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Abstract. A quantum bit commitment scheme is to realize bit (rather
than qubit) commitment by exploiting quantum communication and
quantum computation. In this work, we study the binding property of the
quantum string commitment scheme obtained by composing a generic
quantum perfectly(resp. statistically)-hiding computationally-binding bit
commitment scheme (which can be realized based on quantum-secure
one-way permutations(resp. functions)) in parallel. We show that the
resulting scheme satisfies a stronger quantum computational binding
property, which we will call predicate-binding, than the trivial honest-
binding. Intuitively and very roughly, the predicate-binding property
guarantees that given any inconsistent predicate pair over a set of strings
(i.e. no strings in this set can satisfy both predicates), if a (claimed) quan-
tum commitment can be opened so that the revealed string satisfies one
predicate with certainty, then the same commitment cannot be opened
so that the revealed string satisfies the other predicate (except for a neg-
ligible probability).

As an application, we plug a generic quantum perfectly(resp.
statistically)-hiding computationally-binding bit commitment scheme in
Blum’s zero-knowledge protocol for the NP-complete language Hamilto-
nian Cycle. This will give rise to the first quantum perfect(resp. sta-
tistical) zero-knowledge argument system (with soundness error 1/2)
for all NP languages based solely on quantum-secure one-way permuta-
tions(resp. functions). The quantum computational soundness of this sys-
tem will follow immediately from the quantum computational predicate-
binding property of commitments.
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1 Introduction

Bit commitment is an important cryptographic primitive; it can be viewed as an
electronic realization of a locked box [16]. Roughly speaking, a bit commitment
scheme is a two-stage (consisting of a commit stage and a reveal stage) interac-
tive protocol between a sender and a receiver, providing two security guarantees:
hiding and binding. Intuitively, the hiding property states that the commitment
to 0 and that to 1 are indistinguishable (to the receiver) in the commit stage,
whereas the binding property states that any (claimed) bit commitment cannot be
opened (by the sender) as both 0 and 1 (except for a negligible probability) later in
the reveal stage. Unfortunately, hiding and binding properties cannot be satisfied
information-theoretically at the same time; one of them has to be conditional, e.g.
based on complexity assumptions such as the existence of one-way functions.

Turning to the quantum setting, there are two different meanings of quantum
bit commitment in the literature (depending on the context). The first refers
to the classical realization of bit commitment that is secure against quantum
attacks, or the post-quantum secure (classical) bit commitment [1,31,32]. The
second refers to a realization of bit commitment by exploiting quantum features
[4,7,8,10,11,14,15,23,24,34,36]; that is, now the honest parties are allowed to be
quantum computers and exchange quantum messages. (But it is still a classical
bit that is secured.) Clearly, the first meaning of quantum bit commitment can
be viewed as a special case of the second one. In this paper, the term “quantum
bit commitment” will be reserved for the second, more general meaning, which
will also be the focus of this work.

The concept of quantum bit commitment is natural and sounds exciting.
Though unconditional quantum bit commitment is still impossible [25,27], as
a compromise we may consider quantum bit commitment based on complexity
assumptions like in the classical cryptography. Somewhat counter-intuitive at
the first glance, but the binding property of a general quantum bit commitment
is inherently weaker than the classical binding property (that is guaranteed by
a classical bit commitment secure against classical attacks, which roughly states
that any claimed bit commitment is bound to a unique bit that is typically
referred to as the committed value). In more detail, this weakness of the general
quantum binding property comes from the possible superposition attack of the
sender of the quantum bit commitment, who may commit to an arbitrary super-
position of bits 0 and 1, and later open the commitment as this superposition
(rather than a classical 0 or 1) successfully with certainty [10,14]. By this kind
of quantum superposition attack, a fixed quantum bit commitment is no longer
bound to a unique classical bit any more. The quantum binding property that
can be guaranteed by a general quantum bit commitment is often referred to as
sum-binding (named after [31]).

Difficulties in Basing Security on Quantum Binding. It is natural to ask
what happen if we replace classical bit commitment with quantum bit commit-
ment in cryptographic applications. Due to the weakness of the general quantum
binding property as aforementioned, the security based on the classical binding
property may deteriorate after the replacement.
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In greater detail, note that in applications we typically commit to a binary
string by committing it in a bitwise fashion; later, a subset of bit commitments
may be opened for some verification. For example, it is helpful to keep GMW-
type zero-knowledge protocols [5,17] in one’s mind. When quantum bit commit-
ments are used, we can no longer say that a claimed quantum commitment to an
m-bit string is really bound to some m-bit string; instead, the committed value
of such a quantum string commitment could be a superposition of a bunch of
m-bit strings of the form

∑
s∈{0,1}m αs |s〉, where the integer m ≥ 1 and complex

coefficients αs’s satisfy
∑

s∈{0,1}m |αs|2 = 1. One may tend to argue in security
analysis that this superposition behaves similar to its induced probability distri-
bution (|αs|2)s∈{0,1}m : if this is true, then the classical security analysis extend to
the quantum setting straightforwardly. Unfortunately, this argument is not nec-
essarily true, because a superposition is generally not equivalent to its induced
probability distribution; in fact, this is usually where the quantum advantage
comes from in algorithm design. Actually, if one goes into detail of the security
analysis, one will find that a malicious quantum sender of commitments may
attack by making the opening information (which is entangled with quantum
commitments and their decommitments) about which bit commitments will be
opened as what value in an arbitrary superposition. By tuning this superposi-
tion, the sender may adjust the receiver’s acceptance probabilities in different
verifications. This kind of superposition attack will make the security analysis
based on the general quantum binding property (if possible) much harder than
that based on the classical binding property.

Why Quantum Bit Commitment Is Interesting? Besides the weakness as
well as technical difficulties in security analysis mentioned above, another short-
coming of quantum bit commitment is that by today’s quantum technology, the
physical realization of a general quantum bit commitment scheme is still far
beyond our reach. In spite of this, quantum bit commitment still interests us
for several reasons. First, since as early as 2000 researchers have come to realize
that merely based on quantum-secure one-way functions/permutations, one can
construct non-interactive quantum bit commitments of both flavors (i.e. statis-
tical binding and statistical hiding), whose commit and reveal stages consist of
just a single quantum message from the sender to the receiver [14,23,24,34].
It turns out that these constructions are not coincidences: recently, Yan [34]
has shown that any (interactive) quantum bit commitment scheme can be con-
verted into a non-interactive one of a generic form1 (whose informal definition is
referred to the first graph of “Notations” in Subsect. 1.3, and formal definition to
Definition 2). This is in contrast to the constant [26] or even polynomial
[20] number of rounds in the commit stage by classical constructions of bit
1 Actually, it is shown in [34] a much stronger result that any quantum bit commitment

schemes just secure against the purification attack can be converted into a non-
interactive one of the generic form. For this reason, in this paper we can focus on
this generic form without loss of generality. At a very high level, the basis idea of
how such a quantum round-collapse is possible is similar to the old idea of converting
any non-interactive quantum bit commitment scheme into the generic form [15,36].
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commitment. Thus, using quantum bit commitments instead of the classical ones
in applications can potentially reduce the number of rounds of the interaction2

while keeping the complexity assumption to the minimum.
More interestingly, Fang, Unruh, Yan and Zhou [15] and Yan [34] also

observe that the (either statistical or computational) binding of a generic
non-interactive quantum bit commitment scheme is automatically information-
theoretically strict3. Here, the strictness of the quantum binding extends the one
in [30] for a classical construction of bit commitment, which roughly states that
not only the revealed value but also the decommitment state used in opening a
quantum bit commitment are “unique”. We highlight that this strictness of the
quantum binding originates from the entanglement between the commitment
and its decommitment, as opposed to the classical correlation in the definition
of the classical strict-binding [30]. We also stress that even the quantum com-
putational binding can be information-theoretically strict simultaneously (which
may sound contradictory as it appears)4. This is in contrast to the computational
binding of a classical bit commitment, which is impossible to be information-
theoretically strict: though it may be computationally hard to find an alternative
opening, there actually exist a bunch of them! It turns out that this strictness of
the quantum binding can play an important role in applications; in particular,
it can help circumvent existing barriers only known for classical constructions,
as confirmed in [15] and this paper (Theorem 1).

Overall, if we are optimistic about the development of quantum technology
and believe that general quantum computation and communication will be avail-
able in future, then the application of quantum bit commitment as a primitive
in quantum cryptography is worthy of study.

Progress and Perspective Towards Basing Security on Quantum Bind-
ing. In the past two decades, there were only few works studying the secu-
rity based on the binding property of a general quantum bit commitment [36].
Recently, some generic techniques to cope with the quantum perfect/statistical
binding property are developed in [15], by which in many cases the security
based on the classical statistical binding property can be lifted to the quantum
setting. Unfortunately, when it comes to the question of the security based on
the quantum computational binding property, the answer remains elusive. To the
best of our knowledge, we are aware of no such results before. In our opinion, the
perhaps most important open question towards using quantum bit commitment
as a primitive in quantum cryptography is:

Can we base quantum security on the computational binding property of a
general quantum bit commitment?

2 The round complexity of any cryptographic task might be one of the most important
parameters.

3 We do not claim that this holds w.r.t. a general quantum bit commitment. But
any quantum bit commitment scheme can be converted to the generic form [34], as
aforementioned.

4 All mentioned above about the strictness of the quantum binding will become clear
once one reads Definition 2, which is quite simple and intuitive.



Quantum Computationally Predicate-Binding Commitments 579

Based on the state-of-the-art knowledge, the answer to the question above is
unclear. On one hand, intuitively it will be true if we can view the superposition
of strings underlying quantum bit commitments as its induced probability distri-
bution (as aforementioned). Actually, this motivates Unruh [31,32] to introduce
(computationally) collapse-binding commitments. Unfortunately, general quan-
tum commitments cannot be collapse-binding [34]. In spite of this, it turns out
that by some tricks this intuitive strategy is enabled to work (in many cases)
when perfectly/statistically-binding quantum bit commitments are used [15].
More positive evidences come from the success in various security analysis in
the quantum random oracle model, in which adversaries can query a random
oracle in an arbitrary superposition [6].

On the other hand, however, after a first attempt towards the security anal-
ysis, it turns out that for a naive analysis (r.f. Subsect. 1.3) to work it requires
that the binding error be sub-exponentially or even exponentially small, rather
than negligiblly small as typical in cryptography. We will refer to this techni-
cal difficulty as “exponential curse”, which arises from the fact that polynomial
number of qubits could be in a superposition of exponentially many basis states.
Moreover, the impossibility of the general quantum rewinding [18], as well as
other related impossibility results on classical constructions of bit commitment
secure against quantum attacks [2], may suggest a negative answer to the open
question above.

One motivation of this work is to explore the application of general quan-
tum computationally-binding bit commitments5 in cryptographic applications,
notably in constructing quantum zero-knowledge arguments for NP languages.

1.1 Our Contribution

In spite of the technical difficulty and negative evidences just mentioned, we make
some progress towards answering the main open question affirmatively in this
work. Interestingly, our security analysis will use a more straightforward strategy
that is completely different from that of viewing the superposition of strings
underlying quantum bit commitments as its induced probability distribution.

Specifically, our contribution is two-fold.

1. A quantum construction of perfect/statistical zero-knowledge argu-
ment system (with soundness error 1/2 ) for all NP languages

We prove the following main theorem of this paper:

Theorem 1. Plugging a generic quantum perfectly(resp. statistically)-hiding
computationally-binding bit commitment scheme (Definition 2) in Blum’s pro-
tocol [5] gives rise to a three-round public-coin quantum perfect(resp. statisti-
cal) zero-knowledge argument system for the NP-complete language Hamiltonian
Cycle, with perfect completeness and soundness error 1/2.

5 Though we will actually focus on quantum bit commitment schemes of the generic
form (Definition 2) in this paper (as will become clear later), this restriction does
not lose any generality due to [34], as aforementioned.
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Following [14,23,24,34], since a generic quantum perfectly(resp.
statistically)-hiding computationally-binding bit commitment scheme can be
constructed from quantum-secure one-way permutations(resp. functions), the
theorem above gives the first quantum perfect(resp. statistical) zero-knowledge
argument for all NP languages based on the same assumption.

Compared with classical GMW-type statistical zero-knowledge arguments
secure against classical attacks for NP [21,28], our quantum construction reduces
the rounds of the interaction from polynomial to three, thanks to the non-
interactivity of a generic quantum computationally-binding bit commitment
scheme. Compared with the classical statistical zero-knowledge argument for
NP secure against quantum attacks given in [31,32], which assumes collapsing
hash functions, our quantum construction relies on a weaker (perhaps minimum)
complexity assumption without setup.

We highlight that our proof of Theorem 1 relies heavily on (though implicitly)
that the (computational) binding of a generic quantum bit commitment scheme
is information-theoretically strict (as aforementioned). It is this strict-binding
property that enables a simple quantum rewinding [15,36] to work even in our
quantum computational soundness analysis. This circumvents a barrier which is
only known for classical constructions [2].

As a final remark, in this work we only study stand-alone Blum’s proto-
col. But we believe it should be meaningful as a first step toward using non-
interactive computationally-binding quantum bit commitments in more gen-
eral protocols. Some remarks on the sequential and the parallel compositions
of Blum’s atomic protocol is referred to the end of Sect. 4.

2. A non-trivial computational binding property of the quantum
string commitment scheme obtained by composing a generic quan-
tum bit commitment scheme in parallel

A natural way to construct a string commitment is to compose a bit com-
mitment scheme in parallel, i.e. committing a string in a bitwise fashion. For
the purpose of proving Theorem 1, we introduce a new binding property of
quantum string commitments which we call “predicate-binding”. And we show
that the parallel composition of a generic quantum computationally-binding bit
commitment scheme gives rise to a quantum computationally predicate-binding
string commitment scheme. When we instantiate Blum’s protocol with a generic
quantum computationally-binding bit commitment scheme, the quantum com-
putational soundness of the protocol (which is required towards establishing
Theorem 1) can be easily based on the predicate-binding property of quantum
string commitments.

In more detail, we first formalize a kind of predicates which we will call
“pattern-predicates” (Definition 3): informally speaking, for a string to satisfy
a pattern-predicate, it should exhibit a certain “pattern” somewhere. The intu-
ition underlying our definition is that in typical applications of bit commitments,
the receiver (of commitments) will check whether the value of the opened com-
mitments will cause it to accept. For example, in Blum’s protocol the (honest)
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verifier’s verification corresponding to each challenge naturally induces a pattern-
predicate.

With our definition of pattern-predicate, the predicate-binding property (Def-
inition 4, or fomally Definition 5) guarantees that given an arbitrary pair of
inconsistent pattern-predicates on a set of strings of the same length (i.e. no
strings in this set can satisfy both predicates), if a (claimed) quantum commit-
ment can be opened such that the revealed string6 satisfies one predicate with
certainty, then the same commitment cannot be opened so as to satisfy the other
predicate (except for a negligible probability)7.

The proof of predicate-binding is the main technical contribution of this
work, which is highly non-trivial; in particular, the trivial reduction (via a sim-
ple hybrid argument) from string binding to bit binding in the classical setting
will fail completely here. Actually, for a technical reason we did not prove the
full predicate-binding property (i.e. w.r.t. the most general inconsistent pattern-
predicate pairs) in this work; rather, we can only show predicate-binding such
that one predicate is allowed to be of the general form, whereas the other is
subject to the restriction that it only depends on a fixed portion of the string
(Thereom 2, or formally Theorem 3). In spite of this restriction, the predicate-
binding property we obtain is more than enough to prove Theorem 1. Any exten-
sion of our result is left as an open problem. We believe that quantum predicate-
binding string commitments could be of independent interest and will be found
useful elsewhere.

A Comparison with Existing Quantum Computational String Binding
Properties. The parallel composition of a generic quantum bit commitment
scheme trivially gives a quantum honest-binding string commitment scheme [36].
Roughly speaking, the honest-binding states that the honest commitment to a
string cannot be opened as any other string (except for a negligible probability).
Unfortunately, this binding property seems too weak to be useful in applications.
This is because a malicious sender may not commit honestly.

In [10], a so-called computational f-binding property w.r.t. a function f :
{0, 1}m → {0, 1}l for quantum string commitments is proposed, where integers
l ≤ m. Unfortunately, no constructions for quantum f-binding commitments
are provided in [10]. Our predicate-binding implies the f -binding w.r.t. to any
efficiently computable function f whose image is just the set {0, 1} (i.e. l = 1),
if we view preimages mapped to 0 as inducing one predicate while preimages
mapped to 1 as inducing the other.

Damg̊ard, Fehr and Salvail [12] introduced the so-called Q-binding prop-
erty for classical commitments secure against quantum attacks, which can be
extended to quantum commitments in a straightforward way. Here, the “Q”

6 Generally, the revealed value of a quantum string commitment could be a probability
distribution over this set of strings.

7 We note that the parallel composition of classical bit commitments secure against
classical attacks gives a string commitment that is trivially predicate-binding secure
against classical attacks. This is simply because the resulting string commitment (by
the parallel composition) is bound to a unique classical string.



582 J. Yan

stands for an arbitrary predicate whose form is close to our pattern-predicate8:
very roughly, this predicate Q can be viewed as combining various pattern-
predicates into one by introducing a “choice” parameter u, and the predicate-
binding we establish here can also be viewed as the Q-binding w.r.t. the predicate
Q of a special form such that |U | = 2 and pideal = 1 (in the notation used in
[12]). The general framework for constructing Q-binding (classical) commitments
in [12] requires a setup and relies on much stronger assumptions than quantum-
secure one-way functions; in particular, one crucial assumption9 on which it relies
has a similar structure as the security game in defining Q-binding, which makes
the security proof for Q-binding there much more straightforward than ours for
predicate-binding here.

Unruh [31,32] introduced computational collapse-binding classical commit-
ments secure against quantum attacks. However, a straightforward extension of
collapse-binding to quantum commitments cannot hold generally, as aforemen-
tioned; more detail is referred to [34].

1.2 A Comparison with Two Recent Works

In two concurrent and independent recent works, statistically-hiding [3] (resp.
computationally-hiding [19]) computationally-binding quantum bit commit-
ments that additionally satisfy two nice properties called extractable and equiv-
ocal properties are constructed, also based solely on quantum-secure one-
way functions. Compared with our scheme used in this work, i.e. the generic
statistically-hiding computationally-binding quantum bit commitment scheme
(Definition 2), theirs are more advantageous in the following aspects:

1. Their schemes satisfy both extractable and equivocal properties simultane-
ously, whereas ours is generally unlikely to satisfy.

2. The committed value of the commitments by running the commit stage of
their schemes is a probability distribution over the set {0, 1}10, rather than a
superposition as our scheme. This makes the quantum (computational) bind-
ing property of their schemes almost as strong as the classical binding prop-
erty. As such, their schemes are likely to be more versatile in applications than
ours; and the corresponding security analysis with their commitments should
be easier, too. In this regard, we believe that plugging their commitments in
Blum’s protocol will yield a quantum zero-knowledge argument-of-knowledge
(rather than just argument as achieved in this paper) system for NP, whose
security analysis can be adapted from the classical one in a straightforward
way (avoiding the issue arisen from the general quantum binding as studied
in this paper).

8 As communicated by the authors of [12] recently [13], the definition of Q-binding
in the conference version of [12] has a flaw: it misses an additional information z as
another input of the predicate Q to make it efficiently computable, and the sentence
“We do not require Q to be efficiently computable” there should be removed.

9 Namely, the third assumption in [12, section “A General Framework”].
10 This can be seen from the extractability of their commitments.
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3. Both their schemes and ours use quantum communication. But theirs only
send (and receive) BB84 states, in contrast to arbitrary quantum states that
might be sent by our scheme.

In spite of the above, we stress that commitments in [3,19] achieve better
properties (than ours) at the cost of the extremely high round complexity : they
need polynomial (in the security parameter) rounds of the interaction at least in
the commit stage11, which makes them almost impractical even when quantum
computation and communication are realized one day. This is in sharp contrast
to the non-interactivity of both the commit and the reveal stages of our scheme.

1.3 Technical Overview

We sketch the soundness analysis of Blum’s protocol instantiated with a generic
quantum computationally-binding bit commitment scheme, which is the key step
towards establishing Theorem 1. Our goal is to reduce the soundness of the result-
ing protocol to the predicate-binding property of quantum string commitment
(Lemma 3).

We assume that readers are familar with Blum’s protocol [5], which is
also sketched in Subsect. 2.3. In its soundness analysis, the (possibly cheating)
prover’s first message constitutes a (claimed) quantum string commitment. The
(honest) verifier’s acceptance conditions corresponding to challenges 0 and 1
induce two predicates on graphs with the same number of vertices as the input
graph. When the input graph is not Hamiltonian, these two predicates will
become inconsistent, in that no single graph can satisfy both of them simulta-
neously. Technically, at the heart of the reduction from the soundness of Blum’s
protocol to the predicate-binding property of the quantum string commitment
lies a simple quantum rewinding technique (Lemma 1) that extends from ones
used in [15,36] but for the quantum statistical binding setting. We remark that
though this extension is technically trivial, conceptually why it is possible relies
heavily on that a generic quantum computationally-binding bit commitment
scheme is information-theoretical strict-binding.

We are then left with showing that the parallel composition of a generic
quantum computationally-binding bit commitment scheme indeed gives rise to a
quantum computationally predicate-binding string commitment scheme (a spe-
cial case in Lemma 2 and a more general case in Theorem 3). This is the main
technical part of the paper. In the below, we first explain a technical difficulty
towards this goal by a naive try, and then sketch at a high level how to overcome
it. But before doing this, we first set up some notations that are necessary for
our exposition.

Notations. A generic quantum bit commitment commitment scheme can be
represented by a quantum circuit pair12 (Q0, Q1) performing on quantum regis-
ters (C,R). To commit a bit b ∈ {0, 1}, in the commit stage the sender performs
11 It appears that even the reveal stage of the commitment scheme given in [19] also

needs polynomial rounds of the interaction.
12 For the moment, we drop the security parameter to simplify the notation.
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the quantum circuit Qb on quantum registers (C,R) initialized in the state |0〉,
and then sends the commitment register C to the receiver; later in the reveal
stage, the sender sends the bit b together with the decommitment register R to the
receiver, who then does the reversible computation (i.e. performing the quantum
circuit Q†

b) to decide whether to accept or not (i.e. checking whether the regis-
ters (C,R) return to the all |0〉 state). Informally, we say that the quantum bit
commitment scheme (Q0, Q1) is computationally binding if for any polynomial-
time realizable unitary transformation U performing on the register R, the inner
product

∣
∣ 〈0| Q†

1UQ0 |0〉 ∣
∣ is negligible; that is, unit vectors UQ0 |0〉 and Q1 |0〉

are almost orthogonal13.
To commit a string of length m, we commit it in a bitwise fashion using

the scheme (Q0, Q1). Let Qs denote the corresponding quantum circuit used to
commit the string s; that is, Qs =

⊗m
i=1 Qsi

, which performs on m copies of the
quantum registers (C,R).

Let P1, P2 be two (pattern-)predicates14 on all m-bit strings. We use s ∈ P1

(resp. P2) to denote that the string s ∈ {0, 1}m satisfies the predicate P1 (resp.
P2). We say that two predicates P1, P2 are inconsistent if no string s ∈ {0, 1}m

can satisfy both P1 and P2. More details about the formalization of predicates
are referred to Subsect. 3.1.

A Technical Difficulty: Exponential Curse. We first consider the sim-
plest scenario, in which an m-bit string is firstly committed and later all (bit)
commitments will be opened. Note that a cheating sender can first prepare
an arbitrary superposition of the form

∑
s∈P1

αs |s〉D (Qs |0〉)C⊗mR⊗m

(resp.
∑

s∈P2
βs |s〉 Qs |0〉) in registers (D,C⊗m,R⊗m), and then send all commitment

registers C⊗m to the receiver in the commit stage15. Later in the reveal stage, the
sender sends the register D (which is supposed to contain the classical informa-
tion about what string is to reveal), together with all decommitment registers
R⊗m, to the receiver. By this strategy, the sender can open all commitments
successfully with certainty as a distribution (which is determined by coefficients
αs’s (resp. βs’s)) of strings that satisfy the predicate P1 (resp. P2). To show
predicate-binding, it is sufficient to show that up to any polynomial-time realiz-
able unitary transformation U that does not touch commitment registers C⊗m

(which represents the sender’s strategy in opening commitments), any two super-
positions

∑
s∈P1

αs |s〉 Qs |0〉 and
∑

s∈P2
βs |s〉 Qs |0〉 are almost orthogonal, i.e.

their inner product is negligible, w.r.t. any inconsistent predicate pair (P1, P2).
A technical difficulty in showing this lies in that a potential exponential blow-up
may occur in bounding this inner product. This difficulty is referred to as the
exponential curse in [15,36], which we believe is universal when one tries to base
13 The formal definitions of a generic quantum bit commitment scheme and its com-

putational binding propery are referred to Definition 2. Here for simplification, we
neglect the auxiliary input state that the cheating sender may receive.

14 For the moment, we can think of them as efficiently computable predicates in the
common sense for simplicity.

15 The tensor product m in superscripts indicates that there are m copies of the cor-
responding quantum register.
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security on quantum binding; a similar difficulty also appears in [10]. Now let us
go into some detail in the below.

By the computational binding property of the quantum bit commitment
scheme (Q0, Q1), the inner product | 〈0| Q†

s′UQs |0〉 | where s �= s′ can be
bounded by its binding error, which is negligible (as typical in cryptography).
Thus, a naive way to bound the inner product

∣
∣

∑

s∈P1

α∗
s 〈s| (〈0| Q†

s) U
∑

s′∈P2

βs′ |s′〉 (Qs′ |0〉)∣∣

is first to expand it and bound each term indexed by (s, s′) using the binding
error bound (while neglecting its coefficient that can be bounded by 1), and
then apply the triangle inequality. However, when there are super-polynomial
(typically exponentially many) strings s ∈ P1 or s′ ∈ P2, this naive approach
will fail.

Actually, whether the inner product above could really be bounded by some
negligible quantity is questionable a prior. This is because generally, two superpo-
sitions of the form

∑
x αx |φx〉 and

∑
y βy |ξy〉, where {|φx〉}x and {|ξy〉}y are two

orthonormal bases, are not necessarily almost orthogonal, even when |φx〉 and
|ξy〉 are almost orthogonal for each (x, y) pair. To see this, consider the following
simple example. The Hilbert space is induced by m qubits, where {|x〉}x∈{0,1}m is
the standard basis and {H⊗m |y〉}y∈{0,1}m is the Hadamard basis. Then consider
an arbitrary vector in this space, which can be written as a superposition of basis
vectors either in the standard basis or the Hadamard basis. Clearly, these two
superpositions are actually the same vector, so that their inner product is one.
But the inner product between |x〉 and H⊗m |y〉 for arbitrary x, y ∈ {0, 1}m is
exponentially small! This example tells us that to bound the inner product afore-
mentioned, we need to exploit the structures of the two superpositions (which
are induced by the structures of predicates P1 and P2).

The similar technical difficulty also appears in the quantum statistical bind-
ing setting, where two generic techniques were invented to overcome this expo-
nential curse: perturbation and hypothetical commitment measurement [15,36].
Unfortunately, neither of them extend to the quantum computational binding
setting straightforwardly. Reasons are as below. We note that the fundamen-
tal difference between these two settings lies in that in the quantum statistical
binding setting, the bit commitment to 0 and that to 1 (stored in the commit-
ment register C) themselves are already almost orthogonal, and which will never
be touched by the (possibly cheating) sender after they are sent. Thus, we can
assume that commitments will collapse immediately by hypothetical commit-
ment measurements at the moment they are sent; after the collapse, everything
will be similar to that in the classical perfect binding setting. However, in case
of quantum computational binding, the commitment to 0 and that to 1 could
be close or even identical, where we are only guaranteed that in the reveal stage
the joint states of the commitment register C and the decommitment register
R are almost orthogonal. But the state of the decommitment register R can
be affected by the sender’s operation after the commitment stage. As such, the
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hypothetical-collapse trick to handle quantum statistically-binding commitments
[15] fails completely here.

In summary, new techniques are needed to establish the quantum computa-
tional predicate-binding property (if possible).

Our Approach. For the ease of the exposition, instead of considering the
aforementioned inner product, now let us equivalently consider the projection
of an arbitrary superposition of the form

∑
s∈P1

αs |s〉 Qs |0〉 on the subspace
∑

s∈P2
|s〉 〈s| ⊗ (Qs |0〉 〈0| Q†

s), up to any polynomial-time realizable unitary
transformation U that does not touch commitment registers C⊗m. We overload
the notation and denote this projection also by P2 for simplicity. Our goal then
becomes to show that this projection is negligible (in the security parameter
which we have dropped to simplify the notation; see footnote 12). Our idea is
based on the following key observation: when the predicate P1 is sparse, i.e. the
number of the m-bit strings satisfying it is polynomially bounded, then combin-
ing a new perturbation technique (which looks similar but is inherently different
from the one developed in the quantum statistical binding setting [15,36]) and
the triangle inequality, we can bound the aforementioned projection by a neg-
ligible quantity. However, to remove this sparsity requirement, we still need to
overcome the exponential curse. To this end, we need to take into account of
the coefficients of the superposition, and make an essential use of the following
structure of predicates P1 and P2: to check whether a string satisfies P1 or P2,
all its bits are to examine.

For more technical details, we are to bound the norm
∥
∥
∥

∑

s∈P1

αs P2U (|s〉Qs |0〉)
∥
∥
∥,

where in the summation there could be exponentially many terms. At a high
level, our trick is to order these terms properly in such a way that they can be
treated as leaves of a binary tree, whose internal nodes will correspond to the
summation of leaves of the subtree it determines; in particular, the root of the
tree will correspond to the summation of all leaves, whose norm is just what we
want to bound. We will actually bound norms of all internal nodes, including the
root, in a bottom-up fashion. The formal proof (of Lemma 2) is by induction on
the depth of internal nodes. Within the induction step, we will use the triangle
inequality. It turns out that the accumulated error will grow only linearly in the
depth of the tree, which is just m.

Extension. However, the (simplest) scenario (i.e. all commitments will be
opened) considered above is usually not sufficient for applications. This is
because in many cases where bit commitments are used in a larger protocol,
not all bit commitments will be opened for a verification. Even worse, positions
of which bit commitments will be opened may not even be fixed: they might
depend on the party who plays the role of the (cheating) sender. For exam-
ple, consider an execution of Blum’s protocol in which a Hamiltonian cycle is
challenged to open.
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Fortunately, we can extend the predicate-binding property established in the
simplest case to a more general case in which it holds that for at least one
predicate (P1 or P2), the positions of which bit commitments will be opened for
its verification are fixed, while the other predicate could be arbitrary (Theorem
3). It turns out that this extension already suffices for our purpose of establishing
Theorem 1.

For the formal proof of such an extension, there are more technical issues we
need to handle.

Organization. We first give preliminaries in Sect. 2. In Sect. 3, we formally intro-
duce and establish the computational predicate-binding property of the quan-
tum string commitment scheme that is obtained by composing a generic quan-
tum computationally-binding bit commitment scheme in parallel. As an appli-
cation of predicate-binding, in Sect. 4 we show that Blum’s zero-knowledge pro-
tocol for the NP-complete language Hamiltonian Cycle with a generic quantum
computationally-binding bit commitment scheme plugged in is sound against
any quantum computationally bounded prover. We conclude with Sect. 5.

2 Preliminaries

A quantum system or register induces a Hilbert space. A quantum operation per-
forming on a quantum system induces an operator acting on the Hilbert space
associated with the system. In particular, a unitary operation induces a unitary
transformation, and a binary projective measurement induces a projector (cor-
responding to the outcome one). We will interchangeably use quantum system
and its induced Hilbert space, quantum operation and its induced operator. For
example, we may say that a unitary transformation or a projector perform on
or do not touch a quantum register.

Notations. We will explicitly write quantum register(s) as a superscript of an
operator to indicate or highlight on which register(s) this operator performs.
Similarly, we will also explicitly write quantum register(s) as a superscript of a
quantum state to indicate or highlight in which register(s) this quantum state
is stored. For example, let A be a quantum register. Then we may write UA,
|ψ〉A (resp. ρA), to indicate that the operator U performs on the register A,
the quantum pure (resp. mixed) state |ψ〉 (resp. ρ) is stored in the register A,
respectively. We may also write U⊗1A to highlight that the operation U does not
touch the register A. But when it is clear from the context, we often drop such
superscripts or the tensor product with the identity to simplify the notation;
this in particular happens in many of derivations within our proofs, where we
often write out registers as superscripts or the tensor product with the identity
explicitly in the first step, while dropping them subsequently. When there are m
copies of the register A, for a subset T ⊆ {1, 2, . . . , m}, we write A⊗T to refer to
the copies of the register A indexed by the subset T ; when the subset T is the
whole set, we may just write A⊗m.
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Efficiently Realizable Quantum Computation. In this work, without loss
of generality, we restrict to consider the following quantum computational model:

1. Quantum systems or registers are constituted of qubits.
2. There are only two kinds of quantum operations: unitary transformation and

projective measurement.

We also need to formalize efficiently realizable quantum operations. By [37],
any efficiently realizable quantum algorithm or unitary transformation can be
formalized by a family of quantum circuits {Qn}n≥1 such that:

1. Each gate of the quantum circuit Qn comes from a pre-fixed finite, unitary,
and universal quantum gate set, e.g. {Hadamard,phase,cnot, π/8} [29].

2. Quantum circuit Qn is of polynomial size (w.r.t. the index n).
3. The quantum circuit family {Qn}n≥1 can be uniformly generated, i.e. there

exists a polynomial-time classical algorithm A which on input 1n outputs the
description of the quantum circuit Qn.

Since any projective measurement can be realized by first performing a uni-
tary transformation, followed by a measurement of all qubits in the standard
basis, we say that a projective measurement is efficiently realizable if the corre-
sponding unitary transformation is efficiently realizable.

Any projector Π induces a binary measurement {Π,1 − Π}, which produces
the outcome 1 (resp. 0) when the quantum state collapses into the subspace
induced the projector Π (resp. 1− Π). We say that the projector Π is efficient
realizable if its induced binary measurement is efficiently realizable.

Quantum Rewinding. A quantum rewinding technique as stated in the lemma
below is adapted from the one given in [15] directly, whereas now we restrict to
consider projectors and unitary transformations that are efficiently realizable. In
spite of this, its proof follows the same line as the one in [15].

Lemma 1 (A quantum rewinding). Let X and Y be two Hilbert spaces. Unit
vector |ψ〉 ∈ X ⊗ Y. Efficiently realizable projectors Γ1, . . . , Γk perform on the
space X⊗Y, and efficiently realizable unitary transformations U1, . . . , Uk perform
on the space Y. If 1/k ·∑k

i=1

∥
∥Γi(Ui ⊗ 1X) |ψ〉∥∥2 ≥ 1− η, where 0 ≤ η ≤ 1, then

∥
∥
∥(U†

k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U†
1 ⊗ 1X)Γ1(U1 ⊗ 1X) |ψ〉

∥
∥
∥ ≥ 1 −

√
kη. (1)

2.1 A Generic Quantum Bit Commitment Scheme

We first need to define quantum (in)distinguishability based on the efficiently
realizable quantum computation we fixed above. Our definition follows [33].

Definition 1 ((In)distinguishability of quantum state ensembles). Two
quantum state ensembles {ρn}n≥1 and {ξn}n≥1 are quantum statistically (resp.
computationally) indistinguishable if for any quantum state ensemble {σn}n≥1
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and any unbounded (resp. efficiently realizable) quantum algorithm D which out-
puts a single qubit that will be measured in the standard basis, it holds that

|Pr[D(1n, ρn ⊗ σn) = 1] − Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n, where negl(·) is some negligible function.

Following Yan [34], the definition of a generic quantum computationally-
binding bit commitment scheme is given as below.

Definition 2 (A generic computationally-binding quantum bit com-
mitment scheme). A generic computationally-binding quantum bit com-
mitment scheme is a two-party, two-stage protocol. It can be represented
by an ensemble of polynomial-time uniformly generated quantum circuit pair
{(Q0(n), Q1(n))}n≥1. Specifically,

– The scheme involves two parties, a sender and a receiver, proceeding in two
stages: a commit stage followed by a reveal stage.

– In the commit stage, to commit bit b ∈ {0, 1}, the sender performs the quan-
tum circuit Qb(n) on quantum registers (C,R) initialized in all |0〉’s state16.
Then the sender sends the commitment register C, whose state at this moment
denoted by ρb(n), to the receiver.

– In the (canonical) reveal stage, the sender announces b, and sends the decom-
mitment register R to the receiver. The receiver then performs Qb(n)† on the
registers (C, R), accepting if (C, R) return to all |0〉’s state. (This can be done
by a measurement in the computational basis on each qubit that belongs to the
registers (C, R).)

We are next to define the hiding (or concealing) and the binding properties
of the scheme {(Q0(n), Q1(n))}n≥1.

• Statistically hiding. We say that the scheme is statistically hiding if the
quantum state ensembles {ρ0(n)}n≥1 and {ρ1(n)}n≥1 are quantum statisti-
cally indistinguishable.

• Computationally ε(n)-binding. We say that the scheme is quantum com-
putationally ε(n)-binding if for any state |ψ〉 in auxiliary register Z, and any
efficiently realizable unitary transformation U performing on (R, Z),

∥
∥
∥
(
Q1 |0〉 〈0| Q†

1

)CR
URZ

(
(Q0 |0〉)CR |ψ〉Z )∥∥

∥ < ε(n), (2)

By the reversibility of quantum computation, the binding property can also be
equivalently defined by swapping the roles of Q0 and Q1 in the above. Then
the inequality (2) becomes

∥
∥
∥
(
Q0 |0〉 〈0| Q†

0

)CR
URZ

(
(Q1 |0〉)CR |ψ〉Z )∥∥

∥ < ε(n). (3)

We call ε(n) the binding error. When ε(n) is some negligible function, we
usually drop it and just say that the scheme is computationally binding.

16 The number of qubits in the state |0〉 that are needed depends on the quantum
circuit Q0(n) (or Q1(n)).
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Remark

1. The (computational) binding property stated in the definition above is actu-
ally the honest-binding, which is equivalent to the sum-binding w.r.t. a generic
quantum bit commitment scheme [34].

2. On instantiations of non-interactive computationally-bindng quantum bit
commitments of the generic form based on quantum-secure one-way func-
tions/permutations, one is referred to [34] for the details. Briefly, it is argued
in [34] that any interactive quantum bit commitment schemes (including both
classical and quantum constructions) secure against the purification attack17,
which in particular include schemes proposed in [11,14,24,28], can be con-
verted into a non-interactive one of the generic form with the same flavors of
hiding and binding properties.

In the sequel, to simplify the notation we often drop the security parameter
n and just write (Q0, Q1) to denote a generic quantum computationally-binding
bit commitment scheme.

We will use the scheme (Q0, Q1) to commit a binary string in a bitwise
fashion. Namely, the quantum circuit to commit a string s = s1s2 · · · sm ∈
{0, 1}m is given by

Qs
def
=

m⊗

i=1

Qsi
, (4)

which performs on m copies of the quantum register pair (C,R).

2.2 Modeling an Attack of the Sender of Quantum Commitments

Consider a running of a larger two-party protocol in which a generic quantum
bit commitment scheme is used and the sender of quantum commitments is
malicious. The other party who will be referred to as the receiver is honest. The
sender is supposed to commit to a string in {0, 1}m in a bitwise fashion at some
moment, and later try to open the commitments in a way as determined by the
larger protocol. Then the behavior of the sender can be modeled by (U, |ψ〉) such
that:

1. The sender prepares the system (C⊗m,R⊗m,D,Z) in the quantum state |ψ〉
at the end of the commit stage, and sends the commitment registers C⊗m to
the receiver.

2. In the reveal stage, the sender first performs the unitary transformation U
on the system (R⊗m,D,Z), and then sends registers (R⊗m,D) to the receiver.
The register D is supposed to contain the classical information indicating
which quantum bit commitments will be opened as what value, and R⊗m are
decommitment registers.

We have two remarks about the modeling as above:
17 Informally speaking, this is a kind of security that turns out to be just slightly

stronger than the semi-honest security yet much weaker than the full security.
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1. We note that there might be other operations performed by both the sender
and the receiver between the end of the commit stage and the beginning of
the reveal stage within the larger protocol. But in many cases, this can be
simulated by absorbing these operations and auxiliary states introduced into
the operation U and the state |ψ〉, respectively. Anyway, in this work we just
restrict to consider the modeling as above for simplicity.

2. In the second item above, we assume without loss of generality that all decom-
mitment registers R⊗m are sent to the receiver in the reveal stage, though
sometimes only a proper subset of commitments will be opened18. We can do
this because the receiver is honest ; sending all decommitment registers will
not affect the security against the sender.

2.3 Blum’s Zero-Knowledge Protocol for Hamiltonian Cycle

Basically, Blum’s protocol [5] proceeds as follows: on input a graph G (assuming
it is represented by its adjacency matrix) with n vertices:

1. The prover first chooses a random permutation Π ∈ Sn, where Sn consists
of all permutations over the set {1, 2, . . . , n}. Then it commits to the graph
π(G), sending all n2 (quantum) bit commitments to the verifier.

2. Upon receiving the prover’s commitments, the verifier tosses a random coin
to obtain the challenge bit b ∈ {0, 1} and sends it to the prover.

3. If the challenge b = 0, then the prover sends the permutation π together with
the decommitment registers for all bit commitments to the verifier. If the
challenge b = 1, then the prover sends the location of a Hamiltonian cycle H
together with the decommitment registers for the commitments of all edges
of the cycle H to the verifier.

4. If the challenge b = 0, then the verifier accepts if all bit commitments are
opened as π(G) successfully. If the challenge b = 1, then the verifier accepts
if the H is a possible location of a Hamiltonian cycle and all commitments to
the edges of H are opened as 1 successfully.

3 The Predicate-Binding Property of Quantum String
Commitments

In this section, we first introduce the notion of pattern-predicate and then the
predicate-binding property of quantum string commitments. Next, we show that
the parallel composition of a generic quantum computationally-binding bit com-
mitment scheme gives rise to a quantum string commitment scheme that is
predicate-binding w.r.t. a pair of inconsistent pattern-predicates of a special
form. Last, we extend this predicate-binding property to a setting that is suffi-
cient for our application, i.e. quantum zero-knowledge arguments for NP.
18 For example, consider a running of Blum’s zero-knowledge protocol for the language

Hamiltonian Cycle in which the cheating prover responds to the challenge 1 of the
verifier.
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3.1 Pattern-Predicate

Informally, the pattern-predicate defined in the below states that for a string
to satisfy some predicate, it should exhibit a certain “pattern” somewhere. The
intuition underlying our definition is that in typical applications of bit commit-
ments, the receiver will check whether the value of the opened commitments will
cause it to accept.

Definition 3 (Pattern-predicate). A pattern-predicate P on binary strings
{0, 1}m (m ≥ 1) can be represented by a triplet of functions (val(·), T (·), s(·)),
where given a candidate witness w ∈ {0, 1}poly(m) as input: val(w) = 1 if w is
a valid witness, and 0 otherwise19; T (w) is a subset of {1, 2, . . . ,m}; s(w) is a
string of length |T (w)|; all three functions val(·), T (·), and s(·) can be computed
in poly(m) time. A string str ∈ {0, 1}m satisfies the predicate P if there exists
a (valid) witness w ∈ {0, 1}poly(m) satisfying val(w) = 1 and str[T (w)] = s(w),
where str[T (w)] denotes the substring obtained from the string str by projecting
it on coordinates in the subset T (w).

Remark. Intuitively, a valid witness w for a string str guides us to find a
pattern s(w) locating at positions specified by T (w) efficiently. This pattern will
certify that the string str satisies the pattern-predicate P . However, it might be
computationally hard to find a valid witness for a given string str.

In this work, for simplicity we often drop the prefix “pattern” and just write
“predicate” to refer to a pattern-predicate. For a predicate P , it induces a subset
P (by abusing the notation) of strings in {0, 1}m such that a string s ∈ P
if and only if it satisfies the predicate P ; we will identify a predicate as the
subset induced by it. We say that two predicates P1, P2 on the set {0, 1}m are
inconsistent if P1 ∩P2 = ∅; that is, no strings in {0, 1}m can satisfy both P1 and
P2 simultaneously.

In a typical application of commitments within a larger protocol, at some
stage of this protocol the party who plays the role of the possibly cheating sender
of commitments will open commitments, and the party who plays the role of the
honest receiver of commitments will do some verification. We note that it is this
verification that natually induces a pattern-predicate. See the following example.

Example 1. Consider a running of Blum’s zero-knowledge protocol for the NP-
complete language Hamiltonian Cycle, in which the verifier is honest while the
prover might be cheating, and the common input graph G has n vertices. Let
m = n2. Each graph with n vertices can be represented by an m-bit string. This
running of Blum’s protocol induces two predicates on strings over {0, 1}m, corre-
sponding to the verifier’s verifications w.r.t. two possible challenges, respectively.
In more detail, when the verifier’s challenge is 0, it will check that all bit commit-
ments are opened as a graph that is isomorphic to the input graph. This induces
a predicate P0 which consists of all graphs that are isomorphic to the input

19 Sometimes, it will be more covenient to identify the function val(·) as an algorithm
that decides the validity of a candidate witness.
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graph. Formally, the predicate P0 can be represented by a triplet of functions
(val(·), T (·), s(·)) such that: given a claimed permutation π over {1, 2, . . . , n},
val(π) = 1 if π indeed represents a valid permutation; T (·) ≡ {1, 2, . . . , m}, and
s(π) = π(G). When the verifier’s challenge is 1, it will check that n (out of n2)
bit commitments are opened as all 1’s; moreover, these n positions (of opened bit
commitments) should correspond to a possible location of a Hamiltonian cycle.
This induces a predicate P1 which consists of all n-vertices graphs containing a
Hamiltonian cycle. Formally, the predicate P1 can be represented by a triplet
of functions (val(·), T (·), s(·)) such that: given a claimed Hamiltonian cycle H,
val(H) = 1 if H indeed represents a possible location of a Hamiltonian cycle;
T (H) is set of coordinates corresponding to edges of H, and s(·) ≡ 1n. If the
input graph is not Hamiltonian, then the two predicates P0 and P1 are obviously
inconsistent.

Another example given below consider a simpler scenario, where a special
form of pattern-predicates is introduced. In the sequel, we will study these special
pattern-predicates first before more general ones.

Example 2. Consider the following scenario. The sender first commits to a
string in a bitwise fashion. Later, all (bit) commitments will be opened, and the
receiver (of commitments) will check whether the whole revealed string satisfies
an efficiently computable predicate P in the common sense (i.e. a predicate which
can be evaluated on any input string in polynomial time, rather than pattern-
predicate introduced in this work). Let A(·) be an algorithm which runs in time
poly(m) and can decide whether a string str ∈ {0, 1}m satisies P . We note that
the predicate P can also be viewed as a pattern-predicate (A(·), T (·), s(·)) where
T (·) ≡ {1, 2, . . . ,m} and s(·) is the identity function; any string str ∈ P itself
serves as its witness.

3.2 String Predicate-Binding

We first give an informal definition of the predicate-binding property of a quan-
tum string commitment scheme, and then informally state we have achieved
towards predicate-binding by composing a generic computationally-binding
quantum bit commitment scheme in parallel. Last, we restate the definition
of the predicate-binding w.r.t. the parallization of a generic computationally-
binding quantum bit commitment scheme in a formal way for the purpose of
proving predicate-binding in the sequel.

Definition 4 (Predicate-binding, informal). Let P1, P2 be two inconsis-
tent pattern-predicates. We say that a quantum string commitment scheme is
predicate-binding w.r.t. (P1, P2) if any cheating sender, who can succeed in con-
vincing the receiver that the committed value of the (claimed) quantum string
commitment satisfies the predicate P1 with certainty, will fail to convince the
receiver that the committed value satisfies the predicate P2 (except for a negligi-
ble probability). We say that a quantum string commitment scheme is predicate-
binding if it is predicate-binding w.r.t. any pair of inconsistent predicates.
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Remark. Classical commitments secure against classical attacks are trivially
predicate-binding, simply because there is at most one string (i.e. the committed
value) associated with each (claimed) commitment. However, this no longer holds
w.r.t. either classical or quantum commitments secure against quantum attacks.

Restricting to consider the quantum string commitment scheme obtained by
composing a generic computationally-binding quantum bit commitment scheme
(Q0, Q1) in parallel, our goal is to show that it is predicate-binding w.r.t. incon-
sistent pattern-predicates pairs that are general enough for our application
(Sect. 4). Informally, we can prove a theorem as below. We highlight (again)
that we do not achieve the full predicate-binding, which is left as an interesting
open problem.

Theorem 2. Suppose that the quantum bit commitment scheme (Q0, Q1) is
computationally binding. Let P1, P2 be two inconsistent predicates on the set
{0, 1}m such that for (at least) one of them, the verification of whether an m-bit
string satisfies it needs to examine the bits at some fixed positions of the string
(regardless of the witness provided). Then the parallel composition of the scheme
(Q0, Q1) gives rise to a quantum string commitment scheme that is computa-
tionally predicate-binding w.r.t. (P1, P2).

For the purpose of proving Theorem 2, now let us restate Definition 4 w.r.t.
the parallization of a generic computationally-binding quantum bit commitment
scheme in a more formal way.

Suppose that a cheating sender who is modeled as in Sect. 2.2 tries to con-
vince the (honest) receiver that the committed value of a (claimed) quantum
string commitment satisfies a predicate P = (val(·), T (·), s(·)), i.e. the (claimed)
commitment can be opened in such a way that if w is a valid witness, then the
bit commitments indexed by the subset T (w) are opened as the string s(w). The
predicate P natually induces a projector P (also by abusing the notation) whose
expression is given by

P =
∑

w

( |w〉 〈w| )D ⊗ (
Qs(w) |0〉 〈0| Q†

s(w)

)C⊗T (w)R⊗T (w)

. (5)

Its explanation follows. The summation is over all valid witnesses20 for m-bit
strings in P1; the quantum circuit Qs(w) (whose meaning is referred to the equa-
tion (4)) performs on the copies of the quantum register pair (C,R) indexed by
the subset T (w); in the reveal stage, the receiver will perform the binary mea-
surement {P,1 − P} on its system to decide whether to accept or not. Hence,
the sender’s success probability of convincing the receiver to accept is given by
‖PU |ψ〉‖2, where recall that |ψ〉 is the quantum state of the whole system at the
end of the commit stage and U is the sender’s operation in the reveal stage. We
also note that the projector P is efficiently realizable, since all functions val(·),
T (·) and s(·) are efficiently computable.

Based on the expression (5), we can formalize the predicate-binding property
of the parallelization of a generic quantum bit commitment scheme as follows.
20 We point out that a string in P1 may have multiple witnesses.
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Definition 5 (Predicate-binding w.r.t. the parallel composition of
QBC). Let P1, P2 be two inconsistent pattern-predicates. We say that the
quantum string commitment scheme obtained by composing a generic quan-
tum bit commitment scheme (Q0, Q1) in parallel is predicate-binding w.r.t.
(P1, P2) if ‖P2UP1 |ψ〉‖2 is negligible, where |ψ〉 is an arbitrary state of registers
(C⊗m,R⊗m,D,Z), and U could be any efficiently realizable unitary transforma-
tions that do not touch the quantum commitment (i.e. the commitment registers
C⊗m). We say that this quantum string commitment scheme is predicate-binding
if it is predicate-binding w.r.t. any pair of inconsistent pattern-predicates.

In the subsequent two subsections, we will prove Theorem 2. We will first
establish predicate-binding w.r.t. a special form of inconsistent pattern-predicate
pair (as formalized in Lemma 2), and then extend it to a general case (as for-
malized in Theorem 3).

3.3 Towards Predicate-Binding: A Special Case

We first restrict to consider pattern-predicates arising in Example 2 in Sub-
sect. 3.1, and try to establish predicate-binding w.r.t. such a pair of inconsistent
predicates.

By instantiating the predicate P in the Eq. (5) with the predicate of the form
introduced in Example 2, the expression of the projector P will become

P =
∑

s∈P

( |s〉 〈s| )D ⊗ (
Qs |0〉 〈0| Q†

s

)C⊗mR⊗m

. (6)

For any inconsistent predicate pair (P1, P2) whose corresponding projectors
P1 and P2 are both of the form (6), we can prove the following main technical
lemma of this work.

Lemma 2. Suppose that the scheme (Q0, Q1) is computationally ε-binding for
some arbitrary negligible function ε(·). Both predicates P1 and P2 are of the
form given by the expression (6). Then for any quantum state |ψ〉 of registers
(C⊗m,R⊗m,D,Z), and any efficiently realizable unitary transformation U that
does not touch the commitment registers C⊗m, we have ‖P2UP1 |ψ〉‖2 ≤ m2ε2 +
2mε.

Proof. According to the expression (6), we can write

P1 |ψ〉 =
∑

s∈P1

αs |s〉D ⊗ Qs |0〉C⊗mR⊗m ⊗ |φs〉Z (7)

=
∑

s∈{0,1}m

αs |s〉D ⊗ Qs |0〉C⊗mR⊗m ⊗ |φs〉Z
, (8)
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where for each s �∈ P1, we let αs = 0 and |φs〉 be arbitrary21; moreover, the com-
plex coefficients αs’s satisfy

∑
s∈{0,1}m |αs|2 ≤ 1. For convenience, we introduce

the shorthand
|ψs〉 def

= |s〉 ⊗ Qs |0〉 ⊗ |φs〉 (9)

for each s ∈ {0, 1}m. With these notations, our goal becomes to show

∥
∥
∥P2U

∑

s∈{0,1}m

αs |ψs〉
∥
∥
∥
2

≤ m2ε2 + 2mε. (10)

We will actually prove a strengthening of the inequality (10) by induction.
Specifically, we will prove that for each k (0 ≤ k ≤ m) and each string x ∈
{0, 1}m−k, it holds that

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

≤ (m2ε2 + 2kε)
∑

s∈{0,1}k◦x

|αs|2 , (11)

where {0, 1}k ◦ x denotes the set of all m-bit strings with a suffix x of length
m − k. For each x ∈ {0, 1}m−k where 0 ≤ k ≤ m, if we view it as inducing
an internal node/leaf of a binarty tree which corresponds to the summation
P2U

∑
s∈{0,1}k◦x αs |ψs〉, then we will bound the (squared) norm of each internal

node in a bottom-up way. Thus, the root of the tree will correspond to the case
where k = m (then x becomes an empty string), i.e. l.h.s. of the inequality (10)
without the squared norm. If we can prove the inequality (11), then plugging in
k = m and the inequality

∑
s∈{0,1}m |αs|2 ≤ 1, we will arrive at the inequality

(10).
Now we are ready to prove the inequality (11) by induction on k, where

0 ≤ k ≤ m.

Base. We show that the inequality (11) holds when k = 0. In this case, x is a
string of length m. Since the coefficient αx = 0 for x �∈ P1, in which case the
inequality (11) holds trivially, it suffices to fix an arbitrary x ∈ P1 and show that
‖P2U |ψx〉‖ ≤ mε. To this end, our technique is the perturbation that is similar
to the quantum statistical binding setting [15]. Specifically, we will first show
that the unit vector U |ψx〉 is negligibly close to the (unnormalized) vector

|ψ̃x〉 def
=

m⊗

i=1

(
1 − (Qx̄i

|0〉 〈0| Q†
x̄i

)
)
U |ψx〉 , (12)

where x̄i = 1−xi, and the projector Qx̄i
|0〉 〈0| Q†

x̄i
performs on the i-the copy of

the register pair (C,R). Second, we show that from the inconsistency of the pred-
icate pair (P1, P2), it follows that the vector |ψ̃x〉 is orthogonal to the subspace

21 Here, our purpose of introducing αs and |φs〉 for s �∈ P1 is mainly for a cleaner way
of writing the proof; it will not affect the places in the subsequent proof where the
quantum computational binding property is applied.
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P2. Combining these two facts, we know that ‖P2U |ψx〉‖ is negligible. Detail
follows.

We first show that
∥
∥U |ψx〉 − |ψ̃x〉∥∥ < mε via a simple hybrid argument.

Specifically, we introduce hybrids for each 0 ≤ j ≤ m such that Hj
def
=

⊗j
i=1

(
1−

Qx̄i
|0〉 〈0| Q†

x̄i

)
U |ψx〉; then U |ψx〉 = H0 and |ψ̃x〉 = Hm. It suffices to show that

any two adjacent hybrids are negligibly close: if this is true, then applying the
triangle inequality of the operator norm m times will yield the desired bound.

Indeed, for each 1 ≤ j ≤ m,

‖Hj − Hj−1‖

=

∥
∥
∥
∥
∥

j⊗

i=1

(
1 − Qx̄i

|0〉 〈0| Q†
x̄i

)
U |ψx〉 −

j−1⊗

i=1

(
1 − Qx̄i

|0〉 〈0| Q†
x̄i

)
U |ψx〉

∥
∥
∥
∥
∥

≤
∥
∥
∥
(
1 − Qx̄j

|0〉 〈0| Q†
x̄j

)
U |ψx〉 − U |ψx〉

∥
∥
∥

=
∥
∥
∥
(
Qx̄j

|0〉 〈0| Q†
x̄j

)
U(|x〉 Qx |0〉 |φx〉)

∥
∥
∥

< ε,

where the last “<” follows from the quantum computational binding property
by considering the j-th quantum bit commitment.

We then show that the (unnormalized) vector |ψ̃x〉 is orthogonal to the sub-
space P2, i.e.

∥
∥P2|ψ̃x〉∥∥ = 0. This follows straightforwardly from the assumption

that the predicate P2 is inconsistent with the predicate P1. In greater detail, for
each s ∈ P2, we know that it is different from the string x ∈ P1; that is, there
exists some index j (1 ≤ j ≤ m) such that sj = x̄j . Combining this with the
Eq. (12), it follows that

∥
∥
∥
( |s〉 〈s| ⊗ Qs |0〉 〈0| Q†

s

)|ψ̃x〉
∥
∥
∥ ≤

∥
∥
∥
(
Qs |0〉 〈0| Q†

s

)|ψ̃x〉
∥
∥
∥

≤
∥
∥
∥
(
Qx̄j

|0〉 〈0| Q†
x̄j

)( m⊗

i=1

(
1 − (Qx̄i

|0〉 〈0| Q†
x̄i

)
)
U |ψx〉

)∥
∥
∥

= 0.

Then summing over all s ∈ P2, we obtain
∥
∥
∥

∑

s∈P2

( |s〉 〈s| ⊗ Qs |0〉 〈0| Q†
s

)|ψ̃x〉
∥
∥
∥ =

∥
∥P2|ψ̃x〉∥∥ = 0.

Combining
∥
∥U |ψx〉 − |ψ̃x〉∥∥ < mε with

∥
∥P2|ψ̃x〉∥∥ = 0, we arrive at

‖P2U |ψx〉‖ ≤ mε.

Induction. Now suppose that the inequality (11) holds for k − 1 and each binary
string x of length m − (k − 1). We are to show that it also holds for k and an
arbitrary binary string x of length of m − k.
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For an arbitrary x ∈ {0, 1}m−k, we first expand the l.h.s. of the inequality
(11):

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥

2
=

∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉 + P2U
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′ 〉
∥
∥
∥

2

≤
∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉
∥
∥
∥

2
+

∥
∥
∥P2U

∑

s′∈{0,1}k−1◦1x

αs′ |ψs′ 〉
∥
∥
∥

2
(13)

+2
∣
∣
∣

∑

s∈{0,1}k−1◦0x

αs 〈ψs| · U†P2U ·
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′ 〉
∣
∣
∣.

For convenience, we introduce shorthands

α2
0x

def
=

∑

s∈{0,1}k−1◦0x

|αs|2 , α2
1x

def
=

∑

s′∈{0,1}k−1◦1x

|αs′ |2 , α2
x

def
= α2

0x + α2
1x.

Without loss of generality, we can assume that all α0x, α1x, αx ≥ 0. With these
notations, our goal (i.e. inequality (11)) becomes to show

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

≤ α2
x(m2ε2 + 2kε),

and the induction hypothesis implies
∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉
∥
∥
∥
2

≤ α2
0x(m2ε2 + 2(k − 1)ε),

∥
∥
∥P2U

∑

s∈{0,1}k−1◦1x

αs |ψs〉
∥
∥
∥
2

≤ α2
1x(m2ε2 + 2(k − 1)ε).

The remainder of the analysis splits into two cases.

Case 1: either α0x = 0 or α1x = 0. Without loss of generality, we can assume
that α1x = 0. This implies that αs′ = 0 for each s′ ∈ {0, 1}k−1 ◦ 1x. Thus,
∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

=
∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉
∥
∥
∥
2 ≤ α

2
0x(m

2
ε
2
+ 2(k − 1)ε) ≤ α

2
x(m

2
ε
2
+ 2kε),

where the first “≤” uses the induction hypothesis.

Case 2: both α0x > 0 and α1x > 0. Following the inequality (13) and using
the induction hypothesis, we have

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2 ≤ α

2
0x(m

2
ε
2
+ (k − 1)ε) + α

2
1x(m

2
ε
2
+ 2(k − 1)ε)

+2α0xα1x ·
∣
∣
∣

1

α0x

∑

s∈{0,1}k−1◦0x

αs 〈ψs| · U
†
P2U · 1

α1x

∑

s′∈{0,1}k−1◦1x

αs′
∣
∣ψs′

〉
∣
∣
∣

︸ ︷︷ ︸

(∗)

.
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We claim (refer to Claim 1 in the below) that the absolute value (∗) in the above
can be bounded by 2ε. Then
∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

≤ (α2
0x + α2

1x)(m2ε2 + 2(k − 1)ε) + 2α0xα1x · 2ε

≤ (α2
0x + α2

1x)(m2ε2 + 2(k − 1)ε) + (α2
0x + α2

1x) · 2ε

= α2
x(m2ε2 + 2kε).

The induction step is thus completed in both cases.
We finish the proof the inequality (11), and in turn the whole lemma.

We are left to prove the following claim, whose proof is referred to the full
version of this paper [35].

Claim 1. The absolute value (∗) is less than 2ε.

3.4 Extension

By slightly adapting its proof, we can extend Lemma 2 so that it holds w.r.t. more
general inconsistent predicate pairs (and thus could be useful in cryptographic
applications). Specifically, we can prove Theorem 2. Now let us restate Theorem 2
in a more formal way.

Suppose that (P1, P2) is an inconsistent pattern-predicate pair such that
the predicate P2 is of the most general form as described by the Eq. (5). The
predicate P1 is restricted to be such that the verification of whether an m-bit
string satisfies it only needs to examine the bits at some fixed positions of the
string (regardless of the witness provided). Formally, let T1 be the fixed subset
that prescribes which bits are to examine for the verification of P1, and l = |T1|.
Then whether a string str ∈ {0, 1}m satisfies the predicate P1 actually only
depends on its substring str[T1]. The predicate P1 in turn induces a predicate
P1[T1] on the set {0, 1}l which consists of strings obtained by projecting strings in
P1 on positions prescribed by the subset T1. Specifically, P1 = (val(·), T (·), s(·)),
where T (·) ≡ T1 and |s(·)| ≡ l. Following the equation (5), the projector P1 can
be written as

P1 =
∑

w

( |w〉 〈w| )D ⊗ (
Qs(w) |0〉 〈0| Q†

s(w)

)C⊗T1R⊗T1
(14)

=
∑

str∈P1[T1]

∑

w:s(w)=str

( |w〉 〈w| )D ⊗ (
Qstr |0〉 〈0| Q†

str

)C⊗T1R⊗T1
. (15)

Then Theorem 2 can be restated as follows formally.

Theorem 3. Suppose that the scheme (Q0, Q1) is computationally ε-binding.
Let P1, P2 be two inconsistent predicates on the set {0, 1}m, which induce
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two projectors of the form (15) and (5), respectively. Then for any quantum
state |ψ〉 of registers (C⊗m,R⊗m,D,Z), and any efficiently realizable unitary
transformation U that does not touch the commitment registers C⊗m, we have
‖P2UP1 |ψ〉‖2 ≤ m2ε2 + 3mε.

Due to the space limitation, an informal discussion on why such an extension
as described in Theorem 2 (or formally Theorem 3) is possible, as well as the
proof of Theorem 3 is referred to the full version of this paper [35].

4 Application: Quantum Zero-Knowledge Argument

In this section, we give an application of the quantum computationally predicate-
binding string commitment scheme as shown in the proceeding section. Specif-
ically, we show that Blum’s protocol for the NP-complete language Hamilto-
nian Cycle [5] with a generic quantum computationally-binding bit commit-
ment scheme plugged in gives rise to a quantum zero-knowledge argument sys-
tem. While its quantum (perfect or statistical) zero-knowledge property can
be obtained by a straightforward application of Watrous’s quantum rewinding
technique22 [30,32,33,36], its quantum computational soundness is established
by Lemma 3 as stated below. Combing them we arrive at Theorem 1.

Lemma 3. Blum’s protocol for the language Hamiltonian Cycle with a generic
quantum computationally-binding bit commitment scheme (Q0, Q1) plugged in
is sound against any quantum provers who are polynomial-time bounded, with
soundness error 1/2 + negl(·).
Proof. This can be proved by instantiating Theorem 3 with proper predicates
induced by Blum’s protocol. Detail follows.

Suppose that the binding error of the scheme (Q0, Q1) is ε(·), which is a
negligible function. We inherit notations as introduced in Subsect. 2.3. Following
Subsect, 2.2, we can model a generic attack of the prover of Blum’s protocol
in the following way. The combined (quantum) system of the (cheating) prover
and the (honest) verifier is given by (P,D,C⊗n2

,R⊗n2
), where the n2 copies of

the register pair (C,R) are used for (in total n2) quantum bit commitments; the
register D will hold the classical information of the prover’s response (i.e. the
permutation π when the challenge b = 0 or the location of a Hamiltonian cycle H
when b = 1); the register P is the prover’s (private) workspace. Suppose that the
whole system is initialized in the state |ψ〉. The prover sends the quantum register
C⊗n2

to the verifier as its first message. Then depending on the challenge b, the
prover will perform some polynomial-time realizable unitary transformation Ub

22 We highlight that in the literature we cite, various quantum zero-knowledge proper-
ties are based on different hiding properties of (classical or quantum) commitments
(secure against quantum attacks) than the one considered in this work. However,
their proofs extend to our setting straightforwardly, especially the proof of quantum
zero-knowledge in [36].
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on the registers (P,D,R⊗n2
). After receiving the prover’s response, the verifier

will perform some binary measurement, which also depends on the challenge b
(as prescribed in the below), to decide to whether accept or not.

Formally, depending on the challenge b, the verifier’s accepting conditions
induce two pattern-predicates, which in turn induces two efficiently realizable
projectors/binary measurements as follows:

1. The projector corresponding to b = 0 is given by

P0 =
∑

π∈Sn

( |π〉 〈π| )D ⊗ (
Qπ(G) |0〉 〈0| Q†

π(G)

)C⊗n2
R⊗n2

=
∑

s∈{0,1}n2 :
∃π∈Sn,π(G)=s

∑

π∈Sn:π(G)=s

( |π〉 〈π| )D ⊗ (
Qs |0〉 〈0| Q†

s

)C⊗n2
R⊗n2

.

2. The projector corresponding to b = 1 is given by

P1 =
∑

H:n cycle

( |H〉 〈H| )D ⊗ (
Q1n |0〉 〈0| Q†

1n

)C⊗HR⊗H

,

where the projector Q1n |0〉 〈0| Q†
1n performs on the n copies of the register

pair (C,R) that are determined by the location of the Hamiltonian cycle H.

We highlight that here we implicitly assume that the verifier just performs a big
binary measurement (induced by either P0 or P1) to decide whether to accept
or not; it in particular does not measure the register D to extract any classical
information. It is easy to see that whether measuring the register D or not will
not change the verifier’s acceptance probability. But by doing this, we are then
allowed to apply the quantum rewinding lemma (Lemma 1).

Now we are ready to argue the quantum computational soundness of Blum’s
protocol. Suppose for contradiction that there exists a efficiently realizable cheat-
ing prover given by (|ψ〉 , U0, U1) as aforementioned who can break the quantum
computational soundness. Namely,

1
2

∑

b∈{0,1}
‖PbUb |ψ〉‖2 >

1
2

+ n−c,

where c is some constant. Then applying the quantum rewinding lemma (Lemma
1), it follows that ∥

∥
∥P1U1U

†
0P0U0 |ψ〉

∥
∥
∥ > n−c. (16)
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On the other hand, we invoke Theorem 3 by doing the replacements as sum-
marized in the following table:

Theorem 3 Blum’s protocol
m n2

Registers (C⊗m,R⊗m) Registers (C⊗m,R⊗m)
Register D Register D
Register Z Register P

Projector P1 Projector P0

Projector P2 Projector P1

Quantum state |ψ〉 Quantum state U0 |ψ〉
Unitary transformation U Unitary transformation U1U

†
0

In case that the input graph G is not Hamiltonian, the two predicates P0 and P1

are inconsistent. Applying Theorem 3 will yield an upper bound n4ε2 + 3n2ε of
the squared norm

∥
∥P1U1U

†
0P0U0 |ψ〉 ∥

∥2, which is negligible. But this contradicts
with the inequality (16).

We finish the proof of the lemma.

On Compositions. In this section, we only consider the stand-alone Blum’s
protocol, whose soundness error is not tolerable in practice. It is not hard to see
that if we compose it in sequence, it gives rise to a quantum perfect or statistical
zero-knowledge arguments for NP with negligible soundness error (but at the
cost of a significant increase of the round complexity). We may also consider
composing Blum’s atomic protocol in parallel, which we believe can reduce the
soundness error to be negligible23, too However, we do not known whether the
parallelization preserves the quantum zero-knowledge property. Actually, the
same problem is notorious hard w.r.t. classical zero-knowledge secure against
quantum attacks [9,22].

5 Conclusion

In this work, we show that the parallel composition of a generic quantum
computationally-binding bit commitment scheme gives rise to a quantum string
commitment scheme that is computationally predicate-binding, which is non-
trivial and turns out to be useful in constructing quantum zero-knowledge argu-
ments for NP languages. The main technical part of this work lies in establishing
this quantum computational predicate-binding property.
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sions on the strictness of the quantum binding property and the possibility of basing

23 This can be done by combining the predicate-binding of quantum commitments
with a different quantum rewinding lemma (say the one used in [30] to cope with
Σ-protocol) than ours (i.e. Lemma 1).
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