◦; θ∗
α ≈ 1.1661rad ≈ 66.46◦; β ≈ 1.3745rad ≈ 78.75◦

ρ0 ≈ 0.0603; ζ ≈ 0.0745.

As well as the quantum walk parameters:

S = N c1+ρ0 = N0.2555; U = Nρ0 = N0.0603; C = 0; ε = δ = N−c1 = N−0.1952.

The equality ρ0 = c2 allows to balance the time of the two operations during
the update step. With these parameters we also obtain S = U/

√
ε δ = N c1+ρ0 =

N0.2555d, which balances the overall time complexity.
Notice that with these parameters, we can rewrite T as

T = N c−ζ
(
N + N1−c+ζ+c1+ρ0

)
= N1+c−ζ + N1+c1+ρ0 .

Also, we have c1 + ρ0 = c − ζ, which equalizes the random walk step with the
initialization step. From our previous analysis, the amount of required QRAM
is N c and the amount of quantum memory needed is N c1+ρ0 .

6 Quantum Random Walk for the FindAllSolutions
Subroutine: An Improved Quantum Random Walk

We now add a variable ρ ∈ (0, ρ0] that will replace the choice of ρ0 above. ρ0
was chosen in order to make sure that if a pair �yi, �yj exists in a vertex v, then it
will appear on one of the Jv(�t) for �t ∈ C2. However, we can relax this and only
mark a small fraction of these vertices. This will reduce the fraction of marked
vertices, which makes it harder to find a solution, but having a smaller ρ will
reduce the running time of our quantum random walk.

The construction is exactly the same as in the previous section just that we
replace ρ0 with ρ. This implies that |C2| = Nρ+c1−c2 . We can perform the same
analysis as above

Time Analysis of this QRW in the Regime ζ + ρ − ρ0 > 0. We consider the
regime where ζ + ρ − ρ0 > 0 and ρ ∈ (0, ρ0] (in particular ζ > 0, since ρ0 > 0).
This regime ensures that even when if we have less marked vertices, then there
on average more than one marked vertex, so our algorithm at least finds one
solution with a constant probability.

The analysis walk is exactly the same than in Sect. 5.2, each repetition of the
quantum random walk takes time T1 with

T1 = S + 1√
ε

(
1√
δ

U + C
)

Lattice Sieving via Quantum Random Walks 83

with

S = N c1+ρ, U = Nmax{ρ,
ρ+c2

2 }+o(1), C = 1,

ε = N2c1Nρ−ρ0Vd(θ∗
α), δ = N−c1.

The only thing maybe to develop is the computation of ε. We perform the
same analysis as above but with |C2| = Nρ+c1−c2 . This means that Eq. 5 of
Lemma 1 becomes

Pr[∃�t ∈ C2, �yi, �yj ∈ Jv(�t)] = 1 − (1 − Wd(β, θ∗
α))|C2|

≥ |C2|Wd(β, θ∗
α) = Nρ−ρ0 .

which gives the extra term Nρ−ρ0 in ε. Another issue is that now, we can only
extract N ζ+ρ−ρ0 solutions each time we construct the graph, we have therefore
to repeat this procedure to find Nζ+ρ−ρ0

2 solutions with this graph and then
repeat the procedure with a new code C2. The algorithm becomes

Algorithm from Sect. 6 with parameter ρ

while the total number of solutions found is < Nζ

2 :
Pick a random product code C2.
while the number of solutions found is < Nζ+ρ−ρ0

2 with this C2:
Run our QRW with ρ to find a new solution.

With this procedure, we also find Θ(N ζ) solutions in time N ζT1 and FAS1 =
N ζT1 (Recall that we are in the case ζ ≥ ζ + ρ − ρ0 > 0). Actually, optimal
parameters will be when c2 = 0 and ρ → 0.

6.1 Analysis of the Above Algorithm

This change implies that some reducing pairs are missed. For the quantum ran-
dom walk complexity, this only change the probability, denoted ε, so that a vertex
is marked. Indeed, it is equal to the one so that there happens a collision between
two vectors through a filter, which is no longer equal to the existence of a reduc-
ing pair within the vertex. Indeed, to have a collision, there is the supplementary
condition of both vectors of a reducing pair are inserted in the same filter, which
is of probability Nρ0−ρ. So we get a higher value of ε = N2c1Vd(θ∗

α) · Nρ0−ρ.
However, this increasing is compensated by the reducing of the costs of the

setup (N c1+ρ+o(1)) and the update (2Nmax{ρ,
ρ+c2

2 }+o(1)).
A numerical optimisation over ρ, c, c1 and c2 leads to the following theorem.

84 A. Chailloux and J. Loyer

Theorem 4 (Theorem 1 restated). Our algorithm with a free ρ with param-
eters

ρ → 0 ; c ≈ 0.3696 ; c1 ≈ 0.2384 ; c2 = 0

heuristically solves SVP on dimension d in time T = N1.2384+o(1) = 20.2570d+o(d),
uses QRAM of maximum size N0.3696 = 20.0767d, a quantum memory of size
N0.2384 = 20.0495d and uses a classical memory of size N1+o(1) = 20.2075d+o(d).

With these parameters, we obtain the values of the other parameters:

α ≈ 1.1514 rad; θ∗
α ≈ 1.1586 rad; β ≈ 1.1112 rad; ζ ≈ 0.1313.

As well as the quantum walk parameters:

S = N c1+ρ = N0.2384; U = Nρ = No(1); C = 0; ε = δ = N−c1 = N−0.2384.

With these parameters, we also have ρ0 = 0.107 so we are in the regime
where ζ + ρ − ρ0 > 0. As in the previous time complexity stated in Theorem 11,
we reach the equality S = U/

√
εδ, which allows to balance the time of the two

steps of the quantum random walk: the setup and the search itself.
Notice that with these parameters, we can rewrite T as

T = N c−ζ
(
N + N1−c+ζ+c1+ρ

)
= N1+c−ζ + N1+c1+ρ.

With our optimal parameters, we have ρ = 0 and c − ζ = c1, which equalizes the
random walk step with the initialization step. From our previous analysis, the
amount of required QRAM is N c and the amount of quantum memory needed
is N c1 .

7 Space-Time Trade-Offs

By varying the values c, c1, c2 and ρ, we can obtain trade-offs between QRAM
and time, and between quantum memory and time. All the following results
come from numerical observations.

7.1 Trade-Off for Fixed Quantum Memory

We computed the minimized time if we add the constraint that the quantum
memory must not exceed 2Md. For a chosen fixed M , the quantum memory
is denoted is 2μM d = 2Md and the corresponding minimal time by 2τM d. The
variation of M also impacts the required QRAM to run the algorithm, that we
denote by 2γM d.

So we get a trade-off between time and quantum memory in Fig. 1, and the
evolution of QRAM in function of M for a minimal time is in Fig. 2.

Lattice Sieving via Quantum Random Walks 85

Fig. 1. Quantum memory-time trade-off.

Fig. 2. QRAM in function of available quantum memory for minimized time.

For more than 20.0495d quantum memory, increasing it does not improve the
time complexity anymore. An important fact is that for a fixed M the correspond-
ing value τM from Fig. 1 and γM from Fig. 2 can be achieved simultaneously with
the same algorithm.

We observe that from M = 0 to 0.0495 these curves are very close to affine.
Indeed, the function that passes through the two extremities points is of expres-
sion 0.2653 − 0.1670M . The difference between τM and its affine approximation

86 A. Chailloux and J. Loyer

does not exceed 4 ·10−5. By the same way, the difference between γM and its
affine average function of expression 0.0578 + 0.3829M is inferior to 2·10−4. All
this is summarized in the following theorem.

Theorem 5 (Trade-off for fixed quantum memory). There exists a quan-
tum algorithm using quantum random walks that solves SVP on dimension d
which for a parameter M ∈ [0, 0.0495] heuristically runs in time 2τM d+o(d), uses
QRAM of maximum size 2γM d, a quantum memory of size 2μM d and a classical
memory of size 20.2075d where

τM ∈ 0.2653 − 0.1670M + [−2·10−5; 4·10−5]

γM ∈ 0.0578 + 0.3829M − [0; 2·10−4] ; μM = M.

In the informal formulation of this theorem, we used the symbols � and �
that refers to these hidden small values.

7.2 Trade-Off for Fixed QRAM

We also get a trade-off between QRAM and time. For a chosen fixed M ′, the
QRAM is denoted by 2γM′ d = 2M ′d, and the corresponding minimal time by
2τM′ d. The required quantum memory is denoted 2μM′ d. Note that 2μM′ d is the
also the amount of the required quantum QRAM called “QRAQM”.

This gives a trade-off between time and QRAM in the Fig. 3, and the evolu-
tion of quantum memory in function of M ′ is in the Fig. 4.

Fig. 3. QRAM-time trade-off.

For more than 20.0767d QRAM, increasing it does not improve the time com-
plexity.

Lattice Sieving via Quantum Random Walks 87

Fig. 4. Quantum memory in function of available QRAM for minimized time.

The difference between the function τM ′ and its average affine function of
expression 0.2926 − 0.4647·M ′ does not exceed 6 ·10−4. This affine function is a
upper bound of τM ′ .

From M ′ = 0 to 0.0579 the function γM ′ is at 0. Then, it is close to the affine
function of expression 2.6356(M ′ − 0.0579). So γM ′ can be approximated by
max{2.6356(M ′ − 0.0579), 0}, and the difference between γM ′ and this approxi-
mation does not exceed 9·10−4. All this is summarized in the following theorem.

Theorem 6 (Trade-off for fixed QRAM). There exists a quantum algorithm
using quantum random walks that solves SVP on dimension d which for a param-
eter M ′ ∈ [0, 0.0767] heuristically runs in time 2τM′ d+o(d), uses QRAM of max-
imum size poly(d) · 2γM′ d, a quantum memory of size poly(d) · 2μM′ d and uses a
classical memory of size poly(d) · 20.2075d where

τM ′ ∈ 0.2927 − 0.4647M ′ − [0; 6·10−4] ; γM ′ = M ′

μM ′ ∈ max{2.6356(M ′ − 0.0579), 0} + [0; 9·10−4].

Finally, we present a table with a few values that presents some of the above
trade-offs (Fig. 5).

Fig. 5. Time, QRAM and quantum memory values for our algorithm.

88 A. Chailloux and J. Loyer

8 Discussion

Impact on Lattice-Based Cryptography. Going from a running time of
20.2653d+o(d) to 20.2570d+o(d) slightly reduces the security claims based on the
analysis of the SVP (usually via the BKZ algorithm). For example, if one claims
128 bits of security using the above exponent then one must reduce this claim
to 124 bits of quantum security. This of course can usually be fixed with a slight
increase of the parameters but cannot be ignored if one wants to have the same
security claims as before.

Parallelization. On thing we haven’t talked about in this article is whether our
algorithm paralellizes well. Algorithm 1 seems to parallelize very well, and we
argue that it is indeed the case.

For this algorithm, the best classical algorithm takes c → 0. In this case,
placing each �v ∈ L in its corresponding α-filters can be done in parallel and with
N processors (or N width) it can be done in time poly(d). Then, there are N
separate instances of FindAllSolutions which can be also perfectly parallelized
and each one also takes time poly(d) when c → 0. The while loop is repeated
N−ζ = N0.409d times so the total running time (here depth) is N0.409d+o(d) with
a classical circuit of width N . Such a result already surpasses the result from
[BDGL16] that achieves depth N1/2 with a quantum circuit of width N using
parallel Grover search.

In the quantum setting, our algorithm parallelizes also quite well. If we con-
sider our optimal parameters (c = 0.3696) with a similar reasoning, our algorithm
will parallelize perfectly with N1−c processors (so that there is exactly one for
each call to FindAllSolutions i.e. for the quantum random walk). Unfortu-
nately, after that, we do not know how to parallelize well within the quantum
walk. When we consider circuits of width N , our optimizations didn’t achieve bet-
ter than a depth of N0.409+o(d) which is the classical parallelization. This is also
the case if we use Grover’s algorithm as in [Laa16] for the FindAllSolutions
and we use parallel Grover search as in [BDGL16] so best known (classical or
quantum) algorithm with lowest depth that uses a circuit of width N is the
classical parallel algorithm described above.

Acknowledgments and Paths for Improvements. The authors want to thank
Simon Apers for helpful discussions about quantum random walks, in particular about
the fact that there are no better generic algorithms for finding k different marked than
to run the whole random walk (including the setup) O(k) times. There could however
be a smarter way to do this in our setting which would improve the overall complexity
of our algorithm. Another possible improvement would be to embed the local sensitiv-
ity property in the graph on which we perform the random walk instead of working on
the Johnson graph.

Lattice Sieving via Quantum Random Walks 89

References

[AGJO+15] Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M., Srini-
vasan, P.V.: On the robustness of bucket brigade quantum RAM. New J.
Phys. 17(12), 123010 (2015)

[AGPS20] Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Esti-
mating quantum speedups for lattice sieves. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 583–613. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 20

[AINR14] Andoni, A., Indyk, P., Nguyên, H.L., Razenshteyn, I.: Beyond locality-
sensitive hashing. In: SODA, pp. 1018–1028 (2014)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: Proceedings of the Twenty-Eighth Annual ACM Sympo-
sium on Theory of Computing, STOC’96, pp. 99–108. Association for
Computing Machinery, New York, NY, USA (1996)

[Ajt98] Ajtai, M.: The shortest vector problem in L2 is NP-hard for random-
ized reductions (extended abstract). In: 30th Annual ACM Symposium
on Theory of Computing Proceedings, pp. 10–19 (1998)

[Amb07] Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J.
Comput. 37(1), 210–239 (2007)

[AR15] Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approx-
imate near neighbors. In: STOC, pp. 793–801 (2015)

[BBSS20] Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved clas-
sical and quantum algorithms for subset-sum. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 22

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Proceedings of
the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms (2016)

[BJLM13] Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for
the subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol.
7932, pp. 16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38616-9 2

[BL16] Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-
polytope LSH. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 3–23. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31517-1 1

[CDH+19] Chen, C., et al.: NTRU. Round-3 submission to the NIST PQC project
(2019)

[Cha02] Charikar, M.S.: Similarity estimation techniques from rounding algo-
rithms. In: STOC, pp. 380–388 (2002)

[DKL+19] Ducas, L., et al.: Crystals-dilithium, algorithm specifications and support-
ing documentation. Round-3 submission to the NIST PQC project (2019)

[dW19] de Wolf, R.: Quantum computing: Lecture notes (2019)
[FHK+19] Fouque, P.-A., et al.: Falcon: fast-fourier lattice-based compact signatures

over NTRU. Round-3 submission to the NIST PQC project (2019)
[FP85] Fincke, U., Pohst, M.: Improved methods for calculating vectors of short

length in a lattice. Math. Comput. 44(170), 463–471 (1985)

https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-319-31517-1_1

90 A. Chailloux and J. Loyer

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, STOC ’09, pp. 169–178. Association for Computing Machinery,
New York, NY, USA (2009)

[GLM08] Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory.
Phys. Rev. Lett. 100, 160501 (2008)

[Gro96] Grover, L.: A fast quantum mechanical algorithm for database search. In:
Proceedings 28th Annual ACM Symposium on the Theory of Computing
STOC, pp. 212–219 (1996)

[HM18] Helm, A., May, A.: Subset sum quantumly in 1.17n. In: Jeffery, S., (ed.),
13th Conference on the Theory of Quantum Computation, Communica-
tion and Cryptography, TQC 2018, 16–18 July 2018, Sydney, Australia,
volume 111 of LIPIcs, pp. 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2018)

[IM98] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing
the curse of dimensionality. In: STOC, pp. 604–613 (1998)

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: Proceedings of the 15th Symposium on the Theory
of Computing (STOC), pp. 99–108. ACM Press (1983)

[Kle00] Klein, P.: Finding the closest lattice vector when it’s unusually close. In:
SODA, pp. 937–941 (2000)

[KMPM19] Kirshanova, E., Martensson, E., Postlethwaite, E.W., Moulik, S.R.: Quan-
tum algorithms for the approximate k-list problem and their application
to lattice sieving. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11921, pp. 521–551. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34578-5 19

[KT17] Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms.
In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp.
69–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-
6 5

[Laa15] Laarhoven, T.: Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 1

[Laa16] Laarhoven, T.: Search problems in cryptography, from fingerprinting to
lattice sieving. Ph.D. thesis, Eindhoven University of Technology (2016)

[LdW15] Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vec-
tors using spherical locality-sensitive hashing. In: Lauter, K., Rodŕıguez-
Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 101–118.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 6

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261, 513–534 (1982)

[LMvdP15] Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vec-
tors faster using quantum search. Des. Codes Cryptogr. 77(2–3), 375–400
(2015)

[MNRS11] Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk.
SIAM J. Comput. 40(1), 142–164 (2011)

[MV10] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: SODA, pp. 1468–1480 (2010)

[NC00] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation. Cambridge University Press, New York, NY, USA (2000)

https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-319-22174-8_6

Lattice Sieving via Quantum Random Walks 91

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Crypt. 2, 181–207 (2008)

[Poh81] Pohst, M.E.: On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications. ACM SIGSAM
Bull. 15(1), 37–44 (1981)

[TKM+13] Tulsiani, M., Kundu, S.K., Mitzenmacher, M., Upfal, E., Spencer, J.H.:
Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, Cambridge (2013)

[TT07] Terasawa, K., Tanaka, Y.: Spherical LSH for approximate nearest neigh-
bor search on unit hypersphere. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.)
WADS 2007. LNCS, vol. 4619, pp. 27–38. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73951-7 4

[WLTB11] Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic
sieve algorithm for shortest vector problem. In: Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Secu-
rity, ASIACCS ’11, pp. 1–9. Association for Computing Machinery, New
York, NY, USA (2011)

[ZPH14] Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest
vector problem. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013.
LNCS, vol. 8282, pp. 29–47. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 2

https://doi.org/10.1007/978-3-540-73951-7_4
https://doi.org/10.1007/978-3-662-43414-7_2
https://doi.org/10.1007/978-3-662-43414-7_2

A Systematic Approach and Analysis
of Key Mismatch Attacks on

Lattice-Based NIST Candidate KEMs

Yue Qin1,2,6, Chi Cheng1,2,3(B), Xiaohan Zhang1, Yanbin Pan4, Lei Hu5,
and Jintai Ding6,7

1 China University of Geosciences, Wuhan 430074, China
{qy52hz,chengchi}@cug.edu.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic

Technology, Guilin 541004, China
4 Key Laboratory of Mathematics Mechanization, Academy of Mathematics

and Systems Science, Chinese Academy of Sciences, Beijing, China
panyanbin@amss.ac.cn

5 State Key Lab of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

hulei@iie.ac.cn
6 Ding Lab, Yanqi Lake Beijing Institute of Mathematical Sciences

and Applications, Beijing, China
7 Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Abstract. Research on key mismatch attacks against lattice-based
KEMs is an important part of the cryptographic assessment of the ongoing
NIST standardization of post-quantum cryptography. There have been a
number of these attacks to date. However, a unified method to evaluate
these KEMs’ resilience under key mismatch attacks is still missing. Since
the key index of efficiency is the number of queries needed to successfully
mount such an attack, in this paper, we propose and develop a system-
atic approach to find lower bounds on the minimum average number of
queries needed for such attacks. Our basic idea is to transform the prob-
lem of finding the lower bound of queries into finding an optimal binary
recovery tree (BRT), where the computations of the lower bounds become
essentially the computations of a certain Shannon entropy. The optimal
BRT approach also enables us to understand why, for some lattice-based
NIST candidate KEMs, there is a big gap between the theoretical bounds
and bounds observed in practical attacks, in terms of the number of queries
needed. This further leads us to propose a generic improvement method for
these existing attacks, which are confirmed by our experiments. Moreover,
our proposed method could be directly used to improve the side-channel
attacks against CCA-secure NIST candidate KEMs.

1 Introduction

The Diffie-Hellman (DH) key exchange [24] and its Elliptic Curve counterpart
have played a fundamental role in many standards, such as Transport Layer Secu-
rity (TLS) and IP security (IPSec), securing communications over the Internet.
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 92–121, 2021.
https://doi.org/10.1007/978-3-030-92068-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_4

A Systematic Approach of Key Mismatch Attacks 93

However, these public key primitives based on number theoretic problems would
be broken if quantum computers become practical. Due to the rapid progresses
in quantum technology [32], the transition from the currently used public key
cryptographic blocks to their post-quantum counterparts has become urgent.

Since February 2016, NIST has begun the call for post-quantum crypto-
graphic algorithms from all over the world [44]. The goal of post-quantum cryp-
tography standardization is to establish cryptographic systems that are secure
against both quantum and classical computers, integrating with existing com-
munication protocols and networks [19]. There are 17 public key encryption
(PKE) or key encapsulation mechanism (KEM) candidates in the second round
[2], among which 9 are based on lattices [1]. On the third-round list, there are
still 3 lattice-based KEMs out of the 4 finalists [45].

Most of these candidates follow a similar structure: First a chosen-plaintext
attack (CPA) secure construction is proposed, and then it is converted into a
chosen-ciphertext attack (CCA) secure one using some transformation such as
the Fujisaki-Okamoto (FO) transformation [29]. We have to point out that there
is no security guarantee on the CPA secure ones when the public key is reused.
However, first, it is an important part of the cryptographic assessment of these
candidates to understand their key-reuse resilience in even misuse situations.
Secondly, all LWE-based KEMs in Rounds 2 and 3 of the NIST standardization
use an FO transform to achieve IND-CCA security. By doing so, the private key
security is provided for only one party, while the other party is required that his
secret key should be fully disclosed. What’s more, the full re-encryption in the
FO transform is typically the main cost during decapsulation, which makes it less
efficient than the IND-CPA version. To improve the efficiency, there have been
many efforts in designing various authenticated key exchanges using the CPA
version without FO transform. In these cases, key reuse is no doubt essential.
Therefore, analysis of the key reuse resilience of these CPA-secure schemes makes
sense. Finally, as shown in [23,50], side-channel information can be employed
to successfully mount similar chosen-ciphertext attacks against the CCA-secure
ones in an efficient way. Therefore, the line of research focusing on the key reuse
attacks against the CPA secure ones is important and has been actively studied.

Research on the security of IND-CPA secure public-key cryptosystem in the
case of key reuse can be dated back to 1998, when Bleichenbacher considered
the security of the RSA PKCS#1 [15]. After that, similar attacks have been pro-
posed against several public key cryptosystems including the Diffie-Hellman key
exchange [33,43]. There are two kinds of key reuse attacks against lattice-based
key exchange. One is the signal leakage attack, which employs the additional sig-
nal information in the shared key reconciliation between two parties. The other
key reuse attack is called key mismatch attack, which launches the attack by sim-
ply knowing whether the shared two keys match or not. In [25], Ding, Alsayigh
and Saraswathy first launched signal leakage attacks to the key exchange protocol
in [28] by using the leaked information about the secret key from the signal mes-
sages. Then, a signal leakage attack is proposed in [39] against the reconciliation-
based NewHope-Usenix protocol [6]. Just recently in [14], Bindel, Stebila and

94 Y. Qin et al.

Veitch proposed an improved signal leakage attack and further showed how to
apply their method to an authenticated scheme in [26].

The idea of key mismatch attack on lattice-based key exchange is first proposed
by Ding, Fluhrer and Saraswathy [27] against the one-pass case of the protocol in
[28]. In a key mismatch attack, a participant’s public key is reused and its pri-
vate key is recovered by comparing whether the shared keys between two partici-
pants match or not. In [10], Bauer et al. proposed a key mismatch attack against
NewHope KEM [3], which is further analyzed and improved by Qin, Cheng, and
Ding [48]. In [46], Okada, Wang, and Takagi improved the method in [48] to fur-
ther reduce the number of queries. The work of [49] gave a similar key mismatch
attack on Kyber. In [31] a key mismatch attack was proposed against LAC, requir-
ing up to 8 queries for each coefficient. Recently, Zhang et al. proposed an efficient
method to launch key mismatch attacks on NTRU-HRSS [55], which can recover
the complete secret key with a probability of 93.6%.

Although there have been a number of key reuse attacks on the lattice-based
key exchange schemes, a fundamental problem is still open: Can we find a uni-
fied method to evaluate the key reuse resilience of NIST candidates against
key mismatch attacks? Since the key index of the efficiency of these attacks is
the number of queries (matches and mismatches) needed to successfully mount
such attacks, a unified method to find bounds with fewest queries for all the
candidates is appealing. In Eurocrypt 2019, Băetu et al. tried to answer this
problem, but most of their result is related to a limited number of the first-
round candidates which did not enter into the second round [9]. In a recent work
of Huguenin-Dumittan and Vaudenay [37], they proposed similar key mismatch
attacks on only some of the lattice-based second-round candidates, Kyber-512,
LAC-128, LightSaber, Round5 (HILA5 [11]) and Frodo640. But no unified theo-
retical bound is given in their work. Therefore, a big picture about the evaluation
of key reuse resilience of these candidates is still missing.

Contributions. In this paper, we propose and develop a systematic approach
to find the lower bounds on the minimum average number of queries needed for
mounting key mismatch attacks, which further motivates us to propose a generic
improvement method that is not only suitable for CPA-secure KEMs, but also
for side-channel attacks against CCA-secure KEMs. The main contributions of
this paper include:

– We propose a unified method to find lower bounds for all the lattice-based
NIST candidate KEMs. Our basic idea is to convert the problem into finding
an optimal binary recovery tree (BRT). By using the technique of Huffman
coding, we successfully build the optimal BRT and get the bounds. Further
analysis shows that the calculation of these bounds becomes essentially the
computation of a certain Shannon entropy, which means that on average one
cannot find a better attack with fewer queries than our bound in the full key
recovery.

– According to our proposed bound, in terms of number of needed queries,
there is still a huge gap between the bound and practical attacks against
some candidates such as NewHope, FrodoKEM, and Saber [37,46,48]. The

A Systematic Approach of Key Mismatch Attacks 95

introduction of the optimal BRT approach enables us to understand causes
of these gaps, guiding us to select proper parameters to improve the practical
attacks. Compared to the existing results in [37] and [46], we have improved
attacks against Frodo640 and LightSaber with 71.99% and 27.93% reduced
number of queries respectively, which is also confirmed by our experiments.

– Our improved method could be directly used to further optimize the effi-
ciency of side-channel attacks against CCA-secure NIST candidate KEMs.
For example, we can reduce the needed number of queries (or traces) from
2560 to 1183 for Kyber512.

– From the analysis of our proposed attacks, we find that the ranges of the
coefficients in the secret key and the corresponding occurrence probabilities,
as well as the employment of Encode/Decode functions are the three most
important factors in evaluating their key reuse resilience. More specifically,
larger ranges of the coefficients increase the needed number of queries. On
the other side, encoding/decoding several coefficients at one time reduces the
number of queries needed.

2 Preliminaries

2.1 Lattice-Based Key Encapsulation Mechanisms

In [21], Cramer and Shoup introduced the notion of KEM. Generally, a KEM con-
sists of three algorithms: a probabilistic polynomial-time (PPT) key generation
algorithm KEM.Gen, a PPT encryption algorithm KEM.Enc, and a determin-
istic polynomial-time decryption algorithm KEM.Dec.

The main difficulty in constructing a lattice-based DH-like key exchange
protocol is how to effectively reconcile errors to negotiate a consistent shared key.
In [28], Ding, Xie, and Lin first proposed a “robust extractor” to reconcile the
errors, in which one of the participants needs to send an additional signal message
to the other party, so that the two participants can agree on a shared key. Ding,
Xie, and Lin’s schemes base their security on the Learning with Errors (LWE)
problem and Ring LWE problem. The latter can be seen as the polynomial
version of the former. In [47] Peikert proposed a KEM using a similar error
correction mechanism, and then in [17] the reformulated key exchange proposed
by Bos et al. has been integrated into TLS. More and more lattice-based KEMs
have been proposed since then. For example, in NIST’s second-round list, there
are FrodoKEM [4], NewHope [3,5], LAC [40], Kyber [7,16], Threebears [34],
Round5 [8], Saber [22], NTRU [18] and NTRU Prime [13]. Recently, NIST [45]
has announced the third-round finalists, among which the lattice-based KEMs
include Kyber, NTRU and Saber. NIST also announced two alternate lattice-
based candidates: FrodoKEM and NTRU Prime.

We can roughly divide the existing lattice-based KEMs into two categories.
The first category is in line with the work of Regev [51], Lyubashevsky-Peikert-
Regev [41], and lattice-based key exchange scheme proposed by Ding, Xie and
Lin [28]. The other is NTRU [35] and NTRU Prime [12].

96 Y. Qin et al.

In Fig. 1 we present the meta structure of the CPA-secure KEMs in the first
category of the NIST second-round candidates, in which

Fig. 1. The structure of CPA-secure LWE-based KEM

– R be some ring equipped with the multiplication ◦.
– a is generated by a public seed and pseudorandom function.
– The distribution χ is chosen to be the discrete Gaussian distribution or the

central binomial distribution Bη whose sample is generated by
∑η

i=1(ai −bi),
where ai and bi are independently uniformly randomly sampled from {0, 1}.
When we say a sample is chosen according to χ, we mean every component
is chosen randomly according to χ.

– The Encode and Decode process is not necessary but usually employed. A
typical code is D−v lattice code with v = 2 or 4 that encodes every coefficient
into v coefficients. We list the Encode and Decode functions in Algorithm 1.

– The Compress/Decompress function is usually used to decrease the communi-
cation cost. A typical compress function transforms a coefficient from module
q to module p by

Compressq(c[i],p) = �c[i] · p/q� (mod p),

and the decompress function operates in an opposite way:

Decompressq(c̄[i],p) = �c̄[i] · q/p�.

Next, we describe the MLWE-based Kyber in details.

A Systematic Approach of Key Mismatch Attacks 97

Algorithm 1 The Encode and Decode functions for the D-v lattice code

� Encode(m, v)
Input: m ← {0, 1}λ, v
Output: k
1: for i = 0 to λ − 1 do
2: for j = 0 to v − 1 do
3: k[i · v +j] = m[i] · q−1

2

4: end for
5: end for
6: Return k

� Decode(k, v)
Input: k ← {0, q−1

2
}vλ, v

Output: m′

7: for i = 0 to λ − 1 do

8: if
v−1∑

j=0

|k[i · v + j] − q−1
2

| < v·q
4

then

9: m′[i] = 1
10: else
11: m′[i] = 0
12: end if
13: end for
14: Return m′

Kyber. Kyber is on the third-round list of the NIST competition, and regarded
as one of the most promising ones for the final standard. In Kyber the authors
have warned about the harm of key reuse, but in practice there may still be
some users who ignore the warnings and try to create one. So it is reasonable to
assume that Kyber has a CPA-secure version to evaluate its key reuse resilience.

Alice Bob
1. �Kyber.CPAPKE.KeyGen()
1.1 Generate matrix a ∈ Rk×k

q

1.2 Sample sA, eA ∈ Bk
η 2. m $←− {0, 1}256

1.3 PA ←− a ◦ sA + eA 3. �Kyber.CPAPKE.Enc(PA,m)
1.4 Output: (sA,PA)

PA−−−−−−−→ 3.1 Generate matrix a ∈ Rk×k
q

3.2 Sample sB , eB ∈ Bk
η, e

′
B ∈ Bη

3.3 PB ←− aT ◦ sB + eB

5. �Kyber.CPAPKE.Dec(sA,PB , c1, c2) 3.4 vB ←− PT
A ◦ sB + e′

B +Decompressq(m, 2)
5.1 uA ←− Decompressq(c1, 2

dPB) 3.5 c1 ←− Compressq(PB , 2dPB)

5.2 vA ←− Decompressq(c2, 2
dvB)

(PB ,c1,c2)←−−−−−−−− 3.6 c2 ←− Compressq(vB , 2dvB)
5.3 m′ ←− Compressq(vA − sT

A ◦ uA, 2) 3.7 Output: (c1, c2)
5.4 Output: m′ 4. KB ← H(m||(PB , (c1, c2)))

6. KA ← H(m′||(PB , (c1, c2)))

Fig. 2. The CPA version of Kyber

Figure 2 shows pseudo-code for a possible instantiation of the CPA-secure
Kyber, which directly invokes the three functions of Kyber.CPAPKE in [7]:
Kyber.CPAPKE.KeyGen(), Kyber.CPAPKE.Enc() and Kyber.CPAPKE.Dec().

98 Y. Qin et al.

In Kyber.CPAPKE.KeyGen(), Alice first generates a matrix a ∈ Rk×k
q . Here

Rq represents the ring Zq[x]/(xN + 1), where N = 256 and q = 3329. Another
parameter k is set to be 2, 3 or 4, which is in accordance with the three different
security levels. That is, Kyber512, Kyber768, and Kyber1024, respectively. In
Kyber all the secret keys and error vectors are sampled from a centered binomial
distribution Bη. In Kyber512 η = 3, and in Kyber768 and Kyber1024 η = 2.
Here Bη is generated using

∑η
i=1(ai − bi), where ai and bi are independently

randomly sampled from {0, 1}.

NewHope. Similarly, we present a CPA-secure version of NewHope in Fig. 3,
which also includes three parts. Here Rq is the residue ring Zq[x]/(xN + 1) with
N = 512 in NewHope512 and 1024 in NewHope1024. The parameter q is always
set as 12289.

Alice Bob
1. �NewHope.CPAPKE.KeyGen()
1.1 Generate matrix a ∈ Rq

1.2 Sample sA, eA ∈ B8 2. m $←− {0, 1}256
1.3 PA ←− a ◦ sA + eA 3. �NewHope.CPAPKE.Enc(PA,m)
1.4 Output: (sA,PA)

PA−−−−−→ 3.1 Generate matrix a ∈ Rq

3.2 Sample sB , eB , e′
B ∈ B8

3.3 PB ←− a ◦ sB + eB

3.4 vb ←− H1(m)
5. �NewHope.CPAPKE.Dec(sA,PB , c̄) 3.5 k ←−Encode(vb)
5.1 c′ ←− Decompress(c̄) 3.6 c ←− PA ◦ sB + e′

B + k

5.2 k′ ←− c′ − PB ◦ sA
(PB ,c̄)←−−−−−− 3.7 c̄ ←− Compress(c)

5.3 vA ←− Decode(k′) 3.8 Output: (PB , c̄)
5.4 Output: vA 4. KB ←− H2(vb||(PB , c̄))

6. KA ← H2(vA||(PB , c̄))

Fig. 3. The CPA version of NewHope

2.2 Model of Key Mismatch Attacks

In a key mismatch attack, Alice’s public key PA is reused. The adversary A
impersonates as Bob to recover the secret key of Alice with the help of an Oracle
that can decide if the two shared keys match or not.

More precisely, to show how the attack works, we build an Oracle O that
simulates Alice’s KEM.Dec part. As shown in Algorithm 2, the Oracle O’s input
P includes the parameters PB , c̄ chosen by the adversary and the shared key

A Systematic Approach of Key Mismatch Attacks 99

KB . The output of O is 1 or 0. To be specific, with the received PB , c̄, O calls
the function Dec(P) and gets the shared key KA as the return. If the shared
keys KA and KB match, O outputs 1, otherwise the output is 0.

Algorithm 2 The Oracle and key mismatch attack

� Oracle O(P)
Input: P := (PB , c̄, KB)
Output: 0 or 1
1: KA ← KEM.Dec(PB , c̄)
2: if KA = KB then
3: Return 1
4: else
5: Return 0
6: end if

� key mismatch attack
Input: Alice’s PA and Oracle O
Output: 0 or 1
7: s′

A ← AO(PA)
8: if s′

A = sA then
9: Return 1

10: else
11: Return 0
12: end if

3 Lower Bounds for the Average Number of Queries
for the Key Mismatch Attacks

For the key mismatch attacks on lattice-based KEMs, the adversary A’s goal
is to recover each coefficient of Alice’s secret key sA by accessing the oracle O
multiple times.

For simplicity, we assume the adversary recovers Alice’s secret key sA one
coefficient block by one coefficient block. A coefficient block can be either one
coefficient of sA or a subset of all the coefficients of sA. Usually, for KEMs that
do not employ Encode/Decode functions, such as Kyber, a coefficient block is
set to be only one coefficient. For KEMs that employ Encode/Decode functions,
such as NewHope, a coefficient block contains v coefficients of sA where v is
defined as in Algorithm 1, since one coefficient relates to v coefficients of sA.

Note that the number of the queries to the oracle is obviously a key index
to evaluate the efficiency of the attack. In fact, even in practice, the bottleneck
of the efficiency of the attacks is also to determine if the two shared keys match
or not. Therefore, it is important to indicate the optimal lower bound of the
number of queries to mount a mismatch attack successfully.

3.1 Lower Bound by Optimal Binary Recovery Tree

In this subsection, we describe how to find the bounds of key mismatch attacks,
which can be regarded as a problem of finding a binary tree with minimum
weighted depth.

Recall that the adversary A recovers Alice’s secret key sA one coefficient block
by one coefficient block, where a coefficient block can be either one coefficient

100 Y. Qin et al.

of sA or several coefficients of sA. Let S = {S0,S1, · · · ,Sn−1} be the set of all
the possible values for one coefficient block. For example, the coefficients of sA

in Kyber are drawn from {−2,−1, 0, 1, 2}. Since there are no Encode/Decode
functions, we try to recover the coefficients of sA one by one and hence S =
{−2,−1, 0, 1, 2}. In LAC, the coefficients of sA are selected from {−1, 0, 1}.
Since D-2 lattice is used to encode, we would like to recover every coefficient
block which contains 2 coefficients of sA due to the decryption, which yields
that S = {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1), (1,−1), (−1, 1)}.

For any coefficient block sb
A of sA, denote by Pi the probability that sb

A = Si

where sA is generated from the distribution χ, that is, Pi = Prob(sb
A = Si|sA ←

χ) for i = 0, 1, · · · , n − 1. Without loss of generality, we assume that P0 ≥ P1 ≥
· · · ≥ Pn−1. Then, it holds that

∑n−1
i=0 Pi = 1.

In a key mismatch attack, the adversary A needs to query the Oracle with
properly selected parameters for several times to recover every coefficient block,
which may be Si with probability Pi. Denote by Qi the number of queries A
needs to determine the coefficient block when it is exactly Si. Then the aver-
age (expected) number of queries required to recover one coefficient block is
obviously:

EA(S) =
n−1∑

i=0

PiQi.

Our goal is to minimize EA(S) by running over the set of all possible attack
strategies under our model.

Binary Recovery Tree. Our key idea to get a lower bound of minimum of
E(S) is to associate every attack with a binary recovery tree (BRT).

Define the BRT associated with S = {S0,S1, · · · , Sn−1} as below: it is a
rooted binary tree with a root node and n leaf nodes, where every Si occupies
a leaf node. For every node that has child nodes, denote by 1 its left child node
and by 0 its right child node.

Note that to recover any coefficient block for any attack, the adversary A
can get a binary sequence of returned values from the Oracle. Denote by s̄i the
corresponding returned binary sequence when the coefficient block is exactly Si.
It is obvious that each coefficient block Si can be recovered by a unique binary
sequence s̄i and for any i �= j, s̄i must not be the prefix of s̄j . Otherwise, it
would not suffice to identify Si uniquely. This means that we can construct a
BRT TA associated with S = {S0,S1, · · · , Sn−1}, where for every i, the binary
string consisting of the nodes on the path from the root node to the leaf node
Si is exactly the binary sequence s̄i. The length of s̄i is of course Qi as defined
above, also known as the depth depthTA(Si) of leaf node Si. Then

EA(S) =
n−1∑

i=0

PiQi =
n−1∑

i=0

Pi · depthTA(Si).

It seems still hard to find the minimum of EA(S) since we should consider all
the binary recovery trees corresponding to the possible attacks under our model.

A Systematic Approach of Key Mismatch Attacks 101

However, it presents an obvious way to compute a lower bound of the minimum,
just by enlarging the set of BRTs corresponding to the attacks to the set of all
the possible BRTs.

Then, we can transform the problem of finding the lower bound of the optimal
value of EA(S) to the problem of finding a binary recovery tree to minimize

E(S) =
n−1∑

i=0

Pi · depthT (Si).

We call the tree with the minimum weighted depth, i.e. minE(S), the optimal
BRT. Therefore, it is enough to construct an optimal BRT to find the lower
bound for recovering the secret key with fewest number of queries.

A well known method to find the optimal binary recovery tree is the Huff-
man coding [36,38]. The basic idea of Huffman coding is to combine two sym-
bols with the lowest probabilities in each step. Specifically, we first find the
two Si’s with the lowest probabilities, for example, Pn−1 and Pn−2. Then
the problem has transformed into solving the problem with n − 1 weights
{P0, P1, . . . , Pn−3, Pn−2 + Pn−1}. By repeating this process, we can finally solve
the problem and find the optimal BRT to get minE(S) in time O(n log n), as
well as the E(#Queries).

Algorithm 3 Huffman codes

� Building a Huffman Tree
Input: P0, · · · , Pn−1

Output: HuffTree T
1: for i = 0 → n − 1 do
2: Insert leafnode T [i]
3: T [i].weight = P [i]
4: end for
5: for i = 0 → n − 1 do
6: for j = 0 → n + i − 1 do
7: Find two nodes x1 and x2 with

the smallest weight and no parent
8: end for
9: Combine x1 and x2, and insert the

new node into T [n + i]
10: end for

� Huffman Coding
Input: HuffTree T
Output: Huffman code C
11: E(S) = 0
12: for i = 0 → n − 1 do
13: C[i].length = 0
14: j = i
15: while T[j].parent exist do
16: if T [j].lchild = j then
17: C[i].code[C[i].length] = 0
18: else
19: C[i].code[C[i].length] = 1
20: end if
21: C[i].length + +
22: j = T [j].parent
23: end while
24: E(S)+ = C[i].length ∗ T [i].weight
25: end for

Therefore, our proposed method for calculating the bound can be summa-
rized as follows: First, list S0,S1, . . . ,Sn−1 and their corresponding probabilities
{P0, P1, . . . , Pn−1} in the descending order. Then, construct the optimal BRT

102 Y. Qin et al.

using Huffman coding. The constructed optimal BRT leads us to the min E(S)
and the E(#Queries). The process of building the Huffman code to obtain the
corresponding min E(S) is shown in Algorithm 3.

To prove our main theorem, we first present the following lemma, which is a
special case of the famous Kraft inequality (See Theorem 5.2.2, [20]).

Lemma 1. (Kraft equality) For any n ≥ 1, (depthT (S0), · · · ,depthT (Sn−1)) is
the sequence of depths in a rooted binary tree if and only if

n−1∑

i=0

2−depthT (Si) = 1. (1)

Further, we obtain the following result.

Theorem 1. In our key mismatch attack model, the proposed method finds
bounds for minimum average number of queries in launching the key mismatch
attacks. To be precise, given S = {S0,S1, · · · ,Sn−1} and its corresponding prob-
abilities {P0, P1, · · · , Pn−1} in each lattice-based KEM, min E(S) calculated by
the optimal BRT is a lower bound for the minimum average number of queries.
Moreover, set H(S) the Shannon entropy for S, then we have

H(S) ≤ min E(S) < H(S) + 1.

Proof. Our first result comes from the facts in Section 5.8 of [20]. That is, it is
impossible to find any other code with a lower expected length than the code
constructed by Huffman coding. To obtain the min E(S), we use the Lagrange
multipliers. From Lemma 1, we let

L =
n−1∑

i=0

Pi · depthT (Si) + λ(
n−1∑

i=0

2−depthT (Si) − 1).

By differentiating with respect to depthT (Si) and letting the derivative be
0, we have

∂L

∂depthT (Si)
= Pi − λ · 2−depthT (Si) loge 2 = 0.

That is 2−depthT (Si) = Pi

λ loge 2 . Substituting this into Eq. (1), we obtain
∑n−1

i=0
Pi

λ loge 2 = 1. Thus we have λ loge 2 = 1, which leads to Pi = 2−depthT (Si).
Therefore, the optimum solution occurs when depthT (Si) = �− log2 Pi
. Here
�x
 means the smallest integer greater than or equal to x, due to the fact that
depthT (Si) should be integers. Since x ≤ �x
 < x + 1, we then conclude that
H(S) ≤ min E(S) < H(S) + 1.

In [9], it has been proved that H(S) ≤ min E(S). From our perspective, this
can be easily obtained from the optimality of Huffman codes.

A Systematic Approach of Key Mismatch Attacks 103

Remark 1. One may have the idea that it is safe to implement the CPA-secure
version and reuse the keys fewer times than the proposed bound. In fact it is
still dangerous to do so, even reusing the key far below the bound. First of all,
our bound is on the average number of needed queries, which means that there
may exist attacks with fewer number of queries for certain keys. Secondly, what
we talk about is recovering the full key, but obviously the recovery of the partial
key also leaks information about the key, significantly decreasing the bit-security.
Therefore, it is still not safe to reuse the keys in a CPA-secure KEM.

3.2 Lower Bounds for Key Mismatch Attacks on NIST Candidates

Lower Bounds for Kyber. In this subsection, we take Kyber1024 as an exam-
ple to show how to find the optimal BRT to get the bound. Kyber1024 uses cen-
tered binomial distribution Bη with η = 2 and has no Encode/Decode functions,
which means S = {−2,−1, 0, 1, 2}. We set S0 = 0, S1 = 1, S2 = −1, S3 = 2 and
S4 = −2.

Fig. 4. Finding the optimal BRT for Kyber1024 by using Huffman coding

As shown in Fig. 4, we first list the occurrence probabilities of Si in the
descending order. Since S3 and S4 occur with the smallest probabilities, we create
a subtree that contains them as leaf nodes. By repeatedly doing so, finally we
can get an optimal BRT as also shown in Fig. 4. The corresponding s̄ represents
how to encode each Si, while ls̄ is the code length.

The resulting min E(S) = 2.125, which is the minimum number of queries
needed for recovering each coefficient. Note that the Shannon entropy H(S) is

H(S) =
4∑

i=0

Pilog
1
Pi

= 2.03,

which is in accordance with our Theorem 1. Hence, the bounds for recovering
the full private key of Kyber768 and Kyber1024 with η = 2 are 1632 and 2176,
respectively. Similarly, it can be concluded that the bound is 1216 for Kyber512
with η = 3.

104 Y. Qin et al.

Lower Bounds for NewHope. One of the main differences between Kyber and
NewHope is that Kyber does not use Encode/Decode functions, while NewHope
uses both Encode/Decode and Compress/Decompress functions. In NewHope,
the secret key is sampled from centered binomial distribution Bη with parameter
η = 8, so the coefficients of the secret key are integers in [−8, 8].

Table 1. Lower bounds for key mismatch attacks on lattice-based NIST KEMs.

Schemes sA & e Encode Comp Unknowns E(#Queries)

Ranges Decode Decomp Bounds

NewHope512 [−8, 8] � � 512 1568

NewHope1024 1024 3127

Kyber512 [−3, 3] / � 512 1216

Kyber768 [−2, 2] 768 1632

Kyber1024 1024 2176

LightSaber [−5, 5] / � 512 1412

Saber [−4, 4] 768 1986

FireSaber [−3, 3] 1024 2432

Frodo640 [−12, 12] / � 5120 18,227

Frodo976 [−10, 10] 7808 25,796

Frodo1344 [−6, 6] 10,752 27,973

NTRU hps4096821 [−1, 1] / / 821 1369

NTRU hrss701 701 1183

NTRU Prime sntrup857 857 1574

NTRU Prime ntrulpr857 857 1553

Recall that NewHope512 uses D-2 Encode/Decode functions, while in
NewHope-1024 D-4 Encode/Decode functions are used. Therefore, in
NewHope512, Si = (si,1,si,2) where si,1, si,2 ∈ [−8, 8]. In total there are 289
possibilities about each Si. So here we let n = 289. Then, we can also build
the optimal BRT for NewHope512 using Huffman coding, and the minE(S) =
6.124. Since we can recover two coefficients in sA at one time, the resulted
E(#Queries)=1568. For NewHope1024, there are a total of 83, 521 possible Si,
that is, n = 83, 521. Similarly, we have E(#Queries)= 3127 for NewHope1024.

Lower bounds for other NIST Candidates. Similarly, we can obtain bounds
for other LWE-based KEMs as well as NTRU and NTRU Prime in the second cate-
gory. In Table 1, we present the lower bounds for key mismatch attacks against the
following second or third round NIST candidates: NewHope, Kyber, FrodoKEM,
Saber, NTRU and NTRU Prime. For every candidate, we report the ranges of sA

& e and the number of unknowns, and whether the Encode/Decode and Com-
press/Decompress functions are employed (�) or not (/). We also report the min-
imum average number of queries in our proposed bounds. For other NIST candi-
date KEMs, we report their results in Table 7 in Appendix A.

A Systematic Approach of Key Mismatch Attacks 105

4 Improved Key Mismatch Attacks on NIST Candidates

We would like to point out that for some KEMs, there is still a huge gap in
terms of number of queries between our theoretical bound and practical attacks,
such as Frodo640. Since we have built an optimal BRT for each KEM, in the
following we show how the optimal BRT helps us improve the practical attacks.

4.1 Improved Practical Attacks on Kyber

We take Kyber1024 as an example to show how to launch the practical key mis-
match attack. First, we build an Oracle that simulates Alice’s Kyber.KEM.Dec(),
the same as that in Algorithm 2. The inputs of the oracle O are PB , (c1, c2)
and KB .

In a key mismatch attack, Alice’s public key PA is reused, and the goal of the
adversary A is to recover Alice’s secret key sA. Therefore, A needs to choose the
appropriate parameters PB and (c1, c2) to access O, so that he can determine sA

based on O’s return. Without loss of generality, assume that A wants to recover
sA[0]. We next show the basic idea of our attack.

First of all, A selects a 256-bit m as (1,0, · · · , 0). Then he sets PB = 0,
except PB [0] =

⌈
q
32

⌋
. After calculating c1 = Compressq(PB , 2dPB), A sets

c2 = 0, except that c2[0] = h, where h will be determined later.
With (c1, c2), the Oracle calculates uA = Decompressq(c1, 2

dPB), vA =
Decompressq(c2, 2

dvB) and

m′[0] = Compressq((vA − sT
AuA)[0], 1) =

⌈
2
q

(
vA[0] − (sT

AuA)[0]
)
⌋

mod 2.

Since vA[0] =
⌈

q
32h

⌋
and (sT

AuA)[0] = sT
A[0]uA[0] = sT

A[0]
⌈

q
32

⌋
, it holds that

m′[0] =
⌈
2
q

(⌈
q
32h

⌋
− sT

A[0]
⌈

q
32

⌋)⌋
mod 2.

Therefore, it allows us to determine sT
A[0] by choosing proper value for h.

For example, by letting h = 8, we have the following result: If sT
A[0] ∈ [−2,−1],

m′[0] = 1, then the oracle will output 1. Otherwise, if sT
A[0] ∈ [0, 2], m′[0] = 0,

then the oracle outputs 0. In this way, we can distinguish which subinterval (or
subset) sT

A[0] belongs to by only one query. Similarly, by choosing a different
value for h, we may determine another subinterval that sT

A[0] belongs to. Once
the intersection of the determined subintervals has only one element, we can
determine the value of sT

A[0] exactly. However, our goal is to query the Oracle
as few as possible, which asks us to choose h more carefully.

From the optimal BRT in Sect. 3.2, to approach the bound we need to deter-
mine Si with high occurrence probability with as few numbers of queries as
possible. In fact, this also suggests us the ideal way to choose h, that is, choos-
ing h such that the oracle outputs different values when sT

A[0] belongs to different
sets of descendants, left or right, for every node in the optimal BRT. Of course,
such h may not exist. However, the optimal BRT does reveal some clues.

Following the optimal BRT, we show how to choose h for every State in
our improved attack and how the States change according to the output of the

106 Y. Qin et al.

Oracle in Kyber512, Kyber768 and Kyber1024, respectively in Table 2. Our key
mismatch attack always starts from State 1, and then the choice of h in the next
State depends on the current Oracle’s output. In each State, when the adversary
gets a returned value from the Oracle, he can narrow the range of sA[0] until the
exact value of sA[0] is determined.

Table 2. The choice of h and the States

State 1 State 2 State 3 State 4

Kyber512 h 2 3 4 1

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Kyber768 h 4 5 6 3

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Kyber1024 h 8 9 10 7

O → 0 State 2 State 3 sA[0] = 2 sA[0] = −1

O → 1 State 4 sA[0] = 0 sA[0] = 1 sA[0] = −2

Table 3. Si and its corre-
sponding s̄, ls̄

i 0 1 2 3 4

Si 0 1 −1 2 −2

s̄ 01 001 10 000 11

ls̄ 2 3 2 3 2

As an example, we show how the adversary A determines sA[0] for Kyber1024
in details.

1. The key mismatch attack starts from State 1, and A sets h = 8 first. Then
{S0,S1,S2,S3,S4} can be divided into two parts based on the returned value
of the first oracle:

– If O → 0: sA[0] belongs to {S0,S1,S3}, and goes to State 2.
– If O → 1: sA[0] belongs to {S2,S4}, and State 4 will be executed.

2. If A comes to State 2, he goes on setting h = 9:
– If O → 0: sA[0] belongs to {S1,S3}, then goes to State 3.
– If O → 1: A can determine sA[0] = S0 = 0.

3. In State 3, A sets h = 10:
– If O → 0: A determines sA[0] = S3 = 2.
– If O → 1: A determines sA[0] = S1 = 1.

4. When A is in State 4, he sets h = 7:
– If O → 0: A finds that sA[0] = S2 = −1.
– If O → 1: A finds that sA[0] = S4 = −2.

Based on the above process, we can construct s̄, ls̄ for {S0,S1,S2,S3,S4},
as shown in Table 3. For example, if sA[0] = S1 = 1, we come to State 1 first,
and the oracle outputs 0. Then we go to State 2 and the oracle outputs 0. Now
we are in State 3 and the output is 1. Therefore we can get s̄ = 001. We can
see that in this way we decide Si with larger occurrence probability by as fewer
queries as possible. We can also observe that the way we find s̄ is similar to our
optimal BRT.

Similarly, to recover sA[i] when i �= 0, A only needs to set PB = 0 except
PB [n − i] = −

⌈
q
32

⌋
at first.

A Systematic Approach of Key Mismatch Attacks 107

Now we can calculate the average number of queries needed to recover each
coefficient in sA as 3

8 × 2 + 1
4 × (2 + 3) + 1

16 × (2 + 3) = 2.31. Therefore, the
corresponding numbers of average queries needed in Kyber1024 and Kyber768
are 2365.44, 1774.08 respectively. Similarly, we can get the average number of
queries on Kyber512, which is 1312.06. Compared with the bound in Table 1,
there is only a gap less than 9%.

In [49], the authors proposed three different methods to perform key mis-
match attacks on Kyber. For their best method, the queries are 2475, 1855 and
1401. Therefore, our improved practical key mismatch attack on Kyber is better
than that in [49].

4.2 Improved Key Mismatch Attacks on Saber

There are three versions of Saber, the LightSaber, Saber, and FireSaber. Here
we take the attack on FireSaber as an example. The attacks on LightSaber and
Saber are similar. The adversary chooses PB = h and cm = k, and the selection
of each hi/ki (i = 1, . . . , 10 in LightSaber; i = 1, . . . , 8 in Saber; i = 1, . . . , 6 in
FireSaber) is shown in Table 4.

Table 4. Selection of hi/ki in the practical key mismatch attacks on Saber

i 1 2 3 4 5 6 7 8 9 10

LightSaber 2/60 1/69 1/35 1/23 0/50 0/40 2/30 2/20 2/15 2/12
Saber 4/28 3/37 3/36 3/18 3/12 4/27 4/13 4/9

FireSaber 17/7 16/2 16/4 8/125 4/95 2/76

The following procedure shows how to use hi/ki in Table 4 to recover sA[0].

1. We set h = h1 and k = k1 first, then Si (i = 0, . . . , 6) can be divided into two
parts based on the returned value of the first Oracle:

– If O → 0: sA[0] belongs to {S1,S3,S5}, and turn to step 4.
– If O → 1: sA[0] belongs to {S0,S2,S4,S6}, then step 2 and step 3 will be

executed.
2. If the oracle returns 1 when we set h = h1 and k = k1, then we set h = h2

and k = k2 :
– If O → 0: We can determine sA[0] = S0.
– If O → 1: sA[0] belongs to {S2,S4,S6}, and go to step 3.

3. Next, we select different parameters h = h3, k = k3 and h = h4, k = k4 (the
specific values of hi/ki are shown in Table 4) and repeat operations in step 2
until we can know which of {S2,S4,S6} is equal to sA[0].

4. Similarly, we select different parameters h = h5, k = k5 and h = h6, k = k6
in Table 4 and repeat operations in steps 2 and 3 until we can know which of
{S1,S3,S5} is sA[0].

108 Y. Qin et al.

4.3 Improved Key Mismatch Attacks on FrodoKEM

There are three versions of FrodoKEM, the Frodo640, Frodo976, and Frodo1344.
Here we take the attack on Frodo1344 as an example. The attacks on Frodo640
and Frodo976 are similar. In Frodo1344, Si ∈ [−6, 6], the selection of hi (i ∈
[0, 12]) is shown in Table 5.

Table 5. Selection of hi in practical key mismatch attacks on FrodoKEM

i 1 2 3 4 5 6

hi 212 212 − 2 212 − 1 212 − 3 212 − 4 212 − 5
i 7 8 9 10 11 12
hi 212 − 6 212 − 7 212 − 8 212 − 9 212 − 10 212 − 11

Next, we introduce how to use hi in Table 5 to recover sA[0].

1. We set h = h1 first, then Si(i ∈ [0, 12]) can be divided into two parts based
on the returns value of the first Oracle:

– If O → 0: sA[0] belongs to {S0,S2,S4,S6,S8,S10,S12}, and then step 2
and step 3 will be executed.

– If O → 1: {S1,S3,S5,S7,S9, S11}
2. If the oracle returns 0 when we set h = h1, then we set h = h2:

– If O → 0: We can determine sA[0] = S0.
– If O → 1: sA[0] belongs to {S2,S4,S6,S8,S10,S12}, then we will proceed

step 3.
3. Next, we select different parameter h = h2, · · · , h7 (the specific values of hi

are shown in Table 5. Repeat operations in step 2 until we can know which
of {S2,S4,S6,S8,S10,S12} is sA[0].

4. Similarly, we select different parameter h = h8, · · · , h12 in Table 5 and repeat
operations in steps 2 and 3 until we can know which of {S1,S3,S5,S7,S9,
S11} is sA[0].

4.4 Improved Practical Attacks on Other NIST Candidates

Similarly, we can also improve the key mismatch attacks on NewHope, LAC, and
Round5. The details are given in Appendix B, where we show how the adversary
chooses the parameters in each scheme, and how to determine sA according to
the returns of the oracle.

An interesting question is, can we construct an attack to force the Oracle to
output the string that is exactly the same as suggested by the optimal BRT? In
this way, certainly we can find an optimal practical attack that reaches the the-
oretical lower bound. Unfortunately, due to the restriction of concrete schemes,
we may not find such parameters to launch the attack since they may not exist
at all. For example, if we want to achieve the lower bounds against Kyber1024

A Systematic Approach of Key Mismatch Attacks 109

using Huffman coding, we need to select the parameter K2 according to Fig. 4,
in this way the range of the secret key is divided into two sub-intervals: {0, 1}
and {−1, 2,−2}. However, in our improved practical attacks, the parameter K2

we choose can only divide the range of the secret key into two adjacent sub-
intervals, namely {−2,−1} and {0, 1, 2}, or {−2,−1, 0} and {1, 2}. This is the
reason why the number of queries needed in our improved practical attacks is
close to the bound, but not exactly the same.

5 Improved Side-Channel Assisted Chosen Ciphertexts
Attacks on CCA-Secure NIST KEM Candidates

As described above, the CPA-secure KEM candidates are vulnerable to key reuse
attacks. However, it is well known that the NIST candidates are CCA-secure by
applying some well-known transformation such as FO transformation [29]. To
be specific, FO transform mainly consists of two parts. First, Alice decrypts
Bob’s ciphertext c̄ to obtain m′ and a seed by calling KEM.CPA.Dec. Then she
re-encrypts m′ and the seed to get c′. If c̄ = c′, she continues to calculate the
shared key, otherwise she rejects the ciphertext c̄. This mechanism of decrypting
and then re-encrypting in the CCA-secure KEM protects the validity of the
ciphertext, returning failure when an invalid ciphertext is detected. Thus Alice
always rejects these malicious chosen ciphertexts and the adversary cannot gain
any meaningful information, which also means that our attacks above will not
work when these cryptosystems are correctly deployed. However, at CHES 2020,
Ravi et al. [50] showed that chosen ciphertexts attacks on CCA-secure NIST
candidate KEMs can also be launched with the help of side channel information.
Therefore, our proposed method can be directly used to further improve the
efficiency of these attacks.

Ravi et al.’s key observation is that, we can use the side channel information
to bypass the restrictions of FO transform to obtain useful match or mismatch
information about decryption outputs of chosen ciphertexts, making it possible
to successfully attack CCA-secure cryptosystems. In other words, Ravi et al.’s
chosen ciphertext attack is almost the same as the key mismatch attack, except
that the adversary can actively know whether the shared message matches or
not by physically accessing to devices performing decapsulation.

Algorithm 4 The Oracle and SCA-assisted chosen ciphertext attack

� Oracle Os(P, m0, m1)
Input: P := (c1, c2), m0, m1

Output: 0 or 1
1: W ← SCA(KEM.CCA.Dec(P))
2: if Γ0 ≥ Γ1 then Return 1
3: else Return 0
4: end if

� Chosen ciphertext attack
Input: Alice’s PA and Oracle Os

Output: 0 or 1
5: s′

A ← AOs(PA)
6: if s′

A = sA then Return 1
7: else Return 0
8: end if

110 Y. Qin et al.

In Ravi et al.’s side-channel attack (SCA), they mainly utilize Welch’s t-
test based template approach [30], which consists of two stages. The first is the
pre-processing stage including how to generate a template for each class, while
the second stage involves the template matching operation. In the first stage,
we need to collect 50 measurements of T = T0 ∪ T1. Here, T0 and T1 corre-
spond to the failure and success of KEM.CCA.Dec(), respectively. To get T0,
we directly set m′ = 0 instead of calling the decryption part KEM.CPA.Dec()
in KEM.CCA.Dec(), and then collect the corresponding 50 measurements. Sim-
ilarly, we can get T1 by setting m′ = {1, 0, . . . , 0}. Then we calculate their
respective means denoted as m0 = (

∑50
i=1 T0[i])/50 and m1 = (

∑50
i=1 T1[i])/50.

In the second stage, according to the results of m0 and m1, when we collect
a wave W from KEM.CCA.Dec(), we can distinguish which class the wave W
belongs to. Specifically, we need to compute the sum-of-squared difference Γ∗ of
the wave W with m∗ as follows:

Γ0 = (W − m0)
T · (W − m0) , Γ1 = (W − m1)

T · (W − m1) .

If Γ0 ≥ Γ1, W belongs to Γ1, otherwise it belongs to Γ0. When W belongs
to Γ0, we know that m′ = 0, which is the same as the principle of the mismatch
situation in the key mismatch attack aforementioned. Similarly, if W belongs to
Γ1, it is consistent with the match situation in key mismatch attack.

Based on the above analysis, we can build an Oracle Os that simulates Alice’s
KEM.CCA.Dec part, which is depicted in Algorithm 4. In the following we
take Kyber1024 as an example to show our detailed attacks. But we need to
emphasize that our method is applicable to other CCA-secure NIST candidates.
For Kyber1024 we choose the parameters (c1, c2) exactly the same as listed in
Table 2, to launch our chosen ciphertext attack. Here we show how the adversary
A determines sA[0] = 0 with only 2 queries, and the rest are similar.

In the pre-processing stage, A collects two sets of 50 measurements in advance
and computes their respective means. Then A gets two means m0 and m1. For
the chosen ciphertext attack stage, starting from State 1 in Table 2, A sets
PB = 0 except PB [0] =

⌈
q
32

⌋
. After computing c1 = Compressq(PB , 2dPB), A

sets c2 = 0, except that c2[0] = 2 at the first time. If the first output of Os is 0,
then State 1 switches to State 2. Next, A sets c2[0] = 3, if the second output of
Os is 1 and A can determine sA[0] = 0.

In summary, our improved attack can be applied to attack CCA-secure NIST
KEM candidates just as Ravi et al.’s chosen ciphertexts attack.

However, Ravi et al. had to brute-forcedly select the parameters, which is not
efficient for secret key with larger coefficients. Therefore, our proposed optimal
BRT approach can be directly used to select better parameters and significantly
reduce the needed number of queries with high efficiency. Specifically, Ravi et
al. only gave the detailed description of attacks against Kyber512 in the second
round, where the secret key sA is sampled from centered binomial distribution
Bη with η = 2. Thus, in their attack the needed queries for each coefficient is
5. Since n = 256, k = 2, the total number of queries for Kyber512 is 2560. In
order to make a fair comparison with their results, we also apply our improved

A Systematic Approach of Key Mismatch Attacks 111

attack to the second round of Kyber. By adopting our proposed optimal BRT
approach, we only need 1182.72 queries on average, reducing the number of
queries by 53.79% correspondingly. Secondly, in Ravi et al.’s attack, to retrieve
coefficient −2 the selected parameters (c1, c2) = (415, 3). Through our analysis
415 is too large, which is the reason why their attack cannot succeed with a
100% probability.

In our paper we consider Kyber in the third round, where the private key of
Kyber512 ranges from −3 to 3. All the results can be found at Table 6.

Similarly, we can also improve Ravi et al.’s method with our improved
key mismatch attacks on other NIST candidates. In [50], for NewHope512,
and NewHope1024, the total number of queries is 6945 and 26624, respec-
tively. According to our results in Table 6, we reduce the number of queries
for NewHope512 and NewHope1024 by 76.1% and 88.06%, respectively.

In [54], there is another interesting side-channel attack, namely the fault-
injection attack, against the NIST KEMs. We find that their main idea is to
construct a plaintext-checking oracle by injecting a fault first and then recover
the private key by employing the key mismatch attack directly. Hence, we believe
our results can also be applied to improve their attacks.

6 Experiments

In this section, we conduct experiments on the above improved attacks to confirm
their correctness and efficiency. All our improved key mismatch attacks are imple-
mented on a desktop equipped with two 3 GHz Intel Xeon E5-2620 CPUs and a
64 GB RAM. Our code is based on the C reference implementations of the NIST
candidates, and we have made it public1. Note that first our attack is against the
CPA-secure KEMs for Kyber, we directly call the Kyber.CPAPKE.KeyGen() to
launch the attack. For schemes like Saber and FrodoKEM, we remove the FO
transform in their CCA version. Since the improved key mismatch attacks and
the SCA-assisted selection ciphertext attack share similar processes on the NIST
candidate KEMs, as shown in Algorithm 5, we use Kyber1024 as an example to
illustrate the details of these attacks.

In the experiment we generate 1000 different secret keys sA and recover them
separately. We use queries to represent the number of times the adversary needs
to access the oracle to recover a complete sA. The experimental results given in
Table 6 are the average number of times the adversary needs to access the oracle
to recover these 1000 different sA.

In Table 6, we present our experimental results. For each scheme, we list the
lower bound of the minimum average number of queries by our BRT method,
the expected number of queries for our improved attacks (Bold), the average
number of queries for our improved attacks in our experiments, as well as the
number of queries of other existing results (Italic). We use “−” to mean that no
result is given.

1 https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs.

https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs

112 Y. Qin et al.

Algorithm 5 Pseudocode of improved key mismatch attack on Kyber1024

� Generate reused key pair
1: (sA,PA) ← Kyber.CPA.Gen()

� Recover sA

2: Set m = 0, except m[0] = 1
3: Set queries = 0
4: for i = 0 → 3 do
5: for j = 0 → 255 do
6: Set PB = 0
7: if j = 0 then
8: PB [0] =

⌈
q
32

⌋

9: else
10: PB [256 − j] = − ⌈

q
32

⌋

11: end if
12: c1 = Compressq(PB , dPB)
13: Set round = 0
14: while round < 4 do

15: round ++
16: Set c2 = 0, except c2[0] = h
17: t = O(c1, c2)
18: queries ++
19: if A recovers sA[i][j] then
20: Break
21: else Continue
22: end if
23: end while
24: if round == 4 then
25: Cannot recover sA[i][j]
26: end if
27: end for
28: end for

Table 6. Key mismatch attacks against lattice-based NIST KEMs.

Schemes E(#Queries)
Lower Bounds Our improved attacks Existing

Theory Experiments

Kyber512 1216 1312 1311 1401 (Round 2) [49]
Kyber768 1632 1774 1777 1855 [49]
Kyber1024 2176 2365 2368 2475 [49]
LightSaber 1412 1460 1476 2048 [37]

Saber 1986 2091 2095 −
FireSaber 2432 2642 2622 −
Frodo640 18,227 18,329 18,360 65,536 [37]
Frodo976 25,796 26,000 26,078 −
Frodo1344 27,973 29,353 29,378 −

NewHope512 1568 1660 1660 −
NewHope1024 3127 3180 3180 3197 [52]

It can be seen that our improved attacks approach the lower bound in most
cases and our experiments almost perfectly match the theoretical results in our
improved attack. That is, the difference between the improved attack and our
experiments is less than 1.2%. As we can see in Table 6, the experimental results
of our improved approach are very close to the theoretical bounds. In general,
there is less than 8.2% gap between our experiments and the theoretical bounds.

A Systematic Approach of Key Mismatch Attacks 113

Compared with other existing attack, we can see that our improved attack
on Kyber is slightly better than that in [49], since for Kyber the gap between
the lower bounds and practice is small. For Frodo640 and LightSaber, we have
reduced the number of queries by 71.99 % and 27.93%, respectively, compared
to the results in [37]. Our result on NewHope1024 is slightly better than that
of [52]. For LAC256, we greatly decrease the number of queries in comparison
with the work of Wang et al. [53]. Using our improved method, the results of
LAC128 and LAC192 are also better than the current results [31,53]. The details
are shown in Appendix B.

7 Conclusion and Discussions

In this paper, we have developed a unified method to calculate the minimum
number of required queries in launching key mismatch attacks against lattice-
based NIST candidate KEMs. The bound is calculated through constructing
an optimal BRT, which is further used to guide us in improving the practical
attacks. By using BRT method, our improved attack can significantly reduce
the needed number of queries. An interesting problem is whether our proposed
method applies to the similar attacks against other post-quantum cryptosystems
such as HQC, which also advance to the third round of NIST’s PQC standard-
ization progress.

From the analysis of our proposed attacks, we find that the ranges of the
coefficients in the secret key and their corresponding probabilities, as well as
the employment of Encode/Decode functions are the most important factors in
evaluating their key mismatch resilience. More specifically, the larger the range
of the coefficients, the more queries are needed. For example, neither Kyber nor
Saber use the Encode/Decode functions, and their number of unknowns are the
same, the only difference is the range of their coefficients in secret keys. The
range of coefficients in Saber is larger than that of Kyber, which leads to more
queries in recovering Saber’s secret key.

The occurrence probabilities corresponding to the coefficients are another
factor. For example, for LAC192 and LAC256, the only difference between them
is the occurrence probabilities corresponding to the coefficients. More specifically,
in LAC192 the occurrence probability of 0 is greater than that of 0 in LAC256,
and the probability of other coefficients is less than that in LAC256. This results
in larger number of queries needed to recover the secret keys of LAC256 than that
in LAC192. Whether or not the Encode/Decode functions are used also affects
the number of queries needed. NewHope512 and NewHope1024 use D-2 and D-4
functions, respectively, which allows them to recover two and four coefficients at
the same time. This also greatly reduces the number of queries needed to recover
the coefficients. However, we need to emphasize that these factors only increase
complexities of launching the key mismatch attack, but cannot stop the attack.

114 Y. Qin et al.

Acknowledgment. Chi Cheng is the corresponding author. The authors would like to
thank Michael Naehrig, Muyan Shen, and the anonymous reviewers for their kind help.
The research in this paper was partially supported by the National Natural Science
Foundation of China (NSFC) under Grant no. s 62172374, 61672029, and 61732021, and
Guangxi Key Laboratory of Trusted Software (no. KX202038). Y. Pan was supported
by National Key Research and Development Program of China (No. 2018YFA0704705)
and NSFC (No. 62032009). J. D. would like to thank CCB Fintech Co. Ltd for partially
sponsoring the work with grant No. KT2000040.

A Bounds for other candidates

We list our lower bounds for key mismatch attacks against LAC, Round5 and
Three Bears in Table 7. For each scheme, we give the ranges of coefficients, num-
ber of unknowns, and whether the Encode/Decode and Compress/Decompress
are employed or not. We also report the average number of queries in our pro-
posed bounds.

Table 7. Key mismatch attacks against LAC, Round5 and Three Bears

Schemes sA & e Encode Comp Unknowns E(#Queries)
Ranges Decode Decomp Bounds

LAC128 [−1, 1] � / 512 553
LAC192 1024 1106
LAC256 1024 1398

Round5 R5ND 1 [−1, 1] / � 618 722
Round5 R5ND 3 786 1170
Round5 R5ND 5 1018 1446

BabyBear [−1, 1] / � 320 520
MamaBear [−2, 2] 320 680
PapaBear [−3, 3] 320 738

B Improved practical key mismatch attacks

In this section, according to the proposed bounds, we discuss how to launch the
practical key mismatch attacks on NewHope, LAC and Round5.

B.1 Improved key mismatch attacks on NewHope

In a key mismatch attack on NewHope, we build an Oracle O to simulate the
process of NewHope.KEM.Dec(). The inputs of O are (PB , c) and KB . The

A Systematic Approach of Key Mismatch Attacks 115

Oracle honestly executes the decryption to get KA. Then it, compares KA and
KB , if they are equal, it returns 1, otherwise it returns 0.

As far as we know, the best practical key mismatch attack on NewHope1024
given in [52] needs 3197 queries, which is still higher than our theoretical bound
3127. Based on it, we propose a method that can further decrease the number
of queries to 3180. Here we take NewHope1024 as an example to show how to
launch the attack.

Main idea. Our improved attack method is on the basis of Mehlhorn’s Rule
II in Nearly Optimal Binary Search Tree [42], i.e., for every given probability
range, we always select the root in a way that the differences between sums of
weights of its left subtree and right subtree are as small as possible.

In a key mismatch attack, we assume that Alice’s public key PA is always
reused, and the adversary A’s target is to get the secret key sA of Alice. In order
to achieve the target, A needs to set proper parameters.

Recall that NewHope1024 uses D-4 encoding, which means 4 coefficients
sA[i], sA[i+256], sA[i+512], sA[i+768] are operated at a time. We assume that
the adversary A wants to recover the i-th quadruplet, then he needs to properly
select vb, and parameters (PB , c).

In our improved attack, in Step 1 by precomputing the probabilities of all
the quadruplets, along with the outputs of Oracle corresponding to selected
parameters (PB , c̄) and all the quadruplets, A can choose the proper parameters
which relate each quadruplet to a leaf node in a binary tree. Finally, in Step 2
by repeatedly querying the Oracle and getting the corresponding sequence of
returned values, A can decide the quadruplets.

Step1: The pre-computation phase. In this step, the adversary A needs to
compute the probabilities of all the quadruplets, along with the outputs of Oracle
corresponding to selected parameters (PB , c) and all the quadruplets which is
denoted as OA, and constructs a corresponding binary recovery tree.

In the following, we construct the corresponding nearly optimal binary recov-
ery tree T . Here, a nearly optimal binary tree means a binary tree in which the
sum of the probabilities of quadruplets of the left subtree and the right subtree
should be as equal as possible. We require T to be nearly optimal since in this
way we can recursively divide all the possible quadruplets into almost equal two
parts with lower time complexity.

We set the sum of the probabilities of quadruplets of a non-leaf node’s left
subtree and the right subtree as p0 and p1, respectively. The nearly optimal
binary recovery tree T should satisfy the following properties.

1. For each non-leaf node, its corresponding p0 and p1 should be as equal as
possible.

2. For each non-leaf node, if the Oracle returns 0, it corresponds to the left
subtree of the current node, otherwise it corresponds to its right subtree.

116 Y. Qin et al.

First, we traverse the precomputing OA to find one appropriate parameter
P = (PB , c) which satisfies the above two properties. The construction of tree
T starts from the root node with index i = 0. After obtaining the appropriate
parameter P , we insert the root node and P into the 0-th position in T . Then
we recursively build the left subtree and the right subtree for the root node,
respectively. Finally, all the possible quadruplets are stored in the leaf nodes,
and parameters PB and c are stored in the non-leaf nodes.

Step2: The recovery phase. In this step, the adversary A tries to decide the
quadruplet according to the precomputed binary tree T .

Algorithm 6 Determining each quadruplet

Input: T
Output: the quadruplet
1: Set node = T.root
2: while node is not a leaf node do
3: Set P the parameter stored in the

node
4: v = Oracle(P)
5: if v = 0 then

6: node = node.leftnode
7: else
8: node = node.rightnode
9: end if

10: end while
11: Return the quadruplet stored in the

node

We show how the adversary A decides the i-th quadruplet in Algorithm 6.
Specifically, A first starts from the root node of the precomputed binary tree
T , and sets P as the parameters stored in the root node. Then, he accesses the
Oracle, if it returns 0, A accessed the left subtree of the root node, otherwise A
accessed the right subtree of the root node. Next, A repeats the following two
steps until the current node he accesses is a leaf node.

1. A judges whether the current node is a leaf node, and if it is, he directly
returns the value of the quadruplet stored in the node. Otherwise, he sets P
as the parameters stored in the current node, and accesses the Oracle again.

2. If the Oracle returns 0, he sets node = node.leftnode, otherwise node =
node.rightnode.

Parameter Choices: The total number of queries depend on the precomputed
binary tree T . Recall that in Step1, when we construct the binary tree T , we
need to compute the probabilities of all the quadruplets and OA, the latter
is associated with selected parameters (PB , c), thus the selected parameters
determines the number of queries.

Hypothesis 1. The adversary A sets vb = {1, 0, 0, . . . , 0}, PB = gx−i, c =
∑3

j=0 ((lj + 4) mod 8) x256j. Then the goal of A is to choose (PB , c) such that
va = Decode(Decompress(c − PB ◦ sA)) = {b, 0, 0, . . . , 0}, where b ∈ {0, 1}.

A Systematic Approach of Key Mismatch Attacks 117

Table 8. The relationship between g, success probability of Hypothesis 1, and average
number of queries on NewHope1024

g [0, 383] [384, 512] [384, 534] [384, 768] [384, 819]

Success probability (%) 100 99.999 99.999 94.577 85.811
E(#Queries) 3574.953 3179.215 3206.605 3174.853 3174.085

Moreover, while selecting parameters (PB , c), A needs to guarantee that
Hypothesis 1 holds with nearly 100% probability. Otherwise when the output of
Oracle is 0, A does not know whether the mismatch is due to the 0-th position
or other positions.

In order to get the best parameter, we traverse and compute the success rate
of Hypothesis 1 through the whole value interval of g, and show the relationship
among g ∈ [0, 819], the success probability of Hypothesis 1 and the average
number of queries in Table 8 above. Considering the success probability and
the number of queries, we finally decide the optimal interval of parameter g, i.e.
[384, 512]. In Step2, while selecting parameter g ∈ [384, 512], the average number
of queries needed by the adversary to get each quadruplet is 12.41881, and there
are 256 unknown quadruplets in a secret key sA. Therefore, in total we need
3179.21536 queries to completely recover sA.

B.2 Improved key mismatch attacks on LAC

Although there are three versions of LAC with different security levels, the
parameters in the proposed key mismatch attacks are the same. In the attack,
the adversary needs to modify three parameters: eB[0], e′

B[vb−1] and e′
B [2vb−1].

Here, vb = lv = 400, and lv is a parameter set in LAC. And next we will show
how to recover sA[0].

1. We set eB [0] = 124, e′
B [vb − 1] = 1 and e′

B [2vb − 1] = 1 first, then
{S0,S1,S2,S3,S4,S5,S6,S7,S8} can be divided into two parts based on the
returned value of the first Oracle:

– If O → 0: sA[0] belongs to {S3,S4,S5,S6,S7,S8}, next step 2, step 3 and
step 5 will be executed.

– If O → 1: sA[0] belongs to {S0,S1,S2}, then go to step 4 and step 5.
2. If the oracle returns 0 in step 1, then we set eB [0] = 124, e′

B [vb − 1] = 0 and
e′

B [2vb − 1] = 0:
– If O → 0: sA[0] belongs to {S5,S6,S7,S8}, next step 3 will be proceeded.
– If O → 1: sA[0] belongs to {S3,S4}, and next turn to step 5.

3. If the oracle returns 0 in step 2, then we set eB [0] = 63, e′
B [vb − 1] = 63 and

e′
B [2vb − 1] = 63:
– If O → 0: sA[0] belongs to {S7,S8}, next go to step 5.
– If O → 1: sA[0] belongs to {S5,S6}, next go to step 5.

4. If the oracle returns 1 in step 1, then we set eB [0] = 125, e′
B [vb − 1] = 0 and

e′
B [2vb − 1] = 0:

118 Y. Qin et al.

– If O → 0: sA[0] belongs to {S1,S2}, then turn to step 5.
– If O → 1: We can determine sA[0] = S0.

5. Similarly we only need to distinguish the two coefficients in {S7,S8}, {S5,S6},
{S3,S4}, and {S1,S2}. As long as the appropriate parameters are selected,
only one query is needed.

B.3 Improved key mismatch attacks on Round5

Round5 does not use D-2 Encode/Decode functions. Although there are three
different versions of Round5 R5ND with different security levels, their attack
process is the same, except that the parameters PB = h (h = h1 or h2) chosen by
the adversary are different. Specifically, the adversary selects h1/h2 as 44/−44,
120/−120 and 144/113, and the process of recovering sA[0] is shown as follows.

1. We set h = h1 first, then {S0,S1,S2} can be divided into two parts based on
the returned value of the first Oracle:

– If O → 0: We can determine sA[0] = S2.
– If O → 1: sA[0] belongs to {S0,S1}.

2. When h = h1, if the oracle returns 0 then we go on setting h = h2:
– If O → 0: sA[0] = S0.
– If O → 1: sA[0] = S1.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

2. Alagic, G., et al.: Status Report on the First Round of the NIST Post-Quantum
Cryptography Standardization Process. US Department of Commerce, National
Institute of Standards and Technology (2019). https://nvlpubs.nist.gov/nistpubs/
ir/2019/NIST.IR.8240.pdf

3. Alkim, E., et al.: NewHope: algorithm specification and supporting documentation
- version 1.03 (2019). https://newhopecrypto.org/data/NewHope 2019 07 10.pdf

4. Alkim, E., et al.: Frodokem learning with errors key encapsulation: algorithm spec-
ification and supporting documentation. Submission to the NIST post-quantum
project (2019). https://frodokem.org/files/FrodoKEM-specification-20190702.pdf

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without recon-
ciliation. IACR Cryptology ePrint Archive (2016). https://www.cryptojedi.org/
papers/newhopesimple-20161217.pdf

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-
a new hope. In: 25th USENIX Security Symposium (USENIX Security 16), pp.
327–343 (2016)

7. Avanzi, R., et al.: CRYSTALS-Kyber: algorithm specification and supporting doc-
umentation (version 2.0). Submission to the NIST post-quantum project (2019).
https://pq-crystals.org/kyber

8. Baan, H., et al.: Round5: merge of round2 and HILA5 algorithm specification and
supporting documentation. Submission to the NIST post-quantum project (2019).
https://round5.org/Supporting Documentation/Round5 Submission.pdf

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://newhopecrypto.org/data/NewHope_2019_07_10.pdf
https://frodokem.org/files/FrodoKEM-specification-20190702.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf
https://www.cryptojedi.org/papers/newhopesimple-20161217.pdf
https://pq-crystals.org/kyber
https://round5.org/Supporting_Documentation/Round5_Submission.pdf

A Systematic Approach of Key Mismatch Attacks 119

9. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-
use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17656-3 26

10. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 14

11. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

12. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

13. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
round 2. Submission to the NIST post-quantum project (2019). https://ntruprime.
cr.yp.to/nist/ntruprime-20190330.pdf

14. Bindel, N., Stebila, D., Veitch, S.: Improved attacks against key reuse in learning
with errors key exchange. IACR Cryptology EPrint Archive (2020). https://eprint.
iacr.org/2020/1288.pdf

15. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

16. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–
367. IEEE (2018). https://eprint.iacr.org/2017/634

17. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 553–570. IEEE (2015)

18. Chen, C., et al.: NTRU algorithm specifications and supporting documentation.
Submission to the NIST post-quantum project (2019)

19. Chen, L., et al.: Report on post-quantum cryptography. US Department of Com-
merce, National Institute of Standards and Technology (2016)

20. Cover, T.M.: Elements of Information Theory. Wiley, Hoboken (1999)
21. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption

schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

22. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER: Mod-LWR
based KEM algorithm specification and supporting documentation. Submission
to the NIST post-quantum project (2019). https://www.esat.kuleuven.be/cosic/
publications/article-3055.pdf

23. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum schemes. In: Proceedings of ACM Workshop
on Theory of Implementation Security Workshop, pp. 2–9 (2019)

24. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

25. Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal func-
tion with reused keys in RLWE key exchange. In: 2017 IEEE International Con-
ference on Communications (ICC), pp. 1–6. IEEE (2017)

https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://eprint.iacr.org/2020/1288.pdf
https://eprint.iacr.org/2020/1288.pdf
https://doi.org/10.1007/BFb0055716
https://eprint.iacr.org/2017/634
https://www.esat.kuleuven.be/cosic/publications/article-3055.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3055.pdf

120 Y. Qin et al.

26. Ding, J., Branco, P., Schmitt, K.: Key exchange and authenticated key exchange
with reusable keys based on RLWE assumption. IACR Cryptology EPrint Archive
(2020). https://eprint.iacr.org/2019/665.pdf

27. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused
keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3 27

28. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR Cryptology EPrint Archive (2012).
https://eprint.iacr.org/2012/688.pdf

29. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

30. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-
channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop, vol.
7, pp. 115–136 (2011)

31. Greuet, A., Montoya, S., Renault, G.: Attack on lac key exchange in misuse situ-
ation. IACR Cryptology EPrint Archive (2020). https://eprint.iacr.org/2020/063

32. Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Comput. Sci.
Rev. 31, 51–71 (2019)

33. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-
0 2

34. Hamburg, M.: Post-quantum cryptography proposal: threebears. Submission to the
NIST post-quantum project (2019). https://www.shiftleft.org/papers/threebears/
threebears-spec.pdf

35. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

36. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. IRE 40(9), 1098–1101 (1952)

37. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on NIST round 2
PQC. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 208–227. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57808-4 11

38. Knuth, D.E.: The Art of Computer Programming, vol. 3. Pearson Education, Lon-
don (1997)

39. Liu, C., Zheng, Z., Zou, G.: Key reuse attack on NewHope key exchange protocol.
In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 163–176. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12146-4 11

40. Lu, X., et al.: LAC: lattice-based cryptosystems algorithm specification and sup-
porting documentation. Submission to the NIST post-quantum project (2019).
https://eprint.iacr.org/2018/1009.pdf

41. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

42. Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295
(1975)

43. Menezes, A., Ustaoglu, B.: On reusing ephemeral keys in Diffie-Hellman key agree-
ment protocols. Int. J. Appl. Cryptogr. 2(2), 154–158 (2010)

https://eprint.iacr.org/2019/665.pdf
https://doi.org/10.1007/978-3-319-93638-3_27
https://doi.org/10.1007/978-3-319-93638-3_27
https://eprint.iacr.org/2012/688.pdf
https://doi.org/10.1007/3-540-48405-1_34
https://eprint.iacr.org/2020/063
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-540-47942-0_2
https://www.shiftleft.org/papers/threebears/threebears-spec.pdf
https://www.shiftleft.org/papers/threebears/threebears-spec.pdf
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-030-57808-4_11
https://doi.org/10.1007/978-3-030-57808-4_11
https://doi.org/10.1007/978-3-030-12146-4_11
https://eprint.iacr.org/2018/1009.pdf
https://doi.org/10.1007/978-3-642-13190-5_1

A Systematic Approach of Key Mismatch Attacks 121

44. Moody, D.: Post quantum cryptography standardization: announcement and
outline of NIST’s call for submissions. In: PQCrypto 2016, Fukuoka, Japan
(2016). https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-
NIST-s-Call-for-Submis

45. Moody, D., et al.: Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process. US Department of Commerce, National
Institute of Standards and Technology (2020). https://nvlpubs.nist.gov/nistpubs/
ir/2020/NIST.IR.8309.pdf

46. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on NewHope
with fewer queries. IACR Cryptol. ePrint Arch. 2020, 585 (2020)

47. Peikert, C.: Lattice cryptography for the internet. In: International Workshop on
Post-Quantum Cryptography, pp. 197–219 (2014)

48. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack
on NIST candidate newhope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29962-0 24

49. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST second
round candidate kyber. IACR Cryptology EPrint Archive (2019). https://eprint.
iacr.org/2019/1343

50. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw.
Embedd. Syst., 307–335 (2020)

51. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

52. Vacek, J., Václavek, J.: Key mismatch attack on newhope revisited. Technical
report, Cryptology ePrint Archive, Report 2020/1389 (2020)

53. Wang, K., Zhang, Z., Jiang, H.: Key recovery under plaintext checking attack on
LAC. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds.) ProvSec 2020. LNCS,
vol. 12505, pp. 381–401. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-62576-4 19

54. Xagawa, K., Ito, A., Ueno, R., Takahashi, J., Homma, N.: Fault-injection attacks
against NIST’s post-quantum cryptography round 3 KEM candidates. IACR Cryp-
tology EPrint Archive (2021). https://ia.cr/2021/840

55. Zhang, X., Cheng, C., Ding, R.: Small leaks sink a great ship: an evaluation of
key reuse resilience of PQC third round finalist NTRU-HRSS. ICICS2021 (2021,
accepted). https://ia.cr/2021/168

https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-NIST-s-Call-for-Submis
https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-NIST-s-Call-for-Submis
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://doi.org/10.1007/978-3-030-29962-0_24
https://doi.org/10.1007/978-3-030-29962-0_24
https://eprint.iacr.org/2019/1343
https://eprint.iacr.org/2019/1343
https://doi.org/10.1007/978-3-030-62576-4_19
https://doi.org/10.1007/978-3-030-62576-4_19
https://ia.cr/2021/840
https://ia.cr/2021/168

Post-Quantum Cryptography

Gladius: LWR Based Efficient Hybrid
Public Key Encryption with Distributed

Decryption

Kelong Cong1(B) , Daniele Cozzo1(B) , Varun Maram2(B) ,
and Nigel P. Smart1,3(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
kelong.cong@esat.kuleuven.be, {daniele.cozzo,nigel.smart}@kuleuven.be

2 ETH Zurich, Zurich, Switzerland
vmaram@inf.ethz.ch

3 University of Bristol, Bristol, UK

Abstract. Standard hybrid encryption schemes based on the KEM-
DEM framework are hard to implement efficiently in a distributed man-
ner whilst maintaining the CCA security property of the scheme. This
is because the DEM needs to be decrypted under the key encapsu-
lated by the KEM, before the whole ciphertext is declared valid. In this
paper we present a new variant of the KEM-DEM framework, closely
related to Tag-KEMs, which sidesteps this issue. We then present a post-
quantum KEM for this framework based on Learning-with-Rounding,
which is designed specifically to have fast distributed decryption. Our
combined construction of a hybrid encryption scheme with Learning-
with-Rounding based KEM, called Gladius, is closely related to the NIST
Round 3 candidate called Saber. Finally, we give a prototype distributed
implementation that achieves a decapsulation time of 4.99 s for three
parties.

1 Introduction

The potential development of quantum computers means that we need to rethink
which algorithms are going to be used for public key encryption and signatures;
resulting in the subarea called post-quantum cryptography. The early days of
post-quantum cryptography looked at how to build basic primitives such as sim-
ple public key encryption or signatures. However, now we realise that our existing
(pre-quantum) public key algorithms often offer more than what is offered by
basic public key primitives. For example one may have group signatures, identity-
based encryption, or proofs-of-knowledge of the secret key, etc. In this work, we
look at distributed decryption for IND-CCA hybrid public key encryption.

Even in the context of pre-quantum cryptography, distributed decryption for
hybrid systems is problematic for many schemes, as to maintain security one
would need to apply a distributed decryption procedure to the symmetric com-
ponent, which is rather expensive. This problem, of the difficulty of constructing
threshold IND-CCA encryption/encapsulation schemes Πp, was first pointed out
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 125–155, 2021.
https://doi.org/10.1007/978-3-030-92068-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_5&domain=pdf
http://orcid.org/0000-0002-2636-4406
http://orcid.org/0000-0001-5289-3769
http://orcid.org/0000-0002-1607-9062
http://orcid.org/0000-0003-3567-3304
https://doi.org/10.1007/978-3-030-92068-5_5

126 K. Cong et al.

in [37] and then elaborated upon in [48,49]. The problem being that Πp would
seem to require a publicly checkable CCA test. For historical (i.e. impractical)
CCA secure public key encryption schemes such as Naor-Yung [41] and Dolev-
Dwork-Naor [25] the check is simply the verification of a zero-knowledge proof,
and is thus publicly verifiable.

However, for almost all practical encryption schemes the check is non-public
and thus requires often expensive machinery to deploy in a threshold manner.
In [48,49] Shoup and Gennaro present two schemes (called TDH1 and TDH2)
which are IND-CCA and are based on the discrete logarithm problem, for which
an efficient threshold decryption algorithm is possible. Both schemes bear a
strong resemblance to Cramer-Shoup encryption [17]. These two constructions
are however non-hybrid encryption mechanisms, but can be turned into hybrid
threshold schemes using the Tag-KEM framework [1].

Our first contribution is to provide two transforms (one secure in the ROM
and one secure in the QROM) which supports distributed decryption for hybrid
encryption schemes. Our transform is closely related to the previous REACT
[43] transform, the Tag-KEM framework [1], or the second hybrid-variant of the
Fujisaki-Okamoto transform [27]. The key take away from our (general) hybrid
construction is that the DEM component can be a generic one-time IND-CPA
encryption scheme, and the KEM component can be either a rigid1 deterministic
OW-CPA secure public key encryption scheme or (with a minor modification) a
rigid OW-PCA-secure2 probabilistic scheme. In the case of public-key encryption
schemes which are not perfectly correct, i.e. they exhibit decryption errors, we
require an additional hardness assumption.

As our second contribution, to utilize our hybrid construction in the post-
quantum setting we build a rigid deterministic encryption scheme which has a
relatively efficient distributed decryption procedure based on the standard (or
module) Learning-with-Rounding (LWR) problem. Our scheme is competitive
(in terms of execution time and parameters) with Saber, the Learning-with-
Rounding based submission in the third round of the NIST competition. Indeed
the module-LWR version of our scheme has almost exactly the same parameters
as Saber3, meaning that any run-times for Saber in hybrid encryption mode will
be similar to the run-times for our scheme.

Due to the similarity with Saber we name our constructions of a hybrid
encryption scheme, which has an efficient distributed decryption operation, based
on Learning-with-Rounding, after the Roman sword Gladius; which came in
four basic forms: A large one called Gladius–Hispaniensis, a smaller ‘standard’
one called Gladius–Pompeii, and two related ones called Gladius–Mainz and

1 A scheme is defined to be rigid if decryption of a ‘ciphertext’, which is not the output
of an encryption operation, always returns ⊥.

2 A scheme is said to be PCA (plain-check attack) secure if it is secure in the presence
of an oracle which allows the adversary to check whether a given ciphertext encrypts
a given plaintext.

3 Although there is an issue of having comparable security for these parameters, due
to our reliance on LWE in the key generation phase, see Table 1 for more details.

Gladius 127

Gladius–Fulham. In addition, we give in the full version a pre-quantum hybrid
scheme based on ElGamal encryption and the gap-Diffie–Hellman assumption,
along with a methodology to perform a distributed hybrid decryption.

Of the three lattice based finalists in Round 3 of the NIST competition two
of them, Crystals-Kyber [47], and Saber [22], all construct a hybrid encryption
scheme by first building an IND-CPA encryption scheme, and then creating an
IND-CCA hybrid scheme using the Fujisaki-Okamoto transform [26]. The prob-
lem with the Fujisaki-Okamoto design pattern is that the decryption procedure
needs to perform a hash to obtain the random coins used for encryption. In the
threshold setting this is a problem as one needs to hash both the DEM key k
and the DEM value itself (or the message) in the Fujisaki-Okamoto transform
to perform the re-encryption; and this must be done before one reveals k and m
to the decrypting parties. The hash function used for re-encryption also needs
to produce the random values used in encryption, which can be a complicated
process to perform in a threshold manner for the lattice based schemes; espe-
cially if this involves sampling discrete Gaussians or other distributions which
are not ‘native’ to whichever underlying methodology one is using to perform
the threshold decryption.

The other remaining lattice based finalist in Round 3, NTRU [54], also builds
a traditional KEM, with the difference that the KEM does not require re-
encryption. However, NTRU builds a traditional KEM, which requires the DEM
to be implemented in a threshold manner so as to maintain the CCA security.
Thus threshold variants of all the remaining Round 3 lattice based schemes will
be problematic if one wishes to maintain CCA security of the threshold variant.

Of the Round-2 lattice-based systems which did not progress to be final-
ists in Round-3, FrodoKEM [40], Round 5 [28], LAC [38], NewHope [45], and
ThreeBears [30], also follow the Fujisaki-Okamoto pattern, bar NTRUprime [10].
NTRUprime differs from the previous ones in that it is based on a rigid deter-
ministic base encryption scheme which is then turned into a KEM using [24,
Section 6]. However, the underlying rigid deterministic encryption scheme still
requires re-encryption to be secure, and as we remarked above this causes prob-
lems for thresholdizing the scheme.

1.1 Prior Work and Our Contribution

Threshold Decryption: As stated at the beginning our main goal is to provide
an efficient threshold decryption procedure for a post-quantum hybrid encryp-
tion algorithm. We do this by providing an algorithm which is efficient, within
a generic MPC framework, to perform distributed decryption. Thus, on the
assumption the algorithm we implement is correct, the security of said algo-
rithm follows from the security of the base MPC framework.

In [8] a non-hybrid lattice based encryption scheme is given. But the secu-
rity of the underlying encryption scheme is only IND-CPA (although an actively
secure distributed decryption protocol for the IND-CPA scheme is given). In
[13] a generic procedure for obtaining an abitrary threshold variant of any

128 K. Cong et al.

functionality, however the construction makes use of Fully Homomorphic
Encryption and is not practical.

In an earlier work [35] on distributing the decryption for a Round-1 NIST
candidate which was based on Ring-LWE, namely LIMA, a distributed decryp-
tion operation was given for a basic (non-hybrid) encryption scheme. An outline
for the hybrid scheme was given, but the instantiation would not preserve the
CCA security guarantees of the hybrid construction, i.e. the method presented
was not secure.

From a performance perspective the problem with the distributed decryption
of LIMA was that it is a scheme based on the Fujisaki-Okamoto transform. As
mentioned above the secure evaluation of the hash function and re-encryption
operation is costly in the distributed setting. But this is not the only problem
with [35], the decryption procedure itself is rather complicated in that it requires
rounding of integers, for example. In [35] these two technical complexities meant
the protocol (to be fast) was only a 3-party protocol with one dishonest party.
The distributed decryption of a single non-hybrid LIMA encryption would take
4.2 s, with a similar time for the insecure hybrid KEM distributed decapsulation.

Traditionally, in the non-hybrid encryption setting, threshold decryption is
preferred using the least amount of interaction, for example see [36,48,49]. Our
threshold decryption procedure for our post-quantum hybrid scheme utilizes
explicitly generic MPC techniques; thus it definitely does not minimize the level
of interaction between the parties needed. An open problem would be to develop
a methodology, or scheme, which can utilize the minimal amount of communi-
cation possible.

We note that there has been some work on threshold post-quantum signature
schemes, e.g. [15,16,23], but the techniques and issues are rather different from
those employed and discussed here.

Hybrid Encryption: Hybrid encryption is the standard method to encrypt large
message via a public key scheme. The actual message is encrypted via a stan-
dard block cipher in a secure AEAD mode, such as AES-GCM. Then the one-
time symmetric key for this symmetric encryption scheme is transferred to the
recipient using a public key methodology. The traditional method of combining
the public key encryption scheme Πp = (Kp, Ep,Dp), with message space Mp,
and symmetric key encryption scheme Πs = (Ks, Es,Ds) into a hybrid scheme
Πh = (Kh, Eh,Dh) is called KEM-DEM [18]. Where K�, E� and D� are the vari-
ous schemes key-generation, encryption and decryption algorithms respectively.

The KEM-DEM method of [18] requires Πs to be a (one-time) IND-CCA
symmetric cipher4 and an IND-CCA KEM scheme Πp (a KEM is a public key
scheme designed to encrypt only symmetric keys). The scheme Πp encrypts the
key k for Πs, and then Πs is used to encrypt the message using the key k. In
particular the encryption algorithm, outputting (c1, c2) for Eh is along the lines
of

k ← Mp, k ← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m).

4 One time meaning that the attacker does not get access to an encryption oracle.

Gladius 129

However, there is a problem with this construction when one looks for a dis-
tributed variant of the decryption algorithm. Even if the decryption algorithm
of the KEM Πp has an efficient distributed decryption operation one cannot
derive an efficient distributed hybrid cipher as the decryption of the scheme
Πs needs to be executed also in a distributed manner. Executing Πs in a dis-
tributed manner for standard symmetric encryption scheme is possible, but very
inefficient for long messages.

One obvious way to get around this problem is for the distributed decryption
operation for the hybrid cipher Πh to output k in the clear after the Πp part has
been executed, enabling the decryption using Πs to be done in the clear. We call
such a hybrid scheme ‘leaky’, as the decryption algorithm leaks the underlying
symmetric key even if the symmetric component does not decrypt correctly.
This intuitively seems attractive, however it breaks the IND-CCA security of
the hybrid scheme Πh via a trivial attack.

The most popular generic transform to turn a public key encryption scheme
into a hybrid scheme in the KEM-DEM paradigm is the Fujisaki-Okamoto trans-
form [26,27]. This comes in two forms, either (from [26])

k ← Mp, k ← H(k), c1 ← Ep(pk, k;G(k,m)), c2 ← Es(k,m),

or (from [27])

k ← Mp, k ← H(k), c2 ← Es(k,m), c1 ← Ep(pk, k;G(k, c2)),

where G is a hash function which produces the random coins needed by the
encryption algorithm Ep. The authors of [26,27] show that this hybrid scheme,
assuming some (mild) technical conditions on the encryption algorithm, is IND-
CCA if Πp is OW-CPA and Πs is IND-CPA. Note, for the first variant one needs
to decyrpt c2 before one can verify the c1 component, as the decryption operation
Dp requires re-encryption to perform the necessary CCA checks. Because of this,
the first Fujisaki-Okamoto hybrid construction can never be securely “leaky”.

The second Fujisaki-Okamoto variant has been proved secure in the quantum
random-oracle model in [53], where the scheme Πp is assumed to be ‘well-spread’,
perfectly correct and OW-CPA secure. This second Fujisaki-Okamoto variant
can be considered as a variant of the Tag-KEM framework of [1]. The Tag-KEM
framework gives another hybrid construction, which works (roughly speaking in
the simplest instance) in the following manner

k ← Ks, c2 ← Es(k,m), c1 ← Ep(pk, k‖G(c2))

where G is a hash function. This hybrid construction is secure if Πp is IND-CCA
secure and Πs is one-time IND-CPA secure.

Note in [31] a QROM proof of the non-hybrid encryption version of the
Fujisaki-Okamoto transform is given, that this is for the public key scheme given
by c ← Ep(pk,m;G(m)). However, unlike in [53], the encryption scheme is not
assumed to be perfectly correct.

130 K. Cong et al.

One of the applications of the Tag-KEM framework mentioned in [1] is that
of threshold hybrid public key encryption. Their argument is as follows. Since the
one-time-pad is one-time IND-CPA secure, outputting m already leaks k. Thus
revealing the value k before applying the decryption of c2 cannot break security,
as that would contradict their main theorem. Thus one can apply threshold
decryption to obtain the decryption of c1, leak the key k and then decrypt c2 in
the clear as long as Πs is the one-time-pad encryption scheme. Unfortunately,
the authors of [1] require an IND-CCA secure Πp.

The authors of [1] provide other constructions requiring weaker properties of
Πp, but each one adds its own complications. Indeed if one thinks of the hash
function G, in our construction below, applied to c1, c2 and k as a MAC function
applied to c1 and c2 with key k, then their ‘weak KEM+MAC’ construction is
identical to ours.

In [7] a construction of CCA secure Tag-based encryption which has threshold
decryption is discussed. Their generic methodology uses one-time signatures and
a concrete instantiation is given based on the decisional bilinear Diffie–Hellman
assumption in pairing groups. Another construction of a threshold tag-KEM in
the Random Oracle model based on the RSA problem is given in [32].

The solution we propose is to utilize the following modification to the Cramer-
Shoup basic construction. Our main construction, which we call Hybrid1, outputs
a ciphertext of the form (c1, c2, c3) where, for a hash function G modelled as a
random oracle,

k ← Mp, k ← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c1, c2, k).

The distributed decryption algorithm checks the c3 component and then ‘leaks’
the key k in the clear, enabling k to be produced and hence m decrypted from
the c2 component. We show that this scheme is IND-CCA secure, even with
this form of leaky decryption, if the scheme Πp is rigid, deterministic and OW-
CPA, or rigid, randomized and OW-PCA secure, and the scheme Πs is one-time
IND-CPA secure. If the scheme Πp is not perfectly correct then we require the
additional hardness assumption that it is hard for the adversary to construct a
message/ciphertext pair (m, c) such that c = Ep(pk,m), but Dp(sk, c) =⊥. We
also require in this case that the probability of the encryption scheme having
collisions, i.e. two messages which encrypt to the same ciphertext, is negligible
when this probability is computed over the space of all possible public/private
key pairs.

When Πp is randomized and OW-PCA, one needs to include c1 into the
hash function G so as to avoid attacks related to re-randomization of the output
of Ep. In this latter case, of randomized OW-PCA encryption scheme Πp, our
construction looks most closely related to the REACT transform, from [43],
which encrypts via

k ← Mp, k ← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(k,m, c1, c2).

Gladius 131

The authors of [43] show that REACT is secure assuming Πp OW-PCA secure
and the scheme Πs is IND-CPA secure. The REACT transform has a similar
problem with the standard KEM-DEM construction above in that it requires c2
to be decrypted before the check is applied, i.e. m is needed as an input to G.

In the case when Πp is rigid and deterministic one can drop the component
c1 from the input to G. So our hybrid construction simplifies to

k ← Mp, k ← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c2, k).

In this case one can think of our construction as precisely the second Fujisaki-
Okamoto construction utilizing the OW-CPA, ‘well-spread’ public key encryp-
tion scheme with encryption algorithm given by

E ′
p(pk, k; r) = (Ep(pk, k), r).

Thus our construction in this case would be automatically secure in the QROM
if one considers only normal decryption oracle queries (i.e. ones which do not
leak the key k); assuming that the techniques used in [31] for dealing with non-
perfectly correct schemes could be extended to the proof in [53].

However, this hybrid construction seems hard to prove QROM secure when
one requires threshold decryption, unless one picks the DEM operation to be a
one-time pad encryption scheme. To obtain a full QROM secure efficient hybrid
construction with distributed decryption we present a second hybrid construction
which adds a ciphertext component, by hashing k with a second hash function H ′

which has domain and codomain equal to Mp, as well as hashing k via another
hash function H ′′, before passing the result into G; namely we compute

k ← Mp, k ← H(k), μ ← H ′(k),
c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c2, μ), c4 ← H ′′(k).

This construction, which we call Hybrid2, is proved secure, in the QROM, using
the techniques of [51].

Most of our technical difficulties arise from the fact we want both efficient
distributed decryption and an efficient DEM operation. If we take an AES-based
DEM then the output of the hash function H will be a bit vector in {0, 1}|k|.
But the input k will be ‘native’ to the underlying public key scheme, and thus
in general an element of a set such as F

n
p , for some modulus p. This means H

needs to map from one arithmetic domain to another. It is to avoid needing to
do this in a secure way during distributed decryption that we ‘leak’ the key k
and not the key k. This problem does not occur with the hash function G as we
are free to select the hash function so that it can be evaluated securely. In our
QROM construction using the c4 component we need to evaluate H ′ and H ′′

securely before releasing k, but this can be done as efficiently as evaluating G,
by selecting the hash functions H ′ and H ′′ in an appropriate way.

Learning-with-Rounding: After detailing our main hybrid constructions we go
on to discuss how one can instantiate a suitable KEM in the post-quantum set-
ting. For this we utilize the Learning-With-Rounding (LWR) based deterministic

132 K. Cong et al.

encryption algorithm first presented in [52], and then refined in [4]. This is itself
inspired by the trapdoor LWE key generation procedure introduced by Miccian-
cio and Peikert [39]. We present an explicit construction, including suggested
parameters sizes, and compare the resulting scheme with current NIST PQ-
candidates such as Saber [22]. Our basic construction utilizes the fact that LWR
encryption is deterministic in nature.

To prove our main hybrid constructions secure we need to assume, for our
most efficient construction, a new hard problem, which we dub the Large-Vector-
Problem (LVP) problem. Informally, this problem says that for a given LWE key
(A,A · R1 + R2) with A ∈ Z

n×n
q uniformly randomly chosen and R1, R2 ∈ Z

n×n
q

but with ‘small’ entries, it is hard to find a small vector m such that R1 · m is
‘relatively big’. This is needed to establish our scheme satisfies a property that
we call ⊥-Aware. The ⊥-Aware property captures the difficulty of an adversary A,
given the public key pk, to come up with a plaintext/ciphertext pair (m, c) such
that c = E(pk,m) but D(sk, c) =⊥; i.e. a ciphertext which is a valid encryption,
but which does not decrypt correctly.

The Gladius Family of Hybrid Ciphers: Combining our LWR-based rigid deter-
ministic OW-PCA encryption scheme with our hybrid constructions we obtain a
post-quantum secure hybrid cipher, which supports efficient distributed decryp-
tion. We can actually derive many variants depending on the choice of Hybrid1
or Hybrid2, the choice of the DEM, and the choice of using plain LWR or
Module-LWR. We focus on four specific variants of this construction; Gladius–
Hispaniensis (based on Hybrid1 and plain LWR), Gladius–Pompeii and Gladius–
Mainz (based on Hybrid1 and Module-LWR), and Gladius–Fulham (based on
Hybrid2 and Module-LWR).

Gladius–Hispaniensis, Gladius–Pompeii and Gladius–Fulham all assume any
one-time IND-CPA secure DEM. For Gladius–Hispaniensis and Gladius–Pompeii
we obtain (expected) security in the QROM when the scheme is considered as a
standard hybrid encryption scheme, and security in the ROM when we consider
the scheme in the threshold setting (due to the additional leakage required). The
expected QROM security, which we denote by QROM�, comes from the fact that
Zhandry’s proof [53], for the second Fujisaki–Okamoto transform, only applies
to perfectly correct schemes. We also present a third variant Gladius–Mainz (see
the full version) which provides QROM� security in the threshold setting, but
this requires the DEM to be a one-time-pad (OTP), and requires a more expen-
sive distributed decryption algorithm. Our fourth variant, Gladius–Fulham, uti-
lizes the second hybrid transform mentioned above, but can achieve full QROM
security (including for non-perfectly correct schemes Πp) even when one allows
the leakage from the decryption oracle required in a distributed decryption
operation.

In summary the properties of our four schemes are given by the following
table, where �� in the QROM column refers to the above QROM� caveat. We
also note in the table how many secure hash function operations need to be
executed by the distributed decryption algorithm.

Gladius 133

Standard Threshold Threshold No.

Hard QROM QROM ROM Secure

Problem Hybrid DEM Secure Secure Secure Hashes

Gladius–Hispaniensis LWR 1 Generic �� � � 1

Gladius–Pompeii Module-LWR 1 Generic �� � � 1

Gladius–Mainz Module-LWR 1 OTP �� �� � 1

Gladius–Fulham Module-LWR 2 Generic � � � 3

Open Questions: Our work leads to a number of new interesting areas of research.
On a theoretical level we leave open the problem of establishing ⊥ −Aware
security for our Gladius construction when q is a power of two (since we focus
on q prime for threshold reasons) and also on a theoretical level to prove our
conjecture related to the hardness of the LVP problem. On a practical level one
could examine other ways of using our Hybrid construction to build efficient
threshold post-quantum encryption schemes, or remove the need to use generic
MPC; which comes about mainly due to the need to execute a hash function for
key derivation and to perform the necessary rounding operations.

2 Preliminaries

Learning-with-Errors and Learning-with-Rounding: We let σ denote a standard
deviation, and we let Dσ denote a distribution which ‘looks like’ a discrete Gaus-
sian distribution with standard deviation σ. In practice this can be generated
by the NewHope methodology [3], namely if we have σ =

√
(B + 1)/2 then we

sample from Dσ by generating 2 ·B +2 random bits (bi, b
′
i) for i = 0, . . . , B, and

then generating a sample by computing
∑B

i=0(bi − b′
i).

Given a secret vector s ∈ Z
d
q (for some integer q), then a Learning-with-Errors

(LWE) sample is a pair (A,A · s + e) where A ∈ Z
m×d
q is chosen uniformly at

random and e ← Dσ. The decision LWE problem is to distinguish LWE samples
from uniformly random samples (A,u), for u ← Z

m
q , we denote this problem by

LWEq,(m,d),σ. The search LWE problem is to recover the secret vector s from a
set of LWE samples. For suitable choices of the parameters both these problems
are known to be equivalent and assumed to be hard. Suitable parameters to
ensure hardness given known attack algorithms can be found using Albrecht’s
LWE-estimator tool5.

For integers p and q we define the following map

�x�p :
{
Q −→ Zp

x 	−→
x · p/q� (mod p)

where �·� is the round to nearest integer function, with rounding towards zero
in the case of values of the form i/2 for i an odd integer. If the input value
x ∈ (−q/2, . . . , q/2] ⊂ Z then the final reduction modulo p is only required

5 https://bitbucket.org/malb/lwe-estimator/src/master/.

https://bitbucket.org/malb/lwe-estimator/src/master/

134 K. Cong et al.

(if p does not divide q) when the rounding ends up being outside the interval
(−p/2, . . . , p/2], which happens with probability about 1/p, resulting in needing
a single addition of p to accomplish the reduction modulo p.

Given a secret vector s ∈ Z
d
q , then a Learning-with-Rounding (LWR) sample

is a pair (A, �A · s�p) where A ∈ Z
m×d
q is chosen uniformly at random. The

decision LWR problem is to distinguish LWR samples from uniformly random
samples (A, �u�p), for u ← Z

d
q , we denote this problem by LWRq,p,(m,d). The

search problem is similarly defined as the problem of recovering s from a number
of LWR samples.

Relation Between (Module-) LWE and (Module-) LWR: In the full version we
extend these notions to the case of Learning-with-Rounding over modules.

The search (Module-) LWE and (Module-) LWR problems are linked theo-
retically by the following theorem [12, Theorem 1 and 2]6.

Theorem 2.1. Let p, q, n, d,m and B be integers such that q > 2 · p · B. For
every algorithm Learn there is an algorithm Learn′ such that

Pr
A,s,e

[Learn′(A,A · s + e) = s] ≥ Pr
A,s,e

[Learn(A, �A · s + e�p) = s]

≥ PrA,s[Learn(A, �A · s�p) = s]2

(1 + 2 · p · B/q)n·m·d

where A ← Rm×d
q , the noise e is independent over all m coordinates, B-bounded

and balanced in each coordinate, and s = (si) ∈ Rd
q is chosen from any distribu-

tion such that si ∈ R∗
q for some i.

Note, the first inequality is not from [12] but it is immediate. To apply this
result, we would take B = c · σ, for some suitable constant c.

The fact that the square of the LWR advantage is bounded by the LWE
advantage implies that one will need larger parameters to bound the LWR
advantage by a given value, than to bound the LWE advantage by the same
value. Thus using this theoretical reduction will result in very large parame-
ters indeed. To avoid the problem with the above reduction submissions to the
NIST Post-Quantum cryptography competition based on LWR, such as Saber
[21,22], estimate their parameters by using the best attack scenario. In other
words the security is estimated using Albrecht’s LWE-estimator directly, or by
assuming the above theorem is an exact inequality between the various one-way
advantages.

This approach is examined in detail in [2], where to utilize Albrecht’s tool
the authors need to translate the LWR parameters into LWE parameters. In [2]
this is done by setting the LWE standard deviation to be

σ =

√
(q/p)2 − 1

12
.

6 The result in [12] is only given for normal and Ring LWE/LWR, but extending the
result to the module variants is immediate.

Gladius 135

Asymmetric and Symmetric Encryption: An asymmetric encryption scheme is a
triple of algorithms Π = (K, E ,D), all of which are probabilistic polynomial time
(PPT) algorithms. We let M denote the plaintext space of Π, C the ciphertext
space and R the space of random coins of Π. The key generation algorithm K
takes as input 1t, where t is a security parameter and outputs a public/private
key pair (pk, sk). A symmetric encryption scheme is one in which pk = sk. The
standard security definitions are given in the full version.

The algorithm E(pk,m; r) takes a message m ← M, a public key pk and
random coins r ← R and returns a ciphertext c. The decryption algorithm
D(sk, c) recovers the message m or returns the special symbol ⊥. For correctness
we require

Pr
[

D(sk, c) = m : (pk, sk) ← K(1t), m ← M, r ← R, c ← E(pk,m; r)
]

= 1 − δ,

where δ is an exponentially small probability of decryption failure. If δ = 0 we say
the scheme is perfectly correct. A public key scheme will be called deterministic
if R contains only the empty string (or equivalently one element), otherwise it
will be called randomized.

A scheme which is not perfectly correct can exhibit two forms of decryption
failures; either two messages could map under encryption to the same ciphertext
or a valid ciphertext could decrypt to ⊥. For the first case we say an encryption
scheme is δc-Collision Free if

Pr
(sk,pk)←K(1t)

[
∃ m1,m2 ∈ M, ∃ r1, r2 ∈ R :

m1 �= m2, E(pk,m1; r1) = E(pk,m2; r2)
]

= δc.

A perfectly correct encryption scheme is 0-Collision Free.
For the second case of decryption failure we consider the following game,

which we call ⊥-Aware. The adversary A is given the public key pk and is required
to come up with a plaintext/ciphertext pair (m, c) such that c = E(pk,m) but
D(sk, c) =⊥. We define

Adv⊥−Aware
Π,A (t) = Pr

[
(pk, sk) ← K(1t), (m, c) ← A(pk) :

c = E(pk,m), D(sk, c) =⊥
]

and say that Π is ⊥-Aware if Adv⊥−Aware
Π,A (t) is a negligible function of t for all

PPT A. Note, if Π is perfectly correct then Adv⊥−Aware
Π,A (t) = 0.

An asymmetric encryption scheme is said to be rigid, see [11] (where the
definition is given just for deterministic schemes, but the generalization to prob-
abilistic schemes is immediate) if

Pr
[

(pk, sk) ← K(1t), c ← C \ C⊥, ∃r ∈ R, : E(pk,D(sk, c); r) = c
]

= 1,

136 K. Cong et al.

where C⊥ ⊂ C is the set of all ciphertexts c ∈ C for which D(sk, c) =⊥. The
effect of rigidity is that unless c is the output of E(pk,m; r) for some m and
r, then decryption will always return ⊥. ElGamal is an example of a perfectly
correct, rigid probabilistic scheme as every ciphertext pair (c1 = gr, c2 = m · hr)
corresponds to the encryption of some message.

If we let ‖X‖ be the infinity norm on the probability space X of a finite set S,
then the min-entropy of X is − log ‖X‖. A randomized asymmetric encryption
scheme is said to be γ-spread if

− log max
y∈{0,1}∗

Pr
[
r ← R : y = E(pk,m; r)

]
≥ γ

for all (pk, sk) output by K and all m ∈ M. A scheme is said to be well-spread
if γ = ω(log t). This basically means that the probability of a specific ciphertext
occurring is negligibly small.

Note, if the set R is suitably large then we can turn a deterministic scheme Πp

into a randomized well-spread scheme Π ′
p by setting E ′

p(pk, k; r) = (Ep(pk, k), r).
It is from this observation, the QROM� security in the standard hybrid (non-
leaky) encryption model for our construction based on deterministic public key
encryption, mentioned in the introduction, follows.

Encryption With Distributed Decryption: Given a set P = {P1, . . . ,Pn} of par-
ties, we consider access structures A consisting of a monotonically increasing
set of subsets of 2P . A set S is said to be qualified if S ∈ A, and unqualified
otherwise. Given an encryption scheme Π = (K, E ,D) we say that the scheme
admits a distributed decryption functionality for an access structure A, if there
are two n-party protocols ΠK and ΠD. The protocol ΠK produces some data
ski for each party, called the secret key shares. The protocol ΠD on input of an
agreed ciphertext c from all parties in S ∈ A, and the value ski from all parties
in S, will output the value m = D(sk, c).

The distributed decryption protocols are said to be secure (in the IND-ATK
sense) if an unqualified set of adversarial parties cannot, while interacting with a
qualified set of parties, break the IND-ATK security of the underlying encryption
scheme. This security definition can be made more formal by saying that the
distributed decryption protocol should act like an ideal decryption functionality.
See [48,49] for a specific instantiation.

We shall assume an actively secure MPC protocol for the access structure A,
and will then construct an algorithm which implements the algorithm D within
the MPC protocol. Thus it automatically becomes a distributed protocol ΠD
for the decryption functionality, and its security is inherited from the underlying
MPC protocol. The challenging part is to develop the encryption scheme and
the specific instantiation of D to enable the underlying MPC system to provide
an efficient distributed implementation.

By using a generic MPC functionality, as opposed to a specific protocol, we
restrict ourselves to the threshold case where all parties have to be involved in the
computation; but where security is maintained against an adversary controlling

Gladius 137

a given threshold. This is in contrast to the models proposed in [48,49] which
allow for a subset of the key-share holding parties to participate.

KEM-DEM Philosophy: A central tenet when using public key encryption in
practice, is that one never encrypts a large message with a public key algorithm.
Instead one encrypts the actual message with a fast symmetric key algorithm,
such as AES-GCM, and then the symmetric key is transferred to the recipient
using a public key scheme. Thus producing a hybrid encryption scheme. In this
way the symmetric key is only used once in the symmetric cipher, and thus we
do not need a fully secure AEAD scheme but the weaker notion of a DEM, and
the public key scheme is only needed to transport a single random key (and not
a message) leading to the simpler public key construction of a KEM. See [18] for
an extensive discussion, with the standard definitions and proofs.

Kh(1t):
(pk, sk) ← Kp(1t)
Return (pk, sk)

Eh(pk, m):
k ← Mp

r ← Rp, r′ ← Rs

k ← H(k).
c1 ← Ep(pk, k; r)
c2 ← Es(k, m; r′)
Return (c1, c2)

Dh(sk, (c1, c2)):
k ← Dp(sk, c1)
If k =⊥ then return ⊥
k ← H(k).
m ← Ds(k, c2)
Return m

Fig. 1. The standard KEM-DEM construction

We let Πp = (Kp, Ep,Dp) denote an IND-CCA public key encryption scheme
with message space Mp, ciphertext space Cp, and space of random coins Rp, and
let Πs = (Ks, Es,Ds) denote an IND-CCA symmetric key encryption scheme
(which recall for us is always one-time and hence a DEM) with message space
Ms = {0, 1}∗. From these two components one can construct a KEM-DEM
encryption scheme for arbitrary long messages as follows: We first define a hash
function H : Mp −→ Ks where by abuse of notation by Ks we mean the key
space of Πs. We can then define a hybrid encryption scheme Πh = (Kh, Eh,Dh)
in Fig. 1.

Naive Threshold KEM-DEM: The goal of our work is to produce threshold public
key encryption for long messages; namely we would want to share the decryption
key amongst a set of entities so that a given subset needs to come together to
decrypt. Clearly we would not want the extra expense of the threshold decryption
to impact when encrypting very large messages. Thus we would want to use
something akin to the KEM-DEM philosophy, with the main message being
encrypted and decrypted via a fast cipher such as AES-GCM.

Finding KEM-like constructions which admit distributed decryption proto-
cols is relatively easy. However, whilst it is possible to execute AES in a threshold
manner, see e.g. [33,44], the performance for long messages is prohibitive. Thus
distributed DEMs are much harder to obtain. For this reason we would like to

138 K. Cong et al.

apply the decryption of the large message ‘in the clear’, but this implies that
the decryption algorithm will need to ‘leak’ the decryption key k of the DEM
component. In particular this key will leak irrespective of whether the DEM
decrypts correctly or not; since the decrypting parties need to obtain the DEM
key before it is known whether the key is valid for the DEM.

Dh(sk, (c1, c2)):
k ← Dp(sk, c1)
If k =⊥ then return (⊥, ⊥)
k ← H(k).
m ← Ds(k, c2)
Return (k, m)

Fig. 2. Decryption functionality for standard distributed KEM-DEM

Our decryption algorithm functionality, and thus the functionality of any
decryption oracle given to an adversary, would therefore be of the form in Fig. 2.
This provides an immediate attack in the standard IND-CCA model on the
hybrid construction. An adversary takes the target ciphertext (c∗

1, c
∗
2), submits

(c∗
1, c2) to the decryption oracle for a random value c2. With high probability,

they will receive (k,⊥). Then, they can use k to obtain k and thus decrypt c∗
2,

and so win the security game. It is to avoid this attack that we modify the
KEM-DEM framework in the next section.

Generic Multi-Party Computation: Our methodology uses a generic actively-
secure-with-abort MPC functionality defined via Linear Secret Sharing (LSS)
over a finite field Fq. Note, we could utilize in the case when q is not a prime in
our main Gladius construction a ring Zq, but for the purposes of this paper we
restrict to q being a prime in our used MPC methodology; see the full version.
for a discussion of the issues when q is a power of two. This means that inputs of
the parties remain private throughout the execution of the protocol, and when a
set of adversaries deviate from the protocol, honest parties will catch this with
overwhelming probability and then abort the protocol. This should be compared
to passively secure protocols which offer a much weaker guarantee that security is
only preserved if all parties follow the precise protocol steps correctly. We present
in Fig. 3 the base MPC functionality. Despite using a generic underlying protocol,
our protocol ends up being surprisingly efficient. This is because we carefully
designed Gladius to be both efficient in a distributed and a non-distributed
manner.

To ease notation we denote a variable x ∈ Fq stored within the MPC func-
tionality via 〈x〉, and write addition and multiplication of shares as 〈x〉+〈y〉 and
〈x〉 · 〈y〉. We extend the notation to vectors and matrices in the obvious way via
〈x〉 and 〈A〉. If 〈x〉 is a shared vector we let 〈xi〉 denote the shared entries, and
if 〈A〉 is a shared matrix we let 〈A(i,j)〉 denote the shared entries; with a similar
notation for vectors and matrices of non-shared values.

Gladius 139

Operations for Secure Computation, FMPC.

The functionality runs with P = {P1, . . . ,Pn} and an ideal adversary A, that
statically corrupts a set A of parties. Given a set I of valid identifiers, all values are
stored in the form (varid , x), where varid ∈ I.

Initialize: On input (init , p) from all parties, the functionality stores (domain, p),
Input: On input (input ,Pi, varid , x) from Pi and (input ,Pi, varid , ?) from all other

parties, with varid a fresh identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x + y).

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Output: On input (output , varid , i) from all honest parties (if varid is present in
memory), the functionality retrieves (varid , y) and outputs it to the environ-
ment. The functionality waits for an input from the environment. If this input
is Deliver then y is output to all players if i = 0, or y is output to player i if
i �= 0. If the adversarial input is not equal to Deliver then all players abort.

Fig. 3. Operations for secure computation, FMPC.

The cost model for LSS-based MPC protocols is such that addition of such
shared entities is ‘for free’, whereas multiplication consumes resources (typically
communication). Many MPC protocols in this setting, such as [9,20,34,50], work
in an offline/online manner. In this setting the multiplication not only consumes
communication resources in the online phase, but also consumes some corre-
lated randomness (so-called Beaver triples) from the offline phase. However, an
advantage of these offline/online models is that one can prepare other forms of
correlated randomness in the offline phase; such as shares of random bits 〈b〉 with
an unknown b ∈ {0, 1}. In our algorithms below we will write this as 〈b〉 ← Bits().
If we sample a shared random element in Fq, we will denote this by 〈x〉 ← Fq.
To open an element we will write x ← Output(〈x〉) when it is output to all
players.

MPC Friendly Hash Functions. Rescue: Our LWR-based construction of a hybrid
cipher with efficient distributed decryption will make use of an MPC-friendly
hash function, such as those in [5,29]. These hash function constructions are
sponge-based, and there are two types; those suitable for MPC over characteristic
two fields (StarkAD and Vision) and those suitable for MPC over large prime
fields (Poseidon and Rescue). In this paper, we concentrate on the Rescue design
from [5], which seems more suited to our application.

140 K. Cong et al.

Rescue has a state of t = r + c finite field elements in Fq, for a prime q. The
initial state of the sponge is defined to be the vector of t zero elements. A message
is first mapped into n = d ·r elements in Fq, m0,m1, . . . , mn−1. The elements are
absorbed into the sponge in d absorption phases, where r elements are absorbed
in each phase. At each phase a permutation f : Ft

q −→ F
t
q is applied resulting in a

state s0, . . . , st−1. At the end the absorption the r values sc, . . . , st−1 are output
from the state. This process can then be repeated, with more data absorbed and
then squeezed out. Thus we are defining a map H : Fn

q −→ F
r
q.

Each primitive call f in the Rescue sponge is performed by executing a round
function rnds times. The round function is parametrized by a (small prime) value
α, an MDS matrix M ∈ F

t×t
q and two step constants ki,k′

i ∈ F
t
q. The value α

is chosen to be the smallest prime such that gcd(q − 1, α) = 1. The round
function applies exponentiation by 1/α, followed by application of the MDS
matrix, followed by addition of the round constant ki, followed by exponentiation
by α, followed by a further application of the MDS matrix, followed by addition
of the round constant k′

i. See [14] for a discussion of implementing Rescue in an
MPC system, albeit for a large prime characteristic q of more than 256-bits. In
our application q will be in the region of 21-bits.

3 Generic Hybrid Constructions

We let Πp = (Kp, Ep,Dp) denote a OW-CPA secure, rigid, deterministic (resp.
a OW-PCA secure, rigid and randomized) public key encryption scheme with
message space Mp and ciphertext space Cp which is OW-CPA secure. We let
Πs = (Ks, Es,Ds) denote a (one-time) IND-CPA symmetric key encryption
scheme with message space Ms = {0, 1}∗ and ciphertext space Cs ⊂ {0, 1}∗.
Again by abuse of notation we let Ks also denote the key space of Πs.

3.1 Hybrid1 Construction

For this construction we define two hash functions

H : Mp −→ Ks,

G :
{{0, 1}∗ × Mp −→ {0, 1}|G| If Πp is deterministic

Cp × {0, 1}∗ × Mp −→ {0, 1}|G| If Πp is randomized

Note, G is defined to take elements in Mp as the last entry for efficiency
reasons (see below). We can then define our first hybrid encryption scheme
Πh = (Kh, Eh,Dh) in Fig. 4. Notice how the decryption function ‘leaks’ the key
k which is encrypted by the deterministic function even when the decryption
function Ds fails. This will allow us, in our threshold decryption operation, to
also leak this key before the algorithm Ds is called, enabling Ds to be applied
in the clear. The only question though is whether leaking this key is secure. The
attack described from the last section does not apply, as the invalid ciphertext
is already rejected by the testing for the correct value of G, which does not leak
k if the test fails. In what follows we call this check the G-check.

Gladius 141

Kh(1t):
(pk, sk) ← Kp(1t)
Return (pk, sk)

Eh(pk, m):
k ← Mp

k ← H(k)
r ← Rs

c1 ← Ep(pk, k)
c2 ← Es(k, m; r)
c3 ← G(c2, k)

(resp. c3 ← G(c1, c2, k))
Return (c1, c2, c3)

Dh(sk, (c1, c2, c3)):
k ← Dp(sk, c1)
If k =⊥ then return (⊥, ⊥).
t ← G(c2, k)

(resp. t ← G(c1, c2, k))
If t �= c3 then return (⊥, ⊥).
k ← H(k).
m ← Ds(k, c2)
Return (k, m).

Fig. 4. Hybrid1 construction

As remarked in the introduction the variant of the hybrid construction which
utilizes a deterministic Πp can be seen as a special form of the second Fujisaki-
Okamoto hybrid construction; assuming the space Mp is exponentially large
to ensure the resulting ‘randomized’ public key scheme is well-spread. Thus, the
above hybrid construction is secure not only in the ROM, but also in the QROM,
when we do not leak the secret key k during the decryption process and when
Πp is perfectly correct.

In the standard random oracle model, the following theorem (proved in the
full version) shows that first hybrid construction is secure in a model in which
the key k does leak during decryption as above, and where we combine it with
a generic one-time IND-CPA DEM.

Theorem 3.1. If H and G are modelled as random oracles then if A is an
IND-CCA adversary against Πh then there is an OW-CPA adversary (resp.
OW-PCA) adversary B against the deterministic (resp. randomized) rigid public
key scheme Πp, which is δc-Collision Free, a (one-time) IND-CPA adversary C
against Πs, and a ⊥ −Aware adversary D against Πp such that

Advind−cca
Πh,A (t) ≤ Advow−cpa

Πp,B (t) + Advind−cpa
Πs,C (t) + qd · Adv⊥−Aware

Πp,D (t)

+
1

|Mp| +
2 · qd + q2G

2|G| + δc

where qd (resp. qG) is an upper bound on the number of decryption oracle (resp.
G-oracle) queries and the decryption oracle queries made to the hybrid scheme
leak the key k as above.

3.2 Hybrid2 Construction

Our second hybrid construction focuses solely on the case of Πp being a rigid
deterministic OW-CPA public key encryption scheme, we show that the generic
hybrid transform, given in Fig. 5, which uses the four hash functions,

H : Mp −→ Ks,

142 K. Cong et al.

H ′,H ′′ : Mp −→ Mp

G : {0, 1}∗ × Mp −→ {0, 1}|G|

is secure in the QROM. Namely we have the following theorem (proved in the
full version)

Theorem 3.2. If G, H, H ′ and H ′′ are modelled as quantum random oracles
then if A is an IND-CCA adversary against Πh then there is a (one-time) IND-
CPA adversary B against Πs, a ⊥-Aware adversary C against the deterministic
rigid public key scheme Πp – which is δc-Collision Free and δ being the proba-
bility of its decryption failure for a uniformly random message – and OW-CPA
adversaries D and E against Πp such that

Advind−cca
Πh,A (t) ≤ Advind−cpa

Πs,B (t) + δ

+ 4q1

√
q3√|Mp| +

qd

2|G| + δ′ + Advow−cpa
Πp,D (t) + 2q2

√
δ′ + Advow−cpa

Πp,E (t)

for q1 = qH + qH′ + 2qd, q2 = qH′′ + qd, q3 = 2(qG + qd + 1) and

δ′ = δc + qd · Adv⊥−Aware
Πp,C (t) +

1
|Mp| ,

where qd, qG, qH , qH′ and qH′′ are respective upper bounds on the number of
decryption oracle, G-oracle, H-oracle, H ′-oracle and H ′′-oracle queries and the
decryption oracle queries made to the hybrid scheme leak the key k as above.

Kh(1t):
(pk, sk) ← Kp(1t)
Return (pk, sk)

Eh(pk, m):
k ← Mp

k ← H(k)
μ ← H ′(k)
r ← Rs

c1 ← Ep(pk, k)
c2 ← Es(k, m; r)
c3 ← G(c2, μ)
c4 ← H ′′(k)
Return (c1, c2, c3, c4)

Dh(sk, (c1, c2, c3, c4)):
k ← Dp(sk, c1)
If k =⊥ then return (⊥, ⊥).
t ← H ′′(k)
If t �= c4 then return (⊥, ⊥).
μ ← H ′(k)
t′ ← G(c2, μ)
If t′ �= c3 then return (⊥, ⊥).
k ← H(k).
m ← Ds(k, c2)
Return (k, m).

Fig. 5. Hybrid2 construction

3.3 Threshold Variant

Assuming there are protocols ΠKp
and ΠDp

which implement the base public
key encryption scheme in a threshold manner a threshold variant of our above
constructions are therefore immediate. We simply apply the threshold decryption
operation to c∗

1, keeping the result in a shared form. The parties then securely

Gladius 143

evaluate G (or G, H ′ and H ′′ in our second hybrid construction). Our distributed
decryption operation for our Hybrid1 construction Πh would then consist of the
following steps, with a similar methodology for Hybrid2 (which would also require
a secure evaluation of H ′ and H ′′)

1. Absorb c2 (resp. c1 and c2) into G in the clear.
2. Apply ΠDp

to obtain a distributed decryption operation, keeping the result
k in shared form.

3. Securely absorb these shares of k into the sponge G.
4. Securely evaluate the squeezing of G to obtain t in the clear.
5. Reject the ciphertext if c3 �= t.
6. Open k to all players.
7. Compute k = H(k) in the clear
8. Compute m = Ds(k, c2) in the clear and output it.

We notice that if we use a sponge-like function for G, such as Rescue [5] (see the
full version) or SHA-3, then in the clear we can insert the first arguments for G
(c1 and c2) during a distributed decryption, as they are public. Thus we only
need to execute a secure distributed version of G for the final absorption of k,
and then the squeezing phase to obtain c3.

4 The Large Vector Problem (LVP)

We also need to give a new hardness assumption, which we call LVP. This is
needed in order to establish the ⊥-Aware property of our encryption scheme;
namely that it is hard for an adversary A, given the public key pk, to come up
with a plaintext/ciphertext pair (m, c) such that c = E(pk,m) but D(sk, c) =⊥;
i.e. a ciphertext which is a valid encryption, but which does not decrypt correctly.

Consider the following experiment. The challenger constructs a matrix A1 ∈
Z

n×n
q uniformly at random, and then selects R1, R2 ∈ Z

n×n
q with entries selected

from the distribution Dσ. The challenger constructs A2 = A1 ·R1 +R2 and gives
the pair (A1, A2) to the adversary A. The adversary’s goal is to come up with a
vector m ∈ [−1/2, . . . , 1/2]n such that

‖R1 · m‖∞ ≥ c · σ · √
n/2

for some constant c. We define the advantage of an adversary A against this
hard problem as

AdvLVPA (n, c, σ) = Pr
[
A1 ← Z

n×n
q , R1, R2 ← Dn×n

σ , A2 = A1 · R1 + R2,

m ← A(A1, A2) : ‖R1 · m‖∞ ≥ c · σ · √n/2
]
.

We note that (see the full version for details) the probability that there are
no solutions at all to the above problem (when we sample over all secret keys
R1 and R2) is 1−n · erfc(c). Thus the probability that there are ANY solutions

144 K. Cong et al.

to this problem is already very small if c is large enough. Thus for randomly
chosen R1 and c large enough, the adversary already has an impossible task (i.e.
information theoretically impossible) in solving LVP. If we set c = 9.3 (resp.
13.2) this would give us a bound on the advantage of (approximately) 2−128

(resp. 2−256).
We note that if one can solve the search-LWE problem for the pair (A1, A2)

then finding such a m is potentially trivial (if such a m exists). In the ‘unlucky’
event that there is a solution, since R1 is hidden (due to search-LWE being
hard), the adversary is left with outputting a small vector and ‘hoping’ it works.

We would like to use a smaller constant than c = 9.3 (resp. 13.2). Assuming
a solution exists and sampling over all keys, the only plausible attack (due to
R1 being hidden by LWE) is for the adversary to select a message at random
and hope it solves the problem. Suppose the adversary selects a message with
entries in the range [−v/2+u, . . . , u+v/2] for u ∈ [0, 1/2) and v < 1−2 ·u. The
n random variables given by the entries of R1 · m will still have mean zero (as
the entries of R1 are pulled from a symmetric distribution of mean zero), but
they will have variance given by V = n ·σ2 ·(u2 + v2/12

)
. Thus with probability

erfc(c′) the adversary will obtain a value of size greater than c′
√

V . To win the
game (assuming a solution exists) thus requires

c′ ≥ c

2 · √
u2 + v2/12

.

The right hand side of this last equation is minimized when u = 1/2, v = 0 and
thus we have c′ > c. But this assumes a solution exists, thus our final probability
for the attack to work is given by n · erfc(c)2. If this was the best possible attack
then this would mean we would have AdvLVPA (n, c, σ) ≤ n · erfc(c)2. Indeed, we
conjecture that the hardness of this problem is indeed given by AdvLVPA (n, c, σ) ≤
n · erfc(c)2, and assuming this allows us to obtain smaller parameters for our
Gladius scheme.

Conjecture 4.1 (LVP Hardness Conjecture). We have AdvLVPA (n, c, σ) ≤ n ·
erfc(c)2.

5 Gladius–Hispaniensis: Plain LWR Based Encryption

According to Wikipedia the Gladius–Hispaniensis was the earliest and heaviest
of the different types of Gladii that we know about; it is thus fitting we reserve
this name for our encryption scheme based on standard LWR. The scheme is
defined in Fig. 6 and is parametrized by values t, p, q, n, �, σ, ε. We define the
message space M to be the set Z

n
t . From these parameters we define μ ∈ Z and

ψ ∈ (−1/2, 1/2] via
p · �

q
=

⌊p · �

q

⌉
+ ψ = μ + ψ. (1)

Gladius 145

The Gladius–Hispaniensis Deterministic Encryption Scheme Πp.

Key Generation: Kp.
1. R1, R2 ← Dn×n

σ , i.e. two n×n matrices with coefficients sampled from Dσ.
2. A1 ← Z

n×n
q

3. A2 ← A1 · R1 + R2 + G, where G is the gadget matrix � · In.
4. pk ← (A1, A2).
5. sk ← (pk, R1).
6. Return (pk, sk)).

Encryption: Ep(pk,m).
1. c1 ← �mT · A1�p.
2. c2 ← �mT · A2�p.
3. Return (c1, c2).

Decryption: Dp(sk, (c1, c2)).
1. wT ← c2 − c1 · R1 (mod q)
2. eT ← wT (mod p).
3. vT ← eT (mod μ).
4. mT ← (eT − vT)/μ.
5. (c′

1, c
′
2) ← Ep(pk,m).

6. If c1 �= c′
1 or c2 �= c′

2 return ⊥.
7. Return mT.

Fig. 6. The Gladius–Hispaniensis deterministic encryption scheme Πp.

Note when μ and p are powers of two, say μ = 2ν and p = 2π, and t = 2 then lines
3 and 4 of the decryption procedure in Fig. 6 becomes mi ← w

(ν)
i ⊕w

(ν+1)
i , where

m = (mi) and w = (wi) and w
(j)
i is the j-th bit of wi. This is again a useful

simplification in our distributed decryption procedure, thus we will assume that
μ and p are powers of two.

See the full version, where we discuss the criteria which need to be satisfied
to ensure correctness of decryption, and security of this construction. We found
the parameters in Table 1 using this analysis. Note we are only able to establish
our ⊥-Aware property (assuming the LVP-problem is hard) when q is a prime,
an interesting open question would be to establish this for the parameter sets
where q is a power-of-two.

The above describes solely the KEM-like component Πp of our hybrid con-
struction from Sect. 3. The DEM-like component Πs can be any (one-time) IND-
CPA cipher; for example a one-time pad or AES in CTR-mode. The remaining
item to define is the associated hash function G (and in the case of using Hybrid2
the hash functions H ′ and H ′′). Recall G takes the ciphertext c2 output from
the DEM, and the key k which the KEM encapsulates, and produces the hash
result G(c2, k). Here we focus solely on the case of prime q variants of Gladius.

In our construction, to aid distributed decryption, we construct G as in Fig. 7,
assuming we take the message modulus t = 2 in our above construction. Minor
tweaks are needed in the case when t �= 2. The construction makes use of Rescue
with rate r satisfying r ≥ 2 · κ/�log2 q�, as well as SHA-3. The combined hash
function can clearly be treated as a random oracle if one assumes SHA-3 and

146 K. Cong et al.

Table 1. Gladius–Hispaniensis parameters (based on plain LWR), and the associated
LWE, LWR and ⊥ −Aware security. For the first five parameter sets with q prime we
establish ⊥ −Aware assuming Conjecture 4.1, for the second two ⊥ −Aware security is
established unconditionally since BV is always less than μ/2. For the q = 2k parameters
we cannot establish ⊥ −Aware security

n t q p � σ μ LWE LWR security ⊥ −Aware security

Security Theoretical Best-attack c′ Adv−1

prime q 971 2 221 − 9 29 219
√

1/2 128 2128.3 261.25 2465.7 5.673 289

1024 2 221 − 9 29 219
√

1/2 128 2135.7 264.78 2492.7 5.523 284

1982 2 223 − 15 210 221
√

1/2 256 2256.6 2125.3 2465.7 8.036 2183

2048 2 223 − 15 210 221
√

1/2 256 2266.0 2129.9 2975.5 7.906 2176

4096 2 226 − 5 211 221
√

1/2 512 2519.0 2256.2 22034 11.247 2361

prime q 4096 2 225 − 39 211 223
√

1/2 512 2537.0 2263.8 21951 N/A 2∞

8192 2 227 − 39 212 225
√

1/2 1024 21098.0 2542.4 23918 N/A 2∞

q = 2k 710 2 214 210 211
√

1/2 128 2128.9 2550.1 2187.6 – –

1024 2 214 210 212
√

1/2 256 2188.4 2792.1 2274.8 – –

1437 2 215 211 212
√

1/2 256 2256.6 21115. 2366.1 – –

2048 2 215 211 212
√

1/2 256 2376.6 21584. 2535.3 – –

Rescue are themselves random oracles. In the final distributed decryption variant
only lines 5 and 6 need to be performed in a secure manner (which are based
on Rescue, which is an MPC-friendly hash function). Thus irrespective of how
long the initial message is which is being encrypted, the number of applications
of Rescue which need to be performed securely is given by
w/r� + 1. If we take
parameters κ = 128, n = 1024 and q = 221 − 9 then we have r = 13, w = 52 and
the number of secure rounds of Rescue is five in order to absorb the key k and
produce the output G(c2, k). For the case of Hybrid2 we select H ′ and H ′′ based
on Rescue as well.

For q a power-of-two a different methodology will be required. We know of
no MPC-friendly hash function defined over rings of the form Z2k . Thus for the
case of power-of-two values of q it would seem one would need to use a standard
sponge-based hash function (such as SHA-3), which would not be as amenable
to threshold implementation via a generic MPC methodology.

6 Distributed Decryption of Gladius

In this section we present how to perform distributed decryption of the hybrid
cipher obtained from our generic construction composed with Gladius. For ease
of implementation we select parameters for which q is prime, p = 2π and μ = 2ν

are powers of two, and the message space modulus is t = 2. Although this section
focuses on the simpler standard LWR variant (Gladius–Hispaniensis) and not on
the Ring-LWR variants (Gladius–Pompeii, Gladius–Mainz and Gladius–Fulham,
see the full version), the procedure is virtually identical in all cases.

We use an MPC system defined for the q prime case for our experiments,
as this is the only case for which we have both a full proof of security and a
suitable MPC-friendly hash function (Rescue). Selecting q prime also means we

Gladius 147

The Hash Function G(c2, k).

On input of c1, c2 and k ∈ {0, 1}n.

1. Apply the SHA-3 hash function to c2 to obtain a 2 · κ-bit string s.
2. Parse s into r bit-strings (s1, . . . , sr) each of length �log2 q�. This is possible

due to the choice of r.
3. Treat each si as an element of Fq and absorb the set (s1, . . . , sr) into a fresh

Rescue state. This requires one application of the Rescue absorption phase.
Note, this is done in the clear during threshold decryption as c1 and c2 are
public.

4. Take the bit string k ∈ {0, 1}n and parse again into bit-strings of length �log2 q�.
This will produce w = 	n/�log2 q�� bit-strings k1, . . . , kw, each of which we
think of as elements in Fq.

5. The w finite field elements k1, . . . , kw are absorbed into the Rescue state, this
will require 	w/r� executions of the Rescue function. Since during distributed
decryption k is not known at this stage, this needs to be carried out securely.

6. Finally the output is obtained by squeezing out r output field elements from
Rescue using a single application of the Rescue function.

Fig. 7. The hash function G(c2, k).

can utilize an existing library such as SCALE-MAMBA [6], for not only the
underlying MPC system, but also many of the necessary sub-routines which our
distributed decryption method requires. In the full version we discuss changes
to the algorithms which would be needed if future work could establish a secure
variant in the case when q is a power of two (including a suitable MPC-friendly
hash function for this case).

We first present our distributed Key Generation protocol ΠKeyGen. Since the
key generation method is based on Learning-with-Errors, with the error distri-
bution coming from the NewHope distribution with σ = 1/

√
2, we can utilize

the simple method described in [35,46]. This is described in Fig. 8.

Protocol for Distributed Key Generation ΠKeyGen.

1. For i, j ∈ [1, . . . , n]
- 〈b〉, 〈b′〉, 〈c〉, 〈c′〉 ← Bits().
- 〈R(i,j)

1 〉 ← 〈b〉 − 〈b′〉.
- 〈R(i,j)

2 〉 ← 〈c〉 − 〈c′〉.
- A

(i,j)
1 ← Fq.

2. 〈A2〉 ← A1 · 〈R1〉 + 〈R2〉 + G.
3. A2 ← Output(〈A2〉).
4. pk ← (A1, A2).
5. sk ← (A1, A2, 〈R1〉).

Fig. 8. Protocol for distributed key generation ΠKeyGen.

148 K. Cong et al.

The distributed decryption procedure itself is more complex. It makes use of
the following protocols from other works, e.g. [19,42]. In each of these protocols
we can run the protocol with clear entries. For example BitDecomp(a) will form
the bit decomposition of an integer a, but here we also need to specify how
many bits we require. Since a may not necessarily be reduced in the range
(−q/2, . . . , q/2). Thus we would write BitDecomp(a, t) to obtain t bits.

– 〈a〉 ← BitDecomp(〈a〉): Given a secret shared value 〈a〉 with a ∈ Fq this
procedure produces a vector of shared bits 〈a〉 = (〈a0〉, . . . , 〈a	log2 q
〉) such
that a =

∑
i ai ·2i. Note this means a is in the non-centred interval [0, . . . , q).

The method we use is from [42], which is itself built upon the work in [19].
– 〈c〉 ← BitAdd(〈a〉, 〈b〉): Given shared bits 〈a〉 and 〈b〉 this executes a binary

adder to produce the vector of shared bits 〈c〉 such that
∑

i ci · 2i =
∑

i(ai +
bi) ·2i. This algorithm is also presented in [19]. Note this returns one bit more
than the maximum of the lengths of 〈a〉 and 〈b〉.

– 〈c〉 ← BitNeg(〈a〉): This performs the two-complement negative of the bit
vector 〈a〉. It flips the bits of 〈a〉 to produce 〈a〉, and then executes the
function BitAdd(〈a〉,1), where 1 = BitDecomp(1, |a|) is the bit-vector of the
correct length representing the integer one.

– 〈c〉 ← BitLT(〈a〉, 〈b〉): This computes the single bit output 〈c〉 of the compar-
ison

∑
i ai · 2i <

∑
i bi · 2i. Again we use the method from [19].

When running BitDecomp(〈a〉) on a secret shared value the run time is not
deterministic, it needs to loop to produce a shared value which is uniformly
distributed modulo q. It does this by rejection sampling; where the probability
of rejecting a sample is given by

2�log2 q� − q

2�log2 q� .

This is another reason to select q to be close to a power-of-two, as well as to
ensure μ is a power of two.

In Fig. 10 we divide our distributed decryption procedure into four phases:
KEM Decapsulate, KEM Validity Check, the Hash-Check (for the checking of
the DEM component) and finally the Message Extraction. As we select μ and
p to be powers of two the first stage is relatively straightforward given we can
implement BitDecomp(〈a〉). There is a minor complication due to the need to
map the bit-decomposition into the centred interval but this is easily dealt with
using the sub-routine in Fig. 9. The third stage complexity depends on the choice
of the underlying hash function G; our choice of G from Sect. 5 using SHA-3 and
Rescue combined was to ensure this step is as efficient as possible. Due to our
hybrid design the final step can be performed in the clear; which is not possible
for other hybrid schemes.

Thus, the main complexity of the decryption procedure is the second stage,
namely the KEM Validity Check, as for this we need to re-encrypt the message

Gladius 149

Subroutine Centre(〈x〉)

1. 〈b〉 ← BitDecomp(〈x〉); recall the bit-decomposition produces a value in the
non-centred interval.

2. 〈b′〉 ← BitAdd(〈b〉, q + 1); i.e. b′ = q − ui over the integers.
3. 〈b′′〉 ← BitNeg(〈b′〉); i.e. b′′ = −b′ (mod 2�log2 q� − π) if we compute to

	log2 q� − π bits.
4. 〈f〉 ← BitLT(〈b〉, q/2); i.e. is b < q/2?
5. 〈a〉 ← 〈f〉 · 〈b〉 + (1 − 〈f〉) · 〈b′′〉. This is again done bitwise. This results in a

being the bit representation of the centred value of ui modulo q represented in
	log2 q� bits.

6. Return 〈a〉.

Fig. 9. Subroutine Centre(〈x〉)

and check the result is equal to the KEM ciphertext component. We need to
verify equations of the following form

c = �〈x〉�p =
⌊p

q
· 〈x〉

⌉
(mod p)

where c is publicly given, but the value 〈x〉 cannot be opened to the parties.
We write the equation, over the integers, as c = p

q · 〈x〉 + ε + p · v, where
ε ∈ (−1/2, 1/2], v ∈ {0, 1} and we think of the shared value 〈x〉 being in the
centred representation modulo q. The value v is equal to one only if the reduction
modulo p in the LWR equation needs to move the rounded value −p/2 to p/2.
This happens when

x ≤ q

p

(
1
2

− p

2

)
=

q · (1 − p)
2 · p

.

This means we simply need to compute the bit representation 〈s〉 of the value
|q ·c−p·〈x〉−p·q ·〈v〉| over the integers and then check the result is less than q/2.
The last check can be performed using the BitLT(〈s〉, q/2) algorithm mentioned
above.

But to compute the bit representation of 〈s〉 we need the bit representation of
the modulo q centred value 〈x〉. However, the BitDecomp routine only produces
the bit-decomposition in the non-centred interval of a value modulo q. We could
use the method from the first stage and apply the Centre sub-routine. However,
this is inefficient as on its own it requires two calls to BitAdd (one explicitly to
BitAdd and one implicitly in the call to BitNeg). The procedure BitAdd is our
most expensive subroutine so we want to minimize the number of calls to this.

Thus instead we proceed as follows: If we think of the value 〈x〉 as the reduc-
tion in the centred interval, and 〈u〉 as the value in the non-centred interval
then we have x = u − b · q, where b is the bit given by b = 1 − (u ≤ q/2).
We write 〈u〉 for the corresponding shared bit decomposition of u. We can then
re-write the equation for determining v above in terms of u, as opposed to x, as
v = b ·

(
u ≤ q·(p+1)

(2·p)
)
. We note that v = 0 when b = 0, which is important in

what follows.

150 K. Cong et al.

Protocol for Distributed Decryption ΠDec.

Input: A ciphertext c1 = (c1, c2), c2, c3, the public key (A1, A2) and the secret key
in shared form 〈R1〉.
KEM Decapsulation:

1. 〈x〉 ← c2 − c1 · 〈R1〉.
2. For i ∈ [1, . . . , n]

- 〈w〉 ← Centre(〈xi〉).
- 〈ki〉 ← 〈w(ν)

i 〉 ⊕ 〈w(ν+1)
i 〉 = 〈w(ν)

i 〉 + 〈w(ν+1)
i 〉 − 2 · 〈w(ν)

i 〉 · 〈w(ν+1)
i 〉.

KEM Validity Check:
1. 〈y〉 ← 〈k〉 · (A1‖A2).
2. 〈z〉 ← 1.
3. For i ∈ [1, . . . , 2 · n]

- 〈u〉 ← BitDecomp(〈yi〉).
- 〈b〉 ← 1 − BitLT(u, q/2).
- 〈v〉 ← 〈b〉 ·BitLT(〈u〉, q · (p + 1)/(2 · p)). This computes the adjustment

bit for dealing with the wrap around modulo p. Note, this can only
apply when a < 0.

- 〈u′〉 ← 〈u〉 � π; i.e. shift left by π bits, where p = 2π. Hence u′ = p ·u
over the integers, represented in 	log2 q� + π bits.

- 〈w〉 ← BitAdd(〈u′〉, 2�log2 q�+π − ci · q). Here ci = c
(i)
1 if i ≤ n and

c
(i−n)
2 otherwise. This produces w = p · u − ci · q over the integers with

	log2 q� + π bits.
- 〈f〉 ← BitAdd(〈w〉, (〈b〉 − 〈v〉) · (−p · q)). This applies the adjustment

when b = 1 and v = 0. We now have f = p · ui − (b − v) · p · q − ci · q
over the integers with 	log2 q� + π bits.

- 〈f ′〉 ← BitNeg(〈f〉), hence f ′ = −f over the integers.
- 〈g〉 ← 〈fπ+�log2 q�−1〉; i.e. the sign bit of f .
- 〈s〉 ← 〈g〉 · 〈f ′〉 + (1 − 〈g〉) · 〈f〉. Again a bitwise operation computing

s = |f | as an integer.
- 〈j〉 ← BitLT(〈s〉, q/2); is one if this coefficient is OK.
- 〈z〉 ← 〈z〉 · 〈j〉; is one if the ciphertext is OK up to this point.

4. z ← Output(〈z〉)
5. If z �= 1 then return ⊥.

Hash Check:
1. 〈t〉 ← G(c2, 〈k〉).
2. t ← Output(〈t〉).
3. If t �= c3 then return ⊥.

Message Extaction:
1. k ← Output(〈k〉).
2. k ← H(k).
3. m ← Ds(k, c2)
4. If m =⊥ then return ⊥.
5. Return m.

Fig. 10. Protocol for distributed decryption ΠDec.

Gladius 151

We then rewrite the equation for 〈s〉 as
∣∣∣p · 〈u〉 − p · q · (〈b〉 − 〈v〉) − ci · q

∣∣∣

The bit representation of p ·〈u〉 can be determined by simply shifting bits, as p is
a power-of-two. The bit representation of −p ·q · (〈b〉−〈v〉) can be determined by
bit-wise multiplications as b−v ∈ {0, 1} by construction. From these observations
we can produce a method for Stage 2 which requires three calls to BitAdd, as
opposed to the naive method which would go through Centre which would require
four calls to BitAdd.

Security Discussion and Implementation: As remarked previously the security of
our implementation follows from the security of the underlying MPC protocol.
By using SCALE-MAMBA [6] we can obtain active security, and the above sub-
procedures are all provided as built in functions. In addition, the large local only
operations in KEM Decapsulation (line 1) and KEM Validity Check (line 1) can
be carried out efficiently in C++ using the SCALE LOCAL_FUNCTION operation.
This enables one to perform complex local only operations, i.e. complex linear
functions, natively in C++ as opposed to needing them to be implemented with
the MPC system (which adds a lot of overhead).

We implemented our distributed decryption procedure in the case of Shamir
sharing within SCALE-MAMBA. This is because the Shamir implementation
module allows the MPC sub-system to be instantiated over any finite field Fq.
In using a full threshold access structure one would need (with SCALE-MAMBA
as currently implemented) to select a prime q which is FHE friendly; so as to
enable the SHE scheme at the basis of SPDZ [20] to be instantiated. None of the
q values in the various parameter sets for Gladius are FHE friendly; not even the
Gladius-Pompeii variants which have q − 1 divisible by a large power of two. In
our experiments, each party ran on a machine with a Intel(R) Core(TM) i9-9900
CPU at 3.10 GHz and 128 GB of memory. The machines were connected in a
local network using a 10 GB switch.

For three parties, tolerating a threshold of one dishonest party, we obtained
a run time for the first three phases of 1.19, 3.62, and 0.18 s respectively; for our
parameter set of q = 221 − 9 and n = 1024 in the plain LWR setting. Making
a total decapsulation time of 4.99 s in 136491 rounds of communication. Whilst
this might at first sight seem slower than the 4.20 s reported for LIMA in [35]
the results are incomparable. Recall, the method in [35] to perform distributed
decapsulation is insecure, as indeed would be any distributed decapsulation of
any algorithm making use of the traditional KEM-DEM construction.

In our second experiment, we used the parameter set of q = 223 − 15 and
n = 2048, which has a better ⊥ −Aware security of 2176. We obtained a run time
for three phases of 7.16, 19.1 and 0.99 s, respectively; which amounts to a total
of 27.3 s and 274157 rounds of communication.

152 K. Cong et al.

Acknowledgment. We would like to thank Alexandra Boldyreva for clarifying some
issues with the PRIV definition of security for deterministic encryption, Frederik
Vercauteren for clarifying some issues in relation to Learning-with-Rounding, Andrej
Bogdanov for clarifying issues related to the theoretical reductions between LWE and
LWR, and Ward Beullens on comments on an earlier draft. This work was supported
in part by CyberSecurity Research Flanders with reference number VR20192203, by
ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific
(SSC Pacific) under contract No. FA8750-19-C-0502, and by the FWO under an
Odysseus project GOH9718N. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the ERC, DARPA, the US Government or the FWO. The U.S.
Government is authorized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright annotation therein.

References

1. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: a new framework for hybrid
encryption. J. Cryptol. 21(1), 97–130 (2008)

2. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association (2016)

4. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited -
new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40041-4 4

5. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint
Archive, Report 2019/426 (2019). https://eprint.iacr.org/2019/426

6. Aly, A., et al.: SCALE and MAMBA v1.9: documentation (2020). https://homes.
esat.kuleuven.be/∼nsmart/SCALE/Documentation.pdf

7. Arita, S., Tsurudome, K.: Construction of threshold public-key encryptions
through tag-based encryptions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 186–200. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-01957-9 12

8. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 13

9. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

10. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime. Technical report, National Institute of Standards and Technology (2019).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://eprint.iacr.org/2019/426
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://doi.org/10.1007/978-3-642-01957-9_12
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Gladius 153

11. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526

12. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016, Part I. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49096-9 9

13. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R.,
Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 19

14. Bonte, C., Smart, N.P., Tanguy, T.: Thresholdizing HashEdDSA: MPC to the
Rescue. Cryptology ePrint Archive, Report 2020/214 (2019). https://eprint.iacr.
org/2020/214

15. Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 128–153. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1 7

16. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-fish secret keys to produce
an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 10

17. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

19. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

20. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

21. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

22. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Technical
report, National Institute of Standards and Technology (2019). https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions

23. De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol.
12111, pp. 187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45388-6 7

24. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8 12

25. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991

https://eprint.iacr.org/2018/526
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-319-96884-1_19
https://eprint.iacr.org/2020/214
https://eprint.iacr.org/2020/214
https://doi.org/10.1007/978-3-030-35199-1_7
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-89339-6_16
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-540-40974-8_12

154 K. Cong et al.

26. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

27. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

28. Garcia-Morchon, O., et al.: Round5. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

29. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger,
M.: Starkad and Poseidon: New hash functions for zero knowledge proof systems.
Cryptology ePrint Archive, Report 2019/458 (2019). https://eprint.iacr.org/2019/
458

30. Hamburg, M.: Three Bears. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

31. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2 12

32. Ishihara, T., Aono, H., Hongo, S., Shikata, J.: Construction of threshold (hybrid)
encryption in the random oracle model: how to construct secure threshold tag-
KEM from weakly secure threshold KEM. In: Pieprzyk, J., Ghodosi, H., Dawson,
E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 259–273. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73458-1 20

33. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

34. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

35. Kraitsberg, M., Lindell, Y., Osheter, V., Smart, N.P., Talibi Alaoui, Y.: Adding
distributed decryption and key generation to a ring-LWE based CCA encryption
scheme. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp.
192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4 11

36. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with
adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28914-9 5

37. Lim, C.H., Lee, P.J.: Another method for attaining security against adaptively
chosen ciphertext attacks. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 420–434. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-
2 36

38. Lu, X., et al.: LAC. Technical report, National Institute of Standards and Tech-
nology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-
2-submissions

39. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

https://doi.org/10.1007/3-540-48405-1_34
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-540-73458-1_20
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-030-21548-4_11
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/978-3-642-28914-9_5
https://doi.org/10.1007/3-540-48329-2_36
https://doi.org/10.1007/3-540-48329-2_36
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

Gladius 155

40. Naehrig, M., et al.: FrodoKEM. Technical report National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

41. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

42. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 23

43. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9 13

44. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

45. Poppelmann, T., et al.: NewHope. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

46. Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively secure
setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300 (2019). https://
eprint.iacr.org/2019/1300

47. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

48. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

49. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. J. Cryptol. 15(2), 75–96 (2002)

50. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In: Matsui, M. (ed.)
CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-12612-4 11

51. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol.
9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53644-5 8

52. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-
based encryption from lattices in the auxiliary-input setting. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32928-9 1

53. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 9

54. Zhang, Z., et al.: NTRUEncrypt. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/1300
https://eprint.iacr.org/2019/1300
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/978-3-030-12612-4_11
https://doi.org/10.1007/978-3-030-12612-4_11
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-642-32928-9_1
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Lattice-Based Group Encryption with Full
Dynamicity and Message Filtering Policy

Jing Pan1,2, Xiaofeng Chen1,2(B), Fangguo Zhang3,4, and Willy Susilo5

1 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an 710071, China

jinglap@aliyun.com, xfchen@xidian.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou 510006, China
isszhfg@mail.sysu.edu.cn

4 Guangdong Province Key Laboratory of Information Security Technology,
Guangzhou 510006, China

5 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, NSW 2522, Australia

wsusilo@uow.edu.au

Abstract. Group encryption (GE) is a fundamental privacy-preserving
primitive analog of group signatures, which allows users to decrypt spe-
cific ciphertexts while hiding themselves within a crowd. Since its first
birth, numerous constructions have been proposed, among which the
schemes separately constructed by Libert et al. (Asiacrypt 2016) over
lattices and by Nguyen et al. (PKC 2021) over coding theory are post-
quantum secure. Though the last scheme, at the first time, achieved the
full dynamicity (allowing group users to join or leave the group in their
ease) and message filtering policy, which greatly improved the state-of-
affairs of GE systems, its practical applications are still limited due to the
rather complicated design, inefficiency and the weaker security (secure in
the random oracle model). In return, the Libert et al.’s scheme possesses
a solid security (secure in the standard model), but it lacks the previous
functions and still suffers from inefficiency because of extremely using
lattice trapdoors. In this work, we re-formalize the model and security
definitions of fully dynamic group encryption (FDGE) that are essentially
equivalent to but more succinct than Nguyen et al.’s; Then, we provide
a generic and efficient zero-knowledge proof method for proving that a
binary vector is non-zero over lattices, on which a proof for the Pro-
hibitive message filtering policy in the lattice setting is first achieved (yet
in a simple manner); Finally, by combining appropriate cryptographic
materials and our presented zero-knowledge proofs, we achieve the first
lattice-based FDGE scheme in a simpler manner, which needs no any lat-
tice trapdoor and is proved secure in the standard model (assuming inter-
action during the proof phase), outweighing the existing post-quantum
secure GE systems in terms of functions, efficiency and security.

Keywords: Lattice cryptography · Group encryption · Full
dynamicity · Message filtering · Zero-knowledge

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 156–186, 2021.
https://doi.org/10.1007/978-3-030-92068-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_6

Lattice-Based Group Encryption with Full Dynamicity 157

1 Introduction

Group encryption (GE), introduced by Kiayias, Tsiounis and Yung (KTY) [21] as
the natural encryption analog of group signature (GS) that was first conceptual-
ized by Chaum and van Heyst [16], is a fundamental anonymity primitive that
allows anonymizing valid decryptors within a population of certified users. Since
the pioneering work [21], GE has found a wide range of applications (see, e.g.,
[21,25,35]) in filtering malformed encrypted emails, building oblivious retriever
storage systems, trusted third parties as well as hierarchical group signatures
[42]. Because of the duality, these two primitives share some common design ideas
in offering user memberships and generating anonymous signatures/ciphertexts.

In the design of these two anonymity primitives, to build a group of certified
users is a key component. In general, there are three types of groups optional forGS:
The simplest choice is the static group [6], in which the group population is fixed at
the setup phase and the public/private key pairs of group members are assigned by
the group manager (GM) as memberships; The partially dynamic group [7,22,40]
is then introduced to support dynamic and concurrent user enrollments but deny
membership revocation. In such a group, a prospective user generates a key pair
on his own, and then becomes a valid group member only when his application
for joining the group is accepted by the GM, who computes a signature on user’s
public key and returns it back as the membership. Despite an essential function-
ality, support for membership revocation is quite challenging to realize in an effi-
cient manner, since it requires that the signing algorithm is disabled for revoked
users and no significant increase for workloads of other parties (i.e., managers, non-
revoked users and verifiers) is seen. To address this problem, several approaches
[8,11,12,36] have been suggested, resulting into the fully dynamic groups [9], where
membership revocation is additionally allowed.

Unlike the context of group signature, theGE always uses the partially dynamic
group in its design since its first formalization [21] for security reasons. This type
of group allows prospective users dynamically and concurrently to join the group,
but any valid application for revoking membership is rejected, which is quite unsat-
isfactory in the realistic world. In fact, group signatures with full dynamicity have
attracted much attention and have been constructed both on pairing assump-
tions [28,33] and lattice assumptions [31]. To change this situation, in PKC 2021,
Nguyen et al. [35] first considered the full dynamicity in the context of group
encryption and proposed a code-based instantiation secure in the random ora-
cle model. In their design, they also first considered the message filtering policies
which are quite useful for practical applications of GE systems. However, their for-
malization of FDGE is adapted directly from that of fully dynamic group signature
[9] and hard to understand. Moreover, the construction is rather complicated and
inefficient even in the random oracle model. Therefore, it is encouraging to design
a group encryption that captures the full dynamicity, message filtering policy and
a solid security in a relatively simple manner.

Our Contributions. Motivated by the above discussion, we reconsider the
full dynamicity in the context of group encryption, and propose a lattice-based

158 J. Pan et al.

instantiation in a simpler manner that shares the same functions as the existing
FDGE scheme [35] and meanwhile outweighs all available post-quantum secure
schemes [25,35] in terms of functions, efficiency and security. Our contributions
are summarized as follows:

– By introducing appropriate ingredients into the KTY model that supports
dynamic user enrollments but denies membership revocations, we re-formalize
the model and security requirements of FDGE that are essentially equal to
but more succinct and understandable than the currently existing model.

– We provide a generic and efficient zero-knowledge proof method for demon-
strating that some binary vector is non-zero over lattices, on which we first
achieve a lattice-based proof (also generic and efficient) for Prohibitive mes-
sage filtering policy. Both proofs will serve for our subsequent construction.

– By making use of appropriate cryptographic materials and the presented zero-
knowledge proofs, we achieve the first lattice-based group encryption secure
in the standard model and with full dynamicity in a free-of-trapdoor manner,
which meets our formalized model and outweighs all existing post-quantum
secure GE schemes in terms of functions and efficiency.

Related Work. The privacy-preserving cryptography has been an extremely
active research area in the last decades. As one of the fundamental anonymity
primitives, group encryption thus has attracted noticeable attention in recent
years. The relevant concepts and definitions were first introduced by Kiayias,
Tsiounis and Yung [21], who also then put forth a modular design consisting
of zero-knowledge proofs, digital signatures (e.g., [13]) and anonymous CCA2-
secure public-key encryptions (e.g., [37]). Later, Cathalo et al. [15] designed a
non-interactive scheme in the standard model for the goal of optimizing the
number of rounds. Similarly, over weaker assumptions, Aimani et al. [1] pro-
posed more practical schemes by utilizing succinct approaches to protect the
identity of group members. For sake of balancing better privacy vs. safety, Lib-
ert et al. [29] supposed a variant with public traceability to specific ciphertexts,
which was inspired from traceable signatures [20]. Further, to strengthen secrecy,
Izabachène et al. [19] constructed traceable variants that are free of subliminal
channels, stressing confidentiality, anonymity and traceability. However, all these
instantiations are proposed over number-theoretic assumptions and are vulnera-
ble under quantum attacks. This situation has been unchanged until Libert et al.
[25] proposed the currently only existing lattice-based scheme recently.

What should be noted out is that, all the group encryptions discussed above
only offer partial dynamicity that allows concurrent user enrollments but denies
membership revocations, which is quite unsatisfactory in the most realistic appli-
cations. To end this situation, more currently, Nguyen et al. [35] proposed a
fully dynamic group encryption scheme secure in the random oracle from coding
theory, where they also achieved the message filtering policies. However, their
model is directly adapted from that of fully dynamic group signature [9] and
is tedious. Moreover, the proposed scheme is rather complicated and inefficient
together with provable security in the random oracle model. This motivates us

Lattice-Based Group Encryption with Full Dynamicity 159

to construct a fully dynamic group encryption, in a simple manner, that share
practical functions similar to the scheme [35] while obtaining high efficiency and
solid security (against quantum attacks).

Organization. In the forthcoming sections, we briefly recall the needed lattice
techniques and cryptographic blocks in Sect. 2. The formalized model of FDGE
is given in Sect. 3. Section 4 describes our new techniques used for demonstrat-
ing inequalities of binary vectors and the underlying zero-knowledge argument
system. In Sect. 5, we describe our scheme that captures all desired properties,
of which analysis is given. Finally, Sect. 6 concludes our work.

2 Preliminaries

Notations. For any positive integers n ≥ k, we denote the set {1, ..., n} by
[n], the set {k, ..., n} by [k, n]. All vectors are written as bold lower-case letters
in the column form, and matrices as bold upper-case letters. For b ∈ R

n and
B ∈ R

n×m with columns (bi)i, their Euclidean l2 norms are respectively written
as ‖b‖ and ‖B‖ = maxi≤m‖bi‖. If a given set S is finite, we let U(S) to denote
the uniform distribution over it and use x ←↩ D to represent the sampling action
according to the distribution D. For two same-size binary vectors x and y, we use
dH(x,y) to denote their Hamming distance, which is equal to l1 norm ‖x⊕y‖1.

2.1 Lattices and Computational Problems

As in [14,18], we use the notations L to denote lattices defined by Λ⊥
q (A) := {e ∈

Z
m| A · e = 0n mod q} or Λu

q (A) := {e ∈ Z
m| A · e = u mod q} w.l.o.g., where

A ∈ Z
n×m
q . Accordingly, use the notation DL,σ,c to denote the discrete Gaussian

distributions of the support L, center c ∈ R
m and parameter σ > 0, which is

defined by DL,σ,c(x) = ρσ,c(x)
ρσ,c(L) for each x ∈ L where ρσ,c(x) = exp(−π‖x −

c‖2/σ2) is the Gaussian function over R
m. When c = 0, we also write the

Gaussian distributions as DL,σ for short. The following fact ensures that the
outputs of the discrete Gaussian distribution are always short.

Lemma 1. ([3]) Given any L ⊆ R
n and σ > 0, Prb←↩DL,σ

[‖b‖ ≤ √
nσ] ≥

1 − 2−Ω(n).

For appropriate parameters, the syndrome u = A · e with A ∈ Z
n×m
q and

e ∈ Z
m
q is nearly uniform over Z

n
q .

Lemma 2. ([18]) Given positive integers n, q with q prime, let m ≥ 2n log q and
s ≥ ω(

√
log m). Then for any A ←↩ U(Zn×m

q), the distribution of the syndrome
u = A ·e mod q is within negligible distance to the uniform distribution over Z

n
q ,

where e ←↩ DZm,s.

The computational lattice problems and associated hardness claims used in
this work are stated as follows.

160 J. Pan et al.

Definition 1 (SIS). Given appropriate positive integers n,m, q, β, the
SISn,m,q,β problem is defined as: for any A←↩ U(Zn×m

q), search a non-zero vector
x ∈ Z

m such that A · x = 0 and ‖x‖ ≤ β.

By choosing appropriate parameters, the standard worst-case lattice problem
SIVPγ can be reduced to the average-case SISn,m,q,β problem. Such an example is
followed by setting m,β = poly(n); q ≥ √

nβ and γ = ˜O(
√

nβ) (e.g., [2,18,32]).

Definition 2 (LWE). Given appropriate positive integers n,m, q, and a prob-
ability distribution on Z denoted as χ. For secret s ∈ Z

n
q , define As,χ as the

distribution generated by sampling a ←↩ U(Zn
q) and e ←↩ χ, and returning (a,

aT· s+e) ∈ Z
n
q × Zq. The goal of LWEn,q,χ is to distinguish m samples from

As,χ and m samples from U(Zn
q × Zq), respectively.

For prime power q, one can build a discrete integer distribution χ bounded
by B ≥ √

nω(log n), for which there exists an efficient reduction from the
SIVP

˜O(nq/B) problem to the LWEn,q,χ problem (e.g., [10,38,39]).

2.2 LNWX Lattice-Based Accumulators

The LNWX accumulator [31] is an updatable variant opposed to the static coun-
terpart [26], and we will use it in our construction to achieve dynamic group users
enrollments and membership revocations. The accumulator is built on a family
of hash functions H = {hA|A ∈ Z

n×m
q } with A =

[

A0|A1

]

∈ Z
n×m
q which hash

(u0,u1) ∈ ({0, 1}nk)2 into hA(u0,u1) = bin
(

A0 ·u0 +A1 ·u1 mod q
)

∈ {0, 1}nk.
Its security is ensured by the hardness of the SIS problem.

Informally, as in [4,12,36], the accumulator is defined by the algorithms
(TSetup,TAcc,TWitness,TVerify,TUpdate). Namely, for a Merkle-tree with N =
2	 leaves, algorithm TSetup takes a random A ∈ Z

n×m
q to form a hash function

hA; Algorithm TAcc accumulates all values R = {d0, ...,dN−1} of each length
nk on leaves into the root u via the recursive computations shown as ub1,...,bi

=
hA(ub1,...,bi,0,ub1,...,bi,1) for any node at depth i ∈ [�] and u = hA(u0,u1), where
(b1, ..., bi) ∈ {0, 1}i; Algorithm TWitness returns ⊥ if d /∈ R, otherwise computes
the witness w =

(

(j1, ..., j), (uj1,...,j�−1,j̄�
, ...,uj1,j̄2 ,uj̄1)

)

∈ {0, 1}	 ×
(

{0, 1}nk
)	

demonstrating that d = dj ∈ R for some j ∈ [0, N − 1] with bin(j) = (j1, ..., j),
where b̄ denotes the bit 1 − b for a chosen bit b; Then, given a witness
w =

(

(j1, ..., j), (w	, ...,w1)
)

∈ {0, 1}	 ×
(

{0, 1}nk
)	, and set v	 = d, algo-

rithm TVerify computes the path v	−1, ...,v0 ∈ {0, 1}nk via the recursive for-
mula vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1,vi+1) for any j ∈ [0, N − 1]
and i ∈ [� − 1] with initial setting u = v0; Finally, when a value at position j is
replaced by p, algorithm TUpdate(bin(j),p) efficiently updates the accumulator
by simply updating the hash values of nodes on path from the specific leaf to
the root, then the algorithm TWitness outputs the updated paths and maintains
other values unchanged.

Lattice-Based Group Encryption with Full Dynamicity 161

2.3 GPV Dual Encryption

The GPV encryption presented in [18] features the public-key anonymity and
is efficient because of being free of lattice trapdoors. We now recall a variant
that would be used in our construction. Choose positive integers n and q ≥ 2
and set k = �log q� and m = 2nk. Select a random public matrix A ∈ Z

n×m
q .

Given a Gaussian parameter σ, a Gaussian distribution DZm,σ and an error
distribution χm, one samples a short matrix E from Dm

Zm,σ as the secret key
sk, and computes a corresponding public matrix U = A · E ∈ Z

n×m
q as the

public key pk. To encrypt a message m ∈ {0, 1}m, one samples a random vector
s ←↩ U({0, 1}n) and two random vectors x,y ←↩ χm to compute the ciphertext
c = (c1, c2) as: c1 = A� · s + x, c2 = U� · s + y + m · � q

2. When the decryptor
wants to recover the message m, he uses the preserved key sk = E to compute
�(c2 − E� · c1)/ q

2.

2.4 Zero-Knowledge Argument of Knowledge

A zero-knowledge argument system of knowledge (ZKAoK) is a two-party inter-
active protocol, where a prover P triggers a proof to convince the verifier V that
he knows a witness of the specific statement while not revealing any additional
information. More formally, given an NP relation defined by a set of statements-
witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗, the associated ZKAoK is defined via
an interactive game 〈P,V〉 with completeness δc and soundness error δs as:

• Completeness. For any given (y, w) ∈ R, Pr[〈P(y, w),V(y)〉 �= 1] ≤ δc.
• Soundness. Given any (y, w) /∈ R,∀ PPT ̂P: Pr[〈 ̂P(y, w),V(y)〉 = 1] ≤ δs.

In the lattice setting, the Stern-like argument system [41] is a generic frame-
work with statistical ZK property and soundness 2/3, and has been widely
applied in the constructions of advanced cryptographic schemes [23,25,26,30]. Its
key idea is to use “decomposition-extension-permutation” techniques to trans-
form the targeted NP relations into those suitable for the framework, which in
general increases double to four times communication cost and makes the system
quite inefficient in practice together with soundness 2/3. In this work, we use
a currently presented framework referred as Yang et al.’s argument system [43]
which uses novel techniques to capture the computational ZK property and an
inverse polynomial soundness. Let us recall it below.

The Abstraction of the Argument System. The desired ZKAoK system
provided in Sect. 4 is covered within the following abstraction:

R = {(M,y), (x) : M · x = y ∧ x ∈ cond}, (1)

where M,y are the public matrix and vector, respectively, and the vector x
is the secret witness, additionally cond represents the set of conditions that
x should satisfy, which covers all possible constraints such as short vectors,
quadratic relations. Actually, the set cond is always equally represented by a
set M = {(h, i, j)} consisting of index tuples of x that satisfy the relation
x[h] = x[i] · x[j].

162 J. Pan et al.

3 Model and Security Requirements of Fully Dynamic
Group Encryption

In this section, by introducing a time factor and a group updating algorithm into
the KTY model [21], also taking less oracles than that of [35], we provide the
formalized model and security definitions of the fully dynamic group encryption
(FDGE) primitive, which are appropriately upgraded and modified from the KTY
model [21] that is only suitable for partially dynamic groups.

Like the KTY model [21], the FDGE also involves several parties: a group
manager (GM) that managers a group of users, an opening authority (OA) that
is empowered to revoke the anonymity of recipients should the misbehavior arise,
and a set of prospective users as well as a sender producing well-formed cipher-
texts for certified group members. In the forthcoming model, users join/leave the
group under the permission of GM who can regularly edit and publish authen-
tic group information infoτ at growing epoch τ , thereby anyone can learn the
knowledge about changes of the group including, current/excluded group mem-
bers. Additionally, by comparing two group information infoτ1 and infoτ2 under
the convention that τ1 < τ2 if infoτ1 is published before infoτ2 , one can even
identify revoked users at the recent epoch. The formalized fully dynamic group
encryption is defined via the following tuple of algorithms:

• SETUP(λ): This algorithm consists of three procedures and generates group
public key gpk = (pp, pkGM, pkOA) as follows:

– SETUPinit(1λ): On input the security parameter λ, output public param-
eters pp.

– SETUPGM(pp): Given pp, output the GM’s key pair (pkGM, skGM).
– SETUPOA(pp): Given pp, output a key pair (pkOA, skOA) for the OA.

An interaction occurs between the GM and the OA, successfully creating group
public key gpk at its end, while the GM initializes the group information info
and the registration table reg.

• UKGEN(pp): On input pp, this algorithm produces a user key pair (pkU, skU).
• 〈JOIN(skU), ISSUE(skGM)〉(infoτ , gpk, pkU): This is an interaction run by the

GM and a prospective user at epoch τ , whose successful completion enrolls
a new group member with an identifier uid and makes the algorithm JOIN
and algorithm ISSUE store group member secret key sk[uid] and public key
certificate certpkU in the table reg with same index, respectively.

• GUPDATE(gpk, skGM, infoτcurrent ,S, reg): Given gpk, skGM, infoτcurrent , table
reg, a set S of active users to be removed, GM runs this algorithm to gen-
erate new group information infoτcurrent+1 and update the table reg, while
advancing the epoch and outputting ⊥ if there is no change to the group.

• 〈Gr,R, sampleR〉(pp): Given pp, procedure sampleR samples a statement-
witness pair (x,w) ∈ R by using the key pair (pkR, skR) itself produced
by procedure Gr, where skR may be empty in the most of real realizations.

Lattice-Based Group Encryption with Full Dynamicity 163

• ENC(gpk, pkU, certU, infoτ , x, w, L): This algorithm is executed by sender to
compute a group encryption Ψ on witness w with a label L under some public
key pkU. It returns ⊥ if the target group user is inactive at epoch τ .

• DEC(skU, Ψ, L): The target receiver decrypts the ciphertext Ψ via this algo-
rithm.

• OPEN(skOA, infoτ , reg, Ψ, L): This algorithm is run by OA to return an iden-
tity uid of a group member who has secret information to decrypt the cipher-
text together with a proof π attributing Ψ to user uid or to return (⊥, π) if it
fails to trace the receiver.

• 〈P(pkU, certU, w, coinsΨ),V(πΨ)〉(gpk, infoτ , x, Ψ, L): This is an interactive
procedure run between sender and verifier which, given inputs, convinces
verifier that the ciphertext Ψ is well-formed and is actually generated for one
of active group members at epoch τ .
For security requirements, as in [21], the FDGE scheme considers correctness,
message secrecy, anonymity and soundness, whose definitions are given via
corresponding experiments below, respectively.

Correctness asks that a ciphertext generated by a genuine sender is always
decrypted successfully by algorithm DEC, and that procedure OPEN can always
identify the receiver, as well as produces a proof that can be accepted by verifier.

Definition 3. The correctness is satisfied if the following experiment returns 1
with negligible probability.

Experiment Expcorr(λ)

pp ← SETUPinit(1λ); (pkR, skR) ← GR(1λ); (x,w) ← sampleR(pkR, skR);
(pkGM, skGM) ← SETUPGM(pp); (pkOA, skOA) ← SETUPOA(pp);
〈pk, sk, certpk|uid, pk, certpk, infoτ 〉 ← 〈Juser, JGM(skGM)〉(pkGM, infoτ);
if IsActive(infoτ , reg, uid) = 0, return 0.
Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w,L);
πΨ ← P(pkGM, pkOA, pk, certpk, infoτ , x, w, Ψ, L, coinsΨ).
if

(

(w �= DEC(sk, Ψ,L))∨(pk �= OPEN(skOA, infoτ , reg, Ψ, L))
∨(V(pkGM, pkOA, infoτ , x, Ψ, L, πΨ)=0)

)

then return 0 else return 1.

Message Secrecy demands that it is difficult for any PPT adversary to dis-
tinguish a ciphertext generated by a random plaintext from a one done by a
specific relation pair, even if the adversary can corrupt all parties except the
honest receiver via accessing to the following stateful and stateless oracles:

– DEC(sk,·): is a stateless decryption oracle with a restriction not to decrypt a
ciphertext-label pair (Ψ,L) termed as DEC¬〈Ψ,L〉.

– CHb
ror(λ, pk, τ, w, L): is a one-time oracle used for generating real-or-random

challenge ciphertexts according to the choice of coin b at epoch τ . It returns
(Ψ, coinsΨ) with Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w, L) if b = 1. Oth-
erwise, return (Ψ, coinsΨ) with Ψ ← ENC(pkGM, pkOA, pk, certpk, infoτ , w′, L)
where w′ is a uniformly random plaintext of length O(λ) sampled in the
plaintext space, and coinsΨ represents the random coins used to compute Ψ .

164 J. Pan et al.

– PROVEb
P,P′(pkGM, pkOA, pk, certpk, infoτ , x, w, Ψ, L, coinsΨ): is a stateful oracle

that generates an actual proof πΨ or a simulated proof π′
Ψ for epoch τ by

running the real prover P when b = 1 and running the simulator P ′ else wise.
It can be invoked a polynomial number times.

The usage of these oracles describes a experiment where the whole system is
under the control of adversary except the member chosen as recipient. It shows
the advantage of the adversary in mounting the attack against message secrecy.

Definition 4. The message secrecy is achieved if, for any PPT adversary, the
absolute difference of probability of outputting 1 between the following experi-
ments Expsec−1

A (λ) and Expsec−0
A (λ) is negligible.

Experiment Expsec−b
A (λ)

pp ← SETUPinit(1λ); (aux, pkGM, pkOA) ← A(pp);
〈pk, sk, certpk|infoτ , aux〉 ← 〈Juser,A(aux)〉(pkGM, infoτ);
(aux, x, w, L, pkR) ← ADEC(sk,·)(aux); if (x,w) /∈ R then return 0;
b ←↩ {0, 1}; (Ψ, coinsΨ) ← CHb

ror(λ, pk, τ, w, L);
b′ ← APROVEb

P,P′ (pkGM,pkOA,pk,certpk,infoτ ,x,w,Ψ,L,coinsΨ),DEC¬〈Ψ,L〉(sk,·)(aux, Ψ);
Return b′.

Anonymity requires that it is infeasible for any PPT adversary to distinguish
ciphertexts computed under two valid public keys of its choice, even if it controls
the entire system except the OA and two well-behaved users via accessing the
following oracles:

– CHb
anon(pkGM, pkOA, pk0, pk1, infoτ , w, L): is a challenge oracle that returns

a pair (Ψ, coinsΨ) consisting of a ciphertext Ψ ← ENC(pkGM, pkOA, pkb,
certpkb

, infoτ , w, L) and the coin tosses coinsΨ used for generating Ψ when
a plaintext w and two possible public keys pk0, pk1 are given.

– USER(pkGM, τ): is a stateful oracle that simulates two instantiations of Juser
via valid certificates {certpkb

}1b=0 supplied by adversarial GM in string keys at
epoch τ , where honest outputs termed as {(pkb, skb, certpkb

)}1b=0 are stored.
– OPEN(skOA, infoτ , reg, ·): is a stateless oracle that executes opening operation

on behalf of OA for the received ciphertext and reveals the identity of the
receiver.

These above oracles can be used in a experiment that models the anonymity
property, which reveals the advantage of adversary in this attack game.

Definition 5. The FDGE scheme satisfies anonymity if, for any PPT adver-
sary, the absolute difference of probability of outputting 1 between the following
experiments Expanon−1

A (λ) and Expanon−0
A (λ) is negligible.

Experiment Expanon−b
A (λ)

pp ← SETUPinit(1λ); (pkOA, skOA) ← SETUPOA(pp);
(aux, pkGM) ← A(pp, pkOA); aux ← AUSER(pkGM,τ),OPEN(skOA,infoτ ,reg,·)(aux);

Lattice-Based Group Encryption with Full Dynamicity 165

if keys �= (pk0, sk0, certpk0 , pk1, sk1, certpk1 , infoτ) (aux) then return 0;
(aux, x, w, L, pkR) ← AOPEN(skOA,infoτ ,τ,·),DEC(sk0,·),DEC(sk1,·)(aux);
if (x,w) /∈ R return 0; b ←↩ {0, 1}; (Ψ, coinsΨ) ← CHb

anon(pkGM, pkOA, pk0, pk1,
infoτ , w, L);
b′ ← AP(pkGM,pkOA,pkb,certpkb ,infoτ ,x,w,Ψ,L,coinsΨ),OPEN¬〈Ψ,L〉(skOA,infoτ ,reg,·),

DEC¬〈Ψ,L〉(sk0,·),DEC¬〈Ψ,L〉(sk1,·)(aux, Ψ). Return b′.

Soundness requires that it is infeasible for any PPT adversary to produce a
convincing valid ciphertext that opens to unregistered group member or invalid
public key, even if it can choose OA’s key, and is given access to the REG oracle.
In the following, database,PK and C are respectively used to represent the sets
of registered public keys, valid keys and valid ciphertexts.

Definition 6. An FDGE scheme is sound if, for any PPT adversary, the exper-
iment below returns 1 with negligible probability. Experiment Expsound

A (λ)

pp ← SETUPinit(1λ); (pkOA, skOA) ← SETUPOA(pp);
(pkGM, skGM) ← SETUPGM(pp);
(pkR, x, Ψ, πΨ , pkGM, aux, infoτ) ← AREG(skGM,·)(pp, pkGM, pkOA, skOA, infoτ);
if V(Ψ,L, πΨ , pkGM, pkOA, infoτ) = 0 return 0;
pk ← OPEN(skOA, infoτ , reg, Ψ, L); if

(

(pk /∈ database) ∨ (pk /∈ PK) ∨
(Ψ /∈ Cx,L,pkR,pkGM,pkOA,pk)

)

then return 1 else return 0.

To meet the above security requirement that pk must belong to the language
of valid public keys, we use the Gaussian short vectors as shown in Sect. 5.1 to
generate dense space for public keys, which simplifies our definitions.

4 The Underlying Zero-Knowledge Layer

In this section, we first introduce the needed decomposition techniques in
Sect. 4.1. Then, we provide two generic and efficient zero-knowledge proofs for
inequality relations of binary vectors (one is for non-zero binary vectors, and
the other is for Hamming distance) that can work well in any lattice-based ZK
framework and serve for our argument system. Finally, based on the techniques
prepared in previous sections, we establish the argument system in Sect. 4.3
in the Yang et al.’s framework [43] recalled in Sect. 2.4. The argument system
obtains great efficiency gains compared to that run in the Stern-type framework
[41] since our system avoids using the “decomposition-extension-permutation”
techniques (which at least increases the witness size double to four times) and
also avoids repeating the protocol hundreds times (which incurs a drastic increase
in communication cost) towards a negligible soundness as in [41].

4.1 Warm-Up: Decompositions

We briefly recall several decomposition techniques from [24,30] that would be
used in constructing our argument system. We start with the integer decompo-
sition function, i.e., for any non-negative integer i, let δi = �log(i + 1), define

166 J. Pan et al.

bin(i) = (i(1), ..., i(δi))� ∈ {0, 1}δi and gδi
= (1, 2, ..., 2δi−1), then it follows that

i =
∑δi

j=1 2j−1 · i(j) = gδi
· bin(i).

To decompose any integer i ∈ [0, β] for a positive integer β, set
δβ : = �log2(β + 1) and compute an integer sequence {β1, ..., βδβ

} via βj =

�β+2j−1

2j �,∀j ∈ [1, δβ]. Then, we have i =
∑δβ

j=1 βj · i(j) = g′
δβ

· bin′(β), where
g′

δβ
= (β1, ..., βδβ

) and bin′
β(i) = (i(1), ..., i(δβ)) ∈ {0, 1}δβ which is a binary

tuple computed in an interactive manner. This defines an integer decomposition
function as idecβ(i) = (i(1), ..., i(δβ))� ∈ {0, 1}δβ for any integer i ∈ [0, β]. Com-
bining with Hm,β = Im ⊗ g′

δβ
, we can similarly define decomposition functions

for vectors and matrices (see, [25,26]):

• vdecm,β : [0, β]m → {0, 1}mδβ maps any β-bounded non-negative vector v =
(v1, ..., vm)� to (idecβ(v1)

�‖ ... ‖idecβ(vm)�)� by applying idecβ(·) to each
entry of v, which holds that Hm,β · vdecm,β(v) = v.

• mdecn,m,q : Zm×n
q → {0, 1}nmδq−1 maps a matrix X= [x1| ... |xn] ∈ Z

m×n
q

to the size-nmδq−1 binary vector (vedcm,q−1(x1)
�‖ ... ‖vedcm,q−1(xn)�)

�

by imposing vdecm,q−1(·) on the each column of X and concatenating the
obtained binary vectors in the increasing order of the indexes of columns.

We note that, hereunder this section, when needing to decompose a bounded-
β vector v ∈ [−β, β]m, we will first lift it to v + β ∈ [0, 2β]m, then perform
vdecm,2β(·) on the transformed vector where β = (β, ..., β) consists of m’s β,
with taking appropriate modifications for the involved matrices and vectors. This
transformation-and-decomposition strategy will be quite useful for the construc-
tion of our ZK argument system.

4.2 Proving Inequality Relations for Binary Vectors

In this section, we first provide a ZK proof for demonstrating a binary vector p
is non-zero (used to demonstrate a group user is activated) that can efficiently
work well in any lattice-based ZK framework, on which we construct a ZK proof
for the Prohibitive message filtering policy (used to demonstrate the validity of
the encrypted witness) which is achieved over lattices at the first time and is
generic and efficient. Startlingly, our proof methods can be extended to prove
inequalities of general vectors, thus it is independent of interest.

Proving Binary Vectors p �= 0. Let n, q be positive integers with n < q and
p ∈ {0, 1}n, our aim is to prove the secret p �= 0 in the Yang et al.’s framework
[43]. Actually, this problem has been solved in the Stern-like framework [31]
in spite of inefficiency and worse usability (i.e., it can not work in the Yang
et al.’s framework [43]), where the system was established by appending n − 1
“dummy” entries to extend the targeted vector p ∈ {0, 1}n to p′ ∈ {0, 1}2n−1

of Hamming weight n exactly and running the Stern-like protocol. To handle
the task in the Yang et al.’s framework [43], one may find a possible solution
in [27] where numerous lattice-based range arguments were developed to prove

Lattice-Based Group Encryption with Full Dynamicity 167

private integer relations such as X ∈ [α, β] for public integers α, β ≥ 0. But the
techniques used there are invalid in proving that one knows at least a private
Xj among a given set {X1, ...,Xn} each of which is bounded by [αi, βi] with
i ∈ [n] satisfies that αj < Xj ≤ βj , which essentially generalizes our problem
when setting p = (X1, ...,Xn)� and αi = 0 and βi = 1 for all i ∈ [n]. We now
develop new techniques to address this problem.

An important observation is that, the task to prove p �= 0 is equivalent to
that proving that there is at least an entry of p is > 0. To end this, intuitively,
it suffices to prove the p’s Hamming weight is ≥ 1. In the following, we provide
two efficient solutions, where the first is somewhat tedious, and then second is
succinct and will be applied in the construction of our argument system.

Let Jn = (1, ..., 1)� ∈ Z
n
q of which all entries are 1’s. Suppose that the

Hamming weight of binary vector p is ≥ 1, then we can establish our argument
system by proving that one knows a complementary binary vector q ∈ {0, 1}n

with Hamming weight ≤ n − 1 such that p + q = Jn mod q. The inequality can
be solved by decomposing J�

n · q via the vector g′
δβ

with setting β = n − 1 as
in Sect. 4.1. Then, it suffices for a prover to prove that he knows private vectors
p,q ∈ {0, 1}n and q′ ∈ {0, 1}δn−1 such that the following conditions hold:

{

p + q = Jn mod q,

J�
n · q = g′

δn−1
· q′ mod q.

(2)

Note that the above solution not only works well in the Yang et al.’s frame-
work [43] but does well in the Stern-like framework [31], and is more efficient
when used in the previous framework. In fact, to further achieve efficiency gains,
we can directly go to prove the Hamming weight of p is ≥ 1, i.e., go to prove
J�

n · p ≥ 1. Interestingly, we observe that the proof for this relation can be
reduced to that one knows a secret non-negative integer b ≤ n − 1 such that
J�

n ·p = 1+b. Combining with the decomposition techniques defined in Sect. 4.1,
we equally write the relation as (assuming a private vector q ∈ {0, 1}δn−1)

J�
n · p − g′

δn−1
· q = 1 mod q. (3)

The last above solution is more efficient since it saves 50% size compared to
the previous one, and both present solutions are generic and more efficient when
working in [43] than that of [31]. Besides, our solutions can be readily extended
to prove that one knows a private x having l∞ or l2 norm bounded by [α, β]
with integers α, β ≥ 0.

Proving Bounded Hamming Distance. In general, there two commonly
used message filtering policies termed as “Permisive” and “Prohibitive”. Our task
is to establish the argument system for the latter, and that for previous is trivial
and is omitted in this work. Given positive integers m ≥ t ≥ d, and binary
vectors m ∈ {0, 1}m and yi ∈ {0, 1}t with i ∈ [m − t + 1], we use yi � m to
mean that yi is a substring of m, i.e., there exist strings xi, zi ∈ {0, 1}≤m−t

168 J. Pan et al.

such that [x�
i |y�

i |z�
i]� = m. Actually, the relation yi � m is equivalent to the

equality Bi · m = yi where Bi ∈ Z
t×m
q is a public matrix of the form [0|It|0].

Now we define the message filtering policy “Prohibitive” used in this work:

Rprohi = {((si)e
i=1,m) ∈ ({0, 1}t)e × {0, 1}m : dH(si,y) ≥ d,∀i ∈ [e],∀y � m)}.

To build an argument system for the relation Rprohi, we begin with building a
system for the simple relation dH(x,y) ≥ d with x,y ∈ {0, 1}n being public
and secret. In the context of lattices, the proof is needed to be proceeded in
mod q (involved with the dimension n for security, e.g., q ≥ √

n) instead of
mod 2, which is always an open problem. Now we use a novel idea to address
it. For any x, y ∈ {0, 1}, we observe that x ⊕ y = x + y − 2x · y, which follows
that x ⊕ y = x + y − 2(x1 · y1, ..., xn · yn)� for binary vectors x = (x1, ..., xn)�

and y = (y1, ..., yn)�. Then, the task to prove dH(x,y) ≥ d can be reduced to
proving ‖x+y−2(x1 ·y1, ..., xn ·yn)�‖1 ≥ d. By extending the proof method just
developed above, in the setting of mod q, our task is reduced to proving that we
hold a secret vector z ∈ {0, 1}δn−d such that the following equation holds:

J�
n · (x + y − 2(x1 · y1, ..., xn · yn)�) − g′

δn−d
· z = d mod q.

Based on the above result, for each i ∈ [e], j ∈ [m − t + 1], let si =
(si,1, ..., si,t)�, yj = Bj · m with yj = (yj,1, ..., yj,t) and B�

j,1, ...,B
�
j,t be the

row vectors of Bj (which essentially ensures that yj,k = B�
j,k · m). Then, the

task to prove the relation Rprohi is equal to proving that one knows secret vec-
tors zi,j ∈ {0, 1}δm−d such that (∀i ∈ [e], j ∈ [m − t + 1]):

J�
n · (si + Bj · m − 2(si,1 · B�

j,1, ..., si,t · B�
j,t)

� · m) − g′
δm−d

· zi,j = d mod q. (4)

Then, let Bi,j = J�
n · (Bj − 2(si,1 · B�

j,1, ..., si,t · B�
j,t)

�) ∈ Z
1×m
q and

di,j = d + J�
n · si ∈ Zq, which is followed by B[i] = [B�

i,1, ...,B
�
i,m−t+1]

� ∈
Z
(m−t+1)×m
q and B = [B�

[1], ...,B
�
[e]]

� ∈ Z
(m−t+1)e×m
q . Accordingly, build z[i] =

[z�
i,1, ..., z

�
i,m−t+1]

� ∈ Z
(m−t+1)δm−d
q , z = [z�

[1], ..., z
�
[e]]

� ∈ Z
(m−t+1)eδm−d
q , and

d[i] = [di,1, ..., di,m−t+1]� ∈ Z
m−t+1
q and d = [d�

[1], ...,d
�
[e]]

� ∈ Z
(m−t+1)e
q . Com-

bining with the definition Ig′ = I(m−t+1)e ⊗ g′
δm−d

, the relation Rprohi is equally
written as:

[B, Ig′] ·
(

m
z

)

= d mod q. (5)

Run the above result in the Yang et al.’s framework [43], then the argument
for bounded Hamming distance is established. It is seen that the above proof
method is also generic and efficient.

4.3 The Underlying ZKAoK

We now state our argument system under the abstract framework provided in [43]
as recalled in Sect. 2.4 for a wide of lattice relations to fulfill our intricate task.

Lattice-Based Group Encryption with Full Dynamicity 169

Given the same settings of parameters as in Sect. 5.1, let bin(j) = (j1, ..., j) ∈
{0, 1}	, j = bin(j)�, A = [A1|A2] and aj,i = mdecn,m,q(U�

j,i) for each i ∈ {1, 2}.

As in [26,31], take the operator ext(·, ·) to express ext(b,v) =
(

b̄ · v
b · v

)

. Our

protocol can be summarized as follows:

Public Input: Matrices A, G, F, B, Arec, Aoa, Uoa,1, Uoa,2, I′
g, and vectors

uτ , Jnk, g′
δnk−1

, {c(1)rec,i, c
(2)
rec,i, c

(1)
oa,i, c

(2)
oa,i}i∈{1,2},d.

Prover’s Goal: Prove possession of the secret inputs in the following system
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j = (j1, ..., j)�,
(

pj , (w
(j)
	 , ...,w(j)

1)
)

∈ ({0, 1}nk)	+1 with pj �= 0,

qj ∈ {0, 1}δnk−1 ,aj,1,aj,2 ∈ {0, 1}nmk,

m ∈ {0, 1}m, z ∈ {0, 1}(m−t+1)eδm−d ,

i = 1, 2 : srec,i, soa,i ∈ {0, 1}n,

xrec,i,yrec,i,xoa,i ∈ [−B,B]m,yoa,i ∈ [−B,B]	

(6)

such that the following system of modular linear equations holds:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

G · uτ = A · ext(j1,v(j)
1) + A · ext(j̄1,w(j)

1) mod q,v(j)
	 = pj ,

i ∈ [1, � − 1] :
0 = A · ext(ji+1,v

(j)
i+1) + A · ext(j̄i+1,w

(j)
i+1) + (−G) · v(j)

i mod q,

1 = J�
nk · pj + (−g′

δnk−1
) · qj mod q,

0 = G · pj + (−F) · (a�
j,1||a�

j,2)
� mod q,

r = {1, 2} : c(1)rec,r = A�
rec · srec,r + xrec,r mod q,

c(2)rec,r = U�
j,r · srec,r + yrec,r + m · � q

2 mod q,

d = [B, I′
g] · [m�, z�]� mod q,

c(1)oa,r = A�
oa · soa,r + xoa,r mod q,

c(2)oa,r = U�
oa,r · soa,r + yoa,r + j · � q

2 mod q,

(7)

To proceed the proof, we first build two argument systems Π1 suitable for
accumulator values problem and plain encryption, and Π2 suitable for encryption
with hidden matrices, respectively, then establish the final system ΠGE which
covers all the above involved relations. The concrete steps are made as follows:

Build System Π1. This system covers (� + 6) equations consisting of the first
(� + 2) and the last four ones from the above equation system (7). Our task is
to construct a ZKAoK system for the following relation:

R1 = {(M1,y1), (x1) : M1 · x1 = y1 ∧ x1 ∈ cond1}. (8)

In the above, the matrix M1 consists of the involved public matrices and
vectors {A,G,Jnk,g′

δnk−1
,F,Aoa,Uoa,1,Uoa,2} by an appropriate arrangement,

and vectors x1 and y1 are similarly made by private inputs {j, {vi}i, {wi}i,

pj ,qj ,q′
j , {soa,i}i, {xoa,i}i, {yoa,i}i} and public vectors {G · uτ ,Jnk, {c(1)oa,i,

170 J. Pan et al.

c(2)oa,i}i}, and the cond1 is the set of conditions that the private inputs should meet
given in system (6). We now describe the constructions of desired variables.

We achieve our goal by a sequence of steps. Let b1,b2 be constant vectors,
respectively, of the form b1 = (B, ..., B)� ∈ Z

m
q and b2 = (B, ..., B)� ∈ Z

	
q.

Then, conduct the following.

1. Transform the inputs bounded by some positive integer to ones with non-
negative entries. Concretely, for each i ∈ {1, 2}, set x′

oa,i = xoa,i + b1 ∈
[0, 2B]m, and y′

oa,i = yoa,i + b2 ∈ [0, 2B]	.
2. Decompose the above newly transformed vectors x′

oa,i,y
′
oa,i. For each i ∈

{1, 2}, apply the operator vdec(·) defined in Sect. 4.1 to the above targeted
vectors to produce binary vectors x′′

oa,i,y
′′
oa,i of size mδ2B and �δ2B , respec-

tively, such that x′
oa,i = Hm,2B · x′′

oa,i and y′
oa,i = H	,2B · y′′

oa,i.

3. Modify the involved public vectors accordingly. For each i ∈ {1, 2}, set c(1)
′

oa,i =

c(1)oa,i + b1 and c(2)
′

oa,i = c(2)oa,i + b2.
4. Rewrite the first � equations. For each i ∈ [1, �], by A = [A1|A2] and the

operator ext(·, ·), we have A · ext(ji,v
(j)
i)+A · ext(j̄i,w

(j)
i) = A1 ·vi + (A2 −

A1) ·jivi +A2 ·wi +(A1−A2) ·jiwi. Let A(1,2) = [A1|A2−A1|A2|A1−A2],
A[1,2] = [−G|03|A1|A2 − A1|A2|A1 − A2] (where 03 means a block of form

[0|0|0] ∈ (Zn×m
q)3) and u′ = [(G·uτ)�|0�]�, set a matrix A[1,] =

⎛

⎜

⎝

A(1,2)

A[1,2]

. . .

⎞

⎟

⎠

consisting of a A(1,2) and (� − 1)’s A[1,2] such that, for each i ∈ [2, � − 1], the
component −G from the i-th block A[1,2] and the component A1 from the
last block A(1,2) or from the last A[1,2] are in the same column. Accordingly,
for each i ∈ [1, �], we set xi,vi,wi

= [v�
i |(jivi)�|w�

i |(jiwi)�]�, and further
set x	,v,w = [x�

1,v1,w1
| · · · |x�

	,v�,w�
]�, which gives that u′ = A[1,] · x	,v,w.

After the above treatments, the targeted system is equally changed as:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u′ = A[1,] · x	,v,w,

1 = J�
nk · pj + (−g′

δnk−1
) · qj ,

0 = G · pj + (−F) · [a�
j,1|a�

j,2]
� mod q,

i ∈ {1, 2} : c(1)
′

oa,i = Aoa · soa,i + Hm,2B · x′′
oa,i mod q,

c(2)
′

oa,i = U�
oa,i · soa,i + H	,2B · y′′

oa,i + j · � q
2� mod q.

(9)

Basing on the above preparations, we obtain the desired variables as follows:

1. Build the public matrix M1 and the public vector y1. Set A′ :=
A[1,	−1],A′

1 := A2 − A1,A′
2 := A1 − A2, I′

	 := � q
2� · I	, g′ := −g′

δnk−1
,

F′ := −F, G′ := −G and H′
k := Hk,2B with k ∈ {�,m}. Use the matrices in

(9) to construct the desired matrix M1 and vector y1 as (here we abuse nota-
tion and use [A

′�|G′�]� to represent that the matrix G′ and the component
A1 from the last row of A′ are in the same column)

Lattice-Based Group Encryption with Full Dynamicity 171

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A′ 03 0 0 0 0 0 0 0 0 0 0 0 0 0

0 G′ 03 A1 A′
1 A2 A′

2 0 0 0 0 0 0 0 0 0

0 0 03 0 0 0 0 J�
nk g′ 0 0 0 0 0 0 0

0 0 03 0 0 0 0 0 0 Aoa H′
m 0 0 0 0 0

I′
� 0 03 0 0 0 0 0 0 U�

oa,1 0 H′
� 0 0 0 0

0 0 03 0 0 0 0 0 0 0 0 0 Aoa H′
m 0 0

I′
� 0 03 0 0 0 0 0 0 0 0 0 U�

oa,2 0 H′
� 0

0 0 03 G 0 0 0 0 0 0 0 0 0 0 0 F′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′

1

c
(1)′
oa,1

c
(2)′
oa,1

c
(1)′
oa,2

c
(2)′
oa,2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. Build the private input x1. Arrange the modified private inputs shown
in the system (9), establish the desired private vector x1 = (j�,x�

	,v,w,

q�
j , s�

oa,1,x
′′�
oa,1,y

′′�
oa,1, s

�
oa,2,x

′′�
oa,2,y

′′�
oa,2,a

�
j,1,a

�
j,2)

� with size n1, where n1 =
� + 2n + δnk−1 + 2(m + �)δ2B + 4�nk + 2nmk.

3. Build the set of conditions cond1. Let M1 be the set of triple indexes (h, i, l)
of x1 with h, i, l ∈ [n1] such that x1[h] = x1[i] ·x1[l]. The set M1 is equivalent
to the set cond1. We now state the structure of M1:
a. Observe that all entries of x1 are binary, we note that the choices (h, i, l) =

(i, i, i)i∈[n1] are in the set M1.
b. Now consider the corresponding choices of M1 for jivi, jiwi for all i ∈ [�]:

for jivi, the choices consist of (h, i, l) = (� + (4i′ − 3)nk + l′, i′, � + (4i′ −
4)nk + l′)i′∈[],l′∈[nk]. Whereas, for jiwi, the desired indexes are given by
(h, i, l) = (� + (4i′ − 1)nk + l′, i′, � + (4i′ − 2)nk + l′)i′∈[],l′∈[nk].

This constructs the argument system Π1 for the relation R1, and by running the
protocol in Sect. 4.3, the desired argument system is obtained.

Build System Π2. This system covers the remaining five equations from the
system (7). Our task is to construct a similar ZKAoK system for the following
relation:

R2 = {(M2,y2), (x2) : M2 · x2 = y2 ∧ x2 ∈ cond2}. (10)

As in the above system Π1, the involved variables are respectively defined. We
take similar strategies to proceed the present task.

1. For each i ∈ {1, 2}, transform the private inputs xrec,i,yrec,i to ones that
only have non-negative entries. Concretely, set x′

rec,i = xrec,i + b1,y′
rec,i =

yrec,i + b1,∈ [0, 2B]m.
2. Decompose the above newly generated vectors. For each i ∈ {1, 2}, impose

the function vdec(·) on these vectors, respectively, to yield size-mδ2B binary
vectors x′′

rec,i and y′′
rec,i such that x′

rec,i = Hm,2B · x′′
rec,i,y

′
rec,i = Hm,2B · y′′

rec,i.

172 J. Pan et al.

3. Change the corresponding public matrices and vectors. Consider the decom-
position of U�

j,i · srec,i with i = 1, 2. Let U�
j,i = [u(1)�

j,i |...|u(n)�
j,i] ∈ Z

m×n
q

and srec,i = (s(1)rec,i, ..., s
(n)
rec,i)

� ∈ {0, 1}n. In light of operators vdec(·) and

mdec(·), we have U�
j,i · srec,i = Σn

t=1u
(t)�
j,i · s

(t)
rec,i = Σn

t=1Hm,q−1 · a(t)
j,i · s

(t)
rec,i =

Hm,q−1 ·s�
rec,i,mk ·aj,i, where a(t)

j,i ∈ {0, 1}mk is the binary decomposition of the

vector u(t)�
j,i and srec,i,mk = (

mk′s times
︷ ︸︸ ︷

s
(1)
rec,i, ..., s

(1)
rec,i, ...,

mk′s times
︷ ︸︸ ︷

s
(n)
rec,i, ..., s

(n)
rec,i)

�. Additionally,

for all i = 1, 2, set vectors as: c(1)
′

rec,i = c(1)rec,i + b1 and c(2)
′

rec,i = c(2)rec,i + b1.

After making the above treatments, the targeted system is equally changed as:
⎧

⎪

⎨

⎪

⎩

i ∈ {1, 2} : c(1)
′

rec,i = A�
rec · srec,i + Hm,2B · x′′

rec,i mod q,

c(2)
′

rec,i = Hm,q−1 · s�
rec,i,mk · aj,i + Hm,2B · y′′

rec,i + m · � q
2 mod q,

d = [B, I′
g] · [m�, z�]� mod q,

(11)

This proceeds the following constructions of variables.

1. For simplicity, let H′′
m = Hm,q−1 and I′

m = � q
2�Im. Similar to what in system

Π1, build the public matrix M2 and the public vector y2 as

⎛

⎜

⎜

⎜

⎜

⎝

0 A�
rec 0 H′

m 0 0 0 0 0 0 0
0 0 H′′

m 0 H′
m 0 0 0 0 I′

m 0
0 0 0 0 0 A�

rec 0 H′
m 0 0 0

0 0 0 0 0 0 H′′
m 0 H′

m I′
m 0

0 0 0 0 0 0 0 0 0 B I′
g

⎞

⎟

⎟

⎟

⎟

⎠

and

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c(1)
′

rec,1

c(2)
′

rec,1

c(1)
′

rec,2

c(2)
′

rec,2

d

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

2. Build the private input x2. According to the public variables M2 and
y2 above, we build the private vector x2 = (a�

j,1,a
�
j,2, s

�
rec,1, (s

�
rec,1,mk ·

aj,1)�,x
′′�
rec,1,y

′′�
rec,1, s

�
rec,2, (s

�
rec,2,mk · aj,2)�,x

′′�
rec,2,y

′′�
rec,2,m

�, z�)� which has
size n2 = m + 2n + 2m(k + nk + 2δ2B) + (m − t + 1)eδm−d.

3. Consider the set of conditions cond2. Similarly, let M2 be the set of triple
indexes (h, i, l) of x2 with h, i, l ∈ [n2] such that x2[h] = x2[i] · x2[l]. It can
be seen that the defined set of indexes is equal to the original set cond2. Now
we present the structure of set M2:
a. Observe that all components of x2 are binary vectors, which gives that

such indexes (h, i, l) = (i, i, i) with i ∈ [n2] are in cond2.
b. In addition, the hidden matrix constraint in the original system is equally

to the conditions s�
rec,i,mkaj,i = s�

rec,i,mk · aj,i for each i ∈ {1, 2} as in
system (11). This allows us to compute another choice of indexes (h, i, l) =
(2nmk + n + (i′ − 1)mk + l′, 2nmk + i′, l′)i′∈[n],l′∈[mk] ∪ (3nmk + 2n +
2mδ2B + (i′ − 1)mk + l′, 3nmk + n + 2mδ2B + i′, nmk + l′)i′∈[n],l′∈[mk].

This completes the task of constructing argument system Π2 by running the
protocol given in Sect. 4.3.

Lattice-Based Group Encryption with Full Dynamicity 173

Build System ΠGE. The final system is the desired one which covers the system
Π1 and the system Π2 simultaneously, whose definition is shown as follows:

RGE = {(M,y), (x) : M · x = y ∧ x ∈ cond}. (12)

To build the system, we write M1 = [M1,1|M1,2] and M2 = [M2,1|M2,2], then

build M =
(

M1,1 M1,2 0
0 M2,1 M2,2

)

, where the blocks M1,2 and M2,1 respectively

represent the last column and the first column of M1 and M2. Accordingly, we

build x =
(

x1

x2/{[a�
j,1|a�

j,2]
�}

)

, y =
(

y1

y2

)

and cond = cond1 ∩ cond2, then a

system that is suitable for the framework established in [43] is obtained. Now
the family M of triples corresponding to the set cond is somewhat modified, i.e.,
M = M1 ∪ M′

2, where M′
2 = {(h, i, l)} = {(i, i, i)}i∈[n1+1,n1+n2−2nmk] ∪ (n1 +

n+(i′ −1)mk+ l′, n1+i′, n1−2nmk+ l′)i′∈[n],l′∈[mk]∪(n1+nmk+2n+2mδ2B +
(i′ − 1)mk + l′, n1 +nmk +n+2mδ2B + i′, n1 −nmk + l′)i′∈[n],l′∈[mk]. Then, the
prover runs an interactive protocol with the verifier as shown in [43], and the
desired ZKAoK system is established.

5 Our Fully Dynamic Lattice-Based Group Encryption

This section describes how to make use of the LNWX accumulator [31], GPV
dual encryption [18] and the ZKAoK system built in Sect. 4 to construct our
fully dynamic lattice-based group encryption in a relatively simple manner. In
our design, this scheme first achieves the “Prohibitive” message filtering policy in
the lattice setting and is free of lattice trapdoors throughout the design, resulting
into great efficiency gains. All of these efforts yield a much more practical group
encryption, also secure against the potential quantum attacks. We now briefly
interpret the overview of our techniques.

Our inspiration begins with a main observation that, by using an updatable
accumulator [31], one can directly upgrade the static group signature scheme
[26] to one offering full dynamicity [31] at a reasonable cost, where the GM
creates and revokes group membership via altering the hash value p of user’s
public key (non-zero for activated users and 0 otherwise). Following the idea,
combining with the GPV dual encryption [18], we consider: For a group of
N = 2	 members, given Arec ∈ Z

n×m
q , users sample two random short matri-

ces Ej,1,Ej,2 ∈ Z
m×m
q from a given Gaussian distribution to generate nearly

uniform Uj,i = A · Ej,i ∈ Z
n×m
q with i ∈ {1, 2}, resulting secret/public key

pairs (skj , pkj) = (Ej,1, (Uj,1,Uj,2)) with hash values pj = bin(F · [a�
j,1|a�

j,2]
�) ∈

{0, 1}nk where aj,i = mdecn,m,k(U�
j,i) ∈ {0, 1}nmk. Then, the manager builds an

efficiently updatable tree on top of values p0, · · · ,pN−1 and publishes the tree
root u as well as the witness for the fact pj was accumulated in u. Particularly,
the GM conducts: (i)-For an invalid user who has not joined the group or has
been excluded from the group, set the j-th leaf value pj as 0; (ii)-For a valid
user who joins the group and has not left the group, set the corresponding value

174 J. Pan et al.

as pj , the hash value of the public key pkj ; (iii)-With these rules, the GM can
build an efficiently updatable tree with comparative complexity O(log N), for
which he only needs to alter the values at specific leaves and along their paths
to the root rather than to reconstruct the whole tree when group information
changes. These executions guarantee that all active users (with p �= 0) in the
given epoch can be accumulated into the dynamic root while no any inactive
user cannot, which effectively separates active users who can receive the valid
ciphertexts from those who cannot in any growing epoch.

When moving to the stage of generating a group encryption, the sender
fetches the public key (Uj,1,Uj,2) and the associated membership witness w(j)

of the target group member from group information, then samples a witness in
light of the given Prohibitive message filtering policy and computes the ciphertext
(we apply the Naor-Yung transformation technique [34] for CCA-2 security) and
an associated proof which shows that the ciphertext is well-formed and pj �= 0.
In order for the proof to work in the Yang et al.’s ZK framework [43], we use the
proof techniques we just provided in Sect. 4.2 and then resort to the argument
system built in Sect. 4.3.

We also note that the dynamicity described in [31] is de facto limited to
once enrollment and once revocation. To realize stronger dynamicity that users
are allowed to join or leave the group at will, some modifications on procedures
〈JOIN, ISSUE〉 and GUPDATE are needed. Concretely, we take some significant
modifications for the procedures of user registering and user leaving, such that
group users indeed obtain the expected dynamicity as long as their reasonable
applications are accepted by the GM.

5.1 Description of the Scheme

As in [35], we assume that our scheme allows encrypting witness m ∈ {0, 1}m

that meets both message filtering policies termed as Permissive1 and Prohibitive
(shown in Sect. 4.2), which use constraints stronger than those used in [21,25].
For simplicity, we only take the latter policy in our scheme. Procedures of con-
structing the FDGE scheme are shown as follows.

• SETUPinit (1λ): This algorithm conducts the following:
– Set the possibly maximum number of group users as N = 2	 = poly(λ).
– Select integer n = O(λ) and prime q = ˜O(n2). Let k = �log q, m = 2nk.
– Pick a discrete distribution χ over Z of the bound B =

√
nω(log n).

– Select a Gaussian parameter σ = Ω(
√

n log q log n), and build a discrete
Gaussian distribution DZ,σ with upper bound β = σ · ω(log n).

– Take public parameters ppCOM for the homomorphic commitment scheme
like [5] which serves as a key building block in the construction of the
interactive game 〈P,V〉.

– Pick a random matrix F←↩ Zn×2nmk
q which hashes users’ public keys from

Z
n×2m
q to Z

n
q .

1 It is defined as Rpermi = {((si)
e
i=1,m) ∈ ({0, 1}t)e × {0, 1}m : ∃i ∈ [e]s.t.si � m}.

Lattice-Based Group Encryption with Full Dynamicity 175

– Set a gadget matrix G = In ⊗ gk with the definition given in Sect. 4.1.
Pick matrices Arec,Aoa ←↩ U(Zn×m

q) that will be used to generate public
keys for group users and the opening authority, respectively.

Output

pp= {N, �, λ, n, q, k,m,B, χ, σ, β, ppCOM,F,G,Arec,Aoa}.
• SETUPGM (pp): This algorithm picks a random matrix A = [A1|A2] ←↩

Z
n×m
q consisting of two same-size matrices, and samples skGM ←↩ {0, 1}m and

computes pkGM = A · skGM, resulting a key pair (pkGM, skGM) for the GM.
Here, we take pkGM as an identifier of the group and assume that only the
GM (i.e., the party holding skGM) can edit and publish the group information.

• SETUPOA (pp): This procedure samples two short secret matrices Eoa,i with
i ∈ {1, 2} from the distribution D	

Zm,σ to generate two corresponding matrices
Uoa,i = Aoa · Eoa,i ∈ Z

n×	
q , which forms the secret key skOA = Eoa,1 ∈ Z

m×	
q

and the public key pkOA = (Uoa,1,Uoa,2) ∈ (Zn×	
q)2 for the OA.

When GM receives pkOA sent from the OA, it executes the following:
1. Build table reg: =({reg[j][i]}j∈[0,N−1],i∈{1,2}) initialized as reg[j][1] =

0nk and reg[j][2] = 0. Note that the former records the user’s registered
public key, while the latter stores the epoch at which an execution of
joining protocol is performed.

2. Build a Merkle tree T on top of {reg[j][1]}j∈[0,N−1] whose initial values
are zero and then changed with users’ public keys by the GM when one
successfully joins the group or the group executes an updating operation.

3. Set the counter of users c := 0.
Then, GM outputs gpk = (pp, pkGM, pkOA) and publicizes the initial group
information info = ∅, while T as well as c is kept by him self.

• UKGEN(pp): For each j ∈ [0, N − 1] and each i ∈ {1, 2}, user Uj samples
two secret matrices Ej,i from the Gaussian distribution Dm

Zm,σ to generate
two corresponding public matrices Uj,i = Arec · Ej,i ∈ Z

n×m
q , which forms

the secret key skj = Ej,1 ∈ Z
m×m
q and the public key pkj = (Uj,1,Uj,2) ∈

(Zn×m
q)2. Then, the user computes a hash value pj = bin(F · (a�

j,1||a�
j,2)

�) ∈
{0, 1}nk with aj,i = mdecn,m,q(U�

j,i) ∈ {0, 1}nmk for each i ∈ {1, 2}. We note
that all honestly generated pkj ’s are non-zero and pairwise distinct, since the
probability that users take zero-matrix Uj,i or same matrix (i.e., Uj,i = Uj′,i′

for some j �= j′ or i �= i′), or finds a collision for hash function F is negligible
(due to the assumed hardness of the SIS problem).

• 〈JOIN(sk); ISSUE(skGM)〉(gpk, pk, infoτ): Let S0 be a set of indexes i of
which associated public keys of group users are zero, with the initialization
{reg[j][1]}. When a user holding key pair (pk, sk) with binary hash p wants
to join the group at the epoch τ , he sends p to the GM who proceeds the
following procedures with him after the request is accepted:
1. GM picks a random j ∈ S0 and sets a member identifier bin(j) ∈ {0, 1}	

for the user, and executes the following:
– Update T by running procedure TUpdateA(bin(j),pj).

176 J. Pan et al.

– Register the user to table reg as reg[j][1] := pj .
– Update the set S0 := S0 − {j}, increase the counter c := c + 1.

2. When specific enrollment requests at a same epoch are ending, basing
on the above updated results (note that the update process is essentially
like that of running algorithm TAccA(·) on reg[·][1] = {reg[j][1]}j for
the generation of root value u, thus same results are led), the GM runs
algorithm TWitnessA(reg[·][1],pj) to output a witness

w(j) =
(

(j1, ..., j) ∈ {0, 1}	, (w(j)
	 , ...,w(1)

1) ∈ ({0, 1})	
)

to the fact that pj is accumulated in u.
3. User checks the validity of w(j) by algorithm TVerifyA(u,pj , w

(j)) and
outputs ⊥ if it is unaccepted. Otherwise, set witj = (u, w(j)) as the witness
of pkj being accumulated into the root u, which plays the similar role to
a certificate of public key issued by the GM.

• GUPDATE(gpk, skGM, infoτcurrent ,S, reg): GM updates the group information
while advancing the epoch by running this algorithm as follows.
1. Let S be a set of verified public keys of group users to be removed. If

S = ∅, go to Step 2. Otherwise, let S = {reg[ji][1]}r
i=1 for some r ∈ [1, N]

and ji ∈ [0, N − 1] for all i ∈ [r], then GM runs TUpdateA(bin(ji),0nk) to
update the tree T , followed by S0 := S0

⋃

S.
2. By construction, each zero-value leaf in T corresponds to an inactive user,

i.e., one that is revoked or has not yet got membership. This means that
only active users capable of decrypting well-formed ciphertexts generated
in the new epoch τnew will have non-zero hash values of public keys {pj}j ,
that are accumulated in the root uτnew of the updated tree.
For each j, let w(j) ∈ {0, 1}	 × ({0, 1}nk)	 be the witness showing that pj

is accumulated in uτnew . GM publishes the updated group information:

infoτnew =
(

uτnew , {w(j)}j

)

.

As described below, in order to verify ciphertexts bound to epoch τ , the
verifier only needs to download the first component uτ of size ˜O(λ) bits.
Meanwhile, to compute a well-formed ciphertext, it is sufficient for sender to
download the witness of size ˜O(�λ) of some active user.

• 〈Gr, sampleR〉: Algorithm Gr outputs parameters (t, e) for the Prohibitive pol-
icy to form (pkR, skR)= ((t, e), ε). Then algorithm sampleR takes pkR as
input, and returns a set {s1, ..., se} ∈ ({0, 1}t)e and a witness m ∈ {0, 1}m

such that they hold for the relation Rprohi (i.e., meet the Eq. (5)).
• ENC(pkGM, pkOA, pkj ,witj , infoτ , {si}e

i=1,m, L): To encrypt the sampled wit-
ness m with the group information infoτ at epoch τ , sender first checks
whether a witness associated with bin(j) is contained in infoτ . If it is not
this case, return ⊥. Otherwise, the sender downloads uτ and some witness
(bin(j), (w	, ...,w1)) from infoτ , then parses pkOA as (Uoa,1,Uoa,2) and witj
as (uτ , w(j)) for some j ∈ [0, N − 1], and proceeds as follows.

Lattice-Based Group Encryption with Full Dynamicity 177

1. Encrypt the witness m ∈ {0, 1}m under Uj ’s public key pkj ∈ (Zn×m
q)2.

For each i ∈ {1, 2}, randomly take a tuple (srec,i,xrec,i,yrec,i) ∈
U({0, 1}n) × (χm)2 to form the private parameter set randrec =
(srec,i,xrec,i,yrec,i)i∈{1,2}. Compute the corresponding ciphertext crec,i =
(c(1)rec,i, c

(2)
rec,i) ∈ (Zm

q)2 as

c(1)rec,i = A�
rec ·srec,i +xrec,i mod q, c(2)rec,i = U�

j,i ·srec,i +yrec,i +m ·�q

2
, (13)

which follows the ciphertext crec = (crec,1, crec,2) ∈ (Zm
q × Z

m
q)2.

2. Encrypt the user identifier j ∈ {0, 1}	 of user Uj by taking simi-
lar operations as above. First take a random tuple (soa,i,xoa,i,yoa,i) ∈
U({0, 1}n)×χm ×χ	 for each i ∈ {1, 2}, which forms the private random-
ness set randoa = (soa,i,xoa,i,yoa,i)i. Compute the corresponding cipher-
text coa,i = (c(1)oa,i, c

(2)
oa,i) ∈ (Zm

q × Z
	
q) as

c(1)oa,i = A�
oa · soa,i + xoa,i mod q, c(2)oa,i = U�

oa,i · soa,i + yoa,i + j · �q

2
, (14)

which follows the identity ciphertext coa = (coa,1, coa,2) ∈ (Zm
q × Z

	
q)

2.
Finally, put the above ciphertexts together, we obtain the ciphertext Ψ =
(

crec, coa
)

and the state information coinsΨ =
(

randrec, randoa
)

.
• DEC(skj , Ψ, L): This algorithm takes the following steps to decrypt Ψ :

1. Parse the secret key skj as Ej,1 and the ciphertext Ψ as
(

crec, coa
)

.
2. Use the secret key Ej,1 to proceed the decryption of crec as

m =
⌊(

c(2)rec,1 − E�
j,1 · c(1)rec,1

)

/
⌊q

2

⌉⌉

. (15)

Then, output m if it satisfies the relation Rprohi. Otherwise, return ⊥.
• OPEN(skOA, infoτ , reg, Ψ, L): This algorithm decrypts the ciphertext coa =

(coa,1, coa,2) by proceeding the following steps:
1. Parse the secret key skoa as Eoa,1 and the ciphertext Ψ as

(

crec, coa
)

.
2. To reveal the targeted recipient, use Eoa,1 to decrypt the coa,1 as

j′ =
⌊(

c(2)oa,1 − E�
oa,1 · c(1)oa,1

)

/
⌊q

2

⌉⌉

. (16)

3. Check that whether the group information infoτ includes a witness con-
taining j′ or not, and return ⊥ if it is not this case.

4. Let j′ ∈ [0, N − 1] be the integer whose binary decomposition is j′, if
reg[j′][1] = 0nk in table reg, then return ⊥.

• 〈P(pkj ,witj ,m, coinsΨ),V(πΨ)〉(gpk, infoτ , {si}e
i=1, Ψ, L): Given the common

inputs gpk, infoτ , {si}e
i=1, Ψ and L. The prover’s secret inputs consist of a wit-

ness m ∈ {0, 1}m, pkj = (Uj,1,Uj,2) ∈ (Zn×m
q)2, certificate witj = (uτ , w(j))

and random coins coinsΨ =
(

srec,i,xrec,i,yrec,i; soa,i,xoa,i,yoa,i

)

i∈{1,2}, while
the verifier takes πΨ as its private input.
The prover constructs a zero-knowledge argument system πΨ to convince the
verifier that the secret inputs he makes satisfy the following conditions (details
of which are shown in Sect. 4):

178 J. Pan et al.

– G · pj = F · (a�
j,1||a�

j,2)
� mod q.

– TVerifyA
(

u,pj , w
(j)

)

= 1 and pj �= 0.
– Witness m satisfies the relation Rprohi defined in Sect. 4.2.
– For each i ∈ {0, 1}, vectors srec,i, soa,i are of the form {0, 1}, and vectors

xrec,i,yrec,i,xoa,i,yoa,i have infinity B-bounded norm.
– Equations of (13) and (14) hold.

Correctness. The correctness of the proposed group encryption follows from
correctly decrypting the GPV dual ciphertexts, which may cause some decryp-
tion errors. Indeed, during the decryption procedure of DEC(skj , Ψ,L), we have:

c(2)rec,1 − E�
j,1 · c(1)rec,1 = yrec,1 − E�

j,1 · xrec,1 + m ·
⌊q

2

⌋

. (17)

Note that ‖xrec,1‖∞ and ‖yrec,1‖∞ both have upper bound B, and ‖Ej,1‖∞ is
bounded by β. Then ‖yrec,1 −E�

j,1 ·xrec,1‖∞ ≤ B +mβB and is further bounded
by ˜O(n1.5) which is smaller than q/5 = ˜O(n2). As a result, the decryption
algorithm returns m with overwhelming probability. This gives the correctness
of DEC(skj , Ψ,L). For OPEN(skOA, Ψ,L), a similar analysis is proceeded and
‖yoa,1 − E�

oa,1 · xoa,1‖∞ is also bounded by ˜O(n1.5).
Finally, we argue that if a sender honestly follows all the prescribed algo-

rithms for the specific certified group user, valid witness-vectors to be used in
the protocol 〈P,V〉 are able to be computed and the present proof is accepted
by the verifier, thanks to the completeness of the argument system in Sect. 4.3.

5.2 Analysis of the Scheme

Security Analysis. We provide provable security analysis for our scheme under
the SIS and LWE hardness assumptions via the classical reduction methods.
These security results and associated proofs are shown in the following.

Theorem 1. The anonymity is satisfied if the LWEn,q,χ assumption holds.

Proof. We prove the anonymity using a sequence of indistinguishable games,
where we begin with running the experiment Expanon−0

A and end with the exper-
iment Expanon−1

A from Definition 5 to show that the advantage for the adversary
succeeding in the last game is negligible. For simplicity, hereunder we take PPT
algorithms A and B as the adversary and challenger, respectively, and denote
by Wi the event that the adversary A returns b′ = 1 in game i.

Game 1: This is the real experiment Expanon−0
A except that B retains Eoa,2,

which makes no any difference in the adversary’s view since Eoa,2 is not used
in the following real experiment. Concretely, the challenger B publicizes the
parameters pp containing Arec,Aoa ∈ Z

n×m,F ∈ Z
n×2nmk
q as a part, and sends

the opening public key pkOA = (Uoa,1,Uoa,2) ∈ (Zn×m
q)2 to A who certifies the

honest group members on behalf of GM by invoking the USER oracle. Specially,
after receiving two users’ public keys pk0 = (U0,1,U0,2) ∈ (Zn×m

q)2 and pk1 =

Lattice-Based Group Encryption with Full Dynamicity 179

(U1,1,U1,2) ∈ (Zn×m
q)2 of challenger’s choice, A registers the keys in the table

reg and conducts a number of queries w.r.t. opening and decryption algorithms,
whose response is handled by B by using skOA = Eoa,1 and sk0 = E0,1, sk1 = E1,1.
Then, the adversary moves to the challenge phase to provide a valid witness
m ∈ {0, 1}m satisfying the Prohibitive for challenge. In return, the challenger
takes the bit b = 0 and computes a group encryption Ψ∗ = (c∗

rec, c
∗
oa) of the

witness m under pkb = (Ub,1,Ub,2), and the user identity jb = j0 under pkoa =
(Uoa,1,Uoa,2) with coa = (coa,1, coa,2), which follows real proofs π∗

Ψ∗ of Ψ∗ and
queries of opening and decryption under the natural restrictions of the security
definition. When A halts, it returns a bit b′ ∈ {0, 1} and the challenger B returns
1 iff b′ = b. Otherwise, B outputs 0 indicating that the adversary fails in this
game, which gives the success probability Pr[W1 = 1].

Game 2: This game is like Game 1 except one change in executing the ciphertext
opening oracle OPEN(skoa, .). Concretely, B uses Eoa,2 ∈ Z

m×	
q instead of skoa =

Eoa,1 ∈ Z
m×	
q to decrypt coa among the ciphertext Ψ = (crec, coa). It can be seen

that, in the A’s view, this game is the same as Game 1 until the event F1 that A
queries the opening oracle OPEN(skoa, .) for a ciphertext Ψ = (crec, coa,1, coa,2)
where coa,1, coa,2 encrypt two distinct �-size identities. By the soundness of our
argument presented in Sect. 4.3, Pr[W2] − Pr[W1] is bounded by Pr[F1] which
itself is bounded by Advsound

B (λ).

Game 3: This game is identical to Game 2 except a modification in the genera-
tion of proofs π∗

Ψ∗ . Instead of employing the real random coins coins∗
Ψ = ({s∗

rec,i}i,
{x∗

rec,i}i, {y∗
rec,i}i, {s∗

oa,i}i, {x∗
oa,i}i, {y∗

oa,i}i) used for Ψ∗ to generate proofs, we
employ the zero-knowledge simulator of argument system described in Sect. 4.3
once invoking PROVEb

P,P′ after the challenge phase (note that, given trusted
public parameters, the computationally indistinguishable simulation is achieved
via the techniques [17] without increasing the number of rounds). Here the com-
putational ZK property ensures that, for any PPT adversary, the change is unno-
ticed: |Pr[W3] − Pr[W2]| ∈ negl(λ).

Game 4: This game is same as Game 3 except that we modify the generation of
Ψ∗ = (c∗

rec, c
∗
oa) with c∗

oa = (c∗
oa,1, c

∗
oa,2) by encrypting a random size-� identity j1

as c∗
oa,1, while still retaining c∗

oa,2 for the encryption of the index j0 corresponding
to user U0. By the semantic security of GPV dual encryption [18] (assuming the
hardness of LWE problem) for public key pkoa = (Uoa,1,Uoa,2), this game is
identical to Game 3, i.e., |Pr[W4] − Pr[W3]| ≤ AdvLWE(λ).

Game 5: This game makes one change by switching back to the application
of Eoa,1 ∈ Z

m×	
q for the OPEN(skoa, ·) queries with discarding Eoa,2, and the

modification is invariant to the adversary except the event F2, where the queries
to the DEC for a valid ciphertext Ψ containing c∗

oa,1, c
∗
oa,2 encrypting distinct

�-size identities j0 and j1, happens. But, the occurrence of F2 implies that the
simulation soundness of the underlying ZKAoK system used to generate ΠGE is
broken. This results into |Pr[W5 = 1] − Pr[W4 = 1]| ≤ Advsound

ΠGE
(λ) = negl(λ).

Game 6: Here, this experiment performs a modification to the Game 5 only by
taking coa,2 as the encryption of j1 for the challenge ciphertext Ψ∗ = (c∗

rec, c
∗
oa)

180 J. Pan et al.

with c∗
oa = (c∗

oa,1, c
∗
oa,2). Note that this change is unnoticed to A due to the

semantic security the encryption shares for public key Uoa,2, and also for the
application of Eoa,1 to the OPEN, we have |Pr[W6 = 1] − Pr[W5 = 1]| = negl(λ).

Game 7: This experiment generates a real proof for ciphertext Ψ∗ = (c∗
rec, c

∗
oa)

instead of using simulated proof, which is the only modification different from
Game 6. The computational zero-knowledgeness of the underlying ZKAoK
system makes the difference between Game 6 and Game 7 negligible, i.e.,
Pr[W6 = 1] ≈ Pr[W7 = 1]. This is actually the experiment Expanon−1

A (λ), which
directly leads that Pr[W7 = 1] = Expanon−1

A (λ). By these above games, we have
|Expanon−1

A (λ) − Expanon−0
A (λ)| = negl(λ). This proves the anonymity. ��

Theorem 2. The message secrecy is satisfied if the LWEn,q,χ assumption holds.

Proof. In a similar manner to that used in proving Theorem 1, we complete the
proof via a sequence of indistinguishable games in which the first one is exactly
the experiment Expsec−1

A which generates a real ciphertext and an associated
real proof while the last one is the experiment Expsec−0

A that outputs a random
ciphertext and an associated simulated proof. For simplicity, we use A,B to
represent the adversary and challenger, respectively. In addition, we also denote
by Wi the event that the adversary A returns b′ = 1 in game i.

Game 1: This is the real experiment Expsec−1
A except that B retains Ej,2, which

makes no any difference in the adversary’s view since Ej,2 is not used in the
following real experiment. Concretely, A is first fed with public parameters pp
including Arec ∈ Z

n×m
q by challenger. Then, under its whole control, the adver-

sary generates public keys pkOA = (Uoa,1,Uoa,2) ∈ (Zn×m
q)2 and pkGM, and trig-

gers the JOIN protocol with the challenger to register and certify the public key
pkj = (Uj,1,Uj,2) ∈ (Zn×m

q)2 for some honest receiver of the challenger’s choice.
After that, the adversary A makes a polynomial number of queries to DEC oracle
which is faithfully handled by the challenger using Ej,1. Then, A provides a valid
witness m ∈ {0, 1}m satisfying the Prohibitive for challenge. Subsequently, the
challenger take b = 1 and computes a ciphertext Ψ∗ = (c∗

rec, c
∗
oa) which contains

a group encryption of the real plaintext m under pkj and returns it back as
a challenger ciphertext. Then, a polynomial number of real proofs π∗

Ψ∗ which
are associated with the challenge ciphertext Ψ∗ are followed, and the decryption
oracle with obvious restrictions is further granted. After doing this, A halts this
game and outputs its guess bit b′ ∈ {0, 1}.

Game 2: This game is identical to Game 1 except one change in handling the
ciphertext decryption oracle DEC(skj , .). Concretely, B uses Ej,2 ∈ Z

m×m
q instead

of skj = Ej,1 ∈ Z
m×m
q to decrypt crec among the ciphertext Ψ = (crec, coa). In the

A’s view, this game is the same as Game 1 until the event F3 that A queries a
ciphertext Ψ = (crec,1, crec,2, coa) where crec,1, crec,2 encrypts two distinct m-size
messages. By the soundness of our argument presented in Sect. 4.3, Pr[W2] −
Pr[W1] is bounded by Pr[F3] ≤ Advsound

B (λ).

Game 3: This game is like Game 2 except a modification in generating proofs
π∗

Ψ∗ . Instead of employing the real random coins coins∗
Ψ = ({s∗

rec,i}i, {x∗
rec,i}i,

{y∗
rec,i}i, {s∗

oa,i}i, {x∗
oa,i}i, {y∗

oa,i}i) used for Ψ∗ to generate proofs, we rather

Lattice-Based Group Encryption with Full Dynamicity 181

to apply the zero-knowledge simulator presented in Sect. 4.3 once invoking
PROVEb

P,P′ after the challenge phase (i.e., given trusted public parameters, the
computationally indistinguishable simulation is achieved with the techniques
[17]). Here the computational ZK property ensures that, for any PPT adversary,
the change is unnoticed: |Pr[W3] − Pr[W2]| ∈ negl(λ).

Game 4: In this game, we modify the generation of Ψ∗ = (c∗
rec, c

∗
oa) with c∗

rec =
(c∗

rec,1, c
∗
rec,2) by encrypting a random size-m message m′ ∈ Rpro as c∗

rec,1, while
still retaining c∗

rec,2 for the encryption of m ∈ Rpro. By the semantic security of
GPV dual encryption [18] (under the hardness assumption of the LWE problem)
for public key pkj = (Uj,1,Uj,2), this game is identical to Game 3, i.e., |Pr[W4]−
Pr[W3]| ≤ AdvLWE(λ).

Game 5: This game makes one change by switching back to the application of
Ej,1 ∈ Z

m×m
q for the DEC(skj , ·) queries with discarding Ej,2, and the modifica-

tion is invariant to the adversary except the event F4, where the queries to the
DEC for a valid ciphertext Ψ containing c∗

rec,1, c
∗
rec,2 encrypting distinct messages

satisfied the RPro relation, happens. But, the occurrence of F4 implies that the
simulation soundness of the underlying ZKAoK system used to generate ΠGE is
broken. This results into |Pr[W5 = 1] − Pr[W4 = 1]| ≤ Advsound

ΠGE
(λ) = negl(λ).

Game 6: Here, this experiment performs a modification to the Game 5 only by
taking crec,2 as the encryption of m′ ∈ RPro for the challenge ciphertext Ψ∗ =
(c∗

rec, c
∗
oa) with c∗

rec = (c∗
rec,1, c

∗
rec,2). Note that this change is unnoticed to A due

to the semantic security the encryption shares for public key Uj,2, and also for
the application of Ej,1 to the DEC, we have |Pr[W6 = 1]−Pr[W5 = 1]| = negl(λ).

Game 7: Here, this experiment generates a real proof for ciphertext Ψ∗ =
(c∗

rec, c
∗
oa) instead of using simulated proof, which is the only modification differ-

ent to Game 6. The computational zero-knowledgeness of the underlying ZKAoK
system makes the difference between Game 6 and Game 7 negligible, i.e., Pr[W6 =
1] ≈ Pr[W7 = 1].This is actually the experimentExpsec−0

A (λ), which directly leads
that Pr[W7 = 1] = Expsec−0

A (λ). Thus, we have |Expsec−1
A (λ) − Expsec−0

A (λ)| =
negl(λ), which proves the message security. ��
Theorem 3. The scheme is sound assuming that the SIS assumption holds.

Proof. It suffices for us to prove these facts: for a given message filtering policy
Prohibitive, a ciphertext Ψ∗ = (crec∗ , coa∗), a Label L and an associated with
proof Ψ∗, the public key associated with the identity revealed by the adversary
is valid, certified, unique and the provided ciphertext Ψ∗ is encrypted under this
key. By the Lemma 2, the distribution of public keys is uniform, which ensures
the public key is dense. In other words, the public is valid. In addition, the
public key is unique since an occurring collision breaks the injective property of
the mapping F · [a�

1 |a�
2]. Thus, we only need to prove the other two cases.

a. The public key is certified (activated). If not, for some j ∈ [0, N − 1], there is
an associated binary vector pj �= 0 being accumulated into the published root
value u, but it is not equal to any value bin(F · [a�

1 |a�
2]), which contradicts

the security of the accumulator.

182 J. Pan et al.

b. The ciphertext is actually an encryption of witness m under this public key.
If not, this event implies a breach in the computational soundness of our
argument system and the binding property of the commitment scheme, which
breaks the assumed hardness of the SIS problem. ��

Efficiency Analysis. It can be seen that all algorithms used for the construc-
tion of the present group encryption are polynomially effective. The efficiency
evaluation of the scheme is shown as follows.

– The public key of GM is a vector with bit-size ˜O(λ), and that of OA and
users are respectively a matrix of bit-size ˜O(λ2).

– The GM’s secret key is given by a bit string of size ˜O(λ), and the secret keys
of OA and users are respectively a small-norm matrix of bit size ˜O(λ2).

– The ciphertext Ψ consists of crec = (crec,1, crec,2) ∈ (Zm
q × Z

m
q)2 and coa =

(coa,1, coa,2) ∈ (Zm
q × Z

	
q)

2, which leads the total bit size ˜O(λ + �).
– The communication cost of the protocol 〈P,V〉 largely relies on the bit-size

of witness x with size n2 = m + 2n + 2m(k + nk + 2δ2B) + (m − t + 1)eδm−d

shown in Sect. 4.3, which leads ˜O(λ2) bit-size.

In Table 1, given a security parameter λ, let N = 2	, κ and Σ be the group
size, the number of protocol repetitions and a one-time signature, respectively, we
give a somewhat rough comparison between our scheme and the currently existing
post-quantum secure group encryption schemes [25] (lattice-based variant) and
[35] (code-based variant) in terms of functionality, efficiency and security. In the
solid security, the full dynamicity is achieved with a highly reasonable cost: theGM
only needs to update values of size ˜O(�λ) when group information changes.

Table 1. Comparison between schemes [25,35] and ours

Scheme GM OA U Ciph. Commu. Dynam. Model

pk sk pk sk pk sk

[25] ˜O(�λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ) + |Σ| κ ˜O(λ2) partial Std.

[35] ˜O(λ) ˜O(λ) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) κ ˜O(λ2) full RO.

Ours ˜O(λ) ˜O(λ) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ2) ˜O(λ) ˜O(λ2) full Std.

To better understand the advantage of our design, we also give a slightly
concrete efficiency comparison between our scheme and the post-quantum safe
schemes [25] and [35] for a same group size N = 210 toward the 80-bit security.
By using the security analysis techniques shown in [35,43, and references therein],
we choose the trade-off parameters as (n, q) = (2795, 1125899906842679 ≈ 250),
(n, k1, t1, k2, t2,m, tm, p, t, k) = (8192, 7997, 7, 7711, 18, 238, 279, 1024, 64, 10) and
(n, q, t, e, d) = (222, 524309 ≈ 219, 64, 10, 10) for these schemes and ours, respec-
tively. The results are shown in Table 2 where all the sizes of keys, ciphertexts and
communication cost are almost highly superior than those of previous schemes.
Particularly, our scheme obtains the drastic efficiency gains compared to [25] due
to the free-of-trapdoor design. Besides, the group update cost of [35] and ours
is 10.00 KB and 5.15 KB, respectively.

Lattice-Based Group Encryption with Full Dynamicity 183

Table 2. Efficiency comparison between schemes [25,35] and ours

GM OA U Ciph. Commu.

pk sk pk sk pk sk

[25] 68.60 GB 482.55 GB 2.37 GB 38.86 GB 2.37 GB 38.86 GB 2.36 TB 3728 TB

[35] 1.00 KB 32.00 GB 15.62 MB 46.86 MB 15.06 MB 45.24 MB 4.00 KB 66107 TB

Ours 0.54 KB 1.08 KB 10.85 KB 129.50 KB 9.40 MB 112.30 MB 0.13 MB 10.32 GB

6 Conclusion

In this paper, we provide a re-formalized definition and security model of FDGE
that is essentially equal to but more succinct than that of [35]. Then, we provide
two generic and efficient zero-knowledge proof methods for demonstrating the
inequalities of binary vectors, which can be readily extended to the case of gen-
eral vectors. Finally, combining the appropriate cryptographic materials and the
proof techniques just presented, we achieve the first lattice-based group encryp-
tion system which meanwhile offers the full dynamicity and the message filtering
policy. Our scheme is constructed in a simpler manner and nearly outweighs the
post-quantum secure ones [25,35] in terms of functions, efficiency and security.

Acknowledgement. This work has been supported by National Cryptography Devel-
opment Fund (No. MMJJ20180110), National Natural Science Foundation of China
(No. 61960206014), (No. 62121001) and (No. 61972429), and Guangdong Major Project
of Basic and Applied Basic Research (No. 2019B030302008).

References

1. El Aimani, L., Joye, M.: Toward practical group encryption. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp.
237–252. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-
1 15

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

3. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(1), 625–635 (1993)

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

https://doi.org/10.1007/978-3-642-38980-1_15
https://doi.org/10.1007/978-3-642-38980-1_15
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/3-540-39200-9_38

184 J. Pan et al.

7. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS,
pp. 168–177. ACM (2004)

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584. ACM (2013)

11. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 15

12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

13. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

15. Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization in
the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
179–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 11

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

17. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

19. Izabachène, M., Pointcheval, D., Vergnaud, D.: Mediated traceable anonymous
encryption. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS,
vol. 6212, pp. 40–60. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14712-8 3

20. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 34

21. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76900-2 11

22. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Secur. Netw. 1(1/2), 24–45 (2006)

23. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,

https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/3-540-44586-2_15
https://doi.org/10.1007/3-540-44586-2_15
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/978-3-642-10366-7_11
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-642-14712-8_3
https://doi.org/10.1007/978-3-642-14712-8_3
https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.1007/978-3-540-76900-2_11

Lattice-Based Group Encryption with Full Dynamicity 185

vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

24. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

25. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 4

26. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

27. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge argu-
ments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 24

28. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 36

29. Libert, B., Yung, M., Joye, M., Peters, T.: Traceable group encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 592–610. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54631-0 34

30. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

31. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

32. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

33. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 26

34. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: ACM, pp. 427–437. ACM (1990)

35. Nguyen, K., Safavi-Naini, R., Susilo, W., Wang, H., Xu, Y., Zeng, N.: Group
encryption: full dynamicity, message filtering and code-based instantiation. In:
Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 678–708. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75248-4 24

36. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-53890-6_4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-54631-0_34
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-030-75248-4_24
https://doi.org/10.1007/978-3-540-30574-3_19

186 J. Pan et al.

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

38. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC, pp. 333–342. ACM (2009)

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005)

40. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the security of
dynamic group signatures: preventing signature hijacking. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 715–732. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 42

41. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

42. Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 446–458. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 37

43. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/11523468_37
https://doi.org/10.1007/978-3-030-26948-7_6

A New Variant of Unbalanced Oil
and Vinegar Using Quotient Ring:

QR-UOV

Hiroki Furue1(B), Yasuhiko Ikematsu2(B), Yutaro Kiyomura3(B),
and Tsuyoshi Takagi1(B)

1 The University of Tokyo, Tokyo, Japan
{furue-hiroki261,takagi}@g.ecc.u-tokyo.ac.jp

2 Kyushu University, Fukuoka, Japan
ikematsu@imi.kyushu-u.ac.jp

3 NTT Social Informatics Laboratories, Tokyo, Japan
yutaro.kiyomura.vs@hco.ntt.co.jp

Abstract. The unbalanced oil and vinegar signature scheme (UOV) is
a multivariate signature scheme that has essentially not been broken for
over 20 years. However, it requires the use of a large public key; thus,
various methods have been proposed to reduce its size. In this paper, we
propose a new variant of UOV with a public key represented by block
matrices whose components correspond to an element of a quotient ring.
We discuss how it affects the security of our proposed scheme whether
or not the quotient ring is a field. Furthermore, we discuss their security
against currently known and newly possible attacks and propose parame-
ters for our scheme. We demonstrate that our proposed scheme can achieve
a small public key size without significantly increasing the signature size
compared with other UOV variants. For example, the public key size of
our proposed scheme is 85.8 KB for NIST’s Post-Quantum Cryptogra-
phy Project (security level 3), whereas that of compressed Rainbow is
252.3 KB, where Rainbow is a variant of UOV and is one of the third-
round finalists of the NIST PQC project.

Keywords: Post-quantum cryptography · Multivariate public key
cryptography · Unbalanced oil and vinegar · Quotient ring

1 Introduction

Currently used public key cryptosystems such as RSA and ECC can be broken
in polynomial time using a quantum computer executing Shor’s algorithm [34].
Thus, there has been growing interest in post-quantum cryptography (PQC),
which is secure against quantum computing attacks. Research on PQC has thus
been accelerating, and the U.S. National Institute for Standards and Technology
(NIST) has initiated a PQC standardization project [26].

Multivariate public key cryptography (MPKC), based on the difficulty of
solving a system of multivariate quadratic polynomial equations over a finite field
(the multivariate quadratic (MQ) problem), is regarded as a strong candidate

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 187–217, 2021.
https://doi.org/10.1007/978-3-030-92068-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_7

188 H. Furue et al.

for PQC. The MQ problem is NP-complete [20] and is thus likely to be secure
in the post-quantum era.

The unbalanced oil and vinegar signature scheme (UOV) [23], a multivariate
signature scheme proposed by Kipnis et al. at EUROCRYPT 1999, has withstood
various types of attacks for approximately 20 years. UOV is a well-established
signature scheme owing to its short signature and short execution time. Rain-
bow [13], a multilayer UOV variant, was selected as a third-round finalist in
the NIST PQC project [29]. However, both UOV and Rainbow have public keys
much larger than those of other PQC candidates, for example, lattice-based
signature schemes. Indeed, Rainbow has the largest public key among the third-
round-finalist signature schemes, and NIST’s report [29] states that Rainbow is
unsuitable as a general-purpose signature scheme owing to this problem.

The CRYSTALS-DILITHIUM [25] lattice-based signature scheme is also a
third-round finalist in the NIST PQC project. It is based on the hardness of the
module learning with errors (MLWE) problem [8]. As is well known, LWE [32]
is a confidential hard problem in cryptography, and the MLWE problem is a
generalization of it using a module comprising vectors over a ring. This illustrates
that a natural way to develop an efficient multivariate scheme with a small public
key is to improve confidential schemes such as UOV and Rainbow in MPKC by
investigating further algebraic theory.

There are three main research approaches to developing a UOV variant with
a small public key. One is to use the compression technique developed by Pet-
zoldt et al. [30]. This technique can be applied to various UOV variants and is
based on the fact that a part of a public key can be arbitrarily chosen before
determining the secret key. This indicates that a part of a public key can be
generated using a seed of a pseudo-random number generator. The version of
Rainbow using this technique and a secret key compression technique is called
“compressed Rainbow” in the third-round finalist NIST PQC project [12]. The
second approach is to use the lifted unbalanced oil and vinegar (LUOV) [6] that
uses polynomials over a small field as a public key, whereas the signature and
message spaces are defined over an extension field. This results in a small public
key. LUOV was thus selected as a candidate in the second round of the NIST
PQC project [28]. However, several of its parameters were broken using the new
attack proposed by Ding et al. [15]. The third approach is to use the block-anti-
circulant UOV (BAC-UOV) developed by Szepieniec et al. and presented at SAC
2019 [35]. Its public key is represented by block-anti-circulant matrices, where
every block is an anti-circulant matrix. As such a matrix can be constructed by
its first-row vector, BAC-UOV has a smaller public key. However, the public key
has a special structure; that is, block-anti-circulant-matrices can be transformed
into the diagonal concatenation of two smaller matrices. This enabled Furue et
al. [18] to devise a structural attack on BAC-UOV, that has less complexity than
the asserted one. The attack is based on the fact that the anti-circulant matrices
of size � used in BAC-UOV can be represented using an element of the quotient
ring Fq[x]/(x� − 1), where Fq is a finite field, and x� − 1 is reducible.

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 189

Our Contribution. In this paper, we present a new UOV variant using an arbi-
trary quotient ring called QR-UOV. In QR-UOV, a public key is represented by
block matrices in which every component corresponds to an element of a quotient
ring Fq[x]/(f). More precisely, we use an injective ring homomorphism from the
quotient ring Fq[x]/(f) to the matrix ring F

�×�
q , where f ∈ Fq[x] is a polynomial

with deg f = �. In this study, image Φf
g of the homomorphism for g ∈ Fq[x]/(f)

is called the polynomial matrix of g. From this homomorphism, we can compress
the �2 components in Φf

g to � elements of Fq because the polynomial matrix Φf
g is

determined by the � coefficients of g. This can be considered as a generalization
of BAC-UOV [35], which is the case for f = x� − 1. Utilizing the elements of
a quotient ring in block matrices is similar to the MLWE problem [8] because
the MLWE problem uses elements of a ring in vectors. Namely, we can consider
that the research undertaken to obtain from UOV to QR-UOV (including BAC-
UOV) corresponds to that obtained from LWE to MLWE. Therefore, as with
the MLWE problem, this type of research deserves more attention than passing
notice.

To construct the QR-UOV, we must consider the symmetry of the poly-
nomial matrices Φf

g . In UOV, the public key P = (p1, . . . , pm), which com-
prises quadratic polynomials pi, is obtained by composing a central map F =
(f1, . . . , fm) and a linear map S, that is, P = F ◦ S. Then, the correspond-
ing matrices P1, . . . , Pm of the public key P are given by Pi = S�FiS, where
F1, . . . , Fm, and S are matrices corresponding to F and S, respectively. If we
choose F1, . . . , Fm, and S as block matrices, where the components are polyno-
mial matrices Φf

g , the polynomial matrices must be stable under the transpose
operation, namely, (Φf

g)� = Φf
g′ for some g′. Otherwise, P1, . . . , Pm are not block

matrices of Φf
g , and we cannot reduce the public key size using them. Polynomial

matrices Φf
g are generally unstable under the transpose operation; therefore, we

cannot directly use polynomial matrices Φf
g to construct an efficient UOV vari-

ant. To solve this problem, we introduce the concept of an �×� invertible matrix
W such that WΦf

g is symmetric for any g ∈ Fq[x]/(f); that is, WΦf
g is stable

under the transpose operation. In Theorem 1, we prove that there exists such
symmetric W for any quotient ring Fq[x]/(f). Therefore, from equations

(Φf
g1

)�(WΦf
g2

)Φf
g1

= (WΦf
g1

)�Φf
g2

Φf
g1

= WΦf
g1g2g1

,

we can construct a UOV variant using the quotient ring Fq[x]/(f) by choosing
F1, . . . , Fm as block matrices using WΦf

g and S as a block matrix with Φf
g .

Moreover, we should consider how the choice of f affects the security of the
QR-UOV. Furue et al. [18] broke BAC-UOV by transforming its anti-circulant
matrices into diagonal concatenations of two smaller matrices. This transfor-
mation is obtained from the decomposition x� − 1 = (x − 1)(x�−1 + · · · + 1).
Therefore, we investigate the relationship between the irreducibility of the poly-
nomial f used to generate the quotient ring Fq[x]/(f) and the existence of such
a transformation for symmetric matrices WΦf

g . In Theorem 2 herein, we show
that if f is irreducible (i.e., Fq[x]/(f) is a field), then there is no such transfor-

190 H. Furue et al.

mation for matrices WΦf
g , indicating that such an f is resistant to Furue et al.’s

structural attack [18].
Based on these considerations regarding the symmetry of WΦf

g and the choice
of f , we derive the quotient-ring UOV (QR-UOV). It uses Fq[x]/(f) generated
by an irreducible polynomial f , which is resistant to Furue et al.’s structural
attack [18]. We investigated its performance against both currently known and
possible attacks. The currently known attacks include the direct attack, UOV
attack [24], reconciliation attack [14], and intersection attack [5]. Possible attacks
are derived from (1) pull-back techniques and (2) lifting techniques. In (1), the
UOV, reconciliation, and intersection attacks are executed over the quotient ring
Fq[x]/(f) by pulling WΦf

g back to g. In (2), we prove that by lifting the base field
Fq to the extension field Fq� , the QR-UOV public key can be transformed into
the diagonal concatenation of some smaller matrices: as is done in the structural
attack on BAC-UOV. After applying such a transformation over Fq� , we execute
the four currently known attacks.

Finally, by considering these currently known and possible attacks, we can
select the appropriate parameters for the QR-UOV. We stress that the security
of major MPKCs such as UOV and Rainbow has no computational reduction to
the underlying MQ problem, and their security is usually evaluated by all known
attacks. We follow this research direction in our security analysis of the proposed
scheme, and we present the following secure parameters in accordance with the
I, III, and V security levels of the NIST PQC project [27]. These parameters
achieve a small public key, and the sizes of the public keys are approximately
30%–50% of those of compressed Rainbow [12]. For example, the public key size
is 85.8 KB for security level III, whereas that of compressed Rainbow is 252.3 KB.
The signature sizes with the proposed parameters are almost the same as those
of Rainbow, except for security level I.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we explain the construction of multivariate signature schemes, plain UOV, BAC-
UOV, and an attack on BAC-UOV. In Sect. 3, we introduce the polynomial
matrices of a quotient ring as a generalization of the circulant matrices. In Sect. 4,
we describe the proposed signature scheme QR-UOV. In Sect. 5, we analyze
the security of the proposed scheme. We present our proposed parameters and
compare the performance of our scheme with that of Rainbow in Sect. 6. We
conclude the paper in Sect. 7 by summarizing the key points and suggesting
possible future work.

2 Preliminaries

In this section, we first explain the MQ problem and general signature schemes
based on this problem. Subsequently, we review the construction of UOV [23].
We then describe the construction of BAC-UOV [35] and finally explain Furue
et al.’s structural attack [18] on BAC-UOV.

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 191

2.1 Multivariate Signature Schemes

Let Fq be a finite field with q elements, and let n and m be two positive integers.
For a system of quadratic polynomials P = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn))
in n variables over Fq and y ∈ F

m
q , the problem of obtaining a solution x ∈ F

n
q

to P(x) = y is called the MQ problem. Garey and Johnson [20] proved that
this problem is NP-complete if n ≈ m, and thus, it is considered to have the
potential to resist quantum computer attacks.

Next, we briefly explain the construction of the general multivariate signature
schemes. First, an easily invertible quadratic map F = (f1, . . . , fm) : Fn

q → F
m
q ,

called a central map, is generated. Next, two invertible linear maps S : Fn
q → F

n
q

and T : Fm
q → F

m
q are randomly chosen to hide the structure of F . The public

key P is then provided as a polynomial map:

P = T ◦ F ◦ S : Fn
q → F

m
q . (1)

The secret key comprises T , F , and S. The signature is generated as follows:
Given a message m ∈ F

m
q to be signed, compute m1 = T −1(m), and obtain a

solution m2 to the equation F(x) = m1. This gives the signature s = S−1(m2) ∈
F

n
q for the message. Verification is performed by confirming whether P(s) = m.

2.2 Unbalanced Oil and Vinegar Signature Scheme

Let v be a positive integer and n = v+m. For variables x = (x1, . . . , xn) over Fq,
we call x1, . . . , xv vinegar variables and xv+1, . . . , xn oil variables. In the UOV
scheme, a central map F = (f1, . . . , fm) : Fn

q → F
m
q is designed such that each

fk (k = 1, . . . ,m) is a quadratic polynomial of the form

fk(x1, . . . , xn) =
n∑

i=1

v∑

j=1

α
(k)
i,j xixj , (2)

where α
(k)
i,j ∈ Fq. A linear map S : Fn

q → F
n
q is then randomly chosen. Next, the

public key map P : Fn
q → F

m
q is computed using P = F ◦ S. The linear map T

in Eq. (1) is not required because it does not help hide the structure of F . Thus,
the secret key comprises F and S.

Next, we explain the inversion of the central map F . Given y ∈ F
m
q , we first

choose random values a1, . . . , av in Fq as the vinegar variables. Then, we can effi-
ciently obtain a solution (av+1, . . . , an) for the equation F(a1, . . . , av, xv+1, . . . ,
xn) = y because this is a linear system of m equations in m oil vari-
ables. If there is no solution to this equation, we choose new random val-
ues a′

1, . . . , a
′
v, and repeat the procedure. Eventually, we obtain the solution

x = (a1, . . . , av, av+1, . . . , an) to F(x) = y. In this manner, we execute the
signing process explained in Subsect. 2.1.

We assume that the characteristic of Fq is odd in the following. For each
1 ≤ i ≤ m, there exists an n×n symmetric matrix Fi such that fi(x) = x·Fi ·x�.

192 H. Furue et al.

From Eq. (2), Fi has the form
(

∗v×v ∗v×m

∗m×v 0m×m

)
. (3)

Let Pi (i = 1, . . . ,m) be an n×n symmetric matrix Pi such that pi(x) = x·Pi·x�.
Then, taking the n × n matrix S such that S(x) = S · x�, we have

Pi = S�FiS, (i = 1, . . . , m) (4)

from P = F ◦ S. We call Fi and Pi the representation matrices of fi and pi,
respectively.

2.3 Block-Anti-circulant UOV

As mentioned above, the block-anti-circulant (BAC) UOV [35] is a variant of
UOV. The public key is shortened by representing it using block-anti-circulant
matrices. In this subsection, we describe the construction of BAC-UOV.

In a circulant matrix, each row vector is rotated by one element to the right
relative to the preceding row vector. In an anti-circulant matrix, each row vector
is rotated by one element to the left relative to the preceding row vector. A
circulant matrix X and an anti-circulant matrix Y with size � take the following
forms:

X =

⎛

⎜⎜⎜⎜⎜⎝

a0 a1 . . . a�−2 a�−1

a�−1 a0 . . . a�−3 a�−2

...
...

. . .
...

...
a2 a3 . . . a0 a1

a1 a2 . . . a�−1 a0

⎞

⎟⎟⎟⎟⎟⎠
, Y =

⎛

⎜⎜⎜⎜⎜⎝

a0 a1 . . . a�−2 a�−1

a1 a2 . . . a�−1 a0

...
...

. . .
...

...
a�−2 a�−1 . . . a�−4 a�−3

a�−1 a0 . . . a�−3 a�−2

⎞

⎟⎟⎟⎟⎟⎠
.

In addition, a matrix is called a block-circulant matrix A or a block-anti-circulant
matrix B with block size � if every � × � block in A or B is a circulant matrix or
an anti-circulant matrix, as follows (N ∈ N):

A =

⎛

⎜⎝
X11 . . . X1N

...
. . .

...
XN1 . . . XNN

⎞

⎟⎠ , B =

⎛

⎜⎝
Y11 . . . Y1N

...
. . .

...
YN1 . . . YNN

⎞

⎟⎠ ,

where Xij is an �×� circulant matrix, and Yij is an �×� anti-circulant matrix. For
these block matrices, it holds that products AB and BA are block-anti-circulant
matrices.

In BAC-UOV, the number of vinegar variables v and the number of equations
m are set to be divisible by block size �. The representation matrices F1, . . . , Fm

for the central map F are chosen as block-anti-circulant matrices with a block
size �, and the matrix S for the linear map S is chosen as a block-circulant
matrix with block size �. The representation matrices P1, . . . , Pm for the public

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 193

key P = F ◦ S are computed using Pi = S�FiS (i = 1, . . . , m) and are block-
anti-circulant matrices.

Owing to the structure of block-anti-circulant matrices, the n × n matrices
P1, . . . , Pm can be represented using only the first row of each block. Therefore,
they can be represented by using only mn2/� elements in the finite field Fq,
which is one �-th the size of the public key of the plain UOV. That is, the public
key was smaller than that of the plain UOV.

2.4 Structural Attack on BAC-UOV

In 2020, Furue et al. proposed an attack on BAC-UOV that breaks the security
of the proposed parameter sets [18]. The attack utilizes the property of the anti-
circulant matrix, wherein the sum of the elements of one row (column) is the
same as those of the other rows (columns).

We define an � × � matrix L� such that (L�)1i = (L�)i1 = 1 (1 ≤ i ≤ �),
(L�)ii = −1 (2 ≤ i ≤ �), and the other elements are equal to 0, where for a
matrix A, (A)ij denotes the ij-component of A, namely

�︷ ︸︸ ︷

L� := �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

1 1 . . . 1
1 −1
...

. . .
1 −1

⎞

⎟⎟⎟⎠ .

Subsequently, for an � × � anti-circulant matrix Y , we have

L�
� Y L� =

(
∗1×1 01×(�−1)

0(�−1)×1 ∗(�−1)×(�−1)

)
. (5)

Let L
(N)
� be an n × n block diagonal matrix constructed by concatenating L�

diagonally N times:

N︷ ︸︸ ︷

L
(N)
� := N

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
L�

. . .
L�

⎞

⎟⎠ ,

where N := n/�. Then, for an n × n block-anti-circulant matrix B with block
size �, the matrix (L(N)

�)�BL
(N)
� is a block matrix in which each block is in the

form of Eq. (5). Furthermore, a permutation matrix L′ exists such that:

(L(N)
� L′)�B(L(N)

� L′) =

⎛

⎝
∗N×N 0N×(�−1)N

0(�−1)N×N ∗(�−1)N×(�−1)N

⎞

⎠ . (6)

194 H. Furue et al.

Therefore, the representation matrices P1, . . . , Pm for the public key P of BAC-
UOV can all be transformed into the form of (6) by using L

(N)
� L′. The UOV

attack [24] can then be executed on only the upper-left N × N submatrices of the
obtained matrices with little complexity. By using the transformed public key, we
can reduce the number of variables appearing in the public equations P(x) = m
for a message m. This reduces the complexity of the attack by approximately 20%
compared with the best existing attack on UOV. This attack can be executed only
if there exists a transformation on the public key, as given by Eq. (6).

3 Polynomial Matrices of Quotient Ring

In this section, we introduce polynomial matrices as a generalization of the cir-
culant and anti-circulant matrices used in BAC-UOV [35] and describe a method
for converting polynomial matrices into symmetric matrices that can be applied
to the UOV scheme. Furthermore, we discuss whether such generalized matrices
can be transformed, as shown in Eq. (5).

3.1 Polynomial Matrices and Their Symmetrization

Let � be a positive integer and f ∈ Fq[x] with deg f = �. For any element g of
the quotient ring Fq[x]/(f), we can uniquely define an � × � matrix Φf

g over Fq

such that (
1 x · · · x�−1

)
Φf

g =
(
g xg · · · x�−1g

)
. (7)

From this equation, we have

xj−1g =
�∑

i=1

(
Φf

g

)
ij

· xi−1 (1 ≤ j ≤ �),

and
(
Φf

g

)
ij

is the coefficient of xi−1 in xj−1g. We call such a matrix Φf
g the

polynomial matrix of g. The following lemma can be easily derived from this
definition:

Lemma 1. For any g1, g2 ∈ Fq[x]/(f), we have

Φf
g1

+ Φf
g2

= Φf
g1+g2

, Φf
g1

Φf
g2

= Φf
g1g2

.

That is, the map g �→ Φf
g is an injective ring homomorphism from Fq[x]/(f) to

the matrix ring F
�×�
q .

An � × � polynomial matrix Φf
g can be represented by only � elements in

Fq, because Φf
g is determined by the � coefficients of g ∈ Fq[x]/(f). We let the

algebra of the matrices Af :=
{
Φf

g ∈ F
�×�
q

∣∣ g ∈ Fq[x]/(f)
}
. This is a subalgebra

in the matrix algebra F
�×�
q from Lemma 1. Similarly, for a matrix W ∈ F

�×�
q ,

any matrix in WAf := {WΦf
g ∈ F

�×�
q | g ∈ Fq[x]/(f)} can also be represented

by only � elements in Fq.

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 195

As shown in Eq. (4) in Subsect. 2.2, the transpose appears in the computa-
tion of the representation matrices Pi for the public key. Thus, to use polynomial
matrices Φf

g in the UOV scheme, we need WAf to be stable under the transpose
operation for some W . Thus, to construct our proposed scheme, we need an
explicit family of f and W such that WAf is stable under the transpose oper-
ation. In the following theorem, we prove that there exists an invertible matrix
W for any f .

Theorem 1. Let f ∈ Fq[x] with deg f = �. Then, there exists an invertible
matrix W ∈ F

�×�
q such that WX is a symmetric matrix for any X ∈ Af .

Proof. Let φ : Fq[x]/(f) → Fq be a nonzero linear map. We define W such that
the ij-component of W is equal to φ(xi+j−2). Then, for any g ∈ Fq[x]/(f), we
have the following:

(WΦf
g)ij =

�∑

k=1

φ(xi+k−2)(Φf
g)kj

= φ

(
�∑

k=1

xi+k−2(Φf
g)kj

)

= φ

(
xi−1

(
�∑

k=1

xk−1(Φf
g)kj

))

= φ(xi−1xj−1g) (∵ (7))
= φ(xi+j−2g)
= (WΦf

g)ji.

This equation shows that WΦf
g is symmetric.

If we define φ such that φ(a0 + a1x + · · · + a�−1x
�−1) = a�−1, then W is of

the following form:
⎛

⎝
0 1

. . .

1 ∗

⎞

⎠ ,

and hence W is invertible. This indicates that there exists one invertible matrix
W constructed using the above method. 	

As stated in Subsect. 3.2 below, from a security perspective, f must be irre-
ducible in our scheme. Furthermore, from the perspective of simplicity, f should
have only a few nonzero terms. As there are no irreducible binomials f with
deg f = � for many �, trinomials f are considered suitable for our scheme. The
following example shows that there are some trinomials f and suitable W for
symmetrization purposes.

196 H. Furue et al.

Table 1. Degree � such that there exist no irreducible trinomials of the form x�−axi−1
among 2 ≤ � ≤ 30 for Fq = F7.

Fq F7

� 6, 15, 30

Example 1. We assume that f = x� − axi − 1 (a ∈ Fq, 1 ≤ i ≤ � − 1). If
W ∈ F

�×�
q is constructed using a linear map φ : Fq[x]/(f) → Fq such that

φ(a0 + a1x + · · · + a�−1x
�−1) = ai−1, then we can represent the matrix W as

W =
(

Ji

J�−i

)
,

where Ji :=
(

1

. .
.

1

)
denotes the anti-identity matrix of size i. From Theorem 1,

WX becomes a symmetric matrix for any X ∈ Af .

The polynomial f must be irreducible in our scheme; thus, we conducted
several experiments to confirm the irreducibility of x� − axi − 1. We treated the
finite field Fq = F7, which is used for our proposed scheme as described below,
and checked whether there exists an irreducible polynomial f ∈ Fq[x] in the form
x� − axi − 1 for 2 ≤ � ≤ 30. We found an irreducible polynomial x� − axi − 1 for
sufficiently many 2 ≤ � ≤ 30. Table 1 shows the degree � such that there exists
no irreducible polynomials of the above form.

Finally, if we choose f = x�−1 and a linear map φ : Fq[x]/(f) → Fq such that
φ(a0 + a1x+ · · ·+ a�−1x

�−1) = a�−1, then W = J� and WΦf
g is an anti-circulant

matrix. Thus, this choice corresponds exactly to BAC-UOV [35], and Theorem 1
can be regarded as describing the generalization of anti-circulant matrices.

3.2 Effect of Irreducibility of f

In this subsection, we discuss the relation between the irreducibility of polyno-
mial f used to generate the quotient ring Fq[x]/(f) and the existence of transfor-
mation on symmetric matrices WΦf

g into the diagonal concatenation of smaller
matrices. This is because, as stated in Subsect. 2.4, the proposed parameters of
BAC-UOV were broken by using the transformation of Eq. (5) on anti-circulant
matrices obtained from the decomposition x� − 1 = (x − 1)(x�−1 + · · · + 1).

In the following theorem, we show that if f is irreducible, there does not exist
a transformation such as Eq. (5) on symmetric matrices WΦf

g .

Theorem 2. Let f ∈ Fq[x] be an irreducible polynomial with deg f = � and W
be an invertible matrix such that every element of WAf is a symmetric matrix.
Subsequently, there is no invertible matrix L ∈ F

�×�
q and i, j ∈ {1, . . . , �} such

that for any X ∈ WAf ,
(L�XL)ij = 0.

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 197

Proof. We assume that there exists a matrix L ∈ F
�×�
q and i, j ∈ {1, . . . , �}

satisfying the above condition. Let �i be the i-th column vector of W�L, and �j

be the j-th column vector of L. Then, we have ��
i Φf

h�j = 0 for any h ∈ Fq[x]/(f).
Now, we define a linear isomorphism V1 : Fq[x]/(f) → F

�
q such that

V1(a0 + a1x + · · · + a�−1x
�−1) = (a0, a1, . . . , a�−1)�,

and V1(g) is equal to the first column vector of Φf
g . Furthermore, we define a

linear map V2 : Fq[x]/(f) → F
�
q such that V2(g) is equal to the first column

vector of (Φf
g)�. If V2(g) = 0, then Φf

g is not invertible by the definition of V2.
Because Af is a field, Φf

g is the zero matrix, namely, g = 0. As a result, V2 is an
isomorphism.

Let gi := V −1
2 (�i) and gj := V −1

1 (�j). Clearly, (Φf
gi

Φf
hΦf

gj
)11 = ��

i Φf
h�j = 0

for any h ∈ Fq[x]/(f). If we take h = (gigj)−1, then

0 = (Φf
gi

Φf
(gigj)−1Φ

f
gj

)11 = I11 = 1.

This is a contradiction. Therefore, Theorem 2 holds. 	

From this theorem, we choose an irreducible polynomial as the f of Af used
in our proposed variant, which is described in Sect. 4.

Remark 1. In this remark, we discuss the transformation of elements of WAf

with reducible f by using Theorems 4 and 5 in Appendix A. Theorem 4 shows
that if f is decomposed into distinct irreducible polynomials, WAf are trans-
formed into a concatenation of two smaller submatrices. In fact, the transfor-
mation, as in Eq. (5) in the structural attack on BAC-UOV, corresponds to
the transformation described in Theorem 4. If f is divisible by a squared poly-
nomial, Theorem 5 shows that the representation matrices can be transformed
by executing a change of variables into a special form wherein the lower-right
(n/�) × (n/�) block is a zero block, similar to the representation matrices of the
central map (Eq. (3)).

4 Our Proposal: Quotient-Ring UOV (QR-UOV)

In this section, we present our proposed UOV variant, QR-UOV, which is con-
structed by applying the polynomial matrices described in Subsect. 3.1.

4.1 Description

Let � be a positive integer and v,m be multiples of � such that v > m. Set
n := v + m and N := n/�.

Let f ∈ Fq[x] be an irreducible polynomial with deg f = � and W be an
invertible matrix such that every element of WAf is symmetric. There exist f
and W satisfying the above condition for many �, as shown by Theorem 1 and

198 H. Furue et al.

the discussion in Subsect. 3. We define subspace A
(N)
f in F

n×n
q containing n × n

matrices as ⎛

⎜⎝
X11 . . . X1N

...
. . .

...
XN1 . . . XNN

⎞

⎟⎠ ,

where every Xij ∈ F
�×�
q (i, j ∈ {1, . . . , N}) is an element of Af . Furthermore, we

define an n × n block diagonal matrix W (N) constructed by concatenating W
diagonally N times:

W (N) :=

⎛

⎜⎝
W

. . .
W

⎞

⎟⎠ .

For these matrices, we obtain the following proposition:

Proposition 1. For X ∈ A
(N)
f and Y ∈ W (N)A

(N)
f , we have

X�Y X ∈ W (N)A
(N)
f .

Proof. We prove this proposition for N = 1. Let X := Φf
g1

and Y := WΦf
g2

.
Owing to the symmetry of WAf and W (because Φf

1 is the identity matrix),

X�Y X = (Φf
g1

)�(WΦf
g2

)(Φf
g1

)

= (Φf
g1

)�W�Φf
g2

Φf
g1

= WΦf
g1

Φf
g2

Φf
g1

= WΦf
g1·g2·g1

.

For N ≥ 2, the statement is proven similarly. 	

Using this proposition, we can construct a quotient-ring UOV (QR-UOV),
which is a variant of UOV using polynomial matrices.

Key Generation

– Choose an irreducible polynomial f ∈ Fq[x] with deg f = � and W ∈ F
�×�
q

such that every element in WAf is symmetric.
– Choose Fi (i = 1, . . . ,m) from W (N)A

(N)
f such that the lower-right m × m

submatrices are zero matrices.
– Choose an invertible matrix S from A

(N)
f randomly.

– Compute Pi = S�FiS (i = 1, . . . ,m).

Then, we obtain that Pi (i = 1, . . . ,m) are elements of W (N)A
(N)
f from

Proposition 1. The signing and verification processes were the same as those for
the plain UOV. In QR-UOV, the cardinality of the finite field q is set to be
odd because if q is even, then the coefficients corresponding to the non-diagonal
components of every diagonal block are zero owing to the symmetry of every
block WΦf

g .

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 199

Remark 2. We can apply the polynomial matrices of a quotient ring to both
UOV and Rainbow.

4.2 Improved QR-UOV

In this subsection, we explain two improved methods used in the NIST third-
round proposal of Rainbow [12]. First, the secret key S is limited to a spe-
cific compact form, which was first proposed by Czypek et al. [11]. The second
replaces a large part of the public key with a small seed for pseudo-random
number generation (PRNG).

In the plain UOV, the matrix S of the secret linear map S can be restricted
to a special form:

S =
(

Iv×v S′

0m×v Im×m

)
, (8)

where S′ is a v × m matrix because it does not affect the security. In QR-UOV,
S is chosen in A

(N)
f , and the identity and zero matrices are elements of Af .

Therefore, S is written as in Eq. (8), where S′ is a block matrix in which every
component is an element of Af . This limits the secret key to a specific compact
form.

The second method is based on Petzoldt et al.’s compression technique [30].
The version of Rainbow using this technique and a secret key compression tech-
nique is called “compressed Rainbow” in the third-round finalist NIST PQC
project [12]. The representation matrices Pi (i = 1, . . . ,m) of the public key
map are written in the form

Pi =
(

Pi,1 Pi,2

P�
i,2 Pi,3

)
,

where Pi,1, Pi,2, and Pi,3 are v × v, v × m, and m × m matrices, respectively,
and Pi,1 and Pi,3 are symmetric matrices. Similarly, the representation matrices
Fi (i = 1, . . . ,m) of the central map in Eq. (3) are written in the form

Fi =
(

Fi,1 Fi,2

F�
i,2 0m×m

)
,

where Fi,1 and Fi,2 are v × v and v × m matrices, respectively, and Fi,1 is a
symmetric matrix. Then, as we have

S−1 =
(

Iv×v −S′

0m×v Io×o

)
,

the representation matrices Fi, Pi (i = 1, . . . ,m), and S hold the following equa-
tion: (

Fi,1 Fi,2

F �
i,2 0m×m

)
=

(
Iv×v 0v×m

−S′� Io×o

) (
Pi,1 Pi,2

P �
i,2 Pi,3

) (
Iv×v −S′

0m×v Io×o

)
.

200 H. Furue et al.

By computing the right-hand side, we obtain

Fi,1 = Pi,1,

Fi,2 = −Pi,1S
′ + Pi,2,

0m×m = S′�Pi,1S
′ − P�

i,2S
′ − S′�Pi,2 + Pi,3. (9)

In the improved key generation step, Pi,1, Pi,2 (i = 1, . . . , m), and S′ are first
generated from seeds spk and ssk, respectively, using PRNG. Next, Pi,3 (i =
1, . . . ,m) is computed using

Pi,3 = −S′�Pi,1S
′ + P�

i,2S
′ + S′�Pi,2,

from Eq. (9): As a result, the public key is composed of m × m matrices Pi,3

(i = 1, . . . ,m) and the seed spk for Pi,1, Pi,2 (i = 1, . . . , m). This compression
technique significantly reduces the public key size of QR-UOV.

Finally, we compare the public key size of plain QR-UOV with that of the
improved QR-UOV. The public key of plain QR-UOV is represented by Pi,1,
Pi,2, and Pi,3 (i = 1, . . . , m), and that of the improved QR-UOV uses a seed spk

and Pi,3 (i = 1, . . . , m). Thus, the number of elements in Fq needed to represent
the public key of the plain QR-UOV is

mn(n + �)/2�,

whereas that of the improved QR-UOV is

m2(m + �)/2�.

5 Security Analysis

In this section, we first analyze the security of QR-UOV against four currently
known attacks on plain UOV. We then discuss possible attacks on the quotient
ring obtained by pulling submatrices WΦf

g back to g in the quotient ring. Finally,
we consider the execution of possible attacks obtained by lifting the base field
Fq to an extension field Fq� and transforming the public key system over the
extension field.

5.1 Currently Known Attacks on Plain UOV

In this subsection, we consider QR-UOV as the plain UOV described in
Subsect. 2.2 and describe the execution of four currently known attacks on UOV:
the direct attack, UOV attack [24], reconciliation attack [14], and intersection
attack [5].

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 201

Direct Attack. Given a quadratic polynomial system P = (p1, . . . , pm) in n
variables over Fq and m ∈ F

m
q , the direct attack algebraically solves the system

P(x) = m. For UOV, the number of variables n is larger than the number of
equations m; therefore, n − m variables can be specified with random values
without disturbing the existence of a solution with high probability.

One of the best-known approaches for algebraically solving the quadratic
system is the hybrid approach [4], which randomly guesses k (k = 0, . . . , n)
variables before computing a Gröbner basis [9]. The guessing process is repeated
until a solution is obtained. Well-known algorithms for computing Gröbner bases
include F4 [16], F5 [17], and XL [10]. The complexity of this approach for a
classical adversary is estimated as follows:

min
k

(
O

(
qk · 3 ·

(
m − k

2

)
·
(

dreg + m − k

dreg

)2
))

, (10)

where dreg is the so-called degree of regularity of the system. The degree of
regularity dreg for a certain class of polynomial systems called semi-regular sys-
tems [1–3] is known to be the degree of the first non-positive term in the following
series [3]: (

1 − z2
)m

(1 − z)m−k
. (11)

Empirically, the public key system of UOV is considered to be a semi-regular
system. Therefore, this series (11) can be used to estimate the degree of regu-
larity.

On the other hand, the complexity of a quantum direct attack is estimated
to be

min
k

(
O

(
qk/2 · 3 ·

(
m − k

2

)
·
(

dreg + m − k

dreg

)2
))

, (12)

by using Grover’s algorithm [21].
Thomae and Wolf [36] proposed a technique for reducing the number of

variables and equations when n > m. For the n×n representation matrices Pi of
the public key, the technique chooses a new matrix S′ such that every upper-left
m × m submatrix of S′�PiS

′ (i = 1, . . . , α) is diagonal, where α = � n
m − 1.

We can then reduce the (n − m + α) variables and α equations and thereby
obtain a quadratic system with m − α variables and equations. This technique
can be fully applied only to quadratic systems that are over finite fields of even
characteristics. Furthermore, Thomae and Wolf show that the technique can
be applied to odd characteristic cases with sufficiently small α, whereas the
technique empirically makes the direct attack faster on the resulting systems in
odd characteristics cases with large α. Therefore, from a security perspective, it is
not extreme that we consider this technique to be applicable to odd characteristic
cases.

In Table 2, for a QR-UOV public key system, we compare the theoretical dreg

and experimental dreg. The theoretical dreg is the degree of regularity obtained

202 H. Furue et al.

Table 2. Theoretical and experimental degree of regularity of public key system of
QR-UOV obtained using the Magma algebra system [7].

(q, v, m, �, k) Theoretical dreg Experimental dreg

(7, 24, 12, 3, 0) 13 13

(7, 24, 12, 3, 1) 7 7

(7, 24, 12, 3, 2) 6 6

(7, 30, 15, 3, 0) 16 16

(7, 30, 15, 3, 1) 8 9

(7, 30, 15, 3, 2) 7 7

by Eq. (11), assuming that the system is semi-regular. The experimental dreg is
the highest degree among the step degrees, where nonzero polynomials are gen-
erated in experiments of the direct attack using the Magma algebra system [7].
In our experiment, m was set to sufficiently large values so that our computation
for one parameter was performed within one day, and v is set equal to 2m, while
q and � are set to the values given in Subsect. 6.1. For the public key of the
QR-UOV with (v + m) variables and m equations, we fix the last v variables
and execute the hybrid approach by fixing k variables additionally. That is, the
direct attack is executed on the system of m equations in m−k variables. These
results demonstrate that the degrees of regularity obtained experimentally were
the same as those obtained theoretically.

Remark 3. In the case of (q, v,m, �, k) = (7, 30, 15, 3, 1) in Table 2, the experi-
mental dreg is larger than the theoretical dreg. However, our experiment shows
that the experimental dreg of the same size randomized quadratic system of m
equations in (m − k) variables over F7 is not different from our experimental
dreg of (q, v,m, �, k) = (7, 30, 15, 3, 1).

UOV Attack. The UOV attack [24] obtains a linear map S ′ : Fn
q → F

n
q such

that every component of F ′ := P ◦ S ′ has the form of Eq. (2). This S ′ is called
the equivalent key. The UOV attack obtains the subspace S−1(O) of Fn

q , where
O is the oil subspace defined as

O :=
{
(0, . . . , 0, α1, . . . , αm)� ∣∣ αi ∈ Fq

}
.

This subspace S−1(O) can induce an equivalent key. To obtain S−1(O), the UOV
attack chooses two invertible matrices Wi,Wj from the set of linear combinations
of P1, . . . , Pm. Then, it probabilistically recovers a part of the subspace S−1(O)
by computing the invariant subspace of W−1

i Wj . The complexity of the UOV
attack is estimated to be

O
(
qv−m−1 · m4

)
.

Grover’s algorithm can be used to reduce the complexity for a quantum adversary
to

O
(
q

v−m−1
2 · m4

)
.

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 203

Reconciliation Attack. The reconciliation attack [14] also obtains, similar to
the UOV attack, an equivalent key S ′. The reconciliation attack treats every
component of the matrix S′ as a variable and solves the quadratic system of
equations obtained using (S′�PiS

′)[v + 1 : n, v + 1 : n] = 0m×m (i = 1, . . . ,m),
where X[a : b, c : d] denotes a (b − a + 1) × (d − c + 1) submatrix of X, where
the upper-left component has index (a, b). This attack can be decomposed into a
series of steps; in the first step, a system of m quadratic equations in v variables is
solved. In the case of the plain UOV, where v > m, the complexity is greater than
that of solving a quadratic system of v equations in v variables. Therefore, we
estimate the complexity of the reconciliation attack as that of the direct attack
on a quadratic system with v variables and v equations, which is obtained by
Eqs. (10) and (12) as m = v. If v ≤ m, then the complexity of the reconciliation
attack is the same as that of solving a quadratic system of m equations in v
variables. As a result, we estimate the complexity of the reconciliation attack
as the direct attack on the quadratic system with v variables and max{m, v}
equations.

Intersection Attack. In [5], Beullens proposed a new attack against UOV,
called the intersection attack.

The intersection attack attempts to obtain an equivalent key by recovering
the subspace S−1(O) of Fn

q . The intersection attack solves the following equations
for y ∈ F

n
q : ⎧

⎨

⎩

(Wiy)�Pk(Wiy) = 0
(Wjy)�Pk(Wjy) = 0
(Wiy)�Pk(Wjy) = 0

(13)

where Wi,Wj are two invertible matrices chosen from a set of linear combina-
tions of the public key P1, . . . , Pm. In the case where n < 3m, the solution space
obtained from Eq. (13) is of the (3m − n) dimensions. Thus, its complexity is
equivalent to that of solving the quadratic system with n − (3m − n) = 2n − 3m
variables and (3m − 2) equations. In contrast, in the case where n ≥ 3m, the
intersection attack becomes a probabilistic algorithm for solving the system (13)
with n variables and (3m − 2) equations with a probability of approximately
q−n+3m−1. Therefore, its complexity is estimated by qn−3m+1 times the com-
plexity of solving the quadratic system with n variables and (3m−2) equations.

Remark 4. In [5], Beullens proposed a new attack against Rainbow, called a
rectangular MinRank attack. This attack uses non-full-rank property of Rainbow
and thus does not affect the security of our proposed scheme.

5.2 Pull-Back Attacks over Quotient Ring

In this subsection, we explain a technique for executing four currently known
attacks on QR-UOV by utilizing the block structure derived from the quotient
ring. For every block submatrix WΦf

g of the representation matrices of the public

204 H. Furue et al.

key, we can execute the UOV attack [24], reconciliation attack [14], and inter-
section attack [5] in the quotient ring Fq[x]/(f) by replacing WΦf

g with g.

We define a map G1 : W (N)A
(N)
f → (Fq[x]/(f))N×N such that given

X ∈ W (N)A
(N)
f , (G1(X))ij is equal to g ∈ Fq[x]/(f) if the ij-block of X is

WΦf
g . Furthermore, we define G2 : A

(N)
f → (Fq[x]/(f))N×N such that G2(X) =

G1(W (N) · X) for X ∈ A
(N)
f . In the following, we consider the execution of the

four currently known attacks described in Subsect. 5.1 on G1(P1), . . . , G1(Pm),
which is called the pull-back technique.

First, we consider the complexity of the pull-back UOV attack, which is the
UOV attack on the transformed representation matrices G1(P1), . . . , G1(Pm). If
we obtain an equivalent key S′ for the transformed matrices by executing the
UOV attack over Fq[x]/(f), then G−1

2 (S′) ∈ F
n×n
q is an equivalent key over

Fq. The complexities of the pull-back UOV attack for a classical and quantum
attacker are

O
(
qv−m−� · (m/�)4

)
, O

(
q

v−m−�
2 · (m/�)4

)
,

which are approximately the same values as for the plain UOV attack.
Second, the pull-back reconciliation attack is the reconciliation attack on

UOV with v/� vinegar variables and m equations. As we stated in Subsect. 5.1,
the complexity is estimated to be that of the direct attack on a quadratic system
with v/� variables and max{m, v/�} equations over Fq[x]/(f).

Third, we discuss applying the pull-back technique to the intersection attack.
The pull-back intersection attack can also be seen as the intersection attack on
UOV with v/� vinegar variables and m equations in Fq[x]/(f). From the discus-
sion in Subsect. 5.1, when n < 3m, the complexity of the pull-back intersection
attack is equivalent to that of solving the quadratic system with (2n − 3m)/�
variables and (3m − 2) equations in Fq[x]/(f). In contrast, in the case where
n ≥ 3m, the complexity of the pull-back intersection attack is estimated by
qn−3m+� times the complexity of solving the quadratic system with n/� vari-
ables and (3m − 2) equations.

Finally, for the direct attack, as vectors x and m of P(x) = m cannot be
represented over the quotient ring Fq[x]/(f), the direct attack cannot be executed
on G1(P1), . . . , G1(Pm).

5.3 Lifting Attacks over Extension Field

As stated in Theorem 2, there does not exist a transformation on the representa-
tion matrices P1, . . . , Pm of QR-UOV into the diagonal concatenation of smaller
matrices, such as the form of Eq. (6) used in the structural attack on BAC-UOV
by executing a change of variables over Fq. However, as we prove below, such a
transformation exists in the public key of QR-UOV over the extension field Fq� .
In this subsection, we explain a technique for transforming the public key over
Fq� and how this affects the four currently known attacks on UOV.

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 205

Theorem 3. With the same notation as in Theorem 2,

(i) There exists an invertible matrix L ∈ F
�×�
q� such that L−1Φf

gL is diagonal
for any g ∈ Fq[x]/(f).

(ii) The matrix L described in (i) satisfies the condition that L�XL is diagonal
for any X ∈ WAf .

(iii) If there exists y ∈ F
�
q� such that y�Xy = 0 for any X ∈ WAf , then y = 0.

(The proof is provided in the appendix.)
First, Theorem 3 shows that the polynomial matrix can be diagonalized over

Fq� . Subsequently, it indicates that P1, . . . , Pm of QR-UOV can be transformed
into block diagonal matrices for which the block size is N × N by executing
a change of variables over Fq� . Let L(N) be an n × n block diagonal matrix
with block size � (n = � · N), for which the N diagonal blocks are L. Then,
(L(N))�PiL

(N) (i = 1, . . . ,m) become block matrices wherein every component
is in a diagonal form. Furthermore, there exists a permutation matrix L′ such
that (L(N)L′)�Pi(L(N)L′) is a block diagonal matrix with block size N , and let
L̄ := L(N)L′. Finally, this theorem states that there does not exist a change in
variables over Fq� such that it directly recovers the structure of the central map
of UOV.

Next, we consider the complexities of the lifting UOV, reconciliation, and
intersection attacks which are the UOV attack [24], reconciliation attack [14],
and intersection attack [5] on L̄�PiL̄ (i = 1, . . . ,m). The transformed matrices
L̄�PiL̄ can be represented by (L̄−1SL̄)�(L̄�FiL̄) (L̄−1SL̄). Then, L̄�FiL̄ is the
diagonal concatenation of � smaller matrices, similar to L̄�PiL̄. Furthermore,
L̄−1SL̄ is also the diagonal concatenation of � smaller matrices from (i) in The-
orem 3. Then, owing to the structure of Fi, every diagonal block of L̄�FiL̄ has
an m/�×m/� zero block, similar to Fi. Therefore, each diagonal block of L̄�PiL̄
has the same form as the matrix representing the public key of UOV with v/�
vinegar variables and m/� oil variables over Fq� . The lifting technique executes
currently known attacks on one of such diagonal blocks. Consequently, the com-
plexity of the lifting UOV attack on each block over Fq� is O(qv−m−� · (m/�)4),
and the complexity of the lifting reconciliation attack on each block is estimated
to be that of the direct attack on a quadratic system with v/� variables and
max{m, v/�} equations over Fq� . Furthermore, we can apply the lifting tech-
nique to the intersection attack. In the case where n < 3m, the complexity of
the lifting intersection attack on each block over Fq� is estimated to be the com-
plexity of solving the quadratic system with (2n− 3m)/� variables and (3m− 2)
equations over Fq� . In contrast, in the case where n ≥ 3m, the complexity is esti-
mated by qn−3m+� times the complexity of solving the quadratic system with
n/� variables and (3m − 2) equations over Fq� .

Note that the complexities of the lifting UOV, reconciliation, and intersec-
tion attacks in this subsection are the same as those of the pull-back UOV,
reconciliation, and intersection attacks in Subsect. 5.2, respectively.

Next, we consider the direct attack on L̄�PiL̄ (i = 1, . . . ,m). Although in
Subsect. 5.1, we use the technique proposed by Thomae and Wolf [36] in the

206 H. Furue et al.

Table 3. Theoretical and experimental degree of regularity obtained by executing the
lifting direct attack using the Magma algebra system [7].

(q, v, m, �, k) Theoretical dreg Experimental dreg

(7, 24, 12, 3, 0) 13 13

(7, 24, 12, 3, 1) 7 7

(7, 24, 12, 3, 2) 6 5

(7, 30, 15, 3, 0) 16 15

(7, 30, 15, 3, 1) 8 8

(7, 30, 15, 3, 2) 7 7

plain direct attack, we cannot use this technique in the lifting direct attack. If
we use this technique before the linear transformation using L̄ over Fq� , the rep-
resentation matrices cannot be diagonalized because the linear transformation
executed in this technique breaks the block structure of QR-UOV. We thus use
the technique after block-diagonalizing over Fq� . If n > m, the cardinality of the
solution is generally F

v
q . However, because the system is solved over Fq� , the car-

dinality of the obtained solution changes to F
v
q� . Therefore, the probability that

the obtained solution is in F
n
q is very low; therefore, this technique is inefficient.

In conclusion, there is no effective way to execute the direct attack on L̄�PiL̄
using Thomae and Wolf’s technique.

Therefore, we consider the lifting direct attack without using Thomae and
Wolf’s technique, in which we fix the v values before block-diagonalizing over
Fq� . We then obtain a solution in F

n
q because the solution is uniquely determined

with high probability. This means that we can execute the direct attack on
a block-diagonalized system without reducing the probability of obtaining a
solution in F

n
q . Table 3 summarizes the results of experiments investigating the

degree of regularity of the block-diagonalized public key system of QR-UOV
using the Magma algebra system [7]. In our experiment, v is set to be equal to
2m. For the representation matrices P1, . . . , Pm of the public key of the QR-
UOV with (v+m) variables and m equations, after transforming the system like
L̄�PiL̄, we fix the last v variables and execute the hybrid approach by fixing
k variables additionally. That is, the direct attack is executed on the system of
m equations in m − k variables. In Table 3, the theoretical dreg is the degree
of regularity obtained by Eq. (11), assuming that the system is semi-regular,
and the experimental dreg is the highest degree among the step degrees, where
non-zero polynomials are generated in experiments of the direct attack using
the Magma algebra system [7]. The results show that the experimental dreg was
smaller than the theoretical dreg by at most one. Therefore, we estimate the
complexity of the lifting direct attack by replacing q and dreg in Eqs. (10) and
(12) with q� and dreg −1, respectively. In this estimation, the degree of regularity
becomes one degree smaller, but the base field Fq is lifted to the extension field
Fq� .

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 207

6 Proposed Parameters and Comparison

In this section, we propose specific parameters for three security levels of the
NIST PQC project [27] and compare the performance of the improved QR-UOV
with that of compressed Rainbow [12].

6.1 Proposed Parameters

In this subsection, we describe the parameters selected for the improved QR-
UOV described in Subsect. 4.2. Our proposed parameters are set to satisfy the
security levels I, III, and V of the NIST PQC project [27] to enable compari-
son with the performance of compressed Rainbow [12]. The parameters for the
improved QR-UOV are the order of finite fields q, number of vinegar variables v,
number of oil variables (equations) m, block size of the representation matrices
�, and polynomial used to generate the quotient ring f . We set q as odd from
a security perspective. The integer v is mainly determined by the complexity of
the pull-back and lifting reconciliation attacks described in Subsects. 5.2 and 5.3,
and m is determined by that of the plain direct attack. We use � = 3 because a
large � increases the signature and execution time. From Theorem 2, we choose
irreducible polynomials f in the form of x� − axi − 1 described in Example 1. In
summary, we propose the following parameters for improved QR-UOV:

QR-UOV I : (q, v,m, �, f) = (7, 189, 72, 3, x3 − 3x − 1),

QR-UOV III : (q, v,m, �, f) = (7, 291, 111, 3, x3 − 3x − 1),

QR-UOV V : (q, v,m, �, f) = (7, 411, 162, 3, x3 − 3x − 1).

Next, we show that these parameters of QR-UOV I, III, and V satisfy the
security levels I, III, and V of the NIST PQC project, respectively. Here, security
levels I, III, and V indicate that a classical attacker needs more than 2143, 2207,
and 2272 classical gates to break the parameters, whereas a quantum attacker
needs more than 274, 2137, and 2202 quantum gates, respectively [27]. The number
of gates required for an attack against the NIST third-round proposal version of
Rainbow [12] can be computed using

#gates = #field multiplication · (2 · (log2q)
2 + log2q).

Next, we consider the complexity of each attack described in Sect. 5 on the pro-
posed parameters. Table 4 shows the complexity of the plain direct, UOV, recon-
ciliation, and intersection attacks described in Subsect. 5.1, the pull-back UOV,
reconciliation, and intersection attacks described in Subsect. 5.2, and the lifting
direct, UOV, reconciliation, and intersection attacks described in Subsect. 5.3.
(See each subsection for a concrete method of estimating the complexity of each
attack). This table does not include the complexity of “the pull-back direct attack”
because we cannot execute the direct attack on the pulled back public key system,
as stated in Subsect. 5.2. For each parameter set, the upper entry shows the num-
ber of classical gates, whereas the lower entry shows the number of quantum gates.

208 H. Furue et al.

Table 4. The complexity of the plain attacks in Subsect. 5.1, the pull-back attacks
in Subsect. 5.2, and lifting attacks in Subsect. 5.3 on the proposed parameters of QR-
UOV in Subsect. 6.1. Here, “dir”, “UOV”, “rec”, and “int” denote the direct attack,
UOV attack, reconciliation attack, and intersection attack, respectively. The bold font
indicates the lowest complexity among all attacks at the same security level.

Parameter
(q, v, m, �)

Attack model log2(#gates)

Plain Pull-back Lifting

dir UOV rec int UOV rec int dir UOV rec int

QR-UOV I
(7,189,72,3)

Classical 152 355 373 679 346 149 242 210 346 149 242

Quantum 91 192 252 411 186 148 175 182 186 148 175

QR-UOV III
(7,291,111,3)

Classical 224 534 555 1022 525 214 351 311 525 214 351

Quantum 140 283 371 616 277 213 250 267 277 213 250

QR-UOV V
(7,411,162,3)

Classical 317 730 768 1394 721 279 446 440 721 279 446

Quantum 205 382 511 844 376 275 316 376 376 275 316

For example, the complexity of the direct attack for level I is 155 classical gates and
106 quantum gates. Furthermore, the values in bold indicate the complexity of the
best attack against each parameter set. The lowest complexity among all attacks
is the pull-back and lifting reconciliation attacks in the classical case, whereas that
is the direct attack in the quantum case. As a result, this table shows that the pro-
posed parameters satisfy the requirements for each security level.

Remark 5. Similar to the proposed parameters for Rainbow [12], our proposed
parameters for security levels I, III, and V also satisfy security levels II, IV, and
VI of the NIST PQC project [27].

Remark 6. In [19], Furue et al. improved Thomae and Wolf’s technique for solv-
ing the MQ problem in the case where n > m. Furthermore, Hashimoto made
the method more efficient in [22]. By using these results, the complexities of the
plain direct attack on QR-UOV I, III, and V are reduced from 2155, 2227, and
2320 to 2152, 2224, and 2317 in the classical case and from 2106, 2155, and 2216

to 291, 2140, and 2205 in the quantum case, respectively. In Table 4, we take the
above reduced values.

6.2 Comparison with Rainbow

In Table 5, we compare the public key and signature size for our proposed
improved QR-UOV parameters with those for compressed Rainbow [12] for secu-
rity levels I, III, and V. As for compressed Rainbow in the third-round pro-
posal [12], the public key includes a 256-bit seed spk, and the signature includes
a 128 bit salt, which is a random binary vector for EUF-CMA security [33]. The
secret key can be generated from two 256-bit seeds, ssk and spk. For example, the
public key size of the improved QR-UOV for level I is 23.8 KB, which is approx-
imately half that of compressed Rainbow. As a result, the public key size of the

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 209

Table 5. Comparison of public key and signature size of compressed Rainbow with
those of QR-UOV. We use parameters for compressed Rainbow in [12], and parameters
for the improved QR-UOV in Subsect. 4.2. The unit of the public key size is kilobyte
(KB) but that of the signature size is byte (B).

Security
level

Scheme Parameters Public key
size (KB)

Signature
size (B)

I Compressed Rainbow I (q, v1, o1, o2) =
(16, 36, 32, 32)

57.4 66.0

QR-UOV I (q, v, m, �) =
(7, 189, 72, 3)

23.8 113.9

III Compressed Rainbow III (q, v1, o1, o2) =
(256, 68, 32, 48)

252.3 164.0

QR-UOV III (q, v, m, �) =
(7, 291, 111, 3)

85.8 166.8

V Compressed Rainbow V (q, v1, o1, o2) =
(256, 96, 36, 64)

511.2 212.0

QR-UOV V (q, v, m, �) =
(7, 411, 162, 3)

264.3 230.9

improved QR-UOV can be reduced by approximately 50%–70% compared with
that of compressed Rainbow at the cost of a small increase in signature size.
We stress that the Rainbow team [31] did not update the parameters of the
compressed Rainbow by considering the intersection attack and the rectangular
MinRank attack proposed by Beullens [5].

Although the public key size could be further reduced by setting the block
size � larger, enlarging the block size would likely increase the signature size and
increase the execution time.

7 Conclusion

We proposed a new variant of UOV, which is a well-established multivariate
signature scheme that has not been broken for over 20 years. Our proposed QR-
UOV scheme uses a quotient ring (Fq[x]/(f)) to reduce the public key size.
Although multivariate signature schemes are promising candidates for post-
quantum cryptography, and a UOV variant called Rainbow was selected as a
third-round finalist in the NIST post-quantum cryptography (PQC) project, a
disadvantage of UOV variants, including Rainbow, is that they have a large
public key. Research on reducing the size of the UOV public key is important
for post-quantum cryptography. In this paper, we present a new approach for
achieving such a reduction.

Our proposed QR-UOV scheme features a small public key and a reasonable
signature size. In particular, using the proposed parameters, the public key size of
the improved QR-UOV can be reduced approximately 50%–70% compared with

210 H. Furue et al.

that of compressed Rainbow, a third-round finalist in the NIST PQC project,
without significantly increasing the signature size. To construct QR-UOV, we
defined polynomial matrices Φf

g (g ∈ Fq[x]/(f)) and introduced the concept of a
matrix W such that WΦf

g is symmetric. QR-UOV utilizes polynomial matrices
Φf

g in block matrices. Moreover, we proved that if the polynomial f used to
generate the quotient ring is irreducible, then QR-UOV is resistant to attacks
that can break the block-anti-circulant UOV. We also analyzed the security
of QR-UOV against four currently known attacks on plain UOV and possible
attacks on the quotient ring. We stress that utilizing the elements of a quotient
ring in block matrices is similar to the MLWE problem: a generalization of the
LWE using a module comprising vectors over a ring.

Improving the efficiency of QR-UOV is an important problem. The Rainbow
UOV variant has a multilayer structure and is efficient and secure. Extending
QR-UOV to a comparable, efficient, and secure multilayer version of the QR-
Rainbow will be a challenging task. We need to carefully analyze the security of
the QR-Rainbow against various attacks by considering its multilayer structure.
Another possible way to improve the efficiency is to exploit a better choice of
the polynomial f . In this study, we simply used a simple trinomial for the first
construction of QR-UOV; we expect to obtain another family of polynomials
that can produce more efficient operations.

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR14D6 and JPMJCR2113, Japan, and JSPS KAKENHI Grant Number
JP21J20391 and JP19K20266, Japan.

Appendix A: Transformation on Polynomial Matrix from
a Reducible Polynomial

First, we discuss the case in which f is reducible and decomposed into distinct
irreducible polynomials.

Theorem 4. Let f ∈ Fq[x] be a reducible polynomial with deg f = � and W be
an invertible matrix such that every element of WAf is a symmetric matrix. If
f = f1 · · · fk (k ∈ N), where f1, . . . , fk are distinct and irreducible, and deg f1 ≤
· · · ≤ deg fk, then there exists an invertible matrix L ∈ F

�×�
q and i ∈ {1, . . . , �−1}

such that for any X ∈ WAf ,

L�XL =
(

∗i×i 0i×(�−i)

0(�−i)×i ∗(�−i)×(�−i)

)
. (14)

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 211

Proof. We first prove that every element of AfW−1 is symmetric. For any g ∈
Fq[x]/(f),

(Φf
gW−1)� = W−�(Φf

g)�

= W−�(Φf
g)�WW−1

= W−�(WΦf
g)�W−1 (∵ W is symmetric.)

= W−�WΦf
gW−1

= Φf
gW−1.

Therefore, every element of AfW−1 is symmetric.
As f is reducible, there exists a, b ∈ Fq[x]/(f) such that a · b = 0. Then, for

any g ∈ Fq[x]/(f),

(Φf
aW−1)�(WΦf

g)(Φf
b W−1) = Φf

a·g·bW
−1

= Φf
0W−1 = 0�×�.

We assume that L ∈ F
�×�
q is designed such that the first i column vectors of L

are chosen from the column vector space of Φf
aW−1, and the other (�−i) column

vectors of L are chosen from the column vector space of Φf
b W−1. Then, Eq. (14)

explicitly holds from the above equation.
We next show that there exists an invertible such an invertible matrix L. We

take a = f1 and b = f2 · · · fk (here, f1, . . . , fk are seen as elements of Fq[x]/(f).)
and prove that rankΦf

a = deg b (rank Φf
b = deg a). We use the bijective map V1

used in the proof of Theorem 2. From Eq. (7), for any c ∈ Fq[x]/(f),

a · c = 0 ⇔ Φf
a · V1(c) = 0.

As there is no c ∈ Fq[x]/(f) such that a · c = 0 and deg c < deg b, the first
deg b column vectors are linearly independent. Furthermore, as Φf

a · V1(b) = 0,
Φf

a · V1(xb) = 0, . . . , Φf
a · V1(xdeg a−1b) = 0, we have rankΦf

a = deg b. Similarly,
it is proved that rankΦf

b = deg a.
Next, we design L ∈ F

�×�
q such that the first deg b column vectors of L are

bases of the column vector space of Φf
aW−1 and the other (� − deg b) (= deg a)

column vectors of L are bases of the column vector space of Φf
b W−1.

Finally, we prove that the column vector spaces of Φf
aW−1 and Φf

b W−1 have
no intersection, that is, the column vector spaces of Φf

a and Φf
b have no intersec-

tion. If this statement holds, then L constructed using this approach is invertible.
We assume that the column vector spaces of Φf

a and Φf
b have an intersection.

Then, there exist two vectors x,y ∈ F
�
q such that the last (�−deg b) elements of x

and the last (� − deg a) elements of y are zero, and Φf
ax = Φf

b y because the first
deg b (deg a) vectors of Φf

a (Φf
b) are linearly independent. From the definition

of Φf
g , aV −1

1 (x) = bV −1
1 (y), deg (V −1

1 (x)) < deg b, and deg (V −1
1 (y)) < deg a.

However, this contradicts that f1, . . . , fk are distinct and irreducible. Therefore,
the column vector spaces of Φf

a and Φf
b have no intersections. 	

212 H. Furue et al.

Next, we discuss another case where f is reducible.

Theorem 5. With the same notation as in Theorem 4, if there exists f ′ ∈ Fq[x]
such that f ′2 | f , there exists an invertible matrix L ∈ F

�×�
q such that, for any

X ∈ WAf ,
(L�XL)�� = 0.

Proof. From this assumption, there exists a ∈ Fq[x]/(f) such that a2 = 0. There-
fore, for any g ∈ Fq[x]/(f),

(Φf
aW−1)�(WΦf

g)(Φf
aW−1) = Φf

a·g·aW−1

= 0�×�,

and Φf
aW−1 is symmetric. We suppose that L ∈ F

�×�
q is an invertible matrix,

wherein the �-th column vector is chosen from the column vectors of Φf
aW−1.

From the above equation, the (�, �) component of L�(WΦf
g)L is zero for any

g ∈ Fq[x]/(f). 	

Appendix B: Proof of Theorem 3 in Subsect. 5.3

Theorem 3. With the same notation as in Theorem 2,

(i) There exists an invertible matrix L ∈ F
�×�
q� such that L−1Φf

gL is diagonal for
any g ∈ Fq[x]/(f).

(ii) The matrix L described in (i) satisfies the condition that L�XL is diagonal
for any X ∈ WAf .

(iii) If there exists y ∈ F
�
q� such that y�Xy = 0 for any X ∈ WAf , then y = 0.

Proof. First, we prove statement 1. The characteristic polynomial of Φf
x is equal

to f for x ∈ Fq[x]/(f). As f is irreducible over Fq[x], f is separable, and its
roots are distinct in Fq� [x]. Therefore, the eigenvalues of Φf

x are distinct in Fq� ,
and there exists L ∈ F

�×�
q� such that L−1Φf

xL is diagonal. Furthermore, Φf
1 is the

identity matrix, and Φf
xi (i = 2, . . . , � − 1) can be diagonalized using L:

L−1Φf
xiL = L−1(Φf

x · · · Φf
x)L

= (L−1Φf
xL) · · · (L−1Φf

xL).

Then, for any g ∈ Fq[x]/(f), L−1Φf
gL becomes diagonal because Af is spanned

by {Φf
1 , Φf

x, . . . , Φf
x�−1} over Fq.

Next, we prove statement 2 by using the following lemma.

Lemma 2. With the same notation as in Theorem 2, for L ∈ F
�×�
q� described in

Theorem 3, L�WL is diagonal.

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 213

Proof. Since WΦf
g is symmetric,

WΦf
g = (WΦf

g)� = (Φf
g)�W�.

Furthermore, because W is symmetric, we have

(Φf
g)� = WΦf

gW−1. (15)

As L−1Φf
gL is symmetric,

L−1Φf
gL = L�(Φf

g)�L−�

= L�WΦf
gW−1L−� (∵ (15))

= (L�WL)(L−1Φf
gL)(L�WL)−1.

Then, L�WL and L−1Φf
gL are commutative. As L−1Φf

gL is diagonal, and the
diagonal components are distinct, L�WL is diagonal. 	

For any g ∈ Fq[x]/(f), we can transform L�WΦf
gL:

L�WΦf
gL = (L�WL)(L−1Φf

gL).

From statement 1 and Lemma 2, L�WΦf
gL are diagonal.

Finally, we prove statement 3. Let y := L−1x; then,

x�WΦf
gx = (Ly)�WΦf

g (Ly)

= y�(L�WL)(L−1Φf
gL)y.

If we define the diagonal components of L−1Φf
xL as θ1, . . . , θ� (the roots of f

in Fq�), the diagonal components of L−1Φf
gL are equal to g(θ1), . . . , g(θ�). If

y′ :=
(
y2
1 . . . y2

�

)�,

y�(L�WL)(L−1Φf
gL)y = 0

⇔
(
g(θ1) · · · g(θ�)

)
(L�WL)y′ = 0 (16)

since L�WL is diagonal.
Let g1, . . . , g� be the basis of Fq[x]/(f) over Fq, then, satisfying Eq. (16) for

any g ∈ Fq[x]/(f) is equivalent to
⎛

⎜⎝
g1(θ1) . . . g1(θ�),

...
. . .

...
g�(θ1) . . . g�(θ�)

⎞

⎟⎠ (L�WL)y′ = 0. (17)

In addition, g1, . . . , g� form the basis of Fq� [x]/(f) over Fq� , and

Fq� [x]/(f) ∼= Fq� [x]/(x − θ1) ⊕ Fq� [x]/(x − θ2) ⊕ · · · ⊕ Fq� [x]/(x − θ�),
∼= F

�
q� .

214 H. Furue et al.

Table 6. Performance of the improved QR-UOV in Subsect. 4.2 in Magma algebra
system [7].

Parameter (q, v, m, �) Key generation Signature generation Verification

QR-UOV I (7, 189, 72, 3) 0.06 s 0.04 s 0.01 s

QR-UOV III (7, 291, 111, 3) 0.17 s 0.13 s 0.05 s

QR-UOV V (7, 411, 162, 3) 0.45 s 0.33 s 0.11 s

Therefore, (gi(θ1) · · · gi(θ�)) (i = 1, . . . , �) are linearly independent, and

(17) ⇔ y′ = 0

⇔ y = 0

⇔ x = 0.

	

Appendix C: Performance in Magma

Here, we present the execution times for key generation, signature generation,
and verification of the improved QR-UOV in Subsect. 4.2. All experiments were
performed on a MacBook Pro with a 2.4-GHz quad-core, Intel Core i5 CPU,
and the Magma algebra system (V2.24-82) [7]. Table 6 shows the average times
for 100 runs using the improved QR-UOV scheme described in Subsect. 4.2 and
our proposed parameters for levels I, III, and V of the NIST PQC project. All
timings are in second. These are not optimized implementations.

In the key generation step, we first generate two 32-bit seeds (ssk and spk)
by using the Magma Random command. We then use the Magma SetSeed com-
mand as a pseudo-random number generator to generate part of the public and
secret keys. (In Subsect. 6.2, we stated that the size of the two seeds is 256 bits;
however, we use two 32-bit seeds because the size of the input for SetSeed is
at most 32 bits.) Next, we generate a secret key using the method described in
Subsect. 4.2. In the signature generation step, we recover the public and secret
keys from the two seeds and perform the procedure explained in Subsect. 2.2.
The signature is generated in the same manner as a signature is generated in
the compressed Rainbow [12]. In the verification step, we generate the public
key from the spk seed and follow the procedure explained in Subsect. 2.1. In the
signature generation and verification steps, we need to compute the product of a
vector and matrices WΦf

g or Φf
g , which is made more efficient using the structure

of the polynomial matrix.
For example, in Table 6, the execution times of the key generation, signature

generation, and verification steps of QR-UOV for level I are 0.06 s, 0.04 s, and
0.01 s, respectively. In most cases, our performance is approximately one order of
magnitude slower than that of compressed Rainbow [12]. It should be noted that

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 215

their implementation is in C, and ours is in Magma, and the signing and verifica-
tion times of compressed Rainbow are dominated by the use of a cryptographic
hash function which is not used in the implementation of QR-UOV.

References

1. Bardet, M.: Étude des systèms algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. Ph.D. thesis, Université Pierre et Marie Curie-
Paris VI (2004)

2. Bardet, M., Faugère, J.-C., Salvy, B.: Complexity of Gröbner basis computation
for semi-regular overdetermined sequences over F2 with solutions in F2. Research
Report, INRIA (2003)

3. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behavior of the
index of regularity of quadratic semi-regular polynomial systems. In: 8th Interna-
tional Symposium on Effective Methods in Algebraic Geometry (2005)

4. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3, 177–197 (2009)

5. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

6. Beullens, W., Preneel, B.: Field lifting for smaller UOV public keys. In: Patra, A.,
Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 227–246. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71667-1 12

7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbol. Comput. 24(3–4), 235–265 (1997)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012)

9. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassen-
ringes nach einem nulldimensionalen polynomideal. Ph.D. thesis, Universität Inns-
bruck (1965)

10. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

11. Czypek, P., Heyse, S., Thomae, E.: Efficient implementations of MQPKS on con-
strained devices. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 374–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 22

12. Ding, J., et al.: Rainbow signature schemes proposal for NIST PQC project (round
3 version)

13. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

14. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0 15

15. Ding, J., Zhang, Z., Deaton, J., Schmidt, K., Vishakha, FNU.: New attacks on
lifted unbalanced oil vinegar. In: Second PQC Standardization Conference 2019,
NIST (2019)

https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-319-71667-1_12
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-642-33027-8_22
https://doi.org/10.1007/978-3-642-33027-8_22
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-540-68914-0_15

216 H. Furue et al.

16. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139(1–3), 61–88 (1999)

17. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM (2002)

18. Furue, H., Kinjo, K., Ikematsu, Y., Wang, Y., Takagi, T.: A structural attack on
block-anti-circulant UOV at SAC 2019. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto
2020. LNCS, vol. 12100, pp. 323–339. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44223-1 18

19. Furue, H., Nakamura, S., Takagi, T.: Improving Thomae-Wolf algorithm for solv-
ing underdetermined multivariate quadratic polynomial problem. In: Cheon, J.H.,
Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 65–78. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81293-5 4

20. Garey, M.-R., Johnson, D.-S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, W.H, San Francisco (1979)

21. Grover, L.-K.: A fast quantum mechanical algorithm for database search. In: STOC
1996, pp. 212–219. ACM (1996)

22. Hashimoto, Y.: Minor improvements of algorithm to solve under-defined systems
of multivariate quadratic equations. IACR Cryptology ePrint Archive: Report
2021/1045 (2021)

23. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

24. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055733

25. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM signature schemes proposal for
NIST PQC project (round 2 version)

26. NIST: post-quantum cryptography CSRC. https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization

27. NIST: submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

28. NIST: Status report on the first round of the NIST post-quantum cryptography
standardization process. NIST Internal Report 8240, NIST (2019)

29. NIST: Status report on the second round of the NIST post-quantum cryptography
standardization process. NIST Internal Report 8309, NIST (2020)

30. Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – a multivariate signa-
ture scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17401-8 4

31. The Rainbow Team: Response to recent paper by Ward Beullens (2020). https://
troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

33. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE
signature schemes against chosen-message attack. In: Yang, B.-Y. (ed.) PQCrypto
2011. LNCS, vol. 7071, pp. 68–82. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25405-5 5

34. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

https://doi.org/10.1007/978-3-030-44223-1_18
https://doi.org/10.1007/978-3-030-44223-1_18
https://doi.org/10.1007/978-3-030-81293-5_4
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-642-17401-8_4
https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-25405-5_5

A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring 217

35. Szepieniec, A., Preneel, B.: Block-anti-circulant unbalanced oil and vinegar. In:
Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 574–588.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5 23

36. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8 10

https://doi.org/10.1007/978-3-030-38471-5_23
https://doi.org/10.1007/978-3-642-30057-8_10
https://doi.org/10.1007/978-3-642-30057-8_10

Shorter Lattice-Based Group Signatures
via “Almost Free” Encryption and Other

Optimizations

Vadim Lyubashevsky1(B), Ngoc Khanh Nguyen1,2(B), Maxime Plancon1,2(B),
and Gregor Seiler1,2(B)

1 IBM Research Europe, Zurich, Switzerland
{nkn,mpl,grs}@zurich.ibm.com

2 ETH Zurich, Zurich, Switzerland

Abstract. We present an improved lattice-based group signature scheme
whose parameter sizes and running times are independent of the group size.
The signature length in our scheme is around 200KB, which is approx-
imately a 3X reduction over the previously most compact such scheme,
based on any quantum-safe assumption, of del Pino et al. (CCS 2018). The
improvement comes via several optimizations of some basic cryptographic
components that make up group signature schemes, and we think that they
will find other applications in privacy-based lattice cryptography.

Keywords: Lattice cryptography · Group signatures · Zero-knowledge

1 Introduction

The eventual coming of quantum computers, combined with the ongoing shift to
decentralization, makes designing efficient quantum-safe privacy-based primitives
a highly pertinent problem. One of the more elementary privacy-preserving prim-
itives is a group signature, and constructing such schemes has often been seen as
an important stepping stone towards constructing more expressive primitives.

In a group signature scheme, the setup authority gives out individual signing
keys si to users with identities mi. User mi can then utilize si to create a
signature σ on a message μ of his choosing. There is also an entity called the
Opener (or Group Manager) who is able to derive the identity mi of the user who
created σ. A basic group signature scheme has the following security properties:

1. Anonymity. The adversary who knows all the signing keys si cannot distin-
guish between signatures produced by user mi or mi′ , for i, i′ of the adver-
sary’s choosing.

2. Traceability. The adversary who possesses signing keys to all users in some
set S, and the Opener’s secret key, cannot create a valid signature that the
Opener will decrypt to some identity mi �∈ S or to ⊥ (i.e. decryption will
fail).

Supported by the SNSF ERC Transfer Grant CRETP2-166734 FELICITY and the EU
H2020 ERC Project 101002845 PLAZA.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 218–248, 2021.
https://doi.org/10.1007/978-3-030-92068-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_8

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 219

While there exist fairly efficient group signatures based on standard assump-
tions (e.g. [CS97]), most of the early work in trying to construct lattice-based
group signatures were efficient only in an asymptotic sense with concrete sig-
nature sizes being around 50 MB (e.g. [GKV10,LLNW16]). More recently, some
concretely efficient schemes appeared that lowered the signature sizes to a little
over 1 MB (c.f. [BCN18]), and the scheme with the smallest signature size, in
which the parameters and computational complexity of signing and verifying do
not depend on the group size, was proposed by del Pino et al. [dPLS18] in 2018,
where signature sizes are approximately 580 KB.

Starting in 2019, the efficiency of lattice-based zero-knowledge proofs, which
are important components of group signatures, has improved by several orders
of magnitude (c.f. [YAZ+19,BLS19,ESLL19,ESS+19,ALS20,ENS20,LNS20]).
The improvements have been dramatic-enough that one can now create sophis-
ticated systems like lattice-based confidential transactions (i.e. a Monero-like
payment system based on the hardness of lattice problems) where the commu-
nication complexity of a transaction is under 30 KB [EZS+19,LNS21b].

Using these same techniques, [EZS+19] improved on the efficiency of group
signatures for the special case where the group size is not too large. While the
signature size is smaller, the signing, verification, and opening times are linear in
the number of group members. When the group size is ≈ 210, the signature size
is around 60KB and the scheme is reasonably efficient. The computational com-
plexity of the scheme becomes prohibitive, however, as the group size approaches
220 members.

It is interesting that despite the recent progress in zero-knowledge proofs,
there haven’t been any improvements in general group signature constructions
whose complexities are independent of the group size. One reason for this lack of
progress might be that the techniques used in [dPLS18] are quite different than
what has been improved upon. For example, a key component in that scheme an
ABB-like [ABB10] selectively-secure signature scheme that uses the Micciancio-
Peikert trapdoor generation procedure [MP12], which has not been improved
upon since it was first introduced. Furthermore, the utilized zero-knowledge
proof in [dPLS18] requires proving equations of the form As = t (mod q), where
s has very large coefficients, on the order of

√
q. Most of the improvements in

ZK proof constructions, on the other hand, only improved upon proofs of the
above equation when s has small (e.g. −1/0/1) coefficients. And of course the
state of the art of lattice-based encryption also hasn’t changed since 2018.

In this work, we improve the group signature scheme in [dPLS18] by approx-
imately a 3X factor in the signature size. Our construction follows the frame-
work from [dPLS18] and the signature size improvement comes from moderate
improvements to many parts of that protocol. Since some of those parts are
quite generic, we believe that our improvements could also find applications in
other privacy-based protocols, including group signatures that satisfy stronger
security notions (e.g. dynamic, corrupt setup authority, etc.). We will now give
a high level overview of our signing algorithm and relate it to what was the state
of the art in [dPLS18].

220 V. Lyubashevsky et al.

Fig. 1. Zero Knowledge Proof of Knowledge of low-norm s̄, c̄ that satisfy A′s̄ = c̄u,
when the prover has knowledge of s satisfying A′s = u.

1.1 The Scheme of [dPLS18] and Our Improvements

The master public key of the setup authority consists of a random matrix A ∈
Rα×2α

q and B = AR ∈ Rα×3α
q , where R is the master secret key and consists

of polynomials in Rq with small coefficients, and a random polynomial vector
u ∈ R2α

q . In our scheme, the ring Rq is fixed to be Zq[X]/(X128 + 1), for
q ≈ 264, and the security of the scheme is based on the Module-SIS/Module-
LWE problems and varies with α. This is similar to the setup in [dPLS18], except
there the security was based on Ring-LWE.

The secret key of a user with identity m ∈ Rq is a low-norm vector s satisfying

[
A| B + mG

]
s = u, (1)

where G is a “gadget matrix” which, together with the trapdoor matrix R,
is used to create such an s using the sampling algorithm of [MP12].

When creating a signature on a message μ, the signer needs to prove knowl-
edge of s and m that satisfy this equation and to also to create an encryption to
this same m under the public key of the opening authority.1 As is often the case
in lattice cryptography, it is more efficient to give a relaxed proof of (1) showing
knowledge of an s̄ with a slightly larger norm, and a small c̄ satisfying

[
A| B + mG

]
s̄ = c̄u. (2)

The above is very similar in form to the basic lattice-based ZK relaxed proof
that one uses to construct Schnorr-like signature schemes (c.f. [Lyu09,Lyu12,
DKL+18]). The idea in those schemes is that a signer with a secret key s sat-
isfying A′s = u, where A′ and u are public, can prove knowledge of s̄ and c̄
satisfying A′s̄ = c̄u as described in Fig. 1. It’s a proof of knowledge because
by rewinding the prover at step (2), the verifier can create a second equality
A′z′ = w + c′u, and subtract to obtain A′z̄ = c̄u, where z̄ = z − z′ and
c̄ = c − c′.

One could hope to use the same approach for creating a proof for (2), but
there is an important difference that doesn’t allow a direct application of the

1 The message μ enters the signature as an input to a hash function that is used to
convert the interactive proof into a non-interactive one via the Fiat-Shamir trans-
form.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 221

same proof technique. In (2), the matrix on the left side is not public, as it con-
tains the secret identity m. The verifier would therefore have no way to perform
the verification in step (4) of the above procedure. The solution in [dPLS18]
was to commit to the vectors mG using a BDLOP commitment [BDL+18] and
then replace the value mG with the commitment. Via some homomorphic prop-
erties of this commitment scheme, one can combine a zero-knowledge proof of
the commitment with the zero-knowledge proof of (2) (with the modified left
side) to conclude something similar to (2). The main downside of that approach
is that the proof of knowledge for the commitment and (2) are both “relaxed”,
and therefore there is an additional c̄ term that ends up multiplying into an
extracted value and increasing the size of the extracted solution.

An improved proof of (2). As part of our improved protocol, we propose a
simpler and more efficient technique for proving (2). The verification in step (4)
of Fig. 1 requires all the involved elements to be known to the verifier. If they
are not known (as A′ :=

[
A| B + mG

]
will not be), then what we can instead

do is to create a commitment to the part of A′ that is unknown, and also a
commitment to w (this is necessary to keep the unknown part of A′ hidden, and
so in the first step, the prover sends the commitment to w instead of w itself),
and then instead of the verifier doing the verification check himself, the prover
sends him a zero-knowledge proof that A′z = w + cu. If we use the BDLOP
commitment scheme and the above equation is linear over the ring Rq, then
proving this relation does not add anything extra over just proving knowledge
of the committed values.

To go back to our example, if we create a BDLOP commitment of m and
w, then the equation

[
A| B + mG

]
z = w + cu is indeed linear over Rq in the

committed values m and w. Thus sending this proof proves knowledge of s̄ and
c̄ satisfying (2) because one can do the extraction exactly in the same manner
as for the protocol in Fig. 1.

Proving Knowledge that the identity m is in a “Special” Set. It is
important for the security of our scheme, which will eventually be shown to
be as hard to break as forging the ABB signature scheme, that the identity
m comes from a set S ⊂ Rq which satisfies that for m �= m′ ∈ S, m − m′

is invertible in Rq, and that |S| is small. The security reduction of the ABB
signature scheme loses a factor |S|, one should ideally not have S be too large.2

A good compromise is therefore having |S| = q ≈ 264 and one can define it to
be all polynomials in Rq of degree 0 (i.e. the integers modulo q). Now one needs
to prove that m is indeed of this form. This is somewhat surprisingly a non-
trivial problem, and in [dPLS18], this proof was performed by showing that m is
fixed under two specific automorphisms, and therefore must be an integer. But
these “automorphism stability” proofs increased the size of the BDLOP opening
proofs (unlike the linear relation proofs).

2 While it’s insecure for S = Rq, it’s unclear whether the size of S actually affects the
real security of the scheme or it’s just an artefact of the proof.

222 V. Lyubashevsky et al.

In our current construction, we instead use the recent advances in ZK proofs
for proving multiplicative relations over Rq [ALS20], as well as linear relations
over the NTT coefficients [ENS20], of polynomials committed using BDLOP
commitments. The tools from [ALS20,ENS20] are quite powerful and the proof
that a committed value is an integer follows quite easily (there may even be
multiple equally good ways of doing it), but we give a sketch of one such approach
anyway. If m ∈ Rq is an integer, then NTT (m) contains m in all the slots. In
other words,

NTT (m) =

⎡

⎢
⎢
⎣

1 2 4 8 . . .
1 2 4 8 . . .

.
1 2 4 8 . . .

⎤

⎥
⎥
⎦ · NTT (mbin) ,

where mbin ∈ Rq is a polynomial all of whose NTT coefficients are 0/1. The
idea is then to include a commitment to the polynomial mbin into the BDLOP
commitment that we already use for proving (2), and then the above relation
can pe proved using the techniques from [ENS20]. To prove that mbin has 0/1
NTT coefficients, we give a proof that (mbin) · (1 − mbin) = 0 by using the
multiplicative proof from [ALS20].3

Because we were already using a BDLOP commitment, committing to an
extra Rq polynomial and doing the above two proofs only adds a few extra
kilobytes to the entire proof system.

Encryption (and Proof) of m almost for free. Our final improvement
relates to the encryption procedure. A group signature scheme requires the signer
to encrypt his identity m under the opener’s public key and give a zero-knowledge
proof that the encryption is the same m that was used in the proof of (2). A
significant saving in the size of our signature, as compared to [dPLS18], is that
we show how the encryption and the proof of knowledge that the encryption is
valid can already be mostly included in the commitment of m that we created
when proving (2).

The BDLOP commitment to a message m ∈ Rq, and other things that need
to be included (e.g. the mbin described in the previous section, the w needed for
the proof of (2), some “garbage terms” that need to be committed to as part of
the proofs, etc.) is of the form

⎡

⎢
⎣

A0

bT
1
...

⎤

⎥
⎦ · r +

⎡

⎢
⎣

0
m
...

⎤

⎥
⎦ =

⎡

⎢
⎣

t0
t1
...

⎤

⎥
⎦ , (3)

3 Observe that we cannot use mbin as our identity because the set of polynomials
with 0/1 NTT coefficients is not closed under subtraction – hence this conversion is
necessary.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 223

where A0 and b1 are random.4 The important thing to note in the commitment
scheme is that if we want to commit to an element in Rq, then t1 is just an
element of the ring. On the other hand, the length of the vector t0 needs to be
large for the security (binding property) of the commitment scheme. So if Rq is
a 128-dimensional ring, the size of t0 could be 20 - 30 X larger than t1.

Another thing to notice is that (3) looks very similar to a Regev-type encryp-
tion scheme [Reg09]. In particular, if bT

1 = sT
1 A0 + eT

1 (where eT
1 has small

coefficients) then one could “decrypt” by computing t1 − sT
1 t0 = eT

1 r + m. So
if bT

1 is part of the opener’s public key, one can use the BDLOP commitment
both for committing to m for the proof of (2) and for encrypting m! The main
savings comes from the fact that we do not need to send two polynomial vec-
tors of the form t0, one for the encryption and one for the commitment. If the
opener uses A0 as part of his (Module)-LWE public key, then the same t0 can
be used for both, which results in a substantial saving. Since the binding prop-
erty of the commitment scheme only depends on A0, a malicious opener cannot
do anything except possibly construct b1 such that it does not hide m – but a
malicious opener can anyway always construct a malformed public key that does
the same thing. So there is no disadvantage to combining the commitment and
the encryption scheme into one.

We are, however, not quite yet done. One issue that needs to be taken care
of is that from (3), the opener can recover t1 − sT

1 t0 = eT
1 r + m, where eT

1 r
has small coefficients; but this does not allow him to recover m because m is
an arbitrary integer in Zq. In order for the opener to be able to recover m, we
need to employ an encryption scheme implicit in Gentry et al. [GSW13] which
allows for encryptions of arbitrary-size messages. In particular, in addition to
encrypting m, the prover will also have to encrypt

√
qm (it’s really �√q	, but

we will omit the �·	 for the sake of readability) as bT
2 r +

√
qm = t2, where

bT
2 = sT

2 A0 + eT
2 . Then to decrypt, the decryptor uses his secret keys sT

1 , sT
2 as

before, to obtain

u1 = eT
1 r + m = ε1 + m (mod q)

u2 = eT
2 r +

√
qm = ε2 +

√
qm (mod q),

and then compute u2 − √
qu1 = ε2 − √

qε1 (mod q). If the size of ε1, ε2 <
√

q/4,
then no reduction modulo q takes place in the preceding equation. And further-
more, ε1 and ε2 can be easily recovered by computing the previous equation mod-
ulo

√
q. And then one can recover m. So in order to have the commitment scheme

which commits to arbitrary-sized ring elements also be an encryption scheme,
the prover just needs to create an additional commitment to

√
qm (which is very

cheap because it’s just one ring element), and do a BDLOP linear proof over Rq

that the commitments to m and
√

qm are related by a factor of
√

q (which does
not add anything to the proof size).
4 Sometimes to save on computation time, the vector A0 and b1 can contain some

polynomials that are just 0 or 1 (see [BDL+18]), but in our case we will need them
to be uniformly random.

224 V. Lyubashevsky et al.

Fig. 2. The interactive protocol allowing a prover with identity m and low-norm poly-
nomial vector s satisfying (1) to prove knowledge of low-norm s̄ and c̄ satisfying (2).
Additionally, the BLDOP proof of knowledge of the committed values implies a proof
of knowledge of r̄, c̄ satisfying (4), which can be used by the opener to recover m. The
commitments to some “garbage terms” and other extraneous terms that are required
for the scheme to work are omitted from this high level description. To convert this
interactive protocol to a signing algorithm for the group signature, one applies the
Fiat-Shamir transform and puts the message μ to be signed as an input to the hash
function.

There is still a second issue. When doing a proof of knowledge for the BDLOP
commitment as in (3) (with the additional bT

2 line), the prover does not actually
prove this equation. Instead, he gives a “relaxed” proof (analogously to (2))
showing the existence of a low-norm vector r̄ and polynomial c̄ satisfying

⎡

⎢
⎢
⎢
⎣

A0

bT
1

bT
2
...

⎤

⎥
⎥
⎥
⎦

· r̄ + c̄

⎡

⎢
⎢
⎢
⎣

0
m√
qm
...

⎤

⎥
⎥
⎥
⎦

= c̄

⎡

⎢
⎢
⎢
⎣

t0
t1
t2
...

⎤

⎥
⎥
⎥
⎦

. (4)

Because the opener does not know c̄, he cannot perform decryption as above.
He can, however, perform a decryption of the type described in [LN17] where
decryption involves guessing an element c′ from the challenge space and then
trying to decrypt using it and the proof produced by the prover by constructing
a c̄ = c − c′ and essentially testing whether (4) is satisfied. This is also the
decryption algorithm that was used in the group signatures of [dPLS18] and
[EZS+19]. The encryption scheme used in [LN17] was the Regev scheme where
the messages were small, but we prove that the same technique is also applicable
in our case where the message is arbitrary in Rq.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 225

We summarize the high-level signing algorithm in Fig. 2. The real algorithm
described in Fig. 5 includes the concrete “garbage terms” that one needs to
include as part of the proof of all the parts we described, and also a modification
to the public key that is necessary for the security proof to go through. Specifi-
cally, instead of the public key being [A| B = AR], it is of the form [A| AR | B′]
where B′ is a random matrix and serves no real purpose in the signing proce-
dure. The reason for its inclusion is that proving security of the scheme requires
doing game hops between the public key being [A| AR] and [A| AR + m∗G]
for an arbitrary message m. While these two public keys are indistinguishable
based on the Module-LWE assumption, the game hops also require the extractor
to be able to produce valid signatures – and so some trapdoor needs to always
be present. The only way that we know how to do such game hops is to embed a
second trapdoor into B′ so that the extractor can always sign even when he loses
access to the trapdoor AR. It’s interesting to note that if the parameters were
set such that AR were statistically-close to uniform, then we would not need to
use a computational assumption and could simply replace AR with AR+m∗G.
But imposing that AR is statistically-close to uniform would make the overall
parameters significantly worse than just adding the useless B′ to the public key
(and thus also increasing the dimension of the vector s in (1)). If one chooses to
remove this matrix B′ from the public key, one could save approximately 15% in
the size of the signature from the parameter computation in Sect. 4.2. Removing
the need for such a B′ in the security proof (without affecting parameters) is a
very good open problem.

1.2 Reducing the Public Key Size by Using Multiple Rings

For optimal efficiency of the protocol in Fig. 2, we would like to create commit-
ments of elements in a small ring, as certain parts of the proof are linear in the
ring size. Working over small rings, however, has a negative effect on the public
key size of the group signature scheme. The matrix B comprising the public key
contains a trapdoor, and therefore, unlike the A and the A0 in (4), it cannot
be generated from a small seed. One therefore needs to store the entire matrix
B as part of the public key. In our sample instantiation (Table 1), the matrix B
consists of α × 3α d-dimensional polynomials. Since the modulus we’re working
with is ≈ 264, α = 24, and d = 128, storing this matrix requires 128 · 3α2 · 64
bits, which is more than 1.7 MB.

Since the security of the scheme is determined by the total dimension over
Z of the matrix B, which is αd, it would be more advantageous to work over a
larger ring, while having a smaller α. For example, if we instead set d = 1024,
and α = 3, the total dimension over Z of the matrix remains the same, yet the
cost of storing it goes down to 216 KB. And if we wanted to increase security
to have αd = 4096, we could set α = 1 and d = 4096, and end up needing
under 100 KB to represent B. Having a larger αd, though, would increase the

226 V. Lyubashevsky et al.

signature size.5 In short, we want d to be small in order for the proofs to be
more compact, but we want d to be large in order to have a small public key.

It turns out that we can have the best of both worlds. That is, we can still use
small (e.g. 128-degree) rings for the commitment scheme in (3), while using larger
rings in equations that use the non-compressible public key (1). The interaction
between the committed elements in (3) and the equation in (1) is through the
BDLOP proof of

[
A| B + mG

]
z = w + cu, where m and w are in committed

form and all the other variables are public. If the smaller ring S is a sub-ring
of the larger one R (e.g. S = Z[X]/(Xd + 1) and R = Z[X]/(Xdk + 1)), then
one can show that there is a ring homomorphism between R and Sk, for an
appropriately-defined multiplication over Sk. In other words, whatever relation
that we need to prove over R can be proved by showing that some corresponding
relations over S hold true. Therefore we can use BDLOP commitments over S to
prove relations over R at no extra cost. For simplicity, we describe our protocols
in this paper entirely over the small ring S, and give details about how one can
express relations over R in S in the full version of the paper.

2 Preliminaries

2.1 Notation

Let q be an odd prime. We write x ← S when x ∈ S is sampled uniformly at
random from the finite set S and similarly x ← D when x is sampled according
to the distribution D. For a < b and n ∈ N, we define [a, b] := {a, a + 1 . . . , b}
and [n] := [1, n]. Given two functions f, g : N → [0, 1], we write f(μ) ≈ g(μ) if
|f(μ) − g(μ)| < μ−ω(1). A function f is negligible if f ≈ 0. We write negl(n) to
denote an unspecified negligible function in n.

For a power of two d, denote R and Rq respectively to be the rings
Z[X]/(Xd + 1) and Zq[X]/(Xd + 1). Unless stated otherwise, lower-case let-
ters denote elements in R or Rq and bold lower-case letters represent column
vectors with coefficients in R or Rq. We also write bold upper-case letters for
matrices in R or Rq.

For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. Define the �∞
and �p norms for w = w0 + w1X + . . . + wd−1X

d−1 ∈ R as follows:

‖w‖∞ = max
j

‖wj‖∞, ‖w‖p = p

√
‖w0‖p∞ + . . . + ‖wd−1‖p∞.

If w = (w1, . . . , wm) ∈ Rk, then

‖w‖∞ = max
j

‖wj‖∞, ‖w‖p = p
√

‖w1‖p + . . . + ‖wk‖p.

By default, we denote ‖w‖ := ‖w‖2.
5 In principle, d does not need to be a power-of-2, but then we could not work with

the very convenient polynomial rings Z[X]/(Xd +1). We think that the slight saving
in the public key size is not worth the extra hassle of working aver different rings,
and so we only consider power-of-2 d.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 227

2.2 Cyclotomic Rings

Suppose q splits into l prime ideals of degree d/l in R. This means Xd + 1 ≡
ϕ1 . . . ϕl (mod q) with irreducible polynomials ϕj of degree d/l modulo q. We
assume that Zq contains a primitive 2l-th root of unity ζ ∈ Zq but no elements
whose order is a higher power of two, i.e. q − 1 ≡ 2l (mod 4l). Therefore, we
have

Xd + 1 ≡
∏

j∈Zl

(
X

d
l − ζ2j+1

)
(mod q). (5)

Let Mq := {p ∈ Zq[X] : deg(p) < d/l} be the Zq-module of polynomials of
degree less than d/l. We define the Number Theoretic Transform (NTT) of a
polynomial p ∈ Rq as follows:

NTT (p) :=

⎡

⎢
⎣

p̂0
...

p̂l−1

⎤

⎥
⎦ ∈ Ml

q where NTT (p)j = p̂j = p mod (X
d
l − ζ2j+1).

Furthermore, we expand the definition of NTT to vectors of polynomials p ∈ Rk
q ,

where the NTT operation is applied to each coefficient of p, resulting in a vector
in Mkl

q .
We also define the inverse NTT operation. Namely, for a vector �v ∈ Ml

q,
NTT−1 (�v) is the polynomial p ∈ Rq such that NTT (p) = �v.

Let �v = (v0, . . . , vl−1), �w = (w0, . . . , wl−1) ∈ Ml
q. Then, we define the

component-wise product �v ◦ �w to be the vector �u = (u0, . . . , ul−1) ∈ Ml
q such

that
uj = vjwj mod (X

d
l − ζ2j+1)

for j ∈ Zl. By definition, we have the following property of the inverse NTT
operation:

NTT−1 (�v) · NTT−1 (�w) = NTT−1 (�v ◦ �w) .

Similarly, we define the inner product as in [LNS21b]:

〈�v, �w〉 =
l−1∑

j=0

(
vjwj mod (X

d
l − ζ2j+1)

)
.

We point out that this operation is not an inner product in the strictly math-
ematical sense (e.g. it is not linear). Nevertheless, it has a few properties
which are characteristic for an inner product. For instance, given arbitrary
vectors �x, �y, �z ∈ Ml

q and scalar c ∈ Zq we have: 〈�x, �y〉 = 〈�y, �x〉 (symmetry),
〈�x+�y, �z〉 = 〈�x, �z〉+〈�y, �z〉 (distributive law) and 〈c�x, �y〉 = c〈�x, �z〉. We also remark
that the definition of 〈·, ·〉 depends on the factors of Xd + 1 modulo q.

We generalise the newly introduced operations to work for vectors �v =
(�v1, . . . , �vk) and �w = (�w1, . . . , �wk) ∈ Mkl

q of length being a multiple of l in
the usual way. In particular 〈�v, �w〉 =

∑k
i=1〈�vi, �wi〉.

228 V. Lyubashevsky et al.

Eventually, for a matrix A ∈ Mn×kl
q with rows �a1, . . . ,�an ∈ Mkl

q and a vector
�v ∈ Mkl

q , we define the matrix-vector operation:

A�v =

⎛

⎜
⎝

〈�a1, �v〉
...

〈�an, �v〉

⎞

⎟
⎠ ∈ Mn

q .

In proving linear relations, we will need the following two lemmas.

Lemma 2.1. ([LNS21b]). Let n, k ∈ N. Then, for any A ∈ Mnl×kl
q , �v ∈ Mnl

q

and �s ∈ Z
kl
q we have

〈A�s,�v〉 = 〈�s,AT�v〉.
Lemma 2.2. ([ENS20]). Let p = p0 + p1X + . . . + pd−1X

d−1 ∈ Rq. Then,

1
l

l∑

i=0

NTT (p)i =
d/l−1∑

i=0

piX
i.

2.3 Challenge Space

Let C := {−1, 0, 1}d ⊂ Rq be the challenge set of ternary polynomials with
coefficients −1, 0, 1. We define the following probability distribution C : C →
[0, 1]. The coefficients of a challenge c ← C are independently identically dis-
tributed with Pr(0) = 1/2 and Pr(1) = Pr(−1) = 1/4. We write ω such that
Prc←C(‖c‖1 ≤ ω) ≤ 2−λ.

Consider the coefficients of the polynomial c mod (Xd/l − ζ2j+1) for c ← C.
Then, all coefficients follow the same distribution over Zq. Let us write Y for the
random variable over Zq that follows this distribution. Attema et al. [ALS20]
give an upper bound on the maximum probability of Y .

Lemma 2.3. Let the random variable Y over Zq be defined as above. Then for
all x ∈ Zq,

Pr(Y = x) ≤ 1
q

+
2l

q

l−1∑

j=0

l−1∏

i=0

∣
∣
∣
∣
1
2

+
1
2

cos
(
2π(2j + 1)yζi/q

)
∣
∣
∣
∣ . (6)

In particular, [ALS20,ENS20] computed that for q ≈ 232, the maximum proba-
bility for each coefficient of c mod Xd/l − ζ2j+1 is around 2−31.4. In general, we
will call this probability p.

An immediate consequence of Lemma 2.3 is that polynomial c ← C is invert-
ible in Rq with overwhelming probability as long as parameters q, d, l are selected
so that q−d/l is negligible.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 229

2.4 Module-SIS and Module-LWE Problems

Security of the [BDL+18] commitment scheme used in our protocols relies on
the well-known computational lattice problems, namely Module-LWE (MLWE)
and Module-SIS (MSIS) [LS15]. Both problems are defined over Rq.

Definition 2.4. (MSISκ,m,B). Given A ← Rκ×m
q , the Module-SIS problem with

parameters κ,m > 0 and 0 < B < q asks to find z ∈ Rm
q such that Az = 0 over

Rq and 0 < ‖z‖ � B. An algorithm Adv is said to have advantage ε in solving
MSISκ,m,B if

Pr
[
0 < ‖z‖ � B ∧ Az = 0

∣
∣A ← Rκ×m

q ; z ← Adv(A)
]

� ε.

Definition 2.5. (MLWEm,λ,χ). The Module-LWE problem with parameters
m,λ > 0 and an error distribution χ over R asks the adversary Adv to dis-
tinguish between the following two cases: 1) (A,As + e) for A ← Rm×λ

q , a
secret vector s ← χλ and error vector e ← χm, and 2) (A, b) ← Rm×λ

q × Rm
q .

Then, Adv is said to have advantage ε in solving MLWEm,λ,χ if
∣
∣Pr

[
b = 1

∣
∣A ← Rm×λ

q ; s ← χλ; e ← χm; b ← Adv(A,As + e)
]

− Pr
[
b = 1

∣
∣A ← Rm×λ

q ; b ← Rm
q ; b ← Adv(A, b)

]∣∣ � ε. (7)

2.5 Probability Distributions

In this paper we sample the coefficients of the random polynomials in the commit-
ment scheme using the distribution χ on {−1, 0, 1} where ±1 both have probability
5/16 and 0 has probability 6/16 identically as in e.g. [BLS19,ALS20,ENS20]. We
also write Sμ the uniform distribution over the set {x ∈ Rq | ‖x‖∞ ≤ μ}.

Discrete Gaussian distribution. We now define the discrete Gaussian distribution
used for the rejection sampling.

Definition 2.6. The discrete Gaussian distribution on Z
� centered around �v ∈

Z
� with standard deviation s > 0 is given by

D�
�v,s(�z) =

e−‖�z−�v‖2/2s2

∑
�z′∈Z� e−‖�z′‖2/2s2

.

When it is centered around 0 ∈ Z
� we write D�

s = D�
�0,s

We will use the following tail bound, which follows from [Ban93, Lemma 1.5
(i)].

Lemma 2.7. Let z ← D�d
s . Then

Pr
[
‖z‖2 ≤ s

√
2�d

]
≥ 1 − 2− log(e/2)�d/4.

230 V. Lyubashevsky et al.

2.6 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector
z whose distribution should be independent of a secret randomness vector r, so
that z cannot be used to gain any information on the prover’s secret. During
the protocol, the prover computes z = y + cr where r is the randomness used
to commit to the prover’s secret, c ← C is a challenge polynomial, and y is a
“masking” vector. In order to remove the dependency of z on r, one applies
rejection sampling [Lyu12].

Lemma 2.8. (Rejection Sampling). Let V ⊆ R� be a set of polynomials
with norm at most T and ρ : V → [0, 1] be a probability distribution. Now, sample
v ← ρ and y ← D�d

s , set z = y+v, and run b ← Rej0(z,v, s) as defined in Fig. 3.
Then, the probability that b = 0 is at least (1 − 2−100)/M and the distribution
of (v,z), conditioned on b = 0, is within statistical distance of 2−100/M of the
product distribution ρ × D�d

s .

Fig. 3. Two rejection sampling algorithms: the one used generally in previous works
[Lyu12] (left) and the one proposed recently in [LNS21a] (right).

We recall how parameters s and M in Lemma 2.8 are selected. Concretely, the
repetition rate M is chosen to be an upper-bound on6:

D�d
s (z)

D�d
v ,s(z)

= exp
(−2〈z,v〉 + ‖v‖2

2s2

)
≤ exp

(
24s‖v‖ + ‖v‖2

2s2

)
= M. (8)

For the inequality we used the tail bound which says that with probability at
least 1 − 2100 we have |〈z,v〉| < 12s‖v‖ for z ← D�d

s [Ban93,Lyu12]. Hence, by
setting s = 11‖v‖ we obtain M ≈ 3.

2.7 BDLOP Commitment Scheme

We recall the BDLOP commitment scheme from [BDL+18]. Suppose that we
want to commit to a message vector m = (m1, . . . ,mn) ∈ Rn

q for n � 1 and
that module ranks of κ and λ are required for MSIS and MLWE security, respec-
tively. Then, in the key generation, a matrix A0 ← Rκ×(κ+λ+n)

q and vectors
6 Here, the inner product is over Z, i.e. 〈z, v〉 = 〈�z,�v〉 where vectors �z,�v are polynomial

coefficients of z and v respectively.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 231

b1, . . . , bn ← Rκ+λ+n
q are generated and output as public parameters. Note that

one could choose to generate A0,a1, . . . ,an in a more structured way as in
[BDL+18] since it saves some computation. However, for readability, we write
the commitment matrices in the “Knapsack” form as above. In our case, the hid-
ing property of the commitment scheme is established via the duality between
the Knapsack and MLWE problems. We refer to [EZS+19, Appendix C] for a
more detailed discussion.

To commit to the message m, we first sample r ← χd·(κ+λ+n). Now, there
are two parts of the commitment scheme: the binding part and the message
encoding part. In particular, we compute

t0 = A0r mod q,

ti = aT
i r + mi mod q,

for i ∈ [n], where t0 forms the binding part and each ti encodes a message
polynomial mi. In this paper, when we write that we compute a BDLOP com-
mitment to a vector �m = (�m1, . . . , �mn) ∈ Mnl

q , we mean that we commit to the
vector of polynomials m = (NTT−1 (�m1) , . . . ,NTT−1 (�mn)) ∈ Rn

q as above.
Next, we define the notion of a weak opening of the commitment [ALS20].

Definition 2.9. A weak opening for the commitment t = t0 ‖ t1 ‖ · · · ‖ tn
consists of a polynomial c̄ ∈ Rq, a randomness vector r∗ over Rq and messages
m∗

1, . . . ,m
∗
n ∈ Rq such that

‖c̄‖1 ≤ 2d and c̄ is invertible over Rq

‖c̄r∗‖2 ≤ 2β,

A0r
∗ = t0,

aT
i r

∗ + m∗
i = ti for i ∈ [n].

Attema et al. [ALS20] show that the commitment scheme is still binding with
respect to weak openings if MSISκ, 8dβ is hard.

3 The Group Signature

A group signature is composed of four algorithms. The first one, which we write
KeyGen is run by the group manager and is described in Fig. 4. In the end of
this algorithm, the group manager generated a group public key, his own group
manager secret and secret keys for all group members. The second one is the
signature. The group member of identity m was given his secret key, which he
will prove knowledge of (among other statements) in the signature. The signature
is a non-interactive version of the zero-knowledge proof π described on Fig. 5.
Third, the verification is simply the verification of π. Finally, the last algorithm
GSdec described in Algorithm 1 allows the group manager to reveal the identity
at the origin of a signature. We will write

√
q (respectively 3

√
q) the integer �√q	

(respectively � 3
√

q) for the sake of readability.

232 V. Lyubashevsky et al.

3.1 All-in-One Interactive Zero-Knowledge Proof

In this subsection, we introduce a single zero-knowledge proof that encompasses
all the proofs needed for our group signature scheme. From a high level, π proves
the following statements

1. Knowledge of an identity m
2. Knowledge of the secret key of m
3. The decryption of the identity of the prover is m.

Intuitively, these three statements are required to capture the security notions
of a group signature.

Each of these statements is proven by gathering more elementary zero-
knowledge proofs from [LNS20,ALS20,BDL+18]. More specifically, we take I the
set of identities to be {0, 1, . . . , 2d−1} ⊂ Rq the set of degree zero polynomials of
Rq i.e. Zq; such that the binary representation of m also fits in length as an ele-
ment of Rq. The prover will commit to m, but also to mbin = NTT−1 (binary(m))
the inverse NTT of the binary representation of m. This way, we need to prove
two things : 1) mbin’s NTT is binary 2) we have the linear relation

Q NTT (mbin) = NTT (m) , where Q =

⎡

⎢
⎢
⎢
⎣

1 2 4 . . . 2d−1

1 2 4 . . . 2d−1

...
...

...
...

1 2 4 . . . 2d−1

⎤

⎥
⎥
⎥
⎦

.

For 1), this proof is done using the product proof from [ALS20]. For 2), we use
the so called unstructured linear proof from [LNS20]. Notice that since all the
NTT coefficients of m are proven to be equal, m has to be an integer. On top of
that, since its binary representation has length d, we indeed prove that m ∈ I.

Proving knowledge of the short sm
1 , sm

2 , sm
3 is done in two steps. The relation

that these secret vectors verify is Asm
1 +(B+mG)sm

2 +B′sm
3 , where the identity

m is multiplied with the so called gadget matrix :

G = Iα ⊗ [1 3
√

q 3
√

q
2] =

⎡

⎢
⎣

1 3
√

q 3
√

q2

1 3
√

q 3
√

q2

. . .

⎤

⎥
⎦

The matrix [A|B + mG|B′] depends on the committed identity m and we can
therefore not directly use the linear proof from [BDL+18]. To circumvent this
problem, instead of sending some w = Ay1 + (B + mG)y2 + B′y3 as in the
BDLOP linear proof, we commit to this w and give a BDLOP linear proof that
Az1 + (B+ mG)z2 +B′z3 = w+ cu. This statement is indeed linear in the two
committed values m and w.

The encryption of the identity m is part of the commitments. In a nutshell,
the group manager plants his decryption key in the public commitment matrix

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 233

Fig. 4. KeyGen() :

during the key generation. This way, it allows the commitment to m by the
prover to also be (part of) a ciphertext for the group manager to decrypt. The
encryption involves two commitments, one to m and one to

√
qm. To prove that

the ciphertext is valid7 reduces to proving the knowledge of the short randomness
r in the commitment scheme and the linear relation between the committed m
and

√
qm. The latter proofs almost come for free : the opening proof is anyway

necessary for the other proofs, and the linear proof is very cheap since these
committed values are polynomials from Rq.

Theorem 3.1. The interactive proof π from Fig. 5 is complete, sound and zero-
knowledge.

More precisely, if the prover follows Fig. 5 and does not abort, an honest
verifier will output 1 with overwhelming probability.

There exists a simulator S that without access to secret information outputs
a distribution that is, under the MLWE assumption for parameters (κ, κ + λ +
α + 5, Sμ) and (κ + α + 5, λ, χ), indistinguishable from the actual interaction.

Let B2 ≥ 8ω2σ′√2(κ + λ + α + 5)d. If ε is the success probability of the
prover and T its runtime, then there exists an extractor E that with rewind-
able blackbox access to this prover finds with probability ≥ 1/8, in time O(T/ε),

7 I.e that the group manager can decrypt it and recover the identity m.

234 V. Lyubashevsky et al.

Fig. 5. Interactive proof π

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 235

Fig. 6. verify(π) where π is the proof on Fig. 5

either a solution to MSISκ,κ+λ+α+5,B2 or m̄ ∈ I, s̄1, s̄2, s̄3 of norms lower than
respectively 4σ

√
αd, 2σ

√
6αd, 2σ

√
6αd and c̄ ∈ C̄ such that

[
A| B + m̄G| B′]

⎡

⎣
s̄1
s̄2
s̄3

⎤

⎦ = c̄u.

Proof. Completeness. Completeness follows from equations in the soundness
proof. More precisely, if the prover follows honestly his part in the protocol
Fig. 5, then it follows from Eqs. (24) to (27), (30) and (31)8 that the verifier
shall always accept all conditions on Eqs. (11)–(14). Moreover, from Lemma 3.2
of [BLS19], the verifier will accept the conditions on Eqs. (9) and (10) with
overwhelming probability.

Soundness. We construct an extractor E that with rewindable blackbox access to
the prover recovers short vectors s̄1, s̄2, s̄3, z̄4 and polynomials m̄, c̄, ē such that:

8 Equation (31) holds because g’s first d/l coefficients are set to be 0.

236 V. Lyubashevsky et al.

[
A| B + m̄G| B′]

⎡

⎣
s̄1
s̄2
s̄3

⎤

⎦ = c̄u (17)

m̄ ∈ I (18)
ēf0 = A0z̄4 (19)

ēf5 = tT
1 z̄4 + ēm̄ (20)

ēf6 = tT
2 z̄4 + ē

√
qm̄ (21)

First, we prove that from two transcripts (f , j, g, t,v, c, φ, z1, z2, z3, e, z4) and
(f , j, g, t,v, c, φ, z1, z2, , z3, e′, z′

4), the extractor can recover vectors r̄, w̄ and a
polynomial m̄ such that in addition to Eqs. (20) and (21), we have:

[
A| B + m̄G| B′]

⎡

⎣
z1
z2
z3

⎤

⎦ = w̄ + cu. (22)

Let z̄4 = z4 − z′
4, ē = e − e′ and r̄ = ē−1z̄4. The extractor defines the messages

in the commitment as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w̄
¯garb
m̄
m̄′

Ęmbin

ḡ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
f2
f3
f4
f5
f6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

AT
1

aT
2

aT
3

aT
4

tT
1

tT
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

r̄. (23)

The extractor further defines ȳ4 = z4 − er̄ and ȳ′
4 = z4 − e′r̄. Equation (19)

follows from taking the difference of Eq. (11) for both transcripts and Equation
(20) follows from the definition of m̄ in Eq. (23). We substitute f5, f6, z4 in
Equation (12) for both transcripts and we obtain :

v2 − (
√

qtT
1 ȳ4 − tT

2 ȳ4) + e(
√

qm̄ − m̄′) = 0 (24)

v2 − (
√

qtT
1 ȳ4 − tT

2 ȳ4) + e′(
√

qm̄ − m̄′) = 0. (25)

We take the difference of both equations and we have m̄′ =
√

qm̄, and hence Eq.
(21). Now, we plug in the expressions of f1, f5, z4 in Eq. (13) for both transcripts,
and we obtain :

e
[
A|B + m̄G| B′]

⎡

⎣
z1
z2
z3

⎤

⎦ = e(w̄ + cu) + v1 − AT
1 ȳ4 − tT

1 ȳ4Gz2 (26)

e′ [A|B + m̄G| B′]
⎡

⎣
z1
z2
z3

⎤

⎦ = e′(w̄ + cu) + v1 − AT
1 ȳ4 − tT

1 ȳ4Gz2. (27)

Again, we take the difference and we conclude Eq. (22).

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 237

We will now prove that with overwhelming probability, Ęmbin, m̄ are such that

Q NTT (Ęmbin) = NTT (m̄) (28)

Ęmbin(Ęmbin − 1) = 0. (29)

First, we claim that the prover is committed to unique ȳ4 and r̄, that are there-
fore independent of the challenge. From Lemma 4.1 of [ALS20], if the prover
breaks this commitment9, then B finds an MSISκ,κ+α+λ+5,B2 solution for A1.
Otherwise, we have that

z4 = ȳ4 + er̄ and z′
4 = ȳ4 + e′r̄,

and ȳ4, ¯mbin, ¯garb are independent of the challenge.

Next, we show that Ęmbin verifies Eq. (29). We substitute f2, f3 and z4 with
respectively aT

3 r̄ + Ęmbin , aT
2 r̄ + ¯garb and ȳ4 + er̄ in Eq. (14), and we obtain :

aT
2 ȳ4 − v3 + (aT

3 ȳ4)2 + e(aT
3 ȳ4(2Ęmbin − 1) − Ěgarb) + e2Ęmbin(Ęmbin − 1) = 0.

(30)

Since we claimed that (unless the extractor finds an MSIS solution for A1)
¯mbin, ¯garb and ȳ4 do not depend on e, we can claim that the expression on

the left of Eq. (30) is a degree 2 polynomial in e. If Eq. (29) does not hold, then
there exists a prime ideal (Xd/l + ζ) such that Eq. (30) mod (Xd/l + ζ) is a
degree 2 polynomial in e over the field Rq/(Xd/l + ζ). This polynomial has at
most two roots in this field, say x1, x2. Assuming independence, it follows from
Lemma 2.3 that the probability that e mod (Xd/l + ζ) is either of these roots is
at most 2

qd/l +O(ε), where ε is the error term from Lemma 2.3. This probability
is negligible, hence we conclude Eq. (29).

We finally prove that NTT (Ęmbin) is binary. We just shown that the extracted
Ęmbin is such that Ęmbin(Ęmbin − 1) = 0. Let Xd/l − ζ be any of the irreducible
factors of Xd + 1 mod q. We have the following:

Ęmbin(Ęmbin − 1) = 0
NTT (Ęmbin(Ęmbin − 1)) = 0

NTT (Ęmbin) ◦ (NTT (Ęmbin) − 1) = 0.

Since Zq[X]/(Xd/l − ζ) is a field, we either have Ęmbin mod (Xd/l − ζ) = 0 or
Ęmbin mod (Xd/l − ζ) = 1. This holds for all the NTT coefficients, from which
we conclude Eq. (18).

9 That is to say ȳ4 �= ȳ′
4.

238 V. Lyubashevsky et al.

We just proved that Ęmbin is the inverse NTT vector of a binary element of Rq.
We then prove that this element is the binary representation of m̄ via Eq. (28).
To do so, we notice that by taking the difference of Eq. (15) for both transcripts
and plugging the expressions of Ęmbin, m̄, ḡ, the extractor finds that the latter
variables are such that

j = ḡ + ĘmbinNTT
−1

(
QT φ

) − m̄NTT−1 (φ) . (31)

Equation (16) says that the first d/l coefficients of j are 0. On the other hand,
using Lemmas 2.1 and 2.2, we have

l

d/l−1∑

i=0

ji =
d/l−1∑

i=0

gi + 〈Q NTT (Ęmbin) − NTT (m̄) , φ〉,

where the latter equality is over Zl
q. If Q NTT (Ęmbin)−NTT (m̄) �= 0, then since

the challenge φ is uniformly random, so is 〈Q NTT (Ęmbin)−NTT (m̄) , φ〉. Notice
that g was committed to by the prover prior to its knowledge of φ, and therefore,
the probability that Eq. (31) holds without Eq. (28) being true is 1

qd/l . Since this
probability is negligible, we conclude Eq. (28).

Finally, to prove that m̄ is a valid identity, we notice that Eq. (28) yields that
all NTT coefficients of m̄ are equal. Together with the fact that Ęmbin is binary,
this yields that NTT (m̄) = (m̄, . . . , m̄), and it follows that m̄ ∈ I.

We now prove that E can extract s̄1, s̄2, s̄3 that together with the previously
extracted m̄ (that, we showed, verifies Eq. (18) and (20)) verifying Eq. (17). The
extractor acquires 4 transcripts

(f , t,v, c, φ, j, z1, z2, z3, e, z4)
(f , t,v, c, φ, j, z1, z2, z3, e′, z′

4)
(f , t,v′

1, v2, v3, v
′
4, c

′, φ, j, z′
1, z

′
2, z

′
3, e

′′, z′′
4)

(f , t,v′
1, v2, v3, v

′
4, c

′, φ, j, z′
1, z

′
2, z

′
3, e

(3), z(3)4).

We proceed to describe how the extractor gets those transcripts and
what his success probability is. Let ε be the probability of a determinis-
tic prover to produce a proof that passes verification. The extractor first
runs log 10

ε times the prover, or until the prover returns a valid transcript
(f , t,v, c, φ, j, z1, z2, z3, e, z4). If the prover fails to do so, E aborts. Next, E
runs the prover log 10

ε/2−C(c) times, answering the same challenge c (and φ) in the
first verifier interaction, and challenges e′ ← C in the second verifier interac-
tion. Again, if the prover fails to produce a valid transcript, E aborts. Other-
wise, E then receives a second transcript (f , t,v, c, φ, j, z1, z2, z3, e′, z′

4). Thirdly,
E runs the prover on fresh challenges (c′, φ′, e′′) with the only condition that
c′ �= c for a total of log 10

ε−C(c) times. Unless the prover provided a valid transcript
(f , t,v′

1, v2, v3, v
′
4, c

′, φ′, j, z′
1, z

′
2, z

′
3, e

′′, z′′
4), E aborts. Finally, E repeats the sec-

ond step: E runs the prover on c′, φ′ with fresh e(3) ← C\{e′′} for a total of
log 10

ε/2−C(e′′) times.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 239

We now calculate the probability that E never aborts and indeed acquires the
4 transcripts. The extractor has 4 opportunities to abort and thus not receive 4
transcripts from the prover. We write aborti the event where E acquires the first
i − 1 transcripts but aborts when done trying to get the i-th. Since the failure
probability of the prover for one iteration is 1− ε, Pr(abort1) = (1− ε)log 10/ε ≤
exp(−ε)log 10/ε, and finally Pr(abort1) ≤ 1/10. For E to abort in step 2, E must
have received a first transcript for challenges c, φ, e. From the heavy-rows lemma
[OO98], the probability that the (c, φ) row is heavy10 is at least 1/2. Moreover,
from the definition of a heavy row, the success probability of the prover when
(c, φ) yields a heavy row is at least ε′ = ε/2−Prc′←C(c′ = c). Therefore, we have
Pr(abort2) ≤ (1−ε′)log 10/ε′

+1/2 ≤ 3/5. Similarly, we have Pr(abort3) ≤ 1/10,
and Pr(abort4) ≤ 3/5. The probability that E never aborts is the product of
1 − Pr(aborti) for i = 1, 2, 3, 4, which is given by 81/625 ≥ 1/8.

Using the previous result on both the first pair and the second pair of tran-
scripts, the extractor finds r̄, m̄, w̄ and r̄′, m̄′, w̄′ that verify Eqs. (18)–(21).
Since r̄ē′ − r̄′ē is small11, then (r̄, m̄, w̄) = (r̄′, m̄′, w̄′). The extractor defines
s̄1 = z1 − z′

1, s̄2 = z2 − z′
2, s̄3 = z3 − z′

3, c̄ = c − c′. Then, using Eq. (21),
s̄1, s̄2, s̄3, c̄ verify Eq. (17), and therefore the protocol is sound.

Zero-knowledge. We define the simulator S as follows:

1. Generate c ← C, φ ← Ml
q, e ← C

2. Generate (z1, z2, z3, z4) ← D2dα
σ × D3dα

σ × D3dα
σ × D

(κ+λ+α+5)d
σ′

3. Generate f ← Rκ+α+5
q , r ← χκ+λ+α+5

4. Generate j ← (0d/l|Zd/l×(l−1)
q)

5. Set v, t so Eqs. (11)–(14) hold
6. Output (f , t, j,v, z1, z2, z3, z4, c, φ, e)

To conclude zero-knowledge for π, we show that the distribution output by S
is indistinguishable from the distribution of a non-aborting accepting transcript
from Fig. 5. The variables c, φ, e are distributed exactly as in the procedure. The
vectors (z1, z2, z3, z4) in non-aborting proofs follow a distribution independent
to c, φ, e that is indistinguishable ([BLS19], Lemma 3.2) of D2dα

σ ×D3dα
σ ×D3dα

σ ×
D

(κ+λ+α+5)d
σ′ , which is their distribution in the output of S.

Under the hardness of MLWEκ+λ+α+5,κ,Sμ
, t1, t2 are indistinguishable from uni-

form. Under the hiding property of the commitment scheme, which in turn relies

10 Challenges (c, φ) are in a heavy row when the success probability of the prover
conditionned on the first challenges to be these c, φ is at least ε/2. We refer to
[OO98] for further detail.

11 Otherwise, r̄ē′ − r̄′ē is a solution for MSIS for A0 of norm at most
8ω2σ′√2(κ + λ + α + 5)d.

240 V. Lyubashevsky et al.

on the hardness of MLWEκ+α+5,λ,χ, the distribution of f in honestly generated
transcripts is indistinguishable from uniform, which is its distribution in the
output of the simulator S.

Equation (11) uniquely determines t = A0z4−ef0 from z4, e, f0. Similarly, all the
coordinates of v are uniquely determined by the sampled variables of S from Eqs.
(12) to (15). To summarize, the variables that S samples follow a distribution
indistinguishable from the one from the actual interaction and the other variables
are binded by the verification equations in the accepting transcripts, from which
we conclude zero-knowledge.

3.2 Decryption

The verifiable encryption scheme of our group signature scheme is hidden in the
commitment scheme. The group manager sets the commitment public vectors
for m and

√
qm to be t1 = AT

0 h1 + e1,t2 = AT
0 h2 + e2, where h1,h2, e1, e2

are the group manager decryption secret key. The idea of the encryption is the
following: the ciphertext is of the form

A0r = u0 (32)

tT
1 r + m = u1 (33)

tT
1 r +

√
qm = u2. (34)

The steps to decrypt using the secrets h1,h2, e1, e2 are as follows. Compute
x1 = u1 − hT

1 u0 = hT
1 r + m,x2 = u2 − hT

2 u0 = hT
2 r +

√
qm. Then, compute√

qx1 − x2 = (
√

qhT
1 − hT

2)r. If this latter polynomial has all its coefficients
less than q/2, then this equality holds over the integers. Moreover, if we take the
parameters such that hT

1 r ≤ √
q, then we have k =

√
qx1−x2 mod

√
q = −hT

1 r.
To finish, we have m = (x2 + k)/

√
q, provided that (

√
qhT

1 − hT
2)r ≤ q/2 and

hT
1 r ≤ √

q.
The problem is that the proof that the ciphertext is valid given through π

does not ensure Eqs. (32)–(34) but rather a relaxed proof that there exists a
ē ∈ C̄ and r̄ such that

A0r̄ = ēu0

tT
1 r̄ + ēm = ēu1

tT
1 r̄ + ē

√
qm = ēu2.

We use a similar technique as [LN17,dPLS18]. The idea is that the group man-
ager is given a proof π for a challenge e. The soundness of the proof ensures
that there exists another challenge e′ such that with ē = e − e′ (and notations
from π) : (ēf0, ēf5, ēf6) is a valid ciphertext. The known technique that we use
to tackle this is to try and decrypt (ēf0, ēf5, ēf6) for a random second challenge
e′ ← C. Possibly not any challenge e′ yields a decryption to the right message
m. What [LN17] shown for their verifiable encryption scheme is that a simple
test condition can 1) reject the challenges e′ that do not yield a decryption to

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 241

m 2) Not reject too many challenges so the decryption runtime is reasonable.
We have a similar result for our decryption, where the condition on Line 6 plays
this role, where both correctness of the decryption and ‘reasonable’ runtime are
stated in Lemma 3.2.

Algorithm 1 Decryption algorithm GSdec(π,h1,h2, e1, e2) :
1: e′ ← C
2: ē = e − e′

3: x1 = f5 − hT
1 f0

4: x2 = f6 − hT
2 f0

5: k = ē(
√

qx1 − x2) mod
√

q
6: if ‖ē(

√
qx1 − x2)‖∞ ≤ q

4ω
then

7: return (ēx2 + k)/(
√

qē)
8: else go to Line 1
9: end if

Lemma 3.2. If the verification of a proof π from Fig. 5 passes, then Algorithm 1
on input π and the group manager secret key returns a unique decryption in
expected running-time at most O(h2), where h2 is the number of queries to the
second random oracle made by the prover to generate a signature. For an honest
prover, the expected number of iterations is

√
3.

Proof. The proof is deferred to the full version of the paper.

4 Security and Parameters

In this section, prove the two security notions required for a group signature,
that is, anonymity and traceability. Afterwards, we propose a set of parameters
for the group signature that achieve a signature size of rougly 203 KB.

4.1 Security

Throughout this subsection, we will write εG
A the success probability of an adver-

sary A against a game G. The proof for traceability is done in two steps: we
reduce the traceability of our scheme to a hybrid trace∗ game, and then reduce
the latter to lattice problems. The trace∗ game (more formally defined in the
full version of the paper) is informally defined as follows. The challenger B runs
KeyGen honestly, except for the following steps:

1. The public matrix [A|B|B′] is crafted such that A is uniformly random,
B = AR − m∗G where R is generated as in KeyGen and m∗ ← I is a
uniformly random identity, and B′ = AR′ where R′ is distributed as R.

2. The vector u is defined as u = As1 + ARs2 + AR′s3, and thus corresponds
to the identity m∗.

242 V. Lyubashevsky et al.

Similarly as in the traceability game for our scheme, the adversary can query
secret keys, signatures and the random oracles.

Lemma 4.1. Let A be an adversary to the traceability game for our scheme.
Let ZK be the zero-knowledge game for π. We have

εtraceabilityA ≤ 5ε
MLWEα,α,S1
A + εZKA + εtrace∗A .

The proof is deferred to the full version of the paper.

Lemma 4.2. let A be an adversary that runs in time T and has success proba-
bility ε against the trace∗ game. Let h1 (respectively h2) be the number of queries
that A can make to the first random oracle (respectively to the second random
oracle), B ≥ 4σ

√
dα(1 + 2ω)(3dα + 1) and B2 ≥ 8ω2σ′√2d(κ + λ + α + 5).

Then, there exists an adversary B that runs in time O(T/ε) and that has
probability at least 1/(8|I|) to find either a solution to MSISα,2α,B or to
MSISκ,κ+λ+α+5,B2 .

Proof. Let A be an adversary. We assume that with at most h1 queries to the
first random oracle, h2 queries to the second random oracle and Q queries to the
signing algorithm, A has a probability ε of successfully outputing a forgery. Let
B be an algorithm that can query A. The goal of B is to either solve MSISα,2α,B

for some matrix X ∈ Rα×2α
q , or solve MSISκ,κ+λ+α+5,B2 for some matrix Y.

Description of B:

Given the instances of MSIS, B sets the public parameters of the scheme
honestly, except for the following steps. The public matrix A is set as A = X,
and B = XR−mGT for some uniformly random guess m of the identity that the
adversary is going to impersonate. The public commitment matrix A0 is set as Y.
The parameters of this game are identical to the trace∗ game, therefore provided
that B can answer secret key signature queries, A shall have a probability ε to
output a forgery. Note that on top of his knowledge of the trapdoors R,R′, B
knows the honestly generated secret vector sgm1 , sgm2 , sgm3 and defines u as

u =
[
X| XR| AR′]

⎡

⎣
sgm1
sgm2
sgm3

⎤

⎦ .

To answer a secret key query for an identity m′ �= m∗ from A, B uses his
knowledge of the trapdoor R to sample a valid secret key (sm′

1 , sm′
2 , sm′

3) such
that

[
X| XR + (m′ − m∗)G| AR′]

⎡

⎣
sm′
1

sm′
2

sm′
3

⎤

⎦ = u.

If A queries the secret key for m∗, B is unable to use its trapdoor R so he returns
(sgm1 , sgm2 , sgm3).

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 243

To answer A’s signing queries, B will run the simulator S from the zero-
knowledge property of π. From Theorem 3.1, the distribution of the transcripts
that B sends to A is computationally indistinguishable from the actual distri-
bution of the transcripts from the signature, and therefore A can indeed be
provided with as many as Q signing queries.

When A is ready to produce forgeries, B will follow the transcript-acquisition
from the extractor E of the soundness of π. More precisely, B has a probability
at least 1/8 to get 4 forged signatures from A in time O(T/ε) : 2 different second
challenges e per first different challenges c, φ. We reuse the notations from the
extraction.

Next, B will proceed as E and recover either a solution to MSISκ,κ+λ+α+5,B2 -
or recover vectors s̄1, s̄2, s̄3, r̄ and polynomials m, c̄ such that m ∈ I and Xs̄1 +
(XR + (m − m∗)G)s̄2 + XR′s̄3 = u, which completes the proof either way.

From Lemma 3.2, the decryption of all of A’s forgeries are the same m ∈ I. Since
A is playing the trace∗ game, we assume that he never queried nor received the
secret key for identity m. With probability |I|−1, B’s uniformly random guess
m∗ is indeed the identity that A impersonates. If this did not happen, then
B fails and aborts. From now on, we assume that m = m∗. On one hand, B
received from A short vectors that satisfy X(s̄1 + Rs̄2 + R′s̄3) = c̄u. On the
other hand, B knows (sgm1 , sgm2 , sgm3) verifying X(sgm1 + Rsgm2 + Rsgm3) = u. In
other words, s̄1 − c̄sgm1 + R(s̄2 − c̄sgm2) + R′(s̄3 − c̄sgm3) is a solution to MSIS
for the given random matrix X of size with overwhelming probability at most
4σ

√
dα(1 + 2ω)(3dα + 1).

Theorem 4.3. The group signature scheme, where the signature is the Fiat-
Shamir transform of π defined in Fig. 5 is untraceable and anonymous.

More precisely for anonymity, the advantage of an adversary A against the
anonymity game is upper bounded by 299/M + 2εMLWE

A .
For traceability, with B ≥ 4σ

√
dα(1 + 2ω)(3dα + 1) and

B2 ≥ 8ω2σ′√2d(κ + λ + α + 5),

the success probability εtraceabilityA of an adversary A against the traceability game
is upper bounded by

3ε
MLWEα,α,S1
A + 8|I|max(εMSISα,2α,B

A , ε
MSISκ,κ+λ+α+5,B2
A).

The proof is deferred to the full version of the paper.

4.2 Parameters

Similarly as in [dPLS18], we apply the Fiat-Shamir transformation [FS86] on
the interactive protocol in Fig. 5 to obtain a group signature. We first compute
sizes for our signature and then propose several common optimisations.

To begin with, we set (q, d, l) = (≈ 264, 128, 64) so that q−d/l ≈ pd/l ≈ 2−128.
Next, we aim for the repetition rate of our protocol to be 27 as in [dPLS18].

244 V. Lyubashevsky et al.

Hence, we set M such that M2 = 2712, i.e. M = 33/2. We compute an upper-
bound Ts on‖c(s1||s2||s3)‖, where c ← C, as follows. Recall that using a trapdoor
sampling similar to [dPLS18], coefficients of vectors si follow a discrete Gaus-
sian distribution with standard deviation str ≤ 2(3

√
αd + 1)

√
[q1/3]2 + 1 (see

[dPLS18, Sect. 2.6] for more details). Hence, by Lemma 2.7 with an overwhelm-
ing probability we have

‖c(s1||s2||s3)‖2 =
3∑

i=1

‖csi‖2 ≤
3∑

i=1

(d‖si‖)2 ≤ 16d2s2trαd.

Thus, we set Ts = 8(3
√

αd + 1)d
√

[q1/3]2 + 1
√

αd and σ = 8Ts in order to have
M = 33/2 (as in Eq. 8).

Let Tr be an upper-bound on ‖er‖ where e is the challenge in Fig. 5. We apply
the exact method as in [LNS21a, Appendix C]. Namely, we use the observation
that

‖er‖2 ≤ d

∥
∥
∥
∥
∥

�∑

i=1

σ−1(ri)ri

∥
∥
∥
∥
∥
1

where r = (r1, . . . , rκ+λ+α+5) and σ−1 is the Galois automorphism σ−1 : X �−→
X−1. Then, we heuristically choose Tr so that the expression on the right-hand
side is less than T 2

r with probability at least 99%. Similarly as before, we set
s′ = 8Tr.

In Fig. 1 we choose parameters κ, λ, α, μ so that the MSIS and MLWE prob-
lems described in the previous subsections are hard. For a fair comparison with
[dPLS18], we measure the hardness with the root Hermite factor δ and aim for
δ ≈ 1.0036.

We now turn to computing the signature size. As “full-sized” elements of Rq

we have f and j (it is missing d/l coefficients but this has negligible impact on
the sizes). Therefore, we have in total κ + α + 5 + 1 full elements of Rq which
give us

(κ + α + 6)d log q bits.

What we have left are vectors of short polynomials z1,z2,z3 and z4. Since they
come from a discrete Gaussian distribution with standard deviation s and s′

respectively, with high probability we can upper-bound their coefficients by 6s
and 6s′ [Lyu12]. Thus, they require at most:

8αd log(12s) + (κ + λ + α + 5)d log(12s′) bits.

Finally, the challenges c, e cost at most 4 · d = 512 bits.

Various Optimisations. First, we apply the rejection strategy introduced
[LNS21a] for z4. Namely, we use the algorithm Rej1 defined in Fig. 3 instead
of Rej0. Consequently, we manage to significantly reduce the standard deviation

12 Recall that in Fig. 5 we run four rejection algorithms. However, for efficiency purposes
we can merge the ones for z1, z2, z3 since they follow the same standard deviation σ.

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 245

s′ at a cost of leaking one bit of the randomness r. This is fine in our case since
each new signature requires a fresh randomness vector.

We cannot use the rejection approach from [LNS21a] for z1,z2,z3 since each
signature would reveal some more information about secret vectors si. In order
to reduce the standard deviation σ, we will use Bimodal Gaussians [DDLL13]
instead. We remark that this technique is not new and it was recently used in
e.g. [LNS21b, Sect. 1.5] and [LNS21a, Appendix B].

Concretely, we additionally commit to a randomly chosen sign b ∈ {−1, 1}:

f8 = aT
5 r + b.

Then, we send zi = y + bcsi for i = 1, 2, 3 and later prove that

[
A| B + mG| B′]

⎡

⎣
z1
z2
z3

⎤

⎦ = w + bcu

where BDLOP commitments to m, b and w are given. Furthermore, we need to
prove that f8 is a commitment to −1 or 1. First, we prove that (b+1)(b−1) = 0
over Rq. This implies that the NTT coefficients of b are either −1 or 1. Next,
we show that all coefficients of b are the same, i.e. the NTT vector �b = NTT (b)
of b satisfies V�b = �0 where

V =

⎛

⎜
⎜
⎜
⎝

1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1

⎞

⎟
⎟
⎟
⎠

∈ Z
l×l
q .

Since we already prove linear and multiplicative relations in Fig. 5, the additional
proofs for b do not affect the total signature size. Hence, we manage to decrease
the standard deviation σ at a cost of committing to one more polynomial b.
Eventually, with the aforementioned optimisations, we manage to decrease the
standard deviations to σ = 0.7Ts and σ′ = 0.7Tr. Thanks to these modifications,
the extracted MSIS solution from the traceability game has Euclidean norm at
most 261 which is less than q.

With the given parameters, we obtain a group signature of size around 203 KB
which is around a factor of three improvement over [dPLS18].

Table 1. Group signature parameters.

q d l κ λ α μ

≈ 264 128 64 20 24 24 127

246 V. Lyubashevsky et al.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard
model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13190-5 28

[ALS20] Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lat-
tice commitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12171, pp. 470–499. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56880-1 17

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the geom-
etry of numbers. Math. Ann. 296(1), 625–635 (1993)

[BCN18] Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from
lattices. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol.
10892, pp. 163–182. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-93387-0 9

[BDL+18] Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More
efficient commitments from structured lattice assumptions. In: Catalano,
D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 20

[BLS19] Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er)
exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26948-7 7

[CS97] Camenisch, J., Stadler, M.: Efficient group signature schemes for large
groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–
424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal gaussians. In CRYPTO 1, 40–56 (2013)

[DKL+18] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: Crystals-dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

[dPLS18] del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures
and zero-knowledge proofs of automorphism stability. In: ACM Conference
on Computer and Communications Security, pp. 574–591. ACM (2018)

[ENS20] Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices:
new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 9

[ESLL19] Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge
proofs: new techniques for shorter and faster constructions and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26948-7 5

[ESS+19] Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based
one-out-of-many proofs and applications to ring signatures. In: Deng, R.H.,
Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol.
11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21568-2 4

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-030-21568-2_4

Shorter Lattice-Based Group Signatures via “Almost Free” Encryption 247

[EZS+19] Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: effi-
cient, scalable and post-quantum blockchain confidential transactions pro-
tocol. In: CCS, pp. 567–584. ACM (2019)

[FS86] Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GKV10] Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme
from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17373-8 23

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–
92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 5

[LLNW16] Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments
for lattice-based accumulators: logarithmic-size ring signatures and group
signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 1

[LN17] Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 11

[LNS20] Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-
knowledge proofs for integer relations. In: CCS, pp. 1051–1070. ACM (2020)

[LNS21a] Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-
knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC
2021. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-75245-3 9

[LNS21b] Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from
ideal lattices with applications to ring signatures and confidential transac-
tions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826,
pp. 611–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84245-1 21

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for mod-
ule lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.
1007/s10623-014-9938-4

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 35

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 43

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-84245-1_21
https://doi.org/10.1007/978-3-030-84245-1_21
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41

248 V. Lyubashevsky et al.

[OO98] Ohta, K., Okamoto, T.: On concrete security treatment of signatures
derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 354–369. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055741

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 1–40 (2009)

[YAZ+19] Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-
based zero-knowledge arguments with standard soundness: construction
and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/BFb0055741
https://doi.org/10.1007/BFb0055741
https://doi.org/10.1007/978-3-030-26948-7_6
https://doi.org/10.1007/978-3-030-26948-7_6

Séta: Supersingular Encryption
from Torsion Attacks

Luca De Feo1,11(B), Cyprien Delpech de Saint Guilhem2(B),
Tako Boris Fouotsa3(B), Péter Kutas4,5(B), Antonin Leroux6,7,11(B),

Christophe Petit5,8(B), Javier Silva9(B), and Benjamin Wesolowski10,12(B)

1 IBM Research Europe, Zürich, Switzerland
asiacrypt21@defeo.lu

2 imec-COSIC, KU Leuven, Leuven, Belgium
cyprien.delpechdesaintguilhem@kuleuven.be
3 Università Degli Studi Roma Tre, Rome, Italy

takoboris.fouotsa@uniroma3.it
4 Eötvös Loránd University, Budapest, Hungary
5 University of Birmingham, Birmingham, UK

p.kutas@bham.ac.uk
6 DGA, Paris, France

7 LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

antonin.leroux@polytechnique.org
8 Université Libre de Bruxelles, Brussels, Belgium

christophe.petit@ulb.be
9 Universitat Pompeu Fabra, Barcelona, Spain

10 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, Talence, France
benjamin.wesolowski@math.u-bordeaux.fr

11 INRIA, Rocquencourt, France
12 INRIA, IMB, Talence, France

Abstract. We present Séta (To be pronounced [Se:t6] meaning “walk”
in Hungarian.), a new family of public-key encryption schemes with post-
quantum security based on isogenies of supersingular elliptic curves. It
is constructed from a new family of trapdoor one-way functions, where
the inversion algorithm uses Petit’s so called torsion attacks on SIDH
to compute an isogeny between supersingular elliptic curves given an
endomorphism of the starting curve and images of torsion points. We
prove the OW-CPA security of Séta and present an IND-CCA variant
using the post-quantum OAEP transformation. Several variants for key
generation are explored together with their impact on the selection of
parameters, such as the base prime of the scheme. We furthermore for-
malise an “uber” isogeny assumption framework which aims to gener-
alize computational isogeny problems encountered in schemes including
SIDH, CSDIH, OSIDH and ours. Finally, we carefully select parameters
to achieve a balance between security and run-times and present exper-
imental results from our implementation.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 249–278, 2021.
https://doi.org/10.1007/978-3-030-92068-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_9

250 L. De Feo et al.

1 Introduction

Isogeny-based cryptography. Recent years have seen an increasing interest in cryp-
tosystems based on supersingular isogeny problems as appropriate candidates for
post-quantumcryptography.The latter has received greater focus due to the recent
standardization process initiated by NIST.1

More precisely, the central problem of isogeny-based cryptography is, given
two elliptic curves, to compute an isogeny between them. For the right choice
of parameters, the best quantum algorithms for solving this problem still run
in exponential time [5]. Variants of this problem have been used to build prim-
itives such as hash functions [10], encryption schemes [2,23], key encapsulation
mechanism (KEM)s [2] and signatures [16,21].

Encryption schemes. The first key agreement and public-key encryption (PKE)
scheme based on isogenies of ordinary elliptic curves was independently dis-
covered by Couveignes [15] and Rostovtsev and Stolbunov [34,37]. It follows a
“Diffie–Hellman-like” structure: Alice and Bob start from a public curve E0 and
choose random secret isogenies ϕA, ϕB to reach curves EA, EB . They then send
the curves to each other and finally use their respective secrets to arrive at a
common curve EAB . It is then immediate to transform the key agreement into
a CPA-secure PKE by following El Gamal’s blueprint.

In 2011, Jao and De Feo [23] introduced SIDH, a key agreement protocol
based on isogenies of supersingular curves, inspired both by the Couveignes–
Rostovtsev–Stolbunov scheme and by the hash function of Charles, Goren and
Lauter [10]. In the supersingular case, however, isogenies do not have a natural
commutative property, meaning that, for example, the result of applying Bob’s
isogeny ϕB to Alice’s curve EA cannot be meaningfully defined without some
extra constraints. To solve this, Jao and De Feo proposed sending additional
information in the protocol in the form of images of torsion points under the
secret isogenies. With the help of these points, they ensured that each party
could evaluate their secret isogeny on the other’s curve.

However, the isogeny problem upon which the security of the scheme is based
now differs from the original problem in certain ways. Most importantly, the
adversary has access to the image of certain torsion points under a secret isogeny.
Galbraith, Petit, Shani and Ti [20] were the first to exploit this extra information
in an active attack showing that one cannot use static keys in SIDH. Then, two
further works studied the generic problem of finding isogenies if the action of the
isogeny on some torsion is known [17,33]. These look at two different scenarios:

1. The starting curve is E0 : y2 = x3 + x;
2. The starting curve is chosen by the adversary;

Let p be a prime number; for simplicity we restrict to supersingular elliptic
curves defined over Fp2 . Let A be the degree of some secret isogeny ϕ and
1 U.S. Department of Commerce, National Institute of Standards and Technology, Post-

Quantum Cryptography project, 2016. Available at https://csrc.nist.gov/projects/
post-quantum-cryptography, last retrieved September 13th, 2019.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Séta: Supersingular Encryption from Torsion Attacks 251

let B be the order of a torsion group on which the action of ϕ is known. In
the first case [17] gives a polynomial-time algorithm to compute ϕ whenever
B >

√
pA2. In the second case it shows how to construct special starting curves

(called backdoor curves) for which backdoor information is known, in the form
of an endomorphism of the curve, which enables a polynomial-time algorithm to
compute ϕ whenever B > A2.

In SIDH one has A ≈ B ≈ √
p so these algorithms do not lead to an attack.

However [17] also shows that, if an adversary is allowed to choose the starting
curve, then even in the SIDH setting it is possible to mount key-recovery attacks
which take exponential time, yet are faster than known algorithms [17, Corollary
32]. In anticipation of potential further cryptanalysis progress, it is desirable to
design alternative cryptographic protocols that rely on different isogeny prob-
lems. An example of this is the CSIDH scheme [9] (and its variants [19,31]),
a key agreement protocol that relies on the original isogeny problem, but is
restricted to supersingular elliptic curves over Fp, and can be solved in quantum
subexponential time.

These results show that any relaxation of the assumptions used in building
isogeny-based PKE schemes and KEMs is of interest from a theoretical point of
view, and could become crucial if further cryptanalysis progress occurs.

Our contributions. Our main contribution is to turn the attack described
in [17] into a PKE by using the special starting curves mentioned above as
public keys. The associated secret key can be derived from an endomorphism
of the curve with a specific minimal polynomial. More precisely, one can use
any special curve whose endomorphism ring has a particular quadratic order
embedded into it. Using such a starting curve, one can design a PKE where a
message corresponds to an isogeny and a ciphertext contains the codomain of the
isogeny together with images of the torsion points under the isogeny. Decryption
is then performed using the algorithm which recovers the secret isogeny using
the techniques developed in [33] and [17].

Choosing parameters for our scheme is not obvious due to the following rea-
son. Even though trapdoor curves can be constructed in polynomial time, in
practice this can be very costly. This is acceptable for a backdoor, but not for
a PKE for which key generation should be routine computation. The expensive
step is to generate a supsersingular elliptic curve with a prescribed endomor-
phism ring. We utilize techniques from SQISign [16] where one uses special
primes to substantially speed up the procedure of generating starting curves.
Furthermore, the worst-case complexity of torsion-point attacks is dependent on
the number of prime factors of the isogeny degree. We therefore impose extra
conditions on the quadratic order to avoid timing attacks that this could imply.

We also present variants for constructing backdoor curves which allow for
slightly different decryption mechanisms. Namely one can either construct the
starting curve directly and then compute a backdoor, or instead choose a secret
backdoor curve first and then apply a secret walk to it. We discuss trade-offs
between security, key size and speed in this context.

We emphasize that just knowing the equation of the starting curve and a
description of the quadratic order embedded in it does not seem to be help-

252 L. De Feo et al.

ful without the concrete knowledge of an endomorphims realizing this embed-
ding. We formalize this idea in what we call the uber isogeny problem or O-UIP
(Problem 5.1): suppose that one knows that a certain quadratic order O is embed-
ded in the endomorphism ring of two curves E0, Es, and that and that a concrete
embedding of E0 is also given in input, the problem is to find an isogeny between
E0 and ES corresponding to a O-ideal. The formulation of this O-UIP is inspired
from the key recovery problem in CSIDH [9, Problem 10]. We show that SIDH,
OSIDH [12] and our PKE scheme also rely implicitly on various instances of this
assumption. We also provide an analysis on the difficulty of this problem.

Finally, we present an implementation of our scheme which includes searching
for an appropriate base prime and measuring key generation and encryption/de-
cryption speeds. Written in C, our implementation reuses some of the codebase
of SQISign and improves the efficiency of several steps crucial for Séta compu-
tations.

In Sect. 2 we recall basic properties of supersingular elliptic curves and the
SIDH protocol. Furthermore, we discuss backdoor curves (which in this context
we rename as trapdoor curves) in more detail. In Sect. 3 we introduce our one-
way function and PKE Séta. In Sect. 4 we show how one can generate keys
efficiently for Séta. In Sect. 5 we introduce the uber isogeny assumption, discuss
its relation to other studied isogeny problems and provide some analysis of its
hardness. In Sect. 6 we provide details of our implementation.

2 Preliminaries

We denote the computational security parameter by λ. We write PPT for proba-
bilistic polynomial time. The notation y ← A(x; r) means that the algorithm A,
with input x and randomness r, outputs y. The notation Pr[sampling : event]
means the probability of the event on the right happening after sampling ele-
ments as specified on the left. Given a set S, we denote sampling a uniformly
random element x of S by x

$← S. A probability distribution X has min-entropy
H∞(X) = b if any event occurs with probability at most 2−b. Given an integer
n =

∏
i �ei

i , where the �i are its prime factors, we say that n is B-powersmooth
if �ei

i < B for all i. We denote by Zn the set of residue classes modulo n.

2.1 Quaternion Algebras and Endomorphism Rings of Supersingular
Elliptic Curves

A quaternion algebra is a four-dimensional central simple algebra over a field K.
When the characteristic of K is not 2, then A admits a basis 1, i, j, ij such that
i2 = a, j2 = b, ij = −ji where a, b ∈ K\{0}. The numbers a, b characterise
the quaternion algebra up to isomorphism, thus we denote the aforementioned
algebra by the pair (a, b). A quaternion algebra is either a division ring or it is
isomorphic to M2(K), the algebra of 2 × 2 matrices over K.

Let A be a quaternion algebra over Q. Then A ⊗ Qp is a quaternion algebra
over Qp (the field of p-adic numbers) and A ⊗ R is a quaternion algebra over
the real numbers. A is said to split at p (resp. at ∞) if A ⊗ Qp (resp. A ⊗ R)

Séta: Supersingular Encryption from Torsion Attacks 253

is a full matrix algebra. Otherwise it is said to ramify at p (resp. at ∞). A
quaternion algebra over Q is split at every but finitely many places, and the list
of these places defines the quaternion algebra up to isomorphism. An order in a
quaternion algebra over Q is a four-dimensional Z-lattice which is also a subring
containing the identity (it is the non-commutative generalization of the ring of
integers in number fields). A maximal order is an order that is maximal with
respect to inclusion.

The endomorphism ring of a supersingular elliptic curve over Fp2 is a maximal
order in the quaternion algebra Bp,∞, which ramifies at p and at ∞. Moreover,
for every maximal order in Bp,∞ there exists a supersingular elliptic curve whose
endomorphism ring is isomorphic to it.

It is easy to see that, when p ≡ 3 (mod 4), this quaternion algebra is iso-
morphic to the quaternion algebra (−p,−1). In that case, the integral linear
combinations of 1, i, ij+j

2 , 1+i
2 form a maximal order O0 which corresponds to

an isomorphism class of supersingular curves, namely the class of curves with
j-invariant 1728 (e.g. the curve E : y2 = x3+x). It is easy to see that all elements
ai + bj + cij + d with a, b, c, d ∈ Z are contained in O0.

2.2 Class Group Action on the Set of Supersingular Curves

We briefly recall the main definitions and properties related to the class group of
quadratic imaginary orders and their link with supersingular elliptic curves. We
say that a curve E admits an embedding of a quadratic imaginary order O, if
there exists a subring of End(E) that is isomorphic to O. We say this embedding
is primitive or optimal if this isomorphism cannot be extended to a super-order of
O. We write EO for the set of supersingular elliptic curves admitting a primitive
embedding of O (up to isomorphisms). Following [12], we also call a primitive
embedding of O in End(E) an O-orientation on E. Through the usual Deuring
correspondence, O-ideals can be identified with isogenies. For any such ideal
a, we write ϕa : E → a � E for the corresponding isogeny. The property that
a � E ∼= b � E when a and b are in the same ideal class proves that � defines
a group action of the class group Cl(O) on EO. The class number h(O) is the
cardinality of Cl(O). In full generality, we cannot say much more on #EO than
the classical Proposition 2.1.

Proposition 2.1. Let K be a quadratic imaginary field and let O be a quadratic
order inside K. When p does not split in K, the number of distinct embeddings
of O inside maximal orders of the quaternion algebra Bp,∞ is exactly Cl(O). In
particular, #EO ≤ h(O).

In general, Proposition 2.1 does not help in estimating #EO precisely because
we do not know how to estimate the number of different embeddings of O into
the same maximal order in Bp,∞. We provide examples of cases where more
precise properties can be stated in Sects. 5.2 and 5.3.

When p splits in the field K, then EO is empty (the curves admitting an
O-orientation are ordinary). In the remaining of this article, we consider that
we are never in this case to simplify the notations and statements.

254 L. De Feo et al.

Any quadratic order O can be written as O = Z + fO0 where O0 is another
quadratic order (not necessarily distinct from O) and f is often called the con-
ductor of O. When the conductor is one, we say that the quadratic order is
maximal. In [29], it was shown that these conductors can be tied to isogenies.

Proposition 2.2. Let O = Z + fO0 be a quadratic order and let E be a super-
singular curve defined over Fp2 . If E is in EO, then there exists an isogeny of
degree f between E and a supersingular curve E0 ∈ EO0 . Conversely, when there
exists an isogeny of degree f between E and a supersingular curve E0 ∈ EO0 ,
then E is in EZ+f ′O0 for some f ′ dividing f .

In Proposition 2.2, we say that the isogeny ϕ : E0 → E of degree f is
descending when f ′ = f . Let ϕ : E0 → E be a descending isogeny of degree f , the
embedding of O in End(E) in Proposition 2.2 is obtained with endomorphisms
of the form [d] + ϕ ◦ α0 ◦ ϕ̂ with d ∈ Z and α0 in the embedding of O0 inside
End(E0). Similar endomorphisms are constructed in torsion point attacks against
SIDH variants [27,33], and they underlie the decryption mechanism of the Séta
encryption scheme.

2.3 SIDH and SIKE

Here we give a high level description of SIDH and SIKE. We start with the
original SIDH protocol of Jao and De Feo [23]. In the setup one chooses two
small primes �A, �B and a prime p of the form p = �eA

A �eB

B f − 1, where f is
a small cofactor and eA and eB are large (in SIKE [2] they use �eA

A = 2216,
�eB

B = 3137 and f = 1). Let E be a fixed supersingular curve, for example,
assuming p = 3 mod 4, the elliptic curve with j-invariant 1728.2 Let PA, QA be
a basis of E[�eA

A] and let PB, QB be a basis of E[�eB

B]. The protocol is as follows:

1. Alice chooses a random cyclic subgroup of E[�eA

A] generated by A = [xA]PA +
[yA]QA and Bob chooses a random cyclic subgroup of E[�eB

B] generated by
B = [xB]PB + [yB]QB .

2. Alice computes the isogeny ϕA : E → E/〈A〉 and Bob computes the isogeny
ϕB : E → E/〈B〉.

3. Alice sends the curve E/〈A〉 and the points ϕA(PB) and ϕA(QB) to Bob, and
Bob similarly sends (E/〈B〉, ϕB(PA), ϕB(QA)) to Alice.

4. Alice and Bob both use the images of the torsion points to compute the
shared secret which is the curve E/〈A,B〉 (e.g. Alice can compute ϕB(A) =
[xA]ϕB(PA) + [yA]ϕB(QA) and E/〈A,B〉 = EB/〈ϕB(A)〉).
This key exchange protocol also leads to a PKE scheme in the same way

as the Diffie–Hellman key exchange leads to ElGamal encryption. Let Alice’s
private key be the isogeny ϕA : E → E/〈A〉 and her public key be the curve
E/〈A〉 together with the images of the torsion points ϕA(PB) and ϕA(QB).
Encryption and decryption work as follows:
2 Jao and De Feo do not specify a particular curve, and recommend to pick one using

Bröker’s algorithm [8], however there appears to be no advantage in doing so, and
thus SIKE opts for j = 1728 for simplicity.

Séta: Supersingular Encryption from Torsion Attacks 255

1. To encrypt a bitstring m, Bob chooses a random subgroup generated by B =
[xB]PB + [yB]QB and computes the corresponding isogeny ϕB : E → E/〈B〉.
He computes the shared secret E → E/〈A,B〉 and hashes the j-invariant of
E/〈A,B〉 to a binary string s. The ciphertext corresponding to m is the tuple
(E/〈B〉, ϕB(PA), ϕB(QA), c := m ⊕ s)

2. In order to decrypt Bob’s message, Alice computes E/〈A,B〉 and from this
information computes s. Then she retrieves the message by computing c ⊕ s.

This PKE scheme is IND-CPA secure [2,23]. In the SIKE submission [2], it is
transformed using the constructions in [22, Section 3] to produce an IND-CCA
secure KEM in the random oracle model (ROM).

2.4 Trapdoor Curves

Let E1, E2 be supersingular elliptic curves over Fp2 and let φ : E1 → E2 be an
isogeny of degree D. First we recall the following algorithmic problem:

Problem 2.3 (SSI-T). Let D and N be smooth coprime integers. Let φ : E1 → E2

be a secret isogeny of degree D. Assume that we know the action of φ on E1[N].
Compute φ.

Remark 2.4. The SSI-T problem is a generalization of the CSSI introduced in
[23] (Problem 5.6) where D and N are prime powers of the same size.

The SSI-T problem makes sense for any D,N which are coprime and sufficiently
smooth. However, in many cases the size of the input is superlinear in p thus
has no practical relevance. Thus from now on we restrict to instances where the
D and N -torsion are efficiently representable:

Definition 2.5. Let N be an integer and let p be a prime number. Let E be
a supersingular elliptic curve defined over Fp2 . We call E[N] efficiently repre-
sentable if representing points in E[N] requires polynomial space in log p = O(λ).

Remark 2.6. In particular E[N] is efficiently representable whenever N is pow-
ersmooth or N divides pc − 1 for some small c. In this paper we will mainly
consider instances where N is smooth and divides p2 − 1.

We recall (slightly modified version of) [17, Theorem 3] how finding a certain
endomorphism of E2 relates to finding the secret isogeny φ:

Theorem 2.7. Let φ : E1 → E2 be a secret isogeny of degree D. Assume that
E[N] and E[D] are efficiently representable for any supersingular curve E and
that the action of φ on E1[N] is given. Suppose furthermore, that we know θ ∈
End(E1) and d, e ∈ Z such that the trace of θ is 0 and deg(φ◦θ ◦ φ̂+[d]) = N2e.
Let M be the largest divisor of D such that E2[M] ⊂ ker(φ◦θ ◦ φ̂)∩E2[D]. Let k
be the number of distinct prime divisors of M . Then we can compute φ in time
O∗(2k

√
e) .

256 L. De Feo et al.

Proof. We sketch the proof of the theorem. Let τ = φ◦ θ ◦ φ̂+[d]. Then if ker(τ)
is cyclic, then τ = ψ′ ◦ η ◦ ψ where deg(ψ) = deg(ψ′) = N and deg(η) = e and
the kernels of ψ and ψ′ are cyclic. In [17, Theorem 3] it is shown that ker(τ)
is always cyclic if N is odd and if N is even then τ = ψ′ ◦ η ◦ ψ ◦ [K] where
deg(ψ) = deg(ψ′) = N/K, deg(η) = e and K = 1 or K = 2.

Then one can compute ψ and K using the torsion point information and ψ′

using the observation that ker(ψ̂′) = τ(E2[B]). The isogeny η can be computed
by a meet-in-the-middle algorithm. Once τ is computed, one can compute φ by
looking at G = ker(φ ◦ θ ◦ φ̂) ∩ E2[D]. If M = 1 then G is cyclic and can be
recomputed easily. If not, then one can use [Sect. 4.3][33] to recover τ . The cost
of this step is O∗(2k) where k is the number of prime factors of M .

Remark 2.8. Theorem 2.7 in particular implies that one can recover φ in O∗(
√

e)
whenever the number of distinct prime divisors of D (and hence M) is smaller
than log log p. In Sect. 3.3, we introduce a condition on the quadratic order Z[θ]
to ensure that M is always equal to 1.

The key ingredient to Theorem 2.7 is the knowledge of θ. When M = 1
(which will be the case for the concrete inversion procedure in Algorithm 1), all
we really need is the action of θ on E1[N]. Indeed, from the sketch of proof of
Theorem 2.7, we see that in that case θ is only used to compute the kernel of the
two isogenies ψ and ψ′ of degree N . These kernels are computed by evaluating
the N -torsion τ = φ ◦ θ ◦ φ̂ + [d] which can be done with the action of θ and φ
on E1[N].

Note the action of θ on E1[N] is hard to recover from E1 only. This motivates
a notion of (D,N)-trapdoor T to encompass any kind of information that enables
the computation described in the proof of Theorem 2.7.

Definition 2.9. Let p be a prime number and let D and N be coprime smooth
integers. Then a tuple (E, T) is called a (D,N)-trapdoor curve if one can use
T to solve any instance of the SSI-T problem (with parameters D,N, p) with
starting curve E in polynomial time. We sometimes call T the trapdoor.

In [17] the authors introduces a polynomial-time algorithm for constructing
(D,N)-trapdoor curves whenever N > D2 and the number of prime divisors of
D < log log p. The main idea is to reproduce the set-up of Theorem 2.7. Thus,
if one can construct a supersingular elliptic curve E together with an endomor-
phism θ ∈ End(E) verifying the requirements of Theorem 2.7, and compute the
action of this endomorphism θ on E[N], then one can solve SSI-T in polynomial
time (by finding an e which is sufficiently small).

The conditions put on θ in Theorem 2.7 are essentially conditions on the
minimal polynomial of θ, meaning that every trace zero element in the quaternion
algebra whose norm is B2e−d2

A2 can be used as a suitable θ. This implies that
potential (D,N)-trapdoor curves are obtained from curves in EO for quadratic

order O of the form Z

(√
N2e−d2

D2

)

.

Séta: Supersingular Encryption from Torsion Attacks 257

We briefly sketch how θ can be generated. Since Tr(θ) = 0, it can be written
as ci + bj + aij over Bp,∞. Then the degree of τ is D2(p2a + p2b + c2) + d2.
Observe that a, b, c can be rational numbers but since θ is an integral element
its norm p2a2 + p2b2 + c2 must be an integer. So one has to find d, e such that
N2e − d2 is divisible by D2 and is positive.

This can be achieved when N > D2. Let Δ = N2e−d2. Then one has to find
a rational solution to the equation p2a2+p2b2+c2 = Δ, which exists whenever Δ
is a quadratic residue modulo p (if that is not the case one chooses a different d
and e). A solution can be found using Denis Simon’s algorithm [36]. From there,
we can find a maximal order O containing θ and then compute a supersingular
elliptic curve whose endomorphism ring is isomorphic to O (see Algorithm 3 in
Sect. 4.2). After that, the action of θ on the N -torsion can be found using an
explicit representation of O. All these operations can be done in polynomial time
(see Algorithms 2 and 3 for more details), leading to the following theorem:

Theorem 2.10. Let p be a prime number and let D and N be smooth coprime
integers such that N > D2 and the number of distinct prime divisors of D
is smaller than log log p. Then there exists a polynomial-time algorithm which
outputs a (D,N)-trapdoor curve E with the following information:

– The j-invariant of E.
– Integers d, e with e = O(log(p)).
– A basis P,Q of E[N] and the points θ(P), θ(Q) for a trace 0 endomorphism

θ such that deg([D]θ + [d]) = N2e.

3 Séta Trapdoor One Way Function and Public Key
Encryption Scheme

In this section we describe a general trapdoor one-way function where the main
idea is to turn the attacks from [17] into a trapdoor mechanism.

We first generalise the CGL hash function and we describe a trapdoor sub-
family of this generalization. We then provide more details on key generation,
evaluation and inversion. We finally describe the Séta public key encryption
scheme and its CCA version.

3.1 Generalised Charles-Goren-Lauter Hash Function

We generalise the CGL hash function family introduced in [10]. To select a hash
function from this family, one selects a j-invariant j ∈ Jp which canonically fixes
a curve E/Fp2 with j(E) = j. There are � + 1 isogenies of degree � connecting
E to other vertices. These � + 1 vertices can be ordered in a canonical way and
a canonical one of them can be ignored. Then, given a message m = b1b2 . . . bn,
with bi ∈ [�], hashing starts by choosing a degree-� isogeny from E according
to symbol b1 to arrive at a first curve E1. Not allowing backtracking, there are
then only � isogenies out of E1 and one is chosen according to b2 to arrive at a

258 L. De Feo et al.

second curve E2. Continuing in the same way, m determines a unique walk of
length n. The output of the CGL hash function hj is then the j-invariant of the
final curve in the path, i.e. hj(m) := j(En), where the walk starts at vertex j
and is defined as above. We see that starting at a different vertex j′ results in a
different hash function hj′ .

We modify this hash function family in three ways. First, we consider a
generalisation where we do not ignore one of the �+1 isogenies from the starting
curve E. That is, we take inputs m = b1b2 . . . bn where b1 ∈ [� + 1] and bi ∈ [�]
for 2 ≤ i ≤ n; this introduces a one-to-one correspondence between inputs and
cyclic isogenies of degree �n originating from E.

Secondly, we consider a generalisation where the walk takes place over multi-
ple graphs G�i . Given an integer D =

∏n
i=1 �ei

i where the �i are prime factors, we
introduce the notation μ(D) :=

∏n
i=1(�i + 1) · �ei−1

i . We then take the message
m to be an element of

[μ(D)] =
{

(m1, . . . , mn)
∣
∣
∣
∣
mi = bi1bi2 . . . biei

, bi1 ∈ [�i + 1], bij ∈ [�i]
for 2 ≤ j ≤ ei, for 1 ≤ i ≤ n

}

where each mi is hashed along the graph G�i . To ensure continuity, the j-
invariants are chained along the hash functions, that is, we write ji = hji−1(mi),
where ji−1 is the hash of mi−1. Thus, only j = j0 parameterizes the over-
all hash function. As before, this generalization returns the final j-invariant
jn = hjn−1(mn) as the hash of m.

Thirdly, we also modify the CGL hash function to return the images of two
canonically defined torsion points Pj and Qj of order N under the D-isogeny
ϕm : Ej → Ejn .

We call the resulting hash function family generalized CGL or G-CGL, and
we denote it by Hp,D,N , namely

Hp,D,N =
{

hD,N
j : m �→ (j(En), ϕm(Pj), ϕm(Qj)) | j ∈ Jp

}
.

3.2 A Trapdoor Function Family from the G-CGL Family

Given p,D and N , let JT,p ⊂ Jp be the set of j-invariants of (D,N)-trapdoor
curves defined over Fp2 (see Definition 2.9). By definition of a trapdoor curve,
for any jT ∈ JT,p, the hash function hD,N

jT
can be inverted using the trapdoor

information. We hence obtain the following family of trapdoor functions:

Fp,D,N
T =

{
fD,N

jT
: m �→ (j(En), ϕm(PjT), ϕm(QjT)) | jT ∈ JT,p

}
,

where fD,N
jT

:= hD,N
jT

.

Injectivity. We observe that, for a proper choice of parameters, the functions are
injective.

Lemma 3.1. Let N2 > 4D. Then for any jT ∈ JT,p, fD,N
jT

is injective.

Séta: Supersingular Encryption from Torsion Attacks 259

Proof. Let N2 > 4D and jT ∈ JT,p, suppose that a function fD
jT

is not injective,
i.e. that there are two distinct isogenies ϕ and ϕ′ of degree D from EjT to
Ec, corresponding to two distinct messages, with the same action on EjT [N],
implied by the colliding images of PjT and QjT . Then, following [30, Section 4],
their difference is also an isogeny between the same curves whose kernel contains
the entire N -torsion. This, together with [35, Lemma V.1.2], implies that 4D ≥
deg(ϕ − ϕ′) ≥ N2. Taking N2 > 4D ensures that in fact ϕ = ϕ′ and therefore
that fD,N

jT
is injective. ��

One-wayness. One-wayness of our function family relies on Problem 3.2 below.
This problem is a variant of the CSSI problem introduced in [23], with the
difference that the starting j-invariant is chosen at random from JT,p (instead
of being fixed) and only the min-entropy of the distribution is specified.

Problem 3.2 (Trapdoor computational supersingular isogeny (TCSSI) problem).
Given p and integers D and N , let jT be a uniformly random element of JT,p and
ϕm : EjT → Em be a random isogeny of degree D sampled from a distribution
X with min-entropy H∞(X) = O(λ). Let {PjT , QjT } be a basis of the torsion
group EjT [N]. Given EjT , PjT , QjT , Em, ϕm(PjT) and ϕm(QjT), compute ϕm.

Lemma 3.3. Let jT be a uniformly random element of JT,p. Then the func-
tion fD,N

jT
∈ Fp,D,N

T is (quantum) one-way under the (quantum) hardness of
Problem 3.2.

Proof. It is easy to check that the distribution of isogenies resulting from hash-
ing a uniform m∗ $← [μ(D)] has the required entropy; hence the reduction is
immediate. ��

3.3 Inversion

In this section, we concretely show how to use methods from [17] to invert a
given function fD,N

jT
∈ Fp,D,N

T with trapdoor information T . We assume that D
is odd and that gcd(D,N) = 1. We take EjT a supersingular curve inside EO

where O is the quadratic order Z[
√

(N2e − d2)/D2] for some integers d, e. We
write θ for the endomorphism of End(EjT) such that Z[θ] ∼= O. Let us also take
a basis PjT , QjT of EjT [N]. If we define T as e, d, PJT

, QjT , θ(PjT), θ(QjT), then
EjT , T is a (D,N)-trapdoor curve as produced in Theorem 2.10.

To make the inversion mechanism efficient on all inputs, we require the addi-
tional condition that the discriminant Δ of O is a quadratic nonresidue modulo
every prime divisor of D. The concrete statement can be found in Lemma 3.4.
We explain how to generate Ej,T , O and T in Sects. 4.1 and 4.2. We are given
(jm, Pm, Qm) as the output of fD,N

jT
for some input m, which we want to

recover. Let the isogeny corresponding to m be denoted by φm. We assume
that Pm = φm(PjT) and Qm = φm(QjT). Let τ := φm ◦ θ ◦ φ̂m + [d] and let
G := ker(τ − [d]) ∩ Em[D].

260 L. De Feo et al.

Algorithm 1 Computing inverses
Require: jT ∈ JT,p, a trapdoor T and c.
Ensure: m ∈ [μ(D)] such that fD,N

jT
(m) = c.

1: Parse c as (jm, Pm, Qm) ∈ Fp2 × (Fp2)2 × (Fp2)2.
2: Parse T as e, d, PJT

, QjT , θ(PjT), θ(QjT).
3: Compute the canonical curve Em having j-invariant jm.
4: Let τ = φm ◦ θ ◦ φ̂m + [d] ∈ End(Em). Choices of θ and d ensure

deg τ = N2e.
5: Compute τ as described in the proof of Theorem 2.7.
6: Compute ker(φm ◦ θ ◦ φ̂m) ∩ Em[D] = ker(τ − [d]) ∩ Em[D] = ker(φ̂m).
7: Compute ker(φm) using ker(φ̂m).
8: return m ∈ [μ(D)] that corresponds to ker(φm).

Lemma 3.4. If Δ = Disc O is a non-quadratic residue, the group G is cyclic
and equal to ker(φ̂).

Proof. It is clear that ker(φ̂m) ⊂ G since it is contained in ker(φm ◦ θ ◦ φ̂m) and
in Em[D] as well. We now show that G is cyclic. Let M be the largest divisor
of D such that Em[M] ⊂ G. Then φm can be decomposed as φD/M ◦ φM . Then
by [33, Lemma 5] the kernel of φM is fixed by θ. In the proof of [33, Lemma 6]
it is shown that a subgroup of EjT [M] can only be fixed by an endomorphism θ
if Tr(θ)2 − 4 deg(θ) = Disc Z[θ] = Δ is a square modulo M . Thus, the quadratic
residuosity condition on Δ ensures that M = 1 which implies that G is cyclic.
The order of G is a divisor of D since G is cyclic and every element of G has
order dividing D. However, G contains ker(φ̂m) which is a group of order D.
This implies that G = ker(φ̂m). ��

The group G = ker(φ̂) can be computed by solving a double discrete loga-
rithm problem, which is efficient as D is smooth. We summarize the steps needed
for inverting the one-way function in Algorithm 1.

In [17] it is shown that Algorithm 1 runs in polynomial time whenever Em[D]
is efficiently representable and Δ = Disc Z[θ] is as in Lemma 3.4.

3.4 Séta Public Key Encryption

We now build Séta, a Public Key Encryption scheme using the trapdoor one-way
function family of Sect. 3.2, and we show that it is OW-CPA secure. Concretely,
we define the Séta PKE scheme as the tuple (KGen,Enc,Dec) of PPT algorithms
described below.

Parameters. Let λ denote the security parameter. Let p be a prime such that
p2 − 1 = DNf where D, N are smooth integers and f is a small co-factor such
that 22λ < D, D2 < N . We let params = (λ, p,D,N).

Key generation. The KGen(params) algorithm proceeds as follows:

Séta: Supersingular Encryption from Torsion Attacks 261

1. Compute a uniformly random (D,N)-trapdoor supersingular elliptic curve
(EjT , T) defined over Fp2 using Algorithms 2 and 3 (see Sect. 4).

2. Set pk := (jT) and sk := T .
3. Return (pk, sk).

Encryption. The Enc(params, pk,m) algorithm proceeds as follows. For a given
m ∈ {0, 1}nm , where nm = �log2 μ(D)�, first cast m as an integer in the set
[μ(D)] and then:

1. Parse pk = jT ∈ JT,p.
2. Compute (jm, Pm, Qm) ← fD,N

jT
(m).

3. Return c = (jm, Pm, Qm).

Decryption. The Dec(params, pk, sk, c) algorithm proceeds as follows:

1. Given params, sk and c, parse c as (jc, Pc, Qc) ∈ Fp2 × (Fp2)2 × (Fp2)2; if that
fails, return ⊥.

2. Follow Algorithm 1 to recover m̃ ∈ [μ(D)]; if this fails, set m̃ = ⊥.
3. If ⊥ was recovered, return ⊥.
4. Otherwise, from m̃ ∈ [μ(D)], recover m ∈ {0, 1}nm and return it.

Theorem 3.5. Let p be a prime, let D and N be integers such that D2 < N .
Suppose that the output distribution of Algorithm 3 is statistically close to uni-
form. Let EjT be an output of Algorithm 3. If Problem 3.2 with p,D,N,EjT and
X such that H∞(X) = λ is hard for quantum PPT adversaries, then the PKE
scheme above is quantum one-way chosen-plaintext attack (OW-CPA) secure.

Proof. Let M = {0, 1}nm denote the message space of the encryption scheme,

with nm = O(λ). We see that a randomly sampled m
$← M directly embedded

as an integer m ∈ [μ(D)] yields a distribution Y with min-entropy H∞(Y) ≥ λ
on isogenies of degree D starting from EjT . The challenge of opening a given
ciphertext c then reduces to recovering the secret isogeny of Problem 3.2 with
X = Y . ��

3.5 IND-CCA Encryption Scheme

We obtain an IND-CCA secure PKE scheme by applying the generic post-
quantum OAEP transformation [38, Section 5] (see Appendix A) to Séta, for
which we prove that our function fD,N

jT
is quantum partial-domain one-way.

Definition 3.6. Let k1, k0 and nc be integers. A family F of functions f :
{0, 1}λ+k1 × {0, 1}k2 → {0, 1}nc is partial domain one-way if for any polyno-
mial time adversary A, the following advantage is negligible in λ:

Advλ(A) = Pr
[
s′ = s; s′ ← A(1λ, y), y ← f(s, t), (s, t) $← A × B, f ← F

]

262 L. De Feo et al.

Lemma 3.7. Let jT be a uniformly random element of JT,p. The function fD,N
jT

defined in Sect. 3.2 is a quantum partial-domain one-way function, under the
hardness of Problem 3.2.

Proof. We note that in our case, partial domain inversion is the same as domain
inversion where only the first part of the path is required. More precisely, factor D
as D1 · D2 such that gcd(D1,D2) = 1, 2λ+k1 ≤ μ(D1) and 2k0 ≤ μ(D2) (where
λ + k0 + k1 is the bit-length of input strings) and then embed each of s and
t into μ(D1) and μ(D2) respectively. Then we can set fD,N

jT
(s, t) := fD2,N

j1
(t)

where (j1, P1, Q1) = fD1,N
jT

(s) and fD2,N
j1

uses {P1, Q1} as basis of Ej1 [N]. Since
2λ+k1 ≤ μ(D1), then recovering s from y = fD,N

jT
(s, t) is hard under the same

assumption as Theorem 3.5 with D replaced by D1. ��
Theorem 3.8 ([38], Theorem 2). If fD,N

jT
is a quantum partial-domain one-

way function, then the OAEP-transformed scheme is IND-CCA secure in the
quantum random oracle model (QROM).

4 Key Generation Variants

In this section we describe various methods for generating keys for Séta. We
first describe Algorithm 2, which can generate integers d, e so that Δ = Disc O,
where O = Z[

√
(N2e − d2)/D2], satisfies the quadratic residuosity conditions

imposed Sect. 3.3. Then, we present two options for generating a uniformly ran-
dom supersingular elliptic curve inside EO together with the remaining part of
the trapdoor information T . Algorithm 3 treats the generic case, and Algorithm 4
focuses on computing a (DDs, N)-trapdoor curve from a (D,N)-trapdoor curve
and a random walk of degree Ds.

4.1 Computing the Trapdoor Information

We recall that the required condition is that Δ = Disc O = −4N2e−d2

D2 must be
negative and a quadratic non-residue modulo every prime dividing D and also
modulo p. For simplicity, we fix e = 1 and look for d of a special form. This is
described in Algorithm 2.

Lemma 4.1. If d, e is the output of Algorithm 2, then N2e−d2

D2 is a quadratic
non-residue modulo all �i.

Proof. Let ri, s�i , T and u be as in Algorithm 2. Let r be an integer such that
r ≡ ri (mod �i). Then we show that for every i, the integer −N2e+(D2r+u)2

D2 is
not a quadratic residue modulo �i which implies that −N2e−d2

D2 is not a quadratic
residue modulo every �i since T� + r ≡ ri (mod �i) for every integer �. We have
that

−N2e + (D2r + u)2

D2
=

−N2e + u2

D2
+ D2r2 + 2ur.

Séta: Supersingular Encryption from Torsion Attacks 263

Algorithm 2 Computing the integers d, e

Require: D,N, p as above. Let S be the product of primes dividing D.
Ensure: (d, e) such that −N2e−d2

D2 < 0 is a quadratic non-residue modulo every
prime dividing D and is a quadratic non-residue modulo p.

1: Set e = 1.
2: Find u such that u2 ≡ N2e (mod D2).
3: for every prime �i dividing D do
4: Let s�i be a quadratic non-residue modulo �i.
5: ri ← (s�i − −N2e+u2

D2)(2u)−1 (mod �i).

6: Compute a residue r modulo S with the property that r ≡ ri (mod �i).
7: � ← 0.
8: d ← D2(S� + r) + u.
9: A ← N2e−d2

D2 .
10: if A < 0 then
11: return ⊥
12: if A is not a square modulo p then
13: � ← � + 1.
14: go to Step 8.
15: return (d, e)

By our choice of r we have that

−N2e + u2

D2
+ D2r2 + 2ur ≡ −N2e + u2

D2
+ 2uri ≡ s�i (mod �i),

which is a quadratic nonresidue by the choice of s�i . ��
Lemma 4.2. Let S be the product of all primes dividing D. If N > D2S, then
Algorithm 2 returns a correct pair (d, e) with probability higher than 1−2− N

SD2 +1

under plausible heuristic assumption.

Proof. Since u is found by solving an equation modulo D2, we obtain u < D2.
Similarly we have r < S. Under plausible heuristic assumptions, we can estimate
to 1/2 the probability that the quadratic reduosity condition on A is satisfied.
Thus, we obtain a bound on the failure probability by counting how many values
� can be tried before A becomes negative. With the conservative bound that
D2r + u ≈ D2S, we obtain that we can try N−D2S

DS2 different values for small d,
which gives the result.

Correctness of the result follows from Lemma 4.1.

264 L. De Feo et al.

4.2 Trapdoor Curve Generation

Now we focus on generating a random supersingular elliptic curve whose endo-
morphism ring contains an embedding of O = Z[

√
(N2e − d2)/D2 for d, e out-

puts of Algorithm 2. In [17, Section 5.1] it is discussed how one can generate a
specific curve inside EO. Essentially, this is achieved by computing a maximal
order O containing the suborder O (with [40, Algorithm 7.9]) and then com-
puting a supersingular elliptic curve whose endomorphism ring is isomorphic to
O (with [18, Algorithm 12]). This procedure can be made concretely efficient
with the algorithms from [16] under some conditions on the prime p that partly
underlie the choice of prime described in Sect. 6.2. However, this procedure is
essentially deterministic, so an adversary knowing the quadratic order O can
just recompute the same trapdoor curve. The point of this subsection is to show
how to randomize the procedure.

We obtain randomization by first generating a curve with the deterministic
procedure and then applying the action of a random class group element to
derive another random curve with the same embedding. This operation would
be costly if it required to compute a lot of isogenies. However, we can do it over
the quaternions at a negligible cost before applying the translation algorithm
from maximal orders to elliptic curves.

For concrete randomization, we use the fact (see [24]) that there exists a
bound B (polynomial in p) for which the graph whose vertices are curves in EO

and edges are isogenies of prime degree smaller than B is an expander graph.
The fast mixing property of expander graphs implies that the distribution of
curves obtained after a random walk of fixed length quickly converges to the
uniform distribution as the length of the walk grows. More precisely, for any δ
we can find a length ε (logarithmic in the size of the graph and δ) for which
the statistical distance between the random walk distribution and the uniform
distribution is less than δ. So once the length ε (corresponding to a sufficiently
small δ) has been set, for any starting curve E0 in EO the curve

∏n
i=1 l

εi
i � E0

where l1, . . . , ln are prime ideals above the n prime �1, . . . , �n smaller than B
that are split in O and (ε1, . . . , εn) is uniformly random among the vectors in
Z

n such that
∑n

i=1 |εi| = ε, is statistically close to a uniformly random element
in EO. This result underlies Algorithm 3.

Proposition 4.3. Algorithm 3 is correct and terminates in polynomial time.

Proof. All the sub-algorithms run in polynomial-time and by choice of B and ε,
the number of iterations in the loop is also polynomial.

It is easy to verify that the ideal I corresponds through the Deuring corre-
spondence to the isogeny ϕli . Thus, our method simulates a random walk over
the graph that we described at the beginning of this section. For the reasons
explained there, the curve EjT obtained in the end is statistically close to a
random element in EO. ��

Séta: Supersingular Encryption from Torsion Attacks 265

Algorithm 3 Generating the trapdoor curve from a quadratic order O

Require: A prime p, an integer N , a quadratic order O, a bound B, a length
ε.

Ensure: A uniformly random curve EjT ∈ EO, a basis PjT , QjT of EjT [N], and
θ(PjT), θ(QjT) with θ ∈ End(EjT) such that Z[θ] ∼= O.

1: Find a max. order O ⊂ Bp,∞ with O embedded in O with the alg. from [17].
2: Compute �1, . . . , �n the n primes split in O smaller than B.
3: Select a random vector (ε1, . . . , εn) in Z

n with L1 norm equal to ε.
4: Set OjT = O.
5: for 1 ≤ i ≤ n do
6: Compute αi ∈ O such that li = O〈αi, �i〉 is a prime ideal above �i.
7: for 1 ≤ j ≤ |εi| do
8: Compute the ideal I = OjT 〈αi, �i〉.
9: Set OjT as the right order of I.

10: Compute the curve EjT from OjT with [18, Algorithm 12].
11: Compute a canonical basis PjT , QjT of EjT [N].
12: Select the correct element θ ∈ OjT such that O ∼= Z[θ].
13: Use the representation of OjT obtained from the execution of [18, Algorithm

12] to compute θ(PjT), θ(QjT).
14: return EjT , PjT , QjT of EjT [N], θ(PjT), θ(QjT).

4.3 Constraints on the Prime

In Séta, we compute and evaluate isogenies of degree D and N . Hence we always
require that D and N are smooth and that the DN -torsion groups are efficiently
representable, i.e., that they are defined on extensions of Fp2 of small degree.
For example, if we require that E[DN] ⊂ E(Fp4), then DN must divide p2 − 1.
The smoothness bound B1 of D impacts the efficiency of encryption and the
smoothness bound B2 of N impacts the efficiency of decryption. For a given
security level λ, we require 22λ < D in order to protect the scheme against the
meet-in-middle attack.

Since we have the range D2 < D2S < D3 depending on the value of S
(product of primes dividing D), and that Lemma 4.2 implies that N > D2S
then we can estimate that the value DN will be between 26λ and 28λ. If we
want DN dividing p2 − 1, we can estimate that the minimum size for the prime
p will be between 3λ and 4λ bits. The actual size will depend on the size of
(p2 − 1)/DN .

Besides encryption and decryption, key generation also restricts the types
of primes to be used in Séta. Indeed, Step 10 and Step 13 of Algorithm 3 use
[18, Algorithm 12], which in turn uses the KLTP Algorithm [26]. Although this
algorithm runs in polynomial time, it is not practical in general; the variant
introduced in [16] achieves much greater efficiency, provided that p2 −1 is of the
form p2 − 1 = lfN2f2, where � is a small prime, N2 > p3/2 is a smooth integer
co-prime to � and f2 is a cofactor. We refer to [16, §8] for more details; a concrete
method to select Séta-friendly primes is described in Sect. 6.2.

266 L. De Feo et al.

Algorithm 4 Computing a (D,N)-trapdoor curve from a (DsD,N)-trapdoor
curve where Ds ≈ 22λ is a smooth integer
Require: a (DsD,N)-trapdoor curve (EjT , T) where T = (θ(PjT), θ(QjT), d, e).
Ensure: a (D,N)-trapdoor curve (Es, T

′).
1: Sample a uniformly random isogeny φs : Eθ,j → Es of degree Ds .
2: Compute T ′ = (θ′(Ps), θ′(Qs), d, e) where θ′ = φs ◦ θ ◦ φ̂s and {Ps, Qs} is a

canonical basis of Es[N]..
3: return (Es, T

′)

4.4 Alternative Key Generation

We describe an alternative method for computing trapdoor curves and suggest a
variant of the key generation algorithm for Séta. The main idea is to perform a
random secret walk from a publicly available trapdoor curve. The method relies
on the following proposition.

Proposition 4.4. Let p be a prime, let Ds, D and N be three smooth integers.
Let (EjT , T) where T = (θ(PjT), θ(QjT), d, e) be a (DsD,N)-trapdoor curve. Let
φs : EjT → Es be an isogeny of degree Ds. Set T ′ = (θ′(Ps), θ′(Qs), d, e) where
θ′ = φs ◦ θ ◦ φ̂s and {Ps, Qs} is a canonical basis of Es[N]. Then (Es, T

′) is a
(D,N)-trapdoor curve.

Proof. Since we know the action of θ on the torsion group EjT [N] and φs, then
we can efficiently evaluate θ′ = φs◦θ◦φ̂s on Es[N]. Since (EjT , T) is a (DsD,N)-
trapdoor curve, then Tr(θ) = 0 and θ̂ = −θ. Hence

Tr(θ′) = φs ◦ θ ◦ φ̂s + ̂
φs ◦ θ ◦ φ̂s = φs ◦ θ ◦ φ̂s − φs ◦ θ ◦ φ̂s = 0.

It follows that

deg([D]θ′ + [d]) = D2 deg(θ′) + d2 = D2D2
s deg(θ) + d2 = N2e.

By Theorem 2.10, (Es, T
′) is a (D,N)-trapdoor curve. ��

Relying on Proposition 4.4, Algorithm 4 computes (D,N)-trapdoor curves when
given a (DsD,N)-trapdoor curve.

Lemma 4.5. Algorithm 4 is correct and runs in polynomial time.

Proof. The correctness of Algorithm 4 follows from Proposition 4.4. Step 1 of
Algorithm 4 consists of a degree Ds isogeny computation. Since Ds is smooth,
then Step 1 runs in polynomial time. Step 2 consists of an evaluation of φs◦θ◦φ̂s

on Ps and Qs. One evaluate φ̂s(Ps) and express it as a linear combination of PjT

and Qj to recover θ
(
φ̂s(Ps)

)
, then on evaluates φs

(
θ
(
φ̂s(Ps)

))
. Similarly, one

evaluates φs

(
θ
(
φ̂s(Qs)

))
. All these steps run in polynomial time since Ds and

N are smooth integers.

A variant of the Séta setup and key generation is described as follows.

Séta: Supersingular Encryption from Torsion Attacks 267

Parameters. Let λ denote the security parameter. Let p be a prime such that
p2 −1 = DsDNf where Ds, D, N are smooth integers and f is a small co-factor
such that 22λ < D ≈ Ds, D2

sD2 < N . Compute a (DsD,N)-trapdoor curve
(EjT , T) using Algorithm 3. We let params = (λ, p,Ds,D,N,EjT , T).

Key generation. The KGen(params) algorithm proceeds as follows:

1. Compute a random (D,N)-trapdoor curve (Es, T
′) using Algorithm 4 with

(EjT , T) as input.
2. Set pk := (js) and sk := T ′.
3. Return (pk, sk).

The advantage of this variant is the fact the key generation algorithm does not
use Algorithm 3, hence most of the requirements on p enumerated in Sect. 4.3 can
be relaxed. This implies having more freedom in the choice of D and N , for which
we could opt for powers of very small primes. Mostly, less good SQISign primes
would be admissible for this variant, which is not the case in the original Séta
described in Sect. 3.4, since its key generation uses Algorithm 3 which requires
good Séta primes in order to be practically efficient. This variant is hence a
good alternative to the Séta key generation, given the fruitless search of good
cryptographic size SQI-Sign primes.

On the other hand, using less good SQISign primes implies that generating
the (DsD,N)-trapdoor curve (EjT , T) in the parameters generation is less effi-
cient. But since this parameter generation is run once and for all, then this does
not constitute a considerable drawback.

The main drawback of this key generation method is the considerably large
size of the base prime p. In fact, p needs to satisfy p2 − 1 = DsDNf where
f is a small co-factor, and Ds ≈ D ≈ 22λ such that attacking the isogeny
φs : EjT → Es or φm : Es → Em are equivalent with respect to the meet in
the middle attack. Considering the fact that N > (DsD)2, then N > 28λ and
212λ < DsDN ≤ p2−1, as opposed to 26λ < ND < p2−1 in Séta (see Sect. 4.3).
It follows that the bit size of p2 −1 practically doubles when we use Algorithm 4
for key generation.

5 “Uber” Isogeny Assumption

In this section, we introduce a generic framework, which we label Uber Isogeny
assumption in analogy to [7], aiming at generalizing isogeny computation
problems encountered in the main families of isogeny-based schemes such as
SIDH [23], CSIDH [9], OSIDH [12] and Séta (presented in this work).

The uber isogeny problem does not directly underlie the security of these
various schemes (in the sense that no formal reduction is yet known). However,
for each of these protocols there exists a set of parameters for which if one can
solve the uber isogeny problem, then one can break the scheme. At a higher-level,
our new problem can be seen as a generic key recovery problem.

By introducing this new assumption our goal is twofold. First, we highlight
the proximity between the various isogeny schemes and we provide a common

268 L. De Feo et al.

target for cryptanalysis. Second, the generic attack that we describe in Sect. 5.3
gives a lower-bound on the security of any future scheme whose security may be
related to our uber assumption in a similar manner as SIDH, CSIDH, OSIDH
and Séta.

5.1 The New Generic Problem

The principal mathematical structure behind the uber isogeny problem is the
group action at the heart of the CSIDH protocol and all the following works. In
the isogeny setting, these group actions emerge through class groups of quadratic
orders. The main definitions and properties were introduced in Sect. 2.2.

Problem 5.1 (O-Uber Isogeny Problem (O − UIP)). Let p > 3 be a prime
and let O be a quadratic order of discriminant Δ. Given E0, Es ∈ EO and an
explicit embedding of O into End(E0) (i.e. the knowledge of α0 ∈ End(E0) such
that Z[α0] ∼= O), find a powersmooth ideal a of norm coprime with Δ such that
[a] ∈ Cl(O) is such that Es

∼= a ∗ E0.

Remark 5.2. In Problem 5.1, the powersmoothness condition on the norm is to
ensure that the resulting isogeny can always be computed in polynomial time.
In some special cases where the form of the prime p enables to compute some
smooth isogenies in polynomial time, this condition might be relaxed a little bit.

5.2 Relation with Various Isogeny-Based Constructions

We start with the link with CSIDH [9] which is quite obvious. We state the
CSIDH key recovery problem below [9, Problem 10].

Problem 5.3. Given two supersingular elliptic curves E, E0 defined over Fp with
the same Fp-rational endomorphism ring O, find an ideal a of O such that
[a] � E = E0 . This ideal must be represented in such a way that the action of
a on any curve can be evaluated efficiently, for instance a could be given as a
product of ideals of small norm.

Proposition 5.4. When p = 3 mod 4 and Δ = −4p, Problem 5.1 is equivalent
to the CSIDH key recovery Problem 5.3.

Proof. In the case of CSIDH, the curves admitting an embedding of Z[
√−p] ∼=

Z[π] in their endomorphism rings are the curves defined over Fp (i.e. left stable by
π the Frobenius morphism). Then, it is quite clear that Problem 5.1 is equivalent
to Problem 5.3.

The OSIDH protocol [12] is a generalization of CSIDH where Z[π] is replaced
by a larger class of quadratic orders. The link between OSIDH and Problem 5.1
is also straightforward. Let us fix some notations3 for this protocol and briefly
3 These notations do not exactly agree with the ones introduced in [12] because we

want to hightlight the link with our O-IOP.

Séta: Supersingular Encryption from Torsion Attacks 269

recall the principle. The OSIDH key exchange protocol starts from a descending
chain of �-isogenies of size n that we write ϕ0 : F0 → E0 where F0 admits a
O0-orientation (i.e. an embedding of O0 inside End(E0). From there, ϕ0 induces
an O-orientation on E0. The secret keys of Alice and Bob are O-ideals a, b whose
action on E0 will lead to curves EA = a∗E0 and EB = b∗E0. These curves have
also a O-orientation which implies the existence of �n-isogenies ϕA : F0 → EA

and ϕB : F0 → EB as in Proposition 2.2. Alice public key will be EA together
with some torsion points (which will allow Bob to compute b � EA).

Proposition 5.5. When O0 is a quadratic order of class number 1 and O =
Z+�nO0, then if there exists a PPT algorithm that can break Problem 5.1, there
is a PPT algorithm that can recover the keys of the OSIDH protocol presented
in [12].

Proof. From the definition of the group action of Cl(O) on the curves having
an O-orientation (see [12]), finding a smooth ideal c such that EA = c ∗ E0 is
enough to recover the secret key.

Note that we do not have equivalence in Proposition 5.5 because the OSIDH
public keys include more information than just curves. This will be the same for
SIDH and Proposition 5.7.

For SIDH, we write4 F0 for the common starting curve. In SIDH, recovering
the secret key from the public key is equivalent to the computational supersin-
gular isogeny problem (CSSI), see [23] that we state in Problem 5.6.

Problem 5.6. Let �A be a small prime number and A = �eA

A for some exponent
eA. Let ϕA : F0 → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉, where
mA and nA are chosen at random from Z/AZ (where at least one is in Z/AZ

×.
Given EA and the values ϕA(PB), ϕA(QB) for P,B,QB a basis of F0[B] find a
generator RA of ker ϕA.

The proposition below requires a bit more work as the link between SIDH
and group actions is less obvious.

Proposition 5.7. Assume that F0 admits an O0-orientation with O0 a maxi-
mal quadratic order of class number 1. If there exists a PPT algorithm solving
Problem 5.1 for O = Z + A′O0 where A′ divides A, then there exists a PPT
algorithm that breaks the CSSI problem with overwhelming probability.

Proof. First, note that A is chosen so that the kernel points of A-isogenies have
a polynomial-size representation. Then, since A is also smooth, the discrete loga-
rithms can be solved in polynomial time in the A-torsion and isogenies of degree
A can be computed in polynomial time.

For the rest of this proof, let us write α the endomorphism of F0 such that
Z[α] realizes the embedding of O0 inside End(F0).

4 Once again, we highlight that these notations are unusual and were chosen to empha-
size the link with Problem 5.1.

270 L. De Feo et al.

If the curve EA is A-isogenous to F0, then EA admits an embedding of
Z + AO0. This embedding is not necessarily primitive but we know there exists
A′ dividing A such that O = Z+A′O0 admits a primitive embedding in End(EA)
(see Proposition 2.2). Conversely, since the class number of O0 is 1, then any
Z + A′O0-orientation on EA implies the existence of an A′-isogeny between EA

and F0. Let us write ϕA′ : F0 → EA this isogeny of degree A′. Then ϕA, the
secret isogeny in Problem 5.6 is the composition of ϕA with an endomorphism
θA of O0 of degree A/A′. Since A/A′ is a power of �A, there are two possibilities
for θA. Thus, the difficulty lies in recovering ϕA′ .

We can generate a curve E0 in EZ+A′O0 by generating ϕ0 : F0 → E0 a
descending isogeny of degree A′. Any ideal a such that EA = a ∗ E0 can be
interpreted as an isogeny ϕa : E0 → EA of degree n(a). The proof is concluded
by the fact that ker ϕ̂A′ = ϕa(ker ϕ̂0), which we prove below. Once ker ϕ̂A′ has
been computed, is easy to recover ker ϕA′ = ϕ̂A′(EA[A′]) and find a solution to
the CSSI as we explained above.

To prove ker ϕ̂A′ = ϕa(ker ϕ̂0), we need to understand how the fact that a is
an O-ideal translates on the action of ϕa on ϕ̂0. As explained in Proposition 2.2
and the following paragraph, the embedding of O in E0 (resp. EA) is obtained
as Z[ϕ0 ◦ α ◦ ϕ̂0] = Z[θ0] (resp. Z[ϕA′ ◦ α ◦ ϕ̂A′] = Z[θA′]). By definition of a
being an O-ideal, we have that ϕa(ker θ0) = ker θA. Thus, we need to prove
that ker θ0 ∩ E0[A′] = ker ϕ̂0 and ker θA′ ∩ EA[A′] = ker ϕ̂A (note that this
property is exactly what underlies the inversion mechanism in Sect. 3.3). We
will do it for θ0, the property for θA′ holds for the exact same reasons. It is clear
from the definition of θ0 = ϕ0 ◦ α ◦ ϕ̂0 that we have ker ϕ̂0 ⊂ ker θ0. Let us take
P ∈ EA[A′]�ker ϕ̂0, then Q = ϕ̂0(P) ∈ ker ϕ0�〈0〉. If we assume that P ∈ ker θ0,
it implies that α(Q) ∈ ker ϕ0. Since ker ϕ0 is cyclic, we have that α(Q) = λQ
for some λ ∈ Z. This contradicts the fact that ϕ0 is descending. Indeed, if we
write ϕQ, the isogeny of kernel generated by Q, we have ϕ0 = ψ0 ◦ ϕQ for some
isogeny ϕQ and the condition α(Q) = λQ implies that ϕQ is not descending and
so ϕ0 would not be descending, which is a contradiction. Thus, we have proven
that ker θ0 ∩ E0[A′] = ker ϕ̂0 and this concludes the proof asexplained above.

We refer to Sect. 3 for the full details and notations about Séta. We write O ∼=
Z[

√
(N2e − d2)/D2] ∼= Z[θ] and assume that e, d,O are public. This assumption

is plausible as the procedure described in Algorithm 2 is essentially deterministic.

Proposition 5.8. If there exists a PPT algorithm solving Problem 5.1 for O,
then there exists a PPT algorithm that takes a Séta public key Es and recovers
a trapdoor T such that EjT , T is a (D,N)-trapdoor curve.

Proof. Let EjT be a Séta public key. By applying Algorithm 3 in O and adding
the integers e, d a (D,N)-trapdoor curve E0, T0 can be found in polynomial time
with E0 ∈ EO. Thus, we can apply the PPT solver for Problem 5.1 on E0 and EjT

to compute an isogeny ϕa : E0 → EjT corresponding to a O ideal a. If we write
θ0 ∈ End(E0) and θ ∈ End(EjT) the endomorphisms such that O ∼= Z[θ0] ∼=
Z[θ]. Then, by definition of O-ideals, we have that θ ◦ ϕa = ϕa◦. So if T0 =

Séta: Supersingular Encryption from Torsion Attacks 271

e, d, P0, Q0, θ0(P0), θ0(Q0), then T = e, dϕa(P0), ϕa(Q0), ϕa(θ0(P0)), ϕa(θ0(Q0))
is such that EjT , T is a (D,N)-trapdoor curve.

We finish this section by proving that some instances of Problem 5.1 are
related to the more generic isogeny problem of finding a smooth isogeny between
any two supersingular curves (Problem 5.9 below). For that it suffices to show
that there exists some quadratic order that is embedded inside the endomor-
phism ring of any supersingular curve.

Problem 5.9. Let p > 3, be a prime number. Given E1,E2 two distinct supersin-
gular curves over Fp2 . Find ϕ : E1 → E2, an isogeny of powersmooth degree.

Proposition 5.10. There is an absolute constant c > 0 such that the following
holds. Let O be a quadratic order of conductor �e inside O0 a maximal quadratic
order, such that � is inert in O0, and e ≥ c log�(p). If there exists a PPT algo-
rithm that can break Problem 5.1, then there is a PPT algorithm that breaks
Problem 5.9.

Proof. From the fact that the �-isogeny graph is Ramanujan, and the rapid
mixing of non-backtracking random walks in expander graphs [1], we deduce that
for e = Ω(log�(p)), there exists a non-backtracking path of degree �e between
any two supersingular curves in the graph.

In particular, if E0 is any O0-orientable curve, there exists a cyclic isogeny of
degree �e from E0 to any other E, and since � is inert in O0, this isogeny must
be a sequence of descending isogenies. This implies that any E is O-orientable.
Thus, if we write E1 and E2, the two curves in the generic isogeny problem,
then we can construct a middle curve E0 with an explicit embedding of O, then
use the PPT algorithm to find paths between E0, E1 and E0, E2, and finally
concatenate the two paths to obtain a path between E1 and E2 of powersmooth
degree.

5.3 Analysis of the Uber Isogeny Assumption

In this section we investigate the complexity of solving Problem 5.1. We are
going to see that there are various special cases leading to various complexities.

We start by giving a generic estimate which can be seen as the worst case
complexity.

A first upper bound: exhaustive search. The simplest method to solve
Problem 5.1 is to apply an exhaustive search, for instance by selecting a set of
small primes �i all split in O and trying all combinations of

∏
lei
i �E0 until one is

isomorphic to Es, where each li is a prime ideal above �i. The expected running
time of this algorithm is in O(#EO). The best generic bound on the size of this
set is given in Proposition 2.1.

The classical estimate h(O) = Θ(
√

Δ) gives a first upper-bound on the com-
plexity to solve Problem 5.1. In particular, it shows that solving Problem 5.1 is

272 L. De Feo et al.

easy when the discriminant Δ is small. However, when Δ grows, it is harder to
estimate how this bound reflects on the actual complexity of the problem.

There are some special cases for which we can be a bit more precise than
Proposition 2.1. For instance, when the discriminant are short, the following
Theorem from Kaneko [25] can be applied to derive a precise statement.

Theorem 5.11. Take two distinct quadratic orders O1,O2 of discriminants
Δ1,Δ2 embedded optimally in the same maximal order inside the quaternion
algebra ramified exactly at p and ∞. If we have Q(

√
Δ1) ∼= Q(

√
Δ2), then

Δ1Δ2 ≥ p2.

Applying Theorem 5.11 to the discriminants Δ ≤ p, we see that there cannot be
two distinct embeddings of O inside the same maximal order, thus proving that
#EO = h(O). Thus, in that case, we know that the exhaustive search method
described above has asymptotic complexity Θ(

√
Δ).

Another example is given in the proof of Proposition 5.10, where we saw
that there are some values of Δ for which we know that EO is exactly the set of
supersingular curves. More generally, the link between the conductor of O and
isogenies (Proposition 2.2) allows us to obtain some better estimates on the size
of EO by using the expander properties of isogeny graphs.

The case of CSIDH. (Proposition 5.4) has received a lot of attention from the
community ([6,9,11,32] since it was the first scheme that naturally fits into this
framework. In fact, there are improvements over the exhaustive search strategy
in both the classical and quantum settings. The main ingredient behind these
speed-ups is the ability for anyone to obtain a concrete embedding (through the
Frobenius morphism) of O = Z[

√−p] inside End(E) for any E ∈ EO. In particu-
lar, computing a � E becomes easy for any E ∈ EO when a has smooth norm. In
the classical setting, this implies a quadratic speed-up over the generic exhaus-
tive search by using a meet-in-the-middle technique (see [9]). In the quantum
setting, the speed-up is even more radical, as it creates a malleability oracle (see
[28]) that reduces CSIDH’s security to an instance of the hidden shift problem
which can be solved in quantum sub-exponential time as described in [6,32] for
instance.

Note that neither of these attacks can be used in the generic case as it seems
hard to obtain this malleability oracle for other group actions. For instance, in
OSIDH [12] the public keys are made of a curve E and some torsion points to
make possible the computation of a�E for some secret ideal a. These additional
torsion points are not needed in CSIDH because they can be easily computed.

Smooth conductor inside a maximal quadratic order. A better algorithm
also exists when the conductor f of O is smooth. By Proposition 2.2, there exists
an isogeny of degree f between any curve E ∈ EO and any curve in EO0 , where
O0 is the quadratic maximal order containing O. Let E0, Es given by in an
instance of Problem 5.1, and let us write ϕ0 : F0 → E0 and ϕs : Fs → Es the
two isogenies of degree f .

Séta: Supersingular Encryption from Torsion Attacks 273

The alternative resolution method enumerates through all possible Fs =
a0 � F0 in EO0 then tries to find ϕs of degree f . Since f is smooth, we can apply
a meet-in-the-middle technique to reduce this part to O(

√
f). Once ϕs : Fs → Es

and a O0-ideal a0 such that Fs = a0 � F0 has been found, we can compute a
O-ideal such that Es = a � E0 as described in [12, Section 5.1].

If we write Δ = f2Δ0 where Δ0 is the fundamental discriminant of O0.
The complexity of this algorithm is Θ(

√
f
√

Δ0) which is better than Θ(
√

Δ) =
Θ(f

√
Δ0).

Other cases. When we are not in one of the above cases, there is no known
improvement over the exhaustive search (classically or quantumly). Thus, the
presumed security entirely relies on the size of EO. In that regard, the cases
where the conductor of O is big might give more confidence in the difficulty of
Problem 5.1 as the size of EO is tied to the number of isogenies of a given degree
between distinct pair of curves. In comparison, the distribution of embeddings
of a maximal quadratic order of big discriminant (i.e. above the bound in The-
orem 5.11) have been less studied. As of yet, there are no reason to believe that
there exists such quadratic orders that would be embedded in only a small por-
tion of all the supersingular curves but not enough work has been done on the
question to reach a definitive conclusion.

6 Implementation

We implemented the version of Séta where the starting curve (EjT , T) is a
(D,N)-trapdoor curve, i.e., the secret key does not contain a random walk,
as described in Sect. 4.2. Our implementation is written in pure C, reusing large
parts of the codebase of SQISign5; in particular we depend on GMP 6.2.1 for
integer arithmetic, Pari 2.13 for quaternion arithmetic [39], and we adapt the so
called velusqrt code for isogeny evaluation [4]6. Our code is avaible at https://
github.com/seta-isogeny-encryption/seta.

6.1 Main Building Blocks

Key generation consists of two parts. Finding a suitable θ in its quaternion
form and then finding a supersingular elliptic curve whose endomorphism ring
contains θ. The difficult part of this procedure in practice is a subroutine for
finding a supersingular elliptic curve whose endomorphism ring is isomorphic to
a particular maximal order O. For this step we reused a substantial amount of
the code used for SQISign [16].

Encryption consists in the evaluation of an isogeny of degree D at points of
order N . In order to make this efficient we choose parameters where D has small
prime factors and both D and N divide p2 − 1 to avoid using extension fields.

5 https://github.com/SQISign/sqisign.
6 https://velusqrt.isogeny.org/software.html.

https://github.com/seta-isogeny-encryption/seta
https://github.com/seta-isogeny-encryption/seta
https://github.com/SQISign/sqisign
https://velusqrt.isogeny.org/software.html

274 L. De Feo et al.

Decryption also uses evaluations of isogenies, but here isogenies of degree N
are evaluated. Furthermore, decryption requires some linear algebra modulo D
(when computing the intersection ker(τ − [d]) ∩ Em[D]) and modulo N (when
computing the isogenies ψ and ψ′). In these steps one uses subroutines for solving
discrete logarithms but due to N and D being smooth, this step is negligible
compared to other computations.

6.2 Prime Search

To efficiently implement Séta, it is necessary to select a prime satisfying the
many constraints mentioned in Sect. 4.3. To maximise efficiency of encryption
and decryption, while maintaining reasonably efficient key generation, we opted
to search for a prime satisfying the following constraints: (1) p2 − 1 = DN , with
both D and N smooth; (2) D ≈ 22λ and N ≈ 24λ; and (3) D has as few prime
factors as possible.

There are currently three known techniques to search for primes such that
p2 − 1 is smooth, all discussed in [14]. Of these, the most apt to satisfy the
constraint that D has few prime factors was introduced by Costello in [13]: fix
an exponent n > 1, and sieve the space of integers p = 2xn −1 until one is found
such that both p + 1 = 2xn and p − 1 = 2(xn − 1) are smooth.

Thanks to this technique, D can be taken as a factor of p + 1, and has thus
much fewer prime factors than a generic smooth prime of the same size. The
drawback of the technique is that, as n increases, the search space decreases, to
the point where no smooth integers may be found.

Concretely, for λ = 128, we fixed n = 12 and we sieved within the
space 232 < x < 233, i.e., 2385 < p < 2397. This yielded four primes with
largest factor bounded by 225, and three with bound 226, corresponding to
x = 4679747572, 4845958752, 4966654633, 5114946480, 6334792777, 8176556533,
8426067021. Unfortunately, the search space was fully explored, meaning that
no better primes exist for n = 12.

The relatively large smoothness bounds negatively affect performance of all
algorithms in Séta. Unfortunately, it appears to be difficult to find better primes
given current knowledge. Even dropping the constraint on the number of prime
factors of D, the best algorithms known today can hardly beat a 220 smoothness
bound for a prime of 384 bits [14, Table 3].

6.3 Experimental Results

We ran experiments on a 4.00 GHz Quad-Core Intel Core i7, using a single core.
We used the prime p = 2 · 842606702112 − 1, and the smooth factors

D =4312 · 8471911,

N =321 · 5 · 7 · 13 · 17 · 19 · 23 · 73 · 25712 · 313 · 1009 · 2857 · 3733 · 5519 · 6961
· 53113 · 499957 · 763369 · 2101657 · 2616791 · 7045009 · 11959093
· 17499277 · 20157451 · 33475999 · 39617833 · 45932333.

Séta: Supersingular Encryption from Torsion Attacks 275

The key generation was ran only once, and took 10.43 h. The encryption pro-
cedure took 4.63 s, and the decryption took 10.66 min, averaged over six runs.
The decryption time is almost entirely devoted to the evaluation of isogenies of
degrees the largest factors of N .

7 Further Work and Conclusion

The efficiency of the scheme essentially depends on the prime factorization of
D. We have managed to keep all computations within Fp2 but D still has large
prime factors. In principle, one can construct trapdoor curves whenever N > D2

so in particular when ND divides p − 1 and N = 2k,D = 3l. The bottleneck
here is the generation of the trapdoor curve which is rather inefficient, despite its
polynomial complexity. Note that generating the curve does not affect the speed
of encryption and decryption, it only affects the speed of key generation. Thus if
one devised a more efficient version of the KLPT algorithm which speeds up the
maximal order to elliptic curve mapping algorithm, then one could derive a much
more efficient scheme. We estimate that in the best case, one could get a scheme
which is only 5 times slower than SIDH. Another interesting research direction
is whether one could build upon our Séta scheme and derive more advanced
primitives. The framework of Séta has certain advantages in this context when
compared to SIDH. First, Séta is based on a trapdoor one-way function which
could be useful in building signature schemes. Second, SIDH-based constructions
are more likely to need a trusted setup to avoid backdoor curve attacks such as
the one described in [3, Section 6]. Finally, public key validation is easy in the
context of Séta which could be used to build non-interactive key exchange or
counteract fault attacks.

This work presents the OW-CPA PKE scheme Séta, built upon a generalized
version of the isogeny-based CGL hash function family. To do so, we made use
of a “torsion-point attack” against SIDH-like schemes [33] and transformed this
into a decryption mechanism which recovers a message encrypted as a secret
isogeny between a trapdoor starting curve and a final ciphertext curve. An IND-
CCA variant is constructed using the post-quantum OAEP transform and both
security properties are proven to reduce to the TCSSI problem, derived from the
CSSI problem introduced in [23]. We then discussed the key generation in terms
of computing trapdoor information, the corresponding curve generation, and of
the constraints that this does or does not place on the base prime of the scheme;
we also proposed an alternative method for these computations. Of independent
interest, we formalized the “uber isogeny asumption” and discussed its relation
with existing isogeny-based schemes, such as CSIDH, OSDIH and SIDH, before
analyzing its complexity. Finally, we presented implementation results for both
the search of a well-suited base prime and for key-generation, encryption and
decryption experiments.

Acknowledgments. We would like to thank the anonymous reviewers for their
remarks and suggestions. Péter Kutas and Christophe Petit’s work was supported

276 L. De Feo et al.

by EPSRC grant EP/S01361X/1. Péter Kutas was also supported by the Ministry
of Innovation and Technology and the National Research, Development and Innova-
tion Office within the Quantum Information National Laboratory of Hungary. Cyprien
Delpech de Saint Guilhem’s work was supported by ERC Advanced Grant ERC-2015-
AdG-IMPaCT, by DARPA under contract No. HR001120C0085, and by CyberSecurity
Research Flanders with reference number VR20192203.

A Post-quantum OAEP transformation

We present here the post-quantum OAEP generic transformation we used in
Sect. 3.5.

Let
f : {0, 1}λ+k1 × {0, 1}k0 → {0, 1}nc

be an invertible injective function. The function f is the public key of the scheme,
its inverse f−1 is the secret key. The scheme makes use of three hash functions

G : {0, 1}k0 → {0, 1}k−k0 ,

H : {0, 1}k−k0 → {0, 1}k0 ,

H ′ : {0, 1}k → {0, 1}k,

modelled as random oracles, where k = λ+ k0 + k1. Given those, the encryption
scheme is defined as follows:

– Enc: given a message m ∈ {0, 1}λ, choose r
$← {0, 1}k0 and set

s = m||0k1 ⊕ G(r), t = r ⊕ H(s),
c = f(s, t), d = H ′(s||t),

and output the ciphertext (c, d).
– Dec: given a ciphertext (c, d), use the secret key to compute (s, t) = f−1(c).

If d �= H ′(s||t) output ⊥. Otherwise, compute r = t⊕H(s) and m = s⊕G(r).
If the last k1 bits of m are 0, output the first n bits of m, otherwise output ⊥.

References

1. Alon, N., Benjamini, I., Lubetzky, E., Sodin, S.: Non-backtracking random walks
mix faster. Commun. Contemporary Math. 9(04), 585–603 (2007)

2. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation, Joost Renes
(2020)

3. Basso, A., Kutas, P., Merz, S.P., Petit, C., Sanso, A.: Cryptanalysis of an oblivious
PRF from supersingular isogenies. Cryptology ePrint Archive, Report 2021/706
(2021)

4. Bernstein, D.J., de Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Ser. 4(1), 39–55 (2020)

Séta: Supersingular Encryption from Torsion Attacks 277

5. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 25

6. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

7. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

8. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theor.
1(3), 269–273 (2009)

9. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

10. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

11. Chávez-Saab, J., Chi-Domınguez, J.J., Jaques, S., Rodrıguez-Henrıquez, F.: The
SQALE of CSIDH: square-root vélu quantum-resistant isogeny action with low
exponents. Technical report, Cryptology ePrint Archive, Report 2020/1520 2020.
https://eprint.iacr.org (2020)

12. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. J. Math. Cryptol.
14(1), 414–437 (2020)

13. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
Technical report, Cryptology ePrint Archive, Report 2019/1145, 2019. https://
eprint.iacr.org/2019/1145 (2019)

14. Costello, C., Meyer, M., Naehrig, M.: Sieving for twin smooth integers with solu-
tions to the Prouhet-Tarry-Escott problem. Cryptology ePrint Archive, Report
2020/1283 (2020)

15. Couveignes, J.-M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006, vol. 291 (1999)

16. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

17. de Quehen, V., et al.: Improved torsion point attacks on SIDH variants. arXiv
e-prints, page arXiv:2005.14681, May 2020

18. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

19. Fouotsa, I.B., Petit, C.: InSIDH: a Simplification of SiGamal. Cryptology ePrint
Archive, Report 2021/218 (2021). https://eprint.iacr.org/2021/218

20. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

21. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. J. Cryptol. 33(1), 130–175 (2020)

https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org
https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/1145
https://doi.org/10.1007/978-3-030-64837-4_3
http://arxiv.org/abs/2005.14681
https://doi.org/10.1007/978-3-319-78372-7_11
https://eprint.iacr.org/2021/218
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

278 L. De Feo et al.

22. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. IACR Cryptology ePrint Archive 2017, vol. 604 (2017)

23. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

24. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on grh with an appli-
cation to elliptic curve cryptography. J. Number Theor. 129(6), 1491–1504 (2009)

25. Kaneko, M.: Supersingular j-invariants as singular moduli mod p. Osaka J. Math.
26(4), 849–855 (1989)

26. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

27. Kutas, P., Martindale, C., Panny, L., Petit, C., Stange, K.E.: Weak instances
of SIDH variants under improved torsion-point attacks. IACR Cryptology ePrint
Archive 2020, vol. 633 (2020)

28. Kutas, P., Merz, S.-P., Petit, C., Weitkämper, C.: One-way functions and mal-
leability oracles: Hidden shift attacks on isogeny-based protocols. IACR Cryptology
ePrint Archive 2021, vol. 282 (2021)

29. Love, J., Boneh, D.: Supersingular curves with small noninteger endomorphisms.
Open Book Ser. 4(1), 7–22 (2020)

30. Martindale, C., Panny, L.: How to not break SIDH. Cryptology ePrint Archive,
Report 2019/558 (2019). https://eprint.iacr.org/2019/558

31. Moriya, T., Onuki, H., Takagi, T.: SiGamal: a supersingular isogeny-based PKE
and its application to a PRF. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12492, pp. 551–580. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64834-3 19

32. Peikert, C.: He gives C-Sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

33. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

34. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006, vol. 145 (2006)

35. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer Science &
Business Media (2009)

36. Simon, D.: Quadratic equations in dimensions 4, 5 and more. Preprint (2005)
37. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group

action on a set of isogenous elliptic curves. Adv. Math. Comm. 4(2), 215–235 (2010)
38. Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto and OAEP

transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192–216.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 8

39. The PARI Group, Université de Bordeaux. PARI/GP version 2.12.0 (2021).
http://pari.math.u-bordeaux.fr/

40. Voight, J.: Identifying the matrix ring: algorithms for quaternion algebras and
quadratic forms. In: Quadratic and Higher Degree Forms, pp. 255–298. Springer,
New York (2013). https://doi.org/10.1007/978-1-4614-7488-3 10

https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2019/558
https://doi.org/10.1007/978-3-030-64834-3_19
https://doi.org/10.1007/978-3-030-64834-3_19
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-662-53644-5_8
http://pari.math.u-bordeaux.fr/
https://doi.org/10.1007/978-1-4614-7488-3_10

SHealS and HealS: Isogeny-Based PKEs
from a Key Validation Method for SIDH

Tako Boris Fouotsa1(B) and Christophe Petit2,3(B)

1 Università Degli Studi Roma Tre, Rome, Italy
takoboris.fouotsa@uniroma3.it

2 Université Libre de Bruxelles, Brussels, Belgium
3 University of Birmingham’s School of Computer Science, Birmingham, UK

Abstract. In 2016, Galbraith et al. presented an adaptive attack on
the SIDH key exchange protocol. In SIKE, one applies a variant of the
Fujisaki-Okamoto transform to force Bob to reveal his encryption key to
Alice, which Alice then uses to re-encrypt Bob’s ciphertext and verify its
validity. Therefore, Bob can not reuse his encryption keys. There have
been two other proposed countermeasures enabling static-static private
keys: k-SIDH and its variant by Jao and Urbanik. These countermeasures
are relatively expensive since they consist in running multiple parallel
instances of SIDH.

In this paper, firstly, we propose a new countermeasure to the GPST
adaptive attack on SIDH. Our countermeasure does not require key dis-
closure as in SIKE, nor multiple parallel instances as in k-SIDH. We
translate our countermeasure into a key validation method for SIDH-type
schmes. Secondly, we use our key validation to design HealSIDH, an effi-
cient SIDH-type static-static key interactive exchange protocol. Thirdly,
we derive a PKE scheme SHealS using HealSIDH. SHealS uses larger
primes compared to SIKE, has larger keys and ciphertexts, but only 4
isogenies are computed in a full execution of the scheme, as opposed to 5
isogenies in SIKE. We prove that SHealS is IND-CPA secure relying on a
new assumption we introduce and we conjecture its IND-CCA security.
We suggest HealS, a variant of SHealS using a smaller prime, providing
smaller keys and ciphertexts.

As a result, HealSIDH is a practically efficient SIDH based (interac-
tive) key exchange incorporating a “direct” countermeasure to the GPST
adaptive attack.

Keywords: Post-quantum cryptography · SIDH · SIKE · Adaptive
attacks · HealSIDH · SHealS · HealS

1 Introduction

The general isogeny computational problem is the following: given two isoge-
nous elliptic curves E and E′, compute an isogeny from E to E′. This hard
problem was used by J. M. Couveignes [8], Rostovtsev and Stolbunov [27] to
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 279–307, 2021.
https://doi.org/10.1007/978-3-030-92068-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_10&domain=pdf
http://orcid.org/0000-0003-1821-8406
http://orcid.org/0000-0003-3482-6743
https://doi.org/10.1007/978-3-030-92068-5_10

280 T. B. Fouotsa and C. Petit

design a key exchange protocol using ordinary isogenies, and by Charles, Goren
and Lauter [5] to design a cryptographic hash function using supersingular isoge-
nies. The CRS (Couveignes-Rostovtsev-Stolbunov) key exchange scheme is less
practical in general and is vulnerable to a sub-exponential quantum attack [6].

In 2011, Jao and De Feo proposed SIDH [20] that uses isogenies of supersingu-
lar elliptic curves. SIDH is efficient and it is not vulnerable to the sub-exponential
quantum attack presented in [6]. Nevertheless, a recent paper by Kutas et al. [21]
proves that hidden-shift like attacks apply to variants of SIDH with consider-
ably overstretched parameters. The isogeny computational problem underlying
the security of SIDH is believed to be hard to break, even when using a quantum
computer. SIKE [19] (which is the state of art implementation of SIDH [13,20]) is
the only isogeny-based Key Encapsulation Mechanism (KEM) submitted to the
NIST post-quantum standardization process. Even though SIKE is not the most
efficient candidate among KEMs in this competition, SIKE provides the most
compact keys and ciphertexts. This has certainly contributed to its selection for
the third round of the competition as an alternate candidate [24].

Contrarily to the ordinary case where isogenies commute, supersingular iso-
genies do not commute in general. In order to solve this issue in SIDH, the images
of some well-chosen torsion points through the secret isogeny are computed and
included in the public keys.

In 2016, Galbraith et al. [17] exploited this information to develop adaptive
attacks on SIDH when one party has a static secret key. The main idea of the
attack is that Bob replaces the images of the torsion points in his public key by
malicious ones and obtains some information on Alice’s static secret when looking
at the obtained shared secret. Repeating this process a polynomial number of
times, Bob totally recovers Alice’s private key.

In SIKE, the attack is avoided by applying a variant [18] of the Fujisaki-
Okamoto transform [15]. This transform forces Bob to reveal his encryption key
to Alice. Two countermeasures enabling static-static key exchange have been
proposed: k-SIDH [1] and a variant by Jao and Urbanik [30]. These schemes
essentially consist in running k2 parallel instances of SIDH with each party
having k SIDH private keys, hence each party computes about k2 isogenies.
In [11] and in [2], it is shown that variants of the adaptive attacks still apply to
these schemes, and that the attacks are exponential in k in general. Hence one
needs a relatively large k, say k = 46 as suggested by [11], for these schemes to be
secure. For k = 46, about 462 = 2116 isogenies are computed in k-SIDH, hence
the scheme is arguably not practical. To the best of our knowledge, there exists
no practically efficient method to counter the adaptive attack on SIDH without
revealing the encryption key and using re-encryption to verify the validity of the
ciphertext.

CSIDH [4] is the perfect post-quantum alternative to the classical Diffie-
Hellman key exchange due to its analogy to the later primitive. Meanwhile, its
quantum security has been considerably degraded recently [3,7,25] and remains
to be precisely estimated. CSIDH was originally instantiated with a 512 bit
prime, but due to analysis of its actual quantum security, in [7] it is suggested to

SHealS and HealS 281

use primes of up to 4000 bits to achieve the NIST level 1 security. The increase
of the prime size impacts the efficiency of the scheme.
Contributions. The contributions of this paper are fourfold.

Firstly, we propose a new countermeasure to the GPST adaptive attack on
SIDH. The main idea is that Bob enable Alice to verify that his torsion points
were honestly generated. Consider an SIDH setting, let φA : E0 → EA and
φ′

A : EB → EBA be Alice’s secret isogenies, φB : E0 → EB and φ′
B : EA → EAB

be Bob’s secret isogenies in an SIDH instance. In Sect. 3, we prove that if Bob
publishes the action of φB on E0[�2eA

A] and that of φ′
B on EA[�2eA

A], then Alice can
exploit this information to verify Bob’s public key validity. Working with SIDH
parameters where p = �eA

A �eB

B f , the torsion points of order �2eA

A and �2eB

B would
be defined over extensions of Fp2 of degree roughly �eA

A and �eB

B respectively.
We hence increase the field characteristic to p = �2eA

A �2eB

B f − 1 (where f is a
small co-factor) such that the later torsion groups are defined over Fp2 . Also,
we set the starting curve E0 to be a random supersingular curve with unknown
endomorphism ring to avoid improved torsion points attacks. We hence obtain
an efficient key validation method which does not require key disclosure and
re-encryption, as it is the case in SIKE.

Secondly, we incorporate this key validation method into a key exchange
scheme: HealSIDH (Healed SIDH). Let p = �2eA

A �2eB

B f − 1 as required by the
countermeasure, let φA : E0 → EA, φ′

A : EB → EBA, and φB : E0 → EB ,
φ′

B : EA → EAB be Alice’s and Bob’ secret isogenies respectively. Alice reveals
the action of φA on E0[�2eB

B] and that of φ′
A on EB [�2eB

B]. Analogously, Bob
reveals the action of φB on E0[�2eA

A] and that of φ′
B on EA[�2eA

A]. Revealing the
action of φ′

A and φ′
B on torsion points implies revealing points on the shared

curve EAB = EBA. To avoid this, each party canonically generates a basis of
the corresponding subgroup and reveals the coordinates of the points in this
canonical basis. HealSIDH is an order of magnitude more efficient compared
to k-SIDH (the existing countermeasure to the adaptive attack on SIDH) since
only four isogenies are computed in HealSIDH while more than k2 (with 46 ≤
k) of them are computed in k-SIDH. The security of HealSIDH against key
recovery relies on Problem 4 which is a variant of the Supersingular Isogeny
Computational Diffie-Hellman Problem (SSICDHP), Problem 1.

Thirdly, we design a PKE scheme using HealSIDH. Our PKE scheme is
named SHealS: Static-static key Healed SIKE. The idea in SHealS is to use the
points to encrypt the plaintext, in such a way that the receiver solves a discrete
logarithm problem in a group of smooth order to recover the plaintext. A similar
idea is used in SiGamal [23] and SimS [14], but our design is different. SHealS
uses primes two times larger (in terms of bit size) compared to SIKE primes,
has larger keys and ciphertexts, but only 4 isogenies are computed and evaluated
on torsion points in a full execution (KeyGeneration + Encryption + Decryption)
of the scheme, as opposed to 5 isogenies in SIKE, among which 3 isogenies are
evaluated on torsion points while the remaining two are not. For this reason, we
believe SHealS efficiency is comparable to that of SIKE, but only an optimised
implementation of SHealS would help evaluate the exact timings and do a more

282 T. B. Fouotsa and C. Petit

precise efficiency comparison. The main advantage of SHealS over SIKE is the
reuse of encryption keys. In fact, since there is no key disclosure, the encryption
key can remain static for a given user. Moreover, this user can use this same key
as a private key in the SHealS PKE setting. We prove that SHealS is IND-CPA
secure relying on one new assumption we introduce. Despite not being able to
come up with a succinct proof of IND-CCA security, we conjecture that SHealS
is IND-CCA secure and provide arguments to support our conjecture.

Lastly, we suggest HealS, a variant of SHealS using a smaller prime, providing
the same security level, smaller keys and ciphertexts. The size of the prime used
in HealS is only 1.5 times that of the prime used in SIKE. This yields a speed-
up over SHealS, smaller keys and ciphertexts; hence reducing the efficiency and
key sizes gap between SHealS and SIKE. The drawback of HealS compared to
SHealS is that private keys can not be used as encryption keys.

As a result, beside CSIDH whose quantum security remains to be precisely
estimated, HealSIDH is a new efficient interactive post-quantum key exchange
scheme enabling static-static key setting. Moreover, we believe the fact that
there is no key disclosure in SHealS and HealS makes of them promising PKE
schemes.

Related work. While this work was under submission, an SIDH Proof of Knowl-
edge mechanism [12] was published online by De Feo et al. This mechanism
enable any party in an SIDH instance to prove that his public key was hon-
estly generated. The proof attached to the public key is obtained by performing
an SIDH-type signature on the public key to proof the knowledge of the secret
isogeny and the correctness of the torsion points. For this reason, the proof is
relatively large (O(λ2)), computing and verifying the proof are relatively time
consuming compared to our schemes. Nevertheless, their proof enables the design
of an SIDH based NIKE while our key exchange HealSIDH is interactive.
Outline. The remaining of this paper is organized as follows: in Sect. 2, we recall
some generalities about PKE schemes, elliptic curves and isogenies. We briefly
present SIDH, the improved torsion points attacks and the GPST adaptive
attack. We end Sect. 2 by describing existing countermeasures to the GPST adap-
tive attacks. Section 3 is devoted to our countermeasure. In Sect. 4 we present
HealSIDH key exchange and in Sect. 5 we construct the SHealS PKE scheme.
In Sect. 6, we provide a concrete instantiation of HealSIDH and SHealS, and
provide a high level comparison to k-SIDH and SIKE respectively. In Sect. 7, we
present HealS and in Sect. 8 we conclude the paper.

2 Preliminaries

2.1 Public Key Encryption

We recall standard security definitions related to public key encryption.

Definition 1 (PKE). A Public Key Encryption scheme Pλ is a triple of PPT
algorithms (KeyGeneration, Encryption, Decryption) that satisfy the following.

SHealS and HealS 283

1. Given a security parameter λ as input, the key generation algorithm
KeyGeneration outputs a public key pk, a private key sk and a plaintext space
M.

2. Given a plaintext μ ∈ M and a public key pk as inputs, the encryption
algorithm Encryption outputs a ciphertext c = Encryptionpk(μ).

3. Given a ciphertext c and sk as inputs, the decryption algorithm Decryption
outputs a plain text = Decryptionsk(c).

Definition 2 (Correctness). A PKE scheme Pλ is correct if for any pair of
keys (pk, sk) and for every plaintext μ ∈ M,

Decryptionsk

(
Encryptionpk(μ)

)
= μ.

Definition 3 (IND-CPA Secure). A PKE scheme Pλ is IND-CPA secure if
for every PPT adversary A,

Pr

[

b = b∗
∣
∣
∣
∣
∣
(pk, sk) ← KeyGeneration(λ), μ0, μ1 ← M,

b
$←− {0, 1}, c ← Encryptionpk(μb), b∗ ← A(pk, c)

]

=
1
2

+ negl(λ).

Definition 4 (IND-CCA secure). A PKE scheme Pλ is IND-CCA secure if
for every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk) ← KeyGeneration(λ), μ0, μ1 ← AO(·)(pk, M),

b
$←− {0, 1}, c ← Encryptionpk(μb), b

∗ ← AO(·)(pk, c)

]
=

1

2
+ negl(λ),

where O(·) is a decryption oracle that when given a ciphertext c′ �= c, outputs
Decryptionsk(c′) or ⊥ if the ciphertext c′ is invalid.

2.2 Elliptic Curves and Isogenies

An elliptic curve is a rational smooth curve of genus one with a distinguished
point at infinity. Elliptic curves can be seen as commutative groups with respect
to a group addition having the point at infinity as neutral element. When an
elliptic curve E is defined over a finite field Fq, the set of Fq-rational points
E(Fq) of E is a subgroup of E. For every integer N coprime with q, the N -
torsion subgroup E[N] of E is isomorphic to ZN ⊕ ZN .

An isogeny from E to E′ is a rational map from E to E′ which is also a
group morphism. The kernel of an isogeny is always finite and entirely defines
the isogeny up to powers of the Frobenius. Given a finite subgroup G of E, there
exists a Frobenius free isogeny of domain E having kernel G, called a separable
isogeny. Its degree is equal to the size of its kernel. The co-domain of this isogeny
is denoted by E/G. The isogeny and the co-domain E/G can be computed from
the knowledge of the kernel using Vélu’s formulas [28] whose efficiency depends
on the smoothness of the isogeny degree.

284 T. B. Fouotsa and C. Petit

An endomorphism of an elliptic curve E is an isogeny from E to E. The
group structure of E is closely related to that of its endomorphism ring. When
E is defined over a finite field, the endomorphism ring of E is either an order in
a quadratic field, in which case we say E is ordinary, or a maximal order in a
quaternion algebra in which case we say E is supersingular. The generic isogeny
problem is harder to solve for supersingular curves (for which the best attacks
are exponential) than ordinary curves (for which there exists a sub-exponential
attack [6]). SIDH is based on supersingular isogenies.

2.3 SIDH

The SIDH scheme is defined as follows.

Setup. Let p = �eA

A �eB

B − 1 be a prime such that �eA

A ≈ �eB

B ≈ √
p. Let

E0 be a supersingular curve defined over Fp2 . Set E0[�eA

A] = 〈PA, QA〉 and
E0[�eB

B] = 〈PB , QB〉. The public parameters are E0, p, �A, �B , eA, eB , PA,
QA, PB, QB .

KeyGeneration. The secret key skA of Alice is a uniformly random integer α sam-
pled from Z�

eA
A

. Compute the cyclic isogeny φA : E0 → EA = E0/ 〈PA + [α]QA〉.
The public key of Alice is the tuple pkA = (EA, φA(PB), φA(QB)). Analo-
gously, Bob’s secret key skB is a uniformly random integer β sampled from Z�

eB
B

and his public key is pkB = (EB , φB(PA), φB(QA)) where φB : E0 → EB =
E0/ 〈PB + [β]QB〉.
KeyExchange. Upon receiving (EB , Ra, Sa), Alice checks that
e(Ra, Sa) = e(PA, QA)�

eB
B , if not she aborts. She computes the isogeny φ′

A :
EB → EBA = EB/ 〈Ra + [α]Sa〉. Her shared key is j(EBA). Similarly, upon
receiving (EA, Rb, Sb), Bob checks that e(Rb, Sb) = e(PB , QB)�

eA
A , if not he

aborts. He computes the isogeny φ′
B : EA → EAB = EA/ 〈Rb + [β]Sb〉. His

shared key is j(EAB).

The correctness of the key exchange follows from the fact that
EA/ 〈φA(PB) + [β]φA(QB)〉 � E0/ 〈PA + [α]QA, PB + [β]QB〉 � EB/ 〈φB(PA) + [α]φB(QA)〉 .

The security of the SIDH key exchange protocol against shared key recov-
ery relies on Problem 1. Furthermore, Problem 2 states that it is difficult to
distinguish the shared secret from a random supersingular elliptic curve.

Problem 1 (Supersingular Isogeny Computational Diffie-Hellman). Given E0,
PA, QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in
SIDH), compute EAB .

Problem 2 (Supersingular Isogeny Decisional Diffie-Hellman). Given E0, PA,
QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in SIDH)
and a random supersingular curve E, distinguish between E = EAB and E �=
EAB .

SHealS and HealS 285

An IND-CPA secure PKE from SIDH. One canonically derives a PKE
schemes from SIDH as follows. Let H : Fp2 → {0, 1}n be a cryptographic hash
function.

KeyGeneration. Alice generates her key pair exactly as in SIDH.
Encryption. Let m be a plaintext. Bob generates a random integer β ∈ Z�

eB
B

and
executes the SIDH key exchange using Alice’s public key to obtain
c0 = (EB , φB(PA), φB(QA)) and jAB = j(EAB). The returned ciphertext is
(c0, c1 = H(jAB) ⊕ m).
Decryption. Given a ciphertext (c0, c1), Alice completes the underlying SIDH key
exchange to obtain jBA = j(EBA) and recovers the plaintext m = c1 ⊕H(jBA).

The above scheme is IND-CPA secure assuming Problem 2 is hard [13], but
it is not IND-CCA since it is vulnerable to the GPST adaptive attack [17] that
we present later in Sect. 2.5.

2.4 Passive Torsion Point Attacks on SIDH

The direct key recovery attack (attacking one party’s secret key) in SIDH trans-
lates into solving the following Supersingular Isogeny Problem.

Problem 3. Let A and B be two integers such that gcd(A,B) = 1. Let E0 be
a supersingular elliptic curve defined over Fp2 . Set E0[B] = {P,Q} and let
φ : E0 → EA be a random isogeny of degree A. Given E0, EA, P , Q, φ(P) and
φ(Q), compute φ.

The difference between Problem 3 and the general isogeny problem is the fact
that the action of φ on the group E0[B] is revealed. In 2017, Petit [26] exploited
these torsion point images to design an algorithm that solves Problem 3 for a
certain choice of unbalanced (A B) parameters when the endomorphism ring
of the starting curve E0 is public. Petit’s attack has recently been considerably
improved by de Quehen et al. [10]. We refer to [10] for more details.

To counter the attack in unbalanced SIDH instances, one sets the starting
curve E0 to be a random supersingular curve with unknown endomorphism ring.
We don’t know how to generate random supersingular elliptic curves for which
the endomorphism ring is unknown (also to the party generating the curve). This
is considered as an open problem [9]. Hence one generally relies on a trusted
party to generate a random curve which is then used as a public parameter of
the scheme. This will be the case for the schemes presented in this paper.

2.5 GPST Adaptive Attack

In SIDH [13] one does a pairing-based check on the torsion points φB(PA) and
φB(QA) returned by a potentially malicious Bob. Let E be a supersingular ellip-
tic curve, let N be an integer and let μN be the group of N -roots of unity. Let
eN : E[N] × E[N] → μN be the Weil pairing [16]. Let φ : E → E′ be an isogeny
of degree M , then for P,Q ∈ E[N],

eN (φ(P), φ(Q)) = eN (P,Q)M

286 T. B. Fouotsa and C. Petit

where the first pairing is computed on E′ and the second one on E.
In SIDH, given (EB , R, S) returned by Bob as public key, Alice checks if

e�
eA
A

(R,S) = e�
eA
A

(PA, QA)�
eB
B .

As we will see below, this verification does not assure that the points R,S were
honestly generated. More precisely, the pairing verification does not capture the
GPST adaptive attack.

The GPST Adaptive Attack. The main idea of the Galbraith et al. adaptive
attack [17] is that if Bob manipulates the torsion points φB(PA) and φB(QA)
conveniently, then he can get some information about Alice’s private key α given
that he knows if the secret curve computed by Alice is equal to EAB or not. Hence
in the attack scenario, Bob needs to have access to the later information. This
access is provided to Bob through a key exchange oracle:

O(E,R, S,E′) which returns 1 if j(E′) = j(E/ 〈R + [α]S〉) and 0 otherwise

If one supposes that �A = 2 and eA = n, then after each query, Bob recovers one
bit of

α = α0 + 21α1 + 22α2 + · · · + 2n−1αn−1.

The attack recovers the first n− 2 bits of α using n− 2 oracle queries, and it
recovers the two remaining bits by brute force. We refer to [17] for more details.

2.6 Existing Countermeasures to the GPST Adaptive Attacks

The previous section has highlighted the need for a “better” key validation
method for SIDH-type schemes. We now present SIKE and k-SIDH, that are
currently the two main countermeasures to the GPST attack on SIDH.

SIKE (Supersingular Isogeny Key Encapsulation). Our description is
more general compared to that submitted to the third round of the NIST com-
petition [19], and it does not include key compression features. In the following
scheme, G, H and F are hash functions and n is an integer, we refer to [19] for
more details.

Setup. As in SIDH.
KeyGeneration. Generate a secret key sk = α ∈ Z�

eA
A

and a public key
pk = (EA, φA(PB), φA(QB)) as in SIDH. Sample a uniformly random integer
s ∈ {0, 1}n and return (s, sk, pk).
Encapsulation. Sample a uniformly random integer m from {0, 1}n. Compute
β = G(m||pk) ∈ Z�

eB
B

and compute c0 = (EB , φB(PA), φB(QA)) and EAB as
in the SIDH, together with c1 = F (j(EAB)) ⊕ m and K = H(m||(c0, c1)) and
return ((c0, c1),K).
Decapsulation. From (c0, c1), compute EBA as in SIDH and m′ = c1⊕F (j(EBA)).

SHealS and HealS 287

Re-encrypt m′ to obtain c′
0 = (E′

B , ψB(PA), ψB(QA)). If c0 = c′
0, return

K = H(m′||(c0, c1)), else return K = H(s||(c0, c1)).

In SIKE, the adaptive attacks are not applicable since during the decapsula-
tion, Alice recomputes Bob’s encryption key β′ = G(m′||pk) ∈ Z�

eB
B

and checks if
the obtained key leads to the curve and torsion points sent by Bob, this enables
her to detect maliciously generated public keys. Therefore, the scheme requires
key disclosure to the recipient. This is a common drawback to all post-quantum
PKEs engaged in the NIST standardization process. In fact, as noticed in [1, §1],
these schemes use ephemeral keys or indirect validation techniques that would
expose one’s key in the static-static setting.

Other countermeasures to the GPST attack. As a countermeasure to the
GPST attack, Azarderakhsh et al. introduced k-SIDH [1]. In k-SIDH, Alice’s
private key is a tuple α = (α1, · · · , αk) ∈ (ZeA

�A
)k and Bob’s private key is a

tuple β = (β1, · · · , βk) ∈ (ZeB

�B
)k. Alice and Bob simultaneously run k2 SIDH

key exchange instances corresponding to the k2 couples of Alice and Bob’s SIDH
private keys (αi, βj), 1 ≤ i, j ≤ k. The shared secret is then obtained by applying
a key derivation function to the corresponding k2 SIDH shared secrets. The
scheme quickly becomes impractical as k grows.

In [30], Jao and Urbanik propose a variant of k-SIDH that they expected
to be more efficient. Their variant exploits non trivial automorphisms of the
starting curve E0 when this supersingular curve has j-invariant 0 or 1728 to
reduce the number k of SIDH instances in k-SIDH. For example, in the case
where the starting supersingular curve E0 has j-invariant 0, there exists a non
trivial automorphism η6 of E0 of order 6. Given a finite subgroup G ⊂ E0, the
curves E0/G, E0/η6(G) and E0/η2

6(G), are isomorphic but it is not the case for
the isogenies E0 → E0/G, E0 → E0/η6(G) and E0 → E0/η2

6(G). Hence when
performing a key exchange, these three isogenies will lead to three distinct SIDH
shared keys. Hence with α′ = (α1, · · · , αk′) ∈ (ZeA

�A
)k′

and β′ = (β1, · · · , βk′) ∈
(ZeB

�B
)k′

, Alice and Bob can derive 3k′2 SIDH shared secrets contrarily to k′2 for
k-SIDH.

In [11], Dobson et al. show that the GPST attack can be adapted to k-SIDH.
Nevertheless, the cost of the attack (number of queries to the key exchange
oracle) grows exponentially with k. Dobson et al.’s attack does not directly apply
to the Jao-Urbanik variant of k-SIDH. In [2], Basso et al. present an adaptation
of this attack to the Jao-Urbanik variant. Moreover, they prove that considering
their attack, for the same security level, k-SIDH is more efficient compared to
the Jao-Urbanik variant. From these two attacks, one concludes that for k-SIDH
and the Jao-Urbanik variant to be secure against adaptive attacks, one needs
k to be relatively large ([11] suggests k = 46 for about 128 bits of security),
consequently the schemes become less practical.

To sum up, as countermeasures to the GPST adaptive attack, SIKE imposes
key disclosure while k-SIDH comes with a considerable efficiency drawback. We

288 T. B. Fouotsa and C. Petit

address this in the next section by providing a new countermeasure which is
more efficient compared to k-SIDH and without key disclosure.

3 A New Countermeasure to the GPST Adaptive Attack

In this section, we describe a mechanism which enables Alice, when using a
static key, to decide on the correctness of the torsion points returned by BoB.
We translate this point correctness mechanism into a new key validation method.

3.1 Overview

In our scenario, like in SIKE, we suppose that the initiator of the communication
(Bob) has to prove the validity of his torsion points to the other party (Alice).
Let E0, PA, QA, PB, QB , EA, φA(PB), φA(PB) be the public parameters and
Alice’s public key in an SIDH instance. For simplicity, we suppose that the
degree of Alice’s isogeny is 2a and that the degree of Bob’s isogeny is 3b for
some integers a and b. In SIDH, Bob computes a cyclic isogeny φB : E0 → EB

of degree 3b together with the images φB(PA) and φB(QA) of PA and QA.
We say that the torsion points R,S ∈ EB [2a] returned by Bob are correct if
R = [λ]φB(PA) and S = [λ]φB(QA) for some λ ∈ Z/2a

Z
×. We establish a

Points Correctness Verification (PCV) mechanism for Alice to determine if the
torsion points computed by Bob are correct.

We start with an observation of Leonardi [22]: ”in an honest SIDH, φA′◦φB =
φB′ ◦ φA”. Composing by φ̂A′ on the left, we get

[2a] ◦ φB = φ̂A′ ◦ φB′ ◦ φA. (1)

Let P2, Q2 ∈ E0[22a] be points such that [2a]P2 = PA and [2a]Q2 = QA. Then
{

φA′ ◦ φB(P2) = φB′ ◦ φA(P2)
φA′ ◦ φB(Q2) = φB′ ◦ φA(Q2),

(2)

hence {
φB(PA) = φB([22]P2) = φ̂A′ ◦ φB′ ◦ φA(P2)
φB(QA) = φB([2a]Q2) = φ̂A′ ◦ φB′ ◦ φA(Q2)

(3)

Equation 3 suggests that if Alice can successfully check the equalities in Eq. 2,
then she can verify if Bob’s torsion points are correct.

The idea of the PCV mechanism is that instead of revealing the action of
φB : E0 → EB on the 2a-torsion sub-group of E0, Bob reveals the action of φB

on the 22a-torsion sub-group of E0 and the action of φ′
B : EA → EAB on the

22a-torsion sub-group of EA. In our PCV mechanism, Bob’s public key (when
honestly computed) is (EB , φB(P2), φB(Q2)). The action of φ′

B : EA → EAB on
the 22a-torsion sub-group of EA is provided by canonically generating a new 22a-
torsion basis {RA, SA} of EA and revealing Rab = φ′

B(RA) and Sab = φ′
B(SA).

At this point, Bob can be malicious in the following three ways:

SHealS and HealS 289

1. honestly compute Ra = φB(P2) and Sa = φB(Q2), and maliciously compute
Rab = φ′

B(RA) and Sab = φ′
B(SA);

2. maliciously compute Ra = φB(P2) and Sa = φB(Q2), and honestly compute
Rab = φ′

B(RA) and Sab = φ′
B(SA);

3. maliciously compute Ra = φB(P2) and Sa = φB(Q2), and maliciously com-
pute Rab = φ′

B(RA) and Sab = φ′
B(SA).

In the first two cases, we say that Bob is partially point-malicious and in the
third case we say that Bob is doubly point-malicious.

Remark 1. We use the term point-malicious to highlight the fact that we focus
only on the correctness of the torsion points outputted by BoB, not on the
validity of the Bob’s entire public key. Hence we are supposing that φB and
φ′

B are cyclic isogenies of degree 3b and only the torsion point were maliciously
evaluated.

When Bob is partially point-malicious, then either the right hand term or the
left hand term in Eq. 2 is correctly computed by Alice. Hence the partial point-
maliciousness of Bob would be detected since the other term of the equation
would be different. Concretely, we have the following theorem.

Theorem 1. Let E0, PA, QA, PB, QB, EA, φA(PB), φA(PB) be the public
parameters and Alice’s public key in an SIDH instance. Let P2, Q2 ∈ E0[22a]
such that [2a]P2 = PA and [2a]Q2 = QA. Let (EB , Ra, Sa) be Bob’s public
key. Moreover, let {RA, SA} be a canonical basis of EA[22a] and let {Rab, Sab}
be its image through φ′

B : EA → EAB outputted by Bob. Write φA(P2) =
[e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA. Let us suppose that Bob is
eventually partially point-malicious and let ψ′

A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉
be the isogeny computed by Alice.
If e22a(Ra, Sa) = e22a(P2, Q2)3

b

, [e1]Rab + [f1]Sab = ψ′
A(Ra) and [e2]Rab +

[f2]Sab = ψ′
A(Sa), then Bob’s torsion points are correct.

Proof. Noticing that [e1]Rab + [f1]Sab stands for φ′
B ◦ φA(P2) and ψ′

A(Ra) for
φ′

A ◦ φB(P2), while [e2]Rab + [f2]Sab stands for φ′
B ◦ φA(Q2) and ψ′

A(Sa) for
φ′

A ◦ φB(Q2), the theorem follows from the previous discussion. ��
Remark 2. The points φA(P2), φA(Q2) ∈ EA[22a] are secret (known only by
Alice). In fact their knowledge is equivalent to the knowledge of Alice’s secret
since [2a]P2 = PA and [2a]Q2 = QA.

For the third case where Bob is doubly point-malicious, we provide a more
involved mathematical proof in the next paragraph.

3.2 The Main Theorem

In the previous section, we make use of points of order 22a or 32b. In SIDH
parameters where p = 2a3bf − 1, these points are defined over a large extension
field of degree roughly 2a ≈ 3b. To make our key validation efficient, we use

290 T. B. Fouotsa and C. Petit

primes of the form p = 22a32bf − 1. Moreover, we evaluate isogenies of degree
2a on points of order 32b ≈ 22a. To avoid improved torsion points attacks or
any variant of it, we set the starting curve E0 to be a random supersingular
curve with unknown endomorphism ring. Figure 1 summarizes the key validation
mechanism hence obtained.

E0, P2, Q2,

PB , QB

EA, φA(PB), φA(QB)
φA(P2) = [e1]RA + [f1]SA

φA(Q2) = [e2]RA + [f2]SA

EB, Ra, Sa

EAB, Rab, Sab

EBA, ψA(Ra), ψA(Sa)

e eA
A

(Ra, Sa)
?= e eA

A
(P2, Q2)

eB
B

ψA(Ra)
?= [e1]Rab + [f1]Sab

ψA(Sa)
?= [e2]Rab + [f2]Sab

Ra = φB(P2), Sa = φB(Q2)
Rab = φB(RA), Sab = φB(SA)

Honest Bob

Key validation

Valid key Invalid key

φA

φB
φB

ψA

Yes No

Fig. 1. Key validation mechanism for SIDH-type schemes. The curve E0 is a random
supersingular elliptic curve with unknown endomorphism ring defined over Fp2 where

p = 22a32bf − 1.

We prove the following Theorem.

Theorem 2. Let p = 22a32bf − 1 and let E0 be a random supersingular elliptic
curve with unknown endomorphism ring defined over Fp2 . Let E0, PA, QA, PB,
QB, EA, φA(PB), φA(PB) be the public parameters and Alice’s public key in an
SIDH instance. Let P2, Q2 ∈ E0[22a] such that [2a]P2 = PA and [2a]Q2 = QA.
Let (EB , Ra, Sa) be Bob’s public key. Moreover, let {RA, SA} be a canonical basis
of EA[22a] and let {Rab, Sab} be its image through φ′

B : EA → EAB outputted
by Bob. Write φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA. Let
ψ′

A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉 be the second isogeny computed by Alice
during the key exchange.

If e22a(Ra, Sa) = e22a(P2, Q2)3
b

, [e1]Rab + [f1]Sab = ψ′
A(Ra) and [e2]Rab +

[f2]Sab = ψ′
A(Sa), then Bob’s torsion points are correct.

Proof. Let us suppose that Bob is possibly doubly point-malicious, say
∣
∣
∣
∣
∣
∣
∣
∣

Ra = [x]φB(P2) + [y]φB(Q2)
Sa = [z]φB(P2) + [t]φB(Q2)
Rab = [x′]φ′

B(RA) + [y′]φ′
B(SA)

Sab = [z′]φ′
B(RA) + [t′]φ′

B(SA)

for some integers x, y, z, t, x′, y′, z′ and t′ modulo 22a.

SHealS and HealS 291

Let us suppose that e22a(Ra, Sa) = e22a(P2, Q2)3
b

, [e1]Rab+[f1]Sab = φ′
A(Ra)

and [e2]Rab + [f2]Sab = φ′
A(Sa). We prove that x = t = x′ = t′ = ±1 and

y = z = y′ = z′ = 0, which implies that Bob’s torsion points are correct. Let

φ′
A : EB → EBA = EB/ 〈φB(PA) + [α]φB(QA)〉 = EB/ 〈[2a]φB(P2) + [α][2a]φB(Q2)〉

be the isogeny that ought to be computed by Alice if Bob’s torsion points were
correct and let

ψ′
A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉

be the isogeny effectively computed by Alice. We distinguish two cases.

Case 1: φ′
A �= ψA. Then EAB �= EB/ 〈[2a]Ra + [α][2a]Sa〉 with overwhelming

probability. In fact, if EAB = EB/ 〈[2a]Ra + [α][2a]Sa〉 with φ′
A �= ψA, then

φ′
A ◦ ψ̂A is an endomorphism of EAB of degree 22a ≈ √

p. Since E0 is a random
supersingular curve, then the curve EAB which is 2a2b isogenous to E0 can be
assimilated to a random supersingular curve. Hence the probability that EAB

admits an endomorphism of degree 22a ≈ √
p is negligible.

Hence Rab, Sab /∈ EB/ 〈[2a]Ra + [α][2a]Sa〉. Therefore [e1]Rab + [f1]Sab �=
ψA(Ra) and [e2]Rab +[f2]Sab �= ψA(Sa) since they are points on different curves.

Case 2: φ′
A = ψA. Then Alice computes

ψA(Ra) = φ′
A(Ra) = φ′

A([x]φB(P2) + [y]φB(Q2))
= φ′

B ◦ φA([x]P2 + [y]Q2)
= φ′

B([x]φA(P2) + [y]φA(Q2))
= φ′

B ([x]([e1]RA + [f1]SA) + [y]([e2]RA + [f2]SA))
= φ′

B ([xe1 + ye2]RA + [xf1 + yf2]SA)
= [xe1 + ye2]φ′

B(RA) + [xf1 + yf2]φ′
B(SA)

and

ψA(Sa) = φ′
A(Sa) = φ′

A([z]φB(P2) + [t]φB(Q2))
= φ′

A ◦ φB([z]P2 + [t]Q2)
= φ′

B([z]φA(P2) + [t]φA(Q2))
= φ′

B ([z]([e1]RA + [f1]SA) + [t]([e2]RA + [f2]SA))
= φ′

B ([ze1 + te2]RA + [zf1 + tf2]SA)
= [ze1 + te2]φ′

B(RA) + [zf1 + tf2]φ′
B(SA)

On the other hand, Alice computes

[e1]Rab + [f1]Sab = [x′e1 + z′f1]φ′
B(RA) + [y′e1 + t′f1]φ′

B(SA)

and
[e2]Rab + [f2]Sab = [x′e2 + z′f2]φ′

B(RA) + [y′e2 + t′f2]φ′
B(SA)

The integers x, y, z, t, x′, y′, z′ and t′ need to satisfy
{

ψA(Ra) = [e1]Rab + [f1]Sab

ψA(Sa) = [e2]Rab + [f2]Sab

292 T. B. Fouotsa and C. Petit

i.e.
{

[xe1 + ye2]φ
′
B(RA) + [xf1 + yf2]φ

′
B(SA) = [x′e1 + z′f1]φ

′
B(RA) + [y′e1 + t′f1]φ

′
B(SA)

[ze1 + te2]φ
′
B(RA) + [zf1 + tf2]φ

′
B(SA) = [x′e2 + z′f2]φ

′
B(RA) + [y′e2 + t′f2]φ

′
B(SA)

i.e. ⎧
⎪⎪⎨

⎪⎪⎩

xe1 + ye2 = x′e1 + z′f1
xf1 + yf2 = y′e1 + t′f1
ze1 + te2 = x′e2 + z′f2
zf1 + tf2 = y′e2 + t′f2

mod 22a

i.e. ⎡

⎢
⎢
⎣

e1 e2 0 0
f1 f2 0 0
0 0 e1 e2
0 0 f1 f2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
z
t

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

e1 0 f1 0
0 e1 0 f1
e2 0 f2 0
0 e2 0 f2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x′

y′

z′

t′

⎤

⎥
⎥
⎦ mod 22a (4)

From Remark 2, the knowledge of e1, e2, f1 and f2 is equivalent to the knowledge
of Alice’s private isogeny φA. Hence Bob does not have access neither to the
matrix

M1 =

⎡
⎢⎢⎣

e1 e2 0 0
f1 f2 0 0
0 0 e1 e2
0 0 f1 f2

⎤
⎥⎥⎦ ∈ M2(Z/22a

Z) nor M2 =

⎡
⎢⎢⎣

e1 0 f1 0
0 e1 0 f1
e2 0 f2 0
0 e2 0 f2

⎤
⎥⎥⎦ ∈ M2(Z/22a

Z).

The solutions of Eq. 4 that are independent of M1 and M2 satisfy

y = z = y′ = z′ = 0, x = t = x′ = t′.

Since e22a(Ra, Sa) = e22a([a]φB(P2), [a]φB(Q2)) = e22a(φB(P2), φB(Q2))a2
,

then from the pairing equation e22a(Ra, Sa) = e22a(P2, Q2)3
b

, a needs to satisfy
a2 = 1, hence a = ±1.
We finally get a = d = a′ = d′ = ±1 and b = c = b′ = c′ = 0.

��
Remark 3. A formal proof of Theorem 1 can be obtained from that of Theorem 2
by setting x = 1 = t, y = 0 = z or x′ = 1 = t′, y′ = 0 = z′ at the beginning of
the proof depending on the points on which Bob decides to be partially point-
malicious.

Remark 4. Bob can use the same key validation method to detect a malicious
Alice. We set the isogeny degrees to powers of 2 and 3 just for simplicity. The
key validation method generalises to any SIDH-like setup.

4 The HealSIDH (Healed SIDH) Key Exchange Protocol

We now propose a variant of SIDH key exchange protocol which makes use
of the GPST adaptive attack countermeasure we have just described. We first
give the general idea behind the construction, then we concretely describe the
key exchange and we finally discuss the underlying Diffie-Hellman-type hard
problems.

SHealS and HealS 293

4.1 An Overview of HealSIDH

The idea behind HealSIDH is to incorporate the key validation mechanism
described in Sect. 3 in the SIDH key exchange.

Set p = 22a32bf −1 such that 2a ≈ 3b, E0[22a] = 〈P2, Q2〉, E0[32b] = 〈P3, Q3〉,
PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3 and QB = [3b]Q3. Alice’s secret is an
integer α sampled uniformly from Z/2a

Z while Bob’s secret is an integer β sam-
pled uniformly from Z/3b

Z. Alice computes φA : E0 → EA = E0/ 〈PA + [α]QA〉
together with φA(P2), φA(Q2), φA(PB) and φA(QB). She canonically gener-
ates the basis {RA, SA} of EA[22a] and solves for e1, f1, e2 f2 such that
φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA. Her public key is
(EA, φA(PB), φA(QB)) and her secret key is (α, e1, f1, e2, f2). Bob does the same
to obtain a public key (EB , φB(PA), φB(QA)) and a secret key (β, g1, h1, g2, h2).

If Bob wishes to establish a shared secret with Alice, he retrieves Alice’s
public key (EA, Rb, Sb), computes φ′

B : EA → EAB = EA/
〈
[3b]Rb + [β][3b]Sb

〉

together with φ′
B(RA), φ′

B(SA), φ′
B(Rb) and φ′

B(Sb). The yet to be confirmed
shared secret is the j-invariant jAB of EAB . He sends (φ′

B(RA), φ′
B(SA)) to Alice.

Upon receiving (φ′
B(RA), φ′

B(SA)), Alice retrieves Bob’s public key tuple
(EB , Ra, Sa). She computes φ′

A : EB → EBA = EB/ 〈[2a]Ra + [α][2a]Sa〉
together with φ′

A(RB), φ′
A(SB), φ′

A(Ra) and φ′
A(Sa). She then computes Rba

and φ̂′
A(φ′

B(SA)).
If e22a(Ra, Sa) �= e22a(P2, Q2)3

b

or [e1]φ′
B(RA) + [f1]φ′

B(SA) �= φ′
A(Ra) or

[e2]φ′
B(RA) + [f2]φ′

B(SA) �= φ′
A(Sa), Alice aborts. Otherwise, she sends φ′

A(RB)
and φ′

A(SB) to Bob and keeps the j-invariant jBA of EBA as the shared secret.
Upon receiving φ′

A(RB) and φ′
A(SB), Bob does the key validation check. If

e32b(Rb, Sb) �= e32b(P3, Q3)2
a

or [g1]φ′
A(RB) + [h1]φ′

A(SB) �= φ′
B(Rb) or

[g2]φ′
A(RB) + [h2]φ′

A(SB) �= φ′
B(Sb), Bob aborts . If not he successfully takes

jAB as the shared secret.

Practically, if Bob reveals the points φ′
B(RA) and φ′

B(SA), or Alice reveals
φ′

A(RB) and φ′
A(SB), then an adversary can recover the curve EAB since for

P ∈ EAB , the Montgomery coefficient AEAB
of EAB satisfies

AEAB
=

y(P)2 − x(P)3 − x(P)
x(P)2

.

We avoid this by exploiting the ideas used in SIKE [19] for key compression:
represent a point P ∈ E[N] by its coordinates in a basis of E[N] which can be
canonically computed.

4.2 HealSIDH Key Exchange

Instead of revealing the points φ′
B(RA) and φ′

B(SA), Bob canonically generates
a basis {RAB , SAB} of EAB [22a] and computes e3, f3, e4, f4 ∈ Z22a such that

φ′
B(RA) = [e3]RAB + [f3]SAB and φ′

B(SA) = [e4]RAB + [f4]SAB .

294 T. B. Fouotsa and C. Petit

Similarly, Alice canonically generates a basis {RBA, SBA} of EBA[32b] and com-
putes g3, h3, g4, h4 ∈ Z32b such that

φ′
A(RB) = [g3]RBA + [h3]SBA and φ′

A(SB) = [g4]RBA + [h4]SBA.

Concretely, the HealSIDH Key Exchange is entirely described in Fig. 2.

Lemma 1. HealSIDH is correct.

Proof. Follows from the correctness of SIDH and Theorem 2. ��
Remark 5. Two parties Alice and Bob need to run the key validation only once,
during their first communication. In the subsequent communications between
the two parties there is no need to revalidate the keys.

4.3 Security of HealSIDH

We present the Computational Diffie-Hellman-type problem underlying the secu-
rity of HealSIDH. We argue that the Decisional variant of this problem is not
hard.

Problem 4 (HealSIDH-CDHP). Let p = 22a22bf−1 and E0 a supersingular curve
defined over Fp2 with unknown endomorphism ring. Let E0[22a] = 〈P2, Q2〉,
E0[32b] = 〈P3, Q3〉, PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3, QB = [3b]Q3. Let
φA : E0 → EA, φB : E0 → EB , φ′

A : EB → EBA and φ′
B : EA → EAB be secret

isogenies as described in SIDH-type schemes. Let EA[22a] = 〈RA, SA〉 , EB [32b] =
〈RB , SB〉 , EAB [22a] = 〈RAB , SAB〉 , EAB [32b] = 〈RBA, SBA〉 . Let e3, f3, e4, f4 ∈
Z22a and g3, h3, g4, h4 ∈ Z32b such that φ′

A(RB) = [g3]RBA +[h3]SBA, φ′
A(SB) =

[g4]RBA + [h4]SBA, φ′
B(RA) = [e3]RAB + [f3]SAB and φ′

B(SA) = [e4]RAB +
[f4]SAB .

Given E0, P2, Q2, P3, Q3, EA, φA(P2), φA(Q3), RA, SA, EB , φB(P2),
φB(Q2), RB, SB , e3, f3, e4, f4, g3, h3, g4, h4, compute EAB .

The main differences between Problem 4 and Problem 1 are as follows:

– the action of the secret isogeny φA (resp. φB) of degree 2a (resp. 3b) on E0[32b]
(resp. E0[22a]) is revealed;

– in addition to image points through φA as in SIDH, the coordinates of some
image points through φ′

A (resp. φ′
B) in a canonical basis are revealed.

With respect to the first point, we reveal the action of isogenies of degree
A ≈ p1/4 on a B-torsion subgroup where B ≈ p1/2. Since the endomorphism
ring of the curve E0 is unknown, then HealSIDH is protected against improved
torsion attacks [10].

With respect to the second point, the coordinates g3, h3, g4, h4 of φ′
A(RB)

and φ′
A(SB) in a canonical basis of EBA[32b], and the coordinates e3, f3, e4, f4

of φ′
B(RA) and φ′

B(SA) in a canonical basis of EBA[22a] are revealed. We don’t
see how this could affect the hardness of Problem 4.

SHealS and HealS 295

p = 22a32bf − 1,
E0[22a] = P2, Q2 , E0[32b] = P3, Q3 ,

PA = [2a]P2, QA = [2a]Q2,
PB = [3b]P3, QB = [3b]Q3

α ← Z/2a
Z,

kerφA = PA + [α]QA ,

E0
φA−−→ EA, φA(P3), φA(Q3)
EA[22a] = RA, SA

φA(P2) = [e1]RA + [f1]SA

φA(Q2) = [e2]RA + [f2]SA

β ← Z/3b
Z,

kerφB = PB + [β]QB ,

E0
φB−−→ EB , φB(P2), φB(Q2)
EB[22b] = RB , SB

φB(P3) = [g1]RB + [h1]SB

φB(Q3) = [g2]RB + [h2]SB

α ∈ Z2a , e1, f1, e2, f2 ∈ Z22a EA, Rb, Sb β ∈ Z3b , g1, h1, g2, h2 ∈ Z32bEB, Ra, Ra

EB[32b] = RB , SB

kerφA = [2a]Ra + [α][2a]Sa ,

EB
φA−−→ EBA, φA(Ra), φA(Ra)

EBA[32b] = RBA, SBA

φA(RB) = [g3]RBA + [h3]SBA

φA(SB) = [g4]RBA + [h4]SBA

EA[22a] = RA, SA

kerφB = [3b]Rb + [β][3b]Sb ,

EA
φB−−→ EAB , φB(Rb), φB(Rb)

EAB[22a] = RAB , SAB

φB(RA) = [e3]RAB + [f3]SAB

φB(SA) = [e4]RAB + [f4]SAB

EBA

φA(Ra), φA(Ra)
g3, h3,

g4, h4 ∈ Z32b

EAB

φB(Rb), φA(Rb)
e3, f3,

e4, f4 ∈ Z22a

EBA[22a] = RAB , SAB

Rab = [e3]RAB + [f3]SAB

Sab = [e4]RAB + [f4]SAB

——————–
e22a(Ra, Sa)

?= e22a(P2, Q2)3
b

φA(Ra)
?= [e1]Rab + [f1]Sab

φA(Sa)
?= [e2]Rab + [f2]Sab

EAB[32b] = RBA, SBA

Rba = [g3]RBA + [h3]SBA

Sba = [g4]RBA + [h4]SBA

——————–
e32b(Rb, Sb)

?= e32b(P3, Q3)2
a

φB(Rb)
?= [g1]Rba + [h1]Sba

φB(Sb)
?= [g2]Rba + [h2]Sba

Valid key
KA = j(EBA)

Invalid key
KA =⊥

Invalid key
KB =⊥

Valid key
KB = j(EAB)

Rb = φA(P3), Sb = φA(Q3)
Rba = φA(RB), Sba = φA(SB)

Honest Alice

Ra = φB(P2), Sa = φB(Q2)
Rab = φB(RA), Sab = φB(SA)

Honest Bob

skA pkA skBpkB

Abort

K = KA = KB

Shared key

K
ey

ge
ne

ra
ti
on

K
ey

ex
ch
an

ge

Note: the basis {RA, SA}, {RB, SB}, {RAB , SAB} and {RBA, SBA} are canonically generated.

Yes No YesNo

Fig. 2. HealSIDH interactive key exchange. E0 is a random supersingular curve.

296 T. B. Fouotsa and C. Petit

Nevertheless, revealing these coordinates implies that the decisional ver-
sion of Problem 4 is not hard. In fact, suppose that you are given a ran-
dom supersingular elliptic curve E and you wish to determine if E = EBA

or E �= EBA. Then you can generate the canonical bases E[32b] = 〈RBA, SBA〉
and E[22a] = 〈RAB , SAB〉, perform the pairing checks

e22a ([e3]RAB + [f3]SAB , [e4]RAB + [f4]SAB) ?= e22a(RA, SA)3
b

and

e32b ([g3]RBA + [h3]SBA, [g4]RBA + [h4]SBA) ?= e32b(RB , SB)2
a

.

If E = EAB , then these checks would be successful. If E �= EAB , then these
checks will fail with overwhelming probability since the points [e3]RAB+[f3]SAB ,
[e4]RAB +[f4]SAB , [g3]RBA +[h3]SBA and [g4]RBA +[h4]SBA would be random
points of E of order 22a, 22a, 32b and 32b respectively; hence likely would not
satisfy the pairing equalities.

5 SHealS: A Public Key Encryption Scheme

Even though the DDH-type problem for HealSIDH is not hard, we still use
HealSIDH to design a secure public key encryption scheme, which we call SHealS.
We first give an overview of our construction, then we fully describe and analyze
it.

5.1 An Overview of SHealS

Our aim is to derive a PKE scheme from HealSIDH.
A canonical way to design a PKE scheme from HealSIDH is to proceed as

follows. Consider the HealSIDH setting. Alice generates her key pair (skA, pkA)
where skA = (α, e1, f1, e2, f2) and pkA = (EA, Rb, Sb). In order to encrypt a
plaintext m of binary length n, Bob randomly samples β ∈ Z/3b

Z, computes
c0 = (EB , Ra, Sa, e3||f3||e4||f4) and c1 = H(jAB) ⊕ m where H : Fp2 → {0, 1}n

is a cryptographic hash function. The ciphertext is c = (c0, c1). Decryption
consists in completing the underlying HealSIDH key exchange using skA and c0.
If the key exchange is successful, recover m = c1 ⊕ H(jBA) using the shared
secret EBA, else m =⊥.

As shown in the following lemma, the resulting PKE scheme is not IND-CCA
secure.

Lemma 2. Let m ∈ {0, 1}n be a plaintext and let k ≥ 1 be an integer such that
the kth bit of m (the coefficient of 2k−1 in the 2-adic expansion of m) is 0. If
c = (c0, c1) is a ciphertext for m, then c′ = (c0, c1 ⊕ 2k−1) is a ciphertext for
m + 2k−1.

SHealS and HealS 297

Proof. Since the kth bit of m is 0, then m + 2k−1 = m ⊕ 2k−1. Hence

c1 ⊕2k−1 = m⊕H(jAB)⊕2k−1 = (m⊕2k−1)⊕H(jAB) = (m+2k−1)⊕H(jAB).

Therefore c′ = (c0, c1 ⊕ 2k−1) is a ciphertext for m + 2k−1. ��
This IND-CCA attack applies to all PKE schemes in which the ciphertext is of
the form (c0,H(s) ⊕m) where s and c0 are independent of m. We choose to use
points to encrypt the plaintext, as in SiGamal [23] and SimS [14].

5.2 SHealS Public Key Encryption Scheme

The plaintext space is changed to M = Z
×
22a , the set invertible elements in

the ring of integers modulo 22a. The ciphertext of a given plaintext m ∈ M is
c = (c0, c1) where c0 = (EB , Ra, Sa), c1 = H(jAB) ⊕ (me3||mf3||me4||mf4) and
H : Fp2 → {0, 1}8a is a cryptographic hash function.

Note that scaling e3, f3, e4 and f4 by m is equivalent to scaling the points
[e3]RAB + [f3]SAB and [e4]RAB + [f4]SAB by [m]. This enables Alice to recover
m by solving a discrete logarithm instance in a group of order 22a.

Concretely, Fig. 3 entirely describes SHealS PKE.

Lemma 3. SHealS PKE is correct.

Proof. Follows from the correctness of HealSIDH.

Remark 6. In SHealS, since there is no key disclosure, Bob can reuse his encryp-
tion key β to encrypt other plaintexts. Moreover, since the 32b torsion points are
readily available, he can use the same β as a static private key.

5.3 Security Analysis

We prove that SHealS is IND-CPA secure relying on Assumption 1. Next we
discuss the IND-CCA security of SHealS. We conjecture that SHealS is IND-
CCA secure and provide arguments to support our conjecture.

Assumption 1 Let E0, P2, Q2, PA, QA,P3, Q3, PB, QB, EA, RA, SA, φA(P3),
φA(Q3), EB, φB(P2), φB(Q2) the public parameters and keys of an HealSIDH
instance. Set EAB [22a] = 〈RAB , SAB〉 where the basis {RAB , SAB} is canonically
generated, let B0 = {φ′

B(RA), φ′
B(SA)} and let B1 = {R,S} be a uniformly

random basis of EAB [22a] such that e22a(R,S) = e22a(RA, SA)3
b

. Set φ′
B(RA) =

[e03]RAB + [f03]SAB, φ′
B(SA) = [e04]RAB + [f04]SAB, R = [e13]RAB + [f13]SAB

and S = [e14]RAB + [f14]SAB. For any PPT algorithm A,

Pr

⎡

⎣b = b∗

∣
∣
∣
∣
∣
∣

b
$←− {0, 1},

b∗ ← A
(

EA, φA(P3), φA(Q3), EB , φB(P2),
φB(Q2), EAB , eb3||fb3||eb4||fb4

)
⎤

⎦ =
1
2

+ negl(λ).

Theorem 3. If Assumption 1 holds, then SHealS is IND-CPA secure.

298 T. B. Fouotsa and C. Petit

p = 22a32bf − 1,
E0[22a] = P2, Q2 ,
E0[32b] = P3, Q3 ,

PA = [2a]P2, QA = [2a]Q2,
PB = [3b]P3, QB = [3b]Q3

α
$←− Z2a ,

kerφA = PA + [α]QA ,

E0
φA−−→ EA, φA(P3), φA(Q3)
EA[22a] = RA, SA

φA(P2) = [e1]RA + [f1]SA

φA(Q2) = [e2]RA + [f2]SA

e1, f1, e2, f2 ∈ Z22a ,
α ∈ Z2a

EA, Rb, Sb

m ∈ M, β
$←− Z3b

kerφB = PB + [β]QB ,

E0
φB−−→ EB, φB(P2), φB(Q2)
EA[22a] = RA, SA

kerφB = [3b]Rb + [β][3b]Sb ,

EA
φB−−→ EAB ,

EAB [22a] = RAB , SAB

φB(RA) = [e3]RAB + [f3]SAB

φB(SA) = [e4]RAB + [f4]SAB

c0 = (EB, Ra, Sa),
c1 = H(jAB) ⊕

(me3||mf3||me4||mf4)

c = (c0, c1)

kerφA = [2a]Ra + [α][2a]Sa ,

EB
φA−−→ EBA, φA(Ra), φA(Ra)

EBA[22a] = RAB , SAB

e3||f3||e4||f4 = H(jBA) ⊕ c1,
Rab = [e3]RAB + [f3]SAB

Sab = [e4]RAB + [f4]SAB

e22a(Ra, Sa)
?= e22a(P2, Q2)3

b

φA(Ra)
?= [e1]Rab + [f1]Sab

φA(Sa)
?= [e2]Rab + [f2]Sab

m = DLP ([e1]Rab +[f1]Sab, φA(Ra))
[m]φA(Sa)

?= [e2]Rab + [f2]Sab

return m return ⊥

Hash function:

H : Fp2 → {0, 1}8a

skA pkA

Public parameters

Key generation

Encryption

Decryption

Yes No

Fig. 3. SHealS PKE. E0 is a supersingular curve with unknown endomorphism ring.

Proof. Analogous to the proof of [14, Theorem 3]. ��
Concretely, Assumption 1 states that given EA, φA(P3), φA(Q3), EB , φB(P2),
φB(Q2), EAB , it is difficult to distinguish the images points φ′

B(RA), φ′
B(SA) of

a basis {RA, SA} of EA[22a] through φ′
B and a uniformly random basis {R,S}

of EAB [22a] such that e22a(R,S) = e22a(RA, SA)3
b

.

SHealS and HealS 299

Concerning the IND-CCA security of SHealS, one may be tempted to use a
knowledge of exponnent type as Fouotsa and Petit did to prove the IND-CCA
security of SimS [14]. But this type of assumption does not hold for SIDH type
schemes. In fact, one can not see SIDH as an analog to the classic Diffie-Hellman
as it is the case in CSIDH. In CSIDH, the secret isogeny can have any degree
in a well chosen key space. But in SIDH, the degree of the secret isogeny is
fixed. This eliminates the idea of assimilating the secret isogenies in SIDH to
“exponents”.

We have not been able to come up with a succinct proof of IND-CCA security
for SHealS, but we argue that SHealS is not vulnerable to any known attack on
SIDH type schemes since we have countered the GPST adaptive attack [17] and
possible variants of it, and the improved torsion points attacks [10,26]. Note that
we do not take side channel attacks into consideration in this analysis. We hence
state the following conjecture and leave it’s proof or its invalidation for future
work.

Conjecture 4 SHealS is IND-CCA secure.

6 Concrete Instantiations and Comparisons: HealSIDH
Vs K-SIDH; SHealS Vs SIKE

6.1 Concrete Instantiation

We performed a basic Sagemath [29] proof-of-concept implementation of our key
validation method, HealSIDH and SHealS. We use the prime p870 = 2432327410−
1 where a = 216 and b = 137 as in SIKEp434 [19, §1.6]. Hence we expect
SHealSp870 and SIKEp434 on one hand, HealSIDHp870 and k-SIDHp434 on
the other hand, to provide the same security level.

The proof-of-concept implementation of SHealS is very basic and unopti-
mized, hence it cannot serve as a reference when comparing SHealS and SIKE
in terms of efficiency. In the following paragraph, we do a high level compar-
ison between SHealS and SIKE. We argue that the efficiency of an optimized
implementation of SHealS is comparable to that of SIKE (considering instances
providing the same security level).

6.2 SHealS vs SIKE

We provide a high level comparison between SHealS and SIKE and argue that
SHealS’s efficiency is close to that of SIKE. In what follows, we suppose that
in both SIKE and SHealS, an SIDH-type public key (E,P,Q) is represented by
(xP , xQ, xP−Q) as specified in [19]. Let λ be a security parameter, and let ph

and ps respectively be the HealSIDH (or SHealS) prime and the SIKE prime
providing λ bits of security. It follows that �log ps� ≈ 4λ and �log ph� ≈ 8λ.
Design. At the design level, in SHealS, the encryption public key is validated
through a “direct” key validation mechanism while in SIKE, the validation is
done through re-encryption. For this reason, the number of isogenies computed in

300 T. B. Fouotsa and C. Petit

SIKE (KeyGeneration+Encapsulation+Decapsulation) is 5 while only 4 isogenies
are computed in SHealS (KeyGeneration+Encryption+Decryption). Nevertheless,
all the 4 isogenies in SHealS are evaluated on torsion points as well, while only 3
of the 5 isogenies in SIKE are evaluated on torsion points. In SHealS, a trusted
party is needed for the generating the starting curve E0.
Security. SHealS’s IND-CCA security is conjectured while that of SIKE is inher-
itated from a variant Fujisaki-Okamoto transform [18].
Keys Sizes. In SIKE and SHealS, the secret key is α and (α, e1, f1, e2, f2) respec-
tively. Since e1, f1, e2, f2 lie in Z/22a

Z, then their bitsize is twice that of α ∈ Z2a .
Hence the secret key of HealSIDH is 9 times larger compared to that of SIKE.
The public key in SIKE and SHealS are both of the form (xP , xQ, xP−Q). Hence
in SIKE the public key has roughly 3(2�log ps�) = 6�log ps� ≈ 24λ bits while in
SHealS it has roughly 3(2�log ph�) = 6�log ph� ≈ 48λ bits. Therefore, the size of
the public key in SHealS is roughly twice that of the public key in SIKE.
For the ciphertext, the bitsize of c0 in SHealS is twice that of c0 in SIKE, while
the bit size of c1 in ShealS is 8a = 16λ, opposed to n ∈ {128, 192, 256} in SIKE.
It follows that the size of SHealS ciphertexts is about 2.45 times that of SIKE
ciphertexts.
Efficiency. As mentioned before, only 4 isogenies are computed in SHealS while
5 isogenies are computed in SIKE. Meanwhile, the prime used in SHealS is twice
as large as SIKE prime. And, in SHealS, the isogenies φ′

A : EB → EBA and
φ′

B : EA → EAB are evaluated on two torsion points each, which is not the
case in SIKE. Without an advanced implementation of SHealS, it is difficult to
provide a precise efficiency comparison between both schemes.

We summarize the comparison in Table 1. Let λ be a desired security level.

Table 1. High level comparison between SHealSIDH and SIKE.

SIKE SHealS

Field characteristic size ≈4λ ≈8λ

Private key size ≈2λ ≈18λ

Public key size ≈24λ ≈48λ

Ciphertext size ≈26λ ≈64λ

KeyGen (isog. comp.) 1 1

Encaps/Encrypt (isog. comp.) 2 2

Decaps/Decrypt (isog. comp.) 2 1

Adaptive attacks No No (conjecture)

Key disclosure Yes No

Encryption key reuse No Yes

Key validation method used Re-encryption Key val. method in § 3

SHealS and HealS 301

6.3 HealSIDH vs K-SIDH

To the best of our knowledge, the only existing post-quantum key exchange
schemes enabling static-static key setting prior to this work1 were CSIDH [4],
k-SIDH [1] and its variant by Jao and Urbanik [30]. As highlighted in Sect. 2.6,
Basso et al. [2] showed that k-SIDH is preferable to the later variant from an
efficiency vs security point of view. We provide a high level comparison between
HealSIDH and k-SIDH since both are countermeasures to the GPST adaptive
attacks.

Design. At the design level, HealSIDH comes with an incorporated key validation
method, while k-SIDH mitigates the GPST adaptive attacks by running many
parallel SIDH intances. This implies that more than k2 isogenies are computed in
k-SIDH (full execution of the key exchange) while only 4 isogenies are computed
in HealSIDH. Nevertheless, There are two rounds in HealSIDH, as opposed to
one round in k-SIDH. Note that the starting curve in HealSIDH is generated by
a trusted party, which is not the case in k-SIDH.

Security. Security wise, HealSIDH is not vulnerable to the GPST adaptive
attacks since it incorporates a countermeasure. In k-SIDH, one does not elim-
inate the attack completely, but one increases its cost in such a way that it
becomes exponential in k.

Keys sizes. From the comparison made in Sect. 6.2, the secret key in HealSIDH
has roughly 18λ bits. In k-SIDH, the size of the secret key is k times that of a
SIKE secret key, hence 2kλ. The public keys in HealSIDH have roughly 48λ bits
while in k-SIDH they have about 24kλ bits.

Efficiency. As mentioned before, only 4 isogenies are computed in HealSIDH. In
k-SIDH, roughly 2k2 + 2k isogenies are computed. Even though the HealSIDH
prime size is twice that of the k-SIDH prime, k-SIDH is still an order of magni-
tude less efficient compared to HealSIDH because of the relatively large number
of isogenies computed.

Table 2 provides a high level comparison between HealSIDH and k-SIDH. We
refer to [1] for more details on k-SIDH.

7 HealS (Healed SIKE): Improving the Efficiency
of SHealS

From the comparison in Sect. 6.2, one concludes that the prime size, the key and
ciphertext sizes in SHealS are at least twice that in SIKE. In this section, our
aim is to improve on this prime, key and ciphertext sizes.

1 While this work was under submission, a proof of isogeny knowledge [12] was pub-
lished online. We will provide a concrete comparison with this construction in later
versions of this paper that we will make available on the IACR eprint database.

302 T. B. Fouotsa and C. Petit

Table 2. High level comparison between HealSIDH and k-SIDH (46 ≤ k).

HealSIDH k-SIDH

Field characteristic size ≈8λ ≈4λ

Private key size ≈18λ ≈2kλ

Public key size ≈48λ ≈24kλ

KeyGen 1 k

Key exchange 2 2k2

Adaptive attacks No Exp. in k

Static-static key Yes Yes

NIKE No Yes

7.1 HealS Public Key Encryption

Having a closer look at ShealS, one notices that since Bob does not run a key
validation on Alice’s public key in the PKE encryption scheme, then it is not
a requisite to have the 32b-torsion points defined over Fp2 . Hence when the
parameters are chosen for a PKE scheme purpose only, the prime p can be
relaxed to p = 22a3bf − 1 where 2a ≈ 3b and f is a small cofactor. Most of
the scheme remains unchanged. Concretely, HealS is SHealS with a prime of the
form p = 22a3bf − 1.

While the base prime change when going from SHealS to HealS comes with
considerable speed-up and considerable improvement on key and ciphertext sizes
(see Sect. 7.2), one should notice that Bob can no more use his encryption key
as secret key when receiving encrypted messages. In fact, in order to encrypt a
plaintext for Bob, one needs to compute the images of torsion points of order
32b. For HealS primes, these torsion points are defined over large extensions
since p = 22a3bf − 1. Nevertheless, Bob can reuse the same encryption key β to
encrypt other messages to other parties or the same party, only he can not use it
as decryption key. This technical difference motivated us to rename the instance
HealS instead of keeping the name SHealS. Appendix A provides more details
about the KeyGeneration, Encryption and Decryption algorithms in HealS.

7.2 Concrete Instantiation and Comparison with SIKE

We instantiate HealS with the prime p650 = 24323137 − 1 where a = 216 and
b = 137 as in SIKEp434 [19, §1.6]. Hence HealSp650 and SIKEp434 are expected
to provide the same security level.

We summarise a high level comparison between HealS and SIKE in Table 3.
We also include SHealS in this table to highlight the advantages of HealS when
compared to SHealS.

Table 4 compares the key and ciphertext sizes of our PKE with some NIST
finalists KEMs. We notice that the key sizes in HealS are more compact compared

SHealS and HealS 303

Table 3. High level comparison between HealS, SHealS and SIKE.

SIKE SHealS HealS

Field characteristic size ≈4λ ≈8λ ≈6λ

Private key size ≈2λ ≈18λ ≈18λ

Public key size ≈24λ ≈48λ ≈36λ

Ciphertext size ≈26λ ≈64λ ≈48λ

KeyGen (isog. comp.) 1 1 1

Encaps/Encrypt (isog. comp.) 2 2 2

Decaps/Decrypt (isog. comp.) 2 1 1

Adaptive attacks No No (conj.) No (conj.)

Key disclosure Yes No No

Encryption key reuse No Yes Yes

Key validation method used Re-encryption Key val. method in Sect. 3

to these finalists. The ciphertext size in HealS is close to that of Kyber, NTRU
and Saber, while being considerably larger compared to that of Classic McEliece.

Table 4. Key and ciphertext sizes comparison between HealS and the four NIST
finalists KEMs Kyber, NTRU, Classic McEliece and Saber, for 128 bits of security
(NIST level 1).

HealS Kyber NTRU Classic McEliece Saber

sk 288 1632 935 6492 1568

pk 576 800 699 261120 672

c 768 768 699 128 736

8 Conclusion

In this paper, we introduced an efficient countermeasure to the GPST adaptive
attack which does not require key disclosure nor re-encryption. Next, we used
this countermeasure to design an efficient static-static key interactive exchange
scheme: HealSIDH. HealSIDH is not vulnerable to the GPST adaptive attacks.
We derive an IND-CPA secure PKE scheme with conjectured IND-CCA security
SHealS from HealSIDH. The full execution of SHealS contains only 4 isogeny
computations while that of SIKE contains 5 isogeny computations. For this
reason, even though SHealS uses larger parameters and has larger keys, we
expect its efficiency to be comparable to that of SIKE. In order to optimize the

304 T. B. Fouotsa and C. Petit

efficiency, keys and ciphertexts sizes, we suggest HealS, a variant of SHealS
using a smaller prime. The main difference between SHealS and HealS is that
in SHealS, a party can use his private key as encryption key when encrypting
ciphertexts for other parties.

Moreover, we provided a high level comparison between HealSIDH and k-
SIDH on one hand, and between SHealS, HealS and SIKE on the other hand.
HealSIDH is an order of magnitude more efficient compared to k-SIDH and the
keys in k-SIDH are about k times bigger compared to those of HealSIDH. The
advantages of SHealS and HealS over SIKE are

– no encryption key disclosure to the recipient during encryption;
– incorporated key validation method (no re-encryption during decryption);
– encryption key reuse.

In order to evaluate the concrete efficiency of the schemes constructed in
this paper, an advanced implementation of SHealS and HealS is needed. We
leave this task to follow-up work. We believe the design of SHealS leaves room
for considerable optimisations. These may come from the implementation, from
variants of the key validation method or from redesigning the schemes.

Furthermore, there are possibly existing isogeny-based schemes that would
benefit from our key validation method. Also the key validation may enables the
design of new isogeny-based primitives. We also leave such an investigation for
future work.

Acknowledgements. We would like to express our sincere gratitude to the anony-
mous reviewers for their helpful comments and suggestions. Christophe Petit was sup-
ported by EPSRC grant EP/S01361X/1.

A HealS PKE

The HealS Public Key Encryption scheme is detailed in Fig. 4.

SHealS and HealS 305

p = 22a3bf − 1,
E0[22a] = P2, Q2 ,
E0[3b] = PB , QB ,

PA = [2a]P2, QA = [2a]Q2

α
$←− Z2a ,

kerφA = PA + [α]QA ,

E0
φA−−→ EA, φA(PB), φA(QB)
EA[22a] = RA, SA

φA(P2) = [e1]RA + [f1]SA

φA(Q2) = [e2]RA + [f2]SA

e1, f1, e2, f2 ∈ Z22a ,
α ∈ Z2a

EA, Rb, Sb

m ∈ (Z/22a
Z)×, β

$←− Z3b

kerφB = PB + [β]QB ,

E0
φB−−→ EB, φB(P2), φB(Q2)
EA[22a] = RA, SA

kerφB = Rb + [β]Sb ,

EA
φB−−→ EAB ,

EAB [22a] = RAB , SAB

φB(RA) = [e3]RAB + [f3]SAB

φB(SA) = [e4]RAB + [f4]SAB

c0 = (EB, Ra, Sa),
c1 = H(jAB) ⊕

(me3||mf3||me4||mf4)

c = (c0, c1)

kerφA = [2a]Ra + [α][2a]Sa ,

EB
φA−−→ EBA, φA(Ra), φA(Ra)

EBA[22a] = RAB , SAB

e3||f3||e4||f4 = H(jBA) ⊕ c1,
Rab = [e3]RAB + [f3]SAB

Sab = [e4]RAB + [f4]SAB

e22a(Ra, Sa)
?= e22a(P2, Q2)3

b

φA(Ra)
?= [e1]Rab + [f1]Sab

φA(Sa)
?= [e2]Rab + [f2]Sab

m = DLP ([e1]Rab +[f1]Sab, φA(Ra))
[m]φA(Sa)

?= [e2]Rab + [f2]Sab

return m return ⊥

Hash function:

H : Fp2 → {0, 1}8a

skA pkA

Public parameters

Key generation

Encryption

Decryption

Yes No

Fig. 4. HealS PKE.

References

1. Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement
using multiple protocol instances. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 45–63. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-72565-9 3

https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3

306 T. B. Fouotsa and C. Petit

2. Basso, A., Kutas, P., Merz, S.-P., Petit, C., Weitkämper, C.: On adaptive attacks
against jao-urbanik’s isogeny-based protocol. In: Nitaj, A., Youssef, A. (eds.)
AFRICACRYPT 2020. LNCS, vol. 12174, pp. 195–213. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51938-4 10

3. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

4. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

5. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

6. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

7. Chávez-Saab, J., Chi-Domı́nguez, J.-J., Jaques, S., Rodŕıguez-Henŕıquez, F.: The
SQALE of CSIDH: Square-root vélu Quantum-resistant isogeny Action with Low
Exponents. Cryptology ePrint Archive, Report 2020/1520 (2020). https://eprint.
iacr.org/2020/1520

8. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

9. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5 10

10. de Quehen, V., et al.: Improved torsion point attacks on SIDH variants. Cryptology
ePrint Archive, Report 2020/633 (2020). https://eprint.iacr.org/2020/633

11. Dobson, S., Galbraith, S.D., LeGrow, J., Ti, Y.B., Zobernig, Z.: An adaptive attack
on 2-sidh. Int. J. Comput. Math. Comput. Syst. Theor. 5(4), 282–299 (2020)

12. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: Sidh proof of knowledge.
Cryptology ePrint Archive, Report 2021/1023 (2021). https://ia.cr/2021/1023

13. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies, pp. 209–247 (2014)

14. Fouotsa, T.B., Petit, C.: SimS: a simplification of SiGamal. In: Cheon, J.H., Tillich,
J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 277–295. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81293-5 15

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

16. Steven, D.: Galbraith. Mathematics of Public Key Cryptography, Cambridge Uni-
versity Press (2012)

17. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

18. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 12

19. Jao, D., et al.: Supersingular Isogeny Key Encapsulation, 1 October 2020. https://
sike.org/files/SIDH-spec.pdf

https://doi.org/10.1007/978-3-030-51938-4_10
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2020/1520
https://eprint.iacr.org/2020/1520
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://eprint.iacr.org/2020/633
https://ia.cr/2021/1023
https://doi.org/10.1007/978-3-030-81293-5_15
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70500-2_12
https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf

SHealS and HealS 307

20. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

21. Kutas, P., Merz, S.P., Petit, C., Weitkämper, C.: One-way functions and malleabil-
ity oracles: Hidden shift attacks on isogeny-based protocols. IACR Cryptol. ePrint
Arch., 2021:282 (2021)

22. Leonardi, C.: A note on the ending elliptic curve in sidh. Cryptology ePrint Archive,
Report 2020/262 (2020). https://eprint.iacr.org/2020/262

23. Moriya, T., Onuki, H., Takagi, T.: SiGamal: a supersingular isogeny-based PKE
and its application to a PRF. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12492, pp. 551–580. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64834-3 19

24. National Institute of Standards and Technology: Post quantum Cryptography
Standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

25. Peikert, C.: He gives c-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

26. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

27. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptol. ePrint Arch. 2006, vol. 145 (2006)

28. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer Science &
Business Media (2009)

29. The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.0) (2020). https://www.sagemath.org

30. Urbanik, D., Jao, D.: New techniques for SIDH-based NIKE. J. Math. Cryptol.
14(1), 120–128 (2020)

https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2020/262
https://doi.org/10.1007/978-3-030-64834-3_19
https://doi.org/10.1007/978-3-030-64834-3_19
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://www.sagemath.org

Advanced Encryption and Signatures

Adaptive Security via Deletion in
Attribute-Based Encryption: Solutions
from Search Assumptions in Bilinear

Groups

Rishab Goyal1(B), Jiahui Liu2(B), and Brent Waters2,3(B)

1 MIT, Cambridge, MA, USA
goyal@utexas.edu

2 University of Texas at Austin, Austin, TX, USA
{jiahui,bwaters}@cs.utexas.edu

3 NTT Research, Sunnyvale, CA, USA

Abstract. One of the primary research challenges in Attribute-Based
Encryption (ABE) is constructing and proving cryptosystems that are
adaptively secure. To date the main paradigm for achieving adaptive
security in ABE is dual system encryption. However, almost all such solu-
tions in bilinear groups rely on (variants of) either the subgroup decision
problem over composite order groups or the decision linear assumption.
Both of these assumptions are decisional rather than search assumptions
and the target of the assumption is a source or bilinear group element.
This is in contrast to earlier selectively secure ABE systems which can be
proven secure from either the decisional or search Bilinear Diffie-Hellman
assumption. In this work we make progress on closing this gap by giving
a new ABE construction for the subset functionality and prove security
under the Search Bilinear Diffie-Hellman assumption.

We first provide a framework for proving adaptive security in
Attribute-Based Encryption systems. We introduce a concept of ABE
with deletable attributes where any party can take a ciphertext encrypted
under the attribute string x ∈ {0, 1}n and modify it into a ciphertext
encrypted under any string x′ ∈ {0, 1, ⊥}n where x′ is derived by replac-
ing any bits of x with ⊥ symbols (i.e. “deleting” attributes of x). The
semantics of the system are that any private key for a circuit C can be
used to decrypt a ciphertext associated with x′ if none of the input bits
read by circuit C are ⊥ symbols and C(x′) = 1.

R. Goyal—Work done in part while at UT Austin supported by IBM PhD Fellowship,
and at the Simons Institute for the Theory of Computing supported by Simons-Berkeley
research fellowship. Research supported in part by NSF CNS Award #1718161, an
IBM-MIT grant, and by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR00112020023. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Government or DARPA.
B. Waters—Supported by NSF CNS-1908611, CNS-1414082, DARPA SafeWare,
Packard Foundation Fellowship, and Simons Investigator Award.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 311–341, 2021.
https://doi.org/10.1007/978-3-030-92068-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_11

312 R. Goyal et al.

We show a pathway for combining ABE with deletable attributes with
constrained pseudorandom functions to obtain adaptively secure ABE
building upon the recent work of Tsabary [30]. Our new ABE system
will be adaptively secure and be a ciphertext-policy ABE that supports
the same functionality as the underlying constrained PRF as long as the
PRF is “deletion conforming”. Here we also provide a simple constrained
PRF construction that gives subset functionality.

Our approach enables us to access a broader array of Attribute-Based
Encryption schemes support deletion of attributes. For example, we show
that both the Goyal et al. (GPSW) [19] and Boyen [6] ABE schemes can
trivially handle a deletion operation. And, by using a hardcore bit vari-
ant of GPSW scheme we obtain an adaptively secure ABE scheme under
the Search Bilinear Diffie-Hellman assumption in addition to pseudo ran-
dom functions in NC1. This gives the first adaptively secure ABE from a
search assumption as all prior work relied on decision assumptions over
source group elements.

1 Introduction

Attribute-Based Encryption (ABE), since its introduction by Sahai and
Waters [29], has significantly propelled the concept of secure communication.
The traditional notion of Public Key Encryption (PKE) [11,14,28] was meant
to enable a one-to-one private communication channel with a specific targeted
user over an insecure network. ABE, on the other hand, provides a more fine-
grained access control over plaintext delivery where it allows the encryptor to
specify a policy f which is attached to the ciphertext. In such systems, each user
decryption key is associated with an attribute string x such that it can recover
the encrypted message only when f(x) = 1, that is when the policy f accepts
the attribute x.1

Since its inception in 2005, the notion of Attribute-Based Encryption has
received tremendous amount of attention. Initial developments in the context of
provably secure ABE constructions as well as new proof techniques were driven
by bilinear map-based realizations. The earliest such constructions (e.g. [19,29])
were proven secure under only a relaxed notion of security called selective secu-
rity where an attacker is required to declare the descriptor f∗ that will be associ-
ated with the challenge ciphertext at the beginning of the game, i.e. even before
seeing the public parameters. This relaxation enabled the use of a so-called “par-
titioning” strategy for proving security. Intuitively, availability of the challenge
descriptor f∗ to the reduction algorithm, before it needs to sample the system
public-secret parameters, enables the reduction algorithm to shape its view of
the system parameters into a partition. Such a partitioned view of the parameters
allows the reduction algorithm to generate a secret key skx for every attribute x
as long as f∗(x) = 0 (that is, whenever f∗ rejects the attribute x), while simulta-
neously being able to translate a distinguishing attack on a challenge ciphertext
1 For readers familiar with the notions of “ciphertext-policy” ABE and “key-policy”

ABE, we will be using the ciphertext-policy vernacular in the sequel.

Adaptive Security via Deletion in Attribute-Based Encryption 313

associated with f∗ into breaking a number theoretic assumption. Unfortunately,
such a partitioning strategy does not naturally translate [25] to the case of full
or adaptive security where an attacker gets to choose the challenge function f∗

after it sees the public parameters as well as makes a polynomial number of
secret key queries. In this scenario the best known partitioning-style reductions
will simply have to guess the function f∗ to be chosen by the attacker and abort
the reduction if the guess does not align with the actual choice of the attacker.
This guessing approach incurs a security loss in the reduction proportional to
the number of functions to choose from, and thus necessitates the use of a subex-
ponentially secure variant of the underlying number theoretic assumption.

The shortcomings of the partitioning paradigm suggested the need for a
new set of proof techniques for attaining adaptive security. The most well-
known proof technique in that direction is Waters’ dual system methodology [31]
which led to the first adaptively secure ABE scheme whose security was proven
under a static assumption by Lewko et al. [22]. Their approach allowed for
adaptive security by moving beyond partitioning proofs.2 Subsequently, several
other works achieved adaptive security in ABE systems with various desider-
ata [2,23,24,26,32]. One prominent trait of all these dual system solutions is
that they almost exclusively rely on (variants of) the decision subgroup decision
assumption or the decision linear assumption. Briefly, the decision linear assump-
tion over a prime order bilinear group G states that given g, v, w, va, wb ∈ G it
is hard to distinguish between ga+b and a random group element in G. This is
a potentially stronger assumption due to the facts that (1) it is decisional and
(2) the target of the assumption ga+b is in the bilinear group.3 In contrast ear-
lier selectively secure schemes (such as [19,29]) can be proven secure under the
Search Bilinear Diffie-Hellman assumption which states that given g, ga, gb, gc it
is difficult to compute e(g, g)abc. In our work we work toward closing this gap
by constructing new ABE systems provably secure from search assumptions.

We start by building upon a recent breakthrough due to Tsabary [30] for
proving adaptively secure ABE systems from the Learning with Errors (LWE)
assumption [27]. Until this work all prior ABE systems (that go beyond Identity-
Based Encryption) from the LWE assumption (e.g. [4,6,15,16]) relied on a parti-
tioning argument and were thus selectively secure. Tsabary’s ABE construction
is for the family of subset predicates where both private keys and ciphertexts
are associated with subsets over [N] and a secret key for subset S can decrypt a
ciphertext for subset T iff S ⊆ T .4 While the subset predicate class is rather lim-
ited in comparison to the functionalities mentioned earlier, the work is remark-
able given the lack of progress towards realizing adaptive security from LWE for
2 Notably, earlier works of Gentry [12] and Gentry-Halevi [13] moved beyond parti-

tioning for IBE and Hierarchical IBE.
3 If e : G × G → GT is a bilinear map, then we refer to elements in G as being in the

source group or bilinear group.
4 Tsabary actually presents their construction as realizing t-CNF for any constant

t. However, this can be viewed as a special application of ABE for subsets. For
this reason we will interpret their construction in terms of subset semantics for the
purposes of this introduction.

314 R. Goyal et al.

so many years. (It was known [8,17] how to prove security in a slightly weaker
model where the attacker sees the public parameters, but is not allowed any pri-
vate key queries before committing to f∗; however, these works do not appear
to give any further insight into achieving full/adaptive security.)

Tsabary’s idea is to start with a selectively secure Attribute-Based Encryp-
tion scheme with certain special partial evaluation properties, and combine it
with an adaptively secure Constrained Pseudorandom Function (CPRF) [5,7,21]
that satisfies complementary “conforming” properties. Intuitively, the central
idea in the work can be interpreted as a mechanism to leverage adaptive secu-
rity of the CPRF for proving adaptive security of the resulting ABE system,
while relying on the underlying selectively secure ABE scheme mostly for the
encryption-decryption capability. Tsabary cleverly executed the above idea, and
showed that combining these primitives in the right manner the resulting ABE
system is adaptively secure, and the policy class it supports matches the con-
straint class of the underlying CPRF. For instantiating the entire framework,
Tsabary derived a simple construction for constrained PRFs for subset con-
straints with requisite conforming properties from CPRF construction by [9],
thereby giving an adaptively secure ABE scheme for subset predicates.

The framework requires the starting selectively secure ABE system to sup-
port partial ciphertext evaluation. Such a partial computation feature is not
supported in many existing ABE systems, with the Boneh et al. [4] construction
being the only known construction providing requisite capability. In particu-
lar, none of the bilinear map schemes such as [19], or the simpler (albeit less
powerful) LWE-based ABE scheme of Boyen [6] support partial evaluation.

This Work. In this work, we provide a framework to both broaden and simplify
the adaptively secure ABE transformation. At the core of our work is the obser-
vation that while [30] relies on the partial ciphertext evaluation framework of
Boneh et al. [4], there is hardly any computation performed on the ciphertext.
Concretely, the transformation the partial evaluation performed on the cipher-
text exactly corresponds to the CPRF constrain operation. Now in a CPRF
scheme for subset constraints over a universe of elements [N], the CPRF master
key msk consists of N + 1 regular PRF keys k0, k1, . . . , kN . And, to evaluate the
CPRF on a set S ⊆ [N], the evaluator computes the following:

CPRF(msk, S) = F (k0, S)
⊕

i∈S

F (ki, S).

For constraining the master key to a constraint set T ⊆ [N] such that evaluation
works on all input sets S ⊆ T , all we need to do is “delete” all the regular
PRF keys kj for which j /∈ T—thus no elaborate computation is required in
constraining the key.

Adaptive Security via Deletion in Attribute-Based Encryption 315

Our work builds around this key insight wherein we introduce the com-
plementary notions of ABE with deletable attributes and deletion conforming
CPRFs. At a high level, a key-policy ABE with deletable attributes allows
encryption to a non-binary attribute string x ∈ {0, 1,⊥}n, where ⊥ represents
a “deleted” attribute. The semantics of such an ABE scheme are that a user
decryption key for a policy circuit C can decrypt the ciphertext associated with
attribute x as long as the circuit C does not touch any of the deleted input
wires and C(x) = 1.5 Moreover, any user given just the public parameters can
take a ciphertext ct for attribute string x and produce another ciphertext ct′

encrypting the same message but for an attribute string x′, where x′ is the same
as x except it can have some further attribute bits deleted (i.e., changed to ⊥s).
Armed with these abstractions we are able to compile these into an adaptively
secure ciphertext-policy ABE scheme using a transformation that follows [30] in
spirit.

The potential benefits of our approach are twofold. First, we show that the
framework of ABE with deletable attributes encompasses a much broader range
of ABE systems. Notably, this includes the early bilinear map based GPSW
construction [19] as well as the LWE-based scheme of Boyen [6].6 As it turns out,
showing that these schemes support attribute deletion is extremely simple—e.g.,
in GPSW one just has to literally “delete” ciphertext components associated with
the corresponding attributes. Furthermore, following this paradigm leads to the
first fully secure ABE scheme from a search problem in bilinear map setting. This
is done by applying a very minor tweak to original GPSW which is to hide the
message under a hardcore bit. With this tweak, we can show that the resulting
scheme is adaptively secure under the Search Bilinear Diffie-Hellman (BDH)
assumption [3] in addition to assuming pseudorandom functions in NC1 which
is a minicrypt assumption. We also note that pseudorandom functions in NC1
are implied by the Bilinear decisional Diffie-Hellman assumption; thus we can
alternatively base our security entirely on that assumption. We emphasize that
all prior work on adaptively secure ABE from bilinear maps relied on decision
assumptions over the source group.

A second (and perhaps more nuanced) benefit of trading off partial evaluation
for deletion is in simplicity. Given that deletion is a more restricted operation
arguing security is inherently simpler when we only perform deletion on input
wires, compared to arbitrary partial circuit evaluation. We remark that there
can be a tradeoff in the direction of functionality. While our construction using
deletion matches the subset functionality given in [30], it is entirely possible that
in the future we may find a larger class of functionalities that are supported by

5 Here by not touching an input wire, we mean that the circuit must not read/depend
upon that particular input wire.

6 We recently learned of the existence of an attack [1] on Boyen’s ABE scheme. We
still include the proof that it is deletable to demonstrate wider applicability of our
framework, but do not claim extension of Boyen’s scheme as an instantiation from
LWE. To instantiate our framework under LWE, we believe that one could show
the [4] scheme to be deletable.

316 R. Goyal et al.

a partial computation framework and not by deletion. Doing so is an intriguing
open question.

1.1 Technical Overview

Following the framework developed in [30], our work provides a mechanism to
leverage adaptive security of a constrained PRF for upgrading the security of an
ABE system from selective to adaptive. Concretely, we show that starting with
a selectively secure key-policy ABE (KP-ABE) system that permits attribute
deletion, we could pair it with an adaptively secure CPRF scheme to build an
adaptively secure ciphertext-policy ABE (CP-ABE) system. Such a pairing man-
dates the CPRF scheme to satisfy certain special properties that we refer to as
deletion conforming. The transformation flips the semantics of the underlying
ABE system from key-policy to ciphertext-policy, and the constraint class asso-
ciated with the CPRF maps directly to the predicate class for the resulting
ciphertext-policy ABE system.

We now provide an overview of our framework and techniques. The overview
is broken into four parts—first, we introduce the concept of attribute deletion
for key-policy ABE systems; second, we define the complementary notion of
deletion conforming CPRFs, and describe a simple construction for the family of
subset constraints; third, we show how these aformentioned KP-ABE and CPRFs
systems (for the right functionalities) be combined to construct an adaptively
secure CP-ABE scheme; and lastly, we provide two concrete instantiations for
KP-ABE with deletable attributes from standard assumptions.

A Key-Policy ABE with Deletable Attributes. We begin by informally introduc-
ing the concept of attribute deletion with formal definitions provided in Sect. 3.
Recall that in the key-policy setting, the semantics of an ABE scheme are that
every ciphertext ctx is associated with an attribute string x ∈ {0, 1}n, while every
secret decryption key skC is associated with a policy circuit C : {0, 1}n → {0, 1}.
Here the functionality provided by the scheme is that decryption recovers
the encrypted messages whenever the policy circuit accepts the attribute (i.e.,
C(x) = 1). An ABE system with deletable attributes provides two additional
capabilities—(1) the encryption algorithm can now compute ciphertexts for non-
binary attribute strings x ∈ {0, 1,⊥}n as well, where the ‘⊥’ symbol is inter-
preted as an ‘unset ’ attribute bit, (2) given any ciphertext ctx, one can publicly
reduce it to another ciphertext ctx′ encrypting the same message with the asso-
ciated attribute string x′ so long as x′ can be obtained by having some attribute
bits of x deleted (i.e., changed from set to unset).

Formally, such schemes have a special Delete algorithm that take as input
the public parameters pp, a ciphertext ctx, and an index set I ⊆ [n] and it
outputs a modified ciphertext ct′. Here the set I denotes the indices of attribute
bits that the user wants to delete, and let Restrict(x, I) denote the string x′

that is obtained by deleting attribute bits of x that lie in set I. The correctness
requirement in presence of attribute deletion is expanded as follows: a secret
key skC can decrypt a ciphertext ctx if the circuit C does not read any of the

Adaptive Security via Deletion in Attribute-Based Encryption 317

unset input wires in attribute x, and evaluating C on x outputs 1. (For example,
consider the following circuit: C(x) = x2 ⊕ x3, where xi denotes the i-th bit of
x. For such a circuit C, we have that a corresponding secret key skC can not be
used to decrypt a ciphertext ctx whenever either x2/x3 = ⊥, or x2 ⊕ x3 �= 1.
That is, if x2 = x3 �= ⊥, then decryption succeeds irrespective of how other
attribute bits are set.)

For security, such schemes must satisfy a special deletion indistinguishability
property (in addition to the regular IND-CPA security). Briefly, deletion indis-
tinguishability states that the distributions of ciphertexts generated by either
running the encryption algorithm directly, or the encryption algorithm followed
by the deletion algorithm should be computationally indistinguishable as long
as they encrypt the same message and w.r.t. the same attribute string. That is,
we have the following:

{Delete(pp,Enc(pp, m, x), I)} ≈c

{
Enc(pp, m, x′)

}
, where x′ = Restrict(x, I).

Here the distributions must remain indistinguishable even if the distinguisher
gets the ABE master key.

Intuitively, the goal of such a deletable key-policy ABE system is to enable
arbitrary attribute deletion on ciphertexts while extending the usual policy cir-
cuit evaluation functionality over to partial/incomplete input strings. Typically,
evaluating circuits on incomplete inputs is regarded as an invalid operation, but
here our abstraction relies on the fact that as long as all the input wires actually
used by the circuit are set (i.e., are 0/1), then we could still legally evaluate the
circuit and define its output for partial inputs. As we describe later on, such a
attribute deletion framework is already powerful enough for realizing adaptive
security in ABE systems for subset predicates.

Deletion Conforming CPRFs. A regular constrained PRF (CPRF) [5,7,21] con-
sists of a pseudorandom function (PRF) CPRF(·, ·) with a key msk. The con-
strained property states that given master key msk, there is a way to generate a
constrained key ckf for any constraint function f such that CPRF(msk, x) =
CPRF(ckf , x) whenever f(x) = 1. Also, the standard constrained pseudo-
randomness property states that an attacker cannot distinguish PRF evalua-
tions CPRF(msk, xi) from uniformly random values on all inputs xi for which
f(xi) = 0, even after it gets to see the constrained key ckf . The CPRF scheme
is said to be adaptively secure if the adversary can choose the challenge con-
straint function f after making polynomially many PRF evaluation queries. In
this work, similar to [30], we instead require the CPRF to achieve adaptive
key simulation security. Key simulation property states that there exists an effi-
cient key simulation algorithm KeySim such that an attacker cannot distinguish
a simulated key c̃kf ← KeySim(f) from a honestly constrained key ckf for any
adaptively chosen challenge constraint f as long as all its PRF evaluation queries
xi are not satisfied by the constraint f , i.e. f(xi) for all evaluation queries xi.
Tsabary provided a CPRF construction for subset constraints which satisfies

318 R. Goyal et al.

both adaptive pseudorandomness and key simulation security properties.7 As
a side contribution, in the main body we show that the standard constrained
pseudorandomness already implies key simulation security.

Inspired by our deletable attribute framework for ABE systems, we define
the notion of deletion conforming CPRFs, or DCCPRF in short. Intuitively, it
states a CPRF system is deletion conforming if any constrained key ckf in such
a scheme can be deterministically computed by simply “deleting” specific bits of
the master key msk (i.e., replacing some bits of the master key with the special
⊥ symbol). Additionally, it must be the case that the PRF evaluation algorithm
for any given input x be simplified into a circuit Cx such that evaluating Cx on a
master key msk and a constrained key ckf matches on all valid inputs (i.e., all x
such that f(x) = 1). Here evaluating the circuit on a constrained key is defined
similar to that for partial inputs as in the deletable KP-ABE setting, since a
constrained key could have partially unset key bits (i.e., contain ⊥ symbols). All
these notions are formally defined later in Sect. 4.

As mentioned previously, here we construct a deletion conforming CPRF
for subset constraints. A subset constraint family is defined over a universe of
elements [N] := {1, . . . , N}, where input to the PRF is a set S ⊆ [N] (which
could be represented as an N -bit binary string), and each constraint function
is associated with another set T ⊆ [N] such that an input set S satisfies the
constraint iff S ⊆ T . A CPRF scheme for such a constraint family can be built
using a combinatorial strategy as introduced in [9], where the CPRF master key
msk consists of N +1 regular PRF keys k0, k1, . . . , kN , and the CPRF output on
a set S is computed by first selecting all PRF keys ki such that the associated
index i ∈ S, which is then followed by independent PRF evaluation under all
selected keys and finally XORing all the evaluations together.8 Concretely, the
evaluator proceeds as follows:

CPRF(msk, S) = F (k0, S)
⊕

i∈S

F (ki, S).

Note that a constrained key for a subset T can be simply set as the corresponding
subset of underlying PRF keys, that is ckT = {k0} ∪ {ki}i∈T . Observe that for
every input set S satisfying the constraint set T (i.e., S ⊆ T), the constrained key
ckT already contains the necessary PRF keys for performing the PRF evaluation,
thus correctness of evaluation for constrained keys follows immediately. Next,
the proof of adaptive constrained pseudorandomness security follows from a
simple observation that a reduction algorithm can simply guess an index i ∈
{0, 1, . . . , N} which is meant to denote the index of the regular PRF key that is
not required for answering the constrained key query, but is needed for evaluating
the CPRF on the challenge input. Since N is a polynomial, thus such a reduction
strategy gives a proof of adaptive security with just polynomial security loss.

7 As we pointed out before, Tsabary gives a construction for t-CNF (for constant t)
constraint functions, but this can be viewed as a special case of subset constraints.

8 In the construction the master key consists of N + 1 PRF keys instead of N keys
just so that pseudorandomness holds for empty set as well.

Adaptive Security via Deletion in Attribute-Based Encryption 319

Finally, to complete our overview of CPRFs, we just need to argue that our
CPRF construction satisfies the desired deletion conforming properties. This
mostly follows by inspection of our aformentioned construction thereby aligning
with our goal of simplicity and precision. Concretely, note that a constrained
key ckT can simply be deterministically obtained by “deleting” all the regular
PRF keys ki for which i /∈ T . Also, for any input set S, the corresponding CPRF
evaluation circuit can be described as: first, it reads the input wires (encoding
the appropriate PRF key) corresponding to set S, and then evaluates the circuit
F (·, S) on each block of input wires, which is finally followed up by XORing
them together. Observe that since this circuit does not even read/touch the
input wires corresponding to PRF keys ki for which i /∈ S, thus evaluating the
circuit on a master key msk and constrained key ckT is well-defined and gives
the same output whenever S ⊆ T . Thus, this completes the proof sketch for the
above CPRF to be deletion conforming. More details on our construction are
provided in the full version.

Building Adaptively Secure Ciphertext-Policy ABE. Moving on to our main
transformation, our approach is to decouple the adaptivity and functionality
(delivering the message to users) requirements of a CP-ABE scheme, and deal
with them separately. Following Tsabary’s paradigm, we rely on our deletion
conforming CPRFs for enabling the reduction algorithm to be able to answer
the adaptive key queries, while still using the selectively secure deletable KP-
ABE system for guaranteeing that the message is hidden. At a very high level,
the idea is to handle the adaptivity problem outside of the underlying KP-ABE
system, while using its attribute deletion capabilities to compute the CP-ABE
challenge ciphertext from a KP-ABE challenge ciphertext that was selectively
obtained. Below we sketch our transformation.

The public parameters of the CP-ABE system contains the deletable (KP-
)ABE parameters del.pp, while the master secret key consists of a DCCPRF
master key prf.msk as well as the deletable ABE master key del.msk. Recall that
in a CP-ABE system, each secret key is associated with an attribute string x ∈
{0, 1}N . To sample a secret key for attribute x, the key generator first computes
a tag value t as the CPRF evaluation with input x, i.e. t = CPRF(prf.msk, x).
Let Cx denote the simplified explicit circuit that performs the CPRF evaluation
on input x, i.e. Cx(key) = CPRF(key, x). The key generator then creates a policy
circuit fx,t, given the tag value t and circuit description Cx, as:

fx,t(z) =

{
1 if Cx(z) �= t,

0 otherwise.

The (CP-ABE) secret key skx for attribute x now corresponds to a (KP-ABE)
secret key for the above policy circuit, i.e. skx = del.skfx,t

. To encrypt a message
m under a policy circuit g, the encryptor first samples a simulated constrained
key p̃rf.skg with g being used as the constraint function, and then it computes
the ciphertext as an KP-ABE encryption of message m with attribute string set

320 R. Goyal et al.

as skg. The resulting decryption algorithm is exactly the decryption algorithm
of the underlying KP-ABE scheme.

First, note that, by the deletion conforming properties, evaluating Cx is
well-defined and accurately matches the corresponding CPRF output on every
accepting constrained key. Thus with this observation we get that correctness
of the above construction follows from the fact that whenever g(x) = 1, then
fx,t(p̃rf.skg) = 1 with all but negligible probability, since Cx(p̃rf.skg) = t =
Cx(prf.msk) happens only with negligible probability by pseudorandomness of
the underlying CPRF.

Next we describe the intuition behind the proof of adaptive security. Note
that initially the challenge ciphertext for policy g∗ with message m is computed
as KP-ABE encryption of message m with a simulated CPRF constrained key
p̃rf.skg∗ as the attribute string. As a first step, we instead switch this to be
a honestly constrained key prf.skg∗ = Constrain(prf.msk, g∗). Since the CPRF
satisfies the adaptive key simulation property, thus this change will be indistin-
guishable. Note that it is important that the CPRF is adaptively secure for this
reduction to work since to answer the pre-challenge key queries, the reduction
algorithm needs to query for the respective CPRF evaluations. Next, by the
deletion conforming property of the constrained PRF scheme, we have that the
constrained key prf.skg∗ can be computed by simply deleting certain specific
key bits of the master key prf.msk. Let Ig∗ denote such a set of indices, i.e.
prf.skg∗ = Restrict(prf.msk, Ig∗). By relying on the deletion indistinguishabil-
ity property of the KP-ABE scheme, we get that the challenge ciphertext can
instead be computed as first encrypting the message m under attribute string
prf.msk, and then deleting the attribute bits as specified by set Ig∗ by running
the KP-ABE deletion algorithm. Finally, since the attribute string prf.msk is
sampled at the beginning of the security game, thus prf.msk can be selectively
specified to the KP-ABE challenger thereby allowing us to argue that the mes-
sage is also hidden. Our construction and its proof is formally provided in Sect. 6.

Perfect Correctness? Although at first glance it may seem that imperfect cor-
rectness is an inherent and unavoidable feature of the above framework, we show
in the full version that this is not the case where we provide an alternate con-
struction which is perfectly correct. Very briefly, our idea is to have two deletable
ABE sub-systems working in parallel, instead of just one, where both the cipher-
texts and secret keys contain two copies (one under each ABE sub-system). The
only difference is that while sampling a secret key under both the systems inde-
pendently, the key generator uses two distinct tag values, where one of the tag
values is computed as is now, whereas the other tag value will be its complement.
Such a trick gets around the imperfect correctness problem since it can never
happen that Cx(p̃rf.skg) = t0 as well as Cx(p̃rf.skg) = t1 where t0, t1 are the
complementary tag pairs. It turns out that the proof of adaptive security now
is more involved, as we need to first use the existing proof structure to erase
the information about the challenge message from the first deletable ABE sub-
ciphertext, then we would have to undo correlations created between parts of

Adaptive Security via Deletion in Attribute-Based Encryption 321

the challenge ciphertext and secret keys, and finally use a similar proof structure
to erase the information about the challenge message from the second deletable
ABE sub-ciphertext as well.

Another Interpretation. Abstractly, the deletion paradigm described above can
be interpreted as a mechanism to selectively activate the trapdoors embedded
inside the secret keys such that whenever trapdoor is activated then the chal-
lenger can simulate the secret keys for all possible attributes. The property such
simulated keys satisfy is that they are indistinguishable from honestly sampled
secret keys as long as the challenge policy does not accept the corresponding
key attribute. On a more intuitive level, one could also observe some similarities
between the above framework and the Dual System methodology [31], where
switching from a simulated CPRF key to an honestly constrained CPRF key
could be comparable to moving from a normal to a semi-functional ciphertext,
and the secret keys are already sampled in the semi-functional mode.

Deleting Attributes in [6,19]. Finally, we show that existing ABE schemes by
Goyal et al. (GPSW) [19] from bilinear maps, and by Boyen [6] from LWE9

already lie in the class of ABE schemes with deletable attributes, thereby dis-
playing the generality of our framework. Below we give an overview of our dele-
tion algorithms. More details are provided later in Sect. 7, where we also show
that a KP-ABE scheme with deletable attributes for monotonic access structures
can be generically upgraded to non-monotonic log-depth circuits (i.e., NC1).

Deletions in [19]. First, we look at the bilinear map based ABE construction
by GPSW. They proposed a KP-ABE scheme for monotone access structures
and proved its security under the Decisional Bilinear Diffie-Hellman (DBDH)
assumption that can also be readily adapted to a scheme provably secure
under the Search Bilinear Diffie-Hellman assumption. The public parameters
in the GPSW scheme contain n group elements in the base group {Ti}i∈[n] and
one group element in the target group K, where n denotes the length of the
attributes. A ciphertext encrypting a message m under an attribute x ∈ {0, 1}n

is of the following form:

ct = (m · Ks, {T s
i }i∈[n]:xi=1),

where s is a random exponent. Basically the term T s
i encodes the i-th bit of the

attribute, and during decryption the algorithm pairs the ciphertext component
T s

i with a corresponding key component (iff the policy circuit reads the i-th input
wire) and performs a polynomial interpolation in the exponent to reconstruct
the masking term Ks.

Our observation is that to delete an attribute bit, say j, one could simply
drop the term T s

j from ciphertext (if it exists). Multiple attribute bits could
be deleted analogously. As long as the policy circuit does not read the deleted

9 We want to remind the reader the existence of an attack [1] on Boyen’s ABE scheme.
Deletions in Boyen’s scheme are merely provided for illustrative purposes in the full
version.

322 R. Goyal et al.

input wire, the correctness for deleted ciphertexts follows immediately from the
correctness of GPSW scheme itself. Similarly, to encrypt a message m under a
non-binary attribute string x ∈ {0, 1,⊥}n, we simply treat each ⊥ symbol as a
0 bit, and therefore do not encode it in the ciphertext. Clearly, the distributions
of freshly computed ciphertexts and deleted ciphertexts (encrypting the same
message m and attribute x) are identical, thus deletion indistinguishability for
GPSW is merely a statistical property. Combining this with the fact that GPSW
provides selective IND-CPA security, we obtain that GPSW augmented with the
deletion procedure is KP-ABE scheme with deletable attributes. Later in the full
version [18] we also describe a hardcore bit variant of the above scheme whose
security relies on the Computational Bilinear Diffie-Hellman (CBDH) assump-
tion.

Deletions in [6]. Next, we look at the LWE-based ABE construction by Boyen.
Boyen’s scheme is also for monotone access structures and its security relies on
the LWE assumption. The public parameters in Boyen’s scheme consist � + 1
matrices of appropriate dimensions (A0, {Ai}i∈[�]) and a vector u, where �
denotes the length of the attributes. Now a ciphertext ct encrypting a mes-
sage bit msg under an attribute x ∈ {0, 1}� is of the following form ct =
(c0, c1,0, c1,1, . . . , c1,�), where

c0 = s� · u + ν0 +
q

2
� · msg,

∀i ∈ [0, �], c1,i =

{
s� · Ai + ν1,i if i = 0 or xi = 1,

ν1,i otherwise.

and s is a random secret vector, and ν0, {ν1,i}i∈[�] are sampled i.i.d. according
to the LWE noise distribution. Here the vector c1,i encodes the i-th bit of the
attribute, and during decryption the algorithm combines the ciphertext compo-
nent c1,i with a corresponding key component (iff the policy circuit reads the
i-th input wire).

For deleting attributes in Boyen’s scheme, instead of dropping the respec-
tive ciphertext component, we replace with freshly sampled noise. Concretely, to
delete an attribute bit, say j, we replace the vector c1,j in the ciphertext with a
freshly sampled noise vector ν′

1,i. Multiple attribute bits could be deleted analo-
gously.10 And as for our augmented GPSW scheme, during encryption we treat
each ⊥ symbol as a 0 bit, and the correctness and deletion indistinguishability of
the resultant follows either immediately from Boyen’s scheme or by inspection.

Recent Independent Work. Recently, Katsumata, Nishimaki, Yamada, and
Yamakawa (KNYY) [20] gave an exciting construction showing how to expand
the framework of [30] to encompass an inner product encryption and Fuzzy IBE
functionality within the LWE setting. An important insight was showing that a
10 We could also drop the deleted ciphertext components instead of replacing them

with LWE noise, however for ensuring consistency with Boyen’s scheme we keep it
this way.

Adaptive Security via Deletion in Attribute-Based Encryption 323

specific cryptosystem could relax the earlier conforming property to just func-
tional equivalence and thus leverage a particular constrained PRF of [10] to
achieve greater functionality.

In contrast, our work shows how to relax the conforming property to deletion
so that it is realizable in a broader setting that includes bilinear maps. But we
show that is still sufficient to maintain the t-CNF functionality. KNYY show that
in the LWE setting one can strengthen the framework to handle a broader class
of LWE specific constrained PRFs. The works were performed independently.

Comparing Techniques with [30]. We conclude by giving some further techni-
cal comparisons between our framework and the earlier work of Tsabary [30]
that we build upon. Our work follows a similar pathway which is to leverage
adaptive security of constrained PRFs (with special properties) inside a key-
policy ABE scheme (with special properties) to achieve an adaptively secure
ciphertext-policy ABE scheme, but differences lie in the flavour of these special
properties required from the underlying constrained PRF and key-policy ABE
systems. Tsabary started with the LWE-based ABE construction of Boneh et al.
[4], and using the homomorphic properties of the underlying ABE scheme,
Tsabary developed a framework for partial ciphertext evaluation and a circuit
splitting/composition abstraction, wherein the ABE scheme allows a user to
encrypt messages under partially evaluated attributes such that they are indis-
tinguishable from partially evaluated ciphertexts encrypting same message under
the original (unevaluated) attribute. Concretely, [30] relies on the fact that for
any attribute x and circuit C, one could compute ciphertexts of the form:
ct0 = Enc(pp,m, x), ct1 = Enc(pp,m,C(x)) such that given a secret key sk

˜C

for some circuit C̃ s.t. C̃(x) = 1, a user can not only decrypt ciphertexts of
the form ct0, but it can also decrypt ciphertexts of the form ct1 as long as
there exists another circuit C ′ with the semantics that C̃(·) = C ′(C(·)) that
the decryptor knows. Here the equality between the circuit C̃ and the compo-
sition of C,C ′ mandates the resultant ‘gate-by-gate’ circuit descriptions must
be identical. With such an ABE scheme with these special properties as the
centerpiece, [30] built a constrained PRF that conforms with the necessary cir-
cuit splitting/composition semantics. Very briefly, [30] required that the PRF
evaluation circuit with the input hardwired can be split into two sub-circuits
such that one of those sub-circuits can be used during generating the CP-ABE
ciphertext. Combining all these things in an extremely careful manner gives the
desired result of an adaptively secure CP-ABE scheme for subset policies.

Our approach, on the other hand, is to skip the entire partial evaluation and
circuit splitting/composition framework, and instead go with a simpler abstrac-
tion of input deletion while also demanding (as part of our definitional frame-
work) an explicit descriptions for all the circuits used throughout the analysis.

2 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. We denote the set of
all positive integers upto n as [n] := {1, . . . , n}. Also, we use [0, n] to denote the

324 R. Goyal et al.

set of all non-negative integers upto n, i.e. [0, n] := {0} ∪ [n]. Throughout this
paper, unless specified, all polynomials we consider are positive polynomials.
For any finite set S, x ← S denotes a uniformly random element x from the
set S. Similarly, for any distribution D, x ← D denotes an element x drawn
from distribution D. The distribution Dn is used to represent a distribution over
vectors of n components, where each component is drawn independently from
the distribution D.

For any n ∈ N, string x ∈ {0, 1,⊥}n and index set I ⊆ [n], let Restrict(x, I)
denote the string x̃ ∈ {0, 1,⊥}n such that

∀i ∈ [n], x̃i =

{
xi if j /∈ I,

⊥ otherwise.

where xi and x̃i denote the ith elements of strings x and x̃, respectively. For
any string x ∈ {0, 1,⊥}n, let BotSet(x) denote the subset of indices in [n] such
that for every i ∈ BotSet(x), xi = ⊥ and for every i /∈ BotSet(x), xi ∈ {0, 1}.
Formally, BotSet(x) := {i ∈ [n] : xi = ⊥}.

Circuit Notation. Also, throughout the paper we use the circuit model of com-
putation. Consider any circuit C : {0, 1}n → {0, 1} that takes n-bits of input
and outputs a single bit. For any circuit C, we define Unsupported(C) ⊆ [n] to
be set of indices i ∈ [n] such that the circuit C does not use on the ith input
wire (i.e., C does not read the ith input bit).11

Lastly, we use CEval to denote an “expanded” notion of circuit evaluation.
The algorithm CEval takes as input a circuit C : {0, 1}n → {0, 1}m, and a string
x ∈ {0, 1,⊥}n, and it first checks that BotSet(x) ⊆ Unsupported(C). If the check
fails, it outputs the all-zeros string 0m; otherwise it evaluates the circuit C on
string x, and outputs the same result as the circuit which is C(x). Note that
evaluating the circuit C on string x (that could possibly contain non-binary
input bits) is well-defined in the last step, since the evaluator CEval only runs
the circuit C after its checks that BotSet(x) ⊆ Unsupported(C), and thus we
know that if the check succeeds then all the input wires/bits read by circuit C
are defined and not set as ⊥. Formally, CEval can be defined as:

CEval(C, x) =

{
C(x) if BotSet(x) ⊆ Unsupported(C),
0m otherwise.

Due to space constraints, we move the definition of regular pseudorandom
functions to the full version.
11 Note that our definition of the unsupported indices for a circuit C is very restrictive.

Concretely, we say that an index i ∈ Unsupported(C) iff as per the circuit description

of C the ith input wire is unused/untouched. For instance, consider two circuits C, C̃

which takes length 2-bit strings as inputs: C(x) = (x1 ∨ ¬x1) ∧ x2 and C̃(x) = x2.

Here Unsupported(C) = ∅ and Unsupported(C̃) = {1}, i.e. circuits C, C̃ have different
unsupported indices even though they are functionally identical. This is because as
per the circuit description of C, it does use both input wires/bits; whereas C̃ ignores
the first input wire/bit.

Adaptive Security via Deletion in Attribute-Based Encryption 325

3 Key Policy Attribute-Based Encryption with Deletable
Attributes

In this section, we introduce the notion of Key Policy Attribute-Based Encryp-
tion (KP-ABE) with deletable attributes. First, we provide the syntax, and later
describe our definitions for KP-ABE with deletable attributes.

Syntax. A key-policy attribute based encryption (KP-ABE) scheme with
deletable attributes for a class of circuits C = {Cn}n∈N

and message space M
consists of the following PPT algorithms:

Setup(1λ, 1n) → (pp,msk). On input the security parameter λ and attribute
length n, the setup algorithm outputs a set of public parameters pp, and
master secret key msk.

KeyGen(msk, f) → skf . On input the master secret key msk and a circuit f ∈ Cn,
the key generation algorithm outputs a predicate key skf .

Enc(pp, x,m) → ct. On input the public parameters pp, an attribute string
x ∈ {0, 1,⊥}n, and a message m ∈ M, the encryption algorithm outputs
a ciphertext ct. Note that here the attribute string x is possibly a non-binary
string as it could contain ⊥ symbols.

Dec(skf , ct) → m/fail. On input a secret key skf and a ciphertext ct, the
decryption algorithm either outputs a message m or a special string fail (to
denote decryption failure).

Delete(pp, ct, I) → ct′. On input of the public parameters pp, a ciphertext ct and
a set of indices I ⊆ [n], the deletion algorithm outputs a modified ciphertext
ct′.

We require such an ABE scheme to satisfy the following properties.

Correctness. Intuitively, it says that the above scheme is correct if decrypting a
ciphertext, which was either directly computed using the encryption algorithm
or generated by the ciphertext deletion algorithm, outputs the correct message
as long as the policy circuit accepts the attribute associated with the ciphertext.

Formally, an KP-ABE scheme with deletable attributes is said to be correct
if for all λ, n ∈ N, f ∈ Cn, m ∈ M, x0 ∈ {0, 1,⊥}n and a sequence of indices sets
I1, I2 · · · , Ik ⊆ [n], for any k ≥ 0, the following holds:

CEval(f, xk) = 1 =⇒ Pr

⎡

⎣Dec(skf , ctk) = m :

(pp,msk) ← Setup(1λ, 1n)

skf ← KeyGen(msk, f), ct0 ← Enc(pp, x0, m)

(∀i ∈ [k]) cti ← Delete(pp, cti−1, Ii)

⎤

⎦ = 1,

where xk is defined by the following sequence of operations: xi ←
Restrict(xi−1, Ii) for all i ∈ [k].

Security. For security, we have two requirements. First, we require the scheme
to provide standard semantic security as for standard ABE schemes. Here we
consider both selective and adaptive IND-CPA security definitions. Second, we

326 R. Goyal et al.

introduce a notion of indistinguishability for ciphertexts with deleted attributes,
in which the adversary cannot distinguish between a ciphertext modified by the
Delete algorithm and a ciphertext directly encrypted from the same message with
respect to the same attribute string after deletion. Formally, they are defined as
below.

Definition 3.1 (Adaptive IND-CPA Security). A KP-ABE scheme is
adaptively secure if for every stateful admissible PPT adversary A, there exists
a negligible function negl(·) such that for all λ, n ∈ N, the following holds

Pr

⎡

⎣AKeyGen(msk,·)
(ct) = b :

(pp,msk) ← Setup(1λ, 1n)

((m0, m1), x∗ ∈ {0, 1}n) ← AKeyGen(msk,·)(1λ, 1n, pp)

b ← {0, 1}; ct ← Enc(pp, x∗, mb)

⎤

⎦ ≤ 1

2
+ negl(λ),

where the adversary A is admissible as long as every secret key query f made by
A to the oracle KeyGen(msk, ·) satisfies the condition that f(x∗) = 0. Here x∗ is
the challenge attribute chosen by A. Note that the adversary must choose x∗ as
a binary string, that is it must not contain any ⊥ symbols.12

Definition 3.2 (Selective IND-CPA Security). A KP-ABE scheme is said
to be selectively secure if in the above security game (see Definition 3.1), the
adversary must instead declare the challenge attribute x∗ ∈ {0, 1}n at the begin-
ning of the game, that is even before it receives the public paramters pp from the
challenger.

Definition 3.3 (Deletion Indistinguishability). A KP-ABE scheme with
deletable attributes satisfies deletion indistinguishability property if for every
stateful PPT adversary A, there exists a negligible function negl(·), such that
for all λ, n ∈ N, the following holds

Pr

⎡

⎢
⎢
⎣A(ctb) = b :

(pp,msk) ← Setup(1λ, 1n), b ← {0, 1}
(m, x ∈ {0, 1, ⊥}n, I ⊆ [n]) ← A(1λ, 1n, pp,msk)

c̃t ← Enc(pp, x, m), ct0 ← Delete(pp, c̃t, I)
x̃ ← Restrict(x, I), ct1 ← Enc(pp, x̃, m)

⎤

⎥
⎥
⎦ ≤ 1

2
+ negl(λ).

Note that the attribute vector x chosen by the adversary A can contain ⊥ symbols.

4 Constrained PRFs: Defining Deletion Conformity

In this section, we first recall the notion of constrained PRFs (CPRFs) [5,7,21],
and later introduce our notion of deletion conforming CPRFs.

Syntax. A constrained PRF (CPRF) for constraint class F = {FN}N∈N
consists

of three PPT algorithms (Setup,Constrain,Eval) with the following syntax:

12 Note that since x∗ does not contain ⊥ symbols, thus f(x∗) is always well-defined
and we do not need define the admissibility constraint as CEval(f, x∗) = 0 instead.

Adaptive Security via Deletion in Attribute-Based Encryption 327

Setup(1λ, 1N) → msk. On input the security parameter λ and input length N , the
setup algorithm outputs a master secret key msk ∈ {0, 1}k. Let k = k(λ,N)
denote the length of secret key, where k(·, ·) is an a-priori fixed polynomial.

Constrain(msk, f) → skf . On input a constraint function f ∈ FN and master
secret key msk, the constrain algorithm outputs a constrained key skf .

Eval(sk, x) → y. The evaluation algorithm takes as input a (possibly con-
strained) secret key sk and a string x ∈ {0, 1}N , and outputs a string y. Let
m = m(λ,N) denote the length of the output string y for some polynomial
m(·, ·).13

Correctness of CPRF Evaluation. A CPRF scheme is said to be correct if for
all λ,N ∈ N, f ∈ FN , and x ∈ {0, 1}N , the following holds:

f(x) = 1 =⇒ Pr
[
Eval(msk, x) = Eval(skf , x) : msk ← Setup(1λ, 1N)

skf ← Constrain(msk, f)

]
= 1

Security. Next, we recall the notion of single-key adaptive pseudorandomness
security for constrained PRFs. Later on we also define the notion of key simula-
tion security as defined in [30].

Definition 4.1 (Adaptive single-key constrained pseudorandomness).
We say that a CPRF = (Setup,Constrain,Eval) satisfies adaptive single-key con-
strained pseudorandomness security if for any stateful admissible PPT adversary
A there exists a negligible function negl(·), such that for all λ,N ∈ N, the fol-
lowing holds:

Pr

⎡

⎣AEval(msk,·),Constrain(msk,·)
(rb) = b :

msk ← Setup(1λ, 1N), b ← {0, 1}
x∗ ← AEval(msk,·),Constrain(msk,·)(1λ, 1N)

r0 ← {0, 1}m, r1 = Eval(msk, x∗)

⎤

⎦ ≤ 1

2
+ negl(λ).

Here the adversary A is said to be admissible as long as it satisfies the fol-
lowing conditions—(1) it makes at most one query to the constrain oracle
Constrain(msk, ·), and its queried function f must be such that f(x∗) = 0, (2) it
must not send x∗ as one of its evaluation queries to Eval(msk, ·).

The above pseudorandomness security could be extended to collusion-
resistant notions where the adversary could make polynomially many constrain
queries, however in this work we only require single-key security. Next, we define
key simulation security for CPRFs.

Definition 4.2 (Adaptive key simulation). We say that a CPRF =
(Setup,Constrain,Eval) satisfies adaptive key simulation security if there exists a
PPT algorithm KeySim such that for any stateful admissible PPT adversary A,

13 Here we consider a single PRF evaluation algorithm that could take as input a master
key as well as a constrained key. Thus, both the master and constrained keys are
of same length k. Note that one could instead split it into two separate evaluation
algorithms, however for ease of exposition we avoid it.

328 R. Goyal et al.

there exists a negligible function negl(·), such that for all λ,N ∈ N, the following
holds:

Pr

⎡

⎣AEval(msk,·)
(skb) = b :

msk ← Setup(1λ, 1N), b ← {0, 1}
f∗ ← AEval(msk,·)(1λ, 1N)

sk0 ← KeySim(1λ, 1N , f∗), sk1 ← Constrain(msk, f∗)

⎤

⎦ ≤ 1

2
+ negl(λ).

Here the adversary A is said to be admissible if all its evaluation queries x ∈
{0, 1}N satisfy the condition that f∗(x) = 0. That is, none of the queried inputs
are satisfied by the constraint f∗.

Non-colliding Property. A constrained PRF CPRF that satisfies key simulation
security (Definition 4.2) is said to be non-colliding if there exists a negligible
function negl(·) such that for all λ,N ∈ N, every input x ∈ {0, 1}N , constraint
function f ∈ FN , the following holds:

Pr
[
Eval(msk, x) = Eval(sk′

f , x) :
msk ← Setup(1λ, 1N)

sk′
f ← KeySim(1λ, 1N , f)

]
≤ negl(λ).

Later on in the full version, we show that if the CPRF satisfies (0-key) pseu-
dorandomness security, then it also satisfies the non-colliding property as long
as the output length of the PRF is large enough. Additionally, we also show that
the adaptive single-key constrained pseudorandomness security in fact implies
adaptive key simulation security.

4.1 Deletion Conforming CPRFs

Now we define the deletion conforming property for CPRFs. Intuitively, it states
that a constrained key in such a CPRF scheme must be deterministically com-
putable by simply deleting specific bits of the master key (i.e., replacing some
bits of the master key with a special ⊥ symbol). Formally we define it below.

Definition 4.3 (Deletion Conforming CPRF). We say that a constrained
PRF scheme CPRF = (Setup,Constrain,Eval) for a function class F = {FN}N∈N

is a deletion conforming CPRF if the constrain algorithm Constrain is determin-
istic, and there exists two polynomial time algorithms (CircuitGen,DeleteFunc)
with the following syntax and properties:

CircuitGen(1λ, 1N , x) → Cx. The circuit generation algorithm is a deterministic
algorithm that takes as input the security parameter λ, length parameter N ,
and input string x ∈ {0, 1}N . It outputs the description of a circuit Cx.

DeleteFunc(1λ, 1N , f) → If . The key deletion algorithm is a deterministic algo-
rithm that takes as input the security parameter λ, length parameter N , and
a constraint function f ∈ FN . It outputs a set of indices If ⊆ [k], where k
denotes the length of the master secret key.

We say that DCCPRF = (Setup,Constrain,Eval,CircuitGen,DeleteFunc) is a
deletion conforming CPRF if for all λ,N ∈ N, every function f ∈ FN , input
x ∈ {0, 1}N , and master key msk ← Setup(1λ, 1N), the following properties are
satisfied.

Adaptive Security via Deletion in Attribute-Based Encryption 329

1. Function deletion property: Constrain(msk, f) = Restrict(msk, If), where
index set If is computed as If = DeleteFunc(1λ, 1N , f).

2. Circuit evaluation property: Let Cx = CircuitGen(1λ, 1N , x). It states
that Eval(msk, x) = Cx(msk) irrespective of whether f(x) = 0/1,
and Eval(skf , x) = CEval(Cx, skf) whenever f(x) = 1 where skf =
Constrain(msk, f) or skf ← KeySim(1λ, 1N , f).

Here recall that the Restrict and CEval operations are as defined in Sect. 2—
Restrict(s, I) denotes a string after replacing the bits in s with indices corre-
sponding to indices in set I with ⊥; and CEval(C, x) denotes evaluating the
circuit C on input x, but setting the circuit output to be the all zeros string 0m

if the circuit C depends on the input wires whose indices have ⊥ symbol in x.

5 Ciphertext Policy Attribute-Based Encryption

In this section, we recall the notion of Ciphertext Policy Attribute-Based Encryp-
tion (CP-ABE). First, we provide the syntax and definitions, and later define
the predicate class we study in this work.

Syntax. A ciphertext-policy attribute based encryption (CP-ABE) scheme for a
class of predicates F = {FN}N∈N

and message space M consists of the following
PPT algorithms:

Setup(1λ, 1N) → (pp,msk). On input the security parameter λ and attribute
length N , the setup algorithm outputs a set of public parameters pp, and
master secret key msk.

KeyGen(msk, x) → skx. On input the master secret key msk and a key attribute
x ∈ {0, 1}N , the key generation algorithm outputs a predicate key skx.

Enc(pp, f,m) → ct. On input the public parameters pp, a predicate f ∈ FN , and
a message m ∈ M, the encryption algorithm outputs a ciphertext ct.

Dec(skx, ct) → m/fail. On input a secret key skx and a ciphertext ct, the
decryption algorithm either outputs a message m or a special string fail
(to denote decryption failure).

Correctness. A CP-ABE scheme is said to be correct if for all λ,N ∈ N, f ∈ FN ,
m ∈ M, x ∈ {0, 1}N , the following holds:

f(x) = 1 =⇒ Pr

[
Dec(skx, ct) = m :

(pp,msk) ← Setup(1λ, 1N)
skx ← KeyGen(msk, x), ct ← Enc(pp, x, m)

]
= 1.

Security. For security, we require the scheme to achieve adaptive security (see
Definition 3.1). Note that the admissibility condition for the adversary A in
the security game is modified as follows. The adversary A is admissible as long
as every secret key query x ∈ {0, 1}N made by A to the oracle KeyGen(msk, ·)
satisfies the condition that f∗(x) = 0, where f∗ is the challenge predicate chosen
by A.

330 R. Goyal et al.

6 Building Adaptively Secure CP-ABE

In this section, we build an adaptively secure CP-ABE scheme from a selec-
tively secure KP-ABE scheme with deletable attributes DelABE and a single-key
adaptively secure deletion conforming CPRF scheme DCCPRF.

6.1 Construction

Let DelABE = (DelABE.Setup,DelABE.KeyGen,DelABE.Enc,DelABE.Dec,
DelABE.Delete) be a KP-ABE scheme with deletable attributes for predi-
cate class C = {Cn}n∈N

, and DCCPRF = (PRF.Setup,PRF.Constrain,PRF.Eval,
PRF.CircuitGen,PRF.DeleteFunc,PRF.KeySim) be a deletion conforming CPRF
for constraint class F = {FN}N∈N

. We require the predicate class C to be suf-
ficiently expressive such that it contains circuits which perform comparison on
top of a circuit generated by the PRF.CircuitGen algorithm. The requirement will
become evident after the construction.

Below we describe our CP-ABE scheme ABE = (Setup,KeyGen,Enc,Dec) for
predicate class F = {FN}N∈N

.

Setup(1λ, 1N) → (pp,msk). The setup algorithm first runs DCCPRF setup to
generate the corresponding master secret key: prf.msk ← PRF.Setup(1λ, 1N).
Let k = k(λ,N) denote the length of the master secret key prf.msk. Next,
it runs the deletable ABE setup algorithm DelABE.Setup to get deletable
ABE public parameters and master secret key as: (del.msk, del.pp) ←
DelABE.Setup(1λ, 1k).
It sets public parameters and master key as pp = del.pp,msk =
(prf.msk, del.msk).

KeyGen(msk, x) → sk. Let msk = (prf.msk, del.msk). The key generation
algorithm first computes t = PRF.Eval(prf.msk, x) and generates a circuit
Cx : {0, 1}k → {0, 1}m as Cx = PRF.CircuitGen(x). Next, it creates the fol-
lowing circuit (fx,t : {0, 1}k → {0, 1})

fx,t(z) =

{
1 if Cx(z) �= t,

0 otherwise.
(1)

Finally, the algorithm runs the deletable ABE key generation to sample the
secret key sk as sk ← DelABE.KeyGen(del.msk, fx,t).

Enc(pp, f,m) → ct. The encryption algorithm runs the CPRF key simula-
tion to generate a simulated key as sk′

f ← PRF.KeySim(1λ, 1N , f). Next, it
runs the deletable ABE encryption algorithm with attribute sk′

f as ct ←
DelABE.Enc(pp,m, sk′

f), and outputs ciphertext ct.
Dec(sk, ct) → m/fail. The decryption algorithm runs the deletable ABE decryp-

tion as z = DelABE.Dec(sk, ct), and outputs z as decryption output.

Adaptive Security via Deletion in Attribute-Based Encryption 331

6.2 Correctness and Efficiency

We start by proving that our construction satisfies the CP-ABE correctness
condition, and also discuss the efficiency of the resulting scheme. First, we prove
correctness.

Lemma 6.1 (Correctness). If the deletable KP-ABE scheme DelABE satis-
fies correctness, and the deletion conforming CPRF scheme DCCPRF satisfies
non-colliding and circuit evaluation properties, then the CP-ABE scheme ABE
described above is correct.

Proof. We show that the scheme decrypts correctly with all but negligible prob-
ability. In the full version, we will discuss how to boost the imperfect correctness
to perfect correctness.

Fix any security parameter λ and attribute length N . For every predi-
cate f ∈ FN , message m ∈ M, and attribute x ∈ {0, 1}N , we have that
the decryption algorithm Dec, on inputs ciphertext ct and secret key sk, sim-
ply outputs z = DelABE.Dec(sk, ct). Consider (del.msk, del.pp) and prf.msk
to be the deletable KP-ABE and CPRF parameters sampled during setup.
Note that the ciphertext ct is computed as ct ← DelABE.Enc(del.pp,m, sk′

f),
where sk′

f ← PRF.KeySim(1λ, 1N , f). Also, the secret key sk is sampled as
sk ← DelABE.KeyGen(del.msk, fx,t), where t = PRF.Eval(prf.msk, x) and fx,t is
as defined in the construction. First, observe that by correctness of the deletable
KP-ABE scheme, if CEval(fx,t, sk

′
f) = 1, then the decryption algorithm outputs

message m correctly, i.e. z = m. Thus, to complete the completeness argument,
we just need to show that whenever f(x) = 1, then CEval(fx,t, sk

′
f) = 1 as well

with all but negligible probability (over the choice of random coins used during
setup and encryption).

Recall that circuit fx,t(sk′
f) = 1 if and only if Cx(sk′

f) �= t, where Cx =
PRF.CircuitGen(x). Now if f(x) = 1, by the circuit evaluation property of
deletion conforming CPRF, we get that Cx(sk′

f) = PRF.Eval(sk′
f , x). Since

t = PRF.Eval(prf.msk, x), thus by the non-colliding property, we know that the
event Cx(sk′

f) = t happens with only negligible probability. Therefore, whenever
f(x) = 1, the decryption algorithm outputs message m with all but negligible
probability. This completeness the correctness argument. ��
Next, we state the depth of the circuit fx,t for which we run the KP-ABE key
generation algorithm.

Lemma 6.2 (Circuit depth). For every λ,N ∈ N, predicate f ∈ FN and
attribute x ∈ {0, 1}N , we have that depth(fx,t) = depth(Cx) + O(log λ).

Proof. This follows immediately from our construction. Note that the circuit
depth of fx,t is depth of Cx plus the depth of a circuit to check equality on two
strings in {0, 1}m. Since m is a polynomial in the security parameter λ, and
equality check on two strings in {0, 1}m can be efficiently performed in depth
O(log m) = O(log λ) using XOR gates and OR gates, thus the lemma follows. ��

332 R. Goyal et al.

6.3 Security

Next, we prove that the CP-ABE scheme constructed above is adaptively secure.
Formally, we prove the following.

Theorem 6.3. If the deletion KP-ABE scheme DelABE satisfies selective IND-
CPA security and deletion indistinguishability (Definitions 3.2 and 3.3), and the
deletion conforming CPRF scheme DCCPRF satisfies adaptive key simulation
security, and circuit evaluation and function deletion properties (Definitions 4.2
and 4.3), then the CP-ABE scheme ABE satisfies adaptive IND-CPA security as
per Definition 3.1.

Proof. We prove the security via a sequence of hybrid games. We will first define
the sequence of hybrid games, and then show that they are indistinguishable for
any PPT adversary.

Game 0. This corresponds to the original adaptive IND-CPA security game.

– Setup Phase. The challenger runs prf.msk ← PRF.Setup(1λ, 1N) and
(del.msk, del.pp) ← DelABE.Setup(1λ, 1k). Next, it sets pp = del.pp and
msk = (prf.msk, del.msk) and sends pp to the adversary A.

– Pre-Challenge Query Phase. The adversary A makes polynomially many
key queries on attributes it chooses. For each key query on attribute x ∈
{0, 1}N , the challenger proceeds as follows:
1. It computes t = PRF.Eval(prf.msk, x), and generates a circuit Cx :

{0, 1}k → {0, 1}m as Cx = PRF.CircuitGen(1λ, 1N , x). Next, it creates
a circuit fx,t as described in Eq. (1).

2. Then it computes a secret key as sk ← DelABE.KeyGen(del.msk, fx,t),
and sends sk to A.

– Challenge Phase. A sends two messages (m0,m1) and a predicate function
f∗ ∈ FN as its challenge to the challenger. The challenger responds with
ciphertext ct∗ to A, where ct∗ is computed as follows:
1. The challenger generates a simulated key as skf∗ ← PRF.KeySim(1λ,

1N , f∗).
2. Next, it chooses a random bit b ← {0, 1}, and computes the challenge

ciphertext as ct∗ ← DelABE.Enc(del.pp, sk′
f∗ ,mb).

– Post-Challenge Query Phase. This is identical to the pre-challenge query
phase.

– Guess. The adversary A finally sends the guess b′, and wins if b = b′.

Game 1. This game is identical to Game 0 except that in the Challenge Phase
step 1, the challenger encrypts the challenge ciphertext to a real constrained PRF
key with respect to challenge function f∗ instead of the simulated key.

– Challenge Phase. A sends two messages (m0,m1) and a predicate function
f∗ ∈ FN as its challenge to the challenger. The challenger responds with
ciphertext ct∗ to A, where ct∗ is computed as follows:
1. The challenger generates a constrained key as skf∗ ← PRF.Constrain

(prf.msk, f∗).

Adaptive Security via Deletion in Attribute-Based Encryption 333

Game 2. This game is identical to Game 1 except that in the Challenge
Phase step 1, the challenger generates the real constrained PRF key skf∗ with
respect to f∗ directly using the PRF.DeleteFunc and Restrict algorithms on the
PRF master secret key prf.msk.

– Challenge Phase. A sends two messages (m0,m1) and a predicate function
f∗ ∈ FN as its challenge to the challenger. The challenger responds with
ciphertext ct∗ to A, where ct∗ is computed as follows:
1. The challenger first computes a set of indices If∗ := PRF.DeleteFunc

(1λ, 1N , f∗), and then it computes the constrained key as skf∗ =
Restrict(prf.msk, If∗).

Game 3. This game is identical to Game 2 except that in the Challenge
Phase step 2, the challenger encrypts the message to the PRF master secret
key prf.msk and then uses DelABE.Delete to modify the ciphertext according
the indices set If∗ .

– Challenge Phase. A sends two messages (m0,m1) and a predicate function
f∗ ∈ FN as its challenge to the challenger. The challenger responds with
ciphertext ct∗ to A, where ct∗ is computed as follows:
1. The challenger first computes a set of indices If∗ := PRF.DeleteFunc

(1λ, 1N , f∗).
2. Next, it chooses a random bit b ← {0, 1}, and computes a KP-ABE

ciphertext as ct′ ← DelABE.Enc(del.pp, prf.msk,mb). Then it computes
challenge ciphertext as ct∗ ← DelABE.Delete(del.pp, ct′, If∗).

Analysis. Next, we show by a sequence of lemmas that no PPT adversary can
distinguish between any two adjacent games with non-negligible advantage. In
the last game, we show that the advantage of any PPT adversary is negligible.
This completes the proof of adaptive security of our CP-ABE scheme ABE.

Let A denote the PPT attacker playing the adaptive IND-CPA security game
with the ABE challenger. In the sequel, we denote the advantage of adversary A
in Game i as Advi

A(λ) = Pr[A wins in Game i] − 1
2 , where recall that A wins

in Game i if it guesses the challenger’s bit b correctly.

Lemma 6.4. Assuming the key simulation security of the deletion conforming
CPRF DCCPRF holds, then for any PPT adversary A, there exists a negligible
function negl1(·), such that for all λ,N ∈ N, we have that Adv0A(λ)−Adv1A(λ) ≤
negl1(λ).

Proof. Suppose there exists an adversary A and a non-negligible function ε(·)
such that Adv0A(λ) − Adv1A(λ) ≥ ε(λ), then we construct a reduction algorithm
B such that B has non-negligible advantage in the key simulation game of the
deletion conforming CPRF. Below we describe our reduction algorithm B.

334 R. Goyal et al.

– In the setup phase, the key simulation challenger K runs PRF.Setup,
and B runs DelABE.Setup to sample a key pair as (del.pp, del.msk) ←
DelABE.Setup(1λ, 1k). B then sends del.pp to A as the public parameters.

– In the pre-challenge query phase, when A sends a key query on attribute x
to B, B sends x to the key simulation challenger K as its PRF evaluation
query. K answers B with t, where t = PRF.Eval(prf.msk, x). B uses t and x to
generate circuit Cx and circuit fx,t as in Game 0; then it computes the secret
key sk ← DelABE.KeyGen(del.msk, fx,t), and sends sk to A as the secret key
for attribute x.

– In the challenge phase, A sends the predicate function f∗ and messages
m0,m1 to the reduction algorithm B. B then forwards f∗ to K as its
challenge constraint function. Let skf∗ denote K’s response. B chooses as
random bit b ← {0, 1}, and computes the challenge ciphertext as ct∗ ←
DelABE.Enc(del.pp, skf∗ ,mb), and sends ct∗ to A.

– The post-challenge phase is identical to the pre-challenge query phase. Finally,
A outputs its guess b′, and if b = b′ then B outputs 0 as its guess (to denote
that skf∗ was a simulated key). Otherwise, B outputs 1 as its guess.

First, note that A must be an admissible adversary in the CP-ABE security
game, thus it must hold that f∗(x) = 0 for all attributes x queried by A. There-
fore, B is also an admissible adversary in the key simulation game since it also
satisfies condition that f∗(x) = 0 for all inputs x queried by B. Next, observe
that if the challenger K samples skf∗ as a simulated key, then B perfectly simu-
lates Game 0 for A, otherwise it simulates Game 1. Thus, B’s advantage in the
key simulation game is at least ε(λ), which is non-negligible and contradicts the
key simulation security. ��
Lemma 6.5. Assuming the function deletion property of the deletion conform-
ing CPRF DCCPRF holds, then for any adversary A, parameters λ,N ∈ N, we
have that Adv1A(λ) = Adv2A(λ).

Proof. This follows immediately from the function deletion property. Recall that
function deletion property states that for all λ,N ∈ N, every constraint function
f∗ ∈ FN , and master key prf.msk ← PRF.Setup(1λ, 1N), we have that:

Pr

⎡

⎢⎣sk(1)f∗ = sk
(2)
f∗ :

If∗ = PRF.DeleteFunc(1λ, 1N , f∗)
sk

(1)
f∗ = PRF.Constrain(prf.msk, f∗)
sk

(2)
f∗ = Restrict(prf.msk, If∗)

⎤

⎥⎦ = 1.

Note that sk
(1)
f∗ and sk

(2)
f∗ exactly correspond to the CPRF keys as generated in

Game 1 and Game 2, respectively. Since they are identical, thus the adversary’s
advantage is also identical in these two games. ��
Lemma 6.6. Assuming the deletion indistinguishability security of the deletable
KP-ABE DelABE holds, then for any PPT adversary A, there exists a negligible
function negl2(·), such that for all λ,N ∈ N, we have that Adv2A(λ)−Adv3A(λ) ≤
negl2(λ).

Adaptive Security via Deletion in Attribute-Based Encryption 335

Proof. Suppose there exists an adversary A and a non-negligible function ε(·)
such that Adv2A(λ) − Adv3A(λ) ≥ ε(λ), then we construct a reduction algorithm
B such that B has non-negligible advantage in the deletion indistinguishability
game of the deletable KP-ABE. Below we describe our reduction algorithm B.

– In the setup phase, the deletion indistinguishability challenger D runs
DelABE.Setup and sends the deletable ABE parameters (del.pp, del.msk) to
B. B then samples a CPRF master key as prf.msk ← PRF.Setup(1λ, 1N), and
sends del.pp to A as the CP-ABE public parameters.

– In the pre-challenge query phase, A sends a key query on attribute x to B.
B first evaluates the CPRF as t = PRF.Eval(prf.msk, x), and uses t and x to
generate circuits Cx and fx,t as in Game 2. It then computes the secret key
sk ← DelABE.KeyGen(del.msk, fx,t), and sends sk to A as the secret key for
attribute x.

– In the challenge phase, A sends the predicate function f∗ and messages
m0,m1 to B. The reduction algorithm B samples a random bit b ← {0, 1},
and computes a set of indices If∗ = PRF.DeleteFunc(1λ, 1N , f∗), and sends
(mb, prf.msk, If∗) to the deletion challenger D. Let ct∗ denote the challenger’s
response. B forwards ct∗ to A as its challenge ciphertext.

– The post-challenge phase is identical to the pre-challenge query phase. Finally,
A outputs its guess b′, and if b = b′ then B outputs 0 as its guess (to denote
that ct∗ was a freshly encrypted ciphertext). Otherwise, B outputs 1 as its
guess.

Note that if the challenger D computes ct∗ by first restricting the attribute to
the constrained key and then encrypting it directly using the KP-ABE encryp-
tion algorithm, then B perfectly simulates Game 2 for A, otherwise it simulates
Game 3. Thus, B’s advantage in the deletion indistinguishability game is at
least ε(λ), which is non-negligible and contradicts the deletion indistinguishabil-
ity security. ��
Lemma 6.7. Assuming the selective IND-CPA security of the deletable KP-
ABE DelABE holds and the deletion conforming CPRF DCCPRF satisfies circuit
evaluation property, then for any PPT adversary A, there exists a negligible
function negl3(·), such that for all λ,N ∈ N, we have that Adv3A(λ) ≤ negl3(λ).

Proof. Suppose there exists an adversary A and a non-negligible function ε(·)
such that Adv3A(λ) ≥ ε(λ), then we construct a reduction algorithm B such that
B has non-negligible advantage in the selective IND-CPA game of the deletable
KP-ABE. Below we describe our reduction algorithm B.

– In the setup phase, B first samples a CPRF master key as prf.msk ←
PRF.Setup(1λ, 1N), and sends prf.msk as its challenge attribute to the selec-
tive IND-CPA challenger D. The challenger runs DelABE.Setup and sends the
deletable public parameters del.pp to B. B simply forwards del.pp to A as
the CP-ABE public parameters.

336 R. Goyal et al.

– In the pre-challenge query phase, when A sends a key query on attribute x to
B, B computes tx = PRF.Eval(prf.msk, x) and generates the circuit fx,tx

using
x and tx. Next, B sends secret key query on predicate fx,tx

to the challenger
D. D replies B’s query with sk and B forwards sk to A as the secret key for
attribute x.

– In the challenge phase, A sends the predicate function f∗ and mes-
sages m0,m1 to B. B sends (m0,m1) to D. Let ct′ denote the KP-ABE
challenge ciphertext sent by D. B first computes the index set If∗ =
PRF.DeleteFunc(1λ, 1N , f∗), and then computes challenge ciphertext as ct∗ ←
DelABE.Delete(del.pp, ct′, If∗). B sends ct∗ to A as its challenge ciphertext.

– The post-challenge phase is identical to the pre-challenge query phase. Finally,
A outputs its guess b′, and B outputs the same bit b′ as its guess.

First, note that for each key query on attribute x made by A, we have that
Cx(prf.msk) = PRF.Eval(prf.msk, x). This follows from the circuit evaluation
property of the deletion conforming CPRF. Since tx = PRF.Eval(prf.msk, x),
thus by definition of the circuit fx,tx

(see Eq. (1)), we have that fx,tx
(prf.msk) =

0 for every attribute x. Thus, the reduction algorithm B is an admissible adver-
sary in the selective IND-CPA game. Next, observe that B perfectly simulates
Game 3 for A, therefore B’s advantage in the selective IND-CPA game is at least
ε(λ), which is non-negligible and contradicts the selective IND-CPA security of
the deletable KP-ABE system. ��
Combining Lemmas 6.4 to 6.7, the Theorem 6.3 follows. ��

7 Deletable ABE from Standard Assumptions

In this section we show that [19] is already a KP-ABE scheme with deletable
attributes. First, we show that the KP-ABE schemes for monotone access struc-
tures in [19] have efficient deletion algorithms such that the resulting scheme
satisfies both the semantic security as well deletion indistinguishability prop-
erties. Later on, we briefly elaborate the well-known approach for building a
KP-ABE scheme for NC1 (i.e., log-depth circuits) from any KP-ABE scheme
for monotone access structures, and describe that it preserves the deletion prop-
erty of the underlying system.

7.1 Deletable ABE from Bilinear Maps Via [19]

Goyal et al. (GPSW) [19] proposed a KP-ABE scheme for monotone access
structures and proved its security under the Decisional Bilinear Diffie-Hellman
(DBDH) assumption [3]. Here we show that the GPSW scheme, described in [19,
Section 4], is also a deletable KP-ABE scheme for the same predicate class. Let
GPSW = (Setup,KeyGen,Enc,Dec) represent the KP-ABE construction provided
in [19, Section 4]. Formally, they proved the following.

Adaptive Security via Deletion in Attribute-Based Encryption 337

Theorem 7.1 ([19, Theorem 1, Paraphrased]). If the Decisional Bilinear
Diffie-Hellman (DBDH) assumption holds, then the scheme GPSW is a selec-
tive IND-CPA secure scheme as per Definition 3.2.

Now we describe a simple deletion algorithm for the GPSW scheme, and
argue that the augmented GPSW scheme satisfies all the required properties
described in Sect. 3. We start by briefly discussing some notational changes that
we make to the GPSW syntax.

Notation. For consistency with our ABE definitions, we interpret the attribute
string as a bit string x ∈ {0, 1}n, where as is the GPSW construction [19,
Section 4] the attribute was parsed as a set of subset of the attribute universe
U = {1, 2, . . . , n}. Here n denotes the length of the attributes selected during
system setup. Note that this is mostly a syntactic change, and does not affect
the GPSW scheme in any significant way.

Below we recall the Setup and Enc algorithms as provided in [19, Section 4], and
also describe our Delete algorithm.

Setup(1λ, 1n) → (pp,msk). The setup algorithm chooses a bilinear group G1 of
prime order p. Let g denote the generator of the group G1, and e : G1×G1 →
G2 be associated the bilinear map. It chooses a random key exponent α ∈ Zp,
and also chooses a random exponent per bit position of the attribute, that is
ti ← Zp for i ∈ [n].
It outputs the public parameters and master secret key as pp =
(g, e(g, g)α, {gti}i∈[n]) and msk = (α, {ti}i∈[n]).14

Enc(pp, x,m) → ct. The encryption algorithm parses the public parameters as
pp = (g,K, {Ti}i∈[n]), and an attribute x ∈ {0, 1}n. It chooses a random
exponent s ∈ Zp, and publishes the ciphertext as

ct = (x,m · Ks, {T s
i }i∈[n]:xi=1).

Encrypting to Attributes with ⊥ Symbols. First, note that in the GPSW encryp-
tion algorithm the input attribute string x is a binary string, that is x ∈ {0, 1}n.
However, in our deletable ABE framework, we allow the encryptor to choose
attributes with ⊥ symbols, thus the attribute string x now lies in {0, 1,⊥}n

instead of {0, 1}n. Now our augmented encryption algorithm is identical to the
above encryption algorithm, that is the ciphertext is computed as

ct = (x,m · Ks, {T s
i }i∈[n]:xi=1).

Note that previously the algorithm does not compute T s
i for all i wherever

xi = 0. Now the augmented encryption algorithm also does not compute T s
i for

all i wherever xi = ⊥. That is, it treats ⊥ symbols as a 0 bit during encryp-
tion. Therefore, the deletion algorithm can simply delete the T s

i terms from
the ciphertext wherever i ∈ I to compute a corresponding deleted ciphertext.
Formally, we describe it below.
14 The parameters also contain the bilinear map parameters, but here we don’t explic-

itly write it for simplicity.

338 R. Goyal et al.

Delete(pp, ct, I) → ct′. The algorithm parses the ciphertext as ct =
(x,E′, {Ei}i∈[n]:xi=1). It sets the output ciphertext ct′ as

ct′ = (Restrict(x, I), E′, {Ei}i∈[n]\I: xi=1).

Deletion Indistinguishability. First, we show that the augmented GPSW scheme
AugGPSW = (Setup,KeyGen,Enc,Dec,Delete) satisfies the deletion indistin-
guishability property. Below we prove a much stronger statement which in turn
implies deletion indistinguishability. Intuitively, we argue that, for every choice
of system parameters, the distribution of a freshly encrypted ciphertext and a
(corresponding) deleted ciphertext are identical.

Lemma 7.2. For every λ, n ∈ N, parameters (pp,msk) ← Setup(1λ, 1n),
attribute x ∈ {0, 1}n, message m ∈ M, and index set I ∈ [n], the following
two distributions are identical:

D1 =
{
ct :

x′ = Restrict(x, I)
ct ← Enc(pp, x′,m)

}
, D2 =

{
ct′ :

ct ← Enc(pp, x,m)
ct′ ← Delete(pp, ct, I)

}
.

That is, D1 ≡ D2.

Proof. The proof of this lemma immediately follows by inspection of the encryp-
tion and deletion algorithms described above. Consider any λ, n, key pair
(pp,msk), attribute x, message m and index set I. First, note that the dis-
tributions D1 and D2 can be expanded as follows:

D1 =
{
(x′, m · Ks, {T s

i }i∈S1) : x′ = Restrict(x, I), s ← Zp, S1 =
{
i ∈ [n] : x′

i = 1
}}

,

D2 =
{
(x′, m · Ks, {T s

i }i∈S2) : x′ = Restrict(x, I), s ← Zp, S2 = {i ∈ [n] \ I : xi = 1}}
.

Recall by definition of Restrict, we have that x′
i = 1 if and only if xi = 1 and

i /∈ I. Therefore, it follows that D1 ≡ D2. ��

Correctness. Note that since a deleted ciphertext is identically distributed to a
freshly encrypted ciphertext, and also GPSW is a perfectly correct ABE scheme,
thus correctness of our AugGPSW scheme follows.

Selective IND-CPA Security. Note that even though in our scheme, attribute
vectors could contain ⊥ symbols (i.e., lie in {0, 1,⊥}n), the IND-CPA attacker is
only allowed to specify a binary string as a challenge attribute (i.e., it must lie in
{0, 1}n) in the selective security game (Definition 3.2). Therefore, the selective
IND-CPA security proof of AugGPSW follows from selective IND-CPA security
proof of GPSW.

Hence, combining above facts, Lemma 7.2 and Theorem 7.1, we obtain the fol-
lowing:

Theorem 7.3. If the Decisional Bilinear Diffie-Hellman (DBDH) assumption
holds, then the scheme AugGPSW is a KP-ABE scheme with deletable attributes
that satisfies selective IND-CPA security as well as deletion indistinguishability
(Definitions 3.2 and 3.3).

Adaptive Security via Deletion in Attribute-Based Encryption 339

Also, later on in the full version we describe how to get deletable ABE from
Computational Bilinear Diffie-Hellman (CBDH) assumption. It follows from a
straightforward use of hardcore predicate on top of the GPSW scheme.

7.2 Deletable ABE: Monotonic Access Structures to NC1

Suppose we start with a KP-ABE scheme for arbitrary polynomial-sized mono-
tone boolean formulas, then there is a well-known folklore transformation that
gives us a KP-ABE scheme for log-depth circuits (NC1) generically from the
underlying scheme. The idea can be described as follows. First, the key gen-
eration algorithm, on input a log-depth (non-monotone) circuit C, generates a
polynomial-sized (non-monotone) boolean formula fC that evaluates the same
circuit. (Note that size of the formula fC grows exponentially with the depth
of circuit C, thus the same transformation does not work for larger depth cir-
cuits.) Now the formula fC is a possibly non-monotone boolean formula, thus
it could apply negation (¬) gates on non-atomic formulae. Next, one using De
Morgan’s identities can translate the non-monotone boolean formula fC into
another formula f̃C such that in the description of formula f̃C , negation gates
are only applied on input wires. In other words, formula f̃C can alternatively be
interpreted as a monotone boolean formula being applied on the literals. (Recall
that a literal is an atomic formula or its negation, i.e. either an input wire or its
negation). With this observation, one could use KP-ABE scheme for monotone
boolean formulas to obtain a KP-ABE scheme for NC1.

A more concrete description of above transformation is provided later in the
full version.

References

1. Agrawal, S., Biswas, R., Nishimaki, R., Xagawa, K., Xie, X., Yamada, S.: Attacks
on Boyen’s attribute-based encryption scheme in TCC 2013. Pers. Commun. (2020)

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

4. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

5. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

6. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 8

https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-642-36594-2_8

340 R. Goyal et al.

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

8. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 13

9. Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S.: Constrained PRFs for
bit-fixing (and more) from OWFs with adaptive security and constant collusion
resistance. Cryptology ePrint Archive, Report 2018/982 (2018)

10. Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adap-
tively secure constrained pseudorandom functions in the standard model. In: Mic-
ciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 559–589.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 19

11. Diffie, W., Hellman, M.E.: New directions in cryptography (1976)
12. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-

denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11761679 27

13. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: TCC (2009)

14. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC (2013)

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

17. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 14

18. Goyal, R., Liu, J., Waters, B.: Adaptive security via deletion in attribute-based
encryption: solutions from search assumptions in bilinear groups. Cryptology
ePrint Archive, Report 2021/343 (2021). https://ia.cr/2021/343

19. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006 (2006)

20. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Adaptively secure inner
product encryption from LWE. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020
(2020)

21. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: CCS (2013)

22. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

23. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-030-56784-2_19
https://doi.org/10.1007/11761679_27
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://ia.cr/2021/343
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_31

Adaptive Security via Deletion in Attribute-Based Encryption 341

24. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

25. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 4

26. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

28. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

29. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

30. Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 62–85.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 3

31. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

32. Wee, H.: Dual system encryption via predicate encodings. In: TCC (2014)

https://doi.org/10.1007/978-3-642-32009-5_12
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-030-26948-7_3
https://doi.org/10.1007/978-3-642-03356-8_36

Public Key Encryption with Flexible
Pattern Matching

Élie Bouscatié1,2(B), Guilhem Castagnos2(B), and Olivier Sanders1(B)

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
olivier.sanders@orange.com

2 Université de Bordeaux, INRIA, CNRS, IMB UMR 5251, 33405 Talence, France
elie.bouscatie@orange.com, guilhem.castagnos@math.u-bordeaux.fr

Abstract. Many interesting applications of pattern matching (e.g.
deep-packet inspection or medical data analysis) target very sensitive
data. In particular, spotting illegal behaviour in internet traffic conflicts
with legitimate privacy requirements, which usually forces users (e.g.
children, employees) to blindly trust an entity that fully decrypts their
traffic in the name of security.

The compromise between traffic analysis and privacy can be achieved
through searchable encryption. However, as the traffic data is a stream
and as the patterns to search are bound to evolve over time (e.g. new
virus signatures), these applications require a kind of searchable encryp-
tion that provides more flexibility than the classical schemes. We indeed
need to be able to search for patterns of variable sizes in an arbitrary
long stream that has potentially been encrypted prior to pattern iden-
tification. To stress these specificities, we call such a scheme a stream
encryption supporting pattern matching.

Recent papers use bilinear groups to provide public key construc-
tions supporting these features [3,13]. These solutions are lighter than
more generic ones (e.g. fully homomorphic encryption) while retaining
the adequate expressivity to support pattern matching without harming
privacy more than needed. However, all existing solutions in this family
have weaknesses with respect to efficiency and security that need to be
addressed. Regarding efficiency, their public key has a size linear in the
size of the alphabet, which can be quite large, in particular for appli-
cations that naturally process data as bytestrings. Regarding security,
they all rely on a very strong computational assumption that is both
interactive and specially tailored for this kind of scheme.

In this paper, we tackle these problems by providing two new construc-
tions using bilinear groups to support pattern matching on encrypted
streams. Our first construction shares the same strong assumption but
dramatically reduces the size of the public key by removing the depen-
dency on the size of the alphabet, while nearly halving the size of the
ciphertext. On a typical application with large patterns, our public key is
two order of magnitude smaller than the one of previous schemes, which
demonstrates the practicality of our approach. Our second construction
manages to retain most of the good features of the first one while exclu-
sively relying on a simple (static) variant of DDH, which solves the secu-
rity problem of previous works.

Keywords: Pattern matching · Searchable encryption

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 342–370, 2021.
https://doi.org/10.1007/978-3-030-92068-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_12

Public Key Encryption with Flexible Pattern Matching 343

1 Introduction

The increasing outsourcing of IT services allows companies to shift the burden
of managing their own infrastructure to some third parties but comes with many
challenges regarding privacy. Traditional encryption is of no help here as it would
prevent these third parties from providing their services. This has led cryptogra-
phers to propose countless encryption algorithms that are compatible with some
sets of functions, meaning that it is possible to evaluate these functions directly
on the ciphertexts, without having to decrypt the latter.

1.1 Related Works

As a rule of thumb, versatile systems supporting a large set of functions (e.g. [6,
15]) are the most complex ones, which has led to the design of encryption schemes
supporting a very specific function. One of the most prominent examples of this
approach is the one of searchable encryption (e.g. [1,4,12,18,22]) where some
entities have the ability to decide whether a ciphertext C contains a given pattern
(also called keyword) without decrypting C. Put differently, the ciphertext leaks
nothing but the presence (or absence) of the pattern. The popularity of this type
of encryption stems from the variety of applications that only need the ability
to search a pattern (e.g., DPI: deep packet inspection [13,21], external storage
[8], etc.) combined with the efficiency of most cryptographic schemes supporting
this feature. However, the fact that the latter are all presented as searchable
encryption schemes does not mean that they are similar. Actually, this is quite
the opposite as illustrated, for example, by the construction in [8] and the one
in [13].

Here, the differences lie not only in the choice of the security model or the
computational assumption underlying the construction, as it is usually the case
in cryptography, but also in the ability to index data before encryption. In the
case of external storage [8], it indeed seems reasonable to assume that each data
of a database can be associated with a set of appropriate keywords that will be
processed to ensure efficient queries on the encrypted database. Conversely, the
use-case of DPI of Internet traffic [13,21] can hardly assume indexation of sent
data. One should rather assume in this case that the data are encrypted on-
the-fly without being able to pre-process them. Moreover, as pointed out in [13],
there might be no obvious set of keywords to associate with the transmitted data.
Finally, in this case, the searched pattern/keyword can be located anywhere in
the encrypted stream, which precludes standard searchable encryption schemes
(e.g. [1]): We do not want to decide if a ciphertext C encrypts a given pattern
W but, instead, if C encrypts a message that contains W as a substring, which
is fundamentally different.

In this regard, the case of encrypted traffic, that we study in this paper,
is clearly the most complex one. To emphasize the difference with the scenar-
ios compatible with indexation, we will talk of Stream Encryption supporting
Pattern Matching (SEPM).

344 É. Bouscatié et al.

More specifically, we will consider a simple but versatile use-case where a
receiver relies on a service provider to analyse the encrypted traffic he receives
from a sender. We assume that this service requires to perform pattern matching
on the traffic, which is actually the case for several applications (e.g. DPI). As the
service provider is not fully trusted1, we do not want to share the decryption key
with it. Instead, the service provider will receive from the receiver specific trap-
doors that allow it to detect the presence of some patterns within the encrypted
streams.

To rehabilitate standard searchable encryption schemes, the first approach
to solve this problem was based on tokenization (e.g. [10,21]), a technique that
consists in splitting the stream to encrypt into overlapping substrings of some
fixed length �. Each substring S is then encrypted using a searchable encryption
scheme whereas trapdoors are issued for patterns W of size �. Thanks to the
property of searchable encryption, one can indeed decide if S = W , which solves
our problem as long as all searched patterns have the same size �. Unfortunately,
this approach inherently suffers from at least one of the following downsides, as
explained in [13]: lack of expressivity if one considers only one possible substring
length �, lack of privacy if one splits the genuine patterns into several subpatterns
of the same size or lack of efficiency if one repeats the process for each possible
pattern length.

One could solve the expressivity issue by using instead predicate/functional
encryption with some additional privacy features, such as e.g. anonymous predi-
cate encryption [16] or hidden vector encryption [7]. A symmetric alternative was
also recently proposed in [17]. Unfortunately, these solutions inherently require
to provide a trapdoor for each possible position of a given pattern within the
stream, which is a real problem in our case as the stream can be of any length.
As explained in [13], one would then have to define a sufficiently large upper
bound on this length and then generate a very large number of trapdoors (e.g.
1 billion for a 1 GB stream) for each pattern. In the symmetric setting, one
could leverage efficient schemes (e.g. [17,23]) to argue that each trapdoor can be
relatively small but, in this case, a new key (and hence new trapdoors) must be
generated for each communication, which quickly becomes cumbersome. More
generally, the public key setting seems more suitable in our case as it allows to
generate universal trapdoors that can be used to analyse the traffic with any
sender.

To circumvent all these problems, the authors of [13] proposed a new app-
roach that allows to search patterns of any size with constant-size trapdoor.
Intuitively, the core idea of this scheme is to encrypt the stream character by
character by generating group elements whose exponent is αbz

i where αb is a
secret encoding of the character b and zi is a secret monomial encoding the posi-
tion i of this character within the stream. Aggregating these elements leads to
polynomials that can be identified with appropriate trapdoors. Unfortunately,
these nice features come at the cost of three major weaknesses:

1 More specifically, the service provider is trusted to provide the requested service but
it should only learn the information necessary to carry out its task.

Public Key Encryption with Flexible Pattern Matching 345

1. The security of [13] requires secrecy of all the elements αb and z cited above.
As the sender needs this information to encrypt the stream, the solution
chosen by the authors is to provide the group elements gαbzi

in the public
key for every possible position i and character b in the alphabet. The size of
the public key thus significantly increases with the ones of the stream and of
the alphabet, which quickly becomes cumbersome.

2. The polynomial construction of the trapdoors uses coefficients that have to be
fresh, at least for different occurrences of the same character. The consequence
is that the number of pairings needed for a test at some position is linear in
the maximum occurrence of a same symbol in the pattern, which significantly
increases the computational cost of the pattern detection procedure.

3. The security analysis of [13] was only made under a very strong, ad-hoc
interactive assumption (i-GDH) that is likely to be necessary, as explained by
the authors.

Very recently, [3] addresses some of the problems above by introducing a frag-
mentation approach that consists in splitting the stream into non-overlapping
fragments Fh and into other non-overlapping fragments Fh that straddle the
former. This technique will be explained in more details in Sect. 4.1 but intu-
itively this is done in such a way that any searched pattern is entirely contained
by a fragment Fh or Fh. The main advantage of this technique, that can actu-
ally be applied to [13] or any similar schemes, is that it reduces the problem of
encrypting large strings to the one of encrypting several small fragments, which
significantly reduces the size of the public key.

Based on this fragmentation approach, the authors of [3] propose a construc-
tion that allows to test the presence of one pattern at one position for a constant
cost of 2 pairings. Moreover the dependency of the public key on the length of
the string is replaced by a fixed upper bound on the length of the keywords to
be searched, which is indeed much smaller in the context of DPI. But this con-
struction uses twice as many ciphertext elements as in [13] and shares several
features with it, including the fact that security still relies on the interactive
i-GDH assumption and that the public key depends linearly on the size of the
alphabet. The authors of [3] also consider the notion of pattern privacy, meaning
that the trapdoors should not reveal the corresponding pattern but, as already
noted in [13], it is very hard to retain this property for this kind of schemes,
which leads to a security model in [3] that seems a bit contrived. Moreover, in
the asymmetric setting that we consider here, this property can only be achieved
for patterns originating from a high min-entropy set as in [5]. A look at some
open-source list of patterns2 shows that this assumption does not hold, at least
for the DPI use-case. In this paper, we will therefore not consider this outlying
property that would only make our security model more complex.

2 e.g. https://github.com/coreruleset/coreruleset.

https://github.com/coreruleset/coreruleset

346 É. Bouscatié et al.

1.2 Our Contributions

If we sum up the state-of-the-art of SEPM, there are two main areas of progress:
performance and security. We propose to improve both with two related con-
structions that solve the previous problems one after the other.

Improving Efficiency. From the efficiency standpoint, we note that [3] man-
ages to reduce the size of the public key and the complexity of the detection
procedure, compared to [13], but at the cost of ciphertexts containing twice as
many elements. Moreover, if L is the size of the fragments and S is the plaintext
alphabet (that is, we encrypt strings of characters b ∈ S) the public key of [3] is
essentially of size L|S|, which remains quite important for many use-cases. For
example, in the DPI context, it is natural to consider bytestrings which means
that |S| = 256. At first sight, it could be tempting to consider smaller alphabets,
e.g., bits instead of bytes, but this would lead to larger fragments that would
result in a significant expansion of the ciphertext (eight-fold if we use bits instead
of bytes) and that would reduce the gain regarding the public key.

In our first construction, we completely depart from the polynomial approach
used in [3,13] to fully leverage the fragmentation approach. More specifically, we
note that the geometric basis zi introduced in [13] and taken over by [3] is no
longer required thanks to fragmentation. This allows us to design a new con-
struction that looks more natural and that reduces the size of the ciphertext to
nearly half the one in [3]. Interestingly, the resulting ciphertexts are essentially
signatures on the characters to encrypt for some aggregatable signature scheme
[19]. Intuitively, aggregatability of the signatures will ensure correctness of the
construction as one will be able to combine different ciphertext elements to recon-
struct (encrypted) patterns that can be tested with the appropriate trapdoors.
At the same time, unforgeability of the signatures will ensure non-malleability
of the ciphertexts and hence security of the whole construction.

Moreover, thanks to our approach, we can replace the secret character encod-
ing αb used in previous works by public elements of Zp (that act as the signed
messages for [19]), which leads to shorter public keys that no longer depend on
the size of the alphabet.

Table 1 highlights the benefits of our first construction compared to the state-
of-the-art. Although the gain consists in some multiplicative factors that could
get lost in a O(·) notation, we stress that these factors have important conse-
quences in practice. For example, if we take over the concrete parameters con-
sidered in [3], we show in Sect. 6 that we end up with a public key of 1.92 MB
instead of 247 MB. For real-world applications, there is a significant difference
between these two sizes as the latter would probably be impractical for many
use-cases.

Improving Security. Our first construction only focuses on efficiency but does
not consider the issue of previous works regarding security, namely the reliance
on interactive ad-hoc assumptions. Actually, it still requires the i-GDH assump-
tion, which is not very satisfying.

Public Key Encryption with Flexible Pattern Matching 347

In our second construction, we tackle this problem by designing a scheme
relying on a static assumption, EXDH, that is a simple variant of the DDH
assumption. Actually, this assumption has already been used to construct an e-
cash system in [11], which gives more confidence in the hardness of the underlying
computational problem.

Here, the main difficulty is to modify our original scheme so as to rely on
this static assumption while limiting the impact on the performance. This is
particularly difficult because we consider a very strong security model where the
adversary is able to query any trapdoor that does not allow to trivially succeed in
the security experiment. In particular, we allow the adversary to query trapdoors
that match the challenge streams, which makes simulation much harder, as we
will explain in Sect. 4.

We nevertheless manage to deal with these various queries with a simple
assumption by essentially adding two elements per character in the ciphertext.
Regarding the size of the latter, this brings us back to the state-of-the-art [3]
but our second construction has two main advantages. Firstly, it retains a short
public key that still does not depend on the size of the alphabet. Secondly,
it relies on a static assumption, which is a significant improvement over other
schemes.

Summary of Contributions. Table 1 provides a comparison between our con-
structions and [3,13] with respect to the main metrics of such schemes. A more
detailed complexity analysis can be found in Sect. 6.

This table shows that our first construction yields significantly shorter pub-
lic keys while roughly halving the size of the ciphertext compared to [3]. It is
done without decreasing the performance of the Test procedure (i.e. patterns
detection). This is therefore the most suitable solution if one favours efficiency.

Our second construction reports lesser performance (but still better than the
state-of-the-art for several metrics) but relies on a static computational assump-
tion, which is noticeable compared to previous constructions. This is the current
best solution if one favours security.

Table 1. Comparison with related works. The scalars |S| and n denote respectively the
number of elements in the plaintext alphabet and the length of the traffic to encrypt.
L stands for the length of the longest pattern queried in SEST and for an upper bound
on this value in the other schemes.

Schemes

SEST ([13]) AS3E([3]) Sect. 4.3 Sect. 4.4

Public Key (nb. elements) n(|S| + 1) 2L(|S| + 1) 4L 6L

Ciphertext (nb. elements) 2n 4n 2n +
n

L
4n +

n

L
Trapdoor (nb. elements) L + 2 2L 2L 3L

Test (nb. pairings) n(L + 2) 2n 2n 3n

Computational assumption interactive interactive interactive static

348 É. Bouscatié et al.

Outline. In Sect. 2 we provide the necessary background on bilinear groups
along with the description of the computational assumptions used in our paper.
Section 3 is dedicated to the syntax and the security model of SEPM. Our con-
structions are described in Sect. 4 and then proven secure in Sect. 5. Finally, we
give a complexity analysis in Sect. 6.

2 Preliminaries

2.1 Bilinear Groups

Our construction requires bilinear groups whose definition is recalled below.

Definition 1. Bilinear groups are a set of three groups G1, G2, and GT of prime
order p along with a map, called pairing, e : G1 × G2 → GT that is

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;
2. non-degenerate: for any (g, g̃) ∈ G1 × G2, (g, g̃) �= (1G1 , 1G2), e(g, g̃) �= 1GT

;
3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

As most recent cryptographic papers, we only consider bilinear groups of
prime order with type 3 pairings [14], meaning that no efficiently computable
homomorphism is known between G1 and G2.

2.2 Decisional Assumptions

We now introduce the decisional assumptions underlying the security of our
constructions.

Definition 2 (i-GDH assumption [13]). Let r, s, t, c and κ be five positive
integers and R ∈ Zp[X1, . . . , Xc]r, S ∈ Zp[X1, . . . , Xc]s and T ∈ Zp[X1, . . . , Xc]t

be three tuples of multivariate polynomials over Zp. For any polynomial f ∈
Zp[X1, . . . , Xc], we say that f is dependent on < R, S, T > if there are {aj}s

j=1 ∈
Z

s
p \ {(0, . . . , 0)}, {bi,j}i=r,j=s

i,j=1 ∈ Z
r·s
p and {ck}t

k=1 ∈ Z
t
p such that

f
∑

i

ajS
(j) =

∑

i,j

bi,jR
(i)S(j) +

∑

k

ckT (k).

Let OR (resp. OS and OT) be oracles that, on input {{a(k)
i1,...,ic

}dk
i1,...,ic=0}κ

k=1, add

the polynomials { ∑

i1,...,ic

a
(k)
i1,...,ic

∏

j

X
ij

j }κ
k=1 to R (resp. S and T).

Let (χ1, . . . , χc)
$←− Z

c
p be a secret vector and qR (resp. qS and qT) be the number of

queries to OR (resp. OS) (resp. OT). The i-GDH assumption states that, given the
values {gR(i)(χ1,...,χc)}r+κqR

i=1 , {g̃S(i)(χ1,...,χc)}s+κqS
i=1 and {e(g, g̃)T (i)(χ1,...,χc)}t+κqT

i=1 ,
it is hard to decide whether ζ = gf(χ1,...,χc) or ζ uniform in G1 if f is independent
of < R, S, T >.

Public Key Encryption with Flexible Pattern Matching 349

This strong assumption has been introduced in [13] and used in a subsequent
work [3]. We only use it in our first protocol and show how to replace it by the
following static assumption in our second protocol.

Definition 3 (EXDH assumption [11]). Given g, ga, gab, gc ∈ G1 and
g̃, g̃a, g̃b ∈ G2, it is hard to decide whether ζ = gabc or ζ is uniform in G1.

This assumption was used in [11] to construct an e-cash system. In that work,
it was called the weak-EXDH assumption because the authors also consider a
stronger variant of this assumption. In this paper, we simply call it the EXDH
assumption as we only need this weak variant. It only holds for type 3 bilinear
groups.

3 Stream Encryption Supporting Pattern Matching
(SEPM)

Notation. For two integers a < b, we let �a, b�= {i ∈ N : a ≤ i < b}, or simply

�b� if a = 0. For a finite set S, we use the notation x
$←− S to say that x is chosen

uniformly at random in S.
In this paper, we consider entities exchanging data that are represented as

sequences of characters that we call strings. These characters may originate from
different sets/alphabets (e.g. {0, 1} for bitstrings, {0, 1}8 for bytestrings, etc.)
but for sake of simplicity we assume that each of them can be associated with a
unique element of Zp, for some large prime p. For most cases, this mapping φ is
straightforward, for example:

– {0, 1} φ→ Zp with φ(b) = b ∈ Zp

– {0, 1}8 φ→ Zp with φ(b7, . . . , b0) =
∑7

i=0 bi2i ∈ Zp

In the worst case, it is always possible to define a correspondence table so we
can consider strings of elements of Zp without loss of generality. Finally, as in
previous works (e.g. [3,13]), we will consider a wildcard character � that matches
all characters. Therefore, all data considered in this paper are assumed to be
strings of characters in Zp ∪ {�}. For a string W = (w0, . . . , w�−1) ∈ (Zp ∪ {�})�

of length � ∈ N, we let supp(W) = {j ∈ ���: wj �= �}.

3.1 Definition

We adapt the syntax and security of SEST [13] by setting an upper bound L on
the length of the keywords for which trapdoors may be issued. Contrary to that
work, our syntax does not require to define an upper bound on the length of the
stream to be encrypted.

A stream encryption scheme that supports pattern matching (SEPM) is
defined by 5 algorithms that we call Setup, Keygen, Issue, Encrypt and Test.
The first three of these are run by an entity called the receiver, while Encrypt
is run by a sender and Test by a gateway.

350 É. Bouscatié et al.

– Setup(1λ, L): This probabilistic algorithm takes as input a security parameter
λ and an upper bound L on the length of the keywords for which trapdoors
may be issued. It returns the public parameters pp that will be considered as
an implicit input of all other algorithms and so will be omitted.

– Keygen(): This probabilistic algorithm run by the receiver returns a key pair
(sk, pk). The former value is secret and only known to the receiver, while the
latter is public.

– Issue(W, sk): This probabilistic algorithm takes as input the receiver’s secret
key along with a string W = (w0, . . . , w�−1) ∈ (Zp ∪ {�})� of any size � ≤ L
and returns a trapdoor TDW .

– Encrypt(M, pk): This probabilistic algorithm takes as input the receiver’s
public key along with a string M = (m0, . . . ,mn−1) ∈ Z

n
p of any size n and

returns a ciphertext C.
– Test(C,W,TDW): This deterministic algorithm takes as input a ciphertext

C encrypting a string M = (m0, . . . ,mn−1) ∈ Z
n
p of any size n along with

a trapdoor TDW for a string W = (w0, . . . , w�−1) ∈ (Zp ∪ {�})� of any size
� ≤ L. It returns the set (potentially empty) Match ⊂ �n� of all indexes i s.t.
for all k ∈ supp(W), wk = mi+k.

As in recent schemes, [3,13], and more generally in searchable encryption,
[1,7], our definition of SEPM does not consider a decryption algorithm: this
functionality can easily be added by also encrypting the stream under a conven-
tional encryption scheme. However, decryption could be performed in an SEPM
by issuing a trapdoor for all characters of Zp and running the Test algorithm
on the ciphertext for each of them.

3.2 Security Model

Correctness. As in [1], we divide correctness into two parts. The first one
stipulates that the Test algorithm run on (C,W,TDW) will always return i if
W matches M at index i (no false negatives). More formally, this means that,
for any string M of size n and any W of length � ≤ min(n,L):

(∀k ∈ supp(W),mi+k = wk)
⇒ Pr[i ∈ Test(Encrypt(M, pk),W, Issue(W, sk))] = 1,

where the probability is taken over the set of key-pairs (sk, pk).
The second part of the correctness property requires that false positives (i.e.,

when the Test algorithm returns i despite the fact that W doesn’t match M at
this position) only occur with negligible probability. More formally, this means
that, for any string M of size n and any W of length � ≤ min(n,L):

(∃k ∈ supp(W),mi+k �= wk)
⇒ Pr[i ∈ Test(Encrypt(M, pk),W, Issue(W, sk))] = μ(λ)

where the probability is taken over the set of key-pairs (sk, pk) and μ is a negli-
gible function.

Public Key Encryption with Flexible Pattern Matching 351

Selective Indistinguishability (sIND-CPA). We use the notion of selective
indistinguishability defined in [13] which is adapted to be consistent with the
slight modifications we introduce in the syntax.

Informally, this notion requires that no adversary A, having committed to
M (0) and M (1) before seeing pk, can decide whether a ciphertext C encrypts M (0)

or M (1), even with access to an oracle returning a trapdoor TDW for any queried
string W that does not allow to trivially distinguish these two strings. This is
formally defined by the experiment Expsind−cpa

A (1λ, L) described in Fig. 1. Here,
OIssue returns TDW ← Issue(W, sk) when queried on W = (w0, . . . , w�−1)
with � ≤ L, unless there are i ∈ �n − �� and b ∈ {0, 1} with

(∀k ∈ supp(W),m(b)
i+k = wk) ∧ (∃k ∈ supp(W),m(1−b)

i+k �= wk).

This is a natural restriction as TDW would allow to trivially win this exper-
iment for such W . We nevertheless stress that OIssue can be queried with
patterns W matching both M (0) and M (1). Finally, we require that M (0) and
M (1) be of the same size because the corresponding ciphertexts would be triv-
ially distinguishable otherwise. This restriction could however be lifted by using
some padding technique to generate constant-size ciphertexts.

Exp
sind−cpa
A (1λ, L)

1. pp ← Setup(1λ, L)
2. (M (0), M (1)) ← A, with M (b) = (m(b)

0 , . . . , m
(b)
n−1) for b ∈ {0, 1} and n ∈ N

3. pk ← Keygen()

4. β
$←− {0, 1}

5. C ← Encrypt(M (β), pk)
6. β ← AOIssue(C, pk)
7. If β = β then return 1, else return 0.

Fig. 1. sIND-CPA Security Game

We define the advantage of an adversary A in Expsind−cpa
A (1λ, L) as

Advsind−cpa
A (1λ, L) =

∣

∣

∣

∣

Pr[Expsind−cpa
A (1λ, L) = 1] − 1

2

∣

∣

∣

∣

.

A stream encryption scheme that is searchable for pattern matching is sIND-
CPA secure if this advantage is negligible for any polynomial-time adversary.

4 Our Constructions

Before explaining how our constructions work, we first recall the fragmentation
technique introduced in [3] that we slightly simplify for ease of exposition.

352 É. Bouscatié et al.

4.1 Fragmentation

Let n be the length of the string to be encrypted and L ≥ 2 be the upper bound
on the length of the patterns to search. We set dF := L − 1 and sF := 2dF . We
suppose for simplicity that there exists an integer nF such that n = (2nF +1)dF .
Note that we can always fulfil this requirement by adding dummy characters to
the string to encrypt. See also the remark at the end of this subsection.

For all h ∈ �nF�, we call Fh = �sFh, sF (h + 1)� a fragment and we call
Fh = �sFh + dF , sF (h + 1) + dF � an overlined fragment. Hence, nF is the num-
ber of fragments (or overlined ones), sF is their length and dF is the offset
between fragments and overlined ones.

A remarkable property of this construction is that for any integer � ≤ L and
any index i ∈ �n − ��, the set of � consecutive integers �i, i + �� is contained in
at least an (overlined) fragment.

• • • • • •

F0 F1

F0 F1

0

dF

2dF

3dF

4dF

5dF • • •
n − 3dF

n − 2dF

n − dF

nF

FnF−1

FnF−1

Fig. 2. Fragmentation of �n� with n = (2nF + 1)dF

For all i ∈ �n�, we define frag(i), pos(i), frag(i) and pos(i) by

i = sFfrag(i) + pos(i), with 0 ≤ pos(i) < sF
i − L = sFfrag(i) + pos(i), with 0 ≤ pos(i) < sF .

In other words, (frag(i), pos(i)) is the (quotient, remainder) pair of the
euclidean division of i by sF and so is (frag(i), pos(i)) for the division of i − L
by sF . Thus, frag(i) (resp. frag(i)) is the index of the fragment that contains i
and pos(i) (resp. pos(i)) is the position of i inside Ffrag(i) (resp. Ffrag(i)).

Remarks. A benefit of this fragmentation approach is that one does not need
to define a bound on the length of the strings to encrypt. One can indeed
encrypt strings of arbitrary length by processing each fragment independently.
Conversely, [13] requires to define a maximal length n at the setup phase. Tech-
nically, it would be possible in [13] to split the string to encrypt into fragments
of size n so as to be able to support strings of any size. Unfortunately, this
would harm correctness of the resulting scheme because patterns straddling two
fragments would be undetectable. In this respect, the fragmentation approach is
perfectly suited to stream encryption.

Another remark is that, with this fragmentation approach, the precise knowl-
edge of n and the number of fragment nF is not needed in practice to encrypt the

Public Key Encryption with Flexible Pattern Matching 353

data. Theses values are indeed only necessary for formal definition of our con-
struction so as to correctly index each fragment. As a result one can drop in prac-
tice the condition n = (2nF +1)dF , and process data as a stream cipher without
using dummy characters: one can pause encryption in the middle of a fragment
and resume it accordingly. However, for ease of exposition, we will suppose in
the following that n is known at encryption time and that n = (2nF + 1)dF .

4.2 Intuition of Our Constructions

As we explain in the introduction, the goal of our paper is twofold: we want to
propose a new scheme with a better complexity than the one of [3] but also to
rely on a much more reasonable computational assumption. This will be done
in two steps. In the first step, we only focus on efficiency and propose a very
simple construction that still requires an interactive assumption. In the second
step, we show how one can tweak the previous construction to rely on a static
assumption without significantly impacting performance.

First Construction. Let us first show how we can simplify the AS3E proto-
col of Bkakria et al. [3] so that the size of the encryption is nearly halved, all
other things being equal. In [3], each character mi is essentially encrypted as
{Ci, Ci, C

′
i, C

′
i} with

– Ci = (gzpos(i)
)afrag(i) and C ′

i = (gα′
mi

(αmi
z)pos(i)

)afrag(i) , where α′
mi

and αmi
are

secret values representing the character mi, z is secret and afrag(i) is a random
scalar common to the whole fragment Ffrag(i);

– Ci and C′
i are generated similarly but for the overlined fragment Ffrag(i) con-

taining i.

This construction is thus clearly reminiscent of [13] where mi would be
encrypted as Ci = (gzpos(i)

)afrag(i) and C ′
i = (gα′

mi
(z)pos(i)

)afrag(i) if one used frag-
mentation in the original scheme. However, the use of monomials (zpos(i)) whose
degree depends on the position of the character within the stream was necessary
in [13] to achieve a specific property, namely the ability to shift trapdoor (that
is, a trapdoor can be used at any position). As we discuss in the introduction,
the fragmentation technique makes this property less interesting. Actually the
schemes proposed by Bkakria et al. do not achieve this property (they provide a
trapdoor for each possible position of the pattern), which questions the interest
of keeping the same structure as in [13].

By getting rid of this z element, it is possible to replace, for each fragment
Fh, the sF elements Ci by a single element Ch = gah bearing the randomness
ah used for all elements C ′

i with i ∈ Fh (i.e. frag(i) = h), which roughly halves
the size of the ciphertext. We can also simplify this way the elements C ′

i by
setting C ′

i = (gαpos(i),mi)afrag(i) where αpos(i),mi
is a secret scalar encoding both

the character mi and its position pos(i) within the fragment.

354 É. Bouscatié et al.

We give the shape of such an encryption for very small fragments. When this
technique is used to encrypt a message M = (m0,m1, . . . ,m13) with fragments
of size sF = 4, the sender chooses random elements a0, a1, a2 and a0, a1, a2 to
encrypt the fragments of M as follows:

M = (
a0

︷ ︸︸ ︷

m0,m1,
︸ ︷︷ ︸

a0

m2,m3,

a1
︷ ︸︸ ︷

m4,m5,
︸ ︷︷ ︸

a1

m6,m7,

a2
︷ ︸︸ ︷

m8,m9,
︸ ︷︷ ︸

a2

m10,m11,m12,m13).

The resulting ciphertext C is then:

C0 C1 C2

C ′
0 C ′

1 C ′
2 C ′

3 C ′
4 C ′

5 C ′
6 C ′

7 C ′
8 C ′

9 C ′
10 C ′

11 Null Null

Null Null C′
2 C′

3 C′
4 C′

5 C′
6 C′

7 C′
8 C′

9 C′
10 C′

11 C′
12 C′

13

C0 C1 C2

Once we have reduced the size of the ciphertext, we focus on the one of the
public key, which contained in [3] about 2L(|S| + 1) elements for an alphabet
S of size |S|. As we explain in Sect. 3, we can associate each character of the
alphabet with an element of Zp. One could then try to set C ′

i = ((gαpos(i))mi)afrag(i)

where αpos(i) would only encode the position pos(i) and where mi ∈ Zp is the
character to encrypt, but such a scheme would suffer from malleability. Indeed,
by raising C ′

i to the power mj/mi one could transform a ciphertext encrypting
mi into a ciphertext encrypting mj and so could use, for example, a legitimate
trapdoor for mj to detect mi. In other words, a SEPM scheme cannot be secure
if it is malleable. Our first construction solves this problem by setting C ′

i =
(gxpos(i)(gypos(i))mi)afrag(i) where xpos(i) and ypos(i) are secret values specific to the
position pos(i). One can indeed note that C ′

i is essentially a PS signature [19] on
mi generated with secret keys (xpos(i), ypos(i)). Non-malleability of the ciphertext
thus intuitively results from the unforgeability of PS signatures.

In this regard, it seems logical that the security of our first construction relies
on a strong computational assumption (PS signatures were essentially proven in
the generic group model). Following [3,13], we indeed prove security under the
i-GDH assumption from [13], which is not really satisfactory. The goal of our
second construction is to retain as much as possible the core idea (and thus the
efficiency) of our new protocol while relying on a more reasonable assumption.

Second Construction. To understand why the previous construction is
unlikely to rely on a static assumption, we need to briefly explain how its Test
procedure works. As we have explained, a ciphertext element C ′

i encrypting
a character mi at index i is a group element gafrag(i) ∈ G1 raised to a power
xpos(i) + miypos(i). By multiplying these C ′

i together for i ∈ I, where I is a
subset of a fragment Fh, we get the Ch ∈ G1 element raised to the power
∑

i∈I(xpos(i) + miypos(i)). By providing a mirror element in G2, that is, an ele-
ment g̃

∑
i∈I(xpos(i)+miypos(i)) for some g̃ ∈ G2, we can easily check if the ciphertexts

Public Key Encryption with Flexible Pattern Matching 355

{C ′
i}i∈I encrypt {mi}i∈I thanks to the bilinearity of the pairing. Of course, there

are still several issues to address (we in particular need to prevent trapdoor forg-
eries) but the core idea remains the same.

The problem we face with such a construction is to deal with any trapdoor
query in the security proof. The constraints we place on the OIssue oracle in
Sect. 3.2 are indeed very mild so we must be able to generate trapdoors for
almost all possible patterns. Moreover, as our scheme has public keys, these
trapdoors must be valid since the adversary could test them on patterns that
it has encrypted itself. Concretely, this means that, in our proof, our simulator
must be able to generate the elements g̃

∑
i∈I(xpos(i)+miypos(i)) for almost all possible

values of mi.
Clearly, we would like some static assumption providing each pair

{g̃xpos(i) , g̃ypos(i)} separately. Unfortunately, this cannot work in our case. Indeed,
the proof uses a standard hybrid strategy where, at each step, the element
C ′

i∗ = (gxpos(i∗)(gypos(i∗))mi)afrag(i∗) encrypting the i∗-th character is replaced by
a random element. Given {g̃xpos(i∗) , g̃ypos(i∗)}, one could trivially detect this sub-
stitution because the ciphertext also contains gafrag(i∗) . This is why our first con-
struction, along with [3,13], uses the i-GDH assumption that is tailored to this
kind of schemes. This interactive assumption indeed provides an oracle that
can answer any trapdoor query by providing exactly the requested element
g̃

∑
i∈I(xpos(i)+miypos(i)). This way, the simulation is perfect without having to worry

about how these elements are computed concretely.
As the pair {g̃xpos(i∗) , g̃ypos(i∗)} must remain unknown, a better strategy is

to generate the pairs {g̃xpos(i) , g̃ypos(i)}, for i �= i∗, in such a way that the sum
∑

i∈I(xpos(i) + miypos(i)) can be computed without the knowledge of xpos(i∗) and
ypos(i∗). More concretely, this means that the pairs (xpos(i), ypos(i)), for i �= i∗,
must be able to cancel (xpos(i∗), ypos(i∗)) and so should be generated from the
same secret value (let us call it A) defining an instance of the computational
problem we have to solve. Unfortunately, here again, we pay the price of the
strong security model we consider in Sect. 3.2.

Indeed, as we allow the adversary to query trapdoors for patterns matching
the challenge ciphertext (contrarily to, e.g., [20]), all the ciphertext elements,
except C ′

i∗ , must be well formed. This means that it should be possible to essen-
tially compute gAafrag(i∗) to generate C ′

i, for i �= i∗ but, in the meantime, it should
be impossible to distinguish gAafrag(i∗) from randomness to ensure the validity of
our hybrid argument in position i∗.

To address this problem, without weakening our security model, we choose to
slightly modify our trapdoors by randomizing them with two different random
values s1 and s2. Concretely, our trapdoors will be of the form

g̃
∑

i∈I [s1(xpos(i)+miypos(i))+s2zpos(i)],

for some new scalars zpos(i) that will be defined by our public key. The only price
to pay is an increase in the size of the ciphertext that must now contain two
elements per position to match these two random values.

Intuitively, these two scalars will provide enough flexibility to cancel the
elements xpos(i∗) and ypos(i∗) without falling back on the previous problem. More

356 É. Bouscatié et al.

specifically, they will allow us to consider a slightly more complex computational
problem where A = ab, for some secret a and b, which allows us to construct
(xpos(i), ypos(i)) from a or b but not A = ab. This way, the challenge ciphertext
can be simulated without making the underlying computational problem trivial.
Moreover, the latter (called EXDH assumption, see Sect. 2) remains a simple
variant of the DDH assumption, which gives more confidence in its hardness,
in particular because it was already used in a previous paper [11] to design an
e-cash system.

In the end, our second construction manages to be proven under a static
assumption at the cost of a small increase in the ciphertext and trapdoors sizes,
compared to our first contribution. We believe this is a significant improvement
over the state-of-the-art [3,13] that required a tailored assumption.

4.3 Our First Protocol

– Setup(1λ, L): Let (G1,G2,GT , p, e) be the description of type 3 bilinear
groups. This algorithm selects g ∈ G1\{1G1}, g̃ ∈ G2\{1G2} and returns
as public parameters pp ← (G1,G2,GT , p, e, g, g̃, dF := L − 1, sF := 2dF).

– Keygen(): This algorithm chooses xk, yk
$←− Zp for all k ∈ �sF� and returns

sk := {(xk, yk)}k∈�sF � and pk := {(gxk , gyk)}k∈�sF �.
– Encrypt(M, pk): This algorithm parses M as (m0, . . . ,mn−1) ∈ Z

n
p and pk

as {(Xk, Yk)}k∈�sF �, selects ah, ah
$←− Zp for all h ∈ �nF �, where nF is

defined as in Section 4.1, i.e., n = (2nF + 1)dF , and returns the ciphertext
C := {{Ch, Ch}h∈�nF �, {(C ′

i, C
′
i)}i∈�n�} generated as follows:

Ch := gah , for h ∈ �nF �
For i ∈ �n − dF � :

C ′
i := (Xpos(i)(Ypos(i))mi)afrag(i)

For i ∈ �n − dF , n� :
C ′

i := Null

Ch := gah , for h ∈ �nF�
For i ∈ �dF , n� :

C′
i := (Xpos(i)(Ypos(i))mi)afrag(i)

For i ∈ �dF � :
C′

i := Null

– Issue(W, sk): On W = (w0, . . . , w�−1) ∈ (Zp ∪ {�})�, sk = {(xk, yk)}k∈�sF �,
� ≤ L, it runs:
For δ ∈ �sF − � + 1�:

s
$←− Zp , ̂W = (ŵ0, . . . , ŵsF −1) := (

δ
︷ ︸︸ ︷

�, . . . , �, w0, . . . , w�−1,

sF −�−δ
︷ ︸︸ ︷

�, . . . , �)

S := s
∑

k∈supp(Ŵ)

(xk + ykŵk), tdW,δ := {g̃s, g̃S}

Return TDW := {tdW,δ}δ∈�sF −�+1�

– Test(C,W,TDW): This algorithm uses TDW = {tdW,δ}δ∈�sF −�+1� to test
whether the string W ∈ (Zp ∪ {�})� matches the message M encrypted by C
as follows:

Public Key Encryption with Flexible Pattern Matching 357

Match := ∅
For i ∈ �n − ��:

If �i, i + ��⊂ Ffrag(i):

Get the trapdoor element tdW,pos(i) = {T1, T2} from TDW

If e

⎛

⎝

∏

k∈supp(W)

C ′
i+k , T1

⎞

⎠ = e
(

Cfrag(i), T2

)

:

Match := Match ∪ {i}
Else: #now we know that �i, i + ��⊂ Ffrag(i)

Get the trapdoor tdW,pos(i) = {T1, T2} from TDW ;

If e

⎛

⎝

∏

k∈supp(W)

C′
i+k , T1

⎞

⎠= e
(

Cfrag(i), T2

)

:

Match := Match ∪ {i}
Return Match

Correctness. We first show that if M contains a pattern W at position i, then
i is necessarily contained in the subset returned by Test(C,W,TDW). Here, we
assume that i ∈ �n− �� is such that �i, i+ ��⊂ Ffrag(i). Otherwise, we would have
�i, i + ��⊂ Ffrag(i) and adapting the following argument to this case would be
straightforward.
The Issue algorithm ensures that, at some point, a trapdoor element tdW,pos(i) =
{T1, T2} was generated for

̂W = (ŵ0, . . . , ŵsF −1) := (
pos(i)
︷ ︸︸ ︷

�, . . . , �, w0, . . . , w�−1,

sF −�−pos(i)
︷ ︸︸ ︷

�, . . . , �).

To show that the index i is added by Test in Match, we must show that the
pairing equation is satisfied. By non-degeneracy of the pairing, this is equivalent
to showing that the following equation on the exponents of e(g, g̃) holds:

s
∑

k∈supp(W)

afrag(i+k)(xpos(i+k) + ypos(i+k)mi+k) = afrag(i)s
∑

k∈supp(Ŵ)

xk + ykŵk

As �i, i + ��⊂ Ffrag(i), we have for all k ∈ supp(W), frag(i + k) = frag(i) and
pos(i + k) = pos(i)+k. Thus after simplification, we have to show the equivalent
equation:

∑

k∈supp(W)

xpos(i)+k + ypos(i)+kmi+k =
∑

k∈supp(Ŵ)

xk + ykŵk. (1)

Formally, the fact that W is contained at index i ∈ �n − �� in M means that
mi+k = wk for all k ∈ supp(W). Hence the LHS of (1) is equal to

∑

k∈supp(W)

xpos(i)+k + ypos(i)+kwk.

358 É. Bouscatié et al.

As ŵpos(i)+k = wk for all k ∈ supp(W), we get that this sum equals

∑

k∈supp(W)

xpos(i)+k + ypos(i)+kŵpos(i)+k.

Finally, we note that supp(̂W) = {pos(i) + k}k∈supp(W). We can then re-index
the sum above to get

∑

k∈supp(Ŵ)

xk + ykŵk,

which proves (1). Thus the pairing equality holds and Test returns a set con-
taining i. In other words, there is no false negative in our system.

Now, let us assume that W is not contained in M at position i. If Test
returns a set containing i, then the reasoning above implies that we would have:

∑

k∈supp(W)

xpos(i)+k + ypos(i)+kmi+k =
∑

k∈supp(W)

xpos(i)+k + ypos(i)+kwk,

which means that:
∑

k∈supp(W)

ypos(i)+k(mi+k − wk) =
∑

k∈supp(W)
mi+k �=wk

ypos(i)+k(mi+k − wk) = 0. (2)

Since M does not contain W at position i, there exists at least one k ∈ supp(W)
such that wk �= mi+k so the last sum above is not empty. As the {yk}k∈�sF �

are chosen uniformly at random independently of M and W , Eq. (2) holds with
negligible probability 1/p (the probability that a non-zero linear form evaluates
to 0). This means that we can also dismiss the occurrence of false positives.

Note that one could consider a stronger model of correctness, where an adver-
sary intends to bypass the detection system. In this case, as the public key con-
tains the gyk ’s, the adversary gains access to some information on the yk’s which
are thus not independent of M and W and the above reasoning fails. However,
one could easily transform an adversary managing to find a message M and a
pattern W such that Eq. (2) holds, into an algorithm that solve the discrete
logarithm problem. As a result, we will have this stronger notion of correctness
under the discrete logarithm assumption in G1.

4.4 Our Second Protocol

– Setup(1λ, L): Let (G1,G2,GT , p, e) be the description of type 3 bilinear
groups. This algorithm selects g ∈ G1\{1G1}, g̃ ∈ G2\{1G2} and returns
as public parameters pp ← (G1,G2,GT , p, e, g, g̃, dF := L − 1, sF := 2dF).

– Keygen(): This algorithm chooses xk, yk, zk
$←− Zp for all k ∈ �sF� and returns

sk = {(xk, yk, zk)}k∈�sF � and pk = {(gxk , gyk , gzk)}k∈�sF �.

Public Key Encryption with Flexible Pattern Matching 359

– Encrypt(M, pk): This algorithm parses M as (m0, . . . ,mn−1) ∈ Z
n
p and pk

as {(Xk, Yk, Zk)}k∈�sF �, selects ah, ah
$←− Zp for all h ∈ �nF �, where nF is

defined as in Section 4.1, i.e., n = (2nF + 1)dF , and returns the ciphertext
C = {{Ch, Ch}h∈�nF �, {(C ′

i,1, C
′
i,2, C

′
i,1, C

′
i,2)}i∈�n�} generated as follows:

Ch = gah , for h ∈ �nF�
For i ∈ �n − dF � :

C ′
i,1 = (Xpos(i)(Ypos(i))mi)afrag(i)

C ′
i,2 = (Zpos(i))afrag(i)

For i ∈ �n − dF , n� :
C ′

i,1 = C ′
i,2 = Null

Ch = gah , for h ∈ �nF�
For i ∈ �dF , n� :

C′
i,1 = (Xpos(i)(Ypos(i))mi)afrag(i)

C′
i,2 = (Zpos(i))afrag(i)

For i ∈ �dF � :
C′

i,1 = C′
i,2 = Null

– Issue(W, sk): On W =(w0, . . . , w�−1)∈(Zp ∪ {�})�, sk = {(xk, yk, zk)}k∈�sF �,
� ≤ L, it runs:
For δ ∈ �sF − � + 1�:

s1, s2
$←− Zp , ̂W = (ŵ0, . . . , ŵsF −1) := (

δ
︷ ︸︸ ︷

�, . . . , �, w0, . . . , w�−1,

sF −�−δ
︷ ︸︸ ︷

�, . . . , �)

S = s1
∑

k∈supp(Ŵ)

[xk + ykŵk] + s2
∑

k∈supp(Ŵ)

zk , tdW,δ = {g̃s1 , g̃s2 , g̃S}

Return TDW = {tdW,δ}δ∈�sF −�+1�

– Test(C,W,TDW): This algorithm uses TDW = {tdW,δ}δ∈�sF −�+1� to test
whether the string W ∈ (Zp ∪ {�})� matches the message M encrypted by C
as follows:
Match := ∅
For i ∈ �n − ��:

If �i, i + ��⊂ Ffrag(i):

Get the trapdoor element tdW,pos(i) = {T1, T2, T3} from TDW

If e

⎛

⎝

∏

k∈supp(W)

C ′
i+k,1 , T1

⎞

⎠ · e

⎛

⎝

∏

k∈supp(W)

C ′
i+k,2 , T2

⎞

⎠ = e
(

Cfrag(i), T3

)

:

Match = Match ∪ {i}
Else: #now we know that �i, i + ��⊂ Ffrag(i)

Get the trapdoor tdW,pos(i) = {T1, T2, T3} from TDW ;

If e

⎛

⎝

∏

k∈supp(W)

C′
i+k,1 , T1

⎞

⎠ · e

⎛

⎝

∏

k∈supp(W)

C′
i+k,2 , T2

⎞

⎠ = e
(

Cfrag(i), T3

)

:

Match = Match ∪ {i}
Return Match

The correctness of this protocol is similar to the one of the first protocol.

360 É. Bouscatié et al.

5 Security Analysis

The security of our protocols is stated by the following theorem, proved in this
section.

Theorem 1.

– The scheme described in Sect. 4.3 is sIND-CPA secure under the i-GDH
assumption.

– The scheme described in Sect. 4.4 is sIND-CPA secure under the EXDH
assumption.

5.1 Proof Strategy

The proof of the theorem above follows the same strategy for both protocols but
will rely on very different arguments according to the construction. Let M (0) =
(m(0)

0 , . . . ,m
(0)
n−1) and M (1) = (m(1)

0 , . . . ,m
(1)
n−1) be the two strings returned by A

at the beginning of the game. Our proof uses a sequence of games to argue that
the advantage of A is negligible. This is a standard hybrid argument, in which
at each game hop we randomize another element of the challenge ciphertext.
However, due to the peculiarities of the fragmentation technique, we will have
to consider the following two sets:

I�= = {i ∈ �n − dF �: m
(0)
i �= m

(1)
i } and I �= = {i ∈ �dF , n�: m

(0)
i �= m

(1)
i }.

In this proof we will denote the elements of I�= (resp. I �=) as {i1, . . . , i|I�=|} (resp.

{i′1, . . . , i
′
|I �=|}). For j = 1, . . . , |I�=|, we let I(j)

�= = {i1, . . . , ij} and I(0)
�= = ∅. We

define I(j)

�= similarly. Finally, to harmonize the proofs of our protocols, we will
introduce the notation C′

i, for i ∈ �n − dF�, where:

– C′
i = [C ′

i] in our first protocol;
– C′

i = [C ′
i,1, C

′
i,2] in our second protocol.

This way, we can refer to the first element of C′
i as C′

i[1]. We define similarly
C′

i. We can now define the following sequence of games.

• game0,1 denotes the Expsind−cpa
A game, as described in algorithm 1;

• for j = 1, . . . , |I�=|:
• gamej−1,2, which is the same game as gamej−1,1 except that, for the

second protocol, C′
ij

[2] is replaced by a random element of G1;
• gamej,1, which is the same game as gamej−1,1 except that all elements

of C′
ij

are replaced by random elements of G1.
• for j = |I�=| + 1, . . . , |I�=| + |I �=|:

• gamej−1,2, which is the same game as gamej−1,1 except that C′
i′
j−|I�=|

[2]
is replaced by a random element of G1;

Public Key Encryption with Flexible Pattern Matching 361

• gamej,1, which is the same game as gamej−1,1 except that all elements
of C′

i′
j−|I�=|

are replaced by random elements of G1.

In the case of our first protocol, one can note that gamej,1 and gamej,2 are the
same.

Let Sj be the probability of success of A in gamej,1. We can write :

Advsind−cpa
A (1λ, n) =

∣

∣

∣

∣

Pr[Expsind−cpa
A (1λ, n) = 1] − 1

2

∣

∣

∣

∣

≤
|I�=|+|I �=|
∑

j=1

∣

∣

∣Sj,1 − Sj−1,1

∣

∣

∣+
∣

∣

∣S|I�=|+|I �=|,1 − 1
2

∣

∣

∣

Ultimately, in the last game, the challenge ciphertext contains no information
about m

(β)
i , for all i such that m

(0)
i �= m

(1)
i . Thus, an adversary playing this game

can only succeed with probability 1
2 and we then have |S|I�=|+|I �=|,1 − 1

2 | = 0.

We conclude this proof using the following theorems.

Theorem 2. For our first construction, |Sj,1 − Sj−1,1| is negligible under the
i-GDH assumption, for all j ∈ {1, . . . , |I�=| + |I �=|}.
Theorem 3. For our second construction, |Sj,1 − Sj−1,1| is negligible under the
EXDH assumption, for all j ∈ {1, . . . , |I�=| + |I �=|}.
We only give proofs of these theorems for j = 1, . . . , |I�=| as these proofs readily
extend to the cases j = |I�=| + 1, . . . , |I�=| + |I �=|.

In these proofs, to simplify notations, we let i∗ := ij be the j-th index of I�=,
and we let ̂M = (m̂0, . . . , m̂sF −1) be the substring of M (β) corresponding to the
fragment containing i∗.

5.2 Proof of Theorem 2

In our simulation, we set an upper bound q on the number of trapdoor queries
that the adversary is allowed to make. The i-GDH instance from which we make
our reduction has c = 2nF + (q + 2)sF variables called

{{ah, ah}h∈�nF �, {(xk, yk)}k∈�sF �, {st}t∈�qsF �}

and a secret evaluation (χ1, . . . , χc)
$←− Z

c
p of these variables.

Initially, R = {{ah, ah}h∈�nF �, {(xk, yk)}k∈�sF �}, S, T = ∅ and

f = afrag(i∗)(xpos(i∗) + ypos(i∗)m̂pos(i∗)).

362 É. Bouscatié et al.

The simulator has oracle access to OR,OS and OT to add κ = 2 polynomials at
a time to these sets. At any moment, the simulator knows the elements in the
current set {gR(χ1,...,χc) , g̃S(χ1,...,χc), e(g, g̃)T (χ1,...,χc)}R∈R,S∈S,T∈T.
For some polynomial P we say

the simulator uses OR to get gP (χ1,...,χc)

to say that it uses OR to add the polynomial P to R and so now it knows
gP (χ1,...,χc) (resp. g̃P (χ1,...,χc)).
Likewise, for some polynomials P,Q we say

the simulator uses OS to get g̃P (χ1,...,χc) and g̃Q(χ1,...,χc)

to say that it uses OS to add the polynomials {P,Q} to S so now it knows
gP (χ1,...,χc) and g̃Q(χ1,...,χc)).
In the description of our simulator, we use the names of a variable ah, ah, xk, yk

or st for its secret random evaluation χj by abuse of notation while in the proof
of independency we really consider them as variables.
Finally, the simulator knows the i-GDH challenge ζ.

Key Generation. The simulator implicitly defines the secret key as sk =
{(xk, yk)}k∈�sF � by setting the public key to pk = {(gxk , gyk)}k∈�sF � as the
polynomials xk, yk are initially in R.

Trapdoor Generation. The adversary can make at most q trapdoor queries to
our simulator. To generate a trapdoor TD, the simulator has to generate at most
sF trapdoor elements td. Let ̂W be the fragment-sized pattern corresponding to
the t-th trapdoor element td for some t ≤ sFq. The simulator uses OS to get g̃st

and g̃St where
St = st

∑

k∈supp(Ŵ)

(xk + ykŵk)

and sets td = {g̃st , g̃St}.

Challenge Generation. The simulator sets the challenge cyphertext as follows:

• Ch = gah and Ch = gah for h ∈ �nF � as the polynomials ah, ah are initially
in R.

• it uses OR to get valid C ′
i = gafrag(i)(xpos(i)+ypos(i)m

(β)
i) for i /∈ I(j)

�=
• C ′

i
$←− G1 for i ∈ I(j−1)

�= and C ′
i∗ = ζ

• it uses OR to get valid C′
i = gafrag(i)(xpos(i)+ypos(i)m

(β)
i) for i ∈ �dF , n�.

If ζ = gf , then C ′
i∗ is a valid element and the simulator is playing gamej−1,1.

Else, C ′
i∗ is a random element from G1 and the simulator is playing game

gamej,1. An adversary able to distinguish gamej−1,1 from gamej,1 is thus
able to break the i-GDH assumption if the polynomial f = afrag(i∗)(xpos(i∗) +
ypos(i∗)m̂pos(i∗)) is independent from the sets R, S and T (after all the queries
made by the simulator), which remains to prove.

Public Key Encryption with Flexible Pattern Matching 363

Proof of Independence. This is done by showing that

afrag(i∗)(xpos(i∗) + ypos(i∗)m̂pos(i∗))
∑

j

bjS
(j) =

∑

i,j

ci,jR
(i)S(j) +

∑

k

dkT (k)

implies bj = 0 for j = 0, . . . , |S| − 1.
Since T = ∅, we may already remove the last sum. Since the factor afrag(i∗)

only appears in the set R and more specifically as the frag(i∗)-th element of the
initial set {ah}h∈nF and in the outputs of OR, we can discard the other terms
in the right hand side of the equation (and divide each member by afrag(i∗)). We
reformulate the remaining coefficients as bpos(i∗),t, b

′
pos(i∗),t, ct, c

′
t, bk,t and b′

k,t for
k ∈ �sF�\{pos(i∗)} and 1 ≤ t ≤ qS so the previous equality can be written as:

(xpos(i∗) + ypos(i∗)m̂pos(i∗))
qS
∑

t=1

[

bpos(i∗),tst + b′
pos(i∗),tSt

]

=

=
qS
∑

t=1

[ctst + c′
tSt] −

sF −1
∑

k=0
k �=pos(i∗)

[

(xk + ykm̂k)
qS
∑

t=1

[

bk,tst + b′
k,tSt

]

]

.

This equation can also be written as:

sF −1
∑

k=0

[

(xk + ykm̂k)
qS
∑

t=1

[

bk,tst + b′
k,tSt

]

]

=
qS
∑

t=1

[ctst + c′
tSt]

and we show that if it holds, then bpos(i∗),t = b′
pos(i∗),t = 0 for t = 1, . . . , qS.

Let’s fix 1 ≤ t ≤ qS. If we only keep the terms in st, we get :

sF −1
∑

k=0

[

(xk + ykm̂k)(bk,tst + b′
k,tSt)

]

= ctst + c′
tSt. (3)

-We show that b′
pos(i∗),t = 0 : Keeping only the terms in Eq. (3) with total

degree 2 in {xk}k∈�sF � shows that:

sF −1
∑

k=0

xkb′
k,tSt = 0.

Simplifying by St in this equality shows that
∑sF −1

k=0 xkb′
k,t = 0 and by inde-

pendance of the variables {xk}k∈�sF �, we have b′
k,t = 0 for all k ∈ �sF � and in

particular, b′
pos(i∗),t = 0.

-We show that bpos(i∗),t = 0 : If we focus on the terms in Eq. (3) with total

degree 1 in {xk, yk}k∈�sF �, we get:

sF −1
∑

k=0

[(xk + ykm̂k)(bk,tst)] = c′
tSt.

364 É. Bouscatié et al.

As St = st

∑

k∈supp(Ŵ)

(xk + ykŵk), where ̂W = (ŵ0, . . . , ŵsF −1) is the t-th fragment-

sized pattern processed by our simulator, this means, after simplifying by st:
sF −1
∑

k=0

[(xk + ykm̂k)bk,t] = c′
t

∑

k∈supp(Ŵ)

(xk + ykŵk). (4)

Keeping only the terms in {xk}k∈�sF � in equation (4) shows that:

sF −1
∑

k=0

xkbk,t = c′
t

∑

k∈supp(Ŵ)

xk.

The independence of the variables {xk}k∈�sF � shows that, for all k ∈ �sF�,

bk,t =
{

c′
t if k ∈ supp(̂W),

0 if not.

We study the two following cases to conclude the proof:

– if c′
t = 0 or pos(i∗) /∈ supp(̂W) , then we can already conclude that

bpos(i∗),t=0;

– else, c′
t �= 0 and pos(i∗) ∈ supp(̂W) and we show a contradiction with the

natural restriction placed on patterns in this game.

Indeed, in this last case we can Eq. (4) as:

c′
t

∑

k∈supp(Ŵ)

(xk + ykm̂k) = c′
t

∑

k∈supp(Ŵ)

(xk + ykŵk).

We simplify by c′
t and keep the terms in {yk}k∈�sF �:

∑

k∈supp(Ŵ)

ykm̂k =
∑

k∈supp(Ŵ)

ykŵk.

The independence of the variables {yk}k∈�sF � shows that, in this case, m̂k = ŵk

for all k ∈ supp(̂W). This concretely means that M (β) contains W . However,
we also have pos(i∗) ∈ supp(̂W). As, by definition of i∗ ∈ I�=, m

(β)
i∗ �= m

(1−β)
i∗ ,

this means that M (1−β) does not contain W , which contradicts the restriction
placed on patterns. This last case thus cannot occur, which concludes our proof.

5.3 Proof of Theorem 3

In the case of our second protocol, we need to proceed in two steps by using the
intermediate games gamej−1,2.

Lemma 1. The difference |Sj−1,2−Sj−1,1| is negligible under the EXDH assump-
tion.

Proof. Let (g, ga, gab, gc, ζ, g̃, g̃a, g̃b) ∈ G
5
1 × G

3
2 be a EXDH instance.

Public Key Encryption with Flexible Pattern Matching 365

Key Generation. The simulator generates random scalars {(uk, vk, v′
k,

tk)}k∈�sF � and implicitly sets the secret key sk = {(xk, yk, zk)}k∈�sF � with, for
all k ∈ �sF �,

xk = vk + aukm̂k

yk = v′
k − auk

zk = tk if k �= pos(i∗) and zpos(i∗) = tpos(i∗) + ab.

Indeed, the simulator is able to compute the corresponding public key pk
using ga and gab. Note that the distribution of this public key is identical to the
distribution of a regular public key.

Trapdoor Generation. To generate a trapdoor element tdW,δ = {T1, T2, T3}
for a keyword W and an offset δ ∈ �sF − � + 1�, the simulator sets

̂W = (ŵ0, . . . , ŵsF −1) := (�, . . . , �
︸ ︷︷ ︸

δ

, w0, . . . , w�−1, �, . . . , �
︸ ︷︷ ︸

sF −�−δ

)

and proceeds as follows:

– Case 1: ŵpos(i∗) = �

The simulator chooses s1, s2
$←− Zp and returns T1 = g̃s1 , T2 = g̃s2

T3 =

⎛

⎝

∏

k∈supp(Ŵ)

(g̃xk(g̃yk)ŵk)s1

⎞

⎠

⎛

⎝

∏

k∈supp(Ŵ)

(g̃zk)s2

⎞

⎠ .

This last element T3 can be computed from g̃a as done for the public key. As
pos(i∗) is not in the support of ̂W , we do not need the element g̃ab (which is
not provided in the EXDH challenge).

– Case 2: ŵpos(i∗) �= �

Let J = {k ∈ supp(̂W) : ŵk �= m̂k}. The condition on issued trapdoors and
the definition of i∗ ∈ I�= imply that this set is not empty, as seen at the end
of proof of Theorem 2.
The simulator selects r, s2

$←− Zp and implicitely sets

s1 = −bs2

(

∑

k∈J

uk(m̂k − ŵk)

)−1

+ r.

For all k ∈ �sF�, uk is uniformly distributed and the view of the adversary is
independent of these variables: they only appear in xk and yk where they are
perfectly masked by vk and v′

k. As a result, one has
∑

k∈J uk(m̂k − ŵk) = 0
with negligible probability 1/p.
Then, the simulator returns T1 = g̃s1 , T2 = g̃s2 using g̃b and

T3 =

⎛

⎝

∏

k∈supp(Ŵ)

(g̃s1)vk+v′
kŵk

⎞

⎠

(

∏

k∈J

(g̃a)ruk(m̂k−ŵk)

)

⎛

⎝

∏

k∈supp(Ŵ)

g̃s2tk

⎞

⎠

366 É. Bouscatié et al.

using g̃a and g̃b.
Developing s1

∑

k∈supp(Ŵ)
xk + ykŵk + s2

∑

k∈supp(Ŵ)
zk shows that T3 is cor-

rectly generated. In particular the term g̃ab in g̃zpos(i∗) cancels out thanks to
the definition of xk, yk and s1.
Moreover, the trapdoor element is well distributed as s1, s2 are well dis-
tributed.

Challenge Generation. The simulator generates the challenge ciphertext as
follows:

• Ch =

{

gah with ah
$←− Zp for all h ∈ �nF �\{frag(i∗)}

gc for h = frag(i∗)

• C ′
i,1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(gxpos(i)(gypos(i))m
(β)
i)afrag(i) for all i ∈ �n − dF �\(Ffrag(i∗) ∪ I(j−1)

�=)

(gc)vpos(i)+v′
pos(i)m

(β)
i for all i ∈ Ffrag(i∗) \ I(j−1)

�=
$←− G1 for all i ∈ I(j−1)

�=

• C ′
i,2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(gzpos(i))afrag(i) for all i ∈ �n − dF �\(Ffrag(i∗) ∪ I(j)
�=)

(gc)tpos(i) for all i ∈ Ffrag(i∗) \ I(j)
�=

$←− G1 for all i ∈ I(j−1)
�=

(gc)tpos(i∗)ζ for i = i∗

• all the overlined elements of C as in Encrypt(M (β), pk).

Note that either ζ = gabc and the game is gamej−1,1 as C ′
i∗,2 is well-formed or ζ

is random and the game is gamej−1,2. Any adversary able to distinguish these
two games can then be used against the EXDH assumption.

Lemma 2. The difference |Sj,1 − Sj−1,2| is negligible under the EXDH assump-
tion.

Proof. Let (g, ga, gab, gc, ζ, g̃, g̃a, g̃b) ∈ G
5
1 × G

3
2 be a EXDH instance.

Key Generation. The simulator generates random scalars {vk, yk, tk}k ∈ �sF�
and implicitly sets the secret key sk = {(xk, yk, zk)}k∈�sF � with, for all k ∈ �sF �,

xk = vk if k �= pos(i∗) and xpos(i∗) = vpos(i∗) + ab,

zk = tk if k �= pos(i∗) and zpos(i∗) = tpos(i∗) + a.

Indeed, the simulator is able to compute the public key pk associated with this
secret key by using ga and gab. Note that the distribution of this public key is
identical to the distribution of a regular public key.

Public Key Encryption with Flexible Pattern Matching 367

Trapdoor Generation. To issue a trapdoor element tdW,δ = {T1, T2, T3} for
a keyword W and an offset δ ∈ �sF − � + 1�, the simulator sets

̂W = (ŵ0, . . . , ŵsF −1) := (�, . . . , �
︸ ︷︷ ︸

δ

, w0, . . . , w�−1, �, . . . , �
︸ ︷︷ ︸

sF −�−δ

)

and proceeds as follows:

– Case 1: ŵpos(i∗) = �
The simulator acts exactly as in the protocol because the elements from the
EXDH instance are only involved in xpos(i∗) and zpos(i∗).

– Case 2: ŵpos(i)∗ �= �

The simulator selects r, s1
$←− Zp and implicitly sets s2 := −bs1 + r.

Then, it returns T1 = g̃s1 , T2 = g̃s2 using g̃b and

T3 =

⎛

⎝

∏

k∈supp(Ŵ)

g̃s1(vk+ykŵk)

⎞

⎠

⎛

⎝

∏

k∈supp(Ŵ)

(g̃s2)tk

⎞

⎠ (g̃a)r using g̃a and g̃b.

Developping s1
∑

k∈supp(Ŵ)
[xk + ykŵk] + s2

∑

k∈supp(Ŵ)
zk shows that T3 is

correctly generated. Moreover, the trapdoor element is well distributed as
s1, s2 are well distributed.

Challenge Generation. The simulator generates the challenge ciphertext as
follows :

• Ch =

{

gah with ah
$←− Zp for all h ∈ �nF �\{frag(i∗)}

gc for h = frag(i∗)

• C ′
i,1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(gxpos(i)(gypos(i)m
(β)
i)afrag(i) for all i ∈ �n − dF �\(Ffrag(i∗) ∪ I(j)

�=)

(gc)vpos(i)+ypos(i)m
(β)
i for all i ∈ Ffrag(i∗) \ I(j)

�=
$←− G1 for all i ∈ I(j−1)

�=

(gc)ypos(i∗)m
(β)
i∗ ζ for i = i∗

• C ′
i,2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(gzpos(i))afrag(i) for all i ∈ �n − dF �\(Ffrag(i∗) ∪ I(j)
�=)

(gc)tpos(i) for all i ∈ Ffrag(i∗) \ I(j)
�=

$←− G1 for all i ∈ I(j)
�=

• all the overlined elements of C as in Encrypt(M (β), pk).

Note that either ζ = gabc and the game is gamej−1,2 as C ′
i∗,1 is well-formed or

ζ is random and the game is gamej,1. Any adversary able to distinguish these
two games can then be used against the EXDH assumption.

368 É. Bouscatié et al.

6 Complexity Analysis

Table 1 in Sect. 1.2 provides a comparison on some specific metrics with two rel-
evant constructions of the state-of-the-art, namely [13] and [3]. We here provide
a more comprehensive performance assessment of our constructions that we only
compare to [3] as the latter outperforms [13].

6.1 Space Complexity

In this part, we focus on the size of the different elements involved in SEPM
constructions. To have a common metric, we implement our bilinear groups
using the BLS12-381 curve [9], yielding 48-Bytes (compressed) elements of G1,
96-Bytes (compressed) elements of G2 and 572-Bytes elements of GT . To provide
a fair comparison, we select the same parameters as in [3] and thus consider the
encryption of 1GB bytestrings where any pattern of size at most 10KB (i.e. L =
10000) can be searched. The results are presented in Table 2. One can note that
the results for [3] differ from those provided in the original paper. This is due
in part to the use of Barreto-Naehrig curves [2] in [3] that are now deprecated.
Regarding the size of the public key, the difference also stems from an error in
[3] as the authors do not take into account the |S| factor in their computations.
For bytestrings, we have |S| = 256, which is quite significant.

Table 2 highlights the difference between our constructions and the one in
[3], in particular regarding the size of the public key where ours are about 100
times smaller. Our first construction also halves the size of the ciphertext but
the latter remains large. Improving this characteristic while retaining the nice
features of SEPM is an open problem.

Table 2. Comparison with the state of the art

Schemes

AS3E ([3]) Sect. 4.3 Sect. 4.4

Public Key 247mb 1.92mb 2.88mb

Ciphertext 192gb 96gb 192gb

Trapdoor 1.92mb 1.92mb 2.88mb

6.2 Computational Complexity

We now focus on the computational cost of the Encrypt, Issue and Test proce-
dures by providing in Table 3 an estimation of the number of operations required
to perform them. We set n as the length of the message to encrypt and L as
the bound on the size of searchable patterns. As the treatment of wildcard and
non-wildcard characters strongly differs in our Test procedure, we assume that
the searched pattern contains c non-wildcard characters.

Public Key Encryption with Flexible Pattern Matching 369

In our case, the encryption can be speeded up by (pre-)computing the 28

elements {(Yk)b}k∈�sF �,b∈�28� and use the results to directly generate the cipher-
text elements. Compared to the naive protocol description in Sects. 4.3 and 4.4,
this saves 2n exponentiations.

Table 3. Comparison with the state of the art. For i ∈ {1, 2, T}, mi (resp. ei) stands
for one multiplication (resp. exponentiation) in Gi and P for one pairing.

Schemes

AS3E ([3]) Sect. 4.3 Sect. 4.4

Encrypt 4ne1

(
4n +

n

L

)
e1 + nm1

(
6n +

n

L

)
e1 + nm1

Issue 2Le2 2Le2 3Le2

Test ncm1 + 2nP ncm1 + 2nP 2ncm1 + 3nP + nmT

Our comparison shows that the performance of all these schemes is very
similar and essentially requires a few exponentiations in G1 to encrypt one byte
and 2 pairings per byte for detections. The concrete performance will obviously
depend on the devices performing these computations. We nevertheless note that,
for all these schemes, these computations are embarrassingly parallelizable.

Acknowledgements. The second author was supported by the French ANR ALAM-
BIC project ANR-16-CE39-0006. The third author is grateful for the support of the
ANR through project ANR-19-CE39-0011–04 PRESTO and project ANR-18-CE-39–
0019-02 MobiS5.

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation
to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391 (2008)

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

3. Bkakria, A., Cuppens-Boulahia, N., Cuppens, F.: Privacy-preserving pattern
matching on encrypted data. In: Moriai, S., Wang, H., (eds.) ASIACRYPT 2020,
Part II, vol. 12492 of LNCS, pp. 191–220. Springer, Heidelberg (2020)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

5. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 26

https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-40084-1_26

370 É. Bouscatié et al.

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

8. Bossuat, A., Bost, R., Fouque, P. A., Minaud, B., Reichle, M.: Forward secure
searchable encryption. In: Edgar, R., et al. (eds.) ACM CCS 2016, pp. 1143–1154.
ACM Press (2016)

9. Bowe, S.: BLS12-381: new zk-SNARK elliptic curve construction (2017).
electriccoin.co/blog/new-snark-curve/

10. Canard, S., Diop, A., Kheir, N., Paindavoine, M., Sabt, M.: BlindIDS: market-
compliant and privacy-friendly intrusion detection system over encrypted traffic.
In: Karri, R., Sinanoglu, O., Sadeghi, A., Yi, A., (eds.) ASIACCS 17, pp. 561–574.
ACM Press (2017)

11. Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible E-cash made practi-
cal. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 77–100. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 4

12. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Juels, A., et al.
(eds.) ACM CCS 2006, pp. 79–88. ACM Press (2006)

13. Desmoulins, N., Fouque, P., Onete, C., Sanders, O.: Pattern matching on encrypted
streams. In: Peyrin, T., Galbraith, S., (eds.) ASIACRYPT 2018, Part I, vol. 11272
of LNCS, pp. 121–148. Springer, Heidelberg (2018)

14. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Disc.
Appl. Math. 156(16), 3113–3121 (2008)

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M., (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009)

16. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

17. Lai, S., et al.: Practical encrypted network traffic pattern matching for secure
middleboxes. IEEE Trans. Depend. Secure Comput. p. 1 (2021)

18. Leontiadis, I., Li, M.: Storage efficient substring searchable symmetric encryption.
In: Proceedings of the 6th International Workshop on Security in Cloud Comput-
ing, SCC ’18, pp. 3–13. Association for Computing Machinery (2018)

19. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (eds.)
Topics in Cryptology - CT-RSA 2016. CT-RSA 2016. LNCS, vol. 9610. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 7

20. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords
with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15317-4 10

21. Sherry, J., Lan, C., Popa, R. A., Ratnasamy, S.: Deep packet inspection over
encrypted traffic:blindbox. In: Uhlig, S., Maennel, O., Karp, B., Padhye, J., (eds.)
SIGCOMM 2015, 213–226 (2015)

22. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Com-
puter Society Press (2000)

23. Sun, S., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: Lie, D., et al. (eds.) ACM CCS 2018, pp. 763–780.
ACM Press (2018)

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1007/978-3-662-46447-2_4
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-642-15317-4_10
https://doi.org/10.1007/978-3-642-15317-4_10

Bounded Collusion ABE
for TMs from IBE

Rishab Goyal1(B), Ridwan Syed2(B), and Brent Waters2,3(B)

1 MIT, Cambridge, MA, USA
goyal@utexas.edu

2 University of Texas at Austin, Austin, TX, USA
bwaters@cs.utexas.edu

3 NTT Research, Sunnyvale, CA, USA

Abstract. We give an attribute-based encryption system for Turing
Machines that is provably secure assuming only the existence of identity-
based encryption (IBE) for large identity spaces. Currently, IBE is known
to be realizable from most mainstream number theoretic assumptions
that imply public key cryptography including factoring, the search Diffie-
Hellman assumption, and the Learning with Errors assumption.

Our core construction provides security against an attacker that makes
a single key query for a machine T before declaring a challenge string
w∗ that is associated with the challenge ciphertext. We build our con-
struction by leveraging a Garbled RAM construction of Gentry, Halevi,
Raykova and Wichs [33]; however, to prove security we need to introduce
a new notion of security called iterated simulation security.

We then show how to transform our core construction into one that is
secure forana-prioriboundednumberq = q(λ)ofkeyqueries thatcanoccur
either before or after the challenge ciphertext. We do this by first showing
howone canuse a special type of non-committing encryption to transforma
systemthat is secureonly if a singlekey is chosenbefore thechallengecipher-
text is declared into one where the single key can be requested either before
or after the challenge ciphertext. We give a simple construction of this non-
committing encryption from public key encryption in the Random Oracle
Model. Next, one can apply standard combinatorial techniques to lift from
single-key adaptive security to q-key adaptive security.

1 Introduction

Attribute-based encryption (ABE) [58] provides a method for encrypting data
which allows for sharing at a much finer-grained level than standard public key

R. Goyal—Work done in part while at UT Austin supported by IBM PhD Fellowship,
and at the Simons Institute for the Theory of Computing supported by Simons-Berkeley
research fellowship. Research supported in part by NSF CNS Award #1718161, an
IBM-MIT grant, and by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR00112020023. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Government or DARPA.
B. Waters—Supported by NSF CNS-1908611, CNS-1414082, DARPA SafeWare,
Packard Foundation Fellowship, and Simons Investigator Award.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 371–402, 2021.
https://doi.org/10.1007/978-3-030-92068-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_13

372 R. Goyal et al.

cryptography. In an ABE system one associates a ciphertext with an attribute
string w when encrypting message m to form a ciphertext ct. A secret key (as
issued by some authority) is associated with a predicate function f . A decryption
algorithm using skf on the ciphertext will be able to return the message m if
and only if f(w) = 1.

The initial and many subsequent ABE constructions (e.g. [12,43]) provided
functionality for when f was a boolean formula or circuit that would operate
over a fixed set of attributes. This works well for the setting when an attribute
string could say represent a record that was of a fixed form, however, would not
work as well in a setting where we want the attribute string structure to be less
rigid and of arbitrary length. Initial progress towards resolving such issue was
by Waters [60] who provided the first ABE construction for a uniform model of
computation where the attribute string w ∈ {0, 1}∗ could be an arbitrary length
string and f is a Deterministic Finite Automata (DFA). A user in such a setting
can decrypt a ciphertext whenever the DFA f accepts w.

Since then, ABE systems in uniform models of computation have been very
well studied, with subsequent works roughly falling into the following three cat-
egories grouped by the hardness assumption.

– The ABE construction of Waters [60] for DFAs was built from bilinear maps
and was collusion resistant in that it allowed for an unbounded number of
private keys to be issued, but was only selectively secure in that the attacker
was required to submit a challenge string w∗ before seeing the public param-
eters of the system. Unlike constructions where the length of w is fixed by
the security parameter, there is no known way of generically moving from
selective to adaptive security using complexity leveraging and assuming sub-
exponential hardness. Subsequent works [1,4,9,10,37,38] in the bilinear map
setting improved upon the security arguments in this setting as well as gave
“ciphertext-policy” variants of the construction.

– A second cohort of constructions [13,16,44,50] arise by constructing ABE
for Turing Machines from obfuscation culminating in the work of Ananth
and Sahai [8] that achieves functional encryption for Turing Machines from
indistinguishability obfuscation with no a-priori bound on the input size or
machine description. We refer the reader to [8] for a discussion of the tradeoffs
present in prior works.

– In a third line of work, Agrawal and Singh [5] gave a construction of a single-
key secure functional encryption scheme provably secure under the Learning
with Errors (LWE) [56] assumption. They could prove security only when
the single private key was requested before the challenge ciphertext. Addi-
tionally, in their model the encryptor had to specify the maximum time t
that the Turing Machine computation is allowed to run for during decryp-
tion. The work of Gentry et al. [34] also gave a construction for single-key
secure functional encryption for RAM computation from single-key secure
functional encryption for circuits and garbled RAM, but the key generator
not only takes the RAM program as input but the input size and run-time
bound as well. Thus, the encryption algorithm could only encrypt messages
of a-priori fixed length.

Bounded Collusion ABE for TMs from IBE 373

For unbounded collusions, Boyen and Li [15] gave constructions for DFAs
from the LWE assumption and Agrawal, Maitra, and Yamada [3] did this for
NFAs, but in the secret key setting. Ananth, Fan and Shi [6] give an LWE
solution for unbounded collusions in the problem of constructing ABE for
RAM Turing Machines. However, the maximum number of machine steps is
given as a parameter to the setup algorithm and will serve as a bound for the
system.

One common thread of the above works is that they all depended upon a
specific number theoretic setting. Even in the case of indistinguishability obfus-
cation, the best known construction in the recent breakthrough work [47] relies
on a careful combination of multiple specific algebraic assumptions.

Here we pursue a new direction of obtaining Attribute-Based Encryption for
uniform computation models from general assumptions. In particular, we provide
solutions that assume Identity-Based Encryption (IBE) [14,59]. We believe IBE
is a good platform for this pursuit as it is known under most “mainstream” num-
ber theoretic assumptions that imply public key cryptography such as factoring,
search Diffie-Hellman, and Learning with Errors [14,20,22,35].

Our Results. In this work we show how to achieve Attribute-Based Encryption
for Turing Machines that is adaptively secure against any attacker that requests
at most q = q(λ) private keys where q can be any polynomial function determined
at system setup. Our work is logically broken into two parts.

In the first part we develop our core construction which is an ABE system
for Turing Machines secure against any poly-time attacker that requests a single
key before declaring the attribute string w∗ for a challenge ciphertext. In this
system the maximum running time t of the Turing Machine is determined by
the encryption algorithm as in [5].

Our approach leverages a garbled RAM construction due to Gentry, Halevi,
Raykova, and Wichs (GHRW) [33] which intuitively allows a sequence of t gar-
bled programs to run while maintaining a persistent database across invocations.
We combine this with an IBE system in a spirit motivated by [22,23,27,31] which
allows us to securely evaluate a Turing Machine computation that delivers the
message on decryption only if the machine accepts. One challenge we encounter
is that the GHRW definition of simulation security is defined as distinguishing
between a real garbled RAM and a simulated one over the whole computation.
However, this notion of simulation is not fine-grained enough for our purposes.
Instead we need to introduce a notion of iterated simulation security where it is
hard to distinguish whether the first i or i+1 programs were simulated, and not
just indistinguishability of the entire computation. Fortunately, we were able to
show that the existing GHRW construction satisfies this notion of security as
well. Since the GHRW Garbled RAM itself only relies on IBE, the entire security
of our construction still depends on IBE only.

The second part of our work is focused on moving from a single key system
that is limited to coming before the challenge ciphertext to a q-query system that
allows for key requests to come at arbitrary times. We first tackle the question

374 R. Goyal et al.

of giving flexibility for when the key query is placed. To do this we use a very
relaxed form of non-committing encryption [17,21,48] where the non-committing
simulation property must hold when an attacker is given the secret key of a public
key encryption system. (But not the randomness for encryption and key genera-
tion as in [17].) We show that this form of non-committing encryption is strong
enough to transform our single key ABE system into one where the key query
can come before or after the challenge ciphertext. We follow this transforma-
tion with another one to allow for q queries by applying standard combinatorial
techniques. To complete the transformation we provide a simple construction for
such a non-committing encryption scheme from public key encryption in the case
of bounded length messages, while for unbounded messages we additionally rely
on hash function modeled as a Random Oracle [11]. The non-committing encryp-
tion we consider in this work is very similar to that of receiver non-committing
encryption [18].

We want to emphasize that prior to our work, all other ABE systems in
uniform computation models either relied on specific algebraic assumptions, or
powerful notions such as succinct function encryption and program obfuscation.
That is, unlike for non-uniform models where we have numerous generic con-
structions (e.g., [7,39,57]) from general assumptions such as public-key encryp-
tion, it was believed that relying on algebraic manipulation or powerful encryp-
tion/obfuscation primitives might be necessary for handling uniform models
where the attribute space is not statically fixed. Ours is the first work that
dispels this belief. Thus, we want to highlight that one of our main take-away
messages is that the central source of hardness is only full collusion resistance,
and not the underlying model of computation in functional encryption.

Organization. We begin by providing a technical overview of our approach in the
next section. Since our bounded collusion secure ABE system for TM predicates
relies extensively on garbled RAM, thus we start by describing our notations and
other standard cryptographic primitives in Sect. 2, and recalling the definition of
garbled RAM along with the our proposed iterated simulation security definition
in Sect. 3. In Sect. 4, we describe our main construction for ABE for TMs via
the usage of IBE and garbled RAM. In the full version [42], we describe how to
lift our core construction to general q-query adaptively secure scheme.

1.1 Technical Overview

The overview is split into two parts where we first describe our core construction
from garbled RAM and identity-based encryption. This construction gives us 1-
query secure ABE scheme for TMs where the secret key query must be made
before obtaining the challenge ciphertext. In the second part, we describe how
to lift the security of any ABE scheme for TMs, which guarantees security in
this restricted 1-query key-selective setting, to provide general bounded collusion
security via a sequence of generic black-box transformations. We conclude with
some interesting open directions for further investigation.

Bounded Collusion ABE for TMs from IBE 375

Core construction: 1-query key-selective ABE for TMs.
As highlighted in the previous section, the aspect of ABE systems in a uni-
form model of computation (such as Turing Machines in our case) that makes it
quite appealing is that it allows an encryptor to specify an a-priori unbounded
length attribute during encryption while still enabling a fixed decryption key
to work on all such varying length ciphertexts. From a mechnical perspective,
this suggests that ciphertexts for such computation models should possess a self-
reducibility feature. By this we mean that in a structural sense the ciphertext
could be broadly divided into two components—one being reusable, while other
being execution time-step dependent. Here we expect the reusable component
to store the current state of computation during decryption, and the time-step
dependent component to self-reduce, i.e. to be used piece-by-piece (with each
piece annotated with an execution time-step) for updating the reusable compo-
nent thereby guiding the decryption process to either the plaintext or failure
depending on the predicate.

Comparing this mechnical view with that for ABE systems in a non-uniform
model of computation, the stark difference comes up in the implementation of
the reusable component which for non-uniform models could mostly be relegated
to the predicate key instead, since each key already fixes an upper bound on
the number of such re-use operations/computation steps. This restriction is very
consequential both for the construction as well as proof purposes. Circumventing
such unbounded reusability problems under standard cryptographic assumptions
has been a difficult task so far.

Our approach is to start with the simplest goal which is of security in pres-
ence of a single key corruption where the challenge attribute as well as the
TM key queried must be selectively chosen by the attacker.1 Now we already
know that the concept of garbled circuits [62] have been tremendously useful in
building bounded collusion secure ABE systems in a non-uniform circuit model
(and bounded collusion secure functional encryption more generally) [39,57]. A
natural question is whether the same could be stated if we switch to a uni-
form computation model such as TMs since, despite the strengthening of the
computation model, the targetted encryption primitive still provides only an
all-or-nothing style guarantee.

A building block construction. First, note that plugging in TMs as the model
of computation in the mechnical picture described above, we get the reusable
ciphertext component to correspond to the tape of the TM being operated on,
while the time-step dependent component is being used to emulate a step-by-
step execution of the TM itself. Next, consider a highly simplified TM model
where the number of states as well as the size of the TM tape are a-priori
fixed polynomials, say N and L respectively. (Although this simplified model
no longer resembles our targetted TM model of computation, this will serve as

1 As we later show, such a core encryption scheme with such simple and weak secu-
rity guarantees could be generically amplified to better and more general bounded
collusion security guarantees.

376 R. Goyal et al.

a good starting point to convey the main idea which we afterwards extend to
capture the more general model.) It turns out that for such a model there is a
natural candidate ABE system from just plain public-key encryption and garbled
circuits.

Let us start by sharing our methodology for encrypting a message m under
attribute string w with time bound t.2 At a high level, the idea is to let encryptor
create a sequence of t step circuits, where each step circuit takes as input the
entire state of TM (which contains the current state, location of the tape header,
and the entire tape of the TM) and it performs one execution step (that is,
applies one transition) and its output is the entire TM state after this execution
step (that is, output state, tape header and full tape contents). Here the last
step circuit simply outputs the encrypted message m if the execution lands in
accepting state. An encryptor then garbles each such step circuit starting from
the last one (that is, t-th step circuit first), and encodes the wire labels for the
i-th garbled step circuit in the (i − 1)-th step circuit. Now each garbled circuit
must not output the wire labels in the clear, thus it instead encrypts the labels
corresponding to the TM state for next step circuit under a group of carefully
selected PKE public keys. The idea here is that during setup we sample a pair
of PKE public-secret keys for each state transition3, and a secret key for any
TM in this system consists of a sequence of PKE secret keys corresponding to
all the state transition supported by the corresponding TM.

Intuitively, a ciphertext consists of a sequence of t garbled circuits, and a
secret key consists of a polynomial-sized set of PKE secret keys such that to
decrypt a ciphertext, one evaluates each garbled circuit in a sequential order
thereby revealing the state of the TM computation after each execution step
encrypted under appropriate PKE public keys. An honest decryptor can always
recover the relevant garbled circuit wires along its path of computation, and
finally recovers the message if the machine accepts within the ciphertext spec-
ified time bound t. One could also provide security of this construction by a
straightforward sequence of hybrids where the simulator would, instead of com-
puting the garbled circuits honestly, replace each garbled circuit with a simulated
garbled circuit one by one. And, since our assumption was the tape size and num-
ber of states to be polynomially bounded, thus this scheme is efficient (i.e., runs
in polynomial time) as well.

Looking ahead, the above approach serves as a good warm-up construction
for our core construction which does not suffer from the above limitations. Very
briefly, we make the following observations. First, note that the above construc-
tion does not exploit the fact that a given step circuit does not need to look
at the entire TM tape, but instead it needs to make changes right next to the
location of tape header. Thus, instead of passing around the entire TM tape to
each step circuit, we can maintain a persistent storage that contains the full TM
tape while each step circuit only affects a few particular locations in the storage.

2 Recall that in this work we require the encryptor to provide an upper bound on the
running time of the TM.

3 Since the number of states is polynomially bounded, thus this is efficient.

Bounded Collusion ABE for TMs from IBE 377

To this end, we replace our usage of garbled circuits with garbled RAMs [53]
thereby bypassing the above problem. Second, we assumed that the number of
states are a-priori polynomially bounded. This was mainly needed so to avoid
the exponential blow-up due to the exponential state space which we could not
hope to generically encode using only public-key encryption. To solve this issue,
we use an identity-based encryption scheme to provide a succinct mechanism to
encode the state transitions without this exponential blow-up. Similar ideas of
encoding exponential size strings succinctly have been used in numerous other
contexts [2,22,26,27,40].

Main construction. Before moving to a more technical description of our scheme,
we fix our notation and interpretation of a TM. This will help in understanding
our main construction more clearly. We consider a TM to be represented by a
large set T of state transitions

{
(qin, bin, qout, bout, dir)

}
, where each transition is

associated with an input state qin, the input bit read bin, the output state qout,
the bit to written bout, and the direction dir in which the tape head moves. Also,
let each state q be represented as an n-bit string.

As hinted previously, a central component of our construction is the notion
of garbled RAMs. Recall that a RAM program P gets random access to a large
memory D (upon which it can perform arbitrary reads and writes) along with
a short input x, and at the end of its computation it produces an output y.
Here we will be interested in multi-program versions of RAM programs where
given a sequence of RAM programs P1, . . . , P� and corresponding short inputs
x1, . . . , x�, and an initial memory D, the programs are run in succession on their
respective inputs wherein say program Pi outputs some result yi and updates
the database D which is then used by the next program Pi+1.

Garbled RAMs. The notion of garbled RAMs is a generalization of circuit
garbling to RAM programs, where the memory owner first garbles the memory
D generating a pair of garbled database D̃ along with a garbling key kD. The
garbling key kD can then be used to garble any RAM program P with respect
to program index j to produce a garbled program P̃ along with input labels
{labi,b}i,b. Here the program index j is meant to capture the number of programs
that have been run (including P).4 For example, to garble the previously defined
sequence of � RAM programs, when the garbling party runs the program garbling
procedure for program Pj it specifies index j as the program index since it wants
Pj to be the j-th RAM program being evaluated in the sequence. Also, as in the
case of circuit garbling, to evaluate a garbled program P̃ with labels {labi,b}i,b

on an input x, the evaluator selects the labels corresponding to bits of x, i.e. y =
Eval

˜D(P̃ , {labi,xi
}i) where y is the output of running P on x with memory D. The

standard security property considered in most prior works [28,29,32,33,53,54]
is of static (full) simulation security wherein an adversary must not be able to

4 For the purposes of a technical overview, we significantly simplify and relax the
notation. Here we consider each program to be of fixed length, and not take time
range among other things as additional inputs. Later in the main body, we define it
in full generality.

378 R. Goyal et al.

distinguish a sequence of honestly garbled RAM programs and database from a
simulated sequence of programs and database, where the simulator only knows
the corresponding outputs {yi}i of each RAM program (but not the database
D, or any of the individual programs Pi, or their corresponding inputs xi).

Core construction: switching from garbled circuits to garbled RAMs. With
all the notation set, our main construction is very simple to follow. The setup
of our system simply corresponds to sampling a IBE master public-secret key
pair. (Recall that previously in our simplified building block construction, the
setup was sampling a large number of PKE public-secret key pairs. As we noted
then, here we use IBE instead of do the same more efficiently.) Next, to generate
a secret key for a TM represented by a set T of transitions, the key generator
encodes each transition (qin, bin, qout, bout, dir) ∈ T into (n + 2) distinct identities.
(The identity-encodings we employ are the well known bit-decomposition style
encodings where one encodes the output state qout bit-by-bit into n strings of
the form (i, qout[i]) ∈ [n] × {0, 1}.) Here n of these IDs jointly encode the output
state qout, while the other two encode the output bit to written bout, and the
direction dir separately.

The encryption algorithm in our core construction follows a similar paradigm
to that described in our building block construction with the only major change
being we move to using garbled RAMs instead. Concretely, to encrypt a message
m under an unbounded length attribute string w ∈ {0, 1}∗ with time bound t,
the encryptor first creates an empty memory D of size t + 1.5 It then writes the
attribute w on the RAM memory D, and garbles it to get the corresponding
garbled database D̃. (Basically this memory is used as the tape of the TM
embedded in the predicate keys during decryption.) Next, the encryptor creates a
sequence of t RAM programs where the i-th program takes as input the TM state
qin, bit to be written bout, and the direction dir that was output by the previous
(i.e., (i − 1)-th) program/TM transition. Given these inputs, the RAM program
writes the bit bout at the current tape header, updates the tape header location
depending on dir, and encrypts the garbled labels for the next (i.e., (i + 1)-
th) RAM program under appropriate identities. (Note that here we crucially
rely on our bit-decomposition style identity-encodings of the output state while
encrypting the next program labels.) Thus, a ciphertext contains t such garbled
RAM programs in which the programs are garbled one-by-one from the last to
first since each program contains labels for the next successive garbled program.
Connecting this to original mechnical viewpoint, the garbled database should be
thought of as the reusable ciphertext component while the garbled programs as
the time-step dependent components. During decryption, an evaluator simply
decrypts the wire labels depending on the current state of its TM execution and
evaluates the garbled programs to recover encryptions of the wire labels for the

5 Since the ciphertexts need only be decryptable by keys whose corresponding TMs
accept the word within time t, thus the encryptor only needs to instantiate the
database with t bits of memory. To be fully accurate, we actually a little more
memory for storing the TM state which we discuss later in the main body.

Bounded Collusion ABE for TMs from IBE 379

next program. Doing this successively, an evaluator recovers the message if its
TM accepts the attribute word within the ciphertext specified time bound.

Security: how to prove it? Although the above simple scheme seems to
be secure when an adversary makes only a single key query and that too before
receiving the challenge ciphertext, proving the same seems a bit challenging. This
stems from the fact that a natural proof strategy seems to be incompatible with
the full simulation security guaranteed by the underlying garbled RAM scheme.
To better understand this, first recall that the garbled RAM security property
for multi-program version states that no adversary can distinguish between a
sequence of honestly garbled RAM programs (along with half of the honestly
computed corresponding garbled labels) from a sequence of simulated garbled
RAM programs (again along with half of the simulated garbled labels), where
the garbled labels provided depend on the input to be fed to each RAM program.
Next, observe that in our construction, the RAM programs which we garble are
not independent programs but instead each RAM program in our construction
directly depends on the garbling of the next RAM program in the sequence
(since the i-th RAM program contains labels for the (i + 1)-th RAM program).
Juxtaposing these two facts, we get that no reduction algorithm in the proof
could even statically define the sequence of RAM programs it wants garbled
without interacting with the garbled RAM challenger.

Thus, this circularity/interdependence prevents a natural proof strategy from
working. But it turns out that the problem is a bit deeper than what one can per-
ceive at this point. That is, suppose we could somehow make the RAM programs
(that we want to garble) fully independent, the problem is that the underlying
sequence of RAM programs that we want to simulate will still be executing the
TM step-by-step where each program reveals the labels for the next garbled pro-
gram, thus a reduction algorithm can only simulate the garbled programs one
at a time, and not all at once. Let us clarify this second issue further by first
suggesting a modification to our current construction to solve the first interde-
pendence problem.

The modification to our construction for solving this interdependence prob-
lem is to sample a fresh PRF keys for each label of the garbled RAM program at
the beginning, and instead of letting a RAM program output encryptions of the
labels for the next program, we make each program output encryptions of the
corresponding PRF keys. Once we set the underlying RAM programs this way,
we garble them and to tie them together we encrypt the labels for the (i + 1)-th
RAM program under PRF keys hardwired in the i-th RAM program. Intuitively,
this means evaluating the garbled RAM programs an evaluator learns encryp-
tions of some of the PRF keys which are then used to recover the garbled labels
outside of this garbled RAM structure.

Getting back to proving security, the problem we still encounter is that as
a reduction algorithm it is unclear on how to simulate all the garbled RAM
programs at once, since for simulation the reduction needs to able to generate the
ciphertext given only half of the wire labels, but those wire labels are encrypted
under PRF keys which are hardwired inside each RAM program. Therefore, for

380 R. Goyal et al.

a proof to go through a reduction algorithm needs to first remove information
about half of garbled labels from the ciphertexts for which it needs to remove
the information about half of the corresponding PRF keys which means the
reduction must be able to simulate the garbled programs instead which is what
we were trying to do in the first place. This circularity stems from the fact
that the garbled RAM full simulation security only guarantees security when
all the garbled programs are being simulated at the same time, instead of being
partially/sequentially simulated.

Strengthening garbled RAM security. To fix the above problem we
introduce a stronger security notion for garbled RAMs which we call iterated
simulation security.6 To us, it seems a more natural notion of security for multi-
program garbled RAM versions, and also captures the kind of garbled RAM
security we need for our proof to go through. We describe it in detail later
in Sect. 3, but very briefly it states that there exists an efficient simulator such
that for any sequence of � programs and inputs, it is hard to distinguish between
simulations of the first i programs and inputs along with honest garblings of the
remaining �− i programs from simulations of the first i+1 programs and inputs
along with honest garblings of the remaining �− i− 1 programs. That is, partial
executions of the multi-program garbled RAMs are also simulatable.

Plugging in the strengthened garbled RAM security property, we are able
to prove security of our ABE scheme by organizing an iterated hardwiring-style
proof strategy where we start by simulating the first garbled program, then
remove the information about labels for the next program by relying on PRF
security (and the fact that only half of the PRF keys are needed to simulate the
first garbled program), and keep on interleaving garbled RAM security with PRF
security to eventually remove the plaintext information whenever the underlying
TM does not accept the attribute word.

In order to complete the proof, we need to construct such a garbled RAM
scheme that achieves our notion of iterated simulation security. Fortunately, we
were able to show that most existing garbled RAM schemes already are secure
under this partial simulation framework. In the full version, we show that the
IBE-based garbled RAM construction in [33] is an iterated simulation secure
garbled RAM scheme.

Lifting the core construction to q-query adaptive security
After a closer look at the proof overview provided for our core construction, the
reason behind our construction only enabling a proof in key-selective model (that
is, where the key query must be made before receiving the challenge ciphertext)
becomes apparent. Very briefly, the bottleneck is that the reduction algorithm
needs to know the current state of partial TM execution while embedding the
challenge ciphertext with partially simulated components. Thus, the reduction
must know the TM of the key query before creating the challenge ciphertext.

6 Although prior works [13,28,29,32–34,50,53,54] have studied other adaptive and
reusable variants of garbled RAM security notions, our notion of iterated simulation
security has not yet been explicitly studied previously to the best of our knowledge.

Bounded Collusion ABE for TMs from IBE 381

Now instead of modifying our core construction to resolve this bottleneck,
we instead observe that if the adversary gets to corrupt at most one key, then
we could generically amplify key-selective security in a black-box manner to
adaptive security. The only tool needed for such an amplification is a relaxed
notion of non-committing encryption (NCE) [17,21,48] which we call weak non-
committing encryption (wNCE). In a wNCE system, there is an efficient simu-
lator that could “open” the ciphertext to any message by providing a simulated
secret key after already committing to the public key in the beginning. For secu-
rity, it is only required that the distribution of simulated keys and ciphertext
is computationally indistinguishable from the distribution generated by the real
encryption protocol.7

Given such a weak NCE scheme, the idea is pretty straightforward. During
setup, we would additionally sample a wNCE key pair, and encryption algo-
rithm will be a simple double encryption where each (key-selective secure) ABE
ciphertext will be encrypted under the wNCE system. Each predicate key now
contains the wNCE secret key as well as the underlying ABE key, where during
decryption, the decryptor first decrypts the outer wNCE ciphertext to learn the
core ABE ciphertext which it then decrypts using the core ABE key. Now the
adaptive security of this transformed scheme follows directly from wNCE sim-
ulation security and the key-selective ABE security. The idea there is that the
challenge ciphertext will be computed as a simulated wNCE ciphertext instead,
and when the adversary makes the post-challenge key query, then the reduction
algorithm opens the wNCE ciphertext to the challenge ciphertext provided by
the key-selective security ABE challenger, and answers the adversary’s key query
with a simulated wNCE secret key along with the core ABE key provided by the
ABE challenger. Similar ideas were also used in [39] in the context of simulation
secure functional encryption.

Since there is a very simple construction for a weak NCE scheme from reg-
ular public key encryption, this seems to suggest that any 1-query key-selective
secure ABE scheme could be generically lifted to achieve 1-query adaptive secu-
rity instead, however there is an important caveat. The caveat is that this weak
NCE construction from PKE has public-secret keys whose sizes grow linearly
with length of the messages. Recall that in our generical transformation we
encrypt the key-selective ABE ciphertext using the wNCE scheme. If the size
of key-selective ABE ciphertext is fixed at setup time, then the transformation
goes through as is, but this is not true for ABE in uniform models of com-
putation where the whole motivation is being able to encrypt messages under
unrestricted length attributes, thus the ciphertext sizes are a-priori unbounded.
This implies that for the above transformation to work in the case of ABE for
TMs we need a succinct weak NCE, where by succinct we mean that the sys-
tem supports encryption of unbounded length messages. To this end, we show

7 In regular notions of non-committing encryption, the simulator must also be able to
indistinguishably explain the ciphertexts by providing encryption randomness too.
We do not require that, thus regard our notion as a weak NCE system. Our notion
is similar to that of receiver non-committing encryption [18].

382 R. Goyal et al.

another generic transformation that takes any non-succinct weak NCE scheme
and compiles it into a succinct NCE scheme albeit in the Random Oracel Model
(ROM) [11]. Very briefly, the idea here is use the ROM as an adaptive pro-
grammable PRF to indistinguishably open simulated ciphertexts to arbitrary
messages. During encryption, an encryptor chooses a random λ-bit string K
which it encrypts under the non-succinct NCE scheme, and then encrypts the
unbounded length message block-by-block using K as a secret key and ROM as
a PRF. The simulatability of this scheme follows directly from the simulatability
of the non-succinct scheme and programmability of the ROM. This is discussed
in detail in the full version. We want to point out that building a succinct weak
NCE scheme as described above is impossible in the standard model [55], thus
adaptive security of our construction crucially relies on the usage of ROM.

Combining the above ideas, we obtain a 1-query adaptively secure ABE
scheme for TMs. To conclude, we show that by using standard combinatorial
techniques, the security could be improved to q-query adaptive security for any
a-priori fixed polynomial q(·). Since we are dealing with just an ABE scheme,
thus this transformation is much simpler than for other related transformations
such as the one for functional encryption in [39]. For completeness, we provide
it in the full version.

Related work, other suggested approaches, and future directions
Comparison with Agrawal-Singh [5]. Closest to us is the work of Agrawal-
Singh [5] who construct a 1-query functional encryption scheme for Turing
Machines where, like our ABE system, the encryption algorithm depends on
the worst case running time of the TM. Ours and their construction share the
same mechnical perspective of traversing through a sequence of garbled circuits
for encrypting unbounded length inputs, however differ in overall execution since
they rely on a succinct single-key FE scheme with the TM evaluation happening
under the FE hood, whereas we work with more general primitives such as IBE
and garbled RAM thereby our TM evaluation happens on encrypted pieces that
come out as outputs of garbled RAM evaluations. The usage of a succinct single-
key FE scheme has the benefit of the resulting encryption scheme being a FE
scheme with short keys (and not just an ABE scheme like ours), but given the
current state-of-the-art [36] it also means relying on the LWE assumption, while
we rely on much weaker primitives thus are not tethered to the LWE assump-
tion. Like our core key-selective secure ABE scheme, they also prove security in
the weaker model where there is a single-key query which must be made before
receiving the challenge ciphertext. Although they do not provide any follow-
up transformations to improve security like us, we believe our non-committing
encryption idea could also be used with their FE construction. However, extend-
ing to q-query bounded collusion security would be more tricky than our case,
but might be possible to adapt a more elaborate transformation along the lines
of [39].

ABE via laconic OT. Cho et al. [19] introduced the concept of laconic trans-
fer for secure computation over large inputs. They described an application of
laconic OT to non-interactively compute in the RAM setting. Although this

Bounded Collusion ABE for TMs from IBE 383

application does not directly lead to ABE schemes that supports (RAM) Turing
Machine computation, it might be possible to repurpose the underlying ideas to
build ABE by going through laconic OT along with garbling techniques. One
would need to be careful in executing this idea so that the description size of the
Turing Machine does not need to be a-priori bounded at setup time, and this
might require adjusting the definition of the corresponding primitives. Addition-
ally, such an approach would need one to rely on laconic OT whereas we chose
to focus on IBE since it is both supported by multiple number theoretic assump-
tions as well as there are multiple number theoretic IBE constructions that do
not themselves invoke garbling and thus avoid a double layer of garbling in the
eventual construction. There have been prior works [23,49] which observe that
laconic OT could be replaced by IBE in certain applications, and it would be
interesting to look at whether same could be done for this alternate approach.
In our work, we provide a much direct construction directly from any regular
IBE scheme.

Future directions. In this work we focus on proving standard semantic secu-
rity of our ABE scheme, but we believe one could extend it to CCA security
by either relying on the ROM, or on other generic transformations such as [51],
and prove it to be a 1-sided predicate encryption scheme directly without rely-
ing on generic transformations [41,61]. An interesting open question is whether
one could extend our current approach to either achieve succinctness similar
to [5], or extend it to FE without relying on stronger assumptions. Another
related question is whether we could avoid the ROM for amplifying the security
of our core ABE scheme from key-selective to fully adaptive. It might be useful
look at the graph pebbling techniques [24,25,45,46,52] to develop a more intri-
cate hybrid structure for proving adaptive security directly. Another interesting
thought might be to rely on adaptive security of garbled RAM schemes [30]
instead, however it is unclear how to leverage having an adaptive garbled RAM
in our setting. Briefly, the reason is that the extra adaptivity it provides is useful
in cryptosystems where an attacker is able to see some of the garbled RAM pro-
grams and then somehow influence the inputs or programs for the rest of them;
while in our case all the garbling program calls are bundled together in a single
call to the encryption oracle. Lastly, another important question is whether these
techniques could be used to build ABE systems for TMs where the encryption
algorithm no longer depends on the worst case running of the TM.

2 Preliminaries

Due to space constraints, we describe our notation, the Turing machine and RAM
program formalisms, and definitions of secret key encryption and identity-based
encryption later in the full version.

384 R. Goyal et al.

2.1 Attribute-Based Encryption for Turing Machines

An Attribute-Based Encryption (ABE) scheme ABE for set of attribute space
{0, 1}∗, Turing Machines classes T = {Tλ}λ∈N, and message spaces M =
{Mλ}λ∈N consists of four polynomial time algorithms (Setup,KeyGen,Enc,Dec)
with the following syntax:

Setup(1λ) → (pp,msk). The setup algorithm takes as input the security param-
eter λ. It outputs the public parameters pp and the master secret key msk.

KeyGen(msk, T) → skT . The key generation algorithm takes as input the master
secret key msk and a Turing Machine T ∈ Tλ. It outputs a secret key skT .

Enc(pp,m, (w, t)) → ct. The encryption algorithm takes as input the public
parameters pp, a message m ∈ Mλ, and a pair (w, t) consisting of an attribute
w ∈ {0, 1}∗, and a positive integer time bound t. It outputs a ciphertext ct.

Dec(skT , ct) → m/⊥. The decryption algorithm takes as input a secret key skT

and a ciphertext ct. It outputs either a message m ∈ Mλ or a special symbol
⊥.

Correctness. We say an ABE scheme ABE = (Setup,KeyGen,Enc,Dec) satisfies
correctness if for all λ ∈ N, (pp,msk) ← Setup(1λ), T ∈ Tλ, m ∈ Mλ, skT ←
KeyGen(msk, T), t ∈ N, and w ∈ {0, 1}∗ for which T accepts w within t steps,
and ct ← Enc(pp,m, (w, t)) we have that Dec(skT , ct) = m.

Efficiency. We require that the algorithm Setup(1λ) runs in time polynomial in
the security parameter λ. We require that the algorithm KeyGen(msk, T) runs in
time polynomial in the security parameter λ and the size |T | of T . We require
that the algorithm Enc(pp,m, (w, t)) runs in time polynomial in the security
parameter λ, the length |m| of the message m, the length |w| of the attribute w,
and the time bound t. We require that the algorithm Dec(skT , ct) runs in time
polynomial in the security parameter λ and the size |ct| of the ciphertext ct.

Security. Next, we define the security notions we consider for ABE systems.

Definition 2.1 (adaptive security). We say an ABE scheme ABE = (Setup,
KeyGen,Enc,Dec) is fully secure if for any PPT adversary A = (A0,A1) there
exists a negligible function negl(·), such that for all λ ∈ N the following holds

Pr

⎡
⎣AKeyGen(msk,·)

1 (st, ct) = β :

(pp,msk) ← Setup(1λ); β ← {0, 1}
(st, m0, m1, (w, 1t)) ← AKeyGen(msk,·)

0 (pp, 1λ)
ct ← Enc(pp, mβ , (w, t))

⎤
⎦ ≤ 1

2
+negl(λ),

where all Turing Machines T queried by A do not accept the word w within t
steps.

In this work, we focus on bounded collusion security for ABE systems where
the adversary is restricted to make an a-priori bounded number of key generation
queries, say at most Q queries (for some polynomially bounded function Q(λ)).
The definition is given below.

Bounded Collusion ABE for TMs from IBE 385

Definition 2.2 (Q-query adaptive security). An ABE scheme is said to be
Q-query adaptively secure if in the above security game (see Definition 2.1), the
adversary can make at most Q queries to the key generation oracle.

We also define the weaker notion which we call key-selective security, where
the adversary to must make all key queries before it is given the challenge cipher-
text. The definition is given below.

Definition 2.3 (Q-query key-selective security). An ABE scheme is said
to be Q-query key-selective secure if in the above security game (see Defintion
2.1), the adversary can make at most Q queries to the key generation oracle,
and all key queries must be made before getting the challenge ciphertext.

3 Garbled RAM with Iterated Simulation Security

In this section we define a notion of Garbled RAM security which abstracts
out properties of Garbled RAM constructions in previous works which we will
use in our construction of ABE. At a high level, our security notion, which we
call Iterated Simulation Security requires that there exists an efficient simulator
such that for any sequence of � programs and inputs, it is hard to distinguish
simulations of the first k programs and inputs along with honest garblings of the
remaining �−k programs from simulations of the first k+1 programs and inputs
along with honest garblings of the remaining � − k − 1 programs. Our security
definition will actually be a notion of security with Unprotected Memory Access
(UMA), that is security in which the garbling may leak the contents of the
garbled database D, and the memory access patterns accessj of the programs.
We drop the label UMA in the subsequent to reduce clutter.

A Garbled RAM scheme GRAM consists of three polynomial time algorithms
(GData,GProg,Eval) with the following syntax:

GData(1λ,D) → (D̃, kD). The data garbling algorithm takes as input the security
parameter λ and a database D ∈ {0, 1}m. It outputs a garbled database D̃
and program garbling key kD.

GProg(1λ, kD,m, P, 1n, (tinit, tfin)) → (P̃ , {labini,b}i∈[n],b∈{0,1}). The program gar-
bling algorithm takes as input the security parameter λ, a program garbling
key kD, a database size m, a program P which operates on a database of size
m and takes an input of length n, and time range given as a pair of an initial
time tinit and final time tfin. It outputs a garbled program P̃ and a collection
of input labels {labini,b}i∈[n],b∈{0,1}.

Eval
˜D(P̃ , {labini }i∈[n]) → ỹ. The evaluation algorithm takes as input a garbled

database D̃, a garbled program P̃ , and a collection of n labels {labini }i∈[n]. It
outputs a value ỹ. As in [33], we will think of the evaluation algorithm as a
RAM program operating on database D̃ which is able to perform arbitrary
reads and writes on D̃. We slightly abuse notation, and will write

Eval
˜D((P̃1, {labin,1

i }i∈[n1]), ..., (P̃�, {labin,�
i }i∈[n�])) → (ỹ1, . . . , ỹ�)

386 R. Goyal et al.

to denote that for all j ∈ �, ỹj is the result of the evaluation algorithm
on garbled program P̃j with labels {labin,j

i }i∈[nj] on garbled database D̃

after running the evaluation algorithm on garbled programs P̃j′ with labels
{labin,j′

i }i∈[nj′] in sequence on D̃ for all j′ < j with changes made to D̃ per-
sisting across evaluations.

Correctness. Fix parameters λ, �,m ∈ N, a database D ∈ {0, 1}m, and pro-
grams and inputs {(Pj , xj ∈ {0, 1}nj , nj , tinit,j , tfin,j)}j∈[�]. Let

(y1, . . . , y�) ← (P1(x1), . . . , P�(x�))D

be the result of sequentially running the programs Pj on inputs xj operating on
persistent database D. We say a garbled RAM scheme GRAM = (GData,GProg,
Eval) satisfies correctness, if for all j ∈ [�] the following holds

Pr

⎡

⎢

⎢

⎣

ỹj = yj :

(˜D, kD) ← GData(1λ, D)

∀j ∈ [�], (˜Pj , {labin,j
i,b }i∈[nj],b∈{0,1}) ← GProg(1λ, kD, m, Pj , 1nj , (tinit,j , tfin,j))

(ỹ1, . . . , ỹ�) ← Eval
˜D((˜P1, {labin,j

i,xj [i]}i∈[nj]), . . . , (˜P1, {labin,j
i,xj [i]}i∈[nj]))

⎤

⎥

⎥

⎦

= 1.

Definition 3.1 (iterated simulation security). We say a garbled RAM
scheme GRAM = (GData,GProg,Eval) satisfies iterated simulation security if
there exists a polynomial time simulator Sim such that for any PPT adversary
A = (A0,A1) there exists a negligible function negl(·), such that for all λ ∈ N,
the following holds

Pr

⎡
⎣A1(st, chal) = β :

β ← {0, 1}
(st, k, D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[�]) ← A0(1λ)

chal ← Expλ
k−β(D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[�])

⎤
⎦ ≤ 1

2
+ negl(λ),

where for 0 ≤ k ≤ �, the output of Expλ
k(D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[�]) is

defined
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

˜D, {(˜Pj , {labin,j
i

}i)}j∈[k],

{(˜Pj , {labin,j
i,b

}i,b)}j∈[k+1,�]

)

:

(˜D, kD) ← GData(1λ, D)

∀j > k, (˜Pj , {labin,j
i,b

}i∈[nj],b∈{0,1})
← GProg(1λ, kD, |D|, Pj , 1

nj , (tinit,j , tfin,j))

∀j ≤ k, (˜Pj , {labin,j
i

}i∈[nj],b∈{0,1})
← Sim(kD, 1

nj , |Pj |, yj , accessj , (tinit,j , tfin,j))

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

where for all j, |Pj | is the size of the program Pj , yj is the result of running Pj

with input xj on the database D after having run the previous j − 1 programs
and inputs, and accessj is the memory access pattern of Pj . Note, that all the
inputs to Sim(·), can be computed from the inputs to Expλ

k .

Remark 3.2. As a point of comparison with the simulation security notions con-
sidered in prior works such as [33], we would want to highlight that in prior
works the simulator always outputs a fully simulated execution of the garbled

Bounded Collusion ABE for TMs from IBE 387

RAM which must be indistinguishable from honestly garbled programs. We, on
the other hand, consider indistinguishability in between these partial execution
steps.

Efficiency. We require that the algorithm GData(1λ,D) runs in time polynomial
in the security parameter λ and the size |D| of the database D. We require that
the algorithms GProg(1λ, kD,m, P, 1n, (tinit, tfin)) and Eval

˜D(P̃ , {labini }i∈[n]) both
run in time polynomial in the security parameter λ, log(m) where m is the size
of D, the size |P | of P , the size n of the input taken by P , and the total number
of steps (tfin − tinit) taken by P .

4 ABE for Turing Machines

In this section we give our main construction of an ABE scheme for Turing
Machines. The scheme will be for message spaces M = {{0, 1}λ}λ∈N.

The primitives used by our construction are as follows. Let GRAM =
(GData, GProg, Eval) be a garbled RAM scheme satisfying Iterated Sim-
ulation Security. In addition, let IBE be a secure IBE scheme which can
encrypt messages of length λ, and assume there is some polynomial n(·) for
which the identity space of IBE includes identities of length n′(λ) := n(λ) +
�log(n + 2)� + 2. In the subsequent discussion we will simply write n as short-
hand for n(λ). Our scheme additionally uses a secret key encryption scheme
SKE = (SKE.Setup,SKE.Enc,SKE.Dec). For simplicity of exposition, we assume
(w.l.o.g.) that the IBE encryption algorithm takes as input λ-bits of randomness.

In our scheme, we will allow secret key queries for deterministic Turing
Machines T = (Q,Σ, qstart, F, δ) with the following restrictions. We assume:

– All machines have state space Q ⊂ {0, 1}n.
– The alphabet Σ is binary. That is Σ = {0, 1}.
– The all 0 state 0n is reserved as the unique start state qstart for all machines.
– The all 1 state 1n is reserved as the unique accept state qaccept ∈ F .
– The transition relation δ is a partial function. In particular, all machines are

deterministic.

The above assumptions are essentially without loss of generality for deterministic
Turing Machines. In particular, any deterministic Turing Machine with constant
size alphabet and a polynomial number of states can be transformed in to a
machine satisfying these assumptions with at most polynomial blowup. We will
identify each machine T with the set of possible transitions it can make under
δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}
Thus, the notation |T |, will simply be the cardinality of the right hand side of
the above.

The secret keys of our scheme will be carefully chosen sets of identity secret
keys from the IBE scheme IBE. In particular, each identity secret key will be for
an identity id ∈ {0, 1}n+�log(n)	+2.

388 R. Goyal et al.

4.1 Construction

We now formally describe the construction of our ABE scheme, ABE =
(Setup,KeyGen,Enc,Dec).

Setup(1λ) → (pp,msk). The setup algorithm chooses (pp,msk) ← IBE.Setup(1λ),
and outputs (pp,msk).

KeyGen(msk, T) → skT . Let the Turing machine T be given as the set of possible
transitions it can make under its transition relation δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}

For each transition (qin, bin, qout, bout, dir) ∈ T the key generation algorithm
samples n+2 identity secret keys. Let IDT be the set of (n+2) · |T | identities
described below:

IDT =

⎧

⎨

⎩

(q
in
, b

in
, i, β) ∈ {0, 1}n′

: (q
in
, b

in
, q

out
, b

out
, dir) ∈ T ∧

⎛

⎝

(i ∈ [n] ∧ β = qout[i]) ∨
(i = n + 1 ∧ β = bout) ∨
(i = n + 2 ∧ β = bdir)

⎞

⎠

⎫

⎬

⎭

(1)
where in the above bdir = 0 if dir = L and bdir = 1 if dir = R.
Next, the key generation algorithm samples an IBE secret key for each identity
in IDT . Concretely, it chooses

∀ (qin, bin, i, β) ∈ IDT , sk(qin,bin,i,β) ← IBE.KeyGen(msk, (qin, bin, i, β)).

Finally, the key generation algorithm sets the key to be the machine descrip-
tion T and the entire set of identity secret keys it chose:

skT =
(
T,

{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
.

Enc(pp,m, (w, t)) → ct. The encryption algorithm garbles a database D along
with several copies of a step program P . We formally describe the RAM
program P in Fig. 1 before moving on to the encryption algorithm.
The encryption algorithm proceeds as follows.
1. The encryption algorithm sets a database D ∈ {0, 1}t+1+�log(t+1)	. It sets

the first |w| bits of D to match w, and sets the remaining bits to 0. More
formally,

D := w||0t+1+�log(t+1)	−|w|

where || denotes concatenation. The algorithm next garbles the database
(D̃, kD) ← GData(1λ,D).

2. For each (i, b, j) ∈ [n + 2] × {0, 1} × [t + 1], the algorithm samples
randomness r

(i)
b,j and SKE secret keys K

(j)
i,b as r

(i)
b,j ← {0, 1}λ,K

(j)
i,b ←

SKE.Setup(1λ).
3. Let P be the RAM program described as described in Fig. 1. For each

j ∈ [t + 1], the algorithm sets Pj as Pj := P [pp, {K(j)
i,b }i,b,m, j; {r

(i)
b,j}i,b].

Bounded Collusion ABE for TMs from IBE 389

4. Let � be the number of steps P takes to run on a database of length |D|.
For each j ∈ [t + 1], the algorithm garbles the program Pj , computing

(P̃j , {labin,j
i,b }i,b) ← GProg(1λ, kD, t + 1 + �log(t + 1)�, Pj , 1n+2, (1 + (j − 1) · �, j · �)).

5. For each (i, b, j) ∈ [n+2]×{0, 1}×[t], the algorithm computes ciphertexts
c̃t

(j)
i,b ← SKE.Enc(K(j)

i,b , labin,j+1
i,b).

6. Let {labin,1
i,b }i,b be the set of input labels computed when garbling program

P1. Recall that the all zero state is the canonical start state. The algorithm
outputs the ciphertext

ct = (w, t, D̃, {labin,1
i,0 }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

The step program
P [pp, {Ki,b}(i,b)∈[n+2]×{0,1},m, j; {ri,b}(i,b)∈[n+2]×{0,1}](qin, bout, bdir)

The program P operates on a database D of size t + 1 + �log(t + 1)�.
For convenience, we will think of the database as a length t + 1 array
D′ concatenated with an integer index idx ∈ [t + 1] i.e D := D′||idx.
The program P has hard-coded the public parameters pp of an instance
of IBE, a set of SKE secret keys {Ki,b}(i,b)∈[n+2]×{0,1}, a message m, an
integer j ∈ [t+1], and a set of randomness strings {ri,b}(i,b)∈[n+2]×{0,1}.
It takes as input an n-bit state q, a bit bout, and a bit bdir.

1. If j > 1, the program reads the index idx, and then it overwrites
the idx-th bit of D′ with bout i.e. it sets D′[idx] := bout. Otherwise if
j = 1, the program ignores the input bout.

2. If j > 1, idx > 1, and bdir = 0, the program overwrites idx with
idx − 1. Else if j > 1, idx = 1, and bdir = 0, for each i ∈ [n + 2]
and b ∈ {0, 1}, the program re-sets Ki,b := 0. (This instruction is
to prevent decryption if the tape head tries to move left off of the
tape.) Else, if j > 1 and bdir = 1, the program overwrites idx with
idx + 1. Else, if j = 1, the program ignores the input bdir.

3. The program reads the bit bin := D′[idx] at the updated idx. For
each pair (i, b) ∈ [n + 2] × {0, 1}, the program computes

cti,b := IBE.Enc(pp,Ki,b, (q
in, bin, i, b); ri,b).

4. Finally, if qin = accept, the program outputs
({cti,b}(i,b)∈[n+2]×{0,1},m). Otherwise it outputs
({cti,b}(i,b)∈[n+2]×{0,1},⊥).

Fig. 1. The step program P.

390 R. Goyal et al.

Dec(skT , ct) → m/⊥. The decryption algorithm parses the ciphertext and secret
key as

ct = (w, t, D̃, {labini }i∈[n+2], {P̃j}j∈[t+1], {c̃t
(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]),

skT =
(
T,

{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
.

Let t′ ≤ t be the maximum number of well defined transitions the machine T
can make on input w within t time steps. Let

{(qinj , binj , qoutj , boutj , dirj)}j∈[t′]

be the t′ transitions T makes on input w. The decryption algorithm sets
lab1 := {labini }i∈[n+2], and then proceeds to evaluate the garbled RAM pro-
grams in ascending order for j = 1 to j = t′ + 1 as follows:
1. The decryption algorithm evaluates the jth garbled RAM program P̃j

on the current value of the garbled database D̃ with the input given by
labels in labj :

({ct(j)i,b }i,b, ỹj) ← Eval
˜D(P̃j , labj).

Note that the garbled database D̃ has now been updated after running
Eval(·).

2. If ỹj �= ⊥, the algorithm breaks and exits the loop, sets m := ỹj , and
outputs m.

3. Otherwise, if ỹj = ⊥ it continues. Let (qinj , binj , qoutj , boutj , dirj) be the jth
transition T makes on input w. Also, for i ∈ [n + 2], let bi,j denote the
following bit

bi,j :=

⎧
⎪⎨

⎪⎩

qoutj [i] if i ∈ [n]
boutj if i = n + 1
bdirj otherwise.

where in the above bdirj = 0 if dirj = L and bdirj = 1 if dirj = R. The
algorithm computes the labels for the next program as follows. For i ∈
[n + 2], it decrypts the IBE and SKE ciphertexts as:

K
(j)
i,bi,j

= IBE.Dec(sk(qin,bin,i,bi,j)
, ct

(j)
i,bi,j

), labini,bi,j
← SKE.Dec(K

(j)
i,bi,j

, c̃t
(j)
i,bi,j

).

4. If j < t′ + 1, the algorithm sets the labels for the garbled program P̃j+1

as
labj+1 := {labini,bi,j

}i∈[n+2]

and otherwise if j = t′ + 1, the algorithm exits the loop and returns ⊥.

4.2 Correctness

Due to space constraints, we describe the correctness proof later in the full
version.

Bounded Collusion ABE for TMs from IBE 391

4.3 Efficiency

We discuss the efficiency of the algorithms of the above construction. Since
Setup(λ) simply runs IBE.Setup(λ), the runtime is poly(λ) whenever the run-
time of IBE.Setup(λ) is poly(λ). Next, the algorithm KeyGen(msk, T) runs
IBE.KeyGen(msk, ·) a total of n + 2 times for each transition of T . Since n
is bounded by poly(λ), we have that if the runtime of IBE.KeyGen(msk, ·) is
poly(λ) then KeyGen(msk, T) has runtime |T | · poly(λ). Next, the algorithm
Enc(pp,m, (w, t)) runs GData(1λ,D) on a database of size O(t), and garbles t+1
copies of the step-program P . Assume |w| ≤ t and that each P has representation
of size poly(λ) · polylog(t). If IBE.Enc(pp, ·) has runtime poly(λ), GData(1λ,D)
has runtime |D| · polylog(|D|) · poly(λ), and GProg(1λ, log(|D|), P, 1n, (tinit, tfin))
has runtime |P | · polylog(|D|, |P|) · poly(λ), then Enc(pp,m, (w, t)) has runtime
t ·polylog(t) ·poly(λ). Finally, the algorithm Dec(skT , ct) evaluates a garbled pro-
gram and decrypts a set of n ciphertexts of the IBE system t′ + 1 many times,
where t′ is the time T takes to accept the underlying attribute w used to compute
ct. Thus, if IBE.Dec(skid, ct) has runtime poly(λ) and if Eval

˜D(P̃ , lab) has runtime
|P | · polylog(|D|) · poly(λ) then Dec(skT , ct) has runtime t′ · polylog(t) · poly(λ)
where t′ is the time T takes to accept the attribute w used when computing ct
and t is the time bound set at encryption time when computing ct.

4.4 Security

Next, we prove the following.

Theorem 4.1. Let IBE be a secure IBE scheme, SKE be a secure symmetric
key encryption scheme, and GRAM be a garbled RAM scheme satisfying Iterated
Simulation Security as per Definition 3.1. Then ABE described above is an ABE
scheme satisfying 1-query key-selective security as per Definition 2.3.

We prove Theorem 4.1 via a sequence of hybrid games. First, we describe the
games and later on prove that any two adjacent games are indistinguishable.

Game 0. This game corresponds to the original 1-query key-selective security
game.

– Setup Phase: The challenger chooses (pp,msk) ← IBE.Setup(1λ), and sends
pp to the adversary. (Note that Setup in our scheme is precisely IBE.Setup.)

– Key Query Phase: The adversary submits a single key query for machine
T to the challenger. Let the Turing machine T be given as the set of possible
transitions it can make under its transition relation δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}.

Let IDT be the set of (n+2)·|T | identities as defined in Eq. (1). The challenger
samples an IBE secret key for each identity in IDT . Concretely, it chooses

∀ (qin, bin, i, β) ∈ IDT , sk(qin,bin,i,β) ← IBE.KeyGen(msk, (qin, bin, i, β)).

Finally, it sends the key skT =
(
T,

{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
to A.

392 R. Goyal et al.

– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret key
skT during the key query phase does not accept the word w within t steps.
The challenger samples a bit β ← {0, 1}, and computes the challenge cipher-
text as follows.
1. The challenger sets a database D ∈ {0, 1}t+1+�log(t+1)	. It sets the first

|w| bits of D to match w, and sets the remaining �log(t + 1)� bits to 0.
More formally,

D := w||0t+1+�log(t+1)	−|w|

where || denotes concatenation. It next garbles the database (D̃, kD) ←
GData(1λ,D).

2. For each (i, b, j) ∈ [n + 2] × {0, 1} × [t + 1], the challenger samples
randomness r

(i)
b,j and SKE secret keys K

(j)
i,b as r

(i)
b,j ← {0, 1}λ,K

(j)
i,b ←

SKE.Setup(1λ).
3. Let P be the RAM program described as described in Fig. 1. For each

j ∈ [t + 1], the challenger sets Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r

(i)
b,j}i,b].

4. Let � be the number of steps P takes to run on a database of length |D|.
For each j ∈ [t + 1], the challenger garbles the program Pj , computing

(P̃j , {labin,j
i,b }i,b) ← GProg(1λ, kD, t + 1 + �log(t + 1)�, Pj , 1n+2, (1 + (j − 1) · �, j · �)).

5. For each (i, b, j) ∈ [n+2]×{0, 1}×[t], the challenger computes ciphertexts
c̃t

(j)
i,b ← SKE.Enc(K(j)

i,b , labin,j+1
i,b).

6. Let {labin,1
i,b }i,b be the set of input labels computed when garbling program

P1. Recall that the all zero state is the canonical start state. The challenger
outputs the ciphertext

ct∗ = (w, t, D̃, {labin,1
i,0 }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

– Guess Phase: The adversary submits its guess β′, and wins the game if
β = β′.

Game k.1 (1 ≤ k ≤ t+1). This game is defined similar to Game 0, except now the
challenger simulates the first k (out of t+1) garbled RAM programs and the SKE
ciphertexts encrypting the labels for first k−1 levels are also simulated (i.e., half
of them contain the simulated wire label keys, while other half encrypt all zeros).
Note that while setting up the garbled programs to be simulated, the challenger
needs to sample the IBE ciphertexts appropriately where the IBE ciphertexts for
the first k−1 simulated garbled programs encrypt only half of the corresponding
SKE keys and the IBE ciphertexts for the k-th simulated program encrypts all
the keys honestly. Below we describe it in detail highlighting the differences.

Bounded Collusion ABE for TMs from IBE 393

– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret key
skT during the key query phase does not accept the word w within t steps.
Let {(qinj , binj , qoutj , boutj , dirj)}j∈[t] be the sequence of the first t transitions made
by machine T on input w. Let x1 = 0n+2, and for all other j let xj be the
(n + 2)-bit representation of (qoutj−1, b

out
j−1, b

dir
j−1). Let D ∈ {0, 1}t+1+�log(t+1)	

match w in the first |w| bits, and be 0 elsewhere. Let {accessj}j∈[t+1] be the
memory access patterns of the t + 1 step programs Pj run on D in sequence
with inputs xj . Note that the hard-coded inputs do not affect the memory
access pattern, so for all j ∈ [t + 1], accessj can be computed as a function of
the machine T , the challenge attribute w, and the time bound t.
The challenger samples a bit β ← {0, 1}, and computes the challenge cipher-
text as follows.
1. The challenger sets a database D ∈ {0, 1}t+1+�log(t+1)	. It sets the first

|w| bits of D to match w, and sets the remaining �log(t + 1)� bits to 0.
More formally,

D := w||0t+1+�log(t+1)	−|w|

where || denotes concatenation. It next garbles the database (D̃, kD) ←
GData(1λ,D).

2. For each (i, b, j) ∈ [n + 2] × {0, 1} × [t + 1], the challenger samples
randomness r

(i)
b,j and SKE secret keys K

(j)
i,b as r

(i)
b,j ← {0, 1}λ,K

(j)
i,b ←

SKE.Setup(1λ).8

3. Let P be the RAM program as described in Fig. 1. For each j ∈ [k +
1, t+1], the challenger sets Pj as Pj := P [pp, {K(j)

i,b }i,b,mβ , j; {r
(i)
b,j}i,b]. It

computes 2k(n + 2) IBE ciphertexts as:

(i, b) ∈ [n + 2] × {0, 1}, ct
(k)
i,b ← IBE.Enc(pp,K

(k)
i,b , (qink , bink , i, b)),

(i, j) ∈ [n + 2] × [k − 1], ct
(j)

i,xj [i]
← IBE.Enc(pp,K

(j)

i,xj [i]
, (qinj , binj , i, xj [i])),

(i, j) ∈ [n + 2] × [k − 1], ct
(j)

i,1−xj [i]
← IBE.Enc(pp,0, (qinj , binj , i, 1 − xj [i]))

4. Let � be the number of steps P takes to run on a database of length
|D|. For each j ∈ [k + 1, t + 1], the challenger garbles the program Pj ,
computing

(P̃j , {labin,j
i,b }i,b) ← GProg(1λ, kD, t + 1 + �log(t + 1)�, Pj , 1n+2, (1 + (j − 1) · �, j · �)).

For j ∈ [k], the challenger computes a simulated program

(P̃j , {labin,j
i }i∈[n+2]) ← Sim(1

λ
, kD, |P |, ({ct(j)

i,b }(i,b)∈[n+2]×{0,1}, ⊥), D, {access′j}j′∈[t+1])

8 We point out that the challenger does not need use all the sampled random coins
and secret keys anymore. However, for ease of exposition we still sample all of them
as before.

394 R. Goyal et al.

5. Next, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n + 2] × {0, 1} × [k, t], c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , labin,j+1

i,b),

(i, j) ∈ [n + 2] × [k − 1], c̃t
(j)
i,xj+1[i]

← SKE.Enc(K
(j)
i,xj+1[i]

, labin,j+1
i),

(i, j) ∈ [n + 2] × [k − 1], c̃t
(j)
i,1−xj+1[i]

← SKE.Enc(K
(j)
i,1−xj+1[i]

,0)

6. Let {labin,1
i }i be the set of input labels computed when simulating pro-

gram P1. The challenger outputs the ciphertext

ct∗ = (w, t, D̃, {labin,1
i }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

Game k.2 (1 ≤ k ≤ t + 1). This game is defined identically to Game k.1,
except now IBE ciphertexts hardwired in the k-th simulated garbled program
also encrypt only half of the corresponding SKE keys (as for first k − 1 simu-
lated programs). Below we simply describe the change in game description when
compared with previous game.

– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret
key skT during the key query phase does not accept the word w within t
steps. The challenger samples a bit β ← {0, 1}, and computes the challenge
ciphertext as in Game k.1, except the following:
3. Let P be the RAM program as described in Fig. 1. For each j ∈ [k +

1, t+1], the challenger sets Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r

(i)
b,j}i,b]. It

computes 2k(n + 2) IBE ciphertexts as:

(i, j) ∈ [n + 2] × [k], ct
(j)
i,xj [i]

← IBE.Enc(pp,K(j)
i,xj [i]

, (qinj , binj , i, xj [i])),

(i, j) ∈ [n + 2] × [k], ct
(j)
i,1−xj [i]

← IBE.Enc(pp,0, (qinj , binj , i, 1 − xj [i]))

Game k.3 (1 ≤ k ≤ t + 1). This game is defined identically to Game k.2, except
now the SKE ciphertexts encrypting the garbled program labels for the (k + 1)-
th garbled program encrypt only half of the label keys (i.e., only the label keys
corresponding to the k-th state transition). Below we simply describe the change
in game description when compared with previous game.

– Challenge Phase: The adversary submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to the challenger. It must
be the case that the machine T for which the adversary was given a secret
key skT during the key query phase does not accept the word w within t
steps. The challenger samples a bit β ← {0, 1}, and computes the challenge
ciphertext as in Game k.2, except the following:

Bounded Collusion ABE for TMs from IBE 395

5. Next, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n + 2] × {0, 1} × [k + 1, t], c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , labin,j+1

i,b),

(i, j) ∈ [n + 2] × [k], c̃t
(j)
i,xj+1[i]

← SKE.Enc(K
(j)
i,xj+1[i]

, labin,j+1
i),

(i, j) ∈ [n + 2] × [k], c̃t
(j)
i,1−xj+1[i]

← SKE.Enc(K
(j)
i,1−xj+1[i]

,0)

Analysis of game indistinguishability. We complete the proof by showing that
adjacent hybrid games are indistinguishable. For any adversary A and game
Game s, we denote by AdvA

s (λ), the probability that A wins in Game s. For
ease of exposition, in the sequel we use Game 0.3 to denote Game 0.

Lemma 4.2. If IBE is a secure IBE scheme, then for any PPT adversary A
and k ∈ [t+1], we have that AdvA

k.1(λ)−AdvA
k.2(λ) ≤ negl(λ) for some negligible

function negl(·).

Proof. Suppose for contradiction that A is a PPT adversary for which
AdvA

k.1(λ) − AdvA
k.2(λ) = ε, where ε is non-negligible. We give a reduction B

which uses A to break the security of IBE. In particular, our reduction B will
break the multi-challenge security of IBE.

The reduction algorithm B plays a game with an IBE challenger. The
reduction B samples a bit β ← {0, 1}. The challenger chooses (pp,msk) ←
IBE.Setup(1λ) and sends pp to B who forwards it to A. Next, A submits a
key query for machine T to the reduction B. Let IDT denote the set of identi-
ties corresponding to machine T as per Eq. (1). B then makes a key query for
every identity in IDT to the challenger, and let S denote set containing all the
secret keys sent by the challenger to B. The reduction B then set skT = S, and
it sends skT to A. Now, A submits two challenge messages (m0,m1) and the
challenge attribute and time bound (w, 1t) to B. The reduction B now computes
the challenge ciphertext ct∗ as in Game k.1, except for how it computes the IBE
ciphertexts which constitute the output of the k-th simulated program in step 3
of the challenge phase.

Let xk be the n+2 bit representation of (qoutk−1, b
out
k−1, b

dir
k−1), and let {K(k)

i,b }(i,b)
be the set of SKE secret keys chosen in step 2. First, for each i ∈ [n + 2],
B computes ct

(k)
i,xk[i]

← IBE.Enc(pp,K(k)
i,xk[i]

, (qink , bink , i, xk[i])). Next, it sends

{(K(k)
i,1−xk[i]

,0, (qink , bink , i, 1 − xk[i]))}i∈[n+2] as its challenge vector of message-
identity tuples. (Recall that we are considering the multi-challenge version of
IBE security.) Let {ct∗i }i denote the set of challenge ciphertexts received by B.
It then sets the ciphertexts ct

(k)
i,1−xk[i]

as ct
(k)
i,1−xk[i]

= ct∗i for i ∈ [n + 2]. The
remaining portion of the challenge ciphertext is computed as in Game k.1.

Finally, after sending the challenge ciphertext to A, the adversary outputs
a bit γ. If γ = β, then B guesses 0 to the challenger signalling that ciphertexts
{ct∗i }i encrypt the PRF keys. Otherwise, B guesses 1 to the challenger signalling
they encrypt all zeros. Observe that the reduction B perfectly simulates the
view of Game k.1 and k.2 to A, respectively, depending upon the challenger’s

396 R. Goyal et al.

bit. Note that B is an admissible adversary as per the multi-challenge IBE game,
since the adversary A makes only a single key query for machine T such that T
does not accept w after t steps, and the IBE keys queried by B are completely
disjoint with the set of challenge identities. Thus, the lemma follows. �

Lemma 4.3. If SKE is a secure secret key encryption scheme, then for any PPT
adversary A and k ∈ [t + 1], we have that AdvA

k.2(λ) − AdvA
k.3(λ) ≤ negl(λ) for

some negligible function negl(·).

Proof. We prove this lemma by sketching a sequence of n+3 intermediate hybrid
games Game k.2.h, for each h ∈ [0, . . . , n + 2]. Game k.2.h is defined similar to
Game k.2, except for how the challenge ciphertext is computed. In particular in
Game k.2.h, we change how the challenger proceeds in step 5 of computing the
challenge ciphertext. Concretely, it computes the ciphertexts c̃t

(j)
i,b as follows:

(i, b, j) ∈ [n + 2] × {0, 1} × [k + 1, t]
∪ [h + 1, n + 2] × {0, 1} × {k} , c̃t

(j)
i,b ← SKE.Enc(K

(j)
i,b , labin,j+1

i,b),

(i, j) ∈ [n + 2] × [k − 1]
∪ [h] × {k} ,

c̃t
(j)
i,xj+1[i]

← SKE.Enc(K
(j)
i,xj+1[i]

, labin,j+1
i),

c̃t
(j)
i,1−xj+1[i]

← SKE.Enc(K
(j)
i,1−xj+1[i]

,0)

In short, for each i ≤ h, if b �= xk+1[i], the encryption of label labin,k+1
i,b is replaced

with an encryption of 0. All other steps are identical to Game k.2. It is immediate
that Game k.2.0 is identical to Game k.2 and that Game k.2.(n + 2) is identical
to Game k.3. We claim that if SKE is a secure secret key encryption scheme, that
for any A and h ∈ [n + 2] that AdvA

k.2.h(λ) −AdvA
k.2.(h−1)(λ) ≤ negl′(λ) for some

negligible function negl′(λ). The lemma follows immediately from this claim.
Suppose for contradiction that A is a PPT adversary for which AdvA

k.2.h(λ)−
AdvA

k.2.(h−1)(λ) = ε, where ε is non-negligible. We give a reduction B which uses
A to break the security of SKE. The reduction B samples a bit β ← {0, 1}.
It then chooses (pp,msk) ← IBE.Setup(1λ), and forwards pp to the adversary
A. The challenger chooses K ← SKE.Setup(1λ). Next, A submits a key query
for machine T to the reduction B. The reduction B computes skT as in Game
k.2.(h−1) (equivalently k.2), and sends skT to A. Now, A submits two challenge
messages (m0,m1) and the challenge attribute and time bound (w, 1t) to B.
The reduction B now computes the challenge ciphertext ct∗ as in Game k.2.h,
except it computes the ciphertext c̃t

(k)
h,1−xk+1[h]

by quering the SKE challenger
on appropriate challenge messages.

Here xk denotes the n + 2 bit representation of (qoutk−1, b
out
k−1, b

dir
k−1). First, B

sample all the SKE secret keys except the key K
(k)
h,1−xk+1[h]

which is implicitly
set to the challenger’s secret key. The reduction B sends the challenge messages
m0 = labin,k+1

h,1−xk+1[h]
and m1 = 0, and let ct′ denote the challenger’s response.

B now sets c̃t
(k)
h,1−xk+1[h]

= ct′, while for all other (j, i, b) �= (k, h, 1 − xk+1[h]),

it computes c̃t
(j)
i,b as in Game k.2.h. The remaining portion of the challenge

ciphertext is computed as in Game k.2.h.

Bounded Collusion ABE for TMs from IBE 397

Finally, after computing the challenge ciphertext ct∗, B sends it to A. The
adversary A now sends B its guess β′′. If β′′ = β, B guesses 0 to the challenger.
Otherwise, B guesses 1 to the challenger. Observe that when β′ = 0, the reduction
B perfectly simulates the view of Game k.2.(h − 1) to A. On the other hand,
when β′ = 1, the reduction B perfectly simulates the view of Game k.2.h to A.
It immediately follows that B has advantage ε against the SKE challenger, which
contradicts the security of SKE. This establishes the claim and thus the lemma.

Finally, after sending the challenge ciphertext to A, the adversary outputs a
bit γ. If γ = β, then B guesses 0 to the challenger signalling that ciphertext ct′

was an encryption of the garbled label. Otherwise, B guesses 1 to the challenger
signalling its encrypts all zeros. Observe that the reduction B perfectly simulates
the view of Game k.2.(h − 1) and k.2.h to A, respectively, depending upon the
challenger’s bit. Note that B is an admissible adversary as per the SKE game,
since the adversary A does not need the SKE secret key K

(k)
h,1−xk+1[h]

for preparing
the challenge ciphertext as the garbled program which would have contained the
key is already being simulated. Thus, the lemma follows. �
Lemma 4.4. If GRAM satisfies Iterated Simulation Security, then for any PPT
adversary A and 0 ≤ k ≤ t, we have that AdvA

k.3(λ) − AdvA
k+1.1(λ) ≤ negl(λ) for

some negligible function negl(·).
Proof. Suppose for contradiction that A is a PPT adversary for which
AdvA

k.3(λ) − AdvA
k+1.1(λ) = ε, where ε is non-negligible. We give a reduction

B which uses A to break the Iterated Simulation Security property of GRAM.
The reduction algorithm B plays a game with a GRAM challenger. The reduc-

tion B samples a bit β ← {0, 1}. The reduction B then chooses (pp,msk) ←
IBE.Setup(1λ), and sends pp to A. Next, A submits a key query for machine T
to the reduction B. The reduction B computes skT as it is computed in Game
k.3. Then, B sends skT to A. Now, A submits two challenge messages (m0,m1)
and the challenge attribute and time bound (w, 1t) to B. The reduction B now
computes the challenge ciphertext ct∗ as in Game k.3, except it simulates the
(k + 1)-th garbled program instead of computing honestly.

The reduction B sets up the database D as in Game k.3. Let x1 = 0n+2,
and for all other j let xj be the n + 2 bit representation of (qoutj−1, b

out
j−1, b

dir
j−1). It

samples the random coins r
(i)
b,j and SKE secret keys K

(j)
i,b as in step 2. For each

j ∈ [t + 1], the reduction B sets program Pj as

Pj := P [pp, {K(j)
i,b }(i,b),mβ , j; {r

(i)
b,j}(i,b)].

The reduction sends (k + 1,D, {(Pj , xj , n + 2, (1 + (j − 1) · �, j · �))}j) to the
challenger. The challenger, garbles the database D to compute D̃, and then hon-
estly garbles the programs Pj for j ∈ [k+2, t+1], while Pk+1 is either garbled hon-
estly or simulated, and remaining programs P̃j , for j ∈ [k], are simulated. Finally,
the challenger sends (D̃, {P̃j , {labin,j

i }i}j∈[k+1], {P̃j , {labin,j
i,b }i,b}j∈[k+2,t+1]) to B.

From this point, the reduction simply computes the challenge ciphertext as
in Game k.3 but using the garbled database, programs, and input labels as pro-
vided by the challenger. Finally, after sending the challenge ciphertext to A,

398 R. Goyal et al.

the adversary outputs a bit γ. If γ = β, then B guesses 0 to the challenger
signalling that P̃k+1 was honestly garbled. Otherwise, B guesses 1 to the chal-
lenger signalling it was simulated. Note that since the reduction B does not need
the garbled labels for (k + 1)-th garbled program while preparing the challenge
ciphertext thus it can perfectly simulate the view of Game k.3 and k +1.1 to A,
respectively, depending upon the challenger’s bit. Thus, the lemma follows. �

Lemma 4.5. For any adversary, A we have that AdvA
t+1.1(λ) = 0.

Proof. This lemma is immediate, as in Game t + 1.1, the challenge ciphertext
consists only of simulated programs all of which are completely independent of
the challenge message mβ . �

By combining the above lemmas, the theorem follows.

References

1. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

2. Agrawal, S., Maitra, M., Vempati, N.S., Yamada, S.: Functional encryption for tur-
ing machines with dynamic bounded collusion from LWE. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 239–269. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84259-8 9

3. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 26

4. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from DLIN. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 4

5. Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learn-
ing with errors. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.)
ICALP 2017 (2017)

6. Ananth, P., Fan, X., Shi, E.: Towards attribute-based encryption for RAMs from
LWE: sub-linear decryption, and more. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 112–141. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 5

7. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 8

8. Ananth, P., Sahai, A.: Functional encryption for Turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9 6

9. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-030-84259-8_9
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-34578-5_5
https://doi.org/10.1007/978-3-030-34578-5_5
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-642-55220-5_31

Bounded Collusion ABE for TMs from IBE 399

10. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

11. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS (1993)

12. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

13. Bitansky, N., et al.: Indistinguishability obfuscation for RAM programs and suc-
cinct randomized encodings. SIAM J. Comput. 47(3), 1123–1210 (2018)

14. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

15. Boyen, X., Li, Q.: Attribute-based encryption for finite automata from LWE. In:
Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 247–267. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26059-4 14

16. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

17. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC 1996 (1996)

18. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 9

19. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 2

20. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

21. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 27

22. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

23. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

24. Fuchsbauer, G., Jafargholi, Z., Pietrzak, K.: A Quasipolynomial reduction for
generalized selective decryption on trees. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 601–620. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 29

25. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 5

https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-26059-4_14
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-540-30576-7_9
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-662-47989-6_29
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5

400 R. Goyal et al.

26. Garg, R., Goyal, R., Lu, G., Waters, B.: Dynamic collusion bounded functional
encryption from identity-based encryption. Cryptology ePrint Archive, Report
2021/847 (2021). https://ia.cr/2021/847

27. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 25

28. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled ram. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pp. 210–229. IEEE (2015)

29. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled ram from one-way functions.
In: STOC (2015)

30. Garg, S., Ostrovsky, R., Srinivasan, A.: Adaptive garbled RAM from laconic obliv-
ious transfer. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10993, pp. 515–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96878-0 18

31. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: FOCS 2017 (2017)

32. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

33. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Garbled ram revisited, part i.
Cryptology ePrint Archive, Report 2014/082 (2014). https://eprint.iacr.org/2014/
082

34. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private ram compu-
tation. In: FOCS (2014)

35. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

36. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: STOC (2013)

37. Gong, J., Waters, B., Wee, H.: ABE for DFA from k -Lin. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 25

38. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k -Lin and more. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 10

39. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

40. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 14

41. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS (2017)
42. Goyal, R., Syed, R., Waters, B.: Bounded collusion ABE for TMS from IBE. Cryp-

tology ePrint Archive, Report 2021/709 (2021). https://ia.cr/2021/709
43. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-

grained access control of encrypted data. In: CCS (2006)

https://ia.cr/2021/847
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-319-96878-0_18
https://doi.org/10.1007/978-3-319-96878-0_18
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://eprint.iacr.org/2014/082
https://eprint.iacr.org/2014/082
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://ia.cr/2021/709

Bounded Collusion ABE for TMs from IBE 401

44. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7 26

45. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 5

46. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 433–458. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53641-4 17

47. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions (2021)

48. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

49. Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and
succinct functional encryption: improving security and efficiency, simultaneously.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp.
521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 17

50. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for Turing
machines with unbounded memory. In: STOC (2015)

51. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 671–700. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 23

52. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

53. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 42

54. Lu, S., Ostrovsky, R.: Garbled ram revisited, part ii. Cryptology ePrint Archive,
Report 2014/083 (2014). https://eprint.iacr.org/2014/083

55. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

56. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC (2005)

57. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: CCS (2010)

58. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

59. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

60. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-030-26954-8_17
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-38348-9_42
https://eprint.iacr.org/2014/083
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-32009-5_14

402 R. Goyal et al.

61. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS (2017)

62. Yao, A.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)

Digital Signatures with Memory-Tight
Security in the Multi-challenge Setting

Denis Diemert(B), Kai Gellert(B), Tibor Jager(B), and Lin Lyu(B)

Bergische Universität Wuppertal, Wuppertal, Germany
{denis.diemert,kai.gellert,tibor.jager,lin.lyu}@uni-wuppertal.de

Abstract. The standard security notion for digital signatures is “single-
challenge” (SC) EUF-CMA security, where the adversary outputs a
single message-signature pair and “wins” if it is a forgery. Auerbach
et al. (CRYPTO 2017) introduced memory-tightness of reductions and
argued that the right security goal in this setting is actually a stronger
“multi-challenge” (MC) definition, where an adversary may output many
message-signature pairs and “wins” if at least one is a forgery. Cur-
rently, no construction from simple standard assumptions is known to
achieve full tightness with respect to time, success probability, and mem-
ory simultaneously. Previous works showed that memory-tight signatures
cannot be achieved via certain natural classes of reductions (Auerbach
et al., CRYPTO 2017; Wang et al., EUROCRYPT 2018). These impos-
sibility results may give the impression that the construction of memory-
tight signatures is difficult or even impossible.

We show that this impression is false, by giving the first constructions
of signature schemes with full tightness in all dimensions in the MC set-
ting. To circumvent the known impossibility results, we first introduce
the notion of canonical reductions in the SC setting. We prove a general
theorem establishing that every signature scheme with a canonical reduc-
tion is already memory-tightly secure in the MC setting, provided that
it is strongly unforgeable, the adversary receives only one signature per
message, and assuming the existence of a tightly-secure pseudorandom
function. We then achieve memory-tight many-signatures-per-message
security in the MC setting by a simple additional generic transformation.
This yields the first memory-tightly, strongly EUF-CMA-secure signa-
ture schemes in the MC setting. Finally, we show that standard security
proofs often already can be viewed as canonical reductions. Concretely,
we show this for signatures from lossy identification schemes (Abdalla
et al., EUROCRYPT 2012), two variants of RSA Full-Domain Hash (Bel-
lare and Rogaway, EUROCRYPT 1996), and two variants of BLS signa-
tures (Boneh et al., ASIACRYPT 2001).

1 Introduction

Work-factor-tightness. The security of many cryptosystems depends on com-
putational hardness assumptions, where security is proven by a reduction from

Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 403–433, 2021.
https://doi.org/10.1007/978-3-030-92068-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_14

404 D. Diemert et al.

breaking the cryptosystem with respect to some security definition to breaking
the hardness assumption. When such cryptosystems are concretely instantiated,
cryptographic parameters such as the size of algebraic groups and moduli must
be determined. If this is done in theoretically-sound way, that is, supported by
the security guarantees provided by a reduction from breaking the cryptosystem
to breaking the underlying assumption, then the security loss of the reduction
has to be taken into account.

Let A be an adversary on a given cryptosystem with respect to a given
security model, and let R be a reduction in a security proof that turns A into an
algorithm solving some assumed-to-be-hard computational problem. Let (tA, εA)
and (tR, εR) be the running time and advantage of A and R, respectively. Then,
the security loss is defined as L such that

L · εR
tR

=
εA
tA

where εA/tA and εR/tR are the work factors of A and R, respectively.1 This is
the standard approach to measure concrete security, which was established by
Bellare and Ristenpart [8,9].

In the classical asymptotic setting a reduction is considered efficient if L
is bounded by some polynomial, which may be large. However, if L is large,
then a theoretically-sound concrete instantiation must compensate the security
loss with larger parameters, at the cost of efficiency of the deployed cryptosys-
tem. Often L depends on deployment parameters (such as the number of users
and the number of issued signatures, for instance), which are determined by
the application context. These might not be exactly known at the time of ini-
tial deployment, or they might unexpectedly encounter significant increase over
time. Hence, these parameters must be chosen conservatively, based on a strict
upper bounds, which may lead to overly large parameters that come with very
significant performance overhead. Therefore it is desirable to have tight secu-
rity proofs, where L is a constant, and thus independent of such deployment
parameters. Such schemes can be efficiently instantiated with optimal crypto-
graphic parameters in arbitrary application contexts, independent of the number
of users, the number of issued signatures, and other application parameters. If
L is a constant, then we usually call R a tight reduction. In this paper, we will
refer to this notion as work-factor-tightness, in order to distinguish it from the
notion of memory-tightness discussed below.

Memory-tightness. Auerbach et al. [4] explained that in addition to the work
factor also the memory consumed by a reduction is relevant. This is particularly
relevant when security is reduced to so-called memory-sensitive computational
problems, where the efficiency of known algorithms depends on the amount of

1 In the asymptotic setting, εA, tA, εR, and tR are functions in a security parameter.
In this case L is a function in the security parameter, too. In the concrete secu-
rity setting the running times, success probabilities, and the security loss are real
numbers.

Memory-Tight Digital Signatures 405

memory that is available. This includes, for instance, known algorithms for the
classical discrete logarithm problem modulo a prime number, the integer fac-
torization problem, Learning With Errors (LWE), or Short Integer Solutions
(SIS), and many more. Other problems are (currently) not considered memory-
sensitive, such as the discrete logarithm problem in elliptic curve groups. How-
ever, whether a given computational problem is memory-sensitive or not may
change with the discovery of new algorithms and the impact of memory on their
performance. See [4] for an in-depth discussion of memory-sensitivity.

In order to address this gap, Auerbach et al. [4] introduced the notion of
memory-tightness, which additionally takes the memory consumed by a reduc-
tion into account. In addition to discussing the memory-sensitivity of compu-
tational problems, they also consider the memory-tightness of finding multi-
collisions for hash functions and of reductions between different security notions
of digital signature schemes.

Since its introduction in 2017, the concept of memory tightness has drawn
much attention and led to many follow-up works. This includes works on mem-
ory lower bounds of reductions by Wang et al. [51] (EUROCRYPT 2018), mem-
ory tightness of authenticated encryption by Ghoshal, Jaeger, and Tessaro [30]
(CRYPTO 2020), memory tightness of hashed ElGamal by Ghoshal and Tessaro
[31] (EUROCRYPT 2020), and memory tightness for key encapsulation mecha-
nisms by Bhattacharyya [12] (PKC 2020). Hence, memory tightness is already a
well-established concept in cryptography that receives broad interest.

Memory-tightly secure signatures. In the standard existential unforgeability
under chosen-message attacks (EUF-CMA) security model, the adversary
receives a public key pk and then has access to a signing oracle that, on input
of any message m from the message space of the signature scheme, computes a
signature σ $←− Sign(sk ,m), stores m in a list Q, and returns σ. The adversary
successfully breaks the security of the signature scheme if it outputs a forgery
(m∗, σ∗) such that σ∗ is a valid signature for m∗ with respect to pk , and m∗ �∈ Q.
Auerbach et al. call this the single-challenge setting, since the adversary has only
one attempt to forge a signature. They also introduce a stronger multi-challenge
security definition, where the adversary may output multiple valid message-
signature pairs and it “wins” if at least one of them is a new forgery in the sense
that no signature was requested for the corresponding message throughout the
security experiment.

Obviously, when considering the random-access memory (RAM) model, both
security notions are tightly equivalent when memory consumption is not consid-
ered. In one direction, given a multi-challenge adversary, one can simply store
all message-signature pairs that the adversary has obtained from its experi-
ment in a list. Whenever the adversary outputs a message-signature pair, it is
checked whether it is contained in the list. If not, then it is a valid forgery in
the single-challenge setting. The opposite direction is even more trivial. How-
ever, note that this reduction is not memory-tight, as it requires memory linear
in the number of signing queries. Auerbach et al. even showed that it is very
difficult to prove that both notions are memory-tightly equivalent, by giving an

406 D. Diemert et al.

impossibility result that covers a large class of natural reductions. This result
was subsequently revisited and extended by Wang et al. [51].

The only known construction of a signature scheme with memory-tight secu-
rity proof is due to Auerbach et al. [4]. They show that the RSA full-domain
hash signature scheme can be proven memory-tightly secure under the RSA
assumption. This is already a significant result, since it introduces clever tricks
to deal with a programmable random oracle in a memory-tight way. However,
it is still limited, since the reduction is only memory-tight, but not work-factor-
tight. This is because the tightness lower bounds from [6,19,42,43] still apply,
such that a linear security loss in the number of signature queries is unavoid-
able.2 Furthermore, Auerbach et al. only achieve memory-tightness in the weaker
single-challenge setting, but not yet in the stronger multi-challenge setting. To
the best of our knowledge, there exists currently no signature scheme, which has
a security proof that is fully tight, that is, simultaneously memory-tight and
work-factor-tight.

One main difficulty of achieving memory-tightly-secure signatures in the
multi-challenge setting is to build a reduction which does not have to store
the sequence of random oracle queries made by the adversary. While it seems
easy to replace a random oracle with a pseudorandom function, this must be
done very carefully, in particular in security proofs that “program” a random
oracle, in order to achieve consistency. Here we can partially build upon tech-
niques developed by Auerbach et al. [4]. Furthermore, another major difficulty
in achieving security in the multi-challenge setting is to build a reduction which
does not have to store the history of message-signature pairs obtained by the
adversary through signing queries.

Our contributions. We summarize our contributions as follows.

– We present a sequence of transforms that give rise to the first digital signature
schemes that simultaneously achieve tightness in all three dimensions: running
time, success probability, and memory. The construction is efficient and yields
practical signature schemes.

– On a technical level, we show how to circumvent known impossibility result
by introducing the notion of “canonical reductions”, which can be seen as a
new “non-black-box” perspective that applies to many well-known standard
reductions in security proofs for signature schemes.

– We show the applicability of this approach by considering the construction
of signatures from lossy identification schemes (LID) by Abdalla et al. [1,2],
which can be viewed as a generalization of the security proof for Katz–Wang
signatures [44]. We further demonstrate the versatility of our technique by
applying it to well-known signature schemes like RSA-FDH [11] (with the
proof following [19] with a loss linear in the number of signing queries). Then,
we additionally show that by using the technique by Katz and Wang [44] of

2 There is also a work-factor-tight security proof for RSA full domain hash based on
the Phi Hiding assumption [42,43], but this proof seems not compatible with the
memory-tight implementation of the random oracle from [4].

Memory-Tight Digital Signatures 407

signing the message together with an extra random bit, we can eliminate the
linear security loss and achieve both memory and working factor tightness.
We also show similar results for Boneh–Lynn–Shacham (BLS) signatures [14].
All of our results directly achieve strong unforgeability. For a comparison of
our result with previous analyses of these scheme, consider Table 1.

Table 1. Comparison of our result to previous analyses of the considered schemes. All
analyses are in the random oracle model. Let λ be the security parameter, let qH be the
number of random oracle queries, let qS the number of signing queries, let e be the basis
of the natural logarithm, let |G| be the size of the representation of a group element
of a cyclic group G of prime order q, let |ZN | denote the size of the representation
of an element of ZN , let N be a RSA modulus, let e be a RSA public exponent, and
let |G1| (resp. |G2|) be the size of the representation of a group element of group G1

(resp. G2) of some bilinear group (G1,G2,GT). Note that for comparability, we chose
to instantiate the LID-based schemes with DDH. Due to collision resistance, the nonce
length chosen for our transform from Sect. 4 is 2λ.

Constr. Proof Asm. Sec. Sec. Loss Mem. Loss |pk | |σ|
LID-based [1,2] DDH EUF-CMA O(1) O(qH + qS) 4 |G| 3 |Zq|

Ours DDH msEUF-CMA O(1) O(1) 4 |G| 3 |Zq| + 2λ

RSA-FDH [18] RSA EUF-CMA e · qS O(qH + qS) |N | + |e| |ZN |
[4] RSA EUF-CMA e · qS O(1) |N | + |e| |ZN |
Ours RSA msEUF-CMA e · qS O(1) |N | + |e| |ZN |

RSA-FDH+ [44] RSA EUF-CMA O(1) O(qH + qS) |N | + |e| |ZN |
Ours RSA msEUF-CMA O(1) O(1) |N | + |e| |ZN | + 2λ

BLS [14] (co-)CDH EUF-CMA e · (qS + 1) O(qH + qS) |G2| |G1|
Ours (co-)CDH msEUF-CMA e · (qS + 1) O(1) |G2| |G1|

BLS+ [44] (co-)CDH EUF-CMA O(1) O(qH + qS) |G2| |G1|
Ours (co-)CDH msEUF-CMA O(1) O(1) |G2| |G1| + 2λ

Our approach. Our approach can be divided into two steps.

1. At first we show how to generically transform an entire class of signature
schemes from the single-challenge setting to the multi-challenge setting. Dur-
ing this step, it is actually useful to consider a weaker “one-signature-per-
message” security notion, where an adversary may only request one (instead
of many) signature per message via its signing oracle.3

3 Of course, one-signature-per-message security is equivalent to standard security for
signature schemes with deterministic signing algorithm, however, we are not aware
of any such signature scheme which achieves tight security, not even in the classi-
cal sense that does not consider memory tightness. There are several impossibility
results, showing that tightness is often difficult to achieve for such signature schemes
[6,19,43].

408 D. Diemert et al.

We require that the security reduction of the underlying scheme follows a
canonical pattern that is compatible with our approach to prove memory
tightness. Essentially, we require that the reduction can be split into stateless
“canonical procedures” for simulating signatures, extracting solutions from
forgeries, and computing hash values (e.g., if a random oracle is needed).
The main idea is now to “de-randomize” all canonical procedures, meaning
that we give all procedures access to the same random function but require
that they otherwise behave deterministically. Note that the “one-signature-
per-message” restriction helps us here, as the procedures can rely on the
random function to derive randomness for one signature per message from
the message by calling the random function. Giving all procedures access to
the same random function, ensures consistency across procedures (e.g., a sig-
nature may need to be consistent with the simulation of a random oracle).
We also show that many standard security proofs for signatures indeed can
be seen as canonical reductions, so that our generic result applies.
Finally, to generically achieve memory-tightness in the multi-challenge set-
ting, we can replace the “global random function” with a pseudorandom
function. This yields a generic transform (with tightness in all dimensions)
producing a signature scheme secure in the “one-signature-per-message” and
multi-challenge setting.

2. In the second step we apply a simple generic transform (again, with tightness
in all dimensions) that lifts any signature scheme from the “one-signature-
per-message” to the standard “many-signatures-per-message” setting. To this
end, any message is signed alongside a random nonce, which intuitively
“expands” the set of valid signatures per message.

Applying both steps sequentially does not influence the tightness of a signature
scheme in any dimension.

Related work. In the literature, “tightness” usually refers to what we call work-
factor tightness in this paper. That is, running times and success probabilities are
considered, but memory is not. There is a large number of research results in this
area, with tightly-secure constructions of many different types of cryptosystems,
including digital signatures [22,37,38,44,49], public-key encryption [7,29,37],
(hierarchical) identity-based encryption [13,16], authenticated key exchange [5,
17,32,46], and symmetric encryption [34,36,41], for instance. Tight security is
also increasingly considered for real-world cryptosystems, such as [20,23,34,39].
There are also various impossibility results for different types and classes of
cryptosystems, such as [19,26–28,41–43,48,50], for instance.

As already mentioned, the notion of memory-tightness was only relatively
recently introduced in [4]. They also introduced the single- and multi-challenge
security model, and gave the first (and currently only) memory-tight security
proof for a digital scheme in the weaker single-challenge setting, which however

Memory-Tight Digital Signatures 409

is not yet work-factor-tight. They also gave a first impossibility result, show-
ing that a certain class of reductions cannot be used to reduce multi-challenge
security to single-challenge security. Wang et al. [51] revisited this impossibil-
ity result and showed that multi-challenge security is impossible to achieve for
a large class of reductions, unless a work-factor tightness is sacrificed. They
showed a lower bound on the memory of a large class of black-box reductions
from the multi-challenge unforgeability of unique signatures to any computa-
tional hardness assumption, another lower bound for restricted reductions from
multi-challenge security to single-challenge security for cryptographic primitives
with unique keys, and a lower bound for multi-collisions of hash functions with
large domain, which extends a similar result from [4]. Bhattacharyya [12] and
Ghoshal and Tessaro [31] independently considered the memory-tightness of
hashed ElGamal public-key encryption. Ghoshal, Jaeger, and Tessaro [30] con-
sidered the memory-tightness of authenticated encryption.

Outline. The remainder of this paper is organized as follows. In Sect. 2, we define
the computational model and the used complexity measures, alongside with
standard definitions of cryptographic primitives. In Sect. 3, we present how to
achieve multi-challenge security from any signature scheme secure in the single-
challenge setting that follows a canonical reduction. In Sect. 4, we present our
generic transform to lift any signature scheme from “one-signature-per-message”
to the standard “many-signatures-per-message” setting. Finally, we show how
our transforms can be applied to existing signature schemes, achieving the first
fully tight signature schemes in the multi-challenge setting.

2 Preliminaries

For strings a and b, we denote the concatenation of these strings by a ‖ b. We
denote the operation of assigning a value y to a variable x by x := y. If S is a
finite set, we denote by x $←− S the operation of sampling a value uniformly at
random from set S and assigning it to variable x. For any probabilistic algorithm
A, we denote y ← A(x; r) the process of running A on input x with random
coins r and assign the output to y, and we denote y $←− A(x) as y ← A(x; r) for
uniformly random r.

2.1 Computational Model and Complexity Measures

In this paper, we adapt the computation model used in [4] and recall the most
important aspects in this section.

Algorithms. We assume all algorithms in this paper to be random access
machines (RAMs). A RAM has access to memory using words of a fixed size
λ and a constant number of registers each holding a single word. If an algo-
rithm A is probabilistic, then the corresponding RAM is equipped with a spe-
cial instruction that fills a distinguished register with (independent) random

410 D. Diemert et al.

bits. However, we do not allow the RAM to rewind random bits to access previ-
ously used random bits. That is, A needs to store the random bits in this case.
To run algorithm A, the RAM is executed, where the input of the algorithm is
written in the RAM’s memory. To denote this, we overload notation and write
x $←− A(y1, y2, . . .) to denote that random variable x takes on the value of algo-
rithm A ran on inputs y1, y2, . . . with fresh random coins. Sometimes we also
denote this random variable simply by A(y1, y2, . . .). In case A is deterministic,
we write x := A(y1, y2, . . .), to denote that A on inputs y1, y2, . . . outputs x.

Oracles. In addition, algorithm A sometimes has access to (stateful) oracles
(O1,O2, . . .). Each of these oracles also is defined by a RAM. To interact with
an oracle Oi, the RAM of algorithm A has three fixed regions in the memory
only used for the oracle state stO, the input to the oracle and the output of the
oracle. By default, these regions are empty. To query the oracle Oi, A writes the
query in the region of its memory reserved for the oracle input and executes a
special instruction to run the RAM of Oi on this input together with the oracle
state stO. The RAM implementing Oi uses its own memory and both the output
and the updated oracle state stO in the designated regions in A’s memory. For
notation, we denote that an algorithm A has oracle access to an algorithm oracle
by AO.

Security experiment. The security definition and proofs presented in this paper
are mostly game-based. A security experiment (or game) can simply be viewed
as an algorithm that runs another algorithm as subroutine, e.g., an adversary A,
and the subroutine may also be provided with a series of (stateful) oracles. As
a security experiment is simply an algorithm it is also implemented by a RAM.

Complexity measures for runtime and memory consumption. We define the com-
plexity measures for runtime and memory according to Auerbach et al. [4].

Runtime. Let A be an algorithm and Exp be a security game. We define
Time(A) to be the runtime of A as the worst-case number of computation
steps over all inputs of length λ and all possible random choices. In addition,
we define LocalTime(A) to be the number of computation steps of A play-
ing Exp without the additional steps induced by the oracle access to Exp. This
quantifier allows us to precisely measure how much additional computation
steps are necessary per oracle.

Memory Consumption. Let A be an algorithm and Exp be a security game.
We define Mem(A) to be the memory (in λ-width words) of the code of A
plus the worst-case number of registers used at any point during computation,
over all inputs of length λ and all possible random choices. Similar to before,
we define LocalMem(A) to be the memory required to execute Exp with
algorithm A without the additional memory induced by the oracle access
to Exp. This quantifier allows us to precisely measure how much additional
memory is necessary per oracle.

Memory-Tight Digital Signatures 411

2.2 Pseudorandom Functions

We recall the standard indistinguishability definition for pseudorandom func-
tions. This is one of the main tools used to make reductions memory-tight.

Definition 1. Let λ ∈ N. Let F : {0, 1}λ × {0, 1}∗ → R be a keyed function,
where R is a finite set. We define the advantage of an adversary A in breaking
the pseudorandomness of F as

AdvPRF-secF (A) :=
∣
∣
∣Pr

[

AF(k,·) = 1
]

− Pr
[

Af(·) = 1
]∣
∣
∣

where k $←− {0, 1}λ and f : {0, 1}∗ → R is a random function.

2.3 Digital Signatures

We recall the standard definition of a digital signature scheme by Goldwasser,
Micali, and Rivest [33] and its standard security notion.

Definition 2. A digital signature scheme for message space M is a triple of
algorithms Sig = (Gen,Sign,Vrfy) such that

1. Gen is the randomized key generation algorithm generating a public (verifica-
tion) key pk and a secret (signing) key sk and takes no input.

2. Sign(sk ,m) is the randomized signing algorithm outputting a signature σ on
input message m ∈ M and signing key sk.

3. Vrfy(pk ,m, σ) is the deterministic verification algorithm outputting either 0
or 1.

We say that a digital signature scheme Sig is correct if for any m ∈ M , and
(pk , sk) $←− Gen, it holds that Vrfy (pk ,m,Sign(sk ,m)) = 1.

One-signature-per-message unforgeability of digital signature. We adapt the one-
signature-per-message unforgeability defined by Fersch et al. [24]. First, we con-
sider the “strong” variant of the definition given in [24], i.e., a pair (m,σ) output
by the adversary is only considered a valid forgery if σ was not returned to the
adversary as answer to an signing query m. In the “standard” variant, the pair
is considered valid if for message m never a signature has been queried by the
adversary. Second, we implement the fact that the adversary only receives one
signature per message different to the original definition. Instead of aborting the
whole experiment in case the adversary queries a signature for a message that
it already received a signature for, we simply return the same signature to the
adversary. Therefore, the adversary still gets only one signature per message,
but is allowed to query a message multiple times.

We note that, for deterministic signature schemes, the one-signature-per-
message security is equivalent to the many-signatures-per-message security.

Definition 3. Let Sig = (Gen,Sign,Vrfy) be a digital signature scheme. Con-
sider the following experiment ExpsEUF-CMA1

Sig (A) played between a challenger and
an adversary A:

412 D. Diemert et al.

1. The challenger initializes the set of chosen-message queries Q := ∅, generates
a fresh key pair (pk , sk) $←− Gen and forwards pk to the adversary as input.

2. The adversary may issue queries to the following oracle adaptively:
– Sign(m): If (m,σ) ∈ Q, the challenger returns σ. Otherwise, it returns

σ $←− Sign(sk ,m) and adds (m,σ) to Q.
3. Finally, the adversary outputs a candidate forgery (m,σ) and the challenger

outputs 1 if Vrfy(pk ,m, σ) = 1 and (m,σ) �∈ Q, and 0 otherwise.

We denote the advantage of an adversary A in forging signatures for Sig in the
sEUF-CMA1 security experiment by

AdvsEUF-CMA1
Sig (A) := Pr

[

ExpsEUF-CMA1
Sig (A) = 1

]

where ExpsEUF-CMA1
Sig (A) is as defined above.

Next, we generalize Definition 3 to the multi-challenge setting. Unforgeability
in the multi-challenge setting was proposed by Auerbach et al. [4] and is a
generalized version of the standard existential unforgeability against chosen-
message attackers notion, in which the adversary has additional access to a
“forging oracle” allowing multiple forgery attempts. The adversary wins in this
setting if at least one of the forgery attempts is “valid” in the same sense as in
the single challenge setting.

Definition 4. Let Sig = (Gen,Sign,Vrfy) be a digital signature scheme. Con-
sider the following experiment ExpmsEUF-CMA1

Sig (A) played between a challenger
and an adversary A:

1. The challenger initializes the set of chosen-message queries Q := ∅ and the
winning flag win := 0. Then, it generates a fresh key pair (pk , sk) $←− Gen and
forwards pk to the adversary as input.

2. The adversary may issue queries to the following oracles adaptively:
– Sign(m): If (m,σ) ∈ Q for some σ, the challenger returns σ. Otherwise,

it returns σ $←− Sign(sk ,m) and adds (m,σ) to Q.
– Forge(m,σ): If Vrfy(pk ,m, σ) = 1 and (m,σ) �∈ Q, then set win := 1.

3. Finally, the adversary halts and the experiment outputs win.

We denote the advantage of an adversary A in forging signatures for Sig in the
msEUF-CMA1 security experiment by

AdvmsEUF-CMA1
Sig (A) := Pr

[

ExpmsEUF-CMA1
Sig (A) = 1

]

where ExpmsEUF-CMA1
Sig (A) is as defined above.

Many-signatures-per-message unforgeability. The security notions sEUF-CMA1
and msEUF-CMA1 defined above can be generalized to the “many-signatures-
per-message” setting by dropping the condition that the respective security
experiments return σ if the Sign-oracle is queried with a message m such that
(m,σ) ∈ Q, i.e., a message m that was already queried before. Without this
condition we obtain the standard strong existential unforgeability under chosen-
message attacks (sEUF-CMA) and its multi-challenge variant (as defined in [4])
msEUF-CMA.

Memory-Tight Digital Signatures 413

Adversary behavior. In this work we consider adversaries that are not necessar-
ily well-behaved. That is, an adversary A may, for instance, submit a forgery
(m∗, σ∗) such that σ∗ was obtained by a signing query m∗. In principle, any such
adversary can be converted to a well-behaved adversary by performing “sanity
checks” whenever the adversary submits a forgery. This conversion, however, is
not memory-tight as it leads to an increase in memory needed to store the set
of chosen-message queries Q.

Considering that there might exist adversaries that are not well-behaved but
break the security of a signature scheme (e.g., by producing a forgery without
knowing whether it is a fresh one), we prefer a stronger security notion and
consider any adversary rather than restricting our proofs to a class of well-
behaved adversaries. For a more detailed discussion on this topic, we refer the
reader to [4, Section 2.3].

3 From the Single-Challenge Setting to the Multi-
challenge Setting

In this section, we will describe a generic construction of a reduction in the multi-
challenge setting, based on any “canonical” reduction in the single-challenge
setting.

3.1 Non-interactive Computational Assumptions

The following definition of a non-interactive computational assumptions is based
on the corresponding definition by Bader et al.[6], which is originally due to Abe
et al. [3]. It captures both “search problems”, such as CDH, and “decisional
problems”, such as DDH. We focus on non-interactive computational hardness
assumptions, for the following reasons. First, these may be considered the most
“interesting” hardness assumption when (memory) tightness is considered. Sec-
ond, it makes the definitions and proofs significantly cleaner, and therefore makes
it easier to understand and verify the core technical ideas and approach.

Definition 5. A non-interactive computational assumption is defined as the
tuple Λ = (InstGen,V,U), where

1. (φ, ω) $←− InstGen(1λ): InstGen is the probabilistic instance generation algo-
rithm that takes as input a security parameter 1λ, and outputs a problem
instance φ and a witness ω.

2. 0/1 := V(φ, ω, ρ): V is the deterministic verification algorithm that takes as
input a problem instance φ, a witness ω and a candidate solution ρ, and
outputs 0 or 1. We say that ρ is a correct solution for φ if V(φ, ω, ρ) = 1.

3. ρ $←− U(φ): U is a probabilistic algorithm that on input φ outputs a candidate
solution ρ.

We define the advantage of an adversary R breaking Λ as

AdvNICA
Λ,λ (R) :=

∣
∣
∣Pr

[

ExpNICA
Λ,λ (R) = 1

]

− Pr
[

ExpNICA
Λ,λ (U) = 1

]∣
∣
∣

414 D. Diemert et al.

A

RGen

RSignRF(·) Sign

RHashRF(·) H

RExtractRF(·)

U

Check

Canonical reduction R

φ simpk

mi

σi

mi

σi

xi

yi

xi

yi

(m∗, σ∗)
1

(m∗, σ∗)

(m∗, σ∗)
0

ρ

Fig. 1. Canonical reduction R from sEUF-CMA1-security of a signature scheme Sig to
a computational assumption Λ with black-box access to an adversary A. Check is a
shorthand defined as Check(m∗, σ∗) = 1 ⇐⇒ Sig.Vrfy(simpk , m∗, σ∗) = 1 ∧ σ∗ �=
RSignRF(·)(simsk , m∗) determining the algorithm to compute the final solution. For a
complete formal definition, see Definition 6.

where the experiment ExpNICA
Λ,λ (A) generates (φ, ω) $←− InstGen(1λ), runs ρ $←−

A(φ) and returns V(φ, ω, ρ).

Intuitively, U can be seen as the “trivial” solution strategy. For example, if
Λ is a decisional problem, such as DDH, U usually would output a uniformly
random bit such that Pr

[

ExpNICA
Λ,λ (U) = 1

]

= 1
2 . Then, AdvNICA

Λ,λ (R) basically
defines the “bit-guessing advantage” against Λ. For a search problem, such as
CDH, U would output a constant symbol such that Pr

[

ExpNICA
Λ,λ (U) = 1

]

= 0.

Then, AdvNICA
Λ,λ (R) corresponds to the probability of R finding a solution ρ for

the given problem instance φ.

3.2 Canonical Reductions

We introduce the notion of a canonical reduction, which essentially defines an
abstract pattern of a reduction which is “compatible” with our approach to
prove memory-tight security. Many security proofs of signature schemes can be
explained as canonical reductions, we will show some concrete examples below.
We focus on reductions from sEUF-CMA1-security to a non-interactive computa-
tional assumption Λ (as defined in Sect. 3.1) in both standard model and random
oracle model. For an illustration of a canonical reduction, see Fig. 1.

Definition 6. Let Sig be a signature scheme and let Λ be a non-interactive com-
putational assumption. Let (RGen,RF,RSign,RExtract,RHash) be the following
algorithms that are implemented by a canonical reduction:

Memory-Tight Digital Signatures 415

1. (simpk , simsk) $←− RGen(φ): RGen is the probabilistic reduction key generation
algorithm that takes as input an instance φ of Λ, and outputs a simulated
public key simpk and a simulation secret key simsk.

2. (rRSign, rRExtract, rRHash) $←− RF(x): RF is a stateful probabilistic algorithm sim-
ulating a truly random function with domain {0, 1}∗ and range CoinsRSign ×
CoinsRExtract×CoinsRHash using a lazily sampled random table, where CoinsRSign,
CoinsRExtract, and CoinsRHash are sets for random coins of RSign, RExtract and
RHash, respectively.4

Remark 7. Intuitively, RF has the following purpose. We will below define algo-
rithms RSign, RExtract, and RHash, which are used by the reduction to simulate
signatures, extract from a forgery, and possibly to simulate a random oracle (if
in the random oracle model), respectively. We require these algorithms to be
stateless and deterministic, since this will be necessary for our construction of
a memory-tight reduction. At the same time, we do not want the algorithms
RSign, RExtract and, RHash to be completely independent of each other. For
example, the simulation of a signature by RSign may have to be consistent with
the random oracle implemented by RHash. We ensure this consistency by giving
all oracles access to the same truly random function simulation algorithm RF.
The algorithms of the canonical reduction are required to achieve consistency by
only having access to RF. We will show below that this indeed holds for many
standard security proofs for signature schemes.

3. σ := RSignRF(·)(simsk ,m): RSign is the deterministic signature simulation
algorithm with access to the algorithm RF that takes as input the simulation
secret key simsk and a message m, and outputs a simulated signature σ.5

4. ρ := RExtractRF(·)(simsk , (m∗, σ∗)): RExtract is the deterministic problem solu-
tion extraction algorithm with access to the algorithm RF that takes as input
a forgery (m∗, σ∗), and outputs an extracted solution ρ.

5. y := RHashRF(·)(simsk , x): RHash is the deterministic hash simulation algo-
rithm with access to the algorithm RF that takes as input an argument x, and
outputs a simulated hash image y.

We call an algorithm R with black-box access to any adversary A, write RA,
a (, δ)-canonical reduction from sEUF-CMA1 to Λ if R satisfies the following
properties.

1. The reduction R proceeds as follows:
(a) When receiving a problem instance φ, the reduction R uses RGen(φ) to

simulate a public key simpk of Sig and generate the simulation secret key
simsk, and starts A on input simpk.

4 We note that algorithm RF is part of the canonical reduction. Another option would
be providing the canonical reduction with an external random function oracle. We
choose the former characterization because it naturally includes the memory con-
sumption of the random table when considering the overall memory consumption of
the canonical reduction.

5 Note that the output signature σ is not necessarily a valid signature of Sig with
respect to simpk .

416 D. Diemert et al.

(b) Whenever the adversary A issues a signing query Sign(m), the reduction
simulates the signature σ with σ := RSignRF(·)(simsk ,m) and returns σ to
A. Note that RSign is deterministic, so even if Sign(m) is queried multiple
times, the adversary always gets the same signature in return.

(c) In case the random oracle model (ROM) is considered, the reduction also
needs to be able to simulate the random oracle. To this end, the reduction
R answers a random oracle query x by running y := RHashRF(·)(simsk , x)
and returns y.

(d) When the adversary A outputs a candidate forgery (m∗, σ∗), the reduction
R first tests whether it is a valid forgery by checking

Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ σ∗ �= RSignRF(·)(simsk ,m∗).

Intuitively, the second check is the main leverage to “recognize” new sig-
natures. If the checks pass, then we know that (m∗, σ∗) is valid and not the
signature that R would have simulated. Then R uses RExtract to extract
a solution ρ to the underlying problem Λ with

ρ := RExtractRF(·)(simsk , (m∗, σ∗)).

If the checks fail, R runs ρ $←− U(φ). Finally, R outputs ρ as the solution
to the problem instance φ.

2. We require that R is a “valid” reduction from sEUF-CMA1-security to a non-
interactive computational assumption Λ. That is, for any adversary A, we
have

AdvNICA
Λ,λ

(RA) ≥ 1
	
AdvsEUF-CMA1

Sig (A) − δ.

Remark 8. If R is canonical, qS is the upper bound of the number of Sign queries
made by the adversary, qH is the upper bound of the number of random oracle
queries and qRF is an upper bound of the number of evaluations of RF, then we
obtain that

LocalTime
(RA) ≈ LocalTime(A) + Time(RGen) + qS · Time(RSign)

+qH · Time(RHash) + Time(Sig.Vrfy)
+ max{Time(RExtract),Time(U)} + qRF · Time(RF),(1)

and that

LocalMem
(RA)

= LocalMem(A) + Mem(RGen) + Mem(RSign)
+ Mem(RHash) + Mem(Sig.Vrfy) + Mem(RExtract)

+Mem(U) + Mem(RF). (2)

Note that by design of the canonical reduction the only common state of
the algorithms RGen, RSign, RHash and RExtract is the random table (whose
size grows linearly with the number of different queries) in the random function

Memory-Tight Digital Signatures 417

simulation algorithm RF. Otherwise, these algorithms are stateless. This will be
the main leverage to achieve memory-tightness, since the random function can
be implemented memory-efficiently with a pseudorandom function.

3.3 Multi-challenge Security for Canonical Reductions

Next, we show how to transform any canonical reduction in the single-challenge
setting to another reduction in the multi -challenge setting. Formally, consider
the following theorem.

Theorem 9. Let Sig be a digital signature scheme and let Λ be a non-interactive
computational assumption. Suppose R is a (, δ)-canonical reduction from the
sEUF-CMA1-security of Sig to Λ and PRF : {0, 1}λ × {0, 1}∗ → CoinsRSign ×
CoinsRExtract × CoinsRHash is a pseudorandom function. Using R and PRF, we
can build another reduction R′ from the msEUF-CMA1-security of Sig to Λ such
that for any adversary A′ attacking the msEUF-CMA1-security of Sig, there exists
an adversary B so that

AdvNICA
Λ,λ

(

R′A′) ≥ 1
	

· AdvmsEUF-CMA1
Sig (A′) − AdvPRF-secPRF

(

BA′) − δ. (3)

Furthermore,

LocalTime(R′A′
) ≈ LocalTime

(A′) + Time(RGen) + (qS + qF) · Time(RSign)
(4)

+ qH · Time(RHash) + qF · Time(Sig.Vrfy)

+ max{Time(RExtract),Time(U)} + qRF · Time(PRF),

LocalMem(R′A′
) = LocalMem

(A′) + Mem(RGen) + Mem(RSign)

+ Mem(RHash) + Mem(Sig.Vrfy) + Mem(RExtract)

+ Mem(U) + Mem(PRF) + 1, (5)

and

LocalTime(BA′
) ≈ LocalTime (A′) + Time(RGen) + (qS + qF) · Time(RSign)

+ qH · Time(RHash) + qF · Time(Sig.Vrfy)
+ max{Time(RExtract),Time(U)} + Time(InstGen)
+ Time(V),

LocalMem(BA′
) = LocalMem (A′) + Mem(RGen) + Mem(RSign)

+ Mem(RHash) + Mem(Sig.Vrfy) + Mem(RExtract)
+ Mem(U) + Mem(InstGen) + Mem(V).

where qF is the number of Forge queries made by A′, qS is the number of Sign
queries made by A′, qH is the numbers of queries made to the random oracle6,
and qRF is an upper bound of the number of evaluations of RF.

6 If the reduction is not in the ROM, then qH = 0 holds.

418 D. Diemert et al.

Remark 10. For any sEUF-CMA1 adversary A and any msEUF-CMA1 adversary
A′, if we define the memory overhead of R′ (R) as

Δ(R′) := LocalMem(R′A′
) − LocalMem(A′)

Δ(R) := LocalMem(RA) − LocalMem(A).

Then, from Eq. (2) and (4), we have that,

Δ(R′) − Δ(R) = Mem(PRF) + 1 − Mem(RF).

More intuitively speaking, this means that reduction R′ does not use memory to
keep a random function RF whose random table grows linearly with the number
of different queries, but instead it uses some small amount of memory to store
a PRF key and run the PRF. Furthermore, the algorithms in R′ (RGen, RSign,
RHash, RExtract, Sig.Vrfy, PRF and U) are stateless and their memory usage
is independent of the number of queries made by adversary. Thus, the memory
overhead of R′, i.e., Δ(R′) will also be independent of the adversary, especially
independent of qS.

Remark 11. Eq. (3) is equivalent to

AdvmsEUF-CMA1
Sig (A′) ≤ 	 ·

(

AdvNICA
Λ,λ

(

R′A′)

+ AdvPRF-secPRF

(

BA′)

+ δ
)

.

It shows that the msEUF-CMA1 security of Sig builds upon both the security of
NICA and the pseudorandomness of PRF. If 	 is a constant, δ is a negligible value
which is independent of the number of queries made by the adversary and PRF
is memory-tightly secure, then the msEUF-CMA1 security of Sig is tight in both
working factor and memory. (See Sect. 5 for more discussions about concrete
applications.)

Proof (of Theorem 9). Since R is a canonical reduction, we know that there
are algorithms (RGen,RSign,RExtract,RHash). Using these algorithms and a
pseudorandom function, we construct another reduction R′ which transfers any
msEUF-CMA1 adversary A′ to a hard problem solver of Λ.

Construction of R′. The reduction R′ receives as input an instance φ of Λ
and simulates the experiment ExpmsEUF-CMA1

Sig (A′) for A′. To this end, it first
runs (simpk , simsk) $←− RGen(φ) to obtain a simulated public key simpk for the
signature scheme Sig. Note that this is exactly the same as what R would do.

In contrast to R, R′ does not simulate a random function with algorithm
RF. Instead, it chooses a uniform key k $←− {0, 1}λ for a pseudorandom function
PRF : {0, 1}λ × {0, 1}∗ → CoinsRSign × CoinsRExtract × CoinsRHash and uses PRF as
a replacement.

A′ then receives as input the simulated public key simpk and gets access
to the signing oracle Sign, the random oracle (if ROM is considered) and the
“forgery attempt” oracle Forge. To simulate these oracles for A′, the reduction
R′ does the following:

Memory-Tight Digital Signatures 419

Sign-oracle. Upon receiving a signature query Sign(m) for some message m ∈ M ,
the reduction R′ runs R’s signature simulation algorithm with oracle access
to PRF, i.e., σ := RSignPRF(k,·)(simsk ,m). Then it returns σ to A′. Note that
the same signature will be returned if the same message is queried multiple
times since RSign is deterministic.

Random oracle. R′ answers a random oracle query x by running RHash with
oracle access to PRF, i.e., y := RHashPRF(k,·)(simsk , x) and returns y.

Forge-oracle. Upon receiving a forgery attempt (m∗, σ∗), the reduction R′ at
first checks whether

Sig.Vrfy(simpk ,m∗, σ∗) = 1 and σ∗ �= RSignPRF(k,·)(simsk ,m∗)

In case both checks pass, the reduction R′ attempts to extract a solution
ρ for the problem instance φ from the forgery at hand by running ρ :=
RExtractPRF(k,·)(simsk , (m∗, σ∗)). Then R′ returns ρ and halts.
In case any of the previous two checks failed, R′ continues to simulate A′. If
the adversary A′ fails to output any forgery attempt (m∗, σ∗) that can pass
the checks throughout the whole simulation process, R′ runs ρ $←− U(φ) and
outputs ρ.

Note that R′ proceeds exactly as R but it uses a pseudorandom function instead
of a truly random function and it needs to handle at most qF forgery attempts as
opposed to just one. Therefore, the running time of R′ is the running time of R
as given in Remark 8, replacing Time(RF) by Time(PRF) plus the time required
to simulate the additional qF − 1 Forge-queries, namely (qF − 1) · (Time(Vrfy) +
Time(RSign)). This yields the time given in Theorem 9.

Similarly, the memory consumption of R′ is the memory consumed by R as
given in Remark 8, but instead of storing the random table in RF, R′ needs
to store the function description of PRF and its corresponding key, which again
yields the values given in Theorem 9. In particular, note that the memory con-
sumed by R′A′

is independent of the number of queries made by A′, as the
stateful random table is replaced with the stateless keyed PRF PRF.

We complete the proof of Theorem 9 by analyzing the advantage of R′ as
follows.

The advantage of R′A′
. In order to analyse the advantage of R′A′

, we first modify
the reduction R′ to get a new reduction R1. More precisely, R1 is exactly R′

except that it uses a random function RF instead of a pseudorandom function
PRF.

We can easily build an adversary B and show that

AdvNICA
Λ,λ

(

R′A′) ≥ AdvNICA
Λ,λ

(

RA′
1

)

− AdvPRF-secPRF

(

BA′)

. (6)

The construction of B is straightforward. It generates the problem instance
together with its witness using (φ, ω) $←− InstGen(1λ). Then it simulates the above
reductions and interacting with A′ by forwarding all the input to RF/PRF to its

420 D. Diemert et al.

own challenger. If the reduction outputs a solution ρ, B runs the algorithm V
and outputs V(φ, ω, ρ). Thus, Eq. (5) holds and the running time and memory
consumption of B follows the equations in Theorem 9.

Next we modify R1 again to get R2. R2 is identical to R1 except that it logs
all the chosen message queries with their respective signatures in the set Q and
it replaces the check in Forge-oracle from

Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ σ∗ �= RSignRF(·)(simsk ,m∗)

to the check

Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ σ∗ �= RSignRF(·)(simsk ,m∗) ∧ (m∗, σ∗) /∈ Q.

Note that the added check (m∗, σ∗) /∈ Q is redundant because every (m,σ) pair
in Q has the property that σ = RSignPRF(·)(simsk ,m). Thus, we have that

AdvNICA
Λ,λ

(

RA′
1

)

= AdvNICA
Λ,λ

(

RA′
2

)

. (7)

Next, we construct a single-challenge sEUF-CMA1-adversary Ã that combines
the multi-challenge A′ with the check Sig.Vrfy(pk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈
Q. More precisely, after getting the public key pk , Ã simulates A′ and keep
log of the set Q itself. Whenever A′ submits a Forge-query, Ã checks whether
Sig.Vrfy(pk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q. If the check does not pass, Ã continues
the simulation of A′. And Ã outputs the first forgery that can pass this check
as its own forgery attempt. After that, Ã terminates. Note that Ã can perform
the checks efficiently because it knows the public key pk and can log the set Q
itself.

We can obtain an important observation on Ã: the game that is played
between R2 and the multi-challenge adversary A′ distributes identically with the
game that is played between the canonical reduction R and the single-challenge
adversary Ã. Thus, we have that

AdvNICA
Λ,λ (RA′

2) = AdvNICA
Λ,λ (R ˜A).

Furthermore, we know that Ã wins the (single-challenge) sEUF-CMA1 game
if and only if A′ wins the (multi-challenge) msEUF-CMA1 game because of the
check Sig.Vrfy(simpk ,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q. So, we have that

AdvsEUF-CMA1
Sig (Ã) = AdvmsEUF-CMA1

Sig (A′).

Since R is canonical, we have that

AdvNICA
Λ,λ (RA′

2) = AdvNICA
Λ,λ (R ˜A) ≥ 1

	
AdvsEUF-CMA1

Sig (Ã) − δ

=
1
	
AdvmsEUF-CMA1

Sig (A′) − δ.

Combining Eq. (5) to (7), we have that

AdvNICA
Λ,λ (R′A′

) ≥ 1
	
AdvmsEUF-CMA1

Sig (A′) − δ − AdvPRF-secPRF (BA′
),

and the theorem follows. �

Memory-Tight Digital Signatures 421

4 From msEUF-CMA1 Security to msEUF-CMA Security

So far we have shown how any signature scheme that can be proven sEUF-CMA1-
secure (i.e., single-challenge and one-signature-per-message) via a canonical
reduction to some computational problem, can be proven msEUF-CMA1-secure
(i.e., multi-challenge and one-signature-per-message) in a memory-tight way. In
this section, we extend our approach and present a generic transform, which
“memory-tightly lifts” any signature scheme from msEUF-CMA1 security (i.e.,
multi-challenge and one-signature-per-message) to the desired msEUF-CMA secu-
rity (i.e., multi-challenge and many-signatures-per-message).

Intuition. The core idea of this transform is to sign a message together with
some randomly-chosen nonce n. Intuitively, this nonce “expands” the set of valid
signatures for a given message. While this transform is straightforward, we see
value to make it explicit.

Transform. Let λ ∈ N and let Sig′ = (Gen′,Sign′,Vrfy′) be a signature scheme.
We construct a new signature scheme Sig = (Gen,Sign,Vrfy) as follows:

Key Generation. Gen behaves exactly like Gen′.
Signing. Sign takes as input the secret key sk and a message m. It samples a

nonce n $←− {0, 1}λ, computes σ′ $←− Sign′(sk ,m ‖ n), and returns σ = (σ′, n).
Verification. Vrfy takes as input a public key pk , a message m, and a signature

σ = (σ′, n). It computes and returns Sig′.Vrfy(pk ,m ‖ n, σ′).

Theorem 12. From each adversary A breaking the msEUF-CMA-security of the
above signature scheme Sig (with qs signing queries), we can construct an adver-
sary B such that AdvmsEUF-CMA

Sig (A) ≤ AdvmsEUF-CMA1
Sig′ (B) + q2

s

2λ and

LocalTime(B) ≈ LocalTime(A) and LocalMem(B) = LocalMem(A).

The proof of Theorem 12 is straightforward and we provide it in the full
version [21].

5 Applications

In this section, we present how the results of Sects. 3 and 4 can be used to yield
memory-tight strongly unforgeable signatures in the multi-challenge and many-
signatures-per-message setting. In Sect. 5.1, we present a construction based on
lossy identification schemes (similar to the construction by Abdalla et al. [1]) and
prove its memory-tight security using our results. Then, in Sect. 5.2, we show
how existing signature schemes such as RSA-FDH [10] benefit from our result
and evade the existing impossibility results of [4,51]. In the full version of this
paper [21], we show similar results for the Boneh, Lynn, and Shacham signature
scheme [14,15].

422 D. Diemert et al.

We note that, a pseudorandom function is required when applying our results
of Sects. 3 and 4. In the standard model, we are aware of several pseudoran-
dom functions that achieve almost tight security based on standard assumptions
[40,45,47]. In the random oracle model, such a pseudorandom function exists
unconditionally.

5.1 Memory-Tight Signatures from Lossy Identification Schemes

In this section, we present how to construct memory-tight strongly unforgeable
signatures in the multi-challenge and many-signatures-per-message setting based
on lossy identification schemes. To this end, we first present a formal definition
of lossy identification schemes.

Lossy Identification Schemes. We adapt the definition of a lossy identifica-
tion scheme [1,2].

Definition 13. A lossy identification scheme LID is a tuple of algorithms

LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)

with the following properties.

– (pk , sk) $←− LID.Gen(1λ) is the normal key generation algorithm. It takes as
input the security parameter and outputs a public verification key pk and a
secret key sk.

– pk $←− LID.LossyGen(1λ) is a lossy key generation algorithm that takes the
security parameter and outputs a lossy verification key pk.

– LID.Prove is the prover algorithm that is split into two algorithms:
• (cmt, st) $←− LID.Prove1(sk) is a probabilistic algorithm that takes as input

the secret key and returns a commitment cmt and a state st.
• resp $←− LID.Prove2(sk , cmt, ch, st) is a deterministic algorithm7 that takes

as input the secret key, a commitment cmt, a challenge ch, a state st, and
returns a response resp.

– LID.Vrfy(pk , cmt, ch, resp) ∈ {0, 1} is a deterministic verification algorithm
that takes a public key, and a conversation transcript (i.e., a commitment, a
challenge, and a response) as input and outputs a bit, where 1 indicates that
the proof is “accepted” and 0 “rejected”.

We assume that a public key pk implicitly defines two sets, the challenge set
CSet and the response set RSet.

7 As far as we know, all the instantiations of lossy identification schemes have a deter-
ministic LID.Prove2 algorithm. However, if a new instantiation requires randomness,
then it can be “forwarded” from LID.Prove1 in the state variable st. Therefore the
requirement that LID.Prove2 is deterministic is without loss of generality, and only
made to simplify our security analysis.

Memory-Tight Digital Signatures 423

Definition 14. Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)
defined as above. We call LID lossy when the following properties hold:

– Completeness of normal keys. Let (pk , sk) $←− LID.Gen(1λ) be a key pair and
let (cmt, ch, resp) be an honest transcript (i.e., (cmt, st) $←− LID.Prove1(sk),
ch $←− CSet, and resp $←− LID.Prove2(sk , cmt, ch, st)). We call LID ρ-complete,
if

Pr[LID.Vrfy(pk , cmt, ch, resp) = 1] ≥ ρ(λ),

where ρ is a non-negligible function in λ. We call LID perfectly-complete, if
it is 1-complete.

– Simulatability of transcripts. Let (pk , sk) $←− LID.Gen(1λ) be a key pair.
We call LID εs-simulatable if LID.Sim taking public key pk, a challenge
ch ∈ CSet and a response resp ∈ RSet as input, deterministically gener-
ates a commitment cmt such that (cmt, ch, resp) is a valid transcript (i.e.,
LID.Vrfy(pk , cmt, ch, resp) = 1). Furthermore, if (ch, resp) is chosen uniformly
random from CSet × RSet, the distribution of the transcript (cmt, ch, resp) is
statistically indistinguishable (up to an upper bound εs) from honestly gener-
ated transcripts. If εs = 0, we call LID perfectly simulatable.

– Indistinguishability of keys. We define the advantage of an adversary A to
break the key-indistinguishability of LID as

AdvIND-KEY
LID (A) :=

∣
∣Pr [A(pk) = 1] − Pr

[A(pk ′) = 1
]∣
∣ ,

where (pk , sk) $←− LID.Gen(1λ) and pk ′ $←− LID.LossyGen(1λ), is negligible in
λ.

– Lossiness. Consider the following security experiment ExpIMPERSONATE
LID (A)

described below, played between a challenger and an adversary A:
1. The challenger generates a lossy verification key pk $←− LID.LossyGen(1λ)

and sends it to the adversary A.
2. The adversary A may now compute a commitment cmt and send it to the

challenger. The challenger responds with a random challenge ch $←− CSet.
3. Eventually, the adversary A outputs a response resp. The challenger out-

puts LID.Vrfy(pk , cmt, ch, resp).
We call LID ε�-lossy if no computationally unrestricted adversary A wins the
above security game with probability

Pr[ExpIMPERSONATE
LID (A) = 1] ≥ ε�.

Definition 15. A lossy identification scheme

LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy, LID.Sim)

is commitment-recoverable if LID.Vrfy(pk , cmt, ch, resp) first recomputes cmt′ =
LID.Sim(pk , ch, resp) and then outputs 1 if and only if cmt′ = cmt.

Remark 16. We are aware of five different lossy identification scheme instantia-
tions and they are based on DDH [44], DSDL, Ring-LWE, Subset Sum [1,2] and
RSA [35]. As far as we know, all of them are commitment-recoverable. And the
schemes based on DDH, DSDL and RSA assumption are perfectly complete and
perfectly simulatable.

424 D. Diemert et al.

Memory-Tight Signatures from Lossy Identification Schemes. In the
following, we present the construction of the signature scheme based on lossy
identification scheme. This construction is slightly different from the construc-
tion by Abdalla et al. in [1,2] and can be seen as a variant of the Fiat-Shamir
transform [25]. We show that this construction can be proven strongly unforge-
able in the single challenge and one-message-per-signature setting (in the sense
of sEUF-CMA1, see Definition 3) in Theorem 17. This result is not yet memory-
tight, but work-factor-tight, as the reduction still needs to do book-keeping for
a random function, but does not need to store the set of queried messages and
there respective signatures in the set Q anymore. Based this result, we show how
to apply Theorems 9 and 12 to yield strong unforgeability in the multi-challenge
and many-signatures-per-message setting (in the sense of msEUF-CMA), which
then will be fully tight, i.e., both work-factor- and memory-tight. [1,2].

Let LID = (LID.Gen, LID.LossyGen, LID.Prove, LID.Vrfy) be a lossy identifica-
tion scheme and let H : {0, 1}∗ → CSet. Consider the following digital signature
scheme (Gen,Sign,Vrfy).

–Key generation. Algorithm Gen samples a key pair (pk , sk) $←− LID.Gen(1λ).
–Signing. The signing algorithm Sign takes as input sk and a message m ∈

{0, 1}∗. Then, it computes (cmt, st) $←− LID.Prove1(sk), ch := H(m, cmt) and
resp := LID.Prove2(sk , ch, cmt, st), and outputs the signature σ := (ch, resp).

–Verification. The verification algorithm Vrfy takes as input a public key pk,
message m ∈ {0, 1}∗, and a signature σ = (ch, resp). It runs the check
LID.Vrfy(pk , cmt, ch, resp). More precisely, it first recovers

cmt := LID.Sim(pk , ch, resp)

and then computes ch′ := H(m, cmt) Finally, the reduction outputs 1 if and
only if ch equals ch′.

Compared to the signature scheme by Abdalla et al. [1,2], signature of the
above scheme is a pair (ch, resp) whereas signature in [1,2] is a pair (cmt, resp)
for a transcript (cmt, ch, resp) of the lossy identification scheme. For a concrete
instantiation based on DDH assumption, this yields a shorter signature.

Theorem 17. Let H : {0, 1}∗ → CSet be modeled as a random oracle and let
LID be a lossy identification scheme that is commitment-recoverable, perfectly
complete, εs-simulatable and ε�-lossy.

Then, from each adversary A breaking the sEUF-CMA1 security of the above
signature scheme, we can construct an adversary B such that

AdvsEUF-CMA1
Sig (A) ≤ AdvIND-KEY

LID (B) +
1

|CSet| +
1

|RSet| + qS · εs + qH · ε�

Memory-Tight Digital Signatures 425

and

LocalTime(B) ≤ LocalTime(A) + Time(LID.LossyGen)
+ (qs + qH + 1) · Time(RF) + Time(Sig.Vrfy),

LocalMem(B) = LocalMem(A) + Mem(LID.LossyGen) + Mem(RF)
+ Mem(Sig.Vrfy),

where qS is the number of Sign-queries issued by A, qF is the number of Forge-
queries issued by A and qH is the number of hash queries throughout the game.

The proof of Theorem 17 is similar to the proof by Abdalla et al. in [1,2].
One technical difference it that, in our proof, we need to memory-tightly switch
the winning condition in the sEUF-CMA1 game into the checks that a canonical
reduction would do. For completeness, we provide the full proof in the full version
[21].

Applying Theorem 9. Here, we show how to apply Theorem 9 to lift the
security of the LID-based signature scheme to work-factor-tight and memory-
tight security in the multi -challenge and one-per-message setting. To apply the
theorem, we show that the adversary B in Theorem 17 can be “translated” into
a canonical reduction RLID which satisfies Definition 6.

To this end, we define the canonical reduction RLID from sEUF-CMA1-security
to the indistinguishability of keys IND-KEY to be the tuple (RGen,RF,RSign,
RExtract,RHash) as follows.

RGen: On input φ = pk , RGen return (pk , ∅) where ∅ denotes the empty word in
this context.

RF: On input any string x ∈ {0, 1}∗, RF simulates a random function using a
lazily sampled random table. In the following, we will omit this table and view
RF as a random function. Further, for (rRSign, rRHash) := RF(x), we define the
short-hands rRSign =: RF("sim" ‖ x) and rRHash =: RF("hash" ‖ x).

RSignRF(·): On input simsk = ∅ and m, RSign outputs σ = (ch, resp) with
(ch, resp) := RF("sim" ‖ m).

RExtractRF(·): On input simsk = ∅ and (m∗, σ∗), RExtract outputs solution ρ = 1.
Note that by definition RLID runs RExtract only if Vrfy(pk ,m∗, σ∗) = 1 and
σ∗ = (ch∗, resp∗) �= RSign(simsk ,m∗) = RF("sim" ‖ m∗). Hence, if RExtract
is run the queried forgery is valid.

RHashRF(·): On input simsk = ∅ and x, RHash works as follows:
– If x cannot be parsed as x = m ‖ cmt, then it returns RF("hash" ‖ x).
– Otherwise, it parses m ‖ cmt := x and runs (ch, resp) := RF("sim" ‖ m)

and then cmt′ := LID.Sim(ch, resp).
• If cmt = cmt′, then it returns ch.
• Otherwise, it returns RF("hash" ‖ x).

426 D. Diemert et al.

According to the results of Theorem 17, we have

AdvIND-KEY
LID (RA

LID) ≥ AdvsEUF-CMA1
Sig (A) − 1

|CSet| − 1
|RSet| − qS · εs − qH · ε�

where all quantities are defined as in Theorem 17 and AdvIND-KEY
LID (RA

LID) =
AdvIND-KEY

LID (B). Thus, RLID fulfills Definition 6, Property 2 with 	 = 1 and

δ =
1

|CSet| +
1

|RSet| + qS · εs + qH · ε�.

Applying Theorem 12. It remains to lift the security of the LID-based signa-
ture scheme from the one-signature-per-message setting to the many-signatures-
per-message-setting. This can easily be done, by applying the transform pre-
sented in Sect. 4. As the reduction presented in Theorem 12 preserves the
memory-tightness of the one-per-message scheme Sig′, we have that the trans-
formed LID-based signature scheme is memory-tightly strongly unforgeable in
the multi-challenge and many-signatures-per-message setting.

5.2 On the Memory-Tightness of RSA-FDH

Auerbach et al. [4] show that RSA-FDH can be proven memory-tightly unforge-
able in the single-challenge and many-signatures-per-message setting under the
RSA assumption. However, due to the existing tightness lower bounds, they did
not achieve work-factor-tightness. In this subsection, we first show that RSA-
FDH can be proven memory-tightly unforgeable in the multi-challenge setting
because the reduction by Auerbach et al. satisfies our definition of a canonical
reduction. Furthermore, we additionally show that with one extra random bit in
the signature, we are able to achieve both memory and working factor tightness
together with strong security.

We briefly recall the RSA assumption in the form of a non-interactive com-
putational assumption.

Definition 18. Let GenRSA be an algorithm that takes as input the security
parameter 1λ and returns (N = pq, e, d), where p and q are distinct primes
of bit length λ/2 and e, d are integers such that ed = 1 mod φ(N). The RSA
assumption with respect to GenRSA is a non-interactive computational assump-
tion ΛRSA = (InstGenRSA,VRSA,URSA) where

1. InstGenRSA(1λ) runs (N, e, d) $←− GenRSA(1λ), selects x $←− ZN , computes y =
xe mod N and outputs a problem instance φ = (N, e, y) and a witness ω = x.

2. VRSA(φ, ω, ρ) returns 1 if and only if ρ = ω.
3. URSA(φ) returns a failure symbol ⊥.

Recall the RSA-FDH signature scheme [10] Sig = (Gen,Sign,Vrfy) as follows.

– Gen runs (N, e, d) $←− GenRSA(1λ) and returns pk = (N, e), sk = (N, d).

Memory-Tight Digital Signatures 427

– Sign(sk ,m) returns σ = H(m)d mod N where H : {0, 1}∗ → Zn is a hash
function.

– Vrfy(pk ,m, σ) returns 1 if and only if σe = H(m) mod N .

The scheme provides existential unforgeability under chosen message attacks,
which can be reduced to the RSA assumption in the random oracle model as
shown by [11,18]. However, these proofs are neither work-factor-tight (an inher-
ent loss linear in the number of signature queries) nor memory-tight (implement-
ing the random oracle). Auerbach et al. [4] were able to improve those results
by proving RSA-FDH memory-tight in the single-challenge setting, based on the
RSA assumption in the random oracle model. We show how to further improve
this result with our techniques.

We proceed as in Sect. 5.1. That is, we first argue that RSA-FDH is strongly
unforgeable under an chosen message attack in the single-challenge and one-
signature-per-message setting (sEUF-CMA1-secure) under the RSA assumption
in the random oracle model. From this result, we then construct the canonical
reduction to show multi-challenge security. The transform presented in Sect. 4
then finally gives us many-signatures-per-message security again.

We will omit a full proof of sEUF-CMA1 security of RSA-FDH but only pro-
vide a brief sketch. The proof is very similar to the proof of EUF-CMA security
presented by Auerbach et al. [4]. Note that RSA-FDH scheme is a unique signa-
ture scheme. That is, for every message m there is exactly one valid signature,
namely σ = H(m)d mod N . Thus, whenever Sign(m) is queried it will always
return the same signature σ and the adversary will always see exactly one signa-
ture per message. Moreover, given a valid message-signature pair (m∗, σ∗), there
exists no second valid signature σ �= σ∗. Hence,

AdvsEUF-CMA1
RSA-FDH (A) ≤ AdvEUF-CMA

RSA-FDH(A). (8)

As we need a memory-tight reduction for RSA-FDH up to a truly random func-
tion RF, we adapt the result [4, Thm. 5] by Auerbach et al. slightly. Namely, we
do not implement the random sampling with a PRF as they are doing, but by
a truly random function RF that is maintained with an explicit look-up table.
By standard arguments, it is easy to verify that with this adaptation it follows
from [4, Thm. 5] and Eq. (8) that

AdvsEUF-CMA1
RSA-FDH (A) ≤ exp(1) · qS · AdvNICA

ΛRSA,λ(B) (9)

where qS denotes the number of signature queried by A and where B is identical
to B2 in the proof of [4, Thm. 5] except that B uses a random function RF with
a explicitly stored look-up table instead of a PRF. We have

LocalTime(B) ≈ LocalTime(A) + (qH + qS) · Time(RF),
LocalMem(B) = LocalMem(A) + Mem(RF) + 3

where qH is the number of random oracle queries and qS the number of signature
queries made by A.

428 D. Diemert et al.

We define the canonical reduction RRSA from sEUF-CMA1-security to the
RSA assumption as tuple (RGen,RSign,RExtract,RHash) as follows. In essence,
RRSA works exactly as B. Let RF : {0, 1}∗ → {0, 1} × ZN with CoinsRSign =
CoinsRExtract = ∅ and {0, 1} × ZN = CoinsRHash. Further, for (b, r) := RF(x),
we define the short-hands b =: RF1(x) and r =: RF2(x). We view RF1 as an
(1/qS)-biased random function similar to the biased coin used by Coron [18],
i.e., Pr[RF1(x) = 1] = 1/qS, where qS is the number of signature queries issued
by the adversary.

RGen: Given an RSA instance φ = (N, e, y), RGen returns (simpk , simsk) =
((N, e), (N, e, y)).

RHashRF(·): Given simsk = (N, e, y) and x, RHash returns RF2(x)e ·y if RF1(x) =
1. Otherwise, it returns RF2(x)e.

RSignRF(·): Given simsk = (N, e, y) and m, RSign outputs a signature σ = RF2(m)
if RF1(m) = 0. Otherwise, the reduction aborts and terminates by outputting
the failure symbol ⊥.

RExtractRF(·): Given simsk = (N, e, y) and (m∗, σ∗), RExtract outputs a solu-
tion ρ = σ∗/RF2(m). Note that by definition RRSA runs RExtract only
if Vrfy(simpk ,m∗, σ∗) = 1 and σ∗ �= RSign(simsk ,m∗). The validity of
the signature implies that (σ∗)e = RHash(simsk ,m∗) and since we have
σ∗ �= RSign(simsk ,m∗), we also know that RF1(m∗) = 1.

Reduction RRSA works basically as B, we have due to Eq. (9)

AdvNICA
ΛRSA,λ(RA

RSA) ≥ 1
exp(1) · qS

· AdvsEUF-CMA1
RSA-FDH (A).

That is, RRSA is a (, 0)-canonical reduction for RSA-FDH with value 	 =
1/(exp(1) · qS). The local time of RA

RSA is LocalTime(RA
RSA) ≈ LocalTime(A)

+ Time(Sig.Vrfy) + (qH + qS + 1) · Time(RF), and the local memory is

LocalMem(RA
RSA) = LocalMem(A) + Mem(RF) + Mem(Sig.Vrfy) + 3.

Now, we can use Theorem 9 to lift the security of RSA-FDH to the multi-
challenge in a memory-tight way. To this end, we can construct a reduction R′

RSA

from msEUF-CMA1-security of RSA-FDH to the RSA assumption as presented
in the proof Theorem 9. This implies that we can construct an adversary B′ such
that

AdvNICA
ΛRSA,λ((R′

RSA)A′
) ≥ 1

exp(1) · qS
· AdvmsEUF-CMA1

RSA-FDH (A′) − AdvPRF-secPRF (B′)

where PRF : {0, 1}λ × {0, 1}∗ → {0, 1} × ZN is a keyed function. Moreover, it
holds that

LocalTime((R′
RSA)A′

) ≈ LocalTime(A′) + Time(RGen)
+ (qS + qF + qH) · Time(PRF) + qF · Time(Sig.Vrfy)

LocalMem((R′
RSA)A′

) = LocalMem(A′) + 4 + Mem(Sig.Vrfy)
+ Mem(PRF).

Memory-Tight Digital Signatures 429

Thus, the reduction R′
RSA is a memory-tight, but not work-factor-tight,

reduction from msEUF-CMA1-security to the RSA assumption.
Note that since RSA-FDH is a unique signature scheme, the one-signature-

per-message security automatically implies the many-signatures-per-message
security. Thus, we do not need to apply our theorem form Sect. 4. At first glance,
this result seems to contradict the memory lower bound for unique signatures
established by Wang et al. [51, Theorem 3]. However, this is not the case as our
reduction does not meet the criteria for their impossibility result to hold.8 So
we evade their lower bound and achieve memory tightness for RSA-FDH.

On the Overall Tightness of RSA-FDH. In the previous section, we have
shown how RSA-FDH can be proven memory-tight in the multi-challenge and
many-signatures-per-message setting. As already explained above, due to exist-
ing tightness lower bounds, plain RSA-FDH cannot be proven work-fact-tight.
However, when considering a slight variant of RSA-FDH, which was proposed
by Katz and Wang [44], we can apply our techniques to prove this variant fully
tight. In essence, we still consider RSA-FDH, but choose a uniformly random
bit b and sign b ‖ m instead of only m. We call this scheme RSA-FDH+ and we
can prove the following theorem.

Theorem 19. For any adversary A′, there exists a reduction R′
RSA+ and an

adversary B′ such that

AdvmsEUF-CMA1
RSA-FDH+ (A′) ≤ 2AdvNICA

ΛRSA,λ((R′
RSA+)A′

) + 2AdvPRF-secPRF (B′).

where PRF : {0, 1}λ × {0, 1}∗ → {0, 1} × ZN × ZN is a keyed PRF. Moreover, it
holds that

LocalTime((R′
RSA+)A

′
) ≈ LocalTime(A′) +Time(RGen)

+ (qS + qF + qH) · Time(PRF) + qF · Time(Sig.Vrfy)

LocalMem((R′
RSA+)A

′
) = LocalMem(A′) +Mem(Sig.Vrfy) +Mem(PRF) + 4.

Hence, R′
RSA+ is a fully tight reduction (i.e., work-factor-tight and memory-

tight), from msEUF-CMA1-security of RSA-FDH+ to the RSA assumption.
Applying the transform of Sect. 4 and adding an additional nonce that is signed
along with the message, we can further lift this result to achieve msEUF-CMA-
security under the RSA assumption.

The proof of Theorem 19 follows the Katz-Wang approach. We provide the
formal description of scheme RSA-FDH+ and the proof of Theorem 19 in the
full version [21].
8 More precisely, Wang et al. [51] define two parameters cr and cg, where cr captures

the work-factor loss of the reduction and cg captures the trivial winning probability
of the assumption. They require cg < 1/2 and cr + cg > 1/2 for their lower bound to
hold. However, we have cg = 0 for the RSA assumption and cr = 1/(exp(1) · qS) for
our reduction, implying cr +cg < 1/2, which does not fall into the realm of Theorem
3 in [51].

430 D. Diemert et al.

References

1. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signa-
tures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
Advances in Cryptology 2012. EUROCRYPT 2012. LNCS, vol. 7237. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 34

2. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly secure signa-
tures from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016)

3. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology 2011. LNCS, vol. 7073. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 34

4. Auerbach, B., Cash, D., Fersch, M., Kiltz, E.: Memory-tight reductions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 101–132. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 4

5. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography. TCC
2015. LNCS, vol. 9014. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46494-6 26

6. Bader, C., Jager, T., Li, Y., Schage, S.: On the impossibility of tight crypto-
graphic reductions. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology
2016. EUROCRYPT 2016. LNCS, vol. 9666. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 10

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: EUROCRYPT 2000. LNCS, vol. 1807, pp.
259–274. Springer, Heidelberg (2000)

8. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for Waters’ IBE scheme. In: EUROCRYPT 2009.
LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01001-9 24

9. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ IBE scheme. Cryptology ePrint Archive,
Report 2009/084 (2009). eprint.iacr.org/2009/084

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 93, pp. 62–73. ACM Press (1993)

11. Bellare, M., Rogaway, P.: The exact security of digital signatures: how to sign with
RSA and Rabin. In: EUROCRYPT’96. LNCS, vol. 1070, pp. 399–416. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

12. Bhattacharyya, R.: Memory-tight reductions for practical key encapsulation mech-
anisms. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020.
LNCS, vol. 12110, pp. 249–278. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9 9

13. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 23

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 30

15. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-319-63688-7_4
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-642-01001-9_24
http://eprint.iacr.org/2009/084
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/3-540-45682-1_30

Memory-Tight Digital Signatures 431

16. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 25

17. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 25

18. Coron, J.S.: On the exact security of full domain hash. In: CRYPTO 2000. LNCS,
vol. 1880, pp. 229–235. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 14

19. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In:
EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 18

20. Davis, H., Günther, F.: Tighter proofs for the sigma and TLS 1.3 key
exchange protocols. Cryptology ePrint Archive, Report 2020/1029 (2020).
eprint.iacr.org/2020/1029

21. Diemert, D., Gellert, K., Jager, T., Lyu, L.: Digital signatures with memory-
tight security in the multi-challenge setting. Cryptology ePrint Archive, Report
2021/1220 (2021). ia.cr/2021/1220

22. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: Public-Key Cryptography - PKC 2021, pp. 1–31.
Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-
030-75248-4 1

23. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound crypto-
graphic parameters for real-world deployments. Cryptology ePrint Archive, Report
2020/726; to appear in the J. Cryptol. (2020). eprint.iacr.org/2020/726

24. Fersch, M., Kiltz, E., Poettering, B.: On the one-per-message unforgeability of
(EC)DSA and its variants. In: TCC 2017, Part II. LNCS, vol. 10678, pp. 519–534.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70503-3 17

25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

26. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 512–531. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 27

27. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019)

28. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: CRYPTO 2008. LNCS, vol. 5157, pp. 93–107.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 6

29. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 1–27. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 1

30. Ghoshal, A., Jaeger, J., Tessaro, S.: The memory-tightness of authenticated encryp-
tion. In: Advances in Cryptology - CRYPTO 2020–40th Annual International Cryp-
tology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020,
Proceedings, Part I. LNCS, vol. 12170, pp. 127–156. Springer (2020). https://doi.
org/10.1007/978-3-030-56784-2 5

31. Ghoshal, A., Tessaro, S.: On the memory-tightness of hashed ElGamal. In: EURO-
CRYPT 2020, Part II. LNCS, vol. 12106, pp. 33–62. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-45724-2 2

https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_18
https://eprint.iacr.org/2020/1029
https://ia.cr/2021/1220
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://eprint.iacr.org/2020/726
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-030-56784-2_5
https://doi.org/10.1007/978-3-030-56784-2_5
https://doi.org/10.1007/978-3-030-45724-2_2

432 D. Diemert et al.

32. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0 4

33. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

34. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via
nonce-based key derivation. In: ACM CCS 2017, pp. 1019–1036. ACM Press (2017)

35. Hasegawa, S., Isobe, S.: Lossy identification schemes from decisional RSA. In:
International Symposium on Information Theory and its Applications, ISITA 2014,
Melbourne, Australia, pp. 143–147. IEEE (2014)

36. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: EURO-
CRYPT 2017, Part II. LNCS, vol. 10211, pp. 381–411. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-56614-6 13

37. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption.
In: CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012).
https://doi.org/10.1007/s10623-015-0062-x

38. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30057-8 5

39. Jager, T., Kakvi, S.A., May, A.: On the security of the PKCS#1 v1.5 signature
scheme. In: ACM CCS 2018. pp. 1195–1208. ACM Press (2018)

40. Jager, T., Kurek, R., Pan, J.: Simple and more efficient PRFs with tight secu-
rity from LWE and matrix-DDH. In: ASIACRYPT 2018, Part III. LNCS, vol.
11274, pp. 490–518. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
030-03332-3 18

41. Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: reductions are lossy. In: TCC 2017, Part I. LNCS,
vol. 10677, pp. 409–441. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-319-70500-2 14

42. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
EUROCRYPT 2012. LNCS, vol. 7237, pp. 537–553. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 32

43. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. J.
Cryptol. 31(1), 276–306 (2018)

44. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM CCS 2003, pp. 155–164. ACM Press (2003)

45. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: ACM CCS 2009, pp. 112–120. ACM
Press (2009)

46. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: ASIACRYPT 2020, Part II. LNCS,
vol. 12492, pp. 785–814. Springer, Heidelberg (2020). https://doi.org/10.1007/978-
3-030-64834-3 27

47. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press (1997)

48. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to
discrete log. In: ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11593447 1

49. Schäge, S.: Tight proofs for signature schemes without random oracles. In: EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20465-4 12

https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-56614-6_13
https://doi.org/10.1007/s10623-015-0062-x
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-030-03332-3_18
https://doi.org/10.1007/978-3-030-03332-3_18
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-642-20465-4_12
https://doi.org/10.1007/978-3-642-20465-4_12

Memory-Tight Digital Signatures 433

50. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4 33

51. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reduc-
tions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 61–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 3

https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-78381-9_3

(Compact) Adaptively Secure FE
for Attribute-Weighted Sums from k-Lin

Pratish Datta1(B) and Tapas Pal1,2(B)

1 NTT Research, Sunnyvale, CA 94085, USA
pratish.datta@ntt-research.com

2 Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
tapas.pal@iitkgp.ac.in

Abstract. This paper presents the first adaptively simulation secure
functional encryption (FE) schemes for attribute-weighted sums. In
such an FE scheme, encryption takes as input N pairs of attribute
{(xi, zi)}i∈[N] for some N ∈ N where the attributes {xi}i∈[N] are public
while the attributes {zi}i∈[N] are private. The indices i ∈ [N] are referred
to as the slots. A secret key corresponds to some weight function f , and
decryption recovers the weighted sum

∑N
i=1 f(xi)zi. This is an important

functionality with a wide range of potential real life applications. In the
proposed FE schemes attributes are viewed as vectors and weight func-
tions are arithmetic branching programs (ABP). We present two schemes
with varying parameters and levels of adaptive security.

(a) We first present a one-slot scheme that achieves adaptive security in
the simulation-based security model against a bounded number of
ciphertext queries and an arbitrary polynomial number of secret key
queries both before and after the ciphertext queries. This is the best
possible level of security one can achieve in the adaptive simulation-
based framework. From the relations between the simulation-based
and indistinguishability-based security frameworks for FE, it fol-
lows that the proposed FE scheme also achieves indistinguishability-
based adaptive security against an a-priori unbounded number of
ciphertext queries and an arbitrary polynomial number of secret key
queries both before and after the ciphertext queries. Moreover, the
scheme enjoys compact ciphertexts that do not grow with the num-
ber of appearances of the attributes within the weight functions.

(b) Next, bootstrapping from the one-slot scheme, we present an
unbounded-slot scheme that achieves simulation-based adaptive
security against a bounded number of ciphertext and pre-ciphertext
secret key queries while supporting an a-priori unbounded number
of post-ciphertext secret key queries. The scheme achieves public
parameters and secret key sizes independent of the number of slots N
and a secret key can decrypt a ciphertext for any a-priori unbounded
N . Further, just like the one-slot scheme, this scheme also has the
ciphertext size independent of the number of appearances of the
attributes within the weight functions. However, all the parameters
of the scheme, namely, the master public key, ciphertexts, and secret
keys scale linearly with the bound on the number of pre-ciphertext
secret key queries.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 434–467, 2021.
https://doi.org/10.1007/978-3-030-92068-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_15

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 435

Our schemes are built upon asymmetric bilinear groups of prime order
and the security is derived under the standard (bilateral) k-Linear (k-Lin)
assumption. Our work resolves an open problem posed by Abdalla, Gong,
and Wee in CRYPTO 2020, where they presented an unbounded-slot FE
scheme for attribute-weighted sum achieving only semi-adaptive simula-
tion security. At a technical level, our work extends the recent adaptive
security framework of Lin and Luo [EUROCRYPT 2020], devised to
achieve compact ciphertexts in the context of indistinguishability-based
payload-hiding security, into the setting of simulation-based adaptive
attribute-hiding security.

Keywords: Functional encryption · Attribute-weighted sums ·
Adaptive simulation security

1 Introduction

Functional Encryption: Functional encryption (FE), formally introduced by
Boneh et al. [9] and O’Neill [26], redefines the classical encryption procedure with
the motivation to overcome the limitation of the “all-or-nothing” paradigm of
decryption. In a traditional encryption system, there is a single secret key such
that a user given a ciphertext can either recover the whole message or learns noth-
ing about it, depending on the availability of the secret key. FE in contrast pro-
vides fine grained access control over encrypted data by generating artistic secret
keys according to the desired functions of the encrypted data to be disclosed. More
specifically, in a public-key FE scheme for a function class F , there is a setup
authority which produces a master secret key and publishes a master public key.
Using the master secret key, the setup authority can derive secret keys or functional
decryption keys SKf associated to functions f ∈ F . Anyone can encrypt messages
msg belonging to a specified message space M using the master public key to pro-
duce a ciphertext CT. The ciphertext CT along with a secret key SKf recovers the
function of the message f(msg) at the time of decryption, while unable to extract
any other information about msg. More specifically, the security of FE requires
collusion resistance meaning that any polynomial number of secret keys together
cannot gather more information about an encrypted message except the union of
what each of the secret keys can learn individually.

FE for Attribute-Weighted Sum: Recently, Abdalla, Gong and Wee [3] pro-
posed an FE scheme for a new class of functionalities which they termed as
“attribute-weighted sums”. This is a generalization of the inner product func-
tional encryption (IPFE) [1,7]. In such a scheme, a database of N attribute-
value pairs (xi, zi)i=1,...,N are encrypted using the master public key of the
scheme, where xi is a public attribute (e.g., demographic data) and zi is a private
attribute containing sensitive information (e.g., salary, medical condition, loans,
college admission outcomes). The indices i ∈ [N] are referred to as the slots.
A recipient having a secret key corresponding to a weight function f can learn
the attribute-weighted sum of the database, i.e.,

∑N
i=1 f(xi)zi. The attribute-

weighted sum functionality appears naturally in several real life applications. For

436 P. Datta and T. Pal

instance, as discussed by Abdalla et al. [3] if we consider the weight function f as
a boolean predicate, then the attribute-weighted sum functionality

∑N
i=1 f(xi)zi

would correspond to the average zi over all users whose attribute xi satisfies the
predicate f . Important practical scenarios include average salaries of minority
groups holding a particular job (zi = salary) and approval ratings of an elec-
tion candidate amongst specific demographic groups in a particular state (zi =
rating). Similarly, if zi is boolean, then the attribute-weighted sum becomes∑

i:zi=1 f(xi). This could capture for instance the number of and average age of
smokers with lung cancer (zi = lung cancer, f = numbers/age).

The work of [3] considered a more general case of the notion where the
domain and range of the weight functions are vectors over some finite field Zp.
In particular, the database consists of N pairs of public/private attribute vec-
tors (xi,zi)i=1,...,N which is encrypted to a ciphertext CT. A secret key SKf

generated for a weight function f allows a recipient to learn
∑N

i=1 f(xi)�zi

from CT without revealing any information about the private attribute vectors
(zi)i=1,...,N . To handle a large database where the number of users are not a-
priori bounded, Abdalla et al. further considered the notion of unbounded-slot
FE scheme for attribute-weighted sum where the number of slots N is not fixed
while generating the system parameters and any secret key SKf can decrypt an
encrypted database having an arbitrary number of slots. Another advantage of
unbounded-slot FE is that the same system parameters and secret keys can be
reused for different databases with variable lengths, which saves storage space
and reduces communication cost significantly.

The unbounded-slot FE of [3] supports expressive function class of arithmetic
branching programs (ABPs) which are capable of capturing boolean formulas,
boolean span programs, combinatorial computations, and arithmetic span pro-
grams. The FE scheme of [3] is built in asymmetric bilinear groups of prime order
and is proven secure in the simulation-based security model, which is known to
be the desirable security model for FE [9,26], under the k-Linear (k-Lin)/Matrix
Diffie-Hellman (MDDH) assumption. Moreover, their scheme enjoys ciphertext
size that grows with the number of slots and the size of the private attribute vectors
but is independent of the size of the public attribute vectors. Towards constructing
their unbounded-slot scheme, Abdalla et al. first constructed a one-slot scheme and
then bootstrap to the unbounded-slot scheme via a semi-generic transformation

However, one significant limitation of the FE scheme of [3] is that the scheme
only achieves semi-adaptive security. While semi-adaptive security, where the
adversary is restricted to making secret key queries only after making the cipher-
text queries, may be sufficient for certain applications, it is much weaker com-
pared to the strongest and most natural notion of adaptive security which lets
the adversary request secret keys both before and after making the ciphertext
queries. Thus it is desirable to have an adaptively secure scheme for this impor-
tant functionality possibly supporting an unbounded number of slots.

One artifact of the standard techniques for proving adaptive security of FE
schemes based on the so called dual system encryption methodology [17,18,28]
is the use of a core information theoretic transition limiting the appearance of an
attribute in the description of the associated functions at most once (or an a-priori

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 437

bounded number of times at the expense of ciphertext and key sizes scaling with
that upper bound [24,27]). Recently Kowalczyk and Wee [16] and Lin and Luo
[19] presented advanced techniques to overcome the one-use restriction. However,
their techniques were designed in the context of attribute-based encryption (ABE)
where attributes are totally public. Currently, it is not known how to remove the
one-use restriction in the context of adaptively secure FE schemes where attributes
are not fully public as is the case for the attribute-weighted sum functionality. This
leads us to the following open problem explicitly posed by Abdalla et al. [3]:

Open Problem. Can we construct adaptively simulation-secure one-slot/
unbounded-slot FE scheme for the attribute-weighted sum functionality with the
weight functions expressed as arithmetic branching programs featuring compact
ciphertexts, that is, having ciphertexts that do not grow with the number of appear-
ances of the attributes within the weight functions, from the k-Lin assumption?

Our Contributions: In this work, we resolve the above open problem. More
precisely, we make the following contributions.

(a) We start by presenting the first one-slot FE scheme for the attribute-weighted
sum functionality with the weight functions represented asABPs that achieves
adaptive simulation-based security and compact ciphertexts, that is, the
ciphertext size is independent of the number of appearances of the attributes
within the weight functions. The scheme is secure against an adversary who
is allowed to make an a-priori bounded number of ciphertext queries and
an unbounded (polynomial) number of secret key queries both before and
after the ciphertext queries, which is the best possible level of security one
could hope to achieve in adaptive simulation-based framework [9]. Since
simulation-based security also implies indistinguishability-based security and
indistinguishability-based security against single and multiple ciphertexts
are equivalent [9,26], the proposed FE scheme is also adaptively secure in
the indistinguishability-based model against adversaries making unbounded
number of ciphertext and secret key queries in any arbitrary order.

(b) We next bootstrap our one-slot scheme to an unbounded-slot scheme that
also achieves simulation-based adaptive security against a bounded number
of ciphertext queries and an unbounded polynomial number of secret key
queries. Just like our one-slot scheme, the ciphertexts of our unbounded-slot
scheme also do not depend on the number of appearances of the attributes
within the weight functions. However, the caveat here is that the number
of pre-ciphertext secret key queries is a priori bounded and all parameters
of the scheme, namely, the master public key, ciphertexts, and secret keys
scale linearly with that upper bound.

Like Abdalla et al. [3], our FE schemes are built upon asymmetric bilinear groups
of prime order. We prove the security of our FE schemes based on the standard
(bilateral) k-Lin/ (bilateral) MDDH assumption(s) [12]. Thus our results can be
summarized as follows.

Theorem 1 (Informal). Under the (bilateral) k-Lin/MDDH assumption(s),
there exist adaptively simulation secure one-slot/unbounded-slot FE scheme

438 P. Datta and T. Pal

for attribute-weighted sums against a bounded number of ciphertext and an
unbounded number of secret-key queries, and having compact ciphertexts, that
is, without the one-use restriction, in bilinear groups of prime order.

The bilateral MDDH assumption is the plain MDDH assumption except that
the elements are available in the exponents of both source groups of a bilinear
group simultaneously. This assumption has recently been utilized in the context of
achieving FE for quadratic functions in the standard model [5,30]. Unlike [3], our
one-slot construction is semi-generic and is built upon two cryptographic build-
ing blocks, namely a slotted inner product functional encryption (IPFE) [19,20],
which is a hybrid of a public-key IPFE and a private-key function-hiding IPFE, and
an information theoretic primitive called arithmetic key garbling scheme (AKGS)
[14,19]. For bootstrapping from one-slot to unbounded-slot construction we make
use of the same semi-generic transformation proposed in [3], but analyze its secu-
rity in the adaptive simulation-based setting as opposed to the semi-adaptive set-
ting. Table 1 shows the current state of the art in the development of efficient
attribute-hiding1 FE schemes under standard computational assumptions.

On the technical side, our contributions lie in extending the recent frame-
work of Lin and Luo [19]. The techniques of [19] are developed to achieve
compact ciphertexts, that is, without the one-use restriction in the context of
indistinguishability-based adaptively secureABE (that is, for payload-hiding secu-
rity andnot attribute-hiding). In thiswork,we extend their techniques to overcome
the one-use restriction into the context of adaptive simulation-based attribute-
hiding security for the first time. The high level approach of [19] to mitigate the
one-use restriction is to replace the core information theoretic step of the dual sys-
tem technique with a computational step. However the application of this strategy
in their framework crucially rely on the payload hiding security requirement, that
is, the adversaries are not allowed to query secret keys that enable a successful
decryption. In contrast, in the setting of attribute-hiding, adversaries are allowed
to request secret keys enabling successful decryption and extending the technique
of [19] into this context appears to be non-trivial. We resolve this by developing a
three-slot variant of their framework, integrating the pre-image sampleability of
the inner product functionality [10,26], and carefully exploiting the structures of
the underlying building blocks, namely AKGS and slotted IPFE.

Paper Organization: We discuss detailed technical overview of our results
in Sect. 2. The preliminaries, definitions and tools are provided in Sect. 3. We
present our 1-key 1-ciphertext secure 1-slot FE and unbounded-key secure 1-
slot FE for attribute-weighted sums in Sects. 4 and 5 respectively. The details
of security reductions are given in the full version. Next, in Sect. 6, we provide
an extended version of our 1-slot FE scheme, on which we apply the bootstrap-
ping transformation from [3] leading to our unbounded-slot scheme. The formal
security analysis of the scheme is deferred to the full version as well. Further,
the formal definition of bilinear maps, related hardness assumptions, syntax and

1 In this paper, by attribute-hiding, we mean the so-called “strong” attribute-hiding,
as stipulated by the security definitions of FE, meaning that private attributes must
remain hidden even to decryptors who are able to perform a successful decryption.

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 439

Table 1. Current State of the Art in Attribute-Hiding FE

Scheme Functionality Number of Slots IND Security SIM Security |CT| Assumption

KSW08 [15] φy ∈Zn
p

: Z
n
p →

{0, 1}, φy (z) =

(z�y
?
= 0)

1 (−, poly, poly)-AD × O(|z|) 2
non-standard
assumptions

OT12 [22] φy ∈Zn
p

: Z
n
p →

{0, 1}, φy (z) =

(z�y
?
= 0)

1 (poly, poly, poly)-
AD

× O(|z|) DLIN

ABDCP15 [1] φy ∈Zn
p

: Z
n
p →

Zp, φy (z) = z�y

1 (−, poly, poly)-Sel × O(|z|) DDH, LWE

ALS16, ALMT20 [6,7] φy ∈Zn
p

: Z
n
p →

Zp, φy (z) = z�y

1 (poly, poly, poly)-
AD

(poly, bdd, poly)-Sel O(|z|) DDH, DCR,
LWE

Agr17 [4] φ
f∈GC(n,n′) :

Z
n
p × Z

n′
p →

{0, 1}, φf (x, z) =

(f(x)�z
?
= 0)

1 (−, poly, bdd)-S-AD (−, 1, bdd)-S-AD O(|x| + |z|) LWE

Wee17 [29] φ
f∈F(n,n′)

ABP

:

Z
n
p × Z

n′
p →

{0, 1}, φf (x, z) =

(f(x)�z
?
= 0)

1 (−, poly, poly)-S-AD (−, 1, poly)-S-AD O(|x| + |z|) k-Lin

DOT18 [10] φ
f∈F(n,n′)

ABP

:

Z
n
p × Z

n′
p → {0, 1},

φf (x, z) =

(f(x)�z
?
= 0)

1 (poly, poly, poly)-
AD

(poly, bdd, poly)-AD O(|x| + |z|) SXDLIN

ACGU20 [2] φ(f∈(NC1)(n),y ∈Zn′
p) :

Z
n
p × Z

n′
p →

Zp, φ(f,y)(x, z) =

(f(x)
?
= 0) · z�y

1 (poly, poly, poly)-
AD

× O(|x| + |z|) SXDH

AGW20 [3] φ
f∈F(n,n′)

ABP

:

Z
n
p × Z

n′
p →

Zp, φf (x, z) =
f(x)�z

unbounded (−, poly, poly)-AD (−, bdd, poly)-S-AD O(|z|) k-Lin

Wee20 [30] φ
f∈F(n,n1n2)

ABP

:

Z
n
p × (Zn1

p ×Z
n2
p) →

Zp, φf (x, (z1, z2)) =
f(x)�(z1 ⊗ z2)

1 (−, poly, poly)-S-AD (−, bdd, poly)-S-AD O(|z1| + |z2|) bilateral k-Lin
and k-Lin

This Work φ
f∈F(n,n′)

ABP

:

Z
n
p × Z

n′
p →

Zp, φf (x, z) =
f(x)�z

1 (poly, poly, poly)-
AD

(poly, bdd, poly)-AD O(|x| + |z|) k-Lin

This Work φ
f∈F(n,n′)

ABP

:

Z
n
p × Z

n′
p →

Zp, φf (x, z) =
f(x)�z

unbounded (bdd, poly, poly)-AD (bdd, bdd, poly)-AD O(|x| + |z| + B) bilateral k-Lin
and k-Lin

The notations used in this table have the following meanings:
– GC: General polynomial-size circuits
– ABP: Arithmetic branching programs
– IND: Indistinguishability-based security
– SIM: Simulation-based security
– AD: Adaptive security
– S-AD: Semi-adaptive security
– Sel: Selective security
– poly: Arbitrary polynomial in the security parameter
– bdd: A-priori bounded by the public parameters
– |x|: Size of x
– B: A bound on the number of pre-ciphertext decryption key queries
In this table, (U, V, W) signifies that the adversary is allowed to make V number
of ciphertext queries in the relevant security experiment, while U and W number of
decryption key queries in the pre- and post-ciphertext phases respectively.

440 P. Datta and T. Pal

security definition of slotted IPFE, and the details of special piecewise security of
AKGS are provided in the full version. For security analysis of our 1-slot extended
FE, we construct a 1-key 1-ciphertext secure 1-slot extended FE scheme which
is also available in the full version. Finally, in the full version, we present our
formal analysis of the bootstrapping transformation from [3].

2 Technical Overview

In this section, we present our main technical ideas. Let G =
(G1, G2, GT , g1, g2, e) be a bilinear group of prime order p and [[a]]i denotes ga

i

for any a ∈ Zp and i ∈ {1, 2, T}, which notation can also be extended in case of
vectors and matrices. At the topmost level of strategy, we follow [3] to first design
an adaptively simulation-secure one-slot FE scheme and then apply a compiler
to bootstrap to an unbounded-slot scheme. For the later part, we use the same
compiler as the one presented in [3]. However, [3] only showed that the com-
piler works in the context of semi-adaptive security, that is, they show that their
compiler can bootstrap a semi-adaptively secure one-slot FE scheme to a semi-
adaptively secure unbounded-slot scheme. In contrast, we analyze the security of
the same transformation in the context of the simulation-based adaptive security
framework. We observe that in order to prove the adaptive security for the com-
piler, the (bilateral) k-Lin/(bilateral) MDDH assumption is needed whereas for
semi-adaptive security, the plain k-Lin/MDDH was sufficient [3]. Moreover, we
are only able to establish the simulation-based adaptive security for the trans-
formation for settings where only a bounded number of secret-key queries are
allowed prior to making the ciphertext queries.

The majority of our technical ideas in this paper lies in the design and analysis
of our one-slot scheme which we describe first in this technical overview. Next,
we would briefly explain the modifications to our one-slot scheme leading to
our extended one-slot scheme, followed by explaining our analysis of the one-
slot to unbounded-slot bootstrapping compiler from [3] applied on our one-slot
extended FE scheme.

Recall that the adaptive simulation security of an FE scheme is proven by
showing the indistinguishability between a real game with all the real algorithms
and an ideal game where a simulator simulates all the ciphertexts and secret keys
queried by the adversary. When an adversary makes a pre-ciphertext query for
some function f , the simulator provides the secret key to the adversary. When
the adversary makes a challenge ciphertext query for an attribute vector pair
(x,z), the simulator receives the information of x but not z. Instead it receives
the functional values f(x)�z for all the pre-ciphertext secret keys. Based on
this information, the simulator must simulate the challenge ciphertext. Finally,
when an adversary makes a secret-key query for some function f after making a
ciphertext query, the simulator receives f along with the functional value f(x)�z
for that key and simulates the key based on this information.

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 441

2.1 Designing Adaptively Simulation Secure One-Slot FE Scheme

Abdalla et al. [3] built their one-slot FE scheme for attribute-weighted sums by
extending the techniques devised by Wee [29] in the context of partially hiding
predicate encryptions for predicates expressed as ABPs over public attributes
followed by inner product evaluations over private attributes. The proof strategy
of [3,29] is designed to achieve selective type security where during the security
reduction, the challenge ciphertext is made completely random and then the
secret keys are simulated using the functional value and the randomness used
in the challenge ciphertext. In particular, its simulated secret key is divided
into two parts—the first part is computed similar to the original key generation
algorithm and is used for decrypting the honestly computed ciphertext whereas
the second part contains the functional value and is used for decrypting the
simulated ciphertext correctly. However, in the adaptive setting, we must embed
the correct functional values for the functions associated with the pre-ciphertext
secret keys into the challenge ciphertext and therefore the proof technique of
[3,29] does not seem to extend to the adaptive setting. Datta et al. [11] designed
an adaptively simulation secure predicate encryption scheme for the same class of
predicates as [29], but their ciphertexts do not preserve compactness as they had
to impose a read-once restriction on the attributes due to the usual information
theoretic argument required in dual system encryption.

Overcoming the one-use restriction of the dual system proof techniques for
adaptive security, Lin and Luo [19] developed new techniques to obtain adaptive
indistinguishability secure ABE with compact ciphertexts for the class of predi-
cates expressed as ABPs. [19] takes a semi-generic approach to design their ABE
schemes. Their main idea is to replace the core information theoretic step of the
dual system methodology with a computational step and thereby avoid the one-
use restriction. Two main ingredients of [19] are arithmetic key garbling scheme
(AKGS) which is the information theoretic component and function-hiding slotted
inner product functional encryption (IPFE) which is the computational compo-
nent. We try to adopt the techniques of [19] into our setting of simulation-based
security for FE without the one-use restriction. However, a straight-forward adap-
tation of the [19] framework into our setting presents several challenges which
we overcome with new ideas. Before describing those challenges and our ideas,
we first give a high-level overview of the two primitives, namely, AKGS and
function-hiding slotted IPFE.

Arithmetic Key Garbling Schemes: The notion of partial garbling scheme
was proposed in [14] and recently it was further refined by [19] in the context
of arithmetic computations. The refined notion is called arithmetic key garbling
scheme (AKGS) which garbles a function f : Z

n
p → Z

n′
p along with two secrets

α, β ∈ Zp so that the evaluation with an input x ∈ Z
n
p gives the value αf(x)+β.

Note that the evaluation does not reveal any information about α and β. In
particular, the AKGS has the following algorithms:
• (�1, . . . , �m+1) ← Garble(αf(x)+β; r): The garbling algorithm outputs (m+

1) affine label functions L1, . . . , Lm+1, described by their coefficient vectors
�1, . . . , �m+1 over Zp, using the randomness r ∈ Z

m
p where (m + 1) denotes

the size of the function f .

442 P. Datta and T. Pal

• γ ← Eval(f,x, �1, . . . , �m+1): The linear evaluation procedure recovers γ =
αf(x) + β using the input x and the label function values �j = Lj(x) =
�j · (1,x) ∈ Zp.

AKGS is a partial garbling process as it only hides α, β which is captured by the
usual simulation security given by [14]. The simulator produces simulated labels
(�̂1, . . . , �̂m+1) ← SimGarble(f,x, αf(x) + β) which is the same distribution as
the actual label function values evaluated at input x. Additionally, [19] defines
piecewise security of AKGS that consists of two structural properties, namely
reverse sampleability and marginal randomness. The partial garbling scheme for
ABPs of Ishai and Wee [14] directly implies a piecewise secure AKGS for ABPs.
(See Sect. 3.3 for further details.)

Function-Hiding Slotted IPFE: A private-key function-hiding inner prod-
uct functional encryption (IPFE) scheme based on a bilinear group G =
(G1, G2, GT , g1, g2, e) generates secret keys IPFE.SK for vectors [[v]]2 ∈ G

n
2 and

produces ciphertexts IPFE.CT for vectors [[u]]1 ∈ G
n
1 using the master secret key

of the system. Both the key generation and encryption algorithm perform linear
operations in the exponent of the source groups G2, G1 respectively. The decryp-
tion recovers the inner product [[v ·u]]T ∈ GT in the exponent of the target group.
The sizes of the secret keys, IPFE.SK, and ciphertexts, IPFE.CT, in such a sys-
tem grow linearly with the sizes of the vectors v and u respectively. Roughly, the
function-hiding security of an IPFE ensures that no information about the vec-
tors v,u is revealed from IPFE.SK and IPFE.CT except the inner product value
v · u which is trivially extracted using the decryption algorithm. A slotted ver-
sion of IPFE introduced in [19,20] is a hybrid between a secret-key function-hiding
IPFE and a public-key IPFE. The index set of the vectors u is divided into two
subsets: public slots Spub and private slot Spriv so that the vector u is written as
u = (upub ‖ upriv). With addition to the usual (secret-key) encryption algorithm,
the slotted IPFE has another encryption algorithm that uses the master public key
of the system to encrypt the public slots of u, i.e. vectors with upriv = 0. The slot-
ted IPFE preserves the function-hiding security with respect to the private slots
only as anyone can encrypt arbitrary vectors into the public slots.

Challenges with Adapting the Framework of [19] and Our Ideas
We now briefly explain at a high level, the main challenges in adapting the [19]
technique into our setting and our ideas to overcome those challenges.

1. To handle the pre-challenge secret-key queries, [19] formulates new proper-
ties of AKGS such as reverse sampling and marginal randomness. Using such
structural properties of AKGS, their main motivation was to reversely sam-
ple the first garbling label using the challenge attribute so that it can be
shifted into the ciphertext component and make the remaining labels uni-
formly random. This procedure works fine for arguing zero advantage for the
adversary at the end of the hybrid sequence in case of ABE as functions in
the queried secret keys do not vanish on the challenge attribute and hence
the challenge ciphertext can never be decrypted using such secret keys avail-
able to the adversary such that the value αf(x) + β becomes completely

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 443

random. But, FE permits the adversary to have secret keys that decrypts the
challenge ciphertext, that is, we cannot afford to have z[t]ft(x) + βt com-
pletely random. In order to handle this, we carefully integrate the techniques
of pre-image sampleability [11,26] with the reverse sampling and marginal
randomness properties of AKGS to handle the pre-challenge queries.

2. The security proof of [19] implements a version of the dual system encryption
methodology [17,18,28] via the function-hiding slotted IPFE. Since the ABE is
only payload hiding, the usual dual system encryption technique is sufficient for
achieving adaptive security where only one hidden subspace is required. More
precisely, the secret keys are made of two slots, out of which the first public slot
contains the honestly computed components which may be used to decrypt any
honestly computed ciphertext and the other hidden slot is used to embed its
interaction with the challenge ciphertext. This dual system encryption tech-
nique has been used in several prior works [11,17–19,23–25,28]. Here, a sin-
gle hidden slot is enough to handle the interaction between all ciphertext and
secret-key queries since by the game restrictions, no secret key queried by the
adversary can decrypt the challenge ciphertext and thus their interactions with
the challenge ciphertext always result in random outputs. For our application,
a portion of the attribute must be kept hidden from an adversary in the con-
text of FE, who is allowed to have polynomially many secret keys that success-
fully decrypts the challenge ciphertext. The usual dual system encryption is
not sufficient for our purpose. We need three hidden subspaces for our secu-
rity reduction. The first hidden subspace of the challenge ciphertext is kept for
handling the interactions with the post-ciphertext secret keys. The second hid-
den subspace is required to place the dummy vector (obtained from pre-image
sampleability) which helps in simulating the interactions between the challenge
ciphertext and the pre-ciphertext secret keys. The last hidden subspace is used
as a temporary way station to switch each pre-ciphertext secret key from inter-
acting with the original hidden attribute of the challenge ciphertext to interact-
ing with the dummy attribute sampled using the pre-image sampleability. We
extend the framework of [19] to implement a three-slot dual system encryption
procedure for building our one-slot FE scheme.

Our One-Slot FE: We aim to design our decryption algorithm such that given
a secret key for a weight function ABP f : Z

n
p → Z

n′
p with coordinate functions

f1, . . . , fn′ : Z
n
p → Zp and an encryption of an attribute vector pair (x,z) ∈ Z

n
p ×

Z
n′
p , the decryption algorithm would first recover the value for each coordinate

z[t]ft(x) masked with a random scalar βt, that is, z[t]ft(x) + βt and then sum
over all these values to obtain the desired functional value (we take the scalars
{βt}t∈[n′] such that

∑
t=[n′] βt = 0 mod p). Thus we want our key generation

algorithm to use AKGS to garble the functions z[t]ft(x) + βt. Note that here, βt

is a constant but z[t] is a variable. While doing this garbling, we also want the
label functions to involve either only the variables x or the variable z[t]. This is
because, in the construction we need to handle x and z[t] separately since x is
public whereas z[t] is private. This is unlike [19] which garbles αf(x) + β where
both α, β are known constants and only x is a variable. To solve this issue, we
garble an extended ABP where we extend the original ABP ft by adding a new

444 P. Datta and T. Pal

sink node and connecting the original sink node of ft to this new sink node with
a directed edge labeled with the variable z[t].

We also make use of a particular instantiation of AKGS given by [14] where we
observe that the first m coefficient vectors �1,t, . . . , �m,t are independent of z[t] and
the last coefficient vector �m+1,t involves only the variable z[t]. In the setup phase,
two pairs of IPFE keys (IPFE.MSK, IPFE.MPK) and (̂IPFE.MSK, ̂IPFE.MPK) for a
slotted IPFE are generated for appropriate public and private index sets. The first
instance of IPFE is used to handle the public attributes x, whereas the second
instance for the private attributes z. Let f = (f1, . . . , fn′) : Z

n
p → Z

n′
p be a given

weight function ABP such that ft : Z
n
p → Zp is the t-th coordinate ABP of f . To

produce a secret-key SKf , we proceed as follows:

– Sample vectors α,βt ← Z
k
p such that

∑
t∈[n′] βt[ι] = 0 mod p ∀ι ∈ [k]

– Suppose we want to base the security of the proposed scheme
under the MDDHk assumption. Generate k instances of the garblings
(�(ι)1,t, . . . , �

(ι)
m+1,t) ← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t) for ι ∈ [k] where r

(ι)
t ←

Z
m
p . Using the instantiation of AKGS given by [14], we have that the (m+1)-

th label functions L
(ι)
m+1,t take the form L

(ι)
m+1,t(z[t]) = α[ι]z[t]− r

(ι)
t [m] with

α[ι] a constant.
– Compute the IPFE secret keys

IPFE.SK = IPFE.KeyGen(IPFE.MSK, [[α ,0kn ‖ 0, 0n, 0n′ , 0n′]]2)

IPFE.SKj,t = IPFE.KeyGen(IPFE.MSK, [[�
(1)
j,t , . . . , �

(k)
j,t ‖ 0, 0n, 0n′ , 0n′]]2) for j ∈ [m]

̂IPFE.SKm+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r
(1)
t [m], . . . , r

(k)
t [m], α ‖ 0, 0, 0, 0, 0, 0, 0]]2)

– Return SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′])

Here, we separate public and private slots by “ ‖ ” and 0 denotes a vector of
all zero elements. Now, to produce a ciphertext CT for some attribute vectors
(x,z), we use the following steps:

– Sample s ← Z
k
p and use the slotted encryption of IPFE to compute the

ciphertexts

IPFE.CT = IPFE.SlotEnc(IPFE.MSK, [[s, s ⊗ x]]1)

̂IPFE.CTt = IPFE.SlotEnc(̂IPFE.MSK, [[−s, s · z [t]]]1) for all t ∈ [n
′
]

where ⊗ denotes the tensor product.
– return CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′])

Decryption first uses IPFE.Dec to compute

v · u = [[α · s]]T (1)
vj,t · u = [[

∑

ι

s[ι](�
(ι)
j,t · (1, x))]]T = [[�j,t]]T for j ∈ [m], t ∈ [n

′
] (2)

vm+1,t · ht = [[
∑

ι

s[ι](α [ι]z [t] − r
(ι)
t [m])]]T = [[�m+1,t]]T for t ∈ [n

′
] (3)

and then apply the evaluation procedure of AKGS to get

Eval(ft, x, [[�1,t]]T , . . . , [[�m+1,t]]T) = [[(α · s) · z [t]ft(x) + βt · s]]T . (4)

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 445

Finally, multiplying all these evaluated values and utilizing the fact∑
t∈[n′] βt · s = 0, we recover f(x)�z =

∑
t∈[n′] z[t]ft(x).

The Simulator for Our One-Slot FE Scheme: We now describe our simula-
tor of the adaptive game for our one-slot FE scheme. Note that the private slots
on the right side of “ ‖ ” will be used by the simulator and we program them
during the security analysis. For the q-th secret-key query corresponding to a
function fq = (fq,1, . . . , fq,n′), the simulator sets public slots of all the vectors
vq,vq,j,t for j ∈ {1, . . . , mq + 1} as in the original key generation algorithm.
Instead of using the linear combination of the label vectors, the simulator uses
freshly sampled garblings to set the private slots. The pre-challenge secret key
SKfq

takes the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α [ι],0kn ‖ α̃q, 0n, 0n′ , 0n′]]2)

IPFE.SKq,j,t = IPFE.KeyGen(IPFE.MSK, [[�
(1)
q,j,t, . . . , �

(k)
q,j,t ‖ �̃q,j,t, 0n′ , 0n′]]2) for j ∈ [mq]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r
(1)
t [mq], . . . , r

(k)
t [mq], α ‖ 0, 0, r̃q,t[mq], α̃q, 0, 0, 0]]2)

where (�̃q,1,t, . . . , �̃q,mq,t) ← Garble(α̃qz[t]fq,t(x) + β̃q,t; r̃q,t), α̃q, β̃q,t ← Zp such
that

∑
t∈[n′] β̃q,t = 0 mod p. We write 0ξ as a vector of length ξ with all zero

elements. To simulate the ciphertext for the challenge attribute x∗, the simulator
uses the set of all functional values V = {(fq, fq(x∗)�z∗) : q ∈ [Qpre]} to compute
a dummy vector d satisfying fq(x∗)�d = fq(x∗)�z∗ for all q ∈ [Qpre]. Since the
inner product functionality is pre-image sampleable and both fq,x

∗ are known
to the simulator, a dummy vector d can be efficiently computed via a polynomial
time algorithm given by O’Niell [26]. The simulated ciphertext becomes

IPFE.CT = IPFE.Enc(IPFE.MSK, [[0k, 0kn ‖ 1, x
∗
, 0n′ , 0n′]]1)

̂IPFE.CTt = IPFE.Enc(̂IPFE.MSK, [[0k, 0k ‖ 1, 0, −1, d[t], 0, 0, 0]]1)

The post-challenge secret-key query for the q-th function fq = (fq,1, . . . , fq,n′)
with q > Qpre is answered using the simulator of AKGS. In particular, we choose
βq,t ← Zp satisfying

∑
t∈[n′] βq,t = 0 mod p and compute the simulated labels

as follows:

(�̂q,1,1, . . . , �̂q,mq+1,1) ← SimGarble(fq,1, x
∗
, α̃q · fq(x

∗
)
�

z
∗
+ βq,1) (5)

(�̂q,1,t, . . . , �̂q,mq+1,t) ← SimGarble(fq,t, x
∗
, βq,t) for 1 < t ≤ n

′ (6)

Note that, for post-challenge secret keys the functional value fq(x∗)�z∗ is
known and hence the simulator can directly embed the value into the secret keys.
The post-challenge secret key SKfq

takes the form

IPFE.SKq = IPFE.KeyGen(IPFE.MSK, [[α ,0kn ‖ α̃q, 0n, 0n′ , 0n′]]2)

IPFE.SKq,j,t = IPFE.KeyGen(IPFE.MSK, [[�
(1)
j,t , . . . , �

(k)
j,t ‖ �q,j,t, 0n, 0n′ , 0n′]]2) for j ∈ [mq]

̂IPFE.SKq,mq+1,t = IPFE.KeyGen(̂IPFE.MSK, [[r
(1)
t [mq], . . . , r

(k)
t [mq], α ‖ �q,mq+1,t, 0, 0, 0, 0, 0, 0]]2)

Security Analysis of Our One-Slot FE Scheme: To show the adaptive
simulation-based security of our FE scheme, we follow a sequence of hybrid

446 P. Datta and T. Pal

experiments to move from the real game to the ideal game with the simulated
algorithms described above. The security analysis has three steps where in the
first step we apply function-hiding IPFE and MDDH assumption to use freshly
sampled garblings instead of linearly combined coefficient vectors. In the second
step, the dummy vector d is utilized in the challenge ciphertext to handle pre-
challenge secret-key queries. Here, we need to extend the framework of [19] to
implement a three slot encryption technique using function-hiding IPFE. Finally,
in the third step, we use the simulator of AKGS for simulating the post-challenge
secret-key queries.
Step 1

Hybrid H0: This is the real adaptive simulation security game with all the real
algorithms described above.
Hybrid H1: Indistinguishable from H0 by the slot-mode correctness of the IPFE
where we replace the SlotEnc algorithm with the Enc algorithm of slotted IPFE.

u = (s, s ⊗ x
∗ ‖ 0 , 0n , 0n′ , 0n′),

ht = (−s, s · z
∗
[t] ‖ 0 , 0 , 0 , 0 , 0 , 0 , 0).

Hybrid H2: Indistinguishable from H1 by function-hiding IPFE

vq = (α , 0kn ‖ αq , 0n, 0n′ , 0n′)

vq,j,t = (�
(1)
q,j,t, . . . , �

(k)
q,j,t ‖ �q,j,t , 0n′ , 0n′) for j ∈ [mq]

u = (0k , 0kn ‖ 1 , x
∗

, 0n′ , 0n′)

vq,mq+1,t = (r
(1)
t [mq], . . . , r

(k)
t [mq], α ‖ rq,t[mq] , αq , 0, 0, 0, 0, 0)

ht = (0k , 0k ‖ −1 , z
∗
[t] , 0, 0, 0, 0, 0)

where αq = αq · s, �q,j,t =
∑

ι s[ι]�(ι)q,j,t and rq,t[mq] =
∑

ι s[ι]r(ι)
q,t[mq]. Since the

inner product values between the vectors remain the same, the indistinguisha-
bility follows from the function-hiding property of IPFE.
Hybrid H3: Indistinguishable from H2 by MDDH assumption

vq = (α , 0kn ‖ α̃q , 0n, 0n′ , 0n′)

vq,j,t = (�
(1)
j,t , . . . , �

(k)
j,t ‖ �̃q,j,t 0n′ , 0n′) for j ∈ [mq]

vq,mq+1,t = (r
(1)
t [mq], . . . , r

(k)
t [mq], α ‖ r̃q,t[mq] , α̃q , 0, 0, 0, 0, 0)

where α̃q, β̃q,t ← Zp satisfying
∑

t∈[n′] β̃q,t = 0 mod p and (�̃q,1,t, . . . ,

�̃q,mq+1,t) ← Garble(α̃qz[t]fq,t(x) + β̃q,t; r̃q,t). The indistinguishability follows
from the MDDH assumption in the source group G2. This completes the first
step of the security analysis. In the next step, we use the dummy vector d
obtained via the pre-image sampling algorithm [26] and execute our three slot
dual system encryption variant devised by extending the framework of [19].

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 447

Step 2

Hybrid H4: Indistinguishable from H3 by function-hiding security of IPFE

vq,mq+1,t = (· · · ‖ r̃q,t[mq], α̃q, 0, 0, 0, 0, 0)

ht = (· · · ‖ −1, z∗[t], −1 , d[t] , −1 , z
∗
[t] , 0)

Hybrid H5,q(q ∈ [Qpre]): Indistinguishable from H5,(q−1) via a sequence of sub-
hybrids {H5,q,1,H5,q,2,H5,q,3}. Hybrid H5,0 coincides with H4.

vq′,mq+1,t = (· · · ‖ 0, 0, r̃q′,t[mq] , α̃q′ , 0, 0, 0) for q′ ≤ q

vq′,mq+1,t = (· · · ‖ r̃q′,t[mq], α̃q′ , 0, 0, 0, 0, 0) for q < q′ < Qpre

Hybrid H5,q,1(q ∈ [Qpre]): Indistinguishable from H5,(q−1) by function-hiding
security of IPFE.

vq′,mq+1,t = (· · · ‖ 0, 0, r̃q′,t[mq], α̃q′ , 0, 0, 0) for q′ < q

vq,mq+1,t = (· · · ‖ 0 , 0 , 0, 0, r̃q,t[mq] , α̃q , 0)

vq′,mq+1,t = (· · · ‖ r̃q′,t[mq], α̃q′ , 0, 0, 0, 0, 0) for q < q′ < Qpre

Hybrid H5,q,2(q ∈ [Qpre]): Indistinguishable from H5,q,1 by piecewise security
of AKGS and function-hiding security of IPFE.

ht = (· · · ‖ − 1, z
∗
[t], −1, d[t], −1, d[t] , 0)

In order to establish the indistinguishability between H5,q,1 and H5,q,2, we actu-
ally rely on a computational problem, namely the 1-key 1-ciphertext simulation
security of a secret-key FE scheme for attribute-weighted sums where the single
key query is made before making the challenge ciphertext query. This scheme
is presented in Sect. 4. The security of (secret-key) one FE scheme follows from
the piecewise security of AKGS and the function-hiding security of IPFE. This is
the core indistinguishability step that has been information theoretic in all prior
applications of the extended dual system encryption methodology for adaptive
attribute-hiding security [10,22]. Built on the techniques of [19], we are able to
make this core indistinguishability step computational and thus remove the one-
use restriction in the context of adaptive attribute-hiding security for the first
time.
Hybrid H5,q,3(q ∈ [Qpre]): Indistinguishable from H5,q,2 by function-hiding
security of IPFE.

vq′,mq+1,t = (· · · ‖ 0, 0, r̃q′,t[mq], α̃q′ , 0, 0, 0) for q′ < q

vq,mq+1,t = (· · · ‖ 0, 0, r̃q,t[mq] , α̃q , 0 , 0 , 0,)

vq′,mq+1,t = (· · · ‖ r̃q′,t[mq], α̃q′ , 0, 0, 0, 0, 0,) for q < q′ < Qpre

ht = (· · · ‖ −1, z∗[t], −1, d[t], −1, z
∗
[t] , 0,)

448 P. Datta and T. Pal

Observe that H5,q,3 coincides with H5,q.
Hybrid H6: Indistinguishable from H5,Qpre by function-hiding security of IPFE

ht = (· · · ‖ − 1, z
∗
[t], −1, d[t], 0 , 0 , 0)

The second step of the security analysis is now over as all the pre-challenge secret
keys decrypt the challenge ciphertext using dummy vector d, instead of using the
private attribute z∗. However, we still require z∗ to be present in the vector ht

for the successful decryption of the challenge ciphertext by post-challenge secret
keys since we have not yet altered the forms of the post-ciphertext secret keys.
The last step of the security analysis is similar to the selective game of [3] where
the simulator of AKGS is employed to remove z∗ from the challenge ciphertext
and functional values are directly plugged into the post-challenge secret keys.
Step 3

Hybrid H7: Indistinguishable from H6 by function-hiding security IPFE.

vq,j,t = (· · · ‖ �̃q,j,t , 0n , 0n′ , 0n′) for j ∈ [mq], q > Qpre

vq,mq+1,t = (· · · ‖ �̃q,mq+1,t , 0 , 0, 0, 0, 0, 0) for q > Qpre

ht = (· · · ‖ 1 , 0 , −1, d[t], 0, 0, 0)

Hybrid H8: Indistinguishable from H7 by simulation security of AKGS.

vq,j,t = (· · · ‖ �̂q,j,t , 0n, 0n′ , 0n′) for j ∈ [mq], q > Qpre

vq,mq+1,t = (· · · ‖ �̂q,mq+1,t , 0, 0, 0, 0, 0, 0) for q > Qpre

In hybrid H7, we use the honestly computed value �̃q,j,t = L̃q,j,t(x∗) for j ∈ [mq]
and �̃q,mq+1,t = α̃qz

∗[t] − r̃q,t[mq]. After that, in H8, we utilize simulator of
AKGS to simulate α̃q · z∗[t]fq,t(x∗) + β̃q,t using �̃q,j,t.
Hybrid H9: Statistically close to H8

vq,j,t = (· · · ‖ �̂q,j,t , 0n, 0n′ , 0n′) for j ∈ [mq], q > Qpre

vq,mq+1,t = (· · · ‖ �̂q,mq+1,t , 0, 0, 0, 0, 0, 0) for q > Qpre

Finally, we change the distribution of {β̃q,t} to embed the value α̃q ·fq(x∗)�z∗ +
β̃q,1 into �̂q,j,1 and the value β̃q,t into �̂q,j,1 for 1 < t ≤ n′, as in Eqs. 5 and 6. We
observe that hybrid H9 is exactly the same as the simulator of our FE scheme.

From One-Slot FE to One-Slot extFE: We extend our one-slot FE to an
extended FE (extFE) scheme which is required for applying the compiler of [3] to
bootstrap to the unbounded-slot scheme. In an extFE scheme, as opposed to just

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 449

taking a weight function f as input, the key generation procedure additionally
takes a vector y as input. Similarly, the encryption algorithm takes an additional
vector w in addition to a usual public/private vector pair (x,z) such that

SKf,y ← KeyGen(MSK, (f,y)), CT ← Enc(MPK, (x,z ‖ w))

The decryption procedure recovers f(x)�z + y�w instead of f(x)�z like
a regular one-slot scheme. The main idea is to use the linearity of the Eval
algorithm of AKGS. We add an extra term ψt = νt · (α · s)y�w to the first
garbling value �1,t so that Eq. 4 becomes

Eval(ft,x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)
= Eval(ft,x, [[�1,t]]T , . . . , [[�m+1,t]]T) · [[ψt]]T
= [[(α · s) · (z[t]ft(x) + νty

�w) + βt · s]]T

where νt ← Zp for t ∈ [n′] be such that
∑

t∈[n′] νt = 1 mod p. Therefore,
multiplying all the evaluated terms and using the inner product v · u = α · s,
as in our one-slot FE scheme, we get [[f(x)�z + y�w]]T using the fact that∑

t∈[n′] βt · s = 0. The security analysis is similar to our one-slot scheme.

2.2 Bootstrapping from One-Slot FE to Unbounded-Slot FE

Abdalla et al. [3] devised a compiler that upgrades the one-slot FE into an
unbounded-slot FE scheme where the number of slots N can be arbitrarily chosen
at the time of encryption. The transformation also preserves the compactness
of ciphertexts of the underlying one-slot scheme. However, their transformation
actually needs a one-slot extFE scheme as defined above.

The extFE scheme of [3] is built in a bilinear group G = (G1, G2, GT , g1, g2, e)
where ciphertexts are encoded in the group G1 and secret keys in the group
G2. Interestingly, the structure of the extFE scheme of [3] is such that the key
generation procedure can still be run if the vector y is given in the exponent
of G2, that is, [[y]]2. The decryption, given (SKf,y , (f, [[y]]2)), (CT,x), recovers
[[f(x)�z +y�w]]T without leaking any additional information about the vectors
z,w. Now, the unbounded-slot FE (ubdFE) scheme follows a natural masking
procedure over the original one-slot scheme. More specifically, we use N extFE
encryptions to obtain ciphertexts {CTi}i∈[N] where CTi encrypts (xi,zi ‖ wi)
with

∑
i∈[N] wi = 0 mod p. The decryption procedure first computes individual

sum [[f(xi)�zi+y�wi]]T and then multiply all the sums to learn
∑

i∈[N] f(xi)�zi

via solving a discrete logarithm problem (using brute force). Abdalla et al.
[3] proved the semi-adaptive simulation-based security of the scheme assum-
ing MDDH assumption in the source group G2. The main idea was to gradually
shift the sum

∑
i∈[2,N] f(xi)�zi from the last (N − 1) ciphertexts {CTi}i∈[2,N]

to the first component of the ciphertext CT1.

450 P. Datta and T. Pal

We apply the same high level strategy for proving the adaptive simulation
security of the transformation. However, in order to do so, we face two main
obstacles. First, the reduction must incorporate the decryption results of all the
pre-ciphertext secret keys into the challenge ciphertext. Therefore, for all the
pre-ciphertext secret key queries (f,y), the reduction needs to know [[y]]1 in
order to simulate the challenge ciphertext and [[y]]2 to simulate the key. The
reason why y cannot be made available to the reduction in the clear at a high
level, is that the shifting of the sums into the first ciphertext component CT1

from a subsequent ciphertext component, say CTη, once both CT1 and CTη are
in the simulated form is to be done via a computational transition based on some
MDDH-like assumption. In case of [3], there was no pre-ciphertext key queries
and hence the MDDH assumption in G2 was sufficient. However, in our case,
the MDDH assumption only in the source group G2 is not sufficient to shift the
sum

∑
i∈[2,N] f(xi)�zi to the first ciphertext component without changing the

adversary’s view. Thus, we consider the bilateral MDDH (bMDDH) assumption
[5,12,30] which allows the vector components to be available in the exponent of
both the source groups G1, G2.

{[[y]]1, [[y]]2, [[y�wi]]1, [[y�wi]]2} c≈ {[[y]]1, [[y]]2, [[u]]1, [[u]]2}
where u is uniform.

The second and more subtle obstacle arises in handling the pre-ciphertext
secret key queries in the simulated game. The simulator algorithm of [3] uses
the simulator of the underlying one-slot scheme to simulate the ciphertext and
secret key components for the first slot while it generates all other ciphertexts and
secret key components normally. Now recall that in the simulated adaptive secu-
rity game, the simulator embed the outputs of all the functions {fq}q∈[Qpre], for
which the pre-ciphertext secret key queries are made, on the challenge message
{(xi,zi)}i∈[N], that is, the values {∑i∈[N] fq(xi)�zi}q∈[Qpre] into the challenge
ciphertext. Since the simulator is only generating the ciphertext and secret key
components for the first slot in simulated format, we must embed the functional
values {∑i∈[N] fq(xi)�zi}q∈[Qpre] into the ciphertext component corresponding
to the first slot. As for the one-slot scheme, we aim to make use of the pre-
image sampling procedure for this embedding. However, this means we need to
solve the system of equations {fq(x1)�d1+y�

q d2 =
∑

i∈[N] fq(xi)�zi}q∈[Qpre] for
(d1,d2). Clearly, this system of equations may not possess a solution since the
right-hand side contains the sum of the functional values for all the slots while
the left-hand side only involves entries corresponding to the first slot. Further,
even if solution exists information theoretically, finding it out in polynomial time
may not be possible given the fact that the simulator does not receive the vectors
{yq}q∈[Qpre] in the clear, rather in the exponent of group elements.

In order to overcome the above problem, rather than solving the above sys-
tem of equations, we instead solve the system of equations {fq(x∗)�d1+y�

q d2+
e�

q d3 =
∑

i∈[N] fq(xi)�zi}q∈[Qpre] for (d1,d2,d3), where eq is the q-th unit vec-
tor. Note that this system of equations can be easily solved by sampling the

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 451

vectors d1,d2 randomly and then setting the q-th entry of the vector d3 to be∑
i∈[N] fq(xi)�zi − fq(x∗)�d1 − y�

q d2 for all q ∈ [Qpre]. However, this strategy
would necessitate the introduction of Qpre many additional subspaces into the
ciphertext and secret key components for the underlying one-slot extFE scheme
to accommodate for d3. (Those subspaces will contain 0s in the real scheme and
only become active in the security proof). This, in turn, requires setting a bound
on Qpre, that is, the number of pre-ciphertext secret key queries, for both the
underlying extFE scheme and the resulting ubdFE scheme.

Based on the bMDDH assumption and the above pre-image sampling strategy,
we are able to show that the ubdFE scheme provides adaptive simulation-based
security against a bounded number of pre-ciphertext secret key queries and an
arbitrary polynomial number of post-ciphertext secret key queries if the under-
lying extFE scheme is adaptive simulation secure against such many secret key
queries. Please refer to the full version of the paper for a detailed formal exposure
of the modifications and our analysis of the bootstrapping transformation.

3 Preliminaries

Notations. We denote by λ the security parameter that belongs to the set of
natural number N and 1λ denotes its unary representation. We use the notation
s ← S to indicate the fact that s is sampled uniformly at random from the finite
set S. For a distribution X , we write x ← X to denote that x is sampled at
random according to distribution X . A function negl : N → R is said to be a
negligible function of λ, if for every c ∈ N there exists a λc ∈ N such that for all
λ > λc, |negl(λ)| < λ−c.

Let Expt be an interactive security experiment played between a challenger
and an adversary, which always outputs a single bit. We assume that ExptCA is
a function of λ and it is parametrized by an adversary A and a cryptographic
protocol C. Let ExptC,0

A and ExptC,1
A be two such experiment. The experiments are

computationally/statistically indistinguishable if for any PPT/computationally
unbounded adversary A there exists a negligible function negl such that for all
λ ∈ N,

AdvCA(λ) = |Pr[1 ← ExptC,0
A (1λ)] − Pr[1 ← ExptC,1

A (1λ)]| < negl(λ)

We write ExptC,0
A

c≈ ExptC,1
A if they are computationally indistinguishable (or

simply indistinguishable). Similarly, ExptC,0
A

s≈ ExptC,1
A means statistically indis-

tinguishable and ExptC,0
A ≡ ExptC,1

A means they are identically distributed.
For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for n,m ∈ N with n < m, we

denote [n,m] be the set {n, n + 1, . . . ,m}. We use lowercase boldface, e.g., v, to
denote column vectors in Z

n
p and uppercase boldface, e.g., M, to denote matrices

in Z
n×m
p for p, n,m ∈ N. The i-th component of a vector v ∈ Z

n
p is written as

v[i] and the (i, j)-th element of a matrix M ∈ Z
n×m
p is denoted by M[i, j]. The

transpose of a matrix M is denoted by M� such that M�[i, j] = M[j, i]. To write
a vector of length n with all zero elements, we write 0n or simply 0 when the

452 P. Datta and T. Pal

length is clear from the context. Let u,v ∈ Z
n
p , then the inner product between

the vectors is denoted as u · v = u�v =
∑

i∈[n] u[i]v[i] ∈ Zp.
Let f : Z

n
p → Zp be an affine function with coefficient vector f =

(f [const], f [coef1], . . . , f [coefn]). Then for any x ∈ Z
n
p , we have f(x) = f [const] +∑

i∈[n] f [coefi]x[i] ∈ Zp.

3.1 Arithmetic Branching Program

Arithmetic Branching Program (ABP) is a computational model [21] that can be
used to model boolean formula, boolean branching program or arithmetic for-
mula through a linear time reduction with a constant blow-up in their respective
sizes. In this work, we consider ABP over Zp.

Definition 1 (Arithmetic Branching Program). An arithmetic branching
program (ABP) over Z

n
p is a weighted directed acyclic graph (V,E, φ, v0, v1),

where V is the set of all vertices, E is the set of all edges, φ : E → (Zn
p →

Zp) specifies an affine weight function for each edge, and v0, v1 ∈ V are two
distinguished vertices (called the source and the sink respectively). The in-degree
of v0 and the out-degree of v1 are 0. It computes a function f : Z

n
p → Zp given

by

f(x) =
∑

P∈P

∏

e∈P

φ(e)(x)

where P is the set of all v0-v1 path and e ∈ P denotes an edge in the path
P ∈ P. The size of the ABP is |V |, the number of vertices.

We denote by F (n)
ABP the class of ABPs over Z

n
p :

F (n)
ABP = {f |f is an ABP over Z

n
p for some prime p and positive integer n}

The class of ABP can be extended in a coordinate-wise manner to a ABPs
f : Z

n
p → Z

n′
p . More precisely, an ABP f : Z

n
p → Z

n′
p has all its weight functions

φ = (φ1, . . . , φn′) : E → (Zn
p → Z

n′
p) with each coordinate function φt for t ∈ [n′]

of φ being an affine function in x having scalar constants and coefficients. There-
fore, such a function f can be viewed as f = (f1, . . . , fn′) with each coordinate
function ft : Z

n
p → Zp being an ABP that has the same underlying graph struc-

ture as that of f and having φt : E → (Zn
p → Zp) as the weight functions. The

class of all such functions is given by

F (n,n′)
ABP = {f = (f1, . . . , fn′) : Z

n
p → Z

(n′)
p |ft ∈ F (n)

ABP for t ∈ [n′]}

Thus F (n)
ABP can alternatively be viewed as F (n,1)

ABP .

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 453

Lemma 1 [13]. Let f = (V,E, φ, v0, v1) ∈ F (n,1)
ABP be an ABP of size m and

v0, v2, . . . , vm−1, v1 be stored topologically. Let M be a square matrix of order
(m − 1) defined by

M[i + 1, j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i > j;

−1, i = j;

0, i < j, ei,j = (vi, vj) �∈ E;

φ(ei,j), i < j, ei,j = (vi, vj) ∈ E.

Then the entries of M are affine in x and f(x) = det(M).

3.2 Functional Encryption for Attribute-Weighted Sum

We formally present the syntax of FE for attribute-weighted sum and define
adaptive simulation security of the primitive. We consider the function class
F (n,n′)

ABP and message space M = (Zn
p × Z

n′
p)∗.

Definition 2 (The Attribute-Weighted Sum Functionality). For any
n, n′ ∈ N, the class of attribute-weighted sum functionalities is defined as

⎧
⎨

⎩(x ∈ Z
n
p , z ∈ Z

n′
p) �→ f(x)

�
z =
∑

t∈[n′]
ft(x)z [t] | f = (f1, . . . , fn′) ∈ F(n,n′)

ABP

⎫
⎬

⎭

Definition 3 (Functional Encryption for Attribute-Weighted Sum). An
unbounded-slot FE for attribute-weighted sum associated to the function class
F (n,n′)

ABP and the message space M consists of four PPT algorithms defined as
follows:

Setup(1λ, 1n , 1n ′
): The setup algorithm takes as input a security parameter λ

along with two positive integers n, n′ representing the lengths of message vectors.
It outputs the master secret-key MSK and the master public-key MPK.

KeyGen(MSK, f): The key generation algorithm takes as input MSK and a
function f ∈ F (n,n′)

ABP . It outputs a secret-key SKf and make f available publicly.

Enc(MPK, (xi, zi)i∈[N]): The encryption algorithm takes as input MPK and
a message (xi,zi)i∈[N] ∈ (Zn

p × Z
n′
p)∗. It outputs a ciphertext CT and make

(xi)i∈[N] available publicly.

Dec((SKf , f), (CT, (xi)i∈[N])): The decryption algorithm takes as input SKf

and CT along with f and (xi)i∈[N]. It outputs a value in Zp.

Correctness: The unbounded-slot FE for attribute-weighted sum is said to be
correct if for all (xi,zi)i∈[N] ∈ (Zn

p × Z
n′
p)∗ and f ∈ F (n,n′)

ABP , we get

Pr

⎡

⎢⎢⎣Dec((SKf , f), (CT, (xi)i∈[N])) =
∑

i∈[N]

f(xi)
�

zi :
(MSK,MPK) ← Setup(1λ, 1n, 1n′

),
SKf ← KeyGen(MSK, f),
CT ← Enc(MPK, (xi, zi)i∈[N])

⎤

⎥⎥⎦ = 1

454 P. Datta and T. Pal

We consider adaptively simulation-based security of FE for attribute-weighted
sum.

Definition 4. Let (Setup, KeyGen, Enc, Dec) be an unbounded-slot FE for
attribute-weighted sum for function class F (n,n′)

ABP and message space M. The
scheme is said to be adaptively simulation secure if ExptReal,ubdFEA (1λ)

c≈
ExptIdeal,ubdFEA (1λ), where the experiments are defined as follows:

ExptReal,ubdFEA (1λ)

1. 1N ← A(1λ);

2. (MSK,MPK) ← Setup(1λ, 1n, 1n′
);

3. ((x∗
i , z∗

i)i∈[N]) ← AOKeyGen(MSK,·) (MPK);
4. CT∗ ← Enc(MPK, (x∗

i , z∗
i)i∈[N]);

5. return AOKeyGen(MSK,·) (MPK,CT∗)

ExptIdeal,ubdFEA (1λ)

1. 1N ← A(1λ);

2. (MSK∗,MPK) ← Setup∗(1λ, 1n, 1n′
, 1N);

3. ((x∗
i , z∗

i)i∈[N]) ← AOKeyGen∗
0(MSK∗,·) (MPK)

4. CT∗ ← Enc∗(MPK,MSK∗, (x∗
i)i∈[N], V);

5. return A
OKeyGen∗

1(MSK∗,(x ∗
i
)i∈[N],·,·) (MPK,CT∗)

OKeyGen(MSK,·)
1. input: f
2. output: SKf

OKeyGen∗
0(MSK∗,·)

1. input: fq for q ∈ [Qpre]
2. output: SK∗

fq

Enc∗(MPK,MSK∗, (x∗
i)i∈[N], ·)

1. input:
V = {((fq, SKfq),

∑
i∈[N] fq(x

∗
i)

�z∗
i) :

q ∈ [Qpre]}
2. output: CT∗

OKeyGen∗
1(MSK∗,(x ∗

i
)i∈[N],·,·)

1. input: fq,
∑

i∈[N] fq(x
∗
i)

�z∗
i for q > Qpre

2. output: SK∗
fq

3.3 Arithmetic Key Garbling Scheme

Lin and Luo [19] introduced arithmetic key garbling scheme (AKGS). The notion
of AKGS is an information theoretic primitive, inspired by randomized encodings
[8] and partial garbling schemes [14]. It garbles a function f : Z

n
p → Zp (possibly

of size (m + 1)) along with two secrets z, β ∈ Zp and produces affine label
functions L1, . . . , Lm+1 : Z

n
p → Zp. Given f , an input x ∈ Z

n
p and the values

L1(x), . . . , Lm+1(x), there is an efficient algorithm which computes zf(x) + β
without revealing any information about z and β.

Definition 5 (Arithmetic Key Garbling Scheme (AKGS), [14,19]). An
arithmetic garbling scheme (AKGS) for a function class F = {f}, where f :
Z

n
p → Zp, consists of two efficient algorithms:

Garble(zf(x) + β): The garbling is a randomized algorithm that takes as input
a description of the function zf(x) + β with f ∈ F and scalars z, β ∈ Zp where
z,x are treated as variables. It outputs (m + 1) affine functions L1, . . . , Lm+1 :
Z

n+1
p → Zp which are called label functions that specifies how input is encoded

as labels. Pragmatically, it outputs the coefficient vectors �1, . . . , �m+1.

Eval(f, x, �1, . . . , �m+1): The evaluation is a deterministic algorithm that
takes as input a function f ∈ F , an input vector x ∈ Z

n
p and integers

�1, . . . , �m+1 ∈ Zp which are supposed to be the values of the label functions
at (x, z). It outputs a value in Zp.

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 455

Correctness: The AKGS is said to be correct if for all f : Z
n
p → Zp ∈ F , z, β ∈

Zp and x ∈ Z
n
p , we have

Pr

⎡

⎢⎢⎣Eval(f, x, �1, . . . , �m+1) = zf(x) + β :
(�1, . . . , �m+1) ← Garble(zf(x) + β),
�j ← Lj(x, z) for j ∈ [m + 1]

⎤

⎥⎥⎦ = 1

The scheme has deterministic shape, meaning that m is determined solely by f ,
independent of z, β and the randomness in Garble. The number of label functions,
(m + 1), is called the garbling size of f under this scheme.

Linearity: The AKGS is said to be linear if the following conditions hold:

– Garble(zf(x)+β) uses a uniformly random vector r ← Z
m′
p as its randomness,

where m′ is determined solely by f , independent of z, β.
– The coefficient vectors �1, . . . , �m+1 produced by Garble(zf(x)+β) are linear

in (z, β, r).
– Eval(f,x, �1, . . . , �m+1) is linear in �1, . . . , �m+1.

Simulation-Based Security: In this work, we consider linear AKGS for our
application. Now, we state the usual simulation-based security of AKGS, which
is similar to the security of partial garbling scheme [14].

An AKGS = (Garble, Eval) for a function class F is secure if there exists
an efficient algorithm SimGarble such that for all f : Z

n
p → Zp, z, β ∈ Zp and

x ∈ Z
n
p , the following distributions are identically distributed:

{
(�1, . . . , �m+1) :

(�1, . . . , �m+1) ← Garble(zf(x) + β),
�j ← Lj(x, z) for j ∈ [m + 1]

}
,

{
(�̂1, . . . , �̂m+1) : (�̂1, . . . , �̂m+1) ← SimGarble(f, x, zf(x) + β)

}

The simulation security of AKGS is used to obtain semi-adaptive or selective
security of FE for attribute-weighted sum [3], however it is not sufficient for
achieving adaptive security. We consider the piecewise security of AKGS proposed
by Lin and Luo [19] where they used it to get adaptive security for ABE.

Instantiation of AKGS [14,19]: We now discuss an instantiation of AKGS =
(Garble, Eval) for the function class F = F (n,1)

ABP following [14,19].

Garble(zf(x) + β): It takes input an ABP f : Z
n
p → Zp ∈ F (n,1)

ABP of size (m+1)
and two secrets z, β ∈ Zp. The algorithm works as follows:

1. Using Lemma 1, it computes a matrix M ∈ Z
m×m
p such that det(M) is the

output of the function f .
2. Next, it augments M into an (m + 1) × (m + 1) matrix M′:

M
′
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · ∗ ∗ β

−1 ∗ · · · ∗ ∗ 0

−1 · · · ∗ ∗ 0

. . .
.
.
.

.

.

.
.
.
.

0 −1 ∗ 0

0 0 · · · 0 −1 z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎝ M m 1

m �
2 z

⎞

⎠

456 P. Datta and T. Pal

3. It samples its randomness r ← Z
m
p and sets N =

(
Im r
0 1

)

.

4. Finally, it defines the label functions by computing

M̂ = M
′
N =

⎛

⎝ M Mr + m 1

m �
2 m �

2 r + z

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1(x)

L2(x)

M
.
.
.

Lm(x)

0 0 · · · 0 −1 Lm+1(z)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and outputs the coefficient vectors �1, . . . , �m+1 of L1, . . . , Lm+1.

Remark 1. We note down some structural properties of Garble as follows:

– The label function Lj for every j ∈ [m] is an affine function of the input x
and Lm+1 is an affine function of z. It follows from the fact that M′ is affine
in x, z and N is independent of x, z. Hence, the last column of the product
M′N, which is the label functions L1, . . . , Lm+1, are affine in x, z.

– The output size of Garble is determined solely by the size of f (as an ABP),
hence Garble has deterministic shape.

– Note that Garble is linear in (z, β, r), i.e., the coefficient vectors �1, . . . , �m+1

are linear in (z, β, r). It follows from the fact that M,m2 are independent of
(z, β, r), and r,m1, z are linear in (z, β, r). Hence, Mr + m1, which defines
the label functions L1, . . . , Lm, and m�

2 r + z, which is the label function
Lm+1, are linear in (z, β, r).

– The last label function Lm+1 is in a special form, meaning that it is indepen-
dent of x, β and r[j < m]. In particular, it takes the form Lm = m�

2 r + z =
z −r[m]. Thus, the elements of the coefficient vector �m+1 are all zero except
the constant term, i.e., �m[const] = z − r[m] and �m[coefi] = 0 for all i ∈ [n].

Eval(f, x, �1, . . . , �m): It takes input an ABP f : Z
n
p → Zp ∈ F (n,1)

ABP of size
(m+1), an input x ∈ Z

n
p and (m+1) labels �1, . . . , �m+1. It proceeds as follows:

1. It computes the matrix M using Lemma 1 after substituting x.
2. Next, it augments M to get the matrix

M̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

�2

M
.
.
.

�m

0 0 · · · 0 −1 �m+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. It returns det(M̂).

For correctness of the evaluation procedure, we see that when �j = Lj(x) for all
j ∈ [m] and �m+1 = Lm+1(z), Eval computes

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 457

det(M̂) = det(M′N) = det(M′)det(N) = det(M′) = zdet(M) + β = zf(x) + β.

The determinant of M′ is calculated via Laplace expansion in the last column.

Remark 2. Here, we observe some structural properties of Eval which we
require for our application.

– If we consider the Laplace expansion of det(M̂) in the last column then Eval
can be written as

Eval(f, x, �1, . . . , �m+1) = A1�1 + A2�2 + · · ·+ Am+1�m+1 (7)

where Aj is the (j, (m + 1))-cofactor of M̂. This shows that Eval is lin-
ear in �1, . . . , �m+1. Due to this linearity feature, Eval can be computed
in the exponent of any bilinear group. More precisely, suppose G =
(G1, G2, GT , g1, g2, e) be a bilinear group then for any i ∈ {1, 2, T}, we have
Eval(f,x, [[�1]]i, . . . , [[�m+1]]i) = [[Eval(f,x, �1, . . . , �m+1)]]i.

– Now, in particular, the coefficient of �1 is A1 = (−1)2+m(−1)m = 1. There-
fore, for any non-zero δ ∈ Zp, we can write

δ + Eval(f, x, �1, . . . , �m+1) = Eval(f, x, δ, 0, . . . , 0) + Eval(f, x, �1, . . . , �m+1) (8)
= Eval(f, x, �1 + δ, �2, . . . , �m+1) (9)

where Eq. 8 holds due to Eq. 7 and A1 = 1; and Eq. 9 holds by the linearity
of Eval. We will utilize Eq. 9 in our extended one slot FE construction.

Now, we describe the simulator of AKGS which simulates the values of label
functions by using f,x and zf(x) + β.

SimGarble(f, x, zf(x) + β): The simulator works as follows:

1. It defines a set H =

{(
Im r
0 1

) ∣
∣
∣
∣
∣
r ∈ Z

m
p

}

which forms a matrix subgroup.

2. Following Lemma 1, it computes the matrix M using f,x and sets the matrix

M
′′

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zf(x) + β

0

M
.
.
.

0

0 0 · · · 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which defines a left coset M′′H = {M′′N|N ∈ H}.
3. It uniformly samples a random matrix from the coset M′′H and returns the

last column of the matrix as simulated values of the label functions.

The simulation security follows from [14]. They observed that M′′ belongs to
the coset M′H and hence by the property of cosets M′′H = M′H which proves
the security. We omit the details here and state the security of AKGS in the
following lemma.

Lemma 2 ([19]). The above construction of AKGS = (Garble,Eval) is secure.
Moreover, it is special piecewise secure.

458 P. Datta and T. Pal

4 Our 1-Key 1-Ciphertext Secure 1-Slot FE

In this section, we describe our 1-slot FE scheme for the attribute-weighted
sum functionality secure against a single ciphertext and secret key queries. We
describe the construction for any fixed value of the security parameter λ and sup-
press the appearance of λ for simplicity of notations. Let (Garble,Eval) be a spe-
cial piecewise secure AKGS for a function class F (n,n′)

ABP , G = (G1, G2, GT , g1, g2, e)
a tuple of pairing groups of prime order p, and (SK-IPFE.Setup.SK-IPFE.KeyGen,
SK-IPFE.Enc,SK-IPFE.Dec) a secret-key function-hiding SK-IPFE based on G.

Setup(1n , 1n ′
): Define the index sets as follows

S1-FE =
{
const, {coefi}i∈[n], {simτ , sim∗

τ}τ∈[n′]
}
, Ŝ1-FE = {ĉonst, ĉoef, ŝim∗}

It generates IPFE.MSK ← SK-IPFE.Setup(S1-FE) and ̂IPFE.MSK ← SK-IPFE.

Setup(Ŝ1-FE). Finally, it returns MSK = (IPFE.MSK, ̂IPFE.MSK).
KeyGen(MSK, f): Let f ∈ F (n,n′)

ABP be a function such that f = (f1, . . . , fn′) :
Z

n
p × Z

n′
p → Zp where f1, . . . , fn′ : Z

n
p → Zp are ABPs of size (m + 1). Sample

βt ← Zp for t ∈ [n′] such that
∑

t∈[n′] βt = 0 mod p. Next, sample independent
random vectors rt ← Z

m
p for garbling and compute the coefficient vectors

(�1,t, . . . , �m,t, �m+1,t) ← Garble(z[t]ft(x) + βt; rt)

for all t ∈ [n′]. Here we make use of the instantiation of the AKGS described
in Sect. 3.3. From the description of that AKGS instantiation, we note that the
(m + 1)-th label function �m+1,t would be of the form �m+1,t = z[t] − rt[m].
Also all the label functions �1,t, . . . , �m,t involve only the variables x and not
the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′], it defines the vectors vj,t

corresponding to the label functions �j,t obtained from the partial garbling:

vector const coefi simτ sim∗
τ

vj,t �j,t[const] �j,t[coefi] 0 0

vector ĉonst ĉoef ŝim∗

vm+1,t rt[m] 1 0

It generates the secret-keys as

IPFE.SKj,t ← SK-IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← SK-IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns the secret-key as SKf = ({IPFE.SKj,t}j∈[m],t∈[n′],

{ ̂IPFE.SKm+1,t}t∈[n′]).
Enc(MSK, x ∈ Z

n
p , z ∈ Z

n ′
p): It sets the vectors

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 459

vector const coefi simτ sim∗
τ

u 1 x[i] 0 0

vector ĉonst ĉoef ŝim∗

ht −1 z[t] 0

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT ← SK-IPFE.Enc(IPFE.MSK, [[u]]1)

̂IPFE.CTt ← SK-IPFE.Enc(̂IPFE.MSK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).
Dec((SKf , f), (CT, x)): It parses the secret-key SKf = ({IPFE.

SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) and the ciphertext CT = (IPFE.CT,

{ ̂IPFE.CTt}t∈[n′]). It uses the decryption algorithm of SK-IPFE to compute

[[�j,t]]T = SK-IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [m], t ∈ [n′]

[[�m+1,t]]T = SK-IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value

[[ρ]]T =
∏

t∈[n′]
Eval(ft,x, [[�1,t]]T , . . . , [[�m+1,t]]T).

Finally, it returns a value ρ by solving a discrete logarithm problem. Similar
to [3], we assume that the desired attribute-weighted sum lies within a specified
polynomial-sized domain so that discrete logarithm can be solved via brute force.

Correctness: By the correctness of IPFE, we have
SK-IPFE.Dec(IPFE.SKj,t, IPFE.CT) = [[�j,t]]T = [[Lj,t(x)]]T for all j ∈ [m], t ∈ [n′]
and SK-IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) = [[�m+1,t]]T = [[z[t] − rt[m]]]T for
all t ∈ [n′]. Next, using the correctness of AKGS and the linearity of the Eval
function, we have

Eval(ft,x, [[�1,t]]T , . . . , [[�m+1,t]]T) = [[ft(x)z[t] + βt]]T

Therefore, we get by multiplying

[[ρ]]T =
∏

t∈[n′]

Eval(ft,x, [[�1,t]]T , . . . , [[�m+1,t]]T)

= [[
n′

∑

t=1

Eval(ft,x, �1,t, . . . , �m+1,t)]]T = [[
n′

∑

t=1

ft(x)z[t] + βt]]T = [[f(x)�z]]T

where the last equality holds since
∑

t∈[n′] βt = 0 mod p.

Theorem 2. The 1-FE scheme for attribute-weighted sum is adaptively simula-
tion secure against a single ciphertext and secret key queries assuming the AKGS
is piecewise secure and the IPFE is function hiding.

460 P. Datta and T. Pal

5 Our 1-Slot FE for Attribute-Weighted Sums

In this section, we describe our 1-slot FE scheme Πone for the attribute-
weighted sum functionality. We describe the construction for any fixed value
of the security parameter λ and suppress the appearance of λ for simplicity
of notations. Let (Garble,Eval) be a special piece-wise secure AKGS for a func-
tion class F (n,n′)

ABP , G = (G1, G2, GT , g1, g2, e) a tuple of pairing groups of
prime order p such that the MDDHk assumption holds in G2, and (IPFE.Setup.
IPFE.KeyGen, IPFE.Enc, IPFE.Dec) a slotted IPFE based on G. We construct an FE
scheme for attribute-weighted sums with the message space M = Z

n
p × Z

n′
p .

Setup(1n , 1n ′
): Define the following index sets as follows

Spub =
{

{const(ι)}ι∈[k], {coef(ι)i }ι∈[k],i∈[n]

}
, Ŝpub =

{
ĉonst

(ι)
, ĉoef

(ι)}
ι∈[k]

Spriv =
{
const, {coefi}i∈[n], {simτ , sim∗

τ}τ∈[n′]
}

,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗}.

It generates (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and
(̂IPFE.MSK, ̂IPFE.MPK) ← IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns MSK =
(IPFE.MSK, ̂IPFE.MSK) and MPK = (IPFE.MPK, ̂IPFE.MPK).

KeyGen(MSK, f): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP . Sample α,βt ← Z

k
p for

t ∈ [n′] such that
∑

t∈[n′]
βt[ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r
(ι)
t ← Z

m
p and computes

(�(ι)1,t, . . . , �
(ι)
m,t, �

(ι)
m+1,t) ← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t)

for all ι ∈ [k], t ∈ [n′]. Here we make use of the instantiation of the AKGS
described in Sect. 3.3. From the description of that AKGS instantiation, we note
that the (m+1)-th label function �

(ι)
m+1,t would be of the form �

(ι)
m+1,t = α[ι]z[t]−

r
(ι)
t [m] where α[ι] is a constant. Also all the label functions �

(ι)
1,t, . . . , �

(ι)
m,t involve

only the variables x and not the variable z[t]. Next, for all j ∈ [m] and t ∈ [n′],
it defines the vectors vj,t corresponding to the label functions �

(ι)
j,t obtained from

the partial garbling above as

vector const(ι) coef
(ι)
i Spriv

v α[ι] 0 0

vj,t �
(ι)
j,t [const] �

(ι)
j,t [coefi] 0

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 461

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r
(ι)
t [m] α[ι] 0

It generates the secret-keys as

IPFE.SK ← IPFE.KeyGen(IPFE.MSK, [[v]]2)
IPFE.SKj,t ← IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

It returns SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]).

Enc(MPK, x ∈ Z
n
p , z ∈ Z

n ′
p): It samples s ← Z

k
p and set the vectors

vector const(ι) coef
(ι)
i

u s[ι] s[ι]x[i]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT ← IPFE.SlotEnc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]).

Dec((SKf , f), (CT, x)): It parses SKf = (IPFE.MSK, {IPFE.MSKj,t}j∈[m],t∈[n′],

{ ̂IPFE.MSKm+1,t}t∈[n′]) and CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the decryption
algorithm of IPFE to compute

[[μ]]T = IPFE.Dec(IPFE.SK, IPFE.CT)
[[�j,t]]T = IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [m], t ∈ [n′]

[[�m+1,t]]T = IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

Next, it utilizes the evaluation procedure of AKGS and obtain a combined value

[[ρ]]T =
∏

t∈[n′]
Eval(ft,x, [[�1,t]]T , . . . , [[�m+1,t]]T).

Finally, it returns a value ζ from a polynomially bounded set P such that [[ρ]]T =
[[μ]]T · [[ζ]]T ; otherwise ⊥.

462 P. Datta and T. Pal

Correctness: By the correctness of IPFE, AKGS and the linearity of the Eval
function we have

Eval(ft,x, [[�1,t]]T , . . . , [[�m+1,t]]T) = [[
k∑

ι=1

α[ι]s[ι] · z[t]ft(x) + βt[ι]s[ι]]]T

= [[α · s · z[t]ft(x) + βt · s]]T

Therefore, [[ρ]]T = [[
∑n′

t=1 α · s · z[t]ft(x) + βt · s]]T = [[(α · s)f(x)�z]]T since∑
t∈[n′] βt[ι] = 0 mod p for all ι ∈ [k]. Also, by the correctness of IPFE we see

that [[μ]]T = [[α · s]]T and hence [[ζ]]T = [[f(x)�z]]T ∈ P.

Remark 3 (Multi-ciphertext Scheme). The 1-slot FE scheme Πone

described above is secure against adversaries that are restricted to query a single
ciphertext. However, we can easily modify the FE scheme to another FE scheme
that is secure for any a-priori bounded number of ciphertext queries from the
adversary’s end. For the extension, we introduce additional (2n′ + 2)qCT private
slots on each ciphertext and decryption key sides, where qCT denotes the num-
ber of ciphertext queries. More specifically, we add 2n′qCT and 2qCT dimensional
hidden slots to Spriv and Ŝpriv respectively to handle the qCT ciphertext queries
during the security reduction. Consequently, the sizes of the master public key,
secret-keys, and ciphertext would grow linearly with qCT. A similar strategy can
be followed to convert our extended 1-slot FE scheme (of Sect. 6) that only sup-
ports a single ciphertext query to one that is secure for any a-priori bounded
number of ciphertext queries.

Theorem 3. The 1-slot FE scheme Πone for attribute-weighted sums is adap-
tively simulation-secure assuming the AKGS is piece-wise secure, the MDDHk

assumption holds in group G2, and the slotted IPFE is function hiding.

6 Our 1-Slot Extended FE for Attribute-Weighted Sums

In this section, we describe our 1-slot extFE scheme ΠextOne for the attribute-
weighted sum functionality. We describe the construction for any fixed value of
the security parameter λ and suppress the appearance of λ for simplicity of nota-
tions. Let (Garble,Eval) be a special piecewise secure AKGS for a function class
F (n,n′)

ABP , G = (G1, G2, GT , g1, g2, e) a tuple of pairing groups of prime order p such
that MDDHk assumption holds in G2, and (IPFE.Setup.IPFE.KeyGen, IPFE.Enc,
IPFE.Dec) a slotted IPFE based on G. We construct an FE scheme for attribute-
weighted sums with the message space M = Z

n
p × Z

n′
p .

Setup(1λ, 1n , 1n ′
, 1B): Defines the following index sets as follows

Spub =
{

{const(ι)}ι∈[k], {coef(ι)
i }ι∈[k],i∈[n], {extnd(ι)

κ }ι,κ∈[k]

}
, Ŝpub = {ĉonst(ι)

, ĉoef
(ι)}ι∈[k],

Spriv =
{
const, {coefi}i∈[n], {extndκ,1, extndκ,2, extndκ}κ∈[k], {queryη}η∈[B], {simτ , sim∗

τ }τ∈[n′]
}

,

Ŝpriv = {ĉonst1, ĉoef1, ĉonst2, ĉoef2, ĉonst, ĉoef, ŝim
∗}

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 463

where B denotes a bound on the number of pre-ciphertext queries. It generates
two pair of IPFE keys (IPFE.MSK, IPFE.MPK) ← IPFE.Setup(Spub, Spriv) and
(̂IPFE.MSK, ̂IPFE.MPK) ← IPFE.Setup(Ŝpub, Ŝpriv). Finally, it returns the master
secret-key of the system as MSK = (IPFE.MSK, ̂IPFE.MSK) and master public-
key as MPK = (IPFE.MPK, ̂IPFE.MPK).

KeyGen(MSK, (f, y)): Let f = (f1, . . . , fn′) ∈ F (n,n′)
ABP and y ∈ Z

k
p. It samples

integers νt ← Zp and vectors α,βt ← Z
k
p for t ∈ [n′] such that

∑

t∈[n′]
νt = 1 and

∑

t∈[n′]
βt[ι] = 0 mod p for all ι ∈ [k]

Next, sample independent random vectors r
(ι)
t ← Z

m
p and computes

(�(ι)1,t, . . . , �
(ι)
m,t, �

(ι)
m+1,t) ← Garble(α[ι]z[t]ft(x) + βt[ι]; r

(ι)
t)

for all ι ∈ [k], t ∈ [n′]. Here, we make use of the instantiation of the AKGS
described in Sect. 3.3. From the description of that AKGS instantiation, we note
that the (m+1)-th label function �

(ι)
m+1,t would be of the form �

(ι)
m+1,t = α[ι]z[t]−

r
(ι)
t [m] where α[ι] is a constant. Also all the label functions �

(ι)
1,t, . . . , �

(ι)
m,t involve

only the variables x and not the variable z[t]. Next, for all j ∈ [2,m] and t ∈ [n′],
it defines the vectors vj,t corresponding to the label functions �j,t obtained from
the partial garbling above and the vector y as

vector const(ι) coef
(ι)
i extnd

(ι)
κ Spriv

v α[ι] 0 0 0

v1,t �
(ι)
1,t[const] �

(ι)
1,t[coefi] α[ι]y[κ]νt 0

vj,t �
(ι)
j,t [const] �

(ι)
j,t [coefi] 0 0

vector ĉonst
(ι)

ĉoef
(ι)

Ŝpriv

vm+1,t r
(ι)
t [m] α[ι] 0

It generates the secret-keys as

IPFE.SK ← IPFE.KeyGen(IPFE.MSK, [[v]]2)
IPFE.SKj,t ← IPFE.KeyGen(IPFE.MSK, [[vj,t]]2) for j ∈ [m], t ∈ [n′]

̂IPFE.SKm+1,t ← IPFE.KeyGen(̂IPFE.MSK, [[vm+1,t]]2) for t ∈ [n′]

Finally, it returns the secret-key as SKf,y = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′],

{ ̂IPFE.SKm+1,t}t∈[n′]) and (f,y).

464 P. Datta and T. Pal

Remark 4. We note that the vector y is only used to set v1,t[extnd(ι)κ] and the
IPFE.KeyGen only requires [[v1,t]]2 ∈ G

k
2 to compute the secret-key IPFE.SK1,t.

Therefore, the key generation process can compute the same secret-key SKf,y

if (f, [[y]]2) is supplied as input instead of (f,y) and we express this by writ-
ing KeyGen(MSK, (f, [[y]]2)) = KeyGen(MSK, (f,y)). This fact is crucially while
describing our unbounded-slot FE in the full version.

Enc(MPK, (x, z||w) ∈ Z
n
p × Z

n ′+k
p): It samples a random vector s ← Z

k
p and

sets the vectors

vector const(ι) coef
(ι)
i extnd

(ι)
κ

u s[ι] s[ι]x[i] s[ι]w[κ]

vector ĉonst
(ι)

ĉoef
(ι)

ht −s[ι] s[ι]z[t]

for all t ∈ [n′]. It encrypts the vectors as

IPFE.CT ← IPFE.SlotEnc(IPFE.MPK, [[u]]1)

̂IPFE.CTt ← IPFE.SlotEnc(̂IPFE.MPK, [[ht]]1) for t ∈ [n′]

and returns the ciphertext as CT = (IPFE.CT, { ̂IPFE.CTt}t∈[n′]) and x.

Dec((SKf , y, f), (CT, x)): It parses the secret-key and ciphertext as
SKf = (IPFE.SK, {IPFE.SKj,t}j∈[m],t∈[n′], { ̂IPFE.SKm+1,t}t∈[n′]) and CTx,z =
(IPFE.CT, { ̂IPFE.CTt}t∈[n′]). It uses the decryption algorithm of IPFE to com-
pute

[[ρ]]T ← IPFE.Dec(IPFE.SK, IPFE.CT)
[[�1,t + ψt]]T ← IPFE.Dec(IPFE.SK1,t, IPFE.CT)

[[�j,t]]T ← IPFE.Dec(IPFE.SKj,t, IPFE.CT) for j ∈ [2,m], t ∈ [n′]

[[�m+1,t]]T ← IPFE.Dec(̂IPFE.SKm+1,t, ̂IPFE.CTt) for t ∈ [n′]

where ψt =
∑k

ι=1 α[ι]s[ι] · νt · y�w = α · s · νt · y�w. Next, it utilizes the
evaluation procedure of AKGS and obtain a combined value

[[ζ]]T =
∏

t∈[n′]
Eval(ft,x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T).

Finally, it returns a value [[μ]]T = [[ζ]]T · [[ρ]]−1
T ∈ GT .

Correctness: First, the IPFE correctness implies IPFE.Dec(IPFE.SK1,t,

IPFE.CT) = [[�1,t + ψt]] where ψt =
∑k

ι=1 α[ι]s[ι] · νt · y�w = α · s · νt · y�w.
Next, by the correctness of IPFE, AKGS we have

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 465

Eval(ft,x, �1,t + ψt, . . . , �m+1,t)
= Eval(ft,x, �1,t, . . . , �m+1,t) + Eval(ft,x, ψt, 0, . . . , 0)
= Eval(ft,x, �1,t, . . . , �m+1,t) + ψt

=
k∑

ι=1

(α[ι]s[ι] · z[t]ft(x) + βt[ι]s[ι]) + α · s · νt · y�w

= α · s · (z[t]ft(x) + νt · y�w) + βt · s

The first equality follows from the linearity of Eval algorithm. Therefore, multi-
plying all the evaluated values we have

[[ζ]]T =
∏

t∈[n′]

Eval(ft, x, [[�1,t + ψt]]T , . . . , [[�m+1,t]]T)

= [[
n′

∑

t=1

α · s · (z[t]ft(x) + νt · y�w) + βt · s]]T = [[α · s · (f(x)�z + y�w)]]T

where the last equality follows from the fact that
∑

t∈[n′] νt = 1 and
∑

t∈[n′] βt[ι] = 0 for all ι ∈ [k]. Also, by the correctness of IPFE we see that
[[ρ]]T = [[α · s]]T and hence [[μ]]T = [[f(x)�z + y�w]]T .

Theorem 4. The extended one slot FE scheme ΠextOne for attribute-weighted
sum is adaptively simulation-secure against adversaries making at most B
pre-ciphertext secret key queries and an arbitrary polynomial number of post-
ciphertext secret key queries assuming the AKGS is piecewise-secure, the MDDHk

assumption holds in group G2, and the slotted IPFE is function hiding.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. IACR Cryptology ePrint Archive, Report
2020/577 (2020)

3. Abdalla, M., Gong, J., Wee, H.: Functional encryption for attribute-weighted sums
from k -Lin. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 685–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 23

4. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 1

5. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption
from pairings. IACR Cryptology ePrint Archive, Report 2020/1285 (2020)

6. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for
inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 34–64. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45374-9 2

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-030-45374-9_2

466 P. Datta and T. Pal

7. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

8. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
FOCS 2011, pp. 120–129. IEEE Computer Society (2011)

9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

10. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-
hiding predicate encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 640–672. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3 22

11. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-
hiding predicate encryption. IEICE Trans. Inf. Syst. 103(7), 1556–1597 (2020)

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for
Diffie–Hellman assumptions. J. Cryptol. 30(1), 242–288 (2015). https://doi.org/
10.1007/s00145-015-9220-6

13. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

14. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 54

15. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

16. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin. J.
Cryptol. 33(3), 954–1002 (2019). https://doi.org/10.1007/s00145-019-09335-x

17. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

18. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

19. Lin, H., Luo, J.: Compact adaptively secure ABE from k -Lin: beyond NC1 and
towards NL. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 9

20. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: FOCS 2016, pp. 11–20. IEEE
(2016)

21. Nisan, N.: Lower bounds for non-commutative computation (extended abstract).
In: STOC 1991, pp. 410–418. ACM (1991)

https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/s00145-019-09335-x
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-030-45727-3_9
https://doi.org/10.1007/978-3-030-45727-3_9

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin 467

22. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 35

23. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 22

24. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

25. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. 96(1), 42–52 (2013)

26. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, Report 2010/556 (2010)

27. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

28. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

29. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

30. Wee, H.: Functional encryption for quadratic functions from k -Lin, revisited. In:
Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 210–228. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 8

https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-030-64375-1_8

Boosting the Security of Blind Signature
Schemes

Jonathan Katz1(B), Julian Loss2, and Michael Rosenberg1

1 University of Maryland, College Park, USA
micro@cs.umd.edu

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. Existing blind signature schemes that are secure for polyno-
mially many concurrent executions of the signing protocol are either inef-
ficient or rely on non-standard assumptions (even in the random-oracle
model). We show the first efficient blind signature schemes achieving
this level of security based on the RSA, factoring, or discrete logarithm
assumptions (in the random-oracle model). Our core technique involves
an extension and generalization of a transform due to Pointcheval (Euro-
crypt’98) that allows us to convert certain blind signature schemes that
are secure for (concurrently) issuing logarithmically many signatures into
ones secure for (concurrently) issuing polynomially many signatures.

1 Introduction

A blind signature scheme [6] consists of an interactive protocol executed between
a signer S (holding a secret key sk) and a user U (holding a message m and the
signer’s public key pk), by which U obtains a signature σ on m. Blindness ensures
that S learns nothing about m, and in fact is even unable to link (m,σ) to the
execution of the protocol in which σ was generated. One-more unforgeability
means that if U executes the signing protocol � times, it should be unable to
generate valid signatures on more than � messages. Even in the random-oracle
model, known blind signature schemes that support polynomially many signa-
tures are either inefficient [7,11,12,16,18], rely on non-standard assumptions or
the algebraic group model [3,5,8,9,13,19,21], or are secure only for sequential
executions of the signing protocol [2,18,19]. Known efficient schemes that rely
on standard assumptions such as RSA, factoring, the hardness of computing dis-
crete logarithms, or the hardness of SIS [1,10,15,23–25] are concurrently secure
but their signature size depends linearly on the maximum amount of signatures
that can be issued. Moreover, for many schemes this limitation is known to
be inherent as there is an efficient attack [4,26,27] when running the scheme
concurrently with shorter signatures.

J. Loss—Work done while at the University of Maryland.
M. Rosenberg—Work supported by a National Defense Science and Engineering Grad-
uate (NDSEG) Fellowship.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 468–492, 2021.
https://doi.org/10.1007/978-3-030-92068-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_16

Boosting the Security of Blind Signature Schemes 469

In an effort to obtain an efficient blind signature scheme secure for issuing
polynomially many signatures, Pointcheval [22] showed a transform for “boost-
ing” the security of the Okamoto-Schnorr blind signature scheme [20,25]. Specif-
ically, under the assumption that the Okamoto-Schnorr blind signature scheme
is secure for logarithmically many sequential executions of the signing proto-
col (which itself can be shown to hold in the random-oracle model, based on the
hardness of computing discrete logarithms), the transformed scheme is secure for
polynomially many sequential executions of the signing protocol.1 The resulting
scheme, however, has a significant drawback: it requires the signer to refuse to
issue any further signatures if a user is ever caught cheating. Thus, while the
scheme could be used in a setting where the signer interacts with a single user
repeatedly (and thus the signer would be justified in refusing to interact with
that user once that user is caught cheating), the scheme is not appropriate for
standard applications of blind signatures where the signer interacts with many
users, some of whom may collude. Indeed, in the latter setting a single malicious
user could easily carry out a devastating denial-of-service attack by interacting
with the signer once and cheating, thus preventing the signer from issuing any
further signatures. Note further that an abort by the user during an execution
of the signing protocol is considered cheating, so even transient network failures
during an honest execution of the protocol may lead to the same result.

1.1 Our Contributions

Inspired by Pointcheval’s transform, we show a new transform for boosting the
security of certain blind signature schemes. Our transform has the following
advantages compared to Pointcheval’s result:

1. As with Pointcheval’s transform, our transform boosts security in the follow-
ing sense: if the original scheme BS is secure for logarithmically many execu-
tions of the signing protocol, then the transformed scheme CCBS is secure for
polynomially many executions. Importantly, however, in our case the trans-
formed scheme CCBS does not require the signer to stop issuing signatures if
cheating is detected.

2. Moreover, if BS is secure for (logarithmically many) concurrent executions of
the signing protocol, then CCBS is secure for (polynomially many) concurrent
executions as well. This is in contrast to Pointcheval’s transform, which is not
secure for concurrent executions of the signing protocol even if the original
scheme is concurrently secure.

1 We have identified a bug in Pointcheval’s result, in that the transformed scheme
does not satisfy blindness. This is easy to fix, though.

470 J. Katz et al.

3. Our transform can be applied to any blind signature scheme BS constructed
in a certain way from a linear function family [14], in contrast to Pointcheval’s
transform that is specific to the Okamoto-Schnorr scheme.2 In particular, our
transform can be applied to the Fiat-Shamir, Okamoto-Guillou-Quisquater,
and Okamoto-Schnorr blind signature schemes, all of which can be proven
secure (for logarithmically many executions) under standard assumptions in
the random-oracle model. Our transform can also be applied to the Schnorr
blind signature scheme, which was recently proven secure (for logarithmically
many executions) in the algebraic group model [10].

4. As in Pointcheval’s transform, the size of signatures in the transformed scheme
CCBS is (almost) the same as in the underlying scheme BS.

Overall, then, our work gives the first efficient blind signature schemes that
are secure for polynomially many concurrent executions of the signing protocol
based on standard assumptions (in the random-oracle model).

1.2 Overview

In this section we give a high-level overview of our transform and its proof
of security. Our treatment is deliberately informal, and we refer the reader to
Sect. 3 for details of our scheme. Throughout this section we let BS be a blind
signature scheme that is secure for logarithmically many executions of the signing
protocol, and for which our transform applies. This in particular means that the
signing protocol BS has a three-round structure in which the signer sends the
first message. We denote the messages sent in each round of the protocol as R,
c, and s, respectively.

Pointcheval’s transform. We begin by recalling Pointcheval’s transform and
its proof of security. (Pointcheval’s transform was only defined for the Okamoto-
Schnorr scheme, but our work shows that it can be applied to a larger class of
schemes.) The basic idea of Pointcheval’s transform is to use 1-out-of-2 cut-and-
choose to catch (in a limited sense) cheating behavior of a user U . In more detail,
the transformed scheme works roughly as follows for a user who wants to obtain
a signature on a message m:

1. U runs two parallel executions of BS (we refer to each as a session) where the
messages to be signed are μ1 = H′(m,ϕ1) and μ2 = H′(m,ϕ2), respectively.
(Here, H′ is a random oracle and ϕ1, ϕ2 are random strings.) The transformed
protocol begins by having U send a commitment com1 to μ1 and its random-
ness for the first session, and a commitment com2 to μ2 and its randomness for
the second session. These commitments also rely on a random oracle, which
enables extraction in the proof of one-more unforgeability (see below).

2. S runs two executions of BS to obtain initial messages R1, R2, which it sends
to U .

2 Pointcheval states that his transform can be adapted to apply to the Okamoto-
Guillou-Quisquater scheme, but does not give details (or a proof).

Boosting the Security of Blind Signature Schemes 471

3. U responds with c1, c2, which are the second messages of its two executions
of BS.

4. S then chooses a uniform I ∈ {1, 2} and challenges U to open commitment
com3−I and thus demonstrate that it behaved honestly in the corresponding
session. If the commitment is opened correctly, then S sends the final mes-
sage sI for the unopened session and U uses BS to compute a signature on
μI (which is defined to be a signature on m in the transformed scheme). If
U is caught cheating, then S aborts and refuses to issue any more signatures
(see further discussion below).

It is not difficult to show that the transformed scheme is blind if BS is blind,
and so the main challenge is to prove one-more unforgeability of the trans-
formed scheme for polynomially many executions. This is shown by reduction
to the one-more unforgeability of BS for logarithmically many executions. The
idea of the reduction is as follows. Each time the adversarial user U∗ sends its
commitments in the first round of the transformed protocol, the reduction uses
the random-oracle queries of U∗ to try to extract the randomness of U∗ for both
sessions. If this cannot be done for either session, then U∗ will not succeed in the
cut-and-choose (except with negligible probability) and so simulation is easy. If
extraction can be done for both sessions, then the reduction will be able to sim-
ulate an execution of BS on its own, regardless of the value of I. The remaining
case is when the reduction is able to extract the randomness for only one of the
two sessions. (In that case, we say U∗ attempts to cheat.) U∗ can then succeed
in the cut-and-choose with probability 1/2 (in which case we say U∗ successfully
cheats), but the reduction will be unable to simulate BS for the unopened ses-
sion in that case (since it was unable to extract the randomness for that session).
Instead, in this case the reduction will interact with the real signer in the under-
lying scheme BS, forwarding messages in the obvious way between the signer
and U∗. (One must show that a forgery by U∗ in the transformed scheme implies
that the reduction can compute a forgery in BS with high probability, but this
is irrelevant for the discussion that follows.)

To complete the proof, we must argue that with overwhelming probability the
reduction interacts with the signer for the underlying scheme BS only logarith-
mically many times. Although the formal analysis is quite involved, intuitively
this holds because each time U∗ attempts to cheat it is caught with proba-
bility 1/2. Thus, the probability that U∗ successfully cheats t times (and thus
causes the reduction to interact with the signer t times) is 2−t, and hence t
is super-logarithmic in the security parameter with only negligible probability.
This highlights why it is essential that the signer must refuse to run any more
executions of the signing protocol once it detects cheating: if it did not, then
U∗ could attempt to cheat in polynomially many executions and successfully
cheat (in expectation) in half of those. Since each instance of successful cheating
requires the reduction to interact with the signer in BS, this would mean that
the transform would then at best be able to double the number of executions of
the signing protocol that can be supported.

472 J. Katz et al.

Our transform. We follow a template similar to Pointcheval’s transform, but
since we wish to support an unbounded (polynomial) number of executions of
the signing protocol we need to modify things to bound the number of times an
adversarial user U∗ can successfully cheat in the cut-and-choose. Our key insight
is that we can do this by using 1-out-of-N cut-and-choose, where N increases with
the number of executions.3 That is, we consider following Pointcheval’s general
approach, but in the (N −1)st execution of the transformed protocol we instead
use 1-out-of-N cut-and-choose on the underlying scheme BS. The probability
that U∗ can successfully cheat in the (N − 1)st execution is now 1/N , so even if
U∗ attempts to cheat in every one of its p executions of the transformed protocol,
the expected number of times it can successfully cheat is

1
2

+
1
3

+ · · · +
1

p + 1
< ln(p + 1).

An appropriate concentration bound implies that for any polynomial p (which
bounds the number of executions U∗ runs) the probability that U∗ successfully
cheats super-logarithmically many times is negligible.

We remark that although the complexity of our signing protocol grows, the
other parameters of the scheme—namely, the size of the keys, the size of the
signatures, and the cost of verification—are fixed and essentially the same as
in the original scheme BS. The round complexity of our signing protocol is also
constant.

Comparison with generic constructions. The complexity of the signing pro-
tocol in our scheme is (roughly) N times the complexity of the signing protocol
in BS, where N is linear in the number of executions. (But see footnote 3.) One
might therefore wonder whether our scheme is better than a generic construction
of a blind signature scheme where signing involves running a secure two-party
computation (2PC) protocol for computing any (standard) signature [18]. (The
details are more complex, but are unimportant for the purposes of this discus-
sion.) This generic approach, however, has several drawbacks compared to our
scheme.

1. Such a generic construction would not be concurrently secure without addi-
tional complexity and/or without assuming some form of trusted setup or
non-standard hardness assumptions.

2. The efficiency of such a generic construction (even restricting attention to
sequential security) is unclear, but we conservatively estimate (based on work
of Jayaraman et al. [17]) that secure 2PC of an Okamoto-Schnorr signature
at the 96-bit security level would have communication complexity at least
109× that of our protocol when N = 2. Thus, our signing protocol would
have better communication complexity for N < 109. The comparison would
be even more favorable for our scheme at higher security levels.

3 In fact, it suffices to have N depend linearly on the number of times cheating is
detected (cf. Sect. 3.3), but we ignore this optimization in our informal overview.

Boosting the Security of Blind Signature Schemes 473

3. Efficient and provably secure signature schemes rely on the random-oracle
model, but secure computation of a signature would require a circuit for
the hash function instantiating the random oracle. Security of the resulting
protocol in this case is unclear.

Notwithstanding the above, we note that the generic approach does have two
advantages compared to our scheme: First, the signer is stateless, whereas in our
scheme the signer is required to maintain (a small amount of) state. Second,
the signatures produced in the generic scheme are identical to signatures in
the underlying scheme, whereas in our scheme (as in Pointcheval’s) signatures
include an additional random value.

Another generic construction of blind signatures is given by Fischlin [7].
Roughly, in his scheme the signer signs a commitment to m; the signature com-
puted by the user consists of a non-interactive zero-knowledge proof of knowledge
(NIZKPoK) of a signed commitment on m. Fischlin’s scheme is concurrently
secure. Nevertheless, the signatures produced by his scheme are much larger
than standard signatures (even if SNARKs are used for the NIZKPoK); also,
as with the generic construction discussed above, the concrete efficiency of this
approach—especially if one wants to rely on standard assumptions—is unclear.

2 Preliminaries

We give definitions for blind signature schemes and linear function families, and
recall a generic construction of blind signature schemes secure for logarithmically
many signatures from the latter.

Notation. We denote the security parameter by κ. We write a ← S to denote
that a is drawn uniformly from set S. For a randomized algorithm A we write
y ← A(x) to denote that A returns y when run on input x. For a positive integer
N we let [N] = {1, . . . , N}.

2.1 Blind Signatures

We define the syntax of a blind signature scheme, followed by definitions of
blindness and one-more unforgeability.

Definition 1 (Blind signature scheme). A blind signature scheme is a tuple
of algorithms BS = (Gen,S,U ,Vrfy) such that:

– The key-generation algorithm Gen takes as input the security parameter 1κ and
outputs a public/secret key pair (pk, sk) as well as initial state stS .

– The signer algorithm S is an interactive algorithm that takes as input a secret
key sk and can (atomically) read/write a global variable stS during its exe-
cution. At the end of its execution, it outputs either ⊥ (indicating an abort)
or 1 (indicating a successful execution). When S outputs 1 at the end of an
execution we call that execution complete.

474 J. Katz et al.

– The user algorithm U is an interactive algorithm that takes as input a public
key pk and a message m. At the end of its execution, it either outputs ⊥
(indicating an abort) or a signature σ.

– The verification algorithm Vrfy takes as input a public key pk, a message m,
and a signature σ, and outputs a bit b indicating “accept” (b = 1) or “reject”
(b = 0).

We require perfect correctness: for all (pk, sk) output by Gen and all messages m,
if S(sk) and U(pk,m) execute the protocol honestly then S outputs 1 and the
signature σ output by U satisfies Vrfypk(m,σ) = 1.

The above definition allows the signer to be stateful, and this will be the case
for our construction. For simplicity, however, we leave the state implicit in our
definitions.

Definition 2 (Blindness). For blind signature scheme BS = (Gen, S, U , Vrfy)
and an adversary A, consider the following experiment:

1. A(1κ) outputs a public key pk and a pair of messages m0,m1. A uniform bit
b ← {0, 1} is also chosen.

2. Run AU(pk,mb), U(pk,m1−b)(1κ), where A may run one execution with each of
its oracles, but may arbitrarily interleave its oracle calls.

3. When both executions are completed, let σb, σ1−b be the (local) outputs of the
respective oracles. If σ0 =⊥ or σ1 =⊥, then A is given ⊥; otherwise, A is
given σ0, σ1. Finally, A outputs b′.

4. A succeeds iff b′ = b.

The advantage of A is the probability that it succeeds in the above experiment
minus 1/2. We say BS satisfies blindness if for all probabilistic polynomial-time
A, the advantage of A is negligible.

The above definition allows the malicious signer to use a maliciously gener-
ated public key pk. A weaker definition that is often considered in the literature
assumes pk is generated honestly using the key-generation algorithm of BS. We
refer to the corresponding notion of security as blindness for honestly generated
keys.

Definition 3 (One-more unforgeability). Let � : N → N. For blind signa-
ture scheme BS = (Gen, S, U , Vrfy) and adversary A, consider the following
experiment:

1. Generate keys (pk, sk) ← Gen(1κ).
2. Run AS(sk)(pk), where A may initiate an arbitrary number of executions with

its oracle (arbitrarily interleaving its oracle calls), so long as S completes at
most � = �(κ) of those executions.

3. A outputs � + 1 message-signature pairs (m1, σ1), . . . , (m�+1, σ�+1).
4. A succeeds if all {mi} are distinct and Vrfypk(mi, σi) = 1 for all i.

Boosting the Security of Blind Signature Schemes 475

BS satisfies �-one-more unforgeability if for all probabilistic polynomial-time A,
the probability that A succeeds is negligible. BS satisfies one-more unforgeability
if it is �-one-more unforgeable for all polynomial �.

The above definition allows concurrent executions of the signing protocol.
A weaker definition considers only sequential executions. (Formally, this would
mean that if A initiates a new session with its oracle S(sk), then the oracle
terminates the currently active session.) We refer to the corresponding notion of
security as sequential (�-)one-more unforgeability.

2.2 Linear Function Families

A linear function family [14] is a tuple of probabilistic polynomial-time algo-
rithms LF = (PGen,F, Ψ). The parameter-generation algorithm PGen takes as
input the security parameter 1κ and returns parameters par that, in particu-
lar, define abelian groups S, D, and R (written additively), with |S|, |R| ≥ 22κ.
(These correspond to a set of “scalars,” a “domain,” and a “range,” respectively).
We require the existence of a “scalar multiplication” map · : S × D → D such
that for all s ∈ S and x, x′ ∈ D we have s·(x+x′) = s·x+r·x′ and 0·x = s·0 = 0.
(We stress that it is not necessarily the case that (s + s′) · x = s · x + s′ · x; see
further below.) We also require a map · : S × R → R with analogous proper-
ties. Finally, it should be possible to efficiently sample uniform elements from S
and D.

For concreteness, the reader may want to keep in mind the linear function
family where S = D = Zq and R is a cyclic group G of prime order q (written
multiplicatively). (Looking ahead to the next section, this is the linear function
family that underlies the Schnorr blind signature scheme.) We have scalar mul-
tiplication maps s · x = s · x (mod q) for s, x ∈ Zq and s · g = gs for g ∈ G. We
give other examples of linear function families in Appendix A.

The linear evaluation function F = Fpar takes as input a point x ∈ D and
returns an element y ∈ R. We require that for all s ∈ S and x, y ∈ D, it holds
that F(s ·x+ y) = s ·F(x)+F(y). We also assume that F has has min-entropy at
least 2κ, i.e., that the min-entropy of F(x) is at least 2κ when x is uniform in D.
We say LF has a pseudo torsion-free element in the kernel if there exists z∗ ∈ D
such that (1) F(z∗) = 0, and (2) for all distinct s, s′ ∈ S, we have s · z∗ �= s′ · z∗.
(Note this implies z∗ �= 0.)

Returning to our running example: if par includes a uniformly selected gen-
erator g ∈ G we can define F(x) = gx, which is clearly linear. In this example,
however, the linear function family does not have a pseudo torsion-free element
in the kernel.

476 J. Katz et al.

The distributor function Ψ = Ψpar takes as input an element y ∈ R and points
s, s′ ∈ S, and outputs a point in D. For all y in the range of F and s, s′ ∈ S, we
require

(s + s′) · y = s · y + s′ · y + F(Ψ(y, s, s′)).

Intuitively, the distributor function Ψ outputs a correction term that corrects
for the fact that the group operation in S may not distribute over R. (Thus, the
distributor function is the zero function whenever the scalar multiplication map
does distribute, as in our running example).

We define two security properties for linear function families.

Definition 4 (Preimage resistance). For a linear function family LF and an
adversary A consider the following experiment:

1. Generate parameters par ← PGen(1κ) and choose x ← D.
2. Run A(par,F(x)) to obtain x′ ∈ D.
3. A succeeds if F(x′) = F(x).

LF is preimage resistant if for all probabilistic polynomial-time A, the probability
that A succeeds is negligible. LF is (t, εPRE)-preimage resistant if every A running
in time at most t succeeds with probability at most εPRE in the above experiment.

Definition 5 (Collision resistance). For a linear function family LF and an
adversary A consider the following experiment:

1. Generate parameters par ← PGen(1κ).
2. Run A(par) to obtain x1, x2 ∈ D.
3. A succeeds if F(x1) = F(x2) and x1 �= x2.

LF is collision resistant if for all probabilistic polynomial-time A, the probability
that A succeeds is negligible. LF is (t, εCR)-collision resistant if every A running
in time at most t succeeds with probability at most εCR in the above experiment.

The linear function family in our running example is preimage resistant if the
discrete-logarithm problem is hard in G, and trivially collision resistant (since F
is a bijection).

2.3 Blind Signatures from Linear Function Families

Hauck et al. [14] showed that several blind signature schemes from the literature,
including the Schnorr, Okamoto-Schnorr, Fiat-Shamir, and Okamoto-Guillou-
Quisquater schemes, can be viewed as being derived from linear function families.
We recall their generic construction of a blind signature scheme BS[LF] from a
linear function family LF. The secret key is a uniform element sk ← D and the
corresponding public key is pk := F(sk). The signing protocol, where U holds a

Boosting the Security of Blind Signature Schemes 477

message m, proceeds as follows. (See Fig. 1.) In the first step, S samples r ← D
and sends R := F(r) to U . Then U samples blinding parameters α ← D and
β ← S that it uses to compute a “blinded commitment” R′ := R+F(α)+β ·pk,
computes c′ := H(m,R′), and sends the blinded challenge c := c′ + β to S. In
the last round of the protocol, S replies with s := r + c · sk, and U checks that
F(s) = R+c·pk. (If not, U aborts). Finally, U computes s′ := s+α+Ψ(pk, c,−c′)
and outputs the signature σ := (c′, s′). Verification is done by checking whether
c′ = H(m,F(s′) − c′ · pk).

If both parties follow the protocol honestly, then

s′ = s + α + Ψ(pk, c,−c′) = c · sk + r + α + Ψ(pk, c,−c′).

Thus,

F(s′) − c′ · pk = F(c · sk + r + α + Ψ(pk, c,−c′)) − c′ · pk
= c · pk − c′ · pk + F(Ψ(pk, c,−c′)) + F(r) + F(α)
= (c − c′) · pk + F(r) + F(α)
= β · pk + R + F(α) = R′,

and so verification succeeds. This demonstrates correctness of the scheme.
Hauck et al. [14] show that BS[LF] is statistically blind for honestly gener-

ated keys. Their proof extends to full blindness (i.e., even for maliciously gener-
ated keys) when BS[LF] corresponds to the Schnorr or Okamoto-Schnorr blind
signature scheme. More interestingly, BS[LF] is �-one-more unforgeable for any
� = O(log κ):

Theorem 1 ([14]). Let LF = (PGen,F, Ψ) be a collision-resistant linear function
family with a torsion-free element in the kernel, and let H be modeled as a random
oracle. Then BS[LF] is �-one-more unforgeable for any � = O(log κ).

Concretely, if there is an adversary against �-one-more unforgeability of
BS[LF] that runs in time t, initiates at most p ≥ � executions, makes at most qH
queries to H, and has success probability ε, then there is an adversary against
collision resistance of LF running in time t′ = 2t and having success probability
at least

ε′ = Ω

((
ε

2
− (qH · (p − �))�+1

|S|
)3

· 1
q2H · �3

)
.

Theorem 1 requires LF to have a pseudo torsion-free element in the kernel, and
thus applies to the Okamoto-Schnorr, Okamoto-Guillou-Quisquater, and Fiat-
Shamir blind signature schemes. (See Appendix A.) However, there are examples
of other schemes matching the template of Fig. 1 that can be proven secure
without relying on Theorem 1. In particular, recent work [10] has shown that the
Schnorr blind signature scheme is �-one-more unforgeable for any � = O(log κ)
in the algebraic group model under the one-more discrete logarithm assumption.

478 J. Katz et al.

S(sk, pk) U(pk, m)

r ← D
R := F(r) R−−−−−−−−−−−−−→ α ← D; β ← S

R := R + F(α) + β · pk
c := H(m, R)

c←−−−−−−−−−−−− c := c + β

s := r + c · sk s−−−−−−−−−−−−→
if F(s) = R + c · pk

abort

s := s + α + Ψ(pk, c, −c)

σ := (c , s)

output σ

Fig. 1. The signing protocol for blind signature scheme BS[LF], where LF is a linear
function family and H : {0, 1}∗ → S is modeled as a random oracle.

3 Boosting Security of Blind Signatures

We now present our cut-and-choose blind signature scheme CCBS[LF]. (We
assume the reader has read the informal overview in Sect. 1.2.) As in BS[LF],
the secret key is a uniform element sk ← D and the corresponding public key
is pk := F(sk). Now, however, the signer S additionally maintains a counter N
that is initialized to 1. The signing protocol for a message m then proceeds as
follows (cf. Fig. 2):

1. S atomically increments its counter (see further discussion below) and sends
the updated counter N to the user U .

2. Informally, U runs N executions of BS[LF], using the “message” μi =
H′(m,ϕi) in the ith execution. (We refer to each execution of the under-
lying scheme BS[LF] as a session.) Here, ϕi ∈ {0, 1}κ is a uniform string
and H′ is modeled as a random oracle. Thus, in the first step, for i ∈ [N]
the user chooses randomness αi, βi for the ith session of BS[LF] and sends a
commitment comi = H′(αi, βi, μi, γi), where γi ∈ {0, 1}κ is another uniform
string.

3. S runs N sessions of BS[LF] to obtain initial messages R1, . . . , RN , which it
sends to U . In response, U computes c1, . . . , cN using BS[LF] and the random-
ness it chose earlier.

Boosting the Security of Blind Signature Schemes 479

4. S then chooses a uniform index I ∈ [N] and sends it to U . The user reveals
(αi, βi, μi, γi) for all i �= I (thus opening all but its Ith commitment), and
S verifies that U behaved honestly in all the opened sessions. If cheating is
detected, then S aborts the entire execution.

5. If U behaved honestly in the opened sessions, S uses BS[LF] to compute a
response s := rI − cI · sk for the Ith (unopened) session.

6. U computes a signature (c′
I , s

′
I) on μI using BS[LF]. It then outputs the sig-

nature (c′
I , s

′
I , ϕI) on m.

A signature σ = (c′, s′, ϕ) on a message m is verified by checking that (c′, s′) is
a valid signature on μ = H′(m,ϕ) in the underlying scheme BS[LF].

The counter is used to ensure that each execution of the protocol uses a
different value for the cut-and-choose parameter N . (In Sect. 3.3, we show that
it is possible to do better.) In the concurrent setting, it is therefore important
to ensure that the counter is incremented atomically so that this property holds
across all the concurrent executions.

Theorem 2. Let LF be a linear function family that is preimage resistant and
let H,H′ be modeled as random oracles. If BS[LF] satisfies blindness (for honestly
generated keys), then CCBS[LF] satisfies blindness (for honestly generated keys).
If BS[LF] is (sequentially) �-one-more unforgeable for any � ∈ O(log κ), then
CCBS[LF] is (sequentially) �-one-more unforgeable for any � = poly(κ).

We separately consider blindness and one-more unforgeability in the sections
that follow.

3.1 Blindness

This section is dedicated to a proof of the following:

Theorem 3. Let H′ be modeled as a random oracle. If BS[LF] satisfies blindness
(resp., blindness for honestly generated keys), then CCBS[LF] satisfies blindness
(resp., blindness for honestly generated keys).

Concretely, if there is an adversary A against blindness of CCBS[LF] that
runs in time t, makes at most qH′ queries to H′, uses counters NL, NR in its
executions with the user, and has advantage ε, then there is an adversary B
against blindness of BS[LF] that runs in time t′ ≈ t and has advantage at least

1
NL·NR ·

(
ε − 2·(NL+NR)·qH′

22κ

)
.

480 J. Katz et al.

S(sk, pk); state N U(pk, m)

atomically increment N
N−−−−−−−−−−−−−→ for i ∈ [N] :

αi ← D; βi ← S
ϕi, γi ← {0, 1}κ

μi := H (m, ϕi)

for i ∈ [N]:
com1, . . . , comN←−−−−−−−−−−−−− comi := H (αi, βi, μi, γi)

ri ← D
Ri := F(ri)

R1, . . . , RN−−−−−−−−−−−−−−−→ for i ∈ [N] :

Ri := Ri + F(αi) + βi · pk
ci := H(μi, Ri)

c1, . . . , cN←−−−−−−−−−−−− ci := ci + βi

I ← [N] I−−−−−−−−−−−−−→
{(αi, βi, μi, γi)}i=I←−−−−−−−−−−−−−−−−

for i ∈ [N] \ {I} :

Ri := Ri + F(αi) + βi · pk
if ∃i ∈ [N] \ {I} s.t

comi = H (αi, βi, μi, γi)

or ci = H(μi, Ri) + βi

abort

sI := rI + cI · sk sI−−−−−−−−−−−−−→ if F(sI) = RI + cI · pk
abort

sI := sI + αI + Ψ(pk, cI , −cI)

σ := (cI , sI , ϕI)

output σ

Fig. 2. The signing protocol for blind signature scheme CCBS[LF], where LF is a linear
function family and H : {0, 1}∗ → S, H′ : {0, 1}∗ → {0, 1}2κ are modeled as random
oracles.

Proof. We consider the case of blindness for maliciously generated keys, but
the proof holds also for honestly generated keys. Fix an adversary A attacking
blindness of CCBS[LF], let SuccA be the event that A succeeds, and let ε = ε(κ) be
the advantage of A so that Pr[SuccA] = 1

2 + ε. In an execution of the experiment
used to define blindness of CCBS[LF], the adversary interacts with two instances
of U ; we use superscripts L,R to denote variables used in the left and right

Boosting the Security of Blind Signature Schemes 481

interactions, respectively. Let NL, NR be the values of the counters that A sends
in its two interactions with U , and let Bad be the event that A makes any
H′-queries of the following form:

– H′(�, ϕL
i) for i = 1, . . . , NL (resp., H′(�, ϕR

i) for i = 1, . . . , NR). (In the case of
ϕL

IL , ϕ
R
IR , this must occur before those values are revealed to A as part of the

signatures output by U .)
– H′(�, �, �, γL

i) for i = 1, . . . , NL (resp., H′(�, �, �, γR
i) for i = 1, . . . , NR) before

γL
i (resp., γR

i) is sent by U to A in round 6.

In particular, since γL
IL (resp., γR

IR) is not sent in round 6, event Bad occurs if
A makes a query of the form H′(�, �, �, γL

IL) (resp., H′(�, �, �, γR
IR)) at any point

during the experiment. If qH′ denotes the number of queries A makes to H′, it is
immediate that

Pr[SuccA ∧ Bad] ≥ 1
2

+ ε − 2 · (NL + NR) · qH′

22κ
.

We now construct an adversary B attacking blindness of BS[LF]. Intuitively,
B simulates A’s oracle calls by locally running all-but-one of the sessions of
BS[LF] honestly, and using its own oracles (which correspond to two executions
of the user algorithm for BS[LF]) to simulate the remaining instance. B works as
follows:

1. Throughout, H′-oracle calls made by A are handled in the natural way.4 If
event Bad occurs, B aborts and outputs a uniform bit.

2. B runs A to obtain pk,m0,m1. It then chooses uniform μ0, μ1 ∈ {0, 1}κ and
outputs pk, μ0, μ1.

3. B handles the interaction of A with its left oracle by playing the role of U in
an execution of CCBS[LF], as follows:
(a) When A sends NL, choose uniform iL ∈ [NL] and uniform values

γL
iL , ϕ

L
iL , com

L
iL ∈ {0, 1}κ. For i ∈ [NL] \ {iL}, run U honestly to obtain

comL
i . Send comL

1, . . . , com
L
NL to A.

(b) When A sends RL
1, . . . , R

L
NL , then B forwards RL

iL to its own left oracle to
receive response cLiL . For i ∈ [NL] \ {iL}, it runs U honestly to obtain cLi ,
and then sends cL1, . . . , c

L
NL to A.

(c) When A sends IL, then B aborts and outputs a uniform bit if IL �= iL.
Otherwise, it responds in the natural way.

(d) When A sends the final message sLIL , then B forwards this to its own left
oracle.

B handles the interaction of A with its right oracle in an exactly analogous
manner.

4 We do not need to model H as a random oracle; our proof holds as long as BS[LF] is
secure when using H. For this reason we do not mention how calls to H are handled.

482 J. Katz et al.

4. When B is given the output of its own oracles, it does the following. If the
output was ⊥, it gives ⊥ to A. Otherwise, B is given signature (c′

0, s
′
0) on

μ0 and signature (c′
1, s

′
1) on μ1; it gives (c′

0, s
′
0, ϕ

L
iL) and (c′

1, s
′
1, ϕ

R
iR) to A and

programs H′(m0, ϕ
L
iL) = μ0 and H′(m1, ϕ

R
iR) = μ1. Finally, it outputs whatever

bit is output by A.

First observe that the probability of event Bad is unchanged in the above. Let
Guess be the event that IL = iL and IR = iR. If Bad does not occur by the time
A sends the latter of IL or IR, then the view of A at that point is independent of
iL, iR and so Pr[Guess] = 1/NLNR. Furthermore, if Guess occurs and Bad does
not occur then the simulation provided by B is perfect, and B succeeds iff A
succeeds. Letting SuccB be the event that B succeeds, we thus have

Pr[SuccB] =
1
2

· Pr[Guess ∨ Bad] + Pr[SuccA ∧ Guess ∧ Bad]

≥ 1
2

+
1

NL · NR
·
(

ε − 2 · (NL + NR) · qH′

22κ

)
.

Since the advantage of B must be negligible (by blindness of BS[LF]), and
NL, NR, qH′ are polynomial,5 we conclude that ε must be negligible.

3.2 One-More Unforgeability

In this section we show:

Theorem 4. Let LF be a linear function family that is preimage resistant and
let H,H′ be modeled as random oracles. If BS[LF] is (sequentially) �-one-more
unforgeable for any � ∈ O(log κ), then CCBS[LF] is (sequentially) �-one-more
unforgeable for any � = poly(κ).

Concretely, assume LF is (t, εPRE)-preimage resistant and there is an adver-
sary against (sequential) �-one-more unforgeability of CCBS[LF] that runs in
time t, initiates p executions, makes at most qH queries to H and qH′ queries
to H′, and has success probability ε. Then there is an adversary against (sequen-
tial) λ-one-more unforgeability of BS[LF], where λ = 3 ln(p + 1) + ln(2/ε), that
runs in time t′ ≈ t, initiates p executions, makes at most qH queries to H, and
has success probability at least

ε′ =
ε

2
− q2H′ + p · qH′ + p2 · (p2 + qH)

22κ
− p · εPRE.

5 Technically, we can enforce that NL, NR are polynomial by requiring the counter N
sent by S to be represented in unary (so NL, NR are bounded by the running time
of A). In practice one might fix a large polynomial bound B and require N ≤ B.

Boosting the Security of Blind Signature Schemes 483

Proof. Let A be an adversary attacking the one-more unforgeability of CCBS[LF]
and having success probability ε. We let qH, qH′ denote the number of queries A
makes to H,H′, respectively, let � denote the number of complete executions of
the signing protocol run by A, and let p denote the total number of executions of
the signing protocol by A, including ones that are aborted early by S. (These are
all polynomial in the security parameter, but we leave this dependence implicit.)
For simplicity, we make some assumptions about the behavior of A that are
without significant loss of generality; specifically, we assume that if A sends
αi, βi, μi, γi during an execution of the signing protocol where the corresponding
message from the signer was Ri then it had previously queried H′(αi, βi, μi, γi)
as well as H(μi, Ri +F(αi) + βi · pk), and that if A outputs a message/signature
pair (m, (c′, s′, ϕ)) then it had previously queried H′(m,ϕ).

We prove the theorem via a sequence of hybrid experiments.

Expt G0. This is the one-more unforgeability experiment where A interacts with
the transformed scheme CCBS[LF].

When A sends a commitment com as part of the second message of an exe-
cution of the signing protocol, we say com is extractable if it was previously
returned as output from a query of the form H′(α, β, μ, γ).

Expt G1. This experiment is identical to G0 except that it aborts (and A does
not succeed) if (1) at any point in the experiment, there is a collision in H′ or
(2) in some execution of the signing protocol, some commitment comi sent by A
is not extractable, but later in the same execution I �= i and the signer does not
abort (so, in particular, A sends αi, βi, μi, γi for which H′(αi, βi, μi, γi) = comi).
The probability of the first event is at most q2H′/22κ. Focusing on the least i �= I
in each execution of the signing protocol for which comi is not extractable (if
one exists), we see that the probability of the second event is at most p · qH′/22κ.
Hence, A’s success probability in G1 is at least ε − (q2H′ + p · qH′)/22κ.

Note that in G1 and all subsequent experiments, as long as the experiment
is not aborted, any extractable commitment com was previously returned as
output from a unique query of the form H′(α, β, μ, γ). We say that α, β, μ are
associated with com in that case.

In an execution of the signing protocol, we say A successfully cheats if the
signer does not abort the execution (nor does the experiment itself abort), yet
either (1) some commitment sent by A in that execution was not extractable
or (2) for some i, the commitment comi sent in that execution was extractable
with associated values αi, βi, μi, but ci �= H(μi, Ri + F(αi) + βi · pk) (where Ri

is the value sent by the signer in the corresponding session). In G1, the only
way A can successfully cheat in some execution is if A sends a single non-
extractable commitment comi and/or a single incorrect ci in that execution,
and the challenge I sent by the signer is equal to i. For an integer N , we let
cheatN be the indicator variable that is equal to 1 iff A successfully cheats in the
(unique) execution of the signing protocol that uses cut-and-choose parameter N .

484 J. Katz et al.

Let cheat∗ =
∑p+1

N=2 cheatN be the number of times A successfully cheats in the
entire experiment. By the observation made a moment ago, we have E[cheatN] ≤
1/N for all N , and so

E[cheat∗] ≤
p+1∑
N=2

1
N

≤ ln(p + 1).

Expt G2. This experiment is identical to G1 except that it aborts (and A does
not succeed) if cheat∗ > 3 ln(p + 1) + ln(2/ε). As the cheatN are (dominated
by) independent Bernoulli variables, and cheat∗ is their sum, we can apply the
Chernoff bound to conclude that

Pr[cheat∗ > 3 ln(p + 1) + ln(2/ε)] ≤ ε/2.

(We defer the full calculation to Appendix B). Hence, A’s success probability in
G2 is at least ε/2 − (q2H′ + p · qH′)/22κ.

Expt G3. Here, we change the way each execution of the signing protocol is
run. Now, for each execution of the signing protocol—say, using cut-and-choose
parameter N—first choose uniform j ∈ [N]. Then:

– For i ∈ [N], if comi is not extractable then compute Ri (and si, if needed) as
before. Set Ci :=⊥. (The purpose of Ci will be clear later.)

– For i ∈ [N] \ {j}, if comi is extractable with associated values αi, βi, μi,
then compute Ri as before and set R′

i := Ri + F(αi) + βi · pk. If H(μi, R
′
i)

is already defined (before Ri is sent to A), the experiment aborts and A
does not succeed. Otherwise, set H(μi, R

′
i) to a uniform value and set Ci :=

H(μi, R
′
i) + βi. Compute si (if needed) as before.

– If comj is extractable with associated values αj , βj , μj , we refer to j as a
programmed session. In this case, choose rj ← D and Cj ← S, compute
Rj := F(rj) + Cj · (−pk) and R′

j := Rj + F(αj) + βj · pk, and program
H(μj , R

′
j) := Cj − βj . (This programming is done before Rj is sent to A.) If

H(μj , R
′
j) is already defined, the experiment aborts (and A does not succeed).

Later in the execution, if I = j and neither the execution nor the experiment
is aborted, compute and send sj := rj + Cj · (−sk) + cj · sk, where cj is the
corresponding value sent by A.

Ignoring for a moment the aborts introduced in this experiment, we claim
that the view of the adversary in each execution of the signing protocol is iden-
tical to its view in G2. This is immediate for all but a programmed session. But
it can be verified that in a programmed session j, the joint distribution of sj and
Rj is identical to the distribution of those values in G2. Moreover, Cj is uniform
even conditioned on sj , Rj , and so H(μj , R

′
j) is programmed to be a uniform

value. The latter can be seen as follows. As long as cj has not been sent by A,
Rj is uniform, and hence so is Cj . After cj is sent by A, sj and cj together fully
determine Rj as Rj = F(sj) − cj · pk. Hence, for all values of cj , conditioning on

Boosting the Security of Blind Signature Schemes 485

sj , Rj is the same as conditioning on only sj . Since sj = rj + Cj · (−sk) + cj · sk
and rj is a uniform value, Cj is also uniform.

As for the aborts introduced in G3, note that whenever the experiment checks
whether H(μ,R′) is already defined it is the case that R′ has min-entropy at
least 2κ. (This follows because R = F(r) for uniform r and F has min-entropy at
least 2κ.) Thus, the probability that G3 aborts where G2 would not is at most
p2 · (p2 + qH)/22κ. We conclude that A succeeds in G3 with probability at least
ε/2 − (q2H′ + p · qH′ + p2 · (p2 + qH))/22κ.

Expt G4. Here, we again change each execution of the signing protocol. Consider
an execution with cut-and-choose parameter N , and let j, {Ci}i∈[N] be as in the
previous experiment. After A sends c1, . . . , cN , if it holds that (c1, . . . , cn) =
(C1, . . . , Cn) then set I := j; otherwise, set I := j + 1 (mod N). The rest of the
execution is as in G3.

We claim that A’s view in G4 is identically distributed to its view in G3, and
hence its success probability is unchanged. Indeed, in any particular execution
of the protocol, the value of j is independent of both the view of A before I is
sent as well as the {Ci}i∈[N]. Thus, regardless of whether (c1, . . . , cn) is equal to
(C1, . . . , Cn) or not, I is uniformly distributed in [N] in experiment G4 just as
in experiment G3.

In an execution of the signing protocol, we say the programmed session is
completed if I = j and the signer does not abort during the remainder of the
execution of the signing protocol. Note that when the programmed session is
completed, cj = Cj and hence

sI = sj = rj + Cj · (−sk) + cj · sk = rj = rI .

Thus, the only time sk is needed when executing the signing protocol in G4

is when A successfully cheats, in which case the programmed session is not
completed.

For a valid message/signature pair (m,σ) = (m, (c′, s′, ϕ)) output by A,
let R′ = F(s′) − c′ · pk and μ = H′(m,ϕ); we say this message/signature pair
is fake if there is a programmed session in which H was programmed at the
point (μ,R′) and, if so, we associate (m,σ) with the unique such session. (There
cannot be more than one programmed session where H′ is programmed at the
same point, or else the experiment aborts.) A fake message/signature pair can
thus be associated with a particular commitment comj having associated values
αj , βj , μj = μ (recall that a session is only programmed if the corresponding
commitment is extractable), as well as values rj , Rj , Cj defined by the experi-
ment. Since (c′, s′, ϕ) is a valid signature on m, we have c′ = H(μ,R′); we also
have H(μ,R′) = Cj − βj (by definition of how programming is done) and thus
βj = Cj − c′. Therefore

486 J. Katz et al.

F(s′) = R′ + c′ · pk
= Rj + F(αj) + βj · pk + c′ · pk
= Rj + Cj · (−pk) + F(αj) + (Cj − c′) · pk + c′ · pk
= Rj + Cj · (−pk) + F(αj)

+ Cj · pk − c′ · pk + F(Ψ(pk, Cj ,−c′)) + c′ · pk
= Rj + Cj · (−pk) + F(αj) + Cj · pk + F(Ψ(pk, Cj ,−c′))
= Rj + F(αj) + F(Ψ(pk, Cj ,−c′)),

and so

F(s′ − αj − Ψ(pk, Cj ,−c′)) = Rj . (1)

There is at most one fake message/signature pair associated with any pro-
grammed session (since the distinct {mi} in A’s output correspond to dis-
tinct {μi = H′(mi, ϕi)} or else the experiment aborts), and so the number of
fake pairs is at most the number of programmed sessions.

Expt G5. Experiment G5 aborts (and A does not succeed) if the number F
of fake pairs exceeds the number of completed, programmed sessions. Before
we bound the probability of this event, note that the number of completed,
programmed sessions is at most �− cheat∗; therefore, if F is at most the number
of completed, programmed sessions, then if A succeeds the number of valid
message/signature pairs that are not fake is

(� + 1) − F ≥ (� + 1) − (� − cheat∗) = cheat∗ + 1.

Claim. The probability (in G4) that A succeeds and the number of fake mes-
sage/signature pairs exceeds the number of completed, programmed sessions is
at most p · εPRE.

Proof. Let E be the event that A succeeds and the number of fake mes-
sage/signature pairs exceeds the number of completed, programmed sessions.
We construct an adversary C attacking preimage resistance of LF that succeeds
with probability at least Pr[E]/p. The claim follows.

C is given parameters par and a challenge R ∈ R. It honestly generates
(pk, sk) and runs experiment G5 with A with the following exception:

– For a uniformly chosen execution of the signing protocol (say, the kth exe-
cution), C sets Rj := R + Cj · (−pk) in the programmed session of that
execution. If in that execution, I = j and sj must be sent to the adversary
(so the programmed session is to be completed), C aborts.

Note that when C does not abort, C never needs to use a preimage of R. At
the end of the experiment, C aborts if E has not occurred. If E has occurred,
C finds the first fake message/signature pair (m, (c′, s′, ϕ)) associated with a
non-completed, programmed session and aborts if that pair is not associated
with the programmed session in execution k. If C has not aborted, C has values

Boosting the Security of Blind Signature Schemes 487

αj , Cj , used as part of the programmed session in execution k, such that s′ −
α−Ψ(pk, C,−c′) is a preimage of R (using Eq. (1)). The probability that C does
not abort is precisely Pr[E]/p.

Using the above claim, we see that A succeeds in G5 with probability at least
ε/2 − (q2H′ + p · qH′ + p2 · (p2 + qH))/22κ − p · εPRE.

Bounding A’s success probability in G5. To conclude the proof, we show
that the success probability of A in G5 is negligible. We do so by defining an
adversary B that runs A as a subroutine and attacks the λ-one-more unforge-
ability of BS[LF], where λ = 3 ln(p + 1) + ln(2/ε). Adversary B works as follows:

1. B is given a public key pk as well as access to a signing oracle for BS[LF] and
an oracle H. It runs A on pk, and simulates experiment G5 for A as described
below. Queries that A makes to H′ are answered by B with uniform values in
the natural way. Queries that A makes to H are in general answered by simply
relaying those queries to B’s oracle H, except that in programmed sessions B
programs H to a different value (as described in G3).

2. B simulates an execution of the signing protocol for A using cut-and-choose
parameter N as follows. B selects a uniform j ← [N] and initiates an inter-
action with its signing oracle for BS[LF]. Let R∗ be the value that B receives
from its signing oracle in the first round. When A sends com1, . . . , comN ,
then:

– B sets Rj+1 := R∗ and generates the remaining {Ri}i�=j+1 as in G5. It
then sends these values to A.

– B then continues to run the signing protocol as in G5. If I = j + 1
and B needs to send sI (i.e., neither the current execution of the signing
protocol nor the experiment itself is aborted) then B forwards cI to its
signing oracle for BS[LF], and returns the response s∗ to A.

3. At the end of the experiment, if A outputs � + 1 valid message/signature
pairs (m, (c′, s′, ϕ)) (where validity is determined relative to CCBS[LF] and
the oracles H,H′ that B simulated for A), then B aborts if the number of
fake message/signature pairs exceeds the number of completed, programmed
sessions. Assuming it has not aborted, B identifies cheat∗ + 1 valid mes-
sage/signature pairs that are not fake, and for each such pair (m, (c′, s′, ϕ))
outputs (H′(m,ϕ), (c′, s′)).

The simulation provided by B is perfect, and thus the probability that A succeeds
when run by B is exactly the probability that A succeeds in G5. The number
of executions of the signing protocol that B initiates with BS[LF] is p, while the
number that B completes is exactly cheat∗ and so is at most 3 ln(p+1)+ln(2/ε).
Finally, whenever A succeeds then for any message/signature pair (m, (c′, s′, ϕ))
output by A that is not fake, the message/signature pair (H′(m,ϕ), (c′, s′)) out-
put by B is a valid message/signature pair relative to BS[LF] and the oracle H
provided to B; additionally, the messages H′(m,ϕ) are distinct since no collisions
were found in H′. We conclude that the success probability of B is equal to the
success probability of A in G5, which is negligible since BS[LF] is secure. This
completes the proof of the theorem.

488 J. Katz et al.

3.3 Improving the Complexity of the Signing Protocol

The complexity of the signing protocol is linear in the cut-and-choose parame-
ter N , and it is therefore important to minimize that parameter. In the scheme
analyzed thus far, N is incremented each time the signing protocol is executed.
Here, we argue that it suffices to increment the cut-and-choose parameter only
when cheating is detected. Not only is this strictly better in theory (assuming
at least some interactions are with honest users), but we expect that this opti-
mization would have a significant impact on efficiency in practice where (1) the
signer would likely know the identity of each user executing the protocol, and
could ban any user the first time they are caught cheating, and (2) we expect
that a majority of users are honest.

The discussion that follows assumes familiarity with the high-level overview
from Sect. 1.2 and/or the proof of one-more unforgeability from the previous
section. We focus our treatment on the sequential setting, and briefly discuss at
the end how it can be extended to handle concurrent executions of the protocol.

Recall that in an execution of the signing protocol of our transformed scheme,
we say the adversary successfully cheats if it cheats in a single session and is not
caught by the signer. In a given execution using cut-and-choose parameter N , the
adversary successfully cheats with probability at most 1/N . For the proof of one-
more unforgeability, it is crucial that (over the course of the entire experiment)
the adversary successfully cheats at most logarithmically many times, except
with negligible probability.

Let cheatN be a random variable denoting the number of times, over the
course of the entire one-more unforgeability experiment, the adversary success-
fully cheats when the cut-and-choose parameter is N . In the scheme analyzed
thus far, each value of the cut-and-choose parameter is used only once and so
E[cheatN] ≤ 1/N . Thus, assuming the attacker runs p executions of the signing
protocol overall, the expected number of times the attacker successfully cheats
is

p+1∑
N=2

E[cheatN] ≤
p+1∑
N=2

1
N

≤ ln(p + 1).

Consider now what happens if we modify our scheme so that the counter
is only incremented when cheating is detected. (We also assume for simplicity
that the attacker cheats in exactly one session each time it runs the protocol;
it is clear that this maximizes the number of times it can successfully cheat.)
Then cheatN is equal to the number of times the attacker successfully cheats
(when the cut-and-choose parameter is N) before being caught. This is one less
than the number of trials (when the cut-and-choose parameter is N) until the
adversary is caught. (Recall that here we are assuming sequential executions of
the signing protocol only.) Since the probability of being caught in each such
trial is (N − 1)/N , we now have

E[cheatN] =
N

N − 1
− 1 =

1
N − 1

,

Boosting the Security of Blind Signature Schemes 489

and so if the attacker runs p executions of the signing protocol overall, the
expected number of times the attacker successfully cheats is at most

p+1∑
N=2

E[cheatN] =
p+1∑
N=2

1
N − 1

≤ 1 + ln p.

Proceeding as in6 the proof of Theorem 4, we can show that the adversary
successfully cheats at most logarithmically many times, except with negligible
probability.

Handling concurrent executions. The optimization described above does not
work when there may be concurrent executions of the signing protocol. (To see
what goes wrong, consider the case where the adversary runs p parallel execu-
tions, all using cut-and-choose parameter N = 2. Then the adversary successfully
cheats in roughly half those executions before the signer detects cheating and has
any chance to increment the counter.) For the argument outlined above to work,
the key property we need to ensure is that the adversary can successfully cheat
at most once for each value of the cut-and-choose parameter. To enforce this,
the signer just needs to make sure that any currently active executions of the
signing protocol use distinct values of the cut-and-choose parameter; moreover,
once cheating is detected in an execution using cut-and-choose parameter N , no
subsequent executions may use cut-and-choose parameter N . So, for example,
the signer can store the largest value of the cut-and-choose parameter N∗ for
which cheating has been detected, and then when initiating an execution of the
signing protocol can use as the cut-and-choose parameter the least value N > N∗

that is not currently being used by any active execution.

A Additional Examples of Linear Function Families

In Sect. 2.2 we defined linear function families, and described the linear function
family that underlies the Schnorr blind signature scheme. Here we recall addi-
tional examples of linear function families from the work of Hauck et al. [14].

Okamoto-Schnorr. Here, par defines a cyclic group G of prime order q ≥ 22κ,
and also includes uniformly selected generators g1, g2 ∈ G. We let S = Zq,
D = Z

2
q, and R = G, with the scalar multiplication maps s · (x, y) = (s · x, s · y)

(for s, x, y ∈ Zq) and s · g = gs (for g ∈ G). Defining F(x, y) := gx
1 · gy

2 , a pseudo
torsion-free element in the kernel is given by z∗ = (−1, logg2

g1). Since scalar
multiplication between S and R is distributive, Ψ is the zero function. Finally,
LF is preimage resistant and collision resistant under the discrete logarithm
assumption in G.

Okamoto-Guillou-Quisquater. Here, par contains N = pq for distinct
primes p, q, along with a uniform value a ∈ Z

∗
N and a prime λ with

6 As cheatN now may take values larger than 1, we use Hoeffding’s inequality instead
of a Chernoff bound (which results in a slightly looser reduction).

490 J. Katz et al.

gcd(ϕ(N), λ) = gcd(N,λ) = 1 and of size at least 22κ. We define S = Zλ

under addition modulo λ; define R = Z
∗
N under multiplication modulo N ; and

define D = Zλ × Z
∗
N with group operation given by

(x1, y1) ◦ (x2, y2) :=
(
x1 + x2 mod λ, y1 · y2 · a� x1+x2

λ � mod N
)

.

(It can be shown [14] that this is indeed a group.) Scalar multiplication maps
s · b for b ∈ R or b ∈ D are defined as s-fold iteration of the corresponding
group operation. Moreover, define F(x, y) := axyλ mod N and Ψ(x, s, s′) :=
(0, x�− s+s′

λ � mod N). A pseudo torsion-free element in the kernel is given by
z∗ = (λ − 1, aλ−1−1 (mod N)), where λ−1 is the inverse of λ modulo ϕ(N). LF
is preimage resistant and collision resistant under a suitable version of the RSA
assumption.

Fiat-Shamir. Here, par contains N = pq for distinct primes p, q, and we define
S = Z

k
2 , D = R = (Z∗

N)k for k ≥ 22κ. The scalar multiplication maps are

(s1, . . . , sk) · (x1, . . . , xk) = (xs1
1 , . . . , xsk

k).

Let F(x1, ..., xk) := (x2
1 (mod N), ..., x2

k (mod N)), and define Ψ(�x,�r,�s)
component-wise with Ψ(xi, ri, si) := x

−(ri>si+ri (mod 2))
i (where ri > si + ri

(mod 2) denotes the predicate that returns 1 iff ri = si = 1 (mod 2). A pseudo
torsion-free element in the kernel is z∗ = (−1, ...,−1). LF is preimage resistant
and collision resistant under the factoring assumption.

B Deferred Calculations

Let X be a sum of independent {0, 1}-random variables with μ = E[X]. The
multiplicative Chernoff bound states that for all δ > 0

Pr[X ≥ (1 + δ) · μ] ≤ exp
(

− μδ2

2 + δ

)
.

Let X = cheat∗ =
∑p+2

N=2 cheatN . Then for any s > ln(p + 1) ≥ E[cheatN] we
have

Pr[cheat∗ ≥ s] = Pr
[
cheat∗ ≥

(
1 +

(
s

μ
− 1

))
· μ

]

≤ exp
(

− μ(s/μ − 1)2

2 + (s/μ − 1)

)
.

Using the fact that x2/(2 + x) > x − 2 for all x ≥ 0, the above is at most

exp
(

−μ

(
s

μ
− 3

))
= exp(3μ − s)

If we set s = 3 ln(p + 1) + ln(2/ε), the above equals ε/2.

Boosting the Security of Blind Signature Schemes 491

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

2. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.-R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press, Novem-
ber 2013

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The power of RSA
inversion oracles and the security of Chaum’s RSA-based blind signature scheme.
In: Syverson, P. (ed.) FC 2001. LNCS, vol. 2339, pp. 319–338. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46088-8 25

4. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 2

5. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

6. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Crypto’82, pp. 199–203. Plenum Press, New York
(1982)

7. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

8. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

9. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 12

10. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 3

11. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 27

12. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 36

13. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70972-7 26

14. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 12

https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-46088-8_25
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-319-70972-7_26
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12

492 J. Katz et al.

15. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 18

16. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind signatures
without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-70936-7 18

17. Jayaraman, B., Li, H., Evans, D.: Decentralized certificate authorities. https://
arxiv.org/abs/1706.03370

18. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052233

19. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the alge-
braic group model (2020). https://eprint.iacr.org/2020/1071

20. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

21. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006). https://doi.org/10.1007/11681878 5

22. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054141

23. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0034852

24. Pointcheval, D., Stern, J.: New blind signatures equivalent to factorization
(extended abstract). In: Graveman, R., Janson, P.A., Neuman, C., Gong, L. (eds.)
ACM CCS ’97, pp. 92–99. ACM Press, April 1997

25. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

26. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7 1

27. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-540-70936-7_18
https://doi.org/10.1007/978-3-540-70936-7_18
https://arxiv.org/abs/1706.03370
https://arxiv.org/abs/1706.03370
https://doi.org/10.1007/BFb0052233
https://eprint.iacr.org/2020/1071
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/11681878_5
https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Zero-Knowledge Proofs, Threshold
and Multi-Signatures

PrORAM
Fast O(logn) Authenticated Shares ZK ORAM

David Heath(B) and Vladimir Kolesnikov(B)

Georgia Institute of Technology, Atlanta, GA, USA
{heath.davidanthony,kolesnikov}@gatech.edu

Abstract. We construct a concretely efficient Zero Knowledge (ZK)
Oblivious RAM (ORAM) for ZK Proof (ZKP) systems based on authen-
ticated sharings of arithmetic values. It consumes 2 log n oblivious trans-
fers (OTs) of length-2σ secrets per access of an arithmetic value, for
statistical security parameter σ and array size n. This is an asymptotic
and concrete improvement over previous best (concretely efficient) ZK
ORAM BubbleRAM of Heath and Kolesnikov ([HK20a], CCS 2020),
whose access cost is 1

2
log2 n OTs of length-2σ secrets.

ZK ORAM is essential for proving statements that are best expressed
as RAM programs, rather than Boolean or arithmetic circuits.

Our construction is private-coin ZK. We integrate it with [HK20a]’s
ZKP protocol and prove the resulting ZKP system secure.

We implemented PrORAM in C++. Compared to state-of-the-art Bub-
bleRAM, PrORAM is ≈10× faster for arrays of size 220 of 40-bit values.

Keywords: Oblivious RAM · Zero knowledge

1 Introduction

Zero Knowledge (ZK) proofs (ZKP) allow an untrusted prover P to convince
an untrusted verifier V of the truth of a given statement while revealing nothing
additional. ZKPs are foundational cryptographic objects useful in many contexts.
Early ZK focused on proofs of specific statements, but more recent systems
handle arbitrary statements, so long as the statements are encoded as circuits.

Motivation. Unfortunately, many statements are more easily and efficiently
expressed as RAM machine programs rather than circuits. Indeed, most stan-
dard algorithms are formalized for RAM machines.1 Importantly, recent work,
e.g. [HK20a], shows that support for writing proof statements as arbitrary C
programs is within reach. ORAM is a major cost factor in [HK20a]’s ZK virtual
machine, responsible for 1/3 to 1/2 or more of the total cost, since ORAM is
1 RAM machines reduce to circuits, but improving the reduction will allow more effi-

cient proofs.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-030-92068-5 17.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 495–525, 2021.
https://doi.org/10.1007/978-3-030-92068-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_17
https://doi.org/10.1007/978-3-030-92068-5_17

496 D. Heath and V. Kolesnikov

accessed at each CPU step. An efficient ZK ORAM would greatly improve the
performance of (already practical) ZK virtual machine of [HK20a].

Most ORAM research targets either (1) an untrusted server holding a client’s
private data or (2) the secure multiparty computation setting. ZK ORAMs have
been less studied. ZK, as compared to these more explored settings, gives a
crucial advantage: P can precompute the order in which the proof circuit will
access each RAM element. Prior work [HK20a] has shown that this knowledge
suffices to build a circuit-based ORAM that incurs only 1

2 log2 n oblivious trans-
fers (OTs) per access. While the constant factor of this approach is excellent,
the log2 scaling can be costly for large RAMs.

Our work. We construct an efficient ZK ORAM that we call PrORAM. PrO-
RAM consumes only 2 log n OTs per access. Note, ZK-ORAM’s security has
not been defined standalone; rather, its functionality and security are consid-
ered together with a complete ZKP system, e.g., in [HK20a]. We follow a similar
approach: our ZK-ORAM construction is modular, but we prove security of the
complete ZKP system, implementing arithmetic circuit with RAM access. Based
on this, we then motivate and present a ZK ORAM definition for a specific exe-
cution environment.

Our approach. We use the [JKO13] ZK framework, which converts any sound,
correct, and verifiable garbling scheme into a malicious-verifier ZKP.

1.1 High Level Intuition of Our Approach

Informally, ORAM is an object implementing a persistent memory. The RAM
is initialized and accessed by a computation, such as an arithmetic circuit. ZK
ORAM and the computation must together realize a secure ZKP system.

P and V evaluate the proof circuit or program by jointly processing it gate-
by-gate. The validity of the proof is ensured by the fact that each circuit wire
holds an authenticated secret share that P cannot forge.

Our prover P stores the RAM locally on her system, but the authenticated
contents are masked by one-time-pad masks chosen by V. Because P stores the
RAM locally and because she knows the RAM access order, she can directly
access each requested index. From here, the crucial problem is that each RAM
slot is masked by a distinct value chosen by V. To ensure V, who does not know
the access order, can authenticate a value read from the RAM, the value must
have a mask that is independent of the accessed index. Thus, RAM essentially
reduces to ‘aligning’ masks without leaking the RAM access order to V. We
arrange mask alignment by allowing P to authentically and obliviously permute
V’s chosen masks into a desired order.

For a RAM with n slots, a single permutation on 2n elements suffices to
support the next n accesses. Using a permutation network, this can be achieved
by 2n log n OTs. Thus, each access consumes amortized 2 log n OTs.

PrORAM 497

1.2 Contribution

We construct a private-coin ZK ORAM, PrORAM, that uses only 2 log n OTs
per access, while previous ZK ORAM has cost 1/2 log2 n. We instantiate our
ORAM in the [JKO13] ZK framework, resulting in a ZKP protocol with 2 rounds
(4 flows) of communication when using standard OT, such as [KOS15].2

– We present PrORAM in technical detail, and prove it correct.
– We integrate PrORAM into the arithmetic ZK protocol of [HK20a]. Thus,

our construction allows proofs of arbitrary arithmetic statements encoded as
circuits with access to a highly efficient RAM. Note, [HK20a]’s ZK virtual
machine is a circuit; our ORAM can be directly plugged in their ZK VM.

– We formalize the resulting construction in the [JKO13] garbled-circuit based
ZK proof framework and prove the system correct and secure.

– We propose a definition of ZK ORAM for a specific execution environment.
Security of our ZKP system implies ZK ORAM security of PrORAM.

– We implemented our approach in C++ and we explore its concrete perfor-
mance. As compared to BubbleRAM [HK20a], a state-of-the-art ORAM for
the same setting, and for size 220 RAMs, PrORAM improves communication
by >4× and runs >10× faster on a commodity laptop. Our more signifi-
cant computation improvement follows from the fact that our algorithms are
friendlier to cache than BubbleRAM’s (see Sect. 9).

2 Related Work

Our contribution is an efficient ORAM for an interactive Zero Knowledge pro-
tocol. In our review of related work, we discuss both ZK protocols and ORAMs.
For lack of space, we postpone the detailed discussion of related work to Sup-
plementary Material (Sect. 10). Here we provide comparison with prior work in
the setting of concretely efficient interactive ZK.

Consider the prover P, interacting with V, wishing to convince him, that
she, P, holds a satisfying assignment to a circuit. One line of work builds linear-
sized proofs [JKO13,FNO15,HK20c,HK20a,WYKW20]. This line of work is
attractive because it features costs that scale linearly in the circuit size with
low constants. Thus, if P and V wish to finish a proof as fast as possible, these
constructions are excellent choices.

[JKO13] was the first work to construct concretely efficient proofs of arbi-
trary circuits by reducing ZKPs to garbled circuits (GCs). Recent work [HK20a]
proposed a concretely efficient (running at 2.1 KHz on a commodity laptop)
ZKP system for RAM programs, and a ZK ORAM, BubbleRAM. BubbleRAM
has amortized complexity 1/2 log2 n per access of an array of n elements.

2 In our implementation, we use Ferret OT [YWL+20], which greatly improves com-
munication. Ferret processes OTs in very large chunks, requiring additional rounds
for each next chunk. This round complexity increase is small and contributes little
to total runtime. E.g., in concrete terms, two added rounds give ≈223 OTs.

498 D. Heath and V. Kolesnikov

Our ZK ORAM PrORAM is built to work with the in [HK20a]’s arithmetic
protocol. PrORAM improves performance of ZK ORAM to 2 log n, thus asymp-
totically improving over BubbleRAM.

Recently, BubbleCache [HYDK21] enhanced BubbleRAM by adding multi-
level ORAM caching. The idea is to “spread out” the BubbleRAM schedule and
hope for the best (i.e., that the required array element won’t be needed too soon,
in which case a cache miss occurs, with a corresponding performance penalty).
BubbleCache has worse worst-case performance than BubbleRAM, and hence
PrORAM correspondingly improves over BubbleCache as well. See Sect. 9 for an
expanded comparison between PrORAM and BubbleCache.

3 Notation

– P is the prover. We refer to P by she, her, hers, etc.
– V is the verifier. We refer to V by he, him, his, etc.
– σ is the statistical security parameter (e.g., 40).
– κ is the computational security parameter (e.g., 128).
– x ∈$ S denotes that the value x is drawn uniformly from the set S.
– 〈x, y〉 denotes a pair of values where x is held by V and y is held by P.
– We write a � b to denote that a is defined to be b.
– p denotes a prime integer.
– We work with authenticated sharings of values held between V and P. The

authentic sharing of a value x ∈ Zp is denoted by �x�. We define authentic
sharings and an algebra over such sharings in Sect. 4.1. A sharing consists of
two shares, one held by V and one by P.

– Authenticated sharings use uniform masks chosen by V. It is sometimes con-
venient to make this mask explicit. �x�M is an authenticated share of x that
uses the mask M (see Sect. 4.3).

– We also work with standard additive sharings. We denote the additive sharing
of a value x ∈ Zp by (|x|). Additive sharings are discussed in Sect. 4.4.

– We view RAMs as arrays of values, and hence work extensively with arrays:
• In general we use capital variables to denote arrays, e.g. A.
• When clear from context, n denotes the number of array slots. When

needed for precision, we use |A| to denote the number of array slots in A.
• We consider arrays where each array slot may hold more than one integral

value. When clear from context, s denotes the slot size, i.e., the number
of integer values stored in each array slot.
Flexibly sized array slots both allow arrays of complex objects and also
are crucial for preventing P from accessing an arbitrary RAM slot rather
than the program-dictated slot: we store an explicit RAM index in each
slot and perform an equality check as part of the ZK proof.

• The set (Zs
p)

n denotes the prime field arrays of n slots each with size s.
• A[i] denotes the value stored in the ith slot of A. We use zero-based

indexing.
• A[i := x] denotes an array update. The expression A[i := x] is a new

array whose contents are identical to A except that slot i is set to x.

PrORAM 499

This notation does not denote a program statement that mutates an
array in computer memory, but rather denotes the construction of a fresh
mathematical object.

• When clear from context, we extend notation over field elements to arrays.
For example, if A and B are two arrays of field elements with matching
length and slot size, A + B denotes the array containing the pointwise
addition of the contents. We similarly extend share notation to arrays, �A�
denotes an array where each element is an authentic sharing. We also extend
array access notation: �A[i]� is the sharing of the ith element of array A.

• If i ≤ j, then A[i..j] denotes the subarray of elements A[i]..A[j − 1]. The
subarray does not include the jth element. We write A[i..] to denote the
subarray starting from index i and containing all subsequent elements of A.

• [·] denotes the empty array. [a] denotes an array holding only the value a.
• We sometimes concatenate arrays. A | B is the composite array containing

each element of A followed by each element of B.
– We work with permutations that map points in time to array locations being

accessed. We represent such permutations by arrays over the natural numbers
such that for a given permutation π, π[t] = i indicates that location i is
accessed at time t.

– It will be convenient to keep track of a complementary view of the access
order that we refer to as a timetable. A timetable T is an array over the
natural numbers such that T [i] = t indicates that location i was last written
at time t. In general, a timetable is not a permutation.

4 Preliminaries

In this section, we present technical background to our work needed to under-
stand our contribution. In particular, we review [HK20a]’s arithmetic ZK proto-
col and discuss permutation networks.

4.1 Authenticated Share Algebra

We now review authenticated secret shares and the operations they support.
Our ORAM is built on this share algebra. We use [HK20a]’s efficient arithmetic
protocol, where the parties operate over shares using a combination of local
operations and OT. Crucially, although the parties compute using OT, each of
P’s OT inputs can be precomputed from her proof witness. Thus, all OTs can
be executed in parallel, and the resulting protocol runs in constant rounds.

Authenticated Shares. In the protocol, P and V hold authenticated sharings
of values in a field Zp for a σ-bit prime p (our implementation instantiates p
as 240 − 87, the largest 40 bit prime). An authenticated sharing consists of two
shares, one held by V and one by P. We denote a sharing where V’s share is
s ∈ Zp and P’s share is t ∈ Zp by writing 〈s, t〉. At the start of the protocol,
V samples a non-zero global value Δ ∈$ Z

×
p . Consider a sharing 〈X,xΔ − X〉

500 D. Heath and V. Kolesnikov

where X ∈ Zp is chosen by V. A sharing of this form is a valid sharing of the
semantic value x ∈ Zp. We use the shorthand �x� to denote a valid sharing:

�x� � 〈X,xΔ − X〉

Sharings have two key properties:

1. V’s share gives no information about the semantic value. This holds trivially:
V’s share is independent of x.

2. P’s share is ‘unforgeable’: P cannot use xΔ − X to construct yΔ − X for
y �= x. We ensure this by hiding from P both the additive mask X and the
authentication value Δ. This, combined with the fact that (1) the multiples
of Δ are uniformly distributed over the field, and (2) the chosen prime p is
large enough to achieve our desired security ensures that P can forge �y� only
by guessing yΔ − X, which only succeeds with probability 1

p−1 .

Opening shares. P must, at distinguished parts of the circuit, open her shares
to V. Let �x� be a valid authenticated sharing. When the two parties agree to
open a share, we require that V knows the expected value x. This information
is dictated by the circuit; thus P opening a share to V proves that the share
represents a specific constant value. To complete the opening, P sends her share
xΔ − X to V, and V checks that the share is indeed valid (recall, V knows Δ
and X). For complex proofs, P might open many shares to V. Thus, [HK20a]
adds a simple optimization: rather than sending each share separately, P instead
accumulates a hash digest of all opened shares and sends this to V. V can locally
reconstruct the same hash and check that the two are equal. Thus, P sends only
κ bits to open an arbitrary number of sharings.

Linear Operations. We can induce a vector space structure over authenticated
sharings where sharings are vectors and publicly agreed constants are scalars.
The vector space operations (addition, subtraction, and scaling by public con-
stants) allow the parties to locally perform linear operations over sharings:

– To compute an authenticated sharing of a sum of shares, parties locally add
their respective shares:

�x� + �y� = 〈X,xΔ − X〉 + 〈Y, yΔ − Y 〉
� 〈X + Y, (x + y)Δ − (X + Y)〉 = �x + y�

To authentically subtract sharings, parties subtract their respective shares.
– To authentically scale a sharing by a public constant, the parties locally

multiply their respective shares by the constant:

c�x� = c〈X,xΔ − X〉 � 〈cX, cxΔ − cX〉 = �cx�

The parties also have access to a unit vector:

�1� � 〈Δ, 0〉

Here, the sharing mask X is 0 − Δ. Note that the mask X is not known to
P because P does not know Δ. With this unit vector, the parties can locally
construct authenticated sharings of arbitrary publicly agreed values.

PrORAM 501

Vector-Scalar Multiplication. It is not sufficient to only consider linear oper-
ations. We also need a form of non-linear operation; we use a form of vector-scalar
multiplication where the scalar is known to be in {0, 1}, but is unknown to V.
(Vector-scalar multiplication where P chooses scalar a ∈ Zp can be achieved by
�log p� applications of this special form.)

Let x ∈ {0, 1} be held by P and let y1, ..., yn ∈ Zp be a vector of field
elements. Let the parties hold sharings �y1�, ..., �yn� and suppose they wish to
compute �xy1�, ..., �xyn� (while P’s input x is not authenticated, it could be
verified later by an appropriately applied opening). First, P locally multiplies
her shares by x. Thus the parties together hold:

〈Y1, xy1Δ − xY1〉, ..., 〈Yn, xynΔ − xYn〉

These intermediate sharings are invalid: the shares in the ith sharing do not sum
to yiΔ. To resolve this, the parties participate in a single 1-out-of-2 OT where V
acts as the sender. V uniformly draws n values Y ′

i ∈$ Zp and allows P to choose
between the following two vectors:

Y ′
1 , ..., Y

′
n Y ′

1 − Y1, ..., Y
′
n − Yn (1)

P chooses based on x and receives as output the vector Y ′
1 − xY1, ..., Y

′
n − xYn.

The parties can now compute a valid authenticated sharing for each vector index:

〈Y ′
i , xyiΔ − xYi − (Y ′

i − xYi)〉 = 〈Y ′
i , xyiΔ − Y ′

i 〉 = �xyi�

A vector-scalar multiplication of a length n vector requires a 1-out-of-2 OT of
n�log p�-bit secrets. In practice, we instantiate multiplication with the Ferret OT
technique [YWL+20].

4.2 Implementing Standard Circuit Gates

Typical circuits include multiplication gates, not special vector-scalar gates
where P chooses the scalar, as described above. There is a simple reduction from
standard multiplication gates to [HK20a]’s vector-scalar multiplication gates and
opening gates (an opening gate on input �x� simply requires P to open her
share to V, see Sect. 4.1): To authentically compute �ab� from inputs �a� and
�b�, instead compute a′�1, b� 	→ �a′, a′b� by vector-scalar multiplication where P
chooses a′ freely, and then check that the �a − a′� = �0� using an opening gate.
This check forces P to choose a′ = a, and prevents her from multiplying incor-
rectly. We choose to keep vector-scalar gates and opening gates because these
gates are highly efficient and because this reduction is simple. Each standard
multiplication gate uses one vector-scalar gate and one opening gate.

Vector-scalar gates also allow P to provide input bits. To input P’s private
bit x, the parties compute x�1� = �x� using a vector-scalar gate.

Other standard gates, e.g. addition and subtraction, are directly handled by
the construction and do not require opening gates.

502 D. Heath and V. Kolesnikov

4.3 Explicit-Mask Sharings

Section 4.1 introduced an algebra over authenticated sharings. In the algebra as
presented so far, we consider tuples of the form 〈X,xΔ − X〉 where X ∈$ Zp is
a uniform mask. For the purposes of our construction, it will be convenient to
also consider sharings that use a specific mask chosen by V. Thus, we introduce
new notation for a sharing masked by a particular value:

�x�M � 〈M,xΔ − M〉

That is, �x�M is a sharing of x where the parties use the specific mask M , rather
than an arbitrary mask.

We extend this notation to arrays: if A,B are equal-length arrays of Zp

elements, then �A�B denotes an authentic share of A where each mask is in B:

�A[i]�B = 〈B[i], A[i]Δ − B[i]〉

For convenience, we extend this notation so that we can mask a short array by
a long array: the above array notation holds even if B is longer than A.

4.4 Standard Additive Sharings

Our construction relies on the parties’ ability to manipulate secret masks chosen
by V and unknown to P. The algebra presented in Sect. 4.1 is not suitable,
because it only supports sharings where P knows in cleartext each semantic
value. We therefore also consider more traditional additive secret shares where
neither party knows the underlying value.

Let x ∈ Zp be an arbitrary value. In an additive share of x, V holds a uniform
mask M ∈ Zp and P holds x − M : together the parties hold 〈M,x − M〉. We
use the shorthand (|x|) to denote such a pair:

(|x|) � 〈X,x − X〉

The difference between authenticated sharings (Sect. 4.1) and additive sharings
is that P does not know semantic values corresponding to additive sharings.

The parties can operate over additive sharings in the same way they can
authenticated sharings: namely, we induce a vector space structure over addi-
tive sharings such that parties can add, subtract, multiply by public constants,
and construct sharings of constants. Additionally, the parties can operate non-
linearly by vector-scalar multiplication where P chooses the scalar. The needed
protocol is identical to the vector-scalar protocol reviewed in Sect. 4.1.

Finally, V can construct a sharing (|x|) for a value x ∈ Zp that he chooses.
To do so, V simply samples a uniform mask M ∈$ Zp and sends to P x − M .

4.5 Additive Sharing Permutations Programmed by P
In our construction, V chooses random masks that are used to authenticate the
RAM content. P is then given the opportunity to arrange these masks as she

PrORAM 503

likes so that she can implement the RAM access order. So, we need a capability
by which P can rearrange V’s chosen masks. The parties thus construct additive
shares of the masks which can then be manipulated by P.

More precisely, V chooses an array of random masks K ∈$ (Zs
p)

n, and the
random masks are shared such that the parties hold (|K|). Now, the parties
must compute (|π(K)|) for π chosen by P. To apply an arbitrary permutation,
we employ a particular circuit construction called a Waksman permutation net-
work [Wak68]. This recursively constructed circuit builds a permutation of n
elements from many permutations of two elements: i.e., from ‘swap’ gates. In
our context, a swap gate allows P to conditionally swap two shares (|a|) and (|b|)
based on her private bit r ∈ {0, 1}. Precisely, the gate is specified as follows:

swap(r, a, b) �
{

(a, b) if r = 0
(b, a) otherwise

To implement this gate, the parties compute a conditional difference (|δ|) �
r(|a − b|) and output the pair (|a − δ, b + δ|). A swap gate is computed by a single
vector-scalar multiplication and linear operations. The gate can be computed
even though P knows neither a nor b.

A permutation network on n elements (where n is a power of two) consumes
n log n − n + 1 swap gates; hence we use n log n − n + 1 oblivious transfers.

5 Technical Overview

In this section, we give high level intuition sufficient to understand our approach.
ORAM is an object implementing a persistent memory array. The RAM

is initialized and accessed by a computation, such as Boolean or arithmetic
circuit, or a CPU built from such circuits. ZK ORAM and the computation
must together realize a secure ZKP system. We formally specify the PrORAM
object and its access functions, and prove correctness of its operation in Sect. 6;
we prove security of our ZKP system in Sect. 7; we define (and prove) security
our ZK ORAM in Sect. 7.4.

Informally, there are three attacks P may attempt on the RAM: 1) modify
a memory value by forging an authentication code, 2) return a stale value, 3)
return a valid authenticated value from a wrong location. The last attack is
easily prevented by storing each array index as an authenticated value alongside
the corresponding RAM element, and checking it on each access, a standard
technique used, e.g., in [HK20a]. In this overview and in the formal constructions
we focus on issue 1) value modification. Preventing the return of stale values is
achieved by enforcing a key invariant that a valid authenticated element cannot
be stored in more than one place; we point this aspect out as we discuss how to
ensure value integrity.

As a thought experiment, suppose that V and P both know the array access
order; we will soon remove this restriction. That is, they know a priori the
locations of each array read and write. Further, suppose that each array element

504 D. Heath and V. Kolesnikov

is stored as an authenticated secret share (Sect. 4.1) held by both parties. That
is, for an array A, its value at each index i is formatted as follows:

�A[i]� = 〈K[i], A[i]Δ − K[i]〉,

where K[i] is a uniform mask chosen by V. Suppose on the jth array access, the
parties wish to access array slot i. This case is easy: each player can simply read
from RAM slot i in their local memory, and use the already-authenticated array
element as needed in the proof.

Of course, we want to access RAM in an order unknown to V. Here we run
into a problem: on an access of position i, P can still read A[i]Δ − K[i] from
her local array, but V does not have sufficient information to align the matching
mask K[i]. Further, V cannot be allowed to learn the accessed position i, since
this would give her information about the access order.

Instead of giving K[i] to V, we instead allow V to use a fresh mask M [j] and
convey the appropriate matching mask to P. Specifically, we arrange that P will
obtain K[i] − M [j]. Given this information, the parties compute:

〈M [j], (A[i]Δ − K[i]) + (K[i] − M [j])〉 = 〈M [j], A[i]Δ − M [j]〉 = �A[i]�

This authenticated secret share can be used as a wire in the ZK circuit.
The remaining task is to show how these mask differences are securely con-

veyed to P. We present our solution in several steps. First, we present solutions
that allow for RAMs with constrained access orders; these initial constructions
do not allow arbitrary RAM reads/writes. Then, we use these constrained con-
structions as building blocks upon which we achieve general purpose RAM.

Read-once RAM. As a simplifying assumption, consider an n-element RAM
that is preloaded with authenticated shares. Further, suppose the program will
read each RAM slot exactly once, though the order in which these reads occur
is unconstrained and is known to P. In this case, the RAM’s read order can be
described by a permutation π on n elements that maps the time of each access
to the accessed array index.

If we consider all n reads simultaneously, then our problem becomes one
of delivering to P a sequence of n mask differences K[i] − M [j], while hiding
the access order from V. To do so, V distributes to the two parties additive
secret shares of the elements of the array of masks K: the parties hold (|K|).
Let π specify the permutation on A defining the RAM access order. The parties
securely compute (|π(K)|) using the permutation protocol described in Sect. 4.5.
Informally, this permutation aligns the elements of K, which were originally in
array order, with the order of accesses.

If we recall the syntax of an additive share (|π(K)[j]|), we find that P’s share
has nearly the form that we need:

(|π(K)[j]|) = 〈Q[j], π(K)[j] − Q[j]〉 = 〈Q[j],K[i] − Q[j]〉,

where Q[j] is a uniform mask.

PrORAM 505

So far, the access masks M are unconstrained. Thus, V simply sets M [j] =
Q[j], and now each of P’s share of the permuted array has exactly the form
needed to align her share with that of V. This implements read-once RAM: the
parties can read an array of n elements in any order specified by P.

swordRAM. Read-once RAM assumes that the array is preloaded with values.
We also need a capability to write new RAM elements. Thus, we extend the
above read-once RAM to allow for writes. However, the write capability we add
is highly constrained : the parties must agree on and both know the order in
which the array contents are written. For concreteness, we use a sequential write
order, meaning that the jth write stores an element in the jth array slot. Array
reads and writes may be arbitrarily interspersed with the restriction that each
read occurs after the write to the accessed slot. As with our read-once RAM, we
enforce that the program must read each array slot exactly once. We call this
intermediate RAM a swordRAM (Sequential-Write, One-time ReaD RAM).

With the idea for read-once RAMs established, swordRAM is trivial. As
argued in the beginning of this section, if each party knows the RAM access
order, our task is easy: the parties trivially obtain matching authentication codes.
Thus, swordRAM writes are simple, since both parties agree that the elements
should be written sequentially, and hence the order is known to each. There is
one subtlety in aligning the authentication masks used in RAM writes with the
array slot masks K[i], but this is easily addressed. Specifically, V simply sends
the difference between the two masks to P on each RAM write.

General Purpose ZK ORAM. swordRAMs are highly restrictive. Neverthe-
less, there is an efficient reduction from general purpose RAM to swordRAM. We
call this reduction PrORAM. A PrORAM of n elements is built on a swordRAM
of 2n elements. There is no single one-to-one mapping from PrORAM slots to
swordRAM slots. Rather, the swordRAM should be viewed as a running log of
the PrORAM accesses; each PrORAM access corresponds to a single write and
a single read in the swordRAM. At all times, we ensure that there are exactly
n swordRAM slots that have been written to but not yet read, and it is exactly
these n slots that hold the current PrORAM content. To track the relationship
between PrORAM slots and swordRAM slots, the prover P maintains a clear-
text data structure that we refer to as the timetable. A timetable T maps each
PrORAM index i to the swordRAM slot where that element is currently stored.

The PrORAM is maintained as follows:

– To initialize a size-n PrORAM we perform a sequence of n writes to a fresh
capacity-2n swordRAM. Correspondingly, P initializes T : at initialization,
each PrORAM slot i is stored in swordRAM slot i.

– To access RAM slot i, P first looks up T [i] and reads from the correspond-
ing swordRAM slot. Because of swordRAM’s tight restrictions, this read
‘exhausts’ the accessed swordRAM slot, and so the parties must write back
an element to the array. In the case of RAM write, the write-back element will
be the written element. In the case of a RAM read, the write-back element
will be the same element that was read. P then updates T , indicating that
PrORAM slot i is now stored in the newly written swordRAM slot.

506 D. Heath and V. Kolesnikov

Fig. 1. Initializing an empty capacity-n swordRAM. The parties output a swordRAM
that encodes an empty array and that is ready for n writes and n reads. The n reads
will happen as specified by the the access order π.

– Because the number of reads/writes to a swordRAM are bounded, we must
periodically refresh the PrORAM. Each PrORAM access consumes one
swordRAM read and one swordRAM write. After n PrORAM accesses, we
exhaust all 2n available swordRAM writes (recall, n writes were used to ini-
tialize) and n of the available 2n swordRAM reads. The remaining n reads
suffice for us to fetch the current PrORAM content and store it into a freshly
initialized swordRAM. By doing so, we “refresh” the PrORAM and are ready
for n more accesses.

The crucial point is that because P knows the entire PrORAM access order
O in advance, she can play out the above reduction “in her head” to obtain the
corresponding read order π for the underlying swordRAM. π is then used to
initialize a swordRAM that will precisely service the access order O.

Efficiency. PrORAM is efficient. Essentially the only cost is in permuting addi-
tive shares of the array K. For every n PrORAM accesses we initialize 2n swor-
dRAM reads and thus consume a permutation of 2n masks. A permutation of
2n elements costs 2n log 2n − 2n + 1 OTs via a permutation network, and hence
each PrORAM access consumes amortized 2 log n OTs.

The remainder of this paper presents the above in technical detail.

6 PrORAM Formal Constructions

In this section, we present PrORAM in formal detail. Section 7 formalizes our
construction’s security.

PrORAM 507

Fig. 2. Reading from a swordRAM. This procedure does not take an index as an
argument. Rather, the index is defined by the permutation π chosen at initialization
(cf. Fig. 1).

Fig. 3. Writing to a swordRAM. Recall that writes to swordRAM are sequential : the
shared element a is appended to the array A.

6.1 swordRAM

Recall from Sect. 5 that we decompose the problem of building a RAM into two
parts: first we construct a ‘sequential write, one-time read RAM’ (swordRAM)

508 D. Heath and V. Kolesnikov

that only supports one read and one write per RAM slot, and where writes
must occur in sequential order. Then we build a general purpose ORAM on
top of swordRAM. We therefore start by defining swordRAM. Syntactically, a
capacity-n swordRAM is a six-tuple:

(A, π, r,K, �A�K , (|π(K)|))

Each of these elements are as follows:

– A ∈ (Zs
p)

∗ denotes the cleartext array encoded by the swordRAM. As we
write to the swordRAM, A will grow in length. A is known only to P.

– π is a permutation on n elements. π denotes the read order of the swordRAM.
π is known only to P. Note, the read order does not fully specify the access
order, as writes may be arbitrarily interspersed with the constraint that each
element is written before it is read.

– r ∈ N denotes the number of swordRAM reads that have occurred so far. In
a valid swordRAM, r ≤ |A| ≤ n. Both P and V maintain local copies of r.

– K ∈$ (Zs
p)

n is an n-element array with slots of size s, i.e. each slot K holds
s values. K[i] stores uniform masks used as swordRAM authenticators. K[i]
is drawn uniformly by V and is unknown to P. We need more than one mask
per swordRAM slot to support arrays of more general objects. In particular,
in our RAMs we operate with value-index tuples (v, i), which allows us to
perform an index check, preventing P from providing an invalid permutation
and illegally substituting one RAM value for another.
Although we use s masks for a single RAM slot, we are careful that any
operations the parties perform are applied to the masks as a unit; hence,
there is no opportunity for a cheating P to ‘break apart’ the contents within
a single RAM slot.

– �A�K is the authenticated secret sharing of A masked by K. Informally, this
is the authenticated array. On a read, P indexes directly into this array and
then aligns her share with V’s (as described in Sect. 5).

– (|π(K)|) is an additive secret sharing of the array K permuted according to
π. These sharings are the values that P needs to align her shares with V’s (as
described in Sect. 5).

With syntax established, we describe operations over swordRAMs.

Initialize. Figure 1 lists the procedure for constructing a fresh swordRAM. At
initialization, the encoded array A is empty (i.e., has size 0), so most of the
swordRAM components are trivially initialized. The objective of initialization is
to prepare for all n future reads. To do so, P provides as input the read order
permutation π and V chooses a mask array K. The parties compute (|π(K)|) via
a permutation network (Sect. 4.5). This permutation provides to P the specific
values that she needs to align her shares with V’s on each read. We emphasize
that swordRAM permutations account for almost all of our ORAM’s cost.

PrORAM 509

Read. swordRAM reads (Fig. 2) are entirely local operations: indeed, initializa-
tion already properly arranged that P will receive the correct mask alignment
values on each read. P directly accesses the correct index of �A�K and then
aligns her share with V’s using (|π(K)|)[r].

Write. swordRAM writes (Fig. 3) append values to the array A. The swordRAM
authenticated array should be masked by the specific array K, but the parties
write an arbitrary share �a�. To properly store this value, V sends a difference
between the mask on �a� and the target mask in K. P uses this value to align
her share such that it can be properly appended.

As an aside, swordRAM performs no checking on the order in which P decides
to read values: P freely chooses the read-order π. However, we next will per-
form a reduction from general purpose RAM to swordRAM. In this reduction,
we explicitly include copies of each index identifier in the swordRAM. By this
mechanism, the reduction fully constrains the permutation π, since the parties
will check that each read yields the expected index identifier.

It will be convenient to abstract over some of the swordRAM detail. We give
a shorthand for a swordRAM that encodes an array A with r remaining reads
given by a read order π. Specifically we write ρ(A, π, r):

ρ(A, π, r) � (A, π, r,K, �A�K , (|π(K)|))

where K ∈$ (Zs
p)

n is uniform and the masks on (|π(K)|) are uniform.

6.2 swordRAM to PrORAM

Recall that we implement general purpose RAM by a reduction to swordRAM.
We call this reduction PrORAM.

At a high level, a PrORAM implementing a size-n array operates in blocks of
n accesses. Each block is handled by a distinct data structure, which is updated
on each of the n accesses. After n accesses, we create a fresh data structure
to support the next n accesses. We initialize the new structure by moving the
contents of the old one, and then we retire the old data structure, and so on.

Each data structure is a capacity-2n swordRAM (with accompanying meta-
data), which is initialized to contain the (current state of the) array A in the
canonical order A[0], ..., A[n − 1]. Of course, to initialize a swordRAM, we need
an appropriate read order π. This permutation π must achieve two tasks: (1) it
must encode the order of the next n accesses and (2) it must encode the order
of the n reads needed to copy its content into the next swordRAM block in
canonical order before being retired. That is, the first n (of the 2n total) reads
of the capacity-2n swordRAM service the n PrORAM requests for data, and the
next n accesses read the array A as part of moving to the next PrORAM data
structure. In total, there are 2n swordRAM reads, which can be encoded in a
permutation π over 2n elements. We formally describe how to construct π based
on the array’s access order in Sect. 6.3.

510 D. Heath and V. Kolesnikov

PrORAM Syntax. We denote a PrORAM that encodes a cleartext array A
with access order O by writing A, O . A size-n PrORAM is a four-tuple:

A, O � (A,O, ρ(H,π, r), T)

These elements are as follows:

– A ∈ (Zs
p)

n is the cleartext content of the PrORAM. A is known only to P.
– O is a list of all indexes accessed by the RAM and is known as the access order.

O is maintained in cleartext by P and is unknown to V. P can precompute
O by running the proof in cleartext and logging all RAM accesses.
For simplicity, assume O initially has length that is a multiple of n. P can
pad O with extra zeros to reach the next multiple of n.
As we perform accesses, the access order shrinks: each access removes the first
element of O to reflect that the access has already been handled.

– ρ(H,π, r) is a capacity-2n swordRAM over an array H that we refer to as the
log. Informally, the swordRAM logs each PrORAM access. The swordRAM’s
remaining reads π[r..] correspond to O. ρ(H,π, r) is the authenticated compo-
nent of PrORAM, and PrORAM’s array accesses are ultimately authenticated
via the mechanisms of this swordRAM.

– T is the timetable maintained in cleartext by P. The timetable maps each
array index to the last timestep when that index was accessed. That is, for
each array index i, T [i] is a pointer into the log denoting where A[i] was last
logged. The timetable is unknown to V.

6.3 Scheduling the Underlying swordRAM

Recall, we are working with an n-element PrORAM that facilitates operations on
an n-element array A. In this section, we formally describe how to derive a swor-
dRAM read order π given a length-n PrORAM access order. Recall from Sect. 6.2
that the permutation π must account both for the block of the next n PrORAM
accesses and for the reads needed to copy array contents to a fresh PrORAM
such that we can support more accesses.

Figure 4 presents schedule, an algorithm that computes π, the order in which
the underlying swordRAM will obliviously read the elements of the log. schedule
takes as input the given access order O. swordRAM writes are sequential, and
need not be scheduled, though the read schedule does depend on writes.

As explained in Sect. 6.2, each PrORAM data structure A, O is initialized
with the array A in canonical order (initialization is discussed in Sect. 6.5).

To explain schedule, we first discuss how a single PrORAM access is mapped
to the swordRAM. At initialization, the underlying capacity-2n swordRAM
stores all n elements of A in its first n available slots; the remaining n slots
are not yet written and no reads have yet been used. Suppose that P wishes
to read PrORAM slot A[i]. The swordRAM’s read order permutation π should
reflect this access: the first entry of π should indicate that slot i is read at time
0 (i.e., π[0] = i). Recall that swordRAM slots can be read only once. Therefore,

PrORAM 511

Fig. 4. Scheduling swordRAM accesses. schedule takes as an argument a PrORAM
access order O and outputs a corresponding swordRAM read order permutation π.
PrORAM supports schedules of arbitrary length, but schedule only sets up the next n
accesses in the schedule, and hence only looks at the first n entries of O.
schedule delegates to a more general procedure schedule − suffix which generates a
length r + n suffix of a read order permutation. While this more general call is never
exercised in our execution (except directly via schedule), we use it to define validity of
a general PrORAM state, in which some accesses may have occurred: a valid PrORAM
must have a schedule equal to one (correctly) generated by schedule − suffix.

to allow the PrORAM slot A[i] to be read a second time, we must write back
a value to the swordRAM. Because swordRAM writes occur sequentially, this
write will place the new value into slot n. To account for this write, we should
keep track of the new location of A[i] which is done using a timetable T . As a
side remark, T is initialized to [0, 1, ..., n − 1], reflecting the fact that initially
each element of A is stored in the swordRAM in canonical order.

Scheduling many accesses simply repeatedly applies the following basic pro-
cedure for accesses j = 0, 1, . . . , n−1: Let i be the queried index on access j. We

512 D. Heath and V. Kolesnikov

(1) look up the location of element i in the swordRAM based on T , (2) update
π such that slot i is read at time j (i.e., π[j] = i), (3) allocate the next available
swordRAM write slot as the fresh location for element i, (4) update T to record
that element i is stored in the fresh location.

schedule (Fig. 4) implements this procedure. schedule accepts an access order
O and outputs a permutation on 2n elements (encoded as an array) suitable for
a swordRAM.

After allocating reads for the n accesses, schedule indicates that the last n
entries in the permutation should match the current timetable. This detail is
used to move the contents of an old data structure into a new one: after n
accesses, we read the array contents in canonical order. The order of these last
n reads is exactly what is stored in the final state of T .

schedule highlights the key points of the reduction from RAM to swordRAM:
map each array access to a swordRAM slot and continually update which array
element is where. Of course, the reader must keep in mind the duality of our pre-
sentation as an iterative processing in response to queries, and the precomputed
non-interactive one-shot schedule chosen before each block of n accesses.

6.4 PrORAM Validity

Before we specify PrORAM operations, we establish a validity condition that
connects the PrORAM to its underlying swordRAM. This condition is the invari-
ant that allows us to prove PrORAM is correct over many accesses.

As explained in Sect. 5, the swordRAM should be viewed as a log of the
accesses to the PrORAM. PrORAM validity ensures that its swordRAM both
(1) stores a log that properly reflects the PrORAM’s current content and (2)
has a read order that reflects PrORAM’s future accesses.

Definition 1 (PrORAM Validity). Let A, O = (A,O, ρ(H π, r), T) be a
size-n PrORAM. We say that this PrORAM is valid if:
1. For each PrORAM index i:

H[T [i]] = (A[i], i)

2. Let w � |H| be the number of elements written to the underlying swordRAM:

schedule − suffix(O, T , n − w) = π[r..]

Less formally, these two conditions ensure the following:
1. If we look up each element’s location in the timetable and then find each

location in the log, then we recover the array A. This ensures that the swor-
dRAM properly stores the array A. Note, we store each element A[i] in a
pair with its index i. This allows RAM accesses to check that the queried
index matches the stored index, ensuring that P cannot substitute one RAM
element for another.

2. If we construct a partial swordRAM schedule from the access order and the
current timetable, then we obtain a new copy of the remaining swordRAM
read order. This ensures that the remaining swordRAM reads properly reflect
the array access order O.

PrORAM 513

6.5 PrORAM Operations

Figures 5, 6 and 7 list the operations over PrORAMs:

– Figure 5 indicates how a new PrORAM is initialized. The parties select an
array of n sharings �A� as the initial array state, then sequentially write these
elements into a fresh swordRAM. The procedure also sets up the swordRAM
schedule and P’s timetable T . The swordRAM schedule is set using schedule,
and at initialization each PrORAM slot lives in the corresponding swordRAM
slot: T is initialized to [0, 1, ..., n − 1].

– Figure 6 indicates how the parties access a PrORAM index. To access element
i, the parties first read from the underlying swordRAM and retrieve a pair
�A[i], i′�. The parties check that i = i′ by opening P’s share of i − i′. This
check ensures that P cannot substitute one array value for another.

– Figure 7 is a helper procedure that allows the parties to refresh the PrORAM
after every n accesses. To perform this refresh, the parties read the latest
copy of every RAM slot from the swordRAM, then write these values back
into a fresh swordRAM. We call the refresh procedure once every n accesses.

Crucially, each PrORAM operation preserves validity. We argue this formally
in our proof of correctness.

Fig. 5. The PrORAM initialization procedure initialize. initialize takes as arguments (1)
an authenticated size-n array �A� and (2) an access order O. initialize outputs a fresh
PrORAM A, O .

514 D. Heath and V. Kolesnikov

Fig. 6. PrORAM access procedure access. access performs the following functions: (1) it
looks up and outputs the queried element �A[i]�, (2) it computes �f(A[i]� for arbitrary
circuit-encoded function f , and (3) it writes �f(A[i]� back to the array. If O[0] �= i
(that is, if P tries to use a bad read order), then V will abort.

Fig. 7. PrORAM refresh procedure. PrORAM is built on top of swordRAM which
allows only a bounded number of reads/writes. To allow many PrORAM accesses,
we periodically refresh. The refresh procedure simply reads the content of the old
swordRAM into an array, then initializes a fresh PrORAM with the result.

PrORAM 515

Implementing Read and Write. access takes a general function f as an
argument; accessing A[i] also writes back f(A[i]). We quickly show that this is
sufficient to implement the standard read and write array operations:

read(A, O , �i�) � access(A, O , �i�, �x� 	→ �x�)

write(A, O , �i�, �y�) � access(A, O , �i�, �x� 	→ �y�)

To implement read, we call access with the identity function: read simply writes
back the read element. To implement write, we call access with a constant func-
tion that ignores the read element and returns the written element y.

Taking an arbitrary function is flexible. For example, we can implement an
increment function that in-place updates an array slot:

increment(A, O , �i�) � access(A, O , �i�, �x� 	→ �x + 1�)

Thus, we can mutate an array value without using two RAM accesses.

6.6 PrORAM Formal Properties

In this section, we state PrORAM’s formal properties. Due to lack of space, we
defer full proofs of these properties to Supplementary Material.

initialize and access maintain validity:

Theorem 1 (Initialize Correctness). Let �A� be an authenticated share of
an array of n elements and let O be an arbitrary access order over n elements.

initialize(�A�,O) = A, O

where A, O is a valid PrORAM.

Theorem 2 (Access Correctness). Let A, O be a valid n-element PrO-
RAM. Let j � O[0]. Let �i� be a shared RAM index, and let f be a publicly
agreed function. If i = j (i.e., if the shared RAM index matches the access
order), then the following holds:

access(A, O , �i�, f) = (�A[i]�, A[i := f(A[i])], O[1..]),

where A[i := f(A[i])], O[1..] is a valid PrORAM.

In short, we show that the operations update the timetable/schedule and
appropriately make use of swordRAM such that validity is maintained.

PrORAM is also concretely efficient:

Theorem 3 (Access Cost). The procedure access (Fig. 6) invoked on a size-n
PrORAM consumes amortized 2 log n oblivious transfers of length 2σ secrets.
Additionally, each access transmits amortized 8σ bits.

In short, we inspect the PrORAM algorithms for communication cost, then
amortize costs across each block of n accesses.

516 D. Heath and V. Kolesnikov

7 A Complete ZKP System and Security Proofs

Our approach to defining and proving security. PrORAM naturally inte-
grates with ZKP systems based on authenticated shares, such as the ZKP system
of [HK20a]. To define and prove security of a ZK ORAM construction, including
our PrORAM, one needs to set up a general ZK proof environment which can
generate arbitrary RAM query patterns. The ZKP system of [HK20a] provides
a simple, general, and efficient environment. We embed PrORAM directly into
this protocol, and state and prove the security properties of the resulting system.

We list the following benefits from taking this route:

1. We construct a complete PrORAM-based ZKP system.
2. [HK20a], and hence our complete system, is concretely efficient.
3. As discussed next, we can reuse the clean and powerful GC-based ZK frame-

work of [JKO13,FNO15] to compile a garbling scheme into a ZKP system.
4. We obtain a simple formalism that can be easily generalized/plugged in other

systems (separate proofs are required, but often may be modeled on our proof
blueprint).

ZK-ORAM Definition. We stress that while we do not define ZK ORAM
in full generality, a natural and generalizable ORAM definition emerges
(see Sect. 7.4).

7.1 Casting as a Garbling Scheme

Like [HK20a], we cast our system as a Garbling Scheme (GS), and thus are able
to reuse the convenient and powerful framework of [JKO13]. Their framework
plugs a custom GS (satisfying certain requirements) into their protocol; the
instantiated constant round protocol is a malicious-verifier ZKP system.

In the following, we derive notation from [BHR12], but include changes pro-
posed by recent works that separate the circuit’s logical description from GC
material [HK20c,HK20b]. We explicitly include both the GC material M and
the computed circuit C as arguments to our GS functions.

Before continuing, we discuss the correspondence of our system to a garbling
scheme, as this correspondence may a priori be unintuitive; after all, we do not
construct encryptions of logical gates which are the hallmark of garbled circuits.
Nevertheless, our construction does have components that map cleanly to a GS:

Garbled input labels. In a GS, the GC evaluator receives garbled input labels.
These labels are typically encryption keys that correspond to the logical values on
the input wires. The collection of all input labels is called the encoding (denoted
e), and in most protocols the parties run OTs to send a selection of input labels (a
subset corresponding to the player’s input) from the encoding to the evaluator.
Our labels are more naturally understood as authentication keys, rather than
encryption keys. We send particular authentication mask differences via OT to
enable the authentic multiplication of shares (see Sect. 4.1). The collection of all
OT messages used for multiplications forms our encoding e.

PrORAM 517

Garbled material. In a GS, the GC evaluator receives an extra string that
does not depend on her input and is used to evaluate the GC. This string is
called the material (denoted M), and is typically a collection of encrypted truth
tables. While we do not encrypt truth tables, we do send fixed values from V to
P to initialize additive shares and to execute writes to swordRAMs (see Fig. 3).
The collection of these extra messages is our material M .

Garbled output label. Similar to the input encoding e, GSs also require an
output decoding (denoted d). In the [JKO13] framework, d is a single, unforge-
able value that indicates a proof; V simply checks that P indeed constructed d
to become convinced. In our construction, the string d is the hash digest of all
of P’s opened shares (see Sect. 4.1).

Achieving verifiability. The [JKO13] framework requires a GS to be verifiable.
Informally, this provides for a way to “open” the garbled function to prove that
it was constructed correctly. One natural way to achieve this, which we adopt,
is for all of V’s randomness be derived from a seed S. Revealing S allows P to
verify the garbled function. GSs and the [JKO13] framework do not provide a
side channel for V to deliver S to P. Therefore, we use e for this purpose: we
simply XOR secret share S and append the shares to the labels of wire 1 of the
circuit. This way, S remains protected until it is opened by V.

7.2 The [JKO13] ZK Framework

To plug a construction into [JKO13]’s ZK protocol, we must prove that the
construction is a verifiable garbling scheme. A verifiable garbling scheme is a
tuple of six algorithms (see [BHR12,JKO13] for precise syntax and formalization
details):

(ev,Gb,En,Ev,De,Ve)

The first five algorithms define a garbling scheme [BHR12], while the sixth adds
verifiability [JKO13].

A garbling scheme specifies the functionality computed by V and P. V uses
Gb to construct material M , input encoding e, and output decoding d. Gb is
computed by walking through the agreed proof circuit C gate-by-gate. In our
construction, we simplify Gb by ensuring that all random values are chosen
according to a single pseudorandom seed. Next, V uses OT to encode P’s witness
according to e. En specifies what these OTs should accomplish: it maps P’s input
space to a concrete choice of encoding, specifying the particular values in e that
P should receive for each of her inputs. Upon receiving material M and an
encoded witness, P uses Ev to authentically compute the circuit gate-by-gate.
At the end of a ZK proof, P constructs a particular output value which is first
committed and later sent to V. V then calls De, which checks that the received
value is exactly equal to the output decoding d; if not, V aborts.

The steps described so far do not protect P from a cheating V, who might
maliciously construct e and M in order to leak P’s input. Therefore, before

518 D. Heath and V. Kolesnikov

opening her commitment, P rebuilds M , e, and d according to V’s seed (which
is sent after the commitment). P uses these reconstructed values to check that
the messages received from V were honestly constructed. If so, she opens her
commitment; if not, she aborts. Ve describes how P should reconstruct M , e,
and d and how she should check that V did not cheat.

Finally, ev provides a specification against which the correctness of the gar-
bling scheme can be checked: ev describes the cleartext semantics of the circuits
manipulated by the GS.

A verifiable garbling scheme must be correct, sound, and verifiable (defi-
nitions are in Sect. 7).

7.3 Our Garbling Scheme, Its Security, and Our Main Theorem

Our garbling scheme is the arithmetic garbling scheme of [HK20a] augmented
with PrORAM. The arithmetic circuit may arbitrarily issue calls to PrORAM’s
initialize and access functionalities (Figs. 5 and 6).

Construction 1 (Our Garbling Scheme). Our garbling scheme is the six
tuple of algorithms:

(ev,Gb,En,Ev,De,Ve)

described below. Circuits handled by the garbling scheme allow (1) publicly agreed
constant wire values, (2) addition gates, (3) subtraction gates, (4) scalar gates
(which multiply a value by a public constant), (5) vector-scalar multiplication
gates (where the scalar is chosen by P), (6) opening gates (which force P to
prove a share represents a specific constant), (7) array initialization gates, and
(8) array access gates. Circuits thus include two types of wires: (1) algebraic
wires that hold values in Zp and (2) array wires that hold arrays of values in Zp.

Our circuits do not include standard multiplication gates, but recall (from
Sect. 4.2) that standard multiplication gates are easily implemented on top of
vector-scalar multiplication gates and opening gates.

We describe each of our garbling scheme procedures:
ev evaluates the ZK relation in cleartext and implicitly specifies the cleartext

semantics of each gate type. Our gate types have natural semantics, for example
addition gates indeed add their inputs.

Gb processes the circuit gate-by-gate. As it goes, it generates random values,
obtained from expansion of a pseudorandom seed S. The procedure generates
the mask differences that are V’s OT inputs (i.e. the encoding e). Additionally,
Gb generates the material M : when V constructs additive sharings and on swor-
dRAM writes, Gb appends the ‘sent’ component of the sharing to accumulated
string of material. To handle opening gates, the algorithm also accumulates, as
it goes, the hash of the expected opened shares (that V expects from P). The
final value of this hash is decoding secret d.

Gb processes arithmetic gates according to the [HK20a] protocol
(see Sect. 4.1). Array access gates are processed with our ORAM construction
(Figs. 5 and 6). Each of these gates is handled by running V’s procedure.

PrORAM 519

As an additional detail, Gb includes in e two XOR secret shares of the pseu-
dorandom seed S. We discuss this in Sect. 7.1 under achieving verifiability.

En describes which mask differences (for vector-scalar multiplication gates)
P should receive according to her input. Looking at the procedure for vector-
scalar multiplication (Sect. 4.1), En is the trivial mapping that indicates P should
receive the left OT secret if her input is zero and the right OT secret otherwise
(cf. Eq. 1 in Sect. 4.1).

Ev is complementary to Gb. Like Gb, it processes the circuit gate-by-gate.
On vector-scalar multiplication gates, Ev consumes encoded input delivered by
En. On the construction of additive sharings/swordRAM writes Ev consumes
material in M . On opening gates, Ev accumulates a hash of opened shares.

Ev handles each gate by running P’s procedures as described in Sect. 4.1 and
Figs. 5 and 6.

De is a simple comparison: if the expected output d is equal to the provided
hash, then the procedure accepts; otherwise it rejects (and V aborts).

Ve is implemented in the same manner as Gb: it uses the pseudorandom seed
(included in e, see Sect. 7.1) to replay the actions of Gb. As it goes, it checks that
the generated encoding e, material M , and decoding d are equal to the given
values. If all values are equal, Ve accepts; otherwise it rejects (and P aborts).

We next formalize that Construction 1 is correct, sound, and verifiable.
Due to lack of space, we defer full proofs of these properties to Supplementary
Material. These theorems, combined with Theorem 2 from [JKO13] and theorems
in Sect. 6 imply the following:

Theorem 4 (Main Theorem). In the OT-hybrid model, assuming collision-
resistant hash, and statistical security parameter σ, the framework of [JKO13]
instantiated with Construction 1 is a (malicious-verifier) ZKP system with
soundness O(2−σ). Circuits in the resulting system may construct and access
random-access arrays, and each access to an array of size n consumes amortized
2 log n OTs of length 2σ secrets.

Definition 2 (Correctness). A garbling scheme is correct if for all circuits
C and all inputs i such that C(i) = 1:

(e,M, d) = Gb(1σ, C) =⇒ Ev(C,M,En(e, i), i) = d

Correctness enforces that GS correctly implements the specification ev.

Theorem 5. Construction 1 is correct.

In short, correctness follows from the correctness of [HK20a]’s arithmetic proto-
col and from the correctness of PrORAM (Theorems 1 and 2).

Definition 3 (Soundness). A garbling scheme is sound if for all circuits C,
all inputs i such that C(i) = 0, and all probabilistic polynomial time adversaries
A the following probability is negligible in σ:

Pr(A(C,M,En(e, i)) = d : (e,M, d) ← Gb(1σ, C))

520 D. Heath and V. Kolesnikov

Soundness ensures that a cheating P cannot forge a convincing proof.

Theorem 6 (Soundness). Assuming the existence of collision-resistant hash
functions, Construction 1 is sound.

In short, soundness follows from the authenticity of secret shares. P cannot forge
RAM values because each is masked by a distinct value chosen by V.

Definition 4 (Verifiability). A garbling scheme is verifiable if for all cir-
cuits C, all inputs i such that C(i) = 1, and all probabilistic polynomial time
adversaries A there exists an expected polynomial time algorithm Ext such that
the following probability is negligible in σ:

Pr (Ext(C,M, e) �= Ev(C,M,En(e, i)) : (e,M) ← A(1σ, C),Ve(C,M, e) = 1)

At a high level, in the [JKO13] protocol, P receives and evaluates GC and
commits to her proof message. Then she is given V’s private randomness used
to construct the GC. P uses this randomness to check messages sent by V.
Verifiability ensures that this check is reliable in the following sense: V will
learn nothing from the opened proof message because P’s proof message can be
reconstructed in polytime by Ext without P’s witness. Altogether, verifiability
ensures that the ZK protocol is secure against a malicious verifier.

Our construction takes a natural approach and derives all of V’s randomness
from a seed S, and then reveal S as part of the verification procedure Ve. To
syntactically fit the conveyance of S into the [JKO13] framework, we include
S in e. See discussion accompanying the protocol specification Construction 1.
Note, opening all of V’s private randomness is a natural protocol design decision,
but is not required by the definition of verifiability (Definition 4).

Theorem 7 (Verifiability). Construction 1 is verifiable.

In short, verifiability follows relatively trivially from the fact that V chooses all
randomness starting from a pseudorandom seed.

7.4 Defining ZK ORAM

As discussed before, we do not aim to define ZK ORAM in utmost generality. So
far, we proved (Theorem 4) that PrORAM, integrated with the (quite general)
GC-based ZKP CPU [HK20a], which can generate an arbitrary sequence of RAM
accesses, results in secure and correct ZKP system. Here we explain why this
is a reasonable framework to also define ZK ORAM with respect to specific
execution environments.

Recall, MPC ORAM is often defined as a compiler that translates logical
RAM/array accesses to physical memory accesses; its obliviousness property is
defined by the indistinguishability of physical RAM accesses of any two programs
of equal length (or, alternatively, via simulation), executed in some well-defined
RAM Execution Environment (REE). The programs in a REE, e.g., can simply

PrORAM 521

be defined as arbitrary sequences of logical RAM accesses. Again, MPC ORAM
is said to be correct and secure, if the REE execution of the RAM program
satisfies formally defined security and correctness properties.

We can follow the same definitional approach in defining ZK ORAM: We
specify a REE (the GC-based ZKP CPU [HK20a]) which interfaces with the
ORAM protocol using initialize and access commands and which can generate
arbitrary access sequences. We then require that the REE execution of any RAM
program results in a secure ZKP system.

Hence, PrORAM is proven secure with respect to the GC-based ZKP CPU
of [HK20a] according to the following definition.

Definition 5 (ZK ORAM for a REE). Let RAM Execution Environment
EnvRAM be a pair of interactive Turing machines P, V, which operate with arrays
by making calls to initialize and access as described above. We say that a protocol
Z supporting calls to initialize and access from EnvRAM, is a secure ZK ORAM,
if the protocol obtained by composition of EnvRAM and Z is a secure ZKP system
(in particular, secure against malicious verifier V).

8 Instantiation

We implemented PrORAM in 1300 lines of C++. Our implementation uses the
recent and efficient correlated Ferret OT technique [YWL+20]. Note, Ferret
requires additional cryptographic assumptions: (1) learning parity with noise
(LPN), (2) a tweakable correlation-robust hash function, and (3) a random oracle
(RO). We use statistical security parameter σ = 40 and accordingly instantiate
our prime field with modulus p = 240 − 87, the largest 40 bit prime.

In the following section, we discuss an experimental evaluation of our imple-
mentation. All experiments were performed on a MacBook Pro laptop with an
Intel Dual-Core i5 3.1 GHz processor and 8 GB of RAM. We ran our experiments
on a simulated LAN network featuring 1 Gbps of bandwidth and 2 ms latency.

9 Evaluation

Fig. 8. Performance comparison of PrORAM against [HK20a]’s BubbleRAM. We plot
performance as a function of the size of RAM n. Each experiment accessed the RAM
220 times. We plot (1) the amortized communication cost of each access (left), (2) the
amortized wall-clock time per access (center), and (3) the number of accesses performed
per second (right). Center and right are different views of the same information.

522 D. Heath and V. Kolesnikov

In this section, we illustrate the performance of PrORAM by experimental evalu-
ation. For comparison, we also ran BubbleRAM, a circuit-based ZK ORAM that
was implemented as part of [HK20a]’s ZK construction. Since their construction
is built on the same underlying arithmetic protocol, the comparison is direct.
We emphasize that we implement both constructions in the same protocol and
use the same underlying OT protocol (Ferret [YWL+20]); thus our experiments
directly compare the ORAM techniques, not the environments they run in. Our
comparison highlights the low asymptotic and concrete costs of PrORAM.

We implemented both PrORAM and BubbleRAM and used them to evaluate
a circuit which accesses an array 220 times on random indexes. Of course, a more
realistic use case would use the RAM in the context of a more complex circuit,
but our goal is only to measure performance. We varied the size of the RAM
n between 23 slots and 220 slots. Each RAM slot holds a single Zp element;
recall that, internally, the PrORAM also reserves an extra slot to store the index
identifier. Hence, internally the PrORAM slots have width two; BubbleRAM uses
the same trick and hence also has slots of width two. We measured both the total
communication transmitted between P and V and the wall-clock time needed to
complete the entire proof. Figure 8 plots the results of these experiments.

Communication improvement. Our communication improvement follows
naturally from our improved asymptotics: BubbleRAM incurs 1/2 log2 n OTs
per access while we incur only 2 log n. In addition to the OTs, our V also sends
an additional eight Zp elements per RAM access: four to convey shares of K to
P before permuting and four for the two swordRAM writes.

PrORAM outperforms BubbleRAM for n > 25. At n = 220, communication
is improved by 4.36×.

Wall-clock time improvement. Our wall-clock time improvement is far more
dramatic than our communication improvement.

Both BubbleRAM and PrORAM primarily involve applying Waksman per-
mutation networks to an array of shared values. However, PrORAM applies only
a single permutation to prepare for n accesses. In contrast, BubbleRAM applies
a permutation on each access (though the permutations vary in size). Waksman
networks are not cache friendly. The network involves swapping (via algebra)
data between disparate locations in the array of shares. Thus, computing the
network causes many cache misses and is expensive. Because we significantly
reduce the number of permutations, we see a corresponding performance boost.
At n = 220, we improve over BubbleRAM by 10.6×.

Comparison with BubbleCache. Above, we compared PrORAM to Bub-
bleRAM. [HYDK21] gave a practical improvement to BubbleRAM called Bub-
bleCache. Here, we analytically compare PrORAM and BubbleCache.

BubbleCache improves BubbleRAM by exploiting data locality and by intro-
ducing the possibility of cache misses. BubbleCache incurs only O(log n) commu-
nication overhead per access, matching the asymptotic complexity of PrORAM.

PrORAM 523

Indeed, if we ignore the cost of cache misses, BubbleCache is slightly cheaper
than PrORAM. E.g., for a RAM with 217 words of memory, BubbleCache con-
sumes ≈20 OTs per access while PrORAM consumes 34.

However, if there is insufficient data locality in the program execution, Bub-
bleCache will be unable to fetch a needed data item, and the RAM will be forced
to issue a cache miss. These cache misses must be handled by the surrounding
ZK circuitry. PrORAM does not issue cache misses and implements a simple
array interface.

This difference between the two RAMs is both quantitative and qualitative:

– Suppose we plug both RAMs into a CPU-based architecture. When using
BubbleCache, we must pay overhead on the CPU cycle circuit corresponding
to the cache miss rate. For example, in the [HYDK21] processor, each CPU
cycle costs ≈270 OTs and reads/writes memory once. [HYDK21] found that
a cache miss rate of ≈10% was relatively normal. Thus, we can allocate the
extra 0.1 × 270 = 27 OTs to each BubbleCache read. Already, PrORAM is
thus superior. Moreover, the CPU cycle circuit could be simplified since it no
longer needs to account for cache misses.

– Consider implementing a proof via a specialized circuit with array accesses.
I.e., suppose we do not implement a ZK CPU. Notice that it is not clear how
cache misses should be handled. Indeed, a cache-missing RAM seems to force
the designer to adopt a circuit structure that repeatedly performs the same
computation over and over (i.e., a CPU). PrORAM, which cannot miss, can
be used easily alongside simple circuits.

Acknowledgments. This work was supported in part by NSF award #1909769, by
a Facebook research award, by Georgia Tech’s IISP cybersecurity seed funding (CSF)
award. This material is also based upon work supported in part by DARPA under Con-
tract No. HR001120C0087. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of DARPA.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
2087–2104. ACM Press, October/November 2017

[AKL+20] Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.:
OptORAMa: optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 403–432. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 14

[BBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046

https://doi.org/10.1007/978-3-030-45724-2_14
https://eprint.iacr.org/2018/046

524 D. Heath and V. Kolesnikov

[BCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40084-1 6

[BCG+19] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26954-8 16

[BCGT13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems: extended
abstract. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 401–414. ACM, January
2013

[BFH+20] Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, R.,
Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: Ligatti, J., Ou,
X., Katz, J., Vigna, G. (ed.) ACM CCS 20, pp. 2025–2038. ACM Press,
November 2020

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

[CDG+17] Chase, M., et al. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press, Octo-
ber/November 2017

[CFH+15] Costello, C., et al: Geppetto: versatile verifiable computation. In: 2015
IEEE Symposium on Security and Privacy, pp. 253–270. IEEE Computer
Society Press, May 2015

[Ds17] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017,
pp. 523–535. ACM Press, October/November 2017

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 191–219.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 7

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–
304. ACM Press, May 1985

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proof systems.
J. ACM 38(3), 690–728 (1991)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious rams. J. ACM 43, 01 (1996)

[HK20a] Heath, D., Kolesnikov, V.: A 2.1 KHz zero-knowledge processor with Bub-
bleRAM. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 20,
pp. 2055–2074. ACM Press, November 2020

[HK20b] Heath, D., Kolesnikov, V.: Stacked garbling. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 763–792.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 27

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-030-56880-1_27

PrORAM 525

[HK20c] Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge
proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 569–598. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 19

[HMR15] Hu, Z., Mohassel, P., Rosulek, M.: Efficient zero-knowledge proofs of
non-algebraic statements with sublinear amortized cost. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp.
150–169. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48000-7 8

[HYDK21] Heath, D., Yang, Y., Devecsery, D., Kolesnikov, V.: Zero knowledge for
everything and everyone: fast ZK processor with cached ORAM for ANSI
C programs. In: 2021 2021 IEEE Symposium on Security and Privacy
(SP), Los Alamitos, CA, USA, pp. 1538–1556. IEEE Computer Society,
May 2021

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th
ACM STOC, pp. 21–30. ACM Press, June 2007

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM Press,
November 2013

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM
Press, October 2018

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with opti-
mal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 35

[MRS17] Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge argu-
ments for RAM programs. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part I. LNCS, vol. 10210, pp. 501–531. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 18

[RS19] Raskin, M., Simkin, M.: Perfectly secure oblivious RAM with sublinear
bandwidth overhead. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part II. LNCS, vol. 11922, pp. 537–563. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34621-8 19

[SvS+13] Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM
protocol. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013,
pp. 299–310. ACM Press, November 2013

[Wak68] Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
[WYKW20] Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and

communication-efficient zero-knowledge proofs for Boolean and arithmetic
circuits. Cryptology ePrint Archive, Report 2020/925 (2020). https://
eprint.iacr.org/2020/925

[YWL+20] Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension
for correlated OT with small communication. In: Ligatti, J., Ou, X., Katz,
J., Vigna, G. (eds.) ACM CCS 20, pp. 1607–1626. ACM Press, November
2020

https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-662-48000-7_8
https://doi.org/10.1007/978-3-662-48000-7_8
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-030-34621-8_19
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925

Compressed Σ-Protocols for Bilinear
Group Arithmetic Circuits

and Application to Logarithmic
Transparent Threshold Signatures

Thomas Attema1,2,4(B), Ronald Cramer1,2(B), and Matthieu Rambaud3(B)

1 CWI, Cryptology Group, Amsterdam, The Netherlands
cramer@cwi.nl, cramer@math.leidenuniv.nl

2 Leiden University, Mathematical Institute, Leiden, The Netherlands
3 Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France

rambaud@enst.fr
4 TNO, Cyber Security and Robustness, The Hague, The Netherlands

thomas.attema@tno.nl

Abstract. Lai et al. (CCS 2019) have shown how Bulletproof’s arith-
metic circuit zero-knowledge protocol (Bootle et al., EUROCRYPT 2016
and Bünz et al., S&P 2018) can be generalized to work for bilinear group
arithmetic circuits directly, i.e., without requiring these circuits to be
translated into arithmetic circuits.

In a nutshell, a bilinear group arithmetic circuit is a standard arith-
metic circuit augmented with special gates capturing group exponenti-
ations or pairings. Such circuits are highly relevant, e.g., in the context
of zero-knowledge statements over pairing-based languages. As express-
ing these special gates in terms of a standard arithmetic circuit results
in a significant overhead in circuit size, an approach to zero-knowledge
via standard arithmetic circuits may incur substantial additional costs.
The approach due to Lai et al. shows how to avoid this by integrating
additional zero-knowledge techniques into the Bulletproof framework so
as to handle the special gates very efficiently.

We take a different approach by generalizing Compressed Σ-Protocol
Theory (CRYPTO 2020) from arithmetic circuit relations to bilinear
group arithmetic circuit relations. Besides its conceptual simplicity, our
approach has the practical advantage of reducing the communication
costs of Lai et al.’s protocol by roughly a multiplicative factor 3.

Finally, we show an application of our results which may be of inde-
pendent interest. We construct the first k-out-of-n threshold signature
scheme (TSS) that allows for transparent setup and that yields thresh-
old signatures of size logarithmic in n. The threshold signature hides the
identities of the k signers and the threshold k can be dynamically chosen
at aggregation time.

Keywords: Zero-knowledge · Bilinear groups · Pairings · Compressed
Σ-Protocol Theory · Threshold signature schemes

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 526–556, 2021.
https://doi.org/10.1007/978-3-030-92068-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_18

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 527

1 Introduction

Bulletproofs [11,13] introduced an ingenious technique to compress the com-
munication complexity of discrete logarithm (DL) based circuit zero-knowledge
(ZK) protocols from linear to logarithmic. Their approach was presented as a
drop-in replacement for the well-established Σ-protocol theory and it results
in efficient zero-knowledge protocols for relations captured by a circuit defined
over Zq

∼= Z/(qZ). In [4], Bulletproofs and Σ-protocol theory were reconciled
by repurposing an appropriate adaptation of Bulletproofs as a black-box com-
pression mechanism for basic Σ-protocols. They first show how to handle linear
arithmetic relations by deploying a basic Σ-protocol. Second, they show how
an adaptation of Bulletproofs allows the communication complexity of the basic
Σ-protocol to be compressed from linear to logarithmic. Hence, the resulting
compressed Σ-protocol allows a prover to prove linear statements with a com-
munication complexity that is logarithmic in the size of the witness. Finally,
to handle arbitrary non-linear relations, arithmetic secret sharing based tech-
niques [19] are deployed to linearize these non-linearities. Cryptographic proto-
col design can now follow well-established approaches from Σ-protocol theory,
but with the additional black-box compression mechanism to reduce the com-
munication complexity down to logarithmic.

These, and other, recent advances in communication-efficient circuit ZK lead
to an obvious, but indirect, approach for efficient protocols for arbitrary relations:

1. Construct an arithmetic circuit capturing the relation;
2. Apply an efficient circuit ZK protocol to this arithmetic circuit.

However, for some relations, the associated arithmetic circuits can be large and
complex. Thereby losing the conceptual simplicity and possibly even the concrete
efficiency over a more direct approach. The work of [5], for instance, describes a
number of efficiency advantages of their direct approach for proving knowledge
of k discrete logarithms out of n public group elements.

Moreover, Lai et al. [35] construct a zero-knowledge proof system for directly
handling relations captured by bilinear group arithmetic circuits. A bilinear
group is a tuple (q,G1,G2,GT , e,G,H), where e : G1 × G2 → GT is a bilin-
ear map, also called a pairing, and G1, G2 and GT are groups (group operations
are written additively) of prime order q generated by G, H and e(G,H), respec-
tively. A bilinear group arithmetic circuit, or a bilinear circuit, is a circuit in
which each wire takes values in W ∈ {Zq,G1,G2,GT } and the gates all have
fan-in 2 and unbounded fan-out. Gates are either group operations, Zq-scalar
multiplications or bilinear pairings. For more details see Sect. 6. Bilinear circuits
directly capture relations encountered in, e.g., identity based encryption [41] and
structure preserving signatures [2]. We note that, for a highly optimized group
of order q ≈ 2256, multiplying a single group element with a Zq-scalar requires
an arithmetic circuit with approximately 800 multiplication gates [32], instead
of a single gate in the bilinear circuit model. Hence, besides conceptual simplic-
ity there can be significant efficiency advantages of the direct approach over the
indirect approach that uses generic solutions for arithmetic circuit ZK.

528 T. Attema et al.

In this work, we focus on one application of our bilinear circuit ZK protocols:
Threshold Signature Schemes (TSSs) [20]. A k-out-of-n TSS is a standard signa-
ture scheme, allowing each of the n players to individually sign arbitrary messages
m, enriched with a public k-aggregation algorithm. The k-aggregation algorithm
takes as input k signatures, issued by any k distinct players, on the same message
m and outputs a threshold signature σ. A naive TSS is obtained by exhibiting the
k individual signatures directly. However, this approach results in threshold sig-
natures with size linear in the threshold k. The main goal for TSSs is to have suc-
cinct threshold signatures, i.e., with size sub-linear in k. The succinct TSS of [43]
immediately found an application in reducing the communication complexity of
consensus protocols [15]. The impact of succinctness is significant since, in consen-
sus applications, the threshold k is of the same order of magnitude as n (typically
k = n/2 or k = 2n/3). Although desirable in some applications, it is not required
that a threshold signature hides the k-subset of signers.

1.1 Contributions

In this work, we present a novel ZK protocol for relations captured by bilinear
circuits. We show that there is a generalization of the approach of [4] for arith-
metic circuit relations to bilinear circuit relations. Generalizing [4], our approach
is to first compress a basic Σ-protocol for proving linear statements about com-
mitted vectors and, second, to show how to handle arbitrary bilinear circuit
relations by linearizing non-linearities. This leads to a conceptually simple and
modular construction of ZK protocols for bilinear circuit relations.

In [5], an abstraction of the compressed Σ-protocols for proving linear rela-
tions was introduced. An appropriate instantiation of these abstract protocols
immediately results in a compressed Σ-protocol for proving that a mixed vector
x ∈ Z

n0
q × G

n1
1 × G

n2
2 × G

nT

T satisfies a linear constraint defined over a bilinear
circuit. The main ingredient in this instantiation is a homomorphic commitment
scheme [2,35] that allows a prover to commit to such mixed vectors. However, a
number of modification to this straightforward approach are warranted.

First, in contrast to the Pedersen commitment scheme for Zq-vectors, the
commitment scheme for mixed vectors is not compact, i.e., the size of a com-
mitment is not constant in the size of the committed vector. More precisely,
the size of a commitment to a vector x ∈ Z

n0
q × G

n1
1 × G

n2
2 × G

nT

T is constant
in the dimensions n0, n1 and n2, but it is linear in the dimension nT . For this
reason, compression should only be applied to the compact part of the commit-
ment scheme. We handle this complication in an abstract manner by considering
homomorphisms Ψ(x1,x2), where the input consists of two parts and compress-
ing is only applied to the first part x1.

Second, the arithmetic circuit instantiation of the abstract protocol allows for
an additional reduction of the communication costs by roughly a factor 2. This
technique stems from [13] and was also applied in the compressed Σ-protocols
of [4]. However, it is not applicable in general, i.e., for arbitrary homomorphisms
Ψ , and has therefore been omitted in the abstract framework of [5]. Here, we
show how this technique can be adapted to the bilinear circuit setting. Again,

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 529

and in contrast to prior works, the compact part and the non-compact part of
the commitment must be treated separately.

Third, the non-compact part of the commitment scheme has an “El Gamal
structure”. We adapt the basic Σ-protocols, used in compressed Σ-protocol, to
exploit this structure. Informally, to prove knowledge of an opening of an El
Gamal commitment it is sufficient to prove knowledge of commitment random-
ness γ ∈ Zq satisfying certain properties. Altogether, this technique reduces the
constant in the linear component of the communication costs from 3 down to 1
(the other components are logarithmic).

Finally, the abstract framework of [5] only considers linear relations. To han-
dle non-linear relations, we show how the linearization techniques from the arith-
metic circuit setting of [4] can be adapted to the bilinear circuit setting.

The communication complexity of our protocols is logarithmic in n0, n1 and
n2, but linear in nT . Asymptotically this is comparable to the prior work of [35].
However, we consider a strictly stronger application scenario, i.e., [35] only con-
siders bilinear relations captured by a limited class of circuits.1 Moreover, in com-
parison to [35], we improve upon the concrete communication costs by roughly
a factor 3. More precisely, we reduce the constant in the logarithmic component
of the communication costs from 16 down to 6, and the constant in the linear
component from 3 down to 1. See Sect. 6.3 for a detailed comparison.

Another application of the commitment scheme of [2,35] is that it allows a
prover to commit to Pedersen commitments in a pairing-based platform. This
layered approach, of committing to commitments, was already suggested in [2]
and it allows a prover to commit to n2

Zq-coefficients using only 2n + 1 public
group elements, instead of the n2 +1 public group elements required when using
Pedersen commitments directly. Replacing the Pedersen commitment scheme, in
circuit ZK protocols derived from Bulletproofs [11,13] or Compressed Σ-Protocol
Theory [4], by this layered commitment scheme immediately gives a square root
reduction in the size of the set of public parameters while leaving the logarithmic
communication costs exactly the same.

An additional advantage of our approach is that we can handle linear relations
directly. By contrast, Lai et al. [35] generalize the Bulletproof approach [11,13]
where the pivotal protocol handles a specific non-linear inner-product relation.
Applying this approach to a linear relation requires a cumbersome approach of
capturing this linear relation by a set of non-linear inner-product constraints,
leading to unnecessarily complicated protocols.

As an application of our compressed Σ-protocol for proving linear relations,
we construct a transparent k-out-of-n threshold signature scheme (TSS) with
threshold signatures that are O(κ log(n)) bits, where κ is the security parameter.
Recall that a TSS enables any set of at least k players, in a group of n, to
issue a “threshold” signature on a message m, but no subset of less than k
players is able to issue one. A TSS is called transparent if it does not require a
trusted setup phase, i.e., all public parameters are random coins. Given recent
advances in efficient circuit zero-knowledge, an obvious solution is to construct

1 This is perhaps not immediate from the paper [35], but it has been confirmed by the
authors. See also Sect. 6.3.

530 T. Attema et al.

a threshold signature as a proof of knowledge attesting the knowledge of k-
out-of-n signatures. With the appropriate ZK protocol this would immediately
result in a transparent TSS with sublinear size threshold signatures. However,
this approach requires an inefficient reduction from the corresponding threshold
signature relation to a relation defined over an arithmetic circuit. More precisely,
the arithmetic circuits capturing these relations are typically large.

For this reason, we follow a more direct approach avoiding this ineffi-
cient reduction. Namely, we append the BLS signature scheme [10] with a k-
aggregation algorithm. The BLS signature scheme is defined over a bilinear
group. In particular, the BLS verification algorithms naturally fit with our com-
pressed Σ-protocols for relations defined over bilinear groups. A key feature of
this signature scheme is that its signing algorithm does not contain the eval-
uation of a hash function. This would namely require the hash function to be
expressed in terms of a (typically large) bilinear circuit. To derive the required
threshold functionality, we use an appropriated adaptation of k-out-of-n proofs
of partial knowledge from a recent work [5].

The compressed Σ-protocols are interactive and can be made non-interactive
by the Fiat-Shamir transform [21]. In general, the Fiat-Shamir transformation
of a (2μ+1)-move protocol increases the knowledge error from κ to Qμ ·κ, where
Q is the number of random oracle queries the non-interactive prover is allowed
to make, i.e., the security loss is exponential in the number of rounds. However,
for (k1, . . . , kμ)-special sound protocols such as ours, it is believed that this loss
is actually constant in the number of rounds. This claim was recently proven in
the algebraic group model [27].

The non-interactive proofs contain precisely the messages sent from the
prover to the verifier. Hence, the logarithmic proof size is inherited by the log-
arithmic communication complexity of the compressed Σ-protocol. More pre-
cisely, a k-out-of-n threshold signature contains 4 �log2(n)� + 3 GT -elements, 1
G1-element and 1 Zq-element.

The k-aggregation algorithm can be evaluated by any party with input at
least k valid signatures from distinct signers. Besides the signatures, the k-
aggregation algorithm only takes public input values. Moreover, the threshold
k can be chosen at aggregation time independent of the set-up phase. By con-
trast, Shoup’s construction [43] requires a different trusted setup phase for every
threshold k. Since the compressed Σ-protocol is zero-knowledge, an additional
property of our TSS is that a threshold signature hides the k-subset of signers
S. Our TSS does not require a trusted setup and is therefore transparent. More
precisely, the players can generate their own public-private key-pairs and the
Σ-protocol only requires an unstructured public random string defined by the
public parameters of the commitment scheme.

1.2 Related Work

Zero-Knowledge Proof Systems. Groth and Sahai [28] were the first to
consider zero-knowledge proof systems for relations defined over bilinear groups
directly. In contrast to more standard indirect approaches, their work avoids
inefficient reductions to arithmetic circuit relations. Bilinear groups have found

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 531

applications in many areas of cryptography. For instance, in digital signatures,
identity based encryption and efficient zero-knowledge proof systems. For this
reason many relevant relations are naturally defined over bilinear groups. The
goal is not only to achieve efficiency, but also modularity in the design of cryp-
tographic protocols.

A drawback of the Groth-Sahai proof system is that its proof sizes are linear
in the size of the statements. By contrast, Bulletproofs [11,13] are practically
efficient DL-based proof systems for arithmetic circuit relations with logarith-
mic proof sizes. Their main building block is an efficient protocol for proving
a specific non-linear inner-product relation. Arbitrary relations captured by an
arithmetic circuit are reduced to a set of inner-product constraints. Lai et al. [35]
adapted the techniques from Bulletproofs to the bilinear circuit model achieving
a communication-efficient ZKP system for relations defined over bilinear circuits.
More precisely, the communication complexity is logarithmic in the number of
Zq, G1 and G2 inputs, but linear in the number of GT inputs. They first reduce
the bilinear circuit relation to a set of inner-products constraints, and subse-
quently describe protocols for proving various inner-product relations. The work
of [14] improves the efficiency for a specific subset of bilinear inner-product rela-
tions. Hence, although these approaches avoid reductions to arithmetic circuits,
they do rely on the reduction to a set of inner-product constraints.

In [4], an alternative approach for arithmetic circuit relations is described.
Their pivotal protocol is a basic Σ-protocol for proving linear relations. They
show how to compress the communication complexity down to logarithmic and
how to handle non-linearities in arbitrary arithmetic circuit relations. This app-
roach is compatible with standard Σ-protocol theory and avoids the need for
reinventing cryptographic protocol design around non-linear inner-product rela-
tions. Here, we generalize compressed Σ-protocols to the bilinear circuit model.

Threshold Signature Schemes. Shoup’s TSS [43] already achieves threshold
signatures of constant size. However, his approach, and all other approaches
with threshold signature sizes sub-linear in k and n are not transparent [9,
24–26,30,33,34,36]. These works require either an explicit trusted dealer, or
they have implemented this trusted dealer by an MPC (or other interactive)
protocol that is evaluated before messages are signed. At first glance it might
seem that [24] also achieves a transparent setup. However, in their protocol the k
signing players first have to run an interactive protocol before they can generate
threshold signatures. This interactive protocol has to be evaluated before players
can produce their inputs to the aggregation algorithm, therefore we consider this
as a trusted setup.

The standard approach, introduced by Desmedt and Frankel [20], works by
secret sharing the private key amongst the n players. This requires the private
key to be generated by either a trusted dealer or an MPC protocol, i.e., this
approach has a trusted set-up and is not transparent. Moreover, in contrast to
our scheme, the threshold k should be fixed during the setup phase.

532 T. Attema et al.

By contrast, all known transparent TSSs have size at least linear in the thresh-
old k. Besides the naive implementation of simply outputting k valid signatures,
there is also the following approach used by the decentralized transaction system
Libra [37] and by [39]. Every player generates its own public-private key-pair. A
threshold signature is computed as the sum of k individual BLS signatures, and
it can be verified by running the BLS verification algorithm using the sum of
the public keys of the k signers. Hence, the threshold signature should contain a
list of the k signers, i.e., it is of size O(n) or O(k log(n)) depending on the exact
encoding of this list. Moreover, these threshold signatures clearly do not hide
the k-subset of signers. By contrast, Haque et al. [29] construct a transparent
TSS that does hide the k-subset of signers. However, while individual signature
sizes are logarithmic in n, the threshold signatures are linear in the threshold k.

Finally, a recent work [12] presents a different variant of a TSS, which they
call succinctly reconstructed distributed signatures (SRDS). Their SRDS is most
similar to the obvious approach of reducing the problem to an arithmetic circuit
relation. It indeed applies a general (unspecified) SNARK in a black-box manner
to achieve O(polylog(n))-size signatures. However, their SRDS can only tolerate
up to n/3 corruptions.

1.3 Organization of the Paper

The remainder of the paper is organized as follows. In Sect. 2, we recall basic
notation and definitions regarding bilinear groups and zero-knowledge proof sys-
tems. In Sect. 3, we define a number of commitment schemes generalizing Ped-
ersen vector commitments. In Sect. 4, we describe a compressed Σ-protocol for
proving linear relations about committed vectors, with logarithmic communi-
cation complexity. In Sect. 5, as an application of our compressed Σ-protocol,
we construct a novel threshold signature scheme. In Sect. 6, we describe our
linearization strategy for handling non-linear relations.

2 Preliminaries

2.1 Bilinear Groups

We consider the ring Zq
∼= Z/(qZ) for a prime q. Moreover, we let G1,G2 and

GT be groups of prime order q supporting discrete-log (DL) based cryptography,
hence log(q) = O(κ) for security parameter κ. Some properties of commitment
schemes used in this work rely on the stronger Decisional Diffie-Hellman (DDH)
assumption. Therefore, we assume the DDH assumption to hold in all groups.

We write the group operations additively. Clearly, all groups Gi are Zq-
modules and, for all a ∈ Zq and g ∈ Gi, the product ag ∈ Gi is well-defined. We
write vectors in boldface and inner-products are defined naturally, i.e., for all
a = (a1, . . . , an) ∈ Z

n
q and g = (g1, . . . , gn) ∈ G

n
i we define 〈a,g〉 :=

∑n
i=1 aigi.

Let G ∈ G1 and H ∈ G2 be generators and let e : G1 × G2 → GT be a non-
trivial bilinear mapping, i.e., e is a pairing such that e(G,H) generates GT . Then,

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 533

a tuple (q,G1,G2,GT , e,G,H) defines a bilinear group. For vectors G ∈ G
n
1 and

H ∈ G
n
2 the following inner-product is defined e(G,H) :=

∑n
i=1 e(Gi,Hi).

We say that the Symmetrical External Diffie-Hellman (SXDH) holds in a
bilinear group (q,G1,G2,GT , e,G,H), if the DDH assumption holds in both
G1 and G2 [7]. By the above assumption that the DDH assumption holds in
all Gi, it follows that the SXDH assumption holds for all bilinear groups that
are considered in this work. The SXDH assumption implies that there is no
efficiently computable isomorphism from G1 to G2, or from G2 to G1 [3], i.e.,
we only consider bilinear groups of Type III [22].

2.2 Proofs of Knowledge

We recall some standard notions regarding Proofs of Knowledge (PoKs) following
the notation and definitions of [4,5]. A relation R is a set of statement-witness
pairs (x;w). A μ-move protocol Π for relation R is an interactive protocol with μ
communication rounds between a prover P and verifier V. It allows P to convince
V that it knows a witness w for statement x, i.e., (x;w) ∈ R. Protocol Π is also
called an interactive proof for relation R. The statement x is public input for
both P and V and the witness w is private input only for P. In our protocol
descriptions this is written as Input(x;w), i.e., the public and private input
are separated by a semicolon. As the output of the protocol V either accepts or
rejects P’s claim. The messages sent between P and V in one protocol execution
are also referred to as a conversation or transcript. If V accepts the associated
transcript, it is called accepting.

An interactive proof is said to be public coin, if all message from V are
chosen uniformly at random and independent from prior messages. Interactive
protocols that are public-coin can be made non-interactive by the Fiat-Shamir
transformation [21], as proven in [8], without increasing the communication costs
from P to V. All interactive proofs in this work are public-coin.

Let us now describe some desirable (security) properties.

Definition 1 (Completeness). An interactive proof Π is called perfectly com-
plete, if on any input (x;w) ∈ R, the verifier V always accepts.

Definition 2 (Knowledge Soundness). An interactive proof Π = (P,V) is
said to be knowledge sound with knowledge error κ : N → [0, 1), if there exists a
polynomial q : N → N and an algorithm χ (extractor) with the following prop-
erties. For each (potentially dishonest) PPT prover P�, for each x ∈ {0, 1}�,
whenever (P∗,V)(x) outputs accept with probability ε(x) ≥ κ(|x|), the extractor
χ, given input x and rewindable oracle access to the P∗, runs in expected polyno-
mial time and successfully outputs a witness w for statement x with probability
at least (ε(x) − κ(|x|))/q(|x|).
Definition 3 (Proof/Argument of Knowledge). An interactive proof that
is both complete and knowledge sound is said to be a Proof or Knowledge (PoK).
PoKs for which knowledge soundness only holds under computational assump-
tions are also referred to as Arguments of Knowledge.

534 T. Attema et al.

Witness extended emulation [38] gives an alternative notion for knowledge
soundness, sufficient for most practical scenarios, and it is known to be implied
by knowledge soundness [38]. For details we refer to [4,31,38].

We now recall a generalization of the special-soundness property. Special
soundness is in general easier to handle than knowledge soundness. We first
introduce the notion of a tree of accepting transcripts.

Definition 4 (Tree of Accepting Transcripts). Let Π be a (2μ + 1)-move
protocol. A (k1, k2, . . . , kμ)-tree of accepting transcripts for protocol Π is a set of∏μ

i=1 ki accepting transcripts that are arranged in the following tree structure.
The nodes in this tree correspond to the prover’s messages and the edges corre-
spond to the verifier’s challenges. Every node at depth i has precisely ki children
corresponding to ki pairwise distinct challenges. Every transcript corresponds to
exactly one path from the root node to a leaf node.

Definition 5 (Special Soundness). A (2μ + 1)-move protocol is said to be
(k1, k2, . . . , kμ)-special-sound, if there exists an efficient algorithm that on input
a (k1, k2, . . . , kμ)-tree of accepting transcripts for statement x, outputs a witness
w for x. A 3-move protocol is said to be special-sound if it is 2-special-sound.

Recently, it was shown that (k1, k2, . . . , kμ)-special-soundness tightly implies
knowledge soundness [6]. Therefore, protocols that are complete and special-
sound are also referred to as proofs of knowledge (PoKs).

Definition 6 (Honest Verifier Zero-Knowledge (HVZK)). An interactive
proof Π is said to be honest verifier zero-knowledge (HVZK), if there exists a
PPT simulator that, on input a statement x that admits a witness w, outputs
an accepting transcript, such that simulated transcripts follow exactly the same
distribution as transcripts between an honest prover and an honest verifier. If
the simulator proceeds by first sampling the random challenges, the protocol is
said to be special honest verifier zero-knowledge (SHVZK).

Finally, we recall that two protocols, Πa for relation Ra and Πb for relation
Rb, are said to be composable, if the final message of protocol Πa contains a
witness for relation Rb [4]. In this case, the composition Πb � Πa runs Protocol
Πa but replaces the witness for relation Rb in its final message by an appropriate
instantiation of Protocol Πb. If protocol Πa is (k1, . . . , kμ1)-special-sound and
protocol Πb is (k′

1, . . . , k
′
μ2

)-special-sound, then the composition Πb �Πa is easily
seen to be (k1, . . . , kμ1 , k

′
1, . . . , k

′
μ2

)-special-sound.

3 Commitment Schemes

Compressed Σ-protocols allow a prover to prove that a committed vector satisfies
some public constraint. These protocols crucially depend on the homomorphic
properties of the commitment scheme. In this section, we describe a number of
homomorphic commitment schemes for committing to vector x ∈ Z

n0
q × G

n1
1 ×

G
n2
2 × G

nT

T with coefficients in a bilinear group (q,G1,G2,GT , e,G,H).

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 535

First, the Pedersen vector commitment scheme [40] considers the case n1 =
n2 = nT = 0, i.e., the committed vector is a Zq-vector. Recall that group oper-
ations are written additively.

Definition 7 (Pedersen Vector Commitment [40]). Let G be an Abelian
group of prime order q. Pedersen vector commitments to vectors x ∈ Z

n
q are

defined by the following setup and commitment phase:

– Setup: g = (g1, . . . , gn) ←R G
n, h ←R G.

– Commit: Com : Zn
q × Zq → G, (x, γ) → hγ + 〈g,x〉.

Abe et al. [2] constructed a similar commitment scheme that works with
bilinear groups (q,G1,G2,GT , e,G,H) and allows a prover to commit to vectors
of group elements x ∈ G

n
1 . A straightforward generalization shows that this app-

roach allows a prover to commit to vectors x ∈ Z
n0
q ×G

n1
1 [35]. The commitment

scheme is perfectly hiding and computationally binding under the DDH assump-
tion in G1. Analogously, this construction results in a commitment scheme for
vectors x ∈ Z

n0
q × G

n2
2 .

Definition 8 (Commitment to (Zq,G1)-vectors [2,35]). Let (q,G1,G2,
GT , e,G,H) be a bilinear group and let n0, n1 ≥ 0. The following setup and
commitment phase define a commitment scheme for vectors in Z

n0
q × G

n1
1 :

– Setup: g = (g1, . . . , gn0) ←R G
n0
T , h ←R GT , H = (H1, . . . , Hn1) ←R G

n1
2 .

– Commit: Com : Zn0
q × G

n1
1 × Zq → GT , (x,y, γ) → hγ + 〈g,x〉 + e(y,H).

Remark 1. As an application of the commitment scheme of Definition 8, Abe et
al. [2] mention commitments to Pedersen vector commitments. A commitment to
n n-dimensional Pedersen vector commitments is namely a commitment to an n2-
dimensional Zq-vector. This two-tiered commitment scheme only requires 2n+1
public group elements. By contrast, Pedersen’s commitment scheme requires n2+
1 public group elements to commit to an n2-dimensional Zq-vector. Replacing the
Pedersen vector commitment scheme in, for example, [4,11,13] by this two-tiered
commitment scheme results in arithmetic circuit ZK protocols with exactly the
same communication complexity, but with a square root improvement in the size
of the public parameters.

In addition, Lai et al. [35] show how this approach can be extended to
construct a commitment scheme for vectors with coefficients in Zq, G1 and
G2. In contrast to the previous commitments, a commitment to a vector
x ∈ Z

n0
q × G

n1
1 × G

n2
2 consists of two target group elements. Informally, the

reason is that, with high probability, (S,−R) ∈ G1 ×G2 is a non-trivial solution
for the equation e(x,R) + e(S, y) = 1, where (S,R) ∈ G1 × G2 is sampled uni-
formly at random. Such a solution would break the binding property of the naive
generalization in which commitments consist of only one target group element.
However, with high probability, there does not exist a solution (x, y) ∈ G1 ×G2

to the system of equations e(x,R1) + e(S1, y) = 1 and e(x,R2) + e(S2, y) = 1,
where (S1, R1), (S2, R2) ∈ G1 × G2 are sampled uniformly at random. For this

536 T. Attema et al.

reason, the commitments consist of two target group elements and breaking their
binding property can be reduced to solving a similar system of equations. The
resulting commitment scheme is described in Definition 9. It is computationally
hiding under the DDH assumption in GT , and it is computationally binding
under the SXDH assumption [35]. The scheme can be made perfectly hiding by
introducing an additional randomizer γ2 ∈ Zq.

Definition 9 (Commitment to (Zq,G1,G2)-vectors [35]). Let (q,G1,G2,
GT , e,G,H) be a bilinear group and let n0, n1, n2 ≥ 0. The following setup and
commitment phase define a commitment scheme for vectors in Z

n0
q ×G

n1
1 ×G

n2
2 :

– Setup: g ←R G
2×n0
T , h ←R G

2
T , H ←R G

2×n1
2 ,G ←R G

2×n2
1 .

– Commit: Com1 : Zn0
q ×G

n1
1 ×G

n2
2 ×Zq → G

2
T , (x,y, z, γ) → hγ + 〈g,x〉 +

e(y,H) + e(G, z), where

hγ + 〈g,x〉 + e(y,H) + e(G, z) :=
(

h1γ + 〈g1,x〉 + e(y,H1) + e(G1, z)

h2γ + 〈g2,x〉 + e(y,H2) + e(G2, z)

)

.
(1)

The aforementioned commitment schemes do not allow a prover to commit
to elements of the target group GT of the bilinear pairing e : G1×G2 → GT . For
this reason, we introduce the homomorphic commitment scheme of Definition 10.
This scheme is based on the El Gamal encryption scheme [23]. The commitment
scheme is unconditionally binding and hiding under the DDH assumption in GT .

Definition 10 (Commitment to (GT)-vectors [23,35]). Let GT be an
Abelian group of prime order q. The following setup and commitment phase
define a commitment scheme for vectors in G

nT

T :

– Setup: g ←R G
nT

T , h ←R GT .

– Commit: Com2 : GnT

T × Zq → G
nT +1
T , (x, γ) →

(
hγ

gγ + x

)

.

Note that, in contrast to the schemes of Definitions 7, 8 and 9, this commit-
ment scheme is not compact, i.e., a commitment to a vector x ∈ G

nT

T contains
nT + 1 group elements. For this reason, the compression techniques applicable
to compact commitments are of no benefit for commitments to GT -vectors, and
we will treat commitments to target group elements separately.

Altogether, for a bilinear group (q,G1,G2,GT , e,G,H), we obtain the fol-
lowing commitment scheme:

Com :Zn0
q × G

n1
1 × G

n2
2 × G

nT

T × Z
2
q → G

nT +3
T ,

(x,y, γ1, γ2) →
(
Com1(x; γ1)
Com2(y; γ2)

)

,
(2)

where x ∈ Z
n0
q × G

n1
1 × G

n2
2 , y ∈ G

nT

T , Com1 is the commitment scheme from
Definition 9, and Com2 is the commitment scheme from Definition 10.

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 537

4 Compressed Σ-Protocol for Opening Homomorphisms

In this section, we describe a compressed Σ-protocol for proving that a commit-
ted vector x ∈ Z

n0
q × G

n1
1 × G

n2
2 × G

nT

T satisfies a linear constraint f(x) = y
captured by an arbitrary homomorphism f . We also say that this protocol allows
a prover to open a homomorphism f .

We present our protocols in an abstract language. More precisely, let

Ψ : H1 × H2 → H, (x1, x2) → Ψ(x1, x2),

be a homomorphism between Zq-modules. We construct a compressed Σ-
protocol for proving knowledge of a pre-image x = (x1, x2) of y = Ψ(x). Instan-
tiating this abstract protocol with H1 = Z

n0+1
q × G

n1
1 × G

n2
2 , H2 = Zq × G

nT

T

and Ψ = (Com1,Com2, f), where f is understood to ignore the commitment
randomness in x1 and x2, results in exactly the desired functionality.

Prior works [5,6] have considered similar abstractions of compressed Σ-
protocols. However, we adapt these approaches in order to be able to treat the
compact and non-compact parts of the commitment scheme separately. More
precisely, we explicitly consider homomorphism where the domain is a Cartesian
product H1 × H2 and apply the compression techniques only to the H1-part.

In Sect. 4.1, we construct a basic Σ-protocol for proving knowledge of a Ψ -
pre-image. In Sect. 4.2, we describe the compression mechanism that reduces
the communication complexity of a Σ-protocol. In Sect. 4.3, we introduce the
compressed Σ-protocol for our abstract problem. This protocol is the recur-
sive composition of the Σ-protocol and the compression mechanism. In Sect. 4.4
and Sect. 4.5, we describe efficiency improvements applicable to the special case
where the homomorphism Ψ is defined over a bilinear group. Finally, in Sect. 4.6,
we compose the different building blocks and describe our compressed Σ-protocol
for opening homomorphisms on a committed vector x ∈ Z

n0
q ×G

n1
1 ×G

n2
2 ×G

nT

T .

4.1 Basic Σ-Protocol

Protocol 0, denoted by Π0, is a basic Σ-protocol for proving knowledge of a pre-
image of a homomorphism Ψ : H1 × H2 → H. More precisely, it is a Σ-protocol
for the following relation

RΨ =
{

(y;x) : y = Ψ(x)
}
. (3)

Protocol 0 follows the generic design for q-one-way homomorphisms [17,18] and
its main properties are summarized in Theorem 1. Note that this Σ-protocol
does not yet rely on the special structure of the homomorphism Ψ , i.e., it does
not rely on the fact that the domain of Ψ is a Cartesian product H1 × H2.

Theorem 1 (Homomorphism Evaluation). Π0 is a Σ-protocol for relation
RΨ . It is perfectly complete, special honest-verifier zero-knowledge and uncondi-
tionally special-sound. Moreover, the communication costs are:

– P → V: 1 H-element, 1 H1-element and 1 H2-element.
– V → P: 1 Zq-element.

538 T. Attema et al.

Protocol 0. Σ-protocol Π0 for relation RΨ

Σ-protocol for proving knowledge of the pre-image of a Zq-module homomor-
phism Ψ : H1 × H2 → H.

Input(y; x)

y = Ψ(x)
Prover Verifier

r ←R H1 × H2

t = Ψ(r)
t−−−−−−→

c ←R Zq
c←−−−−−−

z = cx + r
z−−−−−−→ Ψ(z)

?
= cy + t

4.2 Compression Mechanism

In [4], it was observed that the final message z of Σ-protocol Π0 is actually a
witness for the statement cy + t of relation RΨ , i.e., the final message of this
Σ-protocol constitutes a trivial proof of knowledge for relation RΨ in which the
witness is simply revealed. Moreover, replacing this trivial PoK by a PoK with
smaller communication costs would improve the communication-efficiency of the
overall protocol. Note that the alternative protocol does not have to be zero-
knowledge, because the trivial PoK clearly is not.

In order to construct a more efficient PoK for relation RΨ , let us assume that
H1 is the Cartesian product of a group H0 with itself, i.e., H1 = H0 ×H0. In this
case, for all x1 ∈ H1, we can write x1 = (xL

1 , xR
1) with xL

1 , xR
1 ∈ H0.

The compression mechanism is a proof of knowledge for relation RΨ with
communication costs smaller than the communication-costs of the trivial PoK.
The main idea of this compression mechanism is that, after receiving a challenge c
from the verifier, the prover folds the secret element x1 ∈ H1 in half by computing
the response z = xL

1 + cxR
1 ∈ H0. Note that z ∈ H0 and x1 ∈ H1 = H0 × H0,

so this folding procedure indeed reduces the size of the witness. The cost of this
reduction is that the prover has to send two “cross-terms” a = Ψ((0, xL

1), 0) and
b = Ψ1((xR

1 , 0), 0) to the verifier before receiving the challenge.
This compression mechanism is an adaptation of the compression mechanisms

of [4,5]. The difference with these prior works is that here the folding procedure
is only applied on the first part of the secret witness, i.e., the H1-part. The
compression mechanism, denoted by Π1, is described in Protocol 1 and its main
properties are summarized in Theorem 2.

Theorem 2 (Compression Mechanism). Π1 is a 3-move protocol for rela-
tion RΨ . It is perfectly complete and unconditionally 3-special-sound. Moreover,
the communication costs are:

– P → V: 2 H-elements, 1 H0-element and 1 H2-element.

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 539

Protocol 1. Compression Mechanism Π1 for relation RΨ .

Input (y; x = (x1, x2))

y = Ψ(x)
Prover Verifier

a = Ψ((0, xL
1), 0)

b = Ψ((xR
1 , 0), 0)

a,b−−−−−−−−−−−−−−→
c ←R Zq

c←−−−−−−−−−−−−−−
z = xL

1 + cxR
1

z,x2−−−−−−−−−−−−−−→ Ψ((cz, z), cx2)
?
= a+ cy + c2b

– V → P: 1 Zq-element.

The proof of Theorem 2 is almost identical to the proofs of [4, Theorem 2]
and [5, Theorem 2].

Proof. Completeness follows directly.
3-Special Soundness: Let (a, b; c1; z1, x1), (a, b; c2; z2, x2) and (a, b; c3; z3,

x3) be three accepting transcripts for distinct challenges c1, c2, c3 ∈ Zq and with
common first message (a, b). Let α1, α2, α3 ∈ Zq be such that

⎛

⎝
1 1 1
c1 c2 c3
c21 c22 c23

⎞

⎠

⎛

⎝
α1

α2

α3

⎞

⎠ =

⎛

⎝
0
1
0

⎞

⎠ .

Note that, since the challenges are distinct, this Vandermonde matrix is invertible
and a solution to this equation exists. Let z̄ =

∑3
i=1 αi((cizi, zi), cixi). Then,

since Ψ is a homomorphism, it follows that Ψ(z̄) = y. Hence, z̄ is a witness for
statement y of relation RΨ , which completes the proof. ��

4.3 Abstract Compressed Σ-Protocol

The the final message (z, x2) of Π1 is again a witness, but now for statement
a + cy + c2b of relation RΨ ′ where Ψ ′(z, x2) = Ψ((cz, z), cx2). Hence, if H0 is
the Cartesian product of a group H

′
0 with itself, the compression mechanism can

be applied again, i.e., instead of sending (z, x2) the prover and verifier run an
appropriately instantiated compression mechanism. In particular, if H1 = H

n
0 ,

the compression mechanism can be applied recursively, i.e., the first part of the
witness is folded until it consists of only one H0 element.

The recursive composition of Σ-protocol Π0 and compression mechanism Π1

is a compressed Σ-protocol for relation RΨ . It is denoted by

Πabs = Π1 � · · · � Π1︸ ︷︷ ︸
μ times

�Π0, (4)

540 T. Attema et al.

where μ = �log2(n)�. Note that if n is not a power of 2 it can be appended
with zeros. The basic Σ-protocol requires the prover to send one H1-element,
or equivalently n H0-elements. By contrast, the compressed Σ-protocol only has
to send 1 H0-element. However, this reduction comes at the cost of sending a
logarithmic number of 2μ+3 H-elements. The properties of Πabs are summarized
in Theorem 3. Note that Πabs is SHVZK because Π0 is.

Theorem 3 (Abstract Compressed Σ-Protocol). Letn ∈ N,μ = �log2(n)�
and Ψ : Hn

0 × H2 → H be a Zq-module homomorphism. Then Πabs is a 2μ +
3-move protocol for relation RΨ . It is perfectly complete, special honest-verifier
zero-knowledge and unconditionally 3-special-sound. Moreover, the communica-
tion costs are:

– P → V: 2μ + 1 H-elements, 1 H0-element and 1 H2-element.
– V → P: μ + 1 Zq-elements.

4.4 Efficiency Improvements for Bilinear Instances

In this section, we consider the following Zq-module homomorphism

Ψ : Zn0+2
q × G

n1
1 × G

n2
2 × G

nT

T → G
nT +3
T × Zq × G1 × G2 × GT ,

(x1,x2) → (
Com1(x1),Com2(x2), f(x1,x2)

)
,

where the vectors x1 = (x′
1, γ1) ∈ Z

n0+1
q ×G

n1
1 ×G

n2
2 and x2 = (x′

2, γ2) ∈ G
nT

T ×
Zq both include the commitment randomness γ1, γ2 ∈ Zq and the homomorphism
f is understood to ignore this commitment randomness. This notation allows the
commitment randomness to be treated implicitly.

Instantiating compressed Σ-protocol Πabs with homomorphism Ψ allows a
prover to show that a committed vector x ∈ Z

n0
q × G

n1
1 × G

n2
2 × G

nT

T satisfies
the linear constraint f(x) = y. In Sect. 4.7, it is explained why we can restrict
ourselves to linear relation captured by homomorphisms with codomain Zq ×
G1 × G2 × GT . This instantiation therefore immediately results in the desired
linear functionality. However, we describe two improvements that are applicable
to this specific instantiation of compressed Σ-protocol Πabs.

First, we note that in this case the first message (a, b) of compression mech-
anism Π1 is always of the form

a = Ψ((0, xL
1), 0) =

(
Com1(0, xL

1),Com2(0), f((0, xL
1), 0)

)
,

b = Ψ((xR
1 , 0), 0) =

(
Com1(xR

1 , 0),Com2(0), f((xR
1 , 0), 0)

)
.

Hence, the second component of both a and b equals Com2(0) = 0 and does not
have to be sent to the verifier. For this reason, we understand Πabs to omit this
information from the first message.

Second, we observe that in every iteration of the compression mechanism the
prover has to send two evaluations of the homomorphism f to the verifier. This
step can be made more efficient by a pre-processing step in which part of the

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 541

evaluation of f is “incorporated into the commitment”. The goal is not to hide
the evaluation y = f(x), in fact y is still public, but to reduce the overall com-
munication complexity that is achieved after compression. Ultimately, this step
will reduce a relevant constant in the communication costs of our compressed Σ-
protocol by a factor 1/2. This technique was first deployed in [13] to improve the
communication complexity of certain protocols [11] for inner-product relations
defined over Zq. Here, it is generalized to our bilinear setting.

To this end, we write f = (f1, f2) with f1(x) ∈ Zq ×G1 ×G2 and f2(x) ∈ GT

for all x. The reason is that the commitment scheme is not compact on the
GT -part. Hence incorporating f2(x) into the commitment will not reduce the
communication complexity of the protocol.

The pre-processing step proceeds as follows. After the verifier has sent a
random challenge ρ to the prover, the problem of proving knowledge of a pre-
image for Ψ is reduced to proving knowledge of a pre-image for

Ψρ(x1,x2) = (Com1(x1, ρ · f1(x1,x2)),Com2(x2), f2(x1,x2)) ,

where the domain of Com1 has been increased from Z
n0+1
q × G

n1
1 × G

n2
2 to

Z
n0+2
q ×G

n1+1
1 ×G

n2+1
2 . Note that, since Com1 is compact, the codomain of Ψρ

is smaller than the codomain of Ψ . Because the challenge ρ is sampled uniformly
at random and the commitment scheme Com1 is binding, the reduction is sound,
i.e., a prover that knows a pre-image for Ψρ must also know a pre-image for Ψ .

The reduction, denoted by Πr, is formalized in Protocol 2 and its main
properties are summarized in Lemma 1. Note that, in contrast to the previ-
ous protocols, Πr only has computational soundness. Moreover, this protocol is
clearly not special-honest verifier zero-knowledge; the secret witness x is sent to
the verifier. However, since the final message of this reduction will be replaced
by an appropriate compressed Σ-protocol Πabs, it does not have to be SHVZK.

Protocol 2. Argument of Knowledge Πr for RΨ

Reduction from relation RΨ to relation RΨρ
, where Ψ(x1,x2) =

(Com1(x1),Com2(x2), f(x1,x2)).

Input(z = (P1, P2, y1, y2);x)

z = Ψ(x)
y1 = f1(x)
y2 = f2(x)

Prover Verifier
ρ←−−−−− ρ ←R Zq
x−−−−−→

Ψρ(x)
?
= z + (Com1(0, ρ · y1), 0, 0)

542 T. Attema et al.

Lemma 1. Πr is a 2-move protocol for relation RΨ . It is perfectly complete
and computationally special-sound, under the assumption that the commitment
scheme Com1 is binding. Moreover, the communication costs are:

– P → V: 1 element of Zn0+2
q × G

n1
1 × G

n2
2 × G

nT

T .
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special soundness: We show that there exists an efficient algorithm χ that,

on input two accepting transcripts, either extracts a witness for Rψ, or finds two
different openings to the same commitment, and thereby breaks the binding
property of the Com1.

So let (ρ,x) and (ρ′,x′) be two accepting transcripts with ρ �= ρ′, then by
subtracting the two verification equations and since Com1(·) is a homomorphism,

Com1 (x − x′, ρf1(x) − ρ′f1(x′)) = Com (0, (ρ − ρ′)y1, 0) .

Hence, either we have extracted two different openings to the same commitment,
or x = x′, ρf1(x) − ρ′f1(x′) = (ρ − ρ′)y1. In the latter case, it follows that
f1(x) = f1(x′) = y1. Moreover, in this case it follows that

Com1 (x1, ρf1(x)) = P1 + Com1 (0, ρy1) ,

which implies that Com1 (x1) = P1. Hence, Ψ(x) = z and x is a witness for
statement z of relation RΨ , which completes the proof. ��

4.5 Reduced Communication for El Gamal Based Commitments

The basic Σ-protocol Π0 of Sect. 4.1 follows the generic design for q-one-way
group homomorphisms Ψ [17,18]. However, for some instantiations of Ψ this
generic approach is sub-optimal as it leads to unnecessarily high communication
costs. This is the case for our bilinear instantiation that makes use of the El
Gamal based commitment scheme Com2 of Definition 10,

Com2 : GnT

T × Zq → G
nT +1
T , (x, γ) →

(
hγ

gγ + x

)

.

Here, we describe a more efficient approach tailored to the commitment scheme
Com2. Subsequently, we explain how this improvement translates to a reduction
of the communication costs of our compressed Σ-protocol.

The main observation is that to open a Com2-commitment P = (P1, P2) ∈
GT × G

nT

T , a prover merely has to reveal γ ∈ Zq with hγ = P1. The committed
vector x ∈ G

nT

T can be computed from the commitment P and the opening γ, i.e.,
x = P2 − gγ. Hence, proving knowledge of a commitment opening is equivalent
to proving knowledge of a discrete logarithm (in base h). The latter problem has
a natural Σ-protocol with constant communication complexity. By contrast, the
natural Σ-protocol for proving knowledge of a pre-image of the homomorphism
Com2 has communication costs linear in the dimension nT of the committed

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 543

vector. A straightforward extension of this protocol allows a prover to prove
that the committed vector satisfies an arbitrary linear relation.

The resulting protocol, denoted by ΠEG, is a protocol for relation
REG =

{ (
P ∈ G

nT +1
T , y ∈ H;x ∈ G

nT

T , γ ∈ Zq

)
: P = Com2 (x, γ) , f(x) =

y
}
.
Its properties are summarized in Theorem 4. A detailed protocol description

and the proof of Theorem 4 are given in the full version of this paper [1].

Theorem 4 (Σ-Protocol for El Gamal Based Commitments). ΠEG is a
Σ-protocol for relation REG. It is perfectly complete, special honest-verifier zero-
knowledge and unconditionally special-sound. Moreover, the communication cost,
from prover to verifier, is 1 element in GT × H × Zq.

4.6 Composition of the Protocols

Let Πc be the compressed Σ-protocol obtained by instantiating Πabs with homo-
morphism

Ψ : Zn0+2
q × G

n1
1 × G

n2
2 × G

nT

T → G
nT +3
T × Zq × G1 × G2 × GT ,

(x1,x2) → (
Com1(x1),Com2(x2), f(x1,x2)

)
,

and incorporating the efficiency improvements of Sect. 4.4 and Sect. 4.5.
These efficiency improvements are applicable, because we restrict ourselves
to homomorphisms Ψ defined over a bilinear group. More precisely, for μ =
�log2 (max(n0 + 1, n1, n2))�,

Πc = Π1 � · · · � Π1︸ ︷︷ ︸
μ times

�Π0 � Πr, (5)

where Π0 is understood to apply the improved Σ-protocol of Sect. 4.5 to Ψ ’s
GT -part. This protocol allows a prover to prove that a committed vector x ∈
Z

n0
q ×G

n1
1 ×G

n2
2 ×G

nT

T satisfies a linear constraint f(x) = y. The properties of Πc

are summarized in the Theorem 5. Note that, by the improvement of Sect. 4.5,
the communication costs are independent of the dimension nT of the GT -part of
the committed vector, even though the size of the commitment is linear in nT .

Theorem 5 (Compressed Σ-Protocol for Opening Homomorphisms).
Πc is a (2μ + 4)-move protocol for relation RΨ , where μ =

�log2 (max(n0 + 1, n1, n2))�. It is perfectly complete, special honest-verifier zero-
knowledge and computationally (2, 2, 3, . . . , 3)-special-sound, under the assump-
tion that the commitment scheme Com2 is binding. Moreover, the communica-
tion costs are:

– P → V: 6μ+3 GT -elements, 2 Zq-elements, 1 G1-element and 1 G2-element.
– V → P: μ + 2 Zq-elements.

544 T. Attema et al.

Remark 2. The compressed Σ-protocols of [4], for relations defined over Zq,
have a similar structure as Πc. However, there a variant of the reduction Πr is
applied after applying the Σ-protocol. By contrast, we first apply reduction Πr

and subsequently apply the basic Σ-protocol Π0. This adaptation yields a minor
improvement as it reduces the communication costs by 3 elements.

4.7 Amortization

Standard amortization techniques apply to the basic Σ-protocol Π0 for relation
RΨ , and thereby also to compressed Σ-protocol Πc. These amortization tech-
niques allow a prover to open many homomorphisms on one commitment, or one
homomorphism on many commitments, without increasing the communication
costs from the prover to the verifier. For details we refer to [4, Section 5.1].

These amortization techniques allow us to restrict ourselves to homomor-
phisms with the codomain Zq × G1 × G2 × GT . Namely, opening a homomor-
phism f with codomain Z

s0
q ×G

s1
1 ×G

s2
2 ×G

sT

T can be casted as opening max(si)
homomorphisms with codomain Zq × G1 × G2 × GT .

5 Threshold Signature Schemes

In this section, we describe a threshold signature scheme (TSS), as an application
of the compressed Σ-protocol Πc for proving linear statements on committed
vectors x. Informally a k-out-of-n threshold signature can only be computed
given k valid signatures issued by a k-subset of n players. We first describe the
formal definition of a TSS. Subsequently, we give our construction based on the
compressed Σ-protocol Πc.

5.1 Definition and Security Model

We deviate from standard TSS definitions and aim for a strictly stronger func-
tionality. In standard TSS definitions [9,43], a non-transparent mechanism gen-
erates a single public key and n private keys that are distributed amongst the n
players. The private keys allow individual players to generate partial signatures
on messages m. There is a public algorithm to aggregate k partial signatures into
a threshold signature. The threshold signature can be verified with the public
key.

By contrast, we define a TSS as an extension of a digital signature scheme.
Our fundamental strengthening of the definitions of [9,43] and related works,
is that the public and private keys are generated by the players locally. Public
keys are published on a bulletin board and thereby publicly tied to the player’s
identities. This setup is thus transparent (called “bulletin board” in [12] and
formalized as FCA in the UC framework [16]). The players can individually sign
messages by using their private keys. The aggregation algorithm now takes as
input k signatures, instead of partial signatures, to generate a threshold signa-
ture.

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 545

For simplicity we assume the threshold k to be fixed. We will explain later
why our construction (trivially) satisfies some stronger properties.

Let us first give a definition for the basic building block of our TSS.

Definition 11 (Digital Signature). A digital signature scheme consists of
three algorithms:

– keygen is a randomized key generation algorithm that outputs a public-
private key-pair (pk, sk).

– sign is a (possibly randomized) signing algorithm. On input a message m ∈
{0, 1}∗ and a secret key sk, it outputs a signature σ = sign(sk,m).

– verify is a deterministic verification algorithm. On input a public key pk, a
message m and a signature σ, it outputs either accept or reject.

A signature scheme is correct if verify (pk,m, sign(sk,m)) = accept for all
key-pairs (pk, sk) ← keygen and messages m ∈ {0, 1}∗. If verify(pk,m, σ) =
accept we say that σ is a valid signature on message m. Moreover, an adversary
that does not know the secret key sk should not be able to forge a valid signature.
This security property is formally captured in the widely accepted definition
Existential Unforgeability under Chosen-Message Attacks (EUF-CMA) [9]. We
assume digital signature schemes to be correct and EUF-CMA by definition.

Definition 12 (Threshold Signature). A k-out-of-n threshold signature
scheme (TSS) is a digital signature scheme (keygen, sign,verify) appended
with two algorithms:

– k-aggregate is a (possibly randomized) aggregation algorithm. On input n
public keys (pk1, . . . , pkn), k signatures (σi)i∈S for a k-subset S ∈ {1, . . . , n}
and a message m ∈ {0, 1}∗, it outputs a threshold signature Σ.

– k-verify is a deterministic verification algorithm. On input n public keys
(pk1, . . . , pkn), a message m and a threshold signature Σ, it outputs either
accept or reject.

Let S ⊂ {1, . . . , n} be some k-subset of indices and let (σ)i∈S be signatures,
such that verify(pki,m, σi) = accept, for all i ∈ S, and for some message
m ∈ {0, 1}∗. Then a TSS is correct, if for all (pk1, . . . , pkn), m, S and (σ)i∈S ,

k-verify
(
(pk1, . . . , pkn),m, k-aggregate

(
m, (σi)i∈S

))
= accept.

If k-verify
(
(pk1, . . . , pkn),m,Σ

)
= accept we say that Σ is a valid threshold

signature. Moreover, an adversary with at most k − 1 valid signatures on a mes-
sage m should not be able to construct a valid threshold signature. This unforge-
ability property can be formalized by the following security game. Consider an
adversary that is allowed to choose a subset of k − 1 indices I ⊂ {1, . . . , n}
and impose the values of the keys pki in this subset. Assume that all remain-
ing keys pki were generated honestly from keygen and therefore correspond to
secret keys ski. The adversary is allowed to query polynomially many signatures

546 T. Attema et al.

σ′
i = sign(ski,m

′) for arbitrary messages m′. The TSS is said to be unforgeable,
if the adversary is incapable of producing a valid k-out-of-n threshold signature
on some message m that has not been queried. We assume threshold signatures
schemes to be correct and unforgeable by definition.

5.2 Our Threshold Signature Scheme

We follow a non-standard, but conceptually simple, approach for constructing a
threshold signature scheme. The starting point of our TSS is a digital signature
scheme (keygen, sign,verify) and the k-aggregation algorithm k-aggregate
simply produces a proof of knowledge of k valid signatures on a message m, i.e.,
a PoK for the following relation:

RT =
{

(pk1, . . . , pkn,m;S, (σi)i∈S) :

|S| = k, verify(pki,m, σi) = accept ∀i ∈ S}
.

(6)

The obvious approach is to capture this relation by an arithmetic circuit, i.e.,
reduce it to a number of constraints defined over Zq, and apply a communication-
efficient proof of knowledge for arithmetic circuit relations in a black-box manner.
A significant drawback of this indirect approach is that it relies on an inefficient
reduction to arithmetic circuit relations. For this reason, we follow a direct app-
roach avoiding these inefficient reductions.

We instantiate our TSS with the BLS signature scheme [10] defined over
a bilinear group (q,G1,G2,GT , e,G,H). Let us now briefly recall the BLS sig-
nature scheme, instantiated in our n-player setting. All players i, 1 ≤ i ≤ n,
generate their own private key ui ∈ Zq, and publish the associated public key
Pi = uiH ∈ G2. To sign a message m ∈ {0, 1}∗, player i computes signature
σi = uiH(m) ∈ G1, where H : {0, 1}∗ → G1 is some public hash function. The
public verification algorithm accepts a signature σi if

e(σi,H) = e(H(m), Pi). (7)

By the bilinearity of e, all honestly generated signatures are accepted. The
unforgeability follows from the co-CDH assumption [10]. Note that in [10], where
G1 = G2, this collapses to the “gap-group” assumption.

We will be using the commitment scheme from Definition 8:

Com : Zn0
q × G

n1
1 × Zq → GT , (xZq

,xG1 , γ) → hγ +
〈
g,xZq

〉
+ e(xG1 ,H).

This commitment scheme requires the slightly stronger DDH assumption in G1

to hold. Note that, in contrast to the general case considered in Sect. 4, here
we do not need to be able to commit to G2- and GT -coefficients. Therefore, we
can use the somewhat simpler commitment scheme of Definition 8. In particular,
these commitments consist of only 1 instead of 2 GT -elements.

Instantiating relation RT with the BLS signature scheme therefore results in
the following relation,

RTSS = {(P1, . . . , Pn,m;S, (σi)i∈S) : |S| = k, e(σi,H) = e(H(m), Pi) ∀i ∈ S} .

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 547

The k-aggregate algorithm simply computes a proof of knowledge for relation
RTSS . The main challenge is that the prover only knows k-out-of-n signatures.
To handle this problem the k-out-of-n case is reduced to the n-out-of-n as follows.
The k signatures are appended with n−k signatures σi = 0 and a binary vector
that allows the prover to eliminate the n − k new and invalid signatures. The
left hand side of the verification remains the same, while the right hand side
is multiplied by corresponding coefficient of the binary vector. This approach
results in a TSS with the desired properties. However, it requires the prover
to prove a number of non-linear statements, i.e., that the committed binary
vector is binary and contains at most n − k zeros. Although this can be done
efficiently, e.g., with the range proofs of [4], a recent result on k-out-of-n proofs
of partial knowledge [5] gives an even more efficient solution, that completely
avoids non-linearities.

The proof of partial knowledge technique allows us to reduce relation RTSS

to a linear relation defined over the bilinear group (q,G1,G2,GT , e,G,H). Let
p(X) = 1 +

∑n−k
j=1 ajX

j ∈ Zq[X] be the unique polynomial of degree at most
n−k with p(i) = 0 for all i ∈ {1, . . . , n}\S. Note that this polynomial defines an
(n − k, n) secret sharing of 1, with shares si = 0 for all i /∈ S. The k-aggregator
defines σ̃i = p(i)σi, where σ̃i is understood to be equal to 0 for i /∈ S, i.e.,
the secret sharing defined by p(X) eliminates the signatures (σi)i/∈S that the
k-aggregator does not know. Subsequently, the k-aggregator commits to

x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Z
n−k
q × G

n
1 .

Now note that the committed vector x satisfies fi(x) = fi(a1, . . . , an−k, σ̃1,
. . . σ̃n) = e(H(m), Pi) for all 1 ≤ i ≤ n, where

fi : Zn−k
q × G

n
1 → GT , x → e(σ̃i,H) −

n−k∑

j=1

aji
je(H(m), Pi). (8)

Hence, by proving that the committed vector satisfies these relations, it follows
that the k-aggregator knows a non-zero polynomial p(X) of degree at most n−k
and group elements σ̃1, . . . σ̃n ∈ G1 such that e(σ̃i,H) = p(i)e(H(m), Pi) for all
1 ≤ i ≤ n. Therefore, the k-aggregator must know valid signatures for all indices
i with p(i) �= 0, and since p(X) is non-zero and of degree at most n − k, at least
k of its evaluations are non-zero. Because the mappings fi are homomorphisms,
the required proof of knowledge follows from an appropriate instantiation of
compressed Σ-protocol Πc. We apply the amortization techniques of Sect. 4.7
to prove all n relations of Eq. (8) for essentially the price of one. Moreover,
we apply the Fiat-Shamir transform to make protocol Πc non-interactive. Alto-
gether the threshold signature contains a commitment P ∈ GT to the vector x
together with a non-interactive proof of knowledge π of an opening of P that
satisfies the aforementioned linear constraints. The k-aggregate algorithm is
summarized in Algorithm 3. The associated k-verification algorithm k-verify
simply runs the verifier of Πc. Correctness of the resulting threshold signature
follows immediately from the completeness of Πc, and unforgeability follows

548 T. Attema et al.

from the soundness of Πc. The properties of the TSS are summarized in The-
orem 6. Note that our TSS has some additional properties not required by the
definition of Sect. 5.1. For instance, since the proof of knowledge Πc is special
honest-verifier zero-knowledge, our threshold signatures hide the k-subset S of
signers.

Algorithm 3. k-Aggregation Algorithm k-aggregate

Public Input : Public Keys P1, . . . , Pn ∈ G2

Message m ∈ {0, 1}∗

Private Input : k − Subset S ⊂ {1, . . . , n}
Signatures (σi)i∈S ∈ G

k
1

Output : Threshold Signature. Σ = (π, P) ∈ Zq × G1 × G
4�log2(n)�+3
T ∪ {⊥}

1. If ∃i ∈ S such that e(σi, H) 	= e(H(m), Pi) output ⊥ and abort.
2. Compute the unique polynomial p(X) = 1+

∑n−k
i=1 ajX

j ∈ Zq[X] of degree at most
n − k such that p(i) = 0 for all i ∈ {1, . . . , n}\S.

3. Compute σ̃i := p(i)σi for all i ∈ S and set σ̃i = 0 for all i /∈ S.
4. Let x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Z

n−k
q × G

n
1 and compute commitment P =

Com(x, γ) ∈ GT for γ ∈ Zq sampled uniformly at random.
5. Run the non-interactive variant of Πc to produce a proof π attesting that the

committed vector x satisfies fi(x) = fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi) for
all 1 ≤ i ≤ n, where fi are homomorphisms defined in Equation 8.

6. Output commitment P and the non-interactive proof π ∈ Zq ×G1 ×G
4�log2(n)�+2
T .

Theorem 6 (Threshold Signature Scheme). The k-out-of-n threshold sig-
nature scheme defined by the BLS signatures scheme [10] appended with the
algorithms (k-aggregate, k-verify) is correct and unforgeable. Moreover:

– A threshold signature contains exactly 4 �log2(n)� + 3 GT -elements, 1 G1-
element and 1 Zq-element.

– A threshold signature is zero-knowledge on the identities of the k signers.
– The threshold k can be chosen at aggregation time.
– It resists against an adaptive adversary which can replace the public keys of

corrupted players.

Proof. See the full version of this paper [1]. ��

6 Generalized Circuit Zero-Knowledge Protocols

The Compressed Σ-Protocol Πc of Sect. 4 allows a prover to prove linear state-
ments. In this section, we show how to handle non-linear statements. Our app-
roach is a generalization of the linearization techniques of [4], where it was shown

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 549

how to linearize non-linearities in arithmetic circuit relations. More precisely, we
aim to find a SHVZK PoK for proving knowledge of a witness x such that
C(x) = 0 for some circuit C defined over a bilinear group, i.e., a protocol for the
following circuit satisfiability relation:

Rcs = {(C;x) : C(x) = 0}. (9)

Circuits defined over a bilinear group have the following form:

C : Zn0
q × G

n1
1 × G

n2
2 × G

nT

T → Z
s0
q × G

s1
1 × G

s2
2 × G

sT

T .

These circuits are also called bilinear group arithmetic circuits [35] and they are
composed of addition gates and the following 5 types of bilinear gates:

Gate0 : Zq × Zq → Zq, (a, b) → ab,
Gate1 : G1 × Zq → G1, (g, a) → ga,
Gate2 : G2 × Zq → G2, (h, a) → ha,
Gate3 : GT × Zq → GT , (k, a) → ka,
Gate4 : G1 × G2 → GT , (g, h) → e(g, h).

(10)

Each wire of C corresponds to a variable that takes values in a group W ∈
{Zq,G1,G2,GT }. We assume all gates to have fan-in two and unbounded fan-
out. Note that these circuits are indeed generalizations of arithmetic circuits,
where wires take values in Zq, and gates are addition or multiplication gates.

Bilinear gates taking one constant and one variable input value are linear
mappings. Hence, circuits C containing no bilinear gates with two variable inputs
are handled directly by the techniques from Sect. 4. In this case, C(x) = f(x)+a
for a homomorphism f and a fixed constant a. A protocol for relation Rcs then
goes as follows:
1. The prover commits to x ∈ Z

n0
q × G

n1
1 × G

n2
2 × G

nT

T .
2. The prover and the verifier run Πc to open the homomorphism f , i.e., the

prover reveals a value y and proves that f(x) = y.
3. The verifier checks that y + a = 0.

When C contains bilinear gates, we cannot express the circuit in this linear
manner. To handle non-linearities, the prover appends the secret vector x with a
vector aux containing auxiliary information, i.e., in the first step of the protocol
the prover commits to the appended vector (x, aux). The approach is a general-
ization of the secret sharing based techniques from [4]; linearizing non-linearities.

Let c be the vector of wire values associated to the output wires of all the
bilinear gates in C(x). Note that c depends on the secret vector x. Then, there
exists a homomorphism f and a constant a, independent from x, such that
C(x) = f(x, c) + a. A naive generalization of the above approach to arbitrary
circuits is now obtained by taking aux = c. However, this approach does not
guarantee that the committed vector (x, c) is of the appropriate form, i.e., that
c corresponds to the outputs of bilinear gates when C is evaluated in x.

To prove that the committed vector (x, c) is of the appropriate form the
inputs and outputs of the bilinear gates are encoded in polynomials f ∈ A[X]
where A ∈ {Zq,G1,G2,GT }. We first describe some properties of these polyno-
mials.

550 T. Attema et al.

6.1 Polynomials over Groups of Prime Order

The Zq-module structure of the groups Gi naturally extends to their polyno-
mial rings, i.e., Gi[X] is a Zq[X]-module for all i and the product h(X) of two
polynomials f(X) ∈ Zq[X] and g(X) ∈ Gi[X] is defined naturally.

Since Gi is a Zq-module, a polynomial f =
∑n

i=0 aiX
i ∈ Gi[X] defines

a mapping f : Zq → Gi, ρ → f(ρ) =
∑n

i=0 aiρ
i, called the “evaluation”

mapping. Moreover, every ρ ∈ Zq defines a mapping:

Fρ : Gi[X] → Gi, f =
n∑

i=0

aiX
i → f(ρ) =

n∑

i=0

aiρ
i,

called the “evaluation at ρ” mapping, which is linear.
A bilinear gate Gate : L×R → U can be extended to act on polynomials:

Gate
(n∑

i=0

aiX
i,

m∑

j=0

bjX
j
)

=
n∑

i=0

m∑

j=0

Gate(ai, bj)Xi+j ∈ U[X]. (11)

By the bilinearity of Gate it follows that this mapping commutes with polynomial
evaluation, i.e., for all ρ ∈ Zq it holds that Gate(f(ρ), g(ρ)) = Gate(f, g)(ρ).

The following lemma shows that a non-zero polynomial f has at most deg(f)
zeros. From this it follows that, for a fixed non-zero polynomial f and a random
challenge c, the probability that f(c) = 0 is at most deg(f)/q.

Lemma 2. Let f(X) ∈ A[X] be non-zero, for some A ∈ {Zq,G1,G2,GT }. Then
f(X) has at most deg(f) zeros.

Proof. Recall that A has prime order q and let g be a generator of A. Then
it is easily seen that f(X) = f ′(X)g for some polynomial f ′(X) ∈ Zq[X] with
deg(f) = deg(f ′). Moreover, since g is a generator of A, it holds that f(a) = 0
if and only if f ′(a) = 0. The lemma now follows from the fact that a non-zero
polynomial f ′ defined over the field Zq has at most deg(f ′) zeros. ��

The following lemma describes an approach for testing whether three polyno-
mials f(X), g(X) and h(X) satisfy a bilinear relation defined by Gate : L×R →
U. More precisely, when the bilinear relation holds in a random evaluation point
c ∈ Zq then, with high probability, it holds for the polynomials f , g and h.

Lemma 3. Let f(X) ∈ L[X], g(X) ∈ R[X] and h(X) ∈ U[X] with
deg(f),deg(g) ≤ n and deg(h) ≤ 2n. Then, for d ∈ C ⊂ Zq sampled uniformly
at random, it holds that

Pr (Gate (f(d), g(d)) = h(d)|Gate (f(X), g(X)) �= h(X)) ≤ 2n/ |C| .

Proof. The polynomial h(X) − Gate (f(X), g(X)) ∈ U[X] has degree at most
2n. The lemma now follows from Lemma 2. ��

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 551

6.2 Linearization of Bilinear Gates

We are now ready to describe the linearization approach. To this end, for 0 ≤
i ≤ 4, let mi be the number of gates Gatei : Li ×Ri → Ui of type i in circuit
C. Then, for a circuit evaluation C(x), we let ai ∈ Lmi

i and bi ∈ Rmi
i be the

vectors of left and right input values of these gates. Similarly, we let ci ∈ Umi
i

be the vector of output values for the gates of type i.
The protocol now goes as follows. First, for each i, the prover samples two

polynomials fi(X) ∈ Li[X]≤mi
and gi(X) ∈ Ri[X]≤mi

of degree at most mi

uniformly at random under the condition that fi(j) = ai,j and gi(j) = bi,j

for all 1 ≤ j ≤ mi. Note that these polynomials define packed Shamir secret
sharings [42] with (mi + 1)-reconstruction and 1-privacy of the vectors ai and
bi, i.e., the vectors ai and bi can be reconstructed from any mi + 1 evaluations
of fi(X) and gi(X) and any single evaluation outside {1, . . . , mi} is independent
from the vectors ai and bi.

Second, the prover computes the polynomial hi(X) = Gatei (fi(X), gi(X)).
By the strong-multiplicativity of Shamir’s secret sharing scheme, hi(X) ∈ Ui[X]
defines a packed secret sharing of the vector ci ∈ Umi

i with 2mi + 1 recon-
struction. More precisely, hi(X) is of degree at most 2mi and hi(j) = ci,j for
all 1 ≤ j ≤ mi. Subsequently, the prover sends a commitment to the following
secret vector to the verifier:

y =
(
x, f0(0), g0(0), h0(0), . . . , h0(2m0), . . . ,

f4(0), g4(0), h4(0), h4(1), . . . , h4(2m4)
)
.

The vector y = (x, aux) contains the vector c = (c1, . . . , c�) of the output
values of all bilinear gates as a sub-vector. Hence, all wire values can be expressed
as the evaluation of some public homomorphism in y plus a public constant value.
This holds in particular for the evaluations fi(j) and gi(j) for all 1 ≤ i ≤ and
1 ≤ j ≤ mj . Hence, for every i, mi +1 evaluations of fi and gi can be computed
as affine functions evaluated in y, i.e., y uniquely defines polynomials fi(X) and
gi(X) of degree at most mi. Similarly, y uniquely defines polynomials hi(X) of
degree at most 2mi. By the linearity of Lagrange interpolation it follows that, in
addition to the wire values, all evaluations of the polynomials fi(X), gi(X) and
hi(X) can be expressed as some homomorphism evaluated in y plus a constant.

These properties allow the prover to convince the verifier that the vector
y is of the appropriate form by proving that certain linear constraints hold.
Namely, in the next step of the protocol, the verifier samples a random chal-
lenge d ∈ Zq\{1, . . . ,max(mi)} uniformly at random and asks the prover to
run protocol Πc to open C(x), fi(d), gi(d) and hi(d) for all 1 ≤ i ≤ . Note
that all these values correspond to homomorphisms evaluated in the committed
vector y = (x, aux). To further reduce the communication costs, the amortiza-
tion techniques mentioned in 4.7 are applied. Finally, the verifier verifies that
C(x) = 0 and that Gate (fi(d), gi(d)) = hi(d) for all 0 ≤ i ≤ 4. By Lemma 3
this final verification implies that Gate (fi(X), gi(X)) = hi(X), and therefore
that Gate (ai,j , bi,j) = ci,j for all j, with probability at least 1 − 2mi/(q − mi).

552 T. Attema et al.

If mi is polynomial and q is exponential in the security parameter, this proba-
bility is overwhelming. The protocol is SHVZK because the polynomials fi(X),
gi(X) and hi(X) define secret sharings with 1-privacy, and because protocol Πc

is SHVZK. For a more detailed discussion we refer to [4] in which this approach
is restricted to arithmetic circuits.

The resulting protocol, denoted by Πcs, is described in the full version of this
paper [1]. To state the properties of protocol Πcs observe that

y = (x, aux) ∈ Z
n0+2m0+6
q × G

n1+2m1+3
1 × G

n2+2m2+3
1 × G

nT +2m3+2m4+3
T ,

where y is the vector to which the prover commits in the first round of protocol
Πcs. For ease of notation we define the following parameters:

m := max(mi), s := max(s0 + 6, s1 + 3, s2 + 3, sT + 3),
N := max (n0 + 2m0 + 7, n1 + 2m1 + 3, n2 + 2m2 + 3) ,

NT := nT + 2m3 + 2m4 + 3.

Note that we make a distinction between the (Zq,G1,G2)-part, for which the
commitment scheme is compact, and the GT -part of the vector y. Using this
notation, the properties of Πcs are summarized in Theorem 7.

Theorem 7 (Circuit Zero-Knowledge Protocol for Bilinear Circuits).
Πcs is a (2μ + 7)-move protocol for circuit relation Rcs, where μ = �log2 (N)�.
It is perfectly complete, special honest-verifier zero-knowledge, under the DDH
assumption in GT , and computationally (2m + 1, s, 2, 2, 3, . . . , 3)-special-sound
under the SXDH assumption. Moreover, the communication costs are:

– P → V: 6μ + NT + 9 GT -elements, 4 G1-elements, 4 G2-elements and 8
Zq-elements.

– V → P: μ + 4 Zq-elements.

Remark 3. Without the improvement of Sect. 4.5, for El Gamal based commit-
ments, the prover would have to communicate 2NT additional GT elements in
protocol Πcs. Hence, this improvement causes the constant in front of the only
linear term of the communication costs to be reduced from 3 down to 1.

6.3 Comparison of the Communication Costs

In this section, we compare the communication costs of our protocol Πcs to
the bilinear circuit ZK protocol of [35]. We note that, a rigorous comparison
is difficult, for the following two reasons. First, we consider arbitrary bilinear
circuits, whereas they assume certain structural properties. The communication
costs stated in [35] hold only for circuits in which the gates with GT outputs are
output gates. Second, we consider a strictly stronger scenario in which the prover
proves that the committed input values satisfy some bilinear relation, instead of
merely proving knowledge of a satisfying input vector without being committed
to this input vector, i.e., we consider a commit-and-proof functionality. This

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 553

difference explains why their communications costs are independent of the input
dimensions n0, n1 and n2.

Despite these two aspects, showing that we consider a stronger application
scenario, it is interesting to note that our communication costs are smaller in
certain parameter regimes. From Theorem 7 it follows that our Protocol Πcs

requires the prover to send a total of 6 �log2 (N)� + NT + 28 elements (group
and field elements) to the verifier, i.e., the communication costs associated to
the (Zq,G1,G2)-part are logarithmic and the communications costs associated
to the GT -part are linear. By contrast, the protocol of [35] results in a total
communication cost of 16 log2 (mix) + 3nT + 71 elements, where mix = 2m′

0 +
m′

1+m′
2+nT m′

3+m′
4. Here, the variable m′

i counts all gates of type i, including
the ones taking a constant input value, i.e., m′

i ≥ mi. Hence, we have reduced
the constant of the logarithmic part from 16 down to 6, and the constant of the
linear part from 3 down to 1. However, when comparing the linear parts of the
communication complexity, we note that there exist bilinear circuits for which
3nT < NT = nT + 2m3 + 2m4 + 3, e.g., circuits with nT = 0 and m4 > 0.
Therefore, depending on the bilinear circuit our linear communication costs can
be larger. This can partially be explained by the fact that Lai et al. [35] make
structural assumptions on the bilinear circuit. For instance, they assume that
only input and output wires can take values in GT , whereas our protocol works
for arbitrary bilinear circuits.

Nevertheless, as opposed to general bilinear circuits, there are specific
quadratic inner-product relations for which the approach of Lai et al. [35] can
result in communication costs lower than those obtained by applying our generic
approach. These relations exploit the fact that their approach reduces bilinear
circuit relations to sets of inner-product constraints. These techniques are fur-
ther improved in Bünz et al. [14], who focus on communication-efficient protocols
for quadratic inner-product relations. By contrast, for the example of threshold
signature schemes, which only rely on linear circuits, application of the latter
approach would result in unnecessary overhead as compared to our compressed
Σ-protocol approach.

Acknowledgments. We are grateful for the constructive and encouraging comments
from Hieu Phan. We also thank Thijs Veugen for numerous helpful editorial com-
ments. We thank Russell Lai for answering some relevant questions regarding his prior
work [35] and for explaining their techniques. Thomas Attema has been supported
by the Vraaggestuurd Programma Veilige Maatschappij, supervised by the Innova-
tion Team of the Dutch Ministry of Justice and Security, and the Vraaggestuurd Pro-
gramma Cyber Security, part of the Dutch Top Sector High Tech Systems and Mate-
rials programme. Ronald Cramer has been supported by ERC ADG project No 74079
(ALGSTRONGCRYPTO) and by the NWO Gravitation Programme (QSC).

554 T. Attema et al.

References

1. Full version of this paper. IACR ePrint 2020/1147
2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-

preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–
421 (2015). https://doi.org/10.1007/s00145-014-9196-7

3. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. IACR ePrint 2005/385 (2005)

4. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 18

5. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n-partial knowl-
edge. IACR ePrint 2020/753 (2020)

6. Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 549–579.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 19

7. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage
via keyword-searchable encryption. IACR ePrint 2005/417 (2005)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993 (1993)

9. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

11. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

12. Boyle, E., Cohen, R., Goel, A.: Breaking the O(
√

n)-bits barrier: balanced byzan-
tine agreement with polylog bits per-party. In: To Appear in ACM PODC (2021)

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: IEEE S&P (2018)

14. Bünz, B., Maller, M., Mishra, P., Vesely, N.: Proofs for inner pairing products and
applications. IACR ePrint 2019/1177 (2019)

15. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: practical
asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246
(2005). https://doi.org/10.1007/s00145-005-0318-0

16. Canetti, R.: Universally composable signature, certification, and authentication.
In: IEEE Computer Security Foundations Workshop 2004 (2004)

17. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, CWI and University of Amsterdam (1996)

18. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745

Compressed Σ-Protocols for Bilinear Group Arithmetic Circuits 555

19. Cramer, R., Damg̊ard, I., Pastro, V.: On the amortized complexity of zero knowl-
edge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS,
vol. 7412, pp. 62–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32284-6 4

20. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

22. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math 156, 3113–3121 (2008)

23. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

24. Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable abort.
IACR ePrint 2020/540 (2020)

25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 31

26. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of Pedersen’s
distributed key generation protocol. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol.
2612, pp. 373–390. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36563-X 26

27. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group
model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 3

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

29. Haque, A., Krenn, S., Slamanig, D., Striecks, C.: Logarithmic-size (linkable) thresh-
old ring signatures in the plain model. IACR ePrint 2020/683 (2020)

30. Harchol, Y., Abraham, I., Pinkas, B.: Distributed SSH key management with proac-
tive RSA threshold signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 22–43. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-93387-0 2

31. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the
discrete log setting, revisited. In: ACM CCS 2019 (2019)

32. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash Protocol Specication -
Version 2020.1.7 (2020)

33. Kokoris-Kogias, E., Spiegelman, A., Malkhi, D.: Asynchronous distributed key gen-
eration for computationally-secure randomness, consensus, and threshold signa-
tures. In: ACM CCS 2020 (2020)

34. Komlo, C., Goldberg, I.: FROST: flexible round-optimized Schnorr threshold sig-
natures. In: SAC 2020, pp. 34–65 (2020)

35. Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilinear group arith-
metic: practical structure-preserving cryptography. In: ACM CCS 2019, pp. 2057–
2074 (2019)

36. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. Theor.
Comput. Sci. 645, 1–24 (2016)

https://doi.org/10.1007/978-3-642-32284-6_4
https://doi.org/10.1007/978-3-642-32284-6_4
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/978-3-030-84252-9_3
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-319-93387-0_2
https://doi.org/10.1007/978-3-319-93387-0_2

556 T. Attema et al.

37. Libra Team: State machine replication in the LibraBlockchain, version 2019–10-24
(2019)

38. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143–184 (2003). https://doi.org/10.1007/s00145-002-0143-7

39. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols
for byzantine broadcast and agreement. In: DISC 2020, pp. 28:1–28:17 (2020)

40. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

41. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

42. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
43. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

https://doi.org/10.1007/s00145-002-0143-7
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15

Promise Σ-Protocol: How to Construct
Efficient Threshold ECDSA

from Encryptions Based on Class Groups

Yi Deng1,2(B), Shunli Ma1,2(B), Xinxuan Zhang1,2(B), Hailong Wang1,2(B),
Xuyang Song3(B), and Xiang Xie3(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{deng,mashunli,zhangxinxuan,wanghailong9065}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Shanghai Key Laboratory of Privacy-Preserving Computation, Shanghai, China

{songxuyang,xiexiang}@matrixelements.com

Abstract. Threshold Signatures allow n parties to share the ability of
issuing digital signatures so that any coalition of size at least t + 1
can sign, whereas groups of t or fewer players cannot. The currently
known class-group-based threshold ECDSA constructions are either inef-
ficient (requiring parallel-repetition of the underlying zero knowledge
proof with small challenge space) or requiring rather non-standard low
order assumption. In this paper, we present efficient threshold ECDSA
protocols from encryption schemes based on class groups with neither
assuming the low order assumption nor parallel repeating the underlying
zero knowledge proof, yielding a significant efficiency improvement in the
key generation over previous constructions.

Along the way we introduce a new notion of promise Σ-protocol that
satisfies only a weaker soundness called promise extractability. An accept-
ing promise Σ-proof for statements related to class-group-based encryp-
tions does not establish the truth of the statement but provides security
guarantees (promise extractability) that are sufficient for our applica-
tions. We also show how to simulate homomorphic operations on a (pos-
sibly invalid) class-group-based encryption whose correctness has been
proven via our promise Σ-protocol. We believe that these techniques are
of independent interest and applicable to other scenarios where efficient
zero knowledge proofs for statements related to class-group is required.

1 Introduction

Threshold Digital Signature Schemes [Des88] enable distributed signing amongst
a group of individuals such that any subgroup which is larger than a certain pre-
determined size can jointly sign, whereas any group with fewer players cannot.
Specifically, a t-out-of-n threshold signature scheme is a protocol that allows n
parties to jointly generate a common public verification key, along with n shares
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 557–586, 2021.
https://doi.org/10.1007/978-3-030-92068-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_19

558 Y. Deng et al.

of the corresponding secret signing key, and allows any subgroup of at least t+1
parties to securely sign a given message distributedly. In addition to satisfy-
ing the standard unforgeability of signature schemes, threshold variants should
provide security that no malicious party can subvert the protocol to extract
another party’s secret share, and no more than t cannot collude to generate a
valid signature.

The Elliptic Curve Digital Signature Algorithm (ECDSA) has been widely
used in various applications including TLS, DNSSec, SSH and cryptocurren-
cies such as Bitcoin and Ethereum. The efficiency and widespread adoptions of
ECDSA make its threshold version become an active research topic recently.
After the work [GJKR96] and [MR01], many improved protocols have been
proposed in recent years both for the specific two-party case [Lin17,DKLs18,
CCL+19] and for the more general t-out-of-n case [GGN16,BGG19,GG18,LN18,
DKLs19,CCL+20]. Among these schemes, a common used primitive to study
threshold ECDSA is additively homomorphic encryption such as Paillier encryp-
tion and CL encryption [CL15,CLT18]. The latter is an ElGamal-like encryption
scheme based on class groups of unknown order that contain a prime-order sub-
group where the discrete logarithm (DL) problem is tractable, and such a dis-
tinguished property enables the CL encryption scheme to support much larger
message space than the traditional ElGamal scheme.

Protocols based on Paillier encryption. Gennaro et al. [GGN16] extended
the technique of [MR01], and introduced a six-round t-out-of-n threshold signa-
ture. Boneh et al. [BGG19] optimized their extension in terms of computational
efficiency, and reduced the number of rounds to four. Meanwhile Lindell [Lin17]
optimized the protocol framework and proposed an efficient protocol in the two-
party setting. Subsequently, Gennaro and Goldfeder[GG18,GG20], Lindell and
Nof [LN18] presented efficient protocols in the multi-party case that supported
efficient distributed key generation. Unfortunately, mainly due to the mismatch
between the Paillier modulus and the ECDSA modulus, these schemes all require
expensive zero knowledge proofs, such as costly range proofs.

Protocols based on CL encryption. Castagnos et al. [CCL+19,CCL+20]
employed the CL encryption and presented bandwidth efficient protocols for the
two-party case and multi-party case, respectively. The modulus, which defines
the underlying message space of CL encryption, could be set as the same prime
modulus as in ECDSA. Thus, these protocols are able to eliminate the expensive
range proofs which are required in the Paillier-based protocols, and achieve low
communication cost. However, it is challenging to design efficient zero knowledge
proofs for CL ciphertexts. As discussed in Sect. 1.2, a malicious prover holding
low-order elements can convince the verifier of an invalid ciphertext with high
probability. In order to resist this low-order-element attack, the two-party pro-
tocol in [CCL+19] adopts a zero knowledge proof with a single bit challenge to
prove the validity of a CL ciphertext, and repeats this subprotocol in parallel to
achieve a negligible soundness error. To overcome the inefficiency caused by rep-
etition, [CCL+20] proposed more efficient threshold ECDSA protocols relying

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 559

on stronger and non-standard low order assumption, which essentially says that
no one can find a low order element efficiently in the given class group.

On low order assumption and non-uniform security. We would like to
stress that the new low order assumption on the class group of imaginary
quadratic fields has been much less studied. Following the Cohen-Lenstra heuris-
tic [Coh00], the probability that any integer d divides the order of the class group
is approximately 1/d + 1/d2, and it seems inherent that the class group often
contains low order elements. Boneh et al. [BBF18] suggested one possible app-
roach to find low order elements in the class group. As stated in [CCL+19],
computing square roots or finding elements of order 2 can be efficiently done in
class groups knowing the factorization of the discriminant (which is public in
the associated schemes). Recently Belabas et al. [BKSW20] show that breaking
the low-order assumption is possible if the discriminant belongs to some special
class of prime numbers.

We note that the low order assumption on class groups that actually con-
tains low order elements would become false in the presence of non-uniform
adversaries, which can be simply hardwired with a low order element in theory.
Note that non-uniform security is implicitly required by almost all cryptographic
protocols, since we often need to compose them with other protocols.

1.1 Our Contribution

In this paper, we introduce a new notion of promise Σ-protocol that satisfies only
a weaker soundness called promise extractability. The promise Σ-protocols for
statements involved in class-group-based encryptions relax the requirements of
soundness but does provide security guarantees (promise extractability) that are
sufficient for our applications. We also show how to simulate homomorphic oper-
ations on a (possibly invalid) class-group-based encryption whose correctness has
been proven via our promise Σ-protocol. We believe that these techniques are
of independent interests and applicable to other scenarios where efficient zero
knowledge proofs for statements related to class-group is required.

Building on promise Σ-protocols, we present efficient two-party and multi-
party threshold ECDSA from CL encryptions based on class groups with neither
assuming the low order assumption nor parallel repeating the underlying zero
knowledge proof. Compared to [CCL+19] (resp. [CCL+20]), in the key gener-
ation phase our two-party protocol is about 15× (resp. about 2×) faster, and
about 17× (resp. 2×) less in bandwidth. Compared to [CCL+20], without resort-
ing to the low order assumption and strong root assumption, our multi-party pro-
tocol removes the time-consuming interactive setup phase. It also reduces the
number of expensive exponential operation in class groups of each party from
14t − 10 in [CCL+20] to 10t − 6 in the signing phase, where t is the threshold.
Note that 40-bit soundness error is considered in the above comparison. The
improvement will be much better if 128-bit soundness error is required.

560 Y. Deng et al.

1.2 Technical Overview

In this section we mainly give a high-level overview on our new techniques in the
two-party ECDSA, which can be naturally extended to the multi-party case.

Before going into a technical discussion, we briefly recall the ECDSA algo-
rithm and its threshold variant. Given a group of points of an elliptic curve G

with a generator G of prime order p, the verification key of a ECDSA algo-
rithm is a point Q ∈ G and the signing key is x such that Q = x · G. To
sign a message m one first hashes it using a (publicly known) hash function
H, chooses a random k ∈ Zp and computes R = kG, then sets r = rx mod p
where rx is the x-coordinate of the elliptic curve point R. The signature is
(s = (k−1(H(m) + rx) mod p, r).

Let us give an example of two-party ECDSA of [Lin17] to illustrate how a
distributed ECDSA works. In this case, two parties P1 and P2, holding multi-
plicative shares x1 and x2 respectively, execute a coin-tossing-like protocol to
generate a verification key Q = x1x2G, then P1 computes a ciphertext ckey

of x1 using a homomorphic encryption scheme and sends it, together with a
zero knowledge proof of its correctness, to P2. To sign a message m, P1 and
P2 choose k1 and k2 at random respectively, and execute another coin-tossing-
like protocol to generate a point R = k1k2G and set r = rx mod p. Finally,
P2 homomorphically computes an encryption of s′ = k−1

2 H(m) + k−1
2 rx2x1 on

the ciphertext ckey and sends the ciphertext to P1, who decrypts the ciphertext
and obtains s′, and outputs a signature (r, s = k−1

1 s′). As we mentioned before,
both of the two popular Paillier and CL schemes for encrypting x1 incur large
computation/communication overheads.

Promise Σ-protocol for equality of messages. Towards achieving more
efficient constructions of two-party ECDSA, our first idea is to use CL encryption
scheme to encrypt x1 and introduce a promise Σ-protocol for proving equality
of message encoded into Q1 = x1 ·G and the one encrypted in the CL ciphertext.

To better explain our new notion let us briefly describe a CL encryption scheme
and see how a traditional efficient Σ-protocol fails to prove a CL ciphertext.
CL encryption scheme works on a tuple of parameters of groups (s̃, g, f, gp, Ĝ,

G,F ,Gp) [CL15]. The finite abelian group Ĝ is of order pŝ where p is prime, ŝ is
unknownbutwith anupper bound s̃ and gcd(p, ŝ) = 1.The cyclic groupG := 〈g〉 of
order ps is a subgroup of Ĝ in which the Decisional Diffie-Hellman (DDH) assump-
tion holds and s|ŝ is also unknown. G contains a unique cyclic subgroup of order p,
F := 〈f〉, where the DL problem is solvable. Group Gp := 〈gp〉 is the subgroup of
p-th powers in G (of unknown order s). Similar to the ElGamal scheme, the public
and secret keys of a CL scheme are (gp, f, h) and d (such that h = gd

p) respectively,
and a ciphertext of m is of the form (c1, c2) = (gr

p, hrfm), where r ← [0, S] and
S chosen in practice is a rough upperbound on the unknown order s of group Gp.
Note that since the DL problem over F is easy, one can decrypt such a CL cipher-
text even when |m| = p.

When applying a traditional Σ-protocol with large challenge space to prove
the plaintext knowledge of a CL ciphertext, one will obtain a transcript ((a1 =

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 561

gsr
p , a2 = hsrfsm), e, (zr = sr + er, zm = sm + em mod p)) where sr ← [0, U) for

some sufficiently large U and sm ∈ Zp are randomness used to mask r and m,
respectively. If this transcript is accepted, then it holds that zr ∈ [0, U+(p−1)S),
gzr

p = a1c
e
1 and hzrfzm = a2c

e
2. However, an accepting proof does not imply

the correctness of the ciphertext. That is, a traditional Σ-protocol with large
challenge space does not enjoy special soundness here. For example, it is easy
to see that a malicious prover P∗ holding low-order elements (g′, h′) (g′ may be
equal to h′) could convince the verifier of a false statement (c′

1 = g′c1, c
′
2 = h′c2)

as long as the challenge e is divided by both the order of g′ and h′. This is why
the work [CCL+19] adopts a Σ-protocol with a single-bit challenge for proving
knowledge of plaintext then parallelizes it to achieve a negligible soundness error.

To overcome this efficiency issue, we have P1 encode x1 twice to obtain Q1 =
x1 · G and a CL ciphertext ckey and then use a promise Σ-protocol (with large
challenge space) to prove equality of the plaintexts. Let ckey = (ckey,1, ckey,2) be
an encryption of x1 under the public key pk = (gp, f, h) of CL scheme, where
ckey,1 = gr

p, ckey,2 = hrfx1 and r is the randomness used to encrypt x1. Our
promise Σ-protocol can be built from the Schnorr protocol and the above “Σ-
protocol” (that does not enjoy special soundness) for CL ciphertext (see Sect. 3.1
for a detailed description).

An interesting observation on the above “Σ-protocol” for CL ciphertext is
that, given two accepting transcripts (a1, a2, e, zr, zm) and (a1, a2, e

′, z′
r, z

′
m)

(e �= e′), one could obtain cẽ
key,1 = gp

z̃r and cẽ
key,2 = hz̃rf z̃m , where ẽ =

e − e′ ∈ Zp, z̃r = zr − z′
r ∈ Z and z̃m = zm − z′

m ∈ Zp. Since the Schnorr
protocol for Q1 = x1G enjoys special soundness, one can extract x1 by stan-
dard rewinding technique and deduce that, if a prover can make a verifier
accept a promise Σ-proof for equality of plaintexts of (Q1, ckey), it holds that
cẽ
key,2 = hz̃rf z̃m = hz̃rf ẽx1 . That is, we can modify ckey = (ckey,1, ckey,2) into a

valid ciphertext (c′
key,1 = cẽ

key,1, c
′
key,2 = cẽ

key,2) by picking e, e′ (with e �= e′) at
random and setting ẽ = e − e′. This provides us with an additional extraction
strategy using the secret key sk: Given the secret key sk, one could efficiently
decrypt (c′

key,1, c
′
key,2) and recover x1 from the decrypted plaintext ẽx1, and

output x1 if it satisfies x1 · G = Q1.
Specifically, our promise Σ-protocol for equality of ciphertexts (Q1, ckey)

guarantees the following promise extractability: for any prover that makes the
verifier accept with high probability,

1. With oracle access to this prover, there is an efficient extractor that extracts
the message x1 of Q1 with probability negligibly close to 1.

2. If the public key pk are honestly generated, then there is an efficient extractor
(without access to the prover) that, given the corresponding sk as input, it
extracts the plaintext x1 of Q1 with probability negligibly close to 1.

Both properties turn out to be very useful in our constructions of two-party
and multi-party ECDSA.

Simulating homomorphic operations on an invalid ciphertext. Sup-
pose in the key generation of a two-party ECDSA P1 sends to P2 a pair (Q1, ckey)
which both encode x1, along with a promise Σ-proof of equality of their plaintexts.

562 Y. Deng et al.

Following the framework of [Lin17,CCL+19], in the final step of a two-party sign-
ing subprotocol, P1 and P2 hold (x1, k1, r) and (x2, k2, r) respectively, and com-
pute a signature on message m as follows. P2 computes b = k−1

2 m′ (where m′ is
the hash value of m), a = k−1

2 rx2, and a ciphertext of ax1 + b by homomorphic
operations on (ckey,1, ckey,2), then sends the ciphertext to P1, who decrypts the
ciphertext and computes a signature (r, k−1

1 (ax1 + b)).
Let us abuse notation slightly and denote by P2(r1) the last step of P2 in

which it generates a ciphertext of ax1 + b using randomness r1. (It is conve-
nient to think that a and b (along with the public keys) are “hardwired” into
P2(r1).) Suppose the ciphertext (ckey,1, ckey,2) is computed under a public key
pk = (s̃, p, gp, f, h) of the CL encryption scheme. As shown in [CCL+19], if
the ciphertext (ckey,1, ckey,2) is valid, say ckey,1 = gr

p and ckey,2 = hrfx1 , then
P2(r1) can compute the ciphertext (gr1

p · ca
key,1, h

r1f b · ca
key,2) homomorphically.

Furthermore, there is a simulator S that given only s′ = ax1 + b (without any
knowledge of a or b) simulates the honest party P2 by computing (gr2

p , hr2 · fs′
),

no matter how the public key pk is generated. However, as mentioned, in order
to ensure the correctness of (ckey,1, ckey,2), P1 needs to run a parallel version of
the standard Σ-protocol with single bit challenge for (ckey,1, ckey,2) due to the
low-order-element attack, which is the major efficiency bottleneck.

In our case, when using promise Σ-protocol for proving equality of plaintexts
of (Q1, ckey), as we showed, it guarantees only that the (ckey,1, ckey,2) satisfies
ckey,1 = g

z̃/ẽ
p and ckey,2 = hz̃/ẽfx1 for some ẽ ∈ [−p + 1, p − 1] \ {0}, z̃ ∈

[−U − (p − 1)S + 1, U + (p − 1)S − 1] \ {0}. Now if we have the same P2 and S,
we obtain the following two ciphertexts1:

P2(r1) : (gr1
p · ca

key,1, h
r1f b · ca

key,2) = (gr1+az̃/ẽ
p , hr1+az̃/ẽ · fax1+b);

S(r2) : (gr2
p , hr2 · fs′

).

We observe that it is possible for a malicious P∗
1 to launch a low-order-element

attack and tell these two ciphertexts apart. P∗
1 chooses a y∈Ĝ of low order (say,

order 2) and produces an invalid ciphertext (ckey,1 = gr
p, ckey,2 = yhrfx1). (one

can verify that there always exist ẽ and z̃ such that the above equations hold
for this ciphertext.) Note also that P∗

1 can carry out the promise Σ-protocol
with success probability 1

2 . Once P∗
1 receives the ciphertext from P2 as above, it

can compute yafax1+b using his secret key and then obtain a mod 2. (Note that
a = 0 mod 2 if and only if one can solve yafax1+b and obtain ax1 + b since the
DL problem is tractable in group F .) But if the ciphertext is computed by the
simulator S, then P∗

1 always obtains a = 0 mod 2.
We have P2 randomize a in computing the ciphertext of ax1+b to get around

this issue. That is, P2 chooses a random t, raises ckey,1 and ckey,2 to the power
a+t, and then computes a ciphertext (ca+t

key,1, f
b·ca+t

key,2) (Note that, by introducing
randomness t, we can drop gr1

p and hr1 here). For an honest P1 to decrypt and
obtain ax1 + b, P2 sends back this ciphertext along with t mod p.

1 In our construction of the two-party protocol, P2 does homomorphic operations
only on (ckey,1, ckey,2) (and not on (Ckey,1, Ckey,2)) and sends back the resulting CL
ciphertext.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 563

It appears that revealing information about t would make this randomization
useless. However, as we will prove in Sect. 4, as long as the random string t is
sufficiently long and both p � ord(gp), p � ord(h) (we denote by ord(y) the order of
y), the above randomization actually works, i.e., the following two distributions
are indistinguishable:

P2(t1) : (ca+t1
key,1, f

b · ca+t1
key,2, t1 mod p), and S(t2) : (ct2

key,1, f
s′ · ct2

key,2, t2 mod p).

To make sure p � ord(gp) and p � ord(h), one can have P1 generate a CL public
key of the form (g0, gp = gp

0 , h0, h = hp
0). P2 checks if gp = gp

0 and h = hp
0 hold,

and if so, it takes (gp, h) as the public key of a standard CL encryption scheme.

Promise Σ-protocol for homomorphic operations. In the multi-party set-
ting, in the signing phase one party needs to prove that it did the same homo-
morphic operations on given a linear encoding and a CL ciphertext. We also
construct a promise Σ-protocol for proving such a statement. As before, though
a promise Σ-proof does not guarantee the statement is true, but the promise
extractability suffices to prove the security of our protocol.

1.3 Related Work

ECDSA based on oblivious transfer. Instead of using additively homomor-
phic encryption, Doerner et al. [DKLs18,DKLs19] constructed two-party and
multi-party threshold ECDSA based on oblivious transfer. As a consequence,
these schemes are fast in computational complexity but at the cost of increasing
the bandwidth.

Concurrent work. Very recently, Yuen et al. [YCX21] optimize the underly-
ing zero knowledge proof related to class-group encryption, and construct more
efficient two-party and multi-party ECDSA protocols. However, their schemes
still rely on the low order assumption and the strong root assumption and the
security is proved in the generic group model.

2 Preliminaries

Notation. Let λ be the security parameter. A non-negative function negl(λ)
is negligible if for every polynomial p(λ), it holds that negl(λ) ≤ 1/p(λ) for
sufficiently large λ ∈ N. Let poly(λ) be a polynomial of λ. PPT stands for prob-
abilistic polynomial time. Denote ord(g) the order of the element g in a given
group.

2.1 CL Encryption from HSM Assumption

Castagnos et al. [CCL+19] gave a specific hard subgroup membership assump-
tion (HSM) [CLT18] which is defined in the context of a group with an easy Dlog
subgroup. Their instantiation makes use of class groups of imaginary quadratic
fields. We list the definitions and constructions below and refer to [CCL+19] for
more details.

564 Y. Deng et al.

Definition 1 ([CCL+19]). Let GenGroup be a pair of algorithms (Gen,Solve).
The Gen algorithm taking as inputs the security parameter λ and a prime p
outputs a tuple param = (s̃, g, f, gp, Ĝ,G,F ,Gp). The set (Ĝ, ·) is a finite abelian
group of order p · ŝ where the bitsize of the unknown ŝ with an upper bound s̃
is a function of λ and gcd(p, ŝ) = 1. It is also required that one can efficiently
recognise valid encodings of elements in Ĝ. The set (F , ·) is the unique cyclic
subgroup of Ĝ of order p. The set (G, ·) is a cyclic subgroup of Ĝ of order p · s
where s divides ŝ. By construction F ⊂ G, and, denoting Gp := {xp, x ∈ G}
the subgroup of order s of G, it holds that G = Gp × F . The elements f, gp

and g = f · gp are respective generators of F , Gp and G. Let D (resp. Dp) be
a distribution over the integers such that the distribution {gx|x ← D} (resp.
{gx

p |x ← Dp}) is at distance less than 2−λ from the uniform distribution in G
(resp. in Gp). The Solve algorithm is a deterministic polynomial time algorithm
that solves the discrete logarithm problem in F . We suppose moreover that:

(1) The Dlog problem is easy in F :

Pr

⎡
⎣

param ← Gen(1λ, p);
x ← Zp, y = fx,

x� ← Solve(p, param, y)
: x = x�

⎤
⎦ = 1.

(2) The HSM problem is hard even with access to the Solve algorithm:

Pr

⎡
⎢⎢⎢⎢⎣

param ← Gen(1λ, p);
x ← D, x′ ← Dp;
z0 = gx, z1 = gx′

p ;
b ← {0, 1};

b� ← A(p, param, zb,Solve(·))

: b = b�

⎤
⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ),

for arbitrary PPTadversary A.

In practice, we will use for Dp the uniform distribution on {0, . . . , S} where
S = 2λ−2 · s̃. Following the notations of [CCL+19], we now describe a stan-
dard IND-CPA secure encryption scheme (called CL encryption) under the HSM
assumption.

Definition 2. The additively homomorphic public-key encryption scheme CL
consists of the following algorithms.

• CL.KGen(1λ, p) : Let (s̃, g, f, gp, Ĝ,G,F ,Gp) ← Gen(1λ, p). Choose x ← Dp

and compute h = gx
p . Set pk = (s̃, p, gp, f, h) and sk = x.

• CL.Encpk(m) : Pick r ← Dp, and output c = (gr
p, hrfm).

• CL.Decsk(c): Parse c = (c1, c2), and output m ← Solve(c2/cx
1).

As stated in [CCL+19], we also use the double encoding assumption to ensure
the security of the presented two-party ECDSA in the case that the party P2 is
corrupted. The intuition behinds this assumption is that given a one way function
evaluated in x ∈ Zp (in our protocol this is the elliptic curve point Q := xG) -
no polynomial time adversary can produce two invalid CL encryptions of x.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 565

Definition 3 (Double Encoding Assumption [CCL+19]). The double
encoding (DE) problem is δDE-hard for the one way function exp

G
: x 	→ xG

if for any PPT A, it holds that:

Pr

⎡
⎢⎢⎣

pp
G

:= (G, G, p)
ppG := (s̃, f, gp,G,F ,Gp) ← Gen(1λ, p)

x ← Zp, Q = xG
(pk, (u1, u

sk
1 fx), (u2, u

sk
2 fx) ← A(pp

G
, ppG , Q))

:
u1, u2 ∈ G\Gp

u2 · u−1
1 ∈ G\Gp

and pk = gskp

⎤
⎥⎥⎦ ≤ δDE,

where G is a group of points of an elliptic curve with a generator G of prime
order p.

The DE assumption holds if for any λ-bit prime p, δDE is negligible in λ.

2.2 Σ-Protocol

Denote L an NP language and R the associated binary relation. We say an
instance x lies in L if and only if there exists a witness w s.t. (x,w) ∈ R.
Consider two-party protocols with the following pattern: The prover P taking
input (x,w) computes a commitment a and hands it to V. The verifier V taking
input x samples a random challenge e from a given challenge space and sends it
to P. Then P responses z to V. Depending on the transcript (a, e, z), the verifier
chooses to accept or reject it.

Definition 4 (Σ-protocol). A 3-round protocol with the above form is called
a Σ-protocol for an NP language L with an efficiently recognizable relation R iff.
it satisfies the following properties:

• Completeness. If P and V behave honestly on input x and private input w to
P where (x,w) ∈ R, then V always accepts.

• Special soundness. There exists a PPT algorithm Ext which, given any
instance x ∈ L and two accepting transcripts (a, e, z) and (a, e′, z′) with
e �= e′, computes a witness w s.t. (x,w) ∈ R.

• Special honest verifier zero knowledge (HVZK). There exists a PPT algorithm
S which, taking x ∈ L and a challenge e as inputs, outputs (a, z) such that
the tuple (a, e, z) is indistinguishable from an accepting transcript generated
by a real protocol run between the honest P(x,w) and V(x).

Σ-protocols can be transformed to non-interactive zero knowledge (NIZK) argu-
ments via the Fiat-Shamir heuristic [FS87] and achieve zero knowledge in the
random oracle model.

2.3 Threshold ECDSA and Its Security

Let ECDSA run on the elliptic curve group G of prime-order p with base point
G. For a threshold t and a number of parties n ≥ t, a (t, n)-threshold ECDSA
consists of the following two interactive protocols:

566 Y. Deng et al.

IKeyGen: The interactive key generation protocol, which takes the public
parameter (G, G, p) as input. Each party Pi in the end receives the public key Q
and its secret key xi. The values x1, . . . , xn constitute a (t, n)-threshold secret
sharing of the secret signing key x.

ISign: The interactive signing protocol, which take a message m as common
input as well as a private input xi from each party. It outputs an valid signature
(r, s) of m or abort the execution.

The verification algorithm Verify is the same as that of the standard ECDSA.

Simulation-Based Security and Ideal Functionalities. In this paper, we
prove the security of two-party ECDSA according to the standard simulation
paradigm with the ideal/real model, in the presence of static adversaries that
choose which parties are corrupted before the protocol begins. The ideal/real
simulation paradigm is to imagine what properties one would have in an ideal
world, then a real world (constructed) protocol is said to be secure if it pro-
vides similar properties. Specifically, when proving that a constructed protocol
Π achieves the simulation-based security, we always define an ideal functional-
ity F executed by a trusted party to capture all the properties that need to
be met. Then, we construct a simulator S (essentially plays the role of honest
parties) that interacts with the trusted party computing F , invokes the PPT
adversary A internally, and simulates an execution of the real protocol. If A has
negligible advantage to distinguish a real execution with honest parties from the
simulation, then Π is considered secure.

We first describe the ECDSA ideal functionality between parties P1, . . . ,Pn

as follows. Note that when considering two-party ECDSA, we only need to set
n = 2.

The ECDSA Functionality FECDSA

• Upon receiving KeyGen(G, G, p) from all parties P1, . . . ,Pn, where G is
an Elliptic-curve group of order p with generator G, then:
1. Generate a pair of ECDSA keys (x,Q), where x ← Z

∗
p is the secret

signing key, and Q = x · G is the verification key.
2. Send Q to all parties.
3. Ignore future calls to KeyGen.

• Upon receiving Sign(sid,m) from P1, . . . ,Pn, if KeyGen was already called
and sid has not been stored, then:
1. Compute an ECDSA signature (r, s) on m.
2. Send (r, s) to all parties, and store (sid,m).

As in [Lin17,LN18,CCL+19], we prove the security of our protocol in a hybrid
model using the ideal zero knowledge functionality Fzk, and the ideal commit-
and-prove functionality Fcom-zk.

We now describe the ideal commitment functionality Fcom.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 567

The Commitment Functionality Fcom

• Upon receiving (commit, sid, x) from party Pi for i ∈ [n], if sid has
already been stored then ignore the message. Otherwise, store (sid, i, x)
and send (receipt, sid, i) to all other parties Pj for all j ∈ [n]\{i}.

• Upon receiving (decommit, sid, i) from party Pi, if (sid, i, x) has been
stored, then send (decommit, sid, i, x) to all other parties Pj for all j ∈
[n]\{i}.

The ideal zero knowledge functionality, denoted Fzk, is defined for a relation
R by (∅, (x,R(x,w))) ← Fzk((x,w), ∅), where ∅ denotes the empty string, and
R(x,w) = 1 iff. (x,w) ∈ R.
On HVZK in practice. We note that, in all previously known works in this
line, the zero knowledge functionalities are realized by Σ-protocols or its NIZK
version by Fiat-Shamir transformation, which achieve only honest verifier zero
knowledge or zero knowledge in the random oracle model.

The Zero Knowledge Functionality FR
zk for Relation R

Upon receiving (prove, sid, i, x, w) from party Pi for i ∈ [n], if sid has
already been stored then ignore the message. Otherwise, store sid and send
(proof, sid, i, x,R(x,w)) to all other parties Pj for all j ∈ [n]\{i}.

We also use an ideal functionality FR
com-zk to commit to NIZK proofs of

knowledge for a relation R. This can be achieved by having the prover commit
to a NIZK proof of knowledge using the ideal commitment functionality Fcom.

The Committed NIZK Functionality FR
com-zk for Relation R

• Upon receiving (com-prove, sid, x, w) from party Pi for i ∈ [n], if sid has
already been stored then ignore the message. Otherwise, store (sid, i, x)
and send (proof-receipt, sid, i) to all other parties Pj for all j ∈ [n]\{i}.

• Upon receiving (decom-proof, sid, i) from party Pi, if (sid, i, x) has been
stored, then send (decom-proof, sid, i, x,R(x,w)) to all other parties Pj

for all j ∈ [n]\{i}.

Game-Based Security. Following [GJKR96,CCL+20], our construction of
multi-party ECDSA is secure under a game-based definition: threshold unforge-
ability under chosen message attacks described as follows.

Definition 5 (Threshold Signature Unforgeability [GJKR96]). A (t, n)-
threshold signature scheme (IKeyGen, ISign,Verify) is said to be unforgeable, if

568 Y. Deng et al.

for any PPT adversary A who corrupts at most t parties, given the view of the
protocols IKeyGen and ISign on input messages m1, . . . ,mk of its adaptive choice
as well as signatures on those messages, the probability that A can produce a
signature on any new message m (m /∈ {m1, . . . ,mk}) is negligible.

3 Promise Σ-Protocols

For our purpose, we ideally want an additively homomorphic encryption scheme
over large message space and an efficient Σ-protocol to prove the validity of
certain statements about ciphertexts. Unfortunately, as mentioned before, all
currently known constructions are far from satisfactory: The ElGamal encryption
scheme admits an efficient Σ-protocol but only supports a very small message
space, while the CL encryption scheme supports large message space but does
not admit an efficient Σ-protocol.

We obtain the best of both worlds using the following approach. Consider the
following two keyed linear-homomorphic encoding schemes (we stress that these
secret keys do not necessarily enable one to decode a codeword efficiently)2

• (DL.Gen,DL.Code) over elliptic curve group of prime order: (pk0, sk0) ←
DL.Gen(1λ), cw0 ← DL.Codepk0(m);

• (CL.Gen,CL.Code) over class group of unknown order: (pk1, sk1) ←
CL.Gen(1λ), cw1 ← CL.Codepk1(m).

We encode a message m twice independently, and then compose in parallel
the efficient Σ-protocol for DL.Codepk0 with the efficient insecure Σ-protocol for
CL.Codepk1 to prove that “DL.Codepk0(m) and CL.Codepk1(m) encode the same
message m”, i.e., a statement in the following language:

L = {(pk0, pk1, cw0, cw1)|∃m

cw0 = DL.Codepk0(m) and cw1 = CL.Codepk1(m)}.

We observe that, though the composed Σ-protocol does not enjoy the special
soundness, it provides some interesting security guarantees that are sufficient for
our applications.

We call it promise Σ-protocol. Roughly, a promise Σ-protocol for the above
statement weakens the special soundness property and promises only that one
can extract the message m encoded into DL.Codepk0(m) by rewinding a successful
prover, or, extract certain information ρ(m) (for some efficiently computable
function ρ(·)) about m using both secret keys sk0 and sk1 without access to the
prover.

Definition 6 (Promise Σ-protocol). Let λ be the security parameter and ρ(·)
be an efficiently computable function. Let encoding schemes (DL.Gen,DL.Code),

2 These encoding schemes DL.Code and CL.Code may vary with applications, and may
be randomized.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 569

(CL.Gen,CL.Code) and language L be as above. A promise Σ-protocol (P,V) for
L with respect to ρ(·) is a 3-round public coin protocol (with transcript being of
the form (a, e, z)) that satisfies the following conditions:

• Completeness and special honest verifier zero knowledge defined in the same
way as Σ-protocol.

• Promise extractability. For any inverse polynomial ε(λ), any PPT P∗ that
makes the verifier accept with probability ε(λ), there is a PPT extractor Ext
such that the following conditions hold.
1. Extraction by rewinding (Special-soundness) for DL.Codepk0(m). With

oracle access to P∗, ExtP
∗
(cw0, cw1) extracts m of DL.Codepk0(m) with

probability negligibly close to 1.
2. Straight-line extraction for DL.Codepk0(m) using secret keys. If both

key pairs (pk0, sk0) and (pk1, sk1) are honestly generated, then given
(sk0, sk1) as input the extractor Ext(sk0, sk1, cw0, cw1) (without access to
P∗) extracts ρ(m) with probability negligibly close to 1, where m is mes-
sage encoded into DL.Codepk0(m).

Remark 1. Note that the promise extractability is a weaker notion than the
special soundness: An accepting promise Σ-proof does not even guarantee the
second codeword cw1 is valid.

However, the second condition of promise extractability implies that if a
prover can make the verifier accept the statement with high probability (hence
there exist at least two accepting transcripts with the same first message a but
different challenges e �= e′), then the one who holds the honestly generated secret
keys could extract ρ(m).

Remark 2. As we will see, in our applications the first secret key sk0 would not
allow us to efficiently recover the message encoded into cw0, but sk1 would if
cw1 is valid. As explained above, since cw1 may be invalid, our straight-line
extractor will depart from the normal “decryption” procedure associated with
CL.Code. Although we cannot use the first secret key sk0 to decode cw0, but it
is useful for the straight-line extractor to check if the message extracted out is
the right message (see the construction in Sect. 3.1).

Remark 3. One may use different (rewinding or straight-line) extractor in sim-
ulation strategies. Suppose that a malicious party sends out two codewords cw0

and cw1, along with a promise Σ-proof, to an honest party in a step of a proto-
col. In case cw0 and cw1 are computed under the public keys generated by the
malicious party, then the promise Σ-proof guarantees that the malicious party
“knows” the message encoded into cw0, which can be extracted using rewinding
by the simulator (playing the role of the honest party) in the security proof.
Otherwise, if the corresponding public keys are generated by the honest party,
then the promise Σ-proof promises that the codeword cw1 is “decodable”, and
the simulator can use straight-line extractor (with the corresponding secret keys
which are actually generated by itself in a simulation) to extract certain useful
information about the message encoded into cw0.

570 Y. Deng et al.

Theoretically, we can achieve Σ-protocol for such a statement with fully spe-
cial soundness. Our promise Σ-protocol is motivated purely out of efficiency
consideration. As we shall see, the weak notion of Σ-protocol is sufficient for our
application, and it achieves much better performance than the known construc-
tions of Σ-protocols.

Promise NIZK in the random oracle model. In practice, one can
apply the Fiat-Shamir transform to our promise Σ-protocol to obtain a non-
interactive protocol. One can verify that the resulting protocol also enjoys the
promise extractability in the random oracle model using the forking technique
from [PS96], as well as completeness and zero knowledge property.

Definition 7 (Promise NIZK). Let λ be the security parameter and ρ(·) be an
efficiently computable function. Let (DL.Gen,DL.Code), (CL.Gen,CL.Code) and
language L be defined as above. A promise NIZK proof (P,V) for L in the random
oracle model with respect to ρ(·) satisfies the following conditions:

• Completeness and zero knowledge defined in the same way as a NIZK proof.
• Promise extractability. For any inverse polynomial ε(λ), any PPT P∗ that

generates a proof with an accepted probability ε(λ), there is a PPT extractor
Ext such that the following conditions hold.
1. Extraction by rewinding for DL.Codepk0(m). With oracle access to P∗ and

the programmability of the random oracle H, ExtP
∗,H(cw0, cw1) extracts

m of DL.Codepk0(m) with probability negligibly close to 1.
2. Straight-line extraction for DL.Codepk0(m) using secret keys. If both

key pairs (pk0, sk0) and (pk1, sk1) are honestly generated, then given
(sk0, sk1) as input the extractor Ext(sk0, sk1, cw0, cw1) (without access to
P∗) extracts ρ(m) with probability negligibly close to 1, where m is mes-
sage encoded into DL.Codepk0(m).

3.1 Promise Σ-Protocol for Encryptions

In this section we first consider the following encoding schemes:

• DL.CodeG : m → m · G, where G is a random generator of an elliptic curve
group G of prime order p, serving the public key pk0 (and there is no secret
key).

• CL.Codepk : m → CL.Encpk(m; r), i.e., CL.Codepk is the CL encryption algo-
rithm CL.Enc (see Sect. 2), where pk is generated by its corresponding key
generation algorithm (pk, sk) ← CL.KGen(1λ).

and the following language:

LDLCL = {(G, pk, Q, c)|∃m ∈ Zp, r ∈ [0, S], s.t.
Q = m · G and c = CL.Encpk(m; r)}.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 571

We construct a promise Σ-protocol by composing two “Σ-protocols” for
discrete logarithm and CL ciphertext in parallel. Though the latter “Σ-protocol”
is insecure as mentioned before, we can still show the composed protocol is a
promise Σ-protocol. In the following, we fix U such that (p−1)S/U is negligible.

Protocol Σ1
prom for proving the consistency of messages

Common input: G,pk=(s̃, p, gp, f, h),Q, c=(c1, c2).
P’s Private input: m ∈ Zp and r ∈ [0, S] s.t. Q = m · G, c1 = gr

p and
c2 = hrfm.

1. P chooses sm ← Zp and sr ← [0, U) at random, computes A = smG,
a1 = gsr

p , a2 = hsrfsm . P sends A, a1, a2 to verifier V.
2. V chooses and sends a random e ← Zp to P.
3. P computes zm = sm + em mod p and zr = sr + er, then sends zm, zr to

V.
4. V outputs 1 iff. zr ∈ [0, U + (p − 1)S), zmG = A + eQ, gzr

p = a1c
e
1 and

hzrfzm = a2c
e
2.

Theorem 1. If (p − 1)S/U is negligible, then protocol Σ1
prom is a promise Σ-

protocol with respect to the identity function ρ : m → m.

The construction and security proof of protocol Σ1
prom are actually sub-

sumed by the following promise Σ-protocol in which the first encoding scheme
is replaced with the ElGamal encryption scheme3.

With replacement of the first encoding scheme in the above with the ElGamal
key generation and encryption algorithm (EG.KGen,EG.Enc) (Note that here the
secret key does not allow one to decrypt ciphertexts since the plaintext is too
long), we present a promise Σ-protocol for the following language:

LEGCL = {(pk0, pk1, C, c)|∃m ∈ Zp, r1 ∈ Zp, and r2 ∈ [0, S], s.t.
C = EG.Encpk0(m; r1) and c = CL.Encpk1(m; r2)}.

Protocol Σ2
prom for proving the equality of plaintexts

Common input: pk0 =(G,P),pk1 =(s̃, p, gp, f, h),C =(C1, C2), c=(c1, c2).
P’s Private input: m ∈ Zp,r1 ∈ Zp and r2 ∈ [0, S] s.t. C1 = r1G, C2 =
r1P + mG,c1 = gr2

p and c2 = hr2fm.

1. P chooses s1 ← Zp, s2 ← [0, U) and sm ← Zp at random, and computes
A1 = s1G, A2 = s1P+smG, a1 = gs2

p , a2 = hs2fsm . P sends A1, A2, a1, a2

to verifier V.

3 It is easy to verify that the straight-line extractor for protocol Σ1
prom, similar to the

one for protocol Σ2
prom, does not require the knowledge of sk0 (which does not exist

in protocol Σ1
prom).

572 Y. Deng et al.

2. V chooses and sends a random e ← Zp to P.
3. P computes z1 = s1 +er1 mod p, z2 = s2 +er2 and zm = sm +em mod p,

and sends z1, z2, zm to V.
4. V outputs 1 if z2 ∈ [0, U + (p − 1)S),z1G = A1 + eC1,z1P + zmG =

A2 + eC2,gz2
p = a1c

e
1 and hz2fzm = a2c

e
2.

Theorem 2. If (p − 1)S/U is negligible, then protocol Σ2
prom is a promise Σ-

protocol with respect to the function ρ : m → m.

Proof. Completeness is obvious. Special honest verifier zero knowledge property
follows from the same arguments as in [CCL+19,GPS06], which we omit here.

We now prove the promise extractability. Suppose there is a prover P∗ that
can make the honest verifier accept with probability ε(λ), we can fix a good
random tape r∗

p for P∗ and define G′
r∗

p
:= {e ∈ Zp : P∗(r∗

p) answers e correctly},
which is of size greater than pε(λ).

By applying standard rewinding strategy to the prover P∗(r∗
p), we have an effi-

cient extractor ExtP
∗(r∗

p) that computes two accepting transcripts (A1, A2, a1, a2,
e, z1, z2, zm) and (A1, A2, a1, a2, e

′, z′
1, z

′
2, z

′
m) with e �= e′. From (A1, A2, e, z1, zm)

and (A1, A2, e
′, z′

1, z
′
m) one can compute the plaintext m = (zm − z′

m)/(e −
e′) mod p of the ElGamal ciphertext (C1, C2) (since the Σ-protocol for an ElGamal
ciphertext satisfies special soundness).

It remains to prove the second condition of promise extractability holds.
In this case we assume both the public keys pk0 and pk1 are honestly gen-
erated. Let sk0 and sk1 are the corresponding secret keys. From the above
two accepting transcripts, we also have that gz2

p = a1c
e
1, h

z2fzm = a2c
e
2 and

g
z′
2

p = a1c
e′
1 , hz′

2fz′
m = a2c

e′
2 . Set z̃2 = z2 − z′

2, z̃m = zm − z′
m, ẽ = e − e′. By

z̃m = mẽ mod p as above, we conclude

gz̃2
p = cẽ

1, and hz̃2fmẽ = cẽ
2. (1)

This implies that we can efficiently modify the second ciphertext (c1, c2) into
a valid ciphertext (c′

1 = cẽ
1, c

′
2 = cẽ

2) of the message mẽ. Furthermore, combining
zm − z′

m = mẽ mod p with the first condition of promise extractability, we have

ẽ · (C2 − sk0 · C1) = mẽ · G and (
c2

c1
sk1

)ẽ = fmẽ.

This gives rise to the following extractor Ext that can compute the plaintext m
from the two secret keys and the two ciphertexts without access to the prover
P∗ with probability negligibly close to 1.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 573

Extractor Ext(sk0, sk1, (C1, C2), (c1, c2)):

1. Run the decryption algorithm CL.Decsk1 on input ((c1, c2)), if it outputs
a plaintext m such that C2 − sk0 · C1 = mG, then return m (In this case
(c1, c2) is a valid ciphertext).

2. Pick two random e, e′ ∈ Zp, compute (c2
c1sk1

)e−e′
and run z̃m ←

CL.Solve((c2
c1sk1

)e−e′
). If e �= e′ and (e − e′) · (C2 − sk0C1) = z̃mG

holds for the ElGamal ciphertext (C1, C2), then compute m by solving
(e − e′)m = z̃m mod p and return m; otherwise, repeat this step.

Note that if e �= e′ and (e − e′) · (C2 − sk0 · C1) = z̃m · G, then the ElGamal
ciphertext is valid and we can compute the unique plaintext m from (e−e′)m =
z̃m mod p. Since the size of G′

r∗
p

is greater than pε(λ), a single step 2 of Ext will
output the plaintext of (C1, C2) with probability at least ε2(λ) − 1

2λ , and hence

it will succeed in expected time at most O
(

1
ε(λ)2 T

)
, where T is the running time

of a single repetition of step 2. ��

3.2 Promise Σ-protocol for Homomorphic Operations

Suppose we have a tuple (pk0, pk1, C = (C1, C2), c = (c1, c2)) that has already
been proven to be in LEGCL via the promise Σ-protocol Σ2

prom described in the
previous section. We call such a pair (C, c) semi-equal.

Given such a (pk0, pk1, C = (C1, C2), c = (c1, c2)), we consider the following
encoding schemes both derived from homomorphic operations:

• DL.Codepk′
0=(pk0,C1,C2) : (a, b) → (aC1 + rG, aC2 + bG + rP), where pk0 =

(G,P) is the public key of the ElGamal encryption, r is selected randomly
from Zp. We let the secret key corresponding to pk′

0 be the secret key of the
ElGamal encryption.

• CL.Codepk′
0=(pk1,c1,c2) : (a, b) → (ca

1 , ca
2f b), where pk1 is the public key of the

CL encryption. We let the secret key corresponding to pk′
1 be the secret key

of the CL encryption.

We now present a promise Σ-protocol for the following language with respect
the above two schemes:

Laffine = {((pk0 =(G,P),C1,C2), (pk1 =(̃s, p, gp, f, h), c1, c2), (C
′
1, C

′
2), (c

′
1, c

′
2))|

∃a∈ [0,pS),b,r∈Zp, s.t. C′
1 = aC1 + rG ∧ C′

2 = aC2 + bG + rP ∧ c′
1 = ca

1 ∧ c′
2 = ca

2fb}

Such a statement essentially says that the tuple (C ′ = (C ′
1, C

′
2), c

′ = (c′
1, c

′
2)) is

generated from (C = (C1, C2), c = (c1, c2)) by doing the same affine homomor-
phic operations.

The protocol proceeds as follows.

574 Y. Deng et al.

Protocol Σ3
prom for correctness of homomorphic operations

Common input: (((G,P),C1,C2), ((̃s, p, gp, f, h), c1, c2), (C ′
1, C

′
2), (c

′
1, c

′
2)).

P’s Private input: a ∈ [0, pS), b, r ∈ Zp.

1. P randomly chooses sa ∈ [0, pU), sb, sr ∈ Zp, and computes A1 =
saC1 + srG,A2 = saC2 + sbG + srP, a1 = csa

1 , a2 = csa
2 fsb , then sends

(A1, A2, a1, a2) to V.
2. V chooses randomly e ∈ Zp and sends it to P.
3. P computes za = sa +ea in Z, zb = sb +eb mod p and zr = sr +er mod p,

then sends (za, zb) to V.
4. V first checks whether za ∈ [0, p(U + (p − 1)S)), and accepts iff. the

following conditions hold: zaC1 + zrG = A1 + eC ′
1, zaC2 + zbG + zrP =

A2 + eC ′
2, c

za
1 = a1c

′
1
e
, cza

2 fzb = a2c
′
2
e.

Theorem 3. If (p − 1)S/U is negligible, and ((C1, C2), (c1, c2)) is a semi-equal
pair under the encoding schemes EG.Encpk0 and CL.Encpk1 respectively, then pro-
tocol Σ3

prom is a promise Σ-protocol with respect to the function ρm : (a, b) →
(am + b mod p), where m is such that (C1, C2) = EG.Encpk0(m).

Proof. Again, here we omit the proofs of completeness and the HVZK property,
and just prove the promise extractability.

Suppose an adversarial prover P∗ convinces V with a non-negligible proba-
bility, we could obtain two accepting transcripts (A1, A2, a1, a2, e, za, zb, zr) and
(A1, A2, a1, a2, e

′, z′
a, z′

b, z
′
r) with e �= e′ mod p using the similar proof strat-

egy as the previous section. Subsequently following the special soundness of
the Σ-protocol for ElGamal ciphertexts, one can compute the affine factors
(a mod p) = (za − z′

a)/(e − e′) mod p and b = (zb − z′
b)/(e − e′) mod p, as well

as the randomness r = (zr − z′
r)/(e − e′) mod p such that C ′

1 = aC1 + rG and
C ′

2 = aC2 + bG + rP .
We now turn to the second property of promise extractability. Note that from

the above two accepting transcripts it yields

cΔza
1 = c′

1
Δe

, cΔza
2 fΔzb = c′

2
Δe

, (2)

where Δza = za − z′
a,Δzb = zb − z′

b and Δe = e − e′.
From the fact that (C = (C1, C2), c = (c1, c2)) are semi-equal, it follows from

the equality (1) that cẽ
1 = gz̃

p , cẽ
2 = hz̃fmẽ for some ẽ. Combining these two

equalities with the equality (2), we have

gz̃Δza
p = c′

1
ẽΔe

, hz̃Δzbf (am+b)ẽΔe = c′
2
ẽΔe

. (3)

This essentially says that one can efficiently modify the second codeword
(c′

1, c
′
2) into a valid codeword (c′′

1 = c1
ẽΔe, c′′

2 = c′
2
ẽΔe) of the message (am +

b)ẽΔe.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 575

We set ê = ẽΔe and ẑ = z̃Δza. Let (sk0, sk1) be the (honest generated) secret
keys of the underlying ElGamal and CL encryption scheme. Thus, combining the
first condition of promise extractability and the equality (3), we have

(am + b)G = C ′
2 − sk0 · C ′

1, c
′
1
ê = gẑ

p , c′
2
ê = hẑf (am+b)ê,

which allow us to construct a straight-line extractor Ext(sk0, sk1, ·) to extract
ρ(m) = am + b in the same way as in Sect. 3.1. ��

We prove in the full version of this paper that the promise Σ-protocols
described above are indeed promise NIZKs in the random oracle model after
applying Fiat-Shamir transformation.

4 Simulating Homomorphic Operations on an Invalid
Ciphertext

Recall that in the final stage of a two-party signing subprotocol of [Lin17,
CCL+19], P2 holds (x2, k2, r) and computes b = k−1

2 m′ (where m′ is the hash
value of m), a = k−1

2 rx2, and a ciphertext of ax1 +b by homomorphic operations
on the ciphertext (ckey,1, ckey,2) of x1, which it received in the key generation
phase. P2 sends the resulting ciphertext of ax1 + b to P1, who decrypts the
ciphertext and computes a signature (r, k−1

1 (ax1 + b)).
In our settings, in the key generation phase P1 computes a pair (Q1, ckey =

(ckey,1, ckey,2)) which both encode x1, and then runs an efficient promise Σ-
protocol (with challenge of polynomial length) to prove the knowledge of x1. This
promise Σ-proof guarantees only that the (ckey,1, ckey,2) satisfies cẽ

key,1 = gz̃
p and

cẽ
key,2 = hz̃f ẽx1 for some ẽ ∈ [−p + 1, p − 1] \ {0}, z̃ ∈ [−U − (p − 1)S + 1, U +

(p − 1)S − 1] \ {0}. As discussed in the introduction, if we have the same P2 as
in [CCL+19], then the same simulator S would fail.

Instead, we have P2 choose a random t, raise ckey,1 and ckey,2 to the power
a + t (randomizing a), and then compute a ciphertext (ca+t

key,1, f
b · ca+t

key,2). For an
honest P1 to decrypt and obtain ax1 + b, P2 sends back this ciphertext along
with t mod p. Specifically, we consider the following P2 and S (think that a,b
and s′ = ax1 + b (along with the public keys) are “hardwired” into P2 and S,
respectively):

P2(t1) : (ca+t1
key,1, f

bca+t1
key,2, t1 mod p), and S(t2) : (ct2

key,1, f
s′

ct2
key,2, t2 mod p). (4)

We now give a formal proof that, if the random string t is sufficiently long and
p � ord(gp), p � ord(h), then these two distributions above are statistically close.
As mentioned, the last two conditions can be achieved by having P1 generate
a public key of the CL encryption scheme of the form (g0, gp = gp

0 , h0, h = hp
0).

Recall the following notations and their properties:

• param := (s̃, g, f, gp, Ĝ,G,F ,Gp) and S are the parameters of groups we work
on, satisfying that 1) p is a prime, |Ĝ| = pŝ for some unknown ŝ < s̃ and
S = 2λ−2s̃; 2) gcd(p, ŝ) = 1.

576 Y. Deng et al.

• pk := (s̃, p, gp, f, h) is the public key such that p � ord(gp) and p � ord(h). As
discussed above, this property can be easily achieved even if the public key
is maliciously generated.

• (x1, a, b, s′) satisfies s′ = ax1 + b mod p.
• (ckey,1, ckey,2) and h′. (ckey,1, ckey,2) is the ciphertext as above, and satisfies

cẽ
key,1 = gz̃

p and cẽ
key,2 = hz̃f ẽx1 for some ẽ ∈ [−p + 1, p − 1] \ {0}, z̃ ∈

[−U − (p − 1)S,U + (p − 1)S] \ {0}. h′ is an arbitrary ẽ-th root of hz̃, which
satisfies that ckey,2 = h′fx1 .

We define p := (param, pk, x1, a, b, s′, ckey,1, ckey,2, h
′), and prove the following

lemma.

Lemma 1. Let p be defined as above. Then the statistical distance between the
two distributions {t1 ← [0, pS) : P2(t1)} and {t2 ← [0, pS) : S(t2)} in (4) is
exponentially small.

Proof. From the facts that p � ord(gp), p � ẽ and cẽ
key,1 = gz̃

p , it follows p � ord(gz̃
p)

and gcd(p, ord(gz̃
p) = ord(cẽ

key,1)) = 1. Since

ord(cẽ
key,1) = ord(ckey,1)/ gcd(ord(ckey,1), ẽ) and p � ẽ,

we have gcd(p, ord(ckey,1)) ≤ gcd(p, ord(cẽ
key,1)) · gcd(p, gcd(ord(ckey,1), ẽ)) = 1,

i.e., p � ord(ckey,1).
Similarly, one can deduce p � ord(h′) from the facts that p � ord(h), p � ẽ and

h′ẽ = hz̃. Observe also that ord(ckey,1)|pŝ and ord(h′)|pŝ, we have

ord(ckey,1)|ŝ and ord(h′)|ŝ. (5)

We define the following deterministic algorithm f with p hardwired:

fp(t′) = (ca+t′
key,1, h

′a+t′
fax1+t′x1+b, t′ mod p),

and observe that,

P2(t1) = (ca+t1
key,1, f

b · ca+t1
key,2, t1 mod p);

= (ca+t1 mod ŝ
key,1 , h′a+t1 mod ŝ · fax1+t1x1+b mod p, t1 mod p) = fp(t1) (6)

By defining t∗2 := t2−p−1pa mod pŝ, where p−1 satisfies that p−1p ≡ 1 mod ŝ
(recall gcd(p, ŝ) = 1), we have:

S(t2) = (ct2
key,1, f

s′ · ct2
key,2, t2 mod p)

= (ct∗
2+p−1pa mod ŝ

key,1 , h′t∗
2+p−1pa mod ŝ · fax1+t∗

2x1+b mod p, t∗2 + p−1pa mod p)

= (ct∗
2+a mod ŝ

key,1 , h′t∗
2+a mod ŝ · fax1+t∗

2x1+b mod p, t∗2 mod p) = fp(t∗2) (7)

It is easy to verify that {t1 ← [0, pŝ) : fp(t1)} is identical to {t2 ← [0, pŝ) :
fp(t∗2 = t2 − p−1pa mod pŝ)}, which implies that

{t1 ← [0, pŝ) : P2(t1)} ≡ {t2 ← [0, pŝ) : S(t2)}. (8)

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 577

Denote by D1 the distribution {t1 ← [0, pS) : t1 mod pŝ} and by D2 the
distribution {t1 ← [0, pŝ) : t1}. The statistical distance SD(D1,D2) between the
two distributions D1 and D2 is

SD(D1,D2) =
1
2

∑
t∈[0,pŝ)

|Pr[t1 ← D1 : t1 = t] − Pr[t1 ← D2 : t1 = t]|.

Suppose that s̃ = kŝ for some k > 1. We have pS = 2λ−2ps̃ = k2λ−2pŝ, and
therefore

Pr
t∈[0,pŝ)

[t1 ←D1 : t1 = t] =
�k2λ−2�
k2λ−2pŝ

or
�k2λ−2� + 1

k2λ−2pŝ
∈ [

1

pŝ
− 1

k2λ−2pŝ
,

1

pŝ
+

1

k2λ−2pŝ
].

Thus, we conclude

SD(D1,D2) =
1
2

∑
t∈[0,pŝ)

|Pr[t1 ← D1 : t1 = t] − Pr[t1 ← D2 : t1 = t]| <
1

k2λ−1
.

Then SD(fp(D1), fp(D2)) ≤ 1/k2λ−1 since the deterministic fp doesn’t
amplify the statistical distance. And we have SD(P2(D1),P2(D2)) ≤ 1/k2λ−1

from (6) . Similarly, the statistical distance between {t2 ← [0, pS) : S(t2)} and
{t2 ← [0, pŝ) : S(t2)} is also less than 1/k2λ−1. Combining (8), it follows

SD({t1 ← [0, pS) : P2(t1)}, {t2 ← [0, pS) : S(t2)}) <
1

k2λ−2
.

��

5 Two-Party ECDSA

We now present an efficient construction for two-party ECDSA protocol and
prove its security under a simulation-based definition. We follow the framework
of [Lin17,CCL+19], but apply the promise Σ-protocol to avoid doing parallel
repetition which is the main efficiency bottleneck in [CCL+19]. Our protocol, as
depicted in Fig. 1, differs from [CCL+19] as follows (labeled with colored boxes
in Fig. 1):

1. P1 is required to generate a CL public key of the form (gp = ĝp
p , h = ĥp) to

make it sure p � ord(gp) and p � ord(h).
2. P1 proves via the promise Σ-protocol Σ1

prom described in Sect. 3.1 that Q1 and
the CL ciphertext ckey encode the same message x1, i.e., (Q1, ckey)∈LDLCL.

3. In the signing phase, P2 generates a ciphertext by homomorphic operations
together with tp = t mod p in the same way described in Sect. 4.

We use the ideal zero knowledge functionality Fzk for the following NP rela-
tion (where the parameters of the elliptic curve (G, G, p) are implicit public

578 Y. Deng et al.

Fig. 1. Two-party ECDSA key generation and signing protocols

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 579

inputs): RDL = {(Q;w)|Q = wG}. Functionality Fzk can be efficiently instanti-
ated by Schnorr protocol. Note that instead of using the Fzk-hybrid model, we
use the promise Σ-protocol directly in our construction.

In Fig. 1 we denote by ⊗ and ⊕ the homomorphic operations, defined as
ckey ⊗ k = (ck

key,1, c
k
key,2) and c1 ⊕ c2 = (c1,1 · c2,1, c1,2 · c2,2), where ckey, c1, c2

are CL ciphertexts and k is an integer.

Theorem 4. Under the DDH assumption, the HSM assumption and the Double
Encoding assumption, the protocol described in Fig. 1 securely computes FECDSA

for a two-party case in the (Fzk,Fcom-zk)-hybrid model in the presence of a mali-
cious static adversary under the simulation-based definition.

Our construction is to some extent derived from the one in [CCL+19] except
that the promise Σ-protocol only enjoys a weaker special soundness. On one
hand, if the adversary A corrupts party P2 which only verifies a promise Σ-
proof, we can simulate P1 in the same manner as in [CCL+19]; On the other
hand, if P1 is corrupted by A who plays the role of a prover in a promise Σ-
protocol, we could construct a simulator to generate an indistinguishable view
from the adversarial perspective by leveraging the extraction by rewinding (the
first property of promise extraction) and the technique to simulate homomorphic
operations (described in Sect. 4). The detailed proof of Theorem 4 is presented
in the full version of this paper.

6 Multi-party (Threshold) ECDSA

In this section, we show how to use promise Σ-protocols to remove the low order
assumption and strong root assumption for the multi-party (threshold) ECDSA
of [CCL+20]. The resulting protocol is more efficient than the one of [CCL+20]
in terms of both bandwidth and computational efficiency. Our techniques also
apply the multi-party protocol of [LN18] to improve bandwidth efficiency at the
cost of relatively high computational complexity as in the case [CCL+20].

6.1 Improvment on [CCL+20] with promise Σ-protocols

In the threshold ECDSA of [CCL+20], their zero knowledge proof for proving
the well-formedness of a CL ciphertext requires a random group generator gp due
to the need of strong root assumption. This leads to a costly interactive setup
phase to generate such gp. Without relying the assumption, we could remove
this phase.

We modify the threshold ECDSA protocol in [CCL+20] with promise Σ-
protocols in the following way (labeled with colored boxes in Fig. 2 and Fig. 3):

1. After generating the CL public/secret key pair (p̂ki = (s̃, p, ĝp, ĥ, f), ŝki), we
have each party refresh the public key to obtain a new pki = (s̃, p, gp = ĝp

p , h =
ĥp, f) as in the two-party case, and additionally generate a public/secret key
pair of ElGamal encryption (pk′

i, sk
′
i) ← EG.KGen(1λ) in the key generation

and broadcast (pk′
i, p̂ki, pki).

580 Y. Deng et al.

2. In Phase 1 of the signing phase of [CCL+20], we have each party Pi encrypt
ki using CL encryption scheme, as well as encoding it using ElGamal encryp-
tion scheme, then use the promise Σ-protocol Σ2

prom decsribed in Sect. 3.1 to
prove the plaintexts equality.

3. In Phase 2 of the signing phase of [CCL+20], instead of generating a CL
ciphertext ckjγi

of kjγi − βj,i mod p, Pi, like P2 in its final step of the two-
party signing protocol described in the previous section, homomorphically
computes a CL ciphertext of kjγi + kj t̂j,i − βj,i mod p, where t̂j,i is selected
uniformly from a sufficient large space [0, pS). Pi generates a ciphertext ckjwi

of kjwi + kjtj,i − vj,i mod p in the same way. And Pi sends ckjγi
, ckjwi

, along
with t̂p,ji = t̂j,i mod p and tp,ji = tj,i mod p (for Pj to derandomized the
plaintexts) to Pj .

Fig. 2. Multi-party key generation protocol

Following [GG18,CCL+20], we also use cryptographic primitives such as
Feldman’s verifiable secret sharing (VSS) scheme and a non-malleable equiv-
ocable commitment. We refer to [GG18,CCL+20] for more details of the two
schemes.

To enable a threshold signing protocol where a subset S ⊆ [n] of parties col-
laborate to sign a message m, given the (t, n) shares {xi}i∈[n] of x obtained in the
key generation phase, each party can compute the additive shares {wi}i∈S of x
using the appropriate Lagrangian coefficients, as well as {Wi = wiG}i∈S . We also
use the symbols ⊗,⊕ defined in Sect. 5 to represent homomorphic operations.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 581

Fig. 3. Multi-party threshold signing protocol

Note that the only subprotocol of the construction of [CCL+20] that requires
the low order assumption and the strong root assumption is the Σ-protocol for
the correctness of CL ciphertexts. When replacing such a subprotocol with our
promise Σ-protocol (as in the above second modification), we remove these two
stronger assumptions since our promise Σ-protocol per se does not rely on any
assumptions. Thus we have the following theorem, and leave its proof in the full
version of this paper due to space constraints.

582 Y. Deng et al.

Theorem 5. Under the assumption that the standard ECDSA is existentially
unforgeable, the DDH assumption, the HSM assumption, and the assumption
that Com is equivocable and non-malleable, then the protocol of Fig. 2 and 3 is
an existentially unforgeable threshold signature scheme.

6.2 Improving the Bandwidth Efficiency of [LN18]

Lindell and Nof [LN18] propose an efficient multi-party ECDSA but with higher
bandwidth due to the usage of Paillier encryption and expensive zero knowl-
edge range proofs in a subprotocol, called πpriv

mult. In the first round of the pro-
tocol each party Pi sends a Paillier encryption ci of xi (under its own pub-
lic key), and receives back cj . In the second round Pi selects a random ri→j

and homomorphically generates ci→j which is an encryption of xj · yi + ri→j ,
then sends it to Pj . Pi decrypts cj→i to obtain zj→i, and computes zi =∑

j∈[n]\{i} zj→i+xiyi−
∑

j∈[n]\{i} ri→j . To ensure the parties follow the protocol,
each party provides two zero knowledge proofs for every other one at the end of
each round: One zero knowledge proof for correctness of the ciphertext, and the
other for proving the correctness of the homomorphic operations in generating
ci→j .

Similarly, within the subprotocol πpriv
mult, we can replace the above two zero

knowledge proofs with our promise Σ-protocol Σ2
prom and Σ3

prom described
in Sect. 3 via encoding the secret message into an ElGamal ciphertext and an
CL ciphertext instead of a Paillier ciphertext, which achieves better bandwidth
efficiency. We stress that, due to the relatively heavy computation over class
groups, this replacement will increase the computational complexity as the case
in [CCL+20].

7 Comparisons

In this section, we compare implementations of our protocols with the state-of-
the-art ones. For fair comparison, we implement four two-party protocols with
Rust, including our protocol, the protocol in [CCL+19], its variant in [CCL+20]
and the protocol in [Lin17], and two multi-party ECDSA including our protocol
and the one in [CCL+20]. The elliptic curve is secp256k1 and the bit length of the
discriminant of the class group is chosen as 1827, which ensures that our protocols
have 128-bit security. We use Pari C library to handle arithmetic operations in
class groups and Paillier encryption. The running times are measured on a single
core of an Intel(R) Core(TM) i7-9700K @ 3.6GHz.

Two-Party ECDSA Protocol. In the theoretical aspect, we compare our two-
party ECDSA protocol with [CCL+19] and its improved variant in [CCL+20]
which reduces the repetition rounds of the zero knowledge proof to κ/10 times
with soundness error 2−κ.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 583

Table 1. Theoretical comparisons in computation of two-party protocols

Keygen (#CL-Exp) Signing (#CL-Exp) Assumptions (related to class group)

Ours 11 3 HSM + Double Encoding

[CCL+19] 4κ + 2 5 HSM + Double Encoding

[CCL+20] (6κ)/10 + 2 5 HSM + Double Encoding

Table 2. Theoretical comparisons in communication of two-party protocols

Keygen (Bytes) Signing (Bytes)

Ours 5|G| + 4|G| + 8Lp + L 4|G| + 2|G| + 7Lp

[CCL+19] (4 + κ)|G| + (2κ + 2)|G| + (6 + κ)Lp + κL 4|G| + 2|G| + 6Lp

[CCL+20] (4 + κ/10)|G| + (κ/5 + 2)|G| + (6 + κ/10)Lp + (κ/10)L 4|G| + 2|G| + 6Lp

Table 3. Concrete performance of two-party protocols

Keygen (ms) Signing (ms) Keygen (Bytes) Signing (Bytes)

Ours 967 391 1916 1046

[CCL+19] (κ = 40) 14107 442 35814 1014

[CCL+20] (κ = 40) 2275 442 4494 1014

[Lin17] (κ = 40) 6120 41 96805 1092

[CCL+19] (κ = 128) 44740 442 112374 1014

[CCL+20] (κ = 128) 6471 442 11454 1014

[Lin17] (κ = 128) 19032 41 305189 1092

The theoretical comparisions are given in Table 1 and Table 2. Since the expo-
nential operation in class groups is much costly than in elliptic curve and domi-
nates the computation cost, we only list the number of exponentiations in class
groups, and denote it as #CL-Exp. |G| and |G| are size of group elements in G
and G, respectively. L,Lp are the length of the integers sampled from Dp and
Zp. In our implementation, |G| = 33 Bytes, |G| = 345 Bytes, L = 115 Bytes and
Lp = 32 Bytes.

As shown in Table 1, in the key generation phase our two-party ECDSA
protocol is about 15× (resp. about 2×) faster than the protocol in [CCL+19]
(resp. in [CCL+20]) when κ = 40. The improvement is about 44× (resp. about
7×) when κ = 128. Our protocol is slightly better than the ones in [CCL+19,
CCL+20] in the signing phase.

Our protocol also reduces the communication cost significantly. As in Table 2,
the improvement of communication is about 17× (resp. 2×) in the key gener-
ation phase compared to the protocol in [CCL+19] (resp. in [CCL+20]) when
κ = 40. The improvement is about 54× (resp. about 6×) when κ = 128. The
communication cost in the signing phase is almost the same.

584 Y. Deng et al.

In the concrete apsect, we compare all the four protocols. The running time
and consumed bandwidth of our protocol and the protocols in [CCL+19] and
[CCL+20] shown in Table 3 meet the theoretical analysis above. Further, we
compare our protocol with the one in [Lin17], where Paillier modulus is chosen
as 3072 to get 128-bit security. In the key generation phase, our protocol improves
the computation performance by a factor about 6× (resp. 20×) when κ = 40
(resp. κ = 128). Our protocol also reduces the bandwidth by a factor about 47×
(resp. 149×) when κ = 40 (resp. κ = 128).

Table 4. Theoretical comparisons in computation of multi-party protocols

Keygen (#CL-Exp) Signing (#CL-Exp) Assumptions (related to class group)

Ours 2n + 1 10t − 6 HSM

[CCL+20] ((2n − 1)κ)/10 + 2 14t − 10 HSM + Low Order + Strong Root

Multi-Party ECDSA Protocol. The improvement of our multi-party
ECDSA protocol on [CCL+20], which is essentially based on [GG18], is very
obvious. Using the same notations as above, we show the theoretical compar-
isons in Table 4 and Table 5, and the concrete comparison in Table 6.

Table 5. Theoretical comparisons in communication of multi-party protocols

Keygen (Bytes) Signing (Bytes)

Ours ((4 + t)|G| + |G| + 5Lp)(n − 1) (17|G| + 8|G| + 19Lp + L)(t − 1)

[CCL+20] ((3 + t)|G| + (κ/10 + 3)|G| + 10Lp + (κ/10)L)(n − 1) (9|G| + 8|G| + 16Lp + L)(t − 1)

Table 6. Concrete performance of multi-party protocols

Keygen (ms) Signing (ms) Keygen (Bytes) Signing (Bytes)

Ours 186n + 95 1137t − 539 33tn + 637n − 33t − 637 4044t − 4044

[CCL+20] (κ = 40) 739n − 163 1258t − 834 33tn + 3792n − 33t − 3792 3684t − 3684

[CCL+20] (κ = 128) 2287n − 934 1252t − 842 33tn + 7434n − 33t − 7434 3684t − 3684

In terms of computational complexity, our multi-party ECDSA protocol is
about 4× (resp. 12×) faster than the protocol in [CCL+20] in the key generation
phase when κ = 40 (resp. κ = 128), which can be seen both in the theoretical
and concrete aspects. The signing phase of our construction is slightly better
than that in [CCL+20], and it is about 10% faster in the concrete aspect.

Promise Σ-Protocol: How to Construct Efficient Threshold ECDSA 585

In terms of communications, since we eliminate the need of costly interactive
setup phase, our protocol outperforms the one in [CCL+20] in the key generation
phase for both κ = 40 and κ = 128, factors vary according to the number of
parties n and the threshold t. In the signing phase the communication overhead
is slightly larger while our solution remains of the same order of magnitude.

Finally, it is worth noting that all our constructions are based on HSM
assumption (along with other assumptions in elliptic curve group) just as in
[CCL+19], instead of using stronger and non-standard assumptions: the low
order assumption and the strong root assumption as in [CCL+20].

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able suggestions. We are supported by the National Natural Science Foundation of
China (Grant No. 61932019, No. 61772521 and No. 61772522) and the Key Research
Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SYS035).

References

[BBF18] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018). https://eprint.iacr.
org/2018/712

[BGG19] Boneh, D., Gennaro, R., Goldfeder, S.: Using Level-1 homomorphic encryp-
tion to improve threshold DSA signatures for bitcoin wallet security. In:
Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368,
pp. 352–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25283-0 19

[BKSW20] Belabas, K., Kleinjung, T., Sanso, A., Wesolowski, B.: A note on the low
order assumption in class group of an imaginary quadratic number fields.
Cryptology ePrint Archive, Report 2020/1310 (2020). https://eprint.iacr.
org/2020/1310

[CCL+19] Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-
party ECDSA from hash proof systems and efficient instantiations. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 191–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 7

[CCL+20] Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.:
Bandwidth-efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 266–296.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 10

[CL15] Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from
DDH. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2 26

[CLT18] Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unre-
stricted inner product functional encryption modulo p. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 733–764.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 25

[Coh00] Cohen, H.: A Course in Computational Algebraic Number Theory.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-02945-9

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1007/978-3-030-25283-0_19
https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2020/1310
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-030-45388-6_10
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-662-02945-9

586 Y. Deng et al.

[Des88] Desmedt, Y.: Society and group oriented cryptography: a new concept. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 8

[DKLs18] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold
ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security
and Privacy (SP), pp. 980–997 (2018)

[DKLs19] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: the multiparty case. In: 2019 IEEE Symposium on Security
and Privacy (SP), pp. 1051–1066 (2019)

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GG18] Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast
trustless setup. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pp. 1179–1194. Asso-
ciation for Computing Machinery, New York (2018)

[GG20] Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable
abort. Cryptology ePrint Archive, Report 2020/540 (2020). https://eprint.
iacr.org/2020/540

[GGN16] Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/
ECDSA signatures and an application to bitcoin wallet security. In: Man-
ulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696,
pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5 9

[GJKR96] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS
signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
68339-9 31

[GPS06] Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature
schemes based on groups of unknown order. J. Cryptol. 19, 463–487 (2006)

[Lin17] Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 21

[LN18] Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, pp. 1837–1854. Association for Computing
Machinery, New York (2018)

[MR01] MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 8

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

[YCX21] Yuen, T.H., Cui, H., Xie, X.: Compact zero-knowledge proofs for threshold
ECDSA with trustless setup. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12710, pp. 481–511. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-75245-3 18

https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/540
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/3-540-44647-8_8
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-030-75245-3_18
https://doi.org/10.1007/978-3-030-75245-3_18

The One-More Discrete Logarithm
Assumption in the Generic Group Model

Balthazar Bauer1(B), Georg Fuchsbauer2(B), and Antoine Plouviez3(B)

1 Université de Paris, Paris, France
balthazar.bauer@ens.fr

2 TU Wien, Vienna, Austria
georg.fuchsbauer@tuwien.ac.at

3 Inria, ENS, CNRS, PSL, Paris, France
antoine.plouviez@ens.fr

Abstract. The one more-discrete logarithm assumption (OMDL)
underlies the security analysis of identification protocols, blind signa-
ture and multi-signature schemes, such as blind Schnorr signatures and
the recent MuSig2 multi-signatures. As these schemes produce standard
Schnorr signatures, they are compatible with existing systems, e.g. in the
context of blockchains. OMDL is moreover assumed for many results on
the impossibility of certain security reductions.

Despite its wide use, surprisingly, OMDL is lacking any rigorous anal-
ysis; there is not even a proof that it holds in the generic group model
(GGM). (We show that a claimed proof is flawed.) In this work we give a
formal proof of OMDL in the GGM. We also prove a related assumption,
the one-more computational Diffie-Hellman assumption, in the GGM.
Our proofs deviate from prior GGM proofs and replace the use of the
Schwartz-Zippel Lemma by a new argument.

Keywords: One-more discrete logarithm · Generic group model ·
Blind signatures · Multi-signatures

1 Introduction

Provable security is the prevailing paradigm in present-day cryptography. To
analyze the security of a cryptographic scheme, one first formally defines what it
means to break it and then gives a rigorous proof that this is infeasible assuming
that certain computational problems are hard.

Classical hardness assumption like RSA and the discrete logarithm assump-
tion in various groups have received much scrutiny over the years, but there
are now myriads of less studied assumptions. This has attracted criticism
[KM07,KM10], as the value of a security proof is unclear when it is by reduc-
tion from an (often newly introduced) assumption that is not well understood.
A sanity check that is considered a minimum requirement for assumptions in
cyclic groups is a proof in the generic group model (GGM), which guarantees
that there are no efficient solvers that work for any group.
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 587–617, 2021.
https://doi.org/10.1007/978-3-030-92068-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_20

588 B. Bauer et al.

In this work we give the first proof that the one-more discrete logarithm
assumption, a widely used hardness assumption, holds in the GGM. While prior
proofs in the GGM have followed a common blueprint, the nature of OMDL
differs from that of other assumptions and its proof requires a new approach,
which we propose in this paper. We then extend our proof so that it also covers
the one-more Diffie-Hellman assumption.

GGM. The generic group model [Nec94,Sho97] is an idealized model for the
security analysis of hardness assumptions (as well as cryptographic schemes
themselves) that are defined over cyclic groups. It models a “generic group”
by not giving the adversary any group elements, but instead abstract “handles”
(or encodings) for them. To compute the group operation, the adversary has
access to an oracle which given handles for group elements X and Y returns the
handle of the group element X + Y (we denote groups additively).

OMDL. The one-more discrete logarithm problem, introduced by Bellare et al.
[BNPS03], is an extension of the discrete logarithm (DL) problem. Instead of
being given one group element X of which the adversary must compute the
discrete logarithm w.r.t. some basis G, for OMDL the adversary can ask for
arbitrarily many challenges Xi, all sampled independently and uniformly from
the group. In addition, it has access to an oracle that returns the discrete log-
arithm of any group element submitted by the adversary. The adversary’s goal
is to compute the DL of all challenges Xi, of which there must be (at least) one
more than the number of calls made to the DL oracle.

Applications of OMDL

Blind signatures. Blind signature schemes [Cha82] let a user obtain a sig-
nature from a signer without the latter learning the message it signed. Their
security is formalized by one-more unforgeability, which requires that after q
signing interactions with the signer, the user should not be able to compute
signatures on more than q messages.

The signatures in the blind Schnorr signature scheme [CP93] are standard
Schnorr signatures [Sch91], which, in the form of EdDSA [BDL+12] are increas-
ingly used in practice and considered for standardization by NIST [NIS19]. They
are now used in OpenSSL, OpenSSH, GnuPG and considered to be supported
by Bitcoin [WNR20], which will enable drastic scalability improvements due
to signature aggregation [BDN18,MPSW19] (see below). Blind Schnorr signa-
tures will moreover enable new privacy-preserving applications such as blind coin
swaps and trustless tumbler services [Nic19].

One-more unforgeability of blind Schnorr signatures was proven by Schnorr
and Jakobsson [SJ99,Sch01] directly in the GGM, also assuming the random-
oracle model (ROM) and that the so-called ROS problem is hard. While unforge-
ability of blind Schnorr signatures cannot, even in the ROM, be proved from stan-
dard assumptions [FS10,Pas11,BL13], Fuchsbauer et al. [FPS20] give a proof in
the algebraic group model (AGM) [FKL18], a model between the standard model
and the GGM.

The One-More Discrete Logarithm Assumption in the Generic Group Model 589

In the AGM, adversaries are assumed to be algebraic, meaning that for every
group element Z they output, they must know a “representation” �z = (z1, . . . , zn)
such that Z =

∑n
i=1 ziXi, where X1, . . . , Xn are the group elements received

so far. The authors prove unforgeability of blind Schnorr in the AGM+ROM
assuming ROS and OMDL [FPS20].

While there has been evidence [Wag02] that the ROS problem was easier than
initially assumed, Benhamouda et al. [BLL+21] recently presented a polynomial-
time solver for ROS. This leads to forgeries of blind Schnorr signatures when the
attacker is allowed to run concurrent executions of the signing protocol. To
overcome these issues, Fuchsbauer et al. [FPS20] define a new signing protocol
and introduce a modified ROS assumption, against which there are no known
attacks. Their Clause blind Schnorr signature scheme is proven unforgeable in
the AGM+ROM assuming hardness of their modified ROS problem and OMDL.

Multi-signatures. Multi-signature schemes [IN83] allow a group of signers,
each having individual verification and signing keys, to sign a message on behalf
of all of them via a single signature. In recent work, Nick et al. [NRS21] present a
(concurrently secure) two-round multi-signature scheme called MuSig2 (a variant
of the MuSig scheme [MPSW19]), which they prove secure under the OMDL
assumption. The resulting signatures are ordinary Schnorr signatures (under an
aggregated verification key, which is of the same form as a key for Schnorr); they
are thus fully compatible with blockchain systems already using Schnorr. This
will help ease scalability issues, as a single aggregate signature can replace a set
of individual signatures to be stored on the blockchain.

Earlier, Bellare and Neven [BN06] instantiated another signature primitive
called transitive signatures [MR02] assuming OMDL.

Identification schemes. Bellare and Palacio [BP02] assume OMDL to prove
that the Schnorr identification protocol is secure against active and concurrent
attacks, and Gennaro et al. [GLSY04] use it for a batched version of the scheme.
Bellare and Shoup [BS07] prove that the Schnorr identification scheme verifies
special soundness under concurrent attack from OMDL. Bellare et al. [BNN04]
assume OMDL to prove their ID-based identification protocol secure against
impersonation under concurrent attacks.

Negative results. OMDL has also been assumed in numerous proofs of impos-
sibility results. Paillier and Vergnaud [PV05] prove that unforgeability of Schnorr
signatures cannot be proven under the discrete logarithm assumption. Specifi-
cally, they show that there is no algebraic reduction to DL in the standard
model if OMDL holds. Seurin [Seu12] shows that, assuming OMDL, the security
bound for Schnorr signatures by Pointcheval and Stern [PS96] using the forking
lemma is optimal in the ROM under the DL assumption. More precisely, the
paper shows that if the OMDL assumption holds, then any algebraic reduction
of Schnorr signatures must lose the same factor as a proof via the forking lemma.
Fischlin and Fleischhacker [FF13] generalize this impossibility result to a large
class of reductions they call single-instance reductions, again assuming OMDL.
There are further negative results on the security of Schnorr signatures that
assume OMDL [GBL08,FJS14,FH17].

590 B. Bauer et al.

Finally, Drijvers et al. [DEF+19] show under the OMDL assumption that
many multi-signature schemes, such as CoSi [STV+16], MuSig [MPSW19], BCJ
[BCJ08] and MWLD [MWLD10], cannot be proven secure from DL or OMDL.

The Generic Security of OMDL

Despite its wide use, surprisingly, OMDL is lacking any rigorous analysis, apart
from a comparison to DL in certain groups: while clearly the OMDL problem is
not harder than DL, it is strictly easier in any group for which the index calculus
algorithm is the best way to solve both problems [KM08,Gra10]. This does
thus not apply to elliptic-curve groups, which typically underlie contemporary
instantiations of schemes relying on OMDL.

The only analysis of OMDL in the GGM is a more recent proof sketch by
Coretti, Dodis, and Guo [CDG18, eprint version], which we show is flawed.1 (The
authors confirmed this in personal communication.)

Their analysis follows the blueprint of earlier GGM proofs, which goes back to
Shoup’s [Sho97] proof of the hardness of DL in the GGM. However, as we explain
below, the adversary can easily make their simulation of the GGM OMDL game
fail. The particularity of OMDL compared to other assumptions, which lend
themselves more easily to a GGM proof, is that via its DL oracle, the adversary
can obtain information about the secret values chosen by the experiment.

Bauer et al. [BFL20] gave further evidence that the analysis of the generic
security of OMDL must differ from that of other assumptions. They show that, in
the algebraic group model, a large class of assumptions, captured by an extension
of the uber assumption framework [BBG05,Boy08], is implied by the hardness
of q-DLog. In this problem the adversary is given (xG, x2G, . . . , xqG) and must
find x. While in the AGM q-DLog implies assumptions as diverse as the strong
Diffie-Hellman [BB08], the gap Diffie-Hellman [OP01], and the LRSW assump-
tion [LRSW99], this is not the case for OMDL. Using the meta-reduction tech-
nique, Bauer et al. [BFL20] show that it is impossible to prove OMDL from
q-DLog, for any q, in the AGM.

This extends earlier results on q-OMDL, a parametrized variant where the
adversary receives exactly q challenges. For different values of q, these assump-
tions are not equivalent under black-box reductions [Bro07] or algebraic reduc-
tions [BMV08] (a separation under standard white-box reductions appears to be
open).

Proofs in the GGM. To explain the challenges in proving OMDL in the
GGM, we start by recalling how GGM proofs typically proceed. In the GGM
the adversary does not see actual group elements of the form xG, with x ∈ Zp

1 The authors study assumptions (including OMDL) and schemes in an extension
of the GGM that models preprocessing attacks. They give a proof sketch for the
security of OMDL with preprocessing. While we show that their sketch is flawed
(see p. 5), their preprocessing techniques can be adapted to our proof. Their result
for OMDL in the preprocessing GGM thus still holds, except for a change of the
security bounds.

The One-More Discrete Logarithm Assumption in the Generic Group Model 591

and G a fixed generator; instead it gets encodings Ξ(x) of them, where Ξ is
a random injective function. As the adversary cannot compute the encoding of
(x + y)G from encodings of xG and yG, it is provided with an oracle that on
input (Ξ(x), Ξ(y)) returns Ξ(x + y).

When analyzing hardness assumptions in the GGM, instead of choosing
secret values in the security game, the challenger represents them by indeter-
minates. For concreteness, consider the GGM game for the DL assumption: the
adversary is given the challenge Ξ(x) and must compute the discrete logarithm
x ∈ Zp. In the proof, the challenger simulates this game by using the variable X
instead of x and encodes the polynomial X instead of x. That is, the challenger
gives Ξ(X) to the adversary, who is oblivious to this change. If then the adver-
sary asks, for example, for the addition of Ξ(1) and Ξ(X), the challenger replies
Ξ(X + 1), that is, the encoding of a polynomial of degree 1.

This allows the challenger to simulate the game without actually defining a
challenge. After the adversary output its answer, the challenger picks a value x
uniformly at random, which the adversary can only guess with negligible prob-
ability. This shows generic hardness of the DL problem.

There is however a caveat: Ξ(X) represents Ξ(x), and, more generally, for
any polynomial P that the adversary constructed via its queries, Ξ(P) represents
Ξ(P (x)). So the simulation would be inconsistent if for some polynomials P �= Q
computed by the adversary we had P (x) = Q(x). Indeed, if such a collision
occurs, then the simulated game gives the adversary Ξ(P) �= Ξ(Q) instead of
Ξ(P (x)) = Ξ(Q(x)).

In order to bound the probability that the simulation fails due to such col-
lisions, the standard technique is to apply the Schwartz-Zippel Lemma, which
states that for a non-zero degree-d (multivariate) polynomial P ∈ Zp[X1, . . . ,Xn]
the probability that P (x1, . . . , xn) = 0 for a uniformly chosen �x

$← Z
n
p is d

p .
Since x is picked uniformly after the adversary has defined the polynomials

P and Q, the probability that P (x) − Q(x) = 0 is bounded by 1
p . Applying this

to all pairs of polynomials generated by the adversary via its group-operation
oracle during the game then yields the final bound. This was precisely how
Shoup [Sho97] proved the security of DL in the GGM and it was followed by
many subsequent GGM proofs. The technique easily extends to games where
there are several secrets x1, . . . , xn.

Challenges in the GGM proof of OMDL. We follow Shoup [Sho97] in
that we replace all challenges xi in the OMDL game by corresponding poly-
nomials Xi ∈ Zp[X1, . . . ,Xn]. It seems tempting to then deduce, like for DL, that
the probability that P (x1, . . . , xn) = Q(x1, . . . , xn) for any P �= Q generated
during the game is at most 1

p by Schwartz-Zippel. (This is what Coretti et al.
[CDG18] do in their proof sketch.) This argument however ignores the fact that,
via the discrete logarithm oracle DLog(·), the adversary can obtain (a lot of)
information on the challenges xi and can thereby easily cause collisions. In more
detail, such a straightforward proof has the following issues:

592 B. Bauer et al.

First, in the game simulated via polynomials, the adversary’s oracle DLog(·)
must be simulated carefully. For example, suppose the adversary asks for the
discrete logarithm of the first challenge by querying DLog(Ξ(X1)). Since x1 is
not defined yet, the challenger samples it uniformly and gives it to the adversary.
Now if the adversary later asks for Ξ(X1 + 1) (via its group-operation oracle)
and queries DLog on it, it expects the answer x1 + 1. (In [CDG18], the DLog

oracle always returns random values; the adversary can thus easily detect that
it is not playing the OMDL game in the GGM.)

Second, there is a more subtle issue. Again suppose that the adversary queried
DLog(Ξ(X1)) and was given x1. Let P := X1. Using the group-operation oracle,
the adversary can compute (an encoding of) the constant polynomial Q := x1,
that is, it can obtain Ξ(Q). Since P (x1) = Q(x1) = x1, this means that the
adversary can in fact construct polynomials P and Q such that P (x1, . . . , xn) =
Q(x1, . . . , xn) and P �= Q.

Note that this situation cannot occur in prior GGM proofs for other assump-
tions, because as long as there is no simulation failure, the adversary’s polyno-
mials are independent of �x, which is a prerequisite for applying Schwartz-Zippel
(SZ) in the end. This standard use of SZ (followed by [CDG18]) is thus not pos-
sible for OMDL, as the adversary can, via its DLog oracle, obtain information
on the challenge (x1, . . . , xn) even when there is no simulation failure.

All these issues persist if instead of Shoup’s GGM model [Sho97], one uses
Maurer’s model [Mau05], which is an abstraction of the former. In his model, all
(logarithms of) group elements remain in a “black box”, and the adversary can
ask for the creation of new entries in the box that are either the sum of existing
entries or values of its choice. To capture the DLog oracle in OMDL one would
have to extend the model and allow the adversary to ask for values from the box
to be revealed. Moreover, in proofs in this model [Mau05] the adversary wins as
soon as it creates a collision between values in the box, which is why one can
assume non-adaptive adversaries. However, an OMDL adversary is adaptive and
can easily create collisions (e.g., get x1 from the DLog oracle, then insert the
constant x1 into the black box). A new approach would thus be required.

Our GGM proof of OMDL. In our proof we simulate the OMDL game in the
GGM using polynomials, but we take into account all the issues just described.
That is, the challenger monitors what the adversary has learned about the chal-
lenge and defines the simulation considering this knowledge, thus preventing the
adversary from trivially distinguishing the real game from the simulation.

Still, there might be simulation failures due to “bad luck”, which corresponds
precisely to the event whose probability previous proofs bound via Schwartz-
Zippel. As OMDL requires a different approach, we propose a new lemma that
bounds the probability that our simulation of the OMDL game fails. After mod-
ifying the game by aborting in case of a simulation failure, we give a formally
defined sequence of game hops showing that the game is equivalent to a game
that the adversary cannot win. Given the pitfalls in previous approaches and the
intricacies outlined so far (and the importance of OMDL), we believe that such
a rigorous approach is justified for OMDL.

The One-More Discrete Logarithm Assumption in the Generic Group Model 593

Our first step is comparable to how Yun [Yun15] analyzed the generic security
of the multiple discrete logarithm assumption, where the adversary must solve
multiple DL challenges (but is not given a DLog oracle, which is what makes
OMDL so different from other assumptions). Like Yun, we formalize the knowl-
edge about the challenge that the adversary accumulates by affine hyperplanes
in Z

n
p .

Possible alternative approaches. One might wonder if it was possible to
nonetheless rely on the Schwartz-Zippel lemma (SZ) for proving OMDL. We
have already argued that applying it once and at the end of the game, as in
previous proofs, is not possible. But can SZ be used earlier in the game?

A first idea could be to apply SZ at each DLog call. Consider a call
DLog(Ξ(X1 + X2)), answered with a uniform v ← Zp. One could now formally
replace the indeterminate X1 by the expression X2 − v in all polynomials P gen-
erated so far and use SZ to bound the probability that this creates a collision.
A first issue is that since P is a multivariate polynomial, SZ does not directly
imply a bound on Pr[P (X2 − v,X2, . . . ,Xn) = 0]. Indeed, P (X2 − v,X2, . . . ,Xn)
is the evaluation of the polynomial P̂ (X1) := P (X1,X2, . . . ,Xn) for X1 = X2 − v,
so we need to bound Pr[P̂ (X2 − v) = 0] for a polynomial P̂ with coefficients in
the ring Zp[X2, . . . ,Xn], whereas SZ is defined for polynomials over fields.

Moreover, when the query DLog(Ξ(P (X1, . . . ,Xn)) involves a more complex
polynomial than P = X1 + X2 then the substitution of one variable by a linear
expression of the others is even cumbersome to describe notationally. We avoid
these problems in our proof by using our lemma instead of (a variant of) SZ,
which also lets us keep notation simple.

Another idea would be to apply SZ each time a new encoding is computed.
Indeed, assuming no collisions have occurred so far, one could use SZ to bound
the probability that the new encoding introduces a collision and then proceed
by induction. But the resulting proof would require one game hop for every
newly computed encoding: In the j-th hybrid of this game the first j encodings
are chosen all different independently of the real value of the challenge; the
challenge �x is picked by the game just before the (j +1)-th encoding, when Pj+1

is defined. Using SZ, we can show that the probability that Pj+1(�x) = Pi(�x) for
all i ≤ j is negligible.

However, we need to be more cautious. To prevent the attack in which the
adversary queries DLog(Ξ(X1)), obtains x1 and then generates the constant
polynomial Pj+1 = x1, we need to adapt all polynomials defined so far to reflect
the information revealed by DLog(·). In this example, this is easy to formalize:
update every polynomial by evaluating X1 on x1 and replace Pk(x1,X2, . . . ,Xn)
by some P ′

k(X2, . . . ,Xn); the updated challenge �x would be of size n − 1. To
generalize this, we would have to apply an affine transformation to all variables
of the polynomials at each call to DLog(·). After as many game hops as there
are queries by the adversary, we would arrive at a game in which all encodings
are random and the challenge is defined after the adversary output its solution.

We believe that both approaches just sketched lead to more complicated
(and error-prone) proofs than the one we propose. In our proof, in the first game

594 B. Bauer et al.

hop we abort if our simulation fails and we bound this probability by our new
lemma. The remaining 3 game hops are purely syntactical and do not change
the adversary’s winning probability.

One-More CDH

Another “one-more” assumption is the one-more computational Diffie-Hellman
assumption [BNN04], also known as 1-MDHP [KM08,KM10], which is similar to
the chosen-target CDH assumption [Bol03]. Here, the adversary receives q pairs
of group elements (X,Yi), all with the same first component X = xG, and its
task is to compute xYi for all i. It is given an oracle CDH1(·), which on input Y
returns xY , and which it can query fewer than q times.

It turns out that this assumption can be proved to hold in the generic
group model using standard techniques. Following the original GGM proof of DL
[Sho97], we modify the simulation for the adversary from encoding logarithms
to encoding polynomials in Zp[X,Y1, . . . ,Yn]. The challenges that the adversary
receives are the monomials X,Y1, . . . ,Yn, and when the adversary queries its
oracle CDH1(·) on an encoding of a polynomial P , it receives an encoding of
XP , i.e., its polynomial multiplied by the indeterminate X. To win this “ideal”
game, the adversary must construct encodings of (XY1, . . . ,XYn). Making q calls
to its CDH1(·) oracle and using its group-operation oracle, it can only construct
(encodings of) polynomials from Span(1,X,Y1, . . . ,Yn,XP1, . . . ,XPq).

Ignoring polynomials of degree less than 2, the adversary wins the game if
Span(XY1, . . . ,XYn) ⊆ Span(XP1, . . . ,XPq). But it must also solve more chal-
lenges than it makes CDH1(·) oracle queries; that is q < n. Using a dimension
argument, we deduce that the above condition cannot be satisfied, and thus the
adversary cannot win this game.

This “ideal” game is indistinguishable from the real game if the adversary does
not create two distinct polynomials that agree on x, y1, . . . , yn, the secret val-
ues of the real game. Because the degree of all polynomials is upper-bounded by
q+1, we can use the Schwartz-Zippel Lemma (as, e.g., done in [Boy08]) to upper-
bound the statistical distance between the two games by O

(
(q+1)(m+q)2

p

)
, where

m is the number of group operations made by the adversary. This establishes
the generic security of this assumption. (An alternative is to cast the assump-
tion as an uber-assumption in the algebraic group model and apply [BFL20,
Theorem 4.1].)

The situation is quite different for a variant of the above problem, in which
the first component of the challenge pairs is not fixed. That is, the adversary
can request challenges, which are random pairs (Xi, Yi) and is provided with an
oracle CDH(·), which on input any pair (X = xG, Y) returns the CDH solution
of X and Y , that is xY . The adversary must compute the CDH solutions of the
challenge pairs while making fewer queries to CDH(·). In this paper we will refer
to this assumption as OMCDH.

For this problem the standard proof methodology in the GGM fails for the
following reason. Providing the adversary with an oracle CDH1(·), as in the

The One-More Discrete Logarithm Assumption in the Generic Group Model 595

one-more Diffie-Hellman assumption with one component fixed (or a DLog ora-
cle in OMDL) lets the adversary only construct polynomials of degree at most
q + 1. In contrast, the CDH(·) oracle in OMCDH leads to a multiplication of
the degrees, which enables the adversary to “explode” the degrees and makes
arguments à la Schwartz-Zippel impossible, since they rely on low-degree poly-
nomials.

To get around this problem, we prove the following, stronger assumption: as
in OMCDH, the adversary still has to compute CDH solutions, but now it is
given a discrete-logarithm oracle. This hybrid assumption implies both OMDL
(for which the goal is harder) and OMCDH (in which the oracle is less powerful)
and we prove it in the GGM by extending our proof of OMDL.

2 Preliminaries

General Notation. We denote the (closed) integer interval from a to b by
[a, b]. A function μ : N → [0, 1] is negligible (denoted μ = negl) if for all c ∈ N

there exists λc ∈ N such that μ(λ) ≤ λ−c for all λ ≥ λc. A function ν is over-
whelming if 1 − ν = negl. Given a non-empty finite set S, we let x

$← S denote
sampling an element x from S uniformly at random. A list �z = (z1, . . . , zn), also
denoted (zi)i∈[n], is a finite sequence. The length of a list �z is denoted |�z|. The
empty list is denoted ().

All algorithms are probabilistic unless stated otherwise. By y ←
A(x1, . . . , xn) we denote running algorithm A on inputs (x1, . . . , xn) and uni-
formly random coins and letting y denote the output. If A has oracle access to
some algorithm Oracle, we write y ← AOracle(x1, . . . , xn). A security game
GAMEpar(λ) indexed by a set of parameters par consists of a main procedure
and a collection of oracle procedures. The main procedure, on input the security
parameter λ, generates input on which an adversary A is run. The adversary
interacts with the game by calling oracles provided by the game and returns
some output, based on which the game computes its own output bit b, which
we write b ← GAMEA

par(λ). We identify false with 0 and true with 1. As
all games in this paper are computational, we define the advantage of A in
GAMEpar(λ) as AdvGAME

par,A := Pr[1 ← GAMEA
par(λ)]. We say that GAMEpar is

hard if AdvGAME
par,A = negl for any probabilistic polynomial-time (p.p.t.) adver-

sary A.

Algebraic Notation. A group description is a tuple Γ = (p,G, G) where p is
an odd prime, G is an abelian group of order p, and G is a generator of G. We use
additive notation for the group law and denote group elements with uppercase
letters. We assume the existence of a p.p.t. algorithm GrGen which, on input the
security parameter 1λ in unary, outputs a group description Γ = (p,G, G) where
p is of bit-length λ. For X ∈ G, we let logG(X) denote the discrete logarithm of
X with respect to the generator G, i.e., the unique x ∈ Zp such that X = xG.

For multivariate polynomials P ∈ Zp[X1, . . . ,Xn] we write �X := (X1, . . . ,Xn)
and P (�x) := P (x1, . . . , xn) for �x ∈ Z

n
p . We consider subspaces of Zp[X1, . . . ,Xn]:

596 B. Bauer et al.

Fig. 1. The DL and the OMDL problem

Fig. 2. The CDH and the OMCDH problem

for a set L = {P1, . . . , Pq} of polynomials, Span(L) :=
{ ∑

i∈[1,q] αiPi | �α ∈
Z

q
p

}
is the smallest vector space containing the elements of L. If L = ∅ then

Span(L) = {0}. By dim(A) we denote the dimension of vector spaces or affine
spaces.

By 〈�x, �y〉 =
∑

i∈[1,n] xiyi we denote the scalar product of vectors �x and �y of
length n. In this work, polynomials are typically of degree 1, so we can write
P = ρ0 +

∑n
i=1 ρiXi as a scalar product: P (�X) = ρ0 + 〈�P , �X〉, where we define

�P := (ρi)i∈[1,n], that is the vector of non-constant coefficients of P .

Discrete Logarithm and Diffie-Hellman problems. In Figs. 1 and 2 we
recall the discrete logarithm (DL) problem and the computational Diffie-Hellman
(CDH) problem and define the one-more discrete logarithm (OMDL) problem
and the one-more computational Diffie-Hellman (OMCDH) problem.

The One-More Discrete Logarithm Assumption in the Generic Group Model 597

3 OMDL in the GGM

3.1 A Technical Lemma

While a standard argument in GGM proofs uses the Schwartz-Zippel lemma, it
does not work for OMDL, where the adversary obtains information on the chal-
lenge �x not only when the simulation fails. So we cannot argue that �x looks uni-
formly random to the adversary, which is a precondition for applying Schwartz-
Zippel. We therefore use a different lemma, which bounds the probability that
for a given polynomial P , we have P (�x) = 0 when �x is chosen uniformly from
a set C. This set C ⊆ Z

n
p represents the knowledge the adversary has gained on

the challenge �x during the OMDL game.
The Schwartz-Zippel lemma applies when C = Sn with S a subset of Zp,

whereas our lemma is for the case that P has degree 1 and C is defined by an
intersection of affine hyperplanes Qj from which we remove other affine hyper-
planes Di, that is C :=

(⋂
j∈[1,q] Qj

)\(⋃
i∈[1,m] Di

)
.

We start with some notations. Consider m polynomials Di ∈ Zp[X1, . . . ,Xn]
of degree 1, and q + 1 polynomials Qj ∈ Zp[X1, . . . ,Xn] also of degree 1. We can
write them as

Di(�X) = Di,0 +
n∑

k=1

Di,kXk = Di,0 +
〈

�Di, �X
〉

(1)

with �Di := (Di,k)1≤k≤n, and similarly for Qj . We define the sets of roots of these
polynomials, which are hyperplanes of Zn

p :

∀i ∈ [1,m] : Di := {�x ∈ Z
n
p |Di(�x) = 0}

∀j ∈ [1, q + 1] : Qj := {�x ∈ Z
n
p |Qj(�x) = 0} .

(2)

From (1), we see that the vector �Di of non-constant coefficients defines the
direction of the hyperplane Di. It contains the coefficients of the polynomial
Di − Di(0) =

∑n
k=1 Di,kXk.

We define the set

C :=
(⋂

j∈[1,q]

Qj

)
\

(⋃

i∈[1,m]

Di

)
, (3)

that is, the set of points at which all Qi’s vanish but none of the Di’s do. The
following lemma will be the heart of our proofs of one-more assumptions in the
GGM.

Lemma 1. Let D1, . . . , Dm, Q1, . . . , Qq+1 ∈ Zp[X1, . . . ,Xn] be of degree 1; let
C be as defined in (2) and (3). Assume Qq+1 ∩ C �= ∅ and �Qq+1 is linearly
independent of (�Qj)j∈[1,q]. If �x is picked uniformly at random from C then

p − m

p2
≤ Pr

[
Qq+1(�x) = 0

] ≤ 1
p − m

.

598 B. Bauer et al.

Proof. Since �x is picked uniformly in C, we have Pr[�x ∈ Qq+1] = |Qq+1 ∩ C|/|C|.
We first bound |C|. We define Q :=

⋂
j∈[1,q] Qj , which is thus an affine space,

and let d := dim(Q) denote its dimension. Thus, Q contains pd elements. We
rewrite C:

C = Q \
(⋃

i∈[1,m]

(Di ∩ Q)
)

.

Now for a fixed i ∈ [1,m] we bound the size of Di ∩ Q. Since the polynomial
Di has degree 1 by definition, Di is a hyperplane. There are three cases: either
Q ⊆ Di, which means C = ∅. This contradicts the premise of the lemma, namely
Qq+1 ∩ C �= ∅. Since Di is an hyperplane, the remaining cases are Q ∩ Di = ∅
and Q ∩ Di has dimension dim(Q) − 1 = d − 1. In both cases Di ∩ Q contains at
most pd−1 elements.

When we remove the sets (Di)i∈[1,m] from Q, we remove at most mpd−1

elements, which yields
pd − mpd−1 ≤ |C| ≤ pd. (4)

We now use the same method to bound |C∩Qq+1|. We define Q′ = Qq+1 ∩ Q.
Since �Qq+1 is linearly independent of (�Qj)j∈[1,m], we get dim(Q′) = d − 1.

For a fixed i ∈ [1,m], since by assumption Qq+1 ∩ C �= ∅, we can proceed as
with Q above: either Q′ ∩ Di = ∅ or Q′ ∩ Di has dimension d − 2, which yields

pd−1 − mpd−2 ≤ |Qq+1 ∩ C| ≤ pd−1. (5)

Combining equations (4) and (5) we obtain the following, which concludes
the proof:

pd−1 − mpd−2

pd
≤ |Qq+1 ∩ C|

|C| ≤ pd−1

pd − mpd−1
. ��

3.2 Proof Overview

The generic game. We prove a lower bound on the computational complexity
of the OMDL game in generic groups in the sense of Shoup [Sho97]. We follow
the notation developed by Boneh and Boyen [BB08] for this proof.

In the generic group model, elements of G are encoded as arbitrary unique
strings, so that no property other than equality can be directly tested by the
adversary. The adversary performs operations on group elements by interacting
with an oracle called GCmp.

To represent and simulate the working of the oracles, we model the opaque
encoding of the elements of G using an injective function Ξ : Zp → {0, 1}�log2(p)�

where p is the group order. Internally, the simulator represents the elements of
G by their discrete logarithms relative to a fixed generator G. This is captured
by Ξ, which maps any integer a to the string ξ := Ξ(a) representing a · G. In
the game we will use an encoding procedure Enc to implement Ξ.

We specify the game OMDL in the GGM in Fig. 3. In contrast to Fig. 1 there
are no more group elements. The game instead maintains discrete logarithms
a ∈ Zp and gives the adversary their encodings Ξ(a), which are computed by

The One-More Discrete Logarithm Assumption in the Generic Group Model 599

Fig. 3. The OMDL game in the GGM

the procedure Enc. The challenger uses the variable j to represent the number
of created group elements, which is incremented before each call to Enc. The
procedure Enc then encodes the latest scalar aj . If aj has already been assigned
a string ξ, then Enc() outputs ξ, else it outputs a random string different from
all previous ones. For this, the game maintains a list (ai, ξi)0≤i≤j of logarithms
and their corresponding encodings.

OMDLGGM initializes j = 0 and a0 = 1, and runs the adversary on input
ξ0 ← Enc() (ξ0 is thus the encoding of the group generator). The oracle Chal

increments a counter of challenges n, samples a new value xn and returns its
encoding by calling Enc(). Since it creates a new element, it first increments j
and defines the aj := xn. The oracle DLog is called with a string ξ and returns
⊥ if the string is not in the set of assigned strings {ξi}i∈[0,j]. Else, it picks an
index i (concretely: the smallest such index) such that ξi = ξ and returns ai,
which is the Ξ-preimage of ξ (and thus the logarithm of the group element
encoded by ξ).

The adversary also has access to the oracle GCmp for group operations,
which takes as input two strings ξ and ξ′ and a bit b, which indicates whether to
compute the addition or the subtraction of the group elements. The oracle gets
the (smallest) indexes i and i′ such that ξ = ξi and ξ′ = ξi′ , it increments j, sets
aj := ai + (−1)bai′ and returns Enc(), which computes the encoding of aj .

600 B. Bauer et al.

Proof overview. The goal of our proof is to simulate the game without ever
computing scalars ai by replacing them with polynomials Pi and show that
with overwhelming probability this does not affect the game. Game0 (defined
by ignoring all the boxes, except the dashed ones, in Fig. 4) is the same game
as OMDLGGM, except for two syntactical changes, which will be useful in the
proof. The main modification is that we now make n calls to the oracle DLog

after A outputs its answer �y: for i ∈ [1, n] we set xi := DLog(ξji), where indices
ji are defined in the oracle Chal so that aji = xi; thus DLog(ξji) always
outputs aji = xi, meaning this does not affect the game. Second, as calls to
DLog increase q, we put the condition “if q < n then return 0” before those
calls.

Introducing polynomials. Game1, defined in Fig. 4 by only ignoring the gray
boxes, introduces the polynomials Pi, where P0 = 1 represents a0 = 1. In the
n-th call to Chal, the game defines a new polynomial Pj = Xn, which represents
the value xn. We thus have

Pi(�x) = ai , (6)

and in this sense the polynomial Pi represents the scalar ai (and thus implicitly
the group element aiG). The group-operation oracle maintains this invariant;
when computing aj := ai + (−1)bai′ , it also sets Pj := Pi + (−1)bPi′ .

Note that there are many ways to represent a group element aG by a polyno-
mial. E.g., the first challenge x1G is represented by both the polynomial X1 and
the constant polynomial x1. Intuitively, since x1 is a challenge, it is unknown
to A, and as long as A does not query DLog(ξ), with ξ := Ξ(x1), it does
not know that the polynomials X1 and x1 represent the same group element.
Game1 introduces a list L that represents this knowledge of A. E.g., when A
calls DLog(Ξ(x1)), the game will append the polynomial X1 − x1 to the list L.
More generally, on call DLog(ξi) it appends Pi − Pi(�x) to L, which represents
the fact that A knows that the polynomial Pi − Pi(�x) represents the scalar 0
and the group element 0G. The list L will be used to ensure consistency when
we replace scalars by polynomials in the game.

Recall that our goal is to have the challenger only deal with polynomials when
simulating the game for A. As this can be done without actually defining the
challenge �x, the challenger could then select �x after A gave its output, making
it impossible for A to predict the right answer.

This is done in the final game Game4, defined in Fig. 6, where the challenger is
in the same position as A: it does not know that x1 is the answer to the challenge
represented by the polynomial X1 until DLog(ξ) is called with ξ := Ξ(x1). In
fact, x1 is not even defined before this call, and, more generally, �x does not exist
until the proper DLog queries are made.

To get to Game4, we define two intermediate games. We will modify procedure
Enc so that it later deals with polynomials only (instead of their evaluations,
as �x will not exist). Because of this, it will be unknown whether Pj(�x) = Pi(�x)
for some i ∈ [0, j − 1], unless Pj − Pi ∈ Span(L), since both the challenger and
the adversary are aware that all polynomials in L evaluate to 0 at �x.

The One-More Discrete Logarithm Assumption in the Generic Group Model 601

However, it can happen that, when �x is defined later, Pj(�x) = Pi(�x). That is,
in the original game, we would have had aj = ai, but in the final game, Enc is
not aware of this. This is precisely when the simulation fails, and we abort the
game. We will then bound the probability of this event, using Lemma 1.

In “typical” GGM proofs an abort happens when Pj(�x) = Pi(�x) and Pj �= Pi.
For OMDL, because the adversary might have information on the �x (and the
challenger is aware of this), we allow that there are Pj �= Pi for which the current
knowledge on �x lets us deduce Pj(�x) = Pi(�x). With the formalism introduced
above this corresponds exactly to the situation that Pi − Pj ∈ Span(L). We
introduce this abort condition in the procedure Enc in Game1 (Fig. 4). Because
in the “ideal” game Game4 (Fig. 6), there are no more values ai, we will express
the abort condition differently (namely in oracle DLog) and argue that the two
conditions are equivalent.

Eliminating uses of scalars. Using the abort condition in Game1, we can
replace some uses of the scalars ai by their representations as polynomials Pi.
This is what we do in Game2, (Fig. 4, including all boxes except the dashed box),
which eliminates all occurrences of ai’s. In Enc, since the game aborts when
Pj(�x) = Pi(�x) and Pj −Pi /∈ Span(L), and because when Pj −Pi ∈ Span(L) then
Pj(�x) = Pi(�x), we can replace the event Pj(�x) = Pi(�x) by Pj − Pi ∈ Span(L).
Intuitively, we can now think of Enc() as encoding the polynomial Pj instead
of the scalar aj .

We next modify the oracle DLog. The first change is that instead of returning
ai the oracle uses Pi(�x), which is equivalent by (6). The second change is that
on input ξ, oracle DLog checks if A already knows the answer to its query, in
which case it computes the answer without using �x. E.g., assume A has only made
one query Chal(), and thus q = 0 and L = ∅: if A now queries DLog(ξ) with
ξ := Ξ(x1), the oracle first checks if Pi = X1 ∈ Span(1, L), (where i is the current
number of group elements seen by the adversary), which is not the case, and so it
computes v := Pi(�x) = x1. It then adds the polynomial Q1 := X1 − x1 to L and
returns x1. If for example A makes another call DLog(ξ′) with ξ′ := Ξ(2x1+2),
then it knows that the answer should be 2x1 + 2. And indeed, the oracle DLog

checks if 2X1 + 2 ∈ Span(1, L), and since this is the case, it gets the decomposition

2X1 + 2 = (2x1 + 2) + 2Q1 = α0 + α1Q1

with α0 = 2x1 + 2 and α1 = 2. The oracle uses this decomposition to compute
its answer v := α0 = 2x1 + 2.

More generally, on input ξi, the oracle DLog checks if Pi ∈ Span(1, L). If so,
it computes the answer using the decomposition of Pi in Span(1, L); else it uses
�x and outputs ai = Pi(�x).

We have now arrived at a situation close to the “ideal” game, where the
challenger only uses polynomials. The only uses of scalars are the abort condition
in Enc (since it compares Pj(�x) and Pi(�x)) and in DLog, when computing the
logarithm of an element that is not already known to A. Towards our goal of
simulating the game without defining �x, we modify those two parts next.

602 B. Bauer et al.

Fig. 4. Game0 (which only includes the dashed boxes) is the GGM version of OMDL.
Game1 (including all but the gray boxes) introduces the polynomials that represent
the information that A obtains, and aborts when Game0 cannot be simulated with
polynomials. In Game2 (including all but the dashed boxes) we eliminate the use of
scalars (except for the abort condition) in oracles Enc and DLog.

Changing the abort condition. The aim of Game3 is precisely to modify
the abort condition so that it does not use �x anymore. Figure 5 recalls Game2
and defines Game3 by not including the dashed and the gray box. In Game3 the
challenger does not abort in the procedure Enc. This means that if Pj − Pi /∈
Span(L) for some i, the challenger creates a string ξj �= ξi even when Pj(�x) =
Pi(�x). This means that the simulation of the game is not correct anymore; but
we will catch these inconsistencies and abort in the oracle DLog.

The One-More Discrete Logarithm Assumption in the Generic Group Model 603

For concreteness consider the following example: let �x = (x1) and suppose A
built the polynomials Pi1 = x1 using the oracle GCmp and Pi2 = X1 using the
oracle Chal; suppose also that A has not queried DLog yet, thus L = ∅. If i1 <
i2 then Game2 aborts on the call Enc() which encodes Pi2 , since Pi1(�x) = Pi2(�x)
and Pi2 − Pi1 /∈ Span(L). In contrast, in Game3 the challenger defines ξi1 �= ξi2 ,
which is inconsistent. But the abort will now happen during a call to DLog.

Suppose A queries DLog(ξi3), with ξi3 = Ξ(2X1 + 2). Game3 now adds the
polynomial Q1 = 2X1 + 2 − (2x1 + 2) = 2(X1 − x1) to L and checks for an
inconsistency of this answer with all the polynomials that A computed. Since it
finds that Pi1 − Pi2 = x1 − X1 ∈ Span(L) but ξi1 �= ξi2 , the game aborts. But
Game3 should also abort even if A does not query the oracle DLog. This was
precisely the reason for adding the final calls of the game to the oracle DLog in
Game0. Since Pji = Xi and the challenger calls xi ← DLog(ξji) for i ∈ [1, n] at
the end, the challenger makes the query DLog(ξj1), which adds X1 − x1 to L,
after which we have Pi1 − Pi2 ∈ Span(L) and therefore an abort.

More generally, in Game3 the oracle DLog aborts if there exists (i1, i2) ∈
[0, j]2 such that Pi1 −Pi2 ∈ Span(L) and ξi1 �= ξi2 . In the proof of Theorem 1 we
show that this abort condition is equivalent to the abort condition in Game2.

Eliminating all uses of �x. In Game3 the only remaining part that uses �x is
the operation v := Pi(�x) in oracle DLog. Our final game hop will replace this
by an equivalent operation. In Game4, also presented in Fig. 5, the challenger
samples v uniformly from Zp instead of evaluating Pi on the challenge. In the
proof of Theorem 1, we will show that since the distribution of Pi(�x) is uniform
for a fixed Pi, this change does not affect the game.

This is the only difference between Game4 and Game3, but since this modi-
fication removes all uses of �x for the challenger, we rewrite Game4 explicitly in
Fig. 6, where we define �x only after A outputs �y. Game4 is thus easily seen to be
impossible (except with negligible probability) to win for A. The reason is that
A cannot make enough queries to DLog to constrain the construction of �x at
the end of the game and therefore cannot predict the challenge �x. We now make
the intuition given above formal in the following theorem.

3.3 Formal Proof

Theorem 1. Let A be an adversary that solves OMDL in a generic group of
prime order p, making at most m oracle queries. Then

AdvOMDLGGM
A ≤ m2

p − m2
+

1
p
.

Proof of Theorem 1. The proof will proceed as follows: we first compute the
statistical distance between Game0, which is OMDLGGM, and Game1 (Fig. 4);
we then show that Game1, Game2, Game3 and Game4 (Figs. 4 and 5) are equiva-
lently distributed; and finally we upper-bound the probability of winning Game4
(Fig. 6).

604 B. Bauer et al.

Fig. 5. In Game3 we move the abort condition from Enc to the oracle DLog, so it
can be checked without using scalars. The only remaining use is then “v := Pi(�x)” in
oracle DLog. Game4 instead pick the output x uniformly at random.

Preliminary results. We start with proving three useful invariants of the
polynomials Pi and the set L which are introduced in Game1. The first one is:

∀ i ∈ [0, j] : Pi(�x) = ai. (7)

This holds in Game1 and justifies replacing all occurrences of ai by Pi(�x) in
Game2 in Fig. 5. To prove this, we show that each time the games introduce a
new polynomial Pj , we have Pj(�x) = aj .

The One-More Discrete Logarithm Assumption in the Generic Group Model 605

Fig. 6. Final game Game4 does not use �x in the oracles anymore. It defines the challenge
�x after A gave its output and this is what makes it simple for us to prove it is hard to
win for A.

We prove this by induction. Initially, P0 = 1 and a0 = 1 so the statement
holds for j = 0. Now suppose it is true for all i ∈ [0, j − 1]. We show it is true
for j. Polynomial Pj can be built either by oracle Chal or by oracle GCmp:

– In oracle Chal, Pj := Xn and aj := xn so we have Pj(�x) = xn = aj .
– In oracle GCmp, Pj := Pi + (−1)bPi′ and aj := ai + (−1)bai′ so we have

Pj(�x) := Pi(�x) + (−1)bPi′(�x) = ai + (−1)bai′ = aj .

This proves (7).
We next show that the following holds in Game1, Game2 and Game3:

∀Q ∈ Span(L), Q(�x) = 0 (8)

(in the other games either L or �x are not defined). For L = {Q1, . . . , Qq} if
Q ∈ Span(L) then Q =

∑q
k=1 αkQk. To show (8), it suffices to show that for all

k ∈ [1, q] we have Qk(�x) = 0.

606 B. Bauer et al.

For k ∈ [0, q], Qk is defined during the k-th call to DLog on some input
ξ. In Game1, the oracle finds i such that ξi = ξ and sets v := ai and Qk :=
Pi − v, so we get Qk(�x) = Pi(�x) − ai. Using the first result (7), we get that
(8) holds. In Game2 and Game3 the oracle sets v := Pi(�x) so we directly get
Qk(�x) = Pi(�x) − Pi(�x) = 0

The third result we will use holds (assuming the game did not abort) in
Game1, Game2, Game3 and Game4:

∀j ≥ 1 ∀i ∈ [0, j − 1] : ξj = ξi ⇔ Pj − Pi ∈ Span(L) . (9)

We first prove

∀j ≥ 1 ∀i ∈ [0, j − 1] : ξj = ξi ⇒ Pj − Pi ∈ Span(L)

by induction. We show that this holds for j = 1 and all other j > 0 and suppose
that for some i∗ ∈ [0, j − 1], ξj = ξi∗ . We show that Pj − Pi∗ ∈ Span(L).

– In Game2, Game3 and Game4, since ξj is not a new random string when it is
defined, thus for some i1 ∈ [0, j − 1] we had Pj − Pi1 ∈ Span(L) and so the
game defined ξj := ξi1 . This implies that ξi1 = ξi∗ , and since i1 < j, using
the induction hypothesis, we get that Pi1 − Pi∗ ∈ Span(L) and furthermore

Pj − Pi∗ = (Pj − Pi1) − (Pi1 − Pi∗) ∈ Span(L) .

Now the situation is simpler when j = 1: we must have i1 = i∗ = 0 so

Pj − Pi1 = Pj − Pi∗ = P1 − P0 ∈ Span(L) .

– In Game1 the proof is almost the same: since ξj is not a new random string,
thus for some i1 ∈ [0, j −1] we had Pj(�x) = Pi1(�x), so the game defined ξj :=
ξi1 . Since the game did not abort, “Pj(�x) = Pi1(�x) and Pj − Pi1 /∈ Span(L)”
does not hold, and thus Pj − Pi1 ∈ Span(L). From here the proof proceeds
as for the other games above, and thus Pj − Pi∗ ∈ Span(L). When j = 1, we
have i∗ = 0 and P1 − P0 ∈ Span(L), as otherwise the game aborts.

We now prove the other implication:

∀j ≥ 1 ∀i ∈ [0, j − 1] : Pj − Pi ∈ Span(L) ⇒ ξj = ξi,

again by induction. Using the same method as before we can argue that this is
true for j = 1. For j > 1, when Enc() defines ξj , if for some i∗ ∈ [0, j − 1] we
have Pj − Pi∗ ∈ Span(L) then we show that ξj is assigned ξj = ξi∗ .

– In Game2, Game3 and Game4, since for some i1 ∈ [0, j−1] : Pj−Pi1 ∈ Span(L),
the game defines ξj := ξi1 . And since

Pi∗ − Pi1 = (Pi∗ − Pj) + (Pj − Pi1) ∈ Span(L),

by induction we get ξi1 = ξi∗ which yields ξj = ξi∗ .

The One-More Discrete Logarithm Assumption in the Generic Group Model 607

– In Game1, since we know that (Pj − Pi∗)(�x) = 0 from the (8), we get that for
some i1 ∈ [0, j − 1] : Pj(�x) = Pi1(�x). Since the game did not abort, we know
that Pj − Pi1 ∈ Span(L), so by the same argument as before, we get ξj = ξi∗ .

Game0 to Game1. We now compare Game0 to Game1. The only difference
between the two is when Game1 aborts in the procedure Enc() on event

∃i ∈ [0, j − 1] such that Pj(�x) = Pi(�x) and Pj − Pi /∈ Span(L) . (10)

We call this event F . Since Enc is called at most m times, we get:

AdvGame0
A ≤ AdvGame1

A + m · Pr[F]. (11)

We now upper-bound Pr[F]. Before a call to Enc, the oracle defines Pj .
Consider a fixed i ∈ [0, j − 1] and define P := Pj − Pi. We will upper-bound the
probability that

Pj(�x) − Pi(�x) = P (�x) = 0

with P := Pj − Pi /∈ Span(L).
Since A does not know �x one might consider applying the Schwartz-Zippel

lemma. But we cannot, since A knows information on �x. From A’s point of
view, �x is not uniformly chosen from Z

n
p , since it satisfies Q(�x) = 0 for all Q ∈ L

(using (8)). We write L = {Q1, . . . , Qq}, and using the notation from Lemma 1
Qq+1 := P .

A also knows that if for some indexes i1, i2 it was given ξi1 �= ξi2 then
Pi1(�x) �= Pi2(�x). We can reformulate this by writing D�ı = Pi1 − Pi2 for �ı ∈ I :=
{(i1, i2) ∈ [0, j − 1]2 | ξi1 �= ξi2}. A knows that D�ı(�x) �= 0. Using the notation of
Lemma 1 we get that

�x ∈ C :=
(⋂

j∈[1,q]

Qj

)
\

(⋃

i∈I

Di

)
.

Our goal is to apply Lemma 1 to upper-bound Pr�x←C [P (�x) = 0]. We need
to verify that the three premises of the lemma are satisfied, which are: from A’s
point of view, �x ∈ C is picked uniformly at random, Qq+1 ∩ C �= ∅ and �Qq+1 is
independent of (�Qi)i∈[1,q].

�x is chosen uniformly in C. To show this, we fix the randomness (of the chal-
lenger and the adversary) of the game (which means the order in which the ξi

are picked is deterministic) and we consider the transcript π(�x) of what A sees
during the game when the secret is chosen as �x: π(�x) = (ξ0, . . . , ξj−1, v1, . . . , vq)
(In this transcript, the strings ξi are ordered and so are the vi, but we implicitly
suppose that before the query vk there was a query vk−1 or ξik and after the
query vk there was either a query vk+1 or ξi′

k
. We do not formalize this.)

The transcript π corresponds to all the output of the oracles that were given
to A: The ξi are the outputs of GCmp and Chal, and the vi are the out-
puts of DLog. The transcript π(�x) only depends on the challenge �x. What
is important to notice is that for all �y ∈ C: π(�y) = π(�x). Indeed, if we call
π(�y) = (ξ′

0, . . . , ξ
′
j−1, v

′
1, . . . , v

′
q) we can show by induction that ξ′

i = ξi and
v′

k = vk for all i ∈ [1, j − 1] and k ∈ [1, q].

608 B. Bauer et al.

– Let k ∈ [1, q]; we show that vk = v′
k: in both challenges �x and �y, since the

transcript A received is the same by the induction hypothesis, it behaves
the same way and calls DLog on input ξ. The oracle DLog then picks i =
min{j | ξj = ξ} which is the same in both cases by the induction hypothesis.
DLog computes vk = Pi(�x) and defines Qi := Pi − vk for the challenge �x
while it computes v′

k = Pi(�y) and Q′
i := Pi−v′

k for the challenge �y. Now Since
�y ∈ C, we have in particular �y ∈ Qi, so we know that Qk(�y) = Pi(�y)−vk = 0.
This gives Pi(�y) = v′

k = vk and Q′
k = Qk.

– Let k ∈ [1, j − 1]; we show that ξk = ξ′
k: for both challenges �x and �y, since

the transcript A received is the same by induction hypothesis, it behaves the
same way and calls either Chal or GCmp. In both cases the game creates a
polynomial Pk and calls the procedure Enc(), for which there are two cases:
1: ∀ i ∈ [0, k − 1] : Pk(�x) �= Pi(�x). The game with challenge �x outputs a new

random ξk, which means ξk �= ξi for i ∈ [1, k − 1]. Since �y ∈ C, we know
that for all i ∈ [0, k − 1], �y /∈ Di,k = {�z : (Pi − Pk)(�z) = 0 and ξi �= ξk}
This means that for all i ∈ [0, k − 1], since ξi �= ξk, we have Pi(�y) �= Pk(�y),
so the game also chooses ξ′

k as a new random string. Since we fixed the
randomness of the game, we get ξk = ξ′

k.
2: ∃ i∗ ∈ [0, k − 1] : Pk(�x) = Pi∗(�x). The game defines ξk := ξi for the

challenge �x. Since the game did not abort for k < j, we know that Pk −
Pi∗ ∈ Span(L). Now since L = (Qi)i and �y ∈ ⋂

i∈[1,q] Qi, we also get
(Pk − Pi∗)(�y) = 0. So the game defines ξ′

k := ξ′
i = ξi = ξk, by the

induction hypothesis and the preliminary result (9).
In both cases we get that ξk = ξ′

k.

Since the transcript that A sees is the same for all elements in C, A can only
make a uniform guess on which element of C is the challenge. Thus from A’s
point of view, �x is chosen uniformly at random in C.

Qq+1 ∩ C �= ∅. Since Qq+1 = {�x ∈ Zp : P (�x) = 0}, if we had C ∩ Qq+1 = ∅,
then P (�x) �= 0 for all �x ∈ C, and thus Pr

�x
$←C [P (�x) = 0] = 0. In this case,

there is no need to upper-bound the probability, which is why we assume that
Qq+1 ∩ C �= ∅.

�Qq+1 is independent of (�Qi)i∈[1,q]. Recall that �P = (pk)k∈[1,n] is the vector

representing the polynomial P − P (�0) =
∑n

k=1 pkXk. We assume that �Qq+1 is
dependent of (�Qi)i∈[1,q] and then show that this contradicts the previous premise
Qq+1 ∩ C �= ∅. Assume thus that for some α:

Qq+1 − Qq+1(�0) =
q∑

k=1

αk

(
Qk − Qk(�0)

)
.

With α := Qq+1(�0) +
∑q

k=1 αkQk(�0) and Q :=
∑q

k=1 αkQk, we can write this
as Qq+1 = α + Q with α ∈ Zp and Q ∈ Span(L). Now since we are in event F ,
defined in (10), we have Qq+1 = P /∈ Span(L), which implies α �= 0 (otherwise
P = Q ∈ Span(L)). Since C ⊂ Qi we have that for all i ∈ [1, q] and all �x ∈ C:

The One-More Discrete Logarithm Assumption in the Generic Group Model 609

Qi(�x) = 0, and thus Q(�x) = 0. From this, we have Qq+1(�x) = α + Q(�x) = α.
Thus, Qq+1(�x) �= 0 for all �x ∈ C, which implies C ∩ Qq+1 = ∅, which contradicts
the previous assumption. We thus proved that �Qq+1 is independent of (�Qi)i∈[1,q].

Applying Lemma 1. Since all its premises are satisfied, we can apply Lemma
1 and obtain:

Pr
�x←C

[
P (�x) = 0

]
= Pr

�x←C
[
Qq+1(�x) = 0

] ≤ 1
p − |I| ,

with |I| ≤ j2 ≤ m2. Since we need to test this with P = Pj − Pi for all
i ∈ [0, j − 1], we get Pr[F] ≤ m

p − m2
and from (11):

AdvGame0
A ≤ AdvGame1

A +
m2

p − m2
. (12)

Game1 to Game2. There are three changes in Game2, which we show do not
affect the distributions of the game. First, we replace ai by Pi(�x) in oracle
DLog, which is equivalent by (7).

Second, in Enc, we replace the condition

if ∃i ∈ [0, j − 1] : Pj(�x) = Pi(�x) then ξj := ξi

by
if ∃i ∈ [0, j − 1] : Pj − Pi ∈ Span(L) then ξj := ξi.

We show that this new condition does not affect the output of Enc(). There are
two cases for Pj(�x):

Case 1: ∃i∗ ∈ [0, j − 1] : Pj(�x) = Pi∗(�x). We have either
◦ Pj − Pi∗ ∈ Span(L), and in this case Game1 and Game2 both set ξj = ξi∗

and output ξj using (9); or
◦ Pj − Pi∗ /∈ Span(L), meaning that both Game1 and Game2 abort since

“Pj − Pi∗ /∈ Span(L) and Pj(�x) = Pi∗(�x)” is the abort condition.
Case 2: ∀i ∈ [0, j − 1] Pj(�x) �= Pi(�x). Since, by 8, all polynomials in Span(L)

vanish at �x, this implies ∀i ∈ [0, j − 1] : Pj − Pi /∈ Span(L). In this case
both Game1 and Game2 output a random new string ξj .

The third change in Game2, in the oracle DLog, does not change the output
either: in Game1 the DLog oracle always outputs ai = Pi(�x). In Game2, when
Pi ∈ Span(L), the game uses the decomposition Pi = α0 +

∑q−1
k=1 αkQk, and

since Qk(�x) = 0 by (8), it outputs Pi(�x) = α0.
Together this yields:

AdvGame1
A = AdvGame2

A . (13)

Game2 to Game3. In this game hop we move the abort condition from the pro-
cedure Enc to the oracle DLog. We show that the two abort conditions are
equivalent, by showing the two implications of the equivalence:

610 B. Bauer et al.

If Game2 aborts then Game3 also aborts. If Game2 aborts, it means that
for a fixed index j∗ the game found i∗ ∈ [0, j∗ −1] such that Pj∗ −Pi∗ /∈ Span(L)
and Pj∗(�x) = Pi∗(�x). We show that Game3 also aborts in this situation. Let
P := Pj∗ − Pi∗ . At the end of Game3 the challenger makes calls to DLog on
each challenge Pji = Xi. This adds the corresponding polynomials Xi − xi to L

for all i ∈ [1, n]. With P = P (�0) +
∑n

k=1 pkXk, we can write

P =
n∑

k=1

pk(Xk − xk) + P (�0) +
n∑

k=1

pkxk.

Since P (�x) = Pj∗(�x) − Pi∗(�x), we have P (�x) = 0. On the other hand, by
the equation above, we have P (�x) = P (�0) +

∑n
k=1 pkxk. Together, this yields

P =
∑n

k=1 pk(Xk − xk), which means P ∈ Span(L) at the end of the game. At the
time when Game2 would have aborted, we had P /∈ Span(L) and thus the game
attributed two different strings ξi∗ �= ξj∗ to Pi∗ and Pj∗ , respectively. But at the
end of Game3, when L contains all Xi − xi for i ∈ [1, n], we have P ∈ Span(L).
This means that one call to DLog updated L so that P ∈ Span(L) and when
this happened, since ξi∗ �= ξj∗ , the abort condition in DLog was satisfied and
the game aborted

If Game3 aborts then Game2 also aborts. If Game3 aborts, then on a call
to DLog we have ∃(i1, i2) ∈ [0, j]2 such that Pi1 − Pi2 ∈ Span(L) and ξi1 �= ξi2 .
From Pi1 − Pi2 ∈ Span(L), using (8) we get Pi1(�x) = Pi2(�x). Suppose i1 < i2.
The challenger in Game2 used the procedure Enc() when the counter j was
equal to i2 to compute ξi2 �= ξi1 . This means that at that moment, L contained
fewer elements and we had Pi2 − Pi1 /∈ Span(L). Since Game2 aborts when
Pi1(�x) = Pi2(�x) and Pi2 − Pi1 /∈ Span(L), thus Game2 aborts in this case.

Combining both implications yields

AdvGame2
A = AdvGame3

A . (14)

Game3 to Game4. The only difference between these games is in the oracle
DLog. Instead of computing v := Pi(�x), Game4 picks a random v

$← Zp.
We prove that after this modification, the distribution of the outputs of ora-
cle DLog remains the same. The difference between the two games occurs only
when Pi /∈ Span(1, L). Let us bound Pr�x←C

[
Pi(�x) = v in Game3

]
, where �x ∈ C

represents the information that A knows about �x, which we previously used in
the first game hop.

We apply Lemma 1 again to bound this probability. Now since the game does
not abort immediately when the inconsistency Pi1(�x) = Pi2(�x) and ξi1 �= ξi2

occurs, the inequalities on the strings level do not give A any information on
what the evaluation Pi(�x) cannot be. This means that C is simpler than in the
first game hop, namely

C =
⋂

i∈[1,q]

Qi.

The One-More Discrete Logarithm Assumption in the Generic Group Model 611

We define Qq+1 := Pi − v and show that once again the three premises of
Lemma 1 hold: �x ∈ C is picked uniformly at random, Qq+1 ∩ C �= ∅ and �Qq+1 is
independent of (�Qi)i∈[1,q].

�x is chosen uniformly in C. To show this, we again fix the randomness of the
game and consider the transcript π that A sees during the game if a particular
�x is chosen: π(�x) = (ξ0, . . . , ξj−1, v1, . . . , vq), which contains all oracle outputs
given to A. We show that for all �y ∈ C : π(�y) = π(�x). Indeed, for π(�y) =:
(ξ′

0, . . . , ξ
′
j−1, v

′
1, . . . , v

′
q) we show by induction that ξ′

i = ξi and v′
k = vk for all

i ∈ [1, j − 1] and k ∈ [1, q].

– Let k ∈ [1, q]; then vk = v′
k is showed exactly as in the first game hop (on

page 22).
– Let k ∈ [1, j − 1]; we show that ξk = ξ′

k: for both challenges �x and �y, since
the transcript A received is the same by induction hypothesis, A behaves the
same way and calls either Chal or GCmp. In both cases the game creates a
polynomial Pk and calls Enc(), for which there are two cases:
1: ∀ i ∈ [0, k − 1] : Pk − Pi /∈ Span(L). Since this condition is independent of

�x and �y, for both the game outputs a new random string ξk and ξ′
k. Since

we fixed the randomness of the game, we get ξk = ξ′
k.

2: ∃i∗ ∈ [0, k − 1] : Pk − Pi∗ ∈ Span(L). In this case the game defines ξk := ξi

and ξ′
k := ξ′

i for both challenge �x and �y. We get ξ′
k := ξ′

i = ξi = ξk by the
induction hypothesis and (9).

In both cases we thus have ξk = ξ′
k.

As in first game hop, we conclude that A cannot distinguish between two different
values �x ∈ C and so we can consider �x to be chosen uniformly at random in C.
�Qq+1 is linearly independent of (�Qi)i∈[1,q]. Recall that Pi /∈ Span(1, L)

and Qq+1 := Pi−v. If �Qq+1 were linearly dependent of (�Qi)i∈[0,j], then (using the
same method as in the first game hop) we would have Qq+1 = Pi − v = α + Q
with α ∈ Zp and Q ∈ Span(L). As this contradicts Pi /∈ Span(1, L), we conclude
that �Qq+1 is linearly independent of (�Qi)i∈[1,q].

Qq+1 ∩ C �= ∅. C =
⋃

i∈[1,q] Qi is an affine space and �Qq+1 is linearly independent
of (�Qi)i∈[0,j]. This implies that Qq+1 ∩ C has dimension dim(C) − 1 and thus
Qq+1 ∩ C �= ∅.

Applying Lemma 1. Since its three premises are satisfied, Lemma 1 with M :=
0 yields:

Pr[Qq+1(�x) = 0]�x←C = Pr
�x←C

[
Pi(�x) = v in Game3

]
=

1
p
.

This means that in Game3 the distribution of Pi(�x) is uniform, so the change
we make does not affect the overall distribution of the game. We thus have

AdvGame3
A = AdvGame4

A . (15)

612 B. Bauer et al.

Analysis of Game4. We prove that A wins Game4 at most with negligible prob-
ability 1

p . To do this, we prove that at least one component of the vector �x is
picked uniformly at random after A outputs �y.

When A outputs �y, L contains q elements, so dim(Span(L)) ≤ q. Since q <
n, Span(1, L) has dimension at most q + 1 and therefore at most n when the
adversary outputs the vector �y. Since the dimension of Span(X1, . . . ,Xn) is n
and 1 /∈ Span(X1, . . . ,Xn), we get that Span(X1, . . . ,Xn) is not contained in
Span(1, L). This means that there will be at least one index i ∈ [1, n] such that
Xi /∈ Span(1, L). We choose the smallest index i that verifies this. Then the
oracle DLog outputs a randomly sampled value xi when called on ξji . This xi

is sampled randomly after the i-th coefficient of vector �y output by A and we
obtain: Pr[�x = �y] ≤ 1

p . This yields:

AdvGame4
A ≤ 1

p
. (16)

The theorem now follows from Eqs. (12), (13), (14), (15), and (16) ��

4 OMCDH in the GGM

The OMCDH assumption (defined in Fig. 2), though similar to OMDL, is slightly
more complex. In OMDL the adversary has access to a DLog oracle and must
solve DLog challenges; in OMCDH the adversary has access to a CDH oracle
and must solve CDH challenges. This CDH oracle enables the adversary to con-
struct (encodings of) group elements corresponding to high-degree polynomials:
on input (Ξ(x), Ξ(y)), the oracle returns Ξ(xy), which in the “ideal” game is
encoded as the product of the polynomials representing x and y. This makes
using known proof techniques in the GGM impossible, since if their degree is
not linearly bounded, A can build non-zero polynomials that evaluate to zero
on the challenge with non-negligible probability. (E.g., Xp − X evaluates to 0
everywhere in Zp.)

Given this, we can neither use the Schwartz-Zippel lemma (as it would only
yield a non-negligible bound on the adversary’s advantage) nor Lemma 1 (since
it only applies to polynomials of degree 1). In fact, existing cryptanalysis, such
as the attacks by Maurer and Wolf [MW96,Mau99]), precisely uses high-degree
polynomials to break DL in groups of order p (when p − 1 is smooth) when
given a CDH oracle.

Since the GGM does not handle high-degree polynomials well, we will analyze
the hardness of OMCDH by considering a stronger assumption instead, which
we call OMCDHDL and define in Fig. 7. This problem is analogous to OMCDH,
except that the CDH oracle is replaced by a DLog oracle. As the adversary has
access to the same oracles as in the OMDL game, it can only build polynomials
of degree at most 1, as seen in our proof of OMDL. In the full version [BFP21] we
show that OMCDHDL implies OMDL and that (modulo a polynomial number
of group operations) OMCDHDL implies OMCDH.

The One-More Discrete Logarithm Assumption in the Generic Group Model 613

Fig. 7. The OMCDHDL problem

In the full version [BFP21] we formally prove the hardness of OMCDHDL in
the generic group model. This is done following the same strategy as for OMDL
in Theorem 1 ; the games hops are the same, only the final analysis of the last
game is different, since the winning condition is different, which yields a different
winning probability at the end. This is summarized in Theorem 2 below.

Proposition 1 (OMCDLDL implies OMCDH). In a cyclic group of
order p, let A be an adversary that solves OMCDH using at most m group
operations and q calls to DLog. Then there exists an adversary mathcalB that
solves OMCDHDL using at most m + 2q�log(p)� group operations.

The proof is straightforward; the reduction answers CDH oracle queries by
making queries to its DLog oracle.

Theorem 2. Let A be an adversary that solves OMCDHDL in a generic group
of order p, making at most m oracle queries. Then

AdvOMCDH-GGM
A ≤ 1

p − 1
+

2m

p
+

m2

p − m2
.

A formal proof can be found in the full version [BFP21]. Combining this with
Proposition 1, we obtain the following corollary, which proves the security of
OMCDH in the generic group model.

Corollary 1. Let A be an adversary that solves OMCDHDL in a generic group
of order p, making at most m oracle queries and q CDH oracle queries. Then

AdvOMCDH-GGM
A ≤ 1

p − 1
+

2(m + 2q�log(p)�)
p

+
(m + 2q�log(p)�)2

p − (m + 2q�log(p)�)2 .

Acknowledgements. We would like to thank the reviewers for their valuable feed-
back. The second author is supported by the Vienna Science and Technology Fund
(WWTF) through project VRG18-002. This work is funded in part by the MSR–Inria
Joint Centre.

614 B. Bauer et al.

References

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.
org/10.1007/11426639_26

[BCJ08] Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press
(2008)

[BDL+12] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed
high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

[BDN18] Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part
II. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03329-3_15

[BFL20] Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computa-
tional assumptions in the algebraic group model. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 121–151.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_5

[BFP21] Bauer, B., Fuchsbauer, G., Plouviez, A.: The one-more discrete logarithm
assumption in the generic group model. Cryptology ePrint Archive, Report
2021/866 (2021). https://ia.cr/2021/866

[BL13] Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind sig-
nature schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part
II. LNCS, vol. 8270, pp. 82–99. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0_5

[BLL+21] Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the
(in)security of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021, Part I. LNCS, vol. 12696, pp. 33–53. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5_2

[BMV08] Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-
more” computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 71–87. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-79263-5_5

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model
and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM Press (2006)

[BNN04] Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based
identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3_17

[BNPS03] Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-
more-RSA-inversion problems and the security of Chaum’s blind signature
scheme. J. Cryptol. 16(3), 185–215 (2003)

[Bol03] Boldyreva, A.: threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6_3

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-56880-1_5
https://ia.cr/2021/866
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-540-79263-5_5
https://doi.org/10.1007/978-3-540-79263-5_5
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/3-540-36288-6_3

The One-More Discrete Logarithm Assumption in the Generic Group Model 615

[Boy08] Boyen, X.: The uber-assumption family (invited talk). In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_3

[BP02] Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs
of security against impersonation under active and concurrent attacks. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_11

[Bro07] Brown, D.R.L.: Irreducibility to the one-more evaluation problems: more
may be less. Cryptology ePrint Archive, Report 2007/435 (2007). http://
eprint.iacr.org/2007/435

[BS07] Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signa-
tures, and Fiat-Shamir without random oracles. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71677-8_14

[CDG18] Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 693–
721. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-
1_23

[Cha82] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203.
Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-
4_18

[CP93] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4_7

[DEF+19] Drijvers, M., et al.: On the security of two-round multi-signatures. In: Sym-
posium on Security and Privacy, pp. 1084–110. IEEE Computer Society
Press (2019)

[FF13] Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction tech-
nique: the case of Schnorr signatures. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 444–460. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-38348-9_27

[FH17] Fukumitsu, M., Hasegawa, S.: Impossibility of the provable security of
the Schnorr signature from the one-more DL assumption in the non-
programmable random oracle model. In: Okamoto, T., Yu, Y., Au, M.H.,
Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 201–218. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68637-0_12

[FJS14] Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for
Schnorr signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part
I. LNCS, vol. 8873, pp. 512–531. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45611-8_27

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its
applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96881-0_2

[FPS20] Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and
signed ElGamal encryption in the algebraic group model. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp.
63–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-
2_3

https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/3-540-45708-9_11
http://eprint.iacr.org/2007/435
http://eprint.iacr.org/2007/435
https://doi.org/10.1007/978-3-540-71677-8_14
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-642-38348-9_27
https://doi.org/10.1007/978-3-319-68637-0_12
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3

616 B. Bauer et al.

[FS10] Fischlin, M., Schröder, D.: On the impossibility of three-move blind signa-
ture schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 197–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5_10

[GBL08] Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reduc-
tions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85174-5_6

[GLSY04] Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching Schnorr
identification scheme with applications to privacy-preserving authoriza-
tion and low-bandwidth communication devices. In: Lee, P.J. (ed.) ASI-
ACRYPT 2004. LNCS, vol. 3329, pp. 276–292. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30539-2_20

[Gra10] Granger, R.: On the static Diffie-Hellman problem on elliptic curves over
extension fields. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 283–302. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_17

[IN83] Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital
multisignatures. NEC Res. Dev. 71, 1–8 (1983)

[KM07] Koblitz, N., Menezes, A.J.: Another look at “provable security”. J. Cryptol.
20(1), 3–37 (2007)

[KM08] Koblitz, N., Menezes, A.: Another look at non-standard discrete log and
Diffie-Hellman problems. J. Math. Cryptol. 2(4), 311–326 (2008)

[KM10] Koblitz, N., Menezes, A.: The brave new world of bodacious assumptions
in cryptography. Not. Am. Math. Soc. 57(3), 357–365 (2010)

[LRSW99] Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems.
In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8_14

[Mau99] Maurer, U.: Information-theoretic cryptography. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 47–65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_4

[Mau05] Maurer, U.: Abstract models of computation in cryptography. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1

[MPSW19] Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-
signatures with applications to Bitcoin. Des. Codes Cryptogr. 87(9), 2139–
2164 (2019). https://doi.org/10.1007/s10623-019-00608-x

[MR02] Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45760-7_16

[MW96] Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.)
CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68697-5_21

[MWLD10] Ma, C., Weng, J., Li, Y., Den, R.H.: Efficient discrete logarithm based
multi-signature scheme in the plain public key mode. Des. Codes Cryptogr.
54(2), 121–133 (2010)

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete log-
arithm. Math. Notes 55(2), 165–172 (1994)

[Nic19] Nick, J.: Blind signatures in scriptless scripts. Presentation given at Build-
ing on Bitcoin 2019 (2019). https://jonasnick.github.io/blog/2018/07/31/
blind-signatures-in-scriptless-scripts/

https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/978-3-642-17373-8_17
https://doi.org/10.1007/978-3-642-17373-8_17
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/3-540-48405-1_4
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/3-540-45760-7_16
https://doi.org/10.1007/3-540-68697-5_21
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/

The One-More Discrete Logarithm Assumption in the Generic Group Model 617

[NIS19] NIST: Digital signature standard (DSS), FIPS PUB 186–5 (draft) (2019).
https://csrc.nist.gov/publications/detail/fips/186/5/draft

[NRS21] Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS,
vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84242-0_8

[OP01] Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems
for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001.
LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44586-2_8

[Pas11] Pass, R.: Limits of provable security from standard assumptions. In: Fort-
now, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 109–118. ACM Press
(2011)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

[PV05] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiv-
alent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol.
3788, pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/
11593447_1

[Sch91] Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

[Sch01] Schnorr, C.P.: Security of blind discrete log signatures against interactive
attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS,
vol. 2229, pp. 1–12. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45600-7_1

[Seu12] Seurin, Y.: On the exact security of Schnorr-type signatures in the ran-
dom oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4_33

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

[SJ99] Schnorr, C.-P., Jakobsson, M.: Security of discrete log cryptosystems
in the random oracle and the generic model (1999). https://core.ac.uk/
download/pdf/14504220.pdf

[STV+16] Syta, E., et al.: Keeping authorities “honest or bust” with decentralized
witness cosigning. In: Symposium on Security and Privacy, pp. 526–545.
IEEE Computer Society Press (2016)

[Wag02] Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9_19

[WNR20] Wuille, P., Nick, J., Ruffing, T.: Schnorr signatures for secp256k1. Bitcoin
Improvement Proposal 340 (2020). https://github.com/bitcoin/bips/blob/
master/bip-0340.mediawiki

[Yun15] Yun, A.: Generic hardness of the multiple discrete logarithm problem. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol.
9057, pp. 817–836. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6_27

https://csrc.nist.gov/publications/detail/fips/186/5/draft
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/3-540-69053-0_18
https://core.ac.uk/download/pdf/14504220.pdf
https://core.ac.uk/download/pdf/14504220.pdf
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://doi.org/10.1007/978-3-662-46803-6_27
https://doi.org/10.1007/978-3-662-46803-6_27

Verifiably-Extractable OWFs
and Their Applications to Subversion

Zero-Knowledge

Prastudy Fauzi1(B), Helger Lipmaa1,2(B), Janno Siim2(B), Micha�l Zaj ↪ac3(B),
and Arne Tobias Ødegaard1(B)

1 Simula UiB, Bergen, Norway
2 University of Tartu, Tartu, Estonia

3 Clearmatics, London, UK

Abstract. An extractable one-way function (EOWF), introduced by
Canetti and Dakdouk (ICALP 2008) and generalized by Bitansky et al.
(SIAM Journal on Computing vol. 45), is an OWF that allows for efficient
extraction of a preimage for the function. We study (generalized) EOWFs
that have a public image verification algorithm. We call such OWFs
verifiably-extractable and show that several previously known construc-
tions satisfy this notion. We study how such OWFs relate to subversion
zero-knowledge (Sub-ZK) NIZKs by using them to generically construct
a Sub-ZK NIZK from a NIZK satisfying certain additional properties,
and conversely show how to obtain them from any Sub-ZK NIZK. Prior
to our work, the Sub-ZK property of NIZKs was achieved using concrete
knowledge assumptions.

1 Introduction

Extractability is a way to formalize what an algorithm knows. It is a notion
essential to modern cryptography which dates back to the works of Goldwasser
et al. [34] who proposed proofs of knowledge, and later formalized for interactive
proofs by Bellare and Goldreich [10].1 For non-interactive proofs, Damg̊ard [23]
proposed knowledge-of-exponent assumptions, which are non-falsifiable assump-
tions2 saying that any efficient algorithm that produces group elements that
satisfy a specific relation must know their discrete logarithms.

Investigating extractable primitives, Canetti and Dakdouk [19] introduced
the notion of extractable one-way functions (EOWFs). These are one-way func-
tions f such that any adversary who produces an image of f must “know” its
preimage. One formalizes this by saying that for every adversary A that outputs
a value y ∈ image(f), there exists an extractor Ext that, given A’s auxiliary
input and randomness, can output a preimage for y under f . In the case of
black-box (resp., non-black-box [7]) extractability, Ext is universal and has no
access (resp., has access) to A’s code.
1 Extractability in interactive protocols is well-studied and involves a technique called
rewinding. In this paper we focus on extractability for non-interactive protocols.

2 Essentially, one cannot efficiently check if an adversary breaks the assumption.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 618–649, 2021.
https://doi.org/10.1007/978-3-030-92068-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_21

VEOWFs and Their Applications to Sub-ZK 619

Until the work of Bitansky et al. in [14], EOWFs were only known under very
strong knowledge-of-exponent assumptions [13], making little attempt to justify
how extraction would work. Bitansky et al. defined generalized extractable one-
way functions (GEOWFs) and constructed a GEOWF based on sub-exponential
learning with errors (or, alternatively, any delegation scheme) and non-black-box
extraction, given that the auxiliary input of the adversary is bounded. They also
prove that GEOWFs secure against auxiliary input of polynomially unbounded
length do not exist assuming indistinguishability obfuscation (which seems an
increasingly plausible assumption given recent progress [41,56]).

Extractability and SNARKs. Extractability assumptions are widely used in vari-
ous flavors of non-interactive zero-knowledge (NIZK) protocols, which are useful
tools in ensuring privacy and correctness of cryptographic protocols. Succinct
non-interactive zero-knowledge arguments of knowledge (zk-SNARKs, [30,36,37,
48]) are NIZKs that have sublinear-length proofs and are knowledge-sound (for
any valid proof, the prover must “know” a witness). The knowledge-soundness
property of a SNARK relies on being able to extract the witness from an adver-
sary that outputs a valid argument. SNARKs are extremely popular due to prac-
tical applications such as verifiable computation and privacy-preserving cryp-
tocurrencies (e.g., Zcash [11]).

An interesting question is which assumptions are necessary for SNARKs.
Due to the impossibility result of Gentry and Wichs [32], any adaptively sound
SNARK must rely on non-falsifiable assumptions. However, while non-falsifiable
assumptions are necessary, they need not be knowledge assumptions. In fact,
Bitansky et al. [13] showed that extractable collision-resistant hash functions
(ECRHs) are necessary and sufficient to construct a SNARK that is adaptively
sound and only privately verifiable. More precisely, they construct a designated
verifier SNARK for NP from an ECRH and (an appropriate) private information
retrieval, and construct a (specific variant of) ECRH from a designated verifier
SNARK and a CRH. They also showed that ECRH implies EOWF.

Extractability and Subversion Zero-Knowledge. Efficient SNARKs are typically
defined in the common reference string (CRS) model, where one assumes that the
prover and the verifier have access to a CRS generated by a trusted third party.
However, in practice, such a party usually does not exist; this is important since
a malicious CRS generator may cooperate with the prover to break soundness,
or with the verifier to break zero-knowledge. Thus, it is preferable to construct
SNARKs, and NIZKs in general, in weaker trust models than the CRS model.

The general notion of parameter subversion has been studied in [53]. Bellare
et al. [9] defined subversion zero-knowledge (Sub-ZK), where zero-knowledge
holds even in the case of a dishonestly generated CRS, and constructed a Sub-
ZK NIZK argument. Subsequently, [1,3,27] constructed Sub-ZK SNARKs and [2]
constructed succinct Sub-ZK quasi-adaptive NIZKs [42]. As noted in [2], Sub-ZK
in the CRS model is equivalent to zero-knowledge in the minimal bare public key
(BPK, [20]) model where the authority is only trusted to store the public key of
each party. Since auxiliary-string non-black-box NIZK is impossible in the BPK
model [33], one needs to use non-auxiliary-string non-black-box techniques to

620 P. Fauzi et al.

achieve Sub-ZK [2]. Existing Sub-ZK NIZKs extract a CRS trapdoor from the
(possibly malicious) CRS generator, and then use the CRS trapdoor to simulate
the NIZK argument. Prior to our work, extraction in Sub-ZK NIZKs was done
using a concrete knowledge-of-exponent assumption.

As previously mentioned, the work of Bitansky et al. [13] established that
extractable collision-resistant hash functions are necessary to obtain adaptive
soundness of SNARKs. A natural extension of this question is then to ask:

Which assumptions are necessary to obtain Sub-ZK for NIZKs and
SNARKs? Are those assumptions stronger than the ones required to obtain
adaptive soundness of SNARKs?

1.1 Our Contributions

Inspired by (G)EOWFs, we propose a new generic assumption3: the existence of
verifiably-extractable (generalized) OWFs (VE(G)OWFs). We argue that VEG-
OWFs are a natural extension of GEOWFs introduced by Bitansky et al. [14],
and show that in fact their GEOWF construction can easily be turned into a
VEGOWF. Moreover, while Bitansky et al. [14] showed that a GEOWF can be
transformed into a EOWF under certain assumptions, we similarly show that
any VEGOWF can be transformed into a VEOWF with no further assump-
tions. To circumvent the impossibility result that EOWF and similar primitives
do not exist assuming indistinguishability obfuscation, our definitions include
non-black-box extractability as in [14] and assume a benign distribution of aux-
iliary inputs as suggested in [18].

Answering the first research question, we show that VEGOWFs are vital
in understanding subversion zero-knowledge. Firstly, we show that VEGOWFs
allow for the transformation of any perfect NIZK with a publicly verifiable
CRS into a Sub-ZK NIZK. Secondly, we show the necessity of VEGOWFs
by showing that the existence of a Sub-ZK NIZK with certain properties
implies that the NIZK’s CRS generation algorithm must be a VEOWF. We
also prove that if a NIZK has perfect zero-knowledge and well-formedness of
the CRS can be efficiently verified, then we automatically obtain a statistical
two-message private-coin witness-indistinguishable argument. Obtaining statis-
tical two-message witness-indistinguishable arguments (either public or private
coin) was an open question until recently [6,35,49]. Similar observations were
previously made about specific Sub-ZK SNARKs in [27].

We answer the second research question by showing that the assumption
corresponding to this primitive seems weaker than that of extractable collision-
resistant hash functions. In particular, we show that VEGOWFs can be built
either from knowledge assumption or knowledge-sound NIZKs, and we also pro-
pose candidate VEGOWFs from various signature schemes.

3 Generic assumptions postulate the existence of a cryptographic primitive, such as
OWFs and one-way permutations. Meanwhile, concrete assumptions are used for
concrete constructions, such as the RSA assumption [52] for the RSA cryptosystem.

VEOWFs and Their Applications to Sub-ZK 621

By showing connections to Sub-ZK NIZK, our work further demonstrates the
importance of extractable OWFs as an independent primitive. This tool, which
has not been thoroughly studied, seems to lead the way to protocols that are
otherwise difficult to achieve. We encourage further study into extractable func-
tions under weaker (or different) assumptions as there are significant differences
between various non-black-box techniques.

2 Technical Overview

Extending the notions of EOWF [19] and GEOWF [14], we define Verifiably-
Extractable Generalized One-Way Functions (VEGOWFs), show several instan-
tiations of these and show how it is related to subversion resistant zero-
knowledge. Intuitively, an EOWF f is a one-way function such that for any
PPT adversary A, there exists a PPT extractor ExtA, such that if A outputs
y ∈ image(f), then ExtA (given access to A’s auxiliary input) retrieves x such
that f(x) = y. Meanwhile, a GEOWF g generalizes EOWFs by introducing a
relation RG such that for every PPT A, there exists an extractor ExtA, such
that if A outputs y ∈ image(g), then ExtA (given access to A’s auxiliary input)
returns z such that (y, z) ∈ RG. It is required that it is difficult for any adversary
who is only given y to compute such z, i.e., RG is a hard relation.

2.1 Verifiably-Extractable (Generalized) OWFs

A Verifiably-Extractable Generalized OWF (VEGOWF) G = {ge}e is a GEOWF
which additionally allows one to efficiently check whether extraction will succeed
for a given value y. More precisely, we define a relation RGe and a set YExt ⊇
image(ge) such that

(i) given y one can efficiently verify whether y ∈ YExt and
(ii) if y ∈ YExt then there exists an extractor ExtA that given non-black-box

access to A extracts z such that (y, z) ∈ RGe.

Note that extraction should work even if y ∈ YExt\ image(ge), and in general, it
might be hard to decide if y ∈ image(ge). We say that a VEGOWF is keyless
if e is the security parameter λ; in this case we write RG instead of RGe. The
formal definition of VEGOWFs can be found in Sect. 4.1.

We denote both properties together as RG-verifiable-extractability. The
requirements for RG-hardness remain the same as for GEOWFs. We introduce
verifiably-extractable OWFs (VEOWF) as a special case of VEGOWFs where
the corresponding relation is RGe = {(ge(x), x)}.

Generic Transformations. We show that any VEGOWF can be transformed
to a VEOWF with a simple technique that was first mentioned in [14], in a
slightly different context. However, since the transformation incurs some effi-
ciency loss, we still consider VEGOWFs to be a weaker primitive and base
our subversion zero-knowledge application on VEGOWFs. We also give a con-
struction of a VEGOWF from any GEOWF by evaluating the GEOWF on two

622 P. Fauzi et al.

different inputs and attaching a NIWI proof (in the plain model) that at least
one of the functions was evaluated correctly. Together they give a surprising
result that any GEOWF can be transformed to a VEOWF under the relatively
mild assumptions (e.g., decisional linear assumption) required by the NIWI. We
note that similar techniques have been previously used in specific applications.
For example, [12] uses similar idea to obtain a 3-round zero-knowledge argument
from any (non-verifiable) EOWF. We believe it is valuable to point out that this
technique works as a general transformation. See Sect. 4.2 for more details.

Robust Combiners. We show that n VEGOWFs can be combined to a new
VEGOWF, which is secure if any t > n/2 of the initial functions is secure.
A robust combiner[26,40] for VEGOWFs is useful since many of the proposed
VEGOWFs rely on strong assumptions. With combining we only need to trust
that some of those strong assumptions hold without knowing which. Details are
provided in Sect. 4.2.

We show several VEGOWFs and VEOWFs under various assumptions like
bounded auxiliary input size, knowledge assumptions, and the random oracle.

VEGOWF from the BCPR Construction. In the first construction, we
show that the keyless GEOWF G from [14, Fig. 4] is, in fact, a VEGOWF against
any adversary with bounded auxiliary input if we assume that the used delega-
tion scheme has efficient public CRS-verifiability. We recall that a delegation
scheme DS [5] allows one to prove statements of the form “a machine M out-
puts y on input x in time t”. A delegation proof πDS must be faster to verify
than the statement itself. The CRS-verifiability means that one can efficiently
check if the DS CRS crsDS is a valid CRS.

In the BCPR construction, each function ge computes a CRS crsDS for a
delegation scheme DS, and then evaluates a PRG on a random value. The relation
RG(y, z) holds for y = (crsDS, v) and z = (A, πDS, pad), if πDS is a DS-proof,
using crsDS as the CRS, for the statement that A on input 1λ outputs v. (pad is
a padding.) The proof of RG-hardness is as in [14], and follows from the security
of the PRG together with an argument about Kolmogorov complexity. The RG-
verifiable-extractability follows from the CRS-verifiability and completeness of
the delegation scheme. See Sect. 4.3 for more details.

We note that even if the delegation scheme is not CRS-verifiable, one could
still make the BCPR EOWF a VEGOWF using the generic transformation pre-
sented in Sect. 4.2.

VEGOWFs from Knowledge-of-Exponent Assumptions. Secondly, we
show that many knowledge-of-exponent assumptions naturally imply VEG-
OWFs. For these VEGOWFs, the input key e consists of a bilinear group descrip-
tion and possibly some additional information.

We first construct of a VEOWF based on the Bilinear Diffie–Hellman
Knowledge-of-Exponent (BDH-KE) assumption from [1] which states that if

VEOWFs and Their Applications to Sub-ZK 623

an adversary on input p (the asymmetric bilinear group description) outputs
([x]1, [x]2) for some x then he knows x.4 Here, e = p and gp(x) = ([x]1, [x]2).

We also construct a VEGOWF based on the Diffie–Hellman Knowledge of
Exponent (DH-KE) assumption introduced in [9]. The key is a description p of
a symmetric bilinear group, and gp(x, y) = [x, y, xy]1. The DH-KE assumption
states that is possible to extract at least one of x and y. This results in a
VEGOWF with respect to the relation RGp([x, y, xy]1, z) = 1 iff z = x or z = y.

We discuss these and other similar VE(G)OWF constructions in Sect. 4.4.

VEGOWFs from Knowledge Sound NIZKs. Thirdly, inspired by [22,47],
we build VEGOWFs using knowledge-sound NIZKs. Suppose that we have a
knowledge-sound NIZK Π for a relation R and that R has an efficient sam-
pling algorithm S which produces instances that are hard on average. We define
ge(rS , rπ) such that it samples (x,w) ← S(rS), uses rπ as random coins to
generate a proof π for x, and outputs (x, π). The input e is either the CRS
or a description of a hash function (in the random oracle model). We define
RGe((x, π),w) = 1 iff π satisfies NIZK verification and (x,w) ∈ R. Since Π is
knowledge-sound, we obtain RG-verifiable-extractability by using Π’s verifica-
tion on (x, π). RG-hardness is satisfied since π is simulatable and S produces
hard instances on average.

As an interesting instantiation, if we let S output ([x] , x) for a random
x and use Schnorr’s Σ-protocol together with the Fiat-Shamir heuristic as a
NIZK, we obtain a very efficient VEOWF ge(x, r) := (x = [x] , a = [r] , z =
H([x] , [r]) · x+r) where H is a hash function and verification works by asserting
that H(x, a)x + a = [z]. See Sect. 4.5 for more details.

VEGOWFs from Signature Schemes. Finally, we propose a novel heuristic
for coming up with new VEGOWFs and knowledge-type assumptions in general.
The intuition behind signature schemes is that only the one with (at least some)
knowledge of the signing key sk can sign a message. Thus, it gives a very simple
formula for looking for new VEGOWFs. Let Σ = (KGen, sign,Vf) be a digital
signature scheme. Then, gp(sk) = (vk = KGen(sk), σ = sign(sk,m = 0)) is a
candidate for a VEGOWF where p is some parameter for the signature scheme,
in particular when vk ∈ KGen can be efficiently tested. Of course, this is just a
heuristic since at least the standard notion of existential unforgeability does not
require that the signer knows the secret key.

We then proceed by going over many concrete signatures schemes and investi-
gate the security of the corresponding VEGOWF candidate. We see that in some
cases the VEGOWF is insecure (e.g., Lamport’s one-time signature [46] and RSA
signature), in some cases it gives a VEGOWF that we already considered before
(e.g., Schnorr’s signature scheme [55] and Boneh-Boyen signature [16]) and in
some cases we obtain (plausibly secure) VEGOWFs that have not been consid-
ered before. In the latter set is for example the DSA signature which gives quite
a unique function in a non-pairing-based group and (and a slight modification

4 We use the additive notation for bilinear groups G1,G2,GT where [x]i denotes xgi

using the fixed generator gi of Gi described in p. A bilinear map • allows us to
compute [x]1 • [y]2 = [xy]T .

624 P. Fauzi et al.

of) the hash-and-sign lattice based signature scheme of [31], which gives the first
lattice based VEGOWF candidate.

2.2 Constructing Sub-ZK NIZK from VEGOWF

We propose two generic constructions of a Sub-ZK NIZK. The first construction
produces a knowledge-sound Sub-ZK NIZK from any knowledge-sound Sub-WI
NIWI5 and keyless VEGOWF. The second construction produces a sound Sub-
ZK NIZK from a sound Sub-WI NIWI, a keyless extractable commitment, and
a VEGOWF.

Knowledge-Sound Sub-ZK NIZK. For the first construction, we propose a
knowledge-sound Sub-ZK NIZK for any NP-relation R using a variant of the
well-known FLS disjunctive approach [25]. Namely, we use a knowledge-sound
Sub-WI NIWI Πwi for the composite relation R′, where ((x, ŷ), (w, ẑ)) ∈ R′ iff
either (x,w) ∈ R or (ŷ, ẑ) ∈ RG. Here G = {ge} is a keyless VEGOWF with
respect to RG and ŷ ∈ YExt being added to Πwi’s CRS. Knowledge-soundness of
the new protocol will follow from the knowledge-soundness of Πwi together with
the RG-hardness of G, and subversion zero-knowledge follows from the verifiable-
extractability of G and the Sub-WI property of Πwi. This construction preserves
succinctness, and thus we obtain a Sub-ZK SNARK from a keyless VEGOWF
and a Sub-WI SNARK. We later note that any perfectly zero-knowledge SNARK
with efficient CRS verification is automatically a Sub-WI SNARK. See Sect. 5.1
for the full details of the construction.

Sub-ZK NIZK. Secondly, we construct a Sub-ZK NIZK Π for any NP-relation
R. It similarly uses the FLS approach with a keyless VEGOWF, but additionally
uses a commitment to a trapdoor. Specifically, Π implements a Sub-WI NIWI
Πwi for the relation R′, where ((x, c, ŷ), (w, ẑ, r̂)) ∈ R′ iff (x,w) ∈ R or c =
C.Com(ẑ, r̂) such that RG(ŷ, ẑ) = 1, where G is a keyless VEGOWF with respect
to RG and C = (Com,Open,Vf) is a keyless extractable commitment scheme.

A proof in Π consists of a commitment c and a proof in Πwi, so this con-
struction is less efficient than the previous one. However, this does not rely on
Πwi being knowledge-sound, so the construction is still of interest. The sound-
ness of Π follows from the soundness of Πwi together with the RG-hardness of
G and the extractability of C. Note that Πwi will already guarantee that c is
a valid commitment. Therefore, we do not need the commitment itself to have
an efficient image verification procedure and can obtain it from any (even non-
verifiable) injective EOWF. Sub-ZK follows from the verifiable-extractability of
G, the Sub-WI property of Πwi and the hiding property of C. See Sect. 5.2 for
the full details of the construction.

Statistical ZAPRs with Adaptive Soundness. We observe that if a NIZK
has perfect zero-knowledge and CRS-verifiability, then we immediately obtain a
5 Although in the literature NIWI often refers to the plain model, in this context we

allow for a CRS. A Sub-WI NIWI needs to remain witness indistinguishable even if
the CRS is subverted. We note that any CRS-less NIWI is trivially a Sub-WI NIWI.

VEOWFs and Their Applications to Sub-ZK 625

statistical two-message private-coin witness-indistinguishable argument. Obtain-
ing statistical two-message witness-indistinguishable arguments that are public-
coin (ZAP) or private-coin (ZAPR) was considered a significant open problem,
until recent breakthroughs [6,35,49]. Note that existing Sub-ZK SNARKs [1,27]
are already statistical ZAPRs with adaptive soundness. Compared to previous
statistical ZAP/ZAPR constructions, the soundness of SNARKs is based on less
standard assumptions, but they have much better efficiency. Similar observations
about Sub-ZK SNARKs were previously made by Fuchsbauer in [27].

Fig. 1. Relations between argument systems and extractable functions. Multiple arrows
pointing to the same node means that each source node is required to construct the
destination node. KS denotes knowledge-sound.

Instantiations. The relations between our primitives are summarized in Fig. 1.
Table 1 shows a selection of instantiations for our generic constructions and

compares them to previous work. We can achieve a keyless extractable commit-
ment from any keyless injective VEOWF (or even from keyless injective EOWF
if the commitment does not have to be image verifiable). In particular, this
includes a VEOWF based on the symmetric discrete logarithm (SDL) assump-
tion and the BDH-KE assumption, and a VEOWF based on the security of a
non-interactive version of Schnorr’s protocol.

We can construct a Sub-ZK NIZK by combining a keyless extractable com-
mitment, a VEGOWF, and a Sub-WI NIWI. For example, we may use the
Sub-WI NIWI of [39] based on DLIN or [15] based on iO and OWF. In com-
parison, [9] proposed a Sub-ZK NIZK which is based on the DLIN and DH-KE
assumptions. We can obtain a KS Sub-ZK NIZK by combining a KS Sub-WI
NIWI with a VEGOWF. In Table 1, we consider the case where we use [28]
as the KS Sub-WI NIWI component, together with a VEGOWF which holds
under the same assumptions. In Sect. 5.2, we also show that existing Sub-ZK
SNARKs [1,27] can be slightly modified to achieve Sub-ZK from any VEGOWF
rather than a specific knowledge-of-exponent assumption.

2.3 Constructing VEOWF from Sub-ZK NIZK

It turns out that not only can Sub-ZK NIZK be constructed with the help
of VEGOWF, but (under certain restrictions) Sub-ZK NIZK also implies a

626 P. Fauzi et al.

Table 1. Instantiations of our generic constructions in comparison to previous work.
SKE denotes the Square Knowledge-of-Exponent assumption, GGM denotes the
generic group model, PDH denotes the Power Diffie-Hellman assumption, PKE denotes
the Power Knowledge-of-Exponent assumption, and TSDH denotes the Target Strong
Diffie-Hellman assumption.

Soundness Knowledge Soundness Sub-ZK

[9] DH-KE + CDH x DH-KE + DLIN

Sec. 5.2 injective VEOWF x injective VEOWF + DLIN

Sec. 5.2 injective VEOWF x injective VEOWF + iO

[1] GGM GGM BDH-KE

[27, Sec. 4] q1-PDH + q2-PKE q1-PDH + q2-PKE SKE

[27, Sec. 5] q1-PDH + q2-PKE + q3-SDH q1-PDH + q2-PKE + q3-TSDH SKE

[27, Sec. 6] GGM GGM SKE

Sec. 5.1 DH-KE + DL DH-KE + DL DH-KE + DLIN

VE(G)OWF. In that sense, VEGOWF is both a necessary and a sufficient con-
dition for achieving Sub-ZK NIZKs, similar to how ECRH (also, under certain
restrictions) is a necessary and a sufficient condition for achieving a SNARK.

More technically, we consider a CRS generation function KGenR,p of a Sub-
ZK NIZK that takes as an input a randomly sampled trapdoor td and outputs a
crs. We show that this function has to be one-way if the NIZK is both computa-
tionally sound and computationally zero-knowledge. Intuitively, if one-wayness
would not hold, the soundness adversary could recover td and use the simulator
to construct a proof for a false statement. We additionally require that KGenR,p

is injective to avoid the situation where one-wayness adversary computes td is
which is particularly bad for simulation among all the possible preimages of
crs. Verifiable-extractability property follows straightforwardly from the Sub-
ZK property of the NIZK since it requires that td must be extractable. However,
here we also need to make some slight restrictions. Namely, the Sub-ZK extrac-
tor should be able to extract the complete td, not only some part of it, which
might still be sufficient for simulating the proof.

3 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security param-
eter. All adversaries are stateful. For an algorithm A, let image(A) be the image
of A (the set of valid outputs of A), let RNDλ(A) denote the random tape of
A, and let r ←$RNDλ(A) denote the random choice of values from RNDλ(A).
We write that y ∈ range(A(x)) if there is non-zero probability that the algo-
rithm A outputs a value y given the input x. We denote by negl(λ) an arbitrary
negligible function and by poly(λ) an arbitrary polynomial function. We write
a(λ) ≈λ b(λ) if |a(λ) − b(λ)| = negl(λ). For an NP-relation R = {(x,w)}, let
LR := {x : ∃w, (x,w) ∈ R} be the corresponding language.

In the pairing-based setting, we use the standard bracket notation together
with additive notation, i.e., we write [a]ι to denote agι where gι is a fixed

VEOWFs and Their Applications to Sub-ZK 627

generator of Gι and a ∈ Zp for some prime p. Intuitively, pairings • : G1 ×G2 →
GT are efficient (one-way) functions that map ([a]1, [b]2) to [a]1 • [b]2 = [ab]T .

Let A = {Aλ}λ∈N, B = {Bλ}λ∈N be collections of efficiently sampleable
sets, such that |Bλ| > |Aλ| for each λ ∈ N. A polynomial-time function
PRG : Aλ → Bλ is a pseudorandom generator (PRG) if its output is compu-
tationally indistinguishable from a truly random one.

3.1 (Generalized) Extractable OWF

An extractable one-way function (EOWF, [19]) g is an OWF with the property
that if A outputs a value in the image of g, then one can extract its preim-
age. A generalized EOWF (GEOWF, [14]) is a function g with an associated
hard relation RG, such that given g(x), it is intractable to compute z such that
RG(g(x), z) = 1. However, given a machine (and its auxiliary input) that com-
putes g(x), it is possible to extract z such that RG(g(x), z) = 1. One obtains
an EOWF when RG = {(g(x), z) : g(z) = g(x)}. Unless stated otherwise, we
assume that RG is efficiently checkable.

Bitansky et al. [14] show that, assuming the existence of indistinguishability
obfuscation, there do not exist EOWFs or GEOWFs with common auxiliary-
input of unbounded polynomial length. However, the result does not rule out
their existence when the common auxiliary input comes from some natural distri-
bution, such as the uniform distribution. Thus, nowadays zk-SNARKs explicitly
assume that the auxiliary input is benign, i.e., with overwhelming probability it
does not encode a malicious obfuscation. We also make the same assumption: if
no bound for the auxiliary input is given, then we assume that it is taken from
a benign distribution.

We present a slight modification of the GEOWF definition of [14]. Note that
hardness is required to hold even against poly-length auxiliary inputs.

Definition 1 (GEOWFs). Let X = {Xλ}λ, Y = {Yλ}λ, Z = {Zλ}λ and
K = {Kλ}λ be collections of sets indexed by λ ∈ N. An efficiently computable
family of functions G = {ge : Xλ → Yλ | e ∈ Kλ, λ ∈ N} associated with an effi-
cient (probabilistic) key sampler KeySamp, is a GEOWF with respect to a rela-
tion RGe(y, z) on triples (e, y, z) ∈ Kλ × Yλ × Zλ if it is:

RG-hard: for any PPT adversary A and any aux sampled from a benign dis-
tribution of poly(λ)-bit strings

Pr
e←KeySamp(1λ)

x ←$ Xλ

[z ← A(e, ge(x), aux) : RGe(ge(x), z) = 1] ≤ negl(λ) .

RG-extractable: For any PPT adversary A, there exists a PPT extractor ExtA,
s.t. for any benign distribution Dλ of poly(λ)-bit strings,

Pr
e←KeySamp(1λ)
aux←Dλ

[

y ← A(e; aux), z ← ExtA(e; aux) :
y ∈ image(ge) ∧ RGe(y, z)
= 1

]

≤ negl(λ) .

628 P. Fauzi et al.

The function is publicly verifiable if there exists a polynomial-time tester T such
that for any (e, x, z), RGe(ge(x), z) = T (e, ge(x), z).

We say that a GEOWF is keyless if, for each security parameter λ, there is
only one key e = 1λ. For ease of notation, we simply write gλ and RG in this
case. A GEOWF is an EOWF if RGe(ge(x), z) = {(e, ge(x), z) : ge(x) = ge(z)}.

Bounded Auxiliary Input. We also consider GEOWFs where the auxiliary
input in RG-extractability holds for any aux ∈ {0, 1}b(λ) (not just for a benign
distribution) for some fixed polynomial b. We call these b-bounded GEOWFs.

3.2 BCPR GEOWF and EOWF

Bitansky et al. [14] show that if the common auxilliary string of the adversary
and the extractor has an a priori bounded length b(λ), then one can implement
extractable one-way functions (EOWF) based on a pseudorandom generator and
a universal delegation scheme [43,44]. In a universal delegation scheme, one dele-
gates computation of some circuit M on input x to a prover, who must compute
M(x) and provide a proof π that he computed it correctly; any verifier that is
given (M,x,M(x), π) must be able to verify the proof in less time than com-
puting M(x) itself. One can construct universal delegation schemes under the
subexponential learning with errors assumption [44] and even falsifiable assump-
tions [43] for languages in BPP.

BCPR GEOWF. We briefly describe the construction from [14] of a GEOWF
secure against an adversary with (b(λ) − ω(1))-bounded auxiliary input.

Fix a polynomial b(λ). Let PRG : {0, 1}λ → {0, 1}b(λ)+λ be a PRG. Let
DS be a universal delegation scheme that consists of a CRS generator DS.K, a
prover DS.P, and a verifier DS.V. We assume that using DS, one can construct
a succinct proof πDS of length DS.plen(λ) that a Turing machine M on input
1λ outputs some value v in time T (λ), where T (λ) ∈ (2ω(log λ), 2poly(λ)) is some
superpolynomial function. DS must satisfy that the proof verification complexity
is linear in M’s size and polylogarithmic in M’s execution time T .

We define the function gλ : (s, r) �→ (crsDS, v) and the corresponding relation
RG(y, z) as in Fig. 2, where y = (crsDS, v) and z = (M, πDS, pad) with |z| = l(λ).

Proposition 1 ([14, Theorem 14]). G = {gλ}λ∈N, depicted in Fig. 2, is a
GEOWF with respect to RG, against (b(λ) − ω(1))-bounded auxiliary input.

This proposition relies on the security of DS and PRG. In addition, it uses a
Barak-type [7] extractability paradigm (namely, the machine M is the adversary
who outputs y). It is worth noting that a similar approach with a number of
extra steps [14, Theorem 14] also allows one to construct a function family which
is an EOWF against (b(λ) − ω(1))-bounded auxiliary-input. We will see an
adaptation of this approach in Fig. 4.2.

VEOWFs and Their Applications to Sub-ZK 629

Fig. 2. BCPR GEOWF G (above) and the relation RG(y, z) (below).

3.3 NIZK and NIWI Arguments

We recall the definition of NIZK and NIWI arguments and their security proper-
ties. We assume that R is a relation generator that output an NP relation R and
a parameter p (e.g., the group description). An argument system Ψ is a tuple
of PPT algorithms (K,P,V). The CRS generation algorithm K takes in (R, p)
and outputs a crs and a trapdoor td (which may be ⊥ if the argument does not
have zero-knowledge). The prover algorithm P takes in R, p, crs and (x,w) ∈ R
and outputs a proof π. The verifier algorithm V takes in (R, p, crs, x, π) and out-
puts either 0 (rejecting the proof) or 1 (accepting the proof). A NIZK argument
system will additionally have a simulator Sim that takes in (R, p, crs, td, x) and
outputs a simulated proof π for the statement x. Furthermore, a subversion resis-
tant argument will have a CRS verification algorithm CV that take in (R, p, crs)
and output either 0 (by rejecting the CRS) or 1 (by accepting the CRS).

Definition 2 (Perfect Completeness [37]). A non-interactive argument Ψ is
perfectly complete for R, if for all λ, all (R, p) ∈ range(R(1λ)), and (x,w) ∈ R,

Pr [crs ← K(R, p) : V(R, p, crs, x,P(R, p, crs, x,w)) = 1] = 1 .

Definition 3 (Perfect CRS Verifiability). A non-interactive (subversion-
resistant) argument Ψ is perfectly CRS-verifiable for R, if for all λ and all
(R, p) ∈ range(R(1λ)), Pr [(crs, td) ← K(R, p) : CV(R, p, crs) = 1] = 1.

Definition 4 (Computational Soundness). Ψ is computationally (adap-
tively) sound for R, if for every PPT A,

Pr

[

(R, p) ← R(1λ), (crs, td) ← K(R, p), (x, π) ← A(R, p, crs) :
x
∈ LR ∧ V(R, p, crs, x, π) = 1

]

≤ negl(λ) .

Definition 5 (Computational Knowledge Soundness). Ψ is computation-
ally (adaptively) knowledge-sound for R, if for every PPT A, there exists a PPT

630 P. Fauzi et al.

extractor ExtA, such that

Pr

⎡

⎢

⎣

(R, p) ← R(1λ), (crs, td) ← K(R, p), r ←$RNDλ(A),
(x, π) ← A(R, p, crs; r),w ← ExtA(R, p, crs; r) :
(x,w)
∈ R ∧ V(R, p, crs, x, π) = 1

⎤

⎥

⎦ ≤ negl(λ) .

Above we assume that the input (R, p, crs; r) comes from a benign distribution
and thus avoids the impossibility result of [14].

Definition 6 (Statistically Composable ZK). Ψ is statistically composable
zero-knowledge for R, if for all (R, p) ∈ range(R(1λ)), and all computationally
unbounded A, εcomp

0 ≈λ εcomp
1 , where εcomp

b =

Pr

[

(crs, td) ← K(R, p), (x,w) ← A(R, p, crs, td);π0 ← P(R, p, crs, x,w);
π1 ← Sim(R, p, crs, td, x) : (x,w) ∈ R ∧ A(πb) = 1

]

.

Ψ is perfectly composable ZK for R if one requires that εcomp
0 = εcomp

1 . In The-
orem 8 we also consider a computational version of this definition, that is A is
a PPT adversary and the input td is not given as input to A.

Definition 7 (Statistically Composable Sub-ZK [1]). Ψ is statistically
composable subversion ZK (Sub-ZK) for R, if for any PPT subverter Z there
exists a PPT ExtZ , such that for all R ∈ range(R(1λ)), and all computationally
unbounded A, εcomp

0 ≈λ εcomp
1 , where εcomp

b =

Pr

⎡
⎢⎣

r ←$RNDλ(Z), (crs, auxZ) ← Z(R, p; r), td ← ExtZ(R, p; r)

(x,w) ← A(R, p, crs, td, auxZ), π0 ← P(R, p, crs, x,w);

π1 ← Sim(R, p, crs, td, x) : (x,w) ∈ R ∧ CV(R, p, crs) = 1 ∧ A(πb, auxZ) = 1

⎤
⎥⎦ .

Ψ is perfectly composable Sub-ZK for R if one requires that εcomp
0 = εcomp

1 .

Definition 8 (Witness Indistinguishability). Ψ is computationally witness
indistinguishable (WI) for R, if for any PPT A, εwi

0 ≈λ εwi
1 , where εwi

b =

Pr

[

(crs, td) ← K(R, p), (x,w0,w1) ← A(R, p, crs), πb ← P(R, p, crs, x,wb) :
(x,w0) ∈ R ∧ (x,w1) ∈ R ∧ A(πb) = 1

]

.

Ψ is perfectly WI for R if one requires that εwi
0 = εwi

1 for unbounded A. Note
that td above might be ⊥ if Ψ is not zero-knowledge.

Definition 9 (Sub-WI [9]). Ψ is computationally Sub-WI for R, if for any
PPT subverter Z, εwi

0 ≈λ εwi
1 , where εwi

b =

Pr

[

(crs, x,w0,w1, auxZ) ← Z(R, p), πb ← P(R, p, crs, x,wb) :
(x,w0) ∈ R ∧ (x,w1) ∈ R ∧ CV(R, p, crs) = 1 ∧ Z(πb, auxZ) = 1

]

.

Ψ is perfectly Sub-WI for R if one requires that εwi
0 = εwi

1 for an unbounded Z.
In case Ψ does not utilise any common string we assume CV(R, p, ε) = 1.

VEOWFs and Their Applications to Sub-ZK 631

4 Verifiably-Extractable Generalized OWFs

4.1 Definition

We study GEOWFs G = {ge} that come with an efficient (public) algorithm
that decides whether or not extraction is going to be successful. That is, we
require that there exists an extraction verification algorithm EV, such that
EV(e, y) decides whether y ∈ YExt ⊇ image(ge), where extraction succeeds for
any y ∈ YExt. We also require that, with overwhelming probability, extraction
is successful for any adversary which outputs a value in YExt. (Extraction may
succeed even if y
∈ YExt.) We call GEOWFs with such properties Verifiably-
Extractable Generalized OWFs (VEGOWFs).

Although for some VEGOWFs it may hold that YExt = image(ge), it is not
necessarily the case. For example in the BCPR GEOWF, one is not able to decide
if y ∈ image(gλ), because any such algorithm can be used to decide membership
in image(PRG) which contradicts the security of PRG. However, as we will show,
extraction is successful for any y = (crsDS, v), where crsDS is a valid DS CRS and
v is any string output by an adversary with bounded auxiliary input.

Define VEGOWFs as GEOWFs where the RG-extractability property has
been substituted with the following, stronger one. (It makes an implicit assump-
tion that EV exists.)

RG-Verifiably-Extractable with Respect to YExt: Let image(ge) ⊆ YExt ⊆
Yλ, and let EV be an efficient algorithm such that EV(e; y) = 1 iff y ∈ YExt. For
any PPT adversary A, there exists a PPT extractor Ext, s.t. for any benign
distribution Dλ of poly(λ)-bit strings,

Pr
e←KeySamp(1λ)
aux←Dλ

[

y ← A(e; aux), z ← Ext(e; aux) :
y ∈ YExt ∧ (y, z)
∈ RGe

]

≤ negl(λ) .

If this definition holds for adversaries with auxiliary input length bounded by
some polynomial b(λ), we say that that the GEOWF is RG-verifiably-extractable
against b-bounded adversaries with respect to YExt.

We also require that there is a PPT algorithm t, such that for any x ∈ Xλ,
(ge(x), t(x)) ∈ RGe, that is, given x, t computes the “witness” for ge(x) in RG.

If there exists an algorithm ImV that decides membership in image(ge), then
the GEOWF is image-verifiable. Clearly, any image-verifiable GEOWF is also
verifiably-extractable with respect to YExt = image(ge). Furthermore, for an
EOWF, RGe only consists of pairs (ge(x), x) so extraction is not possible if one
is given y
∈ image(ge). Hence, for an EOWF, verifiable-extractability is the same
as image-verifiability.

4.2 Generic Transformations

VEGOWF ⇒ VEOWF. Surprisingly, any VEGOWF can be transformed to
a VEOWF with the transformation in Fig. 3 that adds very little overhead. The

632 P. Fauzi et al.

Fig. 3. Transformation from a VEGOWF G = {ge}e to a VEOWF F = {fe}e.

idea is to include to a VEGOWF ge a branch input i ∈ {0, 1}λ. If i
= 0λ, which
happens with an overwhelming probability, then ge works as usual and outputs
ge(x). However, on a trapdoor branch i = 0λ, the function uses its two extra
inputs y and z. If y satisfies EVg(e; y) and (y, z) ∈ RGe, it outputs y (or ⊥ if the
condition is not met). One-wayness follows since with overwhelming probability
the function outputs y ∈ image(ge) and the preimage has to contain either x
such that ge(x) = y or z such that (y, z) ∈ RGe. By outputting either t(x) (in
the first case) or z (in the other case), one breaks RG-hardness. On the other
hand, the VEOWF extractor can use the VEGOWF extractor to recover z from
y when EVg(e; y) = 1 and then return a preimage (0λ,⊥, y, z).

A similar transformation was introduced in [14] to obtain EOWFs from
GEOWFs. However, they observed that an adversary can pick as input
(0λ,⊥, y, z) with (y, z) ∈ RGe, but y
∈ image(ge). This makes the extraction
impossible. Our construction does not run into this issue since we assume that
extraction is possible when EV(e; y) = 1.

Theorem 1. If G = {ge}e is RG-hard and RG-verifiably-extractable, then F =
{fe}e in Fig. 3 is a VEOWF.

GEOWFs ⇒ VEGOWF. We now consider a generic transformation from a
GEOWF to a VEGOWF. One approach is to simply append a NIZK proof π
which proves that the given value was computed correctly. A problem with this
approach is that it would require a CRS computed by a trusted third party, which
might not be desirable in a number of settings. We therefore give a modification
of this approach, where we instead rely on a NIWI, which are known to exist in
the plain model under various assumptions [8,15,39].

The intuition is that we create a new function g(x, y, r) = (f(x), f(y), π)
where π is a NIWI proof (created using randomness r) showing that either f(x)
or f(y) belongs to the image of f (in which case extraction will be possible).
Verifiable-extractability follows from extractability of the GEOWF as well as
perfect soundness of the NIWI, and hardness will follow from the hardness of f
and witness-indistinguishability of the NIWI.

Consider a GEOWF F = {fe}e with an associated relation RG. Let Π =
(P,V) be a perfectly sound NIWI, and let the relation Re((y1, y2), (x′

1, x
′
2)) hold

iff y1 = fe(x′
1) or y2 = fe(x′

2). We define a VEGOWF G = {ge}e with an extrac-
tion verification algorithm EV in Fig. 4 and define the hardness relation:

RG′
e((y1, y2, π), (z1, z2)) := RGe(y1, z1) ∨ RGe(y2, z2).

VEOWFs and Their Applications to Sub-ZK 633

Fig. 4. Transformation from a GEOWF F = {fe}e to a VEGOWF G = {ge}e.

Similar techniques have been used before in conjunction with EOWFs (e.g., 3-
round ZK in [12]) but not, up to our knowledge, as a generic transformation.
The proof of the following theorem is deferred to the full version of our paper.

Theorem 2. If F is a GEOWF with respect to RG, then G in Fig. 4 is a VEG-
OWF with respect to RG′.

A Robust Combiner. Additionally, a simple robust combiner is possible for
VEGOWFs (or even for GEOWFs). Let us suppose that G = {ge1}e1 , F =
{fe2}e2 , and H = {he3}e3 are candidate VEGOWFs for the respective relations
RGg, RGf , and RGh. We do assume that the associated extraction verification
algorithm always accepts when given a value in the image of each candidate, but
we make no other assumption about the security of the candidates.

We define a new VEGOWF T = {te}e by te(x, y, z) := (ge1(x), fe2(y), he3(z))
where e = (e1, e2, e3) and the relation RGe is

{(

(a, b, c), (z1, z2)
)

:
(

(a, z1) ∈ RGg
e1 ∧ (b, z2) ∈ RGf

e2

)

∨
(

(a, z1) ∈ RGg
e1 ∧ (c, z2) ∈ RGh

e3

)

∨
(

(b, z1) ∈ RGf
e2 ∧ (c, z2) ∈ RGh

e3

)

}

.

We define the new extraction verification algorithm to accept when all individual
extraction verification algorithms accept.

If any two of the candidates are hard for their respective relations, then T is
RG-hard. Similarly, if any two are extractable, then T is RG-extractable. The
idea can be generalized to n VEGOWFs for an arbitrary constant n, where it
is sufficient that more than n/2 are secure. An interesting open question is to
construct a robust combiner where fewer functions have to be secure.

4.3 The BCPR GEOWF is Verifiably-Extractable

We show that if a delegation scheme DS is CRS-verifiable, then the
BCPR GEOWF from Fig. 2 is verifiably-extractable with respect to YExt =
image(DS.K(1λ)) × {0, 1}b(λ)+λ. That is, z contains the code of an adversary
and the DS argument, independently of whether or not y ∈ image(gλ).

The proof of the following theorem is very similar to the proof of Theorem
14 from [14]; we have reproduced it for the sake of completeness.

Theorem 3. Let DS be a delegation scheme that has publicly verifiable proofs
and CRS, and let PRG : {0, 1}λ → {0, 1}b(λ)+λ be a PRG. Let G = {gλ}λ∈N

and RG be as in Fig. 2. G is a VEGOWF for RG with respect to YExt =
image(DS.K(1λ)) × {0, 1}b(λ)+λ and (b(λ) − ω(1))-bounded aux.

634 P. Fauzi et al.

Proof. RG-hardness. Identical to the proof of Theorem 14 in [14].
RG-verifiable-extractability. Since DS is CRS-verifiable, there exists an

algorithm CV which decides if crsDS ∈ image(DS.K(1λ)). On input y = (crsDS, v),
the new extraction verification algorithm EV returns 1 if CV(crsDS) = 1 and
|v| = b(λ) + λ.

We show that there is one universal PPT extractor Ext that can handle any
PPT adversary A with advice of size at most b(λ)−ω(1). For an adversary A (a
Turing machine) and advice aux ∈ {0, 1}b(λ)−ω(1), denote by Aaux the machine
that, on input 1λ, runs A(1λ; aux). Assume that (i) Aaux has description size at
most b(λ) and that (i) on input 1λ, after at most tA < T (λ) steps, it outputs
Aaux(1λ) := y = (crsDS, v) ∈ {0, 1}l′(λ). (Recall YExt ⊆ {0, 1}l′(λ).) The extractor
Ext(A, aux, 1tA) works as follows:

Ext(A, aux, 1tA)

Construct Aaux;

(crsDS, v) ← Aaux(1
λ); if EV((crsDS, v)) = 0 then return ⊥;fi ;

Compute a DS-argument πDS for the fact that “Aaux(1
λ) = (crsDS, v)”;

return z ← (Aaux, πDS, pad);

It follows directly from the perfect completeness of DS that RG(y, z) = 1. Since
this holds for any (crsDS, v) ∈ YExt output by an adversary with (b(λ) − ω(1))-
bounded auxiliary input, we get RG-verifiable-extractability. By the relative
prover efficiency of the delegation scheme, the extractor’s running time is poly-
nomial in the running time tA of the adversary. ��

To instantiate the construction, we need a delegation scheme with public
CRS and proof verification. Firstly, SNARKs in [1,27,51] satisfy both proper-
ties and have succinct proofs. All of them are based on non-falsifiable assump-
tions, however, here it is only needed that they are sound for the class P. Thus,
even a tautological security assumption (the corresponding SNARK is sound
for BPP) would be falsifiable. Secondly, some recent suggestions for delegation
schemes [43,45] with public proof-verification are based on non-tautological falsi-
fiable assumptions. Unfortunately, it is not immediately evident if those schemes
also have CRS-verifiability. We leave the latter as an important open problem.

4.4 VEGOWFs from Knowledge-of-Exponent Assumptions

Next, we construct VEGOWFs based on knowledge-of-exponent (KE) assump-
tions, a logical direction partially motivated by [22, Section 3.3.1.1]. In each
case, the key is a description p of an asymmetric or symmetric (in the latter
case, we state it explicitly) bilinear group generated by a group generator algo-
rithm Pgen(1λ). Note that if the group generator Pgen is deterministic, i.e., each
security parameter corresponds to a unique group, this is a keyless EOWF.

The ABLZ VEOWF from BDH-KE. The ABLZ VEOWF is based on an
idea from Abdolmaleki et al. [1]. We define gp(x) := ([x]1, [x]2). The one-way
property of the ABLZ EOWF is equivalent to the Symmetric Discrete Logarithm

VEOWFs and Their Applications to Sub-ZK 635

(SDL) assumption, and extractability is equivalent to the BDH-KE assumption
introduced in [1]. Finally, one can verify if ([x]1, [y]2) ∈ image(gp) by checking
that [x]1 • [1]1 = [1]1 • [y]2. We give a formal proof that this is a VEOWF in the
full version of the paper. Note that this VEOWF is injective.

VEGOWF from DH-KE. Some KE assumptions from the literature lead to
VEGOWFs rather than VEOWFs. The Diffie-Hellman KE (DH-KE) assump-
tion introduced in [9] states that any adversary which produces a DDH triple
[x, y, xy]1 must know at least one of x and y. Given a symmetric bilinear group,
this gives rise to the following VEGOWF. Define gp(x, y) := [x, y, xy]1 and
the relation RGp([x, y, xy]1, z) = 1 iff z = x or z = y. We can verify if
[x, y, w]1 ∈ image(gp) by checking that [x]1 • [y]1 = [w]1 • [1]1. This function is
RG-hard if the discrete logarithm problem is hard and is verifiably-extractable
if the DH-KE assumption holds.

Further Examples. There are also a number of other knowledge of exponent
assumptions in the literature, and these give rise to the following verifiably-
extractable injective OWFs:

– g(p,[1,α]1)(x) := [x, xα]1 is a OWF under the discrete logarithm assumption
and verifiably-extractable for symmetric pairings under the knowledge-of-
exponent assumption [23].

– gp(x) = ([1, x, . . . , xq]1, [1, x, . . . , xq]2) is a OWF under the q-PDL assump-
tion [48] and verifiably-extractable under the q-PKE assumption [24].

– gp(x) = ([x, x2]1, [x]2) is a OWF under a well-known variant of the discrete
logarithm assumption and verifiably-extractable under the square knowledge
of exponent assumption [27].

– gp(x) = ([x]1, [1/x]2) is a OWF under the inverse-exponent assumption [54]
and verifiably-extractable under the tautological assumption, which we call
inverse-KE, that it is hard to compute [x]1, [1/x]2 without knowing x.

4.5 VEGOWFs from Knowledge-Sound NIZK

Dakdouk [22, Section 3.3.3.2] observed that EOWFs can be constructed from
the proof of knowledge (PoK) assumption of Lepinski [47] which states that a
specific non-interactive Σ-protocol described in [47] is secure. We generalize this
idea, and show how to use knowledge-sound NIZKs to build VEGOWFs.

Suppose that R is an NP relation with a sampler SR,p that outputs (x,w),
such that (i) it is efficient to verify that (x,w) is a possible output of SR,p, and
(ii) with an overwhelming probability it is computationally hard to guess w given
x. Then we say that this relation is SR,p-hard. Such samplers (and relations) are
common in cryptography, e.g., the discrete logarithm problem (x = [x]1,w = x
for a uniformly random x) and the short integer solution problem (x = A is a
random matrix and w = x is a short integer vector such that Ax = 0).

Consider a knowledge-sound NIZK Π = (KGen,P,V,Sim) for a SR,p-hard
relation R, where P,V,Sim are the prover, the verifier, and the simulator. KGen
is the “key” generation algorithm, such that KGen(R, p) produces an auxiliary
input auxΠ , provided to P,V and Sim. If the NIZK uses a random oracle, then

636 P. Fauzi et al.

auxΠ may contain the description of a hash function instantiating the random
oracle. If the NIZK is CRS-based, then auxΠ contains the CRS. The following
theorem shows how to construct a VEGOWF given a knowledge-sound NIZK.

Theorem 4. Define G := {gR,p,auxΠ
}R∈R(1λ),p←Pgen(1λ),auxΠ∈KGen(R,p), where

gR,p,auxΠ
(rS , rΠ) sets (x,w) ← SR(rS), π produced by Π’s prover P for x,w,

and then outputs (x, π). Define the corresponding relation as RGR,p,auxΠ
:=

{(ŷ, ẑ) : ŷ = (x, π) ∧ ẑ = w ∧ Π.V accepts π ∧ (x,w) ∈ R} . (1)

If R is SR-hard and Π is zero-knowledge, then G is RG-hard. If Π is a proof
of knowledge, then G is RG-verifiably-extractable.

Proof. RG-hardness: Let B be an adversary that given ŷ = (x, π), where π is a
proof for (x,w) returns ẑ, such that RGR,p,auxΠ

(ŷ, ẑ) holds with non-negligible
probability. We construct an adversary B that breaks SR-hardness. On input
(R, x), B sets auxΠ ← KGen(R, p), runs the simulator Sim and gets a simulated
proof πSim. Since Π is zero-knowledge, B outputs the same ẑ = w (with over-
whelming probability) when run on ŷ = (x, π) and ŷ = (x, πSim). Thus, B breaks
the SR,p-hardness of R with non-negligible probability.

RG-verifiable-extractability: Clearly, one can verify that ŷ ∈
image(gR,p,auxΠ

) by checking that the NIZK verifier accepts ŷ = (x, π), i.e., Π’s
verifier accepts. We use the knowledge-soundness extractor Ext from Π to build
a G extractor ExtG . Let Aext be an algorithm that on input (R, p, auxΠ) out-
puts ŷ ∈ image(gR,p,auxΠ

). Since ŷ ∈ image(gR,p,auxΠ
), then ŷ = (x, π) and Π’s

verifier accepts. ExtG runs Ext on the same input (R, p, auxΠ) given to Aext. By
knowledge-soundness, with an overwhelming probability, the Π-extractor Ext
outputs w, such that (x,w) ∈ R. ExtG sets ẑ ← w, and succeeds with the same
probability as Ext. ��

For the sake of concreteness we instantiate the above result as follows. Let
Σ be the non-interactive version (e.g., by using the Fiat-Shamir transform) of
the well-known Schnorr’s protocol for proving the knowledge of the discrete
logarithm of x = [x]1. Let the VEGOWF key be e = (R, p, auxΠ = H), where
p is the system parameters (group description). Define ge(x, r) := ([x]1, a =
[r]1, z = cx + r) = ŷ, where c = H([x]1, [r]1). The verifier recomputes c and
accepts if [z]1 = cx + a and c = H(x, a). Then RGe-verifiable-extractability
holds since Σ is knowledge-sound in the random oracle model and the algebraic
group model [29]. If Σ is zero-knowledge in the random oracle model and the
discrete logarithm problem is hard, ge is also RGe-hard. Moreover, Σ can be
used to get an injective VEOWF since after the extractor extracts the witness
x, it can also compute r ← z − cx.

4.6 VEGOWFs from Signature Schemes

We propose the following heuristic approach for finding new candidates for VEG-
OWFs. Suppose that Σ = (KGen, sign,Vf) is a digital signature scheme. If an
adversary outputs (vk, σ) such that vk ∈ KGen and Vf(vk, σ,m = 0) = 1, then

VEOWFs and Their Applications to Sub-ZK 637

there exists an extractor that can recover (some part of) sk. In other words,
we follow the intuition that if someone can sign a message (say m = 0 for sim-
plicity), then she must possess the secret key. Moreover, if vk ∈ KGen can be
efficiently verified, then we might be able obtain a VEGOWF.

Remark 1. Note that unforgeability of a signature scheme does not require that
the signer knows the secret key. It is only important that the adversary cannot
produce valid signatures for previously unsigned messages. A stronger notion of
knowledge has been formalized by signatures of knowledge [21], where the signer
can sign messages under any statement x ∈ L if it knows the corresponding
witness. In general this is a very strong notion and implies, e.g., simulation-
extractable NIZKs. Therefore, we will not focus on those constructions here.

There are signature schemes which do give believable VEGOWF candidates, but
there are also cases where it clearly fails. We will mention some of them here,
and defer others to the full version of our paper.

Negative Example: RSA Signatures. Let H be a hash function, sk = d be
the secret key and vk = (n, e) be a public key such that de ≡ 1 (mod n). A
signature of an integer m is then σ = H(m)d mod n, and a signature σ of a
message m is valid if σe ≡ H(m) (mod n). However, RSA signatures are also not
good candidates for a VEGOWF. The adversary could easily compute vk = (n, 3)
such that H(0) mod n is a perfect cube, then output (vk, (H(0) mod n)1/3).

Positive Example: Boneh-Boyen Signatures. Boneh-Boyen [16] is a pairing-
based signature scheme where vk = [x]2 and sk = x ←$Zp and sign(sk,m) =
[1/(x + m)]1. In fact, gp(x) = (vk, sign(0)) = ([x]2, [1/x]1) is an asymmetric ver-
sion of a VEOWF candidate mentioned in Sect. 4.4. In particular, it is verifiably-
extractable under a similar tautological assumption.

Positive Example: BLS Signatures. BLS [17] is another pairing-based sig-
nature scheme where vk = [x]2, sk = x ←$Zp, and sign(sk,m) = xH(m) = [σ]1
where H hashes into G1. Verification is done by checking that [σ]1[1]2 =
H(m)[x]2. This gives us a VEOWF candidate gp(x) = ([x]2, xH(0)).

Positive Example: DSA. In the DSA signature scheme,6 we again have
some discrete logarithm secure group p = (G, p, g). The verification key is
vk = gx for sk = x ←$Zp, σ = sign(sk,M ∈ {0, 1}∗; r) = (u = gr mod p, v =
r−1(HK(m) + xu) mod p), and the verifier checks that 0 < u, v < p and
u = (gHK(M)vku)v−1

mod p. DSA results in a candidate VEOWF gp,K(x, r) =
(gx, gr mod p, r−1(HK(m) + xu) mod p).

Hash-and-Sign Lattice Signatures. We recall hash-and-sign lattice-based
signatures introduced by Gentry et al. [31], which relies on the hardness of
the short integer solution problem. Let p be a prime, H be a hash func-
tion, and let A ∈ Z

m×n
p be a randomly generated matrix. Define L⊥

p (A) :=
{y|Ay = 0 mod p}, and let T be a basis of L⊥

p (A) with short vectors. The trap-
door can be used to compute short vectors s s.t. As = b, for any vector b. Set
vk = A and sk = T .
6 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

638 P. Fauzi et al.

To sign a message m, one first computes b = H(m), then outputs a short
s = σA(b) such that As = b. A signature σ of a message m is valid if it is short
and if Aσ = H(m). However, this does not work as a VEGOWF. The adversary
could easily compute s with a nice structure (e.g., a unit vector), then choose A
such that As = H(0). An easy fix is to set b = H(A,m) to prevent choosing A
after setting s. This results in a candidate VEOWF gp(x) = (A, σA(H(A,0))),
where x is a short basis of L⊥

p (A).

5 Sub-ZK NIZKs Based on VEGOWFs

We give a generic construction of a knowledge-sound Sub-ZK NIZK from any
VEGOWF and any knowledge-sound Sub-WI NIWI in the CRS model. We also
give a generic construction of a sound Sub-ZK NIZK from any VEGOWF, any
keyless extractable commitment and any Sub-WI NIWI in the CRS model. Later,
we show some interesting instantiations of these constructions.

5.1 Constructing Knowledge-Sound Sub-ZK NIZK

Let G = {gλ : Xλ → Yλ | λ ∈ N} be a keyless VEGOWF with respect to a publicly
testable relation RG on triples (1λ, ŷ, ẑ). We construct a knowledge-sound Sub-
ZK NIZK Π by using a knowledge-sound Sub-WI NIWI Πwi and G. To prove that
x ∈ L, we use Πwi to prove that (x, ŷ) ∈ L′, where ŷ ∈ YExt is a new element in the
CRS for Π, and R′ := {(xR′ = (x, ŷ),wR′ = (w, ẑ)) : (x,w) ∈ R ∨ (ŷ, ẑ) ∈ RG}
where L = {x | ∃w : (x,w) ∈ R} and L′ = {xR′ | ∃wR′ : (xR′ ,wR′) ∈ R′}. We
assume that R is generated by a relation generator R(1λ). The full construction
of Π can be found in Fig. 5.

The construction yields a knowledge-sound Sub-ZK NIZK, where knowledge-
soundness follows from the RG-hardness of G and the knowledge-soundness
of Πwi, and subversion zero-knowledge is achieved by the RG-verifiable-
extractability of G as well as the subversion witness-indistinguishability of Πwi.

Note that if R is implemented by a circuit of size k and RG is implemented
by a circuit of size l, then the efficiency of Π is the same as the efficiency of Π ′

for the modified circuit of size k + l. Note also that l is independent of R. The
proof of the following theorem is deferred to the full version of our paper.

Theorem 5 (Knowledge-sound Sub-WI NIWI + VEGOWF =⇒
Knowledge-sound Sub-ZK NIZK). Let Πwi be a non-interactive argument
for R′ and let G = {gλ}λ∈N be a keyless function family with a corresponding
publicly testable relation RG.

(1) If Πwi is complete then Π is complete.
(2) If Πwi is knowledge-sound for R′ and G is RG-hard then Π is knowledge-

sound for R.
(3) If Πwi is Sub-WI for R′ and G is RG-verifiably-extractable, then Π is Sub-

ZK for R.

VEOWFs and Their Applications to Sub-ZK 639

Fig. 5. The Sub-ZK KS NIZK Π = (K,CV,P,V, Sim), where Πwi = (K′,CV′,P′,V′) is
a Sub-WI KS argument, and G = {gλ }λ∈N

is a VEGOWF. Recall that t computes the
“witness” for gλ(x̂) in RG.

(4) If Πwi is a Sub-WI SNARK and G is a VEGOWF with respect to a relation
RG which takes inputs of polynomial size, then Π is a Sub-ZK SNARK.

5.2 Constructing Sub-ZK NIZK

Next, we propose a Sub-ZK NIZK Π which only relies on Πwi being sound,
not knowledge-sound, but Π will also not be knowledge-sound. As part of this
construction, we rely on a keyless extractable commitment scheme. We now give
the definition of a keyless extractable commitment scheme, and in the full version
of our paper we show how this can be constructed based on injective EOWFs.

Definition 10. We say that Comλ : Mλ × Rλ → Cλ is a keyless extractable
commitment if it satisfies the following properties.

Computational hiding: For any PPT adversary A, ε0 ≈λ ε1, where

εb := Pr
[

(m1,m2) ← A(1λ), r ←$ Rλ, c ← Comλ(mb; r) :
m1,m2 ∈ Mλ ∧ A(c) = 1

]

.

Perfect binding: For any adversary A and λ ∈ N,

Pr

[

(m1, r1,m2, r2) ← A(1λ) :
Comλ(m1; r1) = Comλ(m2; r2) ∧ m1
= m2

]

= 0 .

Non-black-box extractability: Let D be a family {Dλ}λ of efficiently sam-
pleable distributions. We say that Comλ : Mλ × Rλ → Cλ is non-black-box
extractable with respect to auxiliary distribution D if for any PPT adversary
A, there exists a PPT extractor ExtA such that,

Pr
[

aux ←$ Dλ, c ← A(1λ, aux),m ← ExtA(1λ, aux),
c ∈ image(Comλ) : c = Comλ(m; r) for some r ∈ Rλ;

]

≥ 1 − negl(λ) .

640 P. Fauzi et al.

Fig. 6. The Sub-ZK NIZK Π = (K,CV,P,V, Sim), where Πwi = (K′,CV′,P′,V′) is a
Sub-WI NIWI, C is an extractable commitment scheme, and G = {gλ }λ∈N

is a GEOWF.

In some cases, we may have an efficient commitment verification function
ComVλ that outputs 1 on input c if and only if c ∈ image(Comλ).

Let G = {gλ}λ∈N
be a function family with associated relation RG. Let

C = (Com,Open,Vf) be an extractable commitment scheme. Let Πwi be a NIWI
argument for the relation We set crs = (crs′, ŷ), where crs′ is the CRS of the
underlying NIWI Πwi for R′ and crs is the CRS of the NIZK for R. The argument
consists of the commitment c and the Πwi-argument π; see Fig. 6. The proof of
the following theorem is deferred to the full version of our paper.

Theorem 6 (Sub-WI NIWI + VEGOWF + ExtCom =⇒ Sub-ZK
NIZK). Let Πwi be a non-interactive argument, C be a commitment scheme,
and G be a function family with associated publicly testable relation RG.

(1) If Πwi is perfectly complete then Π is perfectly complete.
(2) If Πwi is sound, C is keyless and extractable, and G is RG-hard then Π is

sound.
(3) If Πwi is Sub-WI, G is RG-verifiably-extractable, and C is keyless and hiding,

then Π is Sub-ZK.

5.3 Instantiations and Statistical ZAPR

We show some interesting instantiations of the above construction and also make
a simple, but significant, connection between Sub-ZK NIZK and ZAPs with
private random coin (ZAPRs).

Firstly, we argue that there is a knowledge-sound Sub-ZK NIZK based on
the DLin and DH-KE assumptions. To the best of our knowledge, the only

VEOWFs and Their Applications to Sub-ZK 641

known knowledge-sound Sub-ZK NIZKs are Sub-ZK SNARKs. Our construction
therefore relies arguably on weaker assumptions.

Proposition 2. There exists a knowledge-sound Sub-ZK NIZK based on the
DLin and DH-KE assumptions with 3 group elements as the CRS and with a
proof size of O (λ(k + l)) where k is the circuit size and l is size of a circuit
verifying the image of the DH-KE GEOWF.

Proof. In [28] it is proven that there exists a knowledge-sound NIWI in the plain
model based on the DLin and DH-KE assumptions. Since it has no CRS, it is
also Sub-WI. From Sect. 4.4, there exists a VEGOWF based on the DH-KE and
discrete logarithm (DL) assumptions (note that DLIN implies DL). We now
apply our construction in Fig. 5 using the knowledge-sound NIWI from [28] and
the VEGOWF from Fig. 4.4. It then follows from Theorem 5 that the resulting
protocol is a knowledge-sound Sub-ZK NIZK. ��

Let us next prove a helpful lemma that shows when NIWI is Sub-WI. The
corollary follows since perfect zero knowledge implies perfect WI.

Lemma 1. Suppose Ψ is perfectly WI for relation R and there exists an efficient
CRS validation algorithm CV. Then Ψ is Sub-WI.

Proof. Definition 8 for perfect WI states that for all honestly generated CRS crs
(i.e., CRS in the image of K(R)), instances x, and corresponding witnesses w0,w1,
no unbounded adversary can distinguish a proof generated using either (crs, x,w0)
or (crs, x,w1). Note that if a subverter can create a valid crs such that A breaks
Sub-WI with probability at least ε > 0, the same A can break WI with probability
at least ε/(|crs| + |auxZ |) > 0 by simply guessing crs and auxZ . Hence assuming
perfect WI, verifying that a subverter-generated CRS crs is in fact in the image of
K(R) is enough to assure that perfect subversion WI holds. ��
Corollary 1. If Ψ is perfectly zero-knowledge and there exist an efficient CRS
validation algorithm, then Ψ is Sub-WI.

Therefore, the efficient SNARK constructions in [1,27], the updatable
SNARKs in [38,50], and the shuffle argument in [4] are all Sub-WI. The same
observation about Sub-ZK SNARKs was already made by Fuchsbauer in [27].
These arguments have a CRS validation algorithm and were already known to
be Sub-ZK under a knowledge assumption. However, the above result shows that
they are perfect Sub-WI without any assumptions. Moreover, any NIWI without
a CRS is trivially Sub-WI.

Firstly, it means that [1,27] are statistical ZAPRs with adaptive soundness.
The only other pairing-based ZAPR is [49] which is less efficient and uses much
more advanced tools, but relies on weaker assumptions for soundness. Secondly,
if we use the SNARKs of [1,27] in Fig. 5, we have Sub-ZK SNARKs from any
VEGOWF rather than from a specific knowledge assumption.

Proposition 3. Suppose there exists a perfectly zero-knowledge SNARK with
an efficient CRS validation algorithm CV and there exists a VEGOWF. Then
there exists a Sub-ZK SNARK.

642 P. Fauzi et al.

Proof. Since the given SNARK Π is perfectly ZK and has a CV algorithm, it
follows from Corollary 1 that it is perfectly Sub-WI. Applying our construction
in Sect. 5.1 to Π and the VEGOWF G to construct a new SNARK Π ′, it then
follows from part (4) of Theorem 5 that Π ′ is a Sub-ZK SNARK, as desired. ��

6 Characterising Sub-ZK NIZKs

We show that the CRS generation algorithm K of a NIZK is a VEOWF if
and only if the NIZK is Sub-ZK. Let R be a relation generator, and let
Π = (K,P,V,Sim) be a NIZK argument for R. We define a family of func-
tions GK =

{

KR,p : {td} → {crs} | (R, p) ∈ R(1λ), λ ∈ N
}

where KR,p takes in
a uniformly sampled trapdoor td and maps it deterministically to a crs. We
assume that the distribution (crs, td) ← KGen(R, p) is the same as (crs ←
KR,p(td), td ←$ {td}). We use both notations interchangeably in this section.

Let us start by establishing the following straightforward connection.

Theorem 7 (VEOWF GK =⇒ Sub-ZK). Suppose Π = (K,P,V,Sim) is a
perfect NIZK argument. If GK is a VEOWF with image verification algorithm
ImV, then Π is statistically composable Sub-ZK with respect to the CRS verifi-
cation algorithm CV = ImV.

Proof. Consider a subverter Z which outputs a CRS crs. We only need to con-
sider the case where CV(crs) = 1 and thus crs ∈ image(KR,p). Since KR,p

is a VEOWF and the subverter Z outputs an image of KR,p, we know that
there exists an extractor ExtZ which with overwhelming probability outputs
a simulation trapdoor td. Since Π is perfect zero-knowledge, proofs π0 ←
Sim(R, p, td, crs, x) and π1 ← P(R, p, crs, x,w) are identically distributed. ��
Remark 2. The same result does not hold for statistical (or computational)
NIZK since there might be a negligible number of CRSs where td does not
allow simulation, which the subverter could output.

Following [37], we say that the relation generator R has a εS-hard
decisional problem if there exist two samplers S and S ′ such that for
(R, p) ← R(1λ) (1) sampler S(R, p) produces (x,w) ∈ R, and (2)
S ′(R, p) produces x
∈ LR. Furthermore, for some negligible εS , it
holds for all PPT adversaries A that |ε0 − ε1| ≤ εS , where εb =
Pr

[

(R, p) ← R(1λ), (x0,w0) ← S(R, p), x1 ← S ′(R, p) : A(R, p, xb) = 1
]

.
A simple example of this is the language of Diffie-Hellman tuples where p =

(G, g, p) ← R(1λ) is a group description, S outputs (x = (gx, gy, gxy),w =
(x, y)) for random x, y ←$Zp, and S ′ outputs gx, gy, gz for random x, y ←$Zp

and z ←$Zp\{xy}.
Now let us establish the opposite connection between VEOWF and Sub-ZK.

In general, the extractor in subversion zero-knowledge definition does not need
to extract the whole preimage of the CRS function. It just needs to extract
something which allows for simulation of proofs. For example, this could be only
a small part of the full trapdoor. Due to this, we restrict ourselves slightly and
lend the following notion from [3].

VEOWFs and Their Applications to Sub-ZK 643

Definition 11 (Trapdoor-Extractability [3]). A subversion-resistant argu-
ment Ψ for a relation R has trapdoor-extractability if for any PPT subverter Z
there exists a PPT extractor ExtZ , s.t. for all λ and (R, p) ∈ R(1λ),

Pr
[

r ←$RNDλ(Z), crs ← Z(R, p; r), td ← ExtZ(R, p; r) :
CV(R, p, crs) = 1 ∧ KR,p(td)
= crs

]

≤ negl(λ) .

Theorem 8 (Sub-ZK =⇒ VEOWF GK). Assume Π is a NIZK argument for
R, which has εS-hard decisional problems. Let GK be as defined above. Assume
the distribution Dλ is benign. Then

1. if (i) Π = (K,P,V,Sim) is perfectly complete, computationally sound, and
computationally zero-knowledge, and (ii) KR,p is injective, then GK is a one-
way function;

2. if Π = (K,P,V,Sim,CV) is a statistically composable Sub-ZK argument with
trapdoor extractability, then GK is verifiably-extractable with GK.ImV = Π.CV
respect to auxiliary inputs (R, p, r) where (R, p) ← R(1λ), r ←$ {0, 1}poly(λ).

Proof. Soundness + ZK =⇒ One-Wayness. Suppose there exists a PPT
adversary A that breaks one-wayness of GK with probability εowf . That is, for
a random (R, p) ← KeySampG(1λ), td ←$ {td} , aux ←$ Dλ, the A(R, p, crs =
KR,p(td), aux) outputs td′ such that KR,p(td′) = crs with probability εowf .

We are going to construct a PPT adversary B that internally runs A together
with an auxiliary input aux. We build the soundness adversary B as follows:

1. B gets (R, p, crs) as an input;
2. B samples aux′ ←$ Dλ and computes td′ ← A(R, p, crs, aux′);
3. B outputs x such that x ← S ′(R, p) (i.e. x
∈ LR) along with a simulated proof

π ← Sim(R, p, crs, td′, x).

Since x
∈ LR by definition, it means that B wins the soundness game if
V(R, p, crs, x, π) = 1. We use games in Fig. 7 to quantify the probability that
V(R, p, crs, x, π) = 1 in the soundness game.

Game0: This is the original soundness game without the condition x
∈ LR with
the adversary B inlined. The winning condition is just V(R, p, crs, x, π) = 1.
Game1: We change Game 0 such that B samples a true statement-witness pair

(x,w) ← S(R, p) instead.
Game2: We modify Game 1 such that the simulator gets the real trapdoor td

as an input rather than the trapdoor td′ extracted by A.
Game3: Finally, instead of simulating the proof π, we use the witness w to

create an honest proof.
Let us denote the probability of Game i outputting 1 by εi. Firstly, it is clear

that ε0 is the probability of B winning (that is, outputting 1) in the soundness
game since, although, we do not check the condition x
∈ LR, it always holds for
the adversary B. We now prove that distinguishing Game 0 and Game 1 succeeds
with probability at most εS .

644 P. Fauzi et al.

Fig. 7. Security games for Theorem 8.

Lemma 2. For the probabilities ε0 and ε1 defined as above, |ε0 − ε1| ≤ εS .

Proof. Consider the following adversary C against the εS -hardness. Firstly, C gets
as an input (R, p, xb) where x1 is generated by S and x0 is generated by S ′. Then,
C samples (crs, td) ← K(R, p) and aux′ ←$ Dλ, computes td′ ← A(R, p, crs, aux′),
and simulates the proof π ← Sim(R, p, crs, td′, x). It returns the answer of
V(R, p, crs, x, π).

By construction, the probability that C outputs 1 given x0 is ε0 and given x1
is ε1. It thus follows that |ε0 − ε1| ≤ εS . ��

Lemma 3. Assuming that KR,p is injective, |ε1 − ε2| ≤ 1 − εowf .

Proof. The only difference between Game 1 and Game 2 is that one uses td′ for
simulation and the other uses td. If A is successful in breaking one-wayness, then
td = td′ (since KR,p is injective) and output distributions of both games are the
same. That happens with probability εowf . Outputs distributions of games can
differ only when A fails in breaking one-wayness, which happens at most with
the probability 1 − εowf . We conclude that |ε1 − ε2| ≤ 1 − εowf . ��

Lemma 4. Let εzk denote the maximum advantage that any PPT adversary
wins in the zero-knowledge game. Then, |ε2 − ε3| ≤ εzk.

Proof. Consider the verifier V as the adversary in the zero-knowledge game.
From this perspective Game 2 is the zero-knowledge game with the simulator
and Game 3 is the zero-knowledge game with the honest prover given that we
ignore the line td′ ← A(R, p, crs, aux). It follows that |ε2 − ε3| ≤ εzk. ��

VEOWFs and Their Applications to Sub-ZK 645

Using the triangle inequality, we now get that |ε0 − ε3| ≤ εS + (1 − εowf) +
εzk. Since the argument system is perfectly complete, ε3 = 1 and therefore
|ε0 − ε3| = |ε0 − 1| = 1 − ε0. Putting equations together, we get 1 − ε0 ≤
εS + (1 − εowf) + εzk, which can be simplified to εowf ≤ ε0 + εS + εzk, which
is negligible. ��
Sub-ZK =⇒ Verifiable-Extractability. This part of the proof is essentially
tautological. Let A be an adversary in the verifiable extractability game and let
aux = (R, p, r) where (R, p) ← R(1λ) and r ←$ {0, 1}poly(λ). Suppose that A is
Sub-ZK subverter that outputs crs such that CV(R, p, crs) = 1. Then according
to the trapdoor extractability property, there exists a PPT extractor ExtA that
on input aux, outputs with an overwhelming td such that KR,p(td) = crs. Thus,
verifiable extractability holds. ��

Acknowledgements. Janno Siim and Helger Lipmaa were partially supported by the
Estonian Research Council grant (PRG49).

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 1

2. Abdolmaleki, B., Lipmaa, H., Siim, J., Zaj ↪ac, M.: On QA-NIZK in the BPK model.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I.
LNCS, vol. 12110, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9 20

3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zaj ↪ac, M.: On subversion-resistant
SNARKs. Cryptology ePrint Archive, Report 2020/668 (2020). https://eprint.iacr.
org/2020/668

4. Aggelakis, A., et al.: A non-interactive shuffle argument with low trust assumptions.
In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 667–692. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 28

5. Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast verification of any
remote procedure call: short witness-indistinguishable one-round proofs for NP. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
463–474. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 39

6. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3 22

7. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, pp.
106–115. IEEE Computer Society Press (October 2001). https://doi.org/10.1109/
SFCS.2001.959885

8. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 18

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-45374-9_20
https://doi.org/10.1007/978-3-030-45374-9_20
https://eprint.iacr.org/2020/668
https://eprint.iacr.org/2020/668
https://doi.org/10.1007/978-3-030-40186-3_28
https://doi.org/10.1007/3-540-45022-X_39
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1007/978-3-540-45146-4_18

646 P. Fauzi et al.

9. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 26

10. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

11. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer
Society Press (May 2014). https://doi.org/10.1109/SP.2014.36

12. Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066
(2016). https://doi.org/10.1007/s00145-016-9241-9

13. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM (January 2012). https://doi.
org/10.1145/2090236.2090263

14. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. SIAM J. Comput. 45(5), 1910–1952 (2016)

15. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 16

16. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

17. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

18. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS,
vol. 9453, pp. 236–261. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 10

19. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70583-3 37

20. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: 32nd ACM STOC, pp. 235–244. ACM Press (May 2000).
https://doi.org/10.1145/335305.335334

21. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

22. Dakdouk, R.R.: Theory and application of extractable functions. Ph.D. thesis, Yale
University (2009)

23. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

24. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-540-70583-3_37
https://doi.org/10.1145/335305.335334
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-662-45611-8_28

VEOWFs and Their Applications to Sub-ZK 647

25. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317.
IEEE Computer Society Press (October 1990). https://doi.org/10.1109/FSCS.
1990.89549

26. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions revisited. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
655–666. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 53

27. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 11

28. Fuchsbauer, G., Orrù, M.: Non-interactive zaps of knowledge. In: Preneel, B., Ver-
cauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 44–62. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0 3

29. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 3

30. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407

32. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press (June 2011). https://doi.org/10.1145/1993636.1993651

33. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press
(May 1985). https://doi.org/10.1145/22145.22178

35. Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious
transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3 23

36. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

37. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

38. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

39. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1007/978-3-540-70583-3_53
https://doi.org/10.1007/978-3-540-70583-3_53
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-93387-0_3
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/BF00195207
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/11818175_6

648 P. Fauzi et al.

40. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 6

41. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.
iacr.org/2020/1003

42. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

43. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
Charikar, M., Cohen, E. (eds.) 51st ACM STOC, pp. 1115–1124. ACM Press (June
2019). https://doi.org/10.1145/3313276.3316411

44. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 485–494. ACM
Press (May/Jun 2014). https://doi.org/10.1145/2591796.2591809

45. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Exploring constructions
of compact NIZKs from various assumptions. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 639–669. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 21

46. Lamport, L.: Constructing digital signatures from a one-way function. Techni-
cal report SRI-CSL-98, SRI International Computer Science Laboratory (October
1979)

47. Lepinski, M.: On the existence of 3-round zero-knowledge proofs. Master’s thesis,
MIT, USA (2002)

48. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

49. Lombardi, A., Vaikuntanathan, V., Wichs, D.: Statistical ZAPR arguments from
bilinear maps. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 620–641. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3 21

50. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128.
ACM Press (November 2019). https://doi.org/10.1145/3319535.3339817

51. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

52. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126
(1978)

53. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 2

54. Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: why sub-
tleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 244–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44987-6 16

https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1145/2591796.2591809
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-030-45727-3_21
https://doi.org/10.1007/978-3-030-45727-3_21
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/3-540-44987-6_16
https://doi.org/10.1007/3-540-44987-6_16

VEOWFs and Their Applications to Sub-ZK 649

55. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

56. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. Cryptol-
ogy ePrint Archive, Report 2020/1042 (2020). https://eprint.iacr.org/2020/1042

https://doi.org/10.1007/0-387-34805-0_22
https://eprint.iacr.org/2020/1042

Chain Reductions for Multi-signatures
and the HBMS Scheme

Mihir Bellare(B) and Wei Dai(B)

Department of Computer Science and Engineering,
University of California, San Diego, USA

{mihir,wdai}@eng.ucsd.edu

Abstract. Existing proofs for existing Discrete Log (DL) based multi-
signature schemes give only weak guarantees if the schemes are imple-
mented, as they are in practice, in 256-bit groups. This is because the
underlying reductions, which are mostly in the standard model and from
DL, are loose. We show that relaxing either the model or the assumption
suffices to obtain tight reductions. Namely we give (1) tight proofs from
DL in the Algebraic Group Model, and (2) tight, standard-model proofs
from well-founded assumptions other than DL. We first do this for the
classical 3-round schemes, namely BN and MuSig. Then we give a new 2-
round multi-signature scheme, HBMS, as efficient as prior ones, for which
we do the same. These multiple paths to security for a single scheme are
made possible by a framework of chain reductions, in which a reduction
is broken into a chain of sub-reductions involving intermediate prob-
lems. Overall our results improve the security guarantees for DL-based
multi-signature schemes in the groups in which they are implemented in
practice.

1 Introduction

Usage in cryptocurrencies has lead to interest in practical, Discrete-Log-based
multi-signature schemes. Proposals exist, are efficient, and are supported by
proofs, BUT, the bound on adversary advantage in the proofs is so loose that
the proofs fail to support use of the schemes in the 256-bit groups in which
they are implemented in practice. This leaves the security of in-practice schemes
unclear.

We ask, is it possible to bridge this gap to give some valuable support, in
the form of tight reductions, for in-practice schemes? As long as we stay in the
current paradigm, namely standard-model proofs from DL, the answer is likely
NO. To make progress, we need to be willing to change either the model or the
assumption. We show that in fact changing either suffices. Our approach is to
give, for any scheme, many different paths to security. In particular we give (1)
tight reductions from DL in the Algebraic Group Model (AGM) [17], and (2)
tight, standard-model reductions from well-founded assumptions other than DL.
We obtain these results via a framework in which a reduction is “factored” into
a chain of sub-reductions involving intermediate problems.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 650–678, 2021.
https://doi.org/10.1007/978-3-030-92068-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_22

Chain Reductions for Multi-signatures and the HBMS Scheme 651

We implement this approach first with classical 3-round schemes, giving chain
reductions yielding (1) and (2) above for the BN [7] and MuSig [25] schemes.
Then, in the space of 2-round schemes, we give a new, efficient scheme, called
HBMS, for which we do the same. We now look at all this in more detail.

Background. A multi-signature σ on a message m can be thought of as affirm-
ing that “We, the members of this group, all, jointly, endorse m.” The group
is indicated by the vector vk = (vk[1], . . . ,vk[n]) of individual public verifica-
tion keys of its members, and can be dynamic, changing from one signature to
another. Signing is done via an interactive protocol between group members;
each member i begins with its own public verification key vk[i], its matching
private signing key sk[i], and the message m, and, at the end of the interaction,
they output the multi-signature σ. The latter should be compact (of size inde-
pendent of the size of the group), precluding the trivial solution in which σ is a
list of the individual signatures of the group members on m.

Following its suggestion in the 1980s [20], the primitive has seen much evo-
lution [7,19,22,26,29]. Early schemes assumed all signers in the signing protocol
picked their verification keys honestly. “Rogue-key attacks,” in which a mali-
cious signer picked its verification key as function of that of an honest signer,
lead to an upgraded target, schemes that retain security even in the presence of
adversarially-chosen verification keys. Towards this challenging end we first saw
schemes either using interactive key-generation [26] or making the “knowledge of
secret key” assumption [10,23]. Finally, BN [7] gave an efficient, Schnorr-based
scheme in the “plain public-key” model, where security was provided even in
the face of maliciously-chosen verification keys, yet no more was assumed about
these keys than their having certificates as per a standard PKI.

The BN model and definition have become the preferred target; it is the one
used in the schemes we discuss next, and in our scheme as well. We denote the
security goal as MS-UF. In Sect. 4 we define it via a game, and define the ms-uf
advantage of an adversary as its probability of winning this game.

A new wave. Applications in blockchains and cryptocurrencies —see [11] for
details— have fueled a resurgence of interest in multi-signatures. The desire here
is MS-UF-secure, DL-based schemes that work over standard elliptic curves such
as Secp256k1 or Curve25519. (Pairing-based schemes [11] are thus precluded.)
The natural candidate is BN. But the new application arena has lead to a desire
for the following further features, not possessed by BN: (1) Key aggregation.
There should be a way to aggregate a set of verification keys into a single, short
aggregate key, relative to which signatures are verified. (2) Two rounds. A signing
protocol using only 2 rounds of interaction, as opposed to the 3 used by BN.

MuSig [11,25] broke ground by adapting BN to add key aggregation. Now the
effort moved to reducing the number of rounds. This proved challenging. Early
proposals of two-round schemes —[2,24,35] as well as an early, two-round version
of MuSig [25]— were broken by DEFKLNS [15]. To fill the gap, DEFKLNS
gave a new two-round scheme, mBCJ. Other proposals followed: MuSig2 [27],
MuSig-DN [28] and DWMS [1]. All these support key aggregation.

652 M. Bellare and W. Dai

Fig. 1. Bounds on ms-uf advantage for the 3-round schemes BN and MuSig.
First we show prior bounds, then ours. In each case we first show the upper bound
UBms-uf

MS (t, q, qs, p) as a formula, where t, q, qs are, respectively the adversary running
time, the number of its RO queries and the number of executions of the signing protocol,
while prime p is the size of the underlying group G. We then show the evaluation with
t = q = 280, qs = 230 and p ≈ 2256, to capture security over 256-bit curves Secp256k1
or Curve25519.

All the schemes discussed here come with proofs of MS-UF security based
on the hardness of the DL (Discrete Log) problem in the underlying group G,
up to variations in the model (standard or AGM [17]) or the type of DL problem
(plain or OMDL [6]).

Current bounds. On being informed that a scheme has a proof of security
based on the hardness of the DL problem in an underlying elliptic-curve group G,
the expectation of a practitioner is that the probability that a time t attacker can
violate MS-UF security is no more than the probability of successfully computing
a discrete logarithm in G, which, as per [34], is t2/p, where p, a prime, is the size
of G. Concretely, with the 256-bit curves Secp256k1 or Curve25519 —p ≈ 2256—
they would expect that a time t ≈ 280 attacker has ms-uf advantage at most
2160−256 = 2−96.

But this expectation is only correct if the reduction in the proof is tight.
Current proofs for DL-based multi-signature schemes are loose. With the 256-
bit curves Secp256k1 or Curve25519, and for a 280-time attacker, the proof of [7]
for BN can preclude only a 2−8 ms-uf advantage, while the proof of [11,25] for
MuSig cannot even preclude a ms-uf advantage of 1, meaning there may be, per
the proof, no security at all (cf. Fig. 1). For 2-round schemes, the advantage
precluded by current proofs is 2−16 in one case, and again just 1 for the others
(cf. Fig. 2). Overall, the proofs fail, by big margins, to support the parameter
choices and expectations of practice.

Before continuing, let us expand on the above estimates. A proof of MS-UF
security for a multi-signature scheme MS gives a formula UBms-uf

MS (t, q, qs, p) that
upper bounds the ms-uf advantage of an adversary as a function of its running
time t, the number q of its queries to the random oracle, and the number qs

of executions of the signing protocol in the chosen-message attack in the ms-uf
game. They are shown in Figs. 1 and 2. We assume that t ≥ q ≥ qs. To get these
formulas, we first assume that the best attack against the DL problem is generic,
so that a time t attacker has success probability at most t2/p [34]. Next, we use
the concrete-security results, in theorems in the papers, that give reductions from
the DL problem to the MS-UF security of their scheme. The square-roots in the

Chain Reductions for Multi-signatures and the HBMS Scheme 653

Fig. 2. Bounds on ms-uf advantage for 2-round schemes. First we show bounds
for prior schemes, then the bounds for our new scheme HBMS. As before, we first
show the upper bound formula UBms-uf

MS (t, q, qs, p), where t, q, qs are, respectively the
adversary running time, the number of its RO queries and the number of executions of
the signing protocol, while prime p is the size of the underlying group G. We then show
the evaluation with t = q = 280, qs = 230 and p ≈ 2256, to capture security over 256-bit
curves Secp256k1 or Curve25519. For MuSig2, results differ depending on a parameter
ν of the scheme. We also show estimates of signing time (per signer) and verification
time. Here Tme

n is the time to compute one n-multi-exponentiation in G. The “NIZK”
for MuSig-DN indicates that signing requires computation and verification of a NIZKs,
which is (much) more expensive then other operations shown.

formulas arise from uses of forking lemmas [2,7,31]; the fourth-roots from nested
use. The bounds in our Figures are approximate, dropping negligible additive
terms. The proofs on which the bounds of Figs. 1 and 2 are based, are, for BN
[7], MuSig [11,25], mBCJ [15], MuSig-DN [28] and MuSig2 (ν ≥ 4) [27], in the
standard model; and for MuSig2 (ν = 2) [27], DWMS [1] and HBMS, in the
AGM. See [4] for details.

Towards better bounds. Our thesis is that proofs should provide, not merely
a qualitative guarantee, but one whose bounds quantitatively support parame-
ter choices made in practice and the indications of cryptanalysis. Accordingly
we want multi-signature schemes for which we can prove tight bounds on ms-uf
advantage. How are we to reach this end? Impossibility results for Schnorr sig-
natures [21,30], on which the multi-signature schemes under consideration are
based, indicate that a search for tight reductions that are both (1) in the stan-
dard model, and (2) from DL, is unlikely to succeed. We need to be flexible,
and relax either (1) or (2). In fact we show that relaxing either suffices: We give
(1) tight reductions from DL in the Algebraic Group Model (AGM) [17], and
(2) tight, standard-model reductions from assumptions other than DL. Together,
these provide valuable theoretical support for the use of practical multi-signature
schemes in 256-bit groups.

654 M. Bellare and W. Dai

AGM. The AGM considers a limited, but still large class of adversaries, called
algebraic. When such an adversary queries a group element to an oracle, it pro-
vides also its representation in terms of prior group elements that the adversary
has seen. Intuitively, the assumption is that the adversary “knows” how group
elements it creates are represented. For elliptic curve groups, this appears to be
a realistic assumption, and here the AGM captures natural and currently-known
attack strategies.

When considering the merits of the AGM, an important one to keep in mind
is that a proof in the AGM immediately implies a proof in the well-accepted
Generic Group Model (GGM) of [34]. (So the AGM is only “better” than the
GGM.) In more detail, a tight AGM reduction from DL to some problem X
immediately yields a GGM bound on adversary advantage, for X, that matches
the GGM bound for DL [17]. Thus, overall, tight AGM reductions provide a
valuable guarantee. This is recognized by Fuchsbauer, Plouviez and Seurin [18]
who use the AGM to give a tight reduction from DL to the UF security of
the Schnorr signature scheme. Their result gives hope, realized here, that such
reductions are possible for multi-signatures as well.

Chain reductions. We achieve the above ends, and more, as follows. For each
multi-signature scheme MS we consider, we give a chain of reductions, starting
from DL, that we depict as

DL = P0 → P1 → · · · → Pm−1 → Pm = MS ,

where P1, . . . ,Pm−1 are intermediate computational problems. We refer to m ≥ 1
as the length of the chain. For each step Pi−1 → Pi we provide one of the
following.

1. A tight, standard-model reduction. This is the ideal and done for as many
steps as possible.

2. When 1. is not possible, we give BOTH of the following:
2.1 A tight AGM reduction, AND ALSO
2.2 A non-tight standard-model reduction.

Since a tight standard-model reduction implies a tight AGM one, this yields a
tight AGM reduction from DL to MS, the first of our goals stated above. (A
bit better, since some sub-reductions are standard-model.) For i such that the
chain Pi → · · · → MS consists only of tight standard-model reductions, we have
a tight, standard model proof of MS from assumption Pi, realizing our second
goal, stated above, of tight standard-model reductions from assumptions other
than DL. (Of course how interesting or valuable this is depends on the choice of
Pi, but as discussed below, we are able to make well-founded choices.)

Finally, something not yet mentioned, that follows from 1 and 2.2 of the
chain reductions, is that we always have a standard model (even if non-tight)
reduction DL → MS. This means that, while adding tight AGM reductions
that are valuable in practice, we are not lowering the theoretical or qualitative
guarantees, these remaining as one would expect or desire.

Chain Reductions for Multi-signatures and the HBMS Scheme 655

Fig. 3. Chain reductions for multi-signatures. SM stands for “Standard Model”
and AGM for “Algebraic Group Model.” An arrow P → Q means a reduction from P to
Q; i.e. a proof that P implies Q. A boldface Theorem Number indicates the reduction
is tight. A blank appears in the AGM column when a (tight) SM reduction to its left
makes the AGM reduction unnecessary. Writing a MS scheme like BN,MuSig,HBMS
as a point in a chain refers to MS-UF security of the scheme in question.

Chain reductions can be seen as a way to implement a modular proof frame-
work in the style of [21], in which steps are reused across proofs for different
schemes.

New bounds for classical schemes. We start by revisiting the classical 3-
round schemes, namely BN and MuSig. Figure 3 illustrates our chains, that we
now discuss.

IDL, formulated in [21] —they call it IDLOG, which we have abbreviated—
is a purely group-based problem that is equivalent to the security against parallel
impersonation under key-only attack (PIMP-KOA) of the Schnorr ID scheme. A
tight GGM bound for IDL was shown by [21], but an AGM reduction DL → IDL
does not seem to be in the literature; we fill this gap by providing it in Theorem 1.
A (non-tight) standard model DL → IDL reduction is in [21], but we slightly
improve it in Theorem 2.

Now our chain for BN is DL → IDL → BN. This chain has length 2. Our main
result for BN is Theorem 5, which shows IDL → BN with a tight, standard model
reduction. Putting this together with our above-mentioned tight DL → IDL
AGM-reduction of Theorem 1, we get a tight DL → BN AGM-reduction. Also
our tight, standard-model IDL → BN reduction says that BN is as secure as the
Schnorr identification scheme, which is valuable in its own right since the latter
has withstood cryptanalysis for many years.

We introduce an intermediate, purely group-based problem we call XIDL. We
show IDL → XIDL with a tight AGM reduction (Theorem 3) and a (non-tight)
standard-model reduction (Theorem 4).

656 M. Bellare and W. Dai

Our chain for MuSig is DL → IDL → XIDL → MuSig. This chain has
length 3. Our main result for MuSig is Theorem 7, which shows XIDL → MuSig
with a tight, standard model reduction. Putting this together with the rest of
the chain, we get a tight DL → MuSig AGM-reduction. If we are willing to view
XIDL as an assumption extending IDL, we can also view MuSig as based tightly
on that.

This means we show that UBms-uf
MS (t, q, qs, p) ≤ t2/p for both schemes, match-

ing the DL bound. This is tight and optimal, since the multi-signature schemes
can be broken by taking discrete-logs. Figure 1 compares our results with the
prior ones.

New 2-round scheme. Turning to 2-round schemes, we give a new scheme,
called HBMS. HBMS supports key aggregation, in line with other 2-round
schemes. Our chain for our new 2-round HBMS scheme is DL → IDL →
XIDL → HBMS. This chain has length 3. We show XIDL → HBMS with a
tight AGM reduction (Theorem 9) and a (non-tight) standard-model reduction
(Theorem 10). Putting this together with the rest of the chain, we get a tight
DL → HBMS AGM-reduction, in particular showing UBms-uf

MS (t, q, qs, p) ≤ t2/p,
matching the DL bound. We also get a (non-tight) DL → HBMS standard-
model-reduction.

Figure 2 compares HBMS with prior 2-round schemes. It shows that our
improvement in security is not at the cost of efficiency. (Signing in HBMS is
as efficient, or more so, than in prior schemes. For verification, MuSig-DN [28] is
slightly faster, but signing in the latter is prohibitive due to the use of NIZKs.)

As the above shows, we reuse steps across different chains. Thus XIDL is an
intermediate point for both MuSig and HBMS, and IDL for both BN and XIDL.
This simplifies proofs and reduces effort. It also shows common elements and
relations across schemes.

Equivalences. As discussed above, Theorem 5 shows IDL → BN with a tight,
standard model reduction. We also give, in Theorem 6, a converse, namely
a tight, standard-model reduction showing BN → IDL. This shows that IDL
and BN are, security-wise, equivalent. Similarly, as discussed above, Theorem 7
shows MuSig → XIDL with a tight, standard model reduction, and we also give,
in Theorem 8, a converse, namely a tight, standard-model reduction showing
XIDL → MuSig. This shows that XIDL and MuSig are equivalent. Overall, this
shows that IDL and XIDL are not arbitrary choices, but characterizations of the
schemes whose consideration is necessary.

Definitional contributions. DEFKLNS [15] found subtle gaps in some prior
proofs of security for some two-round multi-signature schemes [2,24,35]. This
indicates a need for greater care in the domain of multi-signatures. We suggest
that this needs to begin with definitions. The ones in prior work, stemming
mostly from [7], suffer from some lack of detail and precision. In particular, the
very syntax of a multi-signature scheme is not specified in detail. This results in
scheme descriptions that lack in precision, and proofs that stay at a high level
in part due to lack of technical language in which to give details. This in turn
can lead to bugs.

Chain Reductions for Multi-signatures and the HBMS Scheme 657

To address these issues, we revisit the definitions. We start by giving a
detailed syntax that formalizes the signing protocol as a stateful algorithm, run
separately by each player. Details addressed include that a player knows its posi-
tion in the signer list, that player identities are separate from public keys, and
integration of the ROM through a parameter describing the type of ideal hash
functions needed. Then we give a security definition written via a code-based
game. See Sect. 4.

Related work. The interest for blockchains and cryptocurrencies, and thus
our focus, is DL-based schemes over elliptic curves. There are many other multi-
signature schemes, based on other hard problems. Aggregate signatures [5,12]
yield multi-signatures, but these use pairings (bilinear maps). A pairing-based
multi-signature scheme is also given in [11]. Lattice-based multi-signature
schemes include [14,16].

As noted above, IDL [21] captures the security against parallel imperson-
ation under key-only attack (PIMP-KOA) of the Schnorr ID scheme and thus,
given the ZK property of the scheme, also its security against parallel imperson-
ation under passive attack (PIMP-PA). “Parallel” means multiple impersonation
attempts are allowed. IMP-PA, traditional security against impersonation under
passive attack, is the case where just one impersonation attempt is allowed.
The Reset Lemma [8] gives a standard model DL → IMP-PA reduction. This
uses rewinding and is non-tight, with a square-root loss. BD [3] introduce the
Multi-Base Discrete Logarithm (MBDL) problem, give a tight standard-model
MBDL → IMP-PA reduction, and show that, in the GGM, the security of MBDL
is the same as that of DL. An interesting open question is whether MBDL can be
used as a starting point for tight reductions for multi-signature schemes. Rotem
and Segev [32] give a standard model DL → IMP-PA reduction that improves
the square-root-loss reduction but is still not tight.

2 Preliminaries

Notation. If n is a positive integer, then Zn denotes the set {0, . . . , n − 1} and
[n] or [1..n] denote the set {1, . . . , n}. If x is a vector then |x| is its length (the
number of its coordinates), x[i] is its i-th coordinate and [x] = { x[i] : 1 ≤
i ≤ |x| } is the set of all its coordinates. A string is identified with a vector over
{0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its length. By ε
we denote the empty vector or string. The size of a set S is denoted |S|.

Let S be a finite set. We let x ←$ S denote sampling an element uniformly
at random from S and assigning it to x. We let y ← AO1,...(x1, . . . ; ρ) denote
executing algorithm A on inputs x1, . . . and coins ρ with access to oracles O1, . . .,
and letting y be the result. We let ρ ←$ rand(A) denote sampling random coins
for algorithm A and assigning it to variable ρ. We let y ←$ AO1,...(x1, . . .) be the
result of ρ ←$ rand(A) followed by y ← AO1,...(x1, . . . ; ρ). We let [AO1,...(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, . . . and
oracles O1, Algorithms are randomized unless otherwise indicated. Running
time is worst case.

658 M. Bellare and W. Dai

Games. We use the code-based game playing framework of [9]. (See Fig. 4 for
an example.) Games have procedures, also called oracles. Amongst these are
Init and a Fin. In executing an adversary A with a game Gm, procedure Init
is executed first, and what it returns is the input to A. The latter may now
call all game procedures except Init,Fin. When the adversary terminates, its
output is viewed as the input to Fin, and what the latter returns is the game
output. By Gm(A) ⇒ y we denote the event that the execution of game Gm
with adversary A results in output y. We write Pr[Gm(A)] as shorthand for
Pr[Gm(A) ⇒ true], the probability that the game returns true. In writing game
or adversary pseudocode, it is assumed that boolean variables are initialized to
false, integer variables are initialized to 0 and set-valued variables are initialized
to the empty set ∅.

A procedure (oracle) with a certain name O may appear in several games.
(For example, Ch appears in two games in Fig. 4.) To disambiguate, we may
write Gm.O for the one in game Gm.

When adversary A is executed with game Gm, we consider the running time
of A as the running time of the execution of Gm(A), which includes the time
taken by game procedures. By QO

A we denote the number of queries made by A
to oracle O in the execution. These counts are both worst case.

Groups. Throughout, G is a group whose order, assumed prime, we denote by p.
We will use multiplicative notation for the group operation, and we let 1G denote
the identity element of G. We let G∗ = G \ {1G} denote the set of non-identity
elements, which is the set of generators of G since the latter has prime order.
If g ∈ G∗ is a generator and X ∈ G, then DLG,g(X) ∈ Zp denotes the discrete
logarithm of X in base g.

Algebraic algorithms. We recall the definition of algebraic algorithms [17].
As above, fix a group G of prime order p, and let g be a generator. In all of
our security games involving G and g, we assume that any inputs and outputs
of game oracles that are group elements (meaning, in G) are distinguished. In
particular, it will be clear from the game pseudocode definition which compo-
nents of inputs and outputs are such group elements. We say that an adversary,
against game Gm, is algebraic, if, whenever it submits a group element Y ∈ G
as an oracle query, it also provides, alongside, a representation of Y in terms
of group elements previously returned by the game oracles (the latter includ-
ing Init). Specifically, suppose during an execution of adversary A with game
Gm, the adversary submits a group element Y ∈ G to game oracle O. Then,
alongside, it must provide a vector (v0, v1, . . . , vm) ∈ Zm

p , called a representation
of Y , such that Y = gv0 · hv1

1 · · · hvm
m , where h1, . . . , hm are the group elements

that have been returned to the adversary by game oracles of Gm, so far. When
considering an execution of game Gm with an adversary A that is not algebraic,
we omit the writing of representations in the oracle calls.

Hedging. Not all attacks are algebraic. The thesis of [17] is that natural ones
are, and thus proving security relative to algebraic adversaries gives meaningful
guarantees in practice. We adopt this here but add hedging. Recall this means
that, for the same scheme, we seek both (1) A tight AGM reduction from DL,

Chain Reductions for Multi-signatures and the HBMS Scheme 659

and (2) a standard-model (even if non-tight) reduction from DL. The former is
used to guide and support parameter choices. The latter is viewed as at least
qualitatively ruling out non-algebraic attacks.

Reductions. All our standard-model reductions are black-box and preserve
algebraicness of adversaries, meaning, if the starting adversary is algebraic, so is
the constructed one. This means that we can chain standard-model reductions
with AGM-reductions to get overall AGM reductions.

3 Hardness of Problems in Groups

Our chain reductions exploit three computational problems related to groups:
standard discrete log (DL); IDL [21]; and a new problem XIDL that we introduce.
Here we give the definitions. We then show the length-2 chain DL → IDL →
XIDL. We give reductions that are tight in the AGM and also give (non-tight)
standard-model reductions, a total of four results. Referring to Fig. 3, we are
establishing the four theorems, shown in the table, that correspond to arrows
1 and 3. For the rest of the section, we fix a group G of prime order p, and a
generator g ∈ G.

DL. We recall the standard discrete logarithm (DL) problem via game Gmdl
G,g in

Fig. 4. Init provides the adversary, as input, a random challenge group element
X, and to win it must output x′ = DLG,g(X) to Fin. We let Advdl

G,g(A) =
Pr[Gmdl

G,g(A)] be the discrete-log advantage of adversary A.

IDL. The identification discrete logarithm (IDL) problem, introduced by KMP
[21], characterizes the hardness of parallel impersonation under key-only attack
(PIMP-KOA) security [21] of the Schnorr identification scheme [33]. Formally,
consider the game Gmidl

G,g,q given in Fig. 4, where parameter q is a positive integer.
The IDL-adversary receives a random target point X from Init. It is additionally
given access to a challenge oracle Ch that can be called at most q times. The
oracle takes as query a group element R (representing the commitment sent by
the prover in Schnorr identification), stores it as Ri, and responds with a random
challenge ci ←$ Zp (representing the one sent by the verifier). The adversary wins
if it can produce the discrete log z (representing the final prover response) of the
group element Ri · Xci , for a choice of i, denoted I, made by the adversary. We
define the IDL-advantage of A to be Advidl

G,g,q(A) = Pr[Gmidl
G,g,q(A)].

KMP [21] study IDL in the Generic Group Model (GGM) [34] and prove
a bound matching that for DL. Here, we strengthen this to give a tight AGM
reduction DL → IDL. This could be seen as implicit in part of the AGM proof
of security for the Schnorr signature scheme given in [18], although they make
no connection to IDL.

Theorem 1. [DL → IDL, AGM] Let G be a group of prime order p with gen-
erator g. Let q be a positive integer. Let Aalg

idl be an algebraic adversary against
Gmidl

G,g,q. Then, adversary Adl can be constructed so that

Advidl
G,g,q(Aalg

idl) ≤ Advdl
G,g(Adl) +

q

p
.

660 M. Bellare and W. Dai

Fig. 4. Let G be a group of prime order p = |G|, and let g ∈ G∗ be a generator
of G. Let q, q1, q2 be positive integers. Top: Game defining discrete logarithm (DL)
problem. Bottom left: Game defining identification logarithm (IDL) problem. Bottom
right: Game defining random-target identification logarithm (XIDL) problem.

Furthermore, the running time of Adl is about that of Aalg
idl .

The full proof is given in [4]. The idea of the proof is as follows. Since Aalg
idl is alge-

braic, its query R to Ch is accompanied by (r1, r2) such that R = gr1Xr2 . Our
adversary Adl, who is running Aalg

idl , records these as Ri, ri,1, ri,2, and responds
with a random ci. Eventually, Aalg

idl outputs I, z. Assuming it succeeds, we have
gz = RI · XcI = grI,1XrI,2XcI , or gz−rI,1 = Xw where w = (rI,2 + cI) mod p.
Now DLG,g(X) can be obtained as long as w has an inverse modulo p, mean-
ing is non-zero. But cI was chosen at random after the adversary supplied rI,2,
so the probability that w is 0 is at most 1/p. The factor of q accounts for the
adversary’s having a choice of I made after receiving challenges.

By q-IDL, we refer to IDL with parameter q. 1-IDL corresponds to IMP-KOA
security of the Schnorr identification scheme, and a reduction DL → 1-IDL is
obtained via the Reset Lemma of [8]. KMP show that 1-IDL → q-IDL. Overall
this gives a standard model (very non-tight) DL → q-IDL reduction. However, a

Chain Reductions for Multi-signatures and the HBMS Scheme 661

somewhat tighter (but still non-tight) result can be obtained when the forking
lemma of [7] (which we recall as in [4].) is applied directly instead. Concretely,
we give the following theorem, improving the prior reduction by a

√
q factor.

The proof is in [4].

Theorem 2. [DL → IDL, Standard Model] Let G be a group of prime order
p = |G|, and let g ∈ G∗ be a generator of G. Let q be a positive integer. Let Aidl

be an adversary against the game Gmidl
G,g,q. The proof constructs an adversary

Adl such that

Advidl
G,g,q(Aidl) ≤

√
q · Advdl

G,g(Aidl) +
q

p
. (1)

Additionally, the running time of Adl is approximately TAdl ≈ 2 · TAidl .

Theorem 2 appears to yield a 1-IDL → q-IDL reduction with a bound that
contradicts the lower bound claimed in [21, Corollary 4.4]. Our best guess as
to an explanation is that our reduction does not meet the key and randomness
preserving restrictions of [21, Corollary 4.4] or that their lower bound does not
cover rewinding strategies.

XIDL. We define a new problem, random target identification discrete loga-
rithm, abbreviated XIDL. It abstracts out the algebraic core of MuSig, and we
will show that its security is equivalent to the MS-UF security of MuSig. It will
also be an intermediate point in our reduction chain reaching our new HBMS
scheme, thereby serving multiple purposes.

With G, p, g fixed as usual, XIDL is parameterized by positive integers q1, q2.
Formally, consider the game Gmxidl

G,g,q1,q2 given in Fig. 4. The adversary receives
a randomly chosen group element X from Init. The game maintains a list
T1, . . . , Tq1 of “targets.” The adversary can create a target by querying the
New Target oracle NwTar with a group element S of its choosing, whence
Tj = S · Xej is added to the list of targets, for ej chosen randomly from Zp by
the game and returned to the adversary. The adversary can query the challenge
oracle Ch(jsel, R) by supplying an index jsel and a group element R. The oracle
records Tjsel as Yi, and R as Ri, based on the counter i it maintains. Intuitively,
Ch is similar to the challenge oracle Ch in IDL game, besides that our adver-
sary here needs to specify the target Tjsel it is trying to impersonate against.
The adversary wins the game if it can produce the discrete log z of RI · Y cI

I , for
an index I of its choice. The oracles NwTar and Ch are allowed to be called
at most q1 and q2 times, respectively. We define the XIDL advantage of A as
Advxidl

G,g,q1,q2(A) = Pr[Gmxidl
G,g,q1,q2(A)].

We show hardness of XIDL in both the AGM and the standard model, start-
ing with the former. The theorem actually establishes the stronger DL → XIDL,
tightly in the AGM.

Theorem 3. [DL → XIDL, AGM] Let G be a group of order p with generator
g. Let q1, q2 be positive integers. Let Aalg

xidl be an algebraic adversary against
Gmxidl

G,g,q1,q2 . Then, adversary Adl can be constructed so that

Advxidl
G,g,q1,q2(Aalg

xidl) ≤ Advdl
G,g(Adl) +

q1 + q2
p

.

662 M. Bellare and W. Dai

Furthermore, the running time of Adl is about that of Aalg
xidl.

The full proof is given in [4]. Here we sketch the intuition. Since Aalg
xidl is algebraic,

the j-th query to NwTar is of the form Sj , sj,1, sj,2 such that Sj = gsj,1Xsj,2 ,
and the i-th query to Ch is of the form jsel, Ri, ri,1, ri,2 such that Ri = gri,1Xri,2 .
Let ej , ci denote, respectively, the responses to the j-th query to NwTar and the
i-th query to Ch. Eventually, Axidl outputs I, z. Assuming it succeeds, the equa-
tion gz = RI ·T cI

J = RI · (SJ ·XeJ)cI must hold, where J was the selected index
jsel in the I-th query to Ch. This means that gz = grI,1XrI,2(gsJ,1XsJ,2XeJ)cI ,
whence gz−rI,1−sJ,1·cI = Xw, where w = rI,2 + (sJ,2 + eJ)cI . As long as w is
non-zero modulo p, one can solve for the value of DLG,g(X). But eJ and cI were
independently chosen after the adversary supplied sJ,2 and rI,2, respectively.
The probability that there exists j such that (sj,2 + ej) = 0 mod p is at most
q1/p over q1 queries to NwTar. Assuming there is no such j, the probability
that w = 0 is at most q2/p, due to the q2 queries to Ch that Aalg

xidl can make.
In the standard model, techniques in the security proof of MuSig [11,25] could

be used to show DL → XIDL, which involves two applications of the Forking
Lemma, leading to a fourth-root in the bound. We now show IDL → XIDL, using
a single application of the forking lemma and thus with only a square-root in
the bound. Combining this with Theorem 2 recovers the DL → XIDL reduction
with its fourth-root.

Theorem 4. [IDL → XIDL, Standard Model] Let G be a group of prime order p
with generator g. Let q1, q2 be positive integers. Let Axidl be an adversary against
Gmxidl

G,g,q1,q2 . Then, an adversary Aidl can be constructed so that

Advxidl
G,g,q1,q2(Axidl) ≤

√
q2 · Advidl

G,g,q1(Aidl) +
q2
p

.

Furthermore, the running time of Aidl is about twice of that of Axidl.

The full proof is given in [4]. We now sketch the intuition. Adversary Aidl

receives X from game Gmidl
G,g,q1 and runs adversary Axidl, forwarding it X as

the target point. It answers queries to Axidl’s NwTar oracle using its own
Gmidl

G,g,q1 .Ch oracle. Specifically, the j-th query S to NwTar is responded to
with ej ←$ Gmidl

G,g,q1 .Ch(S), and Aidl additionally records the group element
Tj ← S · Xej . It simulates adversary Axidl’s Ch oracle locally, meaning the i-th
query Ch(jsel, R) is responded to with a fresh challenge ci ←$ Zp. Eventually,
adversary Axidl gives a response I, z. Our Aidl adversary wins game Gmidl

G,g,q1
if it can produce the discrete log of Tj for any j of its choice. To do so, Aidl

uses rewinding, the analysis of which uses the Forking Lemma [7] that we recall
in [4]. Rewinding is used to produce another response, (I ′, z′), from a forked
execution of Axidl. The Forking Lemma applies to an execution of an algorithm
making queries to one oracle, but adversary Axidl has two oracles NwTar and
Ch. We only “fork” Axidl on its queries to Ch. Specifically, we program oracle
NwTar to behave identically compared to the first run (meaning we use previ-
ously recorded values of e1, . . . as long as they are defined). In the second run,

Chain Reductions for Multi-signatures and the HBMS Scheme 663

oracle Ch is replied with c1, . . . , cI−1, c
′
I , . . ., where c′

I , . . . are randomly chosen
from Zp. Let us assume that Aidl has derived two valid responses from Axidl

using the Forking Lemma. Then it is guaranteed that I = I ′ and cI �= c′
I . More-

over, we know the two executions of Axidl only differ after the response of the
I-th query to Ch, so the I-th query to Ch in both runs is some J,RI . This allows
our adversary to solve the equations gz = RI ·T cI

J and gz′
= RI ·T c′

I

J (which are
guaranteed to be true if both runs succeed) to compute DLG,g(TJ) and thus win
the IDL game.

4 Definitions for Multi-signatures

As discussed in Sect. 1, current definitions for multi-signatures, stemming mostly
from [7], suffer from some lack of detail and precision, including lack of a precise
syntax. This results in scheme descriptions that also lack somewhat in precision,
and to proofs that stay at a high level in part due to lack of technical language
in which to give details. This could be one of the contributors to bugs in these
proofs [15].

To address this, we revisit the definitions. We give a detailed syntax that
formalizes the signing protocol as a stateful algorithm, run separately by each
player. (The state will be maintained by the overlying game.) Details addressed
include that a player knows its position in the signer list, that player identities
are separate from public keys, and integration of the ROM through a parameter
describing the type of ideal hash functions needed. Then we give a security
definition written via a code-based game.

Syntax. A multi-signature scheme MS specifies algorithms MS.Kg, MS.Vf,
MS.Sign, as well as a set MS.HF of functions, and an integer MS.nr, whose intent
and operation is as follows:

– Key generation. Via (pk, sk) ←$ MS.Kg, the key generation algorithm gener-
ates public signature-verification key pk and secret signing key sk for a user.
(Each user is expected to run this independently to get its keys.)

– Hash functions. MS.HF is a set of functions, from which, via h ←$ MS.HF, one
is drawn and provided to scheme algorithms (except key generation) and the
adversary as the random oracle. Specifying this as part of the scheme allows
the domain and range of the random oracle to be scheme-dependent.

– Verification. Via d ← MS.VfH(pk,m, σ), the verification algorithm determin-
istically outputs a decision d ∈ {true, false} indicating whether or not σ is a
valid signature on message m under a vector pk of verification keys.

– Signing. The signing protocol is specified by signing algorithm MS.Sign. In
each round, each party, applies this algorithm to its current state st and the
vector in of received messages from the other parties, to compute an outgoing
message σ (viewed as broadcast to the other parties) and an updated state
st′, written (σ, st′) ← MS.SignH(in, st). In the last round, σ is the signature
that this party outputs. (See Fig. 5.)

664 M. Bellare and W. Dai

– Rounds. The interaction consists of a fixed number MS.nr of rounds. (We
number the rounds 0, . . . ,MS.nr. The final broadcast of the signature is not
counted as in practice it is a local output.)

We say that a multi-signature scheme MS supports key aggregation if MS has
two additional algorithms, MS.Ag and MS.VfAg, such that the following hold: (1)
Via apk ←$ MS.AgH(pk1, . . . ,pkn), the key aggregation algorithm MS.Ag gener-
ates an aggregate public key, (2) Via d ← MS.VfAgH(apk,m, σ), the aggregate
verification algorithm deterministically outputs a decision d ∈ {true, false}, and
(3) the verification algorithm MS.Vf is defined exactly as MS.VfH(pk,m, σ) =
MS.VfAgH(MS.AgH(pk),m, σ).

Some conventions will aid further definitions and scheme descriptions. A
party’s state st has several parts: st.n is the number of parties in the cur-
rent execution of the protocol; st.me ∈ [1..st.n] is the party’s own identity;
st.rnd ∈ [0..MS.nr] is the current round number; st.sk is the party’s own signing
key; st.pk is the st.n-vector of all verification keys; st.msg is the message being
signed; st.rej ∈ {true, false} is the decision to reject (not produce a signature) or
accept. It is assumed and required that each invocation of MS.Sign leaves all of
these unchanged except for st.rnd, which it increments by 1, and st.rej, which is
assumed initialized to false and may at some point be set to true. The state can,
beyond these, have other components that vary from protocol to protocol. (For
example, Fig. 6 describing the BN scheme has st.R[j], st.t[j], st.z[j], st.R,) We
write st ← StInit(j, sk,pk,m) to initialize st by setting st.n ← |pk| ; st.me ← j ;
st.rnd ← 0 ; st.sk ← sk ; st.pk ← pk ; st.msg ← m ; st.rej ← false. If an execution
(σ, st′) ← MS.SignH(in, st) returns σ = ⊥ then it is assumed and required that
further executions starting from st′ all return ⊥ as the output message.

Correctness. Algorithm ExecMS, shown in the left column of Fig. 5, executes
the signing protocol of MS on input a vector sk of signing keys, a vector pk of
matching verification keys with |sk| = |pk|, and a message m to be signed, and
with access to random oracle h ∈ MS.HF. The number of parties n at line 1 is the
number of coordinates (length) of pk. The state stj of party j at line 3 is initial-
ized using the function StInit defined above. The loop at line 5 executes MS.nr
rounds. Here b denotes the n-vector of currently-broadcast messages, meaning
b[i] was broadcast by party i in the prior round, and the entire vector is the
input to party j for the current round. At line 8, b now holds the next round of
broadcasts.

The correctness game Gms-cor
MS,n shown in the right column of Fig. 5 has only

one procedure, namely Fin. We say that MS satisfies (perfect) correctness if for
all positive integers n we have Pr[Gms-cor

MS,n] = 1.

Unforgeability. Game Gms-uf
MS in Fig. 5 captures a notion of unforgeability

for multi-signatures that slightly extends [7]. There is one honest player whose
keys are picked at line 1, the adversary controlling all the other players. A new
instance of the signing protocol is initialized by calling NS with an index k and a
vector pk of verification keys that the adversary can choose, possibly dishonestly,
subject only to pk[k] being the verification key pk of the honest player, as
enforced by line 2. The first message of the honest player is sent out, and at

Chain Reductions for Multi-signatures and the HBMS Scheme 665

Fig. 5. Top left: Procedure specifying an honest execution of the signing protocol
associated with multi-signature scheme MS. Top right: Correctness game. Bottom:
Unforgeability game.

this point stu.rnd = 1. Now the adversary can run multiple concurrent instances
of the signing protocol with the honest signer. Oracle H is the random oracle,
simply calling h. Eventually the adversary calls Fin with a forgery index k, a
vector of verification keys (subjected to pk[k] being the public key of the honest
signer), a message and a claimed signature. It wins if verification succeeds and the
forgery was non-trivial. The ms-uf-advantage of adversary A is Advms-uf

MS (A) =
Pr[Gms-uf

MS (A)].
It is convenient for (later) proofs to have a separate signing oracle Signj for

each round j ∈ [1..MS.nr]. It is required that any Signj(s, ·) satisfy s ∈ [1..u],

666 M. Bellare and W. Dai

and that the prior round queries Signk(s, ·) for k < j have already been made.
It is required that for each j, s, at most one Signj(s, ·) query is ever made.

Remarks. Our syntax and security notions for multi-signatures view a group of
signers as captured by the vector (rather than the set) of their public keys. So for
example, a forgery ((pk1,pk2),m, σ) is considered to be non-trivial even if there
was a previous signing session under public keys (pk2,pk1) and message m. This
differs from previous formalizations that work instead with sets of public keys.
However, previous definition can be recovered if a canonical encoding of sets of
public keys into vectors of public keys is fixed in the usage of a scheme.

5 Analysis of the BN Scheme

BN scheme. Let G be a group of prime order p. Let g be a generator of G and
let � ≥ 1 be an integer. The associated BN [7] multi-signature scheme MS =
BN[G, g, �] is shown in detail, in our syntax, in Fig. 6. The set MS.HF consists of
all functions h such that h(0, ·) : {0, 1}∗ → {0, 1}� and h(1, ·) : {0, 1}∗ → Zp. For
b ∈ {0, 1} we write Hb(·) for H(b, ·), so that scheme algorithms, and an ms-uf
adversary, will have access to oracles H0,H1 rather than just H.

The signing protocol has 3 rounds. In round 0, player j picks r ←$ Zp,
stores gr in its state as st.R[j], computes, and stores in its state, a value
st.t[j] ← H0((j, st.R[j])) that we call the BN-commitment, and broadcasts
the BN-commitment. (Per our syntax, what is returned is the message to be
broadcast and the updated state to be retained.) Since each player does this,
in round 1, player j receives the BN-commitments of the other players, storing
them in vector st.t, and now broadcasting st.R[j]. In round 2, these broadcasts
are received, so player j can form the vector st.R. At line 20, it returns ⊥ if one of
the received values fails to match its commitment. As per our conventions, when
this happens, this player will always broadcast ⊥ in the future, so for round 3 we
assume lines 21 and 22 are executed. These lines create the second component
st.z[j] of a Schnorr signature relative to the Schnorr-commitment st.R[j] defined
at line 13, and the player’s own secret key, the computations being modulo p.
This st.z[j] is broadcast, so that, in round 3, our player receives the correspond-
ing values from the other players. At line 27 it forms their modulo-p sum z and
then forms the final signature (st.R, z).

Our description of the signing protocol differs, from that in [7], in some details
that are brought out by our syntax, for example in using explicit party identities
rather than seeing these as implicit in public keys.

Prior bounds. We recall the prior result of [7]. Let MS = BN[G, g, �] and let
Ams be an adversary for game Gms-uf

MS . Assume the execution of game Gms-uf
MS

with Ams has at most q distinct queries across H0,H1 and at most qs queries to
NS. Suppose the number of parties (length of verification-key vector) in queries
to NS and Fin is at most n. Let a = 8qs + 1 and b = 2q + 16n2qs. Let p = |G|.
Then BN [7] give a DL-adversary Adl such that

Advms-uf
MS (Ams) ≤

√
(q + qs) ·

(
Advdl

G,g(Adl) +
a

p
+

b

2�

)
. (2)

Chain Reductions for Multi-signatures and the HBMS Scheme 667

Fig. 6. Algorithms of the multi-signature scheme BN[G, g, �] and MuSig[G, g, �], where
G is a group of prime order p with generator g. Code that differs between the two
schemes is marked explicitly. Oracle Hi(·) is defined to be H(i, ·) for i = 0, 1 (BN) and
i = 0, 1, 2 (MuSig).

The running time of Adl is twice that of the execution of game Gms-uf
MS with Ams.

BN obtain this result via their general forking lemma, which uses rewinding and
accounts for the square-root in the bound.

668 M. Bellare and W. Dai

Security of BN from IDL. We give a IDL → BN reduction that is tight and
in the standard model. Combining this with our tight AGM reduction DL → IDL
of Theorem 1 we conclude a tight AGM reduction DL → BN. However, the
standard model tight IDL → BN reduction is also interesting in its own right.
It says that BN is just as secure as the Schnorr identification scheme. Since the
latter has been around and resisted cryptanalysis for quite some time, this is
good support for the security of BN.

Theorem 5. [IDL → BN, Standard Model] Let G be a group of prime order p.
Let g be a generator of G and let � ≥ 1 be an integer. Let MS = BN[G, g, �] be
the associated BN multi-signature scheme. Let Ams be an adversary for game
Gms-uf

MS of Fig. 5. Assume the execution of game Gms-uf
MS with Ams has at most

q0, q1, qs distinct queries to H0,H1,NS, respectively, and the number of parties
(length of verification-key vector) in queries to NS and Fin is at most n. Let
α = qs(4q0 + 2q1 + qs) and β = q0(q0 + n). Then we construct an adversary Aid

for game Gmidl
G,g,q1 such that

Advms-uf
MS (Ams) ≤ Advidl

G,g,q1(Aidl) +
α

2p
+

β

2�
. (3)

The running time of Aidl is about that of the execution of game Gms-uf
MS with

Ams. Furthermore, adversary Aidl is algebraic if adversary Ams is.

Above, q0 is the number of distinct queries to H0 made, not directly by the adver-
sary, but across the execution of the adversary in game Gms-uf

MS , and similarly
for q1. A lower bound on q1 is the length of pk in Ams’s Fin query, so we can
assume it is positive. With the above theorem, we can now derive an upperbound
UBms-uf

MS (t, q, qs, p) of the advantage of any MS adversary with running time t,
making q queries to H, and qs signing interactions. We take � ≈ log2(p) and
assume that qs ≤ q ≤ t ≤ p. Additionally, we assume that the advantage of any
IDL adversary with running time t is at most t2/p (as justified by Theorem 2).
We obtain UBms-uf

MS (t, q, qs, p) ≤ t2/p as shown in Fig. 1.
The full proof of Theorem 5 is given in [4]. Here we give a sketch. The

reduction adversary Aidl receives a group element X from Gmidl
G,g,q1 and forwards

it to adversary Ams as the target public key. In order to run adversary Ams, our
adversary needs to be able to simulate the signing oracles NS,Sign1,Sign2 as
well as random oracles H0 and H1 without knowing DLG,g(X). We first describe
how the reduction proceeds if Ams makes no queries to NS,Sign1 or Sign2, as
this steps constitutes the main difference between our proof and the original proof
of security for BN [7]. Adversary Aidl uses the challenge oracle Gmidl

G,g,q1 .Ch to
program the random oracle H1 (hence Ch needs to be able to be queried upto the
number of times H1 is evaluated). In particular, for each query H1((k,R,pk,m))
where pk[k] = X, our adversary first computes T ← R ·∏j �=k pk[j]H1((j,R,pk,m)),
then obtains c ←$ Ch(T) before returning c as the return value for the query
H1((k,R,pk,m)). By construction, a valid forgery for pk,m is some signature
σ = (R, z) such that

Chain Reductions for Multi-signatures and the HBMS Scheme 669

gz = R ·
n∏

i=1

pk[i]H1((i,R,pk,m)) = T · Xc ,

where the first equality is by the verification equation of BN and the second
equality is by the way H1 is programmed. This means that adversary Aidl can
simply forward the value of z from a valid forgery, along with the index of the
Ch query corresponding to the H1 query of the forgery, to break game Gmidl

G,g,q1 .
Moreover, adversary Aidl succeeds as long as the forgery given by Ams is valid.

It remains to show that oracles NS,Sign1,Sign2 can be simulated without
knowledge of the secret key, DLG,g(X). Roughly, this is done using the zero-
knowledge property of the underlying Schnorr identification scheme as well as by
programming the random oracles H0 and H1. The original proof by [7] constructs
an adversary and argues that it simulates these oracles faithfully if certain bad
events do not happen. We take a more careful approach and do this formally via
a sequence of seven games and use the code-base game playing framework of [9].
This game sequence incurs the additive loss as indicated in (3).

Converse. IDL is not merely some group problem that can be used to justify
security of BN tightly; the hardness of IDL is, in fact, tightly equivalent to the
MS-UF security of BN. Formally, we give below a reduction turning any adver-
sary against IDL into a forger Ams against BN. This means that any security
justification for BN must also justify the hardness of IDL.

Theorem 6. [BN → IDL, Standard Model] Let G be a group of prime order p.
Let g be a generator of G and let � ≥ 1 be an integer. Let MS = BN[G, g, �] be the
associated BN multi-signature scheme. Let q be a positive integer and Aidl be an
adversary against Gmidl

G,g,q. Then, we can construct an adversary Ams for game
Gms-uf

MS , making no queries to NS, and at most 2q queries to H1, such that

Advms-uf
MS (Ams) ≥ Advidl

G,g,q(Aidl) . (4)

The running time of Ams is about that of Aidl.

Proof (Theorem 6). Consider the adversary given in Fig. 7. The adversary
receives the target public key pk from the MS-UF game and samples a key pair
(pk′, sk′) ←$ MS.Kg. The adversary will attempt to forge a signature against the
vector of public keys (pk,pk′). Adversary Ams forwards X = pk as the target
point and runs IDL adversary Aidl. For each query Ch(R) of Aidl, adversary
Ams simulates the response as per line 4 to 6. If Aidl succeeds, it must be that

gz = RI · pkcI,1 .

The value of z can be used to construct a forgery signature (line 3). �

6 Analysis of the MuSig Scheme

The current three-round version of MuSig has been proposed and analyzed by
both [11,25]. Roughly, it is the BN scheme with added key aggregation.

670 M. Bellare and W. Dai

Fig. 7. Adversary Ams for Theorem 7. For an integer i, 〈i〉 denote the binary repre-
sentation of i.

Let G be a group of prime order p. And let g be a generator of g and � ≥ 1
be an integer. The formal specification of MS = MuSig[G, g, �] in our syntax
is shown in Fig. 6. There are minimal differences between MuSig and BN and
we only highlight the differences. The set MS.HF consists of all functions h
such that h(0, ·) : {0, 1}∗ → {0, 1}� and h(i, ·) : {0, 1}∗ → Zp for i = 1, 2.
Verification is done as follows. First, an aggregate key apk for the list of keys
pk = (pk1, . . . ,pkn) is computed as apk ← pk

H2((1,pk))
1 · · · pkH2((n,pk))

n (line 8).
Next, a single challenge is derived from the commitment R and aggregate key
apk (line 9). The signature (R, z) is valid if gz = R · apkc. The second round of
signing also changes accordingly to generate a valid signature (line 24 and 25).

The following gives a tight, standard-model reduction XIDL → MuSig. Com-
bining this with our tight AGM chain DL → IDL → XIDL from Theorems 1
and 3, we get a tight AGM reduction DL → MuSig.

Theorem 7. [XIDL → MuSig, Standard Model] Let G be a group of prime order
p. Let g be a generator of G and � ≥ 1 be an integer. Let MS = MuSig[G, g, �] be
the associated MuSig multi-signature scheme. Let Ams be an adversary for game
Gms-uf

MS of Fig. 5. Assume the execution of game Gms-uf
MS with Ams has at most

q0, q1, q2, qs distinct queries to H0,H1,H2,NS, respectively, and the number of
parties (length of verification-key vector) in queries to NS and Fin is at most
n. Let α = qs(4q0 + 2q1 + qs) + 2q1q2 and β = q0(q0 + n). Then we can construct
an adversary Axidl for game Gmxidl

G,g,q2,q1 such that

Advms-uf
MS (Ams) ≤ Advxidl

G,g,q2,q1(Axidl) +
α

2p
+

β

2�
. (5)

The running time of Axidl is about that of the execution of game Gms-uf
MS with

Ams. Furthermore, adversary Axidl is algebraic if adversary Ams is.

We remark that the values of q1 and q2 above arise from the number of queries
to H1 and H2 made in the execution of Gms-uf

MS (Ams). As a result, the appearance
of q1 and q2 has their orders “switched” compared to in Sect. 3. With the above
theorem, we can now derive an upperbound UBms-uf

MS (t, q, qs, p) of the advantage

Chain Reductions for Multi-signatures and the HBMS Scheme 671

of any MS adversary with running time t, making q queries to H, and qs signing
interactions. We take � ≈ log2(p) and assume that qs ≤ q ≤ t ≤ p. Additionally,
we assume that the advantage of any XIDL adversary with running time t is at
most t2/p (as justified by Theorem 4). We obtain UBms-uf

MS (t, q, qs, p) ≤ t2/p as
shown in Fig. 1.

We again describe the reduction at a high level and defer the full proof
to [4]. First, the reduction adversary Axidl receives group element X from
game Gmxidl

Gg,q2,q1 and runs Ams with the target public key set to X. Similar
to the proof of Theorem 5, our adversary needs to simulate the signing oracles
NS,Sign1,Sign2 as well as H0,H1,H2 without knowing DLG,g(X) in order to run
Ams. This again relies on the zero-knowledge property of the underlying Schnorr
identification scheme and the programming of H0,H1,H2. This step is done for-
mally in a game sequence in the full proof and incurs the additive loss in (5).
To turn a forgery into a break against XIDL, our adversary programs H1 and
H2 as follows. For the j-th query of H2((k,pk)) where pk[k] = X, the adversary
first computes S ← ∏

i�=k pk[i]H2((i,pk)), then obtains ej ←$ NwTar(S) before
returning ej as the response for the query. We remark that this particular query
of H2 have created an aggregate public key apk =

∏|pk|
i=1 pk[i]H2((i,pk)) = S ·Xej ,

which is also the value of Tj that is recorded in the game Gmxidl
G,g,q2,q1 . For each

i-th query of H1((R, apk,m)), the adversary first finds the index jsel of the H2-
query that corresponds to the input apk, then obtains ci ←$ Ch(jsel, R) before
returning ci as the response for the query. If the eventual forgery is given for
these two particular queries to H1 and H2, meaning forgery is pk,m, (R, z)
for some z, then the verification equation of the signature scheme says that
gz = R · apkH1((R,apk,m)). But this matches exactly the winning condition of
Gmxidl

G,g,q2,q1 , since apk = Tjsel and ci = H1((R, apk,m)). Hence, our adversary
Axidl can simply return (i, z) to break XIDL, as long as the forgery provided by
Ams is valid.

Similar to the relation between IDL and BN, XIDL is also tightly equivalent
to the MS-UF security of MuSig. In particular, we turn any adversary breaking
XIDL into a forger against MuSig. This means that any security justification for
MuSig must also justify the hardness of XIDL.

Theorem 8. [MuSig → XIDL, Standard Model] Let G be a group of prime order
p. Let g be a generator of G and let � ≥ 1 be an integer. Let MS = MuSig[G, g, �] be
the associated MuSig multi-signature scheme. Let q1, q2 be a positive integers and
Axidl be an adversary against Gmxidl

G,g,q2,q1 . Then, we can construct an adversary
Ams for game Gms-uf

MS , making no queries to NS, and at most 2q1 and 2q2 queries
to H1 and H2 respectively, such that

Advms-uf
MS (Ams) ≥ Advxidl

G,g,q2,q1(Axidl) . (6)

The running time of Ams is about that of Aidl.

Proof (Theorem 8). Consider the adversary given in Fig. 8. The adversary
receives the target publick key pk from the MS-UF game. Adversary Ams for-
wards X = pk as the target point and runs XIDL adversary Aidl. For each

672 M. Bellare and W. Dai

Fig. 8. Adversary Ams for Theorem 7. For an integer i, 〈i〉 denote the binary repre-
sentation of i.

query NwTar(S) of Axidl, adversary Ams uses S as a public key to generate
the aggregate key apk for the list (pk, S). By construction, the j-th target Tj

for the XIDL game is related to apkj by apkj = T
ej,1
j . For each Ch(jsel, R)

query of Axidl, adversary Ams programs in the H1 outputs corresponding to a
forgery agaisnt the aggregate key apkjsel

(line 6 and 7). By construction, if Axidl

succeeds, it must be that

gz = RI · T cI
J = RI · T

H1((apkJ ,R,mi))·eJ,1
J = RI · apkH1((apkJ ,R,mi))

J .

Hence, adversary Ams produces a valid forgery at line 2. �

7 HBMS: Our New Two-Round Multi-signature Scheme

Recall that BN and MuSig are three-round schemes, and two-round schemes are
desired due to blockchain applications. In this section, we introduce our new,
efficient two-round multi-signature scheme supporting key-aggregation, HBMS.
We first demonstrate its tight security against algebraic adversaries (Theorem 9),
before justifying its security in the standard model (Theorem 10). Referring to
Fig. 3, these results establish arrow 5. We refer to Fig. 2 for comparisons of HBMS
against other two-round schemes.

Two-round MS scheme HBMS. The formal definition of our scheme is given
in Fig. 9. HBMS has the same key generation algorithm Kg and key aggregation
Ag algorithm as MuSig. We describe informally the process involved to sign a
message m under a vector of public keys pk. In the first round, each signer i
samples si and ri uniformly from Zp and computes a commitment

Ti ← H0((pk,m))si · gri ,

Chain Reductions for Multi-signatures and the HBMS Scheme 673

Fig. 9. Two-round multi-signature scheme MS = HBMS[G, g] parameterized by a group
G of prime order p with generator g.

which is sent to every other signer. In the second round, each signer receives
the list of commitments T1, . . . , Tn from each signer, and computes the aggre-
gate value T ← ∏

i Ti. Each signer then computes the challenge value as
c ← H1((T, apk,m)). To compute the reply, each signer i computes zi ←
ri + sk · c ·H2((i,pk)) and sends (si, zi) to every other signer. Finally, any signer
can now compute the final signature as (T, s, z) where s =

∑
i si and z =

∑
i zi.

To verify a signature (T, s, z) on (pk,m), the equation

gz · H0((pk,m))s = T · apkH1((T,apk,m)) ,

must hold, where apk =
∏|pk|

i=1 pk[i]H2((i,pk)). Compared to MuSig, the verifica-
tion equation of HBMS involves an additional power of H((pk,m)) (hence the
name HBMS, or “Hash-Base Multi-Signature”).

Tight security against algebraic adversaries. We first show that
HBMS is tightly MS-UF-secure against algebraic adversaries.

Theorem 9. [DL → HBMS, AGM] Let G be a group of prime order p with gen-
erator g. Let MS be the HBMS[G, g] scheme. Let Aalg

ms be an algebraic adversary
for game Gms-uf

MS of Fig. 5. Assume the execution of game Gms-uf
MS with Ams has

at most q1, q2 distinct queries to H1,H2, respectively. Then we can construct an

674 M. Bellare and W. Dai

adversary Adl for game DLG,g such that

Advms-uf
MS (Aalg

ms) ≤ Advdl
G,g(Adl) +

(q1 + 1)q2
p

. (7)

The running time of Adl is about that of the execution of game Gms-uf
MS with Aalg

ms .

Above, a reduction is given directly from DL, and there is no multiplica-
tive loss. As before, assuming qs ≤ q ≤ t ≤ p and the generic hardness
of DL (advantage of t-time adversary to be at most t2/p), we derive that
UBms-uf

MS (t, q, qs, p) ≤ t2/p, as shown in Fig. 2.
We give the highlevel proof sketch here and defer the full proof to [4]. Let Ams

be the algebraic adversary against HBMS. Our reduction adversary Adl sets its
own target point X (which it needs to obtain the discrete log of) as the target
public key for Ams. In order to run Ams, our adversary Adl needs to be able
to simulate oracles NS,Sign1,Sign2 (oracles representing the honest signer) as
well as random oracles H0,H1,H2. We first tackle the problem of simulating the
honest signer without knowledge of the corresponding secret key. This is done
by programming of random oracle H0. Suppose for pk,m, we set H0((pk,m)) to
be h = gαpkβ for some α, β �= 0 ∈ Zp (whose exact distribution will be specified
later). When the adversary interacts with the honest signer, the honest signer
must first provide some commitment T ∈ G (in the output of NS), then later
produce z, s ∈ Zp (in the output of Sign1) such that

gzhs = T · pkc , (8)

where c ∈ Zp is some challenge value (that is derived using the random oracle
and the responses of the adversary). To do this, our adversary set commitment
T = gahb for a, b ←$ Zp. It shall be convenient to express pk in terms of g and
h as well. Note that as long as β �= 0, pk = h(β−1)g−α(β−1). Since both T and
pk are known to be of the form g�h� (where 	 denotes some element of Zp), so
is the group element T · pkc (for any known value of c). Hence, the right-hand
side of (8) is of the form gzhs for some values z and s that our adversary can
compute, and our adversary can return them as response in the second round.
Above, we noted that this works as long as β �= 0. To guarantee this, we sample
α ←$ Zp and β ←$ Z∗

p in H0. It remains to check that such way of simulating the
honest signer is indistinguishable from the behavior of an honest signer holding
the secrete key and executing the protocol. Roughly, this is because in both
cases, the triple (T, z, s) is uniformly distributed over G × Z2

p, subjected to the
condition that Eq. (8) holds.

Now, our adversary Adl can move onto turning a forgery from Ams into a
discrete logarithm for target point X. Suppose adversary Ams returns forgery
(pk,m, (T, s, z)). Then,

gzhs = T · apkc , (9)

where apk =
∏|pk|

i=1 pk[i]H2((i,pk)) and c = H1((T, apk,m)). Since Ams is alge-
braic, our adversary Adl can rewrite Eq. (9) to the form gαg = XαX , which

Chain Reductions for Multi-signatures and the HBMS Scheme 675

allows us to compute the discrete log of X as αgα
−1
x mod p, as long as αX is

not zero. The full proof upperbounds the probability that αX = 0 to be at most
q1q2/p. Outside of this bad event, our adversary Adl will successfully compute
the value of DLG,g(X) from a valid forgery.

Standard Model Security of HBMS. We reduce the security of HBMS to
the hardness of XIDL, with factor qs loss. For applications, the number of signing
queries qs is much less than adversarial hash function evaluations. As a result,
even though our reduction here is non-tight, the reduction loss is smaller com-
pared to previous results for BN, MuSig or other two round schemes (cf. Fig. 1
and 2), at the expense of assuming the hardness of XIDL. Interestingly, due to
Theorem 8, our results also state that HBMS is secure as long as MuSig is (via
the reduction chain MuSig → XIDL → HBMS), and this reduction again only
losses a factor of qs in the advantage.

Theorem 10. [XIDL → HBMS, Standard Model] Let G be a group of prime
order p with generator g. Let MS be the HBMS[G, g] scheme given in Fig. 9. Let
Ams be an adversary for game Gms-uf

MS of Fig. 5. Assume the execution of game
Gms-uf

MS with Ams has at most q0, q1, q2, qs distinct queries to H0,H1,H2,NS,
respectively. Then we can construct an adversary Axidl for game Gmxidl

G,g,q2,q1
such that

Advms-uf
MS (Ams) ≤ e(qs + 1) · Advxidl

G,g,q2,q1(Axidl) +
q1q2
p

, (10)

where e is the base of the natural logarithm. Adversary Axidl makes q2 queries
to NwTar and q1 queries to Ch. The running time of Axidl is about that of the
execution of game Gms-uf

MS with Ams.

Concretely, if we assume that XIDL is quantitatively as hard as DL, then
against any adversary with running time t, making q evaluations of the random
oracle and making at most qs signing queries, HBMS has security (qst2+q2)/p ≈
qst

2/p.
We sketch the highlevel proof here and give the full proof in [4]. Our adversary

receives the target point X from the XIDL game and sets it as the target public
key for adversary Ams. As before, in order to run Ams, we need to simulate
oracles NwTar,Sign1,Sign2 as well as H0,H1,H2. Recall that in the AGM
proof, we can simulate the honest signer for pk,m if we set H0((pk,m)) = gαhβ .
However, this way of programming H0 does not facilitate in turning a forgery
into a break for XIDL. Instead, we would like to program H0((pk,m)) = gα for
the forgery pk,m. To do this, we use a technique of Coron [13], which programs
H0((pk,m)) randomly in one of these two ways depending on a biased coin flip
(with probability ρ of giving 1). The reduction only succeeds if correct “guesses”
are made. Specifically, we need that for every pk,m that is queried to the honest
signer (in NS) then H0((pk,m)) must have been programmed to be gαpkβ (for
some α and β), and for the forgery pk,m, it must be that H0((pk,m)) = gα (for
some α). We can then optimize for the value of ρ, resulting in a multiplicative
loss of e(1 + qs).

676 M. Bellare and W. Dai

Suppose adversary Ams returns a forgery (pk,m, (T, s, z)) where we have
previously programmed H0((pk,m)) = gα. The verification equation say that
gzhs = T ·apkc. Since h is just a power of g, the left-hand side of the verification
equation is also a known power of g (specifically gz+α·s). This means that our
adversary Axidl can proceed exactly as the reduction for MuSig. In particular,
for the j-th query of H2((k,pk)) where pk[k] = X, the adversary first computes
S ← ∏

i�=k pk[i]H2((i,pk)), then obtains ej ←$ NwTar(S) before returning ej as
the response for the query. We remark that this particular query of H2 have
created an aggregate public key apk =

∏|pk|
i=1 pk[i]H2((i,pk)) = S · Xej , which

is also the value of Tj that is recorded in the game Gmxidl
G,g,q2,q1 . For each i-th

query of H1((T, apk,m)), the adversary first finds the index jsel of the H2-
query that corresponds to the input apk, then obtains ci ←$ Ch(jsel, T) before
returning ci as the response for the query. If the eventual forgery is given for
these two particular queries to H1 and H2, meaning forgery is pk,m, (T, s, z),
then the verification equation of the signature scheme says that gz+α·s = T ·
apkH1((T,apk,m)) (if we programmed H0((pk,m)) to be gα). Hence, our adversary
Axidl can simply return (i, z+α·s) to break XIDL, as long as the forgery provided
by Ams is valid and we have made the right guesses in programming H0.

Acknowledgments. We thank the ASIACRYPT 2021 reviewers for their careful read-
ing and valuable comments.

Bellare was supported in part by NSF grant CNS-1717640 and a gift from Microsoft.
Dai was supported in part by a Powell Fellowship and grants of the first author.

References

1. Kılınç Alper, H., Burdges, J.: Two-round trip Schnorr multi-signatures via Delin-
earized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84242-0 7

2. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press, Oct. (2008)

3. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight reductions
and non-rewinding proofs for Schnorr identification and signatures. In: Bhargavan,
K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
529–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 24

4. Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme.
Cryptology ePrint Archive, Report 2021/404 (2021)

5. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani, S., di Vimercati (eds.)
ACM CCS 2006, pp. 390–399. ACM Press, October 2006

https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-65277-7_24
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37

Chain Reductions for Multi-signatures and the HBMS Scheme 677

8. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 11

9. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

10. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

11. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

12. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

13. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

14. Damg̊ard, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. Cryptology ePrint
Archive, Report 2020/1110 (2020). https://eprint.iacr.org/2020/1110

15. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press,
May 2019

16. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme
with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48965-0 9

17. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

18. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 3

19. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. In: IEE Proceedings-Computers and Digital Techniques, vol. 141, no.
5, pp. 307–313 (1994)

20. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Res. Dev. 71, 1–8 (1983)

21. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-44598-6_14
https://eprint.iacr.org/2020/1110
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2

678 M. Bellare and W. Dai

22. Li, C.-M., Hwang, T., Lee, N.-Y.: Threshold-multisignature schemes where sus-
pected forgery implies traceability of adversarial shareholders. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 194–204. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0053435

23. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

24. Ma, C., Weng, J., Li, Y., Deng, R.: Efficient discrete logarithm based multi-
signature scheme in the plain public key model. Des. Codes Crypt. 54(2), 121–133
(2010)

25. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Des. Codes Crypt. 87(9), 2139–2164 (2019)

26. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001, pp. 245–254. ACM
Press, November 2001

27. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 8

28. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) ACM CCS 2020, pp. 1717–1731. ACM Press, November 2020

29. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir
scheme. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57332-1 11

30. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

31. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

32. Rotem, L., Segev, G.: Tighter security for Schnorr identification and signatures:
a high-moment forking lemma for Σ-protocols. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 222–250. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84242-0 9

33. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

34. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

35. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: 2016 IEEE Symposium on Security and Privacy, pp. 526–545. IEEE
Computer Society Press, May 2016

https://doi.org/10.1007/BFb0053435
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-69053-0_18

Authenticated Key Exchange

Symmetric Key Exchange with Full
Forward Security and Robust

Synchronization

Colin Boyd1(B), Gareth T. Davies2(B) , Bor de Kock1(B) ,
Kai Gellert2(B) , Tibor Jager2(B), and Lise Millerjord1(B)

1 NTNU – Norwegian University of Science and Technology, Trondheim, Norway
{colin.boyd,bor.dekock,lise.millerjord}@ntnu.no

2 Bergische Universität Wuppertal, Wuppertal, Germany
{davies,kai.gellert,tibor.jager}@uni-wuppertal.de

Abstract. We construct lightweight authenticated key exchange proto-
cols based on pre-shared keys, which achieve full forward security and
rely only on simple and efficient symmetric-key primitives. All of our
protocols have rigorous security proofs in a strong security model, all
have low communication complexity, and are particularly suitable for
resource-constrained devices.

We describe three protocols that apply linear key evolution to pro-
vide different performance and security properties. Correctness in par-
allel and concurrent protocol sessions is difficult to achieve for linearly
key-evolving protocols, emphasizing the need for assurance of availabil-
ity alongside the usual confidentiality and authentication security goals.
We introduce synchronization robustness as a new formal security goal,
which essentially guarantees that parties can re-synchronize efficiently.
All of our new protocols achieve this property.

Since protocols based on linear key evolution cannot guarantee that all
concurrently initiated sessions successfully derive a key, we also propose
two constructions with non-linear key evolution based on puncturable
PRFs. These are instantiable from standard hash functions and require
O(C · log(|CTR|)) memory, where C is the number of concurrent ses-
sions and |CTR| is an upper bound on the total number of sessions per
party. These are the first protocols to simultaneously achieve full forward
security, synchronization robustness, and concurrent correctness.

1 Introduction

Authenticated key exchange protocols based on pre-shared long-term symmetric
keys (PSK-AKE) enable two parties to use a previously established symmetric

This work was supported by Deutscher Akademischer Austauschdienst (DAAD) and
Norges forskningsr̊ad (NFR) under the PPP-Norwegen programme. Colin Boyd and
Lise Millerjord have been supported by NFR project number 288545. Tibor Jager
and Gareth T. Davies have been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, grant
agreement 802823.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 681–710, 2021.
https://doi.org/10.1007/978-3-030-92068-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_23&domain=pdf
http://orcid.org/0000-0002-5935-5725
http://orcid.org/0000-0003-3143-4381
http://orcid.org/0000-0003-0985-7265
https://doi.org/10.1007/978-3-030-92068-5_23

682 C. Boyd et al.

key, agreed upon via out-of-band communication, to (mutually) authenticate
and derive a shared session key. Prominent examples of such protocols are the
PSK modes of TLS 1.3 and prior TLS versions, but these examples still make use
of public-key techniques for key derivation, even if authentication uses symmet-
ric keys. PSK-AKE protocols can be significantly more efficient than classical
public-key AKE protocols, particularly when they can be constructed exclu-
sively based on symmetric key primitives (“symmetric AKE”) for both authen-
tication and key derivation. Therefore such protocols are especially desirable for
performance-constrained devices, such as battery-powered wireless IoT devices,
where every computation and every transmitted bit has a negative impact on
battery life. More generally, such protocols may be preferable in “closed-world”
applications, such as industrial settings, where pre-sharing keys may be eas-
ier and more practical than deploying a public-key infrastructure. Furthermore,
protocols based purely on symmetric-key techniques, such as hash functions and
symmetric encryption, also achieve security against quantum attacks by adjust-
ing security parameters appropriately.

Forward Security in Symmetric AKE Protocols. Forward security is today a
standard security goal of key exchange protocols. It requires that past session
keys remain secure, even if the secret long-term key material is compromised.
Note that this is only achievable if past session keys are not efficiently computable
from a current long-term key. Forward security is comparatively easily achievable
if public key cryptography is used. For instance, a classical approach is to use
ephemeral keys for key establishment, such as the Diffie-Hellman protocol or,
more generally, a key encapsulation mechanism (KEM). Independent long-term
keys can then be used for authentication via digital signatures or another KEM.

The only currently known way to avoid public key techniques and use only
symmetric key primitives is based on the “derive-then-evolve” approach, where
first a session key is derived from a long-term key, and then the long-term key
is evolved. This key evolution prevents efficient re-computation of prior session
keys which yields forward security. Both steps can be implemented with simple
key derivation functions. There are two common ways to use this approach:

1. Synchronized key evolution. In this case, both parties evolve their long-term
keys in “epochs”, e.g., once per day. Note that this approach cannot achieve
“full” forward security, but only a weaker “delayed” form. This is because
all session keys of the current epoch can be computed from the current long-
term secret, so forward security only holds for session keys of past epochs.
Moreover, this approach requires synchronized clocks between parties, even to
achieve correctness. For many applications this seems impractical, in partic-
ular for cheap low-performance devices, for which symmetric AKE protocols
are particularly relevant.

2. Triggered key evolution. In this case the protocol ensures that both parties
advance their key material during protocol execution. This approach directly
achieves “full” forward security for every session, and therefore seems prefer-
able. However, this apparently simple approach turns out to be much less

Symmetric KEX with Full Forward Security and Robust Synchronization 683

trivial to realize than might be expected, because both parties must remain
“in sync”, such that correctness is guaranteed even in presence of concurrent
sessions or message loss due to network failures or active attacks. This app-
roach has similarities with ratcheting [1], but there are significant differences
in our setting as discussed under Related Work below.

Concurrency and Key-Evolving Protocols. The possibility of running concurrent
protocol sessions in parallel is a standard correctness requirement for protocols,
and reflected in all common AKE security models, such as the BR and CK
models [8,15] and their countless variants and refinements. The main technical
challenge of key evolution is to achieve full forward security while maintaining
correctness in the presence of parallel and concurrent protocol sessions.

Even if we assume that all parties are honest and that all messages are
transmitted reliably (i.e., without being dropped because of an unreliable net-
work or influence from an adversary) this is already highly non-trivial and we
do not know of any currently existing forward-secure symmetric AKE protocol
which achieves correctness and full forward security in such a setting. The diffi-
culty is essentially that one session might advance a key “too early” for another
concurrent session to be completed, which breaks correctness. No such difficulty
appears in classical forward-secure public key protocols, since long-term keys are
usually static and different sessions use independent randomness. So it turns out
that, somewhat surprisingly, forward security and correctness is more difficult
to achieve for symmetric AKE.

To complicate matters even further, note that the assumption of honest par-
ties and reliable message transmission is very strong and may not be realistic for
many applications. Therefore we actually want to achieve forward security and
“synchronization robustness” in the presence of an adversary which intentionally
aims to break synchronization, e.g., by adaptively dropping or re-ordering mes-
sages. Such an adversary is attacking availability properties of the AKE proto-
col, an important aspect of security usually omitted from key exchange security
models. The development of techniques to ensure availability for stateful key
exchange is an unsolved foundational problem.

Our Contributions. In this work we develop several new lightweight forward-
secure symmetric AKE protocols with different efficiency and correctness prop-
erties. Table 1 summarizes the main security and efficiency properties of our new
protocols. This includes the first protocols that provably achieve synchronization
robustness, a formal availability security notion we introduce, and correctness in
the presence of concurrent sessions. More concretely we achieve the following.

Security model. We describe a security model suited to forward-secure sym-
metric AKE capturing entity authentication (one-sided and mutual), indis-
tinguishability of established keys, and forward security. Our model follows a
standard approach for AKE protocols based on the Bellare-Rogaway model
[8], adapted to the requirements of symmetric AKE with evolving keys.

684 C. Boyd et al.

Table 1. Overview of our protocols and comparison to SAKE [4]. The number in
the protocol name indicates the total number of messages per protocol run, “R only”
means that only the responder authenticates its communication partner. The third
column considers the communication complexity, where C is the number of counter
values that are sent, M the number of MACs, and N the number of nonces. Sync.
Rob. indicates the achieved level of synchronization robustness, Bd. Gap whether
the gap between two parties is bounded (for non-concurrent executions), CC whether
concurrent correctness is achieved, and FS whether full forward security is achieved.

Protocol Auth. (C, M, N) Sync. Rob. Bd. Gap CC FS

SAKE (5) [4] mutual (0, 4, 2) + ID ✗ ✓ ✗ ✓

SAKE-AM (4) [4] mutual (0, 4, 2) + ID ✗ ✓ ✗ ✓

LP3 mutual (3, 3, 2) weak ✓ ✗ ✓

LP2 mutual (2, 2, 0) weak ✗ ✗ ✓

LP1 R only (1, 1, 0) weak ✗ ✗ ✓

PP2 mutual (1, 2, 0) full ✓ ✓ ✓

PP1 R only (1, 1, 0) full ✓ ✓ ✓

Synchronization robustness. We formalize a new property called synchro-
nization robustness (SR), which is trivially achieved for traditional AKE pro-
tocols with fixed long-term keys, but turns out to be a crucial feature for
key-evolving protocols such as forward-secure symmetric AKE. Essentially,
SR captures whether parties in a protocol can efficiently re-synchronize their
states in order to complete a successful protocol run. This should even hold
if an adversary controls the network and/or some of the parties.
We define two flavours. Both consider an active adversary that may execute
arbitrary protocol sessions to manipulate the state of parties, and whose goal
is to manipulate the state such that a subsequent protocol execution fails.
In weak SR the ‘target’ protocol session must then be executed without adver-
sarial interaction (similar to the corresponding requirement in Krawczyk’s
weak forward security [26]). “Full” SR allows the adversary arbitrary queries
between messages of the ‘target’ session, even to parties of the oracles involved
in the ‘target’ session.

Linear key evolving protocols. We define the notion of linear key evolution,
which makes the classical “derive-then-evolve” approach concrete. We argue
that protocols based on linear key evolution can only achieve weak SR and
cannot achieve concurrent correctness.
We construct three different protocols (LP1, LP2, LP3, cf. Table 1), all of
which achieve weak SR. Most interestingly, LP3 even achieves a “bounded
gap” property, which means that no active adversary in control of the network
is able to force the state of two parties to differ by more than one key evolving
step, so that a party is always able to catch up quickly, if necessary. For all
three protocols we show that in a setting where concurrent runs between two
parties are allowed, this number of steps required to catch up is bounded

Symmetric KEX with Full Forward Security and Robust Synchronization 685

in the number of concurrent runs. To this end, we apply a new approach
to precisely analyze the state machine of a protocol. Furthermore, we also
show two extremely lightweight protocols LP1 and LP2, which provide one-
sided and mutual authentication, respectively, and where the communication
complexity is only one (resp. two) MAC and one (resp. two) counter value.

Full SR and concurrent correctness. This leads to the question of whether
and how full synchronization robustness and concurrent correctness (CC)
can be achieved. We propose the use of puncturable pseudorandom functions
(PPRFs) to apply a “non-linear” key evolving strategy, and we construct two
protocols PP1 and PP2, which both achieve full SR and CC.
Since PPRFs can be efficiently instantiated from cryptographic hash func-
tions, both protocols are extremely lightweight. PP1 achieves one-sided
authentication with a single counter value and a single MAC, PP2 mutual
authentication with one counter and two MACs. Furthermore, while repeated
puncturing PPRFs may lead to large secret keys [3], we take advantage of the
stateful nature of symmetric AKE protocols to instantiate the PPRF such
that secret key size is at most logarithmic in the number of sessions.

Hence, we offer a versatile catalogue of lightweight and forward-secure sym-
metric AKE protocols with significantly stronger correctness and security prop-
erties. This includes the first protocols to achieve concurrent correctness and full
synchronization robustness, or weak SR with bounded gap. Which of these pro-
tocols is best for a particular application depends on the nature of the security
and functionality requirements. Further, in LP3 the parties exchange nonces: we
recognize that in some applications sufficient randomness will not be available
and so we prove the protocol secure for any nonce generation procedure, which
could be random selection or (stateful) use of a counter.

Related Work. Bellare and Yee [9] analyzed forward security for symmetric-key
primitives, specifically pseudo-random generation, message authentication codes
and symmetric encryption. They provide constructions using key evolution which
are similar to the linear key evolution that we employ, and their protocols use
some techniques from key-evolving schemes such as prior work on forward-secure
signatures [6]. Their work does not deal with key exchange.

Brier and Peyrin [14] gave a tree-based protocol for key establishment, with
the stated aim of improving the DUKPT scheme defined in ANSI X9.24 [2]. The
idea in DUKPT is that the client device (payment terminal) is highly constrained
in terms of memory, yet needs to derive a unique key per transaction from an
original pre-shared key, by applying a PRF (based on Triple-DES) to a counter
and the base derivation key. Their work involves formalizing the specific problem
faced in the payment terminal setting, and their scheme assumes an incorruptible
server: a far weaker security model than the one that we consider. A similar

686 C. Boyd et al.

security assumption was used by Le et al. [27], who presented a protocol for use
in the context of Radio Frequency Identification (RFID), where the server keeps
two values of the key derivation key to deal with potential synchronization loss.

Li et al. [28] analyzed the pre-shared key ciphersuites of TLS 1.2, using an
adaption of the ACCE model of Jager et al. [23]. In this setting, Li et al. presented
a formalization of the prior AKE-style models, but where parties could share
PSK material with other parties in addition to their long-term key pairs.

Dousti and Jalili [18] presented a key exchange protocol called FORSAKES,
which is based on synchronized time-based key evolution. Their protocol requires
3 messages and assumes perfect synchronicity of parties to achieve correctness,
and as we have already mentioned their approach can only obtain delayed forward
security. A discussion of delayed forward security and more generally the various
challenges involved in defining forward security was given Boyd and Gellert [12].

The concept of evolving symmetric keys is reminiscent of Signal’s double
ratchet [1], a well-known example of a symmetric protocol with evolving keys.
Signal employs a Diffie-Hellman-ratchet, which adds new key material at every
step through multiple Diffie-Hellman exchanges along the way. At every step of
this main ratchet a separate linear key evolving ratchet is ‘branched off’, which
is similar to how linear evolution works in our protocols—however, a critical
difference is that in our scenario we evolve the key shared across different sessions
as opposed to evolving a key within one session as happens in the Signal protocol.
It is this difference which leads to the complexity of managing synchronization
between sessions which run concurrently. In addition to this difference, which
anyway makes Signal unusable for our setting, use of Diffie-Hellman in the Signal
ratchet means that there is a vector for quantum attacks, while our protocol is
purely based on symmetric primitives.

Another primitive conceptually similar to PPRFs is puncturable encryption,
which was introduced by Green and Miers in 2015 [20], and has since led to sev-
eral follow-up constructions of puncturable encryption [16,17,21,30]. However,
all those constructions rely on expensive public-key techniques (such as bilinear
pairings) and are thus impractical in the context of this work.

Comparison with Avoine et al. [4]. In Table 1 above we have mentioned two proto-
cols named SAKE and SAKE-AM that were presented by Avoine et al. [4] (hence-
forth ACF20). Their paper was the first to provide key exchange protocols that
attain forward security via linear evolution. Their system assumptions are largely
the same as ours, with the crucial difference that our models are equipped to cap-
ture parallel executions. The security model of ACF20 explicitly disallows concur-
rent sessions, which not only yields a weak security notion, but also sidesteps the
major difficulty of achieving even correctness in the presence of concurrent ses-
sions in key-evolving symmetric-key protocols. Indeed, the protocols from ACF20
completely break down when executed concurrently, allowing an adversary to pre-
vent the parties from computing any session keys in future sessions. We consider
this an unrealistic and impractical restriction for many applications. Therefore we
introduce the new notion of synchronization robustness, which formally defines

Symmetric KEX with Full Forward Security and Robust Synchronization 687

the ability of key-evolving protocols to deal with concurrent executions, including
in adversarial environments.

We embrace the use of (explicit) counters to acquire linear key evolving
protocols that are conceptually simpler and require fewer messages than those
provided by ACF20, in a way that additionally provides (weak) synchronization
robustness. In any protocol that uses PSK evolution to achieve forward security a
party must update the key state after a successful protocol run, and in embedded
devices this requires writing to persistent storage. Our protocols require the
updating (writing) of one key and one counter per session, while SAKE and
SAKE-AM require updating two keys. Since a sequentially evolving key can also
be seen as an implicit counter, conceptually the distinction between counters
and evolving keys seems to be minor. The storage overhead of our protocols
compared to ACF20’s protocols is the (usually 8-byte) counter, while the linear
key evolving protocols in our paper and ACF20 require storage of two keys
(usually 16 or 32 bytes).

We note that ACF20 remarked that the parties could use separate PSKs
for concurrent executions, however this solution requires an a priori bound on
the number of possible concurrent sessions that could occur and a correspond-
ing multiplication in key storage: none of our protocols require this. Further,
implementing their approach would require a modification of their protocols,
since parties need to know which PSK to use, and the security of these modified
protocols is not proven.

Preliminaries. We denote the security parameter as λ. For any n ∈ N let 1n

be the unary representation of n and let [n] = {1, . . . , n} be the set of numbers
between 1 and n. We write x $←− S to indicate that we choose element x uniformly
at random from set S. For a probabilistic polynomial-time algorithm A we define
y $←− A(a1, . . . , an) as the execution of A (with fresh random coins) on input
a1, . . . , an and assigning the output to y. The function NextOdd(x) takes as
input an integer and outputs the next odd integer greater than x, i.e. whichever
element of {x + 1, x + 2} is odd. Our protocols require the use of counters,
and integer |CTR| is the largest possible counter value. Furthermore, we write
[n] × [n] \ (i∗, j∗) as a shorthand for {(i, j) ∈ [n]2} \ {(i∗, j∗) with i < j}.

1.1 Message Authentication Codes

Throughout this paper we assume that all MACs are deterministic. This is to
reduce complexity in our proofs, however most MACs used in practice are deter-
ministic [22,25].

Definition 1 (Message Authentication Codes). A message authentica-
tion code consists of three probabilistic polynomial-time algorithms MAC =
(KGen,Mac,Vrfy) with key space KMAC and the following properties:

– KGen(1λ) takes as input a security parameter λ and outputs a symmetric key
KMAC ∈ KMAC;

688 C. Boyd et al.

Fig. 1. The SEUF-CMA-Q security experiment for message authentication code MAC.
A can make Q queries to OVrfy.

– Mac(KMAC,m) takes as input a key KMAC ∈ KMAC and a message m. Output
is a tag σ;

– Vrfy(KMAC,m, σ) takes as input a key KMAC ∈ KMAC, a message m, and a tag
σ. Output is a bit b ∈ {0, 1}.
We call a message authentication code correct if for all m, we have

Pr
KMAC $←−KGen(1λ)

[
Vrfy(KMAC,m,Mac(KMAC,m)) = 1

]
= 1.

We define MAC security as strong existential unforgeability under chosen
message attack, where the adversary has access to a verification oracle. In the
more common version of this game, which we denote SEUF-CMA-1, the adversary
must stop running after it submits its first verification query: this is a subcase of
our more general definition. Bellare et al. [5] showed that in the strong unforge-
ability case these definitions are equivalent up to a loss factor Q.

Definition 2 (MAC Security). The advantage of an adversary A in the
SEUF-CMA-Q security experiment defined in Fig. 1 for message authentication
code MAC is

AdvSEUF-CMA-Q
MAC (A) := Pr

[
GSEUF-CMA-Q
MAC (A) = 1

]
.

1.2 Pseudorandom Functions

Definition 3 (Pseudorandom Functions). A pseudrandom function is a
deterministic function y = PRF(k, x) that takes as input some key k ∈ KPRF

and some element of a domain DPRF, and returns an element y ∈ RPRF.

Definition 4 (PRF Security). The advantage of an adversary A in the
PRF-sec security experiment defined in Fig. 2 for pseudorandom function PRF
is

AdvPRF-secPRF (A) :=
∣
∣
∣
∣Pr

[
GPRF-sec
PRF (A) = 1

] − 1
2

∣
∣
∣
∣ .

Symmetric KEX with Full Forward Security and Robust Synchronization 689

Fig. 2. The PRF-sec security experiment for pseudorandom function PRF. {F : DPRF →
RPRF} is the set of all functions from DPRF to RPRF.

2 Authenticated Key Exchange in the Symmetric Setting

In this section we describe our model for authenticated key exchange with for-
ward security in the symmetric setting. Our model follows the standard app-
roach of AKE protocols based on the Bellare-Rogaway model [8], adapted to
the requirements of symmetric AKE with evolving keys. This includes defini-
tions for entity authentication (one-sided or mutual), key indistinguishability,
and forward security. Furthermore, we define the property of synchronization
robustness, which is a crucial feature for forward-secure symmetric key exchange
protocols. Parts of our formalization take inspiration from the models of Jager
et al. [23].

Differences to public-key AKE models. The most notable difference in the sym-
metric key setting is that each pair of parties is initialized with shared key
material, which is specified before the actual protocol is run. This key material
typically includes MAC keys or key derivation keys that have been established in
an out-of-band communication (e.g., chosen during the manufacturing process
of devices). In order to achieve forward-security via “key evolving techniques” in
the symmetric key setting, we additionally have to provide (sessions of) parties
with the ability to modify the party’s key material. As a consequence, the shared
key material of two parties will not always be equal: While one party might evolve
their key before preparing the first protocol message, the responder can (at the
earliest) evolve after it has received that message.

2.1 Execution Environment

We consider a set of n parties {P1, . . . , Pn}, where each party is a potential
protocol participant. We refer to parties by Pi or by their label i if context is
clear. Initially, each pair of parties (Pi, Pj) with i �= j share a common secret
PSKi,j , which is the initial key material generated during protocol initialization
(e.g., MAC keys or key derivation keys). Note that this key material may evolve
over time and that PSKi,j and PSKj,i may not necessarily be equal at all times.

690 C. Boyd et al.

We model parallel executions of a protocol by equipping each party i with
q ∈ N session oracles π1

i , . . . , πq
i . Each session oracle represents a process that

executes one single instance of the protocol. All oracles have access to the “global
key material” PSK (including the ability to modify the key material PSK). More-
over, each oracle maintains an internal state consisting of the following variables:

Variable Description

α Execution state ∈ {uninitialized, negotiating, accept, reject}
pid Identity of the intended partner ∈ {P1, . . . , Pn}
ρ role ∈ {Initiator,Responder}
sk Session key ∈ Ks ∪ ⊥ for some session key space Ks

κ Freshness of session key ∈ {exposed, fresh}
sid Session identifier

b Security bit ∈ {0, 1}

Additionally, we assume that each oracle has an additional temporary state
variable, used to store ephemeral values or the transcript of messages. As initial
state of the oracle, we have α = uninitialized and κ = fresh and b $←− {0, 1}.
Note that pid and ρ are set when the adversary interacts with the respective
oracles and that sid and sk are defined as the protocol/adversary progresses.

As usual, if an oracle derives a session key then it will enter the execution
state accept. If an oracle reaches the execution state reject, then it will no
longer accept any messages. Later on when we describe protocols, the event
Abort will identify points at which this action would be triggered.

To begin any of the experiments in this section, the challenger initializes n
parties {P1, . . . , Pn}, with each pair of parties sharing symmetric key material
PSK as specified by the protocol.

An adversary interacts with session oracles πs
i by issuing the following queries.

Several of these queries add output to an oracle transcript (defined below) which
is available to the adversary.

– NewSessionI(πs
i , pid) initializes a new initiator session for party Pi with

intended partner pid. Specifically, this query assigns pid, ρ = Initiator and
α = negotiating to πs

i , creates the first protocol message and adds this to
transcript of πs

i .
– NewSessionR(πs

i , pid,m) initializes a new responder session for party Pi with
ρ = Responder and intended partner pid, and delivers a protocol message to
this oracle. Specifically, it assigns pid and ρ = Responder to πs

i and processes
message m. The message m and consequent protocol messages (if any) are
added to its transcript, and the execution state is set to negotiating.

– Send(πs
i ,m) delivers message m to oracle πs

i . This input message, and conse-
quent protocol messages (if any), are added to this oracle’s transcript.

– RevealKey(πs
i) reveals session key sks

i and sets πs
i .κ to exposed.

– Corrupt(Pi, Pj) (issued to some oracle of Pi or Pj) returns PSKi,j . If the query
Corrupt(Pi, Pj) is the τ -th query issued by A, we say that all oracles πi with

Symmetric KEX with Full Forward Security and Robust Synchronization 691

pid = j are τ -corrupted. (i.e., party Pi becomes τ -corrupted with respect to
the other party Pj). An uncorrupted oracle is considered as +∞-corrupted.

– Test (πs
i) chooses sk0

$←− Ks, sets sk1 = πs
i .sk and returns skb. This oracle

can only be queried once, and the query making this action is labelled τ0.

The adversary must call NewSessionI or NewSessionR in order to specify a
role and intended partner identifier for each oracle it wishes to use. Afterwards,
the adversary can use the Send query to convey messages to these oracles.

2.2 AKE Security

To define entity authentication we use matching conversations [8] for oracle part-
nering, which requires a definition of an oracle’s transcript : Ts

i is the sequence
of all messages sent and received by πs

i in chronological order. The standard
definition of matching conversations, reflects that the party that sends the last
message cannot be sure that the responder received that protocol message. We
use this definition for entity authentication.

Note that an oracle πs
i only has a transcript, Ts

i , if πs
i .α �= uninitialized.

Transcript Tt
j is a prefix of Ts

i if Tt
j contains at least one message and messages

in Tt
j are identical to and in the same order as the first |Tt

j | messages of Ts
i .

Definition 5 (Partial-transcript Matching conversations [23, Def. 3]).
πs

i has a partial-transcript matching conversation to πt
j if

– Tt
j is a prefix of Ts

i and πs
i has sent the last message(s), or

– Ts
i = Tt

j and πt
j has sent the last message(s).

However, standard matching conversations are not strong enough to define
key indistinguishability in a symmetric setting and leave room for a trivial attack
(intuitively, this is due to the “asynchronous evolution” of the global key mate-
rial PSK). Consider an adversary that uses the above execution environment to
execute some protocol between two (sessions of two) parties. The adversary for-
wards all messages but the last one between both parties. At this point the party
that sent the last message must have reached the accept state and applied some
one-way procedure to its key material PSK in order to achieve forward security.
However, the other party still needs to receive the final message in order to derive
the session key and update its version of the key material. If the adversary were
now to use Test on the accepting party while using Corrupt on the other party,
this leads to a trivial distinguishing attack in standard key indistinguishability
games (e.g., in [23]). Hence, we need to introduce a slightly stronger notion of
matching conversations to precisely capture when Corrupt queries are allowed:
the conversation is only deemed to be matching if all messages were delivered.

Definition 6 (Guaranteed Delivery Matching conversations). πs
i has a

guaranteed delivery matching conversation to πt
j if Ts

i = Tt
j.

As usual, we say that the adversary breaks entity authentication if it forces
a fresh oracle to accept maliciously, and breaks key indistinguishability if it can
distinguish from random an established key that it cannot trivially access.

692 C. Boyd et al.

Definition 7 (Entity Authentication). Let Π be a protocol. Let GEnt-Auth
Π (A)

be the following game:

– The challenger initializes n parties and their keys;
– A may issue queries to oracles NewSessionI, NewSessionR, Send, RevealKey,

Corrupt and Test as defined above;
– Once A has concluded, the experiment outputs 1 if and only if there exists an

accepting oracle πs
i such that the following conditions hold:

1. both Pi (w.r.t. Pj) and intended partner Pj (w.r.t. Pi) were not corrupted
before query τ0;

2. there is no unique πt
j, with ρs

i �= ρt
j, such that πs

i has a partial-transcript
matching conversation to πt

j.

Define the advantage of an adversary A in the Ent-Auth security experiment
GEnt-Auth

Π (A) as

AdvEnt-AuthΠ (A) := Pr
[
GEnt-Auth

Π (A) = 1
]
.

An oracle πs
i accepting in the above sense ‘accepts maliciously’.

Later on we separate the analysis of an initiator oracle accepting maliciously
from a responder oracle accepting maliciously. Further, we will present protocols
that only provide one-sided authentication: this requires separation of the AKE
definition. To this end, we use the following notation:

AdvEnt-AuthΠ (A) = AdvEnt-Auth-IΠ (A) + AdvEnt-Auth-RΠ (A).

Definition 8 (Key Indistinguishability). Let Π be a protocol. Let GKey-Ind
Π (A)

be the following game:

– The challenger initializes n parties and their keys;
– A may issue queries to oracles NewSessionI, NewSessionR, Send, RevealKey,

Corrupt and Test as defined above;
– Once A has output (i, s, b′) to indicate its conclusion, the experiment outputs

1 if and only if there exists an oracle πs
i such that the following holds:

1. πs
i accepts, with a unique oracle πt

j, such that πs
i has a partial-transcript

matching conversation to πt
j, when A issues its τ0-th query;

2. A did not issue RevealKey to πs
i nor πt

j (so κs
i = fresh) and ρs

i �= ρt
j;

3. Pi (w.r.t. Pj) is τi-corrupted and Pj (w.r.t. Pi) is τj-corrupted, with
τi, τj > τ0;

4. at the point of query τj, oracle πt
j had a guaranteed delivery matching

conversation to πs
i , and

5. b′ = πs
i .b.

Define the advantage of an adversary A in the Key-Ind security experiment
GKey-Ind

Π (A) as

AdvKey-IndΠ (A) :=
∣
∣
∣
∣Pr

[
GKey-Ind

Π (A) = 1
]

− 1
2

∣
∣
∣
∣ .

Symmetric KEX with Full Forward Security and Robust Synchronization 693

We assume that all adversaries in the Key-Ind game are valid, meaning that
they terminate and provide an output in the correct format (i.e. (i, s, b′) ∈
[n]×[q]×{0, 1}). Later on in our proofs we will follow the game-hopping strategy,
and in doing so we will often simplify exposition by additionally assuming adver-
saries that do not trigger a trivial win (in the Key-Ind game or any subsequent
modifications of this game).

We define AKE security in three flavors, distinguished by the level of entity
authentication that is achieved by the protocol. An adversary breaks the AKE
security of a protocol if it wins either the entity authentication game, or the key
indistinguishability game.

Definition 9 (Authenticated Key Exchange). Let Π be a protocol. The
advantage of an adversary A in terms of AKE-M (mutual entity authentica-
tion), resp. AKE-I (initiator authenticates the responder), resp. AKE-R (respon-
der authenticates the initiator) is defined as follows:

AdvAKE-MΠ (A) := AdvKey-IndΠ (A) + AdvEnt-Auth-IΠ (A) + AdvEnt-Auth-RΠ (A).

AdvAKE-IΠ (A) := AdvKey-IndΠ (A) + AdvEnt-Auth-IΠ (A).

AdvAKE-RΠ (A) := AdvKey-IndΠ (A) + AdvEnt-Auth-RΠ (A).

We do not specify any protocols that provide AKE-I alone in this paper, however
it is defined here for completeness.

2.3 Concurrent Execution Synchronization Robustness

We now describe a novel property for key exchange protocols. The goal is to
capture, in a formal manner, how robust a protocol is in the event of adversarial
control of the network and/or some of the parties. We seek a definition that asks:
after an adversary has had control of the communication network (by executing
arbitrary Send and NewSessionI/NewSessionR queries), can an honest protocol
run be executed successfully? Specifically, if it is possible for the parties to lose
synchronization (due to dropped messages or adversarial control) such that the
parties cannot, in one protocol run, regain synchronization and compute the
same key, then the protocol does not meet this property.

Our formalization follows the execution environment of the Ent-Auth and
Key-Ind games described above, and allows an adversary to specify the protocol
run (that it is attempting to ‘interrupt’) at the end of its execution by specifying
two oracles. The challenger awards success if the two parties (specifically those
two oracles) did not accept with the same session key. We define two flavours: a
weaker version wSR in which the ‘target’ protocol run must be executed without
any other messages interleaved, and a stronger version SR which allows arbitrary
queries in between messages of the ‘target’ run, even to parties of the oracles
involved in the ‘target’ run (though of course not to the two oracles).

We define an honest protocol run (via adversarial queries) between two oracles
(with initial state uninitialized) as follows: a NewSessionI query was made that
produced a protocol message m1, a NewSessionR query was made to the other

694 C. Boyd et al.

oracle with input message m1, and if this query produced a protocol message
m2 then this value was given as a Send query to the other oracle, and so on,
until all protocol messages have been created and delivered, if possible. In the
event that any of these queries fails (returns ⊥) the honest protocol run aborts.
This honest protocol run can be thought of as a genuine attempt to execute a
protocol execution.

Definition 10 ((weak) Synchronization Robustness). Let Π be a proto-
col. Let GwSR

Π (A) with boxed text or GSR
Π (A) with dashed boxed text be the

following game:

– The challenger initializes n parties and their keys;
– A may issue queries NewSessionI, NewSessionR and Send as defined above;
– Once A has output (i, j, s, t) to indicate its conclusion, the experiment outputs

1 if and only if the following conditions hold:
1. πs

i .pid = Pj and πt
j .pid = Pi;

2. πs
i .sk �= πt

j .sk or both values are ⊥;
3. an honest protocol run was executed between πs

i and πt
j;

4. no queries were made by A to interrupt the protocol execution between
πs
i and πt

j.

4. no protocol messages in the transcripts of πs
i and πt

j were sent to any
other oracles before they were delivered in the honest run.

Define the advantage of an adversary A in the XX security experiment
GXX

Π (A), for XX ∈ {wSR,SR}, as

AdvXXΠ (A) := Pr
[
GXX

Π (A) = 1
]
.

Notes on the definitions. Note 1: Condition (4.) in the SR experiment states
that for each genuine protocol message in the ‘target’ session, A must not have
provided this message to any other oracles before that message is delivered as
part of the ‘target’ run. This prevents a trivial attack where A delivers the final
protocol message to two oracles: first to some other oracle than the ‘target’ oracle
(but of the same party), then to the target oracle. When the (genuine) protocol
message is delivered to the party for the second time the target oracle would
abort. The parties have still created exactly one key for this genuine protocol
run, and so condition (4.) essentially fixes the allowable output oracles as the
ones that are processing protocol messages for the first time. (Replay attacks are
not an issue in the wSR setting, since the execution must be uninterrupted and
so any action made after that run has occurred has no impact on A’s chances of
winning.) Note 2: We do not allow Corrupt queries in this definition: in all of the
protocols in this paper we assume pairwise shared key material (and specifically,
no keys that are used by a party for communication with multiple other parties).
This means that the adversary is not allowed to corrupt the parties in the target
run with respect to each other, and that all other Corrupt queries will be of no
benefit to an attacker. A similar argument follows for RevealKey queries. This

Symmetric KEX with Full Forward Security and Robust Synchronization 695

simplifies the security experiment, while capturing the property that we wish
to assess. Note 3: In an alternative formulation of our definitions, the target
protocol run could be performed by the challenger as an Execute query as seen in
past literature [7]. We avoid this approach for two reasons. First, in the SR case,
in order to support interleaving, the adversary would have to call the challenger
to initiate each stage of the execution (i.e. k +1 times for a k-message protocol),
and this is notationally awkward. Secondly and perhaps more importantly, our
model allows the adversary to attempt to win its game in multiple protocol runs,
and output the oracles which provides the best chance of success. Thus to retain
the strength of the definition we would require multiple Execute queries, resulting
in a model that looks very similar to what we have presented here.

3 Linear Key Evolution

In this section we present a number of protocols that use linear key evolution
to derive session keys. All of these protocols achieve wSR. It is not hard to see
that full robustness (SR) is not achievable with linearly evolving protocols. To
win the SR game the adversary makes a new complete protocol run after the
target run has started and the session key is computed at one party, but before
the session key is computed at the second party. This means that when the
target session completes, the long-term key has already evolved and the key will
be computed with the wrong version of the long-term key at the second party.
Either the session will fail at the second party or the key will be different at the
two parties. (There is a third case when the key is independent of the long-term
key, but in that case the protocol fails to achieve key indistinguishability.)

The first linear key evolving protocol that we present, LP3, exchanges three
short messages and has the attractive property of bounding the gap between the
counters of the two parties. We present two further protocols which are even more
efficient at the cost of some restrictions. LP2 is a two-message protocol but in
order to maintain mutual authentication we insist that parties running LP2 have
fixed their role as either initiator or responder (not an unreasonable assumption
in many application scenarios). Our simplest protocol, LP1, has only a single
message but, in addition to requiring fixed roles, like any other one-message
protocol it can only achieve unilateral authentication. For all of our protocols
we provide theorems guaranteeing authentication, key indistinguishability and
weak synchronization robustness (wSR) security.

Syntax and Conventions. All protocols in this paper use message authenti-
cation codes to ensure that parties can only process messages that are meant
for them. This means that party A stores a key KMAC

AB (static) for MAC and key
derivation key kCTR

AB (evolving) to communicate with B, and KMAC
AC and kCTR

AC to
communicate with C, etc. We describe the key derivation process in more detail
in Sec. 3.1.

In LP2 and LP3, the party sending the protocol message includes its own
identity in the MAC computation: this stops redirection/reflection attacks of

696 C. Boyd et al.

Fig. 3. Linear key evolution and the corresponding experiment.

protocol messages to the sending party. For LP1 this is not necessary since the
sending party advances after sending its protocol message, meaning that its state
is ahead and therefore it is unable to process messages that it has already sent.

3.1 Key Derivation via Linear Evolution

Before looking at specific protocols, we define what we mean by linear key evo-
lution and present an abstract security definition for it. Party A holds a key
derivation key kCTR

AB for use in communication with party B, where the value
CTR is an integer that defines the current key state, which is the number of
times the key has evolved since its creation. After a party has participated in a
key exchange run and computed a session key, it will apply a function Advnc to
this key derivation key in order to obtain the next key derivation key and update
the counter. This process is detailed in Fig. 3a. Looking ahead, forward security
will be obtained if the function that computes kCTR+1

AB from kCTR
AB is one-way: this

stipulation ensures that an adversary corrupting a party has no way to move
upwards in the figure.

The initial “key derivation key” (KDK) is k0
AB . Subsequent KDKs are derived

using a pseudorandom function PRF with KPRF = RPRF as

ki+1
AB = PRF(ki

AB , "ad") (1)

and session keys are derived as

ski
AB = PRF(ki

AB , "der")

where "ad"(“advance”) and "der"(“derive”) are constant labels used for domain
separation.

Symmetric KEX with Full Forward Security and Robust Synchronization 697

Furthermore, for convenience, we define a function Advnc which performs
multiple key derivations, if necessary. That is, Advnc(ki

AB , i, z) takes an i-th key
derivation key for some counter i and an integer z, and applies PRF iteratively z
times to obtain the (i + z)-th KDK such that (1) is satisfied, and sets i := i + z.
For example:

ki+z
AB , i + z ← Advnc(ki

AB , i, z).

Security. For the security proofs of our protocols it will be convenient to have an
abstract security definition for such a key derivation scheme, which we will show
to be implied by the security of the PRF. To this end, Fig. 3b represents a security
experiment for the linear key evolution scheme that we describe. The adversary
A outputs an integer 1� (in unary, to ensure that the number
 is polynomially
bounded for any efficient A), and the adversary’s task is to distinguish sk�

from random, when given all prior session keys sk0, . . . sk�−1 and the ‘next’ key
derivation key k�+1.

Definition 11. The advantage of A in in the KEvol security experiment defined
in Fig. 3b for pseudorandom function PRF is defined as

AdvKEvolPRF (A) :=
∣
∣
∣
∣Pr [b = b′] − 1

2

∣
∣
∣
∣ .

In the full version [11] we give the straightforward proof of the following
theorem.

Theorem 12. Let PRF be a pseudorandom function. For any adversary A
against the KEvol security of PRF, there exists an adversary B against the
PRF-sec of PRF such that

AdvKEvolPRF (A) ≤
 · AdvPRF-secPRF (B).

3.2 LP3: A Three-Message Protocol

Intuition. In Fig. 4 we present a three-message protocol called LP3, which puts
a bound on how far initiator and responder can be out of sync, allows either
party to initiate communications, and provides mutual authentication. After the
first message is sent by an initiator, the responding party advances to catch up
if they are behind. Then they respond, and the initiator does the same if they
are behind. A third message confirms that both parties are now in sync again,
and only after that a session key is established. We make use of state analysis
proofs to show that the gap between the two states will be bounded even if
messages are lost on the way (Lemma 13) and extend this proof to a scenario
where concurrent runs are allowed (Lemma 14). We then show that the number
of concurrent runs is a bound on the gap that can occur. We show in Theorem 15
that this also implies that the protocol achieves weak synchronization robustness
(wSR). The protocol uses MACs and nonces to achieve mutual authentication
(AKE-M). The functions Advnc and KDF, for PSK advancement and session key
derivation respectively, are implemented using a PRF as described in Fig. 3a and
Sect. 3.1.

698 C. Boyd et al.

Fig. 4. LP3, a three-message protocol.

State. The protocol uses nonces on both the initiating (NA) and responding
(NB) sides. Local session state keeps track of these, and so it is only necessary
to send NA in the first protocol message and only NB in the second message.
The nonce generation procedure is denoted GenN, and this process could be,
for example, random selection of a bitstring of some fixed length, or a (per-
recipient) counter maintained by the party (note however that this counter is
distinct from CTR, which tracks the key derivation key’s evolution stage). This
choice depends on the application scenario, and this abstraction is for cleaner
proofs. In the absence of a hardware RNG, random nonces require memory to be
allocated for code of a software CSPRNG, while maintaining a counter requires
writing to persistent storage (though such writes must be made anyway in linear
key evolving protocols). The probability of a collision in random selection from
NS can be bounded by coll[qN,GenN] ≤ q2

N

2|NS| , and the collision probability of
a (per-recipient) counter of size |NS| that is called qN times is

coll[qN,GenN] =
{

0 for 0 ≤ qN ≤ |NS| − 1,
1 for qN ≥ |NS|.

Symmetric KEX with Full Forward Security and Robust Synchronization 699

We do not specify the additional counters required to make LP3 deterministic,
so it is specified here as a protocol with random nonces.

LP3 achieves AKE-M security (proof in the full version [11]). The security
bound is
AdvAKE-MΠ (A) ≤ n2 ·

(
4AdvSEUF-CMA-Q

MAC (B) + 4coll[q,GenN] + q · AdvKEvolPRF (C)
)
.

Bounded Gap: Non-concurrent Setting. We will now prove that the “gap”
between the state of the two parties in LP3 is bounded in the non-concurrent
setting, that is:

Lemma 13. Let A and B be respectively the initiator and the responder of a
single—non-concurrent—LP3-run. Let δAB be the gap between A and B with
respect to the evolution of the master keys of both parties. Then δAB ∈ {−1, 0, 1},
assuming MAC-security.

The messages in LP3 are counted in a natural way, as indicated in Fig. 5a.
For this non-concurrent setting the proof is similar to [4, Lemma 1]. Then the
notation “(CTRAB , CTRBA)” means that, when the run ends, the last valid
message received by A has index CTRAB , and the last valid message received
by B has index CTRBA. We call a (CTRAB ,CTRBA)-run a run where the last
message received by A is message CTRAB , and the last message received by B
is message CTRBA. By convention CTRAB = 0 means that no message has been
received by A. In Fig. 5b, we define the states to be the different values of δAB .
The transitions are the possible messages. An example: if our protocol instance
is in state δAB = −1, and B responds to message 1 with message 2, i.e. transition
(2, 1) in the state diagram, the initiator will advance twice and the state will be
δAB = 1. A then sends the third message: transition (2, 3) takes place and we
end up in state δAB = 0 since this third message will cause the responder to
advance.

Proof. We prove Lemma 13. The protocol is initialized with δAB = 0 and the
first step is sending message 1: either the message never reaches the responder,
or the message is received correctly. In either case neither party advances, so
δAB = 0—i.e. transition (0, 1) in Fig. 5b is fired. If the protocol now terminates
we end up in state 0, while sending and receiving message 2 would cause the
initiator to advance, or in terms of the state diagram, fire (2, 1) and transition
to δAB = 1.

Because we restrict ourselves to non-concurrent executions, the only possible
option no matter the state is to advance with one message or terminate and start
from (0, 1). Adding all possible transitions to the state diagram, we observe that
there are no reachable states other than 0 and 1. Since the protocol does not
have fixed roles we can reach a state −1 by changing roles after we reached
state 1. From there, there are two transitions that bring us back to states 0 and
1. Since we assume that MACs cannot be forged, these are the only reachable
states, thus δAB ∈ {−1, 0, 1} always holds.

700 C. Boyd et al.

Fig. 5. Different states for LP3, and transitions between them.

Bounded Gap: Concurrent Setting. We will now extend Lemma 13 to the
concurrent setting.

Lemma 14. Let A and B be respectively the initiator and the responder of C
concurrent LP3-runs. Let δAB be the gap between A and B with respect to the
evolution of the master keys of both parties. Then −C ≤ δAB ≤ 1+C, assuming
MAC-security.

To illustrate the (in a sense) multidimensional effect of concurrent runs on
the protocol, we will now use a different message labelling convention. Figure 5a
defines the different states the protocol execution can be in. The state diagram in
Fig. 6 now uses these four possible protocol states as diagram states—a message
between state a and b is thus necessarily message 1. The internal state of the
four ‘macro states’ in the diagram now represents the value of δAB .

Observe that for the transitions from a to b and from b to c, i.e. the sending
of messages 1 and 2, respectively, the evolution of δAB depends on the actual
value of a. For all transitions caused by message 3, the change is systematic:

1. Any transition from c to d will decrease δAB by 1;
2. any transition from b to c will increase δAB by at least 1.

Additionally there are two ‘resets’, since

3. any transition from a to b will set δAB to 0, if the gap is 1 or more;
4. any transition from b to c will set δAB to 1, if the gap is 0 or less.

Proof. We prove Lemma 14. In Lemma 13, the normal range is shown to be
δAB ∈ {−1, 0, 1}. Extensions beyond this range are possible when the condition
in 1. or 2. above occurs during a run, so each consecutive run can influence δAB

with −1 or +1 at most. Since we assume MAC-security, the adversary cannot
influence the protocol with messages other than those authentically sent during
one of the runs. Inductively, we conclude −C ≤ δAB ≤ 1 + C.

Symmetric KEX with Full Forward Security and Robust Synchronization 701

Fig. 6. Synchronization state for LP3 in the concurrent setting.

wSR of LP3. We now argue that LP3 obtains weak synchronization robustness
(wSR), the property that captures how well a protocol can recover from network
errors and interleaving of protocol runs. In the wSR game the adversary can
make arbitrary NewSessionI, NewSessionR and Send queries, and at its conclusion
it outputs the identifiers of two oracles: it is said to win the wSR game if these
oracles engaged in an uninterrupted protocol run but did not compute the same
session key. As such, a proof of wSR must argue that whatever values of party
state exist before the target protocol run occurs, neither of the parties will abort
and both will arrive at the same session key.

Our general approach for proving robustness of all of the protocols in this
paper is to separate adversaries that win the wSR game via forging a MAC value,
and those that do not produce a forgery during their execution. LP1 (Fig. 8) and
LP2 (Fig. 7) have fixed roles and as a result the initiator’s counter value must
always be at least the size of the responder’s counter value for the protocol to
have correctness. Thus a MAC forgery can force the responding party’s counter
value to be arbitrarily large, and the target protocol run will cause at least one
party to abort, and the adversary wins the wSR game. LP3, on the other hand,
is actually not vulnerable in the sense of synchronization robustness if a MAC
forgery does occur. This is due to LP3 being designed to have correctness for all
starting (integer) counter values, since in any session, both parties can catch up
from being arbitrarily far behind.

We formally prove this below, however to see this visually, consider Fig. 6
for the execution of a single protocol run, i.e. from a to d. For any initial state
difference a, the state c after the second protocol message has been processed
is always 1 (the initiator computes a session key and advances once), leading
to state difference 0 after the responder processes the final protocol message
(deriving a session key and advancing once).

Theorem 15 (wSR of LP3). Let Π be the three-message protocol in Fig. 4,
built using MAC = {KGen,Mac,Vrfy} and PRF with n parties. Then for any
adversary A against the wSR security of Π, AdvwSRΠ (A) = 0.

702 C. Boyd et al.

Proof. The only places where Abort occurs in the protocol description (Fig. 4)
are after MAC verification failures: in the target protocol session all messages are
honestly generated so this cannot occur (assuming perfect correctness of MAC).
As a result, the only route to victory in the wSR game for an adversary is to make
the parties compute different session keys. This occurs if the parties compute
session keys but have different counter values once all three protocol messages
have been delivered and processed: following the notation and arguments in
Lemma 14, this is the same as showing that δ = 0 after a (2, 3) session for
any starting delta value. More precisely, let A and B be the parties involved
in the target session where A sends the first protocol message, let δpreAB be the
gap between A and B with respect to the evolution of the master keys of both
parties and the point before the target session begins (i.e. before the adversary
calls NewSessionI for the target session), and let δpostAB be the gap after the target
session has occurred. Figure 5b shows that δpostAB = 0 for δpreAB ∈ {−1, 0,−1}, so to
complete the proof we need to show that this also holds for arbitrary δpreAB .

If δpreAB ∈ {1, 2, . . . , }, i.e. CTRAB is ahead of CTRBA by δpreAB = z1 steps, then
the first protocol message processing by B results in B advancing its counter
CTRBA by δpreAB steps, leading to state difference 0. This means that A will not
advance on receiving the second protocol message and both parties will compute
a session key for state CTRAB and then advance once, and so δpostAB = 0.

If δpreAB ∈ {−1,−2, . . . , }, i.e. CTRBA is ahead of CTRAB by −δpreAB = z2 steps,
B does not advance in processing the first message, however A does advance by
−δpreAB = z2 steps on receiving the second protocol message. Again this leads to
state difference 0 and here a session key is computed for state CTRBA and then
both parties advance once, so δpostAB = 0.

This concludes the proof, since any initial state will lead to the target protocol
run computing the same session key for the involved parties.

3.3 LP2: A Two-Message Protocol with Fixed Roles

In Fig. 7 we present a two-message protocol, LP2, with linear key evolution.
The roles of initiator and responder are fixed, so the same party initiates every
session: this is enforced by CTRAB ≥ CTRBA (for A initiating).

Achieving weak synchronization robustness (wSR) is slightly more compli-
cated in LP2 than it was in LP3. If we were to adapt LP3 to a two-message
protocol by simply dropping the last message and having the responder accept
(thus, deriving a session key and advancing its state), we could end up in a situ-
ation where we break the requirement that the responder should never advance
past the state of the initiator. In this hypothetical protocol, the initiator will
initiate the key exchange, but will not derive a session key until it has authenti-
cated the responder. The responder, however, will authenticate the initiator upon
receiving the first protocol message (rather than waiting for a key confirmation
message as in LP3) and produce the second protocol message, after which it
will immediately derive a session key and advance its state. Thus, if this second
protocol message is not delivered, the responder will have advanced its state,
but the initiator has not, contradicting our requirement that CTRAB ≥ CTRBA.

Symmetric KEX with Full Forward Security and Robust Synchronization 703

Fig. 7. LP2, a two-message protocol with fixed roles.

In order to avoid this in LP2, the initiator A will always advance to the next
odd value of its counter at the beginning of each session. How many steps the
initiator advances depends on what has happened earlier. If a complete session
has been executed as A’s previous action, A starts by advancing once, so that
its state counter is ahead of B. If in the previous session A never processed
the second protocol message, A will advance twice at the beginning of the next
session, in order to catch up to B and move ahead. The reasoning behind this
is the separation of A’s counter set: if the counter is an even integer then A has
most recently received a message (and derived a key), whereas if it is an odd
integer then A most recently sent a (session opening) protocol message. In both
cases, advancing to NextOdd(CTRAB) will have the desired effect.

With this simpler protocol we are able to achieve most of the desired proper-
ties from SP3, but with a more lightweight protocol. Fixing the roles makes this
possible, and this demonstrates the fine balance between forward security and
(weak) synchronization robustness. In the event that the reduced communica-
tion complexity of LP2 compared to LP3 is desirable when choosing a protocol,
but if the application demands that either party can initiate, it is possible to run
LP2 in duplex mode. In duplex mode, both parties keep separate key derivation
keys and counters for initiating and responding such that both parties can have
both roles without violating the condition CTRAB ≥ CTRBA.

704 C. Boyd et al.

LP2 provides AKE-M security, with security bound
AdvAKE-MΠ (A) ≤ n2 ·

(
4 · AdvSEUF-CMA-Q

MAC (B) + q · AdvKEvolPRF (C)
)
. The proof [11]

proceeds similarly to the LP3 proofs, except here there are no nonces so no
coll[q,GenN] term is required. LP2 also provides wSR security. The proof of
this (in the full version [11]) slightly differs from LP3 because now we must
additionally argue that the only way the counters can be modified is via a MAC
forgery.

3.4 LP1: A One-Message Protocol with Fixed Roles

In Fig. 8 we present a one-message protocol, LP1, with linear key evolution. Like
in LP2, the roles of initiator and responder are fixed, so the same party initiates
every session: i.e. CTRAB ≥ CTRBA (for A initiating). LP1 achieves one-sided
authentication (responder authenticates initiator). Achieving weak synchroniza-
tion robustness (wSR) is similar in LP1 and LP2, and is guaranteed by MAC
security. Theorems and proofs are in the full version [11]. Like with LP2, if both
parties need to be able to initiate then LP1 can be run in duplex mode.

Fig. 8. LP1, a one-message protocol with fixed roles.

4 Non-linear Key Evolution

In the previous section, we have considered protocols that deploy a linear key
evolving mechanism. We have seen that the linearity of these mechanisms has
significant downsides when the protocol runs multiple times in parallel between
the same two parties. Especially interleaving of messages might cause all but one
protocol execution to abort, which is an undesirable behavior.

In this section, we present a protocol that uses puncturable pseudorandom
functions (PPRFs) as a “non-linear” key evolution mechanism. We show that
this protocol can establish many parallel sessions between two parties, while

Symmetric KEX with Full Forward Security and Robust Synchronization 705

only requiring some additional storage (logarithmic in the supported maximum
number sessions) and computations (in practice hash function evaluations loga-
rithmic in the supported maximum number of sessions).

4.1 Puncturable Pseudorandom Functions

We briefly recall the basic definition of puncturable pseudorandom functions
(PPRF). A PPRF is a special case of a pseudorandom function, where it is
possible to compute punctured keys, which do not allow evaluation on inputs that
have been punctured. We recall the definition of a PPRF and its security [29].

Definition 16 (PPRF). A puncturable pseudorandom function with key
space KPPRF, domain DPPRF, and range RPPRF consists of three probabilistic
polynomial-time algorithms PPRF = (Setup,Eval,Punct), which are described as
follows:

– Setup(1λ): This algorithm takes as input the security parameter λ and outputs
a description of a key k ∈ KPPRF.

– Eval(k, x): This algorithm takes as input a key k ∈ KPPRF and a value x ∈
DPPRF, and outputs a value y ∈ RPPRF, or a failure symbol ⊥.

– Punct(k, x): This algorithm takes as input a key k ∈ KPPRF and a value x ∈
DPPRF, and returns a punctured key k′ ∈ KPPRF.

Note that the puncturing procedure can also output an unmodified key
(i.e. k′ = k). This is for example reasonable if the procedure is called on an
already-punctured value.

Definition 17 (PPRF Correctness). A PPRF is correct if for every subset
{x1, . . . , xt} = S ⊆ DPPRF and all x ∈ DPPRF \ S, it holds that

Pr
[
Eval(k0, x) = Eval(kt, x) : k0

$←− Setup(1λ);
ki = Punct(ki−1, xi) for i ∈ [t];

]
= 1.

The security experiment asks that an adversary cannot distinguish an eva-
lution of a real input (provided by the adversary) from a random output range
element, even if the adversary has access to an evaluation oracle and the key
that results from puncturing on the challenge input.

Definition 18 (PPRF Security). The advantage of an adversary A in the
rand security experiment Grand

PPRF(A) defined in Fig. 9 is

AdvrandPPRF(A) :=
∣
∣
∣
∣Pr

[
Grand
PPRF(A) = 1

] − 1
2

∣
∣
∣
∣ .

706 C. Boyd et al.

Fig. 9. The rand security experiment for puncturable PRF PPRF.

4.2 PPRF-Based Symmetric AKE

Intuition. The main idea of our PPRF-based protocol is to derive the session key
via an evaluation of the PPRF. That is, both parties share a PPRF evaluation
key k, which is used to derive session keys by computing Eval(k,NA) for some
value NA (in our protocols this will be a counter). After derivation of a session
key, the PPRF key will also be punctured at the value NA by computing k ←
Punct(k,NA). Note that the new key k cannot recompute Eval(k,NA) as it has
been punctured for NA. This will be our leverage to achieve forward security.

Additionally, the PPRF is an essential building block to achieve full syn-
chronization robustness in our protocols. Intuitively, the puncturing procedure
of a PPRF does not evolve its key “linearly” but rather enables fine-grained
removal of evaluation capabilities. This guarantees that every protocol run with
some fresh value NA for Eval(k,NA) will be completed successfully, even if other
protocol runs with some value N′

A �= NA are executed in-between.

Our protocols. We present a one-message and a two-message protocol, based on
PPRFs. Both protocols have fixed roles, meaning the same party will always
initiate (and only this party is required to store the counter). The two-message
protocol implicitly authenticates both parties (and thus achieves mutual authen-
tication), while the one-message protocol inherently only achieves responder-only
authentication (responder authenticates initiator). Hence, we will only focus on
the two-message protocol shown in Fig. 10 and provide a description and security
analysis for the one-message protocol in the full version [11].

Another important aspect of our protocols is that they use counters to sys-
tematically “exhaust” the PPRF. We will later discuss that this approach assists
the efficiency of tree-based PPRFs as discussed in Aviram et al. [3]. The number
of session keys that can be derived is equal to the size of the counter space.

In the full version [11] we prove that protocol PP2 shown in Fig. 10 provides
key indistinguishability and mutual authentication. The reduction is standard,
and we require SEUF-CMA-Q of the MAC and rand security of the puncturable
PRF.

Symmetric KEX with Full Forward Security and Robust Synchronization 707

Fig. 10. A symmetric AKE protocol PP2 that tolerates concurrent sessions, using a
puncturable PRF PPRF = (Setup,Eval,Punct).

4.3 Synchronization Robustness of PP2

In the full version [11] we prove that PP2 achieves full synchronization robustness
(SR) with security bound AdvSRΠ (A) ≤ n2 · AdvSEUF-CMA-Q

MAC (B), and here we give
a high-level overview of the proof strategy. Intuitively we want to show that any
adversary, making arbitrary message delivery queries between any of the parties
(and their session oracles), cannot cause an adversarially chosen but honestly
executed target protocol run to break down.

The robustness proof essentially needs three arguments: 1) the adversary
cannot forge protocol messages without breaking the security of the MAC, 2)
replaying messages from the target protocol run to other oracles is not beneficial
to the adversary, and 3) the correctness of the PPRF ensures that interleaving
queries with nonce values different to the one used in the target session will not
influence the successful computation of a session key in the target session.

4.4 Instantiation

It remains to discuss how PP2 can be instantiated with a PPRF and what
impact the PPRF has on its efficiency. A promising candidate is the Goldreich–
Goldwasser–Micali PRF [19], which can be transformed to a PPRF [10,13,24].
We give an intuitive explanation of the construction and refer the reader to [3] for
a more detailed description and analysis. This construction is especially suitable,

708 C. Boyd et al.

as both the PPRF evaluation and puncturing are solely based on hash function
evaluations in practice.

Intuition. The tree-based PPRF uses two functions H0 and H1 both mapping
from {0, 1}λ to {0, 1}λ. For every input x ∈ {0, 1}λ of the PPRF, the binary
representation of x prescribes the sequence in which H0 and H1 have to be
repeatedly applied to x. For example, Eval(01) = H1(H0(x)). Note that the
evaluation of x corresponds to a path through a binary tree, where each bit in
x tells you whether to take a “left” or “right” path. The result of an evaluation
always corresponds to a leaf in the binary tree.

The initial PPRF key consists of the root node, which is initialized during
key generation as a randomly chosen string. To puncture values (i.e., to puncture
leaves of the tree), we precompute and store all nodes on the co-path between
the root and the leaf, before deleting all parent nodes (including the root node)
of the leaf. Note that this procedure can be repeated for any of the leaves and
note that it satisfies all puncturing-relevant properties (i.e., re-computation of
Eval(x) is not possible but the correctness of the PPRF remains intact).

Memory Consumption. We briefly discuss the memory consumed by the PPRF
during the lifetime of PP2 (and PP1). First, note that the PPRF-based proto-
cols deploy counters, which (if all messages are delivered in sequence) ensure a
systematic puncturing from the leftmost leaf to the rightmost leaf of the binary
tree. This yields the need to store at most log(|CTR|) tree nodes (i.e., at most
one node per layer of the tree) at any point in time. For C concurrent sessions,
this bound increases to a maximum of C · log(|CTR|) tree nodes.

The analysis gets slightly more difficult if an adversary actively drops pro-
tocols messages. Each dropped message will either cause the initiator or both
parties to not puncture at some position. One approach to tame the memory
consumption in this case, would be to always puncture on all values which are
smaller than CTR−C.1 As we never expect more than C sessions in parallel, this
reduces additional memory caused by lost messages. In this case, the memory
consumption is again upper-bounded by C · log(|CTR|) tree nodes.

Finally, note that in the one-message protocol PP1 [11] the initiator always
punctures strictly in order and thus has to store at most log(|CTR|) tree nodes.
This may be particularly useful in an application where many low-end devices
communicate with a central server.

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 5

1 Interestingly, the tree-based PPRF can puncture multiple values in one go by “chop-
ping off” whole branches of the tree, instead of puncturing all values one after
another.

https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5

Symmetric KEX with Full Forward Security and Robust Synchronization 709

2. Retail Financial Services Symmetric Key Management Part 1: Using Symmetric
Techniques (ANSI x9.24). Standard, American National Standards Institute, New
York, USA (2009)

3. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient for-
ward security for TLS 1.3 0-RTT. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 117–150. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3 5

4. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 199–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-40186-3 10

5. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in
message authentication and authenticated encryption. Cryptology ePrint Archive,
Report 2004/309 (2004). http://eprint.iacr.org/2004/309

6. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

9. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

10. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

11. Boyd, C., Davies, G.T., de Kock, B., Gellert, K., Jager, T., Millerjord, L.: Sym-
metric key exchange with full forward security and robust synchronization. IACR
Cryptol. ePrint Arch, p. 702 (2021). https://eprint.iacr.org/2021/702

12. Boyd, C., Gellert, K.: A modern view on forward security. Comput. J. (2020).
https://doi.org/10.1093/comjnl/bxaa104

13. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

14. Brier, E., Peyrin, T.: A forward-secure symmetric-key derivation protocol. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 250–267. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 15

15. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

16. Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (Puncturable)
KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 159–190. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64837-4 6

https://doi.org/10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
http://eprint.iacr.org/2004/309
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://eprint.iacr.org/2021/702
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-17373-8_15
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-030-64837-4_6

710 C. Boyd et al.

17. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 14

18. Dousti, M.S., Jalili, R.: FORSAKES: a forward-secure authenticated key exchange
protocol based on symmetric key-evolving schemes. Adv. Math. Commun. 9(4),
471–514 (2015). https://doi.org/10.3934/amc.2015.9.471

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

20. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE
Computer Society Press, May 2015. https://doi.org/10.1109/SP.2015.26

21. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

22. FIPS 198–1: The Keyed-Hash Message Authentication Code (HMAC). Standard,
NIST (2008)

23. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

24. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013, pp. 669–684. ACM Press, November 2013. https://doi.org/
10.1145/2508859.2516668

25. (NIST SP)-800-185: SHA-3 derived functions: cSHAKE, KMAC, TupleHash and
ParallelHash. Special Publication. Standard, NIST (2016)

26. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

27. Le, T.V., Burmester, M., de Medeiros, B.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: Bao, F., Miller,
S. (eds.) ASIACCS 07, pp. 242–252. ACM Press, Mar 2007

28. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the pre-
shared key Ciphersuites of TLS. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 669–684. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 38

29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014. https://doi.org/10.1145/2591796.2591825

30. Sun, S.-F., Sakzad, A., Steinfeld, R., Liu, J.K., Gu, D.: Public-Key puncturable
encryption: modular and compact constructions. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 309–338. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 11

https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.3934/amc.2015.9.471
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1007/978-3-030-45374-9_11

Security Analysis of CPace

Michel Abdalla1,2(B) , Björn Haase3(B) , and Julia Hesse4(B)

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
2 DFINITY, Zürich, Switzerland

3 Endress+Hauser Liquid Analysis, Gerlingen, Germany
bjoern.haase@endress.com

4 IBM Research Europe, Zürich, Switzerland
jhs@zurich.ibm.com

Abstract. In response to standardization requests regarding password-
authenticated key exchange (PAKE) protocols, the IRTF working group
CFRG has setup a PAKE selection process in 2019, which led to the
selection of the CPace protocol in the balanced setting, in which par-
ties share a common password. In subsequent standardization efforts,
the CPace protocol further developed, yielding a protocol family whose
actual security guarantees in practical settings are not well understood.
In this paper, we provide a comprehensive security analysis of CPace in
the universal composability framework. Our analysis is realistic in the
sense that it captures adaptive corruptions and refrains from modeling
CPace’s Map2Pt function that maps field elements to curve points as
an idealized function. In order to extend our proofs to different CPace
variants optimized for specific elliptic-curve ecosystems, we employ a
new approach which represents the assumptions required by the proof as
libraries accessed by a simulator. By allowing for the modular replace-
ment of assumptions used in the proof, this new approach avoids a
repeated analysis of unchanged protocol parts and lets us efficiently ana-
lyze the security guarantees of all the different CPace variants. As a
result of our analysis, all of the investigated practical CPace variants
enjoy adaptive UC security.

1 Introduction

Security analysis and efficient implementation of cryptographic protocols are
often split into separate working groups. As a result, subtle differences between
the actually implemented and analyzed protocols easily emerge, for example
when implementors slightly tweak the protocol to improve efficiency. An exam-
ple where particularly aggressive optimizations for efficiency are implemented
on the protocol level is CPace as specified in current internet drafts [23,24].
CPace is a password-authenticated key exchange protocol (PAKE) [8], which

J. Hesse—Author supported by the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 786725 OLYMPUS.
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 711–741, 2021.
https://doi.org/10.1007/978-3-030-92068-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_24&domain=pdf
http://orcid.org/0000-0002-2447-4329
http://orcid.org/0000-0002-9413-5226
http://orcid.org/0000-0002-2875-6198
https://doi.org/10.1007/978-3-030-92068-5_24

712 M. Abdalla et al.

allows two parties to establish a shared cryptographic key from matching pass-
words of potentially low entropy. PAKEs are extremely useful for establishing
secure and authenticated communication channels between peers sharing short
common knowledge. The common knowledge could be a PIN typed into different
wearables in order to pair them, sensor readings recorded by several cars in order
to create an authenticated platoon or a security code manually entered by an
admin to connect her maintenance laptop with a backbone router.

On a high level, CPace works as follows. Given a cyclic group G, parties
first locally and deterministically compute a generator g ← Gen(pw), g ∈ G from
their passwords in a secure way, so that g reveals as little information about the
password as possible. Then, both parties perform a Diffie-Hellman key exchange
by choosing secret exponents x and y, respectively, exchanging gx and gy and
locally compute K = (gx)y = (gy)x. The final key is then computed as the
hash of K together with session-identifying information such as transcript. The
currently most efficient implementations of the above blueprint protocol use
elliptic curve groups of either prime or composite order. To securely compute
the generator, the password is first hashed to the finite field Fq over which the
curve is constructed, and then mapped to the curve by a map called Map2Pt.
Depending on the choice of curve, efficiency tweaks such as simplified point
verification on curves with twist security, or computation with only x-coordinates
of points can be applied [22,23]. Unfortunately, until today, it is not clear how
these modifications impact security of CPace, and whether the protocol can be
proven secure without assuming (Map2Pt ◦ H) to be a truly random function.

A short history of CPace. In 1996, Jablon [30] introduced the SPEKE protocol,
which performs a Diffie-Hellman key exchange with generators computed as g ←
HG(pw), i.e. using a function HG hashing directly to the group. Many variants
of SPEKE have emerged in the literature since then, including ones that fixed
initial security issues of SPEKE. Among them, the PACE protocol [9,33] aims at
circumventing direct hashing onto the group with an interactive Map2Pt protocol
to compute the password-dependent generators. From this, CPace [22] emerged
by combining the best properties of PACE and SPEKE, namely computing the
generator without interaction while avoiding the need to hash directly onto the
group. More precisely, password-dependent generators are computed as g ←
Map2Pt(H(pw)). In 2020, the IRTF working group CFRG has chosen CPace as
the recommended protocol for (symmetric) PAKE.

Prior work on the security of CPace. Bender et al. [9] conducted a game-based
security analysis of the explicitly authenticated PACE protocol variants used
in travel documents. Their work focusses on different variants of interactive
Map2Pt constructions and hence does not allow for any conclusions about CPace
which uses a (non-interactive) function Map2Pt.

Static security of CPace, including function Map2Pt and some implemen-
tation artifacts such as cofactor clearing, was formally analyzed in [22]. Their
work is the first to attempt a formalization of Map2Pt that allows for a secu-
rity analysis. However, their proof was found to be insufficient by reviews done

Security Analysis of Cpace 713

during the CFRG selection process [28,37], and indeed, the claimed security
under the plain computational Diffie-Hellman assumption seems to be difficult
to achieve. Besides these issues, their work does not consider adaptive corrup-
tions and implementation artifacts such as twist security or single-coordinate
representations.

Abdalla et al. [1] analyzed static security of several EKE [8] and SPEKE
variants in the UC framework, including SPAKE2 [5] and TBPEKE [34]. They
indicate that their proof for TBPEKE could be extended to CPace with gener-
ators computed as HG(pw) (i.e., without function Map2Pt) if the protocol tran-
script and password-dependent generator is included in the final key derivation
hash. However, in practice it is desirable to avoid unnecessary hash inputs for
efficiency reasons and protection against side-channel attacks.

In a concurrent work, Abdalla et al. [2] formalized the algebraic group model
within the UC framework and proved that the SPAKE2 and CPace protocols are
universally composable in the new model with respect to the standard function-
ality for password-based authenticated key exchange in [15]. Stebila and Eaton
[19] provided a game-based analysis of CPace in the generic group model. As
in [1], these further studies do not deal with adaptive security and only con-
sider a basic version of CPace without Map2Pt and without considering any
implementation artifacts.

The above analyses demonstrate that a basic version of CPace, which essentially
is a Diffie-Hellman key exchange computed on hashed passwords instead of a
public generator, is UC-secure if the attacker is restricted to static corruptions.
Unfortunately, this leaves many open questions. Does this basic protocol remain
(UC-)secure if we use generator Map2Pt(H(pw)) instead, as it is done in practice
to avoid direct hashing onto elliptic curves? Can the protocol handle adaptive
corruptions? Which impact on security do implementation artifacts have, such
as co-factor clearing on a composite-order curve group, or single-coordinate rep-
resentation as used in, e.g., TLS1.3? Can we reduce hash inputs in order to
make the protocol less prone to side-channel attacks? Altogether, it turns out
the security of the actually implemented CPace protocol is not well understood.

Our Contributions. In this paper, we provide the first comprehensive security
analysis of the CPace protocol that applies also to variants of CPace optimized
for usage with state-of-the-art elliptic curves. We identify the core properties of
the deterministic Map2Pt function that allow to prove strong security properties
of CPace. Crucially, we restrict the use of random oracles to hash functions
only and refrain from modeling Map2Pt as an idealized function, as it would
not be clear how to instantiate it in practice. We show that, using some weak
invertibility properties of Map2Pt that we demonstrate to hold for candidate
implementations, CPace can be proven secure under standard Diffie-Hellman-
type assumptions in the random-oracle model and with only minimal session-
identifying information included in the final key derivation hash. Our security

714 M. Abdalla et al.

proof captures adaptive corruptions and weak forward secrecy1 and is carried
out in the Universal Composability (UC) framework, which is today’s standard
when analyzing security of password-based protocols. Our work provides the first
evidence that SPEKE-type protocols can handle adaptive corruptions.

We then turn our attention to modifications of CPace and, for each modi-
fication individually, state under which assumptions the security properties are
preserved. In more detail, our analysis captures the following modifications.

– Using groups of composite order c ·p, where p is a large prime and c is a small
cofactor coprime to p.

– Realize Gen(pw) generator calculations using Map2Pt with either map-twice-
and-add strategy or as single execution.

– Using single-coordinate-only representations of elliptic-curve points in order
to speed up and facilitate implementation.

– Avoiding computationally costly point verification on curves with secure
quadratic twists such as Curve25519 [10].

To demonstrate the security of these variants, we take a new approach that
saves us from a repeated analysis of unchanged parts of CPace. Namely, we imple-
ment the CDH-type cryptographic assumptions required by CPace as libraries
which a simulator can access. This allows for modular replacement of assump-
tions required in the security proof, and lets us efficiently analyze all the different
CPace variants’ security guarantees. We believe that this new proof technique
might be of independent interest in particular for machine-assisted proving, since
reductions are captured in code instead of textual descriptions only.

As a side contribution, we identify a common shortcoming in all UC PAKE
security definitions in the literature [1,15,29,31], which impacts the suitability
of these definitions as building blocks in higher-level applications. Namely, all
these definitions allow a malicious party to learn the shared key computed by
an honest party without knowing her password. We strengthen the definition to
prevent such attacks, and demonstrate with our analysis of CPace that our fix
yields a security definition that is still met by PAKE protocols.

In conclusion, our results demonstrate that CPace enjoys strong provable
security guarantees in a realistic setting, and this holds for all its variants that
have been proposed in the different elliptic-curve ecosystems.

1.1 Technical Overview of Our Results

Map2Pt’s impact on security. At its core, the CPace protocol is a SPEKE-type
protocol, meaning that it is simply a Diffie-Hellman key exchange (DHKE) com-
puted with a generator that each party individually computes from her password.
Intuitively, the most secure choice is to compute g ← HG(pw), and indeed this
was proven secure [1,2] conditioned on H being a perfect hash function (or, put
1 In the case of PAKE, weak forward secrecy is implied by UC security and hence

achieved also by prior work. If key confirmation is added, then this gives a protocol
with perfect forward secrecy as noted in [1].

Security Analysis of Cpace 715

differently, a random oracle (RO)). However, DHKE-type protocols are most
efficient when implemented on elliptic-curve groups, and it is not known how
to efficiently hash directly onto such groups. Recent standardization efforts by
the CFRG [20] show that, in practice, one would always first hash to the finite
field Fq over which the curve is constructed, and then map the field element to
the curve G using some curve-specific mapping Map2Pt : Fq → G. Hence, the
generator in CPace can be assumed to be computed as g ← Map2Pt(H(pw)) for
a H being a hash function such as SHA-3.

In order to analyze how the function Map2Pt impacts CPace’s security, it
is obviously not helpful to abstract Map2Pt ◦ H as a truly random function.
In a first attempt to analyze under which properties of Map2Pt CPace remains
secure, Haase et al. [22] assumed Map2Pt to be a bijection. Intuitively, a bijective
Map2Pt function does not “disturb” the “nice” distribution of the prepended hash
function, and in particular does not introduce any collisions. Besides the known
shortcomings in their conducted analysis (the claimed security under CDH does
not seem to hold, and their proof lacks an indistinguishability argument [28,37]),
it does not cover non-bijective mappings on widely used short-weierstrass curves
such as NIST P-256. Hence, in our work we refrain from assuming Map2Pt to be
a bijection. Instead, we introduce a property of probabilistic invertibility, which
demands that, given an element g in the group G, we can efficiently compute
all preimages h ∈ Fq such that Map2Pt(h) = g. On a high level, this invertibil-
ity property will aid the simulation of CPace since it allows to “tightly” link a
group element g to a previously computed hash h and thus recognize collisions
efficiently. Here, tightly/efficiently means without iterating over all hash queries
in the system. We demonstrate that all mappings used in practice [20] are prob-
abilistically invertible. As a result, we conclude that CPace implemented with
current mappings enjoys strong security guarantees.

Adaptive security. Just like any other PAKE protocol, CPace comes with a large
likelihood for idling. Indeed, in practice it will most likely be the same person
who jumps between the two devices running the PAKE, to manually enter the
same password, PIN or code. This gives room for attackers to corrupt devices
during the run of the protocol, and hence calls for analyzing security of CPace
in the presence of adaptive corruptions. To our knowledge, there is no proof of
adaptive security for any SPEKE-type protocol in the literature. In this work,
we closely investigate CPace’s guarantees under adaptive corruptions and come
to an indeed surprising conclusion:

CPace enjoys adaptive UC security under the same DH-type assumptions
that seem required for static security.

The challenge of proving adaptive security lies in the need to reveal suitable
secret values computed by a previously honest party during the run of the pro-
tocol. For CPace, these are the secret Diffie-Hellman exponents x, y randomly
chosen by parties. A bit simplified, our idea is to start the simulation of an honest
party with gz for a generator g of group G and randomly chosen exponent z, and
hence independent of the actual (unknown) password used by that party. Upon

716 M. Abdalla et al.

corruption, the simulator learns pw and looks up the corresponding hash value
gr = H(pw) for which it knows r−1 thanks to H being modeled as a random ora-
cle. This allows the simulator to compute the “actual” secret exponent y ← zr−1

that the simulated party would have used if started with actual password pw.
Crucially, no additional assumptions or secure erasures are required and, as we
demonstrate in the body of our paper, this simplified strategy still works when
generators are computed using Map2Pt ◦H. Altogether, our analysis shows that
CPace enjoys UC-security under adaptive corruptions.

Falsifiable assumptions and a new approach to simulation-based proofs. A falsi-
fiable assumption can be modeled as an interactive game between an efficient
challenger and an adversary, at the conclusion of which the challenger can effi-
ciently decide whether the adversary won the game [21]. Most standard cryp-
tographic assumptions such as CDH, DDH, RSA, and LWE are falsifiable. An
example of a non-falsifiable assumption is the gap simultaneous Diffie-Hellman
assumption, which was used in prior CPace security analyses [1,2] and features a
full DDH oracle that cannot be efficiently implemented by the challenger. Intu-
itively, the DDH oracle seems inherent for proving UC security of CPace since
the attacker (more detailed, the distinguishing environment) determines pass-
words pw used by honest parties and also receives their outputs, which is the
final key K. More detailed, the attacker can deterministically compute the gen-
erator G used by an honest party from only pw, and it also receives the honest
party’s message gx. The attacker can now enforce the final key to be a DDH
tuple K = gxy by simply sending gy to the honest party (we omit the final key
derivation hash in this explanation for simplicity). Hence, to correctly simulate
the final key output by an honest party under attack, the simulator relies on
a DDH oracle. However, we observe that this oracle can be limited to specific
inputs g, gx that the attacker cannot influence. This turns out to be an impor-
tant limitation, because the restricted DDH oracle DDH(g, gx, ·, ·) can actually
be implemented efficiently using knowledge of trapdoor exponents r, r−1 of g.
Thus, our conclusion is that CPace’s security holds under falsifiable DH-type
assumptions.

As another contribution, we define falsifiable assumptions as efficiently imple-
mentable libraries that a simulator can call. The advantage of this approach is
that reductions to the underlying assumptions are integrated in the simulator’s
code, which will hence abort and detect itself whenever a query to the library
solves the underlying hard problem. This makes reduction strategies readable
from simulator codes and hence opens a new path for automatic verification
of simulation-based proofs. While we demonstrate this only to work for proofs
conducted in the UC framework and when using variants of strong CDH, we con-
jecture that our approach can be used for simulation-based proofs in arbitrary
frameworks whenever only falsifiable assumptions are used.

Minimal protocol design. For optimal protection against side-channel attacks, we
would like to have parties touch their passwords as little as possible. Optimally,
passwords are only used to compute the generator of the DHKE. Unfortunately,
in simulation-based frameworks a security proof often crucially relies on hashing

Security Analysis of Cpace 717

of secrets, and indeed previous CPace security analysis has relied on the password
being included in the final key derivation hash [1]. In this work we ask what the
minimal set of protocol-related values is that needs to be included in both hash
functions used in CPace. Perhaps surprisingly, we find that CPace’s security can
be proven when (1) the password hash does not get any additional inputs and (2)
the final key derivation hash is over session-specific values and the Diffie-Hellman
key. Regarding (1), we observe that the simulation strategy (described above for
adaptive corruptions) works even if the generator g chosen by the simulator is
used to simulate multiple instances of CPace, and where different parties use the
same password: Choosing fresh secret exponents zA for each such simulated party
A ensures that all the revealed exponents zAr−1 are still uniformly distributed.
Regarding (2), our simulation simply does not need to learn the password from an
adversarial key derivation hash query: The simulator simply reads the simulated
parts gz and adversarial part Y of the transcript from the hash query and checks
consistency of the query’s format by checking whether it is a DDH tuple with
respect to each trapdoor generated upon password hashing. Since there can be
only a polynomial number of such queries, this simulation strategy is tight and
efficient and saves us from hashing the password another time.

Implementation artifacts. Depending on the type of curve CPace is deployed in,
the implementation will vary in certain aspects for which it is not clear how they
will impact CPace’s security. By adopting the security analysis to capture actual
Map2Pt mappings used in practice we already demonstrated how to deal with
the probably most important such artifact above. Closely related to this, we also
analyze security of CPace when implemented on curves of composite order p · c
with a small co-factor c, which needs to be “cleared” in order to ensure that
parties use generators of the large subgroup. We can integrate this modification
by chaining Map2Pt with a co-factor clearing function and by demonstrating
that the resulting mapping is still probabilistically invertible. Technically, we
“lift” our proof of security w.r.t simple Map2Pt described above by letting the
simulator call a co-factor clearing class that ensures that simulated values will
remain in the large subgroup.

A typical implementation pitfall is incorrectly implemented group-
membership verification. As such a failure easily remains unnoticed, optimized
resilient protocols such as X25519 and X448 [32] have been suggested for the con-
ventional Diffie-Hellman use-case. We believe that we are the first to formalize
the exact hardness assumption, the twist CDH problem sTCDH, under which the
claimed resilience regarding group membership omission is actually justified. We
show that under the sTCDH assumption, resilience with respect to incorrectly
implemented point verification can also be achieved for CPace, when instanti-
ated using single-coordinate Montgomery ladders on so-called “twist-secure” [12]
elliptic curves. For details on how to deal with other implementation artifacts
we refer the reader to Sect. 6 in the main body of the paper.

Roadmap. We introduce the PAKE security model in Sect. 2 and hardness
assumptions and requirements for Map2Pt in Sect. 3. Details of the CPace

718 M. Abdalla et al.

protocol are in Sect. 4. Then we analyse CPace, first using a simplified CPace
in Sect. 5 (modeling the map as random-oracle) and then extending the analy-
sis to real-world instantiations using actually deployed mapping constructions,
composite-order groups, details on twist security and single-coordinate repre-
sentations in Sect. 6. We defer the reader to the full version of this paper [4]
for proofs, a description of issues with previous UC PAKE functionalities and
implementation recommendations.

2 PAKE Security Model

We use the Universal Composability (UC) framework of Canetti [14] to formu-
late security properties of CPace. For PAKE, usage of the simulation-based UC
framework comes with several advantages over the game-based model for PAKE
introduced by Bellare et al. [7]. Most importantly, UC secure PAKE protocols
preserve their security properties in the presence of adversarially-chosen pass-
words and when composed with arbitrary other protocols. Originally introduced
by Canetti et al. [15], the ideal functionality FpwKE for PAKE (depicted in Fig. 1)
is accessed by two parties, P and P ′, who both provide their passwords. FpwKE

then provides both parties with a uniformly random session key if passwords
match, and with individual random keys if passwords mismatch. Since an adver-
sary can always engage in a session and guess the counterpart’s password with
non-negligible probability, FpwKE must include an adversarial interface TestPwd
for such guesses. Crucially, only one guess against every honest party is allowed,
modeling the fact that password guessing is an online attack and cannot be used
to brute-force the password from a protocol’s transcript. We refer the reader to
[15] for a more comprehensive introduction to the PAKE functionality.

An ideal functionality for the SPEKE protocol family. Unfortunately, FpwKE is
not suitable to analyze SPEKE-like PAKE protocols such as CPace, where ses-
sion keys are computed as hashes of Diffie-Hellman keys (and possibly parts of
the transcript). The reason is that FpwKE’s TestPwd interface allows password
guesses only during a protocol run, which requires a simulator to extract pass-
word guesses from the protocol’s transcript. When the final output is a hash, the
adversary might postpone its computation, keeping information from the simula-
tor that is required for password extraction. To circumvent these issues, recently
a “lazy-extraction PAKE” functionality FlePAKE was proposed and shown useful
in the analysis of SPEKE-like protocols by Abdalla et al. [1]. FlePAKE, which we
also depict in Fig. 1, allows either one online or one offline password guess after
the key exchange was finished. One might argue that usage of keys obtained from
FlePAKE is never safe, since the adversary might eventually extract the key from
it at any later point in time. This however can be easily prevented by adding
a key confirmation round, which keeps an adversary from postponing the final
hash query and guarantees perfect forward secrecy [1]. We refer the reader to [1]
for a thorough discussion of FlePAKE.

Security Analysis of Cpace 719

Our adjustments to FlePAKE. The main difference between our FlePAKE and all
PAKE functionalities from the literature [1,15,29,31] is that we remove a short-
coming that rendered these functionalities essentially useless as building blocks
for higher-level applications. More detailed, we remove the ability of the adver-
sary to determine an honest party’s output key in a corrupted session. The
change can be seen in Fig. 1, where the dashed box shows the weakening that
we simply omit in our version of FlePAKE. In reality, nobody would want to use
a PAKE where an adversary can learn (even set) the key of an honest party
without knowing the honest party’s password. This is not what one would expect
from an authenticated key exchange protocol. In the full version of this work [4]
we explain why existing PAKE protocols can still be considered secure, but also
provide an illustrating example how this shortcoming hinders usage of PAKE
functionalities in modular protocol analysis. In this paper, we demonstrate that
CPace can be proven to protect against such attacks.

We also make two minor adjustments, which are merely to ease presentation
in this paper. Namely, we add an explicit interface for adaptive corruptions, and
we omit roles since we analyze a protocol where there is no dedicated initiator.

How many keys can a PAKE functionality exchange? All PAKE functionalities
in Fig. 1 produce only a single key for a single pair of parties P,P ′. This can
be seen from the NewSession interface, which takes action only upon the first
such query (from any party P) and the corresponding second query by the
indicated counterparty P ′. The motivation behind this design choice is simplicity
in the security analysis: one can prove security of a PAKE protocol for only a
single session, and then run arbitrary many copies of the PAKE functionality
to exchange arbitrarily many keys (between arbitrary parties). Consequently, by
the UC composition theorem, replacing all those copies with the PAKE protocol
that provably realizes the single-session FpwKE is at least as secure.

3 Preliminaries

3.1 Notation

With ←R we denote uniformly random sampling from a set. With oc(X,Y) we
denote ordered concatenation, i.e., oc(X,Y) = X||Y if X ≤ Y and oc(X,Y) =
Y ||X otherwise. We use multiplicative notation for the group operation in a
group G and hence write, e.g., g · g = g2 for an element g ∈ G. IG denotes
the neutral element in G. To enhance readability, we sometimes break with the
convention of denoting group elements with small letters and write X := gx. We
denote by Gm a subgroup of G of order m, and with Ḡ we denote the quadratic
twist of elliptic curve group G. Throughout the paper, we use λ as security
parameter2.

2 For the hardness assumptions on elliptic curve groups, e.g. for the sCDH and sSDH
problems, where security depends on the group type and the group order p, the bit
size of p implicitly serves also as a further security parameter.

720 M. Abdalla et al.

Fig. 1. UC PAKE variants: The original PAKE functionality FpwKE of Canetti et al.
[15] is the version with all gray text omitted. The lazy-extraction PAKE functionality
FlePAKE [1] includes everything, and the variant of FlePAKE used in this work includes
everything but the dashed box.

3.2 Cryptographic Assumptions

The security of CPace is based on the hardness of a combination of strong and
simultaneous Diffie-Hellman problems. To ease access to the assumptions, we
state them with increasing complexity.

Definition 1 (Strong CDH problem (sCDH) [3]). Let G be a cyclic group
with a generator g and (X = gx, Y = gy) sampled uniformly from (G \ {IG})2.
Given access to oracles DDH (g,X, ·, ·) and DDH (g, Y, ·, ·), provide K such that
K = gxy.

Security Analysis of Cpace 721

We note that sCDH is a weaker variant of the so-called gap-CDH assumption,
where the adversary has access to “full” DDH oracles with no fixed inputs. Next
we provide a stronger variant of sCDH where two CDH instances need to be
solved that involve a common, adversarially chosen element.

Definition 2 (Strong simultaneous CDH problem (sSDH)). Let G be a
cyclic group and (X, g1, g2) sampled uniformly from (G \ {IG})3. Given access to
oracles DDH (g1,X, ·, ·) and DDH (g2,X, ·, ·), provide (Y,K1,K2) ∈ (G \ {IG})×
G × G s. th. DDH (g1,X, Y,K1) = DDH (g2,X, Y,K2) = 1

As a cryptographic assumption sSDH above is justified since sSDH is implied
by the gap simultaneous Diffie-Hellman assumption [1,34], which allows for
unlimited (i.e., with no fixed input) access to a DDH oracle. Lastly, we state
a variant of the sSDH assumption where generators are sampled according to
some probability distribution. Looking ahead, we require this variant since in
CPace parties derive generators by applying a map which does not implement
uniform sampling from the group. We state the non-uniform variant of sSDH
for arbitrary probability distributions and investigate its relation to “uniform”
sSDH afterwards.

With AdvsCDH
BsCDH

(G) and AdvsSDH
BsSDH

(G), we denote the probabilities that adver-
sarial algorithms BsSDH and BsSDH having access to the restricted DDH oracles
provide a solution for the sCDH and sSDH problems respectively in G when given
a single randomly drawn challenge.

Definition 3 (Strong simultaneous non-uniform CDH problem (DG-
sSDH)). Let G be a group and DG be a probability distribution on G. The strong
simultaneous non-uniform CDH problem DG-sSDH is defined as the sSDH prob-
lem but with (X, g1, g2) sampled using UG × DG × DG, where UG denotes the
uniform distribution on G.

Clearly, UG\{IG}-sSDH is equivalent to sSDH. We show that hardness of uni-
form and non-uniform sSDH are equivalent given that the distribution allows for
probabilistic polynomial time (PPT) rejection sampling, which we now formalize.

Definition 4 (Rejection sampling algorithm for (G,DG)). Let G be a group
and DG be a probability distribution on G. With DG(g) we denote the probability
for point g. Let RS be a probabilistic algorithm taking as input elements g ∈ G and
outputting ⊥ or a value �=⊥. Then RS is called a rejection sampling algorithm
for (G,DG) if there is a scaling factor k such that Pr[RS(g) �=⊥] = k · DG(g) for
g ∈ G.

Informally RS is a probabilistic algorithm which accepts (output different
from ⊥) or rejects (output ⊥) a candidate point. When queried multiple times
on the same input g ∈ G, the probability that g will be accepted or rejected
models a scaled distribution that is proportional to DG . In this paper, we are
interested in rejection samplers with “good” acceptance rate, such that they can
be efficiently used to sample elements from the scaled distribution. We formalize
the acceptance rate as follows.

722 M. Abdalla et al.

Definition 5 (Acceptance rate of a rejection sampler for (G,DG)). Let
G be a group and DG be a probability distribution on G. Let RS be a rejection
sampling algorithm for (G,DG). Let gi ∈ G be a sequence of m uniformly drawn
points and ri = RS(gi). Then RS is said to have an acceptance rate of (1/n) if
the number of accepted points with ri �=⊥ converges to m/n when m → ∞.

Using these definitions, we are able to prove that given some assumptions
on the distribution DG hardness of sSDH and DG-sSDH are equivalent up to the
additional PPT computational effort for the rejection sampling algorithm.

Theorem 1 (sSDH ⇐⇒ DG-sSDH). Let G be a cyclic group of order p and
DG a probability distribution on G. If there exists a PPT rejection sampler RS
for (G,DG) with acceptance rate (1/n) then the probability of PPT adversaries
against DG-sSDH and sSDH of solving the respectively other problem differs by at
most (2D(IG) + (1/p)) and solving sSDH with the help of a DG-sSDH adversary
requires at most 2n executions of RS on average.

Proof. sSDH hard ⇒ DG−sSDH hard: Given an adversary BDG−sSDH against
DG − sSDH with non-negligible success probability ν, we show how to construct
an adversary AsSDH. On receiving an sSDH-challenge (X, g1, g2), first note that
X is uniformly sampled from G \ {IG}. AsSDH uniformly samples r, s ∈ Zp until
RS(gr

1) �=⊥ and RS(gs
2) �=⊥, which requires 2n calls to RS on average. AsSDH

runs BDG−sSDH on input (X, gr
1, g

s
2). If B queries DDH(gr

1,X, Z, L), A queries his
own oracle with DDH(g1,X, Z, L1/r) and relays the answer to B (queries gs

2 are
handled analogously). On receiving (Y,K1,K2) from BDG−sSDH, AsSDH provides
(Y,K

1/r
1 ,K

1/s
2) as solution in his sSDH experiment.

As RS is a rejection sampler for DG , (X, gr
1, g

s
2) is a random DG − sSDH

challenge, and thus B solves it with probability ν. If B provides a solution, then
AsSDH succeeds in solving his own challenge unless gr

1 or gs
2 = IG or gr

1 = gs
2

which occurs at most with probability (2DG(IG)+1/p). As RS executes in PPT,
AsSDH is PPT, uses (2n) calls to RS on average and succeeds with probability
ν(1 − 2DG(IG) − 1/p), which is non-negligible since ν is.

sSDH hard ⇒ DG−sSDH hard: Given an adversary AsSDH against sSDH
with non-negligible probability μ we show how to construct a DG − sSDH adver-
sary BDG−sSDH. On receiving a DG − sSDH challenge (X, g1, g2), B samples
r, s ∈ Zp \ 0 and starts AsSDH on input (X, gr

1, g
s
2). DDH oracle queries are

handled the same as above. On receiving (Y,K1,K2) from AsSDH, B provides
(Y,K

1/r
1 ,K

1/s
2) as solution to his own challenge.

If A is successful, then B succeeds unless either g1 or g2 = IG or gr
1 = gs

2 which
occurs at most with probability (2DG(IG) + 1/p). Thus, B is a PPT adversary
against DG − sSDH succeeding with non-negligible probability μ(1 − 2DG(IG) −
1/p).

Informally, the assumptions sSDH and DG − sSDH become equivalent if step-
ping over an element that gets accepted in the sampling process becomes suffi-
ciently likely for a randomly drawn sequence of candidates. Secondly, the proba-
bility of accidentally drawing the neutral element from DG needs to be negligible.

Security Analysis of Cpace 723

3.3 Transforming Passwords to Points on an Elliptic Curve

The generators of the Diffie-Hellman exchange in CPace are computed using a
deterministic mapping function Gen(pw). For a given curve group G over a field
Fq, Gen(pw) is calculated with the help of either one (Gen1MAP) or two (Gen2MAP)
invocations of a function Map2PtG : Fq → G and a hash function H1 hashing
to Fq. For the sake of shortened notation, we will drop the G subscript where
the group is obvious from the context. In both cases, security of CPace relies on
Map2Pt meeting the requirements from this section. Informally, we first require
Map2Pt to be “invertible”. That is, for any point on the image of the map, there
must be an efficient algorithm that outputs all preimages in Fq of Map2PtG for
a given group element g. We use the notation Map2PtG .PreImages(g). Details
on how such an inversion algorithm can be efficiently implemented for various
elliptic curve groups are given in [11,13,20,27] and references therein. Secondly,
a bound for the maximum number of preimages nmax that Map2PtG maps to
the same element must be known and this nmax bound needs to be small (we
use the notation Map2PtG .nmax for the bound that applies for a given Map2PtG
function and group G). This is needed in order to construct a rejection sampling
algorithm whose acceptance rate must depend on nmax.

Definition 6. Let G be a group of points on an elliptic curve over a field Fq. Let
Map2Pt : Fq → G be a deterministic function. Then Map2Pt(·) is called proba-
bilistically invertible with at most nmax preimages if there exists a probabilistic
polynomial-time algorithm (r1, . . . , rng

) ← Map2Pt.PreImages(g) that outputs all
ng values ri ∈ Fq such that g = Map2Pt(ri) for any g ∈ G; and ∀g ∈ G,
nmax ≥ ng ≥ 0.

For a map Map2Pt that fulfills the previous definition with a bound for
the numbers of preimages Map2Pt.nmax, we define an “inversion algorithm”
Map2Pt−1 : G → Fq that, on input g ∈ G, returns one of potentially many
preimages of g under Map2Pt if a biased coin comes up heads. If the coin comes
up tails, the algorithm outputs failure. The “inversion algorithm” also serves
as rejection sampling algorithm for the distribution DG that is produced by
Map2Pt(r) for uniformly distributed inputs r ∈ Fq.

Algorithm 1. Map2Pt−1 : G −→ Fq ∪ {⊥}
On input g ∈ G: Sample i uniformly from {1, . . . ,Map2Pt.nmax}; Then obtain
ng ∈ {0, . . . ,Map2Pt.nmax} pre-images (r1, . . . , rm) ← Map2Pt.PreImages(g); If ng < i
return ⊥, else return ri.

Lemma 1. Let Map2Pt : G → Fq be probabilistically invertible with at most
Map2Pt.nmax preimages and let DG denote the distribution it induces on G. Then
Algorithm 1 is a PPT rejection sampler for (G,DG) with average acceptance rate
(|Fq|/|G|)/Map2Pt.nmax.

724 M. Abdalla et al.

Proof. We first define the average number of preimages nmax ≥ n̄ ≥ 1 as the
quotient of the order of the field Fq and the number of points on the image of the
map, i.e., n̄ = |Fq|/|support(DG)|. When drawing an element g uniformly from
G, the probability that the number of preimages ng for g is nonzero is given by
the quotient of the order of the support of DG and the order of the group. By
the definition of n̄ above this is |Fq|/(n̄|G|).

For any point on the map with a nonzero number ng of preimages, Algorithm
1 returns a result �=⊥ with probability ng/nmax. As the average value for the
number of preimages for any point on the image of the map is n̄, the average
acceptance rate is (|Fq|/(n̄|G|)) · n̄/nmax = (|Fq|/|G|)/nmax.

Use of Map2Pt−1 for uniformly sampling field elements from Fq. As Map2Pt is
deterministic, each point g from G is characterized by the number of preimages ng

for Map2Pt in Fq with nmax ≥ ng ≥ 0. When generating points Map2Pt(s) ∈ G
for uniformly sampled field elements s ←R Fq, the probability of obtaining a
given point g is (ng/q) and can only take the values of zero or integer multiples
of 1/q up to nmax/q. In order to compensate for this, Map2Pt−1 is constructed
such that the probability of returning r �=⊥ for a point g increases proportionally
with ng making any actually produced field element r �=⊥ equally likely in Fq. As
a result, we can use Map2Pt−1 for transforming a sequence of uniformly sampled
group elements gl ∈ G to a sequence of uniformly sampled field elements rl ∈ Fq

Corollary 1. Let Map2Pt be a probabilistically invertible map with at most
Map2Pt.nmax preimages and let gl ←R G. Then rl ← Map2Pt−1(gl) outputs
results rl �=⊥ with probability p ≥ (|Fq|/|G|)/Map2Pt.nmax and the distribution
of outputs rl �=⊥ is uniform in Fq.

Moreover as the collision probability when drawing two elements ra, rb from
Fq is 1/q and as there are at most nmax values sl generating the same group
element g = Map2Pt(sl) the collision probability for ga = Map2Pt(ra) and gb =
Map2Pt(rb) is increased at most by n2

max.

Corollary 2. When sampling two field elements ra, rb ←R Fq uniformly, we
have Map2Pt(ra) = Map2Pt(rb) with a probability of at most n2

max/q.

4 The CPace Protocol

The CPace protocol [22] is a SPEKE-type protocol [30] allowing parties to com-
pute a common key via a Diffie-Hellman key exchange with password-dependent
generators. The blueprint of the protocol is depicted in Fig. 2. Informally, a party
P willing to establish a key with party P ′ first computes a generator g from a
password pw. Next, P generates an element Ya = gya from a secret value ya

sampled at random and sends it to P ′. Upon receiving a value Yb from P ′, P
then computes a Diffie-Hellman key K = (Yb)ya = gyayb and aborts if K equals
the identity element. Finally, it computes the session key as the hash of K and
the exchanged values Ya and Yb.

Security Analysis of Cpace 725

Fig. 2. Above: Blueprint protocol CPace[Gen, ScMul, ScMulVf, ScSam] requiring
group G of order c · p with prime p and algorithms for DH generator com-
putation (Gen), exponentiation (ScMul, ScMulVf) and scalar sampling (ScSam).
H2 : {0, 1}∗ → {0, 1}λ denotes a hash function. Below: “Basic” CPace
CPacebase with c = 1, generators computed from hash function HG :
{0, 1}∗ → G and canonical exponentiation, point verification and sampling.

CPacebase :=CPace[GenRO, ScMulbase, ScMulVfbase, ScSamp]

GenRO(pw) : ScMulbase(g, y) : ScMulVfbase(g, y) : ScSamp() :
return HG(pw) return gy if g /∈ G: return IG y R {1, . . . , p}

else: return gy return y

In order to allow for efficient instantiations over different types of groups,
most of which are elliptic curves, we present the CPace protocol in form of a
blueprint CPace[Gen,ScMul,ScMulVf,ScSam] in Fig. 2 that provides the follow-
ing generalizations: (1) The blueprint uses a generic algorithm Gen(D) → G that
turns a password from dictionary D into a group element; (2) The computation
of the yi and Yi values is done with generic algorithms for sampling (SamSc :
0, 1∗ → 0, 1∗) and scalar multiplication (ScMul : G × Z|G| → G); (3) The Diffie-
Hellman key is computed with another generic algorithm ScMulVf : G×Z|G| → G,
in order to allow for additional point verification that is necessary on some curves
(but not on all) to protect against trivial attacks; (4) the blueprint protocol uses
an ordered concatenation function oc so that messages can be sent in any order
and parties do not have to play a specific initiator or responder role. In the
remainder of the paper, we will instantiate the CPace blueprint in various ways,
by specifying a set of concrete algorithms Gen,ScMul,ScMulVf,ScSam.

On the necessity of point verification. Many elliptic curve scalar multiplication
algorithms will work correctly independent whether the input operand encodes
a point on the correct curve or not. As a consequence if group membership
is not correctly verified by an implementation various attack scenarios become
feasible. An active attacker may for instance provide a point on a curve of low

726 M. Abdalla et al.

order on which the discrete-logarithm problem could be solved. The threat for
real-world implementations is that this serious error might remain undetected
as the corresponding verification event is never generated in communications
of honest parties. In order to make CPace resilient to this type of attack and
implementation pitfalls, [22] suggested to first restrict invalid curve attacks to
the quadratic twist (by using a single-coordinate Montgomery ladder) and then
choose a curve where also the twist has a large prime-order subgroup and invalid
curve attacks become impossible. The CPace draft [23] highlights this aspect
on the protocol specification level by introducing a ScMulVf function which is
specified to include point verification.

5 Security of Simplified CPace

In this Section, as a warm-up, we analyze security of a “basic” variant of CPace,
which we call CPacebase and which is depicted in Fig. 2. We instantiate Gen with
a hash function HG that hashes onto the group G. This way, parties compute
generators as g ← HG(pw). Further, we assume G to be a multiplicatively written
group of prime order p where group membership is efficiently decidable. We
instantiate ScMul(g, y) := gy as exponentiation, and ScMulVf(g, y) such that it
returns the neutral element if g is not in the group and gy otherwise, and SamSc
with uniform sampling from {1 . . . p}. A formal description of the protocol is
given in Fig. 2, where the blueprint protocol is instantiated with the algorithms
at the bottom of the Figure.

Theorem 2 (Security of CPacebase). Let λ, p ∈ N with p prime. Let G be a
group of order p, and let H1 : {0, 1}∗ → G,H2 : {0, 1} → {0, 1}λ be two hash
functions. If the sCDH and sSDH problems are hard in G, then protocol CPacebase
depicted in Fig. 2 UC-emulates FlePAKE in the random-oracle model with respect
to adaptive corruptions when both hash functions are modeled as random oracles.
More precisely, for every adversary A, there exist adversaries BsSDH and BsCDH
against the strong CDH (sCDH) and strong simultaneous CDH (sSDH) problems
such that

|Pr[RealZ(CPacebase,A)] − Pr[IdealZ(FlePAKE,S)|
≤ l2H1

/p + 2l2H1
AdvsSDH

BsSDH

(G) +AdvsCDH
BsCDH

(G)

where lH1 denotes the number of H1 queries made by the adversary A and the
simulator S is depicted in Fig. 3.

Proof (Sketch). The main idea of the simulation is to fix a secret generator g ∈ G
and carry out the simulation with respect to g. Messages of honest parties are
simulated as gz for a fresh exponent z. Queries H1(pw) are answered with gr

for a freshly chosen “trapdoor” r. The simulator might learn an honest party’s
password via adaptive corruption or via an adversarial password guess. The
simulator can now adjust the simulation in retrospective to let the honest party
use gr = H1(pw) by claiming the party’s secret exponent to be zr−1. This already

Security Analysis of Cpace 727

Fig. 3. Simulator for CPacebase. For brevity we omit the session identifier sid from all
records stored by the simulator.

concludes simulation of honest parties without passwords. Adversarial password
guesses can be read from A injecting X (or, similarly, Y) and then querying
H2(K||X||Y) with K being a correctly computed key w.r.t some generator gr

provided by the simulation. S can now read the guessed password from the H1

list, and submit it as password guess to FlePAKE. In case of success, the simulator
sets the key of the honest party to H2(K||X||Y).

The simulation is complicated by the order of honest parties’ outputs (which
are generated upon receipt of the single message) and the adversary’s computa-
tion of final session keys via H2 queries. If the key is generated by FlePAKE before
A computes it via H2 (which constitutes a password guess as detailed above),

728 M. Abdalla et al.

then S needs to invoke the LateTestPwd query of FlePAKE instead of TestPwd.
In case of a correct guess, this lets S learn the output key of the honest party,
which S can then program into the corresponding H2 query.

Finally, the simulation can fail in some cases. Firstly, S might find more
than one password guess against an honest party with simulated message
X. In this case, the simulation cannot continue since FlePAKE allows for
only one password guess per party. In this case, however, A would provide
(gr,X, Y,K),(gr′

,X, Y,K ′) which are two CDH tuples for passwords pw, pw′

with gr ← H1(pw), gr′ ← H1(pw′). Provided that the simultaneous strong CDH
assumption (sSDH, cf. Definition 2) holds, this cannot happen. Here, the “strong”
property, providing a type of DDH oracle, is required to help S identify CDH
tuples among all queries to H2. A second case of simulation failure occurs when
A wants to compute a key of an uncorrupted session via a H2 query. Since S
does not know such keys, it would have to abort. Using a similar strategy as
above, pseudorandomness of keys can be shown to hold under the strong CDH
assumption, and thus the probability of A issuing such a H2 query is negligible.
The full proof can be found in the full version of this work [4].

Our Theorem 2 demonstrates that adaptive security of CPace can be proven
with only minimal information included in the hashes, i.e., the first hash requires
only the password and the final key derivation hash requires the Diffie-Hellman
key and the unique protocol transcript. We detail now under which circumstances
additional data such as session identifiers needs to be included in the hashes.
We further note that adding additional inputs to hashes, such as the name of a
ciphersuite that an application wants parties to agree on, does not harm security.

On multi-session security and hash domain separation. Theorem 2 demonstrates
that CPacebase allows to securely turn a joint password into one key. In practice,
one would of course want to exchange more than one key, and many parties will
end up using the same password. If session identifiers are globally unique, then
the UC composition theorem (more detailed, the composition theorem of UC
with Joint State [16]) allows to turn Theorem 2 into a proof of “multi-session
CPace” by simply appending the unique session identifiers to all hash function
inputs. This ensures that hash domains of individual sessions are separated and
the programming activities of the individual simulators do not clash. To summa-
rize, we obtain a secure multi-session version of CPace by ensuring uniqueness of
session identifiers and including them in hashes. In practice, this can be ensured
by, e.g., agreeing on a joint session identifier to which both users contributed
randomness and in which party identifiers are incorporated (see, e.g., [6]). The
agreement needs to happen before starting CPace, but does not require secrecy
and can thus potentially be piggy-backed to messages sent by the application. As
a last note, applications might choose to add more values to hashes, for example
to authenticate addresses or to ensure agreement on a ciphersuite. We stress that
such additional values do not void our security analysis, but care still needs to
be taken in order to protect against side-channel attacks.

Security Analysis of Cpace 729

5.1 Embedding CDH Experiment Libraries into the Simulator

In this section, we discuss an alternative approach to carrying out reductions
to cryptographic assumptions in the case of CPace/CDH. Both assumptions
required by CPacebase, sCDH and sSDH, allow for an efficient implementation of
experiments in the following sense: the secret exponents that are sampled by the
experiment code (often also called the challenger) are sufficient for answering
the restricted DDH queries allowed by both assumptions. An example for an
assumption that does not allow for such efficient instantiation is, e.g., gap-CDH.
In gap-CDH, the adversary is provided with a “full” DDH oracle that he can query
on arbitrary elements, of which the experiment might not know an exponent for.

Due to this property, we can integrate implementations of the sCDH and
sSDH experiments in the simulator’s code. The simulator implements the DDH
oracles on its own, and abort if at any time an oracle query solves the underlying
assumption. We chose to integrate experiments as libraries (written as objects in
python-style notation in Fig. 4) into the simulator’s code. This eases not only pre-
sentation but is also useful for analyzing variants of CPace that require slightly
different assumptions.

The corresponding result for CPacebase is shown in Fig. 5 when the challenge-
generating experiment exp ← sSDH(sCDH) is used (Fig. 4). The instance of the
sSDH object first samples a random generator as member s.g and creates a mem-
ber instance s.scdh ← sCDH(g) of the experiment for the sCDH problem. The
sCDH member object produces a challenge consisting of two uniformly drawn
group elements Y1 ← gy1 , Y2 ← gy2 . The limited DDH oracle provided by the
sCDH assumption can only receive inputs w.r.t one of these elements, and thus
it can be implemented efficiently using secret exponents y1, y2. If a correct CDH
solution g, Y1, Y2, g

y1·y2 is provided, the sCDH object aborts. In its implemen-
tation for H1, the sSDH object samples random new generators as R ← (s.g)r

which will be used for simulating password-dependent base points and uses the
s.scdh member and the known exponent r for answering DDH queries by use
of the s.scdh.DDH function. The corrupt queries are implemented likewise and
forwarded to the s.scdh member object. The simulator from Fig. 3 is adapted to
call the experiment. As an example, honest parties’ messages are simulated by
calling the challenge sampling procedure exp.sampleY() from sSDH which itself
calls the corresponding function from its sCDH member.

Proving indistinguishability. With this simulation approach, a proof con-
sists in demonstrating that ideal and real world executions are indistinguishable
except for events in which the experiment libraries abort because a challenge was
correctly answered. Compared to our proof of Theorem 2, the indistinguishability
argument becomes simpler because the reduction strategies to both CDH-type
assumptions are already embedded in the corresponding assumption experiment

730 M. Abdalla et al.

Fig. 4. Libraries implementing sCDH and sSDH experiments.

libraries. Losses such as the factor 2l2H1
in the reduction to sSDH translate to

libraries producing more than one challenge per simulation run, as is the case
for the sSDH experiment from Fig. 5. Altogether, the simulation with integrated
CDH experiment libraries is an alternative approach of proving Theorem 2, as
we formalize in the following.

Theorem 3 (Alternative simulation for Theorem 2). The simulator
depicted in Fig. 5 is a witness for the UC emulation statement in Theorem 2

Proof (Proof sketch.). The output distribution of the simulator S from Fig. 5 is
indistinguishable from the one of the simulator from Fig. 3 as it is obtained from
internal restructuring. S aborts if either the sSDH or the sCDH experiment class

Security Analysis of Cpace 731

Fig. 5. Generic simulator for different CPace variants, embedding challenges generated
by the experiment object exp. The simulator for CPacebase is obtained when using
exp ← sSDH(sCDH) from Fig. 4.

aborts, which occurs iff a correct solution has been provided to the experiment
implementation or a H1 collision is observed. These cases coincide with the abort
cases in the proof of Theorem 2. As the sSDH object outputs 2l2H1

different
challenges and as it is sufficient for Z to provide a solution to one of these
challenges for distinguishing both worlds, the advantage for solving the sSDH
problem needs to be multiplied by this factor, thus reproducing the bounds
from Theorem 2.

732 M. Abdalla et al.

Advantages of embedding libraries in the simulation. To clarify, the approach pre-
sented in this section does not allow to prove stronger security statements. As
demonstrated above, it is merely an alternative way of presenting security proofs
in the UC framework or other simulation-based frameworks, and it works when-
ever the underlying cryptographic assumptions are efficiently implementable.
However, we believe that the approach has its merits especially in the following
dimensions.

– Modular security analysis. Slight modifications in the protocol might
require to change the cryptographic assumption. As long as the public inter-
face does not change, our approach allows to switch between assumptions by
simply calling a different library. Cryptographers then need to only analyze
this “local” change in the simulation, which prevents them from re-doing the
whole indistinguishability argument.

– Presentation of reduction strategies. In normal game-based indistin-
guishability arguments [36], reductions to cryptographic assumptions are hid-
den within side-long proofs. With our approach, the reduction strategy is
depicted in clear code as part of the simulator’s code. This makes checking
of proofs easier not only for readers but also might make simulation-based
proofs more accessible to automated verification.

In this paper, our motivation is the first dimension. In the upcoming section, the
library-based approach will turn out to be extremely useful to analyze the various
variants of CPace that stem from (efficiency-wise) optimized implementations on
different elliptic curves.

6 Analysis of Real-World CPace

The currently most efficient way to run CPace is over elliptic curves. Therefore,
from this point onwards, we consider G to be an elliptic curve constructed over
field Fq. From a historical perspective, both CPace research and implementation
first focused on prime order curves, such as the NIST-P-256 curve [18]. Sub-
sequently significantly improved performance was shown on Montgomery- and
(twisted-)Edwards curves, notably Curve25519 and Ed448 curves [10,26], which
both have a small cofactor c in their group order c · p. These approaches con-
sider also implementation pitfalls, e.g., by designing the curve such that there
are no incentives for implementers to use insecure speed-ups. Thirdly, recently
ideal group abstractions have been presented in order to avoid the complexity
of small cofactors in the group order [17,25], while maintaining all advantages
of curves with cofactor.

For smooth integration into each of these different curve ecosystems, CPace
needs to be instantiated slightly differently regarding, e.g., computation of
the DH generator, group size, multiplication and sampling algorithms. In this
section, we analyze how such differences impact security. Using our modular
approach with assumption libraries called by a simulator, we are able to present
security in terms of differences from our basic CPace analysis in Sect. 5 in a
concise way.

Security Analysis of Cpace 733

6.1 CPace Without Hashing to the Group

Fig. 6. Protocol CPace1MAP for an elliptic curve group G of prime order p, over
finite field Fq. Generators are computed as Map2Pt(H1(pw)) with a hash function
H1 : {0, 1}∗ → Fq. Differences to CPacebase are marked gray .

We now analyze a variant of the CPace protocol case-tailored for elliptic curve
groups G over finite field Fq. The protocol is depicted in Fig. 6. The only dif-
ference to CPacebase analyzed in the previous section is how parties compute
the generators: now the function H1 hashes onto the field Fq, and generators
are computed as g ← Map2Pt(H1(pw)) for a function Map2Pt : Fq → G. This
way, the H1 outputs can be considered to form an alternative encoding of group
elements, where Map2Pt decodes to the group. ScMul,ScMulVf and SamSc are
as in Sect. 5.

Security analysis. Compared to the analysis of CPacebase, the security analy-
sis is complicated by the different computation of the generators in essentially
two ways: first, the possibly non-uniform distribution of Map2Pt induces non-
uniformity of DH generators computed by the parties. Second, embedding of
trapdoors no longer works by simply programming elements with known expo-
nents into H1. Instead, the proof will exploit that Map2Pt is probabilistically
invertible, such that preimages of generators with known exponents can be pro-
grammed into H1 instead. Consequently, security of CPace will be based on
the DG − sSDH problem Definition 3 instead of the sSDH problem, where the
distribution DG corresponds to the distribution of group elements Map2Pt(hi)
obtained for uniformly sampled field elements hi ←R Fq. All these changes can
be captured by replacing library sSDH with a new library for DG − sSDH, as we
demonstrate below.

Theorem 4 (Security of CPace1MAP). Let λ, p, q ∈ N with p prime. Let G
an elliptic curve of order p over field Fq. Let H1 : {0, 1}∗ → Fq,H2 : {0, 1}∗ →
{0, 1}λ be two hash functions and Map2Pt : Fq → G probabilistically invertible
with bound Map2Pt.nmax. If the sCDH and sSDH problems are hard in G, then
the CPace protocol depicted in Fig. 2 UC-emulates FlePAKE in the random-oracle
model with respect to adaptive corruptions and both hash functions modeled as
random oracles. More precisely, for every adversary A, there exist adversaries
BsSDH and BsCDH against the sSDH and sCDH problems such that

734 M. Abdalla et al.

|Pr[Real(Z,A,CPace1MAP)] − Pr[Ideal(FlePAKE,S)]|
≤ (Map2Pt.nmax)lH1/q + (lH1)

2/p + (Map2Pt.nmax · lH1)
2/q

+2l2H1
AdvsSDH

BsSDH

(G) +AdvsCDH
BsCDH

(G)
where lH1 denotes the number of H1 queries made by the adversary A and the
simulator S is as in Fig. 5 but using the object distExp (cf. Fig. 7) instead of the
object sSdhExp.

Fig. 7. Experiment class definition DG-sSDH using single executions of Map2Pt, where
H1 hashes to Fq.

Proof (Proof Sketch.). Let DG denote the distribution on G induced by Map2Pt.
First note, that if the sSDH is hard in G then the corresponding DG-sSDH
problem is hard by Theorem 1 as Map2Pt−1 (implemented in the body of the
sampleH1 method by the distExp object) is a rejection sampler for DG .

We adjust the simulator for “basic” CPace from Fig. 5 as follows. First,
we embed the reduction strategy from Theorem 1 into an experiment library
that converts sSDH challenges into DG − sSDH challenges and obtain the class
DG_sSDH depicted in Fig. 7. The class DG_sSDH uses the Map2Pt.PreImages
function (passed as a constructor parameter) for implementing the Map2Pt−1 as
defined in Algorithm 1 and an instance of the sSDH class implementing a sSDH
experiment that is assigned to a member variable.

Security Analysis of Cpace 735

Each time the main body of the simulator from Fig. 5 makes calls to its exp
object, the corresponding method of the new DG_sSDH object will be executed,
which itself translates the queries into calls to the sSDH object that was passed
as constructor parameter.

Importantly, DG_sSDH provides the same public API as the sSDH class
with the distinction that sampling for H1 returns results from Fq instead of
G. Moreover DG_sSDH aborts if the code of its sSDH object aborts and, now
additionally, also upon H1 collisions.

We explain now how the indistinguishability argument of Theorem 2 needs
to be adjusted in order to work for Theorem 4 and this new simulator. First,
we ensure that the distribution of points provided by the DG_sSDH object is
uniform in Fq using Corollary 1. Second, we adjust the collision probability
following the derivation from Corollary 2 which is now bound by (nmax · lH1)

2/q
in addition to the previous l2H1

/p probability. The probability that sampleH1
aborts because it samples the identity element from the distribution is bounded
by (Map2Pt.nmax)lH1/q. Apart of these modification the proof applies without
further changes.

Instantiating Map2Pt. Various constructions have been presented for mapping
field elements to elliptic curve points such as Elligator2 [11], simplified SWU [20]
and the Shallue-van de Woestijne method (SvdW) [35] (see also [20] and refer-
ences therein). When considering short-Weierstrass representations of a curve,
the general approach is to first derive a set of candidate values xl for the x
coordinate of a point such that for at least one of these candidates xl there is a
coordinate yl such that (xl, yl) is a point on the curve. Subsequently one point
(xl, yl) is chosen among the candidates. The property of probabilistic invert-
ibility is fulfilled for all of the algorithms mentioned above and those currently
suggested in [20]. The most generic of these algorithm, SvdW, works for all ellip-
tic curves, while the simplified SWU and Elligator2 algorithms allow for more
efficient implementations given that the curve fulfills some constraints.

All these mappings have a fixed and small bound nmax regarding the number
of pre-images and come with a PPT algorithm for calculating all preimages. For
instance, Elligator2 [11] comes with a maximum nmax = 2 of two pre-images per
point and nmax ≤ 4 for the simplified SWU and SvdW algorithms [20]. For all
these algorithms, the most complex substep for determining all preimages is the
calculation of a small pre-determined number of square roots and inversions in
Fq which can easily be implemented in polynomial time with less computational
complexity than one exponentiation operation.

6.2 Considering Curves with Small Co-factor

In this subsection, we now additionally consider that the elliptic curve group
G can be of order c · p with c �= 1, but where Diffie-Hellman-type assumptions
can only assumed to be computationally infeasible in the subgroup of order p,
denoted Gp. Consequently, CPaceco on curves with co-factor c �= 1 requires all

736 M. Abdalla et al.

Fig. 8. Definition of CPaceco for curves of order p · c. The only difference (marked
gray) to CPace1MAP is that exponents are always multiplied by the cofactor c.

secret exponents to be multiples of c. Hence, CPaceco depicted in Fig. 8 deploys
modified algorithms ScMul,ScMulVf.

Fig. 9. Cofactor-clearer class definition use for elliptic curves of order p · c with a
quadratic twist having a subgroup of order p̄. Note that the inverses s.i and s.it are
constructed such that they are multiples of c.

Theorem 5 (Security of CPaceco). Let λ, p, q, c ∈ N, p, c coprime with p
prime. Let G be an elliptic curve of order p·c over field Fq and Gp ⊂ G a subgroup
of order p. Let CCc : (g) �→ ((gc)1/c mod p) be a cofactor clearing function
for c, H1 : {0, 1}∗ → Fq,H2 : {0, 1}∗ → {0, 1}λ be two hash functions and
Map2Pt : Fq → G probabilistically invertible with bound Map2Pt.nmax. Let be the
chained function Map2PtGp

:= (CCc ◦Map2Pt). Let DGp
denote the distribution

on Gp induced by Map2PtGp
. If the sCDH and sSDH problems are hard in Gp,

then the DGp
-sSDH problem is hard in Gp and CPaceco UC-emulates FlePAKE in

the random-oracle model with respect to adaptive corruptions when both hash
functions are modeled as random oracles. More precisely, for every adversary A,
there exist adversaries BsCDH and BsSDH against the sCDH and sSDH problems
such that

Security Analysis of Cpace 737

|Pr[Real(Z,A,CPaceco)] − Pr[Ideal(FlePAKE,S)]|
≤ (Map2Pt.nmax · c)lH1/q + 2l2H1

/p + (Map2Pt.nmax · c · lH1)
2/q

+2l2H1
AdvsSDH

BsSDH

(Gp) +AdvsCDH
BsCDH

(Gp)

where lH1 denotes the number of H1 queries made by the adversary A and the
simulator S is as in Fig. 5 but using class ccDistExp (cf. Fig. 9) instead of object
sSdhExp.

Proof (Proof Sketch.). The full group G has a point g1 of order c with gc
1 = IG

where IG denotes the identity element in G, i.e., there are c low-order points
gi
1, i ∈ {1 . . . c}. For any point Y ∈ G we can consider the points Yi = Y · gi as

alternative ambiguous representations of the point CCc(Y) ∈ Gp. For any input
point Y ∈ Gp, all these c alternative representations can be easily calculated
using group operations and gi. For any of these c alternative representations of
Y at most Map2Pt.nmax preimages will be returned by Map2Pt.PreImages since
Map2Pt is probabilistically invertible on G. Correspondingly, the probability of
accidentally drawing a representation of the identity element needs to be multi-
plied by c and is now bounded by (Map2Pt.nmax · c)lH1/q. If up to Map2Pt.nmax
preimages exist per point on the full curve, the chained function Map2PtGp

is
probabilistically invertible also on Gp. Its preimage function Map2PtGp

.PreImages
for Gp can be defined such that it returns all of the preimages of the c
ambiguous representations of an input and the maximum number of preimages
Map2PtGp

.nmax is, thus, bounded by Map2PtGp
.nmax = c · Map2Pt.nmax. Since

we are able to provide all preimages for Map2PtGp
and a bound for their number

is known Map2PtGp
is probabilistically invertible. We thus can employ Theorem

1 and show that if the sSDH is hard in Gp then the corresponding DGp
-sSDH

problem is also hard.
As ScMulVfco and ScMulco use exponents that are a multiples of c they are

guaranteed to produce a unique result on Gp for all of the c ambiguous represen-
tations of an input point. The additional factor of c in the exponents is compen-
sated by the simulation by calling an experiment library using the ccExp class
from Fig. 9.3 The ccExp object forwards queries to a DGp

_sSDH object such
that all inputs to the DDH oracle will be in Gp.

6.3 CPace Using Single-Coordinate Diffie-Hellman

Some Diffie-Hellman-based protocols, including CPace, can be implemented also
on a group modulo negation, i.a. a group where a group element Y and its inverse
Y −1 (i.e. the point with I = Y · Y −1) are not distinguished and share the same
binary representation4.

3 Note that this class also accepts points on the quadratic twist, a feature that will
become relevant only when considering simplified point verification on twist-secure
curves as discussed in the full version of this paper [4].

4 Counter-examples for protocols that cannot be instantiated on a group modulo nega-
tion and require full group structure are, e.g., TBPEKE [34] and SPAKE2 [5]. The
reason is that these protocols require addition of arbitrary points on the group.

738 M. Abdalla et al.

Fig. 10. Single-coordinate experiment class definition for CPace instantiations on
groups modulo negation.

An elliptic curve in Weierstrass representation becomes a group modulo nega-
tion when only using x-coordinates as representation. We use the notation Ŷ for
such ambiguous encodings and use Ŷ ← SC(Y) for a function returning the
x-coordinate for a point Y and (Y −1, Y) ← RC(Ŷ) for the inverse operation
reconstructing Y and Y −1 in an undefined order.

The major advantage of using this type of ambiguous encoding is that it can
be helpful in practice for all of the following: reducing code size, reducing pub-
lic key sizes and network bandwidth, avoiding implementation pitfalls [10] and
restricting invalid curve attacks to the curve’s quadratic twist. Consequently,
many real-world protocols such as TLS only use this single coordinate for deriv-
ing their session key, as to give implementers the flexibility to take benefit of the
above advantages.

For the purpose of function definitions by chaining, we introduce a function
RSC(Ŷ , x) that takes one ambiguously encoded group element Ŷ in addition to
one scalar x, i.e. takes the same operands as ScMul. We define RSC(Ŷ , x) such
that it returns a tuple (Y, x) such that SC(Y) = Ŷ . With this definition, we can
formalize CPace using single-coordinate scalar multiplications with the chained
functions ScMulx−only := (SC ◦ ScMul ◦RSC), ScMulVfx−only := (SC ◦ ScMulVf ◦
RSC) and Genx−only := SC ◦Gen, such that the ambiguous encodings are used.5

Theorem 6 (Security of CPacex−only). Given a group G, assume CPace[Gen,
ScMul,ScMulVf,SamSc] on G can be distinguished from an ideal-world run
of FlePAKE and S from Fig. 5 with negligible advantage, where S embeds an

5 Note that this definition obtained from chaining with SC and RSC for the scalar
multiplications corresponds exactly to the conventional so-called single-coordinate
ladder algorithms.

Security Analysis of Cpace 739

experiment object exp. Then CPace[SC ◦ Gen,SC ◦ ScMul ◦ RSC,SC ◦ ScMulVf ◦
RSC,SamSc] on the corresponding group modulo negation Ĝ cannot be distin-
guished from FlePAKE running with a simulator Ŝ that is obtained by chaining
exp with moduloNegationAdapter, the adapter class from Fig. 10, and the differ-
ence in the distinguishing advantage is bounded by a factor of 2.

We defer the proof sketch to the full version of this paper [4]. With our
library-based approach to simulation, it is also possible to argue security of
CPace variants which combine several of the aspects above. In a nutshell, this
works by chaining of the experiment classes. We refer the reader to the full
version [4] for details and examples.

References

1. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 278–307. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_10

2. Abdalla, M., Barbosa, M., Katz, J., Loss, J., Jiayu, X.: Algebraic adversaries in
the universal composability framework. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS. Springer, Heidelberg (2021)

3. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

4. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. Cryptology ePrint
Archive, Report 2021/114 (2021). https://eprint.iacr.org/2021/114

5. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_14

6. Barak, B., Lindell, Y., Rabin, T.: Protocol initialization for the framework of uni-
versal composability. Cryptology ePrint Archive, Report 2004/006 (2004). https://
eprint.iacr.org/2004/006

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press, May 1992

9. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04474-8_3

10. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

11. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 967–980. ACM Press, November 2013

https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/3-540-45353-9_12
https://eprint.iacr.org/2021/114
https://doi.org/10.1007/978-3-540-30574-3_14
https://eprint.iacr.org/2004/006
https://eprint.iacr.org/2004/006
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/11745853_14

740 M. Abdalla et al.

12. Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography. Definition of Twist security (2019). https://safecurves.cr.yp.to/twist.
html. Accessed 15 Jan 2019

13. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7_13

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

15. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639_24

16. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4_16

17. de Valence, H., Grigg, J., Tankersley, G., Valsorda, F., Lovecruft, I., Hamburg, M.:
The ristretto255 and decaf448 groups. RFC, IRTF (2020)

18. Digital Signature Standard (DSS): National Institute of Standards and Technology
(NIST), FIPS PUB 186-4, U.S. Department of Commerce, July 2013. https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

19. Eaton, E., Stebila, D.: The “quantum annoying” property of password-
authenticated key exchange protocols. In: Cheon, J.H., Tillich, J.-P. (eds.)
PQCrypto 2021 2021. LNCS, vol. 12841, pp. 154–173. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81293-5_9

20. Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., Wood, C.: Hashing to elliptic
curves (2019). https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

21. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

22. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. IACR TCHES 2019(2), 1–48 (2019). https://tches.iacr.org/index.
php/TCHES/article/view/7384

23. Haase, B.: CPace, a balanced composable PAKE (2020). https://datatracker.ietf.
org/doc/draft-haase-cpace/

24. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. Cryptology ePrint Archive, Report 2018/286 (2018). https://eprint.
iacr.org/2018/286

25. Hamburg, M.: Decaf: eliminating cofactors through point compression. In: Gen-
naro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 705–723.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_34

26. Hamburg, M.: Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). https://eprint.iacr.org/2015/625

27. Hamburg, M.: Indifferentiable hashing from Elligator 2. Cryptology ePrint Archive,
Report 2020/1513 (2020). https://eprint.iacr.org/2020/1513

28. Hesse, J.: Review of (security of) remaining candidates. Posting to the CFRG
mailing list (2020). https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uoz
XbAuM-alEk0-s/

https://safecurves.cr.yp.to/twist.html
https://safecurves.cr.yp.to/twist.html
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-540-45146-4_16
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://doi.org/10.1007/978-3-030-81293-5_9
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://datatracker.ietf.org/doc/draft-haase-cpace/
https://datatracker.ietf.org/doc/draft-haase-cpace/
https://eprint.iacr.org/2018/286
https://eprint.iacr.org/2018/286
https://doi.org/10.1007/978-3-662-47989-6_34
https://eprint.iacr.org/2015/625
https://eprint.iacr.org/2020/1513
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s/
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s/

Security Analysis of Cpace 741

29. Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp.
579–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_29

30. Jablon, D.P.: Strong password-only authenticated key exchange. Comput. Com-
mun. Rev. 26(5), 5–26 (1996)

31. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7_15

32. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, IETF,
January 2016

33. Advanced security mechanism for machine readable travel documents (extended
access control (EAC), password authenticated connection establishment (PACE),
and restricted identification (RI)). Federal Office for Information Security (BSI),
BSI-TR-03110, Version 2.0 (2008)

34. Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password exponen-
tial key exchange. In: Karri, R., Sinanoglu, O., Sadeghi, A., Yi, X. (eds.) ASIACCS
17, pp. 301–312. ACM Press, April 2017

35. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006.
LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006). https://doi.org/10.
1007/11792086_36

36. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). https://eprint.iacr.org/2004/
332

37. Tackmann, B.: Updated review of PAKEs. Posting to the CFRG mailing list (2020).
https://mailarchive.ietf.org/arch/msg/cfrg/eo8O6JYPmWY6L9TlcIXStFy5gNQ/

https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/11792086_36
https://doi.org/10.1007/11792086_36
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://mailarchive.ietf.org/arch/msg/cfrg/eo8O6JYPmWY6L9TlcIXStFy5gNQ/

Modular Design of Role-Symmetric
Authenticated Key Exchange Protocols

Yuting Xiao1, Rui Zhang1,2(B), and Hui Ma1

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{xiaoyuting,r-zhang,mahui}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Authenticated Key Exchange (AKE) is an important prim-
itive in applied cryptography. Previously several strong models of AKE
were introduced, e.g., CK, CK+, eCK and their extended versions consid-
ering perfect forward secrecy (PFS), (denoted by a “-PFS” suffix). These
models provide different security guarantees and they are incomparable.
Hence, one still lacks systematic understanding of the prerequisites for
secure AKEs and a modular design of AKE protocols. In this paper, we
investigate this issue in the context of One-Round Authenticated Key
Exchange (ORKE), which is role-symmetric for players and only needs
a single round to establish a session key.

Our treatments are as follows: First, we reformat the CK, CK-PFS,
CK+, CK+-PFS, eCK and eCK-PFS models in the context of ORKE,
some of which are formulated for the first time in the literature. Next,
we introduce a new tool, Key-wise Recoverable Function (KRF). With
merely black-box calls to KRFs, we build modular constructions for
ORKEs. As an immediate application, many previous protocols can be
explained naturally by the construction. We further build a protocol with
CK, CK+, eCK, CK-PFS, CK+-PFS and eCK-PFS security simultane-
ously, by properly instantiating the underlying KRF. As a by-product,
we have simplified proofs for a few known protocols, with non-standard
assumptions avoidable.

Keywords: Role-symmetric · One-round authenticated key exchange ·
Key-wise recoverable functions · Modular construction

1 Introduction

Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive to
set up secure channels between parties over an open network. In the last decades,
many AKE protocols have been developed and used in practice, e.g., SSL/TLS,
IPSec and SSH. Typically, in a two-party AKE protocol Π, each party possesses
a long-term public/secret key pair. If any two parties want to negotiate a session
key, they should select their own ephemeral keys, then exchange messages in
a specific order (e.g., the initiator I starts by sending M1, the responder R
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 742–772, 2021.
https://doi.org/10.1007/978-3-030-92068-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_25

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 743

sends M2, the initiator I sends M3, and so on), finally compute the session
key from four pieces of information, including their own long-term secret and
ephemeral keys, the other party’s long-term public key and the transcript (i.e.,
the concatenation of the identities of both sides and all transmitted messages).

We say that Π is an n-round protocol if the maximum number of messages
exchanged from an initiator to a responder during one protocol execution is n.
We say a protocol is role-symmetric if both sides have equivalent roles, namely,
neither side needs to wait for the other party’s message to arrive. It is a significant
useful property in practice, which greatly reduces latency. In the literature, sev-
eral famous protocols are role-symmetric, e.g., MQV [20], HMQV [18], NAXOS
[19], etc. In particular, these protocols only involve two messages in one round
to establish a session key. Such protocols have attracted much attention due to
their simplicity and their efficiency in terms of bandwidth usage. In this paper,
we focus on this case, also known as One-Round Authenticated Key Exchanges
(ORKEs).

Up to now, a number of security models have been introduced for AKEs.
The first is the BR model introduced by Bellare and Rogaway [2], capturing an
open network fully controlled by adversaries. It is an indistinguishability-based
security definition. Any party executing one protocol instance is called a session.
Adversaries are allowed to launch various interleaving attacks, corrupt parties’
long-term keys and reveal session keys. These behaviours are formally modeled as
performing Send(·), Corrupt(·) and SKReveal(·) queries on specific sessions. The
security is defined via an experiment between an adversary and the challenger,
where the adversary is allowed to adaptively ask above queries, and choose a
target session in a Test(·) query that outputs a real or random session key
according to a flipped coin. The adversary is said to win if it guesses the correct
bit with non-negligible advantage over random guess. To avoid trivial success,
the target session must be fresh throughout the experiment. Note that the fresh-
ness notion is important help us understand different security models, which in
turn depends on the definitions of session identifiers (to identify sessions) and
matching-session (to denote the session via the same execution instance with
the target session), and mainly reflects the restrictions on the adversary’s access
to secret information of the target session. After that, several stronger security
models were developed, namely, CK [7], eCK [19] and CK+ [18]. In these models,
the adversaries are allowed to obtain more secret information.

The CK model was introduced by Canetti and Krawczyk [7], which addi-
tionally allows an adversary to obtain the secret state of a specific session via
the SSReveal(·) query. Since Canetti and Krawczyk did not explicitly specify
what information is included in the session state, the claiming CK-security of
a particular protocol should come with a careful pre-definition of it. The eCK
(extended CK) model was introduced by LaMacchia, Lauter and Mityagin [19].
They replaced the SSReveal(·) query by the EphKReveal(·) query, which gives
an adversary the power to corrupt the ephemeral key (i.e., the randomness used)
of a specific session. As the name implies, the eCK model provides more secu-
rity guarantees that are not originally considered by the CK model, e.g., weak

744 Y. Xiao et al.

perfect forward secrecy (wPFS) [1,18], as well as resistance to key-compromise
impersonation attack (KCI) [15,23] and maximal exposure attack (MEX, where
a non-trivial combination of the ephemeral and long-term keys of the target ses-
sion and its matching session are exposed to the adversary). The CK+ model
was originally used to capture the security properties of HMQV [18] and later
reformatted by Fujioka et al. [11]. It seems like but not actually a combination of
the CK and eCK models. In the CK+ model, an adversary can ask SSReveal(·)
queries and get a non-trivial combination of the ephemeral and long-term keys
of the target session and its matching session.

In the literature, several works have developed the CK, CK+ and eCK models
for capturing perfect forward secrecy (PFS). Boyd and Nieto [6] considered PFS
for the CK model, which we prefer call the CKBN model. Yoneyama [27] proposed
the CK+-sFSNSR model based on the CK+ model. Cremers and Feltz [9] also
proposed the eCK-PFS model to capture the PFS for the eCK model. Note that,
when considering PFS, both parties’ long-term keys will eventually be exposed
to the adversary, thus if it is also allowed to reveal the ephemeral secret of
either party, the adversary would trivially win. To avoid trivial success, some
less common constraints on the adversaries’ behaviours were raised in the CKBN

and CK+-sFSNSR models, e.g., SSReveal(·) query is not allowed on any session
between the owner and the peer of the target session. While in the eCK-PFS
model, the notion of origin-session was proposed, which facilitates analysing and
limiting the adversaries’ behaviours in a more granular way, thus following the
common manner defining security in the CK, CK+ and eCK models.

To date, only a few work attempted to investigate relations of the existing
models. Cremers [8] noticed that, the original versions of the CK [7], CK+ [18]
and eCK [19] models are incomparable, by showing a (somehow artificial) pro-
tocol provable secure in one model is insecure in other models. This accounts for
why later work only considered security in a single model: e.g., [4,17,22] in the
CK model, [16,21,25] in the eCK model, [24] in the CK+ model and [3,26] in
the eCK-PFS model.

On the other hand, some subsequent works did make subtle changes to these
models. For instance, Boyd et al. [4] redefined the session identifiers for the
CK model using the concatenation of the messages sent and received by parties
instead of a string required to be sent along with the message, which requires
the definition of matching notion to be modified accordingly; in the CK+ model
by Fujioka et al. [11,12], the definition of matching notion includes an extra
restriction, i.e., two sessions must have non-equal role identifiers (denoting the
actor of a session is an initiator or a responder); in the eCK-PFS model by
Bergsma et al. [3], such restriction was dropped in defining the matching notion,
differing from the original eCK and eCK-PFS models.

Hence a natural question arises whether insisting these different definitions
of session identifiers and matching sessions really matters in practice? In addi-
tion, many different techniques and different assumptions were used for different
schemes in different models, therefore, a systematic understanding of how to
construct secure ORKEs is extremely necessary and helpful.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 745

The above are exactly our motivations to revisit the CK, eCK, CK+ and
eCK-PFS models, in the context of ORKE as a first step, and develop a modular
construction that can be proved secure in these models, respectively. As a result,
we show there exists an ORKE protocol provably secure in different models, if
its underlying building-blocks meet some natural security properties.

1.1 Our Results

A Complete Set of Definitions for ORKE. We present a succinct and
comprehensible unification of the existing models in the context of ORKE. We
also formally defined CK-PFS and CK+-PFS models utilizing the notion of origin
session. As the name suggests, these two models extend naturally the CK and
CK+ models by capturing perfect forward secrecy (PFS). Note that, they are
stronger than the CKBN and CK+-sFSNSR models, respectively. Combining with
the existing CK, eCK, CK+ and eCK-PFS models, we have a complete set of
unified strong security definitions for ORKE.

A New Tool KRF for Secure ORKEs. We introduce a new tool, called
Key-wise Recoverable Function (KRF). Using KRF and passively secure Key
Exchange (KE) as building blocks, we give a modular construction (Fig. 6) and
other extended variants, whose security holds in all the above-mentioned strong
models by assuming the underlying KRF meets different security definitions.

Unification of the Previous Works. We note that our modular construc-
tion simultaneously captures the ideas behind several well-known construc-
tions, including 2×KEM+DH [4] (CK security), NAXOS [19] (eCK security),
HMQV [18] (CK+ security) and BJS [3] (eCK-PFS security).

Independent from our work, Xue et al. [24] introduced a primitive called
double-key key encapsulation mechanism (2-key KEM), based on which, they
presented modular constructions to simplify the construction and analysis of
CK+-secure and eCK-secure AKEs. Compared with their work, our work has a
wider range of application as the CK, CK-PFS, CK+-PFS and eCK-PFS models
were also taken into account. In addition, our modular constructions are role-
symmetric, which makes it more suitable for some scenarios (Table 1).

Table 1. Detailed comparisons with Xue et al.

Constructions Role-Symmetric Tools Applicable models Unification of previous works

Xue et al. [24] N 2-key KEM CK+, eCK HMQV [18] CK+

NAXOS [19] eCK

Okamoto [21] eCK

FSXY12,13 [11,12] CK+

Our work Y KRF,KE CK,CK+, eCK, CK-PFS, CK+-PFS, eCK-PFS 2KEM+DH [4] CK

HMQV [18] CK+

NAXOS [19] eCK

BJS [3] eCK-PFS

†† “N” denotes “no”, and “Y” denotes “yes”.

746 Y. Xiao et al.

New Results for ORKEs with KRFs. We have the following new results:

– We observe that our modular construction using a same KRF achieves CK+

(resp., CK+-PFS) security and eCK (resp., eCK-PFS) security, which makes
a protocol selection much easier in practice.

– By instantiating our modular construction with a proper KRF, we obtain a
secure protocol in the CK-PFS model (first formulated in this work). Com-
pared with the SIG(2KEM+DH) construction, an immediate scheme inspired
by the work of Cremers and Feltz [9], this proposal is more efficient in terms
of computation and bandwidth.

– Finally, we show that there is a KRF with full security (i.e., meeting all the
security definitions), applying our modular construction, a secure ORKE is
then acquired in all the known security models, namely, CK, CK+, eCK,
CK-PFS, CK+-PFS and eCK-PFS.

2 Preliminary

In this section, we review some useful notations and notions.

Notations. For arbitrary k ∈ N, 1k denotes the string of k ones. For an integer
m, [m] def= {1, 2, . . . ,m}. If S is a distribution, x ←$ S denotes randomly choosing
an element according to S. If A is an algorithm, A(x; r) → y denotes that A takes
x as input and r as internal randomness returns output y. If y is a variable,
y ← A(x) denotes assigning the output of A with x as input to y. A function
μ(·) is called negligible, if for every polynomial p(·), there exists some λ0 such
that μ(λ) ≤ 1/p(λ), for every λ > λ0.

Passively Secure Key Exchange. Here we define passively secure Key
Exchange (KE) that is used without any long-term keys, which consists of two
polynomial time algorithms: a probabilistic algorithm KE.Gen(1λ) → (pk, sk)
that takes as input a security parameter 1λ and returns a key pair (pk, sk);
a deterministic algorithm KE.Key(sk, pk′) → k that takes as input a secret
key sk and a public key pk′ and returns a key k. Let CKey(pk, pk′) denote
k ← KE.Key(sk, pk′). Correctness requires that for any (pk, sk) ← KE.Gen(1λ)
and (pk′, sk′) ← KE.Gen(1λ), CKey(pk, pk′) = CKey(pk′, pk) holds.

Definition 1 (Passive-Security). A KE scheme KE = (KE.Gen,KE.Key) is
called Passively Secure (PS), if for any PPT adversary A, its advantage:

AdvPSKE,A(λ) def= Pr[b′ = b : b′ ← APExecute(·),PReveal(·),PTest(·)(1λ)] ≤ μ(λ),

where A is allowed to adaptively query:

– PExecute(i): For unused identity i, compute (pki, ski) ← KE.Gen(1λ) and
(pk′

i, sk
′
i) ← KE.Gen(1λ), and return (pki, pk′

i). Otherwise, do nothing.
– PReveal(i): If the identity i has been used in previous PExecute(·) queries,

compute ki ← KE.Key(ski, pk′
i) and return ki.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 747

– PTest(i∗): This can be asked for only once. If b = 0, return the real key
ki∗ ← KE.Key(ski∗ , pk′

i∗); else if b = 1, return a random key. Throughout the
experiment, PReveal(i∗) should never been queried.

Pseudo-Random Function. Let F def= {Fλ : Sλ × Domλ → Rngλ}λ∈N define
a function family with families of key spaces {Sλ}λ∈N, domains {Domλ}λ∈N and
ranges {Rngλ}λ∈N, where λ denotes a security parameter.

Definition 2 (PRF). A function family F is called a secure Pseudo-Random
Function (PRF) family if for any PPT adversary A, its advantage

AdvPRF
F,A (λ) def=| Pr[1 ← AFλ(·)] − Pr[1 ← ARFλ(·)] |≤ μ(λ),

where RFλ(·) : Domλ → Rngλ is a truly random function family.

3 Security Definitions for ORKEs

In this section, we unify the definitions of the CK [4,5,7], eCK [19,21], CK+

[11,12,18] and eCK-PFS [3,9] models in the context of ORKE, and introduce
the CK-PFS and CK+-PFS models. We resemble the method defining security
models used in [11], namely we formulate these models as follows: wPFS, PFS,
KCI resistance, and MEX resistance are integrated into the experiments of con-
sidered models by exhaustively classifying leakage patterns. Such definitional
treatment is convenient for capturing all required properties rigorously in each
model, and greatly simplifies the security proofs in these models.

Fig. 1. A generic description of ORKE

We first present a generic description of ORKE to help us understand the
security models. Assume each party P̂i possesses a long-term public/secret key
pair (pki, ski), and will select an ephemeral key (i.e., the randomness r) in each
execution instance. In general, we use three functions to abstract each party’s
local computations: (1) f to generate the message sent to its peer party; (2) f̄c

748 Y. Xiao et al.

to deal with the received message; (3) KDF to compute the session key. Take one
execution instance between two parties P̂i and P̂j as an illustration (see Fig. 1).
The function f may take two forms. The first takes the party’s own secret key
as a partial input, while the second does not. We use them to capture different
forms of existing protocols. For examples: in 2KEM+DH [4] and HMQV [18],
each party’s own secret key is not required to compute a sent message; while in
NAXOS [19] and BJS [3], that is required. The function f̄c can be subdivided
into f̄ and fc. Note that, in ORKE, each party only sends a single message
independent of the message sent by its peer party. Therefore, the usages of its
long-term key and ephemeral key are different: the former is used to recover the
embedded key material along with the received message, i.e., si and sj ; the latter
is used to negotiate a new piece of key material, i.e., sij .

Syntax. Let P = {P̂1, P̂2, ..., P̂N} be a finite set of N parties’ identities. A
protocol Π is a collection of N interactive PPT Turing machines run by differ-
ent parties. Each party can execute multiple protocol instances, called sessions,
concurrently. Each session can only be activated once. The i-th session at P̂U

is denoted as (P̂U , i) ∈ P × N. For each session s, a tuple of variables partially
selected form the following lists will be set:

– sactor: To denote the identity of the session’s actor;
– speer: To denote the identity of the session’s intended peer;
– ssent: The concatenation of timely ordered messages sent by sactor;
– srecv: The concatenation of timely ordered messages received by sactor;
– sid: A string generated by sactor to explicitly identify the session and required

to be sent along with the message;
– srole: To denote the role of sactor, e.g., initiator or responder.

These values will be determined once a session is activated or during the
protocol execution. A session is called completed if it returns a session key then
terminates normally. In previous works, to identify any two distinct sessions s
and s′ involved in the same instance, the notion of matching-session was defined:

– sactor = s′
peer ∧ speer = s′

actor ∧ ssid = s′
sid; or

– sactor = s′
peer ∧ speer = s′

actor ∧ ssent = s′
recv ∧ srecv = s′

sent; or
– sactor = s′

peer ∧ speer = s′
actor ∧ ssent = s′

recv ∧ srecv = s′
sent ∧ srole �= s′

role.

Among these notions: using an explicit string (i.e., ssid) to identify a session
is seldom adopted now; and in the role-symmetric setting, the variable srole

cannot be utilized to determine whether two sessions are matched or not, since
both sides are allowed to be the initiator. For these reasons, we adopt the second
type. Besides, we will use the notion of origin-session introduced in [9], which is
important to define “-PFS” models. A (possibly incomplete) session s′ is called
an origin session for a completed session s when s′

sent = srecv.

Matching-Session vs Origin-Session. Take the right session in (b) from the
three execution instances shown in Fig. 2 as an illustration, its matching session
is thought to be non-existent (since that is not an honest session), but its origin

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 749

session is thought to be existent, say the left session in (a). “The origin session
of a session s does not exist” means that srecv is not originated from an honest
party but the adversary. In fact, two honest sessions are matched if and only if
they are both origin sessions of each other.

Fig. 2. Protocol execution instances with an adversary A. (a) A passively observes.
(b) A replays messages originated from P̂i. (c) A replays messages originated from P̂j .

Oracle Queries. The adversary is modeled as an interactive PPT Turing
machine that controls all communications between parties, i.e., the adversary
can eavesdrop, stop, delay and alter the messages passing over the channel. And
it may be allowed to obtain session-specific secret information. These abilities
are modeled via different oracle queries:

– Send(s,m): This query models the adversary sending a message m to a ses-
sion s, and responses according to the protocol description. Abusing nota-
tions, the adversary is allowed to activate a sessuib s with a peer P̂U via a
Send(P̂U , s) query, or communicate with a session s by sending a message m
on behalf of P̂U via a Send(P̂U , s,m) query.

– Corrupt(P̂U): This query models long-term key (LTK) leakages, and returns
the LTK of P̂U , which is denoted as LTK[P̂U].

– SKReveal(s): This query models session key (SK) leakages, and returns the
SK of s if it is completed, which is denoted as SK[s].

– EphKReveal(s): This query models ephemeral key (EphK) leakages, and
returns the EphK (i.e., the randomness) of s, which is denoted as EphK[s].

– SSReveal(s): This query models session state (SS) leakages, and returns the
SS of s before it completes, which is denoted as SS[s].

– Test(s): This query does not model practical attacks, but is important for
indistinguishability-based security definitions. A random coin b is flipped: if
b = 0, return SK[s]; else return a random key. This query can be issued for
only once and must be on a session that is both completed and fresh. The
notion of freshness is defined as in the last column of Table 2. Jumping ahead,
in the experiment, the input of this query is called the adversary’s target
session, and denoted as s∗ throughout this paper. In addition, we use s̄∗ and
s̃∗ to denote its intended matching session and origin session, respectively. If
without any explicit statement, they are thought to be existent.

750 Y. Xiao et al.

Table 2. Allowed queries and freshness in different models

Model Allowed Queries Freshness

CK Send(·)
Corrupt(·)
SSReveal(·)
SKReveal(·)
Test(·)

The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
· SKReveal(s̄∗) and SSReveal(s̄∗);
· Corrupt(s∗

peer) if the target’s matching session does
not exist.

CK-PFS The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
· SKReveal(s̄∗) and SSReveal(s̄∗);
· Corrupt(s∗

peer) if the matching session does not exist but the
origin session does exist;
· Corrupt(s∗

peer) before the completion of s∗ if the target’s
origin session does not exist.

CK+ The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
· SKReveal(s̄∗) and SSReveal(s̄∗);
It is limited to obtain one key combination as follows:
· LTK[s∗

actor] and LTK[s̄∗
actor];

· EphK[s∗] and EphK[s̄∗];
· LTK[s∗

actor] and EphK[s̄∗];
· EphK[s∗] and LTK[s̄∗

actor];
· LTK[s∗

actor] if the target’s matching session does not exist;
· EphK[s∗] if the target’s matching session does not exist.

CK+-PFS The adversary has never perform:
· SKReveal(s∗) and SSReveal(s∗);
·SKReveal(s̄∗) and SSReveal(s̄∗);
It is limited to obtain one key combination as follows:
· LTK[s∗

actor] and LTK[s̃∗
actor];

· EphK[s∗] and EphK[s̃∗];
· LTK[s∗

actor] and EphK[s̃∗];
· EphK[s∗] and LTK[s̃∗

actor];
· LTK[s∗

actor] and LTK[s∗
peer] if the target’s origin session does

not exist, but the latter should be after the completion of s∗;
· EphK[s∗] and LTK[s∗

peer] if the target’s origin session does not
exist, but the latter should be after the completion of s∗.

eCK Send(·)
Corrupt(·)
EphKReveal(·)
SKReveal(·)
Test(·)

The adversary has never perform:
· SKReveal(s∗) and SKReveal(s̄∗);
· both Corrupt(s∗

actor) and EphKReveal(s∗);
· both Corrupt(s̄∗

actor) and EphKReveal(s̄∗);
· Corrupt(s∗

peer) if the target’s matching session does not exist.
eCK-PFS The adversary has never perform:

· SKReveal(s∗) and SKReveal(s̄∗);
· both Corrupt(s∗

actor) and EphKReveal(s∗);
· both Corrupt(s̃∗

actor) and EphKReveal(s̃∗);
· Corrupt(s∗

peer) before the completion of s∗ if the target’s
origin session does not exist.

†† In the CK-PFS and CK+-PFS models, SSReveal(·) is only forbade on the
target session s∗ and its matching session s̄∗, but still allowed on its origin
session s̃∗. Under a special case that the target’s matching session doesn’t exist
but its origin session exists., the adversary may perform SSReveal(s̃∗) to get
SS[s̃∗] that includes EphK[s̃∗] and some other intermediates.

Important Security Notions and the Experiment. Before giving the formal
security definition, we recall several important security goals for ORKEs:

– Perfect Forward Secrecy (PFS): To guarantee the secrecy of older SKs,
say any PPT adversary is unable to distinguish them from random keys, even
when the LTKs of both parties are corrupted.

– weak Perfect Forward Secrecy (wPFS), a weak version of PFS: To guar-
antee the secrecy of older SKs, whose negotiation processes were not thrust
in, even when the LTKs of both parties are corrupted.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 751

– resistance to Key-Compromise Impersonation (KCI): To guarantee
the secrecy of SKs under KCI attacks. In a KCI attack, an adversary corrupts
a party P̂i and tries to authenticate itself to P̂i as some uncorrupted party
P̂j . Once succeeds, it can compute the SK and break the secrecy trivially.

– resistance to Maximal EXposure (MEX): To guarantee the secrecy of
a SK under the disclosure of any pair of LTKs and EphKs of both parties in
the session except for both the LTK and EphK of each party.

The formal security definition in each model is defined via a two-phase exper-
iment played between a challenger and an adversary A. In Phase-I, A may adap-
tively perform allowed oracle queries as collected in Table 2. At some point, A
performs a Test(·) query on a target of its choice. In Phase-II, A can continue
with its regular actions like in the first phase. Eventually, A outputs a guess
bit b′ and halts. If b = b′ and the target session is kept fresh throughout the
experiment, then A is determined as winning in the experiment.

Defining the Output of SSReveal(·). In Fig. 3, we illustrate the execution
processes of P̂i in Fig. 1 and the timing of the SSReveal(·) query may be allowed.
The adversary may trivially win without any limitation.

Fig. 3. An illustration of the execution processes

Consider the most extreme case that the SSReveal(·) query may return all
internal states, i.e., (ri, si, sj , sij). Elaborate with the CK+ experiment and the
three execution instances shown in Fig. 2. Assume the adversary A chooses the
left session in (a) as its target eventually, the session key materials of which we
denoted as s∗

i , s∗
j and s∗

ij . According to the definition, the right session in (b)
and the left session in (c) are both not matched to the target session, thus A
can perform SSReveal(·) queries on them to get s∗

i and s∗
j , respectively. Besides,

A can chose to reveal the EphK of the target’s matching session, say the right
session in (a), which helps A to obtain s∗

ij . By doing so, A can compute the
target session key, thus trivially win.

In previous works [4,5,11,12,24], it is assumed that the intermediate values
computed from the received message and own secret key will not be stored for
a long time before computing the session key, which should be securely erased
once the computation is over. That is equivalent to assume the 3rd and 4th steps
shown in Figs. 1 and 3 are inseparable, thus the SSReveal(·) query is broken down
once the party begins dealing with the received message. To make the security
model definitions still meaningful in the role-symmetric and one-round setting,
we also put such constraint on SSReveal(·) queries.

752 Y. Xiao et al.

Table 3. The CK model

Case The target session s∗ The matching session s̄∗ Security
EphK[s∗] LTK[s∗

actor] EphK[s̄∗] LTK[s∗
peer]=LTK[s̄∗

actor]

I � � wPFS
II � − KCI

Table 4. The CK-PFS model

Case The target session s∗ The origin session s̃∗ Security
EphK[s∗] LTK[s∗

actor] EphK[s̃∗] LTK[s∗
peer]=LTK[s̃∗

actor]

I � � wPFS
II � � KCI
III � − �τ KCI-PFS

Table 5. The CK+ model

Case The target session s∗ The matching session s̄∗ Security
EphK[s∗] LTK[s∗

actor] EphK[s̄∗] LTK[s∗
peer]=LTK[s̄∗

actor]

I � � MEX
II � � MEX
III � � wPFS
IV � � MEX
V � − MEX
VI � − KCI

Table 6. The CK+-PFS model

Case The target session s∗ The origin session s̃∗ Security
EphK[s∗] LTK[s∗

actor] EphK[s̃∗] LTK[s∗
peer]=LTK[s̃∗

actor]

I � � MEX
II � � MEX+

III � � wPFS
IV � � MEX+

V � − �τ MEX-PFS
VI � − �τ KCI-PFS

Table 7. The eCK Model

Case The target session s∗ The matching session s̄∗ Security
EphK[s∗] LTK[s∗

actor] EphK[s̄∗] LTK[s∗
peer]=LTK[s̄∗

actor]

I � � MEX
II � � MEX
III � � wPFS
IV � � MEX
V � − MEX
VI � − KCI

Table 8. The eCK-PFS model

Case The target session s∗ The origin session s̃∗ Security
EphK[s∗] LTK[s∗

actor] EphK[s̃∗] LTK[s∗
peer]=LTK[s̃∗

actor]

I � � MEX
II � � MEX
III � � wPFS
IV � � MEX
V � − �τ MEX-PFS
VI � − �τ KCI-PFS

†† The symbol � denotes that A is allowed to corrupt the key; − denotes empty value because the
corresponding session does not exist at all; �τ denotes that A is allowed to corrupt the key, but
should after the completion of the target session.

Model Formulations. We formulate the CK, CK-PFS, CK+, CK+-PFS, eCK
and eCK-PFS models as in Tables 3, 4, 5, 6, 7 and 8. We use “KCI-PFS”,
“MEX-PFS” and “MEX+” to distinguish them from the standard KCI and
MEX notions. The first two are considered in the “-PFS” models, where if the
origin session of the target session s∗ doesn’t exist, LTK(s∗

actor) is allowed to be
corrupted after the completion of s∗. As for the notion of “MEX+”, it is only
used in the CK+-PFS model, where a spacial event may occur, i.e., the matching
session of the target session doesn’t exist but its origin session exists. Recall that,
SSReveal(·) query is not forbade on the target’s non-matching sessions, thus the
EphK of the origin session may be corrupted. Note that the SSReveal(·) query
does not merely return the EphK, which makes it different to the same numbered
cases in the CK+, eCK and eCK-PFS models.

In the literature, the CKBN [6] and CK+-sFSNSR [27] were also introduced
to capture PFS for the CK and CK+ models, respectively. But they both didn’t
utilize the notion of origin-session. To avoid the trivial case that the adversary
derives the EphK of the target’s origin session and the LTK of the peer party at
the same time, some constraints are required. In the CKBN model, SSReveal(·)
query should be forbade to capture PFS, otherwise one should back done to
consider wPFS. In the CK+-sFSNSR model: if the target’s matching session does
not exist, the adversary is allowed to corrupt the owner of the target session,
and also the peer party after the completion of s∗, but with a precondition that
SSReveal(·) query is not allowed to any session between the owner and the peer
of s∗; otherwise, the adversary is not allowed to corrupt the peer party at all.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 753

We should emphasize, what are considered in the CKBN model can be clas-
sified into the Case-I and Case-III in Table 4. Moreover, the CK-PFS model also
take KCI resistance into consideration, which makes it stronger. Besides, what
are considered in the CK+-sFSNSR model are also considered in the CK+-PFS
model. But as we insist, the existence of the origin session does not imply
the existence of the matching session, such that the cases considered in the
CK+-PFS model cannot be fully covered by the CK+-sFSNSR model. Therefore,
the CK+-PFS model is stronger than the CK+-sFSNSR model too.

Differences Among These Models. The key difference between “-PFS” mod-
els and others is that the formers allow LTK[s∗

peer] corruption after the comple-
tion of the target session, even its origin session does not exist. Recall that
the existence of the target’s matching session implies its origin session’s exis-
tence, but not vice versa. Therefore, “-PFS” models consider more complex
situations, e.g., the cases I and III in the CK+-PFS model are not allowed in
the CK+ model. The CK and CK-PFS models differ from others: they do not
consider the MEX attack and its variants. The eCK (resp., eCK-PFS) model
differs from the CK and CK+(resp., CK-PFS and CK+-PFS) models: it does
not allow the SSReveal(·) query, instead of the EphKReveal(·) query. The for-
mer not only returns EphKs, but also some intermediates. As shown in Fig. 1,
computing these intermediates may involve the session owner’s LTK, thus the
leakage through the SSReveal(·) query is at least no smaller than the EphKRe-
veal (·) query. We should emphasize that this statement is not absolute when
other variants of SSReveal(·) out of this paper are considered, e.g., it merely
returns intermediates derived from both the LTK and EphK through some one-
way computations, the adversary may learn no more than directly asking the
EphKReveal(·) query.

Definition 3. A protocol Π is called secure in a specific model if and only if for
any PPT adversary A, the following properties hold,

– Two honest parties complete matching sessions output the same key;
– The advantage AdvModel

A,Π (λ) = |Pr[b′ = b]−1/2| that A wins in the experiment
is negligible, where Model ∈ {CK,CK-PFS,CK+,CK+-PFS, eCK, eCK-PFS}.

4 Our Modular Construction

In this section, we present some observations, motivated by which, we introduce
a new tool KRF (Key-wise Recoverable Function) and our modular construction.

Essential Observations. Recall the abstraction in Fig. 1. To build a secure
ORKE protocol, one should give proper implementations of (f, f̄c = (f̄ , fc),
KDF). Among these functions, fc is used to negotiate a key material from both
parties’ EphKs. To the best of our knowledges, this is to achieve wPFS, an
important security goal as we mentioned before. In fact, by itself, only passive
attacks can be resisted. We can find its implementations easily, e.g., the typical
Diffie-Hellman Key Exchange (DHKE). As for KDF, its functionality is just to

754 Y. Xiao et al.

derive a session key from already prepared key materials. Our essential goal is to
give a modular understanding how to prepare these key materials. Put together
f that locates on the left (resp., right) and f̄ that locates on the right (resp.,
left). The conceptual structure of ORKE can be abstracted as the “2 × (f, f̄) +
fc + KDF” paradigm.

4.1 Key-Wise Recoverable Function (KRF)

How to implement (f, f̄) becomes very important, which motivates us to define
a new tool, namely Key-wise Recoverable Function (KRF). To give a proper
definition for it is our starting point. Note that (f, f̄) can be essentially viewed
as an abstraction of an another type of key exchange (sometimes called One-
Pass Key Exchange), where the initiator (e.g., P̂i) sends a single message to the
responder (e.g., P̂j) without requiring response message: with f , P̂i takes its
own secret key ski, P̂j ’s public key pkj and a randomness ri as input, and gets
two output (msg, s); with f̄ , P̂j takes its own secret key skj , P̂i’s public key
pki and the received message msg as input, can recover the secret s. Intuitively,
to achieve an authenticated key establishment, it’s well if such key exchange
module satisfies the following properties:

1. P̂j assures that the message msg is indeed sent from the claimed P̂i;
2. P̂i assures that only the intended P̂j is able to compute the correct s.

These two properties inspired us to define private evaluation and private
recoverability for KRF, respectively. Besides these, to determine whether more
properties are required or not, we take a closer look at the CK, eCK, CK+, CK-
PFS, eCK-PFS and CK+-PFS models. Recall that, to achieve security in these
models, the key is to achieve wPFS and resistances to the KCI, MEX, MEX+,
MEX-PFS and KCI-PFS attacks. Among these goals, achieving wPFS can be
achieved by properly implementing fc.

To resist the MEX and MEX+ attacks, it is required to assure that as long
as one of the EphK (i.e., ri) and the LTK (i.e.,ski) is kept secret, the adversary
is unable to compute the correct s. To achieve this, we further define the notion
private recoverability under different leakages, i.e., under the leakage of the ran-
domness ri or the secret key ski. After defining private recoverability under the
leakage of the secret key ski, we were able to resist the KCI attack. Consider a
case that an adversary tries to authenticate itself to P̂i as P̂j . Even the adversary
has corrupted ski, basing on this property, it is unable to compute the correct s.
To resist the MEX-PFS and KCI-PFS attacks, our idea is similar to [3,9]: if the
adversary doesn’t know the LTK of the target’s peer, it is unable to originate a
valid message to make the target session terminate normally without rejection.
To achieve this, it is enough to define the private evaluation property.

Up to now, we have roughly considered all intended security goals. Next we
formally define KRFs.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 755

Informal Description of KRF. A KRF evaluates a set of function pairs{
(f, f̄)

}
indexed by an evaluation/re-evaluation key pair, e.g., (ek, rk), and their

public keys are denoted as epk and rpk, respectively. As shown in Fig. 4: on input
(rpk, x1, x2), fek(·, ·, ·) outputs (y,w); for its paired function f̄rk(·, ·, ·), it is able to
recover w from (epk, x1, y). Here x1 captures some public input, which can also
be set as empty if useless. A KRF may provide following security guarantees:

Fig. 4. An illustration of KRF

– Private Evaluation: without ek, any adversary is unable to generate a
proper (x1, y) pair such that f̄rk(epk, x1, y) �= ⊥.

– Private Recoverability: without rk, any adversary is unable to recover
any information of w from (x1, y) even the secret ek or x2 has been leaked.

Formal Definition of KRF. A Key-wise Recoverable Function (KRF) consists
of the following three polynomial time algorithms:
– KRF.Setup(1λ) → pp: a probabilistic algorithm that takes as input a security

parameter 1λ and returns a common parameter pp that determines the key
space K = (K0,K1) and four other spaces (X1,X2,Y,W);

– KRF.KG(pp, ψ) → (pk, sk): a probabilistic algorithm that takes as input a
common parameter pp and a signal bit ψ ∈ {0, 1}, and returns a public/secret
key pair (pk, sk) ∈ Kψ;

– KRF.Eval(ψ, input) → output: a deterministic algorithm that evaluates f or f̄
according to the signal bit ψ ∈ {0, 1}:

• if ψ = 0, phrase input as a tuple of (ek, rpk, x1, x2) ∈ K0 × K1 × X1 × X2

and evaluate fek(rpk, x1, x2) that outputs a tuple (y,w) ∈ Y × W.
• else if ψ = 1, phrase input as a tuple of (rk, epk, x1, y) ∈ K1 ×K0 ×X1 ×Y

and evaluate f̄rk(epk, x1, y) that outputs an element w ∈ W or a rejection
symbol ⊥ indicating false input.

Correctness. For any pp ← KRF.Setup(1λ), (epk, ek) ← KRF.KG(pp, 0),
(rpk, rk) ← KG(pp, 1) and (x1, x2) ∈ X1 ×X2, (y,w) ← KRF.Eval(0, ek, rpk, x1, x2),
w′ ← KRF.Eval(1, rk, epk, x1, y), it holds that w = w′ with overwhelming proba-
bility.

Definition 4 (KRF). A KRF scheme KRF=(KRF.Setup, KRF.KG, KRF.Eval)
is called Privately Evaluateable (PE), Privately Recoverable under the Leakage
of Evaluation Key (PR-LEK) or Privately Recoverable under the Leakage of
Full Input (PR-LEX), if for any PPT adversary A, its advantage in different
experiments (Fig. 5)

Adv
PE/PR-LEK/PR-LX
KRF,A (λ) def= Pr[ExpPE/PR-LEK/PR-LX

KRF,A (λ) = 1] ≤ μ(λ).

756 Y. Xiao et al.

Fig. 5. The PE, PR-LEK and PR-LX experiments of KRF

4.2 A Modular Construction for ORKE

In this section, we introduce our modular construction. Two building blocks are
used, i.e., a KRF scheme KRF=(KRF.Setup, KRF.KG, KRF.Eval) that evaluates
f and f̄ functions, and a KE scheme KE = (KE.Gen,KE.Key) with randomness
message R. Our modular construction consists of the following three parts:
Setup. Generate pp ← KRF.Setup(1λ), select a collision resilient hash function
H0 : {0, 1}∗ → X1, and publish (pp,H0) as the system parameters.
Long-term secrets. Each party P̂i is identified by an unique identifier i ∈ [N]
and in possession of two key pairs (epki, eki) ← KRF.KG(pp, 0) and (rpki, rki) ←
KRF.KG(pp, 1). We assume all identifiers are comparable.
Session execution. To negotiate a session key, two parties, say P̂i and P̂j (with
i ≤ j), should execute as the description in Fig. 6.

Fig. 6. Our modular construction

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 757

Theorem 1. The modular construction shown in Fig. 6 instantiated by different
KEs and KRFs yields different ORKEs in different models as shown in Table 9:

Table 9. The main results of our modular construction

Instantiations Models Requirements for the KE Requirements for the KRF

PE PR-LEK PR-LX

ORKEs CK PS ◦
CK-PFS ◦ ◦
CK+ ◦ ◦
CK+-PFS ◦ ◦ ◦
eCK ◦ ◦
eCK-PFS ◦ ◦ ◦

†† The symbol ◦ denotes that the corresponding property is required.

Table 10. High-level proof strategies of our modular construction

Models Sub-events Sessions A’s knowledge Unexposed intermediates Reduction
Matching session s̄∗ origin session s̃∗ LTK[s∗

actor] LTK[s∗
peer] EphK[s∗] EphK[s̄∗] EphK[s̃∗]

CK CK1 ∃ ∃ × × k∗ PS
CK2 � not sure × × w∗

i PR-LEK
CK-PFS CK-PFS1 ∃ ∃ × × k∗ PS

CK-PFS2 � ∃ × × w∗
i PR-LEK

CK-PFS3 � � �τ × – PE
CK+ CK+

1 ∃ ∃ × × w∗
j PR-LEK

CK+
2 ∃ ∃ × × w∗

i PR-LX
CK+

3 ∃ ∃ × × k∗ PS
CK+

4 ∃ ∃ × × w∗
i PR-LEK

CK+
5 � not sure × × w∗

i PR-LX
CK+

6 � not sure × × w∗
i PR-LEK

CK+-PFS CK+-PFS1 not sure ∃ × × w∗
j PR-LEK

CK+-PFS2 not sure ∃ × × w∗
i PR-LX

CK+-PFS3 not sure ∃ × × k∗ PS
CK+-PFS4 not sure ∃ × × w∗

i PR-LEK
CK+-PFS5 � � �τ – PE

eCK eCK1 ∃ ∃ × × w∗
j PR-LEK

eCK2 ∃ ∃ × × w∗
i PR-LX

eCK3 ∃ ∃ × × k∗ PS
eCK4 ∃ ∃ × × w∗

i PR-LEK
eCK5 � not sure × × w∗

i PR-LX
eCK6 � not sure × × w∗

i PR-LEK
eCK-PFS eCK-PFS1 not sure ∃ × × w∗

j PR-LEK
eCK-PFS2 not sure ∃ × × w∗

i PR-LX
eCK-PFS3 not sure ∃ × × k∗ PS
eCK-PFS4 not sure ∃ × × w∗

i PR-LEK
eCK-PFS5 � � �τ – PE

†† ∃ (resp., �) denotes that the corresponding session does exists (resp., doesn’t exist). × denotes
that the corresponding LTK or EphK is always kept secret throughout the experiment.

Proof. For simplicity, let s∗
actor = i and s∗

peer = j, thus SS[s∗] = (r∗
i,1, r

∗
i,2,w

∗
i)

and SS[s̄∗] = (r∗
j,1, r

∗
j,2,w

∗
j) if s̄∗ exists. Recall the formulations of the CK, CK-

PFS, CK+, CK+-PFS, eCK and eCK-PFS models in Tables 3, 4, 5, 6, 7 and 8.
The adversary is allowed to corrupt different key combinations in different mod-
els and different cases. We split the statement into several events, covering all
the possible behaviors of the adversary. Once the underlying KE and KRF meet
proper security, no matter under which event, at least one of the three key mate-
rials (w∗

i ,w
∗
j , k∗) would never be exposed. That helps to further prove the target

session key sk∗ = PRF(w∗
i , T) ⊕ PRF(w∗

j , T) ⊕ PRF(k∗, T) is pseudorandom by
assuming the underlying PRF is secure.

758 Y. Xiao et al.

As summarized in Table 10, the modular construction is secure in different
models if they meet the corresponding requirements. Under the event CK1, the
randomness selected by both sides are kept secret throughout the experiment.
If the underling KE is PS secure, k∗ is always kept secret from the adversary.
Under the event CK2, even the matching session of the target does not exist, the
message s∗

recv still might be an replay-message generated in other session (i.e., its
origin-session does exist), A may have performed SSReveal(·) query on it, thus
(k∗,w∗

j) may have been exposed to A. But SSReveal(·) query on s∗ is forbid,
thus SS[s∗] is always kept secret from the adversary. Moreover, if the underling
KRF is PR-LEK, w∗

i would never been exposed. Under the event CK-PFS3, if
the underling KRF is PE, A is unable to generate a valid message to make s∗

accept before corrupting LTK[s∗
peer], thus s∗ would always terminate with abort.

The analyses under other events are essentially similar. Due to page limitations,
more details should be found in the full version. ��

In particular, we can also sum up the high-level proof strategies shown in
Table 10 to get a simplified version of it as shown in Table 11.

Table 11. Simplified proof strategies of our modular construction

Case The origin session s̃∗ A’s knowledge Unexposed intermediates Reduce to
LTK[s∗

actor] LTK[s∗
peer] EphK[s∗] EphK[s̃∗]

I ∃ × × w∗
j PR-LEK

II × × k∗ PS
III not sure × × w∗

i PR-LX
IV × × w∗

i PR-LEK
V � �τ − PE

4.3 Two Enhanced Versions of Our Modular Construction

In this section, we present two enhanced versions of our modular construction
to reduce the randomness used, thus to decrease the communication and com-
putation overheads to some extent. In particular, the same randomness will be
used for both the KRF and KE modules.

Fig. 7. Our first enhanced modular construction.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 759

The First Enhanced Construction. As shown in Fig. 7, the KRF output y
is used as a KE public key pk, and its specific input x1 is set as an empty string.

Theorem 2. Theorem 1 holds for the modular construction shown in Fig. 7
if Simulatability holds for the underlying KRF and KE, i.e., for any pp ←
KRF.Setup(1λ), (epk, ek) ← KRF.KG(pp, 0), (rpk, rk) ← KRF.KG(pp, 1) and
x1 ∈ X1, there exists a simulator S = (S1,S2) such that

i for any PPT algorithm D, the following equality holds:

Pr[x2 ←$ X2, (y,w) ← fek(rpk, x1, x2), pk ← S1(epk, rpk, x1, y) : D(pk) = 1]

= Pr[(pk, sk) ← KE.Gen(1λ) : D(pk) = 1];

ii for any PPT algorithm D̂, the following equality holds:

Pr[(pk, sk) ← KE.Gen(1λ), (y,w) ← S2(pk, epk, ek, rpk, rk, x1) : D̂(y,w) = 1]

= Pr[x2 ←$ X2, (y,w) ← fek(rpk, x1, x2) : D̂(y,w) = 1].

Proof. During the security proof, no matter in which case shown in Table 11,
the adversary’s view should be perfectly simulated. For those sessions that are
non-origin sessions of the target session, executes honestly according to the pro-
tocol description; as for the target session and its origin session, embed different
challenges according different reduction strategies as follows:

1. for Case-I that LTK[s∗
actor] and EphK[s̃∗] are kept secret, set LTK[s∗

actor] as
rpk∗ and y∗

j as the PR-LEK challenge y∗.
2. for Case-II that EphK[s∗] and EphK[s̃∗] are kept secret, perform PExecute(·)

query to get a PS challenge (pk∗
i , pk∗

j).
3. for Case-III that LTK[s∗

actor] and LTK[s∗
peer] are kept secret, set LTK[s∗

actor]
as epk∗, LTK[s∗

peer] as rpk∗, and y∗
i as the PR-LX challenge y∗.

4. for Case-IV that LTK[s∗
peer] and EphK[s∗] are kept secret, set LTK[s∗

peer] as
rpk∗ and y∗

i as the PR-LEK challenge y∗.
5. for Case-V that LTK[s∗

peer] are not corrupted before the target session com-
pletes, set LTK[s∗

peer] as epk∗, once the adversary is able to make the target
session accepts, out put its message as a solution of PE experiment.

For the modular construction shown in Fig. 6 that uses independent random-
ness, the two parts of s∗

sent = (pk∗
i , y∗

i) or s∗
recv = (pk∗

j , y∗
j) can be simulated

separately. In particular, one part is set with the corresponding challenge, while
the another part is generated honestly. But for the enhanced modular construc-
tion shown in Fig. 7 that uses the same randomness for both the KRF and KE
modules, above simulation strategies 1–4 cannot work any more. Technically, if
Simulatability is satisfied, we only need to make some minor changes to keep
the original reduction strategies work: for Case-I, invoke S1 to get pk∗

j ; for Case-
II, invoke S2 two times to get corresponding (y∗

i ,w
∗
i) and (y∗

j ,w∗
j); for Case-III,

use the exposed randomness in the PR-LX security experiment to compute pk∗
i

directly; for Case-IV, invoke S1 to get pk∗
i . ��

760 Y. Xiao et al.

The Second Enhanced Construction. We first introduce the notion of KE-
simulatable KRF, whose security experiments are defined as in Fig. 8. Simulata-
bility is inherently required: a KE public key pk can be directly used as a KRF
output y, and vice versa. In addition, the computation of w is allowed to be
delayed until some x1 is specified.

Fig. 8. The SPR-LEK and SPR-LX experiments of KE-simulatable KRF

Definition 5 (KE-simulatable KRF). Given a KE scheme KE = (KE.Gen,
KE.Key), a scheme KRF=(KRF.Setup, KRF.KG, KRF.Eval) is called KE-
simulatable KRF with SPR-LEK or SPR-LX security, if for any PPT stateful
adversary A = (A1,A2), its advantage

Adv
SPR-LEK/SPR-LX
KRF,A (λ) def= Pr[ExpSPR-LEK/SPR-LX

KRF,A (λ) = 1] ≤ μ(λ).

If taking a KE-simulatable KRF as the building block, our modular construc-
tion in Fig. 6 can be enhanced as in Fig. 9.

Fig. 9. Our second enhanced modular construction

Theorem 3. The second enhanced modular construction shown in Fig. 9 instan-
tiated by PS KE and different KE-simulatable KRFs yields different ORKEs in
different models as in Table 12.

Proof. Note that CK-PFS, CK+ and eCK-PFS models are not considered here.
We can prove this enhanced modular construction’s security using the simplified
proof strategies as shown in Table 13.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 761

Table 12. The main results of our second enhanced modular construction

Instantiations Models Requirements for the KE Requirements for the KRF

SPR-LEK SPR-LX

ORKEs CK PS ◦
CK+ ◦ ◦
eCK ◦ ◦

Table 13. The simplified proof strategies of our second enhanced modular construction

Case matching session s̄∗ A’s knowledge Unexposed intermediates Reduce to
LTK[s∗

actor] LTK[s∗
peer] EphK[s∗] EphK[s̄∗]

I ∃ × × w∗
j SPR-LEK

II × × k∗ PS
III � × × w∗

i SPR-LX
IV × × w∗

i SPR-LEK

1. for Case-I that LTK[s∗
actor] and EphK[s̃∗] are kept secret, set LTK[s∗

actor] as
rpk∗ and pk∗

j as the SPR-LEK challenge y∗.
2. for Case-II EphK[s∗] and EphK[s̃∗] are kept secret, perform PExecute(·)

query to get two public keys pk∗
i and pk∗

j , and compute w∗
i and w∗

j using
LTK[s∗

peer] and LTK[s∗
actor], respectively.

3. for Case-III that LTK[s∗
actor] and LTK[s∗

peer] are kept secret, set LTK[s∗
actor]

as epk∗, LTK[s∗
peer] as rpk∗, and pk∗

i as the SPR-LX challenge y∗.
4. for Case-IV that LTK[s∗

peer] and EphK[s∗] are kept secret, set LTK[s∗
peer] as

rpk∗ and pk∗
i as the SPR-LEK challenge y∗. ��

5 Unification of Previous Constructions

Here, we show that several well-known constructions can be viewed as special
cases in our (enhanced) modular construction, including 2KEM+DH [4] (Sect. 5.1,
Fig. 11), HMQV [18] (Sect. 5.2, Fig. 13), NAXOS [19] (Sect. 5.3, Fig. 15) and
BJS [3] (Sect. 5.4, Fig. 17).

5.1 2KEM+DH

2KEM+DH was proved secure in the CK model. In 2KEM+DH, the KRF is
initiated by KRF2KEM+DH in Fig. 10. Let KEM= (KEM.Gen, KEM.Enc, KEM.Dec)
be a KEM with randomness space R. Here � denotes a fixed public string.

Fig. 10. The KRF2KEM+DH implied by 2KEM+DH [4]

762 Y. Xiao et al.

Fig. 11. P2KEM+DH: apply KRF2KEM+DH and DHKE into our modular construction.
Let G be a group of prime order p with a generator g.

Theorem 4. If KEM is IND-CCA, KRF2KEM+DH shown in Fig. 10 is PR-LEK.

Proof. It is quite easy to prove that Theorem 4 holds. Since the PR-LEK chal-
lenge is in fact an IND-CCA challenge, and the Ō(·) oracle can be perfectly
simulated using the underlying decryption oracle. Once the adversary is able to
win in the experiment with non-negligible advantage, the IND-CCA security is
also broken. Due to page limitations, we drop the details here. ��

5.2 HMQV

HMQV was proved secure in the CK+ model. In HMQV, the KRF is initiated
by KRFHMQV in Fig. 12. Let G be a group of prime order p with g as a generator,
H : {0, 1}∗ → Zp and H̄ : Zp → Zp be two hash functions.

Fig. 12. The KRFHMQV implied by HMQV [18]

Fig. 13. PHMQV: apply KRFHMQV into our second enhanced modular construction. The
required PRF is replaced by a RO H1, which covers the internal H̄.

Theorem 5. If the GDH problem holds in G, H and H̄ are modeled as random
oracles, KRFHMQV shown in Fig. 12 is both SPR-LEK and SPR-LX.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 763

S1(epk, rpk, x1, y):

pk ← y return pk

S2(pk, epk, ek, rpk, rk, x1): y ← pk,

d ← H(y, rpk), e ← H(x1, epk)

w ← H̄((epkdy)e·rk) return (y,w)

Proof. First we can see that KRFHMQV and DHKE meet Simulatability, and the
corresponding simulator S = (S1,S2) can be constructed as follows:

For any PPT adversary A1 against ExpSPR-LEK
KRF,A1

, we build an algorithm that
simulates this experiment with these changes:
1. given a GDH challenge (X,Y), set rpk∗ ← X, y∗ ← Y and w∗

0 ←$ W;
2. initialize two empty lists LH̄ and Lf̄ ;
3. for a H̄(input) query:

(a) if ∃ (input, h) ∈ LH̄, return h;
(b) else if ∃ ((epk, x1, y),w) ∈ Lf̄ s.t. CDH(X, (y · epkd)e) = input, where

d ← H(y,X) and e ← H(x1, epk), return w and record (input,w) into LH̄;
(c) otherwise, return h ←$ Zp and record (input, h) into LH̄.

4. for an Ō(epk, x1, y) query:
(a) if ∃ ((epk, x1, y),w) ∈ Lf̄ , return w.
(b) else if ∃ (V, h) ∈ LH̄ s.t. CDH(X, (y · epkd)e) = V , where d ← H(y,X) and

e ← H(x1, epk), return h and record ((epk, x1, y), h) into Lf̄ .
(c) otherwise, return w ←$ Zp and record ((epk, x1, y),w) into Lf̄ .

5. if A1 has never queried on the correct value in a H̄ query, it cannot win in
the experiment. Such that there must exist a tuple (J,w) ∈ LH̄ and the value
J1/e∗

/Xd∗·ek∗
is a solution of the GDH problem instance, where d∗ ← H(Y,X)

and e∗ ← H(x1∗, epk∗).

Similarly, for any PPT adversary A2 against ExpSPR-LX
KRF,A2

, we build an algorithm
that simulates this experiment with these changes:
1. given a GDH challenge (X,Y), set (epk∗, rpk∗) ← (X,Y) and w0

∗ ←$ W;
2. initialize three empty lists LH̄, Lf and Lf̄ ;
3. for a H̄(input) query:

(a) if ∃ (input, h) ∈ LH̄, return h;
(b) else if ∃ ((rpk, x1, x2),w) ∈ Lf s.t. CDH(X, rpke·d) = input/rpke·x2 , where

d ← H(y, rpk) and e ← H(x1,X), return w and record (input,w) into LH̄;
(c) else if ∃ ((epk, x1, y),w) ∈ Lf̄ s.t. CDH(Y, (y · epkd)e) = input, where

d ← H(y, Y) and e ← H(x1, epk), return w and record (input,w) into LH̄;
(d) otherwise, return h ←$ Zp and record (input, h) into LH̄.

4. for an O(rpk, x1, x2) query, compute y ← gx2 :
(a) if ∃ ((rpk, x1, x2),w) ∈ LF, return (y, h);
(b) else if ∃ (V, h) ∈ LH̄ s.t. CDH(X, rpke·d) = V/rpke·x2 , where d ← H(y, rpk)

and e ← H(x1,X), return (y, h) and record ((rpk, x1, x2), h) into Lf ;
(c) otherwise, return (y,w ←$ Zp) and record ((rpk, x1, x2),w) into Lf .

5. for an Ō(epk, x1, y) query:
(a) if ∃ ((epk, x1, y),w) ∈ Lf̄ , return w.
(b) else if ∃ (U, h) ∈ LH̄ s.t. CDH(Y, (y · epkd)e) = U , where d ← H(y, Y) and

e ← H(x1, epk), return h and record ((epk, x1, y), h) into Lf̄ .
(c) otherwise, return w ←$ Zp and record ((epk, x1, y),w) into Lf̄ .

764 Y. Xiao et al.

6. Similarly, if A2 is able to win in the experiment, there must exist a tuple
(J,w) ∈ LH̄ and the value (J1/e∗

/Y x∗
2)1/d∗

is a solution of the GDH problem
instance, where d∗ ← H(y∗, Y) and e∗ ← H(x1∗,X). ��
Note that to agree on a session key, the following equation should

hold, where computing Be(da+x) and Ad(eb+y) can be viewed as invok-
ing KRFHMQV.Eval(0, (a,B, Y, x)) and KRFHMQV.Eval(0, (b, A,X, y)), respectively.
But the common part Aedb = Beda is computed for only once.

(Y Be)da+x = Y x · Y da · Be(da+x)

= Xy · Ady · Aedb · Xeb

= Xy · Ad(eb+y) · Xeb

= (XAd)eb+y

5.3 NAXOS

NAXOS was proved secure in the eCK model. In NAXOS, the KRF is initiated
by KRFNAXOS in Fig. 14. Let G be a group of prime order p with g as a generator,
H : {0, 1}∗ → Zp and H̄ : Zp → {0, 1}λ be two hash functions.

Fig. 14. The KRFNAXOS implied by NAXOS [19]

Fig. 15. PNAXOS: apply KRFNAXOS into our first enhanced modular construction. The
required PRF is replaced by a RO H1, which covers the internal H̄.

Theorem 6. If the GDH problem holds in G, H and H̄ are modeled as random
oracles, KRFNAXOS shown in Fig. 14 is both PR-LEK and PR-LX.

Proof. For any PPT adversary A against the ExpPR-LEK
KRF,A or ExpPR-LX

KRF,A, we build
an algorithm simulating the corresponding experiments with these changes:

1. given a GDH challenge (X,Y), set rpk∗ ← X, y∗ ← Y and w∗
0 ←$ W;

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 765

2. initialize three empty lists LH, LH̄ and Ly;
3. for a H(input) query:

(a) if input = (ek∗, x2∗), terminate the simulation with failure;
(b) else if ∃ (input, h) ∈ LH, return h;
(c) otherwise, return h ←$ Zp and record (input, h) into LH.

4. for a H̄(epk, Z) query:
(a) if ∃ ((epk, Z), h) ∈ LH̄, return h;
(b) else if CDH(X,Y) = Z, halt and output Z as the solution;
(c) else if ∃ (y,−,w) ∈ Ly s.t. CDH(y,X) = Z, return w. In addition, update

corresponding records in Ly and LH̄;
(d) otherwise, returns h ←$ {0, 1}λ and record ((epk, Z), h) into LH̄.

5. for an Ō(epk,−, y) query:
(a) if y = Y , return w ←$ {0, 1}λ and record ((epk,−),w) into LH̄;
(b) else if ∃ ((epk, Z), h) ∈ LH̄ s.t. CDH(X, y) = Z, return h;
(c) otherwise, return w ←$ {0, 1}λ, record ((epk,−),w) into LH̄ and (y,−,w)

into Ly, respectively.
6. if A is able to win in either experiment, there must exist a tuple

((epk∗, J),w) ∈ LH̄ and the value J is a solution of the GDH problem instance.

If A has queried H on (ek∗, x2∗), the simulation fails. However, A just has
a partial knowledge of the input, i.e., ek∗ (resp., x2∗) when it is attempting to
break the PR-LEK security (resp., the PR-LX security). Such bad event only
occurs with negligible probability. ��
Note that KRFNAXOS and DHKE also meet Simulatability, and the corresponding
simulator S = (S1,S2) can be constructed as follows:

S1(epk, rpk, −, y):

pk ← y
return pk

S2(pk, epk, ek, rpk, rk, x1):

y ← pk, w ← H̄(epk, yrk)
return (y,w)

5.4 BJS

BJS was proved secure in the eCK-PFS model. In BJS, the KRF is initiated by
KRFBJS in Fig. 16. Let NIKE=(NIKE.Gen, NIKE.Key) be a NIKE with randomness
space R and SIG=(SIG.Gen, SIG.Sign, SIG.Vrfy) be a deterministic signature.

Theorem 7. If NIKE is CKS-light secure and SIG is EUF-CMA, KRFBJS shown
in Fig. 16 is PE, PR-LEK and PR-LX.

Proof. KRFBJS is PE, since y
def
= (pkt, σ) is actual a message/signature pair,

any PPT adversary A1 is unable to output such a fresh and valid pair without
breaking the EUF-CMA-security of the underlying SIG. Note that the O(·) oracle
can be perfectly emulated using the underlying singing oracle.

KRFBJS is also PR-LEK (resp., PR-LX), since the underlying NIKE is CKS-
light secure, and w = CKey(epk[1], rpk) ⊕ CKey(pkt, rpk), thus any PPT adver-
sary A2 is unable to distinguish it from a random value without knowing
(ek[1], skt) or rk. However, if A2 is attempting to break the PR-LEK-security

766 Y. Xiao et al.

Fig. 16. The KRFBJS from BJS [3]

Fig. 17. PBJS: apply KRFBJS into our first enhanced modular construction.

(resp., PR-LX-security) of KRFBJS, it can only learn ek (resp., skt derived from
x2). Note that by setting the pair of public keys (pkt, rpk) (resp., (epk[1], rpk))
as the target two honestly registered keys, and the Ō(·) (and O(·)) oracle can be
perfectly emulated using the underlying CorruptReveal(·) oracle. Due to page
limitations, we drop the details here. ��

Note that it is easy to conclude that NIKE implies passively secure KE. In
addition, KRFBJS and NIKE meet Simulatability, and the corresponding simulator
S = (S1,S2) can be constructed as follows:

S1(epk, rpk, −, y):

(pkt, σ) ← y

return pk
def
= pkt

S2(pk, epk, ek, rpk, rk, −):

pkt ← pk, σ ← SIG.Sign(ek[0], pkt)
w ← NIKE.Key(ek[1], rpk) ⊕ NIKE.Key(rk, pkt)

return(y
def
= (pkt, σ),w)

6 Further Results for ORKEs

In this section, we give some new results regarding ORKEs by applying our main
results in this paper.

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 767

6.1 A Protocol with CK-PFS Security

According to our main results in Theorem 1, we can get the following result:

Corollary 1. According to the modular construction in Fig. 6, one protocol
instantiation proved secure in the CK+ (resp., CK+-PFS) model is also secure
in the eCK (resp., eCK-PFS) model, and vice versa.

Thus, our modular construction can be instantiated in the new CK+-PFS
model using the the protocol PBJS illustrated in Fig. 17. As an application of
our modular construction, we present an another protocol secure in the CK-PFS
model in this section.

An Immediate Construction. Inspired by previous works [3,6,9,26,27], we
can immediately get a construction in the CK-PFS model by applying a com-
piler to an 2KEM+DH in the CK model (see Fig. 11) using an EUF-CMA
deterministic signature SIG=(SIG.Gen, SIG.Sign, SIG.Vrfy), which we denote as
SIG(2KEM+DH) (see Fig. 18). It is easy to prove its security in the CK-PFS
model. We drop the details here.

Fig. 18. The protocol SIG(2KEM+DH)

A New Construction from Our Modular Construction. According to our
main results in Theorem 1, the key to achieve secure ORKE in the CK-PFS
model is to construct a KRF that is both PE and PR-LEK. On another side, we
have proved in Theorem 7 that the KRFBJS (see Fig. 16) is PE, PR-LEK and PR-
LX. It is quite nature to build a new scheme using the similar idea behind the
construction of KRFBJS by reducing some unnecessary secrets and computations.
Let SIG= (SIG.Gen, SIG.Sign, SIG.Vrfy) be a deterministic signature and NIKE
be a NIKE. We first give a construction KRFnew as in Fig. 19, then apply it into
our modular construction to derive an ORKE protocol Pnew as in Fig. 20.

Theorem 8. If SIG is EUF-CMA and NIKE is secure in the CKS-light model
with randomness space R, KRFnew shown in Fig. 19 is both PE and PR-LEK.

Proof. It is also easy to prove this theorem. First, KRFBJS is PE, since y
def
=

(pkt, σ) is actual a message/signature pair, any PPT adversary A1 is unable to
output such a fresh and valid pair without breaking the EUF-CMA-security of
the underlying SIG. Note that the Of oracle can be perfectly emulated using the
underlying singing oracle.

768 Y. Xiao et al.

Fig. 19. Our proposal KRFnew

Fig. 20. Pnew: apply KRFnew into our first enhanced modular construction.

Second, KRFBJS is PR-LEK, since the underlying NIKE is CKS-light secure,
and w = CKey(pkt, rpk), any PPT adversary A2 is unable to distinguish it from
a random value without knowing skt or rk. If A2 is attempting to break the
PR-LEK-security, it cannot learn neither skt (due to the privacy of x2) nor rk.
Note that by setting the pair of public keys (pkt, rpk) as the target two honestly
registered keys, the Ō(·) oracle can be perfectly emulated using the underlying
CorruptReveal(·) oracle. Due to page limitations, we drop the details here. ��

Note that KRFnew and NIKE also meet Simulatability, and the corresponding
simulator S = (S1,S2) can be constructed as follows:

S1(epk, rpk, −, y):

(pkt, σ) ← y

return pk
def
= pkt

S2(pk, epk, ek, rpk, rk, −):

pkt ← pk, σ ← SIG.Sign(ek, pkt)
w ← NIKE.Key(rk, pkt)

return(y
def
= (pkt, σ),w)

Comparisons Between the Two Constructions. We compared our new
proposal Pnew with the SIG(2KEM+DH) construction by instantiating it using
the most efficient factoring-based NIKE [10] that was proved secure in the
RO model. To make them comparable, we instantiate the required KEM in
the generic SIG(2KEM+DH) construction using the ElGamal encryption after
applying a FO-transformation [13,14], thus a ciphertext includes at least 2 group

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 769

Table 14. Comparisons Between Pnew and SIG(2KEM+DH)

Scheme Security model Group elements
sent. per party

Exp. per
party

Compiler used

SIG(2KEM+DH) CK-PFS 3 7 SIG(·)
Pnew CK-PFS 1 4 Our modular construction

†† We do not distinguish an Exponentiation (Exp.) in a DH group from an Exp. in an RSA group.
As both schemes involve signature generating and validating, we omit them in the comparisons.

elements, and each call of the encapsulation (resp., decapsulation) algorithm
costs at least 2 (resp., 3) modular exponentiations. The comparison details are
shown in Table 14. On both of the communication and computation overheads,
our proposal is more efficient.

The comparisons supported the usability of our framework well, namely, it is
not only a generalization of the existing works, but also a useful tool to construct
efficient protocols in different models due to its simplicity.

6.2 A Construction Secure in All the Considered Models

Cremers [8] pointed out that the original CK [7], CK+ [18] and eCK [19] models
are not comparable, by showing a protocol can be secure in one model and yet
insecure in other models. One of the reasons behind is that these models used
matching notions in different ways. They defined four types of session relations:

– s ≈A s′ def= sactor = s′
peer ∧ speer = s′

actor ∧ ssent = s′
recv ∧ srecv = s′

sent;
– s ≈B s′ def= s ≈A s′ ∧ (srole �= s′

role ∨ sactor = speer);
– s ≈C s′ def= s ≈A s′ ∧ (srole �= s′

role);
– s ≈D s′ def= sactor = s′

peer ∧ speer = s′
actor ∧ sid = s′

id.

The original CK, CK+ and eCK models used ≈D, ≈A and ≈C , respectively.
Two sessions matched in one model are not necessarily matched in another
model, thus trivial success may occur. However, we have unified the way to define
matching sessions in these models, i.e., the ≈A type. As we are considering the
security in the context of ORKE, which is role-symmetric (i.e., the messages of
each role are identical up to their order), the ≈A type definition is our preference.
In [8], it is also pointed out that “role-symmetric protocols with key type ≈B

or ≈C do not satisfy CK+ security.” The key type is defined as: a protocol
has key type ≈T |T∈{A,B,C,D}, if for all completed sessions s and s′, kdf(s) =
kdf(s′) ⇔ s ≈T s′, where kdf is an abstraction of the key derivation function
of this protocol. Technically, our modular construction adopted a ≈A type key
derivation function. Our result does not contradict the results in [8].

Hence, even if we have a preconception that the CK, CK+ and eCK models
are incomparable, it is not precluded that a protocol can be secure in two or
more models. Therefore, it is an nature question that does there exist a protocol
that is secure in all of the CK, CK+, eCK, CK-PFS, CK+-PFS and eCK-PFS
models we considered. The answer is yes based on Theorem 1:

770 Y. Xiao et al.

Corollary 2. If KE is passively secure and KRF is fully secure, i.e., meets PE,
PR-LEK and PR-LX simultaneously, the modular construction illustrated in
Fig. 6 is secure in the CK, CK-PFS, CK+, CK+-PFS, eCK and eCK-PFS mod-
els at the same time.

Combining Theorems 1 and 7, the protocol PBJS illustrated in Fig. 17 (con-
structed from the basic idea of BJS [3]) is simultaneously secure in these models.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
comments. This work was supported in part by National Natural Science Foundation
of China (Nos. 61772520, 61802392 and 61972094).

References

1. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

3. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

4. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 6

5. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in
the standard model. IJACT 1(3), 181–199 (2009). https://doi.org/10.1504/IJACT.
2009.023466

6. Boyd, C., Nieto, J.G.: On forward secrecy in one-round key exchange. In: Chen,
L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 451–468. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25516-8 27

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

8. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: ASIA CCS 2011,
pp. 80–91 (2011). https://doi.org/10.1145/1966913.1966925

9. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 42

10. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 17

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1504/IJACT.2009.023466
https://doi.org/10.1504/IJACT.2009.023466
https://doi.org/10.1007/978-3-642-25516-8_27
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1145/1966913.1966925
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17

Modular Design of Role-Symmetric Authenticated Key Exchange Protocols 771

11. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 28

12. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
ASIA CCS 2013, pp. 83–94 (2013). https://doi.org/10.1145/2484313.2484323

13. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

15. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0034833

16. Kim, M., Fujioka, A., Ustaoğlu, B.: Strongly secure authenticated key exchange
without NAXOS’ approach. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS,
vol. 5824, pp. 174–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04846-3 12

17. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

18. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

19. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

20. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An efficient protocol
for authenticated key agreement. Des. Codes Cryptogr. 28(2), 119–134 (2003)

21. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 29

22. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

23. Strangio, M.A.: On the resilience of key agreement protocols to key compromise
impersonation. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043,
pp. 233–247. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716 19

24. Xue, H., Lu, X., Li, B., Liang, B., He, J.: Understanding and constructing AKE via
double-key key encapsulation mechanism. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11273, pp. 158–189. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3 6

25. Yang, Z.: Efficient eCK-secure authenticated key exchange protocols in the stan-
dard model. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp.
185–193. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02726-5 14

https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1145/2484313.2484323
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/BFb0034833
https://doi.org/10.1007/978-3-642-04846-3_12
https://doi.org/10.1007/978-3-642-04846-3_12
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-76900-2_29
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/11774716_19
https://doi.org/10.1007/978-3-030-03329-3_6
https://doi.org/10.1007/978-3-030-03329-3_6
https://doi.org/10.1007/978-3-319-02726-5_14

772 Y. Xiao et al.

26. Yang, Z., Chen, Yu., Luo, S.: Two-message key exchange with strong security from
ideal lattices. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 98–115.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 6

27. Yoneyama, K.: One-round authenticated key exchange with strong forward secrecy
in the standard model against constrained adversary. In: Hanaoka, G., Yamauchi,
T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 69–86. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34117-5 5

https://doi.org/10.1007/978-3-319-76953-0_6
https://doi.org/10.1007/978-3-642-34117-5_5

Author Index

Abdalla, Michel 711
Attema, Thomas 526

Bauer, Balthazar 587
Bellare, Mihir 650
Bouscatié, Élie 342
Boyd, Colin 681

Castagnos, Guilhem 342
Chailloux, André 63
Chen, Xiaofeng 156
Cheng, Chi 92
Cong, Kelong 125
Cozzo, Daniele 125
Cramer, Ronald 526

Dai, Wei 650
Datta, Pratish 434
Davies, Gareth T. 681
De Feo, Luca 249
de Kock, Bor 681
Delpech de Saint Guilhem, Cyprien 249
Deng, Yi 557
Diemert, Denis 403
Ding, Jintai 92
Ducas, Léo 3

Fauzi, Prastudy 618
Fouotsa, Tako Boris 249, 279
Fuchsbauer, Georg 587
Furue, Hiroki 187

Gellert, Kai 403, 681
Goyal, Rishab 311, 371
Guo, Qian 33

Haase, Björn 711
Heath, David 495
Hesse, Julia 711
Hu, Lei 92

Ikematsu, Yasuhiko 187

Jager, Tibor 403, 681
Johansson, Thomas 33

Katz, Jonathan 468
Kiyomura, Yutaro 187
Kolesnikov, Vladimir 495
Kutas, Péter 249

Leroux, Antonin 249
Lipmaa, Helger 618
Liu, Jiahui 311
Loss, Julian 468
Loyer, Johanna 63
Lyu, Lin 403
Lyubashevsky, Vadim 218

Ma, Hui 742
Ma, Shunli 557
Maram, Varun 125
Millerjord, Lise 681

Nguyen, Ngoc Khanh 218

Ødegaard, Arne Tobias 618

Pal, Tapas 434
Pan, Jing 156
Pan, Yanbin 92
Petit, Christophe 249, 279
Plancon, Maxime 218
Plouviez, Antoine 587

Qin, Yue 92

Rambaud, Matthieu 526
Rosenberg, Michael 468

Sanders, Olivier 342
Seiler, Gregor 218
Siim, Janno 618
Silva, Javier 249
Smart, Nigel P. 125
Song, Xuyang 557
Susilo, Willy 156
Syed, Ridwan 371

774 Author Index

Takagi, Tsuyoshi 187

van Woerden, Wessel 3

Wang, Hailong 557
Waters, Brent 311, 371
Wesolowski, Benjamin 249

Xiao, Yuting 742
Xie, Xiang 557

Zając, Michał 618
Zhang, Fangguo 156
Zhang, Rui 742
Zhang, Xiaohan 92
Zhang, Xinxuan 557

	Preface
	Organization
	Contents – Part IV
	Lattice Cryptanalysis
	NTRU Fatigue: How Stretched is Overstretched?
	1 Introduction
	1.1 Context
	1.2 Our Work
	1.3 Organisation

	2 Preliminaries
	2.1 Notation and Distributions
	2.2 NTRU and Lattice Attacks
	2.3 Lattice Reduction
	2.4 Estimates

	3 A New Estimate
	3.1 Preliminary Experiments
	3.2 Asymptotic Analysis

	4 Concrete Analysis
	4.1 Intersection
	4.2 Dense Sublattice
	4.3 Further Refinements

	5 Experimental Verification
	5.1 Successful Blocksize
	5.2 Fatigue Point
	5.3 Zoom on the Fatigue Point: A Smooth Probabilistic Transition

	References

	Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS
	1 Introduction
	1.1 Contributions
	1.2 Related Works
	1.3 Organization

	2 Preliminaries
	2.1 LWE
	2.2 Dual Lattice Attacks
	2.3 Cost Model for BKZ
	2.4 The Classic FFT Distinguisher

	3 A New FFT Distinguisher
	3.1 New Transformation Technique
	3.2 The Distinguishing Property

	4 Improving the Dual Lattice-Reduction Approach
	4.1 Complexity Analysis

	5 Application to CRYSTALS
	6 Beyond Core-SVP Estimation
	6.1 A New Lattice Reduction Strategy
	6.2 Complexity Analysis
	6.3 Results

	7 Application to the Homomorphic Encryption Standard
	8 Experimental Verification
	9 Concluding Remarks
	References

	Lattice Sieving via Quantum Random Walks
	1 Introduction
	2 Quantum Computing Preliminaries
	2.1 Quantum Circuits
	2.2 Quantum Random Access Memory
	2.3 Grover Algorithm
	2.4 Quantum Random Walks

	3 Lattice and Geometric Preliminaries
	3.1 An Overview of Sieving Algorithms for SVP
	3.2 Geometrical Preliminaries

	4 General Framework for Sieving Algorithms Using LSF
	4.1 Analysis of the Above Algorithm

	5 Quantum Random Walk for the FindAllSolutions Subroutine: A First Attempt
	5.1 Constructing the Graph
	5.2 Time Analysis of the Quantum Random Walk on This Graph
	5.3 Memory Analysis
	5.4 Optimal Parameters for This Quantum Random Walk

	6 Quantum Random Walk for the FindAllSolutions Subroutine: An Improved Quantum Random Walk
	6.1 Analysis of the Above Algorithm

	7 Space-Time Trade-Offs
	7.1 Trade-Off for Fixed Quantum Memory
	7.2 Trade-Off for Fixed QRAM

	8 Discussion
	References

	A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs*-8pt
	1 Introduction
	2 Preliminaries
	2.1 Lattice-Based Key Encapsulation Mechanisms
	2.2 Model of Key Mismatch Attacks

	3 Lower Bounds for the Average Number of Queries for the Key Mismatch Attacks
	3.1 Lower Bound by Optimal Binary Recovery Tree
	3.2 Lower Bounds for Key Mismatch Attacks on NIST Candidates

	4 Improved Key Mismatch Attacks on NIST Candidates
	4.1 Improved Practical Attacks on Kyber
	4.2 Improved Key Mismatch Attacks on Saber
	4.3 Improved Key Mismatch Attacks on FrodoKEM
	4.4 Improved Practical Attacks on Other NIST Candidates

	5 Improved Side-Channel Assisted Chosen Ciphertexts Attacks on CCA-Secure NIST KEM Candidates
	6 Experiments
	7 Conclusion and Discussions
	A Bounds for other candidates
	B Improved practical key mismatch attacks
	B.1 Improved key mismatch attacks on NewHope
	B.2 Improved key mismatch attacks on LAC
	B.3 Improved key mismatch attacks on Round5

	References

	Post-Quantum Cryptography
	Gladius: LWR Based Efficient Hybrid Public Key Encryption with Distributed Decryption
	1 Introduction
	1.1 Prior Work and Our Contribution

	2 Preliminaries
	3 Generic Hybrid Constructions
	3.1 Hybrid1 Construction
	3.2 Hybrid2 Construction
	3.3 Threshold Variant

	4 The Large Vector Problem (LVP)
	5 Gladius–Hispaniensis: Plain LWR Based Encryption
	6 Distributed Decryption of Gladius
	References

	Lattice-Based Group Encryption with Full Dynamicity and Message Filtering Policy*-8pt
	1 Introduction
	2 Preliminaries
	2.1 Lattices and Computational Problems
	2.2 LNWX Lattice-Based Accumulators
	2.3 GPV Dual Encryption
	2.4 Zero-Knowledge Argument of Knowledge

	3 Model and Security Requirements of Fully Dynamic Group Encryption
	4 The Underlying Zero-Knowledge Layer
	4.1 Warm-Up: Decompositions
	4.2 Proving Inequality Relations for Binary Vectors
	4.3 The Underlying ZKAoK

	5 Our Fully Dynamic Lattice-Based Group Encryption
	5.1 Description of the Scheme
	5.2 Analysis of the Scheme

	6 Conclusion
	References

	A New Variant of Unbalanced Oil and Vinegar Using Quotient Ring: QR-UOV*-8pt
	1 Introduction
	2 Preliminaries
	2.1 Multivariate Signature Schemes
	2.2 Unbalanced Oil and Vinegar Signature Scheme
	2.3 Block-Anti-circulant UOV
	2.4 Structural Attack on BAC-UOV

	3 Polynomial Matrices of Quotient Ring
	3.1 Polynomial Matrices and Their Symmetrization
	3.2 Effect of Irreducibility of f

	4 Our Proposal: Quotient-Ring UOV (QR-UOV)
	4.1 Description
	4.2 Improved QR-UOV

	5 Security Analysis
	5.1 Currently Known Attacks on Plain UOV
	5.2 Pull-Back Attacks over Quotient Ring
	5.3 Lifting Attacks over Extension Field

	6 Proposed Parameters and Comparison
	6.1 Proposed Parameters
	6.2 Comparison with Rainbow

	7 Conclusion
	References

	Shorter Lattice-Based Group Signatures via ``Almost Free'' Encryption and Other Optimizations
	1 Introduction
	1.1 The Scheme of ch8DBLP:confspsccsspsPinoLS18 and Our Improvements
	1.2 Reducing the Public Key Size by Using Multiple Rings

	2 Preliminaries
	2.1 Notation
	2.2 Cyclotomic Rings
	2.3 Challenge Space
	2.4 Module-SIS and Module-LWE Problems
	2.5 Probability Distributions
	2.6 Rejection Sampling
	2.7 BDLOP Commitment Scheme

	3 The Group Signature
	3.1 All-in-One Interactive Zero-Knowledge Proof
	3.2 Decryption

	4 Security and Parameters
	4.1 Security
	4.2 Parameters

	References

	Séta: Supersingular Encryption from Torsion Attacks
	1 Introduction
	2 Preliminaries
	2.1 Quaternion Algebras and Endomorphism Rings of Supersingular Elliptic Curves
	2.2 Class Group Action on the Set of Supersingular Curves
	2.3 SIDH and SIKE
	2.4 Trapdoor Curves

	3 Séta Trapdoor One Way Function and Public Key Encryption Scheme
	3.1 Generalised Charles-Goren-Lauter Hash Function
	3.2 A Trapdoor Function Family from the G-CGL Family
	3.3 Inversion
	3.4 Séta Public Key Encryption
	3.5 IND-CCA Encryption Scheme

	4 Key Generation Variants
	4.1 Computing the Trapdoor Information
	4.2 Trapdoor Curve Generation
	4.3 Constraints on the Prime
	4.4 Alternative Key Generation

	5 ``Uber'' Isogeny Assumption
	5.1 The New Generic Problem
	5.2 Relation with Various Isogeny-Based Constructions
	5.3 Analysis of the Uber Isogeny Assumption

	6 Implementation
	6.1 Main Building Blocks
	6.2 Prime Search
	6.3 Experimental Results

	7 Further Work and Conclusion
	A Post-quantum OAEP transformation
	References

	SHealS and HealS: Isogeny-Based PKEs from a Key Validation Method for SIDH
	1 Introduction
	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Elliptic Curves and Isogenies
	2.3 SIDH
	2.4 Passive Torsion Point Attacks on SIDH
	2.5 GPST Adaptive Attack
	2.6 Existing Countermeasures to the GPST Adaptive Attacks

	3 A New Countermeasure to the GPST Adaptive Attack
	3.1 Overview
	3.2 The Main Theorem

	4 The HealSIDH (Healed SIDH) Key Exchange Protocol
	4.1 An Overview of HealSIDH
	4.2 HealSIDH Key Exchange
	4.3 Security of HealSIDH

	5 SHealS: A Public Key Encryption Scheme
	5.1 An Overview of SHealS
	5.2 SHealS Public Key Encryption Scheme
	5.3 Security Analysis

	6 Concrete Instantiations and Comparisons: HealSIDH Vs K-SIDH; SHealS Vs SIKE
	6.1 Concrete Instantiation
	6.2 SHealS vs SIKE
	6.3 HealSIDH vs K-SIDH

	7 HealS (Healed SIKE): Improving the Efficiency of SHealS
	7.1 HealS Public Key Encryption
	7.2 Concrete Instantiation and Comparison with SIKE

	8 Conclusion
	A HealS PKE
	References

	Advanced Encryption and Signatures
	Adaptive Security via Deletion in Attribute-Based Encryption: Solutions from Search Assumptions in Bilinear Groups
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	3 Key Policy Attribute-Based Encryption with Deletable Attributes
	4 Constrained PRFs: Defining Deletion Conformity
	4.1 Deletion Conforming CPRFs

	5 Ciphertext Policy Attribute-Based Encryption
	6 Building Adaptively Secure CP-ABE
	6.1 Construction
	6.2 Correctness and Efficiency
	6.3 Security

	7 Deletable ABE from Standard Assumptions
	7.1 Deletable ABE from Bilinear Maps Via ch11GPSW06
	7.2 Deletable ABE: Monotonic Access Structures to NC1

	References

	Public Key Encryption with Flexible Pattern Matching*-8pt
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Decisional Assumptions

	3 Stream Encryption Supporting Pattern Matching (SEPM)
	3.1 Definition
	3.2 Security Model

	4 Our Constructions
	4.1 Fragmentation
	4.2 Intuition of Our Constructions
	4.3 Our First Protocol
	4.4 Our Second Protocol

	5 Security Analysis
	5.1 Proof Strategy
	5.2 Proof of Theorem 2
	5.3 Proof of Theorem 3

	6 Complexity Analysis
	6.1 Space Complexity
	6.2 Computational Complexity

	References

	Bounded Collusion ABE for TMs from IBE*-8pt
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Attribute-Based Encryption for Turing Machines

	3 Garbled RAM with Iterated Simulation Security
	4 ABE for Turing Machines
	4.1 Construction
	4.2 Correctness
	4.3 Efficiency
	4.4 Security

	References

	Digital Signatures with Memory-Tight Security in the Multi-challenge Setting
	1 Introduction
	2 Preliminaries
	2.1 Computational Model and Complexity Measures
	2.2 Pseudorandom Functions
	2.3 Digital Signatures

	3 From the Single-Challenge Setting to the Multi-challenge Setting
	3.1 Non-interactive Computational Assumptions
	3.2 Canonical Reductions
	3.3 Multi-challenge Security for Canonical Reductions

	4 From msEUF-CMA1 Security to msEUF-CMA Security
	5 Applications
	5.1 Memory-Tight Signatures from Lossy Identification Schemes
	5.2 On the Memory-Tightness of RSA-FDH

	References

	(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin*-8pt
	1 Introduction
	2 Technical Overview
	2.1 Designing Adaptively Simulation Secure One-Slot FE Scheme
	2.2 Bootstrapping from One-Slot FE to Unbounded-Slot FE

	3 Preliminaries
	3.1 Arithmetic Branching Program
	3.2 Functional Encryption for Attribute-Weighted Sum
	3.3 Arithmetic Key Garbling Scheme

	4 Our 1-Key 1-Ciphertext Secure 1-Slot FE
	5 Our 1-Slot FE for Attribute-Weighted Sums
	6 Our 1-Slot Extended FE for Attribute-Weighted Sums
	References

	Boosting the Security of Blind Signature Schemes
	1 Introduction
	1.1 Our Contributions
	1.2 Overview

	2 Preliminaries
	2.1 Blind Signatures
	2.2 Linear Function Families
	2.3 Blind Signatures from Linear Function Families

	3 Boosting Security of Blind Signatures
	3.1 Blindness
	3.2 One-More Unforgeability
	3.3 Improving the Complexity of the Signing Protocol

	A Additional Examples of Linear Function Families
	B Deferred Calculations
	References

	Zero-Knowledge Proofs, Threshold and Multi-Signatures
	PrORAM
	1 Introduction
	1.1 High Level Intuition of Our Approach
	1.2 Contribution

	2 Related Work
	3 Notation
	4 Preliminaries
	4.1 Authenticated Share Algebra
	4.2 Implementing Standard Circuit Gates
	4.3 Explicit-Mask Sharings
	4.4 Standard Additive Sharings
	4.5 Additive Sharing Permutations Programmed by P

	5 Technical Overview
	6 PrORAM Formal Constructions
	6.1 swordRAM
	6.2 swordRAM to PrORAM
	6.3 Scheduling the Underlying swordRAM
	6.4 PrORAM Validity
	6.5 PrORAM Operations
	6.6 PrORAM Formal Properties

	7 A Complete ZKP System and Security Proofs
	7.1 Casting as a Garbling Scheme
	7.2 The ch17CCS:JawKerOrl13 ZK Framework
	7.3 Our Garbling Scheme, Its Security, and Our Main Theorem
	7.4 Defining ZK ORAM

	8 Instantiation
	9 Evaluation
	References

	Compressed -Protocols for Bilinear Group Arithmetic Circuits and Application to Logarithmic Transparent Threshold Signatures
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Proofs of Knowledge

	3 Commitment Schemes
	4 Compressed -Protocol for Opening Homomorphisms
	4.1 Basic -Protocol
	4.2 Compression Mechanism
	4.3 Abstract Compressed -Protocol
	4.4 Efficiency Improvements for Bilinear Instances
	4.5 Reduced Communication for El Gamal Based Commitments
	4.6 Composition of the Protocols
	4.7 Amortization

	5 Threshold Signature Schemes
	5.1 Definition and Security Model
	5.2 Our Threshold Signature Scheme

	6 Generalized Circuit Zero-Knowledge Protocols
	6.1 Polynomials over Groups of Prime Order
	6.2 Linearization of Bilinear Gates
	6.3 Comparison of the Communication Costs

	References

	Promise -Protocol: How to Construct Efficient Threshold ECDSA from Encryptions Based on Class Groups
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 CL Encryption from HSM Assumption
	2.2 -Protocol
	2.3 Threshold ECDSA and Its Security

	3 Promise -Protocols
	3.1 Promise -Protocol for Encryptions
	3.2 Promise -protocol for Homomorphic Operations

	4 Simulating Homomorphic Operations on an Invalid Ciphertext
	5 Two-Party ECDSA
	6 Multi-party (Threshold) ECDSA
	6.1 Improvment on ch19CCLsps20 with promise -protocols
	6.2 Improving the Bandwidth Efficiency of ch19LN18

	7 Comparisons
	References

	The One-More Discrete Logarithm Assumption in the Generic Group Model
	1 Introduction
	2 Preliminaries
	3 OMDL in the GGM
	3.1 A Technical Lemma
	3.2 Proof Overview
	3.3 Formal Proof

	4 OMCDH in the GGM
	References

	Verifiably-Extractable OWFs and Their Applications to Subversion Zero-Knowledge*-8pt
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Verifiably-Extractable (Generalized) OWFs
	2.2 Constructing Sub-ZK NIZK from VEGOWF
	2.3 Constructing VEOWF from Sub-ZK NIZK

	3 Preliminaries
	3.1 (Generalized) Extractable OWF
	3.2 BCPR GEOWF and EOWF
	3.3 NIZK and NIWI Arguments

	4 Verifiably-Extractable Generalized OWFs
	4.1 Definition
	4.2 Generic Transformations
	4.3 The BCPR GEOWF is Verifiably-Extractable
	4.4 VEGOWFs from Knowledge-of-Exponent Assumptions
	4.5 VEGOWFs from Knowledge-Sound NIZK
	4.6 VEGOWFs from Signature Schemes

	5 Sub-ZK NIZKs Based on VEGOWFs
	5.1 Constructing Knowledge-Sound Sub-ZK NIZK
	5.2 Constructing Sub-ZK NIZK
	5.3 Instantiations and Statistical ZAPR

	6 Characterising Sub-ZK NIZKs
	References

	Chain Reductions for Multi-signatures and the HBMS Scheme
	1 Introduction
	2 Preliminaries
	3 Hardness of Problems in Groups
	4 Definitions for Multi-signatures
	5 Analysis of the BN Scheme
	6 Analysis of the MuSig Scheme
	7 HBMS: Our New Two-Round Multi-signature Scheme
	References

	Authenticated Key Exchange
	Symmetric Key Exchange with Full Forward Security and Robust Synchronization
	1 Introduction
	1.1 Message Authentication Codes
	1.2 Pseudorandom Functions

	2 Authenticated Key Exchange in the Symmetric Setting
	2.1 Execution Environment
	2.2 AKE Security
	2.3 Concurrent Execution Synchronization Robustness

	3 Linear Key Evolution
	3.1 Key Derivation via Linear Evolution
	3.2 LP3: A Three-Message Protocol
	3.3 LP2: A Two-Message Protocol with Fixed Roles
	3.4 LP1: A One-Message Protocol with Fixed Roles

	4 Non-linear Key Evolution
	4.1 Puncturable Pseudorandom Functions
	4.2 PPRF-Based Symmetric AKE
	4.3 Synchronization Robustness of PP2
	4.4 Instantiation

	References

	Security Analysis of CPace
	1 Introduction
	1.1 Technical Overview of Our Results

	2 PAKE Security Model
	3 Preliminaries
	3.1 Notation
	3.2 Cryptographic Assumptions
	3.3 Transforming Passwords to Points on an Elliptic Curve

	4 The CPace Protocol
	5 Security of Simplified CPace
	5.1 Embedding CDH Experiment Libraries into the Simulator

	6 Analysis of Real-World CPace
	6.1 CPace Without Hashing to the Group
	6.2 Considering Curves with Small Co-factor
	6.3 CPace Using Single-Coordinate Diffie-Hellman

	References

	Modular Design of Role-Symmetric Authenticated Key Exchange Protocols
	1 Introduction
	1.1 Our Results

	2 Preliminary
	3 Security Definitions for ORKEs
	4 Our Modular Construction
	4.1 Key-Wise Recoverable Function (KRF)
	4.2 A Modular Construction for ORKE
	4.3 Two Enhanced Versions of Our Modular Construction

	5 Unification of Previous Constructions
	5.1 2KEM+DH
	5.2 HMQV
	5.3 NAXOS
	5.4 BJS

	6 Further Results for ORKEs
	6.1 A Protocol with CK-PFS Security
	6.2 A Construction Secure in All the Considered Models

	References

	Author Index

