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Abstract. A new interpretation of linear cryptanalysis is proposed. This
‘geometric approach’ unifies all common variants of linear cryptanalysis,
reveals links between various properties, and suggests additional gener-
alizations. For example, new insights into invariants corresponding to
non-real eigenvalues of correlation matrices and a generalization of the
link between zero-correlation and integral attacks are obtained. Geomet-
ric intuition leads to a fixed-key motivation for the piling-up principle,
which is illustrated by explaining and generalizing previous results relat-
ing invariants and linear approximations. Rank-one approximations are
proposed to analyze cell-oriented ciphers, and used to resolve an open
problem posed by Beierle, Canteaut and Leander at FSE 2019. In partic-
ular, it is shown how such approximations can be analyzed automatically
using Riemannian optimization.
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1 Introduction

At EUROCRYPT 1993, Matsui [31] introduced linear cryptanalysis as a new
known-plaintext attack on the block cipher DES. Linear cryptanalysis is based
on probabilistic linear relations or linear approximations, a concept introduced
by Tardy-Corfdir and Gilbert [36].

The success of Matsui’s attack led to the development of a myriad of exten-
sions and variants of linear approximations, and to more advanced techniques
for their analysis [16,32]. Despite significant advances, many questions related
to linear cryptanalysis and its theoretical foundations remain unresolved.

Kaliski and Robshaw [25] suggested using multiple linear approximations. Her-
melin, Cho and Nyberg [23] proposed the related multidimensional linear attack.
Both extensions are widely used. Generalizations of linear cryptanalysis to groups
other than F

n
2 were proposed by Granboulan, Levieil and Piret [20] and Baignères,

Stern and Vaudenay [3]. The use of nonlinear approximations is another natural
extension, and has been attempted byKnudsen and Robshaw [26], Harpes,Kramer
and Massey [21] with I/O sums, Harpes and Massey [22] with partitioning attacks
and recently by Beierle, Canteaut and Leander [4].
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All of the above techniques rely on heuristic methods to glue together sev-
eral approximations over multiple rounds of a cipher. These methods will be
collectively referred to as the piling-up principle. This principle has tradition-
ally been justified using independence or Markov chain assumptions [2,31,42],
which can be related to earlier work on Markov ciphers in the context of dif-
ferential cryptanalysis [28]. However, such assumptions are hard to reconcile
with the key-dependence of approximations and the increased importance of
cryptographic permutations. In fact, key-dependence is one of the fundamen-
tal difficulties of nonlinear cryptanalysis. Alternatively, the correlation matrix
framework of Daemen et al. [16] is more suitable for the fixed-key setting. It
motivates the piling-up principle using the dominant trail hypothesis. Beierle
et al. [4] extend this approach by applying linear cryptanalysis to a nonlinearly
transformed variant of the cipher.

In a different direction, Rijmen and Bogdanov [13] introduced zero-
correlation linear cryptanalysis to exploit unbiased linear approximations. The
construction of zero-correlation approximations relies on the miss-in-the-middle
technique as opposed to the piling-up principle. At ASIACRYPT 2012, Bog-
danov et al. [12] established a link between multidimensional zero-correlation
approximations and integral distinguishers [27].

Finally, several lightweight block ciphers have been found vulnerable to weak-
key attacks based on invariant subspaces [30] and nonlinear invariants [39]. These
attacks have led to renewed interest in linear cryptanalysis and its generaliza-
tions. Abdelraheem et al. [1] found links between invariant subspaces and linear
cryptanalysis. Moreover, nonlinear invariants provide one of the most compelling
examples of nonlinearity in cryptanalysis, with applications including the analy-
sis of SCREAM, iSCREAM, Midori-64 and MANTIS [5,39]. At ASIACRYPT 2018,
it was shown that invariant subspaces and nonlinear invariants can be described
as eigenvectors of correlation matrices [5]. Furthermore, one of the invariants
discovered in [5] corresponds to a perfect linear approximation. These results
established a strong link between nonlinear invariants and linear cryptanalysis,
but a true statistical generalization of the nonlinear invariant attack was left
open. Lastly, Beierle et al. [4] extended the links discovered by Abdelraheem
et al. to some classes of nonlinear invariants.

Contribution. A conceptually new way of thinking about linear cryptanalysis
is introduced. It provides an alternative viewpoint for the foundations of lin-
ear cryptanalysis and has a number of concrete benefits. Firstly, it results in a
systematized and unified description of the above-mentioned variants of linear
cryptanalysis. Secondly, it leads to generalizations of the connections between
these attacks, such as the link between integral and zero-correlation cryptanal-
ysis and the links between invariants and linear approximations. Some of these
results are illustrated in Table 1, and are discussed in more detail below. Thirdly,
it suggests a general form of the piling-up principle. Finally, to illustrate the rel-
evance for the working cryptanalyst, the approach is used to solve a problem
posed by Beierle et al. [4].

Section 3 introduces a correspondence between cryptanalytic properties and
vector spaces of complex-valued functions on the domain of a primitive. This
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Table 1. Approximations for a function F from the geometric viewpoint. Here, U and
V are vector spaces (of dimension d) of functions. The notation follows Sects. 3 to 5.

Zero-correlation Perfect General

CFU ⊥ V CFU ⊆ V 〈V, U〉F

d = 1

Linear zero-
correlation [13]
Nonlinear zero-
correlation (Ex. 4.3)

Invariant subspaces [30]
Nonlinear invariants [39]
Eigenvectors of CF [5]

Linear cryptanalysis [31]
Abelian groups [3]
I/O sums [21]
Beierle et al. [4]
Rank-one (Section 6)

d ≥ 1

Multidimensional zero-
correlation [12]

Integral attacks [27]
General invariants
(Def. 4.3, Ex. 4.2)

Multiple linear [9,25]
Multidim. linear [23]
Partitioning [22]
Projection, χ2 [2,41,42]

Thm. 4.2
Sect. 5.3

results in a uniform description of the properties (sets, linear and nonlinear
Boolean functions, . . . ) that are used in different variants of linear cryptanaly-
sis. The correspondence generalizes the idea introduced in [5] that invariant sub-
spaces and nonlinear invariants can be represented by complex vectors, which
led to their characterization as eigenvectors of correlation matrices.

Definition 4.1 characterizes an approximation of a cipher as a pair of vector
spaces (U, V ), corresponding to input and output properties as sketched above.
This results in a systematization of many variants of linear cryptanalysis, as
summarized in Table 1. It will be shown that the type and quality of approxima-
tions is related to the geometric properties of the spaces U and V . Section 4.1
illustrates how this results in new insight into block cipher invariants and gives
a realistic example of invariants related to non-real eigenvalues of correlation
matrices, a problem that was left open at ASIACRYPT 2018 [5]. Theorem 4.2
generalizes the links between zero-correlation and integral attacks discovered by
Bogdanov et al. [12]. For general approximations, principal correlations are intro-
duced as a natural extension of the correlation of a linear approximation and it
is shown how they relate to the complexity of optimal distinguishers discussed
by Baignères, Junod and Vaudenay [2].

A general piling-up principle is given in Theorem 5.1. Its motivation is
the result of geometric intuition. This avoids independence and Markov chain
assumptions and simplifies working with fixed keys. Furthermore, the result
evades the issues that are encountered when the dominant-trail approach of
Daemen et al. is extended to the nonlinear case. Theorem 5.1 allows for much
greater flexibility than previous formulations of the piling-up principle. In par-
ticular, it becomes possible to build trails that combine diverse cryptanalytic
properties. This is illustrated in Sect. 5.3 by strengthening the links between
linear approximations and invariants, extending previous work by Abdelraheem
et al. [1] and Beierle et al. [4].
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Finally, Sect. 6 introduces rank-one approximations to analyze cell-oriented
ciphers. A tool to find optimal rank-one trails is introduced, and its application
to searching for invariants is discussed. Perhaps surprisingly, the tool is based
on numerical optimization on a Riemannian manifold. This is enabled by the
generality of Sects. 3 to 5, which relaxes the search space by introducing many
new types of approximations. The tool is provided as supplementary material.
Rank-one approximations and the aforementioned tool are used in Sect. 7.3 to
resolve a problem introduced by Beierle et al. [4], who describe it as “a major
open problem”. It is representative of other concrete problems, and its solution
relies on the general techniques that are introduced in Sects. 3 to 5.

2 Functions on Abelian Groups

The goal of this section is to introduce several concepts that will be used to
develop a general theory of linear cryptanalysis in Sects. 3 to 5. These concepts
provide the setting for the proposed geometric approach. It is assumed that
the reader is familiar with finite Abelian groups and linear algebra in finite-
dimensional inner product spaces.

It will be shown in Sect. 3 that many cryptanalytic properties can be
described by complex-valued functions on the domain of a primitive. Section 2.1
discusses preliminaries related to the set of such functions. Section 2.2 introduces
the Fourier transformation on finite Abelian groups. This will be an important
tool to simplify the effect of constant (including key) additions. Finally, Sect. 2.3
discusses the geometry of subspaces of an inner product space.

2.1 Inner Product Space of Functions

Let G be a finite Abelian group, for example the domain of a block cipher. In fact,
all of the properties in this section are valid for any set G. However, the results
in Sect. 2.2 will require the assumption that G is a finite Abelian group. The
C-vector space of all functions from G to C, with the usual pointwise addition
and scalar multiplication, will be denoted by CG. The standard inner product
between two functions f, g ∈ CG is defined by 〈f, g〉 =

∑
x∈G f(x)g(x), where

f(x) denotes the complex-conjugate of f(x). Hence, the vector space CG is a
finite-dimensional inner product space. One also has a norm ‖f‖2 =

√〈f, f〉,
which carries the geometric interpretation of length. The modulus of the inner
product between two normalized vectors can be interpreted as the cosine of
the smallest angle enclosed by them – although for non-real vectors, several
definitions of angles are plausible. The theory developed in Sects. 4 and 5 will
draw on these geometric concepts for intuition.

The functions δx, which are equal to one at x ∈ G and zero everywhere else,
clearly form an orthonormal basis for CG. This basis will be referred to as the stan-
dard basis. It follows that CG is isomorphic to C

|G| as an inner product space.
Recall that the tensor product of C-vector spaces V1, . . . , Vn is another C-

vector space V1 ⊗ · · · ⊗ Vn of dimension
∏n

i=1 dim Vi together with a multilinear
map ⊗ :

∏n
i=1 Vi → ⊗n

i=1 Vi, which has the universal property that it uniquely
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linearizes arbitrary multilinear maps. Specifically, for any T :
∏n

i=1 Vi → W lin-
ear in each variable (multilinear), there exists a unique linear map L :

⊗n
i=1 Vi →

W such that T (v1, . . . , vn) = L(v1 ⊗ · · · ⊗ vn).
For the purposes of this paper, readers who are not familiar with tensor

products may take the following characterization as a definition. Let G = A⊕B
be a direct sum of Abelian groups A and B. That is, the group G consists of
all pairs (a, b) with a ∈ A and b ∈ B. The tensor product of CA and CB can
then be characterized by CA ⊗ CB ∼= CG. Indeed, the linear map defined by
δ(a,b) 
→ δa ⊗δb for all a ∈ A and b ∈ B is an isomorphism. In this paper, CG and
CA⊗CB will always be identified through this isomorphism. Hence, for f ∈ CA
and g ∈ CB, it can be said that f ⊗ g ∈ CG with (f ⊗ g)(a, b) = f(a) g(b).

A rank-one vector v ∈ ⊗n
i=1 Vi is a vector of the form v = v1⊗· · ·⊗vn. Given

bases for V1, . . . , Vn, the set of all their tensor products is a basis of rank-one
vectors for

⊗n
i=1 Vi. More generally, for any vector v there exists an integer r ≥ 0

such that v =
∑r

i=1 λi

⊗n
j=1 vi,j , for some vectors vi,j ∈ Vj and scalars λi ∈ C.

The smallest r for which such a decomposition exists is called the tensor rank
of v.

2.2 Fourier Analysis

Given a function f ∈ CG and a constant t ∈ G, one can define a new function
by x 
→ f(x+ t). The effect of translations on the coordinates of functions in the
standard basis of CG is inconvenient: the basis vectors are shuffled around by
the permutation δx 
→ δx+t, which corresponds to multiplication by a Toeplitz
matrix. It would be more convenient if the effect of translation would be a simple
scaling of the coordinates, i.e. multiplication by a diagonal matrix. This can be
achieved by working with respect to a different basis.

To achieve the goal of diagonalization, the new basis vectors should be eigen-
vectors of the set of translation operations. This is achieved for any homomor-
phism χ : G → C

× from G to the multiplicative group of complex numbers
C

× = C \ {0}, since χ(x + t) = χ(t)χ(x) for any x, t ∈ G. This leads to the
following definition.

Definition 2.1 (Group characters [37]). Let G be a finite Abelian group. A
(complex) character of G is a group homomorphism G → C

×. The (Pontryagin)
dual of G is the group Ĝ of all characters of G with respect to the pointwise
product.

It is not hard to see that Ĝ is indeed an Abelian group. For example, the
inverse of χ ∈ Ĝ is the character x 
→ χ(−x). That is, χ(−x) = χ(x).

Example 2.1. The dual of the additive group F2 is F̂2 = {x 
→ 1, x 
→ (−1)x}.
Indeed, these are the only two group homomorphisms F2 → C

×. �
The functions in the dual group Ĝ form a basis for CG that behaves well

with respect to translation. Further properties of the dual group are given in
Theorem 2.1 below. In particular, property (2) shows that the basis of characters
is orthogonal.
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Theorem 2.1 (Properties of dual groups [37]). If G is a finite Abelian
group with dual Ĝ, then

(1) The dual group Ĝ is isomorphic to G.
(2) For all χ, ψ ∈ Ĝ, it holds that 〈χ, ψ〉 = |G| δχ(ψ).
(3) If G = H1 ⊕ H2 with ⊕ the internal direct sum, then Ĝ = Ĥ1 ⊕ Ĥ2.

By Theorem 2.1 (1), Ĝ can be identified with G. In general, this identification
is not unique. However, there is a functorial isomorphism between the double
dual of G and G itself, which identifies g ∈ G with the evaluation map χ 
→ χ(g)
in the dual of Ĝ [37]. This result justifies the term ‘dual group’. In order to avoid
arbitrary choices, isomorphisms between Ĝ and G will be avoided throughout
this paper. This makes no difference in specific calculations, but it is theoretically
more elegant.

Example 2.2. Since the additive group F
n
2 is the direct sum of n copies of F2, it

follows from Theorem 2.1 (3) that the dual group is essentially the direct sum
of n copies of F̂2. Specifically, F̂

n
2 = {x 
→ ∏n

i=1(−1)uixi = (−1)u�x | u ∈ F
n
2}.

Note that identifying F̂
n
2 and F

n
2 requires choosing a basis for F

n
2 .

The Fourier transformation F is essentially a change of basis from the stan-
dard basis to the character basis. However, in order to avoid identifying Ĝ and
G, we shall define F as a transformation from CG to CĜ. With this definition,
the Fourier transformation maps a character χ ∈ Ĝ ⊂ CG directly to a multiple
of the standard basis vector δχ ∈ CĜ. Since group characters are orthogonal,
Definition 2.2 achieves the desired basis transformation.

Definition 2.2 (Fourier transformation [37]). Let f : G → C be a function.
The Fourier transformation of f is the function f̂ : Ĝ → C defined by

f̂(χ) = 〈χ, f〉 =
∑

x∈G

χ(x)f(x).

The Fourier transformation is the map F : CG → CĜ such that Ff = f̂ .

The transformation F is a vector space isomorphism. In fact, since CG and
CĜ are algebras with either the pointwise product or convolution, F is an isomor-
phism of algebras which swaps the pointwise product and convolution. This is by
construction, since the set of convolution operators is generated by translations.

The vector space CĜ is also an inner product space. In fact, due to the
orthogonality of characters, the inner product between f1, f2 ∈ CG coin-
cides with the inner product of their Fourier transforms up to a constant
factor: 〈f̂1, f̂2〉 = |G| 〈f1, f2〉. In other words, F/

√|G| is a unitary map and
F−1 = F∗/|G| with F∗ the adjoint (conjugate transpose) of F.

To end this section, consider the case G = A⊕B. As mentioned above, one has
CG = CA ⊗ CB (technically up to isomorphism). By Theorem 2.1 (3), the dual
group satisfies Ĝ = Â ⊕ B̂. Hence, one also has CĜ = CÂ ⊗ CB̂. Consequently,
the Fourier transformation on CG is given by FA ⊗FB . Equivalently, the matrix
representation of F in the standard basis is the Kronecker product of the matrix
representations of FA and FB in the standard basis.
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2.3 Subspaces of CG and CĜ

Sections 3 and 4 will demonstrate that subspaces of CG and CĜ are often more
interesting for cryptanalysis than individual functions. For this reason, it will
be convenient to extend the inner product notation 〈·, ·〉 to subspaces of CG.
For subspaces U ⊆ CG and V ⊆ CG, define the linear map 〈V,U〉 : U → V by
〈V,U〉 = πV ιU , where ιU : U → CG is the inclusion map and πV : CG → V is
the orthogonal projection on V . A similar definition can be given for subspaces
of CĜ. Note that 〈V,U〉 = 〈U, V 〉∗ since projection and inclusion are adjoint.

Example 2.3. Let U and V be one-dimensional subspaces of CG spanned by
unit-norm vectors u and v respectively. By definition, ιU (λu) = λu and πV (x) =
v〈v, x〉. Consequently, 〈V,U〉 : U → V is the map λu 
→ 〈v, u〉λv. The matrix
representation of this map is thus simply the 1 × 1 matrix containing the inner
product 〈v, u〉.

The transformation 〈V,U〉 comes with a geometric interpretation, which will
be important in Sects. 4 and 5. Due to standard properties of orthogonal pro-
jection, 〈V,U〉 maps any u ∈ U to the nearest vector v ∈ V . In addition, no
other vector in V of the same length makes a smaller angle to u than v. This
suggests that 〈V,U〉 encodes all information about the ‘angles’ between U and
V . This can be made precise using the notion of principal angles between sub-
spaces, which is due to Jordan [24]. The characterization below follows Björck
and Golub [10].

Definition 2.3 (Principal angles). Let U and V be subspaces of an inner
product space over C of finite dimension and let d = min{dim U,dim V }. The
principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤ π/2 between U and V are recursively
defined by (for i = 1, 2, . . . , d)

cos θi =
〈ui, vi〉

‖ui‖2‖vi‖2 = max
u∈Ui\{0}
v∈Vi\{0}

|〈u, v〉|
‖u‖2‖v‖2 ,

where ui ∈ Ui and vi ∈ Vi are nonzero vectors for which the maximum
on the right is achieved with 〈ui, vi〉 a non-negative real number, Ui = U ∩
{u1, . . . , ui−1}⊥ and Vi = V ∩ {v1, . . . , vi−1}⊥.

The cosines of the principal angles are precisely the singular values of 〈V,U〉,
and the singular vectors are the directions along which these angles are to be
measured. This follows directly from the variational characterization of singular
values. Further details may be found in [10].

3 Cryptanalytic Properties

Many cryptanalytic techniques rely only on partial information about the inputs
and outputs of a primitive, such as membership of a set or the value taken
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by a Boolean function. Below, the structure of the inputs (or outputs) will be
informally referred to as cryptanalytic input (or output) properties.

One of the obstacles to a more general approach to linear cryptanalysis and
its variants, is the fact that different cryptanalytic properties are often described
by disparate mathematical objects (such as sets, linear or nonlinear functions,
...). In a few cases, overcoming this difficulty has resulted in new or generalized
results. Examples include the projection function approach of Wagner [42] and
Baignères et al. [2], which enables unifying the data-complexity analysis of sev-
eral attacks, and the observation that both invariant subspaces and nonlinear
invariants correspond to eigenvectors of correlation matrices [5].

Section 3.1 introduces a general correspondence between cryptanalytic prop-
erties and subspaces of the inner product space CG. It works for all properties
relevant to linear cryptanalysis and its variants, and in particular generalizes
both examples just mentioned above. Section 3.2 describes how properties change
when a function is applied to the state. This leads to a more general perspective
on correlation matrices.

3.1 Correspondence Between Properties and Subspaces

The purpose of this section is to show that the cryptanalytic properties used in
linear cryptanalysis and its variants are naturally described by functions G →
C, i.e. functions in the inner product space CG from Sect. 2.1. This will be
motivated from two viewpoints, which are dual to one another. Specifically, the
following two perspectives will be advanced:

(i) Cryptanalytic properties correspond to functions in CG.
(ii) Cryptanalytic properties corrsepond to linear functions CG → C.

From viewpoint (i), a cryptanalytic property characterizes the state of a collec-
tion of inputs or outputs. For instance, probability distributions on G can be
represented by functions G → [0, 1] ⊂ C. Similarly, any subset S of G has an
indicator function 1S ∈ CG. It will be shown below that the general idea of asso-
ciating not just positive numbers, but also arbitrary complex-valued weights, to
the elements of G is necessary to describe other types of properties.

According to (ii), properties describe a measurement or observation of the
state of a collection of inputs or outputs. Importantly, only linear functions
of the state vector are considered in the present framework. The set of linear
functions CG → C is itself a vector space CG∗, i.e. the dual vector space of
CG. However, the explicit choice of the inner product in Sect. 2.1 identifies CG
and CG∗. Indeed, f ∈ CG corresponds to the function g 
→ 〈f, g〉 in CG∗. This
correspondence will be used throughout this paper, and both (i) and (ii) will
be represened by elements of CG. For example, for a subset S, the indicator
function 1S is dual to the function f 
→ 〈1S , f〉 =

∑
x∈S f(x).

More generally, consider a subspace V of CG. Any function in V can then
be interpreted according to either (i) or (ii). The assumption that the property
must correspond to a subspace of CG implies that it is possible to make arbitrary
linear combinations of these functions.
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Representing properties as subspaces of CG comes with a geometric interpre-
tation. Specifically, the inner product yields the observed outcome when a pair
of properties with interpretations (i) and (ii) are combined. This aspect will be
discussed in detail in Sect. 4. The remainder of this section is intended as a dic-
tionary between conventional cryptanalytic properties and their corresponding
subspaces.

A short summary for G = F
n
2 is given in Table 2. The table includes both

the subspaces of CG and their Fourier transforms, which are subspaces of CĜ.
Importantly, there are other useful subspaces which do not correspond to any of
the constructions discussed below. One example will be discussed in Sect. 6.

Table 2. Commonly used cryptanalytic properties and their corresponding subspaces.

The characters of F
n
2 are denoted by χu(x) = (−1)u

�x, where u ∈ F
n
2 .

Probability Distributions. Several properties correspond to subspaces
spanned by one or more probability distributions. Subspaces and sets are one
example, since any set corresponds to the uniform distribution on that set (equiv-
alently, its indicator function). Affine spaces are an important example and are
used in the invariant subspace attack of Leander et al. [30].

Integral and division properties [17,38] are also examples1, but their analysis
is not the main focus of this paper. In this case, the corresponding vector space
could be spanned by the indicator function of a set which is balanced on certain
1 The present framework only describes zero-sum properties.
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bits. However, the intermediate and output properties typically correspond to
higher-dimensional vector spaces because they express several possible sets in
which the state could be contained. Equivalently, following (ii), one observes the
marginal (but not necessarily joint) distribution of several state bits.

Not many variants of linear cryptanalysis are directly based on non-uniform
probability distributions. The statistical saturation attack of Collard and Stan-
daert [15], in its original form, may be considered an example. In this attack,
one estimates the key-dependent probability distribution of the state of a block
cipher when some of the plaintext bits are constant and the others are uni-
form random. However, depending on how the estimated distribution is used, it
may be more appropriate to approach this attack using the projection functions
discussed below.

Projection Functions. Let F : G → H be a function between finite Abelian
groups G and H, with H typically much smaller than G. In fact, H need not be a
group for the construction below to work, but this will be assumed for simplicity.
Such functions play an important role in Wagner’s framework of ‘commutative
diagram cryptanalysis’, where they are called projections [42]. Baignères et al. [2]
analyze the statistical properties of distinguishers based on balanced projections,
such as χ2-attacks [41], partitioning cryptanalysis [22] and multidimensional
linear attacks [23].

From the viewpoint of (ii), a projection property gives access to the evalu-
ation of F on the state. Equivalently, the property allows observing any linear
combination of the functions δh ◦ F, where {δh | h ∈ H} is the standard basis of
CH. More generally, any function on H can be ‘pulled back’ to G along the pro-
jection function F and the projection property corresponds to the vector space
of all such functions. This leads to Definition 3.1 below.

Definition 3.1 (Pullback). Let F : G → H be a function. The pullback opera-
tor along F is the linear operator T F∗ : CH → CG defined by f 
→ f ◦F. The pull-
back space of CH along F is the image of T F∗: im T F∗ = {f ◦F | f ∈ CH} ⊆ CG.
Similarly, the Fourier transformation F(im T F∗) of im T F∗ will be called the pull-
back of CH to CĜ along F.

Let V be the vector space corresponding to the projection property defined
by F, i.e. the pullback of CH along F. It was already mentioned above that
{δh ◦ F | h ∈ H} is a basis for V . However, it is often more convenient to use
the basis of functions χ ◦ F where χ ∈ Ĥ. This choice behaves particularly well
for homomorphisms F : G → H when working with the Fourier transformation
of V , since χ̂ ◦ F = δχ◦F in that case.

The following example describes the vector space corresponding to a Boolean
projection function in more detail. Such properties are closely related to classi-
cal linear cryptanalysis, and more generally the I/O-sums of Harpes et al. [21]
and the nonlinear approximations considered by Beierle et al. [4]. However, as
discussed below, there is subtle difference.
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Example 3.1. Let F : F
n
2 → F2 be a Boolean function. Denote the characters

of F
n
2 by χu(x) = (−1)u�x. The pullback space V of CF2 along F is equal to

V = span{δ0◦F, δ1◦F} = span{1, (−1)F}, with 1 = χ0 the trivial character of F
n
2 .

Hence, the Fourier transformation of V is given by F(V ) = span{δ1,F[(−1)F]}.
The function F[(−1)F] is often called the Walsh-Hadamard transform of F. If F
is a linear function, then F(x) = u�x for some u ∈ F

n
2 . Hence, (−1)F = χu and

consequently F(V ) = span{δ1, δχu
}.

Example 3.1 suggests that ordinary linear properties correspond to a vec-
tor space V = span{δ1, δχ}, where χ is a character of the additive group F

n
2 .

Table 2 instead lists the one-dimensional space span{δχ} ⊂ V . For the analysis
of permutations, there is no significant difference since δ1 corresponds to a trivial
invariant for any permutation (its domain). However, for general functions, the
vector space V represents a strictly stronger property.

In general, many commonly used cryptographic properties correspond to sub-
spaces of pullback spaces. This difference is not easily expressed in the formalism
of Baignères et al. [2] and Wagner [42]. The next paragraph discusses several
important examples.

Subspaces of Pullbacks. Example 3.1 generalizes to other finite Abelian
groups. Let F : G → H be a homomorphism. Since χ ◦ F ∈ Ĝ for any char-
acter χ of H, the pullback V of CH to CĜ is spanned by the functions δχ◦F
with χ ∈ Ĥ. Hence, dim V = |H|. However, the dimension could be reduced by
one for permutations. This is essentially the generalization of linear cryptanalysis
proposed by Granboulan et al. [20, §3]. However, it is also reasonable to consider
only one of the functions δχ◦F. Since this results in one-dimensional subspaces
and is closer to the spirit of ordinary linear cryptanalysis. This is essentially the
generalization of linear cryptanalysis proposed by Baignères et al. [3]. The app-
roach of Baignères et al. and its multidimensional generalization were recently
used in the cryptanalysis of FF3.1 [8].

The difference between multiple and multidimensional linear cryptanalysis is
of the same nature. For multiple linear properties, one uses a subspace spanned
by one or more standard basis vectors δχ. In multidimensional linear crypt-
analysis, the considered characters form a subgroup of Ĝ and consequently the
subspace is the pullback of a homomorphism to some subgroup of G.

3.2 Transformations on CG and CĜ

This section investigates how properties, i.e. subspaces of CG, change when a
function F : G → H is applied to the state of the primitive under analysis.

Definition 3.2 (Transition matrix). Let F : G → H be a function. Define
T F : CG → CH as the unique linear operator defined by δx 
→ δF(x) for all x ∈ G.
The transition matrix of F is the coordinate representation of T F with respect to
the standard bases of CG and CH.
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Definition 3.2 only specifies the action of T F on the standard basis of CG, but
this uniquely defines T F on all of CG. The choice of the notations T F∗ and T F for
pullback (Definition 3.1) and transition (Definition 3.2) operators respectively
is not arbitrary: these operators are indeed represented by conjugate-transposed
matrices. In fact, T F could also be called the pushforward operator.

Note that the notation T F will be overloaded, referring to both the operator
and its standard matrix representation. The coordinates of the matrix T F will
be indexed by elements of G and H rather than by integers, since this avoids
choosing an arbitrary ordering of the standard basis. In particular,

T F
y,x = 〈δy, T Fδx〉 = 〈δy, δF(x)〉 = δy(F(x)).

An analog of Definition 3.2 for CĜ is given in Definition 3.3. It generalizes the
definition of correlation matrices given in [5] to arbitrary finite Abelian groups.
The term correlation matrix is due to Daemen et al. [16], who defined these
matrices in terms of their coordinates.

Definition 3.3 (Correlation matrix). Let F : G → H be a function between
finite Abelian groups G and H. Define CF : CĜ → CĤ as the Fourier transfor-
mation of T F. That is, CF = FH T F F−1

G , with FH and FG the Fourier transfor-
mation on CH and CG respectively. The correlation matrix of F is the coordinate
representation of CF with respect to the standard bases of CĜ and CĤ.

The notation CF will refer to both the linear operator and its standard matrix
representation. Contrary to [5,16], the coordinates will be indexed by elements
of Ĝ in order to avoid arbitrary choices. Since T F

y,x = δy(F(x)), the coordinates
are given by

CF
χ,ψ = 〈δχ, CFδψ〉 =

1
|G| 〈χ, T Fψ〉 =

1
|G|

∑

x∈G

χ(F(x))ψ(x).

For G = F
n
2 and H = F

m
2 , and after identifying these groups with their dual, the

expression above coincides with the original definition of correlation matrices
given by Daemen et al. [16]. The following two theorems list the main properties
of transition and correlation matrices that will be used throughout this paper.
The last two properties in Theorem 3.1 also apply to correlation matrices. For
(2), this follows from the fact that FG1⊕G2 is essentially the same as FG1 ⊗FG2 .

Theorem 3.1 (Properties of transition matrices). Let F : G → H be a
function. The transition matrix of T F of F has the following properties:

(1) If F is a bijection, then T F is a permutation matrix.
(2) If F = (F1, . . . ,Fn) with Fi : Gi → Hi, then T F =

⊗n
i=1 T Fi .

(3) If F = F2 ◦ F1, then T F = T F2T F1 .

Proof. The first two claims directly follow from T F
y,x = δy(F(x)). The third prop-

erty is an immediate consequence of Definition 3.2. ��
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Theorem 3.2 (Properties of correlation matrices). Let F : G → H be a
function between finite Abelian groups G and H. The correlation matrix CF of
F has the following properties:

(1) If F is a bijection, then CF is a unitary matrix.
(2) If F is a group homomorphism, then CF

χ,ψ = δχ◦F(ψ).
(3) If G = H and F(x) = x − t for some constant t ∈ G, then CF is a diagonal

matrix with CF
χ,χ = χ(t).

Proof. By Theorem 3.1 (1), if F is a permutation, then T F is a permutation
matrix and thus unitary. Furthermore, since |G| = |H|, both F∗

H/
√|G| and

FG/
√|G| are unitary matrices. Property (1) follows since the product of unitary

matrices is unitary and CF = FHT FF−1
G .

For (2), note that if F is a group homomorphism, then so is χ ◦ F : G → C
×.

Hence, by the orthogonality of group characters, CF
χ,ψ = δχ◦F(ψ). As discussed

in Sect. 2.2, property (3) holds by construction of the Fourier transformation.
Indeed, note that the action of F corresponds to a translation by t. ��

4 Approximations

An approximation of a function F : G → H is essentially a pair consisting of an
input and an output property. By the correspondence in Sect. 3, these proper-
ties can be represented by subspaces U and V . As discussed in Sect. 3, u ∈ U
represents a state and v ∈ V corresponds to a linear measurement function or
observation. The inner product 〈v, T Fu〉 gives the outcome of such an observa-
tion. This leads to Definition 4.1 below, where the approximation map represents
all such inner products without relying on the choice of a specific basis. Given
orthonormal bases u1, u2, . . . and v1, v2, . . . for U and V respectively, the coordi-
nates of the matrix representing the approximation map are given by the inner
products 〈vi, T

Fui〉.
Definition 4.1 (Approximation). Let G and H be finite Abelian groups. An
approximation of a function F : G → H is a pair (U, V ) of subspaces U ⊆ CĜ

and V ⊆ CĤ. The approximation map of (U, V ) is a linear transformation
〈V,U〉F : U → V defined by 〈V,U〉F = πV CF ιU , with ιU : U → CĜ the inclusion
map and πV : CĤ → V the orthogonal projection on V .

Definition 4.1 refers to subspaces of CĜ and CĤ. An equivalent definition
could be given for the subspaces F∗

G(U) ⊆ CG and F∗
H(V ) ⊆ CH, taking into

account that CF should be replaced by T F. The same remark applies to all
definitions in this section and Sect. 5.

Note that the notation 〈V,U〉F is intentionally similar to the ‘inner product
of subspaces’ notation 〈V,U〉 from Sect. 2.3. It will be shown in Sect. 4.1 that
the maps 〈V,U〉F and 〈V,CFU〉 are indeed closely related and encode the same
geometric information.
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Example 4.1. Consider a linear approximation for a function F : F
n
2 → F

m
2 . As

listed in Table 2, linear properties correspond to one-dimensional spaces U =
span{δχu

} and V = span{δχv
} with masks u ∈ F

n
2 and v ∈ F

m
2 . As in Example

2.3, one has the inclusion map ιU (x) = x and the orthogonal projection πV (x) =
〈δχv

, x〉δχv
. Hence, 〈V,U〉F is given by λδχu


→ 〈δχv
, CFδχu

〉λδχv
= CF

χv,χu
λδχv

.
The same result holds for any pair of finite Abelian groups.

The main purpose of this section is to show that Definition 4.1 indeed encom-
passes all variants of linear cryptanalysis mentioned in Sect. 1, and leads to new
insights for several of them.

As illustrated in Fig. 1, two geometrically intuitive edge cases of Definition
4.1 can be identified: parallel or orthogonal spaces V and CFU . Approximations
in the former category will be called ‘perfect’. This includes the important case
of invariants. The latter case corresponds to a broad generalization of zero-
correlation linear approximations. In the remaining cases, the vector spaces V
and CFU are neither completely parallel nor fully orthogonal. All three cases are
discussed in detail in Sects. 4.1 to 4.3.

VCFU

(a) Perfect.

V
CFU

(b) Zero-correlation.

V

CFU

(c) General case.

Fig. 1. Geometric interpretation of Definition 4.1.

The geometric intuitions illustrated in Fig. 1 can be quantified using the
concept of principal angles that was introduced in Sect. 2.3. This leads to the
following definition of ‘principal correlations’. For linear approximations, the
unique principal correlation coincides with the ordinary absolute correlation.
Further aspects of principal correlations, such as their relation to the ‘capacity’
in multiple linear cryptanalysis, are discussed in Sect. 4.3.

Definition 4.2 (Principal correlations). Let (U, V ) be an approximation
for a function F : G → H between finite Abelian groups G and H. Let d =
min{dim U,dim V }. The principal correlations of the approximation (U, V ) are
the d largest singular values of the approximation map 〈V,U〉F.

The geometric interpretation of the principal correlations is due to the fol-
lowing result, which relates them to the principal angles between the subspaces
CFU and V .
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Theorem 4.1. Let (U, V ) be an approximation for a function F : G → H
between finite Abelian groups G and H. Let d = min{dim U,dim V }. If F is injec-
tive, then the principal correlations of the approximation (U, V ) are equal to the
cosines of the d smallest principal angles between the subspaces CFU and V .

Proof. By Theorem 3.2 (1), CF is a unitary matrix if F is a permutation. More
generally, [CF]∗CF is a nonzero multiple of the identity map if F is an injection.
That is, CF preserves the inner product up to multiplication by a constant. To
prove this, show that the result holds for T F (by direct calculation) and then
apply the same argument as in the proof of Theorem 3.2 (1).

If CF preserves the inner product up to multiplication by a nonzero constant,
then ui+1 ⊥ ui implies CFui+1 ⊥ CFui. Hence, the result follows from the fact
that the variational characterization of singular values is then equivalent to the
definition of principal angles (Definition 2.3). ��

4.1 Invariants and Perfect Approximations

If the subspaces U and V are aligned as in Fig. 1a, the approximation (U, V ) will
be called perfect. More formally, (U, V ) is perfect if CFU ⊆ V . Alternatively, an
approximation over a permutation F is perfect if its principal correlations are
equal to one.

Integral and division properties are of this type, but these traditionally ‘alge-
braic’ properties are not the main focus of this work. However, the case U = V is
of particular interest since it leads to a class of approximations that will be called
invariants, and which includes the invariant subspaces of Leander et al. [30] and
the nonlinear invariants of Todo et al. [39].

Definition 4.3 (Invariant). Let F : G → G be a function. An approximation
(V, V ) such that CFV ⊆ V will be called an invariant for F.

If F is a permutation, all principal correlations of an invariant (V, V ) are equal
to one. For general functions, this is not necessarily true. For example, if two
distinct input distributions result in the same output distribution, it is natural
to consider the difference of their probability mass functions as invariant.

Since transition matrices and correlation matrices of permutations have
finite multiplicative order, they are diagonalizable. Consequently, by a stan-
dard linear algebra result for algebraically closed fields, any invariant V splits
into one-dimensional invariant subspaces spanned by the eigenvectors of CF.
Hence, Definition 4.3 reduces to the characterization of invariants introduced in
[5, Definition 2]

Despite the fact that the eigenvectors of CF determine all possible invari-
ants, the more general characterization of invariants in Definition 4.3 sometimes
leads to additional insight. This will be illustrated using the following exam-
ple, which involves eigenvectors whose corresponding eigenvalue is imaginary –
thereby addressing a problem left as future work by [5].
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Example 4.2. Consider the following 4-bit S-box, defined in cycle notation:

S = (0 7 b 3 d 5 9 6 8 2 1 e a f c 4).

Further details about this S-box, including a lookup table representation, are
given as supplementary material in the extended version [7]. From a cryptan-
alytic perspective, the properties of S are seemingly excellent: the linear and
differential properties are optimal, and it does not have any fixed points since it
is a cyclic permutation. The last property implies that all eigenspaces of CS are
one-dimensional, see for instance [5, §4.2]. An immediate consequence of this is
that S does not have any nontrivial invariant subspaces.

Denote the ring of integers modulo four by Z4 and let f : F
4
2 → Z4 be the

function defined by f({0, d, 8, a}) = 0, f({b, 9, 1, c}) = 2, f({7, 5, 2, f}) = 1 and
f({3, 6, e, 4}) = 3. By inspection of the cycle structure of S, one can see that
f(S(x)) = f(x) + 1 for all x ∈ F

4
2. This property is reminiscent of nonlinear

invariants, and in fact yields a nonlinear invariant for S when reduced mod-
ulo two. Nevertheless, the property is more powerful than a nonlinear invariant
since its defining function takes values in Z4 rather than F2. In fact, the use of
Z4-approximations has been previously suggested by Parker and Raddum [33].
Properties such as f are to nonlinear invariants as nonlinear invariants are to
invariant sets: just as a nonlinear invariant can be interpreted as a pair of sets
that are potentially swapped by S, f can be interpreted as a pair of nonlinear
invariants that are swapped by S.

To obtain a subspace V of CF̂
4
2 from f , the pullback construction from

Sect. 3.1 can be applied. Since Z4 is cyclic of order four, one can deduce from
Theorem 2.1 that Ẑ4 = {x 
→ ζkx

4 k ∈ Z4} with ζ4 a primitive fourth root of
unity such as

√−1. Hence, using the basis of functions χ̂ ◦ f where χ ∈ Ẑ4,
yields

V = span
{
ζ̂04 ,

̂
ζf
4 ,

̂
ζ2f
4 ,

̂
ζ3f
4

}

= span
{
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)�,

(0, ζ8, 0, 0, 0, 2ζ8, 0, ζ8, 0, 0, 0, ζ8, 0,−ζ8, 0, 0)�/
√

8,

(0, 0, 1, 0, 1, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0)�/2,

(0, ζ8, 0, 0, 0, 2ζ8, 0, ζ8, 0, 0, 0, ζ8, 0,−ζ8, 0, 0)�/
√

8
}
.

The choice of χ̂ ◦ f (up to a scalar multiple) as a basis is not arbitrary: since
χ(f(S(x))) = χ(1)χ(f(x)), it ensures that each basis vector is an eigenvector of
CS. Consequently, it is immediately clear that V is indeed an invariant. Note that
the first vector listed above is the trivial eigenvector with eigenvalue one. The
second and fourth vectors are complex-conjugate eigenvectors corresponding to
the conjugate eigenvalues ζ4 and ζ4. Finally, the third vector is an eigenvector
with eigenvalue ζ24 = −1. It corresponds to the nonlinear invariant obtained by
reduction modulo two that was mentioned above.

For the purpose of obtaining an interesting example, the S-box S was care-
fully chosen. In particular, by taking appropriate linear combinations of the two
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complex-conjugate eigenvectors above, one can see that V is spanned by four
real vectors v1, . . . , v4 such that v⊗16

1 , . . . , v⊗16
4 are all eigenvectors of CL, where

L is the linear layer of Midori-64. Furthermore, these vectors are invariant under
the round-constant and key-additions for 232 weak keys. In fact, v⊗16

3 is itself a
nonlinear invariant for the same number of weak keys, but it has been shown
that there exists a stronger four-dimensional invariant.

Moreover, there is a larger set of 296 weak keys for which v⊗16
1 and v⊗16

2

are still invariants for the whole cipher. This is due to the fact that Midori-
64 alternates round keys, and because CSv2 = −v4 and CSv4 = v2. However,
neither v2 nor v4 corresponds to a nonlinear invariant for S. One can think of
the invariant obtained here as a ‘remnant’ of the stronger – yet valid for fewer
keys – invariant described above. The supplementary material of the extended
version [7] contains additional details regarding the preceding claims. �

In general, a one-dimensional periodically repeating perfect approximation
for a function F must be an eigenvector of [CF]l with eigenvalue one for some
positive integer l. These eigenvectors are linear combinations of the eigenvectors
of CF with eigenvalues of order divisible by l.

4.2 Zero-Correlation Approximations

Zero-correlation linear approximations were introduced by Bogdanov and Rij-
men [13]. They correspond to linear approximations (span{δψ}, span{δχ}) such
that CF

χ,ψ = 0. That is, δχ is orthogonal to CFδψ. This corresponds to the geo-
metric situation sketched in Fig. 1b, motivating the following definition.

Definition 4.4 (Zero-correlation approximation). Let F : G → H be a
function. An approximation (U, V ) such that V ⊥ CFU will be called a zero-
correlation approximation for F. Equivalently, all principal correlations of a zero-
correlation approximation (U, V ) are zero.

Zero-correlation and perfect approximations are closely related, despite being
opposite extremes. In fact, this is clear from a geometrical point of view, see for
instance Figs. 1a and 1b.

Theorem 4.2. If (U, V ) is a zero-correlation approximation, then (U, V ⊥) is a
perfect approximation and conversely.

Proof. Since (U, V ) is a zero-correlation approximation, any v ∈ CFU is orthog-
onal to V . Hence, CFU ⊆ V ⊥. The proof of the converse result is analogous.

��
The statement and proof of Theorem 4.2 are deceptively simple, but the

result is powerful. Indeed, it generalizes the well-known correspondence between
multidimensional linear zero-correlation approximations and integral properties,
first noted by Bogdanov et al. at ASIACRYPT 2012 [12]2 and discussed futher
by Sun et al. [35].
2 For the case of multidimensional zero-correlation approximations with ‘coupled

masks’, apply Theorem 4.2 to the function x �→ (x,F(x)) to obtain their result.
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Definition 4.4 leads to a useful generalization of the miss-in-the-middle app-
roach that is commonly used to find zero-correlation linear approximations. Sup-
pose F = F2 ◦ F1. Let (U1, V1) and (U2, V2) be approximations such that

CF1U1 ⊆ V1 ⊥ V2 ⊇ [CF2 ]∗U2.

It then follows that (U1, U2) is a zero-correlation approximation for F2◦F1. Recall
from Theorem 3.2 (1) that if F2 is invertible, then [CF2 ]∗ = CF−1

2 .

Example 4.3. The key-recovery attacks on Midori-64 and MANTIS from ASI-
ACRYPT 2018 [5] are based on a one-dimensional nonlinear zero-correlation
approximation, and this property was obtained by connecting an ordinary inte-
gral property with a nonlinear invariant using the miss-in-the-middle approach
discussed above. For completeness, a fully worked out version of this approxi-
mation is provided as supplementary material in the extended version [7].

The zero-correlation approximation in Example 4.3 can still be explained by
mismatching activity patterns in the middle. The benefit of the geometric app-
roach here is mainly that it clarifies that the combination of integral properties
with invariants is a natural example of a more general principle, rather than just
a ‘trick’. However, in some cases, a more refined and possibly key-dependent
analysis is necessary to establish the orthogonality of the subspaces V1 and V2.
Such an example will be encountered in Sect. 7.3.

4.3 General Approximations

It follows from Example 4.1 that the unique principal correlation for an ordinary
linear approximation equals the absolute value of the (conventional) correlation
of the linear approximation. For a fixed advantage, the data-complexity of a
linear distinguisher is inversely proportional to the square of the correlation.

More generally, Baignères et al. [2] discuss the optimal data-complexity of
distinguishers for a permutation F : G1 → G2 based on balanced projections
P1 : G1 → H1 and P2 : G2 → H2. As discussed in Sect. 3.1, these projections
correspond to subspaces U = span{δx ◦ P1 | x ∈ H1} ⊆ CG1 and V = span{δx ◦
P2 | x ∈ H2} ⊆ CG2 by the pullback construction. The approximation map
〈V,U〉F can be represented by a matrix M with coordinates

My,x =
〈δy ◦ P2, T

F[δx ◦ P1]〉
‖δy ◦ P2‖2 ‖δx ◦ P1‖2

=

√
|G1|
|G2|

Pr [P1(z1) = x]
Pr [P2(z2) = y]

Pr [P2(F(z1)) = y |P1(z1) = x],

where z1 is uniform random on G1 and z2 is uniform random on G2. Since the
approximations considered by Baignères et al. are balanced, Pr [P1(z1) = x] =
|H1|/|G1| and Pr [P2(z2) = y] = |H2|/|G2|, so the prefactor simplifies to

√|H1|/√|H2|. Recall that the Frobenius norm ‖ · ‖F of a linear operator is the square
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root of the sum of its squared singular values. Equivalently, its square equals
the sum of all squared coordinates of an arbitrary matrix representation with
respect to an orthonormal basis. It follows that the Frobenius norm of 〈V,U〉F
is given by

‖〈U, V 〉F‖2F =
|H1|
|H2|

∑

x∈H1
y∈H2

Pr [P2(F(z1)) = y |P1(z1) = x]2.

In particular, ‖〈U, V 〉F‖2F − 1 is equal to the squared Euclidean imbalance as
defined by Baignères et al. [2, Definition 7]. The term −1 is due to the triv-
ial invariant corresponding to the uniform distribution. If this is omitted, one
obtains that the data-complexity of an optimal distinguisher is inversely pro-
portional to the sum of the squared principal correlations. This generalizes to
multiple linear distinguishers (which are not necessarily of projection type), in
which case the squared Frobenius norm corresponds to the fixed-key capacity.

5 Trails

Most cryptographic primitives F do not allow for a direct computation of the
approximation map 〈V,U〉F, even when U and V are low-dimensional. Indeed, if
F is devoid of structure, one is forced to estimate the approximation map empir-
ically. Consequently, finding good approximations of the general type discussed
in Sect. 4.3 is nontrivial.

However, cryptographic primitives are often a composition of highly struc-
tured round functions. That is, F = Fr ◦ Fr−1 ◦ · · · ◦ F1. By exploiting the struc-
ture of the functions Fi, one can often find approximations (Vi, Vi+1) such that
〈Vi+1, Vi〉Fi

can be efficiently computed. This is for instance the case for lin-
ear cryptanalysis, and Sect. 6 will introduce rank-one approximations as another
example for cell-oriented ciphers. The remaining task is to combine or ‘pile-up’
the individual approximations (Vi, Vi+1) for Fi in order to obtain an approx-
imation (V1, Vr+1) for F. The purpose of the piling-up principle, which will
be discussed in Sect. 5.1, is to obtain an estimate of the approximation map
〈Vr+1, V1〉F.
Definition 5.1 (Trail). Let G1, G2, . . . , Gr+1 be finite Abelian groups. A trail
of vector spaces for a function F = Fr ◦ · · · ◦ F1 with Fi : Gi → Gi+1 is a tuple
(V1, V2, . . . , Vr+1) of subspaces V1 ⊆ CĜ1, . . . , Vr+1 ⊆ CĜr+1.

Similarly to ordinary linear trails, Definition 5.1 defines a sequence of com-
patible intermediate approximations. In particular, if all vector spaces Vi are
spanned by a standard basis vector δχi

∈ CĜi, one obtains ordinary linear trails
as defined by Matsui [31] and generalized to other groups by Baignères et al. [3].
Note that the compatibility requirement does not exclude taking one or more of
the functions Fi as the identity map.
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5.1 Piling-Up Principle

As discussed in Sect. 1, methods for piling-up the approximations within a trail
are often motivated by Markov chain assumptions, or a dominant trail hypoth-
esis. Unfortunately, when the former assumption fails, it is often hard to under-
stand why or how to resolve the problem. The latter approach has been mostly
limited to the case of simple linear cryptanalysis.

Theorem 5.1 below provides an alternative motivation for the piling-up prin-
ciple. The premise is that each approximation in a trail corresponds to a trans-
formation of its input space, followed by an orthogonal projection on the input
space of the next approximation. Each of these successive projections introduces
an error, but orthogonal projection is optimal in the sense that it keeps the inner
product between the state and its approximation maximal and the norm of the
error minimal (see Sect. 2.3).

Theorem 5.1 (Piling-up principle). Let (V1, V2, . . . , Vr+1) be a trail for a
function F = Fr◦· · ·◦F1. The approximation map of the approximation (Vr+1, V1)
for F can be written as

〈Vr+1, V1〉F = 〈Vr+1, Vr〉Fr
· · · 〈V2, V1〉F1 + E ,

where the error term E is the transformation given by

E =
r−1∑

i=1

〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈V ⊥
i+1, Vi〉Fi

· · · 〈V2, V1〉F1 .

Proof. The proof follows the above intuition of successive orthogonal projection,
but keeps track of the error term. Recall from Definition 4.1 that 〈V,U〉F =
πV CFιU where πV is the orthogonal projector on V and ιU the inclusion map.
Since πV +πV ⊥ is equal to the identity map, one has the following decomposition
for i = 1, . . . , r − 1:

〈Vr+1, Vi〉Fr◦···◦Fi

= πVr+1C
Fr◦···◦Fi+1(πVi+1 + πV ⊥

i+1
)CFiιVi

= 〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈Vi+1, Vi〉Fi
+ 〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈V ⊥

i+1, Vi〉Fi
.

The result follows by successively decomposing the factor 〈Vr+1, Vi+1〉Fr◦···◦Fi+1

using the same expression. ��
Theorem 5.1 generalizes the piling-up principle as used in many variants of linear
cryptanalysis. This will be demonstrated in Sect. 5.2. Furthermore, allowing arbi-
trary subspaces Vi increases flexibility. Even if the spaces V1 and Vr+1 correspond
to a specific type of property, the intermediate vector spaces can represent seem-
ingly unrelated properties. This will be illustrated in Theorem5.3, and again in
Sect. 6. In addition, since the formulation of Theorem5.1 is basis-free, the choice
of basis for these spaces can be arbitrary3. This may have computational benefits.
3 If Bi is a matrix whose columns form a basis for Vi, then the matrix-representation

of 〈Vi+1, Vi〉Fi with respect to these bases is (B∗
i+1Bi+1)

−1B∗
i+1C

FiBi(B
∗
i Bi)

−1. Note
the normalization factors for non-orthonormal bases.
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5.2 Discussion of Theorem 5.1

In the one-dimensional case with Vi spanned by δχi
, Theorem 5.1 reduces to

CF
χr+1,χ1

=
∏r

i=1 CFi
χi+1,χi

+ e,

where the error term e can be written as a sum over all other linear trails. This
is the fixed-key piling-up principle as stated in [16, §6.1] for F

n
2 . It also implies

the piling-up lemma as stated by Matsui [31] and generalized by Baignères
et al. [3] to other groups (after taking the variance with respect to indepen-
dent round keys). The composition result of Beierle et al. [4, Theorem 3] for
one-dimensional nonlinear approximations is another special case.

A few examples of the higher-dimensional case can be found in the litera-
ture. Consider the case where all spaces Vi are pullbacks of CHi along balanced
projection functions Pi : Gi → Hi, as in Baignères et al. [2] and Wagner [42].
Like all results in this paper, Theorem 5.1 is basis-free and also applies to the
spaces Ui = F−1(Vi) ⊆ CG provided that one replaces CFi by T Fi . As shown
in Sect. 4.3, relative to the bases {δx ◦ Pi/‖δx ◦ Pi‖2 | x ∈ Hi} for Ui, the map
〈Ui+1, Ui〉Fi

can be represented by a matrix M with coordinates

My,x =

√
|Hi |
|Hi+1| Pr [Pi+1(F(z)) = y |Pi(z) = x],

where z is uniform random on |Gi|. That is, there exist diagonal matrices Di and
Di+1 such that Di+1MD−1

i is the transition matrix considered in [2,42]. These
works follow the Markov chain assumption, which leads to using the product of
round transition matrices as an approximation for the true transition matrix.
The factors Di and Di+1 indeed cancel out, so that Theorem 5.1 yields the same
result up to initial and final multiplication by Dr+1 and D−1

1 respectively.
In the case of multiple linear cryptanalysis [9,25], it is common practice to

combine many individual linear trails by adding their correlations. Alternatively,
the squared correlations are added in order to estimate the variance of the cor-
relation under the assumption of independent round keys. However, in general,
strong approximations can often be found by taking into account the correla-
tions between all pairs of approximations. Theorem 5.1 reflects this because,
for multiple linear approximations, the coordinate representation of 〈Vi+1, Vi〉Fi

in the standard basis is a submatrix of the correlation matrix CFi . This app-
roach has been (sometimes implicitly) used in several works, notably in analyses
of Present [14], Puffin [29] and Spongent [11]. Note that this is often combined
with key-averaging, but a careful analysis of the key-dependency would be both
feasible and preferable in many cases.

5.3 Clustering and Linear Approximations from Invariants

A minimal condition for the applicability of the piling-up approximation is that
one chooses the best trail from within a predetermined class of candidates, where
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the principal correlations can be used as a measure of quality. Indeed, by decom-
posing the error term in Theorem 5.1, one can see that it can be large if other
trails result in better or comparable approximations.

However, it is also possible that the class of candidate trails is too limited
to obtain a good estimate for 〈Vr+1, V1〉F. In the context of linear cryptanaly-
sis, this phenomenon has been called clustering by Daemen and Rijmen [18]. In
some cases, clustering can be explained by broadening the set of candidate trails.
At ASIACRYPT 2018, an example of a perfect linear approximation over full
Midori-64 (with modified round constants) was presented [5]. However, full-round
Midori-64 does not admit any high-correlation linear trails. This observation can
be thought of as an extreme case of a more general phenomenon. At CRYPTO
2012, Abdelraheem et al. [1] showed that invariant subspaces give rise to lin-
ear approximations with higher-than-expected correlation. The same observa-
tion was later generalized to plateaued nonlinear invariants by Beierle et al. [4].
Plateaued nonlinear invariants are characterized by a flat Walsh-Hadamard
transform, taking only two values up to sign. The results of Beierle et al. [4]
can be summarized and generalized as follows.

Theorem 5.2. Let F : G → G be a function on a finite Abelian group G. Let
v ∈ CĜ be any function such that |v(χ)| = 1/

√|supp v| for all χ ∈ supp v and
zero elsewhere. If span{v} is an invariant of F in the sense of Definition 4.3,
then there exist characters χ, ψ ∈ supp v such that |CF

χ,ψ| ≥ 1/|supp v|.
Proof. By Definition 4.3, it holds that (the sum is over χ, ψ ∈ supp v)

1 = |〈v, CFv〉| =
∣
∣
∣
∑

χ,ψ

v(χ)v(ψ)CF
χ,ψ

∣
∣
∣ ≤ |supp v|max

χ,ψ
|CF

χ,ψ|.

It follows that |CF
χ,ψ| ≥ 1/|supp v| for at least one pair (χ, ψ). ��

Note that the same result is spread over two theorems in previous work [4,
Theorem 4 and 5]: one for invariant subspaces, and one for plateaued nonlinear
invariants. This illustrates the convenience of the general definitions in Sect. 4. To
apply the results to the case of invariant subspaces, one only needs to know that
the Fourier transformation of the indicator function of a subgroup H ⊆ G is flat
with support size |G|/|H|. This follows from the Poisson-summation formula [37,
Theorem 1]. See also the first entry of Table 2 for G = F

n
2 .

Theorem 5.2 and the results above illustrate that a strong approximation
using one kind of property tends to result in unexpectedly good approximations
using other properties. This can be understood using Theorem 5.1. For example,
let span{v} with ‖v‖2 = 1 be any one-dimensional invariant for CF. Consider
an ordinary linear approximation, i.e. a pair (span{δψ}, span{δχ}) where ψ, χ
are characters. Assuming δψ �⊥ v and δχ �⊥ v, the correlation of the linear
approximation over F can be estimated using the following trail:

δψ
I−−−−→

〈v,δψ〉
v

CF

−−→
1

v
I−−−−→

〈δχ,v〉
δχ.
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Theorem 5.1 yields the estimate |〈v, δψ〉〈δχ, v〉| = |v(ψ)v(χ)| for the absolute
correlation. If v is flat as in Theorem 5.2, then the piling-up approximation
suggests that all approximations with ψ, χ ∈ supp v will have a correlation of
roughly 1/|supp v|. In fact, this resolves a problem of Beierle et al., who note that
“our arguments are non-constructive and therefore, we are not able to identify
those highly-biased linear approximations” [4, §1]. In fact, it is easy to identify
the highly-biased approximations in practice: generically, any approximation
with ψ, χ ∈ supp v will do.

6 Rank-One Approximations

It is often convenient to represent the domain of a cipher as an array of m cells
of n-bit vectors, because most of the operations in the cipher act on the cells in
an independent way. In fact, in ciphers such as the AES, only the linear layer
results in diffusion between cells. That is, let G = (Fn

2 )m. Recall from Sect. 2
that C(Fn

2 )m ∼= [CF
n
2 ]⊗m and similarly for the dual group. For example, the

probability distribution of a state with independent cells having distributions
p1, . . . , pm, is represented by the rank-one tensor p1 ⊗ · · · ⊗ pm ∈ [CF

n
2 ]⊗m (see

Sect. 2.1 for definitions).
A rank-one approximation (U, V ) is any approximation such that U and V

are spanned by a rank-one tensor. No further conditions are imposed on U and
V . An important class of rank-one approximations is obtained from balanced
Boolean functions f : (Fn

2 )m → F2 such that f(x1, . . . , xm) =
∑m

i=1 fi(xi). As
shown in Table 2, the corresponding vector space for such a property is spanned
by the function (−1)f =

⊗m
i=1 (−1)fi . Equivalently, the Fourier transformation

of the corresponding vector space is spanned by

F[(−1)f ] =
⊗m

i=1 F[(−1)fi ],

where F[(−1)fi ] is precisely the Walsh-Hadamard transform of fi. The invariants
discussed in [5] and the nonlinear approximations considered by Beierle et al. [4]
are of this type.

6.1 Theoretical Analysis of Rank-One Trails

By Theorem 3.1 (2), the correlation matrix of a layer of m identical S-boxes
S is equal to (CS)⊗m. Indeed, correlation matrices are themselves tensors and
the tensor rank (not to be confused with matrix rank) of (CS)⊗m is one. This
expresses the fact that the S-box layer preserves independence of cells. A similar
result holds for the key-addition step. Whereas the S-box layer preserves the
rank-one structure of approximations, the linear layer tends to increase the rank.
In fact, it is reasonable to interpret the rank as a measure of diffusion between
the state cells. The correlation matrix of any function F : (Fn

2 )m → (Fn
2 )m is

itself a tensor and can be decomposed as CF =
∑r

i=1 λi

⊗m
j=1 Ci,j , where Ci,j

are 2n × 2n matrices and r is the tensor rank of CF.
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Lemma 6.1. Let F : (Fn
2 )m → (Fn

2 )m be a function such that F = (G,G, . . . ,G)
for some G : F

n
2 → F

n
2 . If CG =

∑r
i=1 λi

⊗n
j=1 Ci,j, then

CF =
∑

i1,...,im∈[r]

(
∏m

k=1 λik
)
⊗m

k=1

⊗n
j=1 Cik,j ,

where [r] = {1, . . . , r}. In particular, the tensor rank of CF is at most rm.

Proof. By Theorem 3.1 (2), it holds that CF = (CG)⊗m. The result follows by
expanding this expression using the multilinearity of tensor products. ��

Lemma 6.1 can be used to obtain a decomposition of the correlation matrix
of the MixColumn map of Midori-64 and MANTIS into 28 rank-one terms. This
map M : (F4

2)
4 → (F4

2)
4 can be represented by the following matrix over F24 :

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠ .

Up to a reordering of the input bits, one can think of M as a map M̃ = (L, L, L, L)
where L corresponds to the same matrix as above, but over F2. Specifically, M̃ =
σMσ where σ : (F4

2)
4 → (F4

2)
4 is the bit permutation defined by σi(x1, . . . , x4) =

(x1,i, . . . , x4,i). Since CL is a 16 × 16 matrix, one can check that

CL =
1
2

[(
1 0
0 1

)⊗4

+
(

0 1
1 0

)⊗4

+
(

1 0
0 −1

)⊗4

−
(

0 1
−1 0

)⊗4
]

.

To see this, it is helpful to observe that CL is symmetric as a tensor. Since
M̃ = σMσ where σ is a linear map corresponding to a reordering of bits, it
follows from Theorem 3.2 (2) and Lemma 6.1 that

CM = 2−4
∑

i1,i2,i3,i4∈[4]4

(
∏4

j=1 λij
)
[⊗4

j=1 Cij

]⊗4
.

with λ1 = λ2 = λ3 = 1 and λ4 = −1 and

C1 =
(

1 0
0 1

)

, C2 =
(

0 1
1 0

)

, C3 =
(

1 0
0 −1

)

, C4 =
(

0 1
−1 0

)

.

Hence, the tensor rank of CM is at most 28. This is significantly lower than the
worst-case of 216. Practically speaking, this enables a detailed analysis of rank-
one approximations for Midori-64 in Sect. 7.3. In fact, one can show that this
decomposition is minimal i.e. the rank of CM is equal to 28.

Lemma 6.2. (Lemma 3.5 in [19]). Let V1, . . . , Vd be finite-dimensional vector
spaces over C. If xi,1, . . . , xi,r ∈ Vi are linearly independent for i = 1, . . . , d, then
the vector

∑r
i=1 x1,i ⊗ x2,i ⊗ · · · ⊗ xd,i in

⊗r
i=1 Vi has tensor rank r.
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To see why Lemma 6.2 implies the result, let Vi be the vector space of 16 ×
16 matrices over C. This is an inner product space under the Frobenius inner
product Tr (A∗B) between matrices A and B. It is easy to check that the matrices
Ci defined above are mutually orthogonal with respect to this inner product.
This implies the mutual orthogonality of the matrices

[⊗4
j=1 Cij

]⊗4. The result
follows by the linear independence of orthogonal vectors.

6.2 Automated Analysis of Rank-One Trails

Let F = Fr ◦ · · · ◦ F1 be a permutation on (Fn
2 )m. By Theorem 5.1, an optimal

rank-one trail for F can be found by solving the following optimization problem:

maximize
r∑

i=1

log2
∣
∣
〈⊗m

j=1vi+1,j , CFi
⊗m

j=1 vi,j

〉∣
∣

subject to ‖vi,j‖2 = 1 for i = 1, . . . , r + 1, j = 1, . . . ,m

vi,j(1) = 0 for (i, j) ∈ A and vi,j = δ1 otherwise,

where the last condition ensures that the vectors vi,j are active and balanced,
i.e. orthogonal to δ1, on a predetermined pattern of cells A. Clearly, at least one
cell must be active to obtain a nontrivial result. In practice, it is better to take
the logarithm of the objective function in order to avoid vanishing gradients.

Restricting to real-valued vi,j , the above is an optimization problem over the
product of several copies of the (2n−1)-dimensional unit sphere. This domain is a
Riemannian manifold, and common iterative numerical optimization techniques
such as steepest descent and conjugate gradient have been generalized to this
setting [34]. This is the basic approach behind the automated method proposed
in this section. The source code of the tool is provided as supplementary material
and relies on the Pymanopt library [40].

The power of this method lies in the fact that it enables iterative conver-
gence to an optimal trail. This is made possible because the general nature of
rank-one approximations results in a relaxed, continuous optimization problem
rather than a discrete one. Although it is sometimes necessary to ensure that the
outermost vectors of the trail correspond to (for example) a Boolean function,
there is no reason to impose the same condition on vectors which are internal to
the trail.

Example 6.1. The tool can be applied to find rank-one invariants of arbitrary
functions with a limited number of input and output bits, which is a diffi-
cult problem in general [5]. For example, Fig. 2 shows the iterative convergence
towards an invariant of the Midori-64 linear layer. This process takes about a
second on an ordinary computer. By optimizing over the ellipsoid of unit-norm
vectors in the eigenspaces Eλ(CS) of the correlation matrix CS, joint invari-
ants for the linear and S-box layer can be found. Instructions to reproduce this
example are included as supplementary material in the supplementary material
of the extended version [7]. The tool also implements a barrier method to find
all rank-one invariants for a given linear layer. �
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Fig. 2. Correlation cj at each step of the optimization process for finding invariants of
the form v1 ⊗ v2 ⊗ v3 ⊗ v4 with vi(1) = 0 for the Midori-64 linear layer.

A number of challenges remain for larger problems. These include addressing
key-dependence, which is simplified due to the use of the Fourier transform,
and convergence issues. For completeness, the supplementary material of the
extended version [7] summarizes the (somewhat technical) steps that were taken
to address these challenges.

7 Open Problem of Beierle et al.

This section explains observations of Beierle et al. [4] regarding a nonlinear
approximation for two rounds of Midori-64. More broadly, the results in this
section lead to a deeper understanding of many nonlinear approximations of the
Midori-64 round function.

7.1 Problem Statement

Beierle et al. [4, Section 4.4] consider a nonlinear approximation over two rounds
of Midori-64, restricted to a single column of the state. Denote this function by
F. Its correlation matrix is equal to CF = CM[CS]⊗4CK2CM[CS]⊗4CK1 , where
K1 and K2 are key-addition maps, S is the S-box and M the matrix defined
in Sect. 6.1. Recall from Sect. 1 that Beierle et al. [4] describe nonlinear approx-
imations using linear properties of a nonlinearly transformed representation of
the cipher. The details of their approach will not be discussed here; the geometric
framework developed in Sects. 4 and 5 will be used instead. The nonlinear func-
tions considered by Beierle et al. are of the form

∑4
i=1 fi(x) with fi : F

4
2 → F2

and consequently, as discussed in Sect. 6 on page 23, correspond to approxima-
tions spanned by rank-one vectors. Specifically, the pair of nonlinear functions
considered in [4, Section 4.4] corresponds to a one-dimensional approximation
(span{u ⊗ v⊗3}, span{u ⊗ v⊗3}) for F with

u = 1/4 · (0, 1, 0,−1, 0, 1, 0,−1, 0,−1, 0, 1, 0,−1, 0,−3)�

v = 1/2 · (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1)�.
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The coordinates above are given for the character basis δχw
with lexicographic

ordering of w. Note that v is an eigenvector of CS. Beierle et al. estimate the
correlation of the above approximation by (from the perspective of this paper)
the following one-round trail, which has absolute correlation at least 9/32:

u ⊗ v ⊗ v ⊗ v
[CS]⊗4CKi−−−−−−−→
±1 or±1/2

u ⊗ v ⊗ v ⊗ v
CM

−−−→
9/16

u ⊗ v ⊗ v ⊗ v. (1)

The computation of the correlation over CM was done by a direct evaluation of
the inner product 〈u⊗v⊗3, CM u⊗v⊗3〉. This trail was believed to hold whenever
Ki ∈ F

4
2 ×K3 for i = 1, 2, with K = {(0, 0, x, y) | x, y ∈ F2}. The weak key set K

ensures the invariance of the tensor product factor v under key addition. Based
on the above, one estimates an absolute correlation of at least (9/32)2 over F.
However, Beierle et al. experimentally observe that this estimate is not accurate:

(i) When K2 ∈ (F4
2 \ K) × K3, the correlation is found to equal zero.

(ii) For other keys, the correlation takes on various values, but is always sig-
nificantly larger than the estimated minimum of 81/1024. Specifically, for
K1,K2 ∈ K4, the correlation ranges from 35/64 to 40/64 = 5/8. For other
keys, it lies between 39/256 and 65/256.

In their conclusion, the authors remark that understanding this phenomenon
is “a major open problem”. Sections 7.2 and 7.3 completely explains the above
observations using the methods developed in Sects. 4 and 5.

7.2 Optimal Rank-One Trail

As shown in Sect. 6.1, the effect of the linear layer is nontrivial and this makes
finding an optimal rank-one trail difficult. Hence, a simple explanation for obser-
vation (ii) could be that the trail (1) proposed by Beierle et al. is not a good
guess. Using the tool from Sect. 6.2, it is easy to find the optimal rank-one trail
– ignoring the effect of key-addition for now. Running the tool (the configura-
tion is given in the extended version [7]) yields the following trail with absolute
correlation at most 9/16:

u ⊗ v⊗3 [CS]⊗4CK1−−−−−−−−→
±3/4 or±1/4

v⊗4 CM

−−→
1

v⊗4 [CS]⊗4CK2−−−−−−−→
±1

v⊗4 CM

−−→
3/4

u ⊗ v⊗3.

A short calculation shows that the third step requires K2 ∈ K, otherwise the trail
has correlation zero. Furthermore, the correlation 3/4 in the first step occurs if
and only if K1 ∈ K4. In hindsight, one might have guessed the above trail
without detailed analysis: the choice of v⊗4 as an intermediate step is natural,
since v⊗4 is an invariant for the round function. This is an instance of the general
phenomenon discussed in the last paragraph of Sect. 5.3.

7.3 Theoretical Analysis of the Problem

The correlations predicted by the rank-one trail obtained in Sect. 7.2 are within
10 to 30% of the observed correlations reported by Beierle et al. [4, Tables 1–4].
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However, the trail does not yet explain the zero-correlation approximation. In
this section, the results from Sect. 6.1 will be used to find a minimal and complete
set of rank-one trails for the approximation.

The propagation of u ⊗ v⊗3 under the Midori-64 round function will first
be analyzed. For the zero-correlation case, the miss-in-the-middle strategy from
Sect. 4.2 will be used. It will then be shown that a relatively short formula for
the exact key-dependent correlation of the approximation can be computed.

Let K1 = (k1, k2, . . . , k16) ∈ F
16
2 and K2 = (k′

1, k
′
2, . . . , k

′
16) ∈ F

16
2 . The results

in Sect. 6.1 can be used to compute the image of u ⊗ v⊗3 under one round:

CM[CS]⊗4CK1 u ⊗ v⊗3 = −ν CM(CSCk1‖···‖k4u) ⊗ v⊗3 = ν v ⊗ (∑16
i=1ci v⊗3

i

)
,

where ν = −∏4
i=2(−1)k4i−1+k4i . The coefficients ci and the vectors vi are listed

in the supplementary material of the extended version [7]. Note that, because
CM has rank 28, one initially obtains 28 terms. However, this can be reduced to
16 by grouping terms appropriately. This can be done manually by exploiting
the structure of the rank-decomposition, but Sage code to automate this is also
provided as supplementary material. Since the vectors vi are mutually orthogo-
nal and this is preserved when multiplied with (the same) orthogonal matrices,
Lemma 6.2 implies that the above decomposition is minimal. Interestingly, not
all of the vectors vi correspond to Boolean functions or probability distributions.

A similar computation can be performed for the inverse of the second round.
Specifically, recalling that S and M are involutions,

CK2 [CS]⊗4CM u ⊗ v⊗3 = ν′ Ck′
1‖···‖k′

4v ⊗ (∑8
i=1c

′
i

⊗3
j=1(C

k′
4j‖···‖k′

4j+4v′
i)

)
.

The coefficients c′
i and the vectors v′

i are listed in the supplementary material
of the extended version [7] and ν′ = (−1)k′

3+k′
4+1. The minimality of the above

decomposition can again be established using Lemma 6.2.

Zero-Correlation Approximation. Let U = span{v} ⊗ (CF̂
4
2)

⊗3 and V =
span{Ck′

1‖···‖k′
4 v} ⊗ (CF̂

4
2)

⊗3. The decompositions above clearly imply the fol-
lowing inclusions:

CM[CS]⊗4CK1 u ⊗ v⊗3 ∈ U and CK2 [CS]⊗4CM u ⊗ v⊗3 ∈ V.

Consequently, if U ⊥ V , the general miss-in-the-middle principle discussed in
Sect. 4.2 implies that the approximation has correlation zero. This happens
whenever 〈v, Ck′

1‖···‖k′
4 v〉 = 0. That is,

〈
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1)�,

(0, 0, 0, 1, 0, 0, 0, (−1)k′
2 , 0, 0, 0, (−1)1+k′

1 , 0, 0, 0, (−1)k′
1+k′

2)�〉

= 1 + (−1)k′
1 + (−1)k′

2 + (−1)k′
1+k′

2 ,

which equals zero unless k′
1 = k′

2 = 0. This explains the condition K2 ∈ (F4
2 \

K) × K3 observed by Beierle et al. [4].
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Refining the Correlation Estimate. Now assume K2 ∈ K4, so that the
correlation is nonzero. A closer inspection of the vectors vi and v′

j reveals that
|〈vi, C

k′
4j‖···‖k′

4j+4v′
j〉| ≤ 1/2 unless i = 3 and j = 1. That is, when the inner

product 〈CK2 [CS]⊗4CM u ⊗ v⊗3, CK2 [CS]⊗4CM u ⊗ v⊗3〉 is expanded using the
decomposition above, the term corresponding to c3c

′
1 has a weight of one whereas

all other terms have weight at most 2−3. Since v3 = v′
1 = v, this term corresponds

to the trail from Sect. 7.2.
The correlation estimate can be improved by including additional trails. In

principle, all 128 terms in the expanded inner product between the forward and
backward expressions can be computed. The supplementary material contains a
Sage script that computes a short formula for the exact key-dependent correla-
tion of the approximation, which is also listed in the extended version [7].

In fact, due to the low rank of CM, the same technique can be used to analyze
any rank-one approximation of F. This includes all linear approximations. In
general, the minimal number of rank-one trails can be higher or lower than
16 × 8 (depending on the choice of the input and output property).
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