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Preface

Asiacrypt 2021, the 27th Annual International Conference on Theory and Application
of Cryptology and Information Security, was originally planned to be held in Singapore
during December 6–10, 2021. Due to the COVID-19 pandemic, it was shifted to an
online-only virtual conference.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 341 submissions from all over the world, and the Program
Committee (PC) selected 95 papers for publication in the proceedings of the confer-
ence. The two program chairs were supported by a PC consisting of 74 leading experts
in aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers) and five PC members were assigned to submissions
co-authored by PC members. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. The two program chairs were not allowed to submit a paper, and PC
members were limited to two submissions each. There were approximately 363
external reviewers, whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and
first-round discussions the PC selected 233 submissions to proceed to the second round
and the authors were then invited to provide a short rebuttal in response to the referee
reports. The second round involved extensive discussions by the PC members.

Alongside the presentations of the accepted papers, the program of Asiacrypt 2021
featured an IACR distinguished lecture by Andrew Chi-Chih Yao and two invited talks
by Kazue Sako and Yu Yu. The conference also featured a rump session which
contained short presentations on the latest research results of the field.

The four volumes of the conference proceedings contain the revised versions of the
95 papers that were selected, together with the abstracts of the IACR distinguished
lecture and the two invited talks. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Via a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “On the Hardness of the NTRU
problem” by Alice Pellet-Mary and Damien Stehlé (which received the best paper
award); “A Geometric Approach to Linear Cryptanalysis” by Tim Beyne (which
received the best student paper award); and “Lattice Enumeration for Tower NFS: a
521-bit Discrete Logarithm Computation” by Gabrielle De Micheli, Pierrick Gaudry,
and Cécile Pierrot. The authors of all three papers were invited to submit extended
versions of their manuscripts to the Journal of Cryptology.

Many people have contributed to the success of Asiacrypt 2021. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge



and expertise, and for the tremendous amount of work that was done with reading
papers and contributing to the discussions. We are greatly indebted to Jian Guo, the
General Chair, for his efforts and overall organization. We thank San Ling and Josef
Pieprzyk, the advisors of Asiacrypt 2021, for their valuable suggestions. We thank
Michel Abdalla, Kevin McCurley, Kay McKelly, and members of IACR’s emergency
pandemic team for their work in designing and running the virtual format. We thank
Chitchanok Chuengsatiansup and Khoa Nguyen for expertly organizing and chairing
the rump session. We are extremely grateful to Zhenzhen Bao for checking all the

files and for assembling the files for submission to Springer. We also thank
Alfred Hofmann, Anna Kramer, and their colleagues at Springer for handling the
publication of these conference proceedings.

December 2021 Mehdi Tibouchi
Huaxiong Wang
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Probabilistic Reasoning in Cryptography
and Machine Learning

(IACR Distinguished Lecture)

Andrew Chi-Chih Yao

Tsinghua University, China

Abstract. Distributed protocols occupy a key position in cryptography as well
as in machine learning. Yet their analysis, especially in the probabilistic setting,
can be quite involved. Simple statements regarding a protocol’s behavior often
take sophisticated analysis to affirm. In this talk we present several new results
along this line in cryptography and machine learning.
The first result concerns information complexity which specifies, for a given

task, the amount of information that any protocol must leak. We determine the
information complexity for a natural problem, using information theory to show
why certain loss of privacy in inputs is inevitable.
The second result concerns machine learning. Traditional algorithms are

designed to solve a specific problem with performance guarantees. The rise of
powerful machine learning algorithms (ML) is a paradigm shift. Yet to show
what problems can be solved by ML can be challenging; even seemingly
obvious conjectures are often hard to establish rigorously. In this talk we give a
proof for some cases where ML is known to demonstrate poor performance
experimentally.
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Cryptography For a Secure,
Privacy-Respecting and Fair Society:

What More Can We Do?

Kazue Sako

Waseda University, Japan

Abstract. Cryptographic protocols such as electronic voting schemes, auction
schemes, lottery schemes and many others, are designed to bring more security,
privacy and fairness to society. In this talk, I will discuss some further steps we
could take towards achieving this goal using our expertise in cryptography,
together with lessons I learned along my ongoing journey.



Learning Parity with Noise: Constructions,
Reductions, and Analyses

Yu Yu

Shanghai Jiao Tong University, China

Abstract. In this talk, I will introduce my recent works on the learning parity
with noise (LPN) problem. In particular, we consider the LPN problem under
the constant rate noise regime. First, we show how to construct public-key
encryptions and collision-resistant hash functions from the LPN assumption
with sufficient hardness. Second, we discuss whether such (average-case)
hardness can be reducible from its worst-case analog, i.e., the promise-NCP
problem (on specific codes). Finally, we study the asymptotic hardness of LPN
by reviewing the BKW algorithm. We introduce ways to optimize the BKW
with fine-grained trade-offs between time, space, and sample complexities
without heuristics.
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On the Hardness of the NTRU Problem

Alice Pellet-Mary1(B) and Damien Stehlé2,3(B)

1 CNRS, Inria and Université de Bordeaux, Bordeaux, France
alice.pellet-mary@math.u-bordeaux.fr

2 ENS de Lyon, Lyon, France
damien.stehle@ens-lyon.fr

3 Institut Universitaire de France, Paris, France

Abstract. The 25 year-old NTRU problem is an important computa-
tional assumption in public-key cryptography. However, from a reduc-
tion perspective, its relative hardness compared to other problems on
Euclidean lattices is not well-understood. Its decision version reduces to
the search Ring-LWE problem, but this only provides a hardness upper
bound.

We provide two answers to the long-standing open problem of pro-
viding reduction-based evidence of the hardness of the NTRU problem.
First, we reduce the worst-case approximate Shortest Vector Problem
over ideal lattices to an average-case search variant of the NTRU prob-
lem. Second, we reduce another average-case search variant of the NTRU
problem to the decision NTRU problem.

1 Introduction

In the NTRU encryption scheme [HPS98], the public key is an element h of
a polynomial ring Rq that can be chosen as Zq[x]/Φ for some degree d monic
irreducible polynomial Φ and some integer q ≥ 2. This public key h is far from
uniform in Rq, as it can be written as h = f/g mod q where the secret key poly-
nomials f, g ∈ R = Z[x]/Φ have coefficients with small magnitudes compared
to

√
q. In most concrete instantiations, such as the original scheme and the

NTRU and NTRU Prime Round-3 candidates to the NIST post-quantum cryp-
tography standardization project [CDH20,BBC20], the coefficients of f and g
even belong to {−1, 0, 1} and q grows as a small degree polynomial in d. As a
result, the set of such h’s is very sparse in Rq. The tasks of distinguishing h from
uniform and recovering a sufficiently short pair (f, g) from h are respectively
known as the decision and search variants of the NTRU problem.

The search NTRU problem can be solved with lattice reduction algorithms
(such as [Sch87]), but to succeed for the most usual setting of q ≤ poly(d),
they require a computational effort growing as exp(O(d)). In [KF15], Kirchner
and Fouque described a heuristic algorithm with slightly subexponential cost
exp(O(d/ log log d)) for the usual setting of q ≤ poly(d) and ‖f‖∞, ‖g‖∞ ≤ O(1).
If the magnitude bound grows as Ω(

√
d), then the cost of this algorithm

is exp(O(d)). In the completely different regime of very large q (but with ‖f‖
and ‖g‖ growing at a much smaller pace), recent works [ABD16,CJL16,KF17]
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have shown that the NTRU problem is significantly easier than previously
thought. For example, one can recover appropriately distributed f, g with
‖f‖, ‖g‖ ≤ poly(d) from h in quantum polynomial time when q ≥ exp( ˜Ω(

√
d)).

Prior to those works, it was believed that q ≥ exp( ˜Ω(d)) was necessary for poly-
nomial cost. This range of modulus q is far from the one used for the NTRU
encryption scheme. However, NTRU instances with a large modulus q can occur
in more advanced cryptographic constructions such as [LTV12] and [GGH13].

On the lower-bound front, it was shown in [SS11] for Φ a power-of-2 cyclo-
tomic and extended in [WW18] to all cyclotomics that if f, g are Gaussian
over R (restricted to elements that are invertible modulo q) with standard devi-
ation that is a little larger than

√
q, then the distribution of h = f/g mod q is

within 2−Ω(d) statistical distance from the uniform distribution over invertible
elements of Rq. This variant of decision NTRU is therefore vacuously hard. This
parameter regime is relevant to the NTRU signature algorithm [HHP03,SS13].
It also allows to obtain an NTRU-like public-key encryption scheme, but less
efficient than with smaller secret key polynomials f, g.

Despite 25 years of study, little is known about the relationships between
the NTRU problem variants and between them and other well-studied problems
over Euclidean lattices. To our knowledge, the only exceptions are the direct
reduction from decision NTRU to search NTRU and a reduction from deci-
sion NTRU to the search version of the Ring-LWE problem [SSTX09,LPR10],
sketched in [Pei16, Se. 4.4.4]. Note that this only provides an upper bound to
the hardness of the NTRU problem. Given this state of affairs, Peikert asked the
following question in [Pei16, Se. 7.1]:

Is there a worst-case hardness reduction, or a search-to-decision reduction,
for an NTRU-like problem?

Contributions. We provide positive answers to both components of the above
question.

First, we give a reduction from the approximate Shortest Vector Problem
restricted to ideal lattices (ideal-SVP) to a worst-case variant of the search
NTRU problem. Combining the latter with the recent worst-case to average-
case reduction for ideal-SVP from [dBDPW20] leads to a reduction from worst-
case ideal-SVP to an average-case version of the search NTRU problem. The
instance distribution is inherited from the distribution over ideal lattices consid-
ered in [dBDPW20]. We also show that this distribution over NTRU instances h
can be efficiently sampled from, together with a corresponding trapdoor (f, g),
if one has access to a quantum computer or if the modulus q is sufficiently large:
this property allows to sample an NTRU encryption public key along with a
corresponding secret key.

Second, we exhibit a reduction from another (average-case) variant of the
search NTRU problem (see below) to the decision NTRU problem. The reduc-
tion works for a wide set of distributions for the search NTRU instances, and
the decision NTRU instance distribution is directly derived from the considered
search NTRU distribution. A sufficient condition on the search NTRU distribu-
tion is that it produces with overwhelming probability an h with trapdoor (f, g)
such that f and g have balanced coefficients (in canonical embedding) and f
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or g is coprime to q. This covers in particular the standard ternary distribution
for f and g (i.e., f, g ← U({−1, 0, 1}d)) provided we reject (f, g) when they
are not balanced enough or not coprime to q (heuristically, this should happen
with probability ≤ 1/2). On the other hand, the choice of the decision NTRU
distribution is much less flexible: even if we start with a ternary distribution for
the search NTRU instances, it is very unlikely that the decision NTRU distri-
bution we obtain is ternary. Similarly to the first reduction, we show that if the
samples h from the search NTRU distribution can be efficiently sampled along
with a corresponding trapdoor (f, g), then so can the samples from the resulting
decision NTRU instance.
Technical overview. For the sake of simplicity, in the forthcoming discussion,
we restrict ourselves to power-of-2 cyclotomic defining polynomials, i.e., Φ =
xd + 1 for d a power of 2. In this case, the ring R = Z[x]/(xd + 1) matches the
ring of integers of the degree-d cyclotomic number field. Moreover, the coefficient
embedding (which is the one usually considered in the NTRU literature) and the
canonical embedding (used in this article) define the same geometry, up to scaling
and rotation. (In the core of the paper, the results are presented for arbitrary
number fields.)

To state the above contributions formally, we consider several variants of the
NTRU problem. We say that h ∈ Rq = Zq[x]/(xd + 1) is an NTRU instance
with gap γ if there exists (f, g) ∈ R2 \ {(0, 0)} such that g · h = f mod q
and ‖f‖, ‖g‖ ≤ √

q/γ. Note that writing g · h = f mod q rather than the more
standard h = f/g mod q allows one to consider g’s that are not invertible mod-
ulo q and suffices for cryptographic applications. The norm ‖f‖ is the Euclidean
norm of the vector made of the coefficients of f , and the comparison to

√
q

is justified by the fact that for a uniformly chosen h, one expects the smallest
such pair (f, g) to have Euclidean norm around

√
q, up to a small polynomial

in d (in the core of the paper, we consider the Euclidean norm induced by
the canonical embedding, which leads to a slightly different definition, differing
by another

√
d factor). In the literature, the bound on ‖f‖, ‖g‖ is often abso-

lute rather than relative to
√

q: our definition variant stresses the distance to
the uniform h regime. For a distribution D over NTRU instances with gap γ,
the decision problem (D, γ, q)-dNTRU consists in distinguishing between D and
the uniform distribution over Rq. On the search NTRU side, the situation is
more complex. We consider two variants of search NTRU, both of which with a
worst-case and an average-case version. For γ ≥ γ′, the worst-case vector NTRU
problem wcNTRUvec consists, given as input an NTRU instance h with gap γ,
in recovering (f, g) �= (0, 0) such that g · h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ′.
Note that if h ∈ Rq has a trapdoor (f, g), then (t · f, t · g) is another NTRU
trapdoor of a possibly larger Euclidean norm, for any non-zero t ∈ R. The
wcNTRUvec definition allows solutions whose norms are within an approxima-
tion factor γ/γ′ from the norms of the promise. Even though there may be plenty
of solutions of the form (t · f, t · g) for t ∈ R, the pair ratio hR = (tf)/(tg) = f/g
over K := Q[x]/(xd + 1) is an invariant. This motivates the definition of the
worst-case module NTRU problem wcNTRUmod, which consists in recovering hR
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from h. This is equivalent to recovering the rank-1 submodule (f, g)T ·K ∩Mh of
the rank-2 R-module Mh = {(f ′, g′)T ∈ R2 : g′ · h = f ′ mod q}, hence justifying
the name. The average-case counterparts to wcNTRUvec and wcNTRUmod are
defined analogously.

We now sketch the reduction from ideal-SVP to wcNTRUvec. Let us consider
the worst-case variants, and the restriction of ideal-SVP to principal ideals with a
known generator: we are given as input a generator z of a principal ideal I = 〈z〉
of R, and want to use a wcNTRUvec oracle to find a short non-zero vector in I.
Any element g ∈ I is of the form g = z · r for some r ∈ R. Consider a short
non-zero g ∈ I. Multiplying it by q/z, we obtain that g · (q/z) = 0 mod q.
This already looks like an NTRU equation with a candidate q/z for h. But
note that q/z is in K = Q[x]/(xd + 1) and has no a priori reason to belong
to R = Z[x]/(xd + 1), whereas the element h of an NTRU instance must belong
to R. To handle this difficulty, we can round q/z to R (coefficient-wise). This
leads to g · �q/z = −g · {q/z} mod q, where both g and f := −g · {q/z} are
small elements of R. We obtain the existence of a small pair (f, g) ∈ R2 \{(0, 0)}
such that g · �q/z = f mod q. We can then provide the element h := �q/z
to the wcNTRUvec oracle. The latter returns a pair (f ′, g′) ∈ R2 \ {(0, 0)} such
that g′ · �q/z = f ′ mod q, and it can be proved that for any such sufficiently
short pair, we have that g′ is a short non-zero element of I. To handle possibly
non-principal ideals (and also principal ideals with unknown generator), we rely
on the 2-element representation of ideals.

If we forget polynomial factors and rely on a wcNTRUvec oracle with
parameters q, γ and γ′, the above allows to find γsvp approximations to a
shortest non-zero vector of an arbitrary ideal of volume ≤ N for N1/d ≈√

q/γ and γsvp ≈ γ/γ′. Note that the reduction is worst-case to worst-case
and handles bounded-volume ideals. To handle both limitations, we rely on
the recent worst-case to average-case reduction for ideal-SVP from de Boer
et al. [dBDPW20]. By using the reduction with ideals from the average-case
distribution from [dBDPW20], we obtain a reduction from worst-case ideal-SVP
to average-case NTRUvec. Further, the ideals from the average-case distribution
from [dBDPW20] have volumes bounded as exp(O(d2)). This leads to q of the
order of exp(O(d)), which is significantly larger than in many applications. We
refine the analysis of [dBDPW20] to show that by allowing the worst-case to
average-case ideal-SVP reduction to run in time higher than polynomial in d,
the average-case ideals from [dBDPW20] can be chosen with smaller volumes.
The resulting NTRU modulus q is still slightly larger than polynomial, but it
can be chosen as small as dω(1) if one considers sub-exponential time reductions.

We now provide an overview of our second main result, which is a reduc-
tion from average-case NTRUmod to dNTRU. This one is applicable for q larger
than some moderate poly(d). At the core of the reduction is an NTRU reran-
domization process. Assume we are given some h ∈ Rq for which there exists
a short pair (f, g) �= (0, 0) with g · h = f mod q. Now, for any x1, x2 ∈ R, we
have g ·(x1h+x2) = x1f+x2g mod q, which may be rewritten as g ·h′ = f ′ mod q
with h′ = x1h + x2 and f ′ = x1f + x2g. Further, if x1 and x2 are short, then so
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is f ′. This hence gives a way to produce arbitrarily many NTRU samples with a
common denominator g, from a single one. Our aim is to query the dNTRU ora-
cle on many such samples, and gather relevant information to solve NTRUmod.
Concretely, we define the dNTRU distribution and show how to tweak the reran-
domization process to be able to use the Oracle Hidden Center Problem (OHCP)
framework from [PRS17]. At a high level, in the OHCP framework, one is given
access to a decision oracle whose acceptance probabilities on a family of distribu-
tions (Dz)z∈C is a function of the distance |z−c| to a hidden center c ∈ C. Under
some conditions on the oracle behaviour, there exists an efficient algorithm that
recovers an arbitrarily accurate approximation c̃ to c, by querying the OHCP
oracle on samples from Dz for well-chosen values of z. Prior to this work, the
OHCP framework has been used to provide a reduction from ideal-SVP to the
decision version of Ring-LWE [PRS17], and a search to decision reduction for
Ring-LWE [RSW18].

Let us now look more closely at the rerandomization of f . It was shown
in [LSS14] that by sampling x1 and x2 from spherical Gaussians over R with
standard deviation sufficiently above max(‖f‖, ‖g‖), the distribution of x1f+x2g
is Gaussian over the ideal 〈f〉+〈g〉 with a covariance matrix that is a function of f
and g. This spherical Gaussian rerandomization defines our dNTRU distribution.
We extend the proof of [LSS14] to show that if instead we sample x1 and x2 from
correlated non-spherical Gaussians over R, then the distribution of x1f + x2g is
Gaussian over 〈f〉 + 〈g〉 with a covariance matrix that can be made to depend
solely on |f(ζ)−z ·g(ζ)| for ζ an arbitrary complex root of Φ = xd +1, and z ∈ C

arbitrary. The center of the OHCP instance is c = f(ζ)/g(ζ) = hR(ζ) (recall
that hR = f/g belongs to K = Q[x]/(xd + 1)). Using the dNTRU oracle within
the OHCP framework hence allows us to recover an approximation to hR(ζ). In
the applications from [PRS17,RSW18] of the OHCP framework, one recovers a
vector c of OHCP centers from an approximation c̃ by observing that c belongs
to a lattice: the exact center c can hence be obtained by simply rounding a
sufficiently precise approximation c̃. In our case, we cannot proceed similarly,
as hR has rational coordinates. We instead show that the LLL algorithm [LLL82]
can be used in a manner similar to [KLL84] to recover hR = f/g ∈ K from
a sufficiently precise approximation to hR(ζ), given an a priori upper bound
to max(‖f‖, ‖g‖).
Discussion. The two reductions put forward in this work provide some evidence
towards supporting the conjectured hardness of the search vectorial NTRU prob-
lem and the decision NTRU problem. They may give the impression that the
hardness of the NTRU problems lies somewhere between the hardness of the
ideal-SVP and that of Ring-LWE. This is however neglecting the fact that there
are several NTRU problem variants, and it is unclear whether they are compu-
tationally equivalent. In particular, the reductions are incompatible, in that the
first one reduces to NTRUvec and the second one from NTRUmod. NTRUmod

reduces to NTRUvec, but it is a reduction from NTRUvec to NTRUmod that we
would need to obtain a chain of reductions from ideal-SVP to Ring-LWE via
the computationally equivalent NTRU problems. Note that if we assume that
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ideal-SVP is easy, then these problems are computationally equivalent (see Sub-
sect. 3.4), but the reduction from ideal-SVP to NTRUvec becomes vacuous. In
fact, it seems that NTRUvec and NTRUmod could even be of different natures:
when attempting to solve NTRUvec using an NTRUmod oracle, it is unclear how
to make the approximation factor γ/γ′ appear, as NTRUmod is only parametrized
by the promise gap γ. Better understanding the differences between the NTRU
variants seems important to better capture the NTRU hardness. In this direc-
tion, note that the known attacks specific to NTRU [ABD16,CJL16,KF17] are
mostly relevant for NTRUmod: they can also be used to solve NTRUvec, but the
quality of the solution obtained for NTRUvec is the same as the one we would
obtain by running the attack to solve NTRUmod, and then running an ideal-SVP
solver on the dense rank-1 sub-module to obtain a somehow short vector.

Despite the apparent uncomposability of our two reductions, it would be
interesting to have NTRU instance distributions that are compatible with both
of them. The second reduction is very permissive with respect to the NTRUmod

instance distribution, but the latter still has to satisfy some properties (see Defi-
nition 5.1). In particular, the canonical embedding of f and g should be bounded
from below and above, and the ideal 〈f〉 + 〈g〉 should be coprime with 〈q〉. We
note that in the reduction from ideal-SVP to wcNTRUvec, the element g is an
element of the ideal-SVP instance ideal, which could be chosen Gaussian. Using
standard properties of lattice Gaussians, it is not unlikely that one can prove the
desired property on its canonical embedding. There seems to be less flexibility
in the choice of f = −g · {q/z}. However, one could replace the deterministic
rounding by a Gaussian rounding, to then use a similar approach as the one
for g. Concerning the co-primality with 〈g〉, one could hope to use an inclusion-
exclusion argument for Gaussian sums like the one in [SS11].

Concerning the hardness of the NTRU problems relatively to ideal-SVP
and Ring-LWE, note that the state of the art suggests that ideal-SVP might
be strictly easier than Ring-LWE, as ideal-SVP is known to reduce to Ring-
LWE [SSTX09,LPR10,PRS17] but no reduction from Ring-LWE to ideal-SVP
is known. In fact, Ring-LWE seems less related to ideal-SVP than to finding
two short linearly independent vectors in rank-2 modules over R (SIVP): for
an appropriate parametrisation, Ring-LWE reduces to the latter problem [LS15,
Se. 5] and, although for some other parametrisation, the latter problem reduces
to Ring-LWE (by combining [LS15, Se. 4] and [AD17]). From a lattice perspec-
tive, NTRU is a generalization of the unique Shortest Vector Problem to rank-2
modules. At this stage, it is unclear whether its complexity matches the one of
ideal-SVP (i.e., SVP for rank-1 modules) or the one of SIVP restricted to rank-2
modules. It could also be strictly in between.

2 Preliminaries

The notations log and ln respectively denote the logarithms in bases 2 and e.
For n an integer, we let [n] denote the set {1, 2, . . . , n}. Vectors and matrices are
denoted with bold lower-case and upper-case letters, respectively. The statistical
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distance between two distributions D1 and D2 with compatible countable sup-
ports is defined as dist(D1,D2) = 1

2

∑

x |D1(x) − D2(x)|. We write D1 ≈ε D2 if
dist(D1,D2) ≤ ε for some ε > 0. If X is a finite set, then we let U(X) denote
the uniform distribution over X. If b1, . . . ,bn ∈ R

m are linearly independent
vectors, then the notation (˜b1, . . . , ˜bn) refers to their Gram-Schmidt orthogo-
nalization. The notation ~·~ refers to the matrix norm induced by the Euclidean
norm. Finally, we define ˜O(dt) as O(dtpoly(log d)) for any t ≥ 0 including t = 0.

2.1 Euclidean Lattices

A lattice L ⊂ R
m is a set of the form L = B · Z

m×n for some full column-
rank matrix B ∈ R

m×n (for some m ≥ n ≥ 1). The columns of B are
said to form a basis of L. For i ∈ [n], the ith lattice minimum is defined
as λi(L) = min(r : dim L ∩ B(r) ≥ i), where B(r) denotes the closed ball of R

m

of radius r. The determinant det(L) is defined as
√

det(BT B), which is inde-
pendent of the particular choice of basis B of L. Minkowski’s (second) theorem
states that

∏

i∈[n] λi(L) ≤ √
n

n · det(L).
In this article, we will be interested in the ideal Hermite Shortest vector

problem. We first recall below the definition of the Hermite Shortest Vector
Problem (HSVP) for arbitrary lattices, and we will instantiate it for ideal lattices
in Sect. 2.4.

Definition 2.1 (γ-HSVP). Let γ ≥ 1. Given as input a lattice L ⊂ Q
n (rep-

resented by an arbitrary Z-basis), the γ-HSVP problem asks to find a vector
w ∈ L \ {0} such that ‖w‖ ≤ γ · √

n · det(L)1/n.

By Minkowski’s theorem, this problem is well-defined for any γ ≥ 1.

2.2 Discrete Gaussian Distributions

Let S ∈ GLn(R) be an invertible matrix. The Gaussian density function with
parameter S is defined over R

n by

ρS(x) = e−π‖S−1x‖2
.

When the matrix S is diagonal with diagonal coefficients all equal to some σ > 0,
we also use the notation ρσ = ρS. Let L ⊂ R

n be a full rank lattice, and c ∈ R
n.

The discrete Gaussian distribution DL,S,c over L with center c and parameter S
is the distribution for which the probability of any v ∈ L is ρS(v−c)/ρS(L−c),
where ρS(T ) =

∑

t∈T ρS(t) for any countable T ⊂ R
n. Again, we will use the

notation DL,σ,c when S = diag(σ) for some σ > 0. When c = 0, we omit the
subscript c.

If L ⊂ R
n is a lattice, its smoothing parameter ηε(L) is defined as the small-

est σ > 0 such that ρ1/σ(L� \ {0}) ≤ ε, where L� = {c ∈ span(L) : ∀b ∈ L :
〈b�,b〉 ∈ Z} is the dual of L. For any n-dimensional lattice L and ε > 0, we have
the following upper bound on the smoothing parameter (see [MR07, Le. 3.3]):

ηε(L) ≤
√

ln(2n(1 + 1/ε))
π

· λn(L). (2.1)
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The following Lemma (adapted from [GPV08, Th. 4.1]) shows that one can
efficiently sample (bounded) elements from a distribution that is statistically
close to a discrete Gaussian distribution. A proof can be found in the full version.

Lemma 2.2. There exists a ppt algorithm that takes as input a basis B =
(b1, . . . ,bn) of an n-dimensional lattice L, a parameter σ ≥ √

n · maxi ‖bi‖
and a center c ∈ Span(L) and outputs a sample from a distribution ˜DB,σ,c such
that

• DL,σ,c ≈2−Ω(n) ˜DB,σ,c;
• for all v ← ˜DB,σ,c, it holds that ‖v − c‖ ≤ √

n · σ and v �= 0.

The following lemma bounds the statistical distance between two discrete Gaus-
sian distributions over the same lattice L, depending on the distance between
their centers and their parameter matrices. Similar results were already present
in previous works, such as in [Reg09, Claim 2.2] for 1-dimensional continuous
Gaussian distributions, and in the proof of [dBDPW20, Th. 4.4] for the case
of ideal lattices with specific parameters and centers. Since the following pre-
cise statement seems new, we provide a proof in the full version for the sake of
completeness.

Lemma 2.3. Let L ⊂ R
n be a full rank lattice, S1,S2 ∈ GLn(R) be two invert-

ible matrices and c1, c2 ∈ R
n be two vectors. If η1/2(S−1

1 L), η1/2(S−1
2 L) ≤ 1/2,

then it holds that

dist
(

DL,S1,c1 ,DL,S2,c2

) ≤ 4
√

n ·
(
√

�
�S−1

2 S1 − In

�
� +

√

‖S−1
2 (c1 − c2)‖

)

.

The next lemma states that a lattice Gaussian distribution with sufficiently large
standard deviation is almost uniform when reduced modulo a sublattice.

Lemma 2.4 ([GPV08], Cor. 2.8). Let L1 ⊆ L2 be two lattices of rank n. If
1 ≥ ηε(L1) for some ε < 1/2, then (DL2,1 mod L1) ≈2ε U(L2 mod L1).

2.3 Number Fields

Let K be a number field of degree d ≥ 2 and KR = K ⊗Q R. We let R denote
its ring of integers. We identify any element of K with its canonical embedding
vector σ : x �→ (σ1(x), . . . , σd(x))T ∈ C

d. This leads to an identification of KR

with {y ∈ C
d : ∀i ∈ [rR], yi ∈ R and ∀i ∈ [rC], yrR+2(i+1) = yrR+2i+1}, where

rR and rC respectively denote the number of real and complex embeddings. Via
this identification, the set KR is a real vector subspace of dimension d embed-
ded in C

d. In the following, for any element x ∈ R,K or KR, we will let ‖x‖
(resp. ‖x‖∞) denote the Hermitian norm (resp. infinity norm) of the vector
σ(x) ∈ C

d. The set σ(R) is a lattice, and the absolute field discriminant ΔK is
defined as ΔK = |det(σ(R))2|.1 We have ΔK ≥ (π/4)d · (dd/d!)2, which implies
that we have d = O(log ΔK), for ΔK growing to infinity.
1 Note that in order to avoid having absolute values everywhere in the rest of the

article, we define ΔK as the absolute value of the discriminant of K.
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The (absolute value of the) algebraic norm of x ∈ KR is defined as N (x) =
∏

i |σi(x)|. Any non-zero element r ∈ R has algebraic norm ≥ 1, which implies
in particular that ‖r‖∞ ≥ 1.

In this work, we assume that we know a monic polynomial Φ ∈ Z[X] defin-
ing K and a Z-basis (r1, . . . , rd) of R, where the ri’s are represented by poly-
nomials modulo Φ (of degree < d) with rational coefficients. Let DΦ > 0 be
the smallest integer such that DΦ · ri has integral coefficients for all i (i.e., DΦ

is the common denominator to all the ri polynomials), then the bit-size of DΦ

is polynomial in d and ‖Φ‖, where ‖Φ‖ is the Euclidean norm of the vector of
coefficients of Φ (see for instance [Sut16, Se. 12.4]).

We will assume that this basis has been LLL-reduced [LLL82]. We define
δK = maxi ‖ri‖∞. Since ‖r‖∞ ≥ 1 for all r ∈ R \ {0}, we know that δK ≥ 1.
Using Minkowski’s second theorem and the LLL-reducedness of (r1, . . . , rd), we
have that δK ≤ Δ

O(1)
K . In the case of cyclotomic number fields, taking the power

basis gives δK = 1. For an element x =
∑

i xiri ∈ KR, define �x =
∑

i�xiri.
We will also use the notation {x} = x − �x. It holds that ‖{x}‖∞ ≤ d/2 · δK ,
and hence that ‖{x}‖ ≤ d3/2 · δK .

For a rational x = x1/x2 with x1, x2 ∈ Z and gcd(x1, x2) = 1, we define
size(x) = 1 + log |x1| + log |x2|. For an element x =

∑

i xiri ∈ K, we define
size(x) =

∑

i size(xi). The following lemma shows that if we have a sufficiently
precise approximation to an embedding of x ∈ K, then one can recover x exactly.
This seems folklore, but as we were unable to find a proof, we provide one in the
full version. The result and the proof strategy are mentioned in [Coh00, Se. 6.2.4]
in the context of quadratic fields and in Roblot’s PhD thesis [Rob97] (just after
Lemma 2.14). But both references are very brief on the topic. We note that a
detailed study was done on a p-adic counterpart in [Bel04a].

Lemma 2.5. Let k ≤ d arbitrary. There exists an algorithm that, given ỹ such
that |ỹ − σk(x)| ≤ 2−p for some x ∈ K and some p ≥ poly(d, log δK , log ‖Φ‖,
size(x)), recovers x as a rational linear combination of the basis (r1, . . . , rd) of R
in ppt with respect to p.

2.4 Ideals and Modules

Ideals. An integral ideal I is a subset of R that is stable by addition and by
multiplication with any element of R. A fractional ideal is a subset of K of the
form x · I for some x ∈ K and some integral ideal I ⊆ R. We write 〈z〉 the
principal (fractional) ideal generated by z ∈ K. Using the canonical embedding,
any non-zero fractional ideal of K is identified to a d-dimensional lattice, called
ideal lattice. The algebraic norm of an integral ideal I ⊆ R is defined by N (I) =
|R/I|. We extend the notation to a fractional ideal xI with x ∈ K and I an
integral ideal, by setting N (xI) = N (x) · N (I). For a non-zero fractional ideal
I = I1/2 with I1, I2 ⊆ R and gcd(I1, I2) = R, we define the quantity size(I) :=
log(N (I1)) + log(N (I2)).
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Two-Element Representation of an Ideal. Any fractional ideal I can be generated
by only two elements, i.e., there exist x, y ∈ K such that I = 〈x〉+ 〈y〉 (see, e.g.,
[Coh95, Prop. 4.7.7]). In fact, for any x ∈ I \ {0}, there exists y ∈ I such that
I = 〈x〉 + 〈y〉. The lemma below states that computing such a y, given as input
(I, x), can be done in probabilistic polynomial time.

Lemma 2.6 (Adapted from [Bel04b], Alg. 6.15 and [FS10], Th. 3). There
exists a probabilistic algorithm taking a fractional ideal I ⊂ K and a non-zero
x ∈ I as inputs, computing y ∈ I such that I = 〈x〉 + 〈y〉, and whose run-time
is polynomial in size(x), size(I) and log(ΔK).

Proof. Wlog, we can restrict the study to non-zero integral ideals. The algorithm
is the same as the one given in [FS10, Fig. 1], except that in Step 1, the element x1

is chosen to be x, rather than the first vector of a reduced basis. The correctness
proof is unchanged. The upper bounds on the bit-sizes of the elements appearing
during the algorithm execution do change, but one can check that all these bit-
sizes stay polynomial in size(x), as well as the other quantities related to I
and K that were already present in [FS10] (which are all polynomial in size(I)
and log ΔK). So overall, the run-time remains polynomial in size(x), size(I)
and log ΔK . ��
Algorithmic Problems Over Ideal Lattices. The ideal-HSVP (or id-HSVP for
short) problem is the HSVP problem restricted to lattices that are (fractional)
ideal lattices. Using the fact that for an ideal lattice I ⊂ K we have det(I) =
√|ΔK | · N (I), the problem admits the following equivalent formulation.

Definition 2.7 (γ-id-HSVP). Let γ ≥ 1. Given as input a non-zero fractional
ideal I ⊂ K (represented by an arbitrary Z-basis), the γ-id-HSVP problem asks
to find an element w ∈ I \ {0} such that ‖w‖ ≤ γ · √d · Δ

1/(2d)
K · N (I)1/d.

Observe that γ-id-HSVP is equivalent to γ′-SVP in ideal lattices, up to poly-
nomial losses ≤ √

d · Δ
1/(2d)
K in the approximation factors γ and γ′, thanks to

the inequalities

N (I)1/d ≤ λ1(I) ≤
√

d · Δ
1/(2d)
K · N (I)1/d,

which hold for any non-zero fractional ideal I. The approximation factor loss is
polynomial when Δ

1/(2d)
K ≤ poly(d).

If γ = exp( ˜O(dα)) for α ∈ [0, 1], then Id-HSVP can be solved using lattice
reduction algorithms [Sch87], in time exp( ˜O(d1−α)). In [CDW21], Cramer, Ducas
and Wesolowski obtained a heuristic quantum polynomial-time algorithm for γ =
exp( ˜O(d1/2)) for cyclotomic fields. In [PHS19], Pellet-Mary, Hanrot and Stehlé
gave a quantum heuristic algorithm for γ = exp( ˜O((log ΔK)α+1)/d) running
in time exp( ˜O((log ΔK)1−2α)) for any field K, where α ∈ [0, 1/2] is arbitrary.
They also propose a classical variant of their algorithm, achieving the same
approximation factor γ in time exp( ˜O((log ΔK)max(2/3,1−2α))) for any field K;
and in time exp( ˜O(dmax(1/2,1−2α))) for cyclotomic fields. Both the classical and
the quantum algorithms require an advice depending only on the field K, whose
bit-length is bounded as exp( ˜O((log ΔK)1−2α)).
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Smoothing Ideals. The following lemma from [PRS17] provides a sufficient con-
dition for a diagonal matrix S to be above the smoothing parameter of an ideal
lattice.

Lemma 2.8 ([PRS17], Le. 6.9). Let I ⊂ K be a fractional ideal and S ∈ R
d×d

be a diagonal matrix with positive diagonal coefficients. Assume that

c := (
∏

i

Sii)1/d · (N (I)ΔK)−1/d ≥ 1,

then 1 ≥ ηε(S−1I), where ε = exp(−c2d).

Modules. For � ≥ k ≥ 1, a rank-k module M ⊂ K

R

is a set of the form M =
b1I1+. . .+bkIk for some non-zero ideals (Ii)i and some KR-linearly independent
vectors (bi)i (i.e., if

∑

i yibi = 0, then all yi’s must be 0). The tuple ((Ii,bi))i is
called a pseudo-basis of M . If M admits a pseudo-basis for which all the Ii’s are
equal to R, then M is called free. We define det(M) as the determinant of M
when identified with a kd-dimensional lattice via the canonical embedding σ.
For any pseudo-basis ((Ii,bi))i of M , we have

det(M)2 = Δk
K · N

(

detKR
(B

T
B)

∏

i

I2i

)

, (2.2)

where detKR
is the determinant of a square matrix over KR.

2.5 Oracle Hidden Center Problem

In the search to decision reduction from Sect. 5, we will make use of the OHCP
technique from [PRS17]. The proof of Proposition 2.10 is provided in the full
version.

Definition 2.9 (Oracle Hidden Center Problem [PRS17], Def. 4.3). Let
ε, δ ∈ (0, 1) and β ≥ 1. An OHCP instance consists in a scale parameter D > 0
and a randomized oracle O : R

k × R≥0 → {0, 1} such that, for all z ∈ R
k with

‖z − z∗‖ ≤ βD and t ∈ R≥0, it holds that Pr(O(z, t) = 1) = p(t + log ‖z − z∗‖),
where z∗ ∈ R

k is an unknown center satisfying δD ≤ ‖z∗‖ ≤ D and p(·) is
an unknown function. The goal of the OHCP is to recover z̃ ∈ R

k such that
‖z̃ − z∗‖ ≤ εD.

Proposition 2.10 (Adapted from [PRS17], Prop. 4.4). There exists an
algorithm that takes as input a parameter κ ≥ 20 log(k + 1), the scaling param-
eter D and the oracle O of a (exp(−κ), exp(−κ), 1 + 1/κ)-OHCP instance in
dimension k, and solves it with probability ≥ 1−exp(−κ), in time poly(κ, k), pro-
vided the oracle O satisfies the extra following conditions. For some p∞ ∈ [0, 1]
and t∗ ≥ 0 we have

1. p(s∗) − p∞ ≥ 1/κ;
2. |p(t) − p∞| ≤ 2 exp(−t/κ) for any t ≥ 0;
3. for any t1, t2 ≥ 0, it holds that |p(t1) − p(t2)| ≤ κ

√|t1 − t2|;
where p(t) = Pr(O(0, t) = 1).
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3 Different Variants of the NTRU Problem

In this section, we define the three variants of the NTRU problem that we will
consider in this work.

3.1 NTRU Instances

We first define NTRU instances, which will be the inputs to the NTRU problem
variants. We also consider the less standard case of tuple NTRU instances, which
has also been considered in cryptographic constructions (see, e.g., the variant of
the candidate cryptographic multilinear map from [GGH13] proposed in [LSS14,
Se. 6]). All definitions of this section readily extend to the tuple setting, in a
manner that is consistent with the second part of Definition 3.1.

Definition 3.1 ((γ, q)-NTRU instance). Let q ≥ 2 an integer and γ > 0 a
real number. A (γ, q)-NTRU instance is an element h ∈ Rq such that there exists
(f, g) ∈ R2 \ {(0, 0)} with g · h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ. The pair (f, g)
is called a trapdoor of the NTRU instance h.

For t ≥ 1 and γ and q as above, a (γ, q, t)-tuple-NTRU instance is a tuple
(hi)i≤t ∈ Rq such that there exists ((fi)i≤t, g) ∈ Rt+1 \ {(0, . . . , 0)} with g · hi =
fi mod q and maxi ‖fi‖, ‖g‖ ≤ √

q/γ.

For a uniform h in Rq, we will see below that the expected norm of a smallest
trapdoor (f, g) is of the order of

√
q (up to factors depending on the field). Hence,

the quantity γ of an NTRU instance measures the gap between the size of a short
trapdoor of h and the size of a smallest trapdoor of h we would have expected
if h was uniform modulo q. Note also that any (γ, q)-NTRU instance is also a
(γ′, q)-NTRU instance for any γ′ ≤ γ (the quantity γ is only a lower bound on
the promised gap).

We now consider distributions over NTRU instances. To be useful for con-
structing cryptosystems, these distributions must be efficiently samplable and we
also need to be able to sample, together with the NTRU instance h, a trapdoor
(f, g) for h. This motivates the following definition.

Definition 3.2 ((D, γ, q)-NTRU setup). Let q ≥ 2, γ > 0 and D a distri-
bution over (γ, q)-NTRU instances. A (D, γ, q)-NTRU setup is a ppt algorithm
(with respect to log q and log ΔK) sampling triples (h, f, g) ∈ Rq × R2 such that

• the marginal distribution of h is D,
• (f, g) �= (0, 0) and ‖f‖, ‖g‖ ≤ √

q/γ,
• g · h = f mod q.

It was shown in [SS11] that for power-of-2 cyclotomic fields, there exists a
(D, γ, q)-NTRU setup with D ≈2−Ω(d) U(R×

q ) for any prime q ≥ 5 and some γ =
1/poly(d). This was extended to any cyclotomic field in [WW18]. In such cases,
the decision NTRU problem introduced below is information-theoretically hard,
if we replace U(Rq) by U(R×

q ). In this work, we rather focus on the case of γ ≥ 1.
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3.2 Decision NTRU Problem

We can now define the decision variant of the NTRU problem.

Definition 3.3 ((D, γ, q)-dNTRU). Let q ≥ 2, γ ≥ 1 and D a distribution
over (γ, q)-NTRU instances. The (D, γ, q) decisional NTRU problem ((D, γ, q)-
dNTRU for short) asks to distinguish between samples from D and from U(Rq).
The advantage of an algorithm A against the (D, γ, q)-dNTRU problem is defined
as

Adv(A) :=
∣

∣

∣ Pr
h←D

(A(h) = 1
) − Pr

u←U(Rq)

(A(u) = 1
)

∣

∣

∣,

where the probabilities are also over the internal randomness of A.

A reduction from dNTRU to sRLWE is sketched in [Pei16, Se. 4.4.4].

3.3 Search NTRU Problems

We consider two different search variants for the NTRU problem. The first one
consists in finding a trapdoor (f, g) for an NTRU instance h such that ‖f‖
and ‖g‖ are as small as possible, whereas the second variant only asks to recover
any multiple (xf, xg) (with x ∈ K) of a small trapdoor (f, g). We explain below
why both variants may be of interest. Further, for both variants, the definition
comes with worst-case and average-case flavours.

Definition 3.4 ((D, γ, γ′, q)-NTRUvecand (γ, γ′, q)-wcNTRUvec). Let q ≥ 2,
γ ≥ γ′ > 0 and D a distribution over (γ, q)-NTRU instances. The (D, γ, γ′, q)
average-case search NTRU vector problem ((D, γ, γ′, q)-NTRUvec for short) asks,
given as input some h sampled from D, to compute a pair (f, g) ∈ R2 \ {(0, 0)}
such that g·h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ′. The advantage of an algorithm A
against the (D, γ, γ′, q)-NTRUvec problem is defined as

Adv(A) = Pr
h←D

⎛

⎝A(h) = (f, g) with

∣

∣

∣

∣

∣

∣

g · h = f mod q
(f, g) �= (0, 0)
‖f‖, ‖g‖ ≤ √

q/γ′

⎞

⎠ ,

where the probability is also over the internal randomness of A.
The (γ, γ′, q) worst-case search NTRU vector problem ((γ, γ′, q)-wcNTRUvec

for short) asks, given as input a (γ, q)-NTRU instance h, to compute a pair
(f, g) ∈ R2 \ {(0, 0)} such that g · h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ′.

Before describing the second search variant of the NTRU problem, we prove
the following lemma, which states that all short trapdoors (f, g) of an NTRU
instance h are K-multiples of one another.

Lemma 3.5. Let q ≥ 2, γ >
√

2 and h be a (γ, q)-NTRU instance. Then, for
all trapdoors (f, g), (f ′, g′) ∈ R2 \ {(0, 0)} with ‖f‖, ‖g‖, ‖f ′‖, ‖g′‖ ≤ √

q/γ and
g ·h = f mod q, g′ ·h = f ′ mod q, it holds that (f, g) = x·(f ′, g′) for some x ∈ K.

Equivalently, there exists a unique field element hK ∈ K such that, for all
trapdoors (f, g) ∈ R2 \ {(0, 0)} with ‖f‖, ‖g‖ ≤ √

q/γ and g · h = f mod q, it
holds that f/g = hK (where the division is performed in K and not modulo q).
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Proof. Let (f, g) and (f ′, g′) be as in the lemma statement. Then

g′ · f = g′ · (g · h) = g · (g′ · h) = g · f ′ mod q.

This implies that g′f − gf ′ ∈ qR. Moreover, we know that ‖g′f − gf ′‖ ≤ ‖g′‖ ·
‖f‖+‖g‖·‖f ′‖ ≤ 2q/γ2 < q by assumption on γ. Since any non-zero element of R
has euclidean norm at least 1, we conclude that all non-zero elements of qR have
norm at least q, and so g′f −gf ′ = 0 in K as desired. The equivalent formulation
follows immediately by taking hK = f/g for any short trapdoor (f, g). Note that
g must be invertible in K because otherwise g = 0, which implies that f ∈ qR
and so f cannot satisfy ‖f‖ ≤ √

q/γ. ��
We now describe our second search variant of the NTRU problem. Since

we have seen in Lemma 3.5 that recovering a K-multiple of a short trapdoor
is equivalent to recovering the (unique) element hK , we will use this second
approach in the description of the problem.

Definition 3.6 ((D, γ, q)-NTRUmodand (γ, q)-wcNTRUmod). Let q ≥ 2, γ >√
2 and D a distribution over (γ, q)-NTRU instances. The (D, γ, q) search NTRU

module problem ((D, γ, q)-NTRUmod for short) asks, given as input an NTRU
instance h sampled from D, to recover the unique field element hK ∈ K associ-
ated to h (as defined in Lemma 3.5). The advantage of an algorithm A against
the (D, γ, q)-NTRUmod problem is defined as

Adv(A) = Pr
h←D

(

A(h) = hK

)

,

where the probability is also over the internal randomness of A.
The (γ, q) worst-case search NTRU module problem ((γ, q)-wcNTRUmod for

short) asks, given as input a (γ, q)-NTRU instance h, to recover the unique field
element hK ∈ K associated to h.

We note that NTRUmod is definitionally convenient in that the quantity hK

that we are looking for is unique. In NTRUvec, on the contrary, the short trapdoor
(f, g) that we are looking for is far from being unique: it can always be multiplied
by small elements of R to obtain other trapdoors.

Given a (γ, q)-NTRU instance h, one can construct the following free rank-2
module Mh:

Mh :=
(

1 0
h q

)

· R2 =
{

(g, f)T ∈ R2 | g · h = f mod q
}

.

This module is called the NTRU-module associated to h. As a lattice, it has
determinant detMh = ΔK · qd and dimension 2d. If it were a generic lattice
with such determinant and dimension, we would heuristically expect that its
minimum is Θ(

√
d · Δ

1/(2d)
K · √

q). However, since h is a (γ, q)-NTRU instance
with γ >

√
2, we know that there exists an unexpectedly short vector (g, f)T

in the module Mh. This short vector is not unique, any small multiple (rg, rf)T
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with r ∈ R small is also a short vector of Mh. However, Lemma 3.5 implies
that the module spanned by all these short vectors has rank 1 and is unique.
Moreover, since this module contains unexpectedly short vectors, it will have an
unexpectedly small volume. Summing up, the rank-2 module Mh has multiple
unexpectedly short vectors and a unique unexpectedly short rank-1 sub-module.
NTRUvec asks to find any of the unexpectedly short non-zero vectors of Mh,
whereas NTRUmod asks to recover the unique short rank-1 sub-module (hence
the names “NTRU vector” and “NTRU module”).

3.4 Elementary Relations Between the Different NTRU Problems

NTRUmod and NTRUvec respectively reduce to their worst-case counterparts.
The proof of the following lemma is similarly direct.

Lemma 3.7. Let q ≥ 2, γ ≥ γ′ >
√

2. Then there exists a ppt reduction from
(γ, q)-wcNTRUmod to (γ, γ′, q)-wcNTRUvec. In the average-case setup, the reduc-
tion preserves the distribution of instances.

If one assumes that ideal-HSVP is easy, then the latter admits a converse
result. The proof of the following lemma is available in the full version.

Lemma 3.8. Let q ≥ 2, γ ≥ γ′ >
√

2 and ε > 0. Then there exists a
ppt reduction from (γ, γvec, q)-wcNTRUvec to (γ, q)-wcNTRUmod and γhsvp-id-
HSVP, where

γvec =
1

(1 + ε)
√

2Δ
1/(2d)
K

· γ

γhsvp
.

In the average-case setup, the NTRUmod and NTRUvec instance distributions are
identical.

To reduce dNTRU to NTRUmod, it suffices to show that for a uniform h, we
do not expect an unexpectedly short non-zero vector (or short rank-1 submodule)
in Mh. The proof of the following lemma is available in the full version.

Lemma 3.9. Let q ≥ 2 be a prime that does not divide ΔK , γ > 16 · √
d ·

Δ
1/(2d)
K and D a distribution over (γ, q)-NTRU instances. Then there exists a ppt

reduction from (D, γ, q)-dNTRU to (D, γ, q)-NTRUmod. Further, the reduction
makes a single call to the NTRUmod oracle, and if the advantage of the NTRUmod

solver is ε, then the advantage of the resulting dNTRU solver is ≥ ε − 2−d.

The objective of the next two sections is to (partly) complete the picture by
giving two more sophisticated reductions: a reduction from id-HSVP to NTRUvec

and a reduction from NTRUmod to dNTRU.
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4 Reduction from Ideal-HSVP to NTRUvec

This section is devoted to reducing worst-case id-HSVP to average-case
NTRUvec. For this purpose, we first exhibit a Karp reduction from worst-case id-
HSVP to wcNTRUvec. This reduction is then enhanced by using the worst-case
to average-case reduction for id-HSVP from [dBDPW20], resulting in a reduc-
tion from worst-case id-HSVP to average-case NTRUvec, where the NTRUvec

average-case distribution is defined as the distribution obtained by applying the
worst-case to worst-case reduction to the distribution on ideals from [dBDPW20].
In the process, we improve the reduction of [dBDPW20] to better suit our needs.
We extend it to regimes in which it is not polynomial-time anymore, but allows
to reach smaller values for the NTRU modulus q, and we show that it allows to
sample from the average-case id-HSVP distribution along with a short non-zero
element of the ideal (provided q is sufficiently large, or we have access to a quan-
tum computer). The latter is important to allow to sample from the average-case
distribution over NTRU instances, along with a trapdoor.

4.1 Transforming an Ideal Lattice into an NTRU Module

In this section, we show how to efficiently ‘embed’ an ideal lattice into an NTRU
module such that any sufficiently short vector of the NTRU module provides a
short vector of the embedded ideal lattice. We first give an efficient reduction
from ideal-HSVP to worst-case vectorial NTRU.

Theorem 4.1. Let q ≥ 2 and γ ≥ γ′ > 0 with γ · γ′ · √
d > 1. Let γhsvp =

4dδK · γ/γ′. There is a ppt (Karp) reduction from γhsvp-id-HSVP to (γ, γ′, q)-
wcNTRUvec for ideals I ⊆ R satisfying N (I) ∈ [N/2d, N ], with

N =

⎢

⎢

⎢

⎣

( √
q

γ · d1.5 · δK · Δ
1
2d

K

)d
⎥

⎥

⎥

⎦ .

Note that the reduction is restricted to integral ideals of bounded norms.
The lower bound is not restrictive: given a non-zero integral ideal I such that
N (I) ≤ N , we can scale it to the non-zero integral ideal I ′ = �(N/N (I))1/d� ·
I, which satisfies N (I ′) ∈ [N/2d, N ] and for which a γhsvp-id-HSVP solution
directly leads to a γhsvp-id-HSVP solution for I. Concerning the upper bound
restriction, the id-HSVP worst-case to average-case reduction from [dBDPW20]
(as refined in Subsect. 4.2) shows that we can wlog focus on integral ideals I of
norms N ≈ 2d1+α

for some α ∈ (0, 1]. This impacts the choice of the NTRU
modulus q.

Let us now focus on the problem parameters. If we put aside factors that
depend only on the number field, we can set N1/d ≈ √

q/γ, and we then obtain
that γhsvp ≈ γ/γ′. This means that the approximation factor (which is γ/γ′ in
the NTRU case) stays roughly the same, and that the root determinant of the
NTRU module is γ times larger than the one of the ideal lattice.
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Algorithm 4.1. Transforming an ideal lattice into an NTRU instance
Input: A Z-basis of a non-zero ideal I ⊆ R and a modulus q.
Output: An NTRU instance h.
1: Compute z ∈ K such that I = R ∩ 〈z〉 (see Lemma 4.2).
2: Let h = �q/z� mod q ∈ Rq.
3: return h

The transformation that embeds an ideal lattice into an NTRU module is
described in Algorithm 4.1. In Lemma 4.3, we show some properties of Algo-
rithm 4.1, which will be used to prove Theorem 4.1.

Lemma 4.2. There exists a ppt algorithm (in size(I) and log ΔK) which, given
a non-zero integral ideal I as input, computes z ∈ K such that I = R ∩ 〈z〉.
Proof. If I = 0, then the algorithm returns z = 0. If I = R, it returns z = 1. We
now assume that I is neither 0 nor R. Since I ⊆ R, it holds that 1 ∈ I−1. Let
y ∈ I−1 be the output of the algorithm of Lemma 2.6, given (I−1, 1) as input:
we have I−1 = 〈1〉 + 〈y〉. Note that I �= R implies that y �= 0. We then define
z = 1/y, which fulfills our needs as J1 ∩ J2 = (J−1

1 + J−1
2 )−1 for any non-zero

fractional ideals J1 and J2. ��
When using Lemma 4.2 in Algorithm 4.1, the element z is necessarily non-

zero, as I is non-zero. The analysis of Algorithm 4.1 follows the intuition pro-
vided by the case of principal ideals (with a known generator) described in the
introduction.

Lemma 4.3. Let q ≥ 2 and I ⊆ R a non-zero integral ideal. On input (I, q),
Algorithm 4.1 outputs h ∈ Rq such that

• there exists a pair (f, g) ∈ R2 \ {(0, 0)} with g · h = f mod q and ‖f‖, ‖g‖ ≤
d1.5 · δK · Δ

1/(2d)
K · N (I)1/d;

• for any pair (f ′, g′) ∈ R2 \{(0, 0)} with g′ ·h = f ′ mod q and ‖f ′‖∞, ‖g′‖∞ <

q/(d · δK · Δ
1/(2d)
K · N (I)1/d), we have g′ ∈ I \ {0}.

Moreover, Algorithm 4.1 runs in time polynomial in size(I), log q and log ΔK .

Proof. The run-time of the algorithm follows from Lemma 4.2. For the proofs of
the two main statements, we consider g ∈ I \ {0} with minimal infinity norm.
By Minkowski’s bound, we have that ‖g‖∞ ≤ Δ

1/(2d)
K · N (I)1/d.

We now prove the existence of f such that (f, g) is a short trapdoor for h.
By multiplying g with h, we obtain

g · h = g · �q/z = g · q/z + f,

with f := −g · {q/z}. Since g ∈ I and z−1 ∈ I−1 (because I ⊆ 〈z〉), we have
that g · q/z ∈ qR. This implies that f ∈ R and gh = f mod q, as desired. Let us
now compute an upper bound on the norm of f (we already know that ‖g‖ ≤



20 A. Pellet-Mary and D. Stehlé

√
d·Δ1/(2d)

K ·N (I)1/d). We know from the preliminaries that ‖{q/z}‖∞ ≤ d/2·δK ,
from which we obtain:

‖f‖ ≤ ‖g‖ · (d · δK) ≤ d3/2 · δK · Δ
1
2d

K · N (I)
1
d .

Let us now prove the second property of the lemma. Let (g′, f ′) ∈ R2\{(0, 0)}
be such that g′ · h = f ′ mod q and

‖f ′‖∞, ‖g′‖∞ <
q

d · δK · Δ
1
2d

K · N (I)
1
d

.

We first show that g′ �= 0. Assume by contradiction that g′ = 0. Then
f ′ = 0 mod q, i.e., f ′ ∈ qR. But any non-zero element of qR has infinity norm ≥ q
(using the fact that any non-zero element of R has infinity norm ≥ 1). Since we
know that ‖f ′‖∞ < q, we conclude that f ′ = 0, which contradicts the assumption
that (f ′, g′) �= (0, 0).

We now show that g′ ∈ I. Recall that z is such that I = R ∩ 〈z〉. Since we
already know that g′ ∈ R, it suffices to prove that g′ ∈ 〈z〉, i.e., that g′/z ∈ R.
By definition of h, we have:

g′ · q/z = g′ · h + g′ · {q/z} = f ′ + g′ · {q/z} + q · r,

for some r ∈ R. Multiplying this equation by g/q (recall that g is a shortest
non-zero vector of I for the infinity norm), we obtain

g′ · g/z = (f ′ + g′ · {q/z}) · g/q + g · r.

We have seen that g/z ∈ R, so that both terms g′ · g/z and g · r are in R. We
hence have that the term (f ′ + g′ · {q/z}) · g/q must also belong to R. Further,
we know that

‖(f ′ + g′ · {q/z}) · g/q‖∞ ≤ (‖f ′‖∞ + ‖g′‖∞ · ‖{q/z}‖∞) · ‖g‖∞/q

≤ max(‖f ′‖∞, ‖g′‖∞) · (1 + d/2 · δK) · Δ
1
2d

K · N (I)
1
d /q.

By assumption, the above is < 1. Since no non-zero element of R has infinity
norm < 1, we conclude that f ′ + g′ · {q/z} = 0. This implies that g′ · q/z = q · r.
Dividing this equality by q, we obtain that g′/z ∈ R, as desired. ��

We are now ready to prove Theorem 4.1.

Proof (Theorem 4.1). The reduction consists in calling Algorithm 4.1 on I and q
to obtain some h ∈ Rq, then calling the wcNTRUvec oracle on h and returning
the oracle output.

Let I ⊆ R be a γhsvp-id-HSVP instance satisfying N (I) ∈ [N/2d, N ], with
N as in the theorem statement. The first statement of Lemma 4.3 ensures
that the element h computed by the reduction is a valid (γ, γ′, q)-wcNTRUvec

instance. The wcNTRUvec oracle hence outputs a pair (f ′, g′) ∈ R2 \ {(0, 0)}
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such that g′ · h = f ′ mod q and ‖f ′‖, ‖g′‖ ≤ √
q/γ′. By the parameter condi-

tions, the assumption of the second statement of Lemma 4.3 holds. We hence
have that g′ ∈ I \{0}. Further, by definition of N , the lower bound on N (I) and
definition of γhsvp, we have

‖g′‖ ≤
√

q

γ′ ≤ 21/d · N
1
d · γ · d1.5 · δK · Δ

1
2d

K

γ′ ≤ γhsvp ·
√

d · Δ
1
2d

K · N (I)
1
d .

Note that we used the inequality �x� ≥ x/2, which holds for any x ≥ 1. ��

4.2 From Worst-Case id-HSVP to Average-Case id-HSVP

In [dBDPW20], the authors gave a worst-case to average-case reduction for id-
HSVP, for a certain average-case distribution of ideals. We adapt [dBDPW20,
Th. 4.5] to Theorem 4.4 below, so that it better fits with our application. We
explain in the full version how to adapt the proof.

Theorem 4.4 (Adapted from [dBDPW20], Th. 4.5, ERH). Let K a num-
ber field of degree d and N ≥ (12d1.5 log d · δK · Δ

1/(2d)
K )d an integer. Let γ > 0.

There exist γ′ = γ · O(d1.5Δ
1/d
K ), a distribution Did-HSVP

N over non-zero integral
ideals of K of norm ≤ N and a reduction:

• from worst-case γ′-id-HSVP for all fractional ideals of K,
• to average-case γ-id-HSVP for integral ideals distributed from Did-HSVP

N .

The reduction decreases the success probability by at most 2−Ω(d), makes a sin-
gle call to the average-case γ-id-HSVP oracle, and runs in time T id-HSVP

β +
poly(log N, size(I), log ΔK) where

• I is the input (worst-case) ideal;
• T id-HSVP

β is the time needed to solve id-HSVP with approximation factor 2d/β

and

β =

⌈

d

log
(

N1/d/(6d1.5 log d · δK · Δ
1/(2d)
K )

)

⌉

.

Moreover, there exist N0 = poly(Δ1/d
K , δK , d)d and a ppt algorithm A (with

respect to log N and log ΔK) such that, for all N ≥ N0, algorithm A samples
pairs (J,w) such that:

• the ideal J is a non-zero integral ideal of norm ≤ N ;
• the distribution ˜Did-HSVP

N of J satisfies ˜Did-HSVP
N ≈2−Ω(d) Did-HSVP

N ;
• the element w ∈ J \ {0} satisfies ‖w‖ ≤ poly(d, δK ,Δ

1/d
K , 2

√
log ΔK+d log d) ·

N (J)1/d.

If we have access to a factoring oracle or if N ≥ N ′
0 = N0 · 2O(d

√
log ΔK+d log d),

then we can reduce the size of w down to ‖w‖ ≤ poly(d, δK ,Δ
1/d
K ) · N (J)1/d.
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Note that even though the reduction relies on a worst-case id-HSVP solver,
the latter is with an approximation factor 2d/β which is typically much larger
than γ′. This implies that T id-HSVP

β is expected to be much smaller than the

time needed to solve γ′-id-HSVP. Assume that Δ
1/(2d)
K and δK are both poly(d)

and that we use the lattice reduction algorithm from [Sch87] with block size β to
solve 2d/β-id-HSVP. It runs in time T id-HSVP

β = 2O(β) (up to a poly(log N, log ΔK)
factor). Then, it can be seen that the reduction is polynomial-time when N =
2Ω(d2); it becomes more expensive when N is below this bound; and it ends up
being 2O(d) when N ≈ poly(d)d. The run-time of the reduction can be improved
using id-HSVP algorithms such as those mentioned in Subsect. 2.3. In all cases,
we note that one can sample ideals J from Did-HSVP

N , together with a short vector
of J in quantum polynomial time even for small N , and in classical polynomial
time for larger N ’s (of the order of 2O(d1.5√

log d) if Δ
1/(2d)
K and δK are both

poly(d)).
All the ingredients for the proof of Theorem 4.4 are present in [dBDPW20],

however the latter only considered the case of N ≥ (2d ·6d1.5 log d ·Δ1/(2d)
K ·δK)d,

since this is the range of parameters for which the reduction runs in polynomial
time. The generalization to smaller N and larger run-time is relatively immediate
and is provided in the full version. A further difference with [dBDPW20] is
that the distribution Did-HSVP

N in [dBDPW20] is over the inverses of integral
ideals (see [dBDPW20, Le. 4.1]) whereas here it is more convenient to have a
distribution over integral ideals. Finally, we also explain in the full version how
to sample ideals from Did-HSVP

N with a somehow short vector.

4.3 An Average-Case Distribution of NTRU Instances

In this subsection, we define a distribution DNTRU
q,γ over (γ, q)-NTRU instances.

This distribution is defined as the one being produced by Algorithm 4.2. In fact,
Algorithm 4.2 actually provides a (γ̃, q)-NTRU setup for some γ̃ ≥ γ, i.e., the
instance h can be sampled along with a trapdoor (f, g) that may be a little larger
than a shortest one.

Algorithm 4.2. Sampling h from DNTRU
q,γ together with a trapdoor

Input: An integer q ≥ 2 and a real γ ≥ 1
Output: A triple (h, f, g) ∈ Rq × R2.

1: Let N =

⌊( √
q

γ·d1.5·δK ·Δ1/(2d)
K

)d
⌋
.

2: Sample I from D̃id-HSVP
N with v ∈ I\{0} such that ‖v‖ ≤ poly(d, δK , Δ

1/d
K )·N (I)1/d

(see Theorem 4.4).
3: Let I ′ = �(N/N (I))1/d� · I and v′ = �(N/N (I))1/d� · v.
4: Run Algorithm 4.1 on I ′; let h ∈ Rq be the output and z as in Algorithm 4.1.
5: Compute g = v′ and f = −g · {q/z}.
6: return (h, f, g).
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Lemma 4.5. There exist Γ = poly(d, δK ,Δ
1/d
K ) and Γ ′ = Γ · 2O(

√
log ΔK+d log d)

such that if
√

q/γ ≥ Γ (resp.
√

q/γ ≥ Γ ′), then Algorithm 4.2 runs in quantum
(resp. classical) polynomial time (with respect to log q and log ΔK).

Proof. Let Γ = 2d1.5 · δK ·Δ1/(2d)
K ·N1/d

0 (resp. Γ ′ = 2d1.5 · δK ·Δ1/(2d)
K · (N ′

0)
1/d),

where N0 (resp. N ′
0) is as in the second part of Theorem 4.4. Note that we have

Γ = poly(d, δK ,Δ
1/d
K ) (resp. Γ ′ = Γ · 2O(

√
log ΔK+d log d)) as desired. Moreover,

by definition of N and using the fact that
√

q/γ ≥ Γ (resp.
√

q/γ ≥ Γ ′), we have
N ≥ N0 (resp. N ≥ N ′

0). Hence, by Theorem 4.4, one can sample (I, v) in Step 2
in quantum (resp. classical) time poly(log N, log ΔK) = poly(log ΔK , log q).

By Theorem 4.4, we also know that the ideal I is non-zero and satisfies
N (I) ≤ N , hence �(N/N (I))1/d� �= 0. Therefore, the ideal I ′ computed at Step 3
is also non-zero, and v′ is a non-zero element of I ′. Thanks to Lemma 4.3, we
know that Algorithm 4.1 can be run on I ′ in time poly(size(I ′), log q, log ΔK).
Since I ′ is integral and N (I ′) ≤ N ≤ qd, we conclude that size(I ′) ≤ poly(log q,
log ΔK). Finally, computing f using the formula −g · {q/z} can also be done in
time poly(log q, log ΔK), since the rounding operation in R is efficient. ��

Now that it is established that Algorithm 4.2 terminates, we can formally
define DNTRU

γ,q as the distribution produced by the algorithm.

Definition 4.6 (Distribution DNTRU
q,γ ). Let q, γ as in Algorithm 4.2. The dis-

tribution DNTRU
γ,q over Rq is defined as the distribution of the element h produced

by Algorithm 4.2 on input (q, γ).

Lemma 4.7. The support of the distribution DNTRU
q,γ is contained in the set of

(γ, q)-NTRU instances.

Proof. Let h be computed by Algorithm 4.2 on input (q, γ). By the first property
of Lemma 4.3, there exists a trapdoor (f�, g�) �= (0, 0) for h, with ‖f�‖, ‖g�‖ ≤
d1.5 ·δK ·Δ1/(2d)

K ·N (I ′)1/d. We have N (I ′) = �(N/N (I))1/d�d ·N (I) ≤ N . Using
the definition of N , we conclude that ‖f�‖, ‖g�‖ ≤ √

q/γ. ��
Algorithm 4.2 gives a way to sample from DNTRU

q,γ together with a trapdoor.

Lemma 4.8. Let q, γ as in Algorithm 4.2 and Γ (resp. Γ ′) as in Lemma 4.5.
If

√
q/γ ≥ Γ (resp.

√
q/γ ≥ Γ ′), then there exist γ̃ = γ/poly(d, δK ,Δ

1/d
K ) such

that Algorithm 4.2 is a (DNTRU
q,γ , γ̃, q)-NTRU quantum (resp. classical) setup.

Proof. We have already seen in Lemma 4.5 that Algorithm 4.2 is quantum (resp.
classical) ppt. We have seen in Lemma 4.7 that D is a distribution over (γ, q)-
NTRU instances. It is hence a distribution over (γ̃, q)-NTRU instances, as γ̃ ≤ γ.
We now show that the sampled pair (f, g) �= (0, 0) satisfies g · h = f mod q and
‖f‖, ‖g‖ ≤ √

q/γ · poly(d, δK ,Δ
1/d
K ).

We have already seen that g = v′ is non-zero. Moreover, by definitions of
f = −g · {q/z} and h = �q/z, is holds that f = g · h mod q (see the proof of
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Lemma 4.3). Further, we have (successively using Theorem 4.4, the definition
of I ′ and the definition of N):

‖g‖ = ‖v′‖ ≤ poly(d, δK ,Δ
1/d
K ) · N (I ′)1/d ≤ poly(d, δK ,Δ

1/d
K ) · N1/d

≤ poly(d, δK ,Δ
1/d
K ) ·

√
q

γ
.

Moreover, by definition of f , we know that ‖f‖ ≤ ‖g‖ · (d · δK). Hence, there
exists some γ̃ = γ/poly(d, δK ,Δ

1/d
K ) such that ‖f‖, ‖g‖ ≤ √

q/γ̃, as desired. ��

4.4 From Average-Case id-HSVP to Average-Case NTRU

By combining the results from Subsects. 4.1 and 4.3, we obtain that, for well-
chosen parameters, average-case id-HSVP for distribution Did-HSVP

N reduces to
average-case NTRUvec for distribution DNTRU

q,γ . The proof of Theorem 4.9 is avail-
able in the full version. This theorem can in turn be combined with Theorem 4.4
to obtain a reduction from worst-case id-HSVP to average-case NTRUvec.

Theorem 4.9. Let q ≥ 2, γ ≥ 1 and γ′ > 0 such that γ · γ′ · √
d > 1 and√

q/γ ≥ 13 · d3 log d · δ2K · Δ
1/d
K . Define:

N =

⎢

⎢

⎢

⎣

( √
q

γ · d1.5 · δK · Δ
1/(2d)
K

)d
⎥

⎥

⎥

⎦ and γhsvp =
γ

γ′ · 4dδK .

There is a ppt reduction (with respect to log ΔK and log q) from average-case
γhsvp-id-HSVP for ideals sampled from ˜Did-HSVP

N to (DNTRU
q,γ , γ, γ′, q)-NTRUvec.

The reduction makes a single call to the NTRUvec oracle and preserves the suc-
cess probability.

5 A Search to Decision Reduction for NTRU

In this section, we provide a reduction from average-case search-NTRUmod with
distribution Ds to average-case dec-NTRU with distribution Dd. The distribu-
tion Ds can be chosen from a large class of distributions (it only has to be
bounded and to have an invertible denominator, as per Definition 5.1 below)
and the distribution Dd is a function of Ds. Moreover, we show that if the dis-
tribution Ds enjoys an NTRU setup, then so does Dd.

5.1 Choice of the Distributions

We start by describing a property of distributions that we will need for our search
to decision reduction. We also describe the distribution Dd as a function of Ds,
and explain how one can sample h with a trapdoor (f, g) from Dd, provided
there is an efficient algorithm doing it for Ds.
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Definition 5.1 (Well-behaved elements and distributions). Let q ≥ 2 be
an integer and B > 1 be a real number. An element h ∈ Rq is said to be B-well-
behaved if there exists f, g ∈ R such that gh = f mod q; 〈f〉+ 〈g〉+ 〈q〉 = R; and
for all 1 ≤ i ≤ d we have 1/B ≤ |σi(f)|, |σi(g)| ≤ B.

A distribution D over Rq is said to be (B, ε)-well-behaved for some ε ≥ 0 if
the probability that h ← D is B-well-behaved is ≥ 1 − ε.

Observe that any (B, 0)-well-behaved distribution over Rq is a distribution
over (γ, q)-NTRU instances, where γ =

√
q/(B

√
d). Observe also that the con-

dition 〈f〉 + 〈g〉 + 〈q〉 = R is equivalent to asking that g is invertible modulo q.
Indeed, since gh = f mod q, then any prime factor dividing both 〈g〉 and 〈q〉
would also be a prime factor of 〈f〉, contradicting the coprimality condition. Let
us now define a randomized mapping φB over Rq.

Definition 5.2 (Function φB). Let q ≥ 2 and B > 1. We define the random-
ized mapping φB over Rq as follows

φB : Rq → Rq

h �→ xh + y mod q where x, y ← DR,2BdδK
.

We extend φB to distributions over Rq: for a distribution D, we let φB(D) be the
distribution over Rq obtained by sampling h ← D and then outputting φB(h).

Finally, we show that if D enjoys an NTRU setup, then so does φB(D).

Lemma 5.3. Let B ≥ 1, q ≥ 2, γ > 0 and D a distribution over (γ, q)-NTRU
instances. If there exists a (D, γ, q)-NTRU setup, then there exists a (D′, γ′, q)-
NTRU setup where D′ is a distribution over Rq such that D′ ≈2−Ω(d) φB(D)
and γ′ = γ/(4Bd1.5δK).

Proof. Let A be a ppt algorithm (with respect to log q and log ΔK) sampling
triples (h, f, g) ∈ Rq × R2 such that the marginal distribution of h is D, (f, g) �=
(0, 0), ‖f‖, ‖g‖ ≤ √

q/γ and g · h = f mod q.
We consider the following algorithm B:

• run A; let (h, f, g) be the output;
• use the algorithm from Lemma 2.2 with parameters σ = 2BdδK and c = 0

to sample x and y (using the basis (r1, . . . , rd) of R);
• return (h′, f ′, g′) = (xh + y, xf + yg, g).

Note that B is ppt and that (f ′, g′) is non-zero and satisfies g′ ·h′ = f ′ mod q.
By Lemma 2.2, we also have

‖f ′‖ ≤ 2Bd1.5δK · (‖f‖ + ‖g‖) ≤ 4Bd1.5δK ·
√

q

γ
.

Finally, as the residual distribution of h is D, Lemma 2.2 also implies that
the residual distribution of h′ is within statistical distance 2−Ω(d) from φB(D).

��
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We can now state the main result of this section: a reduction from NTRUmod

to dNTRU, for well-chosen distributions. This theorem follows from Lemmas 2.5,
5.6 and 5.7, which are stated and proved in the following subsections. The proof
of Theorem 5.4 is provided in the full version.

Theorem 5.4. Let q ≥ 2, B ∈ (1, q], ε ≥ 0 and Ds be a (B, ε)-well-behaved
distribution over Rq. Assume that log q, log ΔK , log ‖Φ‖ ≤ 2o(d) (recall that Φ

is a defining polynomial of K). Define γ′ :=
√

q

4B2d2δK
and assume that γ ≥ 1.

Let A be an algorithm solving (φB(Ds), γ′, q)-dNTRU with advantage Adv(A) ≥
2−o(d). Then, there exists an algorithm B solving (Ds, γ, q)-NTRUmod with γ =√

q/(B
√

d) and advantage Adv(B) ≥ (Adv(A)−2ε)/4. Algorithm B is ppt (with
respect to log q, log ΔK , log ‖Φ‖ and Adv(A)−1) and makes (possibly that many)
oracle queries to A.

Observe that up to polynomial factors depending on the number field K, we
have γ ≈ √

q/B and γ′ ≈ √
q/B2. Said differently, the Euclidean norm of the

short trapdoor is squared when we go from Ds (which has short trapdoors of size
roughly B) to φB(Ds) (which has short trapdoors of size roughly B2). Hence,
one should consider B ≤ q1/4 for the dNTRU instances to have short trapdoors
of norm ≥ √

q.

5.2 Creating New NTRU Instances

In this section, we give a lemma which will allow us to rerandomize an NTRU
instance h so that the distribution of the new NTRU instance depends on
c1σ1(f) + c2σ1(g) for some parameters c1 and c2 that we can customize. This
lemma will be used to prove Lemma 5.7, in the next subsection.

Lemma 5.5. Let (f, g) ∈ R2 \ {(0, 0)} and I = 〈f〉 + 〈g〉. Let c1, c2 ∈ σ1(KR)
(which is either R or C), s0 > 0 and s ≥ √

dδK · (‖f‖ + ‖g‖).
Given t ∈ σ1(KR), we define ψ(t) ∈ KR as (t, 0, . . . , 0)T ∈ KR if σ1 is a real

embedding and as (t/
√

2, t/
√

2, 0, . . . , 0)T ∈ KR if σ1 is a complex embedding
with σ2 = σ1.2

Let D be the output distribution of the following algorithm:

• sample c0 ← Dσ1(KR),s0,0;
• sample x ← DR,s,ψ(c0·c1) and y ← DR,s,ψ(c0·c2);
• return x · f + y · g ∈ I.

Then it holds that D ≈2−Ω(d) DI,S,0, where S is a diagonal matrix with

S11 =
√

s20 · |c1σ1(f) + c2σ1(g)|2 + s2 · (|σ1(f)|2 + |σ1(g)|2)

S22 =
{

S11 if σ1 is a complex embedding
s · √|σ2(f)|2 + |σ2(g)|2 if σ1 is a real embedding

Sii = s ·
√

|σi(f)|2 + |σi(g)|2 for i ≥ 3.

2 The scaling by a factor 1/
√

2 in the complex case ensures that the norm of ψ(t) is
still equal to |t|, which allows simpler expressions.
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The above can be obtained by combining the convolution result of [Pei10,
Th. 3.1] and the discrete Gaussian leftover hash lemma from [LSS14, Th. 5.1].
Unfortunately, the statements of [Pei10, Th. 3.1] and [LSS14, Th. 5.1] do not
exactly match what we need (in particular, non-zero centers are not considered
in [LSS14, Th. 5.1] and the convolution result of [Pei10, Th. 3.1] does not con-
sider c0 being sampled from a smaller space and extended with zeros). In the
full version, we prove some slight variants of these results, in order to prove
Lemma 5.5.

Observe that by taking s = 2BdδK and c1 = c2 = 0, then the distribution
of x · f + y · g is exactly the distribution of the numerator of φB(h), over the
randomness of φB (i.e., when h, f and g are fixed). Note that for Lemma 5.5
to be applicable, we need s = 2BdδK ≥ √

dδK · (‖f‖ + ‖g‖), which holds true
if ‖f‖∞, ‖g‖∞ ≤ B. This is the source of the ‘standard deviation squaring’
in Theorem 5.4. Finally, note that by using the lemma multiple times with
the same h, we obtain tuple NTRU instances (as defined in Definition 3.1),
implying that the dNTRU and NTRUvec problem variants reduce to their tuple
counterparts (under proper parametrization).

5.3 Using the OHCP Framework

We now prove two lemmas for the core of the proof of Theorem 5.4. Lemma 5.6
essentially states that when sampling h from Ds, then one should get a “good” h
with non-negligible probability. Lemma 5.7 then shows that when h is “good”, it
is possible to recover a very accurate approximation of σ1(hK) using the dNTRU
oracle. Combining these two lemmas with Lemma 2.5 (which states that one
can recover an element x ∈ K exactly from a sufficiently good approximation
of σ1(x)) then yields Theorem 5.4 (whose proof is provided in the full version).

Lemma 5.6. Let q ≥ 2, B ∈ (1, q], ε ≥ 0 and Ds be a (B, ε)-well-behaved
distribution over Rq. Let A be an algorithm solving (φB(Ds), γ, q)-dNTRU for
some γ ≥ 1. Then, there exists a set H ⊂ Rq such that every h in H is B-well-
behaved; Prh←Ds(h ∈ H) ≥ Adv(A)/2 − ε; and for all h ∈ H

∣

∣

∣ Pr
(A(φB(h)) = 1

) − Pr
(A(u) = 1

)

∣

∣

∣ ≥ Adv(A)/2,

where the probabilities are taken over the internal randomness of A, the ran-
domness of φB and the random choice of u ← U(Rq) (but not over the choice
of h).

Proof. There exists H0 ⊂ Rq of weight ≥ Adv(A)/2 under Ds such that for
all h ∈ H0, the advantage of A on φB(h) is at least Adv(A)/2. We define H as
the subset of the h’s in H0 that are B-well-behaved. The result follows from the
definition of (B, ε)-well-behavedness and the union bound. ��
Lemma 5.7. Let q ≥ 2, B ∈ (1, q], ε ≥ 0 and Ds be a (B, ε)-well-behaved dis-
tribution over Rq. Let Dd = φB(Ds). Let A and H as in Lemma 5.6. Assume
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that Adv(A)−1, log q, log ΔK ≤ 2o(d). Then, there exists a probabilistic algo-
rithm B that, given an integer � ≤ 2o(d) and any h ∈ H, recovers σ1(hK)
with � bits of absolute precision3 with probability ≥ 1 − 2−Ω(d) (where hK

is defined as in Lemma 3.5). Moreover, algorithm B runs in time polynomial
in �,Adv(A)−1, log q and log ΔK and makes (possibly that many) oracle queries
to A.

Proof. In order to prove the lemma, we will express our problem as an instance
of the Oracle Hidden Center Problem (see Definition 2.9) and then use Propo-
sition 2.10 to conclude.

Let h ∈ H be fixed once and for all, and given to B. Let us also fix some
(unknown) (f, g) ∈ R2 such that g · h = f mod q; g is invertible modulo q; and
|σi(f)|, |σi(g)| ∈ [1/B,B] for all embeddings σi (we know that such f and g exist
since h is B-well-behaved by definition of H). We write I = 〈f〉 + 〈g〉, which is
also fixed once and for all (and is coprime to 〈q〉).

Let k = 1 if σ1 is a real embedding and k = 2 if σ1 is a complex embedding.
In the following, we will identify R

k with σ1(KR). Note that in both cases, the
Euclidean norm of a vector in R

k corresponds to the absolute value of the element
seen in R or C.

In order to fit the OHCP framework, we need to describe a randomized
oracle O that takes as input a pair (z, t) ∈ R

k × R
≥0 and outputs 0 or 1 such

that PrO(O(z, t) = 1) = P (t + ln |z − σ1(hK)|), for some (unknown) function P
(that may depend on h). In other words, we want that the acceptance probability
of the oracle O only depends on t + ln |z − σ1(hK)| (when t and z vary).

We start by considering an oracle Oideal that we do not know how to imple-
ment efficiently, but which is more convenient for the analysis. We will later
replace it by an oracle Oapprox that can be implemented efficiently and whose
behavior is very close to the one of Oideal. Oracle Oideal is as follows. On input
(z, t) ∈ R

k ×R
≥0, it first samples f ′ ← DI,S, where S is a diagonal matrix with

S11 =
√

exp(t − d)2|σ1(f) − zσ1(g)|2 + 4B2d2δ2K(|σ1(f)|2 + |σ1(g)|2)

S22 =
{

S11 if σ1 is a complex embedding
2BdδK

√

(|σ2(f)|2 + |σ2(g)|2) if σ1 is a real embedding

Sii = 2BdδK

√

(|σi(f)|2 + |σi(g)|2) if i ≥ 3.

The astute reader will observe that sampling such an f ′ may be difficult: this is
why we will later introduce Oapprox. Oracle Oideal then defines h′ = f ′/g mod q
(recall that g is invertible modulo q) and returns A(h′).

Note that z and t only appear in S11 (and S22 = S11 if σ1 is a complex
embedding). Since |σ1(f) − zσ1(g)|/|σ1(g)| = |σ1(hK) − z|, we obtain that the
success probability of the oracle depends only on t+ln |z−σ1(hK)| when t and z
vary, as required (recall that h, f and g are fixed once and for all).

3 The term “absolute precision” refers here to |x̃−x| ≤ 2−�, as opposed to the “relative

precision” which would be |x̃−x|
|x| ≤ 2−�.
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In Claim 5.8 below, we show that the oracle Oideal satisfies all the desired
conditions to be an OHCP oracle and the conditions of Proposition 2.10. This
will imply that one can efficiently recover an approximation of σ1(hK) by using
the oracle Oideal as a black box.

Claim 5.8. There exist a parameter κ0 = poly(Adv(A)−1, log q, log ΔK) and an

algorithm B′ that takes as input any parameter κ ≥ κ0 and outputs σ̃1(hK) ∈
σ1(KR) such that |σ̃1(hK) − σ1(hK)| ≤ B2 · exp(−κ) with probability ≥ 1 −
exp(−κ). Algorithm B′ runs in time poly(κ) and makes (possibly that many)
oracle queries to the OHCP oracle Oideal described above.

The difficulty with algorithm B′ from Claim 5.8 is that it makes oracle calls
to Oideal, which we do not know how to run in polynomial time given only access
to h and A (in order to run Oideal efficiently, we would probably need to know
f and g). To handle this difficulty, we describe another oracle Oapprox, whose
behavior is very close to the one of Oideal, but which can be run efficiently.

On input (z, t) ∈ R
k×R

≥0, the randomized oracle Oapprox proceeds as follows.
It first samples c0 in R

k from the continuous Gaussian distribution DRk,exp(t−d),0;
it then defines c1 = ψ(c0) ∈ KR and c2 = ψ(−c0 ·z) ∈ KR (where ψ is as defined
in Lemma 5.5); the oracle then samples x ← ˜DR,2Bd·δK ,c1 and y ← ˜DR,2Bd·δK ,c2

(see Lemma 2.2); finally, the oracle runs A on input ĥ = x · h + y mod q, and
outputs A(ĥ).

Oracle Oapprox can indeed be run in polynomial time from h. Let us now write
f̂ = x · f + y · g, so that ĥ = f̂/g mod q. Observe that Pr(Oapprox(z, t) = 1) =
Pr(A(ĥ) = 1), and Pr(Oideal(z, t) = 1) = Pr(A(h′) = 1), where ĥ and h′ are two
random variables. So |Pr(Oapprox(z, t) = 1) − Pr(Oideal(z, t) = 1)| ≤ dist(ĥ, h′).
Since g is fixed, we have dist(ĥ, h′) = dist(f̂ , f ′), and we obtain that

|Pr(Oapprox(z, t) = 1) − Pr(Oideal(z, t) = 1)| ≤ dist(f̂ , f ′) ≤ 2−Ω(d).

The last inequality comes from Lemma 5.5 and Lemma 2.2.
To conclude, algorithm B is obtained by taking algorithm B′ of Claim 5.8,

but replacing its oracle calls to Oideal by oracle calls to Oapprox, and taking κ =
max(κ0, d, � + 2 ln(B)). By assumption on log q, Adv(A), � and log ΔK , we know
that κ ≤ 2o(d) (recall that B ≤ q), so that algorithm B makes at most 2o(d)

oracle calls to Oapprox. Hence, we obtain that

|Pr(B succeeds) − Pr(B′ succeeds)| ≤ 2o(d) · 2−Ω(d) = 2−Ω(d).

This completes the proof of Lemma 5.7. ��
Proof (Claim 5.8). First, we need to check that the oracle Oideal is a valid OHCP
oracle. Let us write z∗ = σ1(hK). Since σ1(hK) = σ1(f)/σ1(g), we know by
choice of f and g that ‖z∗‖ ∈ [1/B2, B2]. Hence, the oracle Oideal and scale
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parameter D = B2 form a valid instance of the (ε, δ, β)-OHCP problem (cf
Definition 2.9), for any ε ∈ (0, 1), any δ ∈ (0, 1/B4] and any β ≥ 1.

We will show below that for all κ ≥ κ0 with

κ0 := max
(

4Adv(A)−1, 8d(1 + ln(qΔ1/d
K )), 4 ln(B)

)

,

the OHCP oracle satisfies the conditions of Proposition 2.10, with

p∞ = Pr
u←U(Rq)

(A(u) = 1) and s∗ = 0.

More formally, letting p(t) denote Pr(Oideal(0, t) = 1) as in Proposition 2.10, we
prove that

1. p(s∗) − p∞ ≥ 1/κ;
2. |p(t) − p∞| ≤ 2 exp(−t/κ) for any t ≥ 0;
3. for any t1, t2 ≥ 0, it holds that |p(t1) − p(t2)| ≤ κ

√|t1 − t2|.
Using Proposition 2.10, we the conclude that there exists an algorithm B′

solving the (exp(−κ), exp(−κ), 1+1/κ)-OHCP problem in time poly(κ) by mak-
ing oracle calls to Oideal. Thanks to the condition κ ≥ 4 ln(B), it holds that
exp(−κ) ≤ 1/B4 is a valid choice of δ. Moreover, using the fact that B ≤ q, we
see that κ0 = poly(Adv(A)−1, log q, log ΔK), which proves Claim 5.8. We now
proceed to prove the three properties above.

Property 1. We want to show that p(s∗) is very close to Pr(A(φB(h)) = 1),
which will allow us to conclude with Lemma 5.6. Observe that by definition
of the OHCP oracle Oideal, we know that p(s∗) = Pr(A(h′) = 1), where h′ =
f ′/g mod q. So in order to bound the difference between Pr

(A(φB(h) = 1
)

and p(s∗), it suffices to bound the statistical distance between the two random
variables φB(h) and h′, which is equivalent to bounding dist(g · φB(h), f ′) (i.e.,
it suffices to consider the numerator since the denominator is g in both cases).

Using Lemma 5.5 with c1 = c2 = 0 and s = 2BdδK , we know that the distri-
bution of g ·φB(h) is within 2−Ω(d) statistical distance from DI,S2,0, where S2 is
a diagonal matrix with i-th diagonal entry equal to 2BdδK ·√|σi(f)|2 + |σi(g)|2.
Moreover, by definition of Oideal, the distribution of f ′ is DI,S1,0, where S1 is
identical to S2, except for first diagonal coefficient (or first two diagonal coeffi-
cients if σ1 is complex), which is equal to

√

(2BdδK)2(|σ1(f)|2 + |σ1(g)|2) + exp(−2d) · |σ1(f)|2.
We now apply Lemma 2.3 to show that these two Gaussian distributions are

statistically close. We first check that η1/2(S−1
i I) ≤ 1/2, for i ∈ {1, 2}. We know

from Eq. (2.1) that

η1/2(S−1
i I) ≤

√

ln(2d(1 + 2))
π

· λd(S−1
i I)

≤
√

d · λd(S−1
i I)
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Recall that I = 〈f〉+〈g〉, so that f ∈ I. Hence, we know that the S−1
i ·f ·rj ’s are

linearly independent vectors of S−1
i · I (recall that the rj ’s form a basis of R).

For every j, it holds that ‖S−1
i ·f ·rj‖ ≤ δK · ‖S−1

i ·f‖ ≤ δK ·√d/(2BdδK) (since
every diagonal coefficient of Si is no smaller than the corresponding coefficient
of f multiplied by 2BdδK). Hence, we conclude that λd(S−1

i I) ≤ 1/(2
√

d) and
that η1/2(S−1

i I) ≤ 1/2, as desired. We can apply Lemma 2.3 and we obtain that

dist(DI,S1,0,DI,S2,0) ≤ 4
√

d ·
√

�
�S−1

2 S1 − Id

�
�.

The matrix S−1
2 S1 − Id is zero, except for the top-left coefficient (or for the first

two top-left coefficients if σ1 is a complex embedding), which is equal to
√

1 + η−
1 where η = exp(−2d) · |σ1(f)|2/((2BdδK)2 · (|σ1(f)|2 + |σ1(g)|2)). Since η ≤
exp(−2d), we conclude that |√1 + η − 1| ≤ exp(−2d), and so

�
�S−1

2 S1 − Id

�
� ≤

exp(−2d) (or ≤ 2 exp(−2d) in case we had two non-zero coefficients). We finally
obtain that DI,S1,0 ≈2−Ω(d) DI,S2,0, which in turn shows that

|p(s∗) − Pr
(A(φB(h) = 1

)| ≤ 2−Ω(d).

Finally, since h ∈ H, we know from Lemma 5.6 that |Pr(A(φB(h) = 1) − p∞| ≥
Adv(A)/2. Wlog, we can assume that Pr(A(φB(h) = 1)− p∞ ≥ 0 (otherwise we
can simply consider A′ = 1 − A), from which we obtain that

p(s∗) − p∞ ≥ Adv(A)/2 − 2−Ω(d) ≥ Adv(A)/4,

where the last inequality holds asymptotically when d tends to infinity, since we
assumed that 1/Adv(A) ≤ 2o(d). By choice of κ, this implies that p(s∗) − p∞ ≥
1/κ.

Property 2. To prove this second property, we want to show that when t is
sufficiently large, then the distribution of f ′ mod q (where f ′ is implicitly com-
puted by the oracle Oideal as defined above) is statistically close to uniform
in R mod qR. Recall that the support of f ′ is I, which may be a strict subset
of R. However, we know that I = 〈f〉 + 〈g〉 is coprime to 〈q〉. So if ˜f ∈ I is
uniform in I/(qI), then ˜f + qR is a uniform class of R/(qR). Hence, it suffices
to show that f ′ is statistically close to uniform in I/(qI).

Recall that f ′ is sampled from the distribution DI,S, where S is a diago-
nal matrix with positive diagonal coefficients, with S11 ≥ exp(t − d) · |σ1(f)|
(we consider z = 0 here) and Sii ≥ |σi(f)| for i ≥ 2. Taking the prod-
uct, we conclude that

∏

i Sii ≥ exp(t − d) · N (f). Let us call c the quantity
c = (exp(t − d)N (f)/(N (qI) · ΔK))1/d. Using Lemma 2.8, we know that when
t is sufficiently large so that c ≥ 1, then it holds that 1 ≥ ηε(S−1 · (qI))
for ε = exp(−c2d). Moreover, applying Lemma 2.4 to L1 = S−1 · (qI) and
L2 = S−1 · I, we see that

dist
(

DS−1·I,1 mod S−1 · (qI), U(S−1 · I mod S−1 · (qI))
)

≤ 2 exp(−c2d).
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Multiplying the outputs of these two distributions by S, we finally obtain

dist
(

DI,S mod qI, U(I mod qI)
)

≤ 2 exp(−c2d).

Using the fact that c2 ≥ c (as c ≥ 1), that exp(x) ≥ x for all x ∈ R, and that
N (I) ≤ N (f), we obtain the upper bound

2 exp(−c2d) ≤ 2 exp(−cd) ≤ 2 exp
( − e(t−d−ln(qdΔK))/d · d

)

≤ 2 exp
( − (t − d(1 + ln(qΔ1/d

K ))
)

.

If t ≥ 2d(1 + ln(qΔ1/d
K )), then (t − d(1 + ln(qΔ1/d

K )) ≥ t/2 and c ≥ 1, which
implies that

|p(t) − p∞| ≤ 2 exp(−t/2) ≤ 2 exp(−t/κ).

For smaller t, note that t ≤ κ/2. In this case, the upper bound 2 exp(−t/κ) is
at least 1, and so the property is also satisfied.

Property 3. Let us fix some t1 ≥ t2 ≥ 0. We want to show that |p(t1) − p(t2)| ≤
κ ·√|t1 − t2|. Observe first that since p takes values in [0, 1] and κ ≥ 1, then the
condition is always satisfied when |t1 − t2| ≥ 1. We will hence assume wlog that
0 ≤ t1 − t2 ≤ 1.

We know from the definition of Oideal that |p(t1)−p(t2)| ≤ dist(DI,S1 ,DI,S2),
where S1 and S2 are diagonal and equal, except for their for top-left coefficient
(or two top-left coefficients if σ1 is a complex embedding):

(S1)11 =
√

c + (exp(t1 − d)|σ1(f)|)2 and (S2)11 =
√

c + (exp(t2 − d)|σ1(f)|)2,

for some c ≥ 0. As when proving Property 1, one can check that η1/2(S−1
1 I),

η1/2(S−1
2 I) ≤ 1/2. Therefore, we can apply Lemma 2.3 to obtain that

dist
(

DI,S1 ,DI,S2

) ≤ 4
√

d ·
√

�
�S−1

2 S1 − Id

�
�.

Once again, the matrix S−1
2 S1 − Id is zero, except for its top-left coefficient

(or two top-left coefficients) which is equal to
√

c + (exp(t1 − d)|σ1(f)|)2
c + (exp(t2 − d)|σ1(f)|)2 −1 ≤

√

(exp(t1 − d)|σ1(f)|)2
(exp(t2 − d)|σ1(f)|)2 −1 = exp(t1 − t2)−1.

The first inequality comes from the fact that t1 ≥ t2 (and c and (exp(t2 −
d)|σ1(f)|)2 are non-negative). Finally, since 0 ≤ t1 − t2 ≤ 1, we conclude
that exp(t1 − t2) − 1 ≤ 2|t1 − t2|. This in turns implies that |p(t1) − p(t2)| ≤
8
√

d
√|t1 − t2| ≤ κ

√|t1 − t2|, as desired. ��
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rot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197,
pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14518-6 15

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC (2008)

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-70694-8_10
https://ntruprime.cr.yp.to/
https://ntruprime.cr.yp.to/
https://ntru.org/
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-1-4419-8489-0
https://doi.org/10.1007/978-3-030-56880-1_9
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1


34 A. Pellet-Mary and D. Stehlé
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Abstract. A new interpretation of linear cryptanalysis is proposed. This
‘geometric approach’ unifies all common variants of linear cryptanalysis,
reveals links between various properties, and suggests additional gener-
alizations. For example, new insights into invariants corresponding to
non-real eigenvalues of correlation matrices and a generalization of the
link between zero-correlation and integral attacks are obtained. Geomet-
ric intuition leads to a fixed-key motivation for the piling-up principle,
which is illustrated by explaining and generalizing previous results relat-
ing invariants and linear approximations. Rank-one approximations are
proposed to analyze cell-oriented ciphers, and used to resolve an open
problem posed by Beierle, Canteaut and Leander at FSE 2019. In partic-
ular, it is shown how such approximations can be analyzed automatically
using Riemannian optimization.

Keywords: Linear cryptanalysis · Nonlinear cryptanalysis · Piling-up
lemma · Correlation matrices · Block cipher invariants

1 Introduction

At EUROCRYPT 1993, Matsui [31] introduced linear cryptanalysis as a new
known-plaintext attack on the block cipher DES. Linear cryptanalysis is based
on probabilistic linear relations or linear approximations, a concept introduced
by Tardy-Corfdir and Gilbert [36].

The success of Matsui’s attack led to the development of a myriad of exten-
sions and variants of linear approximations, and to more advanced techniques
for their analysis [16,32]. Despite significant advances, many questions related
to linear cryptanalysis and its theoretical foundations remain unresolved.

Kaliski and Robshaw [25] suggested using multiple linear approximations. Her-
melin, Cho and Nyberg [23] proposed the related multidimensional linear attack.
Both extensions are widely used. Generalizations of linear cryptanalysis to groups
other than F

n
2 were proposed by Granboulan, Levieil and Piret [20] and Baignères,

Stern and Vaudenay [3]. The use of nonlinear approximations is another natural
extension, and has been attempted byKnudsen and Robshaw [26], Harpes,Kramer
and Massey [21] with I/O sums, Harpes and Massey [22] with partitioning attacks
and recently by Beierle, Canteaut and Leander [4].
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All of the above techniques rely on heuristic methods to glue together sev-
eral approximations over multiple rounds of a cipher. These methods will be
collectively referred to as the piling-up principle. This principle has tradition-
ally been justified using independence or Markov chain assumptions [2,31,42],
which can be related to earlier work on Markov ciphers in the context of dif-
ferential cryptanalysis [28]. However, such assumptions are hard to reconcile
with the key-dependence of approximations and the increased importance of
cryptographic permutations. In fact, key-dependence is one of the fundamen-
tal difficulties of nonlinear cryptanalysis. Alternatively, the correlation matrix
framework of Daemen et al. [16] is more suitable for the fixed-key setting. It
motivates the piling-up principle using the dominant trail hypothesis. Beierle
et al. [4] extend this approach by applying linear cryptanalysis to a nonlinearly
transformed variant of the cipher.

In a different direction, Rijmen and Bogdanov [13] introduced zero-
correlation linear cryptanalysis to exploit unbiased linear approximations. The
construction of zero-correlation approximations relies on the miss-in-the-middle
technique as opposed to the piling-up principle. At ASIACRYPT 2012, Bog-
danov et al. [12] established a link between multidimensional zero-correlation
approximations and integral distinguishers [27].

Finally, several lightweight block ciphers have been found vulnerable to weak-
key attacks based on invariant subspaces [30] and nonlinear invariants [39]. These
attacks have led to renewed interest in linear cryptanalysis and its generaliza-
tions. Abdelraheem et al. [1] found links between invariant subspaces and linear
cryptanalysis. Moreover, nonlinear invariants provide one of the most compelling
examples of nonlinearity in cryptanalysis, with applications including the analy-
sis of SCREAM, iSCREAM, Midori-64 and MANTIS [5,39]. At ASIACRYPT 2018,
it was shown that invariant subspaces and nonlinear invariants can be described
as eigenvectors of correlation matrices [5]. Furthermore, one of the invariants
discovered in [5] corresponds to a perfect linear approximation. These results
established a strong link between nonlinear invariants and linear cryptanalysis,
but a true statistical generalization of the nonlinear invariant attack was left
open. Lastly, Beierle et al. [4] extended the links discovered by Abdelraheem
et al. to some classes of nonlinear invariants.

Contribution. A conceptually new way of thinking about linear cryptanalysis
is introduced. It provides an alternative viewpoint for the foundations of lin-
ear cryptanalysis and has a number of concrete benefits. Firstly, it results in a
systematized and unified description of the above-mentioned variants of linear
cryptanalysis. Secondly, it leads to generalizations of the connections between
these attacks, such as the link between integral and zero-correlation cryptanal-
ysis and the links between invariants and linear approximations. Some of these
results are illustrated in Table 1, and are discussed in more detail below. Thirdly,
it suggests a general form of the piling-up principle. Finally, to illustrate the rel-
evance for the working cryptanalyst, the approach is used to solve a problem
posed by Beierle et al. [4].

Section 3 introduces a correspondence between cryptanalytic properties and
vector spaces of complex-valued functions on the domain of a primitive. This
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Table 1. Approximations for a function F from the geometric viewpoint. Here, U and
V are vector spaces (of dimension d) of functions. The notation follows Sects. 3 to 5.

Zero-correlation Perfect General

CFU ⊥ V CFU ⊆ V 〈V, U〉F

d = 1

Linear zero-
correlation [13]
Nonlinear zero-
correlation (Ex. 4.3)

Invariant subspaces [30]
Nonlinear invariants [39]
Eigenvectors of CF [5]

Linear cryptanalysis [31]
Abelian groups [3]
I/O sums [21]
Beierle et al. [4]
Rank-one (Section 6)

d ≥ 1

Multidimensional zero-
correlation [12]

Integral attacks [27]
General invariants
(Def. 4.3, Ex. 4.2)

Multiple linear [9,25]
Multidim. linear [23]
Partitioning [22]
Projection, χ2 [2,41,42]

Thm. 4.2
Sect. 5.3

results in a uniform description of the properties (sets, linear and nonlinear
Boolean functions, . . . ) that are used in different variants of linear cryptanaly-
sis. The correspondence generalizes the idea introduced in [5] that invariant sub-
spaces and nonlinear invariants can be represented by complex vectors, which
led to their characterization as eigenvectors of correlation matrices.

Definition 4.1 characterizes an approximation of a cipher as a pair of vector
spaces (U, V ), corresponding to input and output properties as sketched above.
This results in a systematization of many variants of linear cryptanalysis, as
summarized in Table 1. It will be shown that the type and quality of approxima-
tions is related to the geometric properties of the spaces U and V . Section 4.1
illustrates how this results in new insight into block cipher invariants and gives
a realistic example of invariants related to non-real eigenvalues of correlation
matrices, a problem that was left open at ASIACRYPT 2018 [5]. Theorem 4.2
generalizes the links between zero-correlation and integral attacks discovered by
Bogdanov et al. [12]. For general approximations, principal correlations are intro-
duced as a natural extension of the correlation of a linear approximation and it
is shown how they relate to the complexity of optimal distinguishers discussed
by Baignères, Junod and Vaudenay [2].

A general piling-up principle is given in Theorem 5.1. Its motivation is
the result of geometric intuition. This avoids independence and Markov chain
assumptions and simplifies working with fixed keys. Furthermore, the result
evades the issues that are encountered when the dominant-trail approach of
Daemen et al. is extended to the nonlinear case. Theorem 5.1 allows for much
greater flexibility than previous formulations of the piling-up principle. In par-
ticular, it becomes possible to build trails that combine diverse cryptanalytic
properties. This is illustrated in Sect. 5.3 by strengthening the links between
linear approximations and invariants, extending previous work by Abdelraheem
et al. [1] and Beierle et al. [4].
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Finally, Sect. 6 introduces rank-one approximations to analyze cell-oriented
ciphers. A tool to find optimal rank-one trails is introduced, and its application
to searching for invariants is discussed. Perhaps surprisingly, the tool is based
on numerical optimization on a Riemannian manifold. This is enabled by the
generality of Sects. 3 to 5, which relaxes the search space by introducing many
new types of approximations. The tool is provided as supplementary material.
Rank-one approximations and the aforementioned tool are used in Sect. 7.3 to
resolve a problem introduced by Beierle et al. [4], who describe it as “a major
open problem”. It is representative of other concrete problems, and its solution
relies on the general techniques that are introduced in Sects. 3 to 5.

2 Functions on Abelian Groups

The goal of this section is to introduce several concepts that will be used to
develop a general theory of linear cryptanalysis in Sects. 3 to 5. These concepts
provide the setting for the proposed geometric approach. It is assumed that
the reader is familiar with finite Abelian groups and linear algebra in finite-
dimensional inner product spaces.

It will be shown in Sect. 3 that many cryptanalytic properties can be
described by complex-valued functions on the domain of a primitive. Section 2.1
discusses preliminaries related to the set of such functions. Section 2.2 introduces
the Fourier transformation on finite Abelian groups. This will be an important
tool to simplify the effect of constant (including key) additions. Finally, Sect. 2.3
discusses the geometry of subspaces of an inner product space.

2.1 Inner Product Space of Functions

Let G be a finite Abelian group, for example the domain of a block cipher. In fact,
all of the properties in this section are valid for any set G. However, the results
in Sect. 2.2 will require the assumption that G is a finite Abelian group. The
C-vector space of all functions from G to C, with the usual pointwise addition
and scalar multiplication, will be denoted by CG. The standard inner product
between two functions f, g ∈ CG is defined by 〈f, g〉 =

∑
x∈G f(x)g(x), where

f(x) denotes the complex-conjugate of f(x). Hence, the vector space CG is a
finite-dimensional inner product space. One also has a norm ‖f‖2 =

√〈f, f〉,
which carries the geometric interpretation of length. The modulus of the inner
product between two normalized vectors can be interpreted as the cosine of
the smallest angle enclosed by them – although for non-real vectors, several
definitions of angles are plausible. The theory developed in Sects. 4 and 5 will
draw on these geometric concepts for intuition.

The functions δx, which are equal to one at x ∈ G and zero everywhere else,
clearly form an orthonormal basis for CG. This basis will be referred to as the stan-
dard basis. It follows that CG is isomorphic to C

|G| as an inner product space.
Recall that the tensor product of C-vector spaces V1, . . . , Vn is another C-

vector space V1 ⊗ · · · ⊗ Vn of dimension
∏n

i=1 dim Vi together with a multilinear
map ⊗ :

∏n
i=1 Vi → ⊗n

i=1 Vi, which has the universal property that it uniquely
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linearizes arbitrary multilinear maps. Specifically, for any T :
∏n

i=1 Vi → W lin-
ear in each variable (multilinear), there exists a unique linear map L :

⊗n
i=1 Vi →

W such that T (v1, . . . , vn) = L(v1 ⊗ · · · ⊗ vn).
For the purposes of this paper, readers who are not familiar with tensor

products may take the following characterization as a definition. Let G = A⊕B
be a direct sum of Abelian groups A and B. That is, the group G consists of
all pairs (a, b) with a ∈ A and b ∈ B. The tensor product of CA and CB can
then be characterized by CA ⊗ CB ∼= CG. Indeed, the linear map defined by
δ(a,b) 
→ δa ⊗δb for all a ∈ A and b ∈ B is an isomorphism. In this paper, CG and
CA⊗CB will always be identified through this isomorphism. Hence, for f ∈ CA
and g ∈ CB, it can be said that f ⊗ g ∈ CG with (f ⊗ g)(a, b) = f(a) g(b).

A rank-one vector v ∈ ⊗n
i=1 Vi is a vector of the form v = v1⊗· · ·⊗vn. Given

bases for V1, . . . , Vn, the set of all their tensor products is a basis of rank-one
vectors for

⊗n
i=1 Vi. More generally, for any vector v there exists an integer r ≥ 0

such that v =
∑r

i=1 λi

⊗n
j=1 vi,j , for some vectors vi,j ∈ Vj and scalars λi ∈ C.

The smallest r for which such a decomposition exists is called the tensor rank
of v.

2.2 Fourier Analysis

Given a function f ∈ CG and a constant t ∈ G, one can define a new function
by x 
→ f(x+ t). The effect of translations on the coordinates of functions in the
standard basis of CG is inconvenient: the basis vectors are shuffled around by
the permutation δx 
→ δx+t, which corresponds to multiplication by a Toeplitz
matrix. It would be more convenient if the effect of translation would be a simple
scaling of the coordinates, i.e. multiplication by a diagonal matrix. This can be
achieved by working with respect to a different basis.

To achieve the goal of diagonalization, the new basis vectors should be eigen-
vectors of the set of translation operations. This is achieved for any homomor-
phism χ : G → C

× from G to the multiplicative group of complex numbers
C

× = C \ {0}, since χ(x + t) = χ(t)χ(x) for any x, t ∈ G. This leads to the
following definition.

Definition 2.1 (Group characters [37]). Let G be a finite Abelian group. A
(complex) character of G is a group homomorphism G → C

×. The (Pontryagin)
dual of G is the group Ĝ of all characters of G with respect to the pointwise
product.

It is not hard to see that Ĝ is indeed an Abelian group. For example, the
inverse of χ ∈ Ĝ is the character x 
→ χ(−x). That is, χ(−x) = χ(x).

Example 2.1. The dual of the additive group F2 is F̂2 = {x 
→ 1, x 
→ (−1)x}.
Indeed, these are the only two group homomorphisms F2 → C

×. �
The functions in the dual group Ĝ form a basis for CG that behaves well

with respect to translation. Further properties of the dual group are given in
Theorem 2.1 below. In particular, property (2) shows that the basis of characters
is orthogonal.
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Theorem 2.1 (Properties of dual groups [37]). If G is a finite Abelian
group with dual Ĝ, then

(1) The dual group Ĝ is isomorphic to G.
(2) For all χ, ψ ∈ Ĝ, it holds that 〈χ, ψ〉 = |G| δχ(ψ).
(3) If G = H1 ⊕ H2 with ⊕ the internal direct sum, then Ĝ = Ĥ1 ⊕ Ĥ2.

By Theorem 2.1 (1), Ĝ can be identified with G. In general, this identification
is not unique. However, there is a functorial isomorphism between the double
dual of G and G itself, which identifies g ∈ G with the evaluation map χ 
→ χ(g)
in the dual of Ĝ [37]. This result justifies the term ‘dual group’. In order to avoid
arbitrary choices, isomorphisms between Ĝ and G will be avoided throughout
this paper. This makes no difference in specific calculations, but it is theoretically
more elegant.

Example 2.2. Since the additive group F
n
2 is the direct sum of n copies of F2, it

follows from Theorem 2.1 (3) that the dual group is essentially the direct sum
of n copies of F̂2. Specifically, F̂

n
2 = {x 
→ ∏n

i=1(−1)uixi = (−1)u�x | u ∈ F
n
2}.

Note that identifying F̂
n
2 and F

n
2 requires choosing a basis for F

n
2 .

The Fourier transformation F is essentially a change of basis from the stan-
dard basis to the character basis. However, in order to avoid identifying Ĝ and
G, we shall define F as a transformation from CG to CĜ. With this definition,
the Fourier transformation maps a character χ ∈ Ĝ ⊂ CG directly to a multiple
of the standard basis vector δχ ∈ CĜ. Since group characters are orthogonal,
Definition 2.2 achieves the desired basis transformation.

Definition 2.2 (Fourier transformation [37]). Let f : G → C be a function.
The Fourier transformation of f is the function f̂ : Ĝ → C defined by

f̂(χ) = 〈χ, f〉 =
∑

x∈G

χ(x)f(x).

The Fourier transformation is the map F : CG → CĜ such that Ff = f̂ .

The transformation F is a vector space isomorphism. In fact, since CG and
CĜ are algebras with either the pointwise product or convolution, F is an isomor-
phism of algebras which swaps the pointwise product and convolution. This is by
construction, since the set of convolution operators is generated by translations.

The vector space CĜ is also an inner product space. In fact, due to the
orthogonality of characters, the inner product between f1, f2 ∈ CG coin-
cides with the inner product of their Fourier transforms up to a constant
factor: 〈f̂1, f̂2〉 = |G| 〈f1, f2〉. In other words, F/

√|G| is a unitary map and
F−1 = F∗/|G| with F∗ the adjoint (conjugate transpose) of F.

To end this section, consider the case G = A⊕B. As mentioned above, one has
CG = CA ⊗ CB (technically up to isomorphism). By Theorem 2.1 (3), the dual
group satisfies Ĝ = Â ⊕ B̂. Hence, one also has CĜ = CÂ ⊗ CB̂. Consequently,
the Fourier transformation on CG is given by FA ⊗FB . Equivalently, the matrix
representation of F in the standard basis is the Kronecker product of the matrix
representations of FA and FB in the standard basis.
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2.3 Subspaces of CG and CĜ

Sections 3 and 4 will demonstrate that subspaces of CG and CĜ are often more
interesting for cryptanalysis than individual functions. For this reason, it will
be convenient to extend the inner product notation 〈·, ·〉 to subspaces of CG.
For subspaces U ⊆ CG and V ⊆ CG, define the linear map 〈V,U〉 : U → V by
〈V,U〉 = πV ιU , where ιU : U → CG is the inclusion map and πV : CG → V is
the orthogonal projection on V . A similar definition can be given for subspaces
of CĜ. Note that 〈V,U〉 = 〈U, V 〉∗ since projection and inclusion are adjoint.

Example 2.3. Let U and V be one-dimensional subspaces of CG spanned by
unit-norm vectors u and v respectively. By definition, ιU (λu) = λu and πV (x) =
v〈v, x〉. Consequently, 〈V,U〉 : U → V is the map λu 
→ 〈v, u〉λv. The matrix
representation of this map is thus simply the 1 × 1 matrix containing the inner
product 〈v, u〉.

The transformation 〈V,U〉 comes with a geometric interpretation, which will
be important in Sects. 4 and 5. Due to standard properties of orthogonal pro-
jection, 〈V,U〉 maps any u ∈ U to the nearest vector v ∈ V . In addition, no
other vector in V of the same length makes a smaller angle to u than v. This
suggests that 〈V,U〉 encodes all information about the ‘angles’ between U and
V . This can be made precise using the notion of principal angles between sub-
spaces, which is due to Jordan [24]. The characterization below follows Björck
and Golub [10].

Definition 2.3 (Principal angles). Let U and V be subspaces of an inner
product space over C of finite dimension and let d = min{dim U,dim V }. The
principal angles 0 ≤ θ1 ≤ . . . ≤ θd ≤ π/2 between U and V are recursively
defined by (for i = 1, 2, . . . , d)

cos θi =
〈ui, vi〉

‖ui‖2‖vi‖2 = max
u∈Ui\{0}
v∈Vi\{0}

|〈u, v〉|
‖u‖2‖v‖2 ,

where ui ∈ Ui and vi ∈ Vi are nonzero vectors for which the maximum
on the right is achieved with 〈ui, vi〉 a non-negative real number, Ui = U ∩
{u1, . . . , ui−1}⊥ and Vi = V ∩ {v1, . . . , vi−1}⊥.

The cosines of the principal angles are precisely the singular values of 〈V,U〉,
and the singular vectors are the directions along which these angles are to be
measured. This follows directly from the variational characterization of singular
values. Further details may be found in [10].

3 Cryptanalytic Properties

Many cryptanalytic techniques rely only on partial information about the inputs
and outputs of a primitive, such as membership of a set or the value taken
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by a Boolean function. Below, the structure of the inputs (or outputs) will be
informally referred to as cryptanalytic input (or output) properties.

One of the obstacles to a more general approach to linear cryptanalysis and
its variants, is the fact that different cryptanalytic properties are often described
by disparate mathematical objects (such as sets, linear or nonlinear functions,
...). In a few cases, overcoming this difficulty has resulted in new or generalized
results. Examples include the projection function approach of Wagner [42] and
Baignères et al. [2], which enables unifying the data-complexity analysis of sev-
eral attacks, and the observation that both invariant subspaces and nonlinear
invariants correspond to eigenvectors of correlation matrices [5].

Section 3.1 introduces a general correspondence between cryptanalytic prop-
erties and subspaces of the inner product space CG. It works for all properties
relevant to linear cryptanalysis and its variants, and in particular generalizes
both examples just mentioned above. Section 3.2 describes how properties change
when a function is applied to the state. This leads to a more general perspective
on correlation matrices.

3.1 Correspondence Between Properties and Subspaces

The purpose of this section is to show that the cryptanalytic properties used in
linear cryptanalysis and its variants are naturally described by functions G →
C, i.e. functions in the inner product space CG from Sect. 2.1. This will be
motivated from two viewpoints, which are dual to one another. Specifically, the
following two perspectives will be advanced:

(i) Cryptanalytic properties correspond to functions in CG.
(ii) Cryptanalytic properties corrsepond to linear functions CG → C.

From viewpoint (i), a cryptanalytic property characterizes the state of a collec-
tion of inputs or outputs. For instance, probability distributions on G can be
represented by functions G → [0, 1] ⊂ C. Similarly, any subset S of G has an
indicator function 1S ∈ CG. It will be shown below that the general idea of asso-
ciating not just positive numbers, but also arbitrary complex-valued weights, to
the elements of G is necessary to describe other types of properties.

According to (ii), properties describe a measurement or observation of the
state of a collection of inputs or outputs. Importantly, only linear functions
of the state vector are considered in the present framework. The set of linear
functions CG → C is itself a vector space CG∗, i.e. the dual vector space of
CG. However, the explicit choice of the inner product in Sect. 2.1 identifies CG
and CG∗. Indeed, f ∈ CG corresponds to the function g 
→ 〈f, g〉 in CG∗. This
correspondence will be used throughout this paper, and both (i) and (ii) will
be represened by elements of CG. For example, for a subset S, the indicator
function 1S is dual to the function f 
→ 〈1S , f〉 =

∑
x∈S f(x).

More generally, consider a subspace V of CG. Any function in V can then
be interpreted according to either (i) or (ii). The assumption that the property
must correspond to a subspace of CG implies that it is possible to make arbitrary
linear combinations of these functions.
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Representing properties as subspaces of CG comes with a geometric interpre-
tation. Specifically, the inner product yields the observed outcome when a pair
of properties with interpretations (i) and (ii) are combined. This aspect will be
discussed in detail in Sect. 4. The remainder of this section is intended as a dic-
tionary between conventional cryptanalytic properties and their corresponding
subspaces.

A short summary for G = F
n
2 is given in Table 2. The table includes both

the subspaces of CG and their Fourier transforms, which are subspaces of CĜ.
Importantly, there are other useful subspaces which do not correspond to any of
the constructions discussed below. One example will be discussed in Sect. 6.

Table 2. Commonly used cryptanalytic properties and their corresponding subspaces.

The characters of F
n
2 are denoted by χu(x) = (−1)u

�x, where u ∈ F
n
2 .

Probability Distributions. Several properties correspond to subspaces
spanned by one or more probability distributions. Subspaces and sets are one
example, since any set corresponds to the uniform distribution on that set (equiv-
alently, its indicator function). Affine spaces are an important example and are
used in the invariant subspace attack of Leander et al. [30].

Integral and division properties [17,38] are also examples1, but their analysis
is not the main focus of this paper. In this case, the corresponding vector space
could be spanned by the indicator function of a set which is balanced on certain
1 The present framework only describes zero-sum properties.
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bits. However, the intermediate and output properties typically correspond to
higher-dimensional vector spaces because they express several possible sets in
which the state could be contained. Equivalently, following (ii), one observes the
marginal (but not necessarily joint) distribution of several state bits.

Not many variants of linear cryptanalysis are directly based on non-uniform
probability distributions. The statistical saturation attack of Collard and Stan-
daert [15], in its original form, may be considered an example. In this attack,
one estimates the key-dependent probability distribution of the state of a block
cipher when some of the plaintext bits are constant and the others are uni-
form random. However, depending on how the estimated distribution is used, it
may be more appropriate to approach this attack using the projection functions
discussed below.

Projection Functions. Let F : G → H be a function between finite Abelian
groups G and H, with H typically much smaller than G. In fact, H need not be a
group for the construction below to work, but this will be assumed for simplicity.
Such functions play an important role in Wagner’s framework of ‘commutative
diagram cryptanalysis’, where they are called projections [42]. Baignères et al. [2]
analyze the statistical properties of distinguishers based on balanced projections,
such as χ2-attacks [41], partitioning cryptanalysis [22] and multidimensional
linear attacks [23].

From the viewpoint of (ii), a projection property gives access to the evalu-
ation of F on the state. Equivalently, the property allows observing any linear
combination of the functions δh ◦ F, where {δh | h ∈ H} is the standard basis of
CH. More generally, any function on H can be ‘pulled back’ to G along the pro-
jection function F and the projection property corresponds to the vector space
of all such functions. This leads to Definition 3.1 below.

Definition 3.1 (Pullback). Let F : G → H be a function. The pullback opera-
tor along F is the linear operator T F∗ : CH → CG defined by f 
→ f ◦F. The pull-
back space of CH along F is the image of T F∗: im T F∗ = {f ◦F | f ∈ CH} ⊆ CG.
Similarly, the Fourier transformation F(im T F∗) of im T F∗ will be called the pull-
back of CH to CĜ along F.

Let V be the vector space corresponding to the projection property defined
by F, i.e. the pullback of CH along F. It was already mentioned above that
{δh ◦ F | h ∈ H} is a basis for V . However, it is often more convenient to use
the basis of functions χ ◦ F where χ ∈ Ĥ. This choice behaves particularly well
for homomorphisms F : G → H when working with the Fourier transformation
of V , since χ̂ ◦ F = δχ◦F in that case.

The following example describes the vector space corresponding to a Boolean
projection function in more detail. Such properties are closely related to classi-
cal linear cryptanalysis, and more generally the I/O-sums of Harpes et al. [21]
and the nonlinear approximations considered by Beierle et al. [4]. However, as
discussed below, there is subtle difference.
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Example 3.1. Let F : F
n
2 → F2 be a Boolean function. Denote the characters

of F
n
2 by χu(x) = (−1)u�x. The pullback space V of CF2 along F is equal to

V = span{δ0◦F, δ1◦F} = span{1, (−1)F}, with 1 = χ0 the trivial character of F
n
2 .

Hence, the Fourier transformation of V is given by F(V ) = span{δ1,F[(−1)F]}.
The function F[(−1)F] is often called the Walsh-Hadamard transform of F. If F
is a linear function, then F(x) = u�x for some u ∈ F

n
2 . Hence, (−1)F = χu and

consequently F(V ) = span{δ1, δχu
}.

Example 3.1 suggests that ordinary linear properties correspond to a vec-
tor space V = span{δ1, δχ}, where χ is a character of the additive group F

n
2 .

Table 2 instead lists the one-dimensional space span{δχ} ⊂ V . For the analysis
of permutations, there is no significant difference since δ1 corresponds to a trivial
invariant for any permutation (its domain). However, for general functions, the
vector space V represents a strictly stronger property.

In general, many commonly used cryptographic properties correspond to sub-
spaces of pullback spaces. This difference is not easily expressed in the formalism
of Baignères et al. [2] and Wagner [42]. The next paragraph discusses several
important examples.

Subspaces of Pullbacks. Example 3.1 generalizes to other finite Abelian
groups. Let F : G → H be a homomorphism. Since χ ◦ F ∈ Ĝ for any char-
acter χ of H, the pullback V of CH to CĜ is spanned by the functions δχ◦F
with χ ∈ Ĥ. Hence, dim V = |H|. However, the dimension could be reduced by
one for permutations. This is essentially the generalization of linear cryptanalysis
proposed by Granboulan et al. [20, §3]. However, it is also reasonable to consider
only one of the functions δχ◦F. Since this results in one-dimensional subspaces
and is closer to the spirit of ordinary linear cryptanalysis. This is essentially the
generalization of linear cryptanalysis proposed by Baignères et al. [3]. The app-
roach of Baignères et al. and its multidimensional generalization were recently
used in the cryptanalysis of FF3.1 [8].

The difference between multiple and multidimensional linear cryptanalysis is
of the same nature. For multiple linear properties, one uses a subspace spanned
by one or more standard basis vectors δχ. In multidimensional linear crypt-
analysis, the considered characters form a subgroup of Ĝ and consequently the
subspace is the pullback of a homomorphism to some subgroup of G.

3.2 Transformations on CG and CĜ

This section investigates how properties, i.e. subspaces of CG, change when a
function F : G → H is applied to the state of the primitive under analysis.

Definition 3.2 (Transition matrix). Let F : G → H be a function. Define
T F : CG → CH as the unique linear operator defined by δx 
→ δF(x) for all x ∈ G.
The transition matrix of F is the coordinate representation of T F with respect to
the standard bases of CG and CH.
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Definition 3.2 only specifies the action of T F on the standard basis of CG, but
this uniquely defines T F on all of CG. The choice of the notations T F∗ and T F for
pullback (Definition 3.1) and transition (Definition 3.2) operators respectively
is not arbitrary: these operators are indeed represented by conjugate-transposed
matrices. In fact, T F could also be called the pushforward operator.

Note that the notation T F will be overloaded, referring to both the operator
and its standard matrix representation. The coordinates of the matrix T F will
be indexed by elements of G and H rather than by integers, since this avoids
choosing an arbitrary ordering of the standard basis. In particular,

T F
y,x = 〈δy, T Fδx〉 = 〈δy, δF(x)〉 = δy(F(x)).

An analog of Definition 3.2 for CĜ is given in Definition 3.3. It generalizes the
definition of correlation matrices given in [5] to arbitrary finite Abelian groups.
The term correlation matrix is due to Daemen et al. [16], who defined these
matrices in terms of their coordinates.

Definition 3.3 (Correlation matrix). Let F : G → H be a function between
finite Abelian groups G and H. Define CF : CĜ → CĤ as the Fourier transfor-
mation of T F. That is, CF = FH T F F−1

G , with FH and FG the Fourier transfor-
mation on CH and CG respectively. The correlation matrix of F is the coordinate
representation of CF with respect to the standard bases of CĜ and CĤ.

The notation CF will refer to both the linear operator and its standard matrix
representation. Contrary to [5,16], the coordinates will be indexed by elements
of Ĝ in order to avoid arbitrary choices. Since T F

y,x = δy(F(x)), the coordinates
are given by

CF
χ,ψ = 〈δχ, CFδψ〉 =

1
|G| 〈χ, T Fψ〉 =

1
|G|

∑

x∈G

χ(F(x))ψ(x).

For G = F
n
2 and H = F

m
2 , and after identifying these groups with their dual, the

expression above coincides with the original definition of correlation matrices
given by Daemen et al. [16]. The following two theorems list the main properties
of transition and correlation matrices that will be used throughout this paper.
The last two properties in Theorem 3.1 also apply to correlation matrices. For
(2), this follows from the fact that FG1⊕G2 is essentially the same as FG1 ⊗FG2 .

Theorem 3.1 (Properties of transition matrices). Let F : G → H be a
function. The transition matrix of T F of F has the following properties:

(1) If F is a bijection, then T F is a permutation matrix.
(2) If F = (F1, . . . ,Fn) with Fi : Gi → Hi, then T F =

⊗n
i=1 T Fi .

(3) If F = F2 ◦ F1, then T F = T F2T F1 .

Proof. The first two claims directly follow from T F
y,x = δy(F(x)). The third prop-

erty is an immediate consequence of Definition 3.2. ��
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Theorem 3.2 (Properties of correlation matrices). Let F : G → H be a
function between finite Abelian groups G and H. The correlation matrix CF of
F has the following properties:

(1) If F is a bijection, then CF is a unitary matrix.
(2) If F is a group homomorphism, then CF

χ,ψ = δχ◦F(ψ).
(3) If G = H and F(x) = x − t for some constant t ∈ G, then CF is a diagonal

matrix with CF
χ,χ = χ(t).

Proof. By Theorem 3.1 (1), if F is a permutation, then T F is a permutation
matrix and thus unitary. Furthermore, since |G| = |H|, both F∗

H/
√|G| and

FG/
√|G| are unitary matrices. Property (1) follows since the product of unitary

matrices is unitary and CF = FHT FF−1
G .

For (2), note that if F is a group homomorphism, then so is χ ◦ F : G → C
×.

Hence, by the orthogonality of group characters, CF
χ,ψ = δχ◦F(ψ). As discussed

in Sect. 2.2, property (3) holds by construction of the Fourier transformation.
Indeed, note that the action of F corresponds to a translation by t. ��

4 Approximations

An approximation of a function F : G → H is essentially a pair consisting of an
input and an output property. By the correspondence in Sect. 3, these proper-
ties can be represented by subspaces U and V . As discussed in Sect. 3, u ∈ U
represents a state and v ∈ V corresponds to a linear measurement function or
observation. The inner product 〈v, T Fu〉 gives the outcome of such an observa-
tion. This leads to Definition 4.1 below, where the approximation map represents
all such inner products without relying on the choice of a specific basis. Given
orthonormal bases u1, u2, . . . and v1, v2, . . . for U and V respectively, the coordi-
nates of the matrix representing the approximation map are given by the inner
products 〈vi, T

Fui〉.
Definition 4.1 (Approximation). Let G and H be finite Abelian groups. An
approximation of a function F : G → H is a pair (U, V ) of subspaces U ⊆ CĜ

and V ⊆ CĤ. The approximation map of (U, V ) is a linear transformation
〈V,U〉F : U → V defined by 〈V,U〉F = πV CF ιU , with ιU : U → CĜ the inclusion
map and πV : CĤ → V the orthogonal projection on V .

Definition 4.1 refers to subspaces of CĜ and CĤ. An equivalent definition
could be given for the subspaces F∗

G(U) ⊆ CG and F∗
H(V ) ⊆ CH, taking into

account that CF should be replaced by T F. The same remark applies to all
definitions in this section and Sect. 5.

Note that the notation 〈V,U〉F is intentionally similar to the ‘inner product
of subspaces’ notation 〈V,U〉 from Sect. 2.3. It will be shown in Sect. 4.1 that
the maps 〈V,U〉F and 〈V,CFU〉 are indeed closely related and encode the same
geometric information.
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Example 4.1. Consider a linear approximation for a function F : F
n
2 → F

m
2 . As

listed in Table 2, linear properties correspond to one-dimensional spaces U =
span{δχu

} and V = span{δχv
} with masks u ∈ F

n
2 and v ∈ F

m
2 . As in Example

2.3, one has the inclusion map ιU (x) = x and the orthogonal projection πV (x) =
〈δχv

, x〉δχv
. Hence, 〈V,U〉F is given by λδχu


→ 〈δχv
, CFδχu

〉λδχv
= CF

χv,χu
λδχv

.
The same result holds for any pair of finite Abelian groups.

The main purpose of this section is to show that Definition 4.1 indeed encom-
passes all variants of linear cryptanalysis mentioned in Sect. 1, and leads to new
insights for several of them.

As illustrated in Fig. 1, two geometrically intuitive edge cases of Definition
4.1 can be identified: parallel or orthogonal spaces V and CFU . Approximations
in the former category will be called ‘perfect’. This includes the important case
of invariants. The latter case corresponds to a broad generalization of zero-
correlation linear approximations. In the remaining cases, the vector spaces V
and CFU are neither completely parallel nor fully orthogonal. All three cases are
discussed in detail in Sects. 4.1 to 4.3.

VCFU

(a) Perfect.

V
CFU

(b) Zero-correlation.

V

CFU

(c) General case.

Fig. 1. Geometric interpretation of Definition 4.1.

The geometric intuitions illustrated in Fig. 1 can be quantified using the
concept of principal angles that was introduced in Sect. 2.3. This leads to the
following definition of ‘principal correlations’. For linear approximations, the
unique principal correlation coincides with the ordinary absolute correlation.
Further aspects of principal correlations, such as their relation to the ‘capacity’
in multiple linear cryptanalysis, are discussed in Sect. 4.3.

Definition 4.2 (Principal correlations). Let (U, V ) be an approximation
for a function F : G → H between finite Abelian groups G and H. Let d =
min{dim U,dim V }. The principal correlations of the approximation (U, V ) are
the d largest singular values of the approximation map 〈V,U〉F.

The geometric interpretation of the principal correlations is due to the fol-
lowing result, which relates them to the principal angles between the subspaces
CFU and V .
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Theorem 4.1. Let (U, V ) be an approximation for a function F : G → H
between finite Abelian groups G and H. Let d = min{dim U,dim V }. If F is injec-
tive, then the principal correlations of the approximation (U, V ) are equal to the
cosines of the d smallest principal angles between the subspaces CFU and V .

Proof. By Theorem 3.2 (1), CF is a unitary matrix if F is a permutation. More
generally, [CF]∗CF is a nonzero multiple of the identity map if F is an injection.
That is, CF preserves the inner product up to multiplication by a constant. To
prove this, show that the result holds for T F (by direct calculation) and then
apply the same argument as in the proof of Theorem 3.2 (1).

If CF preserves the inner product up to multiplication by a nonzero constant,
then ui+1 ⊥ ui implies CFui+1 ⊥ CFui. Hence, the result follows from the fact
that the variational characterization of singular values is then equivalent to the
definition of principal angles (Definition 2.3). ��

4.1 Invariants and Perfect Approximations

If the subspaces U and V are aligned as in Fig. 1a, the approximation (U, V ) will
be called perfect. More formally, (U, V ) is perfect if CFU ⊆ V . Alternatively, an
approximation over a permutation F is perfect if its principal correlations are
equal to one.

Integral and division properties are of this type, but these traditionally ‘alge-
braic’ properties are not the main focus of this work. However, the case U = V is
of particular interest since it leads to a class of approximations that will be called
invariants, and which includes the invariant subspaces of Leander et al. [30] and
the nonlinear invariants of Todo et al. [39].

Definition 4.3 (Invariant). Let F : G → G be a function. An approximation
(V, V ) such that CFV ⊆ V will be called an invariant for F.

If F is a permutation, all principal correlations of an invariant (V, V ) are equal
to one. For general functions, this is not necessarily true. For example, if two
distinct input distributions result in the same output distribution, it is natural
to consider the difference of their probability mass functions as invariant.

Since transition matrices and correlation matrices of permutations have
finite multiplicative order, they are diagonalizable. Consequently, by a stan-
dard linear algebra result for algebraically closed fields, any invariant V splits
into one-dimensional invariant subspaces spanned by the eigenvectors of CF.
Hence, Definition 4.3 reduces to the characterization of invariants introduced in
[5, Definition 2]

Despite the fact that the eigenvectors of CF determine all possible invari-
ants, the more general characterization of invariants in Definition 4.3 sometimes
leads to additional insight. This will be illustrated using the following exam-
ple, which involves eigenvectors whose corresponding eigenvalue is imaginary –
thereby addressing a problem left as future work by [5].
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Example 4.2. Consider the following 4-bit S-box, defined in cycle notation:

S = (0 7 b 3 d 5 9 6 8 2 1 e a f c 4).

Further details about this S-box, including a lookup table representation, are
given as supplementary material in the extended version [7]. From a cryptan-
alytic perspective, the properties of S are seemingly excellent: the linear and
differential properties are optimal, and it does not have any fixed points since it
is a cyclic permutation. The last property implies that all eigenspaces of CS are
one-dimensional, see for instance [5, §4.2]. An immediate consequence of this is
that S does not have any nontrivial invariant subspaces.

Denote the ring of integers modulo four by Z4 and let f : F
4
2 → Z4 be the

function defined by f({0, d, 8, a}) = 0, f({b, 9, 1, c}) = 2, f({7, 5, 2, f}) = 1 and
f({3, 6, e, 4}) = 3. By inspection of the cycle structure of S, one can see that
f(S(x)) = f(x) + 1 for all x ∈ F

4
2. This property is reminiscent of nonlinear

invariants, and in fact yields a nonlinear invariant for S when reduced mod-
ulo two. Nevertheless, the property is more powerful than a nonlinear invariant
since its defining function takes values in Z4 rather than F2. In fact, the use of
Z4-approximations has been previously suggested by Parker and Raddum [33].
Properties such as f are to nonlinear invariants as nonlinear invariants are to
invariant sets: just as a nonlinear invariant can be interpreted as a pair of sets
that are potentially swapped by S, f can be interpreted as a pair of nonlinear
invariants that are swapped by S.

To obtain a subspace V of CF̂
4
2 from f , the pullback construction from

Sect. 3.1 can be applied. Since Z4 is cyclic of order four, one can deduce from
Theorem 2.1 that Ẑ4 = {x 
→ ζkx

4 k ∈ Z4} with ζ4 a primitive fourth root of
unity such as

√−1. Hence, using the basis of functions χ̂ ◦ f where χ ∈ Ẑ4,
yields

V = span
{
ζ̂04 ,

̂
ζf
4 ,

̂
ζ2f
4 ,

̂
ζ3f
4

}

= span
{
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)�,

(0, ζ8, 0, 0, 0, 2ζ8, 0, ζ8, 0, 0, 0, ζ8, 0,−ζ8, 0, 0)�/
√

8,

(0, 0, 1, 0, 1, 0, 0, 0,−1, 0, 0, 0, 0, 0, 1, 0)�/2,

(0, ζ8, 0, 0, 0, 2ζ8, 0, ζ8, 0, 0, 0, ζ8, 0,−ζ8, 0, 0)�/
√

8
}
.

The choice of χ̂ ◦ f (up to a scalar multiple) as a basis is not arbitrary: since
χ(f(S(x))) = χ(1)χ(f(x)), it ensures that each basis vector is an eigenvector of
CS. Consequently, it is immediately clear that V is indeed an invariant. Note that
the first vector listed above is the trivial eigenvector with eigenvalue one. The
second and fourth vectors are complex-conjugate eigenvectors corresponding to
the conjugate eigenvalues ζ4 and ζ4. Finally, the third vector is an eigenvector
with eigenvalue ζ24 = −1. It corresponds to the nonlinear invariant obtained by
reduction modulo two that was mentioned above.

For the purpose of obtaining an interesting example, the S-box S was care-
fully chosen. In particular, by taking appropriate linear combinations of the two
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complex-conjugate eigenvectors above, one can see that V is spanned by four
real vectors v1, . . . , v4 such that v⊗16

1 , . . . , v⊗16
4 are all eigenvectors of CL, where

L is the linear layer of Midori-64. Furthermore, these vectors are invariant under
the round-constant and key-additions for 232 weak keys. In fact, v⊗16

3 is itself a
nonlinear invariant for the same number of weak keys, but it has been shown
that there exists a stronger four-dimensional invariant.

Moreover, there is a larger set of 296 weak keys for which v⊗16
1 and v⊗16

2

are still invariants for the whole cipher. This is due to the fact that Midori-
64 alternates round keys, and because CSv2 = −v4 and CSv4 = v2. However,
neither v2 nor v4 corresponds to a nonlinear invariant for S. One can think of
the invariant obtained here as a ‘remnant’ of the stronger – yet valid for fewer
keys – invariant described above. The supplementary material of the extended
version [7] contains additional details regarding the preceding claims. �

In general, a one-dimensional periodically repeating perfect approximation
for a function F must be an eigenvector of [CF]l with eigenvalue one for some
positive integer l. These eigenvectors are linear combinations of the eigenvectors
of CF with eigenvalues of order divisible by l.

4.2 Zero-Correlation Approximations

Zero-correlation linear approximations were introduced by Bogdanov and Rij-
men [13]. They correspond to linear approximations (span{δψ}, span{δχ}) such
that CF

χ,ψ = 0. That is, δχ is orthogonal to CFδψ. This corresponds to the geo-
metric situation sketched in Fig. 1b, motivating the following definition.

Definition 4.4 (Zero-correlation approximation). Let F : G → H be a
function. An approximation (U, V ) such that V ⊥ CFU will be called a zero-
correlation approximation for F. Equivalently, all principal correlations of a zero-
correlation approximation (U, V ) are zero.

Zero-correlation and perfect approximations are closely related, despite being
opposite extremes. In fact, this is clear from a geometrical point of view, see for
instance Figs. 1a and 1b.

Theorem 4.2. If (U, V ) is a zero-correlation approximation, then (U, V ⊥) is a
perfect approximation and conversely.

Proof. Since (U, V ) is a zero-correlation approximation, any v ∈ CFU is orthog-
onal to V . Hence, CFU ⊆ V ⊥. The proof of the converse result is analogous.

��
The statement and proof of Theorem 4.2 are deceptively simple, but the

result is powerful. Indeed, it generalizes the well-known correspondence between
multidimensional linear zero-correlation approximations and integral properties,
first noted by Bogdanov et al. at ASIACRYPT 2012 [12]2 and discussed futher
by Sun et al. [35].
2 For the case of multidimensional zero-correlation approximations with ‘coupled

masks’, apply Theorem 4.2 to the function x �→ (x,F(x)) to obtain their result.
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Definition 4.4 leads to a useful generalization of the miss-in-the-middle app-
roach that is commonly used to find zero-correlation linear approximations. Sup-
pose F = F2 ◦ F1. Let (U1, V1) and (U2, V2) be approximations such that

CF1U1 ⊆ V1 ⊥ V2 ⊇ [CF2 ]∗U2.

It then follows that (U1, U2) is a zero-correlation approximation for F2◦F1. Recall
from Theorem 3.2 (1) that if F2 is invertible, then [CF2 ]∗ = CF−1

2 .

Example 4.3. The key-recovery attacks on Midori-64 and MANTIS from ASI-
ACRYPT 2018 [5] are based on a one-dimensional nonlinear zero-correlation
approximation, and this property was obtained by connecting an ordinary inte-
gral property with a nonlinear invariant using the miss-in-the-middle approach
discussed above. For completeness, a fully worked out version of this approxi-
mation is provided as supplementary material in the extended version [7].

The zero-correlation approximation in Example 4.3 can still be explained by
mismatching activity patterns in the middle. The benefit of the geometric app-
roach here is mainly that it clarifies that the combination of integral properties
with invariants is a natural example of a more general principle, rather than just
a ‘trick’. However, in some cases, a more refined and possibly key-dependent
analysis is necessary to establish the orthogonality of the subspaces V1 and V2.
Such an example will be encountered in Sect. 7.3.

4.3 General Approximations

It follows from Example 4.1 that the unique principal correlation for an ordinary
linear approximation equals the absolute value of the (conventional) correlation
of the linear approximation. For a fixed advantage, the data-complexity of a
linear distinguisher is inversely proportional to the square of the correlation.

More generally, Baignères et al. [2] discuss the optimal data-complexity of
distinguishers for a permutation F : G1 → G2 based on balanced projections
P1 : G1 → H1 and P2 : G2 → H2. As discussed in Sect. 3.1, these projections
correspond to subspaces U = span{δx ◦ P1 | x ∈ H1} ⊆ CG1 and V = span{δx ◦
P2 | x ∈ H2} ⊆ CG2 by the pullback construction. The approximation map
〈V,U〉F can be represented by a matrix M with coordinates

My,x =
〈δy ◦ P2, T

F[δx ◦ P1]〉
‖δy ◦ P2‖2 ‖δx ◦ P1‖2

=

√
|G1|
|G2|

Pr [P1(z1) = x]
Pr [P2(z2) = y]

Pr [P2(F(z1)) = y |P1(z1) = x],

where z1 is uniform random on G1 and z2 is uniform random on G2. Since the
approximations considered by Baignères et al. are balanced, Pr [P1(z1) = x] =
|H1|/|G1| and Pr [P2(z2) = y] = |H2|/|G2|, so the prefactor simplifies to

√|H1|/√|H2|. Recall that the Frobenius norm ‖ · ‖F of a linear operator is the square
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root of the sum of its squared singular values. Equivalently, its square equals
the sum of all squared coordinates of an arbitrary matrix representation with
respect to an orthonormal basis. It follows that the Frobenius norm of 〈V,U〉F
is given by

‖〈U, V 〉F‖2F =
|H1|
|H2|

∑

x∈H1
y∈H2

Pr [P2(F(z1)) = y |P1(z1) = x]2.

In particular, ‖〈U, V 〉F‖2F − 1 is equal to the squared Euclidean imbalance as
defined by Baignères et al. [2, Definition 7]. The term −1 is due to the triv-
ial invariant corresponding to the uniform distribution. If this is omitted, one
obtains that the data-complexity of an optimal distinguisher is inversely pro-
portional to the sum of the squared principal correlations. This generalizes to
multiple linear distinguishers (which are not necessarily of projection type), in
which case the squared Frobenius norm corresponds to the fixed-key capacity.

5 Trails

Most cryptographic primitives F do not allow for a direct computation of the
approximation map 〈V,U〉F, even when U and V are low-dimensional. Indeed, if
F is devoid of structure, one is forced to estimate the approximation map empir-
ically. Consequently, finding good approximations of the general type discussed
in Sect. 4.3 is nontrivial.

However, cryptographic primitives are often a composition of highly struc-
tured round functions. That is, F = Fr ◦ Fr−1 ◦ · · · ◦ F1. By exploiting the struc-
ture of the functions Fi, one can often find approximations (Vi, Vi+1) such that
〈Vi+1, Vi〉Fi

can be efficiently computed. This is for instance the case for lin-
ear cryptanalysis, and Sect. 6 will introduce rank-one approximations as another
example for cell-oriented ciphers. The remaining task is to combine or ‘pile-up’
the individual approximations (Vi, Vi+1) for Fi in order to obtain an approx-
imation (V1, Vr+1) for F. The purpose of the piling-up principle, which will
be discussed in Sect. 5.1, is to obtain an estimate of the approximation map
〈Vr+1, V1〉F.
Definition 5.1 (Trail). Let G1, G2, . . . , Gr+1 be finite Abelian groups. A trail
of vector spaces for a function F = Fr ◦ · · · ◦ F1 with Fi : Gi → Gi+1 is a tuple
(V1, V2, . . . , Vr+1) of subspaces V1 ⊆ CĜ1, . . . , Vr+1 ⊆ CĜr+1.

Similarly to ordinary linear trails, Definition 5.1 defines a sequence of com-
patible intermediate approximations. In particular, if all vector spaces Vi are
spanned by a standard basis vector δχi

∈ CĜi, one obtains ordinary linear trails
as defined by Matsui [31] and generalized to other groups by Baignères et al. [3].
Note that the compatibility requirement does not exclude taking one or more of
the functions Fi as the identity map.
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5.1 Piling-Up Principle

As discussed in Sect. 1, methods for piling-up the approximations within a trail
are often motivated by Markov chain assumptions, or a dominant trail hypoth-
esis. Unfortunately, when the former assumption fails, it is often hard to under-
stand why or how to resolve the problem. The latter approach has been mostly
limited to the case of simple linear cryptanalysis.

Theorem 5.1 below provides an alternative motivation for the piling-up prin-
ciple. The premise is that each approximation in a trail corresponds to a trans-
formation of its input space, followed by an orthogonal projection on the input
space of the next approximation. Each of these successive projections introduces
an error, but orthogonal projection is optimal in the sense that it keeps the inner
product between the state and its approximation maximal and the norm of the
error minimal (see Sect. 2.3).

Theorem 5.1 (Piling-up principle). Let (V1, V2, . . . , Vr+1) be a trail for a
function F = Fr◦· · ·◦F1. The approximation map of the approximation (Vr+1, V1)
for F can be written as

〈Vr+1, V1〉F = 〈Vr+1, Vr〉Fr
· · · 〈V2, V1〉F1 + E ,

where the error term E is the transformation given by

E =
r−1∑

i=1

〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈V ⊥
i+1, Vi〉Fi

· · · 〈V2, V1〉F1 .

Proof. The proof follows the above intuition of successive orthogonal projection,
but keeps track of the error term. Recall from Definition 4.1 that 〈V,U〉F =
πV CFιU where πV is the orthogonal projector on V and ιU the inclusion map.
Since πV +πV ⊥ is equal to the identity map, one has the following decomposition
for i = 1, . . . , r − 1:

〈Vr+1, Vi〉Fr◦···◦Fi

= πVr+1C
Fr◦···◦Fi+1(πVi+1 + πV ⊥

i+1
)CFiιVi

= 〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈Vi+1, Vi〉Fi
+ 〈Vr+1, Vi+1〉Fr◦···◦Fi+1〈V ⊥

i+1, Vi〉Fi
.

The result follows by successively decomposing the factor 〈Vr+1, Vi+1〉Fr◦···◦Fi+1

using the same expression. ��
Theorem 5.1 generalizes the piling-up principle as used in many variants of linear
cryptanalysis. This will be demonstrated in Sect. 5.2. Furthermore, allowing arbi-
trary subspaces Vi increases flexibility. Even if the spaces V1 and Vr+1 correspond
to a specific type of property, the intermediate vector spaces can represent seem-
ingly unrelated properties. This will be illustrated in Theorem5.3, and again in
Sect. 6. In addition, since the formulation of Theorem5.1 is basis-free, the choice
of basis for these spaces can be arbitrary3. This may have computational benefits.
3 If Bi is a matrix whose columns form a basis for Vi, then the matrix-representation

of 〈Vi+1, Vi〉Fi with respect to these bases is (B∗
i+1Bi+1)

−1B∗
i+1C

FiBi(B
∗
i Bi)

−1. Note
the normalization factors for non-orthonormal bases.
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5.2 Discussion of Theorem 5.1

In the one-dimensional case with Vi spanned by δχi
, Theorem 5.1 reduces to

CF
χr+1,χ1

=
∏r

i=1 CFi
χi+1,χi

+ e,

where the error term e can be written as a sum over all other linear trails. This
is the fixed-key piling-up principle as stated in [16, §6.1] for F

n
2 . It also implies

the piling-up lemma as stated by Matsui [31] and generalized by Baignères
et al. [3] to other groups (after taking the variance with respect to indepen-
dent round keys). The composition result of Beierle et al. [4, Theorem 3] for
one-dimensional nonlinear approximations is another special case.

A few examples of the higher-dimensional case can be found in the litera-
ture. Consider the case where all spaces Vi are pullbacks of CHi along balanced
projection functions Pi : Gi → Hi, as in Baignères et al. [2] and Wagner [42].
Like all results in this paper, Theorem 5.1 is basis-free and also applies to the
spaces Ui = F−1(Vi) ⊆ CG provided that one replaces CFi by T Fi . As shown
in Sect. 4.3, relative to the bases {δx ◦ Pi/‖δx ◦ Pi‖2 | x ∈ Hi} for Ui, the map
〈Ui+1, Ui〉Fi

can be represented by a matrix M with coordinates

My,x =

√
|Hi |
|Hi+1| Pr [Pi+1(F(z)) = y |Pi(z) = x],

where z is uniform random on |Gi|. That is, there exist diagonal matrices Di and
Di+1 such that Di+1MD−1

i is the transition matrix considered in [2,42]. These
works follow the Markov chain assumption, which leads to using the product of
round transition matrices as an approximation for the true transition matrix.
The factors Di and Di+1 indeed cancel out, so that Theorem 5.1 yields the same
result up to initial and final multiplication by Dr+1 and D−1

1 respectively.
In the case of multiple linear cryptanalysis [9,25], it is common practice to

combine many individual linear trails by adding their correlations. Alternatively,
the squared correlations are added in order to estimate the variance of the cor-
relation under the assumption of independent round keys. However, in general,
strong approximations can often be found by taking into account the correla-
tions between all pairs of approximations. Theorem 5.1 reflects this because,
for multiple linear approximations, the coordinate representation of 〈Vi+1, Vi〉Fi

in the standard basis is a submatrix of the correlation matrix CFi . This app-
roach has been (sometimes implicitly) used in several works, notably in analyses
of Present [14], Puffin [29] and Spongent [11]. Note that this is often combined
with key-averaging, but a careful analysis of the key-dependency would be both
feasible and preferable in many cases.

5.3 Clustering and Linear Approximations from Invariants

A minimal condition for the applicability of the piling-up approximation is that
one chooses the best trail from within a predetermined class of candidates, where
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the principal correlations can be used as a measure of quality. Indeed, by decom-
posing the error term in Theorem 5.1, one can see that it can be large if other
trails result in better or comparable approximations.

However, it is also possible that the class of candidate trails is too limited
to obtain a good estimate for 〈Vr+1, V1〉F. In the context of linear cryptanaly-
sis, this phenomenon has been called clustering by Daemen and Rijmen [18]. In
some cases, clustering can be explained by broadening the set of candidate trails.
At ASIACRYPT 2018, an example of a perfect linear approximation over full
Midori-64 (with modified round constants) was presented [5]. However, full-round
Midori-64 does not admit any high-correlation linear trails. This observation can
be thought of as an extreme case of a more general phenomenon. At CRYPTO
2012, Abdelraheem et al. [1] showed that invariant subspaces give rise to lin-
ear approximations with higher-than-expected correlation. The same observa-
tion was later generalized to plateaued nonlinear invariants by Beierle et al. [4].
Plateaued nonlinear invariants are characterized by a flat Walsh-Hadamard
transform, taking only two values up to sign. The results of Beierle et al. [4]
can be summarized and generalized as follows.

Theorem 5.2. Let F : G → G be a function on a finite Abelian group G. Let
v ∈ CĜ be any function such that |v(χ)| = 1/

√|supp v| for all χ ∈ supp v and
zero elsewhere. If span{v} is an invariant of F in the sense of Definition 4.3,
then there exist characters χ, ψ ∈ supp v such that |CF

χ,ψ| ≥ 1/|supp v|.
Proof. By Definition 4.3, it holds that (the sum is over χ, ψ ∈ supp v)

1 = |〈v, CFv〉| =
∣
∣
∣
∑

χ,ψ

v(χ)v(ψ)CF
χ,ψ

∣
∣
∣ ≤ |supp v|max

χ,ψ
|CF

χ,ψ|.

It follows that |CF
χ,ψ| ≥ 1/|supp v| for at least one pair (χ, ψ). ��

Note that the same result is spread over two theorems in previous work [4,
Theorem 4 and 5]: one for invariant subspaces, and one for plateaued nonlinear
invariants. This illustrates the convenience of the general definitions in Sect. 4. To
apply the results to the case of invariant subspaces, one only needs to know that
the Fourier transformation of the indicator function of a subgroup H ⊆ G is flat
with support size |G|/|H|. This follows from the Poisson-summation formula [37,
Theorem 1]. See also the first entry of Table 2 for G = F

n
2 .

Theorem 5.2 and the results above illustrate that a strong approximation
using one kind of property tends to result in unexpectedly good approximations
using other properties. This can be understood using Theorem 5.1. For example,
let span{v} with ‖v‖2 = 1 be any one-dimensional invariant for CF. Consider
an ordinary linear approximation, i.e. a pair (span{δψ}, span{δχ}) where ψ, χ
are characters. Assuming δψ �⊥ v and δχ �⊥ v, the correlation of the linear
approximation over F can be estimated using the following trail:

δψ
I−−−−→

〈v,δψ〉
v

CF

−−→
1

v
I−−−−→

〈δχ,v〉
δχ.
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Theorem 5.1 yields the estimate |〈v, δψ〉〈δχ, v〉| = |v(ψ)v(χ)| for the absolute
correlation. If v is flat as in Theorem 5.2, then the piling-up approximation
suggests that all approximations with ψ, χ ∈ supp v will have a correlation of
roughly 1/|supp v|. In fact, this resolves a problem of Beierle et al., who note that
“our arguments are non-constructive and therefore, we are not able to identify
those highly-biased linear approximations” [4, §1]. In fact, it is easy to identify
the highly-biased approximations in practice: generically, any approximation
with ψ, χ ∈ supp v will do.

6 Rank-One Approximations

It is often convenient to represent the domain of a cipher as an array of m cells
of n-bit vectors, because most of the operations in the cipher act on the cells in
an independent way. In fact, in ciphers such as the AES, only the linear layer
results in diffusion between cells. That is, let G = (Fn

2 )m. Recall from Sect. 2
that C(Fn

2 )m ∼= [CF
n
2 ]⊗m and similarly for the dual group. For example, the

probability distribution of a state with independent cells having distributions
p1, . . . , pm, is represented by the rank-one tensor p1 ⊗ · · · ⊗ pm ∈ [CF

n
2 ]⊗m (see

Sect. 2.1 for definitions).
A rank-one approximation (U, V ) is any approximation such that U and V

are spanned by a rank-one tensor. No further conditions are imposed on U and
V . An important class of rank-one approximations is obtained from balanced
Boolean functions f : (Fn

2 )m → F2 such that f(x1, . . . , xm) =
∑m

i=1 fi(xi). As
shown in Table 2, the corresponding vector space for such a property is spanned
by the function (−1)f =

⊗m
i=1 (−1)fi . Equivalently, the Fourier transformation

of the corresponding vector space is spanned by

F[(−1)f ] =
⊗m

i=1 F[(−1)fi ],

where F[(−1)fi ] is precisely the Walsh-Hadamard transform of fi. The invariants
discussed in [5] and the nonlinear approximations considered by Beierle et al. [4]
are of this type.

6.1 Theoretical Analysis of Rank-One Trails

By Theorem 3.1 (2), the correlation matrix of a layer of m identical S-boxes
S is equal to (CS)⊗m. Indeed, correlation matrices are themselves tensors and
the tensor rank (not to be confused with matrix rank) of (CS)⊗m is one. This
expresses the fact that the S-box layer preserves independence of cells. A similar
result holds for the key-addition step. Whereas the S-box layer preserves the
rank-one structure of approximations, the linear layer tends to increase the rank.
In fact, it is reasonable to interpret the rank as a measure of diffusion between
the state cells. The correlation matrix of any function F : (Fn

2 )m → (Fn
2 )m is

itself a tensor and can be decomposed as CF =
∑r

i=1 λi

⊗m
j=1 Ci,j , where Ci,j

are 2n × 2n matrices and r is the tensor rank of CF.
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Lemma 6.1. Let F : (Fn
2 )m → (Fn

2 )m be a function such that F = (G,G, . . . ,G)
for some G : F

n
2 → F

n
2 . If CG =

∑r
i=1 λi

⊗n
j=1 Ci,j, then

CF =
∑

i1,...,im∈[r]

(
∏m

k=1 λik
)
⊗m

k=1

⊗n
j=1 Cik,j ,

where [r] = {1, . . . , r}. In particular, the tensor rank of CF is at most rm.

Proof. By Theorem 3.1 (2), it holds that CF = (CG)⊗m. The result follows by
expanding this expression using the multilinearity of tensor products. ��

Lemma 6.1 can be used to obtain a decomposition of the correlation matrix
of the MixColumn map of Midori-64 and MANTIS into 28 rank-one terms. This
map M : (F4

2)
4 → (F4

2)
4 can be represented by the following matrix over F24 :

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠ .

Up to a reordering of the input bits, one can think of M as a map M̃ = (L, L, L, L)
where L corresponds to the same matrix as above, but over F2. Specifically, M̃ =
σMσ where σ : (F4

2)
4 → (F4

2)
4 is the bit permutation defined by σi(x1, . . . , x4) =

(x1,i, . . . , x4,i). Since CL is a 16 × 16 matrix, one can check that

CL =
1
2

[(
1 0
0 1

)⊗4

+
(

0 1
1 0

)⊗4

+
(

1 0
0 −1

)⊗4

−
(

0 1
−1 0

)⊗4
]

.

To see this, it is helpful to observe that CL is symmetric as a tensor. Since
M̃ = σMσ where σ is a linear map corresponding to a reordering of bits, it
follows from Theorem 3.2 (2) and Lemma 6.1 that

CM = 2−4
∑

i1,i2,i3,i4∈[4]4

(
∏4

j=1 λij
)
[⊗4

j=1 Cij

]⊗4
.

with λ1 = λ2 = λ3 = 1 and λ4 = −1 and

C1 =
(

1 0
0 1

)

, C2 =
(

0 1
1 0

)

, C3 =
(

1 0
0 −1

)

, C4 =
(

0 1
−1 0

)

.

Hence, the tensor rank of CM is at most 28. This is significantly lower than the
worst-case of 216. Practically speaking, this enables a detailed analysis of rank-
one approximations for Midori-64 in Sect. 7.3. In fact, one can show that this
decomposition is minimal i.e. the rank of CM is equal to 28.

Lemma 6.2. (Lemma 3.5 in [19]). Let V1, . . . , Vd be finite-dimensional vector
spaces over C. If xi,1, . . . , xi,r ∈ Vi are linearly independent for i = 1, . . . , d, then
the vector

∑r
i=1 x1,i ⊗ x2,i ⊗ · · · ⊗ xd,i in

⊗r
i=1 Vi has tensor rank r.
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To see why Lemma 6.2 implies the result, let Vi be the vector space of 16 ×
16 matrices over C. This is an inner product space under the Frobenius inner
product Tr (A∗B) between matrices A and B. It is easy to check that the matrices
Ci defined above are mutually orthogonal with respect to this inner product.
This implies the mutual orthogonality of the matrices

[⊗4
j=1 Cij

]⊗4. The result
follows by the linear independence of orthogonal vectors.

6.2 Automated Analysis of Rank-One Trails

Let F = Fr ◦ · · · ◦ F1 be a permutation on (Fn
2 )m. By Theorem 5.1, an optimal

rank-one trail for F can be found by solving the following optimization problem:

maximize
r∑

i=1

log2
∣
∣
〈⊗m

j=1vi+1,j , CFi
⊗m

j=1 vi,j

〉∣
∣

subject to ‖vi,j‖2 = 1 for i = 1, . . . , r + 1, j = 1, . . . ,m

vi,j(1) = 0 for (i, j) ∈ A and vi,j = δ1 otherwise,

where the last condition ensures that the vectors vi,j are active and balanced,
i.e. orthogonal to δ1, on a predetermined pattern of cells A. Clearly, at least one
cell must be active to obtain a nontrivial result. In practice, it is better to take
the logarithm of the objective function in order to avoid vanishing gradients.

Restricting to real-valued vi,j , the above is an optimization problem over the
product of several copies of the (2n−1)-dimensional unit sphere. This domain is a
Riemannian manifold, and common iterative numerical optimization techniques
such as steepest descent and conjugate gradient have been generalized to this
setting [34]. This is the basic approach behind the automated method proposed
in this section. The source code of the tool is provided as supplementary material
and relies on the Pymanopt library [40].

The power of this method lies in the fact that it enables iterative conver-
gence to an optimal trail. This is made possible because the general nature of
rank-one approximations results in a relaxed, continuous optimization problem
rather than a discrete one. Although it is sometimes necessary to ensure that the
outermost vectors of the trail correspond to (for example) a Boolean function,
there is no reason to impose the same condition on vectors which are internal to
the trail.

Example 6.1. The tool can be applied to find rank-one invariants of arbitrary
functions with a limited number of input and output bits, which is a diffi-
cult problem in general [5]. For example, Fig. 2 shows the iterative convergence
towards an invariant of the Midori-64 linear layer. This process takes about a
second on an ordinary computer. By optimizing over the ellipsoid of unit-norm
vectors in the eigenspaces Eλ(CS) of the correlation matrix CS, joint invari-
ants for the linear and S-box layer can be found. Instructions to reproduce this
example are included as supplementary material in the supplementary material
of the extended version [7]. The tool also implements a barrier method to find
all rank-one invariants for a given linear layer. �
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Fig. 2. Correlation cj at each step of the optimization process for finding invariants of
the form v1 ⊗ v2 ⊗ v3 ⊗ v4 with vi(1) = 0 for the Midori-64 linear layer.

A number of challenges remain for larger problems. These include addressing
key-dependence, which is simplified due to the use of the Fourier transform,
and convergence issues. For completeness, the supplementary material of the
extended version [7] summarizes the (somewhat technical) steps that were taken
to address these challenges.

7 Open Problem of Beierle et al.

This section explains observations of Beierle et al. [4] regarding a nonlinear
approximation for two rounds of Midori-64. More broadly, the results in this
section lead to a deeper understanding of many nonlinear approximations of the
Midori-64 round function.

7.1 Problem Statement

Beierle et al. [4, Section 4.4] consider a nonlinear approximation over two rounds
of Midori-64, restricted to a single column of the state. Denote this function by
F. Its correlation matrix is equal to CF = CM[CS]⊗4CK2CM[CS]⊗4CK1 , where
K1 and K2 are key-addition maps, S is the S-box and M the matrix defined
in Sect. 6.1. Recall from Sect. 1 that Beierle et al. [4] describe nonlinear approx-
imations using linear properties of a nonlinearly transformed representation of
the cipher. The details of their approach will not be discussed here; the geometric
framework developed in Sects. 4 and 5 will be used instead. The nonlinear func-
tions considered by Beierle et al. are of the form

∑4
i=1 fi(x) with fi : F

4
2 → F2

and consequently, as discussed in Sect. 6 on page 23, correspond to approxima-
tions spanned by rank-one vectors. Specifically, the pair of nonlinear functions
considered in [4, Section 4.4] corresponds to a one-dimensional approximation
(span{u ⊗ v⊗3}, span{u ⊗ v⊗3}) for F with

u = 1/4 · (0, 1, 0,−1, 0, 1, 0,−1, 0,−1, 0, 1, 0,−1, 0,−3)�

v = 1/2 · (0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0,−1)�.
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The coordinates above are given for the character basis δχw
with lexicographic

ordering of w. Note that v is an eigenvector of CS. Beierle et al. estimate the
correlation of the above approximation by (from the perspective of this paper)
the following one-round trail, which has absolute correlation at least 9/32:

u ⊗ v ⊗ v ⊗ v
[CS]⊗4CKi−−−−−−−→
±1 or±1/2

u ⊗ v ⊗ v ⊗ v
CM

−−−→
9/16

u ⊗ v ⊗ v ⊗ v. (1)

The computation of the correlation over CM was done by a direct evaluation of
the inner product 〈u⊗v⊗3, CM u⊗v⊗3〉. This trail was believed to hold whenever
Ki ∈ F

4
2 ×K3 for i = 1, 2, with K = {(0, 0, x, y) | x, y ∈ F2}. The weak key set K

ensures the invariance of the tensor product factor v under key addition. Based
on the above, one estimates an absolute correlation of at least (9/32)2 over F.
However, Beierle et al. experimentally observe that this estimate is not accurate:

(i) When K2 ∈ (F4
2 \ K) × K3, the correlation is found to equal zero.

(ii) For other keys, the correlation takes on various values, but is always sig-
nificantly larger than the estimated minimum of 81/1024. Specifically, for
K1,K2 ∈ K4, the correlation ranges from 35/64 to 40/64 = 5/8. For other
keys, it lies between 39/256 and 65/256.

In their conclusion, the authors remark that understanding this phenomenon
is “a major open problem”. Sections 7.2 and 7.3 completely explains the above
observations using the methods developed in Sects. 4 and 5.

7.2 Optimal Rank-One Trail

As shown in Sect. 6.1, the effect of the linear layer is nontrivial and this makes
finding an optimal rank-one trail difficult. Hence, a simple explanation for obser-
vation (ii) could be that the trail (1) proposed by Beierle et al. is not a good
guess. Using the tool from Sect. 6.2, it is easy to find the optimal rank-one trail
– ignoring the effect of key-addition for now. Running the tool (the configura-
tion is given in the extended version [7]) yields the following trail with absolute
correlation at most 9/16:

u ⊗ v⊗3 [CS]⊗4CK1−−−−−−−−→
±3/4 or±1/4

v⊗4 CM

−−→
1

v⊗4 [CS]⊗4CK2−−−−−−−→
±1

v⊗4 CM

−−→
3/4

u ⊗ v⊗3.

A short calculation shows that the third step requires K2 ∈ K, otherwise the trail
has correlation zero. Furthermore, the correlation 3/4 in the first step occurs if
and only if K1 ∈ K4. In hindsight, one might have guessed the above trail
without detailed analysis: the choice of v⊗4 as an intermediate step is natural,
since v⊗4 is an invariant for the round function. This is an instance of the general
phenomenon discussed in the last paragraph of Sect. 5.3.

7.3 Theoretical Analysis of the Problem

The correlations predicted by the rank-one trail obtained in Sect. 7.2 are within
10 to 30% of the observed correlations reported by Beierle et al. [4, Tables 1–4].
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However, the trail does not yet explain the zero-correlation approximation. In
this section, the results from Sect. 6.1 will be used to find a minimal and complete
set of rank-one trails for the approximation.

The propagation of u ⊗ v⊗3 under the Midori-64 round function will first
be analyzed. For the zero-correlation case, the miss-in-the-middle strategy from
Sect. 4.2 will be used. It will then be shown that a relatively short formula for
the exact key-dependent correlation of the approximation can be computed.

Let K1 = (k1, k2, . . . , k16) ∈ F
16
2 and K2 = (k′

1, k
′
2, . . . , k

′
16) ∈ F

16
2 . The results

in Sect. 6.1 can be used to compute the image of u ⊗ v⊗3 under one round:

CM[CS]⊗4CK1 u ⊗ v⊗3 = −ν CM(CSCk1‖···‖k4u) ⊗ v⊗3 = ν v ⊗ (∑16
i=1ci v⊗3

i

)
,

where ν = −∏4
i=2(−1)k4i−1+k4i . The coefficients ci and the vectors vi are listed

in the supplementary material of the extended version [7]. Note that, because
CM has rank 28, one initially obtains 28 terms. However, this can be reduced to
16 by grouping terms appropriately. This can be done manually by exploiting
the structure of the rank-decomposition, but Sage code to automate this is also
provided as supplementary material. Since the vectors vi are mutually orthogo-
nal and this is preserved when multiplied with (the same) orthogonal matrices,
Lemma 6.2 implies that the above decomposition is minimal. Interestingly, not
all of the vectors vi correspond to Boolean functions or probability distributions.

A similar computation can be performed for the inverse of the second round.
Specifically, recalling that S and M are involutions,

CK2 [CS]⊗4CM u ⊗ v⊗3 = ν′ Ck′
1‖···‖k′

4v ⊗ (∑8
i=1c

′
i

⊗3
j=1(C

k′
4j‖···‖k′

4j+4v′
i)

)
.

The coefficients c′
i and the vectors v′

i are listed in the supplementary material
of the extended version [7] and ν′ = (−1)k′

3+k′
4+1. The minimality of the above

decomposition can again be established using Lemma 6.2.

Zero-Correlation Approximation. Let U = span{v} ⊗ (CF̂
4
2)

⊗3 and V =
span{Ck′

1‖···‖k′
4 v} ⊗ (CF̂

4
2)

⊗3. The decompositions above clearly imply the fol-
lowing inclusions:

CM[CS]⊗4CK1 u ⊗ v⊗3 ∈ U and CK2 [CS]⊗4CM u ⊗ v⊗3 ∈ V.

Consequently, if U ⊥ V , the general miss-in-the-middle principle discussed in
Sect. 4.2 implies that the approximation has correlation zero. This happens
whenever 〈v, Ck′

1‖···‖k′
4 v〉 = 0. That is,

〈
(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1, 0, 0, 0, 1)�,

(0, 0, 0, 1, 0, 0, 0, (−1)k′
2 , 0, 0, 0, (−1)1+k′

1 , 0, 0, 0, (−1)k′
1+k′

2)�〉

= 1 + (−1)k′
1 + (−1)k′

2 + (−1)k′
1+k′

2 ,

which equals zero unless k′
1 = k′

2 = 0. This explains the condition K2 ∈ (F4
2 \

K) × K3 observed by Beierle et al. [4].
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Refining the Correlation Estimate. Now assume K2 ∈ K4, so that the
correlation is nonzero. A closer inspection of the vectors vi and v′

j reveals that
|〈vi, C

k′
4j‖···‖k′

4j+4v′
j〉| ≤ 1/2 unless i = 3 and j = 1. That is, when the inner

product 〈CK2 [CS]⊗4CM u ⊗ v⊗3, CK2 [CS]⊗4CM u ⊗ v⊗3〉 is expanded using the
decomposition above, the term corresponding to c3c

′
1 has a weight of one whereas

all other terms have weight at most 2−3. Since v3 = v′
1 = v, this term corresponds

to the trail from Sect. 7.2.
The correlation estimate can be improved by including additional trails. In

principle, all 128 terms in the expanded inner product between the forward and
backward expressions can be computed. The supplementary material contains a
Sage script that computes a short formula for the exact key-dependent correla-
tion of the approximation, which is also listed in the extended version [7].

In fact, due to the low rank of CM, the same technique can be used to analyze
any rank-one approximation of F. This includes all linear approximations. In
general, the minimal number of rank-one trails can be higher or lower than
16 × 8 (depending on the choice of the input and output property).
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Abstract. The Tower variant of the Number Field Sieve (TNFS) is
known to be asymptotically the most efficient algorithm to solve the dis-
crete logarithm problem in finite fields of medium characteristics, when
the extension degree is composite. A major obstacle to an efficient imple-
mentation of TNFS is the collection of algebraic relations, as it happens
in dimension greater than 2. This requires the construction of new siev-
ing algorithms which remain efficient as the dimension grows. In this
article, we overcome this difficulty by considering a lattice enumeration
algorithm which we adapt to this specific context. We also consider a
new sieving area, a high-dimensional sphere, whereas previous sieving
algorithms for the classical NFS considered an orthotope. Our new siev-
ing technique leads to a much smaller running time, despite the larger
dimension of the search space, and even when considering a larger tar-
get, as demonstrated by a record computation we performed in a 521-bit
finite field Fp6 . The target finite field is of the same form than finite
fields used in recent zero-knowledge proofs in some blockchains. This is
the first reported implementation of TNFS.

1 Introduction

Context. While the post-quantum competition is ongoing, the discrete loga-
rithm problem is still at the basis of the security of many currently-deployed pub-
lic key protocols. Given a cyclic group G, a generator g ∈ G and a target h ∈ G,
solving the discrete logarithm problem in G means finding an integer x mod |G|
such that gx = h. The hardness of this problem depends on the group G and the
two usual choices are the group of the invertible elements in a finite field and the
group of points of an elliptic curve. This article deals with discrete logarithms
in finite fields. In particular, as small characteristics finite fields are no longer
considered because of the advent of quasipolynomial time algorithms [3,12,25].
We focus on medium and large characteristics. For a finite field Fpn we recall
that the characteristic p is of medium size if Lpn(1/3) < p < Lpn(2/3) and of
large size if p > Lpn(2/3).1 Equivalently, it means that the extension degree n
is of bounded size with respect to the finite field order.
1 We use the usual notation LQ(α, c) = exp((c + o(1))(log Q)α(log log Q)1−α), where

o(1) tends to 0 when Q tends to infinity.

c© International Association for Cryptologic Research 2021
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NFS and TNFS. The Number Field Sieve (NFS) algorithm and its variants
are the fastest known algorithms to solve the discrete logarithm problem in finite
fields of medium and large characteristics. One of these variants is the Tower
Number Field Sieve (TNFS), known to be asymptotically more efficient than
a classical NFS for some fields when the extension degree is composite. TNFS
exploits the algebraic structure of towers of number fields: the main difference
with NFS comes from the representation of the target field Fpn . Whereas in
the classical NFS setup, the finite field Fpn is represented as the quotient field
Fp[x]/(f) where f is a polynomial of degree n over Fp, in the TNFS setup, we
have Fpn ∼= R/pR where R is the ring defined as the quotient Z[t]/h(t), and
h ∈ Z[t] is a degree n polynomial that remains irreducible modulo p.

Originally proposed by Schirokauer [32], TNFS was reinvestigated by Bar-
bulescu, Gaudry, and Kleinjung [4] in 2015. They showed that the asymptotic
complexity of TNFS in large characteristics is Lpn(1/3, 3

√
64/9), the same as for

the NFS. In medium characteristics, the complexity of TNFS is greater than
Lpn(1/3) and thus this algorithm is only considered in the large case.

This algorithm was then modified by Kim, Barbulescu [23] and Jeong [24]
to form the extended Tower Number Field Sieve (exTNFS), the variant being
dedicated to composite extension degrees, i.e., when n = ηκ. This extended
variant has an Lpn(1/3) complexity also in medium characteristics. In this case,
the overall complexity of exTNFS can be as low as Lpn(1/3, 3

√
48/9) if there is a

factor of n of the appropriate size (see Table 1). Both TNFS and exTNFS can be
coupled with a multiple field variant – for any finite field – and a special variant
– for some sparse characteristics only – giving each time a lower asymptotic
complexity. We do not address these variants in this article.

Table 1. Medium and large characteristics complexities of various algorithms,
expressed as Lpn(1/3, 3

√
c/9), where c is the reported value in this table.

Algorithm Medium characteristic Boundary Large characteristic

NFS 96 48 64

TNFS – – 64

exTNFS ≥ 48 48 64

Towards an Implementation of ExTNFS. One can see from the complexi-
ties given in Table 1 that for NFS, medium characteristics are harder than large
characteristics. This remains true for the multiple and special variants. However,
a noticeable exception to this observation lies in the exTNFS algorithm. Indeed,
when the degree n is composite, i.e., n = ηκ, the target finite field Fpn = Fpηκ

can be viewed as FP κ where P is a prime power of the same bitsize as pη. Thus,
the complexity of exTNFS in medium characteristics can be viewed similarly as
the complexity of NFS at the boundary case between medium and large char-
acteristics, leading to a smaller c constant in the Lpn-notation. Hence we find
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a lower complexity in medium characteristics than in large ones with exTNFS,
which makes it a promising candidate for computational records in this area.

Let us assume we want to evaluate the security of a family of finite fields
with fixed composite extension degree (for instance n = 6). These families often
arise in pairing-based protocols. Evaluating the security of a concrete finite field
in such a family is not an easy task, as we are not even able to tell beforehand
whether NFS or exTNFS would be the fastest algorithm. Indeed, using a fixed
extension degree asymptotically defines the characteristic as large, an area where
the best discrete logarithm algorithm is NFS (not exTNFS). However, let us keep
in mind that medium and large characteristics are notions defined for asymptotic
sizes; as soon as we set a concrete target finite field it is not well understood
how we should qualify its characteristic. In this work we underline that exTNFS
shows real improvements with regards to current NFS computations for this
family. Current record computations (e.g. for 400 or 500-bit finite fields) deal
with areas where asymptotic analysis are not yet the relevant ones. We cannot
easily extrapolate on current and deployed sizes (e.g. for more than 2000-bit
finite fields) but our implementation of exTNFS provides practical insight on
security parameters by showing its incredibly good behavior at lower sizes.

In the rest of this article, to simplify notations and to be coherent with the
recent literature, we use TNFS as a short hand for ex-TNFS2. We do however
assume the degree n of our target finite field is composite, thus considering
specifically the extended variant.

Lattice Enumeration for TNFS. Despite the fact that TNFS is promising,
no implementation was done using this variant of NFS, up to this work. Indeed,
so far, excluding the very small characteristics 2 and 3, all discrete logarithm
record computations were performed using NFS, the special variant of NFS, or
the Function Field Sieve – a method for small characteristics only.

A major obstacle to an efficient implementation of TNFS is the collection
of algebraic relations where equations between small elements of number fields
must be found. Indeed, whereas NFS requires sieving through (a, b) ∈ Z

2 pairs,
the tower setup sieves through (a(ι), b(ι))-pairs, i.e., degree η − 1 polynomials
with bounded coefficients. This requires the construction of sieving algorithms
in a space of dimension 2η ≥ 4, which remain efficient as the dimension grows.

In dimension 2, Franke and Kleinjung [10] proposed in 2005 an efficient algo-
rithm used in all previous records. For higher dimensions, after the pioneer work
in Fp12 by Hayasaka et al. [19], the transition vectors method from Grémy [13]
and a recursive plane method proposed by McGuire and Robinson [27] were
tested in dimension 3 and used for record computations using NFS. However,
the efficiency of their algorithms for even higher dimensions is questionable.

Our Work. In this article, we introduce an efficient sieving algorithm for higher
dimensions which allows us to implement TNFS and perform the first record
computation with it. More specifically, we propose the following contributions.
2 We use the same abuse in the abstract and title too.
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1. Sieving in a high dimensional sphere instead of an orthotope. All siev-
ing algorithms so far considered a product of intervals as search space S.
Indeed, whether a candidate relation is characterized by an (a, b)-pair or an
(a(ι), b(ι))-pair with more than two coefficients, every coefficient is bounded
separately in an interval [−Hi

1,H
i
2] for i = 1, 2, · · · , d where d is the total

number of coefficients. Hence, the search space considered is a d-orthotope of
the form S = [−H1

1 ,H1
2 ] × · · · × [−Hd

1 ,Hd
2 ]. We argue that when d ≥ 3, the

shape of S must be adequately chosen. More precisely, we consider a d-sphere
instead of a d-orthotope and explain why we believe this choice leads to a
more efficient algorithm when the dimension grows.

2. Adapting a lattice enumeration algorithm to the context of TNFS. In order
to fully exploit the new search space, we adapt a known lattice algorithm
to the context of TNFS: Schnorr-Euchner’s enumeration algorithm [33], that
outputs the shortest vector of a lattice. We modify this algorithm in order to
list all the vectors of a lattice L within a d-dimensional sphere Sd. Further-
more, a part of the common coefficients of the enumerated vectors are kept
in memory during the algorithm, leading to a 10% reduction in the execution
time. This algorithm remains competitive when the dimension grows and also
provides an exhaustive search of all the vectors in L∩Sd, contrary to previous
approaches.

3. Analysis of the relation collection step in TNFS and duplicate relations. We
place this sieving algorithm in the context of the entire relation collection step.
Sieving algorithms are usually combined with batch algorithms and ECM to
provide the most efficient relation collection. We give details on this relation
collection step, and give new insight on how to define and remove duplicate
relations that arise in the context of TNFS.

4. A 521-bit finite field record. Our new lattice enumeration for the sieving step
led to the first record computation of a discrete logarithm with TNFS, reach-
ing a 521-bit finite field Fp6 . Previous record on a finite field of the same shape
reached a 423-bit finite field in January 2020. The choice of the extension
degree was motivated by the use of such finite fields in pairing-based proto-
cols, in particular in recent zero-knowledge proofs in some blockchains [5,8].
Ultimately, as shown in Table 2, our algorithm is much faster than exist-
ing high-dimensional sieving algorithms, despite the larger dimension of the
search space and the larger finite field.

Table 2. Comparison of the relation collection step in core hours with [14] and [27]
for finite fields of the form Fp6 .

Parameters [14] [27] This work

Algorithm NFS NFS TNFS

Field size (bits) 422 423 521

Sieving dimension 3 3 6

Sieving time 201,600 69,120 23,300
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Outline. In Sect. 2, we recall the general setup of TNFS and in particular we
concentrate on the steps that differ the most from the classical NFS setup. In
Sect. 3, we focus on the relation collection step with the special-q method, and
explain how to deal with duplicate relations. In Sect. 4, we describe our adapta-
tion of Schnorr-Euchner’s enumeration algorithm to the context of TNFS. We
justify why we choose a d-sphere as sieving area and introduce an efficient way
to compute the desired vectors of coefficients for the relations. Section 5 analyses
the complexity of our sieving algorithm and compares the latter with pre-existing
algorithms. Finally, in Sect. 6 we detail our complete discrete logarithm compu-
tation in a 521-bit finite field with extension degree 6.

2 The Tower Number Field Sieve

2.1 Mathematical Setup

The classical tower of number fields that illustrates the TNFS setup considers the
intermediate number field Q(ι) where ι is a root of h, a polynomial over Z that
remains irreducible modulo p. Above this number field are set the two number
fields K1 = Q(ι)[x]/f1(x) and K2 = Q(ι)[x]/f2(x) where f1, f2 are irreducible
polynomials over R = Z[ι] that share an irreducible factor ϕ modulo the unique
ideal p over p in Q(ι). We write Oi the ring of integers of Ki and αi a root
of fi in Ki for i = 1, 2. This construction is illustrated in the left part of Fig. 1.
Because of the conditions on the polynomials h, f1 and f2, there exist two ring
homomorphisms from R[x] = Z[ι][x] to the target finite field Fpn through the
number fields K1 and K2. This allows to build a commutative diagram as shown
in the right part of Fig. 1. The extension degree n is assumed to be composite,
and we write n = ηκ. In this setting, h is of degree η, and f1 and f2 have
degree at least κ, so that the degree of their common factor ϕ is exactly κ. For
simplicity, we will assume that f1 and f2 are defined over Z, since it is the case
in our record computation; this is only possible when κ and η are coprime.

K1 K2

R ⊂ Q(ι)

Q

f1 f2

h

R [X]

K1 ⊃ R [X] /(f1(X)) K2 ⊃ R [X] /(f2(X))

R/p[X]/(ϕ(X)) ∼= Fpn

mod ϕ, mod p mod ϕ, mod p

Fig. 1. Commutative diagram of Tower NFS.
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2.2 A Step by Step Walk Through TNFS

The TNFS algorithm follows similar steps as any index calculus algorithm.

Polynomial Selection. Unlike NFS which uses only two polynomials f1 and f2 to
define the number fields, three polynomials must be selected for this algorithm,
namely h, f1 and f2. The polynomial h must be of degree η and irreducible mod-
ulo p to ensure the uniqueness of the ideal p over p in R. Ideally one would choose
a unitary h with small coefficients and such that the inverse of the Dedekind zeta
function evaluated at 2 (implemented in Sage for example) is close to 1. Indeed,
as we will see in Sect. 3.4, this is related to non-coprime ideals that produce
equivalent relations which are useless for the linear algebra step.

The polynomials f1 and f2 are selected to fit the mathematical setting of
Sect. 2.1. One can use NFS polynomial selections such as the Conjugation, JLSV
or Sarkar-Singh’s methods [2,20,31], not recalled here. The polynomials we use
for our 521-bit computation come from the Conjugation method. In NFS, the
quality of the polynomials can be refined with a quantity known as the Murphy-α
value. See [17] for details about Murphy-α adapted to TNFS.

Relation Collection. The goal of the relation collection step is to select among the
set of linear polynomials φ(x, ι) = a(ι) − b(ι)x ∈ R[x] at the top of the diagram
the candidates which produce a relation. A relation is found if the polynomial
φ(x, ι) mapped to K1 and K2 factors into products of ideals of small norms in
both number fields. The ideals of small norms that occur in these factorizations
constitute the factor basis F . More precisely, we define it as F = F1 ∪ F2 with

Fi(B) = {prime ideals of Oi of norm ≤ B, whose inertia degree over Q(ι) is 1},

for i = 1, 2. The representation of these ideals of degree 1 in the context of TNFS
is summarized in [4, Proposition 1].

To verify the B-smoothness on each side, one needs to evaluate the norms
Ni(a(ι)−b(ι)αi) for i = 1, 2. To do so we recall that when the polynomials fi are
monic, these norms are integers that can be computed thanks to resultants as
Ni(a(ι) − b(ι)αi) = Rest(Resx(a(t) − b(t)x, fi(x)), h(t)). The relation collection
step stops when we have enough relations to construct a system of linear equa-
tions that may be full rank. The unknowns of these equations are the virtual
logarithms of the ideals of the factor basis.

Linear Algebra. A good feature of the linear system created is that the number
of non-zero coefficients per line is very low. This allows to use sparse linear
algebra algorithms such as the block variant of Wiedemann’s algorithm [34], for
which parallelization is partly possible. The output of this step is a kernel vector
corresponding to the virtual logarithms of the ideals in the factor basis. There
is no difference for this step between TNFS and NFS.
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Individual Discrete Logarithm. The final step of TNFS consists in finding the
discrete logarithm of the target element. This step is subdivided into two sub-
steps: a smoothing step and a descent step. The smoothing step is an iterative
process where the target element t is randomized by considering s = get ∈ F

∗
pn

for an exponent e chosen uniformly at random.
The second step consists in decomposing every factor of the lifted value of s,

in our case prime ideals with norms less than a smoothness bound Bi (but
usually greater than B) into elements of the factor basis for which we now know
the virtual logarithms. This process creates descent trees where the root is an
ideal coming from the smoothing step and the nodes are ideals that get smaller
and smaller as they go deeper. The leaves are ultimately elements of the factor
basis. The edges of the tree are defined as follows: for every node, there exists
an equation between the ideal of the node and all the ideals of its children.

In this work, we consider an improvement given by Guillevic in [16, Algorithm
5] for the smoothing step, that is useful in the context of TNFS only. The goal is
to improve the smoothness probability of the lift of s ∈ F

∗
pn to Ki by constructing

an adequate lattice whose reduced vectors define elements of Ki with potentially
small norms which is precisely the potential lifts of s we are looking for.

3 Focus on the Relation Collection

In TNFS the relation collection step requires sieving in dimension 2η ≥ 4, which
is the number of coefficients involved in φ. We start by dividing the set of poly-
nomials φ into multiple subsets and then we present different algorithms to
successively select the candidates in each of these subsets.

3.1 The Special-q Setup

The relation collection phase looks at a set of linear polynomials φ(x, ι) =
a(ι)− b(ι)x ∈ R[x] where a, b are polynomials of degree deg h−1 with deg h = η
and bounded coefficients, and tries to identify which are going to produce doubly-
smooth norms, i.e., for which pair (a(ι), b(ι)) the norms N1 (a(ι) − b(ι)α1) and
N2 (a(ι) − b(ι)α2) factor into small primes. To reduce the time of the siev-
ing stage, Pollard [30] suggested to divide the set of all polynomials φ, com-
monly called the search space, into multiple subsets. This corresponds to the
so-called special-q method. This method regroups polynomials into groups such
that φ(α1, ι) (or φ(α2, ι) depending on whether we put the special-q on the f1-
side or the f2-side) share a common factor: the ideal Q, above a prime q, hence
the name. Thus, when talking about a sieving algorithm, we usually consider
a fixed special-q ideal Q, and select good polynomials φ in the corresponding
subset. This idea of using special-q’s increases the smoothness probability on
the side where divisibility by Q is forced, since the norm is already divisible
by q. Furthermore this provides a natural parallelization where each work-unit
corresponds to a special-q.
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Let φ denote the (row-) vector of coefficients of the polynomial φ(x, ι), i.e.
the vector φ = (a0, · · · , aη−1, b0, · · · , bη−1) ∈ Z

2η. Let us consider a special-q
ideal Q of degree 1 in Ki of the form Q = 〈q, ι − ρι, x − ρx〉, where q is a prime
number, ρι is a root of h modulo q, and ρx is a root of fi modulo q. One could
also consider ideals of degree greater than 1, but special-q of degree 1 are the
most common among ideals of bounded norms and thus we restrict to this case.

Proposition 1. The set of polynomials φ such that the corresponding principal
ideal in Ki is divisible by Q form a lattice that we call the Q-lattice LQ.

The latter can be made explicit as follows.

LQ = {(a0, · · · , aη−1, b0, · · · , bη−1) ∈ Z
2η :

η−1∑

k=0

(
akιk − bkιkαi

)
≡ 0 (mod Q)}

where i = 1, 2 depending on the side we consider. A basis BQ of this lattice can
be expressed as follows.

(a, b) a0 a1 · · · aη−2 aη−1 b0 b1 · · · bη−1

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

(q, 0) q 0 0
(ι − ρι, 0) −ρι 1 0

(ι(ι − ρι), 0) 0 −ρι 1 0
...

. . . . . .
(ιη−2(ι − ρι), 0) −ρι 1

(ρx, 1) ρx 0 1
(ιρx, ι) 0 ρx 0 1

...
. . . . . .

(ιη−1ρx, ιη−1) ρx 1

= BQ.

The determinant of this lattice is qdeg φh , where φh is an irreducible factor of h
(mod p). In our case φh = ι − ρι because we only consider special-q ideals of
degree 1 and so the determinant is simply q. The lattice dimension is 2η.

Each unit of computation targets one special-q ideal Q and searches for
polynomials φ(x, ι) with φ ∈ LQ leading to relations, i.e., for which both sides
are smooth. In order to explore the lattice LQ, we first LLL-reduce the basis BQ,
and then consider linear combinations with small coefficients of these new basis
elements. This allows us to focus on polynomials where one of the norms on one
side is known to be divisible by q, thus increasing the probability of it being
smooth. More precisely, let MQ be an LLL-reduced basis of LQ. We study the
(row-) vectors c of coefficients such that φ = c · MQ, potentially leads to a
relation. This is done using sieving algorithms.

3.2 Constructing the Double-Divisibility Lattice LQ,p

We concentrate on vectors c that belong to a sieving region S. Traditionally, S
is an 	∞-ball, however in this work we consider the 	2-norm. Section 4.2 explains
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this preference. In order to efficiently detect the vectors c giving elements of
smooth norms, one can perform an Eratosthenes-like sieving, quickly marking
all vectors c in S leading to a norm on the f1-side (or the f2-side) that is divisible
by a small prime p. Repeating this sieve for many primes p allows to detect the
most promising vectors φ, those for which the norm is divisible by many small
primes. To do so, we proceed as for the divisibility by Q.

Let p be a prime ideal of norm p in Ki of the form p = 〈p, ι − rι, x − rx〉,
where rι is a root of h modulo p and rx is a root of fi modulo p. The second
statement of [4, Proposition 1] can be reformulated for this specific context.

Proposition 2. The principal ideal generated by φ(x, ι) in Ki is divisible by p
if and only if φ(rx, rι) ≡ 0 mod p.

Let Up be the (row-) vector of size 2η defined by

Up =
(
1, rι mod p, · · · , rη−1

ι mod p, rx, rxrι mod p, · · · , rxrη−1
ι mod p

)
.

Then similarly as before, we can translate the divisibility property of the ideal
of Proposition 2: the divisibility by p is equivalent to the condition φ · Uᵀ

p ≡ 0
mod p. Recall that φ is taken in a subset of the search space so that the ideal
generated by φ is divisible by Q, namely its coefficients are written as φ = c·MQ.
Taking into account the divisibility by Q and by p yields the condition on c:

c · MQUᵀ
p ≡ 0 mod p. (1)

The product MQUᵀ
p, reduced modulo p and normalized so that its first coordi-

nate is 1, is expressed as MQUᵀ
p ≡ λ (1, α1, α2, . . . , αη−1)

ᵀ mod p, with λ > 0.
Since MQ and Up are known, we explicitly compute the values αi. This assumes
the first coordinate is non-zero. Otherwise, one must either adapt the construc-
tion of MQ,p below or skip the ideal p during sieving. Finally, the set of vectors
c verifying Eq. (1) is the lattice LQ,p generated by the rows of the matrix

MQ,p =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

p 0 0 0 · · · 0
−α1 1 0 0 · · · 0

−α2 0
. . . 0 · · · 0

... 0 0
. . . 0

−αη−1 0 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

.

In the end, since MQ,p is explicitly known, we can compute the coefficients φ = c·
MQ of the polynomials φ. This is possible as soon as we are able to enumerate the
short vectors c in this lattice which is the aim of Sect. 4. This procedure, which is
called enumeration, is done for all prime p from 2 up to a predefined bound pmax,
forming a so called sieving algorithm. Sieving allows to detect quickly vectors c
that belong to several MQ,p for various p. The corresponding polynomials φ are
good candidates that potentially give relations as they provide by construction
ideals that are already divisible by Q and several ideals p. Hence we keep them
for the next selection phase.
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3.3 Combining Three Algorithms

Other algorithms are used, either to directly detect polynomials leading to
doubly-smooth norms, or to work as complementary algorithms one after another
as a sequence of filters to determine and only keep the promising candidates at
each step (as done with the enumeration above). These algorithms either find
and extract smooth parts of the norms, or completely factor them. The family of
sieving algorithms [13,27], batch algorithms [6, Algorithm 2.1] and ECM [7,26]
are examples of such methods used in factorization and DLP computations.

They all have different complexities and properties and thus cannot be used
on the same amount of input norms Ni. ECM is for example much more costly
than sieving. Hence, applying it to all norms Ni is far from optimal. On the
other hand, sieving is a much less costly algorithm per candidate, and thus can
be used to find the small factors (up to pmax) of a large number of norms of
structured candidates. This is why the relation collection step usually starts
with a sieving algorithm with input all candidates (a(ι), b(ι)) pairs. ECM is
then used to guarantee that the norms of promising candidates are indeed B-
smooth by checking the larger prime factors. Batch smoothness can be added in
between sieving and ECM or as a substitution of one of them to further optimize
the overall cost. It is less costly than ECM and thus can be used to pre-select
promising candidates but more costly than sieving and thus cannot be run on
the entire set of candidates. It extracts prime factors up to a bound pbatch such
that pmax < pbatch < B. Table 3 describes the properties of these algorithms.

Table 3. Properties of the different relation collection algorithms

Properties Sieving Batch ECM

Input candidates Numerous and structured Numerous Few

Prime factors extracted Small Small or medium Large

RAM Very large Large Tiny

Cost per candidate Small Medium High

The relation collection is thus seen as a sequence of filters, each taking a cer-
tain amount of candidates as input, and selecting survivors based on a criterion.
These survivors are then the input to the next filter. The selection of survivors
is usually based on the size of the cofactor, which we now define.

Definition 1. (A-cofactor). Let N be a positive integer and consider P =∏
i pi where the pi are the prime factors of N extracted by Algorithm A. Then

the A-cofactor of N is CA(N) = N/P.

For a fixed A-cofactor threshold TA, the survivors are the candidates selected
if their norm N satisfies CA(N) ≤ TA (there can be such a condition on both
sides if sieving is done on both of them). Finally, the complete relation collection
is given in Algorithm 1. Note that on line 7, we remove duplicate relations, as
explained in the next Section.
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Algorithm 1. Relation collection for a given special-q with sieving, batch and
ECM
Input: A prime ideal Q, a sieving region S
Output: A list of relations.

1: Construct the lattice LQ and LLL-reduce it.
2: for each prime ideal p in O1 (or O2) up to norm pmax do
3: Construct the lattice LQ,p

4: Enumerate all vectors c in LQ,p ∩ S.
5: For each c, keep track of the size of the factor p with a sieving table.

6: For promising c, for which the product of the factors p is large, compute approxi-
mations of the norms N1, N2 and identify vectors with sieve-cofactor smaller than
Tsiev. They are called sieve-survivors.

7: Remove duplicates.
8: Run batch algorithm with input the (exact) norms N1 and N2 of the sieve-survivors

and primes up to pbatch. Keep batch-survivors whose batch-cofactor is smaller than
Tbatch < Tsiev.

9: Run ECM on the batch-survivors to identify all the doubly-B-smooth norms.
10: return Vectors with doubly-B-smooth norms

3.4 Filtering Through Equivalent Relations

When sieving through all the pairs of candidates it is sometimes the case that
two pairs (a(ι), b(ι)) and (a′(ι), b′(ι)) provide the same relation, i.e., they corre-
spond to two linear equations that provide the same information on the virtual
logarithms of the elements of the factor basis involved.

Removing duplicates is common in factoring and DLP computations. Let us
start by identifying three different types of duplicates. Because these definitions
apply in both NFS and TNFS, we use the terminology (a, b) to either define a
classical (a, b) ∈ Z

2 pair in NFS or (a(ι), b(ι)) ∈ R[x] in TNFS.

Definition 2 (Duplicates). A duplicate relation refers to a pair (a, b) such
that there exists another pair (a′, b′) that leads to the same relation. We distin-
guish three types of duplicates:

– We refer to special-q-duplicates when a relation with ideal factorization
(a − bαi)Oi =

∏
j Q

ej

j involves several prime ideals Qj that occur in the set
of special-q’s considered. In other words, more than one special-q units of
computation provide the same relation.

– If (a, b) generates a relation for a fixed special-q, then a Kh-unit-duplicate
refers to the pair (ua, ub), for u ∈ O∗

Kh
, where u is a small enough unit of

Kh.
– If (a, b) generates a relation for a fixed special-q, then a ζ2-duplicate refers

to the pair (λa, λb),for λ ∈ OKh
\ O∗

Kh
, where λ is small enough.

Duplicate relations generate identical or nearly identical lines in the linear
system of equations. As the cost of solving the system grows with its dimension,
we want to get rid of all the unnecessary lines. The related matrix is encoded
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as a list of prime ideal factors for each relation. So in theory, a simple solution
would be to remove identical lines in this file before the linear algebra step.

However, in practice generating duplicate relations is costly. Indeed, they
generate more hits during the enumeration of the vectors in LQ,p ∩ S (line 4 in
Algorithm 1), they imply more sieve-survivors for which we must compute exact
norms (line 8), and this finally results in more batch-survivors and hence a more
costly ECM algorithm (line 9). To minimize these extra computations, it is thus
convenient to get rid of the duplicates that can be identified as fast as possible.
However, the same strategy cannot be applied for each type of duplicates.

Indeed, the special-q duplicates can only be detected once we know the entire
factorization of the norms, meaning after running ECM. Moreover, special-q
computation units are often run in parallel and thus there is little hope to be
able to detect any special-q duplicates before the end of the relation collection
phase. These duplicates are thus removed just before the linear algebra step.

On the other hand, Kh-unit-duplicates and ζ2-duplicates are local to a
special-q and can be detected at an earlier stage. Yet there is a trade-off between
the extra cost of having duplicates and the cost of analyzing whether a pair (a, b)
yields a duplicate relation. In our Algorithm 1, we chose to remove duplicates
before running the batch algorithm. Let us now explain how to remove them.

Classical Strategy for Removing Duplicates. A classical trick used in NFS is to
reduce the search space by enforcing a positive sign to the first coordinate a.
Indeed, when looking at Kh-unit-duplicates, we are concerned with elements
u ∈ O∗

Kh
and in the classical NFS setup, O∗

Kh
= Z

∗ = {−1, 1}. Enforcing a > 0
reduces the search space by a factor 2 and avoids all unit-duplicates.

The situation is more complicated in TNFS as the number of units to consider
is greater than 2. It is still possible to restrict to positive coefficients in order
to avoid duplicates resulting from the units {±1} and we see in Sect. 4 that the
enumeration algorithm indeed only considers half of the vectors in LQ,p ∩ S.
However, we are left with the following open question. Is there a systematic way
to identify and thus remove duplicates generated from units other than ±1? The
difficulty of answering this question comes not only from the large number of
units but also from the fact that the units must be small enough in order to
produce a relation. Indeed, if u is too large, then (ua, ub) will be outside the
sieving region and we do not have to worry about it.

Our Strategy to Identify Kh-Unit-Duplicates and ζ2-Duplicates. For each pair
(a, b) that is a sieve-survivor, we compute the value k := a/b (mod h) ∈ Kh,
and store it in a hash table. If (a, b) and (a′, b′) are either Kh-unit-duplicates
or ζ2-duplicates, then they have the same index k. The hash table allows us
to quickly identify if a given pair (a′, b′) is a duplicate of a previously seen
(a, b) pair. This method also justifies the choice of where in Algorithm 1 we test
for duplicates. Indeed, computing k is not cost-free thus we want to avoid this
computation for every pair (a, b) outputted by the enumeration algorithm. It is
however less costly than computing an exact norm, so we compute it before.



Lattice Enumeration for Tower NFS 79

However, the method brings forth the following issue. Duplicates can be seen
as an equivalence class from which we want to select a unique representative.
This representative of the class should be the “smallest” pair (a, b), meaning the
(a, b)-pair which leads to the smallest norms. Indeed, a larger (a, b)-pair adds
non-zero coefficients in the matrix of the linear system of relations and thus slows
down the linear algebra step. For example, considering the (λa, λb)-pair, we have
Ni(λa, λb) = Ni(a, b)NKh

(λ) for i = 1, 2 with the additional term NKh
(λ) with

respect to the (a, b)-pair. This additional term yields extra ideals in the prime
ideal decomposition, thus non-zero coefficients in the matrix. Our method does
not necessarily keep the smallest pair. Indeed, if (λa, λb) for λ ∈ OKh

is already
in the hash table, and if the algorithm sees the pair (a, b) afterwards, it will
discard it and keep (λa, λb).

The removal of special-q duplicates is easier when the representative of a
duplicate class is in its canonical form. Indeed, special-q duplicates are removed
by simply comparing the lines in the file that encodes the relations. Thus if
different special-q’s produce the same relation but each keep a different repre-
sentative, say (a, b) for one and (λa, λb) for the other, then their prime ideal
decomposition will differ by some factors corresponding to NKh

(λ) and thus the
duplicate will be kept. To identify the “smallest” (a, b)-pair in a ζ2-duplicates
class of equivalence, the most intuitive idea is to consider the notion of a primi-
tive pair.

Definition 3. A pair (a, b) is primitive if there exists no λ ∈ OKh
\ O∗

Kh
such

that a = λa′ and b = λb′ with a′, b′ ∈ OKh
.

In NFS, we simply keep the (a, b)-pairs such that gcd(a, b) = 1. The situation
is more problematic in TNFS as the notion of gcd exists at the level of ideals, but
not for a(ι) and b(ι). Consequently we propose to detect non-primitive pairs by
computing the gcd of their norms: if gcd(N1(a, b), N2(a, b)) = 1, then the (a, b)-
pair is primitive. Indeed if one considers (λa, λb) which is clearly non-primitive,
we have gcd (N1(λa, λb), N2(λa, λb)) ≥ NKh

(λ)min(deg f1,deg f2) �= 1.
Hence, on line 7 of Algorithm 1, if an (a, b)-pair survives the Kh-unit dupli-

cates and ζ2-duplicates elimination, we check whether our representative is prim-
itive and if not, try to make it so, using Algorithm 2.

Remark 1. In Algorithm 2 we use the fact that if gcd(N1(a, b), N2(a, b)) = 1,
then the (a, b)-pair is primitive. We actually have an equivalence if the number
field Kh is principal. In particular, in our computation, the field Kh is principal
which ensures we do not throw away too many relations by using Algorithm 2.

We have presented how to detect ζ2-duplicates and Kh-unit duplicates. For
ζ2-duplicates we can keep a unique representative and make sure that repre-
sentative is in a primitive form. Unfortunately, Algorithm 2 does not work for
finding a unique representative with respect to Kh-unit duplicates. Indeed, if
γ is a unit, then NKh

(γ) = 1. In this case, we simply rely on the prime ideal
decomposition which is unique in an equivalence class of Kh-unit duplicates.
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Algorithm 2. Primitive representative for each class of duplicates
Input: (a, b)-pair corresponding to a sieve-survivor
Output: primitive (a, b)-pair corresponding to the same sieve-survivor, or Fail

1: Compute gcd(N1(a, b), N2(a, b))
2: if gcd(N1(a, b), N2(a, b)) = 1 then
3: Return (a, b)-pair.
4: else
5: for each prime �| gcd(N1(a, b), N2(a, b)) do
6: Try to find β in OKh of norm � such that a/β and b/β are in OKh .
7: if Such a value β is found then
8: a ← a/β and b ← b/β
9: Recompute gcd(N1(a, b), N2(a, b))

10: if gcd(N1(a, b), N2(a, b)) = 1 then
11: Return new (a, b)-pair

12: else
13: Return Fail

4 Relation Collection with Lattice Enumeration

Recall we can select polynomials φ that are good candidates that lead to poten-
tial relations as soon as we enumerate all vectors c in LQ,p ∩ S. Different enu-
meration techniques exist in the literature which depend on the shape of the
sieving region S and the dimension d of the lattice LQ,p. For NFS, usually d = 2
since (a, b) ∈ Z

2 are not polynomials. Higher dimensions can also be considered
in theory to target medium characteristics finite fields. When d = 2, thus for
previous records using NFS, the sieving method of Franke and Kleinjung [10] is
very efficient. However, in this article, we focus on methods that can be used in
higher dimensions. Indeed, as shown above, for TNFS we have d = dim MQ,p.
Taking the polynomials a(ι) and b(ι) of degree deg h − 1 leads to d = 2 × deg h
hence d ≥ 4. There exist two competitive algorithms that can be used when
d ≥ 3: the transition vectors method [13] and the recursive hyperplane one [27],
see Sect. 4.1 for these algorithms. They both use as a sieving space a d-orthotope
whereas in this work we consider a d-sphere. Section 4.2 justifies our choice. We
use the notation S = Sd(R) to indicate we are working in a d-sphere of radius R
or simply Sd to lighten the notation when possible. Section 4.3 describes our new
algorithm adapted for TNFS.

4.1 Existing Algorithms to Enumerate Vectors in LQ,p ∩ S

Transition Vectors for Lattice Sieving in [13]. In 2018, Grémy suggested a sieving
algorithm inspired by Franke-Kleinjung’s algorithm in dimension 2 but extended
to higher dimensions. Let S be the sieving space considered, in this case, a d-
orthotope defined as the product of intervals S = [Hm

0 ,HM
0 [× · · · , [Hm

d−1,H
M
d−1[

for fixed bounds Hm
k ,HM

k . The key notion used by Grémy to enumerate vectors
of a lattice L is the notion of transition-vectors, allowing to jump from vector
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to vector in order to reach all elements in LQ,p ∩ S. The transition-vectors are
divided into d subsets T1, · · · , Td, with Tk the set of k-transition-vectors for
k = 1, · · · , d. The latter have at least a non-zero k-coordinate and the last d − k
coordinates all equal to 0. The algorithm starts from (0, 0, · · · , 0) ∈ LQ,p and
enumerates all vectors in LQ,p∩S by adding or subtracting transition-vectors. It
starts with vectors of T1 until it reaches the edges of S, then looks at additions
(or subtractions) of vectors of T2 etc., increasing from 1 to d step by step.

In most cases, producing the entire set T is not possible, and thus the notion
of transition-vectors is relaxed into nearly-transition-vectors. This variant is
effective, but no longer reaches all vectors. A fall-back strategy is then con-
sidered when the algorithm fails to find an appropriate nearly-transition vector.

In dimension 4, this method seems to have sufficient prospects of success.
However, even with the relaxed variant, experiments ran in dimension 6 in [13]
point to the limits of this method due to the poor quality of the nearly-transition-
vectors and the number of calls required to the dedicated fall-back strategy.
[13] concluded that “using cuboid search is probably a too hard constraint that
implies the hardness or even an impossibility for the sieving process”.

Recursive Lattice Sieving through Hyperplanes in [27]. In 2020, McGuire and
Robinson also proposed an enumeration algorithm in dimension 3 or higher.
The sieving area is again a d-orthotope S = [0,H[×[−H,H] · · · × [−H,H[ for a
fixed bound H. To enumerate all the vectors in LQ,p ∩ S the main idea consists
in dividing the search space into hyperplanes, and enumerating in each of them.
Minimizing the number of hyperplanes to visit is done by adequately choosing
a “ground” hyperplane and then considering translations of it.

More precisely, in dimension 3 the “ground” plane G0 is defined as a plane
spanned by the two shortest vectors c1, c2 of LQ,p through the origin. Because
of the small dimension of LQ,p, these shortest vectors are easily found with LLL.
One then enumerates every point in G0 ∩S before moving to the next translated
plane: G1 = G0+c3, G2 = G0+2c3, · · · , Gk = G0+kc3 until a k is reached such
that Gk ∩ S = ∅. For each translated plane, one enumerates points in Gk ∩ S.

As we understand it, these short vectors serve a similar purpose as Grémy’s
transition-vectors: the aim is to choose relevant vectors to add (or subtract) to
others while being as exhaustive as possible. Similarly to [13], the enumeration
here is not completely exhaustive. Indeed, in [27], the authors report consistently
missing around 1.8 % of the lattice points per special-q due to corner cases.

Pseudo-code for dimension 3 (only) is given in [27]. Although the authors
state their algorithm can be extended to higher dimension, we wonder whether
it remains efficient when d ≥ 3. We write in Algorithm 3 a pseudo-code of our
understanding of how their method can be adapted for any dimension d. One
difficulty we see is finding emax when enumerating in Gk ∩ S, which increases
with d and the task can become too expensive very quickly. Indeed, finding emax

can be done using integer linear programming, which is doable in low dimension
but should be very hard (or at least more costly than desired) as d grows.
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Algorithm 3. Recursive version of enumeration algorithm from [27]
Input: the basis of a lattice L of dimension d, a sieving region S.
Output: list L of vectors in L ∩ S

def enum(d, S, [b1, b2, · · · , bd])

1: L = {}
2: if d �= 1 then
3: k = 0
4: P = plane(0,b1,b2, · · · ,bd−1)
5: emax = max{e ∈ N : S ∩ (P − e · bd) �= ∅}
6: G0 = P − emax · bd

7: while Gk ∩ S �= ∅ do
8: L′ ← enum(d − 1, Gk ∩ S, [b1,b2, · · · ,bd−1])
9: Append L′ to L

10: k = k + 1
11: Gk+1 = Gk + bd

12: if d = 1 then
13: Find p0 ∈ plane(0,b1) ∩ S with linear programming
14: Add p0 to L
15: emax = max{e ∈ N : S ∩ (p0 − e · b1) �= ∅}
16: Define P0 = p0 − emax · b1

17: while P0 ∩ S �= ∅ do
18: P0 = P0 + b1

19: Add P0 to L

20: return L.

4.2 Why Do We Choose a d-sphere?

Let d be the dimension of the sieving space. Consider a d-sphere Sd and a d-
orthotope Cd of equal volume. The number of vectors c of LQ,p∩S to enumerate
is thus approximately the same if we consider S to be Sd or Cd. Let us assume
that the size of the norms is only dependent on the size of the coordinates of the
vectors c. We now argue that using Sd instead of Cd leads to smaller norms.

Recall that the volume of a d-sphere is given by Vd(R) = πd/2Rd

Γ (d/2+1) , and
the volume of a d-hypercube of fixed length L is Ld. We use a d-hypercube
instead of a d-orthotope to simplify the presentation. In order to have the same
sieving volume, i.e., Vd(R) = Ld we must have R = L · Γ (d/2 + 1)1/d · π−1/2.
For the hypercube, the length of half the diagonal (from the center) is given by
D = L·

√
d/2. The distance between the vertices of the hypercube and the sphere

is expressed as D − R = L ·
√

d/2 − L · Γ (d/2 + 1)1/d · π−1/2 and from this last
equality we see limd→∞(D − R) = ∞. Let Pd = Cd \ Sd and Qd = Sd \ Cd. The
quantity D − R represents an upper bound on the distance from the origin to
points in Pd, which would correspond to the largest norms. Hence, if we want to
consider smaller norms, when d → ∞ it is more advantageous to consider points
in Qd, and thus choosing Sd rather than Cd is a more suitable choice.
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4.3 Schnorr-Euchner’s Enumeration Algorithm for TNFS

In order to find potential relations, recall that we enumerate all the vectors of
bounded norms in the lattice LQ,p, where LQ,p translates the notion of divisibil-
ity by an ideal p and a special-q ideal Q. By enumerating vectors in LQ,p∩Sd(R)
for many different p (each generating a different LQ,p) one can identify vectors
divisible by many p’s and thus more likely to correspond to B-smooth norms.

Let us fix p and a special-q ideal Q. Given an LLL-reduced basis {b1, · · · ,bd}
of LQ,p and the radius R of a d-sphere Sd which corresponds to the sieving area,
we propose to find these vectors thanks to an adaptation of Schnorr-Euchner’s
enumeration algorithm [33]. We choose to follow [33] instead of Fincke-Pohst-
Kannan’s algorithm [9,22] as it appears more efficient operation-wise.

Description of the Algorithm. Schnorr-Euchner’s algorithm constructs an enu-
meration tree of depth d in order to find the vectors c =

∑d
i=1 vibi that satisfy

||c|| ≤ R. To construct the tree, the algorithm considers projections of the lattice
LQ,p. Since the norm of vectors cannot increase under orthogonal projections,
the enumeration algorithm proceeds recursively by looking at the orthogonal
projections πk on the set {b1, · · · ,bk−1}⊥ for decreasing values of k (we set π1

to be the identity). The projection of the vector c for a given k = 1, 2, · · · , d is

πk(c) =
d∑

j=1

⎛

⎝(vj +
d∑

i=j+1

(μi,jvi)πk(b∗
j )

⎞

⎠ =
d∑

j=k

⎛

⎝(vj +
d∑

i=j+1

(μi,jvi)b∗
j

⎞

⎠ ,

where the vectors b∗
i correspond to the Gram-Schmidt orthogonalization of the

basis vectors bi and the μi,j are the Gram-Schmidt coefficients.
At each level k of the tree, the algorithm verifies that ||πk(c)|| ≤ R which can

be reduced to enumerating admissible values of vk that lie in a bounded interval.
The leaves of the tree then correspond to the desired vectors in LQ,p ∩ Sd(R).
The algorithm visits half the nodes since if c ∈ LQ,p then −c ∈ LQ,p.

Efficiently Computing the Vectors c = v · MQ,p. The algorithm works with the
coefficient vectors v = (v1, · · · , vd). However, in the end, we do not want the
combinations v, but the vectors c = v · MQ,p =

∑d
i=1 vibi. Computing these

vectors c can either be done naively, at the leaf level by explicitly computing
c =

∑d
i=1 vibi for each leaf, or one can keep track of a partial sum

∑d
i=t vibi for

a fixed value t chosen as input to the algorithm and update the quantity vibi

once a vi is changed during the algorithm, i.e., once the algorithm visits a new
internal node in levels t to d. We opt for the second option as it reduces the
overall cost of enumeration.

More precisely, let common part =
∑d

i=t vibi, where each vibi is stored in
a variable. Each time the algorithm visits a new internal node, thus updates
vi for a given i = t, · · · , d, the algorithm updates common part by subtracting
the current vibi, computing the new vibi with the new value of vi and adding
it back to common part. Once at the leaf, in order to compute the vector c, it
remains to compute c =

∑t−1
i=1 vibi + common part.
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For most values of p we are concerned about, we use this optimized code with
t = 2, thus updating all values vibi during the algorithm, except at the leaf level,
and finally computing c = v1b1 + common part. When p becomes large and few
leaves are found, it can be less efficient to choose t = 2, and thus one selects the
appropriate t > 2 in order to optimize the number of operations performed for
this computation. More details are given in the Sect. 5 below and the pseudo-code
for the optimized enumeration algorithm is given in Algorithm 4.

Remark 2. This optimization makes sense in this specific context where our lat-
tices are of small dimension and often dense (in particular for small primes).
This would not translate well for general lattices of larger dimensions or if only
a handful of small vectors were output.

5 Analysis of the Enumeration Algorithm

5.1 Number of Leaves, Nodes and Enumeration Cost

We now estimate the cost of our enumeration algorithm. This implies having
an estimate of the number of nodes and leaves in the enumeration tree. This
estimate is derived using the Gaussian heuristic. In order to do so, it is necessary
to analyze the geometry of the input lattice LQ,p. In particular, we are interested
in the ratio between the norms of two consecutive Gram-Schmidt vectors of the
(reduced) lattice. Indeed, to count the number of nodes in the enumeration tree,
we need to compute the volume of the projected lattices which is given by the
product of the norms of the Gram-Schmidt vectors.

The dimension of the lattices we consider is small, i.e., precisely 6 in our
computation but plausible dimensions are 4, 6 or 8 for other realistic targets.
Because of these small dimensions, we observe that classical analyses of lattice
reduction algorithms do not hold. For example, an expected lower bound β on the
ratio ||b∗

i+1||2/||b∗
i ||2 was observed in [29] for vectors outputted from a reduction

algorithm. The constant β depends on the reduction algorithm considered and in
the case of LLL, we have β = 1/(δ−η2). Sage’s default LLL implementation uses
δ = 0.99 and η = 0.501, thus β = 1.35. This value is obtained for random bases.
Our lattices LQ,p are however not random. We thus experimentally measured
that for 6-dimensional lattices, the ratio ||b∗

i+1||/||b∗
i || is smaller than expected,

hence we introduce the following heuristic.

Heuristic 1. For 6-dimensional lattices LQ,p, ||b∗
i+1||/||b∗

i || ≈ 1.09 on average.

In what follows, we need to estimate the number of lattice vectors in a sphere.
For this, we rely on the Gaussian heuristic, which tells us that the number of
points belonging to the intersection of a lattice L and a set S is roughly the
ratio of the volumes, i.e., vol(S)/vol(L). This heuristic was suggested to analyze
enumeration algorithms in [18] and experimentally confirmed to be accurate
in [11] for random lattices.
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Algorithm 4. Optimized enumerating LQ,p ∩ Sd

Input: LLL-reduced basis {b1, · · · ,bd} of LQ,p, radius R of d-sphere Sd, variable t for
optimization.
Output: List K of vectors c ∈ LQ,p ∩ Sd(R).

1: Pre-computation: compute all Gram-Schmit coefficients μi,j for i < j and the norms of
the Gram-Schmidt vectors ||b∗

i ||2 for all i ≤ d.
2: K ← {}, σ ← (0)(d+1)×d, r0 = 0, r1 = 1, · · · , rd = d, v1 = 1, v2 = · · · = vd = 0.

3: ρ1 = ρ2 = ρd+1 = 0 � with ρk = ||πk(c)||2
4: c1 = · · · = cd = 0 � with ck =

∑d
i=k+1 μi,kvi

5: w1 = · · · = wd = 0
6: last nonzero = 1, common part = vtbt + · · · + vdbd

7: k = 1
8: while true do
9: ρk = ρk+1 + (vk − ck)2 ||b∗

k||2
10: if ρk ≤ R2 then

11: if k = 1 then

12: c =
∑t−1

i=1 vibi + common part � opt. computation of c
13: K ← K ∪ c
14: if last nonzero = 1 then

15: Skip � this generates ζ2-duplicates

16: else

17: if vk > ck then vk ← vk − wk

18: else
19: vk ← vk + wk

20: wk ← wk + 1

21: else
22: k ← k − 1 � we go down the tree

23: rk ← max(rk, rk+1)
24: for i = rk+1 to k + 2 do

25: σi,k ← σi+1,k + viμi,k

26: ck ← −σk+1,k

27: vk = �ck�, wk = 1.

28: if k = � for � = t, · · · , d then
29: Re-compute common part by updating v�b�.

30: else
31: k ← k + 1 � going back up the tree.

32: if k = d + 1 then

33: return K � we find no more solutions

34: rk ← k
35: if k ≥ last nonzero then

36: last nonzero ← k
37: vk ← vk + 1

38: if k = � for � = t, · · · , n then
39: Re-compute common part by updating v�b�.

40: else
41: if vk > ck then vk ← vk − wk

42: if k = � for � = t, · · · , n then
43: Re-compute common part by updating v�b�.

44: else
45: vk ← vk + wk

46: if k = � for � = t, · · · , n then

47: Re-compute common part by updating v�b�.

48: wk ← wk + 1
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Number of Leaves. The volume of a full-rank d-dimensional lattice L is given by
det(L) =

∏d
i=1 ||b∗

i || and in our case the volume of LQ,p is p. Using the Gaussian
heuristic, and taking into account the fact that we visit only half of the tree, the
number of leaves is thus given by

Ξleaves ≈ 1
2

vol(Sd(R))
det(LQ,p)

=
Rdπd/2

2Γ (d/2 + 1)p
.

Number of Nodes. Let Ξk denote the number of nodes at level k which corre-
sponds to the number of points in πk(LQ,p)∩Sk(R). From the Gaussian heuristic
and dividing by 2 for the half-tree, we have Ξk = |πk(LQ,p) ∩ Sd−k+1(R)| and

Ξk = vol(Sd−k+1(R))/(2 · vol(πk(LQ,p))).

The volume of the projected lattice πk(LQ,p) is
∏d

i=k ||b∗
i ||, and we can use

Heuristic 1 to estimate it. We get

vol(πk(LQ,p)) ≈ ||b1||d−k+1(1.09)
∑d−1

i=k−1 i ≈ ||b1||d−k+1(1.09)0.5(d−k+1)(d+k−2).

Since for k = 1 we have vol(π1(LQ,p)) = p, we can set ||b1|| ≈
p1/d/(1.09)(

∑d−1
i=1 i)/d. We then have

vol(πk(LQ,p)) ≈ p(d−k+1)/d(1.09)
∑d−1

i=k−1 i−((d−k+1)/d)
∑d−1

i=1 i

that leads to vol(πk(LQ,p)) = p(d−k+1)/d(1.09)0.5(d−k+1)(k−1). We therefore get

Ξk ≈ Rd−k+1π(d−k+1)/2

2 · Γ ((d − k + 1)/2 + 1) · p(d−k+1)/d · (1.09)0.5(d−k+1)(k−1)
.

Finally, the total number of nodes is Ξ =
∑d

k=1 Ξk. Experimental verification
of these formulae are provided in Sect. 6.

Running Time of Enumeration. The running time of our enumeration algorithm
is given by the number of nodes Ξ times the number of operations per node. At
each node, the algorithm performs 7 arithmetic operations on average to compute
and update the linear combinations v. In addition, one must also compute the
vector c = v · MQ,p =

∑d
i=1 vibi. As mentioned above, this can either be done

naively at the leaf level by explicitly computing c =
∑d

i=1 vibi for each leaf,
which costs 2d2 − 1 extra operations per leaf.

Or, one uses common part =
∑d

i=t vibi. Each time the algorithm visits a new
internal node in the levels t up to d, thus updates vi for a given i = t, · · · , d, the
algorithm performs 4d − 1 operations: in order to update common part, we sub-
tract the current vibi (d operations), compute the new vibi (2d − 1 operations)
with the new value of vi and add it back to common part (again, d operations).

Once at the leaf, in order to compute the vector c, it remains to perform
(t − 1)(2d − 1) + t − 1 operations, c = v1b1 + · · · + vt−1bt−1 + common part. In
summary, we have for the additional cost of computing the vector c
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Comp c naively = Ξleaves × (2d2 − 1)

but using common part, the cost of computing the vector c is Comp c opt =
# int. nodest→d × (4d − 1) + Ξleaves × ((t − 1)(2d − 1) + t − 1) so

Comp c opt =

(
d∑

i=t

Ξi

)

(4d − 1) + Ξleaves((t − 1)(2d − 1) + t − 1).

We experimentally verify that the optimized code results in less operations than
the naive one to compute all the vectors c for all but too large values of p when
choosing t = 2. When p becomes too large and there aren’t many leaves, the
optimized code uses more operations than the naive one. One easy way to resolve
this is to increase the value of t in the definition of common part. However, this
occurs when p is large enough that the predominant cost is in generating the
lattice LQ,p and not in the enumeration algorithm. Finally, the total cost of
enumeration on average is thus equal to Cost enum = 7 × Ξ + Compcopt.

Number of Leaves Per Node. The number of leaves per node is given by r =
Ξleaves/Ξ as a function of p. This ratio r captures the behavior of our algorithm.
The higher r is, the more efficient our algorithm becomes: we want this ratio
to remain high as internal nodes correspond to (necessary) operations which do
not produce any information as lattice vectors are seen only at the leaf level.
When p increases, r decreases, as illustrated in Fig. 2 for parameters specific to
our computation. Indeed, the probability of a norm being divisible by a small
prime is higher than for larger primes. Hence for small primes, r is close to 1. This
explains why we enumerate on small primes first, and switch to batch algorithms
for larger primes.

Comparing Enumeration and Construction of the Lattice. When p is small, the
enumeration algorithm is more costly (in terms of number of operations) than
constructing the lattice itself. However, when p becomes large enough, construct-
ing the basis MQ,p becomes much more costly. The intersection point varies
depending on the radius R and can be chosen to be close to pmax.

5.2 Overall Complexity of Relation Collection

The total cost of Algorithm 1 is the sum of the cost of constructing LQ,p, the
cost of enumerating in LQ,p ∩ S, and the costs of batch algorithm on the sieve-
survivors and ECM on the batch-survivors. In order to optimize the overall
complexity, it is important to correctly set the many parameters that come into
play during this step. In particular, one must decide the size of (many) fixed
parameters: the radius R, the smoothness bound B, the range of special-q’s
to consider, the bounds pmax, pbatch and the balance between sieving, batch
smoothness and ECM based and the size of the cofactors.
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5.3 Comparison with Previous Methods

Our Enumeration Algorithm vs. [13]. Grémy’s algorithm uses a d-orthotope
as sieving space, whereas we consider a d-sphere. As explained previously, we
believe that as the dimension increases, it is more efficient to sieve in a d-sphere
as opposed to a d-orthotope. The number of nearly-transition vectors required
in [13] for the algorithm to enumerate most of the vectors also increases with the
dimension. These nearly-transition vectors are generated during the initialization
of the enumeration procedure using various strategies. Moreover, [13] indicates
that in dimension 6, the number of calls to the fall-back strategy is important,
indicating that the nearly-transition-vectors are of poor quality, and thus the
algorithm requires the use of skew-small-vectors (also to be computed). Finally,
Grémy’s algorithm is not exhaustive in its search of vectors in LQ,p ∩ S, and
as the dimension increases, in addition to what was mentioned just before, we
suspect the percentage of missing vectors increases as well.

Our Enumeration Algorithm vs [27]. Similarly as Grémy’s algorithm, this
algorithm also uses a d-orthotope as sieving space. Moreover, the algorithm pre-
sented in [27] is very similar to the classical enumeration algorithm of Fincke-
Pohst-Kannan (FPK) [9,22] adapted to a rectangular sieving region. One impor-
tant cost in both FPK and this algorithm is finding the initial point in each plane
from which the enumeration starts. In [27], this is done with linear programming.
Every time the algorithm changes hyperplane, an integer linear programming
problem must be solved. This does not add much complexity to the algorithm,
but its cost is non-negligible with respect to the rest of the operations performed,
and increases with the dimension. Our algorithm is based on Schnorr-Euchner’s
variant which starts its enumeration of a given interval at its center. This avoids
the computation of the edge of the interval at each level as required in FPK or
the linear programming cost.

Moreover, as the dimension grows, so does the number of hyperplanes. Thus,
we believe that the algorithm would struggle to be competitive when this number
becomes too large and a linear program must be solved for each hyperplane.

Finally, our algorithm is exhaustive by construction, and thus enumerates
every single vector in LQ,p ∩ S. As mentioned previously, the algorithm in [27]
encounters boundary issues when the planes intersect only the corners of the
sieving region. The loss is reasonable in dimension 3 but may become more and
more problematic as the dimension grows.

6 A 521-Bit Computation

6.1 A Target from the Pairing World

Considering finite fields with composite extensions is highly motivated by
pairing-based cryptography. The security of pairing-based protocols relies on
both the discrete logarithm problem in the curve and in the finite field. MNT
curves [28] are pairing-friendly elliptic curves with small embedding degree 6,
meaning that the security of the related pairing-based protocols relies on the
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discrete logarithm problem in F
∗
p6 for a prime p. Our target is precisely F

∗
p6 with

a 87-bit prime. MNT curves were introduced in the early 2000’s but are back into
the spotlight due to the recent arising of zk-SNARKS within the zero-knowledge
community, that brings other needs and other uses. For instance, the need of
cycles of curves3 in zk-SNARKS, that are currently only available with MNT
curves explains why MNT-6 curves are so useful, as explained in Guillevic’s blog-
post [15]. Two of them are widely deployed: one with a 298-bit prime [5] and the
other with a 753-bit prime [5,8]. With our 87-bit prime we are still far from these
concrete parameters, but our work shows that in order to evaluate the security
of these curves the right threat to consider is TNFS.

More precisely, we consider the 521-bit finite field Fpn where n = 6 and
p = 0x6fb96ccdf61c1ea3582e57 is a 87-bit prime. The extension degree n is
composite with factors η = 3 and κ = 2. The prime p is “random” in the sense
that it is the closest prime to the 87 first bits of RSA-1024, the 1024-bit integer
coming from the RSA Factoring Challenge, such that p2 − p + 1 is also prime.
Moreover, we choose as target an element in Fp6 whose decimal digits are taken
from π:

target = (31415926535897932384626433 + 83279502884197169399375105ι

+ 82097494459230781640628620ι2) + x(89986280348253421170679821

+ 48086513282306647093844609ι + 55058223172535940812848111ι2).

This does not fully define the element since this depends on the represen-
tation taken for Fp6 . For this, we will simply choose the one that follows from
the polynomial selection below. Because the computation of a discrete loga-
rithm in a group can be reduced to its computation in one of its prime sub-
groups by Pohlig-Hellman’s reduction, we work modulo 	 = p2 − p + 1 =
30c252a90b588491be0a93f6fd11924531a80adb333b, the 174-bit prime order of
the 6-th cyclotomic subgroup of the multiplicative group.

6.2 Polynomial Selection

Three polynomials with specific characteristics must be chosen for TNFS. The
polynomial h is of degree η = 3, monic and irreducible modulo p. In our com-
putation, we use h(ι) = ι3 − ι + 1. The polynomials f1, f2 are selected thanks
to the Conjugation method [2]. We recall that this method looks for polyno-
mials of degree κ and 2κ. We get f1 = x4 + 1, and f2 = 11672244015875x2 +
1532885840586x + 11672244015875.

6.3 Relation Collection

Many parameters have to be balanced in practice in Algorithm 1 to optimise the
relation collection step. In our computation, we chose the parameters

qmin = 5, 000, 113 ≈ 222.2, qmax = 26, 087, 683 ≈ 224.6, B = 227, R = 21,

3 A cycle of curves is a pair of pairing-friendly elliptic curves E1, E2 such that E1 is
defined over a finite prime field Fp1 with prime order p2, and E2 is defined over the
finite field Fp2 with order p1.
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pmax = 107, Tsieve = 60, pbatch = 227, Tbatch = 0.

This results in a total of 1,280,000 special-q’s subsets of polynomials to sieve on.

Sieving and Enumeration. For each special-q, the first step in relation collection
is to run a sieving algorithm to collect promising relations. This is done using
Algorithm 4 which enumerates all vectors in LQ,p ∩ S6(21), for each prime ideal
up to pmax. In our implementation, we used this algorithm only on the f2-side.
On the f1-side, the norms are much smaller, and the cost of enumerating is too
high compared to the information it gives about the probability of being smooth.

All in all, we collect approximately 76,401 million sieve-survivors. Note that
these survivors are dealt with on-the-fly: in order to avoid storing all of them,
they are removed just after the batch algorithm. Recall that at this stage of the
algorithm, we also remove the Kh-unit duplicates and the ζ2-duplicates.

Number of Leaves and Nodes in the Enumeration Trees. We analyze our enu-
meration algorithm by computing the expected number of leaves and nodes for
a fixed special-q as the value of p increases. As seen in Fig. 2, the output of
our enumeration algorithm matches the expected values given by the formu-
lae in Sect. 5. Both the amount of nodes and leaves decrease when p increases.
The ratio r between the amount of leaves and nodes also decreases with p. We
see that the estimation of the number of internal node is not precise. However,
it gives a good idea of the general behavior of the algorithm. Furthermore r
indeed remains high, which is a good indication that we do not spend too much
computation for each divisibility information gathered by the process.

Fig. 2. Number of leaves and nodes (left) and number of leaves per node (right) as a
function of p for a fixed 24-bit special-q. We see that as p increases, both the number
of nodes visited by the enumeration algorithm and the number of leaves decreases, as
expected. We compare the output of our code with the formulae given in Sect. 5 using
the Gaussian heuristic.
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Balancing Sieving, Batch and ECM. The sieve-survivors outputted by the enu-
meration algorithm are now the inputs to the batch algorithm implemented in
CADO-NFS [1]. Running batch and ECM is done sequentially in CADO-NFS.
Here we choose not to run ECM as the computation is efficient enough for the
record to finish in reasonable time. Further optimizing the parameters including
the ECM algorithm is left for future work. We therefore select the batch-survivors
with pbatch = B = 227 and Tbatch = 0. Indeed, we want the batch-survivors to
correspond to our relations which is equivalent to saying that all the norms have
no cofactor left, i.e., they completely factor into primes up to the smoothness
bound pbatch = B. Removing all the possible duplicates further reduces the final
amount of relations. This is described in Table 4.

The relation collection was run with an early version of our code, and took
the equivalent of 25,300 core-hours. After the optimization given in Algorithm 4,
it was going 10% faster, and would have taken only 23,300 core-hours. On our
sample computations, the relations were strictly identical to the one computed
with the previous code, so we did not run again the whole computation.

Table 4. Number of survivors after each step of the relation collection algorithm. The
percentage is given with respect to the previous step. The percentage of sieve-survivors
is taken with respect to vol(S6(21)) × #special-q’s.

Sieve-survivors Batch-survivors
(removing Kh/ζ2-dup.)

Removing special-q
duplicates

# survivors 76 401M 18.69M 13.63M

% kept 0.013% 0.02% 73%

6.4 Linear Algebra

Before starting the linear algebra step, the matrix must undergo a few modifi-
cations in order to speed up the resolution of the system. This is done by a step
called filtering. More precisely, the aim of filtering is to reduce the size of the
matrix of relations without modifying its kernel.

Dealing with Special-q Duplicates. As mentioned in Sect. 3.4, only ζ2-duplicates
and Kh-unit duplicates can be dealt with prior to constructing the matrix. To
remove special-q duplicates, we compare the ideal factorizations of each rela-
tion and remove identical lines in the file containing all our relations. Before
eliminating special-q duplicates we had 18.25M batch-survivors. Removing these
duplicates decreased the amount of survivors to 13.63M, a loss of 27%.

Filtering. The matrix of relations is now ready to be sent to CADO-NFS’s filter.
We have 15.21M ideals in the factor basis, and thus the input matrix to CADO-
NFS’s filter is a matrix of size 13.63M × 15.21M. Note that not all the ideals
intervene in the relations. The goal of filtering is to reduce the size of the matrix
and make it square. Filtering in CADO-NFS uses two steps: purge and merge.



92 G. De Micheli et al.

The purge step consists in removing columns that only contain zero coef-
ficients. Indeed only 87% of the ideals of the factor basis appear in relations.
The rest leading to zero-columns are deleted. Besides, the purge step removes
columns (and corresponding lines) that contain a unique element. These columns
correspond to prime ideals, called singletons, that occur only once in all the rela-
tions. We start with 13.63M lines in the matrix. After removing the singletons,
we are left with only 5.21M lines. Hence, purge reduces the number of lines in our
matrix by approximately 62%. Thus even if the purge step and more generally
filtering is not present in the complexity analysis of TNFS, it is of significant
importance in practice for the feasibility of the linear algebra step.

The next step of filtering is merge, which corresponds to a structured Gaus-
sian elimination. It aims at further reducing the matrix size by performing linear
combinations of the rows of the input matrix. In our computation, the merge
takes as input a square matrix of dimension 5.21M and, after Gaussian elimina-
tion up to a density of 100 coefficients per line, its size is decreased to 1.73M. If
we eliminate up to 150 coefficients per line, the size is decreased to 1.51M.

Finally, after filtering, we have 1.51M relations and a (1.51M + 7) × 1.51M
dimension matrix. The entire filtering step removes 89% of the relations (or 92%
if we count before the removal of the duplicates). The 7 extra columns come
from the Schirokauer maps, as we see now.

Schirokauer Maps. In order to easily use CADO-NFS implementation of Schi-
rokauer maps, we propose a rather simple trick: represent the tower of number
fields as an absolute (non-tower) extension field. More precisely, recall that a
Schirokauer maps is any surjective morphism from K∗

i /(K∗
i )� → (Z/	Z)ri where

Ki is a number field and ri its unit rank. In the classical NFS setup, Ki is simply
an extension of Q, whereas in the Tower setup, Ki is an extension of Q(ι).

It is then possible to define a Schirokauer map in TNFS by first defining an
isomorphism from the intermediate fields Ki = Q(ι, αi) to a number field KFi

of
degree deg h × deg fi and then using a classical Schirokauer map Λclassical from
the latter to (Z/	Z)ri . In other words, we define the map Λi as

Λi : K∗
i /(Ki)∗� �−→ K∗

Fi
/(KFi

)∗� → (Z/	Z)ri .

A polynomial Fi and the corresponding isomorphism

Φi : Ki → KFi

are easy to find, and can be represented by the images of each base elements.
Thereafter, the map from Ki to KFi

is seen as a linear map and applying it to
an element is essentially free.

There are as many Schirokauer maps as the rank of units in Ki. For our
computation, this means 2 on the f1-side and 5 on the f2-side. Computing Schi-
rokauer maps, i.e., filling seven columns, takes 40 core-hours.

Remark 3. In general, and also true in our computation, the values
Φi(1), Φi(ι), · · · have denominators. As Schirokauer maps, as implemented in
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CADO-NFS, only require integers, we directly multiply the coefficients by the
least common multiplier of these denominators. This denominator-clearing can
be made completely transparent by choosing Schirokauer maps Λi that evaluate
to zero over Q. This is the legacy mode in CADO-NFS’s implementation of
Schirokauer maps.

Solving the System. Solving the linear system with 1.51M rows and columns,
including the 7 dense columns of Schirokauer maps is done with the block-
Wiedemann algorithm, as implemented in CADO-NFS. We used the default
behavior which is to run 7 sequences, each one taking one of the heavy columns
as input (see [21]). Therefore, the large number of Schirokauer maps does not
induce an increase in the running time of this step.

All the sequences can be run in parallel, for a total cost of 1,210 core hours.
The reconstruction of the linear generator and the final sum-up leading to the
kernel vector must be added up, and the overall cost of linear algebra is 1,403
core hours. We emphasize that the most expensive steps of the linear algebra
part are the computation of the sequences and the solution step where the sparse
matrix-vector multiplication is the most costly operation.

Un-Filtering. The kernel vector gives the virtual logarithms of 1.51M ideals
belonging to the factor basis. Using the relations that were deleted during the
purge and merge process, many more can be deduced. This can be seen as
reverting the filtering, where each time a relation is re-added, we check if it
involves a (unique) ideal for which the virtual logarithm is not yet known. If
so, we can deduce it. After this process, we know the virtual logarithms of 12M
ideals, corresponding to 79.4% of the factor bases elements.

6.5 Descent Step and Discrete Logarithm of the Target

Now that we know the virtual logarithms of (a large proportion of) the factor
basis elements, we are ready for the descent step. We choose as generator the
element g = x + ι. This element g lifted in the field defined by f1 is a unit (of
infinite order). This allows us to easily compute its virtual logarithm as it is
found using the virtual logarithms outputted by the linear algebra step and an
additional Schirokauer map computation.

As mentioned in Sect. 2.2, we use Guillevic’s algorithm [16] to optimize the
initial splitting step. The descent starts by a smoothing step which required 45
core hours to generate 64M candidates and 10 core hours to identify an element
s ∈ F

∗
p6 such that its lift to K1 has a 35-bit smooth norm. The factors of s

greater than 27-bit for which we do not have the virtual logarithms yet are
descended in a single special-q step. This descent is done with the same strategy
as for the relation collection, namely enumeration and batch, but using a larger
radius R = 33. Because of the small amount of factors concerned, the time is
negligible. The descent step takes 55 core hours. The overall time in core hours
of the computation is reported in Table 5.

We finally find the discrete logarithm of our target element:
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Table 5. Overall time of our record computation in core hours.

Relation Collection Linear algebra Schirokauer maps Descent Overall time

23,300 1,403 40 55 24,798

log(target) = 7627280816875322297766747970138378530353852976315498.

To confirm the validity of our computation, we verify that glog(target) = target is
true, modulo 	-th powers, as we computed the discrete logarithm only modulo 	.

Concluding Remarks

We recall the data from Table 1 in the introduction: the time for collecting
relations in our 521-bit computation is only 23,300 core-hours, much less that
the 69,120 core-hours of McGuire and Robinson for a 423-bit computation, also
in a field of the form Fp6 ; and this was already much faster than Grémy’s work.

This huge improvement is mostly due to the fact that our efficient sieving
technique allows to work in large dimensions, and therefore enables the use of
Tower NFS. While asymptotic complexities can hardly lead to definitive state-
ments about the performance of TNFS for such “small” target finite fields, the
norms that it produces are indeed quite small.

In an attempt to quantify this smallness, we compare them to the norms
obtained for equivalent target sizes with the classical NFS algorithm for factoring
or for DLP in prime fields. For those, CADO-NFS can serve as a reference,
since parameters are provided that are reasonably well optimized (we use 512-
bit targets instead of 521-bits, since these are standard sizes for CADO-NFS).
The result of this comparison is that, while in our computation we encountered
norms, the product of which is around 250 bits, the equivalent for a 512-bit
factorisation is around 280 bits, and for a 512-bit prime field DLP with Joux-
Lercier polynomial selection, this is around 270 bits. We therefore consider that
even if Fp6 is not a high degree extension, and even if 521 bits is still far from a
secure cryptographic size, the “tower” effect is already pretty impactful.

Furthermore, we would like to emphasize that our experiment was merely a
first demonstration, but there is still much room for improvement in the tuning of
the various parameters and the use of the explicit Galois action that is available
with the Conjugation method. These will be required for working with Tower
NFS on larger sized finite fields.
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Abstract. Let (N, e) be an RSA public key, where N = pq is the prod-
uct of equal bitsize primes p, q. Let dp, dq be the corresponding secret
CRT-RSA exponents.

Using a Coppersmith-type attack, Takayasu, Lu and Peng (TLP)
recently showed that one obtains the factorization of N in polynomial
time, provided that dp, dq ≤ N0.122. Building on the TLP attack, we show
the first Partial Key Exposure attack on short secret exponent CRT-RSA.
Namely, let N0.122 ≤ dp, dq ≤ N0.5. Then we show that a constant known
fraction of the least significant bits (LSBs) of both dp, dq suffices to fac-
tor N in polynomial time.

Naturally, the larger dp, dq, the more LSBs are required. E.g. if dp, dq

are of size N0.13, then we have to know roughly a 1
5
-fraction of their LSBs,

whereas fordp, dq of sizeN0.2 we require alreadyknowledge of a 2
3
-LSB frac-

tion. Eventually, if dp, dq are of full size N0.5, we have to know all of their
bits. Notice that as a side-product of our result we obtain a heuristic deter-
ministic polynomial time factorization algorithm on input (N, e, dp, dq).

Keywords: CRT-RSA · Coppersmith’s method · Partial key exposure

1 Introduction

The RSA cryptosystem has the remarkable property that it admits polynomial
time attacks for small secrets. Since Wiener’s attack [29] for secret exponents
d ≤ N

1
4 and Coppersmith’s seminal work [6] on factoring N = pq given half of

the bits of p, there has been a long line of research on RSA cryptanalysis.
Using Coppersmith’s method, Wiener’s bound has been improved by Boneh

and Durfee [5] to d ≤ N0.284, respectively N0.292, which despite some
efforts [16,26] remains the best known small secret RSA exponent bound. Coron
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Fig. 1. Required fraction of LSBs for the best known Partial Key Exposure attacks on
RSA.

and May [8,22] proved that on input (N, e, d) the factorization of N can be found
in polynomial time.

Afterwards, Ernst, Jochemsz, May, and de Weger [9] showed that both latter
results can be linked by a Partial Key Exposure attack. Namely in the range
N0.284 ≤ d ≤ N , there exists an RSA Partial Key Exposure attack on the most
significant bits (MSBs) of d. More precisely, for all d’s in this range there is a
constant fraction of MSBs whose knowledge allows to factor N in polynomial
time. As one would expect, if d is slightly larger than N0.284 then one needs only
a small MSB bit fraction, whereas for d tending to N (or more precisely φ(N))
one needs all of d’s bits.

Later this Partial Key Exposure attack was improved by Takayasu and Kuni-
hiro [24] to cover the range N0.292 ≤ d ≤ N of the superior Boneh-Durfee
bound. Notice that for Partial Key Exposure attacks a smaller range is indeed
an improvement. Whereas in the range d ∈ [N0.284, N0.292] the attack of [9]
requires some known bits, the attack of Takayasu and Kunihiro [24] succeeds in
this range without any bit-knowledge. The fact that the superior Boneh-Durfee
bound d ≤ N0.292 extrapolates smoothly to full size d ≤ N gives us some indi-
cation that [24] might be optimal.

Takayasu and Kunihiro [24] also presented an LSB attack, based on a result
by Aono [1], that works in the range N0.292 ≤ d ≤ N0.89, see Fig. 1. Somewhat
surprisingly, it is open whether there exists an LSB-type Partial Key Exposure
attack up to full size d.

In practice, RSA Partial Key Exposure attacks led to a wide range of devas-
tating attacks [2,11,23] on real-world RSA implementations that leaked private
key bits.

CRT-RSA. As opposed to small secret d, the case of small CRT exponents
seems to be notoriously harder to analyze. The existence of such attacks was
initially raised as an open problem in Wiener [29]. The first result was achieved
in [20] only for primes p, q of imbalanced bitsize, and later improved in [3].
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The first bound for the standard RSA setting with balanced primes was given
by Jochemsz and May [15], who showed a Coppersmith-type polynomial time
attack for dp, dq ≤ N0.073. This was recently improved by Takayasu, Lu and
Peng [27] to N0.091 and shortly after [28] to a remarkably large bound N0.122.
We refer to the latter bound as the TLP attack.

However, several natural questions remain unanswered. First, the optimality
of the TLP attack is unclear, especially since TLP is a highly involved application
of Coppersmith’s method to a system of three polynomials. Second, it remained
open whether small CRT exponents admit Partial Key Exposure attacks at all.
Partial Key Exposure attacks on CRT exponents where so far only known for
the special setting of small public exponents e, see [4,18,25]. And third, even if
small CRT exponent Partial Key Exposure attacks exist, do they interpolate to
the natural bound dp, dq ≤ N0.5? For this bound, i.e. known CRT-exponents,
Maitra and Sarkar [19] showed a deterministic Coppersmith-type factorization
attack on input (N, e, dp, dq).

Our Results. As our main result, we give the first Partial Key Exposure attack
on CRT exponents in the full range N0.122 ≤ dp, dq ≤ N0.5, see Fig. 2 for an
illustration. Since we achieve a smooth interpolation from the TLP result N0.122

to the natural upper bound N0.5, this gives some indication of optimality. Our
upper bound provides a heuristic deterministic polynomial time factorization
algorithm on input (N, e, dp, dq), different from the one of Maitra and Sarkar [19].
For our results, we require the typical well-studied Coppersmith heuristic for
multivariate polynomials, as e.g. used in [1,3–5,9,12,15,16,19,28].

On the way to achieving our main result, we make some contributions that
might be of independent interest. First, we give a geometric interpretation of the
TLP attack in terms of Newton polytopes that helps to gain a deeper structural
insight. Second, we show a simplified LSB Partial Key Exposure attack in the
range N0.083 ≤ dp, dq ≤ N0.5, see Fig. 2.

This attack admits an elegant formula as follows. Assume that dp, dq are of
size Nβ and write dp = d∗

p2
k + ˜dp, dq = d∗

q2
k + ˜dq for some k, known LSBs

˜dp, ˜dq, and unknown MSBs d∗
p, d

∗
q ≤ N δ. Then we can find the factorization of N

in polynomial time under the usual Coppersmith-type heuristic, provided that
δ ≤ 1

10 − 1
5β.

Notice that our formula already has the desired end point dp, dq ≤ N
1
2 . For

any β ≤ 1
2 , i.e., for any dp, dq up to full size, we obtain a non-negative bound for

δ. For β = δ, in which case we do not know any LSBs, we achieve δ ≤ 1
12 ≈ 0.083.

Eventually, we optimize our attack such that it works in the range N0.122 ≤
dp, dq ≤ N1/2, i.e., building on top of the TLP bound. This improves on our
simplified Partial Key Exposure attack, since it requires no key-knowledge in
the range dp, dq ∈ [N0.083, N0.122]. Moreover, for any secret exponent size in the
range N0.083 ≤ dp, dq ≤ N1/2 it requires less key-knowledge of dp, dq, see Fig. 2
for a comparison of the required LSB fraction.
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Fig. 2. Comparison between our simplified attack and our m ain result.

We find it somewhat remarkable that our CRT-RSA LSB attack works for full
size dp, dq, whereas the best known RSA LSB Partial Key Exposure attack [24]
from Fig. 1 does not reach full size d.

Since RSA Partial Key Exposure attacks already found many real-world
applications [2,11,23], we hope that our CRT-RSA counterpart also stimulates
further research in this area. We believe that in practice bits of dp, dq might be
easier to get via side-channel attacks than bits of d, since almost all standard
RSA implementations for efficiency reasons actually use CRT exponents.

Our paper is structured as follows. In Sect. 2, we recall the basics of Copper-
smith’s method. In Sect. 3, we revisit the TLP attack, and thoroughly analyze
TLP using our new geometric approach. This reformulation then in turn allows
us to easily prove our simplified small CRT exponent attack in Sect. 4. To show
our main result for the improved CRT attack in the range N0.122 ≤ dp, dq ≤ N0.5

in Sect. 4.1, we again heavily reuse our results from Sect. 3. We conclude by
providing experimental evidence of our standard Coppersmith-type heuristic in
Sect. 5.

2 Coppersmith’s Method

Like in many other attacks on RSA, we base our attack on Coppersmith’s method
for finding small modular roots of multivariate polynomials [7]. For that, we
model the problem of factoring an RSA modulus as a problem of finding a small
root of multivariate polynomials modulo some large integer M . In particular, we
use the RSA key generation equations to derive n polynomials f1, . . . , fn in k
variables x1, . . . , xk, which share a small root r = (r1, . . . , rk) modulo M . Small
means here that we know for j = 1, . . . , k upper bounds Xj with |rj | ≤ Xj .
Then, we choose an m ∈ N and define so-called shift polynomials

pi := f i1
1 · . . . · f in

n · xj1
1 · . . . · xjk

k · Mm−(i1+...+in),
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with appropriately chosen exponents. Notice that by construction the shift poly-
nomials have the root r modulo Mm.

Our goal is to compute integer linear combinations

hj(x1, . . . , xk) :=
∑

i

αj,ipi(x1, . . . , xk) (αj,i ∈ Z)

of the shift polynomials, to obtain k polynomials h1, . . . , hk, such that for every
j = 1, . . . , k the coefficient vector of hj(X1x1, . . . , Xkxk) has sufficiently small
Euclidean norm. A lemma by Howgrave-Graham (as stated below) then guaran-
tees us that h1, . . . , hk have the root r not just modulo Mm, but also over the
integers. If the variety of the ideal (h1, . . . , hk) is zero-dimensional, this allows
us to recover their root by using a Groebner basis – which in our case means
that we can efficiently factor the RSA modulus.

Lemma 1 (Howgrave-Graham, [14]). Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a
polynomial in at most ω monomials. Suppose that h(r1, . . . , rk) ≡ 0 mod Mm

for some positive integer m. Also let |ri| < Xi for 1 ≤ i ≤ k and

||h(x1X1, . . . , xkXk)|| <
Mm

√
ω

.

Then h(r1, . . . , rk) = 0 holds over the integers.

To find suitable polynomials hj , we use lattice-based techniques.

Definition 1. Let {b1, . . . ,bω} ⊂ Z
n be linearly independent row vectors. The

lattice L generated by these vectors is defined by

L =
{

z1b1 + . . . + zωbω|zi ∈ Z,∀i ∈ {1, . . . , ω}}

.

{b1, . . . ,bω} is called a basis of L. The parameter n is called the dimension of
L, ω is called the rank of L. If ω = n, then we call L a full-rank lattice.

We often associate a lattice with a basis matrix B. Two lattice bases generate the
same lattice if and only if their basis matrices B1 and B2 satisfy B1 = UB2 for
some unimodular matrix U. As unimodular square matrices have determinant
±1, one can define the determinant of a full-rank lattice L as

det L := |detB| .
Notice that the coefficient vectors of the polynomials hj(X1x1, . . . , Xkxk), as
defined above, are elements of a lattice LS , which is generated by the coefficient
vectors of the polynomials pi(X1x1, . . . , Xkxk). Hence, the problem of finding
polynomials hj with short norm boils down to finding short non-zero vectors in
LS . This can be achieved in polynomial time using the well-known LLL algorithm
[17].

Lemma 2. Let L be an integer lattice of dimension ω. The LLL algorithm
applied to L outputs a reduced basis {v1, . . . ,vω} of L with

||v1|| ≤ ||v2|| ≤ · · · ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , for i = 1, . . . , ω,

in time polynomial in the dimension ω and the bit size of the entries of L.
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For a proof of Lemma 2, we refer to [21, Theorem 4].
As a consequence of Lemma 2, if the condition

2
ω(ω−1)

4(ω+1−�) det(Ls)
1

ω+1−� <
Mm

√
ω

,

holds for all � ≤ k, we can obtain the required k polynomials hj , which satisfy
the condition of Lemma 1, by simply applying LLL to the lattice LS . Since in
our case the values of the determinant and of M grow significantly faster than
the other terms (as usual in these types of attacks), we can also use the simplified
enabling condition

det LS < (Mm)dimLS . (1)

To keep the calculation of the determinant simple, we require that the basis
matrix of LS is of a triangular shape. For that, we need to ensure that the shift
polynomial p1 has exactly one monomial and moreover that for every i > 1 the
set

{λ | λ is a monomial of pi but not of p1, . . . , pi−1}
contains exactly one element. Calculating the determinant then becomes partic-
ularly easy, as we simply have to keep track for every i, which monomial λi the
polynomial pi adds to the basis matrix’ diagonal. Denoting the coefficient of λi

by ci, the determinant then can be calculated as

det LS =
∏

i

|ci · λi(X1, . . . , Xk)| .

For constructing our basis matrix, we will often make use of a powerful tool,
the so called Newton polytope of a polynomial.

Definition 2. The Newton polytope of a k-variate polynomial p(x1, . . . , xk) is
defined as the convex hull of the set

N(p) :=
{

(i1, . . . , ik) ∈ N
k | xi1

1 · . . . · xik

k is a monomial of p
}

.

Notice that for two polynomials p1, p2 the sets N(p1), N(p2) as defined above
have the useful property that N(p1p2) = N(p1) + N(p2), where + denotes the
Minkowski sum. Hence, the Newton polytope of some polynomial xa

i · p (where
a ∈ N) is obtained by moving the Newton polytope of p up a units on the axis
corresponding to xi. Similarly, the Newton polytope of pa is obtained by scaling
the Newton polytope of p by a factor of a. (See Fig. 3 for examples.)

It is worth to note that we have no provable guarantee that the LLL gives us
polynomials, which generate an ideal with zero-dimensional variety. Thus, our
approach relies on the standard Coppersmith-type heuristic assumption.
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x1

x2

p

x1 · p x1 · x2 · p

x2 · p

x1

x2

p2

Fig. 3. The Newton polytopes of p(x1, x2) := x1x2 + x1 + 1 and related polynomials.

Assumption 1. In this work, the lattice based constructions yield polynomials,
that generate an ideal with zero-dimensional variety.

In Sect. 5 we verify Assumption 1 experimentally.

3 The TLP Attack Revisited

As our attack is strongly based on the Takayasu-Lu-Peng attack (TLP) [28] on
CRT-RSA, we describe it in this section in detail. We deviate from the original
algebraic TLP formulation, with the hope that our geometric view helps to gain
a deeper understanding. We first present a simplified construction and after that
optimize it to obtain TLP.

3.1 A Simplified Construction

Let us recall the CRT-RSA key generation equations

edp = k(p − 1) + 1, (2)
edq = �(q − 1) + 1, (3)

where N = pq is an RSA modulus, e is a public exponent, dp, dq are the cor-
responding CRT-exponents and k, � ∈ N. Writing e = Nα and upper bounding
dp, dq ≤ N δ for some α, δ ∈ R, the values of k and � can be bounded as

k =
edp − 1
p − 1

<
edp

p − 1
= Θ

(

edp

N1/2

)

= Θ(Nα+δ−1/2),

� =
edq − 1
q − 1

<
edq

q − 1
= Θ

(

edq

N1/2

)

= Θ(Nα+δ−1/2),

since in the usual RSA setting we have p, q = Θ(N1/2). By that, we find an
X = Θ(Nα+δ−1/2), which is an upper bound for both k and �.

We use Eq. (2) to derive a polynomial

f(xp, yp) := xp(yp − 1) + 1 = xpyp − xp + 1,
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which has the root (k, p) modulo e. Similarly, we could also use Eq. (3) to derive
another polynomial, which in turn has the root (�, q) modulo e. Takayasu, Lu
and Peng, however, advise to first multiply Eq. (3) with p and rearrange terms
as suggested by Bleichenbacher and May [3]:

pedq = p�(q − 1) + p = N� − p� + p = N(� − 1) + N − p(� − 1).

Then, the equation yields a polynomial

g(yp, zp) := ypzp − Nzp − N,

which has the root (p, � − 1) modulo e.
The multiplication with p has the advantage that we can get rid of the

unknown q and by that treat f and g as three-variate polynomials in the variables
xp, yp, zp, which have a common root (k, p, � − 1). Using � − 1 instead of �, gives
g a superior Newton polytope, since f and g then share a monomial (see Fig. 4).

With f , we now have a polynomial, which relates the unknowns k and p,
while g relates � and p. To obtain a third polynomial, that relates k and �,
one can use an idea by Galbraith, Heneghan and McKee [10]. First, we rewrite
Eqs. (2) and (3) as

kp = k − 1 + edp,

�q = � − 1 + edq.

Then, multiplying kp with �q, we obtain

k�N = (k − 1)(� − 1) + (k − 1)edq + edp(� − 1) + e2dpdq

and equivalently

(N − 1)k(� − 1) + Nk + (� − 1) = e (dq(k − 1) + dp(� − 1) + edpdq) ,

from which we can derive a polynomial

h(xp, zp) := (N − 1)xpzp + Nxp + zp

with the root (k, � − 1) modulo e.
Now, we have the following system of polynomial equations

f(xp, yp, zp) = xpyp − xp + 1 = 0,

g(xp, yp, zp) = ypzp − Nzp − N = 0,

h(xp, yp, zp) = (N − 1)xpzp + Nxp + zp = 0,

with the solution (x0, y0, z0) = (k, p, �−1) modulo e, which can be upper bounded
as

x0, z0 ≤ X = Θ(Nα+δ−1/2),

y0 ≤ Y = Θ(N1/2).

If we can efficiently compute (x0, y0, z0), we factor the RSA modulus N .
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Fig. 4. The Newton polytopes of f , g and h.

We want to use Coppersmith’s method to compute (x0, y0, z0). For that, we
define shift polynomials, which have the root (x0, y0, z0) modulo e2m for some
m ∈ N. The polynomials will form a lattice with triangular lattice basis matrix
whose columns correspond to the elements of the set

M :=
{

xa
pyb

pz
c
p | xa

pyb
pz

c
p is a monomial of fmgm

}

.

Notice that by Fig. 4 we may equivalently define M as

M =
{

xa
pyb

pz
c
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ a + c

}

. (4)

We partition M into four subsets

M1 :=
{

xa
pyb

pz
c
p ∈ M | a ≤ c, b ≤ c − a

}

,

M2 :=
{

xa
pyb

pz
c
p ∈ M | a > c, b < a − c

}

,

M3 :=
{

xa
pyb

pz
c
p ∈ M | xa

pyb
pz

c
p /∈ (M1 ∪ M2), a + b + c ≡ 0 mod 2

}

,

M4 :=
{

xa
pyb

pz
c
p ∈ M | xa

pyb
pz

c
p /∈ (M1 ∪ M2 ∪ M3)

}

.

These partitions are used to define a collection of functions, which we call the
exponent functions.

Ef (a, b, c) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, xa
pyb

pz
c
p ∈ M1

b, xa
pyb

pz
c
p ∈ M2

(a + b − c)/2, xa
pyb

pz
c
p ∈ M3

(a + b − c + 1)/2, xa
pyb

pz
c
p ∈ M4

,

Eg(a, b, c) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b, xa
pyb

pz
c
p ∈ M1

0, xa
pyb

pz
c
p ∈ M2

(−a + b + c)/2, xa
pyb

pz
c
p ∈ M3

(−a + b + c − 1)/2, xa
pyb

pz
c
p ∈ M4

,
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Eh(a, b, c) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a, xa
pyb

pz
c
p ∈ M1

c, xa
pyb

pz
c
p ∈ M2

(a − b + c)/2, xa
pyb

pz
c
p ∈ M3

(a − b + c − 1)/2, xa
pyb

pz
c
p ∈ M4

,

Ex(a, b, c) :=
{

a − b − c, xa
pyb

pz
c
p ∈ M2

0, xa
pyb

pz
c
p ∈ M1 ∪ M3 ∪ M4

,

Ez(a, b, c) :=

⎧

⎨

⎩

−a − b + c, xa
pyb

pz
c
p ∈ M1

0, xa
pyb

pz
c
p ∈ M2 ∪ M3

1, xa
pyb

pz
c
p ∈ M4

.

One can easily verify that the exponent functions satisfy the following prop-
erties.

Lemma 3. Let xa
pyb

pz
c
p ∈ M. Then the following holds:

1. Ef (a, b, c), Eg(a, b, c), Eh(a, b, c), Ex(a, b, c), Ez(a, b, c) ∈ N.
2. Ef (a, b, c) + Eg(a, b, c) + Eh(a, b, c) ≤ 2m.
3. Ef (a, b, c) + Eh(a, b, c) + Ex(a, b, c) = a.
4. Ef (a, b, c) + Eg(a, b, c) = b.
5. Eg(a, b, c) + Eh(a, b, c) + Ez(a, b, c) = c.

Proof. Simply compare the definitions of M1,M2,M3,M4 with those of the
exponent functions. 
�
For a given monomial xa

pyb
pz

c
p ∈ M we use the exponent functions to define a

shift polynomial as follows:

p[a,b,c](xp, yp, zp) := fEf (a,b,c) · gEg(a,b,c) · hEh(a,b,c)·
xEx(a,b,c)

p · zEz(a,b,c)
p ·

e2m−(Ef (a,b,c)+Eg(a,b,c)+Eh(a,b,c)).

Notice that the first two statements in Lemma 3 ensure that every exponent in
p[a,b,c] has a non-negative value. Further notice that p[a,b,c] has the root (k, p, �−
1) modulo e2m.

We equip our shift polynomials with the lexicographic monomial order on
(zp, xp, yp), which in the following we simply call the (zp, xp, yp)–order.

Definition 3 ((zp, xp, yp)-order). The monomial order

xa1
p yb1

p zc1
p < xa2

p yb2
p zc2

p :⇐⇒
⎧

⎨

⎩

c1 < c2
c1 = c2, a1 < a2

c1 = c2, a1 = a2, b1 < b2

is called the (zp, xp, yp)-order.

The shift polynomials have the following nice properties.
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Lemma 4. Let xa
pyb

pz
c
p ∈ M. Then the following holds:

1. The leading monomial of p[a,b,c] in the (zp, xp, yp)-order is xa
pyb

pz
c
p.

2. The monomials of p[a,b,c] form a subset of M.

Proof. Every shift polynomial is of the form p[a,b,c] = f i1gi2hi3xj1
p zj2

p ej3 , where
the exponents are defined by our exponent functions. From Fig. 4, we conclude
that the leading monomials of f i1 , gi2 and hi3 are xi1

p yi1
p , yi2

p zi2
p and xi3

p zi3
p

respectively. Thus, p[a,b,c] has leading monomial

xi1+i3+j1
p yi1+i2

p zi2+i3+j2
p .

Since from Lemma 3 it follows that the exponent functions are defined in such
a way that a = i1 + i3 + j1, b = i1 + i2 and c = i2 + i3 + j2 always holds, this
proves the first statement in the lemma.

To prove the second statement, we conclude from Fig. 4 that the set of the
monomials p[a,b,c] is a subset of

M′ :=
{

xa′
p yb′

p zc′
p | 0 ≤ a′ ≤ i1 + i3 + j1, 0 ≤ c′ ≤ i2 + i3 + j2, 0 ≤ b′ ≤ a′ + c′

}

.

Thus, it suffices to show that M′ ⊆ M.
From the above, we conclude

xi1+i3+j1
p yi1+i2

p zi2+i3+j2
p = xa

pyb
pz

c
p ∈ M.

Hence, from (4) it follows that i1 + i3 + j1 ≤ m and i2 + i3 + j2 ≤ m. Comparing
the definition of M′ with (4), the statement M′ ⊆ M easily follows. 
�
Using Lemma 4 we now prove the following important proposition.

Proposition 1. Order the monomials in M according to the (zp, xp, yp)-order.
Define a lattice basis matrix B, in which the i-th column corresponds to the i-th
smallest monomial xa

pyb
pz

b
p ∈ M and the i-th row corresponds to the coefficient

vector of the polynomial p[a,b,c](Xxp, Y yp,Xzp). Then B is triangular.

Proof. If p[a,b,c] has a monomial xa′
p yb′

p zc′
p �= xa

pyb
pz

c
p, then with Lemma 4 it

follows that xa′
p yb′

p zc′
p < xa

pyb
pz

c
p and furthermore xa′

p yb′
p zc′

p ∈ M. Therefore, when
adding p[a,b,c] to B, xa′

p yb′
p zc′

p already is included, as it is the leading monomial
of some polynomial p[a′,b′,c′], which, by construction, is added before p[a,b,c] to
B. Conversely, no polynomial p[a′,b′,c′], which is added before p[a,b,c] to B, has
the monomial xa

pyb
pz

c
p, since all its monomials are strictly smaller than xa

pyb
pz

c
p.

Hence, p[a,b,c] has with xa
pyb

pz
c
p exactly one monomial, which is not added priorly

to the basis. 
�
In Fig. 5 we give an example of the lattice construction as described in Propo-

sition 1 for the case m = 2. The table on the left shows the polynomials, that are
included in the lattice. The table on the right shows the corresponding leading
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xp xpyp
1

x2
pzp x2

pypzp x2
py

2
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py
3
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xpzp xpypzp xpy
2
pzp

zp ypzp
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2
p x2
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2
p x2

py
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pz
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p x2
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2
p x2
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4
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xpz
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3
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2
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pz
2
p

M1

M2

M3

M4

Fig. 5. The lattice construction as described in Proposition 1 for m = 2.

monomials. The cell colours indicate, in which set Mi the leading monomials lie.
For the sake of a simpler notation, we omit the powers of e that are multiplied
to the shift polynomials.

The entry in the a-th row of the b-th column in the c-th block corresponds to
the shift polynomial p[m−a,b,c]. (We chose to use m−a instead of a, as the shape of
the tables then matches the shape of the Newton polytope of fmgm.) Notice that
the monomials in M1 and M2 are added to the lattice by polynomials, which
contain only powers of g, h and zp or f , h and xp respectively. The monomials
in M3 and M4 are added by multiplying powers of f to the polynomials, that
lie on the right border of the lower triangles corresponding to M1.

Remark 1. We would like to explain the optimization process, that led us to the
definitions of the exponent functions. To keep the lattice’s determinant as small
as possible, the sum

Ef (a, b, c) + Eg(a, b, c) + Eh(a, b, c)

should be maximized for every shift polynomial p[a,b,c]. (The larger the sum,
the smaller the power of e in the shift polynomial and by that the value of the
determinant.) If one wants to use shift polynomials, which satisfy the useful
properties of Lemma 4, then with Fig. 4 it is not hard to see that the optimal
values for the exponent functions are obtained by maximizing the sum under the
constraints

Ef (a, b, c) + Eh(a, b, c) ≤ a,

Ef (a, b, c) + Eg(a, b, c) ≤ b,

Eg(a, b, c) + Eh(a, b, c) ≤ c.

This suggests that the problem of selecting optimal exponent functions can
be modelled as an integer programming problem. We solved the integer
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programming problem for efficiently solvable instances of a, b and c, looked for
patterns in its solutions and then based the definitions of the exponent functions
on those.

For all instances of a, b and c, that we checked, our definitions perfectly
match the optimal solution of the corresponding integer programming problem.
This gives some evidence for the optimality of our definitions.

Unfortunately, our lattice construction so far does not result in a successful
attack, as for any value of m it does not satisfy the enabling condition (1). In
fact, no shift polynomial in our lattice is helpful, since no polynomial adds a factor
smaller than e2m to the lattice’s determinant. However, as we will see below, by
only slightly enhancing the construction with some clever tricks as suggested by
Takayasu, Lu and Peng in [28], we immediately obtain their lattice, which then
yields the attack that works whenever δ < 0.122.

3.2 Improving the Construction via Unravelled Linearization

Instead of using three-variate shift polynomials in the variables xp, yp, zp, we now
want to use six-variate polynomials in the variables xp, xq, yp, yq, zp, zq, which
have the root r := (k, k − 1, p, q, � − 1, �) modulo e2m. With these new variables,
we can apply unravelled linearization as introduced by Hermann and May [12,13]
to our polynomials. That is, we can interchange terms in our polynomials as
shown below, while preserving their root r:

ypyq ←→ N,

xp − 1 ←→ xq,

xq + 1 ←→ xp,

zp + 1 ←→ zq,

zq − 1 ←→ zp.

With the above replacement rules, we linearize our polynomials as

f(xp, xq, yp, yq, zp, zq) := xpyp − xq,

g(xp, xq, yp, yq, zp, zq) := ypzp − Nzq,

h(xp, xq, yp, yq, zp, zq) := Nxpzq − xqzp.

By that, all three polynomials have the root r modulo e.
In the following we want to apply the replacement rules to our shift polyno-

mials by using an operator trans(·) as defined below.

Definition 4. Let F be a polynomial in the variables xp, xq, yp, yq, zp, zq. Then
trans(F ) denotes the polynomial, that is obtained by transforming the monomials
of F as follows:

1. In every monomial replace every ypyq by N .
2. In every monomial, that has no factor of yp, replace every xp by xq + 1 and

every zp by zq − 1.
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3. In every monomial, that has a factor of yp, replace every xq by xp − 1 and
every zq by zp + 1.

Notice that trans(F ) only has monomials of the form xa
pyb

pz
c
p and xa

qyb
qz

c
q , i.e.,

variables with subscripts p and q never appear together in one monomial.
As the following lemma shows, polynomials of the form f i1yi2

q have a rather
nice shape after application of trans(·).
Lemma 5. Let F := f i1yi2

q with i1 > i2 ≥ 1 and let F ∗ := trans(F ). Then the
following holds:

1. The monomials of F ∗ are of the form xa
pyb

p and xa
qyb

q.
2. The absolute value of the coefficient of xi1

p yi1−i2
p in F ∗ is N i2 .

3. The absolute value of the coefficient of xi2
q yi2

q in F ∗ is 1.
4. If xa

pyb
p is a monomial of F ∗, then a ≥ b + i2.

5. If xa
qyb

q is a monomial of F ∗, then a ≥ b + i1 − i2.

xq

yq
0

i1

i1 − i2

i2

xp

yp
1 i1 − i2

i2 + 1

i1

Fig. 6. The Newton polytope of trans(f i1yi2
q ).

Before we prove Lemma 5, let us give a geometrical interpretation. The New-
ton polytope of F ∗ consists of two upper triangles, as shown in Fig. 6. Hence,
F ∗ may be written as

F ∗(xp, xq, zp, zq) = F ∗
p (xp, yp) + F ∗

q (xq, yq),

such that the monomials of F ∗
p are the elements of the set

{

xa
pyb

p | b > 0, xa
pyb

p is a monomial of f i1y−i2
p

}

,

where f has the shape it had before linearization, and similarly the monomials
of F ∗

q are the elements of the set
{

xa
qyb

q | b ≥ 0, xa
pyb

p is a monomial of f i1yi2−i1
p

}

.



Partial Key Exposure Attack on Short Secret Exponent CRT-RSA 113

Proof (Lemma 5). From the equation

f i1 = (xpyp − xq)i1 =
i1

∑

j1=0

(

i1
j1

)

(xpyp)i1−j1(−xq)j1 ,

we conclude that the monomials of F are of the form yi1−j1
p yi2

q xi1−j1
p xj1

q , where
0 ≤ j1 ≤ i1. By Definition 4, every monomial with i1 − j1 > i2 gets transformed
via trans as

yi1−j1
p yi2

q xi1−j1
p xj1

q

�→N i2yi1−j1−i2
p xi1−j1

p xj1
q

�→N i2yi1−j1−i2
p xi1−j1

p (xp − 1)j1

=N i2yi1−j1−i2
p xi1−j1

p

j1
∑

j2=0

(

j1
j2

)

(−1)j2xj1−j2
p

=N i2yi1−j1−i2
p

j1
∑

j2=0

(

j1
j2

)

(−1)j2xi1−j2
p .

Similarly, every monomial with i1 − j1 ≤ i2 gets transformed as

yi1−j1
p yi2

q xi1−j1
p xj1

q

�→N i1−j1yi2−(i1−j1)
q xi1−j1

p xj1
q

�→N i1−j1yi2−(i1−j1)
q (xq + 1)i1−j1xj1

q

=N i1−j1yi2−(i1−j1)
q xj1

q

i1−j1
∑

j3=0

(

i1 − j1
j3

)

xi1−j1−j3
q

=N i1−j1yi2−(i1−j1)
q

i1−j1
∑

j3=0

(

i1 − j1
j3

)

xi1−j3
q .

Notice that this already proves the first three statements.
Statements four and five now follow easily. For every monomial xa

pyb
p we find

values j1 = 0, . . . , i1 and j2 = 0, . . . , j1, such that a = i1 −j2 and b = i1 −j1 − i2.
As this yields the inequality

a = i1 − j2 ≥ i1 − j1 = b + i2,

this proves the fourth statement. Similarly, for every every monomial xa
qyb

q we
find values j1 = 0, . . . , i1 and j3 = 0, . . . , i1 − j1, such that a = i1 − j3 and
b = i2 − (i1 − j1). This yields the inequality

a = i1 − j3 ≥ i1 − (i1 − j1) = b + i1 − i2

and thus concludes the proof of the lemma. 
�
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One can generalize Lemma 5 with a completely analogous proof to the statement
of Lemma 6.

Lemma 6. Let F := f i1gi2hi3xi4
p zi5

p yi6
q with i1 + i2 > i6 ≥ 1 and let F ∗ :=

trans(F ). Then the following holds:

1. The monomials of F ∗ are of the form xa
pyb

pz
c
p and xa

qyb
qz

c
q.

2. The absolute value of the coefficient of

xi1+i3+i4
p yi1+i2−i6

p zi2+i3+i5
p

in F ∗ is N j1(N − 1)i3 for some j1 ∈ N.
3. The absolute value of the coefficient of

xi1+i3+i4
q yi6

q zi2+i3+i5
q

in F ∗ is N j2(N − 1)i3 for some j2 ∈ N.
4. If xa

pyb
pz

c
p is a monomial of F ∗, then a + c ≥ b + i3 + i4 + i5 + i6.

5. If xa
qyb

qz
c
q is a monomial of F ∗, then a + c ≥ b + i1 + i2 + i3 − i6.

Lemma 6 can be interpreted geometrically analogous to Lemma 5. That is, F ∗

may be written as

F ∗(xp, xq, yp, yq, zp, zq) = F ∗
p (xp, yp, zp) + F ∗

q (xq, yq, zq),

such that the monomials of F ∗
p are the elements of the set

{

xa
pyb

pz
c
p | b > 0, xa

pyb
pz

c
p is a monomial of f i1gi2hi3xi4

p zi5
p y−i6

p

}

, (5)

where f , g and h have the shape they had before the linearization, and similarly
the monomials of F ∗

q are the elements of the set
{

xa
qyb

qz
c
q | b ≥ 0, xa

pyb
pz

c
p is a monomial of

f i1gi2hi3(xp + 1)i4(zp − 1)i5yi6−i1−i2
p

}

.
(6)

Thus, geometrically, the trans(·) operator creates two copies of the Newton poly-
tope of f i1gi2hi3xi4

p zi5
p , where one lies in the (xp, yp, zp)-plane and the other one

in the (xq, yq, zq)-plane. The larger the exponent of yq, the larger is the polytope
in the (xq, yq, zq)-plane and the smaller is the polytope in the (xp, yp, zp)-plane.
In particular, for i6 = i1 + i2 the Newton polytope of F ∗ lies completely in the
(xq, yq, zq)-plane, whereas for i6 = 0 it lies completely in the (xp, yp, zp)-plane
(except for some monomials xa

qyb
qz

c
q with b = 0). For i6 = (i1 + i2)/2, both

components become equally sized. (See also Fig. 6.)
Based on this interpretation, we now enhance in the following Proposition 2

our lattice construction from Proposition 1, such that the Newton polytopes of
the shift polynomials are equally balanced in both the (xq, yq, zq)-plane and the
(xp, yp, zp)-plane.
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Proposition 2. Order the monomials in M according to the (zp, xp, yp)-order.
Define a lattice basis matrix B, in which the i-th column corresponds to the
monomial

λ[a,b,c] :=

{

xa
qy

b/2
q zc

q , if b is even
xa

py
�b/2�
p zc

p, if b is odd

and the i-th row corresponds to the coefficient vector of

p∗
[a,b,c] := trans

(

p[a,b,c] · y�b/2�
q

)

(Xxp,Xxq, Y yp, Y yq,Xzp,Xzq),

where xa
pyb

pz
c
p is the i-th smallest element in M. Then B is triangular.

Proof. The proof is similar to that of Proposition 1. We need to show that
the i-th polynomial p∗

[a,b,c] has with λ[a,b,c] exactly one monomial, which is not
included in B, before adding p∗

[a,b,c] to B. We prove this by induction over i.
Let us first prove the statement for i = 1. The smallest element in M is the

monomial x0
py

0
pz0p = 1. Hence, the first column corresponds to λ[0,0,0] = 1 and

the first row corresponds to

p∗
[0,0,0] = e2m = e2m · λ[0,0,0].

As p∗
[0,0,0] therefore has with λ[0,0,0] exactly one monomial, this proves the state-

ment for i = 1.
Now fix an arbitrary i < |M| and suppose that the statement is true for all

j ≤ i. We show that it then holds for i+1. With (5), (6) and Lemma 4 it follows
that the (i + 1)-th polynomial p∗

[a,b,c] may be written as

p∗
[a,b,c](xp, xq, yp, yq, zp, zq) = p∗

[a,b,c],p(xp, yp, zp) + p∗
[a,b,c],q(xq, yq, zq),

such that:

1. The monomials of p∗
[a,b,c],p form a subset of M.

2. The monomials of p∗
[a,b,c],q form a subset of {xa

qyb
qz

c
q | xa

pyb
pz

c
p ∈ M}.

3. The leading monomial of p∗
[a,b,c],p (according to the (xp, yp, zp)-order) is

xa
pyb−�b/2�

p zc
p = xa

py�b/2�
p zc

p.

4. The leading monomial of p∗
[a,b,c],q (according to a similarly defined (xq, yq, zq)-

order) is
xa

qy
b+�b/2�−Ef (a,b,c)−Eg(a,b,c)
q zc

q = xa
qy�b/2�

q zc
q .

Notice that the equality above follows from the fourth statement in Lemma 3.
Now arguing analogous to the proof of Proposition 1, Proposition 2 easily

follows by induction. 
�
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When compared to Proposition 1, the advantage of the lattice construction in
Proposition 2 is that we can effectively halve the exponent of Y in the lattice’s
determinant and by that significantly reduce the determinant’s value. One can
show (see Remark 3) that the enabling condition (1) now becomes

δ <
5
56

≈ 0.089. (7)

Proposition 2 therefore yields an attack, that already outperforms the Jochemsz-
May attack [15].

x2
py

0
q fxpy

0
q f2y1

q f2y1
qy

1
q f2y1

qy
1
p

xpy
0
q fy0

q fy0qy
1
q

1y0
q

hxpy
0
q fhy0

q f2zpy
1
q f2gy1

q f2gy1
qy

1
q f2gy1

qy
2
q f2gy1

qy
1
p

hy0
q fzpy

0
q fgy1q fgy1

qy
1
q fgy1qy

1
p

zpy
0
q gy0

q gy0
qy

1
q

h2y0
q fhzpy

0
q fghy1

q f2gzpy
1
q f2g2y2

q f2g2y2
qy

1
q f2g2y2

qy
2
q f2g2y2

qy
2
p1 f2g2y2

qy
2
p

hzpy
0
q ghy0

q fgzpy
1
q fg2y1

q fg2y1
qy

1
q fg2y1

qy
2
q fg2y1

qy
1
p

z2py
0
q gzpy

0
q g2y1

q g2y1
qy

1
q g2y1

qy
1
p

Fig. 7. The polynomials in the TLP lattice for m = 2 and τ = 1.

To further improve the bound on δ to 0.122, Takayasu, Lu and Peng use in
[28] basically the lattice construction from Proposition 2, but add extra shifts in
the variables yp and yq to the lattice, i.e., they include additional polynomials
of the form

p∗
[a,b,c,i],q := trans

(

p[a,b,c] · y�b/2�
q · yi

q

)

(Xxp,Xxq, Y yp, Y yq,Xzp,Xzq),

p∗
[a,b,c,i],p := trans

(

p[a,b,c] · y�b/2�
q · yi

p

)

(Xxp,Xxq, Y yp, Y yq,Xzp,Xzq).

More precisely, whenever adding a polynomial p∗
[a,b,c] with b = a+c, they include

additional rows corresponding to the polynomials

p∗
[a,b,c,1],q, p

∗
[a,b,c,2],q, . . . , p

∗
[a,b,c,�τb�−�b/2�],q

p∗
[a,b,c,1],p, p

∗
[a,b,c,2],p, . . . , p

∗
[a,b,c,�τb�−�b/2�],p

(8)

as well as additional columns corresponding to the monomials

xa
qy�b/2�+1

q zc
q , x

a
qy�b/2�+2

q zc
q , . . . , x

a
qy�τb�

q zc
q ,

xa
py�b/2�+1

p zc
p, x

a
py�b/2�+2

p zc
p, . . . , x

a
py�τb�

p zc
p,

(9)
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for some parameter τ ≥ 1/2, which has to be optimized as a function of δ. Notice
that by (4) it follows that none of these monomials are already included in the
lattice basis from Proposition 2.

In Fig. 7 we give an example of the polynomials in the TLP lattice. The
polynomials p∗

[a,b,c] with b = a + c are coloured in a light gray tone. The addi-
tional polynomials p∗

[a,b,c,i],q, p∗
[a,b,c,i],p are coloured in a dark gray tone. As in

Fig. 5, we omit the powers of e. We interpret the additional polynomial geo-
metrically as follows. We take in p∗

[a,a+c,c] the polynomials with the outer most
Newton polytopes and push these further into the (xq, yq, zq)-plane, respectively
the (xp, yp, zp)-plane, by using p∗

[a,a+c,c,i],q and p∗
[a,a+c,c,i],p.

With this interpretation, it is not hard to see that the basis matrix still
remains triangular: The polynomial p∗

[a,b,c,i],q adds the monomial xa
qy

�b/2�+i
q zc

q

to the lattice basis and p∗
[a,b,c,i],p adds xa

py
�b/2�+i
p zp. Using this observation, we

finally prove the TLP attack.

Theorem 1 (Takayasu, Lu, Peng). Let N = pq be a sufficiently large RSA
modulus, where p and q have the same bit-size. Let e < φ(N) be a public exponent
with gcd(e,N − 1) = O(1). Suppose the corresponding CRT exponents dp, dq are
upper bounded by dp, dq ≤ N δ, where

δ <
1
2

− 1√
7

≈ 0.122.

Given (N, e), we can factor N in polynomial time (under Assumption 1).

Proof. We build a lattice basis matrix B as in Proposition 2 and add the addi-
tional polynomials (8) and monomials (9) as described above. The diagonal
elements of B are products of powers of e, X, Y and (due to statements two
and three in Lemma 6) N and (N − 1). To reduce the value of the determinant
of B, we remove the powers of N and (N − 1) as follows. Let

Bi,i = eE1,iXE2,iY E3,iNE4,i(N − 1)E5,i

denote the i-th diagonal element of B. We replace for every i the value of Bi,i

by
eE1,iXE2,iY E3,i gcd(N − 1, e)E5,i

and then multiply every other entry in the i-th row of B by
(

NE4,i

(

N − 1
gcd(N − 1, e)

)E5,i
)−1

mod e2m.

By that, the i-th row still corresponds to a polynomial with the root r modulo
e2m.

Notice that we can assume without loss of generality that N is invertible
modulo e. If it was not, we could easily obtain a prime factor of N in gcd(e,N).
For (N − 1) on the other hand, we of course can not make this assumption and
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therefore have to use (N −1)/ gcd(N −1, e). Since we have gcd(N −1, e) = O(1),
we can asymptotically neglect the remaining powers of gcd(N − 1, e) on the
diagonal. This allows us to asymptotically calculate the determinant of B as
detB = eseXsxY sy , where

se =
∑

xa
pyb

pzc
p∈M

E(a, b, c) +
∑

xa
pyb

pzc
p∈M,

b=a+c

2 ·
τb−b/2
∑

i=1

E(a, b, c) =
1 + 5τ

3
m4 + o(m4),

sX =
∑

xa
pyb

pzc
p∈M

(a + c) +
∑

xa
pyb

pzc
p∈M,

b=a+c

2 ·
τb−b/2
∑

i=1

(a + c) =
7τ

3
m4 + o(m4),

sY =
∑

xa
pyb

pzc
p∈M

b

2
+

∑

xa
pyb

pzc
p∈M,

b=a+c

2 ·
τb−b/2
∑

i=1

(

b

2
+ i

)

=
7τ2

6
m4 + o(m4)

and
E(a, b, c) := 2m − Ef (a, b, c) − Eg(a, b, c) − Eh(a, b, c).

Then, calculating the dimension n of the lattice as

n =
∑

xa
pyb

pzc
p∈M

1 +
∑

xa
pyb

pzc
p∈M,

b=a+c

2 ·
τb−b/2
∑

i=1

1 = 2τm3 + o(m3),

and plugging in the values e = Nα, X = Θ(Nα+δ−1/2) and Y = Θ(N1/2), we
find that the enabling condition detB < e2mn becomes

α · 1 + 5τ

3
m4 +

(

α + δ − 1
2

)

· 7τ

3
m4 +

1
2

· 7τ2

6
m4 < α · 4τm4 + o(m4). (10)

To maximize the bound on δ, we set τ := max{1 − 2δ, 1/2}, which simplifies the
above to

δ <
1
2

−
√

α

7
+ o(1).

Notice, the smaller α, the better the bound on δ becomes. Since we have e <
φ(N) and consequently α < 1, we can therefore also use the simpler bound

δ <
1
2

− 1√
7

+ o(1).

Consequently, we find for every δ < 1/2 − 1/
√

7 an m, such that the enabling
condition becomes satisfied, which proves the theorem. 
�
Remark 2. The condition gcd(N − 1, e) = O(1) does not appear in the original
formulation of the theorem in [28]. However, we do not see how to avoid this.
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If gcd(N − 1, e) becomes large, then we can no longer asymptotically ignore the
additional factors on the determinant, and by that obtain a worse bound in the
enabling condition. This would imply an inferior bound on δ.

Remark 3. The proof of Theorem 1 can be easily modified to prove the previously
mentioned bound (7) of δ < 5/56 for the construction from Proposition 2. If one
sets τ = 1/2 in the proof, then no additional polynomials p∗

[a,b,c,i],q and p∗
[a,b,c,i],p

are added to the lattice. Thus, the construction in that case is exactly the same
as in Proposition 2. The enabling condition (10) then simplifies to

δ <
3
8

− 2α

7
+ o(1),

which one can further simplify to

δ <
3
8

− 2
7

+ o(1) =
5
56

+ o(1)

by using α < 1 as before.

4 Our Small CRT-exponent Attacks

Our geometrical interpretation of the TLP attack from Sect. 3 now allows us to
easily explain our Partial Key Exposure attack.

As before, let N = pq be an RSA modulus, let e = Nα be a public exponent
and let dp, dq be the corresponding CRT exponents. We assume that both dp and
dq are upper bounded by dp, dq ≤ Nβ for some β ∈ R. Additionally, we assume
that we know integers ˜dp, ˜dq,M ≈ Nβ−δ (for some δ ≤ β), such that we can
write dp = d∗

pM + ˜dp, dq = d∗
qM + ˜dq for some unknown integers d∗

p, d
∗
q ≤ N δ. In

practice, M might, for instance, be a power of 2 and therefore d∗
p, d

∗
q the MSBs

of dp and dq respectively and ˜dp, ˜dq the LSBs.
In the previous section, we used the equations

kp − (k − 1) = edp,

p(� − 1) − N� = −edqp,

k�N − (k − 1)(l − 1) = e2dpdq + e(dp(� − 1) + dq(k − 1))

to derive polynomials

f(xp, xq, yp, yq, zp, zq) = xpyp − xq,

g(xp, xq, yp, yq, zp, zq) = ypzp − Nzq,

h(xp, xq, yp, yq, zp, zq) = Nxpzq − xqzp,

which all have the root r = (k, k − 1, p, q, �− 1, �) modulo e. With the additional
information given by ˜dp and ˜dq, we can similarly define polynomials

˜f(xp, xq, yp, yq, zp, zq) := xpyp − xq − e ˜dp,
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g̃(xp, xq, yp, yq, zp, zq) := ypzp − Nzq + e ˜dqyp,

˜h(xp, xq, yp, yq, zp, zq) := Nxpzq − xqzp − e2 ˜dp
˜dq − e ˜dpzp − e ˜dqxq,

which in turn have the root r modulo eM . Notice that for increasing M , the
polynomials ˜f , g̃ and ˜h are in terms of Coppersmith’s method superior to f ,
g and h, as they have the same small root r modulo a larger modulus. At the
same time they are, however, also inferior, since they have more monomials. As
we will see below, we therefore obtain our best results, when carefully balancing
the use of ˜f , g̃ and ˜h with that of f , g and h.

We now use ˜f , g̃ and ˜h to build a lattice basis matrix and then apply Cop-
persmith’s method to compute r. We closely follow the construction as described
in Proposition 2. However, some modifications are necessary. If we would sim-
ply build the lattice exactly as described in Proposition 2, but construct the
shift polynomials using ˜f , g̃ and ˜h instead of f , g and h, we would not obtain
a triangular matrix. For instance, the polynomial g̃ would add with yp a new
monomial, which does not appear in the lattice from Proposition 2. Overall, we
would obtain many additional monomials, as the trans(·) operator does not work
as good with ˜f , g̃ and ˜h as it does with f , g and h. Let us illustrate this with
an example.

When instantiating the lattice from Proposition 2 with m = 2, the shift poly-
nomial p∗

[2,2,0] is obtained by multiplying p[2,2,0] = f2e2 by a factor of y
�2/2�
q = yq

and transforming it using trans(·) as shown below. (For better readability we omit
the factor e2.)

f2yq = (xpyp − xq)2yq

= x2
py

2
pyq − 2xpxqypyq + x2

qyq

�→ Nx2
pyp − 2Nxpxq + x2

qyq

�→ Nx2
pyp − 2N(xq + 1)xq + x2

qyq

= Nx2
pyp − 2Nx2

q − 2Nxq + x2
qyq.

Applying the same transformations to ˜f2, we obtain

˜f2yq = (xpyp − xq − e ˜dp)2yq

= x2
py

2
pyq − 2xpxqypyq − 2e ˜dpxpypyq − x2

qyq + 2e ˜dpxqyq + e2 ˜dp

2
yq

�→ Nx2
pyp − 2Nxpxq − 2Ne ˜dpxp − x2

qyq + 2e ˜dpxqyq + e2 ˜dp

2
yq

�→ Nx2
pyp − 2N(xq + 1)xq − 2Ne ˜dp(xq + 1) − x2

qyq + 2e ˜dpxqyq + e2 ˜dp

2
yq

= Nx2
pyp − 2Nx2

q − 2N(1 + e ˜dp)xq − 2Ne ˜dp − x2
qyq + 2e ˜dpxqyq + e2 ˜dp

2
yq.

Comparing the monomials in the variables xq and yq of both polynomials in
Fig. 8, they form a small triangle for the former polynomial, whereas they form
a rather large rectangle for the latter.

One can show with a proof analogous to that of Lemma 5 that the shape
of the shift polynomials overall becomes more rectangular, when using ˜f , g̃, ˜h,
instead of f , g and h. More precisely, one can easily show that
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xq

yq
0 1

1

2

xq

yq
0 1

1

2

Fig. 8. Parts of the Newton polytopes of f2yq and ˜f2yq after applying trans(·).

F ∗(xp, xq, yp, yq, zp, zq) := trans
(

˜f i1 g̃i2˜hi3xi4
p zi5

p yi6
q

)

can be written as

F ∗(xp, xq, yp, yq, zp, zq) = F ∗
p (xp, yp, zp) + F ∗

q (xq, yq, zq),

such that the monomials of F ∗
p form a subset of

{

xa
pyb

pz
b
p | 0 ≤ a ≤ i1 + i3 + i4, 0 < b ≤ i1 + i2 − i6, 0 ≤ c ≤ i2 + i3 + i5

}

and the monomials of F ∗
q form a subset of

{

xa
qyb

qz
b
q | 0 ≤ a ≤ i1 + i3 + i4, 0 ≤ b ≤ i6, 0 ≤ c ≤ i2 + i3 + i5

}

.

See Fig. 9 for an example.
Additionally, one can show that (as before) the coefficients of

xi1+i3+i4
p yi1+i2−i6

p zi2+i3+i5
p

and
xi1+i3+i4

q yi6
q zi2+i3+i5

q

are non-zero, or more precisely that they are products of powers of N and (N−1).
Notice that these monomials correspond to the outer most points in Fig. 9, i.e.,
the points with the largest ‖ · ‖1-norm.

yq

xq

zq
i6

i1 + i3 + i4

i2 + i3 + i5

yp

xp

zp

i1 + i2 − i6

i1 + i3 + i4

i2 + i3 + i5

Fig. 9. The effect of trans(·) on F ∗.
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As a consequence, we suggest instead of using the set M for selecting the
shift polynomials, to use a different set, which itself has a rectangular shape. For
that, we define

˜M :=
{

xa
pyb

pz
c
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ 2m

}

.

Notice that the set of tuples (a, b, c) with xa
pyb

pz
c
p ∈ ˜M forms a rectangular cuboid

of size m × 2m × m in Z
3. Also notice that M ⊆ ˜M.

We enhance our exponent functions, such that for monomials xa
pyb

pz
c
p ∈ ˜M \

M they take the values

Ef (a, b, c) := a,

Eg(a, b, c) := c,

Eh(a, b, c) := Ex(a, b, c) := Ez(a, b, c) := 0.

Further, we redefine our shift polynomials as follows:

p̃[a,b,c](xp, xq, yp, yq, zp, zq) := ˜fEf (a,b,c) · g̃Eg(a,b,c) · ˜hEh(a,b,c)·
xEx(a,b,c)

p · zEz(a,b,c)
p ·

(eM)2m−(Ef (a,b,c)+Eg(a,b,c)+Eh(a,b,c)).

Now, to obtain a triangular matrix, our basic idea is to include sufficiently many
extra-shifts in yp and yq to the lattice, such that for every shift polynomial F ∗,
every monomial in the cuboids in Fig. 9 is included in the basis. We make this
strategy more precise in Proposition 3.

Proposition 3. Order the monomials in ˜M according to the (zp, xp, yp)-order.
Define a lattice basis matrix B, in which the i-th column corresponds to the
monomial

λ[a,b,c] :=

{

xa
qy

b/2
q zc

q , if b is even
xa

py
�b/2�
p zc

p, if b is odd.

where xa
pyb

pz
c
p is the i-th smallest element in ˜M. For xa

pyb
pz

c
p ∈ M, the i-th row

of B corresponds to the coefficient vector of

trans
(

p̃[a,b,c] · y�b/2�
q

)

(Xxp,Xxq, Y yp, Y yq,Xzp,Xzq).

For xa
pyb

pz
c
p ∈ ˜M\M with even b, the i-th row of B corresponds to the coefficient

vector of

trans
(

p̃[a,b,c] · y�(a+c)/2�
q · y�(b−a−c)/2�

q

)

(Xxp,Xxq, Y yp, Y yq,Xzp,Xzq).

For xa
pyb

pz
c
p ∈ ˜M\M with odd b, the i-th row of B corresponds to the coefficient

vector of

trans
(

p̃[a,b,c] · y�(a+c)/2�
q · y�(b−a−c)/2�

p

)

(Xxp,Xxq, Y yp, Y yq,Xzp,Xzq).

Then B is triangular.
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As the proof for Proposition 3 is completely analogous to that of Proposition 2,
we omit it here.

We are now ready to prove our main theorem.

Theorem 2. Let N = pq be a sufficiently large RSA modulus, where p and q
have the same bit-size. Let e < φ(N) be a public exponent. Suppose the cor-
responding CRT exponents dp, dq are upper bounded by dp, dq ≤ Nβ. Write
dp = d∗

p2
k + ˜dp, dq = d∗

q2
k + ˜dp, for some k ∈ N, MSBs d∗

p, d
∗
q ≤ N δ and

LSBs ˜dp, ˜dq. If we are given (N, e) and ˜dp, ˜dq, such that

δ <
1 − −2β

10

and gcd(e · 2k, N − 1) = O(1), then we can factor N in polynomial time (under
Assumption 1).

Proof. The proof is very similar to that of Theorem 1. We build a lattice basis
matrix B as described in Proposition 3 with M = 2k. As before, we remove the
powers of N and N − 1 from the diagonal of B and multiply the other entries in
the matix appropriately with the inverses. Notice that as opposed to Theorem
1 here we need the slightly stronger assumption gcd(e · 2k, N − 1) = O(1), as we
now have to take inverses modulo eM .

We can asymptotically compute the determinant as detB =
(eM)seM XsX Y sY , where

seM =
∑

xa
pyb

pzc
p∈ ˜M

(2m − Ef (a, b, c) − Eg(a, b, c) − Eh(a, b, c)) =
7
3
m4 + o(m4),

sX =
∑

xa
pyb

pzc
p∈ ˜M

(a + c) = 2m4 + o(m4),

sY =
∑

xa
pyb

pzc
p∈ ˜M

b

2
= m4 + o(m4).

Then, calculating the lattice’s dimension as n = | ˜M| = 2m3, our enabling con-
dition becomes

(α + β − δ) · 7
3
m4 +

(

α + β − 1
2

)

· 2m4 +
1
2

· m4 < (α + β − δ) · 4m4 + o(m4).

By incorporating α < 1 as before, the above simplifies to

δ <
1 − −2β

10
+ o(1),

which concludes the proof of the theorem. 
�
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Fig. 10. Required fraction of LSBs to make the attack from Theorem 2 work.

In Fig. 10 we show for a given value of β, how large of a fraction of key bits
is required for the attack to work. That, is on the vertical axis we plot the value
(β − δ)/β.

Notice that the graph in Fig. 10 has with (1/2, 1) a very natural ending point.
The result strongly suggests that for a maximum level of security, full size CRT-
exponents must be used – as only then Partial Key Exposure attacks can be
prevented. Additionally, it shows that regardless of the key size, we can always
factor the modulus, once all key bits are exposed.

Unfortunately, the ending point (1/12,0) on the left side of the graph, how-
ever, clearly is non-optimal, as it tells us that for any β > 1/12 ≈ 0.083, at
least some key bits have to be exposed to yield the factorization of N . This is
contradictory to Theorem 1, by which for any β < 0.122 no additional key bits
are required to factor N .

Intuitively this might be explained with the fact that for δ → β (i.e., when
almost all key bits are unknown) the value eM tends to e. By that, the benefit
of using the larger modulus in the lattice construction shrinks more and more
as δ grows to β. At a certain point, the inferior shape of the polynomials then
outweighs said benefit and therefore gives us an inferior bound. To fill this gap,
we propose in the following an alternative lattice construction, inspired by ideas
of Aono [1].

4.1 Improved Attack by Linking Our First Attack and TLP

The main idea behind the improved construction is to use our lattice from The-
orem 2 together with the TLP lattice. For that, we define a new set

˜Mσ :=
{

xa
pyb

pz
c
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ 2σm

} ⊆ ˜M

for some parameter 0 ≤ σ ≤ 1, that allows us to interpolate between the TLP
lattice and the construction from Proposition 3 and Theorem 2.
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When now constructing a lattice exactly as described in Proposition 3, but
using the set ˜Mσ instead of ˜M, one obtains the same basis matrix Bσ, that one
would obtain, when removing all polynomials, which add monomials xa

pyb
pz

c
p and

xa
qyb

qz
c
q with b > σm to the lattice from Proposition 3. Notice that from Fig. 9 it

follows that the remaining polynomials in Bσ do not have monomials xa
pyb

pz
c
p or

xa
qyb

qz
c
q with b > σm. Hence, Bσ is still triangular.

Next, we build another lattice basis matrix BTLP exactly as described in the
TLP attack from Theorem 1, but apply two minor changes:

1. Instead of using the polynomials f , g and h for defining the shift polynomials,
we use

f∗ := Mf, g∗ := Mg, h∗ := Mh.

2. We multiply powers of eM to the shift polynomials, instead of powers of e.

Clearly, this does not weaken the TLP attack, as all additional powers of M
in the enabling condition cancel out. With these changes, the shift polynomials
now have the root r not only modulo e, but also modulo eM . This allows us to
combine Bσ and BTLP as follows.

We remove all polynomials from BTLP that add monomials xa
pyb

pz
c
p and

xa
qyb

qz
c
q with b ≤ σm to the diagonal. After that, we add all polynomials from the

matrix Bσ to BTLP . Since in Bσ all monomials xa
pyb

pz
c
p and xa

qyb
qz

c
q with a ≤ m,

c ≤ m and b ≤ σm appear, it follows that in particular all monomials that we
have just removed, reappear in our matrix. Hence, we can rearrange the rows of
the newly obtained matrix, such that it is again triangular.

With the above, we thus obtain a triangular lattice basis matrix which nicely
incorporates the advantages of the lattice construction from Theorems 1 and 2 at
the same time. Similar as in the proofs of both theorems, the enabling condition
for the construction becomes

eseMsM XsX Y sY < (eM)2mn,

with analogously defined exponents se, sM , sX , sY and n. (Here we sum over
the monomials in Bσ as well as over those in BTLP , except for those that we
remove from BTLP .)

For σ ≤ τ , we have

n =
σ3 + 6 τ3

3 τ2
m3 + o(m3),

sX =
σ4 + 14 τ4

6 τ3
m4 + o(m4),

sY =
3σ4τ + 14 τ5

12 τ3
m4 + o(m4),

se = −σ4 − 4σ3τ − 10 τ4 − 2 τ3

6 τ3
m4 + o(m4),
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Table 1. Values of β, (β − δ)/β and σ for our improved lattice construction.

β 0.122 0.123 0.124 0.125 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22

(β − δ)/β 0 0.053 0.084 0.110 0.205 0.332 0.423 0.492 0.549 0.595 0.635 0.0668 0.698 0.723

σ 0 0.328 0.392 0.434 0.548 0.655 0.716 0.757 0.787 0.811 0.830 0.846 0.859 0.869

β 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36

(β − δ)/β 0.746 0.767 0.786 0.803 0.819 0.833 0.847 0.859 0.871 0.882 0.892 0.902 0.911 0.919

σ 0.878 0.885 0.891 0.897 0.902 0.907 0.912 0.917 0.922 0.927 0.931 0.935 0.940 0.944

β 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50

(β − δ)/β 0.927 0.934 0.942 0.948 0.955 0.961 0.966 0.972 0.977 0.982 0.987 0.991 0.995 1

σ 0.948 0.952 0.956 0.960 0.964 0.968 0.972 0.976 0.980 0.984 0.988 0.992 0.996 1

sM = −σ4τ2 − 4σ3τ2 + 6σ2τ2 − 2σ3 + 2στ2 − 12 τ3

3 τ2
m4 + o(m4)

and for τ ≤ σ ≤ 2τ

n = −σ3 − 6σ2τ + 6στ2 − 8 τ3

3 τ2
m3 + o(m3),

sX = −σ4 − 4σ3τ + 4στ3 − 16 τ4

6 τ3
m4 + o(m4),

sY = −3σ4τ − 16σ3τ2 + 12σ2τ3 − 16 τ5

12 τ3
m4 + o(m4),

se =
σ4 − 8σ3τ + 24σ2τ2 − 20στ3 + 16 τ4 + 2 τ3

6 τ3
m4 + o(m4),

sM = −σ4τ2 − 4σ3τ2 + 6σ2τ2 + 2σ3 − 12σ2τ + 14στ2 − 16 τ3

3 τ2
m4 + o(m4).

Unfortunately, we can not give a closed formula on β and δ as in Theorem
2, because there seems to be no way for analytically maximizing σ. Therefore,
we can only present numerical results.

When setting τ := max{1/2, 1−2β} (as in the proof of Theorem 1) and then
numerically optimizing σ, we obtain the results shown in Table 1. These results
have been used to plot the graph in Fig. 2.

Since we reach the lower bound of 0.122, we fully close the gap between
Theorems 1 and 2. Notice how the table shows that for β = 0.122 it is best
to use the TLP lattice (i.e., setting σ = 0) and for β = 0.5 to use the lattice
construction from Proposition 3 (i.e., setting σ = 1).

5 Experimental Results

The main purpose of our experiments is to verify the validity of Assumption 1.
Although our results theoretically hold in the range N0.122 ≤ dp, dq ≤ N0.5,

we cannot expect to provide experimental data for large dp, dq in practice. The
reason is that for small exponent CRT-RSA attacks like TLP and our Partial
Key Exposure attack the lattice dimension grows as a cubic function in m. Thus,
the convergence to the theoretical bounds is quite slow. E.g. for the TLP attack
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with its theoretical bound dp, dq ≤ N0.122, the original authors provide in [28]
practical experiments only up to N0.062.

Hence, in order to demonstrate that our attack naturally extends the TLP
attack to the Partial Key scenario, we provide some data points with β ≥ 0.062.

We implemented our experiments in SAGE 9.2 using Linux Ubuntu 18.04.4
on a laptop with Intel(R) Core(TM) i7-7920HQ CPU 3.67 GHz. The results are
given in Table 2.

Assumption 1 was valid in all experiments. In every run we were able to
recover the unknown secrets via Groebner basis computation.

Table 2. Experimental results of our Partial Key Exposure attack.

β Bit-size of N Bit-size of dp, dq Unknown key-bits Dimension LLL Time (sec.)

0.040 1,000 40 2 × 15 53 4

0.040 5,000 200 2 × 80 53 196

0.040 10,000 400 2 × 175 53 1,179

0.065 1,000 65 2 × 20 132 1,242

0.065 5,000 325 2 × 100 132 9,505

0.070 1,000 70 2 × 30 263 51,181

0.100 1,000 100 2 × 30 434 786,423

0.110 1,000 110 2 × 30 434 841,310
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Abstract. The Refined Power Analysis, Zero-Value Point, and Excep-
tional Procedure attacks introduced side-channel techniques against spe-
cific cases of elliptic curve cryptography. The three attacks recover bits
of a static ECDH key adaptively, collecting information on whether a
certain multiple of the input point was computed. We unify and gener-
alize these attacks in a common framework, and solve the corresponding
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attack against windowed scalar multiplication methods, recovering the
full scalar instead of just a part of it. Finally, we systematically ana-
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1 Introduction

Since the initial proposal of elliptic curve cryptography (ECC) by Koblitz [28]
and Miller [31], the main building block of most elliptic curve cryptosystems has
been scalar point multiplication, which involves a plethora of different formulas.
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these attacks are only described in special cases, specific to a small number of
formulas. In this work, we unify and generalize the attacks, and systematically
classify exceptional points in many widely used formulas.

Related Work. In 2003, Goubin [20] introduced a new side-channel attack
against implementations of ECC. Titled Refined Power Analysis (RPA), it uses
a power side channel and the existence of points with a zero coordinate to steer
an adaptive attack on implementations of the static elliptic curve Diffie-Hellman
(ECDH) protocol. Smart [35] described effective countermeasures against RPA.
Subsequently, Akishita and Takagi [1] proposed a slightly different method
named the Zero-Value Point (ZVP) attack. It focuses on forcing zeros into inter-
mediate values inside a given point addition formula, and not only in the point
coordinate. Several extensions followed: Zhang, Lin, and Liu [40] modified the
ZVP attack to target genus 2 curves, and Crépeau and Kazmi [14] proposed
ZVP for elliptic curves over binary extension fields. Danger, Guilley, Hoogvorst,
Murdica, and Naccache [15] gave new countermeasures against ZVP and RPA,
while Tena, Tomàs, and Valls [29] analyzed Edwards curves with regards to ZVP
attacks, showing that some addition formulas on Edwards curves are resistant
to ZVP attacks. Finally, Murdica, Guilley, Danger, Hoogvorst, and Naccache
[33] proposed the Same Value Analysis (SVA) attack, which tries to detect the
repeated use of some finite field value via a side channel.

Izu and Takagi [26] analyzed the Brier and Joye [8] addition formulas and
presented an Exceptional Procedure Attack (EPA). It uses a similar adaptive
mechanism as the aforementioned attacks, but relies on an error side channel by
inducing incorrect computations, without the use of fault induction. To avoid
EPAs, it is best to use complete addition formulas that always compute the sum
of two points correctly for all inputs. Costello, and Batina [34] credit Bosma
and Lenstra [7] for the only known complete formulas for prime order short
Weierstrass curves, while Bernstein, Birkner, Joye, Lange, and Peters [3] and
Hisil, Wong, Carter, and Dawson [24] proposed complete formulas for Twisted
Edwards curves. The Explicit-Formulas Database (EFD) by Bernstein and Lange
[4] contains formulas for many different curve models and coordinate systems.

What Could Possibly Go Wrong? Most of the current public EC libraries
do not use complete formulas for short Weierstrass curves, with the exception of
ECCKiila [2]. This includes production libraries:

– Mozilla issued two security advisories for unimplemented exceptions in NSS’s
projective addition, leading to incorrect (degenerate) multiplication results;

– OpenSSL had unimplemented exceptions during its projective ladder step
addition, leading to incorrect (degenerate) results;

– BoringSSL’s check for exceptional projective inputs was not constant time,
leaking critical algorithm state;

– Python’s fastecdsa module had an unimplemented exception during affine
point doubling, leading to incorrect (degenerate) results.

Contributions and Outline. In this work, we present a novel formal frame-
work to unify the ZVP, RPA, and EPA attacks as instances of a more
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general problem, which we solve for some cases (Sect. 3). Our approach leads
to a new attack on windowed scalar multiplication algorithms (Sect. 3.5), and
allows for clearer analysis of the attacks. Next, we develop a semi-automated
methodology to discover non-trivial exceptional points, applying it to systemat-
ically analyze EFD formulas, completely classifying all such points (Sect. 4). We
then survey widely deployed software libraries, gaining insight into the prac-
tical implications of our analysis (Sect. 5). Finally, we draw our concluding
remarks in Sect. 6. We released our code and data under an open-source license
at github.com/crocs-muni/formula-for-disaster.

2 Background

We define an elliptic curve E in the short Weierstrass model over a prime field
Fp, p ≥ 3 by the following equation:

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp, 4a3 + 27b2 �= 0. (1)

The group E(Fp) consists of affine points (x, y) ∈ F
2
p satisfying (1) together with

the neutral element O, corresponding to the point at infinity. For any positive
integer k, we define the scalar multiplication [k]P as the sum of k copies of P
and also define [−k]P by −[k]P . The order of a point P ∈ E(Fp) is defined as
the smallest positive integer k such that [k]P = O. We refer to points of order
dividing k as the k-torsion points. For typical cryptographic applications, E(Fp)
has cardinality n = h · q, where q is prime and h ∈ {1, 2, 4, 8}; h is called the
cofactor.

The scalar point multiplication mapping P �→ [k]P can also be computed by
using the division polynomial ψk [38]: that is,

[k](x, y) =
(

φk(x)
ψ2

k(x)
,
ωk(x, y)
ψ3

k(x, y)

)
,

where

ψ0 = 0,
ψ1 = x,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx − a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b2 − a3),

ψ2k+1 = ψk+2ψ
3
k − ψk−1ψ

3
k+1 for k ≥ 2,

ψ2k = (2y)−1ψk(ψk+2ψ
2
k−1 − ψk−2ψ

2
k+1) for k ≥ 3,

φk = xψ2
c − ψk+1ψk−1,

ωk = (4y)−1(ψk+2ψ
2
k−1 − ψk−2ψ

2
k+1).

All of these polynomials are considered modulo the curve Eq. (1). For simplicity,
we denote mk(x) :=

φk(x)
ψ2

k(x)
, then for all k1, k2, i ∈ Z, we have (mk1 ◦ mk2) (x) =

mk1·k2(x), mk1(x) = m−k1(x) and mk1(x) = m±k1+in(x).

https://github.com/crocs-muni/formula-for-disaster
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2.1 Curve Models and Their Zero-Coordinate Points

For a short Weierstrass curve EW over Fp given by Eq. (1), the points with zero
y-coordinate are exactly the points of order 2. Points with zero x-coordinate
exist iff b is a square in Fp, in which case (0,±

√
b) ∈ EW /Fp [21]. Any elliptic

curve can be converted to the short Weierstrass model.

Montgomery. The Montgomery model of an elliptic curve [13,32] is

EM/Fp : By2 = x3 + Ax2 + x A,B ∈ Fp, B(A2 − 4) �= 0.

Similar to the short Weierstrass model, the neutral element O does not have
an affine representation. Points of order 2 are (0, 0) and (12 (−A ±

√
A2 − 4), 0),

though the latter two might not be defined over Fp. All the other affine points
have non-zero coordinates.

Twisted Edwards. The twisted Edwards model of an elliptic curve [3] is

ET /Fp : aT x2 + y2 = 1 + dT x2y2 aT , dT ∈ Fp, aT dT (aT − dT ) �= 0.

Typically, we also require aT to be a square in Fp and dT a non-square in Fp.
The neutral element is the affine point (0, 1), the point (0,−1) has order 2, and
the points

(
± 1/

√
a, 0

)
have order 4. All the other affine points have non-zero

coordinates.

Edwards. The Edwards model of an elliptic curve [5,17] is

EE/Fp : x2 + y2 = c2(1 + dx2y2) c, d ∈ Fp, cd(1 − dc4) �= 0.

When using yz or yzsquared coordinates, we also require d to be a square in Fp,
though in other cases, we may require it to be non-square. The neutral element
is the affine point (0, c), the point (0,−c) has order 2, and the points (±c, 0)
have order 4. All the other affine points have non-zero coordinates.

For any Edwards curve EE/Fp, we can rescale c �→ 1 by taking d �→ dc4,
x �→ cx, y �→ cy (thus also obtaining a twisted Edwards curve with aT = 1).

2.2 Point Coordinates and Addition Formulas

In practice, we mostly work with non-affine coordinates1, as they delay the
costly field inversion required in affine computations. For example, (x, y) can
be represented with standard projective coordinates as (x : y : 1), from the
set of points {(λx, λy, λ)|λ ∈ F

∗
p} (that is, projective points are lines in F

3
p,

without the zero vector). Some curve models allow performing point additions
with either x-only (short Weierstrass and Montgomery models [32]) or y-only
(Edwards models [9]) coordinates, assuming the difference of the input points is
known. Table 1 lists the non-affine coordinates present in EFD.

1 We use the name non-affine for coordinate systems other than affine coordinates
and projective to denote the standard projective coordinates.
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Table 1. Non-affine coordinates analyzed in this work, and the quantity of correspond-
ing EFD formulas. Note that the conversion from xz, yz, and yzsquared coordinates
to affine is not unique, and that both yz and yzsquared assume c = 1.

Model Coordinates (x, y) representation O representation #

EW Projective [4,8,11,34] (xZ : yZ : Z) (0 : 1 : 0) 21
Jacobian [10,11,21,22,30]

(
xZ2 : yZ3 : Z

)
(1 : 1 : 0) 36

Modified [4,11]
(
xZ2 : yZ3 : Z : aZ4

)
(1 : 1 : 0 : 0) 4

w12 with b = 0 [12]
(
xZ : yZ2 : Z

)
(1 : 0 : 0) 2

xyzz
(
xZ2 : yZ3 : Z2 : Z3

)
(1 : 1 : 0 : 0) 6

xz [8,25] (xZ : Z) (1 : 0) 22
EM xz [32] (xZ : Z) (1 : 0) 8
ET Projective [3] (xZ : yZ : Z) (0 : 1 : 1) 3

Extended [23] (xZ : yZ : xyZ : Z) (0 : 1 : 0 : 1) 18

Inverted [3,24]
(

Z
x
: Z

y
: Z

)
None 3

EE Projective [5,23,24] (xZ : yZ : Z) (0 : c : 1) 12

Inverted [6,24]
(

Z
x
: Z

y
: Z

)
None 6

yz [19]
(
yZ

√
d : Z

) (√
d : 1

)
6

yzsquared [19]
(
y2Z

√
d : Z

) (√
d : 1

)
6

A point addition formula (w.r.t. a given curve model and coordinate system)
is an explicit way of computing the sum of two points on an elliptic curve. It
takes the coordinates of the two points as inputs and returns the coordinates
of their sum, depending on the used representation. There are also formulas for
doubling or tripling a point, or for computing the simultaneous doubling of a
point and an addition of a different point, known as ladder formulas.

An addition formula is called unified if it correctly computes P + P and
complete if it correctly computes P +Q for any P and Q on any curve satisfying
the assumptions of the formula. Unified and complete formulas are important
as they do not require exceptions and encourage secure constant-time imple-
mentations, where point doubling is indistinguishable from point addition. Any
complete formula is also unified, but the converse is not true. For prime order
short Weierstrass curves, only a single complete formula is known [34].

2.3 Explicit-Formulas Database

The Explicit-Formulas Database (EFD) by Bernstein and Lange [4] is the largest
publicly available database of formulas for different coordinate systems and curve
models. It provides the formulas in a 3-operand notation, breaking down the
computation into individual binary and unary operations on intermediate val-
ues. This machine readable format mimics the computations in real software
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and hardware. We exported the EFD data and provide it in a repository2 with
some cleanups and added missing information. The EFD contains addition for-
mulas (i.e. P +Q = add(P,Q)), doubling formulas (i.e. [2]P = dbl(P )), tripling
formulas, differential addition formulas (i.e. P + Q = dadd(P − Q,P,Q)) and
ladder formulas (i.e. ([2P ], P + Q) = ladd(P − Q,P,Q)).

The EFD also includes automated formula verification in SageMath, though
it only compares the expressions as rational functions. This means the results
are correct globally, but not necessarily locally – there might be exceptions for
points where the denominators equal zero and the quotient is undefined. We
investigate these cases in Sect. 4.

2.4 Scalar Multiplication Algorithms

During an ECDH key exchange, all scalar multiplications use a single scalar
and the multiplied point is the public key of the other party, which is unknown
before the computation. This excludes the use of heavy pre-computations like
comb-based methods. Following Jancar [27], we divide the applicable scalar mul-
tiplication algorithms into three rough categories:

– Basic ones (often called double-and-add) that scan the scalar bit by bit, and
perform either doubling or addition based on the bit value [21]. During the
scalar multiplication, a basic multiplier executes the formulas:

[2k]P = dbl([k]P ) or
[k + 1]P = add(P, [k]P ),

depending on the iteration; k is equal to some part of the scalar.
– Ladder ones that resemble the basic ones, but use a ladder formula [32] with

two temporary variables maintaining a constant difference. This ensures the
computations are uniform and take the same time, regardless of the scalar.
The formula executions in this scalar multiplier are:

([2(k + 1)]P, [2k + 1]P ) = ladd(P, [k + 1]P, [k]P ) or
([2k]P, [2k + 1]P ) = ladd(P, [k]P, [k + 1]P ),

depending on the iteration.
– Window ones that divide the scalar into blocks of digits (called windows) of

a given width and precompute the corresponding multiples of the point. The
precomputation is cheap enough to be possible even for variable points. If zero
digits are skipped, the window is called sliding [21]. The formula executions
in this scalar multiplier are:

[2k]P = dbl([k]P ) or
[k + e]P = add([e]P, [k]P ),

depending on the iteration; [e]P is a precomputed point.
2 https://github.com/crocs-muni/efd.

https://github.com/crocs-muni/efd
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Scalar multiplication algorithms can also use signed digit representations of the
scalar, most often the binary Non-Adjacent Form (NAF), or in the window case
window NAF.

In the rest of this work, we refer to the accumulator point that represents
the point variable to which points are added in scalar multiplication, and which
stores the current multiple of the input point through the iterations of the algo-
rithm. Note that a ladder-based scalar multiplier has two accumulator points
which have a constant difference.

2.5 Side-Channel Attack Countermeasures

To mitigate side-channel attacks on ECC, including those discussed in this work,
several countermeasures were developed. Here we show those relevant to our
attacks, which are based on randomization and target the scalar multiplication
with a secret scalar.

Scalar Randomization. The first possibility of randomization lies in the secret
scalar itself. There are several techniques which randomize the scalar and com-
pute either one scalar multiplication (group scalar randomization) or several
(additive, multiplicative, or Euclidean scalar splitting) [16]. For us, it is impor-
tant that this countermeasure leads to randomized multiples of the input point,
stored in the accumulator point, as the algorithm proceeds. Thus, if the attacker
learns that a particular multiple of the input point was computed during some
scalar multiplication, they learn almost nothing about the secret scalar used.

Point Randomization. Another possibility of randomizing values inside the
scalar multiplication lies in the use of non-affine point representations and their
scaling property. As one affine point corresponds to an entire class of non-affine
points, one can select a random representative out of the class when convert-
ing the affine input point for scalar multiplication. This randomizes almost all
intermediate values in the scalar multiplication [16]. It does not randomize zero
values in one of the coordinates of the affine point like (x, 0) or (0, y), as their
projective representatives are (xZ : 0 : Z) or (0 : yZ : Z) for some Z ∈ F

∗
p.

Curve Randomization. Finally, it is possible to randomize the curve over
which the computations are performed. This also randomizes almost all inter-
mediate values in the scalar multiplication. Such randomization uses either an
isomorphic or an isogenous curve [16,35].

2.6 The Refined Power Analysis and Zero-Value Point Attacks

Goubin’s Refined Power Analysis (RPA) [20] is a side-channel attack against
ECC implementations using a static secret, such as ECDH or X25519, together
with basic or ladder scalar multiplication. It is based on the assumption that
adding3 a point P0 with a zero x- or y-coordinate to another can be distin-
guished from adding a general point, at least over several measured traces. We
3 The attack also applies to doubling. For simplicity, we only consider addition in this

paper, but our results easily extend to doubling.
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discussed the existence of zero coordinate points in Sect. 2.1. The side channel
is usually based on power or electromagnetic emanation, where one can distin-
guish the multiplication with a zero field element from the general case (see e.g.
Fig. 1 in [15]) due to the dependency of power consumption of a device on the
data and instructions that are being executed. The attacker measures the power
consumption of a device using an oscilloscope and a current probe.

In each iteration, the attacker makes a guess k′ ∈ Z
∗
n for the partial secret

key k, and then checks the guess by querying the implementation using the
public key P1 = [k′−1 mod n]P0. The guess was correct iff the implementation
computes [k′]P1 = P0, detectable using a side channel. Since the scalar multi-
plication is iterative in nature, the attacker adaptively guesses the bits of the
key one by one, building upon the previous guesses. All scalar randomization
countermeasures successfully thwart the RPA attack, as well as Smart’s curve
randomization via isogenies [35], while point randomization or curve random-
ization via isomorphisms do not, since the zero point coordinate does not get
randomized. Unlike [18], the attack does not require fault injection.

More generally, Akishita’s and Takagi’s Zero-Value Point (ZVP) attack [1]
considers intermediate scalar values computed during point addition (as a sub-
routine of scalar multiplication). The intermediate values can be expressed as a
polynomial expression in the input coordinates (see Algorithm 1 for an example
of the intermediate values and Fig. 4 for the unrolled version). If the attacker
can select a point P such that P + [k′]P produces a zero scalar intermediate
value during the formula’s execution (not necessarily at the end), the attacker
can detect the zero using a side channel. Then they can deduce which multiples
of the input were computed during the scalar multiplication, and thus recover
the secret scalar. Unlike RPA, ZVP does not assume the existence of points with
a zero coordinate; in particular, it applies to prime-order curves.

The value of the input point P depends on k′, the used formulas, the partic-
ular intermediate value that is being zeroed out, as well as the curve. It seems
that finding these points for even a mildly large k′ is an open problem, claimed
to be as difficult as computing the k′-th division polynomial. The maximal k′

required for key recovery is in the same range as the secret scalar, approaching
n. For some coordinate systems and formulas for (twisted) Edwards curves, the
intermediate expressions can be classified [29], but the general case is not settled.
The ZVP attack can be thought of as a generalization of the RPA attack, and
the same countermeasures prevent it.

2.7 Exceptional Procedure Attacks

In practice, scalar multiplication uses non-affine point representations (shown in
Table 1), only mapping the non-affine result into its unique affine representation
at the end. This final conversion is the only part of the computation requir-
ing field inversions, usually of the Z-coordinate. Exceptional Procedure Attacks
(EPA) are based on finding a pair of points P and Q such that the final con-
version of P + Q = add(P,Q) fails, because the expression being inverted is
zero. The implementation then either throws an error, or produces an obviously
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detectable output [26]. Such points are called exceptional w.r.t. a given formula;
see Sect. 4 for a more precise definition and classification of all non-trivial excep-
tional points for EFD formulas.

3 A Unified Approach to the Attacks

The attacks introduced in Sect. 2.6 and Sect. 2.7 have a lot in common. In this
section, we build a common framework that captures them as special cases.

3.1 Attack Setting

Let S : (k, P ) �→ [k]P be a scalar point multiplication algorithm on a curve.
Assume k is a fixed secret input, and P is an arbitrary affine point. This scalar
multiplication with a fixed secret scalar and chosen input point is the target in
our setting. The evaluation of S(k, P ) consists of a sequence of formula execu-
tions. As described in Sect. 2.4 and displayed in Fig. 1, the formulas take as input
some multiples of P , which depend on k and S.

Let us define OF
B,U : I

m → {0, 1,⊥}, the boolean special point oracle for
formula F :

OF
B,U (I) :=

⎧⎨
⎩

1 if I was input into F during the S(k, P ) computation;
0 if I was not input into F ;
⊥ if the oracle could not determine the result,

where OF
B,U (I) ∈ {0, 1} for I ∈ U , and I = {[i]|i ∈ Z} ∪ {_} is the set of

symbolic multiples of the input point P , (with [i] representing the point [i]P
and _ representing any multiple of the point P ). When U = I

m, we omit the
subscript, and we also simply write I instead of {I}. The arity m of the oracle
is the same as the arity of F , e.g., 2 for add.

We also define the temporal special point oracle OF
T,U : Im → {0, 1,⊥}×P(N)

as OF
T,U (I) = (OF

B,U (I), T ), where T is a set of iteration indices when F took
I as an input. If the oracle cannot distinguish between a multiple [i] and its
negative [−i], we add ± to its notation and obtain OF

±B,U and OF
±T,U .

An example instance of the boolean oracle is Oadd
B , which given I = (_, [3])

returns 1 iff the formula add ever received as its second input [3]P during the
S(k, P ) computation. A different example of an oracle, useful in the case of a
windowed S, is Oadd

T with input I = ([5],_). It returns all of the iterations in
which the add formula took [5]P as its first input. We assume an instance of the
oracle makes a constant amount of queries to the implementation performing
the scalar multiplication, with chosen input points.

Section 3.4 shows how to construct instances of the boolean and temporal
special point oracles using the techniques of RPA, ZVP, and EPA attacks, as
well as how to use these oracles in an attack.
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add (P, [2]P) [ ]dbl (P) dbl ([3]P) dbl ([6]P)

...add (P, [6]P)

a. c. e.

b. d.

Oadd ( )
1.  Create .
2.  Give  to implementation.
3.  Receive [ ]  and observe side-channel.
4.  Repeat a constant amount of times.
5.  Evaluate and return.

side-channel leakage

Target

Fig. 1. An example of the boolean special point oracle, with a target performing the
S(k, P ) scalar multiplication execution using a basic double-and-add-always algorithm.
The scalar k has MSBs 110.

3.2 The Dependent Coordinates Problem

To unify the attacks, we first introduce an abstract problem and analyze it.
Following the notation introduced in Sect. 2, for the rest of this section we

fix a prime p ≥ 3 and an elliptic curve E/Fp given4 by Y 2 = fE(X), where
fE(X) = X3 + aX + b and a, b ∈ Fp. Let G be a subgroup of E(Fp) with prime
order q. Recall that mk is the x-coordinate of the rational multiplication-by-k
function on E. Furthermore, let

RE := Fp[X1,X2, Y1, Y2]/(Y 2
1 − fE(X1), Y 2

2 − fE(X2))

be the coordinate ring of E, and for a multivariate polynomial g, let deg g denote
its multi-degree, given as the sum of its degrees with respect to all individual
variables. Finally, note that lower case letters denote scalar values, whereas upper
case letters denote either free variables or curve points.

Definition 1 (DCP: the dependent coordinates problem). Given a poly-
nomial f ∈ Fp[X1,X2, Y1, Y2] and an integer k, find a pair of points (if
they exist) P,Q ∈ G such that Q = [k]P and f(X1,X2, Y1, Y2) = 0, where
P = (X1, Y1), Q = (X2, Y2). If f ∈ Fp[X1,X2], we call the problem the x-only
dependent coordinates problem, or xDCP.

Without loss of generality, we can also consider k ∈ Zq instead of k ∈ Z, and
replace f by any of its representatives from RE .

Solving DCP via xDCP. The following lemma cancels the occurrences of Y1

and Y2 (if any) thanks to squarings and reductions modulo the curve equation.
4 In principle, our techniques apply to other curves models as well, but we use the

short Weierstrass model for simplicity, as it represents all curves.
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Lemma 1. Let f ∈ Fp[X1,X2, Y1, Y2], k ∈ Z and let (P,Q) be a solution to the
DCP determined by f and c. Then there exists a polynomial f ′ ∈ Fp[X1,X2]
such that (P,Q) is also a solution to the xDCP determined by f ′ and k and
deg f ′ ≤ 6 · deg f + 12.

Proof. Working in RE , we replace all even powers of Y1 and Y2 by powers of
fE(X1) and fE(X2), respectively; representing f as f0 + f1Y1 + f2Y2 + f12Y1Y2

for some f0, f1, f2, f12 ∈ Fp[X1,X2]. Next, we eliminate Y1 and Y2:

f0 + f1Y1 + f2Y2 + f12Y1Y2 = 0
Y1(f1 + f12Y2) = −(f0 + f2Y2)

fE(X1)(f1 + f12Y2)2 = (f0 + f2Y2)2

fE(X1)(f2
1 + f2

12fE(X2) + 2f1f12Y2) = f2
0 + f2

2 fE(X2) + 2f0f2Y2

Y2(fE(X1) · 2f1f12 − 2f0f2) = f2
0 + f2

2 fE(X2)

− fE(X1)(f2
1 + f2

12fE(X2))

fE(X2)(fE(X1) · 2f1f12 − 2f0f2)2 = (f2
0 + f2

2 fE(X2)

− fE(X1)(f2
1 + f2

12fE(X2))2.

Thus, instead of finding the roots of f , we find the roots of f ′, where

f ′ =fE(X2)(fE(X1) · 2f1f12 − 2f0f2)2

−
(
f2
0 + f2

2 fE(X2) − fE(X1)(f2
1 + f2

12fE(X2))
)2

.

To conclude the proof, it suffices to estimate

deg f ′ =max{2 · max {deg f1f12 + 3,deg f0f2} + 3,
2 · max{2·deg f0, 2·deg f2 + 3,max{2·deg f1, 2·deg f12 + 3} + 3}}

≤4 · max{deg f0,deg f1,deg f2,deg f12} + 12
≤4 · deg(f0 + f1Y1 + f2Y2 + f12Y1Y2) + 12

≤4 · 3
2

· deg f + 12.

�

Indeed, Lemma 1 allows us to only consider xDCP instead of DCP for the
remainder of the paper. Yet with care: we lost the information about the signs
of Y1 and Y2 during the squaring procedure in the proof, so the resulting xDCP
also has solutions with incorrect signs (note that xDCP is always sign-agnostic).

The multi-degree bound is loose and might be much lower in many instances.
When solving ZVP or EPA, the multi-degree of f is typically between 1 and 8,
so the reduction to xDCP is still practical. Furthermore, we can often factor the
expressions and take only a single factor as f .

An Easy Case. If f ∈ Fp[X2, Y2], then the DCP becomes easy whenever a
solution exists. Using Lemma 1, we instead solve xDCP with f ′ ∈ Fp[X2], finding
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the roots algorithmically. If there is a root corresponding to the x-coordinate of
some point Q, we simply compute P = [k−1 mod q]Q and we are done. Note that
this approach relies heavily on ignoring the relationship between P and Q until
the very end. In particular, the solvability of DCP does not depend on the size
of k in this case. This contrasts the claims of Akishita and Takagi [1], who found
constructing ZVP points for addition (which amounts to solving an instance of
the DCP) as hard as computing the k-th division polynomial.

The Number of Solutions. We now estimate the number of k’s such that
the xDCP has a solution. If f is linear in one of its variables, say X1, then for
any x2 ∈ Fp, there is exactly one x1 such that f(x1, x2) = 0 (except for rare
cases when F (X1, x2) is a constant polynomial). The probability that both x1

and x2 are the x-coordinates of P,Q ∈ G is roughly 1
4 · q

n . For any such point
pairs, there is exactly one k ∈ Zq such that Q = [k]P , corresponding to the two
possible solutions k, q − k. Even though such k’s can overlap, we estimate the
number of k’s for which xDCP has a solution as 2 ·p · 1

4 · q
n ≈ p

2 when G is a large
subgroup. The same heuristic applies when the degree D of at least one variable
in f is coprime to ϕ(p) = p − 1, since taking the D-th power is an invertible
operation in Fp. In general, the correspondence between the roots of f is more
problematic, but based on our empirical results, the above heuristic still seems
to be reasonably accurate.

3.3 Solving xDCP

The basic strategy to solve xDCP described in [1] is setting X2 = mk(X1)
and then finding the roots of f(X1,X2) ∈ Fp[X1]. If any of the roots is an x-
coordinate of a point P ′ ∈ G, we take P = P ′, Q = [k]P . The main limitation is
that mk is very hard to compute for large k ≥ B. In practice, B ≈ 220, mainly
due to memory requirements.

Shifting the Scalar. Suppose that both l and kl are small modulo q for some
l ∈ Z. Then we set X1 = ml(X),X2 = mkl(X), and find the roots of f(X1,X2) ∈
Fp[X1]. If any of them is an x-coordinate of a point P ′ ∈ G, we take P = [l]P ′,
Q = [k]P .

In practice, we find the shortest vector in the lattice generated by
(
1 k
0 q

)
using the Lagrange-Gauss algorithm, and take l as its first coordinate. Indeed,
this increases the size of the set of all k’s for which we can solve the xDCP to
almost B2, compared to B for the basic approach.

Using the Greatest Common Divisor. To avoid expensive root-finding of a
large polynomial, we suggest to construct another polynomial with the same
roots, and compute the greatest common divisor (gcd). Replacing mkl with
m|q−kl| in the above method offers such a polynomial. Since m|q−kl| might not be
directly computable, we reduce both its numerator and its denominator modulo
the first polynomial at every step. This does not influence the gcd. Finally, we
perform a final reduction after substituting it into f .

More precisely, let num(g) denote the numerator of a rational function g. Let
X1 = ml(X), X2 = mkl(X), and define F1 = num(f(X1,X2)). Furthermore,
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let X ′
2 ≡ m|q−kl|(X) mod F1 and F2 = num(f(X1,X

′
2)). Then we efficiently

compute F = gcd(F1, F2) using Euclid’s algorithm. If any of the roots of F is
an x-coordinate of a point P ′ ∈ G, we take P = [l]P ′, Q = [k]P . Heuristically, it
seems that F is always linear.

Minor Scalar Optimizations. The symmetry between P and Q, and the fact
that mk(x) = m−k(x) for all x ∈ Fp, allows us to replace k with ±k±1 mod q.
This saves up to two bits.

3.4 The Full Attack

We now show that RPA, ZVP, and EPA are all special cases of the same attack,
utilizing different side channels and the dependent coordinates problem to build
an instance of the special point oracle.

The Adaptive Approach. As mentioned in Sect. 3.1, the multiples which are
input into the formulas during a scalar multiplication operation depend on the
scalar. These multiples allow us to reconstruct the scalar, as they determine
the corresponding addition chain. For example, step e) in Fig. 1 computes either
dbl([6]P ) or dbl([7]P ), depending on the third most significant bit of the scalar.

During the attack, we have a known part of the scalar. It starts empty, and
we recover it in the same way the scalar multiplication algorithm processes it.
Given a known part, we make a guess on the next subpart, either a single bit
or a window of bits, then use some special point oracle to determine whether
the guess was true. This implies some multiples derived from the known part
and next subpart were input into a formula. This way, we recover the scalar in
logarithmically many queries to the oracle.

The type of oracle we have access to, and the scalar multiplication algorithm
used, both affect the attack. For example, if a fixed window scalar multiplication
algorithm is used and we have access to an Oadd

T,([e],_) for e ranging over all of
the precomputed multiples of the input point, we can recover the window digits
directly and assemble the scalar afterwards. If on the other hand a basic scalar
multiplication algorithm is used and we have an Odbl

B,([e]) for e ranging over all
possible scalars, we recover the scalar adaptively. Given a known part of the
scalar k′, we can gain the next bit based on the output of Odbl

B,([k′]) or Odbl
B,([k′+1]).

All of the RPA, ZVP, and EPA attacks utilize this adaptive approach, dif-
fering only in how they construct a special point oracle (i.e. which side channel
and property of the curve, formula, or implementation they use).

Constructing Oracles from ZVP. Given a point addition formula, we con-
sider the intermediate polynomials, and pick any one of them as f . A solution
to the dependent coordinates problem for some k then allows us to construct a
point P such that f will evaluate to zero during the computation of P + [k]P .
Now using a suitable side channel, we can detect whether this zero appears dur-
ing the scalar multiplication, and potentially localize it into an iteration of the
scalar multiplication algorithm [1]. Thus we can construct an instance of the
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Oadd
T,([1],[k]) oracle for all k for which we can solve the (x)DCP5. Similarly, consid-

ering the intermediate polynomials in a doubling formula and zeroing out some
of them for an input of [k]P allows us to construct an instance of the Odbl

T,([k])

oracle. Note that in the case of the addition formula, if the chosen intermediate
polynomial f depends only on one of the input points, it is possible to construct
the Oadd

T,(_,[k]) and Oadd
T,([1],_) oracles.

Constructing Oracles from RPA. This is a special case of ZVP in which the
intermediate value to zero out is a coordinate of an input point [20]. This leads to
an easy case of the (x)DCP, discussed in Sect. 3.2, as f = X2 or f = Y2. Because
this oracle construction approach leads to an easy case of the (x)DCP, there is no
bound on the multiple k in the constructed oracle instances Oadd

T,(_,[k]). One can
also construct oracle instances such as Oadd

T,([1],_) or Odbl
T,([k]), but not Oadd

T,([1],[k]) as
the appearance of a zero in one of the input points necessarily does not depend
on the other point.

Whether these RPA oracles can be constructed depends on the properties of
the curve, i.e. whether it has the points (x, 0) or (0, y). Note that if both a point
and its negative have a zero-coordinate (as is the case of the (0, y) point on short
Weierstrass curves), one can only use it to construct OF

±T and OF
±B oracles.

Constructing Oracles from EPA. In this case, the side channel used to
construct the oracle is an error one. The oracle detects whether a computation
fails because of an undefined inversion. As explained in Sect. 2.7, this can only
happen at the very end of the scalar multiplication, when mapping the result
back to affine coordinates, so we can take f to be the expression by which we
divide. If we can solve the (x)DCP for this f and some k, we can input this
point6 into the scalar multiplication, which will fail if it computes P + [k]P ,
enabling us to construct an Oadd

B,([1],[k]). Note that this is a boolean oracle, as
with the error side channel we can only detect that the mapping back to affine
coordinates failed, and not during which iteration the zero was introduced.

3.5 Window Method Attack

The main limitation of the ZVP-based attacks compared to RPA-like attacks is
that they allow the attacker to recover only a limited number of secret scalar
bits. This is due to the need for solving a hard case of the (x)DCP with large k.
We show that these attacks can extract the full scalar when the target algorithm
is window-based, or more generally adds points to the accumulator point from
a set of precomputed input point multiples, conditionally on secret scalar bits.

The attack requires that the addition formula in question has an intermediate
value which depends only on one of the operands, so that zeroing it out leads to
an easy case of the DCP as mentioned in Sect. 3.2. Together with an appropriate
side channel, this allows the attacker to construct an Oadd

T,([e],_) oracle. Note that

5 We cannot always consider affine representations as f might not be homogeneous,
but in practice this is not a problem, as we have freedom in choosing f .

6 The homogeneity of f allows us to only consider affine representations.
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the attacker needs a temporal special point oracle, and not a boolean one, as the
event that the e-th multiple was added to the accumulator point somewhere in
the scalar multiplication is insufficient to extract information on the secret scalar.
Once the attacker is able to detect the iterations where the e-th multiple was
added, the attacker varies over all values e in the set of precomputed multiples,
based on the algorithm. In this way, the attacker recovers the window digits and
thus the full secret scalar. This attack works even if the curve has no RPA points
(0, y), (x, 0), and thus RPA does not apply.

4 Classifying the Exceptional Points

While many EFD formulas [4] are not complete, we are not aware of any sys-
tematic overview of the respective pairs of exceptional points. To rectify this,
we implemented tooling for unrolling the formulas and tracing their intermedi-
ate values. The tooling is an extension of pyecsca [27] (Python Elliptic Curve
cryptography Side-Channel Analysis) – a Python toolkit that aims to extract
information from black-box implementations of ECC through side channels and
offers extensive simulations of ECC implementations.

Our methodology loosely combines two very different, yet complementary,
techniques: fuzzing and manual analysis.

Fuzzing. To quickly identify possible exceptional points (and later verify our
findings heuristically), an automated approach is useful. We fuzzed small curves
(e.g., over 5-bit fields) of all relevant types, trying all input point pairs for all the
analyzed addition formulas, comparing the result to the correct affine output.
This approach scales well, but at the cost of an inherently high number of false
positives (and possibly false negatives). The results for small curves do not always
generalize to large ones (though they can reveal patterns for manual analysis).

Manual Analysis. To find the sufficient and necessary conditions that classify
all the exceptional points, we resort to manual inspection. Compared to breadth-
focused fuzzing, it dives deeper, taking much more effort, argumentation, and
attention to detail. But in the end, it provides more insight, and is applicable to
all relevant curves of all sizes.

We carefully went through all 111 addition formulas and 42 differential addi-
tion/ladder formulas for the EW , EM , ET , EE models in the EFD7, and investi-
gated when the expressions by which we divide during the conversion to affine
coordinates could be zero8; we present the results in Table 3. Namely, for addi-
tion this amounted to studying the conditions X3 = 0 or Y3 = 0 for (twisted)
inverted Edwards coordinates, ZZ3 = 0 or ZZZ3 = 0 for short Weierstrass xyzz
coordinates9, and Z3 = 0 for all other coordinates. The variable’s subscript
7 Some of the formulas are just adaptations for specific coefficients (e.g. a = −3 for
EW ), mixed additions, etc.

8 Occasionally omitting the cases where the result is the neutral element.
9 ZZi and ZZZi are variables whose values equal Z2

i and Z3
i throughout the compu-

tation, respectively.
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denotes its index in the addition formula with 1 and 2 being the inputs and 3
being the output. Similarly, for differential addition and/or ladders, we instead
study when the outputs Z4 and Z5 were equal to zero. Furthermore, the unrolled
expressions could be studied to see which formulas are unified, though we did
not pursue this path further.

The rest of this section describes the details of our manual analysis. The
expressions we refer to are present in our data release (see Sect. 5.3), though we
also provide example expressions that illustrate the process in Table 2.

Coordinates Formula Expression

jacobian
jacobian-0
jacobian-3

add-1986-cc Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-1998-cmo-2 Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-1998-cmo Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-1998-hnm Z3 = (−1) ∗ Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-2001-b Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-2007-bl Z3 = 2 ∗ Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
madd-2004-hmv Z3 = Z1 ∗ (X2 ∗ Z12 − X1)
madd-2007-bl Z3 = 2 ∗ Z1 ∗ (X2 ∗ Z12 − X1)
madd-2008-g Z3 = (−1) ∗ Z1 ∗ (X2 ∗ Z12 − X1)
madd Z3 = 2 ∗ Z1 ∗ (X2 ∗ Z12 − X1)
mmadd-2007-bl Z3 = (−1) ∗ 2 ∗ (X1 − X2)
zadd-2007-m Z3 = (−1) ∗ Z1 ∗ (X1 − X2)

Table 2. Jacobian coordinate outputs on short Weierstrass curves.

4.1 Exceptional Points for Addition

We call a pair of points P,Q exceptional (w.r.t. some representation) for an
addition formula F if F(P,Q) �= P + Q. If moreover P �= ±Q, and both P and
Q have odd prime order, we say that P,Q are non-trivial. This also implies that
F(P,Q) should always have an affine representation for all F we discuss.

Short Weierstrass: Projective, Jacobian, Modified, w12, xyzz Coords.
For short Weierstrass curves, non-triviality implies x1 �= x2. Moreover, we do not
need to consider the expression corresponding to Z3 in the formulas by Renes et
al. [34], as Bosma and Lenstra [7] prove their completeness. Since none of the Z3

expressions depend on a particular representation of a point, we can (without
loss of generality) assume

Z1 = Z2 = ZZ1 = ZZ2 = ZZZ1 = ZZZ2 = 1

when searching for non-trivial exceptional points, which implies xi = Xi, yi = Yi.
With this in mind, there is only a single factor that could possibly be zero in the
studied Z3 expressions, namely (y1 + y2)3. This factor is present in all variants
of the Brier-Joye [8] formulas (add-2002-bj) and Bernstein-Lange [4] formulas
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(add-2007-bl), illustrated in Algorithm 1. Note that (y1+y2)3 = 0 is equivalent
to y1 = −y2, which implies

x3
1 + ax1 + b = y2

1 = y2
2 = x3

2 + ax2 + b

(x2
1 + x1x2 + x2

2 + a)(x1 − x2) = 0

x2
1 + x1x2 + x2

2 + a = 0, since x1 �= x2.

Thus, we get a family of non-trivial exceptional points

P = (x, y) and Q = (x′,−y) with x �= x′,

equivalently characterized by x2+xx′+x′2+a = 0, which is a possible input to the
xDCP. Izu and Takagi [26] previously identified this family for the add-2002-bj
case, but not for the add-2007-bl one.

Algorithm 1. Point addition formula add-2007-bl in projective coordinates

Require:
E/Fp : y

2 = x3 + ax+ b,

P = (X1 : Y1 : Z1),

Q = (X2 : Y2 : Z2)
Ensure: (X3 : Y3 : Z3) = P +Q
1: U1 = X1 · Z2

2: U2 = X2 · Z1

3: S1 = Y1 · Z2

4: S2 = Y2 · Z1

5: ZZ = Z1 · Z2

6: T = U1 + U2

7: TT = T 2

8: M = S1 + S2

9: t0 = ZZ2

10: t1 = a · t0
11: t2 = U1 · U2

12: t3 = TT − t2
13: R = t3 + t1
14: F = ZZ · M

15: L = M · F
16: LL = L2

17: t4 = T + L
18: t5 = t24
19: t6 = t5 − TT
20: G = t6 − LL
21: t7 = R2

22: t8 = 2 · t7
23: W = t8 − G
24: t9 = F · W
25: X3 = 2 · t9
26: t10 = 2 · W
27: t11 = G − t10
28: t12 = 2 · LL
29: t13 = R · t11
30: Y3 = t13 − t12
31: t14 = F 2

32: t15 = F · t14
33: Z3 = 4 · t15

(Twisted) Edwards: Projective, Extended, Inverted Coords. Let Ea,d :
ax2+y2 = 1+dx2y2 be a (twisted) Edwards curve10 (cf. Sect. 2; note that we do
not impose any (non-)square restrictions on a, d ∈ Fp). In order to go through
all the Z3 expressions and see when they are equal to zero, we introduce the
following lemma.

10 We only consider Edwards curves with c = 1, since the others can be isomorphically
rescaled to this case without affecting the nullity of the Z3 expressions.
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Lemma 2. Let P = (x1, y1), Q = (x2, y2) be a pair of non-trivial exceptional
points on Ea,d. Then the following holds:

x1x2y1y2 �= 0, (2)
dx1x2y1y2 �= ±1, (3)

y1y2 �= −ax1x2, (4)
x1y2 �= x2y1, (5)
x1y2 �= −x2y1, (6)
y1y2 �= ax1x2. (7)
x1y1 �= ±x2y2. (8)

Proof. (2) follows from the fact that neither P nor Q are 4-torsion. Hisil et al.
[24] (Theorem 1, Corollary 1) prove (3), (4) and (5).

Now consider the addition law from [3]:

(x1, y1) + (y1, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1 − dx1x2y1y2

)
.

Assume that either (6) or (7) is false. Since the denominators are nonzero by
(3), one of the coordinates of P + Q is zero, which implies P + Q is a 4-torsion
point. This is impossible, since both P and Q have odd order and P �= −Q.

Finally, consider the addition law from [24]:

(x1, y1) + (y1, y2) =
(

x1y1 + x2y2
y1y2 + ax1x2

,
x1y1 − x2y2
x1y2 − y1x2

)
.

Assume that (8) is false. Since the denominators are nonzero by (4) and (5), one
of the coordinates of P + Q is zero, which implies P + Q is a 4-torsion point.
This is impossible, since both P and Q have odd prime order and P �= −Q. �

After factoring all the Z3 expressions, we can (without loss of generality) set
Z1 = Z2 = 1. Then we have xi = 1/Xi, yi = 1/Yi for inverted coordinates, and
xi = Xi, yi = Yi for all others. Lemma 2 handles all the possible zero factors,
which means that there are no non-trivial exceptional points.

4.2 Exceptional Points for Differential Addition and Ladders

Recall from Sect. 2.3 that differential addition and ladder formulas take repre-
sentations of three input points (P − Q,P,Q) and return the representation of
P + Q or ([2]P, P + Q), respectively.

We call a triplet of points (P − Q,P,Q) exceptional (w.r.t. a representation)
for a differential addition or ladder formula F if F(P − Q,P,Q) �= P + Q or
F(P − Q,P,Q) �= ([2]P, P + Q), respectively. If moreover P �= ±Q, and both P
and Q have odd prime order, we say that (P −Q,P,Q) are non-trivial. This also
implies that F(P − Q,P,Q) should always have an affine representation for all
F we discuss (hence Z4 and Z5 should be nonzero).
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Table 3. Formulas [4,8,25] with non-trivial exceptional points. The projective coordi-
nates apply to all formula versions: a = −1, a = −3 and general a.

Curve model Coordinates Formula name

EW

Projective
add-2007-bl
add-2002-bj

xz

dadd-2002-it, mdadd-2002-it
ladd-2002-it, mladd-2002-it
dadd-2002-it-3, mdadd-2002-it-3
ladd-2002-it-3, mladd-2002-it-3
mdadd-2002-bj, mladd-2002-bj
mdadd-2002-bj-2, mladd-2002-bj-2
mladd-2002-bj-3

Short Weierstrass: xz Coords. In this case, the inputs are P −Q = (X1, Z1),
P = (X2, Z2), Q = (X3, Z3) on EW /Fp : y2 = x3 + ax + b; the outputs are
(X4, Z4) for diff. addition and (X4, Z4), (X5, Z5) for ladders.

Setting Z1 = Z2 = Z3 = 1 and x1 = X1, x2 = X2, x3 = X3, the only
possibilities for Z4 = 0 or Z5 = 0 that arise in the formulas are x2 = x3,
x3
2 + ax2 + b = 0, and x1 = 0. Only the latter corresponds11 to a triplet of

non-trivial exceptional points ((0 : 1) − Q, (0 : 1), Q), whenever b is a square in
Fp. The impacted formulas are {d/l}add-2002-it, {d/l}add-2002-it-3, and
their mixed variants, as well as mdadd-2002-bj, m{l/d}add-2002-bj-2, and
mladd-2002-bj-3.

Montgomery: xz Coords. Here, the inputs are P − Q = (X1, Z1), P =
(X2, Z2), Q = (X3, Z3) on EM/Fp : By2 = x3 + Ax2 + x; the outputs are
(X4, Z4) for diff. addition and (X4, Z4), (X5, Z5) for ladders.

Setting Z1 = Z2 = Z3 = 1 and x1 = X1, x2 = X2, x3 = X3, the only
possibilities for Z4 = 0 or Z5 = 0 that arise in the formulas are x1 = 0, x2 = 0,
x2 = 1/2 · (−a ±

√
a2 − 4), x2 = x3 and (x2 − 1)(x3 + 1) = (x2 + 1)(x3 − 1).

Section 2 shows that the former three correspond to points of order 2 (though√
a2 − 4 might not exist over Fp). The last one implies either x2−1 = x3−1 = 0,

or x2 + 1 = x3 + 1 = 0, or else

1 − 2
x2 + 1

=
x2 − 1
x2 + 1

=
x3 − 1
x3 + 1

= 1 − 2
x3 + 1

.

In all of these cases, we have x2 = x3, hence the corresponding points are trivial.

Edwards: yz, yzsquared Coords. Recall that in these cases, d = r2 for some
r �= ±1 in F

∗
p. The inputs are P − Q = (Y1, Z1), P = (Y2, Z2), Q = (Y3, Z3) on

EE/Fp : x2 + y2 = 1 + r2x2y2; the outputs are (Y4, Z4) for diff. addition and

11 Note that x1 does not directly affect X4 nor X5.
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(Y4, Z4), (Y5, Z5) for ladders. In fact, (Y4, Z4) for ladders is just a special case of
(Y5, Z5) with Y2 = Y3, Z2 = Z3, so we may ignore it.

Setting Z1 = Z2 = Z3 = 1, we get y1 = Y1/r, y2 = Y2/r, y3 = Y3/r for the yz
coordinates, and y2

1 = Y1/r, y2
2 = Y2/r, y2

3 = Y3/r for the yzsquared coordinates,
the ladder Z5 and diff. addition Z4 coincide for all of these formulas. The only
conditions to analyze are y1 = 0 (which is a trivial case as it corresponds to
4-torsion P − Q) and

(1 + ry2
2)(1 + ry2

3) =
r + 1
r − 1

(
1 − ry2

2

) (
1 − ry2

3

)
,

which implies

(r − 1)(1 + ry2
2 + ry2

3 + r2y2
2y

2
3) = (r + 1)(1 − ry2

2 − ry2
3 + r2y2

2y
2
3)

−2 + 2r2y2
2 + 2r2y2

3 − 2r2y2
2y

2
3 = 0

r2y2
3(1 − y2

2) = 1 − r2y2
2 . (9)

If 1 − r2y2
2 = 0, then either y3 = 0 or y2

2 = 1, implying Q or P being 4-torsion.
In the other case, we get

y2
3 =

1 − r2y2
2

r2(1 − y2
2)

=
1

r2x2
2

,

and since (9) is symmetric, analogical arguments yield

y2
2 =

1 − r2y2
3

r2(1 − y2
3)

=
1

r2x2
3

.

Thus the only case left to consider is x2
2y

2
3 = x2

3y
2
2 = 1

r2 . But then we have
(1 + dx2x3y2y3)(1 − dx2x3y2y3) = 1 − r4x2

2x
2
3y

2
2y

2
3 = 0, which is impossible for

non-trivial exceptional points by (3) in Lemma 2.

5 Practical Implications

This work has several practical implications, stemming from (i) its findings on
exceptional points for EFD formulas; (ii) its development of a ZVP-like attack
on windowed scalar multiplication methods; and (iii) improvements to the tech-
niques used in the ZVP and EPA attacks.

5.1 Impact on Cryptographic Libraries

We examined the EC arithmetic implementations in 15 popular open-source
cryptographic libraries. Table 4 lists their scalar multiplication algorithm, coor-
dinates, and addition formulas. The focus of our analysis was on ECDH opera-
tions over EW , and in case the library implements several algorithms, we list the
one used for generic curves. Most analyzed libraries use Jacobian coordinates, for
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which we report no classes of non-trivial exceptional points in any of the formulas
on EFD. One could conclude that the impact of the new classes of exceptional
points is thus negligible. However, these libraries represent only a fraction of
the uses of addition formulas. Implementations of EC arithmetic, potentially
using one of the addition formulas with non-trivial exceptional points, are found
in pairing-based cryptography, password-authenticated key exchange, or many
zero-knowledge proof system implementations, which we did not examine.

The discovered classes of exceptional points are unexpected from the point-
of-view of a developer. While many developers know that formulas which are
not complete or unified need special handling, they do not expect seemingly
unrelated points causing issues in the formula. There is thus nothing stopping
the developer from misusing the formulas, as the formula papers or the EFD
give no warning. We illustrate this by presenting a history of issues surrounding
exceptional cases in formulas used by cryptographic libraries.

NSS: Unimplemented Exceptions. For generic EW , NSS has three different
implementations of EC arithmetic. The first is pure affine, which we disregard.
The second is mixed point addition using an implementation of madd-2004-hmv,
optimized for a = −3. However, the code failed to account for the P = ±Q
cases. Furthermore, the corresponding point doubling is an implementation of
dbl-1998-cmo-2, and failed to account for the 2P = O case. Mozilla issued
CVE-2015-273012 to track these issues.

NSS: More Unimplemented Exceptions. The last, and most generic EW

arithmetic in NSS, is mixed point addition using a madd-2004-hmv implementa-
tion, with no optimizations for curve coefficients. Two years after the previous
issue, Valenta, Sullivan, Sanso, and Heninger [37, Section 7.2] uncovered the anal-
ogous flaw in this code. There were no corresponding flaws in point doubling.
Mozilla issued CVE-2017-778113 to track this issue.

OpenSSL: Broken Ladder. In 2018, OpenSSL switched to a ladder implemen-
tation for generic EW scalar multiplications. Work by Tuveri et al. [36] prompted
the change. For the ladder step, the initial code, merged to the development
branch, was an implementation of ladd-2002-it-3. Unfortunately, this code
fails in the case of a particular x-coordinate being zero (Sect. 4.2). One month
passed between merging the broken implementation and the fix14, switching to
ladd-2002-it-4. The discovery15 was mostly luck – during standardization,
GOST curves utilized generators with the smallest possible x-coordinate.

BoringSSL: Untaken Exceptions Leak. Historically, Google’s BoringSSL
only supports a very narrow subset of curves: P-224, P-256, P-384, P-521, and
Curve25519. Weiser et al. [39] discovered timing leaks in BoringSSL’s point addi-
tion formulas, affecting the legacy NIST curves in the aforementioned list. The

12 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2730.
13 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7781.
14 https://github.com/openssl/openssl/pull/7000.
15 https://github.com/openssl/openssl/issues/6999.

{https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2730}{.}
{https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7781}{.}
https://github.com/openssl/openssl/pull/7000
https://github.com/openssl/openssl/issues/6999
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leaks were in three distinct implementations: P-224 and P-256 have dedicated
EC arithmetic stacks, while P-384 and P-521 share a single stack. In all cases,
the root cause is short circuit logic: a snippet from the vulnerabilities follows.

if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)

The first two variables are booleans tracking whether the two x-coordinates
are equal (resp. y), and the last two ensure neither operand is O by checking if
the z-coordinates are zero. This C statement is not constant-time. For instance:

– if the first branch fails, this tells the attacker the x-coordinates are not equal;
– if the second branch fails, this tells the attacker the x-coordinates are equal,

but the y-coordinates are not;
– if the third branch fails, this tells the attacker the x- and y-coordinates are

equal, and the first operand is O;
– if the fourth branch fails, this tells the attacker the x- and y-coordinates are

equal, the first operand is not O, yet the last operand is O;
– if no branch fails, this tells the attacker the x- and y-coordinates are equal,

and neither operand is O (subsequently early exiting to point doubling).

For example, this leak is relevant at the beginning of scalar multiplication, in
various cases where the accumulator takes the value O. These (probabilistically)
small leaks are often sufficient for lattice-based cryptanalysis of nonce-based dig-
ital signature schemes, such as ECDSA. We feel this case is particularly inter-
esting, since it is not the exception itself that usually leaks, but rather the check
for the exception. Google fixed16 the issues in 2019.

Python fastecdsa: Division by Zero. The Python module fastecdsa is an
extension module, backed by GNU MP, a multiprecision arithmetic library writ-
ten in C. It implements the ECDSA signature scheme17, also providing flexible
EC arithmetic with affine coordinates. The module supports generic EW curves,
as well as several standardized curves with fixed parameters, and EW versions of
modern EE and ET curves such as Curve25519 and Curve448. Using our Sect. 4
methodology, we discovered18 that the point doubling code does not handle the
2P = O case properly. The C code ignores the return code from GNU MP’s
modular inversion function. In the y = 0 case, this leads to a silent division
by zero, and incorrect results for points with even order. While this naturally
affected generic fastecdsa curves, the EW versions of Curve25519 and Curve448
were impacted the most. This is because all other standardized curves built into
fastecdsa have large prime order.

5.2 Attack Improvements

Previous ZVP attacks targeting addition formulas on different scalar multipli-
cation methods required the computation of large degree division polynomials.
16 https://boringssl.googlesource.com/boringssl/+/12d9ed670da3edd64ce8175c.
17 https://pypi.org/project/fastecdsa/.
18 https://github.com/AntonKueltz/fastecdsa/pull/58.

https://boringssl.googlesource.com/boringssl/+/12d9ed670da3edd64ce8175c
https://pypi.org/project/fastecdsa/
https://github.com/AntonKueltz/fastecdsa/pull/58
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Table 4. Libraries analyzed in this work, in the context of ECDH over EW , i.e. both key
generation (KeyGen) and shared secret derivation (Derive). For libraries supporting
multiple choices of coordinates or formulas, we report the most generic and default
setting.

Library Operation Scalar multiplier Coordinates Formulas

BouncyCastle KeyGen Comb Modified add-1998-cmo-2
1.68 Derive Window NAF Modified add-1998-cmo-2
BoringSSL KeyGen Fixed window Jacobian add-2007-bl
9f55d97 Derive Fixed window Jacobian add-2007-bl
Botan KeyGen Fixed window Jacobian-3 add-1998-cmo-2
2.18.0 Derive Fixed window Jacobian-3 add-1998-cmo-2
Crypto++ KeyGen Sliding window Affine textbooka

8.5.0 Derive Sliding window Affine textbooka

fastecdsa KeyGen Ladder Affine textbooka

2.2.1 Derive Ladder Affine textbooka

libgcrypt KeyGen Basic left-to-right Jacobian add-1998-hnm
1.9.3 Derive Basic left-to-right Jacobian add-1998-hnm
LibreSSL KeyGen Ladder Jacobian add-1998-hnm
3.3.3 Derive Ladder Jacobian add-1998-hnm
libtomcrypt KeyGen Sliding window Jacobian add-1998-hnm
0.18.2 Derive Sliding window Jacobian add-1998-hnm
IPP-crypto KeyGen Window NAF Jacobian add-1998-cmo-2
2021.2 Derive Window NAF Jacobian add-1998-cmo-2
Microsoft CNG KeyGen Fixed window Jacobian add-2007-bl
6d019ce Derive Fixed window Jacobian add-2007-bl
NSS KeyGen Window NAF Jacobian madd-2004-hmv
3.65 Derive Window NAF Jacobian madd-2004-hmv
OpenSSL KeyGen Ladder xz mladd-2002-it-4
1.1.1k Derive Ladder xz mladd-2002-it-4
wolfSSL KeyGen Sliding window Jacobian add-1998-hnm
4.7.0 Derive Sliding window Jacobian add-1998-hnm
MatrixSSL KeyGen Sliding window Jacobian add-1998-hnm
4.3.0 Derive Sliding window Jacobian add-1998-hnm
Go 1.16.4 KeyGen Basic left-to-right Jacobian add-2007-bl
crypto/elliptic Derive Basic left-to-right Jacobian add-2007-bl
aUsing textbook chord-and-tangent addition formulas.

This limited the attack to only recover a small amount of secret scalar bits. On
the other hand, our proposed attack on windowed scalar multiplication methods
from Sect. 3.5 allows the attacker to recover the full scalar. Thus, this shows

https://github.com/bcgit/bc-java/blob/r1rv68/core/src/main/java/org/bouncycastle/math/ec/ECPoint.java#L658
https://github.com/bcgit/bc-java/blob/r1rv68/core/src/main/java/org/bouncycastle/math/ec/ECPoint.java#L877
https://boringssl.googlesource.com/boringssl/+/9f55d972854d0b34dae39c7cd3679d6ada3dfd5b/crypto/fipsmodule/ec/ec_montgomery.c#249
https://boringssl.googlesource.com/boringssl/+/9f55d972854d0b34dae39c7cd3679d6ada3dfd5b/crypto/fipsmodule/ec/ec_montgomery.c#249
https://github.com/randombit/botan/blob/2.18.0/src/lib/pubkey/ec_group/point_gfp.cpp#L89
https://github.com/randombit/botan/blob/2.18.0/src/lib/pubkey/ec_group/point_gfp.cpp#L89
https://github.com/weidai11/cryptopp/blob/CRYPTOPP_8_5_0/ecp.cpp#L260
https://github.com/weidai11/cryptopp/blob/CRYPTOPP_8_5_0/ecp.cpp#L260
https://github.com/AntonKueltz/fastecdsa/blob/9f31ceb2fada67ddc61f931daf1d6a249b969900/src/curveMath.c#L68
https://github.com/AntonKueltz/fastecdsa/blob/9f31ceb2fada67ddc61f931daf1d6a249b969900/src/curveMath.c#L68
https://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=mpi/ec.c;h=0b6ae9a99bec0836963000fc5bd7d6c190a4c88d;hb=5f814e8a4968c01a7ffc7762bcaf3ce040594caf#l1307
https://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=mpi/ec.c;h=0b6ae9a99bec0836963000fc5bd7d6c190a4c88d;hb=5f814e8a4968c01a7ffc7762bcaf3ce040594caf#l1307
https://github.com/libressl-portable/openbsd/blob/libressl-v3.3.3/src/lib/libcrypto/ec/ecp_smpl.c#L637
https://github.com/libressl-portable/openbsd/blob/libressl-v3.3.3/src/lib/libcrypto/ec/ecp_smpl.c#L637
https://github.com/libtom/libtomcrypt/blob/v1.18.2/src/pk/ecc/ltc_ecc_projective_add_point.c#L33
https://github.com/libtom/libtomcrypt/blob/v1.18.2/src/pk/ecc/ltc_ecc_projective_add_point.c#L33
https://github.com/intel/ipp-crypto/blob/ippcp_2021.2/sources/ippcp/pcpgfpec_add.c#L34
https://github.com/intel/ipp-crypto/blob/ippcp_2021.2/sources/ippcp/pcpgfpec_add.c#L34
https://github.com/microsoft/SymCrypt/blob/6d019cefafb3fefe3c53b0de3bba6f8c86e2d48a/lib/ec_short_weierstrass.c#L483
https://github.com/microsoft/SymCrypt/blob/6d019cefafb3fefe3c53b0de3bba6f8c86e2d48a/lib/ec_short_weierstrass.c#L483
https://hg.mozilla.org/projects/nss/file/0e785b3a4a10a25afa367dc0b93c01c166a499a5/lib/freebl/ecl/ecp_jm.c#l88
https://hg.mozilla.org/projects/nss/file/0e785b3a4a10a25afa367dc0b93c01c166a499a5/lib/freebl/ecl/ecp_jm.c#l88
https://github.com/openssl/openssl/blob/OpenSSL_1_1_1k/crypto/ec/ecp_smpl.c#L1556
https://github.com/openssl/openssl/blob/OpenSSL_1_1_1k/crypto/ec/ecp_smpl.c#L1556
https://github.com/wolfSSL/wolfssl/blob/v4.7.0-stable/wolfcrypt/src/ecc.c#L1726
https://github.com/wolfSSL/wolfssl/blob/v4.7.0-stable/wolfcrypt/src/ecc.c#L1726
https://github.com/matrixssl/matrixssl/blob/4-3-0-open/crypto/pubkey/ecc_math.c#L740
https://github.com/matrixssl/matrixssl/blob/4-3-0-open/crypto/pubkey/ecc_math.c#L740
https://github.com/golang/go/blob/go1.16.4/src/crypto/elliptic/elliptic.go#L118
https://github.com/golang/go/blob/go1.16.4/src/crypto/elliptic/elliptic.go#L118
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that windowed methods of scalar multiplication are somewhat more vulnerable
to ZVP-like attacks. We simulated the attack using the pyecsca toolkit, and
were able to recover the full secret scalar from a window NAF algorithm with
add-2016-rcb formulas on the P-224 curve. In the attack, we do not observe a
real power or EM side channel, but the toolkit simulates the computation down
to individual finite field operations, and produces the side-channel output (i.e.,
whether a zero occurred during computation). Appendix A shows the attack
code snippets. Note that the P-224 curve does not have any zero-coordinate
point suitable for the RPA attack, and the used formulas are complete, disal-
lowing the possibility of an EPA attack.

We also expanded the range of scalars for which the (x)DCP can be solved.
While this increases the number of recovered bits only slightly, our improvements
are quite general and might be combined with future ones.

5.3 Tooling

We released all of our code and data under an open-source license, as an exten-
sion to the pyecsca project19. This includes tooling for unrolling EFD formulas,
helping analyze exceptional cases, and automatically construct ZVP points (note
that Akishita and Takagi [1] construct them manually), as well as improvements
to (x)DCP solving (Sect. 3.3). These tools can be used proactively in the future,
analyzing formulas about to be used in new implementations, rather than ana-
lyzing existing implementations and finding vulnerabilities.

5.4 Reverse Engineering

Another application of our techniques is in reverse engineering black-box imple-
mentations of ECC, as suggested in [27]. Many side-channel attacks critically
depend on the attacker having detailed knowledge of the target’s implementa-
tion, such as the scalar multiplication algorithm, coordinates, or even specific for-
mulas used. In practice (e.g., smartcards), vendors keep this information secret;
de facto using security-by-obscurity.

In our unified framework, reverse engineering is an easier problem than
attacking. Indeed, it suffices to choose f as an intermediate value of a point
addition formula, then solve the (x)DCP problem for several small values of k.
Our methodology allows us to choose f in a manner that allows us to identify the
target addition formulas, after confirming one of our guesses (e.g., using k = 1
and k = 2). Furthermore, as the sequence of formula executions during scalar
multiplication with a fixed scalar depends on the scalar multiplication algorithm
used, we can apply our technique to identify this algorithm as well.

6 Conclusion

In this work, we presented a unified framework for the RPA, ZVP, and EPA
attacks, and demonstrated its utility by mounting an attack on window-based
19 https://github.com/crocs-muni/formula-for-disaster.

https://github.com/crocs-muni/formula-for-disaster
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scalar multiplication methods (Sect. 3.5). We were also able to push the ZVP
and EPA attacks further: introducing the dependent coordinates problem, and
solving it for new cases. We created automated tooling that unrolls formulas and
constructs ZVP points, which was only possible manually before. We released
all our code and data as an open-source extension of the pyecsca toolkit, with
the hope that they can serve as a basis for future work.

As a result of our systematic classification, we uncovered new classes of
exceptional points in EFD formulas. These formulas are, however, currently not
used by any of the open-source cryptographic libraries we analyzed, which we
see more as happenstance than competence – for example, OpenSSL was using
ladd-2002-it-3 not that long ago.

Lessons Learned. Our Sect. 5 results demonstrate Murphy’s law, in action,
(sometimes) in real code, with (at least) billions of deployments. Furthermore,
they highlight our failure as a research community. We know of these excep-
tions for over two decades, yet we are still unable to eradicate legacy theoretical
constructs and code from real-world standards, products, and systems. This is
exacerbated by the fact that, again as a research community, we often prioritize
speed over security, in the name of establishing novelty for scientific contribu-
tions. These are often then left in dubious hands, without diligent technology
transfer, and with little to no knowledge of how to apply them safely. This is
precisely where our Sect. 4 results help, by providing feedback on the type and
nature of failures in various EC arithmetic formulas. All of these results are
enabled by our unified attack framework in Sect. 3.

We believe that in order to prevent future vulnerabilities, we should start
paying more attention to the properties of the formulas and their assumptions,
and clearly document them in libraries, papers, and the EFD.
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A Example: ZVP Attack on Window NAF Scalar
Multiplication

To demonstrate the ZVP attack on a window NAF scalar multiplication algo-
rithm (window size of 5), we used the pyecsca toolkit. We demonstrate the
attack on NIST’s P-224 curve, which has no points suitable for RPA. Figure 2
shows the basic setup of the attack, with zvp_p0 being a point which zeros out
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an intermediate value when input into the add-2016-rcb formulas in projective
coordinates, regardless of the second input point (Fig. 3).

B Example: Unrolled Formula

To analyze the ZVP and EPA attacks, we developed tooling for “unrolling” EFD
formulas. The tooling expresses all the intermediate values in the formula as
polynomials in the input variables. Figure 4 gives an excerpt of the unrolled
add-2007-bl formula in projective coordinates on short Weierstrass curves.

x = Mod(0xd83d7049c30873afc4893bf229d1c1ccb9eefd30f62ec71504b65fdc, p)
y = Mod(0x27c28fb63cf78c503b76c40dd62e3e32461102cf09d138eafb49a025, p)
z = Mod(1, p)
zvp_p0 = Point(coords, X=x, Y=y, Z=z)

def zvp_c(c):
"""Compute [c^-1]P_0"""
return params.curve.affine_multiply(zvp_p0.to_affine(),

int(Mod(c, params.order).inverse())).to_model(coords, params.curve)

def query(pt: Point) -> Tuple[int, List[int]]:
"""Query the implementation and observe the ZVP side-channel,

i.e. at which iterations a zero in the intermediate value appeared.
Returns the total number of formula applications and indexes
where a zero in the intermediate value appeared."""

with local(DefaultContext()) as ctx:
mult.init(params, pt)
mult.multiply(scalar)

smult, subtree = ctx.actions.get_by_index([1])
iterations = []
for i, formula_action in enumerate(subtree):

for intermediate in formula_action.intermediates.values():
if 0 in [j.value for j in intermediate]:

iterations.append(i)
break

return len(subtree), iterations

def try_guess(guess) -> bool:
"""Test if we have the right private key."""
return params.curve.affine_multiply(g, guess) == pubkey

Fig. 2. Setup for the ZVP window NAF attack.
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wnaf_multiples = [1, 3, 5, 7, 9, 11, 13, 15, -1, -3, -5, -7, -9, -11, -13, -15]
all_iters = {}
for multiple in wnaf_multiples:

rpa_point = zvp_c(multiple)
num_iters, iters = query(rpa_point)
all_iters[multiple] = iters

full = [0 for _ in range(num_iters)]
for multiple, iters in all_iters.items():

for i in iters:
full[i] = multiple

full_wnaf = [e for i, e in enumerate(full) if (not full[i - 1] != 0) or i in (0, 1)]
full_wnaf[0] = 1

Fig. 3. ZVP attack demonstration on window NAF scalar multiplication algorithm.

U1 = Z2 * X1
U2 = Z1 * X2
S1 = Z2 * Y1
S2 = Z1 * Y2
ZZ = Z2 * Z1
T = X2*Z1 + X1*Z2
TT = (X2*Z1 + X1*Z2)^2
M = Y2*Z1 + Y1*Z2
t0 = Z2^2 * Z1^2
t1 = a * Z2^2 * Z1^2
t2 = Z2 * Z1 * X2 * X1
t3 = X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2
R = a*Z1^2*Z2^2 + X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2
F = Z2 * Z1 * (Y2*Z1 + Y1*Z2)
L = Z2 * Z1 * (Y2*Z1 + Y1*Z2)^2
LL = Z2^2 * Z1^2 * (Y2*Z1 + Y1*Z2)^4
t4 = Y2^2*Z1^3*Z2 + 2*Y1*Y2*Z1^2*Z2^2 + Y1^2*Z1*Z2^3 + X2*Z1 + X1*Z2
...
X3 = 2^2 * Z2 * Z1 * (Y2*Z1 + Y1*Z2) * (a^2*Z1^4*Z2^4 + 2*a*X2^2*Z1^4*Z2^2 +

2*a*X1*X2*Z1^3*Z2^3 + 2*a*X1^2*Z1^2*Z2^4 + X2^4*Z1^4 + 2*X1*X2^3*Z1^3*Z2 -
X2*Y2^2*Z1^4*Z2 + 3*X1^2*X2^2*Z1^2*Z2^2 - 2*X2*Y1*Y2*Z1^3*Z2^2 -
X1*Y2^2*Z1^3*Z2^2 + 2*X1^3*X2*Z1*Z2^3 - X2*Y1^2*Z1^2*Z2^3 -
2*X1*Y1*Y2*Z1^2*Z2^3 + X1^4*Z2^4 - X1*Y1^2*Z1*Z2^4)

...

Fig. 4. An excerpt of an unrolled formula, add-2007-bl in projective coordinates on
short Weierstrass curves.
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Abstract. We cryptanalyse the SIDH-based oblivious pseudorandom
function from supersingular isogenies proposed at Asiacrypt’20 by
Boneh, Kogan and Woo. To this end, we give an attack on an assump-
tion, the auxiliary one-more assumption, that was introduced by Boneh
et al. and we show that this leads to an attack on the oblivious PRF itself.
The attack breaks the pseudorandomness as it allows adversaries to eval-
uate the OPRF without further interactions with the server after some
initial OPRF evaluations and some offline computations. More specif-
ically, we first propose a polynomial-time attack. Then, we argue it is
easy to change the OPRF protocol to include some countermeasures,
and present a second subexponential attack that succeeds in the pres-
ence of said countermeasures. Both attacks break the security parameters
suggested by Boneh et al. Furthermore, we provide a proof of concept
implementation as well as some timings of our attack. Finally, we exam-
ine the generation of one of the OPRF parameters and argue that a
trusted third party is needed to guarantee provable security.

1 Introduction

An oblivious pseudorandom function (OPRF) is a two-party protocol between a
client and a server that computes a pseudorandom function (PRF) on a client’s
input with the server’s key. At the end, the server does not learn anything about
the client’s input or the output of the function and the client learns the evaluation
of the OPRF but nothing about the server’s key. In particular, a client should not
be able to compute the OPRF on any input without the server’s participation.

Moreover, a verifiable oblivious pseudo random function (VOPRF) is an
OPRF, where a server commits to some key and the client is ensured that the server
c© International Association for Cryptologic Research 2021
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used this key to evaluate the OPRF. In particular, the client is guaranteed that a
server does not change their secret key across different executions of the protocol.

Oblivious pseudorandom functions are an important building block in many
cryptographic applications. They can be used for private set intersection [23],
which in turn has many applications such as private contact discovery for mes-
saging services [14] or checking for compromised credentials [25]. Further applica-
tions of (V)OPRFs include password-authenticated key exchange [22], password-
management systems [16], adaptive oblivious transfer [24], password-protected
secret sharing [21] and privacy-preserving CAPTCHA systems [10].

Apart from their theoretical relevance in cryptography, OPRFs have had
significant real-world impact recently. The password-authenticated key exchange
OPAQUE [22] which is built on an OPRF is intended for use in TLS 1.3 [33].

The privacy-preserving authorisation mechanism known as Privacy Pass by
Davidson et al. [10] is also based entirely on the security of a VOPRF. Pri-
vacy Pass is currently used at scale by Cloudflare. There is an ongoing effort to
standardise OPRFs at the Crypto Forum Research Group (CFRG) [11].

Generic techniques from two-party computation and zero-knowledge proofs
can be used to construct verifiable OPRFs. However, the resulting protocols
might be inefficient. Therefore, all of the real-world use-cases of (V)OPRFs are
currently instantiated with performant (V)OPRFs which are based on classical
security assumptions. Practical constructions are currently based either on the
hardness of the decisional Diffie-Hellman problem, called DH-OPRF [21], or they
are derived from RSA blind signatures [8,11].

For quantum-secure OPRFs, there are only few proposals. Indeed, only three
such solutions appear in the literature to date. In 2019, Albrecht et al. proposed
a lattice-based VOPRF [1] based on the ring learning with errors problem and
the short integer solution problem in one dimension. Seres et al. constructed
an OPRF based on the shifted Legendre symbol problem [31] and Boneh et al.
presented two isogeny-based (V)OPRFs at ASIACRYPT 2020 [3].

Isogeny-based cryptography is one of the branches of post-quantum cryptog-
raphy that are currently being explored. The particularly small key sizes required
by isogeny-based cryptosystems make them very attractive in some areas of infor-
mation security. Isogeny-based cryptography was first proposed by Couveignes
in 1997 [9]. However, his ideas were not published at the time and they were
independently rediscovered by Rostovtsev and Stolbunov [30]. The idea of Cou-
veignes and Rostovtsev-Stolbunov (CRS) was to build a Diffie-Hellman type key
exchange using the class group of the endomorphism ring of ordinary elliptic
curves. However, neither of the suggested schemes was efficient enough to be
considered practical. Meanwhile, supersingular elliptic curves were first used in
cryptography by Charles, Lauter and Goren [7] to build a hash function.

Jao and De Feo took a different approach to isogeny-based cryptography
when they introduced the supersingular isogeny Diffie-Hellman (SIDH) key
exchange [20]. Instead of computing class group actions as in the case of CRS,
Jao and De Feo use the following observation. Two subgroups of an elliptic curve
of coprime cardinality are only intersecting at the point at infinity. Independent
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of the order in which two such subgroups are divided out of an elliptic curve, the
resulting curve will be equal up to isomorphism. The only isogeny-based cryp-
tosystem submitted to NIST’s ongoing post-quantum standardization process is
the SIDH-based candidate SIKE [2,19] which has been selected as one of the
alternate finalists.

Later, the idea of CRS-type schemes was resurrected, when Castryck et al.
adapted it to supersingular elliptic curves and managed to eliminate most of its
performance issues [5]. The resulting scheme is called CSIDH.

In their ASIACRYPT 2020 paper [3], Boneh et al. propose an augmentable
commitment framework that can be used to build an OPRF and is instanti-
ated with both an SIDH-based scheme that can be made verifiable, and with a
CSIDH-based one. The SIDH-based variant relies on the hardness of the deci-
sional supersingular isogeny problem, a standard assumption in the area, and a
novel ‘one-more’ isogeny assumption.

Our Contributions. In this paper, we cryptanalyse the SIDH-based ‘one-
more’ assumption introduced by Boneh, Kogan and Woo. We first give mul-
tiple variants of an attack on the assumption itself. A first variant leads to a
polynomial-time attack against the proposed SIDH-based OPRF protocol. We
then argue that a simple modification of the (V)OPRF protocol prevents such
an attack. Then, we show that a second variant of the attack leads to an attack
on the protocol even in the presence of those countermeasures. This attack has a
subexponential complexity, but there appear to be no simple countermeasures.
Developing countermeasures is left as an open problem. As a result of our attack,
the parameters suggested by Boneh et al. fall short of their estimated security
level.

The attacks on the OPRF allow malicious clients to evaluate the OPRF on
arbitrary inputs after some initial queries to the server, without even interacting
with the server any further. This breaks the pseudorandomness property of the
OPRF and could lead to significant attacks on OPRF-based protocols. In the
context of private set intersection based on oblivious PRFs, the proposed attack
allows the attacker to brute-force the other party’s set elements and break the
privacy requirement. In the Privacy Pass protocol used to guarantee privacy-
preserving CAPTCHAs, our attack allows the attacker to generate unlimited
tokens, thus avoiding solving CAPTCHAs and fully breaking the security of the
system.

Furthermore, we discuss how one of the parameters of the SIDH-based OPRF
by Boneh et al. is generated and which party should compute it. We argue there
are security implications if the server, the client or any third party maliciously
generates this parameter. The client or a third party can introduce a backdoor
through this parameter to recover the secret key of the server, whereas if the
server is malicious, they can break the supersingular-isogeny collision assumption
on which Boneh et al.’s security proofs are built. We suggest that a trusted setup
may be needed to guarantee provable security.

Finally, we want to emphasise that the CSIDH-based OPRF proposal by
Boneh et al. is not affected by our attacks.
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Outline. In Sect. 2, we introduce some background on isogeny-based cryptogra-
phy, the security properties of (verifiable) oblivious PRFs and Boneh et al.’s con-
struction. The attacks against the ‘one-more’ assumption are presented in Sect. 3,
while their application to the OPRF protocol by Boneh et al. is discussed
in Sect. 4. We present our implementation of the attack and discuss its results
in Sect. 5. In Sect. 6, we argue that a trusted setup should be used for the OPRF
and briefly sketch two attacks that follow a lack of trusted setup before conclud-
ing the paper in Sect. 7.

2 Preliminaries

In this section we introduce the necessary mathematical background on isogenies
and the SIDH key exchange, we summarize the security properties of OPRFs
and we briefly recall Boneh et al.’s OPRF construction [3].

2.1 Mathematical Background on Isogenies

Let Fq be a finite field of characteristic p. In the following, we assume p ≥ 3 and
therefore an elliptic curve E over Fq can be defined by its short Weierstrass form

E(Fq) = {(x, y) ∈ F
2
q | y2 = x3 + Ax + B} ∪ {OE}

with A,B ∈ Fq such that the discriminant is non-zero and OE denotes the
point (X : Y : Z) = (0 : 1 : 0) on the associated projective curve Y 2Z =
X3+AXZ2+BZ3. The j-invariant of an elliptic curve is j(E) = 1728 4A3

4A3+27B2 .
A non-constant rational map φ : E1 → E2 between two elliptic curves is

an isogeny if it sends the point at infinity of E1 to the point at infinity of E2.
Equivalently, an isogeny is a rational map which is also a group homomorphism.
Thus an isogeny is the natural morphism of the category of elliptic curves. An
isogeny φ induces a field extension between the function fields of E1 and E2. The
degree of this extension is the degree of the isogeny. We call an isogeny separable
if this field extension is separable. The kernel of a separable isogeny as a group
homomorphism is finite and is equal to the degree of the isogeny. If φ : E1 → E2

is an isogeny of degree d, then there exists a unique isogeny φ̂ of degree d such
that φ ◦ φ̂ = [d], where [d] denotes multiplication by d. The isogeny φ̂ is called
the dual isogeny of φ. An isomorphism of elliptic curves is an isogeny of degree 1
and there is an isomorphism of curves f : E0 → E1 if and only if j(E0) = j(E1).

An endomorphism of E is an isogeny from E to itself. Endomorphisms of E
form a ring under composition and addition denoted by End(E). The endomor-
phism ring of an elliptic curve over a finite field is either an order in an imaginary
quadratic field (in which case the curve is called ordinary) or a maximal order
in the quaternion algebra ramified at infinity and p (in which case the curve is
called supersingular).

The j-invariant of any supersingular elliptic curve defined over Fq lies in Fp2 .
For a thorough introduction to elliptic curves and isogeny-based cryptogra-

phy, we refer to Silverman [32] and De Feo [12], respectively.
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2.2 SIDH

We briefly recall the supersingular isogeny Diffie-Hellman key exchange intro-
duced by Jao and De Feo [20].

Let E0 be a supersingular elliptic curve defined over Fp2 , where p is a prime of
the form f ·N1N2±1. Here f ∈ Z is a small cofactor and N1, N2 are two coprime
smooth integers (e.g. a power of 2 and 3 respectively). Furthermore, fix two bases
PA, QA and PB, QB such that 〈PA, QA〉 = E0[N1] and 〈PB , QB〉 = E0[N2]. To
agree on a secret key over an insecure channel, Alice and Bob proceed as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] generated by a point of
the form A = PA + [xA]QA as her secret. Similarly, Bob chooses his secret as
〈B〉 := 〈PB + [xB ]QB〉 ⊂ E0[N2].

2. Then, Alice and Bob compute their secret isogeny ϕA : E0 → E0/〈A〉 and
ϕB : E0 → E0/〈B〉, respectively.

3. Alice sends the curve EA := E0/〈A〉 and the points ϕA(PB), ϕA(QB) to Bob.
Mutatis mutandis, Bob sends EB := E0/〈B〉, ϕB(PA) and ϕB(QA) to Alice.

4. Both Alice and Bob can compute the shared secret curve EAB := E0/〈A,B〉
up to isomorphism as

EAB
∼= EB/〈ϕB(PA) + [xA]ϕB(QA)〉 ∼= EA/〈ϕA(PB) + [xB ]ϕA(QB)〉.

Since isomorphic curves have the same j-invariant, Alice and Bob use j(EAB)
as their shared secret.

2.3 Security Properties of (V)OPRFs

In the following, we will call a function μ : N → R negligible if for every positive
polynomial poly(·) there exists an integer Npoly > 0 such that for all x > Npoly,
we have |μ(x)| < 1/poly(x).

The security properties of an oblivious pseudorandom function (OPRF)
include those of a standard pseudorandom function (PRF).

Definition 1. Let F : K × X → Y be an efficiently computable function. F is
a pseudorandom function (PRF) if for all probabilistic polynomial-time distin-
guishers D, there is a negligible function negl such that

P[DF (k,·)(1n) = 1] − P[Df(·)(1n) = 1] ≤ negl(n),

where the first probability is taken over uniform choices of k ∈ {0, 1}n and the
randomness of D, and the second probability is taken over uniform choices of
functions f : X → Y and the randomness of D.

A consequence of pseudorandomness is that one cannot compute a new eval-
uation of F (k, ·) from existing evaluations. However, our attack on Boneh et al.’s
OPRF will allow adversaries to evaluate F (k, ·) on arbitrary inputs after some
initial evaluations.

Furthermore, an OPRF is oblivious in the following sense.
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Definition 2 ([17]). Let F : K ×X → Y be a PRF. A protocol between a client
with input x ∈ X and a server with key k ∈ K is called oblivious PRF, if the
client learns F (k, x) and nothing else and the server learns nothing about x or
F (k, x) at the end of the protocol.

In particular, the server will learn nothing about the input x of the client and
the client will learn nothing about the server’s key k. Additionally, an OPRF
can be verifiable.

Definition 3. An OPRF is said to be verifiable if the evaluation y that the
client obtains at the end of the protocol is correct, i.e. if it satisfies y = F (k, x),
where x ∈ X is the client’s input and k ∈ K is the server’s private key.

In practice, verifiability is ensured by the server committing to a key k prior to
the execution of the verifiable OPRF (VOPRF) and providing a zero-knowledge
proof that the VOPRF execution uses the same key as the committed value.

2.4 An Isogeny-Based OPRF by Boneh, Kogan and Woo

We provide a simplified description of Boneh et al.’s OPRF based on the SIDH
key exchange protocol.

Let λ be the security parameter and let p = fNKNMNVNRNS − 1 be a prime
where f ∈ Z is a small cofactor and Ni are powers of distinct small primes such
that NK, NM, NV, NR are roughly of size 25λ/2 and NS ≈ 22λ. To prevent an
attack by Merz et al. [27], the factors NK, NM, NV, NR are of size 25λ/2 instead of
the more common size 22λ in the SIDH setting. Moreover, let H1 : {0, 1}∗ → ZNM

be a cryptographic hash function. In their proofs, Boneh et al. treat H1 as a
random oracle. Finally, let E0 be a randomly chosen supersingular elliptic curve
over Fp2 and let {Pi, Qi} denote a basis of E0[Ni] for i = K,M,V,R, S. While
Boneh et al. only require E0 to be a randomly chosen elliptic curve, we will
discuss how it is generated in Sect. 6 and argue that this choice should be done
by a trusted third party.

First, the server chooses their private key k which is the PRF key and pub-
lishes a commitment to this key. To evaluate the OPRF at an input x in the
input space, a client computes the hash H1(x) = m ∈ ZNM

. Furthermore, the
client randomly chooses an element r ∈ ZNR

.
The client computes the isogenies φm : E0 → Em := E0/〈PM + [m]QM 〉 and

φr : Em → Emr := Em/〈φm(PR) + [r]φm(QR)〉. Then, the client sends Emr

together with the torsion point images of Pi, Qi for i = V,K, S to the server as
well as a basis of Emr[NR]. To avoid active attacks like the GPST attack [18],
where a malicious client tries to recover information about the server’s private
key by sending manipulated torsion point information, the client proves to the
server in a non-interactive zero-knowledge proof that they know the kernel of the
isogeny from E0 to Emr and that the provided torsion point images are indeed
the images under this isogeny. For full details about the zero-knowledge proof
we refer to Sect. 5 of [3].
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Subsequently, the server computes their secret isogeny φk : Emr → Emrk,
where Emrk := Emr/〈φr ◦ φm(PK) + [k]φr ◦ φm(QK)〉. Moreover, the server
computes the images of the order NV torsion points and the basis of Emr[NR]
provided by the client. The server sends Emrk together with the torsion point
information to the client. Using an interactive zero-knowledge proof with a cut-
and-choose approach between server and client, the server can prove to the client
that it computed the isogeny and the torsion point images correctly. This proof
uses the torsion point images of order NV and the server’s initial commitment to
the key k. Details about this zero-knowledge proof can be found in Sect. 6 of [3].

After executing the zero-knowledge proof with the server to convince itself
of the correctness of the server’s reply, the client uses the images of the Emr[NR]
torsion to “unblind” Emrk. The unblinding isogeny φ̂′

r is a translation of the dual
of φr starting from Emrk. This allows the client to compute a curve isomorphic
to Emk := Em/〈φm(PK) + kφm(QK)〉 without knowing k at any point in time.
Hashing the input together with the j-invariant of Emk and the server’s initial
commitment to his key k yields the output of the VOPRF. The entire evaluation
is sketched in Fig. 1.

E0 Em

Emr

Emk

Emrk

φm

φr

φk

φ̂r

Fig. 1. Sketch of Boneh et al.’s isogeny-based VOPRF. The isogenies computed by the
client are marked in red (φm, φr, and φ̂′

r) while the server’s isogeny is noted in blue
(φk). The green isogenies represent the PRF which is jointly evaluated by the client
and the server. The output of the OPRF is computed as F (k, x) = H(x, j(Emk), pk),
where H is a cryptographic hash function and pk is the server’s (public) commitment
to his key k.

3 Attacks on the Auxiliary One-More SIDH Assumption

In [3], Boneh et al. introduce the auxiliary one-more SIDH assumption. This is
a new security assumption to prove the unpredictability of their isogeny-based
VOPRF. In this section we challenge the validity of this assumption and we
present multiple attacks on the corresponding computational problem.

All of the attacks follow a similar strategy. First, an attacker recovers certain
torsion point images up to a scalar under the secret isogeny using queries in
the security game. Having recovered these torsion point images, an attacker is
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capable of answering any challenge set by the challenger correctly. This breaks
the security assumption and also leads to an attack on Boneh et al.’s (V)OPRF.

We start by recalling the security assumption introduced by Boneh et al. [3].
Then, we show that recovering said torsion point images up to a scalar is suffi-
cient to compute the correct answer to arbitrary challenges in the corresponding
security game. Subsequently, we give multiple approaches to recover these torsion
point images. In Sect. 4, we will show how the attack on the security assumption
translates to an attack on the (V)OPRF itself.

3.1 The Auxiliary One-More SIDH Assumption

First, we recall the game underlying the auxiliary one-more SIDH assumption as
defined by Boneh et al. [3]. While Boneh et al. use the “decision queries” defined
in the following game in their security proofs, our attacks will not make use of
decision queries and a reader may ignore this additional ability of an adversary.

Game 1 (Auxiliary One-More SIDH). Let p = f · N1 · · · Nn − 1 be a
prime depending on the security level λ and n, where Ni are smooth coprime
integers and f is a small cofactor, and let M,K ∈ {1, . . . , n} be two distinct
indices. Consider the following game between a challenger and an adversary:

– The challenger chooses a random supersingular curve E0/Fp2 and a basis
{P,Q} of E0[(p + 1)/(NM · NK)]. Moreover, it chooses K ∈ E0 of order
NK, computes φK : E0 → EK := E0/〈K〉, and sends E0, P,Q, and EK

to the adversary.
– The adversary can make a sequence of queries of the following types to

the challenger:
• Challenge query: The challenger chooses M ∈ E0[NM] randomly and

sends it to the adversary
• Solve query: The adversary submits V ∈ E0[(p + 1)/NK] to the

challenger1, who computes φKV : E0 → E0/〈K,V 〉 and sends
j(E0/〈K,V 〉), φKV (P ), and φKV (Q) to the adversary.

• Decision query: The adversary submits a pair (i, j) to the challenger,
where i is a positive integer bounded by the number of challenge
queries made so far, and j ∈ Fp2 . The challenger responds true if
j = j(E0/〈K,M〉), where M is the challenger’s response to the ith
challenge query, and false otherwise.

– The adversary outputs a list of distinct pairs of the form (i, j), where i is
a positive integer bounded by the number of challenge queries made and
j ∈ Fp2 .

We call an output-pair (i, j) correct, if j is the j-invariant of E0/〈K,M〉,
where M is the challenger’s response to the ith challenge query. An adversary
wins the game, if the number of correct pairs exceeds the number of Solve
queries.
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Assumption 2 (Auxiliary One-More SIDH [3]). For every constant n and
every distinct M,K ∈ {1, . . . , n}, every efficient adversary wins the above game
with probability negligible in λ.

In the following, we will show that the auxiliary one-more SIDH assumption
does not hold. We will give different attacks on the security problem underlying
Assumption 2 that follow a similar strategy. Let K be the server’s secret, deter-
mining the isogeny φK : E0 → E0/〈K〉. The idea is to use a number of solve
queries to subsequently predict E0/〈K,M〉 for any M ∈ E0[NM]. To this end,
we will derive a method to extract the subgroup generated by φK(P ) for any
P ∈ E0[NM] with a number of solve queries. Using this procedure, an adversary
can extract the subgroups generated by φK(PM ), φK(QM ) and φK(PM + QM ),
where {PM , QM} is a basis of E0[NM].

Knowing these subgroups allows the adversary to compute the subgroups gen-
erated by φK(M) for arbitrary M ∈ E0[NM] without any further solve queries.
Given a generator of 〈φK(M)〉, the adversary can compute the j-invariant of
E0/〈K,M〉 as E0/〈K,M〉 ∼= EK/〈φK(M)〉. In particular, the adversary can pro-
duce arbitrarily many correct output-pairs and win the security game underlying
the auxiliary one-more SIDH assumption (Assumption 2).

3.2 Winning the Security Game Given Torsion Point Images

In this section, we show how mapping three different NM-order subgroups to
EK := E0/〈K〉 is enough to recover sufficient information to compute a generator
of 〈φK(M)〉 ∈ EK for any point M ∈ E0[NM].

Lemma 1. Let PV , QV , RV := PV +QV ∈ E0 be pairwise linearly independent
points of smooth order NM and let φK : E0 → EK be an unknown isogeny
of degree coprime to NM. Given the points PV , QV , RV and the subgroups
〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉, an adversary can compute 〈φK(M)〉 for
arbitrary M ∈ E0[NM].

Proof. Fix P ′, Q′, and R′ to be generators of 〈φK(PV )〉, 〈φK(QV )〉 and
〈φK(RV )〉 respectively. Note that the given information 〈φK(PV )〉, 〈φK(QV )〉
and 〈φK(RV )〉 is the same as knowing φK(PV ), φK(QV ), φK(RV ) up to a
scalar multiple. There are many different generators for the groups 〈φK(PV )〉,
〈φK(QV )〉 and 〈φK(RV )〉 but for any fixed choice we have

P ′ = αφK(PV ),
Q′ = βφK(QV ),
R′ = γφK(RV )

1 In Algorithm 1, we will describe how an adversary can win the game in polynomial
time, if the point V is not required to be of full order.
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for some (unknown) integers α, β, γ coprime to NM. As isogenies are homo-
morphisms, we have φK(RV ) = φK(PV ) + φK(QV ). One finds a, b such that
R′ = aP ′ + bQ′, which can be done efficiently as computing discrete logarithms
is easy in a group of smooth order NM. We have γ = aα = bβ. Thus, it is possible
for the attacker to recover the ratio α/β = b/a.

Given any M ∈ E0[NM], an adversary can compute integers k1, k2 such that
M = k1PV + k2QV (which again is possible because NM is smooth) and obtain
〈φK(M)〉 by computing 〈k1φK(P ) + k2φK(Q)〉 = 〈k1P ′ + k2

α
β Q′〉. �

In particular, an adversary who knows φK(PV ), φK(QV ) and φK(RV ) up to
a scalar and EK := E0/〈K〉 can compute E0/〈K,M〉 ∼= EK/〈φK(M)〉 for any
M ∈ E0[NM].

3.3 Recovering Points in φK (E0[NM]) Up to a Scalar

The previous subsection shows that E0/〈K,M〉 can be computed by an adversary
for arbitrary M ∈ E0[NM] as long as they can recover images of points in E0[NM]
under the secret isogeny φK up to scalar. In this section, we will present multiple
ways an adversary can recover this information. For didactic purposes, we include
not only a polynomial and a subexponential attack (in case countermeasures to
prevent the former one are put in place) but also an exponential attack in our
exposition.

Query points of arbitrary order. Let M ∈ E0[NM]. We are interested in
recovering φK(M) up to a scalar, given access to the oracle provided by the
“solve queries” in Game 1. Note that our attack will not use “decision queries”
as defined in the same game.

There is a simple procedure to compute an isogeny between EK and EM :=
EK/〈φK(M)〉 and therefore φK(M) up to scalar, if “solve queries” are allowed
for points of arbitrary order. Recall that during a solve query in Game 1, an
adversary gets to submit points V ∈ E0[(p + 1)/NK] to the challenger, who
replies with the j-invariant of E0/〈K,V 〉 and some additional torsion point
images. Algorithm 1 describes how an adversary can recover φK(M) up to a
scalar for arbitrary M ∈ E0[NM]. The Algorithm recovers the isogeny from EK

to EK/〈φK(M)〉 by using solve queries to obtain all intermediate curves. This
allows to recover the isogeny EK → EK/〈φK(M)〉 one step at a time and there-
fore its kernel 〈φK(M)〉.
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Algorithm 1: Computation of 〈φK(M)〉 using solve queries on points of
arbitrary order

Let {li}n
i=0 be an integer sequence of all divisors of NM such that li+1/li is a

prime, li < li+1, with l0 := 1, ln := NM.
Input: EK , M ∈ E0[NM] and access to an oracle answering solve queries as

defined in Game 1.
Output: A generator of 〈φK(M)〉

1 E(n) ← E0/〈K〉 ;
2 for i = n − 1, . . . , 0 do
3 Query the oracle with the point Vi := [li]M and obtain the curve

E(i) := E0/〈K, Vi〉 = E0/〈K, [li]M〉 = EK/〈[li]φK(M)〉;
4 Find li+1/li-isogeny φi from E(i+1) to E(i);

5 return A generator of ker(φ0 ◦ · · · ◦ φn−1);

Lemma 2. Algorithm 1 returns λφK(M), where λ ∈ Z is coprime to NM.

Proof. Let ψM be the isogeny from EK to EK/φK(M). Then the claim follows
from the observation that E0/〈K, [li]M〉 ∼= E0/〈[li]K, [li]M〉, since li is coprime
to the order of K. �
Remark 1. Note that an attacker can easily change the attack to require fewer
queries. Instead of using one query for each intermediate curve, an attacker can
choose any factorisation f1 · · · ft of NM such that fi are roughly of equal size
and query the oracle with

[∏b
j=1 fi

]
M for b = 1, . . . , t. Then, the attacker is left

to recover the isogeny between any two consecutive queries, i.e. the isogenies of
degree fi for i = 1, . . . , t, using a meet-in-the-middle attack.

In Game 1, Boneh et al. did not specify any restrictions on the points of
E0[(p + 1)/NK] that can be submitted to the solve queries. However, in the
context of the game, this attack can be easily thwarted by answering to a solve
query only if the submitted point is of order (p + 1)/NK. This property can be
checked efficiently by the challenger. In Sect. 4, we discuss how this polynomial-
time attack and its countermeasures translate to the VOPRF protocol.

Query Points of Order (p + 1)/NK. Next, we present how an attacker can
retrieve the necessary information even if they are only allowed to send solve
queries on points of order (p + 1)/NK, i.e. if the challenger checks the order of a
submitted point and only replies to a query if the point is of order (p + 1)/NK.

Let φV denote the isogeny EK → E0/〈V,K〉 of degree (p + 1)/NK and let
φV = φV ′ ◦φM be its decomposition into a degree (p+1)/(NKNM) and a degree
NM isogeny. Our attack aims to recover the image of multiple subgroups of
E0[NM] under the isogeny φK , i.e. we are interested in the kernel of the isogeny
φM for different points V . The isogenies are depicted in Fig. 2.
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E0/ K, V

•

EK

E0

φM

φV

φV

φK

Fig. 2. Depiction of the isogenies of a solve query

Recovering φV ′ from torsion point information. Let P,Q ∈ E0[(p +
1)/NMNK] be the torsion point basis provided by the challenger and let V ∈
E0[(p + 1)/NK] be linearly independent of P or Q. Then, we can use the torsion
point images provided during a solve queries to compute φ̂′

V as follows.
Let P ′ := φV ◦ φK(P ), Q′ := φV ◦ φK(Q) be the images of the torsion

points provided by the challenger. The adversary can compute φ̂V ′ as the isogeny
from E0/〈K,V 〉 with kernel 〈P ′, Q′〉. Note that 〈P ′, Q′〉 ⊂ ker(φ̂V ′), because
φ̂V ′ ◦ φV ′ = [(p + 1)/NMNK] is the order of the points P,Q. As V is linearly
independent to at least one of P and Q, the other inclusion follows from 〈P ′, Q′〉
spanning a subgroup of size (p + 1)/NMNK.

Choosing PV , QV as a basis of E0[(p + 1)/NK] such that [NM]PV = P +
[(p + 1)/NMNK]Q and [NM]QV = [(p + 1)/NMNK]P +Q, every point of the form
PV + [i]QV or [i]PV + QV will be linearly independent of P or Q.

As a consequence of φV ′ being easy to recover, we may assume that during a
solve query an attacker can send a point M of order NM to the challenger who
returns E0/〈K,M〉. We are left to recover the kernel of φM .

Näıve attack to recover φM . Next we describe an exponential attack that
recovers φ̂M using meet-in-the-middle (MITM) computations of increasing size.
In the subsequent part, we will introduce a trade-off between queries and com-
putation costs that reduces the complexity of the attack to subexponential.

Let PM , QM denote a basis of E0[NM]. For simplicity of exposition we treat
NM as a prime power and we write NM = 	eM

M . The attack recovers φM : EK →
EK/〈PM 〉 by recovering each of the eM intermediate curves one at a time.

The attacker starts by querying the solve oracle with two points V0 :=
PM and V1 := PM + [	eM−1

M ]QM . Note that the curves EK/〈φK(V0)〉
and EK/〈φK(V1)〉 are 	2M -isogenous, since they are both 	M -isogenous to
EK/〈[	M ]φK(V0)〉 = EK/〈[	M ]φK(V1)〉. The attacker recovers the curve
EK/〈[	M ]φK(V0)〉, which is the first intermediate curve on the φM isogeny path
by computing the common neighbour of EK/〈φK(V0)〉 and EK/〈φK(V1)〉.

The rest of the attacks proceeds similarly. The attacker queries with the
points Vi := PM + [	eM−i

M ]QM , i = 1, . . . , eM/2 and runs a MITM attack
to recover EK/〈[	i

M ]φK(V0)〉 given EK/〈φK(Vi)〉 and EK/〈[	i−1
M ]φK(V0)]〉. This
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could be repeated eM times to recover the entire isogeny φM . However, the
attacker does not need to recover the last part of the isogeny through this strat-
egy, since it is faster to directly compute the MITM between EK/〈[	eM/2

M ]V0〉
and the starting curve EK . The attack with the required meet-in-the-middle
computations is shown in Fig. 3.

EK

•

•

•

EK/ φK(VeM/2) EK/ φK(Vi) EK/ φK(V1) EK/ φK(PM )

Fig. 3. Näıve attack where isogenies of increasing length need to be recovered. The
blue lines represent the meet-in-the-middle computations. (Color figure online)

Note that the isogenies that need to be recovered using MITM grow at each
step. To recover the i-th intermediate curve, the attacker needs to compute
an isogeny between two curves that are 	

(i+1)
M -isogenous, which takes roughly

O(	(i+1)/2
M ).
Clearly, this attack can be optimised by recovering multiple steps of φM at

a time, and by making sure that the different MITM attacks that need to be
executed have similar complexity. We will discuss these improvements in the
following.

Full attack with query-time trade-off. We can reduce the complexity of the
näıve attack by introducing a trade-off between queries and the cost of MITM
computations. This is because the attacker recovers the whole path between two
isogenies during a MITM computation. Thus, it is possible to recover more than
one intermediate curve with a single (longer) MITM computation. Moreover, the
queries can be spaced out more in order to reduce the length of the isogenies
that have to be recovered using MITM strategies.

More formally, let 2q denote the number of queries that an attacker can (or
wants to) send to the challenger. For simplicity of this exposition, assume that
2em is divisible by q + 2. The attacker chooses the Vi such that E0/〈K,Vi〉
correspond to curves that are the leaves of a binary isogeny tree. The Vi should
be chosen such that there is an 	

2eM/(q+2)
M isogeny between any two siblings

in the binary tree and the curve that is 	
eM/(q+2)
M -isogenous to both leaves is

their parent in the tree. Again, the parent and its sibling should be 	
2eM/(q+2)
M -

isogenous, etc.
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E0

•

• •

• • • •

E0/ V0 E0/ V1 E0/ V2 E0/ V3 E0/ V2q−4 E0/ V2q−3 E0/ V2q−2 E0/ V2q−1

Fig. 4. The attacker queries the challenger on points corresponding to isogeny kernels
leading to the leaves of this binary tree

Remark 2. Note that it is easy to choose such a set of points Vi. Let PM , QM

be a basis of E0[	eM

M ]. The attacker can choose

V0 := PM

Vi := Vi−2�log i� + [	eM−(�log i�+1)2eM/(q+2)
M ]QM

Lemma 3. Let E0/〈Vi〉 and E0/〈Vj〉 be 	k
M isogenous curves. Then

EK/〈φK(Vi)〉 and EK/〈φK(Vj)〉 are 	k
M -isogenous curves too.

Proof. This follows from NK = deg(φK) being coprime to 	k
M . �

In particular, {φK(PM ), φK(QM )} is a basis of EK [NM] and EK/〈φK(Vi)〉 are
the leaves in a binary tree where all siblings are 	

2eM/(q+2)
M isogenous.

After querying the oracle to obtain EK/〈φK(Vi)〉 = E0/〈K,Vi〉, an attacker
recovers iteratively parent nodes in the binary tree using a meet-in-the-middle
approach. Any siblings in the tree correspond to curves that are 	

2eM/(q+2)
M -

isogenous, thus this can be done in O(	eM/(q+2)
M ). Note that the root of the

binary tree is recovered after 2q − 1 such meet-in-the-middle instances, i.e. the
number of internal nodes in the binary tree. This root of the binary tree is then
by construction 	

2eM/(q+2)
M -isogenous to E0. This final isogeny can be recovered

using meet-in-the-middle again. An attacker recovers and saves the intermediate
nodes and isogenies from EK to the leaf EK/φK(V0). Clearly, the kernel of this
isogeny is φK(V0).

In summary, we can recover the isogeny from EK → EK/〈φK(PM )〉 for any
PM with 2q queries to the challenger and 2q instances of meet-in-the-middle
isogeny computations with cost of O(	eM/(q+2)

M ) each.

Remark 3. If 	M = 2, we get q bits for free, i.e. one additional bit per layer of
the binary tree. This is because every parent node in the binary tree has three
outgoing edges: two edges leading to its children and one edge leading towards
the root. Thus, having recovered both paths to the children an attacker gets one
step towards the root for free.

3.4 Attack Analysis

The proposed attack is composed of two stages: firstly the generators of
〈φK(PV )〉, 〈φK(QV )〉, and 〈φK(RV )〉 are recovered, and then these points are
used to recover φK(M) for any possibly challenge M ∈ E0[NM].
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The second part consists mostly of pairing evaluations and discrete log com-
putations in groups of smooth order. Thus, it runs in polynomial time. The
complexity of the attack is dominated by the complexity of recovering the sub-
groups in the first step.

The algorithm proposed in Sect. 3.3 offers different trade-offs between com-
putation costs and solve queries. As little as two solve queries can be enough
to recover φM with two meet-in-the-middle computations. If we write NM ≈
2m, each meet-in-the-middle requires O(2m/3) operations. This is already an
improvement over the standard meet-in-the-middle attack that requires O(2m/2)
time. The OPRF protocol targets 128 bits of security, which corresponds to
m ≈ 5λ/2 = 320. Thus six queries (two per generator) are enough to reduce
the security to m/3 = 106 bits. The number of solve queries can be significantly
increased to obtain a faster attack. Note that OPRF protocols are usually used
for applications such as private set intersection, that support a large number of
queries. Thus, common scenarios where the OPRF may be used would easily
lend themselves to an attack with many queries.

Since OPRFs are used in protocols where the clients interact several times
with the server, we can expect the attacker to be able to run several OPRF
instances. Thus, we model a solve query as an oracle query, where it has a unitary
complexity. Then, the overall complexity of recovering a generator of 〈φK(PV )〉
with 2q solve queries is O(2m/(q+2)+q) operations, since the attacker needs to
compute 2q meet-in-the-middle instances between curves which are 22m/(q+2)-
isogenous. In terms of the security parameter, that complexity is equivalent to
O(25λ/2(q+2) + q), since the OPRF protocol suggests using m ≈ 5λ/2. If the
number of solve queries is unrestricted, the complexity of the attack is mini-
mized for q =

√
5λ/2 − 2, which gives an overall complexity of O(2

√
10λ−2),

or using the L-notation L[1/2, c], for some constant c. This shows the attack is
subexponential, assuming that the solve query complexity is O(1).

At 128-bit of security, our attack becomes feasible with around 64 solve
queries, when it requires 64 meet-in-the-middle computations between curves
which are 280-isogenous, i.e. each MITM has a complexity of 240 operations. If
the number of solve queries is unrestricted, an attacker can use 218 solve queries
to reduce the overall complexity of the attack to 218 MITM computations, where
each MITM operations has a complexity of 216 operations.

The high-level attack does not generally require much memory. Storing the
isogeny tree in memory is not particularly demanding, especially if the tree is
traversed depth-first. In particular, memory is used only to store the part of the
recovered isogeny, together with the two curves between which the meet-in-the-
middle needs to be computed. However, a more significant amount of memory is
used by the meet-in-the-middle computations, and indeed we see that the mem-
ory used by a single meet-in-the-middle generally outweighs the memory used by
the rest of the attack. Meet-in-the-middle computations between curves which
are 2n-isogenous require to store 2n/2 curves. Thus, their memory requirements
are given by 2 · 2n/2 log p, since each curve can be represented by its j-invariant
in Fp2 . For common security levels, such as those proposed by Boneh et al. [3],
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the memory requirements remain moderate. In Sect. 5, we show that indeed our
attack requires about 3 GB of memory to break 128 bits of security. However, for
a more complete asymptotical analysis, we note that the memory requirements
may become a bottleneck for the attack against higher security levels. In those
instances, it may be preferable to substitute the meet-in-the-middle approach
with the van Oorschot-Wiener algorithm [28]. This reduces the memory con-
sumption at the cost of higher asymptotic complexity. In particular, the vOW
algorithm requires O(23n/4) computations (compared to O(2n/2) of MITM) to
recover the halfway curve between curves which are 2n-isogenous. Thus, while
the concrete performance of the attack may differ, its asymptotic complexity
remains subexponential.

Future improvements. A natural question to ask is whether the proposed
attack that queries points of the correct order may be improved to achieve a
polynomial running time. Consider that an attacker chooses an isogeny φV :
E0 → E0/〈V 〉 and he is given the curve E0/〈K,V 〉. Since the attacker knows
the entire isogeny φV , backtracking from E0/〈K,V 〉 to EK to recover φK(V )
in polynomial time does not seem too far fetched, since the attacker knows the
entire isogeny φV . A possible strategy may start by retrieving E0/〈K,V 〉 and
E0/〈K,V + 	eM

M V ′〉, for a point V ′ linearly independent of V . Their common
	M -neighbour is the first curve on the isogeny path. Then, the attacker may use
the knowledge of φV starting from E0 to distinguish between the 	M possible
candidates for the next curve on the isogeny path. Unfortunately, our efforts to
develop such an attack did not succeed. It remains an open problem whether
such an attack is possible.

4 Attack on the OPRF

Having presented an attack on one of the security assumptions underlying the
isogeny-based OPRF by Boneh et al., we investigate how an adversary can use
the same method to attack the OPRF itself.

We will show that a malicious client can send carefully crafted queries to the
server for which it can produce all necessary NIZK proofs required by the pro-
tocol that was summarized in Sect. 2.4. However, after some offline computation
analogously to the attack on the auxiliary one-more SIDH assumption outlined
in the previous section, the malicious client can evaluate the OPRF on any input
without the help of the server. Even though the malicious client does not recover
the server’s secret key k, this breaks the “pseudorandomness”, Definition 1, of
the OPRF. We will use the same notation as in Sect. 2.4 to refer to different
isogenies of the OPRF.

A malicious client will not use a hashed input to obtain the kernel for the
first isogeny φm : E0 → Em but rather choose the kernel of this first isogeny
maliciously. The choice is analogous to the points from E0[NM] that the attacker
submitted to the solve queries in the attack of the previous section. In other
words, instead of computing Em as E0/〈P + H(x)Q〉 for some input x, the
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malicious client chooses a point Vi and computes Em as E0/〈Vi〉 in the i-th
evaluation of the OPRF.

The rest of the protocol is executed honestly. The malicious client can pick
some r ∈ NR to blind his maliciously chosen Em. And it can compute the torsion
point information for the server honestly since it knows the kernel of the isogeny
E0 → Emr = Em/〈φm(PR) + [r]φm(QR)〉. In particular, the malicious client
will always be able to produce the valid non-interactive zero-knowledge proof
of knowledge for the kernel of E0 → Emr and the correct computation of the
torsion point information.

Following through with the rest of the OPRF protocol, the malicious client
obtains the j-invariant of the curve E0/〈Vi,K〉 after unblinding. Here K denotes
the server’s secret PK + [k]QK . This is exactly what corresponds to a “solve
query” in the auxiliary one-more SIDH game, Game 1.

Now the malicious client can proceed as in the attacks on the auxiliary one-
more SIDH assumption.

In the attack using points of arbitrary order dividing NM, the malicious client
recovers the isogeny EK → EK/〈φK(P )〉 = E0/〈K,P 〉 and therefore 〈φK(P )〉
for any P ∈ E0[NM] in polynomial time. This is done by submitting points of
lower order, i.e. choosing the isogeny E0 → Em shorter, to recover the isogeny
stepwise. After recovering three such isogenies corresponding to pairwise linearly
independent points P,Q, P + Q, the malicious client can compute E0/〈M,K〉
for any M ∈ E0[NM] as was shown in Sect. 3.2.

Then, the malicious client can evaluate the OPRF on arbitrary inputs x as
follows: They compute the point M := PM + H1(x)QM as in the honest eval-
uation and then they compute j(E0/〈M,K〉) directly. Hashing this j-invariant
together with the input x and public information of the server yields the output
of the OPRF. Note that the malicious client does not even need to interact with
the server to evaluate the OPRF on arbitrary inputs.

Clearly, this breaks the pseudorandomness property of an OPRF, see Defini-
tion 1, as a malicious client will be able to predict the output of the OPRF for
any input after the initial queries.

Remark 4. The SIDH-based OPRF protocol by Boneh et al. does not prohibit
malicious clients from using points of smaller order dividing NM, i.e. from using
a shorter isogeny E0 → Em. However, this attack could be thwarted if the server
checked that the submitted curve is of correct distance from the starting curve. A
simple test using pairing computations on the provided torsion point information
may be tricked, but the NIZK of the client could be extended to include a proof
that the client’s witness, i.e. the kernel of the isogeny E0 → Emr, is of full order
NMNR.

Even if countermeasures for this polynomial-time attack are put in place, we
are left with the following subexponential attack when points of full order are
used.

The client evaluates the OPRF on a certain number of inputs that correspond
to solve queries in the auxiliary one-more game. More precisely, the client chooses
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the kernel of his first isogeny as in the subexponential attack of the previous
section. After blinding, evaluation of the server and unblinding, the client obtains
what would have been the result of a “solve query” in the previous section. After
the offline computation which, using meet-in-the-middle routines, recovers the
binary tree described in Sect. 5, the client obtains torsion point images of E0[NM]
up to scalar under the isogeny E0 → EK := E0/〈PK + [k]QK〉. Again this is
enough to compute E0/〈M,K〉 for any M ∈ E0[NM] by Sect. 3.2, allowing the
client to compute the OPRF on arbitrary inputs and therefore breaking the
pseudorandomness property.

Possible countermeasures. In the case where the degree of the client’s isogeny
is forced to be NMNR, the proposed attack has subexponential complexity, and
thus possible countermeasures may include increasing the parameter sizes. How-
ever, the solve queries to time trade-off may reduce the feasibility of such an
approach. If the number of possible solve queries is unrestricted, to get 128-
bit security one would need the isogeny degree NM to be ≈ 2(128

2). This can
be partially mitigated by guaranteeing security only up to a certain number of
queries. Given a limit of 2Q queries, the exponent m needs to guarantee that
min{2

√
m−2, 2m/(Q+2)+Q} is at least 2λ. Thus, for 128-bit security, with Q = 64

the isogeny degree NM would have to be increased to ≈ 24224, whereas Q = 32
would require a degree NM ≈ 23264. Note that handling 232 queries may well be
within the scope of several OPRF applications, and isogenies of such a size may
become impractically large. Their feasibility, however, depends on the specifics of
the OPRF application and its time and bandwidth requirements. Thus, while the
attack is subexponential (assuming O(1) complexity for solve queries), increas-
ing the parameter size comes at a significant performance and communication
cost.

Therefore, it is important to consider possible algorithmic countermeasures.
Firstly, note that the attacker submits seemingly valid requests, so the server can-
not stop such interactions. Even if the server did want to prevent these requests,
it may not be able to detect them. This is because the attacker only submits the
image curve and some torsion point images under an isogeny with chosen kernel.

However, the attack strongly depends on the attacker choosing the point V .
If the input points V were randomized, the attack as such could not work. The
OPRF protocol requires that such points are obtained via hashing the client’s
PRF input x, but it does not enforce it. Hence, a possible countermeasure to
the proposed attack would be requiring the client to provide a zero-knowledge
proof that the curve Emr is not only the result of honest isogeny computations,
but also that the kernel of φm is the result of some hash function. However,
developing an ad-hoc and efficient proof that can prove such statements remains
an open problem.

5 Attack Implementation

We implemented the subexponential attack of Sect. 3.3 in SageMath to demon-
strate the correctness of the algorithm and prove its feasibility. The source code
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is freely available at https://github.com/isogenists/isogeny-OPRF. We remark
that this implementation is to be regarded only as a proof-of-concept and that
several subroutines can be further optimized. Improving their performance and
using lower-level languages, such as C, as well as platform-specific instructions,
such as AVX, could significantly reduce the running time of the attack.

The proposed attack has two distinguishing features that help its implemen-
tation: it can be easily parallelized, and it has very low memory requirements.
Indeed, the computations to recover the generators of 〈φK(PV )〉, 〈φK(QV )〉 and
〈φK(PV + QV )〉 are independent of each other. It is also possible to achieve a
higher degree of parallelization. Within each computation to recover a single
generator, the meet-in-the-middle operations within each layer of the tree are
also independent of each other, and they can thus be parallelized. In this case,
the tree is generated layer-by-layer in a breadth-first manner. Note that while
this may require a sizeable amount of memory to fully store an entire layer,
the memory requirements are hardly the bottleneck. An attack with 220 queries
requires to store, at most, 219 curves. Since an elliptic curve can be represented
by its j-invariant, the memory limit is 219 · 2 log p. With a prime of size ≈ 21500,
as proposed in the OPRF protocol, the memory limit is about 196 MB. Alter-
natively, it is possible to traverse the tree in a depth-first manner to further
lower the memory requirement, but this may limit the degree of parallelization.
We remark that while parallelization only provides a linear speed-up, its effects
can be significant. Our implementation provides parallelized meet-in-the-middle
computations with a configurable number of cores in parallel.

Results. The majority of the attack’s subroutines have polynomial complexity
and they are optimized enough that their performance does not affect the overall
running time. The building block that most affects the performance of the attack
is the meet-in-the-middle computation. Indeed, the timings of the attack are
directly correlated to the timing of a single meet-in-the-middle and the total
number of queries. The memory requirements of the attack are given by the
amount of memory needed for a single meet-in-the-middle, which in turn depends
on the distance between the two curves. For parallelized implementations of the
attack, the memory requirements correspond to as many meet-in-the-middle
computations as there are parallel instances.

Table 1 shows the running times at different security levels on an Apple M1
CPU clocked at 3.20 GHz with 4 CPUs running in parallel. Up to 32 bits of secu-
rity, the results come from running the entire attack, whereas for higher security
levels the results are estimated based on those of a single MITM computation.
The estimated time t is computed as

t =
3(M + Q)2q

C
, (1)

https://github.com/isogenists/isogeny-OPRF
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where M is the average running time of a MITM computation, Q is the average
running time of a solve query computation, 2q is the number of queries and C
is the number of CPUs running in parallel. This formula follows from the fact
that there are 2q MITM computations and 2q solve queries for each generator
recovery, and three of those are needed. Moreover, parallelization gives a lin-
ear speed-up, and the remaining computations (such as those of Sect. 3.2) are
extremely fast when compared to the rest of the attack, and thus negligible.
Running computations at lower security levels and computing Eq. 1 does indeed
estimate the running time accurately. It should be noted that this remains an
estimate and the real results may vary to some degree.

We estimate that our non-optimized implementation running on a laptop
with 4 CPUs can break 64 bits2 of security in less than two days and 128 bits of
security in about 5 years. If the same attack was performed with more powerful
hardware and an optimized implementation, the running time could easily be
reduced to a matter of months, if not weeks. We remark that if a server rotates
its keys often, an attack that breaks the server one-more unpredictability after
the key has changed still leads to significant attacks. For instance, in the case
of OPRF-based private set intersection protocols, breaking the one-more unpre-
dictability property allows the attacker to break the privacy property of the
server’s set at the time when that specific key was used.

Lastly, note that in the implementation solve queries are simulated locally.
A real attack would interact with the server, and thus the “correct” attack
time should not include the query computation times. For completeness, Table 1
reports the running time of the entire implementation, including the solve
queries.

6 Trusted Setup

In the OPRF protocol of Boneh et al., the authors suggest using a random
supersingular elliptic curve as starting curve. However, there is currently no
known algorithm to generate a random supersingular elliptic curve such that its
endomorphism ring is unknown to the person who generated it. Some attempts
to solve this problem have been proposed in [26] and further studied in [6]. This
motivates the following question:

2 We report the results for eM = 169, which corresponds to λ = 67. That is because
our implementation requires (q + 2) | eM , and 169 allows choosing q = 11. Using
eM = 160 would have required using significantly more queries or a longer MITM,
thus resulting in worse performance. Note that the requirement that (q + 2) | eM is
a limitation of the implementation and not of the attack itself.
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Table 1. Results of our proof-of-concept implementation of the attack, running on an
Apple M1 CPU clocked at 3.20 GHz with 4 CPUs in parallel and SageMath version
9.2. Results for λ = 128 are estimated based on the average running time of a meet-
in-the-middle computation. Parameters include the size of the prime p, the security
level λ, the degree of the isogeny written as NM = 2eM , and the number of queries
2q. The MITM section reports the distance between the curves and memory needed to
compute a single meet-in-the-middle.

Parameters MITM Running time

log p λ eM q Distance Memory (kB) (s)

112 8 20 3 8 3.5 15

216 16 40 6 10 13.8 212 (3.53 m)

413 32 80 8 16 211.4 1,371 (22.85 m)

859 67 169 11 26 14,073 163,869 (1.89 d)

1,614 128 320 18 40 3,384,803 174,709,440 (5.54 y)

Is a trusted third party needed to generate the starting curve E0?

Phrased differently, would choosing the starting curve E0 and therefore
knowledge of its endomorphism ring allow a malicious server, client or third
party to break security properties of the (V)OPRF?

We first discuss whether a server may know the endomorphism ring of the
starting curve E0. The security proof by Boneh et al.’s OPRF relies on the
hardness of finding two distinct isogenies (up to isomorphism) of the same degree
from E0 to a second curve [3, Lemma 29]. If the server chooses the starting
curve and therefore knows its endomorphism ring, they are able to produce
such collisions by breaking the collision resistance of the CGL hash function as
in [15,29]. To guarantee provable security, a server should therefore not choose
the starting curve.

However, breaking the verifiability insured by the zero-knowledge proof [3,
Protocol 17] or the weak binding property [3, Game 3] of the protocol seems
harder than finding collisions. Indeed, the server would need to produce two
isogenies of degree dividing NK such that both isogenies have the same action
on the NV-torsion for a chosen starting curve. We leave adapting the security
proofs or finding an attack on the zero-knowledge proof for future work.

We now argue that any other party, either the client or a third party, cannot
choose the curve E0 either without compromising the security of the protocol.
In [13], the authors describe algorithms for finding a secret isogeny when torsion
information is provided. Their algorithms can be split into two categories: one
where the starting curve has j-invariant 1728 and one where the starting curve
is a trapdoor curve from which one can solve the isogeny problem faster than
generic meet-in-the-middle algorithms. Trapdoor curves are parameterized by a
pair (A,B) where A corresponds to the degree of the secret isogeny and B to the
order of torsion points whose image under the secret isogeny is known. When
B ≈ A2 or larger, then one can construct (A,B) trapdoor curves from which
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one can retrieve secret isogenies of degree A in polynomial time, if the action on
the B-torsion is known [13, Theorem 15].

Attacks from the special starting curve with j-invariant 1728 do not apply
here, since the starting curve cannot have j-invariant 1728 because the endomor-
phism ring needs to be unknown to the server. However, trapdoor curves have
the property that without extra information they are difficult to distinguish from
a random supersingular curve.

Suppose that a malicious party generates the starting curve E0 in the fol-
lowing way. They generate a curve E′ which is a trapdoor (NK, NVNR)-curve
and then perform a random walk of length NMNR to obtain E0 which is sent
to the server. Now the malicious party poses as a client and instead of honestly
complying with the protocol, they use E′ as Emr. They can prove knowledge of a
suitable isogeny and torsion point images as they know an isogeny of the correct
degree from E0. Then the server computes Emrk and reveals the action of the
NVNR-torsion. Since Emr was chosen to be a trapdoor curve and NVNR ≈ N2

K,
the malicious party can retrieve this isogeny in polynomial time.

Such an attack can be thwarted by applying a trusted setup in which E0 is a
truly random curve. In [4, §4], an efficient way to perform a distributed trusted
setup is described, ensuring that, if at least one participant is honest, the setup
can be trusted. In that case, torsion point attacks are not applicable. The attack
can also be weakened by substantially increasing NK. However, this might be
susceptible to future improvements of trapdoor curve constructions.

7 Conclusion

In this paper, we perform a thorough cryptanalysis of Boneh et al.’s SIDH-based
oblivious pseudorandom function. The security of this OPRF is based on a new
hardness assumption, the auxiliary one-more assumption. We investigate this
assumption and we show how an attacker can win the corresponding security
game in polynomial time, or with the appropriate countermeasures in subexpo-
nential time.

The attack on the underlying hardness assumption leads to an attack on
the pseudorandomness of the OPRF itself. We show how a malicious client can
extract enough information from a number of initial executions of the OPRF
protocol to subsequently evaluate the OPRF on arbitrary inputs without fur-
ther interaction with the server. In particular, this attack breaks the security
parameters provided by Boneh et al. As a proof of concept, we implement the
attack in SageMath, verified its correctness and give timings for various security
levels.

Furthermore, we discuss the security implications following from a lack of a
trusted setup when generating the starting curve parameter in the SIDH-based
OPRF. Note that Boneh et al. do not explicitly require a trusted setup. We
show how a client or a third party generating the starting curve can backdoor
it to retrieve the server’s secret key, while a malicious server could generate the
starting curve to break the supersingular-isogeny collision assumption.
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This work leads to some open problems. On one hand, one could improve
and extend the proposed attack, with a particular focus on reducing the com-
plexity of the subexponential attack to polynomial time, as well as extending
it to the CSIDH-based OPRF. On the other hand, further work is needed to
develop efficient countermeasures against the subexponential attack or to design
a novel SIDH-based VOPRF. Future research will also focus on understanding
the implications of breaking the supersingular-isogeny collision assumption on
the OPRF protocol itself, and whether it is possible to avoid a trusted setup.
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Abstract. The cube attack is one of the most important cryptanalytic
techniques against Trivium. Many key-recovery attacks based on cube
attacks have been established. However, few attacks can recover the 80-
bit full key information practically. In particular, the previous best prac-
tical key-recovery attack was on 784-round Trivium proposed by Fouque
and Vannet at FSE 2013. To mount practical key-recovery attacks, it
requires a sufficient number of low-degree superpolies. It is difficult both
for experimental cube attacks and division property based cube attacks
with randomly selected cubes due to lack of efficiency. In this paper,
we give a new algorithm to construct candidate cubes targeting linear
superpolies. Our experiments show that the success probability is 100%
for finding linear superpolies using the constructed cubes. We obtain over
1000 linear superpolies for 805-round Trivium. With 42 independent lin-
ear superpolies, we mount a practical key-recovery attack on 805-round
Trivium, which increases the number of attacked rounds by 21. The com-
plexity of our attack is 241.40, which could be carried out on a PC with
a GTX-1080 GPU in several hours.

Keywords: Cube attacks · Key-recovery attacks · Trivium · Heuristic
algorithm · Möbius transformation

1 Introduction

Trivium [2] is a bit-oriented synchronous stream cipher designed by De Cannière
and Preneel, which is one of the eSTREAM hardware-oriented finalists and an
International Standard under ISO/IEC 29192-3:2012. Due to the simple struc-
ture and high level security, Trivium attracts a lot of attention.

The cube attack, first proposed by Dinur and Shamir in [4], is a powerful key-
recovery attack against Trivium. There are two main phases in a cube attack.
In the first phase, called the preprocessing phase, one needs to find appropriate
cubes and recover their superpolies which are generally low-degree polynomials
in key variables. In the second phase, called the on-line phase, by querying the
encryption oracle, one could evaluate the superpolies under the real key and so

Supported by the National Natural Science Foundations of China under grant nos.
61672533.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13090, pp. 187–213, 2021.
https://doi.org/10.1007/978-3-030-92062-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92062-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-92062-3_7


188 C.-D. Ye and T. Tian

obtain a system of equations in key variables. Then, by solving the obtained
system of equations, some bits of information in key or even the whole key could
be recovered. Since proposed, many improvements have been established on cube
attacks such as cube testers [1], dynamic cube attacks [3,5,17], conditional cube
attacks [10,13], division property based cube attacks [8,9,21,22,24,25,28] and
correlation cube attacks [15].

Most of the previous work tried to recover the ANFs of the superpolies such
that the number of initialization rounds as large as possible. Some attacks could
only recover one or two key bits and some attacks have very marginal online
complexities. For example, in [7–9], cubes of sizes over 74 were used to recover
key bits for 840-, 841- and 842-round Trivium. In these cases, one to three key
bits could be recovered with the superpolies. Then, it needs at least 277 requests
to exhaustively search the remaining key bits. Thus, the total complexity is very
close to that of the brute-force attack using these large cubes.

Those attacks targeting a large number of rounds do not immediately imply a
practical attack. A practical key-recovery attack on Trivium is also an important
security evaluation of Trivium and a measure of the improvement of cube attacks.
Considering a practical key-recovery attack against Trivium, the difficulty lies
in finding a sufficient number of useful superpolies. To randomly search cubes
with linear superpolies for the round-reduced Trivium with over 800 rounds is
almost impossible. Currently, for Trivium, the number of initialization rounds
that could be reached by cube attacks with a practical complexity is 784.

How to construct useful cubes in cube attacks has long been a difficult prob-
lem. In [4] and [6], the authors provided some ideas for finding cubes with linear
superpolies. More specifically, in [4], the authors proposed the random walk
method. This method starts with a randomly chosen set I of cube variables.
Then, an IV variable is removed randomly from I if the corresponding superpoly
is constant and a randomly chosen IV variable is added to I if the corresponding
superpoly is nonlinear. This process is repeated to find cubes which pass through
a sufficient number of linearity tests. If it fails, then the process restarted with
another initial I. With this method, for 767-round Trivium, 35 linear superpolies
were found. In [6], the authors proposed to construct a candidate large cube by
disjoint union of two subcubes yielding 12 zero polynomials on some specific
internal state bits determined by the recursive relation of the six bits involved
in the output function. As a result, for 784-round Trivium, they found 42 linear
superpolies. Furthermore, for 799-round Trivium, the authors declared that the
only way linear superpolies have been found was using this method to construct
cubes.

Besides, the idea of Greedy algorithm has been found useful in construct-
ing cube distinguishers. In [19], the authors first proposed the GreedyBitSet
algorithm to construct cube distinguishers and nonrandomness detectors. Later,
in [18], based on the work in [19], the authors studied the state biases as well
as keystream biases. As a result, they obtained cube distinguishers for 829-
round Trivium and 850-round TriviA-SC. In [12], combining the GreedyBit-
Set algorithm with the degree evaluation method proposed in [14], the authors
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improved the work in [18]. As a result, they found good distinguishers on Triv-
ium, Kreyvium and ACORN. In particular, they provided a zero-sum distin-
guisher on 842-round Trivium and a significant non-randomness up to 850-round
Trivium.

1.1 Our Contributions

This paper is devoted to practical key-recovery attacks against 805-round Triv-
ium. To achieve this goal, the key problem is to find lots of cubes with linear
superpolies. As mentioned above, this is quite difficult when the number of round
is over 800. Our main contribution is to propose a new method to construct
cubes, which is experimentally verified to be quite effective. It consists of the
following three aspects.

A Heuristic Algorithm to Construct Candidate Cubes. By combining the
GreedyBitSet algorithm with the division property, we propose a new algorithm
to construct cubes targeting linear superpolies. The new algorithm begins with
a small set of cube variables and then extends it iteratively. More specifically,
there are mainly two stages in our algorithm. During the first stage, we select
an IV variable (called ‘steep IV variable’ in this paper) which could decrease the
degrees of the superpolies as fast as possible in each iteration. If we fail in the
first stage, then we step into the second stage, where we pick up IV variables
(called ‘gentle IV variables’ in this paper) which decrease the degrees of the
superpolies as slowly as possible. Benefited from this two-stage algorithm, we
could successfully construct cubes such that degrees of the superpolies are close
to 1. Note that, the idea of this algorithm is also applicable to other NFSR-based
stream ciphers.

The Preference Bit and an Algorithm to Predict It. Note that all known
linear superpolies of Trivium are very sparse, and the output bit function of Triv-
ium is the XOR of six internal state bits. It is thought that a linear superpoly
probably comes from a single internal state bit. Hence, to determine a proper
starting set of the above new algorithm, we propose the concept of the prefer-
ence bit. Based on the structure analysis of Trivium, an iterative algorithm is
provided to roughly predict the preference bit of r-round Trivium. The experi-
mental results show that our algorithm could predict the preference bit with a
success probability 75.3%.

The Improved Möbius Transformation. In cube attacks, the Möbius trans-
formation is a powerful tool which could be used to test all the subcubes of a large
cube simultaneously. However, its memory complexity is very large. To reduce
the memory complexity, we divide the original Möbius transformation into two
stages. Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1. Let
q be a positive integer less than n − 1. In the first stage, the Möbius transfor-
mations of f(x0, . . . , xn−q−1, 0, 0, . . . , 0), f(x0, . . . , xn−q−1, 1, 0, . . . , 0), . . . , f(x0,
. . . , xn−q−1, 1, 1, . . . , 1) are calculated and only a part of each Möbius transfor-
mation is stored. In the second stage, based on these partly stored transforma-
tions, we could recover a part of the ANF of f with a method similar to the
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Möbius transformation of a q-variable Boolean function. With this technique,
the memory complexity could be decreased from 2n bits to about 2n−q bits.
When it comes to practical cube attacks, this method enables us to test a large
number of subcubes of a large cube set at once with a reasonable memory com-
plexity. For instance, we could simultaneously test 232.28 subcubes of a cube
set of size 43 with less than 9 GBs memory, while testing such a cube with the
original Möbius transformation requires 243 bits (1024 GBs) memory.

s
(r)
λ I I LS

Targeting r-round Trivium

Predict the
preference bit

Determine a
proper starting set

Extending the starting set

with the heuristic algorithm

Merge some candidate cubes and find linear superpolies

with the improved Möbius Transformation

LS: Linear Superpolies

The First Phase The Second Phase The Third Phase

Fig. 1. The sketch of our idea

As an illustration, we apply our methods, whose sketch is shown in Fig. 1,
to 805-round Trivium. As a result, we obtain more than 1000 cubes with linear
superpolies for 805-round Trivium. Among these linear superpolies, there are 38
linearly independent superpolies. Besides, by sliding some cubes of 805-round
Trivium to 806-round Trivium, we easily obtain several linear superpolies for
806-round Trivium. Based on the linear superpolies of 805- and 806-round Triv-
ium, 42 key bits could be recovered for 805-round Trivium with 241.25 requests.
By adding a brute-force attack, the 80-bit key could be recovered within 241.40

requests, which could be practically implemented by a PC with a NVIDIA GTX-
1080 GPU in several hours. This attack on 805-round Trivium improves the pre-
vious best practical cube attacks by 21 more rounds, and it is the first practical
attack for Trivium variants with more than 800 initialization rounds. As a com-
parison, we summarize the cube attacks based key-recovery attacks against the
round-reduced Trivium in Table 1. Furthermore, to show the effectiveness of the
heuristic algorithm to construct candidate cubes, we also applied our method to
810-round Trivium. By only testing one 43-dimensional cube, we find two 42-
dimensional cubes with linear superpolies. Since it is almost impossible to find
a linear superpoly for 810-round Trivium by random walk algorithm in [4] and
the disjoint union method in [6], it is shown that the new heuristic algorithm to
construct candidate cubes is powerful.

1.2 Organisation

The rest of this paper is organized as follows. In Sect. 2, we give some basic
definitions and concepts. In Sect. 3, we show an algorithm to construct cubes
which are potential to have linear superpolies. In Sect. 4, we propose an improved
Möbius transformation which enables us to test a large mount of subcubes of
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Table 1. A summary of key-recovery attacks on Trivium

Attack type # of rounds Off-line phase On-line phase Total time Ref.

Cube size # of key bits

Practical 672 12 63 217 218.56 [4]

709 22-23 79 <2 229.14 [16]

767 28-31 35 245 245.00 [4]

784 30-33 42 238 239 [6]

805 32-38 42 238 241.40 Sect. 5

Not practical 799 32-37 18 262 262.00 [6]

802 34-37 8 272 272.00 [27]

805 28 7 273 273.00 [15]

806 34-37 16 264 264 Sect. 5

835 35 5 275 275.00 [15]

832 72 1 279 279.01 [21,22,25]

832 72 >1 279 <279.01 [29]

840 78 1 279 279.58 [8]

840 75 3 277 277.32 [9]

841 78 1 279 279.58 [8]

841 76 2 278 278.58 [9]

842 78 1 279 279.58 [7]

842 76 2 279 278.58 [9]

a large cube simultaneously with a reasonable memory complexity. In Sect. 5,
we apply our method to round-reduced Trivium and establish a practical cube
attack on 805-round Trivium. Finally, Sect. 6 concludes the paper.

2 Preliminaries

In this section, we introduce some related concepts and definitions.

2.1 Specification of Trivium

Trivium is a bit-oriented synchronous stream cipher which was one of eSTREAM
hardware-oriented finalists. The main building block of Trivium is a 288-bit
nonlinear feedback shift register. For every clock cycle there are three bits of the
internal state updated by quadratic feedback functions and all the remaining
bits of the internal state are updated by shifting. The internal state of Trivium
is initialized by loading an 80-bit secret key and an 80-bit IV into the registers,
and setting all the remaining bits to 0 except for the last three bits of the third
register. Then, after 1152 initialization rounds, the key stream bits are generated
by XORing six internal state bits. Algorithm 1 describes the pseudo-code of
Trivium. For more details, please refer to [2].
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Algorithm 1. Pseudo-code of Trivium
1: (s1, s2, . . . , s93) ← (x1, x2, . . . , x80, 0, . . . , 0);
2: (s94, s95, . . . , s177) ← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288) ← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: t1 ← s66 ⊕ s93 ⊕ s91s92 ⊕ s171;
6: t2 ← s162 ⊕ s177 ⊕ s175s176 ⊕ s264;
7: t3 ← s243 ⊕ s288 ⊕ s286s287 ⊕ s69;
8: if i > 1152 then
9: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;

10: end if
11: (s1, s2, . . . , s93) ← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177) ← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288) ← (t2, s178, . . . , s287);
14: end for

2.2 Cube Attacks

The idea of cube attacks was first proposed by Dinur and Shamir in [4]. In a
cube attack against stream ciphers, an output bit z is described as a Boolean
function f in key variables k = (k0, k1, . . . , kn−1) and public IV variables v =
(v0, v1 . . . , vm−1), i.e., z = f(k,v). Let I = {vi1 , vi2 , . . . , vid

} be a subset of IV
variables. Then f can be rewritten as

f(k,v) = tI · pI(k,v) ⊕ qI(k,v),

where tI =
∏

v∈I v, pI does not contain any variable in I, and each term in qI is
not divisible by tI . It can be seen that the summation of the 2d functions derived
from f by assigning all the possible values to d variables in I equals to pI , that
is, ⊕

(vi1 ,vi2 ,...,vid
)∈F

d
2

f(k,v) = pI(k,v).

The public variables in I are called cube variables, while the remaining IV vari-
ables are called non-cube variables. The set CI of all 2d possible assignments
of the cube variables is called a d-dimensional cube, and the polynomial pI is
called the superpoly of CI in f . For the sake of convenience, we also call pI the
superpoly of I in f . It is worth noting that the superpoly of I in f is a polyno-
mial in key variables when all the non-cube variables are set to constant. In the
following paper, we set the non-cube variables to 0’s in default.

A cube attack consists of the preprocessing phase and the on-line phase.

– Off-line Phase. The attacker should find cubes whose superpolies in the
output bit are low-degree polynomials.

– On-line Phase. For each cube obtained in the off-line phase, the attacker
inquires the encryption oracle to get the cube summation under the real key.
With the obtained cube summations corresponding to the previously found
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cubes, a system of low-degree equations in key variables could be set up.
Then, by solving this system of equations, some key bits could be recovered.
Finally, by adding a brute-force attack (if there are some key bits remaining
unknown), the whole key could be recovered.

2.3 The Bit-Based Division Property and a Degree Evaluation
Algorithm Based on It

In [23], the authors proposed the conventional bit-based division property whose
definition is as follows.

Definition 1 (Bit-Based Division Property [23]). Let X be a multi-set
whose elements take a value of F

n
2 . Let K be a set whose elements take an n-

dimensional bit vector. When the multi-set X has the division property D1n

K
, it

fulfills the following conditions:

⊕

x∈X

xu =
{

unknown if there exists α in K s.t. u � α,
0 otherwise,

where u � α if and only if ui ≥ ki for all i and xu =
∏n−1

i=0 xui
i .

Due to the high memory complexity, the bit-based division property was
confined to be applied to small block ciphers such as SIMON32 and Simeck32
[23]. To avoid such a high memory complexity, in [26], the authors applied the
mixed integer linear programming (MILP) methods to the bit-based division
property. They first introduced the concept of division trails, which is defined as
follows.

Definition 2 (Division Trail [26]). Let us consider the propagation of the
division property {α} = K0 → K1 → K2 · · · → Kr. Moreover, for any vector
α∗

i+1 ∈ Ki+1, there exist a vector α∗
i ∈ Ki such that α∗

i can propagate to α∗
i+1 by

the propagation rules of division property. Furthermore, for (α0,α1, . . . ,αr) ∈
K0 ×K1 × · · · ×Kr if αi can propagate to αi+1 for i ∈ {0, 1, . . . , r − 1}, we call
α0 → α1 → · · · → αr an r-round division trail.

In [26], the authors described the propagation rules for AND, COPY and
XOR with MILP models, see [26] for the details. Therefore, they could build
an MILP model to cover all the possible division trails generated during the
propagation. Besides, in [20,21], the authors simplified those MILP models in
[26]. In particular, in [21], the division property based cube attacks were proposed
for the first time and were applied to attacking Trivium, Grain-128 and Acorn
successfully. Later, to improve the work of [21], in [24], the authors proposed a
degree evaluation algorithm which was based on the following proposition.

Proposition 1 ([24]). Let f(x,v) be a polynomial, where x and v denote
the secret and public variables, respectively. For a set of indices I =
{i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}, let CI be a set of 2|I| values where the vari-
ables in {vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI
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be an m-dimensional bit vector such that vI = tI = vi1vi2 · · · vi|I| . Let kΛ be an

n-dimensional bit vector. If there is no division trail such that (kΛ||kI)
f−→ 1,

then the monomial xkΛ is not involved in the superpoly of the cube CI .

If there is d ≥ 0 such that for all kΛ of Hamming Weight hw(kΛ) > d,
the division trail xkΛ does not exist, then it can be seen that d is an upper
bound of the algebraic degree of the superpoly. With the MILP method, this d
can be naturally modeled as the maximum of the objective function

∑n
j=1 xj .

Therefore, for a given set of cube variables, by solving MILP models, an upper
bound of the degree of the superpoly could be obtained. For more details, please
refer to Sect. 4 of [24]. In the following paper, we shall combine this algorithm
with some greedy strategies to find cubes with linear superpolies.

2.4 The Möbius Transformation

In [5], Dinur and Shamir suggested using the Möbius transformation to compute
all possible subcubes of a large cube at once. Later, in [6], the author showed
some ways to use the Möbius transformation in cube attacks on Trivium.

Let f be a polynomial in F2[x0, x1, . . . , xn−1], whose algebraic normal form
is given by

f(x0, . . . , xn−1) =
⊕

c=(c0,...,cn−1)∈F
n
2

g(c0, . . . , cn−1)
n−1∏

i=0

xci
i ,

where the function g giving the coefficient of each term
∏n−1

i=0 xci
i is the Möbius

transformation of f . With the knowledge of the truth table of f , one could
calculate the ANF of f by using the Möbius transform, see Algorithm 2.

Algorithm 2. The Möbius transformation algorithm
Require: Truth Table S of f with 2n entries
1: for i from 0 to n − 1 do
2: Let Sz ← 2i, Pos ← 0
3: while Pos < 2n do
4: for j = 0 to Sz − 1 do
5: S[Pos + Sz + j] ← S[Pos + j] ⊕ S[Pos + Sz + j]
6: end for
7: Let Pos ← Pos + 2 · Sz
8: end while
9: end for

For Algorithm 2, it can be found that it needs to store the whole truth table
of f and so a large mount of memory is needed. Specifically, for an n-variable
polynomial f , it requires 2n bits of memory. Furthermore, the computational
complexity of Algorithm 2 is n · 2n basic operations, since the innermost loop
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is executed n · 2n−1 times, which consists of a single assignment and a XOR
operation. It is worth noting that Algorithm 2 could be accelerated. For instance,
a 32-bit implementation is presented in [11] which performs roughly 32 times less
operations, and so has a complexity of n · 2n−5 operations.

Now we consider the application of the Möbius transformation to cube
attacks. Assume that f(k0, k1, . . . , kn−1, v0, v1 . . . , vm−1) is the output bit of a
cipher in key variables k0, k1, . . . , kn−1 and IV variables v0, v1 . . . , vm−1. Let
I = {vi1 , vi2 , . . . , vid

} be a set of cube variables. When all the other variables
are set to constants, the output bit function f is reduced to a polynomial f ′

on cube variables in I only. Given the truth table of f ′, by using the Möbius
transformation, the ANF of f ′ could be recovered. Note that, for a subset I ′ of I,
the coefficient of the term

∏
v∈I′ v is the value of pI′ when the variables in I \ I ′

are set to 0’s, where pI′ is the superpoly of I ′ in f . Based on this fact, with the
Möbius transformation, experimental tests such as linearity tests and quadratic
tests could be done at once for all the subcubes of a large set of cube variables.
It can be seen that the Möbius transformation makes finding linear/quadratic
superpolies easier and so improves the efficiency of cube attacks.

3 Construct Potentially Good Cubes

Finding cubes which could be used to mount key-recovery attacks is a tough
task in cube attacks. Collecting enough such cubes to establish practical attacks
is even more difficult. In this section, combining the idea of GreedyBitSet algo-
rithm with division property, we first devote to constructing cubes which are
potential to have linear superpolies1 through extending a starting cube set iter-
atively. Then, to obtain a proper starting cube set, we propose the concept of
the preference bit and present an algorithm to predict the preference bit based
on a structural analysis of Trivium. Combining these ideas, we could construct
potentially good cubes successfully.

3.1 A Heuristic Algorithm of Constructing Cubes

In cube attacks, linear superpolies are of significance since linear equations in
key variables could be set up based on linear superpolies. To construct cubes
which potentially have linear superpolies, we combine the division property with
heuristic algorithms to extend a small set of cube variables iteratively. Before
illustrating our idea, we shall first give the following definitions.

Definition 3 (Steep IV Variable). Let I = {vi1 , vi2 , . . . , vi�
} be a set con-

taining � cube variables. Then, an IV variable b ∈ B = {v0, v1, . . . , vm−1} \ I is
called a steep IV variable of I if ds(I ∪ {b}) = min{ds(I ∪ {v})|v ∈ B}, where
ds(I) is the degree of the superpoly of I in key variables.

1 Constant polynomials are also linear. However, key bits could not be recovered from
constant superpolies directly. Hence, in this paper, when talking about linear super-
ploies, we do not take the constant linear into consideration.
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Let I be a starting set of cube variables, which is a small set. It can be seen
that a steep IV variable of I is exactly the one which makes the degree of the
superpoly decrease most. To construct a cube with a linear superpoly from I,
a natural idea is to extend I iteratively, where a steep IV variable is added to
the current set I in each iteration. With this strategy, the degree of superpoly
could be decreased fast. However, decreasing the degree of the superpoly too fast
sometimes brings troubles to constructing cubes with linear superpolies. Assume
that I ′ is constructed from I after several iterations, where a steep IV variable
is added in each iteration. Let v be a steep IV variable of I ′. It is possible that
ds(I ′ ∪ v) = 0, while ds(I ′) > 5. It indicates that adding a steep IV variable
could make the degree of the superpoly decrease to 0 suddenly. Hence, it may
fail to construct cubes with linear superpolies by only adding steep IV variables.
We perform experiments on Trivium and the results show that this phenomenon
happens frequently. We provide a concrete example happening in the case of
805-round Trivium, see Example 1.

Example 1. For 805-round Trivium, we try to construct a good cube by extend-
ing {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}. After
16 iterations, we obtain the set

I ′ = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50,

v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47}

by adding a steep IV variable in each iteration. The degree of pI′ is upper
bounded by 9. For I ′, v56 is a steep IV variable. However, after adding v56 to I ′,
the degree of pI′∪{v56} is 0. Namely, v56 decreases the degree of the superpoly
from 9 to 0 suddenly. It indicates that we fail to construct a cube with a linear
superpoly in the output of 805-round Trivium by only adding steep IV variables.

Recall that our aim is to construct cubes with linear superpolies rather than
those with zero-constant superpolies. From Example 1, it can be seen that always
adding a steep IV variable does make our aim break sometimes. To solve this
problem, we propose the concept of gentle IV variables which decrease the degree
of the superpoly slowly. We formally describe the definition of the gentle IV
variable in Definition 4.

Definition 4 (Gentle IV Variable). Let I = {vi1 , vi2 , . . . , vi�
} be a set con-

taining � cube variables. Then, an IV variable b ∈ B is called a gentle IV vari-
able of I if ds(I ∪ {b}) = max{ds(I ∪ {v})|ds(I ∪ {v}) ≤ ds(I), v ∈ B}, where
B = {v0, v1, . . . , vm−1} \ I and ds(I) is the degree of the superpoly of I.

It can be seen from Definition 4 that a gentle IV variable of I is exactly the
one which could decrease the degree of the superpoly as slowly as possible. With
gentle IV variables, the above phenomenon could be avoided by adding gentle
IV variables instead of steep IV variables to I ′, where I ′ is obtained by adding
steep IV variables to I after several iterations.
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I I I

Expanding I by adding steep IV variables

to decrease the degrees of superpolies quickly

First Stage

Expanding I by adding gentle IV variables

to decrease the degrees of superpolies slowly

Second Stage

I is a potentially good cube

Fig. 2. The sketch of our idea

Based on the above ideas, we propose a new heuristic algorithm to construct
cubes with linear superpolies. The sketch of our idea is shown in Fig. 2. Algorithm
3 describes the details of our idea. In Algorithm 3, similar to the GreedyBitSet
algorithm proposed in [19], we start with a small starting set of cube variables.
Then, there are two stages in Algorithm 3. During the first stage, a steep IV
variable is added to the current set I of cube variables so that the degree of
the superpoly could be decreased as fast as possible. To determine the steep IV
variable of I, we use the degree evaluation method based on division property,
which was proposed in [24], to calculate the upper bound of ds(I ∪ v) for each
IV variable which is not in I. As illustrated above, if only steep IV variables
are added, the degree of the superpoly may be decreased to 0 suddenly and so
constructing cubes with linear superpolies fails. If so, Algorithm 3 would step
into the second stage, where we hope to decrease the degree of the superpoly
slowly. During the second stage, we add the first gentle IV variable into the
current cube set in each iteration. To determine the gentle IV variables, the
same method in stage one is used. By gradually adding gentle IV variables,
which make the degree of the superpoly decrease slowly, it is more hopeful to
construct cubes with linear superpolies.

Remark 1. In the second stage of Algorithm 3, for I, it may encounter the case
that ds(I ∪ {v}) > ds(I) or ds(I ∪ {v}) = 0 holds for each v ∈ B, i.e., the gentle
IV variable of I may do not exist. In this case, we select the cube variable b such
that ds(I ∪ {b}) = min{ds(I ∪ {v}) > ds(I)|v ∈ B} to update I.

Construct A Mother Cube. Note that the superpoly of the cube obtained
with Algorithm 3 may be not linear still, since the division property based
method only returns an upper bound of the degree of the superpoly. To make it
more possible to find linear superpolies, we attempt to construct a large cube,
called a mother cube in the following paper, and then use the Möbius transfor-
mation to test its subcubes simultaneously. Such a mother cube is constructed
by jointing some cubes obtained in the last iteration.

Let I be the set of cube variables before the last iteration. When selecting
cubes, we prefer to choose those cubes such that the degree of the corresponding
superpolies are low. More specifically, for j starting from 1 incrementally, we
gradually update the set I as follows until a mother cube with a desired size is
obtained

I ← I ∪ {v ∈ B| the upper bound of ds(I ∪ v) = j},

where B = {v0, v1, . . . , vm−1} \ I. We offer a concrete example of constructing a
mother cube in Subsect. 5.2.
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Algorithm 3. The algorithm of constructing cubes with linear superpolies
Require: a set of cube variables I = {vi1 , . . . , vic } of size c and the target round r

1: B ← {v0, v1, . . . , vm−1} \ I;
2: d ← +∞;

/* The first stage */
3: while d > 1 and |I| is less than a given bound do
4: for v ∈ B do
5: Estimate the upper bound of ds(I ∪ {v}) using the division property based method;
6: end for
7: I ← I ∪ {v}, where v is the first steep IV variable of I;
8: B ← B \ v;
9: d ← DS(I ∪ {v}), where DS(I ∪ {v}) is the upper bound of ds(I ∪ {v})
10: end while
11: if d(I) == 1 then
12: return I
13: end if

/* The second stage */
14: if d(I) == 0 then
15: I ← I \ {v}, where v is the steep IV variable added in the last iteration of the first stage.
16: I ← I ∪ {v′}, where DS(I ∪ {v′}) attains minimum except 0 in the last iteration of the first

stage.
17: B ← {v0, v1, . . . , vm−1} \ I;
18: while d > 1 and |I| is less than a given bound do
19: for v ∈ B do
20: Estimate the upper bound of ds(I ∪ {v}) using the division property based method;
21: end for
22: I ← I ∪ {v}, where v is the first gentle IV variable
23: B ← B \ v;
24: d ← DS(I ∪ {v})
25: end while
26: end if

3.2 Determine Starting Cube Sets

One critical point of Algorithm 3 is that it requires a small set of cube variables
as its input. In this subsection, based on careful analysis of the structure of
Trivium, we shall present a method to determine a proper starting set of cube
variables to make Algorithm 3 work well.

Recall that the output function of r-round Trivium is the linear combination
of six internal state bits, i.e., zr =

⊕6
j=1 s

(r)
λj

, where {λ1, λ2, λ3, λ4, λ5, λ6} =
{66, 93, 162, 177, 243, 288}.

It is worth noting that all the known linear superpolies of Trivium are sparse,
and most of them contain only a single key variable. It is very likely that there
exists some j ∈ {1, 2, 3, 4, 5, 6} such that pI = pλj

and pi�
= 0 for � �= j, where

pλ�
is the superpoly of I in s

(r)
λ�

for � ∈ {1, 2, 3, 4, 5, 6}. In this paper, for a set
of cube variables I, if there exists some j ∈ {1, 2, 3, 4, 5, 6} such that pI = pλj

and pλ�
= 0 for � �= j then we say that the superpoly pI comes from s

(r)
λj

. The
following is an illustrative example.

Example 2. For 769-round Trivium, the superpoly of

I = {v1, v3, v5, v7, v10, v12, v14, v16, v18, v20, v23, v26, v30, v39, v41,

v42, v43, v47, v50, v52, v53, v55, v58, v60, v61, v64, v69, v71, v78}
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in the output bit z769 is pI = k22. We figure out the superpolies of I in s
(769)
66 ,

s
(769)
93 , s

(769)
162 , s

(769)
177 , s

(769)
243 , s

(769)
288 , respectively. The results show that only p66 =

k22 is linear and the rest five superpolies are 0’s . Namely, the linear superpoly
k22 comes from s

(769)
66 .

Determine a Proper Set of Cube Variables. Inspired by the phenomenon
mentioned above, when constructing cubes with linear superpolies, we could
focus on only one of the six internal state bits in the output function. In the
following, we shall illustrate how to determine a proper set of cube variables.
Assume that s

(r)
λ is the chosen target for r-round Trivium. First, according to

the update function of Trivium, s
(r)
λ could be written as

s
(r)
λ = s

(r−λ)

jλ
1

· s
(r−λ)

jλ
2

⊕ s
(r−λ)

jλ
3

⊕ s
(r−λ)

jλ
4

⊕ s
(r−λ)

jλ
5

. (1)

Then, we choose a set I of cube variables and search all its subcubes to find
those cubes having linear superpolies in s

(r−λ)

jλ
1

or s
(r−λ)

jλ
2

with the Möbius trans-
formation. If such subcubes are found, then we randomly choose one of them to
be the starting set of Algorithm 3.

Assume that the superpoly pI′ of I ′ = {vl1 , vl2 , . . . , vlu} ⊆ I in s
(r−λ)

jλ
1

is

linear. Then, s
(r−λ)

jλ
1

could be rewritten as

s
(r−λ)

jλ
1

(k,v) = g(k,v) · tI′ · pI′(k) ⊕ qI′(k,v),

where tI′ =
∏u

i=1 vli . Since s
(r−λ)

jλ
1

· s(r−λ)

jλ
2

is the only term of degree 2 in Eq. (1),

it is hopeful that we could extend I ′ to I whose superpoly in s
(r)
λ is linear. Due

to the above phenomenon, it is hopeful that the superpoly of I in the output bit
is linear as well. The following is an illustrative example.

Example 3. In the case of 805-round Trivium, the superpoly of

I = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}

in s
(739)
286 is k56. Furthermore, we find that the superpoly of

I ′′ = {v1, v2, v4, v6, v8, v10, v11, v13, v15, v17, v19, v21, v23,

v25, v26, v27, v29, v32, v34, v36, v38, v39, v41, v42, v43,

v45, v47, v48, v50, v52, v57, v59, v69, v71, v76, v79}

is also k56 in the output of 805-round Trivium. Note that I ′′ contains all the
cube variables in I. This indicates that it is reasonable to construct cubes with
linear superpolies in the output bit by extending a starting cube selected in the
way illustrated above.
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The Preference Bit. Now, for r-round Trivium, the key point is which internal
state bit in the output function should be chosen so that we could construct cubes
with linear superpolies with a high success probability by extending a small set
I of cube variables.

To study the difference of the six internal state bits in the output function
with respect to constructing linear superpolies, we perform dedicated experi-
ments on Trivium variants with from 400 to 699 initialization rounds. For each
variant, we collect thousands of linear superpolies and check which internal state
bit each linear superpoly comes from. The results show that there exists signifi-
cant difference among six internal state bits in the output function with respect
to where a linear superpoly comes from. For example, among the 2953 collected
linear superpolies of 699-round Trivium, 2366 linear superpolies come from s

(699)
243 ,

i.e., over 80% of the linear superpolies come from s
(699)
243 . Table 2 shows the num-

ber of linear supeprolies comes from each internal state bit.

Table 2. The number of linear supeprolies coming from each internal state bit

Internal state bit s
(699)
66 s

(699)
93 s

(699)
162 s

(699)
177 s

(699)
243 s

(699)
288

Number of linear superpolies 162 0 182 246 2366 0

For 699-round Trivium, linear superpolies come from s
(699)
243 most frequently.

Let r be a positive integer. For r-round Trivium, the internal state bit s
(r)
λj

in
the output function such that linear superpolies come from it most frequently
is called the preference bit of r-round Trivium. For these 300 Trivium variants,
there are 230 variants such that more than 40% of the collected linear super-
polies come from the preference bit. It can be seen that the preference bit has
a significant advantage over the other five internal state bits with respect to
where a linear superpoly may come from. In other words, for r-round Trivium,
it is more likely to construct cubes with linear superpolies when targeting the
preference bit than the other internal state bits in the output function.

An Iterative Algorithm to Predict the Preference Bit. According to the
above discussions, if we target the preference bit, then it is more likely to con-
struct cubes with linear superpolies. In this subsection, we design an algorithm
to pick up the preference bit among the six ones. Our algorithm is based on the
following lemma.

Lemma 1. Let I = {vi1 , vi2 , . . . , vid
} be a set of cube variables. If the superpoly

of I in f(k,v) is linear in key variables, then there is a term in the form of∏
v∈I v · tv · kj in the ANF of f , where tv is 1 or a product of some non-cube

variables.

Proof. Since the superpoly of I in f is linear in key variables, then there is a
term in the form of tv ·kj in the ANF of pI , where tv is 1 or the product of some
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non-cube variables. Hence, there is a term in the form of
∏

v∈I v · tv · kj in the
ANF of f .

According to Lemma 1, a necessary condition that a linear superpoly comes
from s

(r)
λj

is that s
(r)
λj

has a term in the form of Tv · kj in its ANF, where Tv is a
product of some IV variables. In the rest of this paper, such kind of term is called
a VK-term for simplicity. Note that a VK-term does not always lead to a linear
superpoly. For example, let

∏u
i=1 vji

· kl be a VK-term. If
∏u

i=1 vji
· kl · kh is in

the ANF of zr, then the superpoliy of {vj1 , vj2 , . . . , vjl
} would be nonlinear, i.e.

the VK-term
∏u

i=1 vji
· kl does not lead to a linear superpoly. In other words, it

is reasonable that the more VK-terms an internal state bit has, the more linear
superpolies come from it. Thus, it is reasonable to assume that the preference
bit contains the largest number of VK-terms.

However, it is impossible to accurately calculate the number of VK-terms
by the ANF of an internal state bit when the number of initialization rounds
is high. To solve this problem, we propose an iterative algorithm whose results
could reflect the number of VK-terms in each internal state bit at a high level.
With this algorithm, we could predict the preference bit for an arbitrary number
of initialization rounds with a very low computing complexity.

Let s(t) = (s(t)
1 , s

(t)
2 , . . . , s

(t)
288) be the internal state of Trivium after t rounds.

Note that each internal state bit s
(t)
j (1 ≤ j ≤ 288) is a polynomial in key

variables and IV variables. Denote by NV K
(t)
j the number of VK-terms in the

ANF of s
(t)
j . Let NV

(t)
j be the number of terms in the form of Tv, which are

called V-terms for simplicity, in s
(t)
j , where Tv is a product of some IV variables.

In the following, we take s
(t+1)
94 as an example to illustrate how our algorithm

works. According to the update function of Trivium, s
(t+1)
94 is updated as s

(t+1)
94 =

s
(t)
91 ·s(t)

92 ⊕s
(t)
93 ⊕s

(t)
66 ⊕s

(t)
171. In s

(t)
91 ·s(t)

92 , there are three ways to generate a VK-term
which are shown as follows.

• s
(t)
91 provides a V-term (or constant 1) and s

(t)
92 provides a VK-term;

• s
(t)
91 provides a VK-term and s

(t)
92 provides a V-term (or constant 1);

• s
(t)
91 and s

(t)
92 both provide VK-terms, where the key variable in these two

VK-terms are the same.

Generally, the VK-terms formed in the third way are much fewer than
those formed in the first two ways. Besides, the VK-terms obtained by mul-
tiplying constant 1 with VK-terms are also much fewer than those obtained
by multiplying a V-term and a VK-term. Hence, in our algorithm, we regard
NV

(t)
91 ·NV K

(t)
92 +NV

(t)
92 ·NV K

(t)
91 as the number of VK-terms in s

(t)
91 · s(t)

92 which
is denoted by NV K(s(t)

91 · s
(t)
92 ). Namely, NV K(s(t)

91 · s
(t)
92 ) is set as

NV K(s(t)
91 · s

(t)
92 ) ← NV

(t)
91 · NV K

(t)
92 + NV

(t)
92 · NV K

(t)
91 .
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2Consequently, NV K
(t+1)
94 is set as

NV K
(t+1)
94 ← NV K(s(t)

91 · s
(t)
92 ) + NV K

(t)
93 + NV K

(t)
66 + NV K

(t)
171.

Note that, to calculate NV K
(t+1)
94 , it needs to know NV

(t)
91 and NV

(t)
92 . Hence,

it is necessary to calculate NV
(t+1)
94 as well. According to the update function,

NV
(t+1)
94 could be set as

NV
(t+1)
94 ← NV

(t)
91 · NV

(t)
92 + NV

(t)
93 + NV

(t)
66 + NV

(t)
171,

since the number of V-terms in s
(t)
91 · s

(t)
92 is dominated by those formed from

multiplying two V-terms together.
Moreover, NV K

(t+1)
1 , NV

(t+1)
1 , NV K

(t+1)
178 , NV

(t+1)
178 could be calculated in a

similar way. Thus, we could update NV K(t+1), NV (t+1) from NV K(t), NV (t),
where NV K(t) = (NV K

(t)
1 , . . . , NV K

(t)
288), and NV (t) = (NV

(t)
1 , . . . , NV

(t)
288).

Now, the remaining problem is how to initialize NV K(0) and NV (0). To
obtain a more accurate result, we initialize NV K(280) and NV (280) by calcu-
lating the ANFs of s

(280)
1 , s

(280)
2 , . . . , s

(280)
288 . With the above method, we could

figure out NV K
(r)
j for 1 ≤ j ≤ 288 gradually. Finally, the bit indexed by

j ∈ {66, 93, 162, 177, 243, 288} such that

NV K
(r)
j = max{NV K

(r)
λ |λ ∈ {66, 93, 162, 177, 243, 288}}

is predicted as the preference bit. We formally describe our idea in Algorithm 4.

Algorithm 4. The algorithm of predicting the preference bit
1: Calculate the ANFs of s

(280)
i to initialise NV K(280) and NV (280);

2: for 280 ≤ t ≤ r − 1 do

3: NV Kt1 ← NV
(t)
91 · NV K

(t)
92 + NV

(t)
92 · NV K

(t)
91 + NV K

(t)
93 + NV K

(t)
66 + NV K

(t)
171;

4: NVt1 ← NV
(t)
91 · NV

(t)
92 + NV

(t)
93 + NV

(t)
66 + NV

(t)
171;

5: NV Kt2 ← NV
(t)
175 · NV K

(t)
176 + NV

(t)
176 · NV K

(t)
175 + NV K

(t)
177 + NV K

(t)
162 + NV K

(t)
264;

6: NVt2 ← NV
(t)
175 · NV

(t)
176 + NV

(t)
177 + NV

(t)
162 + NV

(t)
264;

7: NV Kt3 ← NV
(t)
286 · NV K

(t)
287 + NV

(t)
287 · NV K

(t)
286 + NV K

(t)
288 + NV K

(t)
243 + NV K

(t)
69 ;

8: NVt3 ← NV
(t)
286 · NV

(t)
287 + NV

(t)
288 + NV

(t)
243 + NV

(t)
69 ;

9: for 288 ≥ j ≥ 2 do

10: NV K
(t)
j ← NV K

(t)
j−1;

11: NV
(t)

j ← NV
(t)

j−1;

12: end for
13: NV

(t)
94 ← NVt1 ; NV

(t)
178 ← NVt2 ; NV

(t)
1 ← NVt3 ;

14: NV K
(t)
94 ← NV Kt1 ; NV K

(t)
178 ← NV Kt2 ; NV K

(t)
1 ← NV Kt3 ;

15: end for
16: Choose the bit s

(t)
b such that

NV K
(t)
b = max{NV K

(t)
λ |λ ∈ {66, 93, 162, 171, 243, 288}}

as the preference bit, where b ∈ {66, 93, 162, 171, 243, 288};

2 Here, we only consider the VK-terms formed in the first two ways and do not take
the terms which are eliminated by the XOR operation into consideration.
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4 An Improved Möbius Transformation

The Möbius transformation is a powerful tool which could be used to search all
the subcubes of a large cube at once. It improves the efficiency of cube attacks
a lot. Note that, for Trivium variants with more than 800 initialization rounds,
the sizes of all known cubes with linear superpolies are larger than 30. Hence,
to find linear superpolies, for a large cube set I, it is not necessary to test its
subcubes of small sizes, and only subcubes of large sizes should be taken into
consideration. However, in the original Möbius transformation, to test all the
subcubes of I, the memory complexity is O(2|I|) which expands exponentially as
|I| increases. In this section, we shall present an improved Möbius transformation
which could recover a part of ANF of f(x0, x1, . . . , xn−1) according to the truth
table of f(x0, x1, . . . , xn−1). With the improved Möbius transformation, we could
test a large number of subcubes of I simultaneously with a reasonable memory
complexity.

Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1. The ANF
of f is obtained by writing

f =
⊕

(c0,c1,...,cn−1)∈F
n
2

g(c0, c1, . . . , cn−1)
n−1∏

i=0

xci
i .

Recall that the function g is the Möbius transformation of f . It can be seen
that the Möbius transformation g is actually a Boolean function on n variables.
Furthermore, the Möbius transformations of f(x0, . . . , xn−1), f(x0, . . . , xn−2, 0),
and f(x0, . . . , xn−2, 1) are closely related, i.e. the Möbius transformation of
f(x0, x1, . . . , xn−1) could be obtained from the Möbius transformations of f(x0,
x1, . . . , xn−2, 0) and f(x0, x1, . . . , xn−2, 1), see Chap. 9.2 of [11] for details. Actu-
ally, it could be generalised, see Corollary 1.

Corollary 1. Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1.
Assume that g0, g1, . . . , g2q−1 are the Möbius transformations of f(x0, . . . ,
xn−q−1, 0, . . . , 0), f(x0, . . . , xn−q−1, 1, . . . , 0), . . . , f(x0, . . . , xn−q−1, 1, . . . , 1).
Then, the Möbius transformation g of f could be determined with the knowl-
edge of g0, g1, . . . , g2q−1.

Proof. According to Chap. 9.2 of [11], it is sufficient to calculate the Möbius
transformation of f with the Möbius transformations of f(x0, x1, . . . , xn−2, 0)
and f(x0, x1, . . . , xn−2, 1). Similarly, with the knowledge of the Möbius trans-
formations of f(x0, x1, . . . , xn−3, 0, 0) and f(x0, x1, . . . , xn−3, 1, 0), the Möbius
transformation of f(x0, x1, . . . , xn−2, 0) could be deduced. Recursively, for xn−q,
xn−q+1, . . . , xn−1, the Möbius transformation g of f could be determined with
the Möbius transformations of f(x0, . . . , xn−q−1, 0, . . . , 0), f(x0, . . . , xn−q−1, 1,
. . . , 0), · · · , f(x0, x1, . . . , xn−q−1, 1, . . . , 1).

Note that it requires 2q × 2n−q = 2n bits memory to store g0, g1, . . . , g2q−1.
When n is large, a huge amount of bits memory are required. To reduce the mem-
ory complexity, one natural idea is to store only a part values of g0, g1, . . . , g2q−1.
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In fact, by storing a part values of g0, g1, . . . , g2q−1, a part of the ANF of f could
still be recovered. We formally describe this fact in Proposition 2.

Proposition 2. Let f , g0, g1, . . . , g2q−1 be defined as Corollary 1. Assume that
c = (c0, c1, . . . , cn−q−1) is an arbitrary element in F

n−q
2 . With the knowledge of

g0(c), g1(c), . . . , g2q−1(c), we could obtain the coefficients of
∏n−q−1

i=0 xci
i , xn−q ·

∏n−q−1
i=0 xci

i , . . . , xn−q · xn−q+1 · · · xn−1 · ∏n−q−1
i=0 xci

i . in the ANF of f .

Proof. Assume that (bn−q, bn−q+1, . . . , bn−1) takes an arbitrary value of Fq
2. Fol-

lowing the proof of Corollary 1, g(c0, . . . , cn−q−1, bn−q, . . . , bn−1) could be deter-
mined by

h0(c0, . . . , cn−q−1, bn−q, . . . , bn−2) and h1(c0, . . . , cn−q−1, bn−q, . . . , bn−2),

where h0 and h1 are the Möbius transformations of f(x0, x1, . . . , xn−2, 0) and
f(x0, x1, . . . , xn−2, 1) respectively. Furthermore, the value of h0(c0, . . . , cn−q−1,
bn−q, . . . , bn−2) can be deduced from

h0,0(c0, . . . , cn−q−1, bn−q, . . . , bn−3) and h0,1(c0, . . . , cn−q−1, bn−q, . . . , bn−3),

where h0,0 and h0,1 are the Möbius transformations of f(x0, . . . , xn−3, 0, 0) and
f(x0, . . . , xn−3, 1, 0) respectively. Recursively, it is sufficient to calculate g(c0, . . . ,
cn−q−1, bn−q, . . . , bn−1) with the knowledge of g0(c), g1(c), . . . , g2q−1(c).
Since (bn−q, bn−q+1, . . . , bn−1) takes an arbitrary value in F

q
2, it indicates

that g(c0, . . . , cn−q−1, 0, 0, . . . , 0), g(c0, . . . , cn−q−1, 1, 0, . . . , 0), . . . , g(c0, . . . ,
cn−q−1, 1, 1, . . . , 1) could be obtained. Namely, we could recover the coefficients
of

n−q−1∏

i=0

xci
i , xn−q ·

n−q−1∏

i=0

xci
i , . . . , xn−q · · · xn−1 ·

n−q−1∏

i=0

xci
i

in the ANF of f .

Based on Proposition 2, we propose an improved Möbius transformation by
breaking the original Möbius transformation into two stages and only store a
part of the results during the first stage to reduce the memory complexity. We
formally describe the improved Möbius transformation in Algorithm 5. During
the first stage of Algorithm 5, for each 0 ≤ j ≤ 2q −1, the Möbius transformation
of gj is calculated one by one so that the memory could be used repeatedly.
Furthermore, for each gj , only the values gj under elements whose Hamming
Weights are not smaller than ω is stored, where ω is a given bound. Then, during
the second stage, by using a way similar to calculate the Möbius transformation
of a q-variable polynomial, a part of the ANF of f could be recovered.

The Memory Complexity. The memory needed in Algorithm 5 consists of
two parts.

– The size of S is 2n−q, and so it costs 2n−q bits memory.
– For each j, the size of FS[j] is t, and so it requires 2q × t bits memory totally.

To sum up, it requires 2q × t + 2n−q bits in Algorithm 5. If t ≪ 2n−q, then
2q × t + 2n−q ≪ 2n which indicates that the memory could be decreased to
about 2n−q bits from 2n bits.
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Algorithm 5. An Improved Möbius Transformation
Require: A Boolean function f , the parameter q, the bound ω

/* the first stage */
1: for (c0, c1, . . . , cq−1) from (0, 0, . . . , 0) to (1, 1, . . . , 1) do
2: S ← the truth table of f(x0, x1, . . . , xn−q−1, c0, c1, . . . , cq−1);
3: Call Algorithm 2 to do Möbius transformation on S;

4: t ← 0, j ← ∑q−1
l=0 2lcl;

5: for i from 0 to 2n−q − 1 do
6: tmp ← (b0, b1, . . . , bn−q−1), where i =

∑n−q−1
l=0 bl · 2l;

7: if wt(tmp) ≥ ω then
8: FS[j][t] ← S[i];
9: t ← t + 1;
10: end if
11: end for
12: end for

/* the second stage */
13: for i from 1 to q do
14: Sz ← 2i, Pos ← 1;
15: while Pos < 2q do
16: for b from 0 to Sz − 1 do
17: for a from 0 to t − 1 do
18: FS[Pos + Sz + b][a] ← FS[Pos + Sz + b][a] ⊕ FS[Pos + b][a];
19: end for
20: end for
21: Pos ← Pos + 2 × Sz;
22: end while
23: end for

5 Experimental Results

In this section, we first perform experiments to illustrate the effect of
Algorithm 4. Then, utilising the starting sets determined with the method
described in Sect. 3.2, we attempt to find linear superpolies for Trivium vari-
ants with at least 805 initialization rounds. As a result, we find over 1000 linear
superpolies for 805-round Trivium as well as several linear superpolies for 806-
round Trivium and 810-round Trivium. Based on the found linear superpolies,
we establish a practical attack on 805-round Trivium.

5.1 The Effect of Algorithm 4

To verify the effect of Algorithm 4, we perform extensive experiments on r-round
Trivium with 400 ≤ r ≤ 699. As mentioned in Sect. 3.2, for r-round Trivium,
we collect thousands of linear superpolies and test which internal state bit each
linear superpoly comes from, where r ranges from 400 to 699. Thus, we could
determine the preference bit of each Trivium variant experimentally. As a com-
parison, we predict the preference bit of r-round Trivium by Algorithm 4. The
results show that the preference bits are correctly predicted for 226 variants of
Trivium out of the total 300 variants. This indicates that the preference bit could
be predicted with a success probability 75.3% by Algorithm 4. Furthermore, in
the experiment on 400- to 699-round Trivium, the success rate increases as the
number of initialization rounds increases. More specifically, for 600- to 699-round
Trivium, we could predict the preference bit with a success probability around
84% which is higher than the average value 75.3%, and for 634- to 699-round
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Trivium the success probability is 100%. Hence for a higher number of rounds,
say 805 or more, the probability probably will not drop. Moreover, based on the
preference bit predicted by our method, we practically found a large number of
cubes with linear superpolies for the 805-round Trivium. This indicates that our
method could predict the preference bit with a good success probability for a
higher round.

Remark 2. In the formula of computing NV K(s91 ·s92), we dropped the terms of
the form (

∏
v∈I v ·kj)(

∏
v∈J v ·kj), that is, the key variables in the two VK-terms

of s91 and s92 are the same. Because this number is very small compared with
other cases. To verify this, we performed experiments which take the dropped
terms into consideration in our formula. For the 300 Trivium variants from 400
to 699 initialization rounds, the result showed that only one of the 300 predicted
preference bits was changed.

5.2 A Practical Key-Recovery Attack on 805-Round Trivium

In this subsection, we target 805-round Trivium. We first predict the preference
bit of 805-round Trivium. Then, aiming at the preference bit, we determine some
proper starting sets of Algorithm 3. For each proper starting set, we construct
a potentially good cube with Algorithm 3. Finally, to find linear superpolies,
we simultaneously test a large number of subcubes of the potentially good cube
with the improved Möbius transformation.

Determine Proper Starting Sets. To determine a proper starting set, we first
need to predict the preference bit of 805-round Trivium. With Algorithm 4, we
have that the predicted preference bit is s

(805)
66 . Since s

(805)
66 = s

(739)
286 ·(739)287 ⊕s

(739)
243 ⊕

s
(739)
288 ⊕ s

(739)
69 , we choose cubes of sizes 22 and use the Möbius transformation

to search all the subcubes to find proper cubes whose superpolies in s
(739)
286 are

linear. Finally, we select some subcubes with linear superpolies to be the starting
sets of Algorithm 3. In the following, we take

I1 = {v2, v4, v6, v8, v10, v11, v15, v17, v19, v21, v23, v25,

v29, v30, v32, v34, v36, v39, v41, v43, v45, v50}

as an example to illustrate how to determine a proper starting set in details.
First, we search all its subcubes to find cubes with linear superpolies in s

(739)
286

and hundreds of such cubes are obtained. When choosing a starting set from
these cubes, we prefer to choose cubes with relatively large sizes. Among these
cubes, there are two cubes of size 17 and the others have smaller sizes. Among
these two cubes, we randomly choose

I2 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}

as a proper starting set. With similar procedure, we determine some other start-
ing sets of Algorithm 3.



A Practical Key-Recovery Attack on 805-Round Trivium 207

Table 3. The chosen cube variables in the last iteration

Chosen cube I5 ∪ {v48} I5 ∪ {v59} I5 ∪ {v58} I5 ∪ {v63}
Upper bound of the degree of superpolies 1 1 2 3

Construct Candidate Cubes. There are two main stages of constructing a
potentially good cube in Algorithm 3. We take I2 as an example to make an
illustration. In the first stage, Algorithm 3 adds steep IV variables to decrease the
degree of the superpoly as quickly as possible. For I2, the first stage of Algorithm
3 terminates after 17 iterations, since the superpoly pI3 is zero-constant, where

I3 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50,

v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v56}.

Then, the second phase is started with

I4 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50,

v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v52},

since the upper bound of the degree of pI4 attains minimum expect 0 among all
the cubes obtained after 17 iterations. In this stage, our aim is to decrease the
degree of the superpoly slowly to obtain cube with linear superpolies instead of
zero-sum distinguishers. After three iterations, we obtain two cubes such that
the degree of their superpolies are upper bounded by 1. Besides, we also obtain
several cubes such that the degree of their superpolies are not larger than 3. By
jointing 4 cubes, we constructed a potentially good cube of size 40. Table 3 shows
the cubes and the upper bounds of the degrees of their superpolies, where

I5 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50, v2,

v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v52, v57, v42}.

Finally, the potentially good cube I6 constructed from I2 is as follows,

I6 = I5 ∪ {v48, v58, v59, v63}.

Linear Superpolies for 805-Round Trivium. After obtaining a potentially
good cube, we use the improved Möbius transformation to search its subcubes
which miss few cube variables. For instance, in the case of I6, we set the param-
eter q = 7 and ω = 26 in the improved Möbius transformation, and we find
201 subcubes with linear superpolies eventually. Among these 201 linear super-
polies, there are 22 linear superpolies which are linearly independent. Together
with some other candidate cubes, we find more than 1000 cubes with linear
superpolies in the output of 805-round Trivium. Among these cubes, we could
pick up 38 cubes whose superpolies are linearly independent, see Table 4.
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Table 4. Linear superpolies for 805-round Trivium

Cube indices Superpoly

0,1,2,4,6,8,11,13,15,17,19,21,23,26,27,28,29,32,34,

36,38,39,41,42,45,47,48,50,52,53,57,69,71,75,76,79
1 ⊕ k2 ⊕ k65

0,1,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,29,

31,34,36,38,39,40,43,45,47,49,62,64,70,74,77,79
1 ⊕ k3

0,1,2,4,6,8,10,11,13,15,17,19,21,23,26,27,29,31,

34,36,38,39,40,41,43,45,47,49,58,62,64,77,79
k4 ⊕ k19 ⊕ k34

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,27,28,29,32,34,

36,38,39,41,42,43,47,48,50,52,57,59,69,71,75,76,79
k14

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,

36,38,39,41,42,43,47,48,50,52,53,57,59,69,71,76,79
k15

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,27,28,29,32,

34,36,38,39,41,42,43,47,48,50,52,59,69,71,75,76,79
1 ⊕ k16

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,32,

34,36,38,39,41,42,43,45,47,48,50,53,57,69,71,75,76,79
1 ⊕ k17

0,1,2,4,6,8,10,11,12,13,15,16,19,21,23,25,27,28,

29,34,36,38,40,41,43,45,47,49,50,64,70,74,77,79
k18

0,1,2,4,6,8,10,11,12,13,15,16,19,23,25,27,28,31,34,

36,38,39,40,41,43,45,47,49,50,58,62,64,74,77,79
1 ⊕ k19 ⊕ k34 ⊕ k51

0,2,4,6,8,10,12,13,15,17,19,21,23,25,26,27,28,29,31,

34,38,39,40,41,43,45,47,49,50,58,62,64,70,74,77,79
k21

1,2,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,29,

31,34,36,38,39,40,41,43,47,49,50,58,62,70,74,77,79
1 ⊕ k29

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,

36,38,39,42,43,45,47,48,50,52,53,57,59,69,71,75,76,79
k31 ⊕ k46 ⊕ k56

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,28,29,32,34,

36,38,39,41,42,45,47,48,50,52,57,59,69,71,75,76,79
k17 ⊕ k32

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,

36,38,39,42,43,45,47,48,50,52,53,57,59,69,71,76,79
1 ⊕ k33

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,

34,36,39,41,42,43,45,47,48,50,52,57,59,69,71,76,79
k34

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,

34,36,38,39,41,42,43,45,47,50,52,53,57,69,71,75,79
k36

0,1,2,4,6,8,10,12,13,15,17,19,21,23,25,26,27,28,

29,31,34,36,39,40,41,43,47,49,50,62,64,70,77,79
k40

0,1,2,4,6,8,10,11,13,15,17,19,21,23,26,27,28,31,

34,36,38,40,41,43,45,47,49,50,58,62,64,70,77,79
k42

0,1,2,4,6,8,10,11,13,15,16,19,21,23,26,27,28,29,31,

34,36,38,39,41,43,45,47,49,50,58,62,64,74,77,79
k43

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,

34,36,38,42,45,47,48,50,53,57,59,69,71,75,76,79
k44

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,

32,34,36,38,41,42,43,45,47,50,53,59,69,71,76,79
1 ⊕ k45

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,

34,36,38,39,42,43,45,48,50,52,57,59,69,71,75,76,79
k46 ⊕ k56

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,34,

36,38,39,41,42,43,45,47,48,50,57,59,69,71,76,79
1 ⊕ k47

0,1,2,4,6,8,11,13,15,17,19,21,23,26,27,28,29,

34,36,38,41,43,45,47,49,50,62,64,70,74,77,79
k49

0,1,2,4,6,8,11,13,15,17,19,21,23,25,27,28,29,32,34,

36,38,39,41,42,43,45,47,52,53,57,69,71,75,76,79
k51

0,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,28,29,

31,34,36,38,39,41,43,47,49,58,62,64,70,74,77,79
k53

0,1,4,6,8,10,11,13,15,17,19,21,23,25,26,28,29,32,34,36,

38,39,41,42,43,45,47,48,50,52,53,57,59,69,71,75,76,79
k54

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,34,

36,38,39,42,43,45,47,48,50,53,57,59,69,71,75,79
k56

0,1,2,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,

29,31,34,36,38,39,40,41,45,47,49,58,62,64,70,79
k57 ⊕ k59

0,1,2,4,6,8,10,13,15,17,19,21,23,25,27,28,29,32,

34,36,38,39,42,43,45,47,48,53,57,59,69,71,75,79
k58

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,

32,34,36,38,39,41,42,43,45,47,50,53,57,59,69,76,79
1 ⊕ k47 ⊕ k59

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,

34,36,38,39,41,42,43,45,47,48,50,59,69,71,75,76,79
k60

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,

34,36,38,39,41,42,43,45,47,48,50,52,59,71,76,79
k61

0,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,28,31,

34,36,38,39,40,41,43,45,47,49,50,58,62,64,77,79
k62

0,1,2,4,6,8,10,11,13,15,16,19,21,23,25,27,28,29,31,

34,36,39,41,43,45,47,49,62,64,70,74,77,79
k63

0,1,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,29,

34,36,38,39,41,43,45,47,49,58,62,64,70,74,77,79
k64

0,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,32,

34,36,39,41,43,45,47,48,50,52,57,59,69,71,76,79
k65

0,1,2,4,6,8,11,12,13,15,17,19,21,23,25,27,28,29,31,

34,36,39,40,41,43,45,47,49,50,62,64,70,74,77,79
k68



A Practical Key-Recovery Attack on 805-Round Trivium 209

Linear Superpolies for 806-Round Trivium. For the cubes found for 805-
round Trivium, we slide some of them, i.e. decrease the index of each cube
variables by 1, to find cubes with linear superpolies for 806-round Trivium.
Finally, we find several cubes whose superpolies in the output bit of 806- round
Trivium, see Table 5.

Table 5. Linear superpolies for 806-round Trivium

Cube indices Superpoly

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 18, 20, 22, 24, 27, 28, 30, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 57, 61, 63, 73, 76, 78 k14 ⊕ k44

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 57, 61, 63, 73, 76, 78 k15

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 57, 61, 63, 76, 78 1 ⊕ k17

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 33, 35, 37, 38, 39, 40, 42, 46, 48, 49, 57, 61, 69, 73, 76, 78 1 ⊕ k28

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 33, 35, 37, 38, 39, 40, 42, 46, 48, 49, 57, 61, 63, 76, 78 k32

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 18, 20, 22, 24, 26, 27, 28, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 57, 61, 63, 73, 76, 78 k33

0, 3, 5, 7, 9, 11, 14, 15, 18, 20, 22, 24, 25, 26, 27, 30, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 57, 61, 63, 69, 73, 76, 78 k41

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 18, 20, 22, 24, 26, 27, 28, 30, 33, 35, 37, 40, 42, 44, 46, 48, 49, 57, 61, 63, 73, 76, 78 k42

1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 33, 35, 37, 38, 39, 40, 42, 46, 48, 49, 57, 61, 63, 73, 76, 78 k44

0, 1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 33, 35, 37, 38, 40, 42, 44, 46, 48, 57, 61, 63, 73, 76, 78 k46

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 57, 61, 63, 76, 78 k52

0, 1, 3, 5, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 33, 35, 37, 38, 40, 42, 44, 46, 48, 49, 57, 61, 63, 69, 73, 76, 78 k55

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 33, 35, 37, 38, 42, 44, 46, 48, 49, 57, 61, 63, 69, 76, 78 k58

0, 1, 3, 5, 7, 9, 10, 11, 12, 14, 15, 18, 20, 22, 24, 25, 26, 27, 28, 30, 33, 35, 37, 38, 39, 40, 42, 46, 48, 57, 61, 63, 69, 76, 78 k59

0, 1, 3, 5, 7, 9, 11, 12, 14, 15, 16, 18, 20, 22, 24, 25, 27, 28, 30, 33, 35, 37, 38, 40, 42, 44, 46, 48, 49, 57, 61, 63, 69, 73, 76, 78 k63

0, 3, 5, 7, 9, 10, 11, 12, 14, 15, 18, 20, 22, 24, 25, 26, 27, 28, 33, 35, 37, 38, 39, 40, 42, 44, 46, 48, 57, 61, 63, 69, 73, 76, 78 k65

A Practical Key-Recovery Attack on 805-Round Trivium. Based on the
linear superpolies of 805- and 806-round Trivium, we could recover 42 key bits for
805-round Trivium. The sizes of the chosen cubes are from 32 to 38, and 42 key
bits could be recovered with 241.25 requests. By adding a brute-force attack, the
remaining 38 key bits could be recovered within 238 requests. Consequently, to
recover the whole key for 805-round Trivium, the on-line complexity is not larger
than 241.40 requests. Under a PC with a GTX-1080 GPU, we could recover 42
key bits in several hours. For remaining key bits, they could be recovered in less
than 238 requests which is much easier. Consequently, our attack on 805-round
Trivium is practical.

5.3 Experimental Results on 810-Round Trivium

We do the similar experiments on 810-round Trivium. In this case, the preference
bit is s

(810)
66 as well. We perform experiments on the starting cube set

I7 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32, v34, v36, v39, v41, v43, v45, v50}.

With Algorithm 3, we finally get a cube I8 given by

I8 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32,

v34, v36, v39, v41, v43, v45, v50, v0, v75, v12, v22,

v16, v27, v23, v72, v4, v14, v20, v52, v55, v60, v37,

v79, v62, v64, v47, v54, v69, v51, v71, v18, v53}.
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The size of I8 is 44. Because it is too time consuming to perform linearity tests,
we try to remove some cube variables from I8 to obtain a smaller cube with
low-degree superpolies. Finally, we obtain the cube I9 of size 43, where

I9 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32,

v34, v36, v39, v41, v43, v45, v50, v0, v75, v12, v22,

v16, v27, v23, v72, v4, v14, v20, v52, v55, v60,

v37, v79, v62, v64, v47, v54, v69, v71, v18, v53}.

and the degree of the superpoly of I9 is upper bounded by 2. By using a computer
with four NVIDIA V100 GPUs, we search a part of subcubes which only misses
few cube variables in I9. With the original Möbius transformation, to search
subcubes of a 43-dimensional cubes, it needs 243 bits memory. Benefited from
the improved Möbius transformation, we could perform linearity tests on 232.28

subcubes of I9 with several GBs memory which is much less than the memory
(1024 GB) required by the original Möbius transformation. Finally, we find 2
different cubes with linear superpolies, which are listed in Table 6.

Table 6. Linear superpolies for 810-round Trivium

Cube indices Superpoly

0, 2, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32,

34, 36, 37, 39, 41, 43, 45, 47, 50, 53, 54, 55, 60, 62, 64, 69, 71, 72, 75, 79

k62

0, 2, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32,

34, 36, 37, 39, 41, 43, 45, 47, 50, 51, 53, 54, 60, 62, 64, 69, 71, 72, 75, 79

k62

Remark 3. We put our codes and all the found superpolies on https://github.
com/YT92/Practical-Cube-Attacks.

6 Conclusion

In this paper, we focus on practical full key-recovery attacks on Trivium. We
design a new framework for finding linear superpolies in cube attacks by pre-
senting a new algorithm to construct cubes which potentially yield linear super-
polies. With this new framework, we find sufficiently many linear superpolies and
establish a practical full key-recovery attack on 805-round Trivium. To show the
effectiveness of our algorithm for constructing cubes, we also tried 810-round
Trivium. As a result, by constructing one 43-dimensional cube, we find two sub-
cubes of size 42 with linear superpolies for 810-round Trivium. So far the success
rate of our algorithm for finding linear superpolies is 100%. The 805-round Triv-
ium is just chosen for an example. We believe that the new algorithm could
also be applicable to Trivium up to 810 rounds with a bit more time since cube
sizes increases a little. Since we use linearity test and Moebius transformation
to recover superpolies, large cube sizes could not be explored. Recently, Hao

https://github.com/YT92/Practical-Cube-Attacks
https://github.com/YT92/Practical-Cube-Attacks
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et al. at EUROCRYPT 2020 proposed a new MILP modeling method for the
three-subset division property which could be used to recover the exact super-
poly for a given cube. Combing our new algorithm for selecting cubes with the
three-subset division property to recover low-degree superpolies for large cubes
will be one subject of our future work.

References

1. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 1

2. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 18
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Abstract. Rasta and Dasta are two fully homomorphic encryption
friendly symmetric-key primitives proposed at CRYPTO 2018 and ToSC
2020, respectively. We point out that the designers of Rasta and Dasta
neglected an important property of the χ operation. Combined with the
special structure of Rasta and Dasta, this property directly leads to sig-
nificantly improved algebraic cryptanalysis. Especially, it enables us to
theoretically break 2 out of 3 instances of full Agrasta, which is the
aggressive version of Rasta with the block size only slightly larger than
the security level in bits. We further reveal that Dasta is more vulnerable
against our attacks than Rasta for its usage of a linear layer composed of
an ever-changing bit permutation and a deterministic linear transform.
Based on our cryptanalysis, the security margins of Dasta and Rasta
parameterized with (n, κ, r) ∈ {(327, 80, 4), (1877, 128, 4), (3545, 256, 5)}
are reduced to only 1 round, where n, κ and r denote the block size,
the claimed security level and the number of rounds, respectively. These
parameters are of particular interest as the corresponding ANDdepth is
the lowest among those that can be implemented in reasonable time and
target the same claimed security level.

Keywords: Rasta · Dasta · Agrasta · χ operation · Linearization ·
Algebraic attack

1 Introduction

Since the pioneering work [5] of Albrecht et al. on designs of ciphers friendly to
secure multi-party computation (MPC), fully homomorphic encryption (FHE)
and zero-knowledge proofs (ZK), an increasing number of MPC-, FHE- and ZK-
friendly symmetric-key primitives have been proposed, including LowMC [5],
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13090, pp. 214–240, 2021.
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Kreyvrium [15], FLIP [40], Rasta [23], MiMC [4], GMiMC [3], Jarvis [9],
Hades [34], Poseidon [33], Vision [7], Rescue [7] and Ciminion [25]. As design-
ing symmetric-key primitives in this domain is relatively new and not well-
understood, the designers may be prone to make mistakes in their innovative
proposals. Four concrete examples come from the cryptanalysis of LowMC [5],
the preliminary version of FLIP [40], the initial version of MARVELlous [9] and
MiMC [29].

In the case of LowMC, new higher-order differential cryptanalysis [24] and
the optimized interpolation attack [22] revealed that the original parameters
of LowMC were too optimistic, which directly made LowMC move to LowMC
v2. However, the so-called difference enumeration attack [41] in the low-data
setting could still violate the security of some parameters in LowMC v2. As a
countermeasure, the formula to calculate the secure number of rounds is updated
and this version is called LowMC v3. However, it has been recently demonstrated
in [38] that some parameters in LowMC v3 are still insecure when new algebraic
techniques and the difference enumeration attack are combined. In addition,
a very recent generic method [20] to solve multivariate equation systems over
GF (2) also shows that some parameters of LowMC v3 in the Picnic3 [37] setting
are insecure.

In the case of the preliminary version of FLIP, Duval, Lallemand and Rotella
revealed some weaknesses in its filter function and exploited them to devise an
efficient full key recovery attack based on guess-and-determine techniques [27].
This result directly leads to a more conservative design of FLIP.

In the case of MARVELlous [9], Albrecht et al. described a clever way [2] to
express the primitive as a set of low-degree equations with the introduction of
intermediate variables. On the other hand, as MARVELlous works on a large
field, the total number of variables in the equation system is still small even
though there are intermediate variables. These directly lead to powerful Gröbner
basis attacks as the Gröbner basis of such a set of polynomials can be efficiently
computed in time less than that of the brute-force attack.

In the case of MiMC [4] proposed at ASIACRYPT 2016, the key-recovery
attack on the full-round versions over F2n was presented at ASIACRYPT
2020 [29], mainly owing to a careful study of the evolution of the algebraic
degree, though it is only slightly faster than the brute-force attack.

Such a trend in designing symmetric-key primitives for advanced protocols
also motivates the cryptographers to generalize several cryptanalytic techniques
to fields of odd characteristic [11]. As a consequence, some undesirable properties
have been reported for GMiMC and Poseidon.

From the perspective of design, there are two common metrics for these
primitives, i.e. the multiplicative complexity (MC) and the multiplicative depth
of the circuit. In the context of Rasta [23], MC refers to the total number of
AND gates and the multiplicative depth of the circuit refers to the number of
rounds (called ANDdepth in Rasta [23]). The aim of Rasta is to provide a design
strategy achieving d ANDdepth and d ANDs per bit at the same time. The
designers proposed several parameters for the block/key size n, the ANDdepth
d and the targeted security level κ. To make d as small as possible and keep
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its practical usage, d ∈ {4, 5, 6} is recommended. Since generating the affine
layers in each encryption is quite time-consuming in Rasta, Hebborn and Leander
proposed Dasta [36] where the linear layer is replaced with an ever-changing bit
permutation and a deterministic linear transform. Such a construction has made
Dasta hundreds times faster than Rasta in the offline settings.

A feature in Rasta and Dasta is that n is much larger than κ and there is
indeed no generic attack matching the claimed security level κ. To encourage
more cryptanalysis, the designers of Rasta also proposed an aggressive version
called Agrasta with n = κ + 1. The currently best key-recovery attack [26] on
Agrasta in the single-plaintext setting is based on a brute-force approach and
only 3 rounds can be covered. Moreover, no nontrivial third-party attacks have
been published for Rasta or Dasta. It should be emphasized the same key can be
used to encrypt many different plaintext blocks for Rasta, Dasta and Agrasta and
hence the attacks should not be limited to the single-plaintext setting. Indeed,
it has been shown in [23,36] that given the capability to collect many plaintext-
ciphertext pairs under the same key, the attackers still cannot break any of the
three proposals.

Algebraic Attacks. Algebraic attacks are potential threats to aforementioned
primitives, as can be observed from the analysis of LowMC, FLIP, MARVEL-
lous, MiMC, GMiMC and Poseidon. A crucial step to improve the efficiency
of an algebraic attack is to construct a suitable equation system that can be
efficiently solved with techniques like linearization, guess-and-determine, F4/F5
algorithms [30,31] (computing Gröbner basis) or XL algorithm [17]. How to con-
struct useful equations is nontrivial and dominates the effectiveness of algebraic
attacks. For methods to solve equations, the linearization technique is the sim-
plest one, which is to treat each different monomial in the equations as an inde-
pendent new variable. The drawback is hence obvious as the attacker needs to
collect sufficiently many equations in order to solve it with Gaussian elimination.
In addition, as the degree of the equations increases, the number of monomials
will become very large and the cost of Gaussian elimination may even exceed
the generic attack. For the guess-and-determine technique, its performance fully
depends on the structure of the original equation system. Finding a clever guess-
and-determine strategy is nontrivial. Especially, when the equation system tends
to be random, the effect of such a strategy seems to be limited. For advanced
algorithms like F4/F5 algorithms and the XL algorithm to solve multivariate
polynomial equations, their complexity is hard to bound when the system is
much over-defined. If only a portion of equations are taken into account, though
the time complexity can be bounded, the resulting complexity may turn to be
very high and exceeds the generic attack.

Our Contributions. We observed the feasibility to derive exploitable
low-degree equations from the raw definition of the χ operation, which seems
to be neglected by the designers for the high degree of the inverse of the large-
scale χ operation. As a result, we could construct a system of equations of much
lower degree than expected by the designers to describe the primitives. Specifi-
cally, r0 rounds of Rasta can be represented as a system of equations of degree
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upper bounded by 2r0−1 + 1 rather than 2r0 . For Dasta, by guessing only 1-bit
secret information, we even could extract a system of equations of degree upper
bounded by 2r0−1 from many different plaintext-ciphertext pairs for r0 rounds,
which is mainly due to the usage of a deterministic linear transform following a
bit permutation in the last linear layer.

It should be emphasized that constructing low-degree equations based on
high-degree equations is not new in symmetric-key cryptanalysis. The underly-
ing idea was first utilized in the algebraic attack [18] and fast algebraic attack [16]
on several LFSR-based stream ciphers. A common notion in these attacks is the
algebraic immunity of the filter function or the augmented function, which has
been studied in several papers [8,32]. It should be mentioned that the resis-
tance against these attack vectors has been taken into account in the design
of FLIP [40] as it is very similar to an LFSR-based design, though the regis-
ter is no longer updated by means of the LFSR, but with pseudorandom bit
permutations.

However, Rasta is completely different from the LFSR-based stream cipher
and it is more like a block cipher, which can explain why the designers ruled
out the above attack vectors as they have not been successfully applied to block
ciphers. We emphasize that this is mainly because common block ciphers always
have a large number of rounds and hence the degree after a certain number of
rounds is very high. However, this is not the case of Rasta, which has only a
small number of rounds. Although our attack is based on low-degree equations,
its feasibility indeed also much relies on our observation on the key feed-forward
operation in Dasta and Rasta, i.e. the feature of the construction.

In a sense, our basic idea can be viewed as exploiting the algebraic immunity
of the augmented function, which is the large-scale χ operation in Rasta and
Dasta. As far as we know, there is no efficient method to compute the algebraic
immunity of a huge S-box, which may be another reason why the designers did
not take it into account. Understanding our attacks requires no knowledge of the
algebraic immunity of the augmented function, though. In a nutshell, we reveal
that the last nonlinear layer is ineffective to significantly increase the degree for
the usage of a simple key feed-forward operation, whatever the last linear layer
is.

On the Complexity of Gaussian Elimination. Denote the exponent of
Gaussian elimination by ω. A naive implementation of Gaussian elimination
leads to ω = 3. Due to Strassen’s divide-and-conquer algorithm [42], the upper
bound of ω is updated as log27 and the algorithm has been practically imple-
mented in [1]. Although there exists a more efficient algorithm [6] to perform
the matrix multiplication and the upper bound can be further updated as
ω < 2.3728596, it is in practice useless for its hidden huge constant factor. In the
preliminary analysis, the designers of Rasta [23] adopted ω = 2.8 to compute the
time complexity of algebraic attacks on reduced-round Agrasta and compared
it with the required number of binary operations to encrypt a plaintext. The
designers of Dasta [36] instead chose ω = 2.37 to evaluate the resistance against
algebraic attacks in order to explicitly understand the security margins of Dasta
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and Rasta. Therefore, in this paper, we provide the time complexity under both
cases, i.e. ω = 2.8 and ω = 2.37. It should be emphasized that the former one is
reasonable in practice.

Our Results. According to the Rasta paper [23], performing r rounds of Rasta
with block size n requires about (r+1)n2 binary operations caused by the linear
layers. In our algebraic attacks, the number of equations is always kept the same
with the number of variables and it is denoted by U , even though we are able to
collect more equations. When evaluating the time complexity with ω = 2.8, we
adopt the formula Uω/

(
(r + 1)n2

)
as in [23]. When ω = 2.37 is used, we directly

compute the time complexity with the formula Uω as in [36]. The corresponding
memory complexity is obvious, i.e. U2. Our results are summarized in Table 1.

Organization. We briefly introduce Rasta, Dasta and the trivial linearization
attack in Sect. 2. Then, we describe how to construct exploitable low-degree
equations from the raw definition of the χ operation in Sect. 3. The application
of these low-degree equations to the cryptanalysis of Rasta and Dasta will be
explained in Sect. 4. Before concluding the paper in Sect. 6, we will also discuss in
Sect. 5 why our attacks are overlooked, the application of others techniques such
as the polynomial-based method [20] and the optimized exhaustive search [14],
and the experimental results.

2 Preliminaries

In this section, we briefly describe the overall structure of Rasta and Dasta.
Since several instances are specified, they will be distinguished with the notations
Rasta-κ-r and Dasta-κ-r, where κ and r denote the claimed security level and
the total number of rounds, respectively. In addition, throughout this paper,
n denotes the block size, rank(M) denotes the rank of the matrix M , M−1

denotes the inverse of the matrix M , ai denotes the i-th bit of the vector a,
Deg(f) denotes the degree of the function f . In addition, we define

max(p, q) =

{
p (p ≥ q),
q (p < q).

2.1 Description of Rasta

Rasta is a stream cipher based design where the nonlinear layer is determinis-
tic while the linear layer is randomly generated during the encryption phase.
Specifically, its input consists of a key K ∈ F

n
2 , a nonce N , a counter C and a

message block m ∈ F
n
2 . To encrypt m, Rasta first randomly generates a concrete

instance with SHAKE-256 [28] taking (N,C) as input. Then this instance is
utilized to encrypt K to generate the keystream Z ∈ F

n
2 . Finally, c = m ⊕ Z is

corresponding ciphertext block.
Formally, the keystream Z can be defined in the following way:

Z = (Ar,N,C ◦ S ◦ Ar−1,N,C ◦ S ◦ . . . ◦ A1,N,C ◦ S ◦ A0,N,C(K)) ⊕ K,
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Table 1. Summary of the attacks on Rasta, Dasta and Agrasta, where R, D, M and
T denote the number of attacked rounds, data complexity, memory complexity and
time complexity, respectively. The number of rounds marked with � means that the
corresponding time complexity exceeds the claimed security level. We recomputed the
time/data complexity of the trivial linearization attacks in [36] to keep consistent with
our calculations and the results only slightly differ.

Target Methods n R log2D log2M log2T log2U ω Reference

Agrasta-128-4 Brute-force 129 3 0 25 124.2 – – [26]

Linearization 129 3 0 14 125.76 7 2.8 [23]

Linearization 129 4 35.7 90 110 45 2.8 This paper

Agrasta-256-5 Brute-force 257 3 0 25 252.2 – – [26]

Linearization 257 3 0 16 253.5 8 2.8 [23]

Linearization 257 5 76.7 174 225.1 87 2.8 This paper

Rasta/Dasta-80-6 Linearization 219 2 19.3 54 64 27 2.37 [36]

Rasta-80-6 219 3 22 64 75.9 32 2.37 This paper

Dasta-80-6 219 3 27 54 65 27 2.37 This paper

Rasta-80-6 219 3 22 64 72.1 32 2.8 This paper

Dasta-80-6 219 3 27 54 59.1 27 2.8 This paper

Rasta/Dasta-80-4 Linearization 327 2 20.7 58 68.8 29 2.37 [36]

Rasta-80-4 327 3� 24.4 70 83 35 2.37 This paper

Dasta-80-4 327 3 29 58 69.8 29 2.37 This paper

Rasta-80-4 327 3 24.4 70 79.3 35 2.8 This paper

Dasta-80-4 327 3 29 58 62.5 29 2.8 This paper

Rasta/Dasta-128-6 Linearization 351 3 44.6 106 125.6 53 2.37 [36]

Rasta-128-6 351 4� 47.3 116 137.5 58 2.37 This paper

Dasta-128-6 351 4 53 106 126.6 53 2.37 This paper

Rasta/Dasta-128-5 Linearization 525 2 23 64 75.9 32 2.37 [36]

Rasta-128-5 525 3 27.7 78 92.5 39 2.37 This paper

Dasta-128-5 525 3 32 64 76.9 32 2.37 This paper

Rasta-128-5 525 3 27.7 78 89.2 39 2.8 This paper

Dasta-128-5 525 3 32 64 70.6 32 2.8 This paper

Rasta/Dasta-128-4 Linearization 1877 2 28.2 78 92.5 39 2.37 [36]

Rasta-128-4 1877 3 34.9 96 113.8 48 2.37 This paper

Dasta-128-4 1877 3 39 78 93.5 39 2.37 This paper

Rasta-128-4 1877 3 34.9 96 111.4 48 2.8 This paper

Dasta-128-4 1877 3 39 78 87.2 39 2.8 This paper

Rasta/Dasta-256-6 Linearization 703 4 97.6 214 253.6 107 2.37 [36]

Rasta-256-6 703 5� 101.3 226 267.9 113 2.37 This paper

Dasta-256-6 703 5 107 214 254.6 107 2.37 This paper

Rasta/Dasta-256-5 Linearization 3545 3 68.3 160 189.7 80 2.37 [36]

Rasta-256-5 3545 4 73.9 176 208.6 88 2.37 This paper

Dasta-256-5 3545 4 80 160 190.7 80 2.37 This paper

Rasta-256-5 3545 4 73.9 176 221.4 88 2.8 This paper

Dasta-256-5 3545 4 80 160 200 80 2.8 This paper

where Ai,N,C is an affine mapping and S is the large-scale χ operation. The
corresponding illustration can be referred to Fig. 1.
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Fig. 1. Illustration of r rounds of Rasta

Nonlinear Layer y = S(x). Denote the input and output of the nonlinear
layer by x = (x0, x1, . . . , xn−1) ∈ F

n
2 and y = (y0, y1, . . . , yn−1) ∈ F

n
2 , respec-

tively. In this way, y = S(x) can be specified as follows:

yi = xi ⊕ xi+1xi+2,

where 0 ≤ i ≤ n − 1 and the indices are considered within modulo n. For
convenience, such a function y = S(x) is defined as the n-bit χ operation. To
make y = S(x) bijective, n must be odd. It is also known that the degree of the
inverse of the n-bit χ operation is (n − 1)/2 + 1. It should be mentioned that
the 5-bit χ operation is the S-box used in the Keccak round function [10].

Affine Layers u = Ai,N,C (v). Denote the input and output of the affine
layers by v ∈ F

n
2 and u ∈ F

n
2 , respectively. The affine mapping u = Ai,N,C(v) is a

binary multiplication of an n×n matrix Mr,N,C with the n-bit input v, followed
by the addition of an n-bit round constant RCi,N,C , i.e.

u = Mi,N,C · v ⊕ RCi,N,C .

A feature of Rasta is that both Mi,N,C and RCi,N,C are not specified in advance.
Instead, when a message block has to be encrypted, the corresponding message
block counter C and a nonce N are taken as the input of SHAKE-256 [28] and
the output of SHAKE-256 will be used to construct Mi,N,C and RCi,N,C such
that rank(Mi,N,C) = n (0 ≤ i ≤ r).

The Data Limit. To resist against algebraic attacks, it is explicitly specified
in [23] that the largest number of n-bit message blocks that can be encrypted
under the same key is

√
2κ/n for the instance parameterized with (n, κ, r).

The Instances. The designers have recommended several instances that can
be implemented in practical time in [23], as shown in Table 2.

In addition to the above recommended instances, the authors also proposed
aggressive versions called Agrasta with n = κ + 1, as listed in Table 3. For
simplicity, Agrasta parameterized with (κ, r) is denoted by Agrasta-κ-r. From
the following statement by the designers, it is easy to see that the data limit
remains the same for Agrasta, i.e.

√
2κ/n. We will give a detailed explanation

later.
“ [23] Agrasta has a block size of 81-bit for 80-bit security having 4 rounds,

129-bit for 128-bit security having 4 rounds and 257-bits for 256-bit security
having 5 rounds (in this case trivial linearization would work for 4 rounds).”
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Table 2. Parameters of Rasta

κ n r

80
327 4
327 5
219 6

128
1877 4
525 5
351 6

256
445939 4
3545 5
703 6

Table 3. Parameters of Agrasta

κ n r

80 81 4
128 129 4
256 257 5

2.2 Description of Dasta

Dasta is in general the same with Rasta and we therefore do not distinguish the
used notations. Formally, the keystream Z of Dasta is defined as follows:

Z = (L ◦ Pr,C ◦ S ◦ L ◦ Pr−1,C ◦ S ◦ . . . ◦ L ◦ P1,C ◦ S ◦ L ◦ P0,C(K)) ⊕ K,

where L is a fixed n×n binary matrix while Pi,C (0 ≤ i ≤ r) is an ever-changing
bit permutation parameterized with (i, C) and a fixed bit permutation P . The
construction of Dasta is depicted in Fig. 2.

Fig. 2. Illustration of r rounds of Dasta

Our attacks are irrelevant to the details of L and Pi,C and hence their details
are omitted. The only thing we would like to emphasize is that Pi,C is continu-
ously changing, but it is always a bit permutation.

Differences Between Rasta and Dasta. One difference is that there is no
constant addition operation in Dasta. Therefore, the encryption will output fail-
ure when K is 0. Another difference is that the linear layer is composed of an
ever-changing bit permutation and a deterministic linear transform. Such a way
to construct linear layers will obviously significantly improve the performance of
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Rasta as there is no need to use SHAKE-256 to generate a random n × n full-
rank binary matrix, which is quite time-consuming. Finally, Dasta only specifies
7 instances as shown below:

(n, κ, r) ∈ {(327, 80, 4), (219, 80, 6),
(1877, 128, 4), (525, 128, 5), (351, 128, 6),
(3545, 256, 5), (703, 256, 6)}.

The parameter (n, κ, r) = (445939, 256, 4) is not taken into account in Dasta for
its huge matrix size. For this reason, the attack on Rasta with such a parameter is
not included in our results, though it is trivial to derive it based on our analysis.

2.3 Trivial Linearization Attacks

Due to the special construction of Dasta and Rasta, the conventional cryptanaly-
sis techniques such as differential attacks, higher-order differential attacks, cube
attacks and integral attacks immediately become infeasible as they all require
the attackers to collect a sufficiently large number of plaintext-ciphertext pairs
under the same key for a fixed concrete instance. Notice that when encrypting
different message blocks under the same key, both primitives behave like mov-
ing targets, i.e. different message blocks are encrypted with different concrete
instances.

Consequently, the designers of Rasta [23] made a comprehensive study on a
more potential threat, namely the algebraic attack. However, all the reported
results derived from the linearization attack, guess-and-determine attack and
Gröbner basis attack are negative. In the Dasta document [36], the designers
clearly described the number of rounds that the algebraic attacks can reach, as
already mentioned in Table 1. As the time complexity of the Gröbner basis attack
cannot be well estimated once the equation system becomes much overdefined, it
is not surprising that the resistance against the linearization attack whose time
complexity can be easily computed become a main concern of the designers.
Indeed, the parameters of Rasta are chosen based on the resistance against the
linearization attack, though the designers estimate the complexity to solve a
large-scale linear equation system in a very conservative way, i.e. O(1).

Since our results are indeed based on the linearization attack, it is necessary
to describe how the designers performed such an attack on Dasta and Rasta.
Due to the high degree of the inverse of the χ operation, the designers only
considered the nonlinear equations in terms of the key in the forward direction.
Specifically, if the total number of rounds is reduced to r0 rounds, according
to the keystream Z = (z0, z1, . . . , zn−1), the attackers are able to collect the
following n nonlinear equations in terms of the key K = (k0, k1, . . . , kn−1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F0(k0, k1, . . . , kn−1) ⊕ z0 = 0,

F1(k0, k1, . . . , kn−1) ⊕ z1 = 0,

. . .

Fn−1(k0, k1, . . . , kn−1) ⊕ zn−1 = 0.

(1)
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The generic upper bound of Deg(Fi) is Deg(Fi) ≤ 2r0 (0 ≤ i ≤ n − 1) as
the degree of the χ operation is 2. Although an attacker cannot collect many
plaintext-ciphertext pairs under the same key for a fixed concrete instance in
both primitives, he is able to collect many such pairs under the same key for
many different instances and the number of such pairs is upper bounded by the
data limit

√
2κ/n.

A trivial linearization attack is to collect
∑2r0

i=0

(
n
i

)
such equations. Then, by

renaming all the high-degree terms as new variables, the attacker indeed could
construct

∑2r0

i=0

(
n
i

)
linear equations in terms of

∑2r0

i=0

(
n
i

)
variables. Solving such

an equation system requires time complexity

T (n, r0, ω) =

(
2r0∑

i=0

(
n

i

))ω

.

The designers of Rasta also mentioned a guess-and-determine attack. Specif-
ically, after guessing υ key bits, the attacker only needs to collect

2r0∑

i=0

(
n − υ

i

)

equations. Solving such an equation system would require time complexity

2υ ·
(

2r0∑

i=0

(
n − υ

i

))ω

.

It is not difficult to observe that guessing variables is not a clever choice if
taking the algebra constant ω into account as

2υ ·
(

2r0∑

i=0

(
n − υ

i

))ω

tends to increase as υ increases when n is large and 2r0 is small, which is indeed
the case of Rasta, Dasta and Agrasta.

The effect of the trivial linearization attack on Rasta and Dasta has been
discussed in [36] with ω = 2.37, as displayed in Table 1. To show that Agrasta
also resists against this attack vector, we simply calculate the corresponding
time complexity with ω ∈ {2.8, 2.37}, as shown below:

T (81, 4, 2.8) = 2153.72 , T (81, 4, 2.37) = 2130.113

T (129, 4, 2.8) = 2186.2 , T (129, 4, 2.37) = 2157.605

T (257, 5, 2.8) = 2379,68 , T (257, 5, 2.37) = 2321.372.

Even if taking the time to perform the encryption into account, the attack cannot
be better than the brute force. As stated by the designers [23], there exists a triv-
ial linearization attack on Agrasta parameterized with (n, κ, r) = (257, 256, 4).
Indeed, we have

T (257, 4, 2.8) = 2232.68 ,
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which means this parameter is insecure. However, it also implies that the data
limit

√
2κ/n also works for Agrasta.

To better understand the data limit, we repeat the designers’ description to
determine the claimed security level. The attacker can collect at most

√
2κ/n ×

n =
√

2κ equations. In addition, there are in total

2r
∑

i=0

(
n − κ

i

)

variables after linearization. It can be found that

2r
∑

i=0

(
n − κ

i

)
> 2κ

for the parameters of Rasta displayed in Table 2. This also shows that the design-
ers made a very conservative estimation of the complexity of Gaussian elimina-
tion, i.e. in time O(1), even though that attacker are still unable to collect
sufficiently many equations under the data limit.

3 Low-Degree Equations Hidden in the χ Operation

Both the designers of Rasta and Dasta expect that the degree of the equations
that the attacker can collect is upper bounded by 2r0 when the number of rounds
is reduced to r0. The main reason is that the inverse of the χ operation is too
costly and they directly gave up in this direction. In the following, we demon-
strate that there exist exploitable low-degree equations if relating the input and
output of the χ operation in a more clever way.

Low-Degree Exploitable Equations. Denote the input and output of the χ
operation by (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1), respectively. Consider two
consecutive output bits (yi, yi+1), as shown below:

yi = xi ⊕ xi+1xi+2,

yi+1 = xi+1 ⊕ xi+2xi+3.

It can be derived that

yi+1(yi ⊕ xi) = 0. (2)

Proof. As yi ⊕ xi = xi+1xi+2, we have

yi+1(yi ⊕ xi) = yi+1xi+1xi+2 = (xi+1 ⊕ xi+2xi+3)xi+1xi+2 = 0.

This completes the proof of Eq. 2.
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Another very similar useful low-degree equation has been discussed in [35] to
mount preimage attacks on reduced-round Keccak, as shown below:

yi ⊕ xi = (yi+1 ⊕ 1)xi+2. (3)

Indeed, Eq. 2 can also be derived from Eq. 3 if both sides of Eq. 3 are multi-
plied by yi+1.

In addition, we further observed an exploitable cubic boolean equation from
our experiments on the small-scale χ operation (e.g. n ∈ {7, 9}) with sagemath,
as shown in Eq. 4. How to perform the experiments will be explained in Sect. 5.

yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi) = 0. (4)

Proof. From the definition of the χ operation, we have

yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi = yi+2yi+1 ⊕ xi+1xi+2

= (xi+2 ⊕ xi+3xi+4)(xi+1 ⊕ xi+2xi+3) ⊕ xi+1xi+2

= xi+2xi+1 ⊕ xi+1xi+4xi+3 ⊕ xi+1xi+2

= xi+1xi+4xi+3.

Hence,

yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi) = (xi+3 ⊕ xi+4xi+5)xi+1xi+4xi+3 = 0.

This completes the proof.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1y0 ⊕ y1x0 = 0,

y1x2 ⊕ y0 ⊕ x0 ⊕ x2 = 0,

y1(y0yn−1 ⊕ y0 ⊕ yn−2 ⊕ xn−2) = 0,
y2y1 ⊕ y2x1 = 0,

y2x3 ⊕ y2 ⊕ x2 ⊕ x3 = 0,

y2(y1y0 ⊕ y1 ⊕ yn−1 ⊕ xn−1) = 0,
. . .

yi+1yi ⊕ yi+1xi = 0,

yi+1xi+2 ⊕ yi ⊕ xi ⊕ xi+2 = 0,

yi+1(yiyi−1 ⊕ yi ⊕ yi−2 ⊕ xi−2) = 0,
. . .

yn−1yn−2 ⊕ yn−1xn−2 = 0,

yn−1x0 ⊕ yn−2 ⊕ xn−2 ⊕ x0 = 0,

yn−1(yn−2yn−3 ⊕ yn−2 ⊕ yn−4 ⊕ xn−4) = 0,
y0yn−1 ⊕ y0xn−1 = 0,

y0x1 ⊕ y0 ⊕ x0 ⊕ x1 = 0,

y0(yn−1yn−2 ⊕ yn−1 ⊕ yn−3 ⊕ xn−3) = 0.

(5)
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The Total Number of Exploitable Equations of Degree Upper Bounded
by 3. If treating yi+1xi+2, yi+1xi, yi+1yi, yi+3yi, yi+3xi and yi+3yi+2yi+1 as new
variables, we can say that Eq. 2, Eq. 3 and Eq. 4 are linearly independent. Taking
all the input bits into account, we obtain the equation system (5).

It is not difficult to observe that these 3n equations are linearly independent if
the high-degree terms are treated as new variables. This is because each equation
contains one high-degree term that never appears in other equations.

What benefits can be brought by such a system of equations? Imagine the
case when the degree of the boolean expressions of the input x = (x0, . . . , xn−1)
and output y = (y0, . . . , yn−1) of the χ operation in terms of the key bits are
upper bounded by Dx and Dy, respectively. If only the raw definition of the χ
operation is taken into account, i.e. the equations are constructed based on

yi = xi ⊕ xi+1xi+2,

the degree of the collected equations will be upper bounded by

max(2Dx,Dy).

However, the equation system (5) can also be utilized to describe the relations
between x and y. Moreover, the degree of the equations in the equation system
(5) is upper bounded by

max(Dx + Dy, 3Dy).

If we can know Dy = 1 and Dx ≥ 2, there will be

max(Dx + Dy, 3Dy) = Dx + 1 < 2Dx = max(2Dx,Dy).

In other words, we could construct equations of much lower degree based on
the equation system (5). As the degree of the equations is reduced, the number
of all possible monomials in the equations will be reduced to

∑Dx+1
i=0

(
n
i

)
from

∑2Dx

i=0

(
n
i

)
, which will be extremely useful to improve the trivial linearization

attack where the equations are derived only based on yi = xi ⊕ xi+1xi+2.

3.1 A General Approach to Search for Exploitable Equations

The above 3 equations are found manually or by performing experiments on the
small-scale χ operation, which are sufficient to devise the attacks in this paper.
However, it is still possible to miss similar equations and more equations can
be utilized to reduce the data complexity. Therefore, we are motivated to find a
more general approach to search for such useful equations. For this purpose, we
introduce the notion of exploitable equation.

Definition 1. An exploitable equation is defined as an equation where the input
bits of the χ operation are only allowed to form linear terms or quadratic terms
with the output bits.
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Now we discuss our general idea to identify more exploitable equations. Con-
sider the vectorial Boolean function S : Fn

2 → F
n
2 . Suppose (x0, x1, . . . , xn−1) be

the input of S and (y0, y1, . . . , yn−1) be the corresponding output. We aim to
find equations involving input variables and output variables of the function S.
Suppose our target is to bound the degree of input variables as 1 and degree of
the output variables as �. In other words, for any input (x0, x1, . . . , xn−1) and
output (y0, y1, . . . , yn−1), the following relation should hold:

a0 ⊕
∑

0≤i<n

b1i xi ⊕
∑

0≤i,j1<n

b2i,j1xiyj1 ⊕
∑

0≤j1<n

c1j1yj1⊕

∑

0≤j1<j2<n

c2j1,j2yj1yj2 ⊕ · · · ⊕
∑

0≤j1<j2<···<j�<n

c�
j1,j2,...,j�

yj1yj2 . . . yj�
= 0, (6)

where a0, b1i , b
2
i,j1

, c1j1 , . . . , c
�
j1,j2,...,j�

denote coefficients and are in F2.
Our aim is to identify these coefficients and they are treated as unknown

variables. Thus, there are t = n + n2 +
∑�

i=0

(
n
i

)
many unknown variables. If

� 	 n, we have t < 2n. Our procedure is to first fix some small odd num-
ber n. Next, we generate t′ > t many random input (x0, x1, . . . , xn−1) output
(y0, y1, . . . , yn−1) pairs and put these values in Eq. 6. Thus we have t′ linear equa-
tions over GF (2). Each solution of the linear equation system gives a possible
option of an exploitable equation. We then generate few more random input-
output pairs and check the validity of the expression. If the expression is still
valid, we can assume the expression to be valid for any input-output pair. From
this expression, we try to estimate the expression for any odd number n. Thus
our approach is based on interpolation-guess technique.

From Eq. (5), we know there are 3n linearly independent exploitable equa-
tions. First, we construct a set S = {ψ1, ψ2, . . . , ψ3n} where each ψi denotes
a different equation among the 3n equations. Let M be the union of monomi-
als of the polynomials of S. Now if a new equation ψ′ is generated using our
interpolation-guess technique and contains at least one monomial outside M,
we include ψ′ in S and update M. We continue this process for each possible
expression using our interpolation-guess technique.

In our interpolation-guess idea1, we take � = 5 and n = 11. Hence, we are
searching for t = 11 + 112 +

∑5
i=0

(
11
i

)
= 1156 many binary variables. From the

results, we found the following two simple polynomials:

ψi
1 = yi+5

(
xi ⊕ xi+2 ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1yi+3yi+4

)
, (7)

ψi
2 = yi+7

(
xi ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1(yi+4 ⊕ yi+5yi+6)yi+3

)
. (8)

Let fi = yi ⊕ xi ⊕ yi+1xi+2 for 0 ≤ i ≤ n − 1. Then we have ψi
1 =

yi+5(fi ⊕ yi+1fi+2 ⊕ yi+1yi+3fi+4), ψi
2 = yi+7(fi ⊕ yi+1fi+2 ⊕ yi+1 yi+3fi+4 ⊕

yi+1 yi+3 yi+5fi+6). From 3, we know fi = 0. Thus we have 2n extra relations:

yi+5

(
xi ⊕ xi+2 ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1yi+3yi+4

)
= 0, (9)

1 Obviously, all the 3n equations in the equation system (5) can also be detected with
this technique if it starts from an empty set S.
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yi+7

(
xi ⊕ yi ⊕ yi+1yi+2 ⊕ yi+1(yi+4 ⊕ yi+5yi+6)yi+3

)
= 0. (10)

Consider the ideal I = 〈f0, . . . , fn−1〉. It is further found that

ψi
1 ∈ I, ψi

2 ∈ I,

yi+1(yi ⊕ xi) = yi+1(yi ⊕ xi ⊕ yi+1xi+2) ∈ I,

yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi)
= yi+3(yi ⊕ xi ⊕ yi+1xi+2) ⊕ yi+3yi+1(yi+2 ⊕ xi+2 ⊕ yi+3xi+4) ∈ I.

Thus, all the 5n useful relations are in I.

Remark. Apart from 5n such relations, we obtained many other useful relations
for n = 11, � = 5. However, these expressions are too complicated. Hence, we do
not try to generalize them. One interesting observation is that these relations
are also in I. We emphasize that our algorithm is very similar to the algo-
rithm proposed by Fischer and Meier at FSE 2007, which is used to compute
the algebraic immunity of S-boxes and augmented functions [32]. However, as
most similar algorithms [12,19] to search for quadratic boolean functions of a
certain S-box based on Gaussian elimination, the algorithm [32] soon becomes
impractical for a huge S-box, i.e. the large-scale χ operation. This is because as
the size of the S-box increases, the number of possible monomials, i.e. the num-
ber of to-be-determined coefficients, will become very large, which will result in
high costs of Gaussian elimination. The feasibility of our algorithm contributes
to our critical observation that some forms of exploitable equations holding for
the small-scale χ operation (with small n) might also apply to the large-scale
χ operation (with large n). This directly allows to first search for exploitable
equations for the small-scale χ operation, and then to check whether they also
hold for the large-scale one.

4 Algebraic Cryptanalysis of Rasta and Dasta

Notice that there exists a key feed-forward phase just before computing the
final keystream Z in Rasta and Dasta. This special construction together with
the above low-degree exploitable equations will lead to significantly improved
linearization attacks.

For simplicity, denote the state after Ai,N,C by αi and the state before Ai,N,C

by βi. In this way, the state transitions in Rasta can be described as follows:

K = β0 A0,N,C−→ α0 S−→ β1 A1,N,C−→ α1 S−→ . . .
Ar−1,N,C−→ αr−1 S−→ βr Ar,N,C−→ αr.

For Dasta, similarly, denote the state after Pi,C by ρi, the state after L by πi

and the state before Pi,C by λi. In this way, the state transitions in Dasta can
be expressed as follows:

λ0 P0,C−→ ρ0
L−→ π0 S−→ λ1 P1,C−→ ρ1

L−→ π1 S−→ . . .
L−→ πr−1 S−→ λr Pr,C−→ ρr L−→ πr,

where K = λ0.
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4.1 Constructing Low-Degree Equations for Rasta

First of all, we discuss the attacks on r0 rounds of Rasta. In the forward direction,
αr0−1 can be written as boolean expressions in terms of the key. Denote the
expression of αr0−1

i (0 ≤ i ≤ n − 1) in terms of K = (k0, k1, . . . , kn−1) by
gi(k0, k1, . . . , kn−1), i.e.

αr0−1
i = gi(k0, k1, . . . , kn−1).

As the degree of the χ operation is 2, we have

Deg(gi) ≤ 2r0−1. (11)

According to the plaintext-ciphertext pair (m, c), the corresponding
keystream Z can be computed with Z = m ⊕ c. Since

αr0 = Z ⊕ K,

αr0 = Mr0,N,C · βr0 ⊕ RCr0,N,C ,

we have

βr0 = M−1
r0,N,C · (m ⊕ c ⊕ K ⊕ RCr0,N,C).

In other words, in the backward direction, βr0 can be written as linear expres-
sions in terms of K. For simplicity, denote the corresponding linear expression
of βr0

i (0 ≤ i ≤ n − 1) by hi(k0, k1, . . . , kn−1), i.e.

βr0
i = hi(k0, k1, . . . , kn−1).

Hence, we have

Deg(hi) = 1. (12)

Notice that

βr0 = S(αr0−1).

Hence, according to Eq. 2, Eq. 3, Eq. 4, Eq. 9 and Eq. 10, the following low-degree
equations can be derived:

hi+1 · hi ⊕ hi+1 · gi = 0,

hi ⊕ gi ⊕ hi+1 · gi+2 ⊕ gi+2 = 0,

hi+3(hi+2hi+1 ⊕ hi+2 ⊕ hi ⊕ gi) = 0,
hi+5

(
gi ⊕ gi+2 ⊕ hi ⊕ hi+1hi+2 ⊕ hi+1hi+3hi+4

)
= 0,

hi+7

(
gi ⊕ hi ⊕ hi+1hi+2 ⊕ hi+1(hi+4 ⊕ hi+5hi+6)hi+3

)
= 0,

where the indices are considered within modulo n. Based on Eq. 11 and Eq. 12,
it can be found that the degree of the above 5 equations is upper bounded by

D = max(Deg(gi) + Deg(hi), 5Deg(hi)) = max(2r0−1 + 1, 5).
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When r0 ≥ 3, which is the case in our attacks2, we have

D = 2r0−1 + 1. (13)

As hi is linearly independent from each other and gi can also be viewed
as linearly independent from each other once all high-degree monomials are
renamed with new variables, we can then construct 5n linearly independent
equations in terms of the key K for each pair (m, c). Different from the designers’
analysis, the degree of our 5n equations is upper bounded by 2r0−1 + 1 rather
than 2r0 . This is a great reduction in the number of all possible monomials, i.e.
reduced from

∑2r0

i=0

(
n
i

)
to

∑2r0−1+1
i=0

(
n
i

)
. Obviously, such a reduction contributes

to our clever way to utilize the low-degree equations discussed in Sect. 3.

Linearization Attacks on Reduced-Round Rasta. The attacks are now
quite straightforward. Specifically, the attacker collects sufficiently many
plaintext-ciphertext pairs. For each pair, 5n equations in terms of K can be
constructed and the degree of these equations is upper bounded by D (Eq. 13).
To solve this equation system, the linearization technique is applied. As a result,
the time complexity T0 and data complexity D0 of our attacks on r0 rounds of
Rasta can be formalized as follows, where U denotes the maximal number of
possible monomials.

U =
2r0−1+1∑

i=0

(
n

i

)
, T0 = Uω,D0 = U/(5n).

As the maximal number of message blocks that can be encrypted under the
same key is

√
2κ/n, we need to ensure

D0 =

⎛

⎝
2r0−1+1∑

i=0

(
n

i

)
⎞

⎠ /(5n) <
√

2κ/n →

⎛

⎝
2r0−1+1∑

i=0

(
n

i

)
⎞

⎠ < 5
√

2κ. (14)

In addition, as mentioned before, when the time complexity is evaluated with
the algebra constant ω = 2.8, the final time complexity will be computed with
Eq. 15, i.e. the time to encrypt a plaintext requires about (r0 + 1)n2 binary
operations for r0 rounds of Rasta.

T ′
0 =

⎛

⎝
2r0−1+1∑

i=0

(
n

i

)
⎞

⎠

2.8

/
(
(r0 + 1)n2

)
(15)

When the time complexity is evaluated with ω = 2.37 as in [36], the time
complexity will be directly computed with

T0 =

⎛

⎝
2r0−1+1∑

i=0

(
n

i

)
⎞

⎠

2.37

. (16)

2 For r0 = 2, we then only use Eq. 2, Eq. 3 and Eq. 4.
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To violate the claimed security levels, it is essential to require

T ′
0 < 2κ (17)

when ω = 2.8 or

T0 < 2κ (18)

when ω = 2.37.
Based on the formulas Eq. 15, Eq. 17 and Eq. 14, we directly break 2 out of

3 instances of Agrasta. In addition, the trivial linearization attacks on Rasta
taking the parameters

(n, κ, r) ∈ {(327, 80, 4), (1877, 128, 4), (3545, 256, 5)}

are significantly improved, which directly reduces the security margins of these
instances to only 1 round.

If evaluating the complexity with Eq. 16 and Eq. 14 as in [23], under the
constraint Eq. 18, almost all linearization attacks described in [23] are improved
by one round. All the results are summarized in Table 1.

Remark. For the high-degree nonlinear function, the designers should make a
careful investigation of whether low-degree equations exist. For Rasta, the degree
of the inverse of the χ operation is very high. However, this does not mean that
we cannot derive useful low-degree equations if considering the relations between
the input bits and output bits in a more careful way, which is obviously neglected
by the designers. Especially, when the design has an additional structure, the
neglected useful equations will become potential threats to the security.

4.2 Constructing Low-Degree Equations for Dasta

The above results can be trivially applied to Dasta. However, we further observe
that the last linear layer of Dasta is constructed in the way to apply a bit
permutation followed by a fixed linear transform. In the following, we describe
how to exploit this feature to further obtain nonlinear equations of lower degree.

Based on similar analysis, when the target is r0 rounds of Dasta, from the
forward direction, πr0−1 can be written as expressions in terms of K and the
degree of these equations is upper bounded by 2r0−1. In the backward direction,
both λr0 and ρr0 can be written as linear expressions in terms of K.

Firstly, focus on the expressions of ρr0 . It can be derived that

ρr0 = L−1 · (m ⊕ c ⊕ K) = L−1 · (m ⊕ c) ⊕ L−1 · K.

Let

σ = L−1 · K. (19)

It can be found that the expressions of σi (0 ≤ i ≤ n − 1) remain invariant due
to the usage of a fixed linear transform L. As

ρr0 = L−1 · (m ⊕ c) ⊕ σ,
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under different (m, c), the expressions of ρr0 only vary in the constant parts. As
λr0 is just a bit permutation on ρr0 , we have that the set of expressions of λr0

also only vary in the constant parts that only depend on (m, c).
In other words, if guessing one bit of σ, we can always find a bit of λr0 that

can be uniquely determined based on this guess. More specifically, since the bit
permutation may change when different message blocks are encrypted, a fixed
guessed bit of σ will always lead to a computable bit of λr0 whose bit position
is not fixed. How to exploit this fact to improve the attacks on Dasta is detailed
as follows.

Linearization Attacks on Reduced-Round Dasta. Denote the expression
of λr0

i by h′
i(k0, k1, . . . , kn−1) and the expression of πr0−1

i by g′
i(k0, k1, . . . , kn−1)

(0 ≤ i ≤ n − 1). Similarly, we have

Deg(h′
i) = 1,Deg(g′

i) ≤ 2r0−1.

Based on the above analysis, guessing a fixed bit of σ will lead to a determined
bit of λr0 , though its position is not fixed and is indeed a moving position.
However, we can always find a bit λr0 that can be determined. Since

λr0 = S(πr0−1),

according to Eq. 3, we can deduce that

h′
i ⊕ g′

i = (h′
i+1 ⊕ 1)g′

i+2. (20)

Based on Eq. 4, we have

h′
i+1(h

′
ih

′
i−1 ⊕ h′

i ⊕ h′
i−2 ⊕ g′

i−2) = 0. (21)

In addition, based on Eq. 9 and Eq. 10, we further have

h′
i+1

(
g′

i−4 ⊕ g′
i−2 ⊕ h′

i−4 ⊕ h′
i−3h

′
i−2 ⊕ h′

i−3h
′
i−1h

′
i

)
= 0. (22)

h′
i+1

(
g′

i−6 ⊕ h′
i−6 ⊕ h′

i−5h
′
i−4 ⊕ h′

i−5(h
′
i−2 ⊕ h′

i−1h
′
i)h′

i−3

)
= 0. (23)

Therefore, if the value of the expression h′
i+1 is known, an equation of degree

upper bounded by 2r0−1 can be constructed based on Eq. 20, further reducing
the degree by 1. If h′

i+1 = 1, three more equations of degree upper bounded by
2r0−1 can be derived from Eq. 21, Eq. 22 and Eq. 23 given that r0 ≥ 3.

As mentioned several times, once a fixed bit of σ is guessed, there always
exists a bit of λr0 that can be uniquely determined. In other words, we can always
find an expression h′

i+1 whose value can be uniquely calculated based on the
guessed bit. However, different from the attacks on Rasta, the number of useful
equations of degree upper bounded by 2r0−1 is 4 for each plaintext-ciphertext
pair. Among the 4 equations, one can always be constructed, while whether
the remaining three equations can be constructed will depend on the collected
plaintext-ciphertext pair. Therefore, to make our results more convincing, we
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only use the probability-1 equation derived from Eq. 20. Therefore, the data
complexity of our attack on Dasta is just an upper bound.

The attacks now become quite straightforward. Specifically, denote the data
complexity and time complexity by D1 and T1, respectively. As we only aim at
equations of degree upper bounded by 2r0−1, the maximal number of possible
monomials is

U =
2r0−1
∑

i=0

(
n − 1

i

)
.

Since only 1 equation is useful for a pair (m, c), we have

D1 =
2r0−1
∑

i=0

(
n − 1

i

)
.

As we need to guess a bit of σ, the time complexity is computed as follows:

T1 = 2 ×

⎛

⎝
2r0−1
∑

i=0

(
n − 1

i

)
⎞

⎠

ω

.

Again, when ω = 2.8, the time complexity is refined as

T ′
1 = 2 ×

⎛

⎝
2r0−1
∑

i=0

(
n − 1

i

)
⎞

⎠

2.8

/
(
(r0 + 1)n2

)
.

The time complexity should not exceed the claimed security level. The data
complexity cannot exceed the data limit. Under the two constraints, we can
significantly improve the linearization attacks on reduced-round Dasta, as shown
in Table 1. It is not surprising to find that the attacks become more powerful as
the degree decreases.

Countermeasures. A countermeasure to keep Dasta as secure as Rasta is to
swap the bit permutation and linear transform in the last linear layer. In addi-
tion, the bit permutation should always be different when different message
blocks are encrypted under the same key, which is indeed the strategy used in
the first linear layer of Dasta. In this case, under different (m, c), the attacker
needs to guess different bits in order to collect one equation of degree upper
bounded by 2r0−1, which is obviously more time-consuming than the attacks
based on equations of degree upper bounded by 2r0−1 + 1.

5 Discussions

The presented attack is surprisingly simple and can be treated as a generic attack
on Rasta-like constructions. It should be emphasized that such a simple generic
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attack has remained undiscovered since the publication of Rasta [23] at CRYPTO
2018 and that designing and analyzing symmetric-key primitives for advanced
protocols is an active field in recent years. Especially, Eq. 3 has been frequently
exploited to mount preimage attacks on reduced-round Keccak [10] since the
linear structure of Keccak was proposed at ASIACRYPT 2016 [35], though it is
always interpreted in another way due to the sponge construction. Specifically,
as the 5-bit χ operation is adopted in Keccak, Eq. 3 is always interpreted as
follows in the context of preimage attacks:

Observation 1 [35] When l (1 < l < 5) consecutive output bits of the 5-bit
S-box are known, there exist l−1 linear equations only in terms of the input
bits holding with probability 1.

The reason to construct equations only in terms of the input bits is that some
output bits of the 5-bit S-box are unknown to adversaries and the degree of their
expressions in terms of the message bits is very high. Therefore, equations like

yi+1(yi ⊕ xi) = 0,
yi ⊕ xi ⊕ (yi+1 ⊕ 1)xi+2 = 0,

yi+3(yi+2yi+1 ⊕ yi+2 ⊕ yi ⊕ xi) = 0

are not friendly to attacks when only yi is known to adversaries. Otherwise, the
involved equations will contain more unknown variables (e.g. yi+1) or the degree
of the constructed equations in terms of the message bits will increase, both of
which will have negative influences on the preimage attacks.

Based on the above fact, it is imaginable why the presented attack in this
paper is overlooked. Specifically, due to the key feed-forward operation in Rasta,
none of the output bits of the last χ operation is known, even though it is very
easy to observe that these output bits are linear in the key bits in the backward
direction. Hence, the above widely-used observation does not apply anymore as
it requires known output bits of the χ operation and guessing output bits is too
costly for Rasta.

Our simple attacks also demonstrate that the designers should make a thor-
ough study on the new components in their innovative proposals, e.g. the large-
scale χ operation in Rasta and Dasta. Indeed, finding a set of quadratic boolean
equations satisfying a given S-box in terms of the input and output bits is well-
known since the algebraic attack on AES [19], though our attacks require some
special equations where the input bits are only allowed to form linear terms or
quadratic terms with the output bits. We could only imagine that the large-
scale χ operation is too large to handle, thus making the exploitable low-degree
equations neglected.

However, dealing with a small-scale χ operation is sufficient and such equa-
tions can be easily observed. Indeed, there is an interface3 in sagemath to com-
pute the reduced Gröbner basis of the quadratic polynomials satisfying a given
3 https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sbox.

html.

https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sbox.html
https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sbox.html
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S-box, i.e. sbox.polynomials(groebner=True). This function first computes a
set of polynomials of degree upper bounded by 2 satisfying a given S-box with the
method in [12] and then computes the reduced Gröbner basis for the obtained
polynomials. We tested the 7-bit and 9-bit χ operations and observed Eq. 4.
We argue that this is not a general method and we may miss some exploitable
equations4. We recommend to use the dedicated approach discussed in Sect. 3 to
search for more exploitable equations, which is also based on the idea to detect
equations in the small-scale χ operation and then to further verify them for the
large-scale χ operation.

Indeed, Eq. 2, Eq. 3 and Eq. 4 are sufficient to mount attacks on full Agrasta,
Rasta and Dasta. With the general approach to search for more complicated
exploitable equations, the data complexity can be reduced as more equations
can be constructed based on a plaintext-ciphertext pair. However, the final time
complexity and memory complexity of the linearization attack will remain the
same. Moreover, it seems that the number of exploitable equations of degree
upper bounded by a certain value is still small and the data complexity cannot
be significantly reduced.

5.1 On the Polynomial Method [20]

Recently, based on the polynomial method [13,21,39], an improved generic
method to solve multivariate equation systems over GF (2) is proposed [20].
The conclusion is that the time complexity and memory complexity of solving
systems of equations in terms of N variables are N 2 ·2(1−1/2.7D)N bit operations
and N 2 · 2(1−1/1.35D)N bits, respectively, where D represents the upper bound
of the degree of the equations. A disadvantage of such a generic method is that
it cannot benefit from an overdefined system of equations.

When such a method is applied to Agrasta-128-4 and Agrasta-256-5, based
on our way to construct low-degree equations, the memory complexity of the
corresponding attacks is 129×129×2118.4 ≈ 2132.4 and 257×257×2245.8 ≈ 2261.8

bits, respectively. Thus, it is not better than the generic attack and requires
much more memory than ours. In addition, as mentioned in [20], an optimized
exhaustive search algorithm [14] for solving polynomial systems of degree D
over GF (2) requires 2Dlog2N · 2N bit operations. In other words, based on
our way to construct low-degree equations, the optimized exhaustive search for
Agrasta-128-4 and Agrasta-256-5 requires at least 2136 and 2265 bit operations,
respectively. For the technique in [20], without guessing key bits, it requires 2137.7

and 2267 bit operations, respectively. Guessing key bits will increase the time
complexity and hence the technique in [20] will not be faster than the optimized
exhaustive search. If counting the number of bit operations for our linearization
attacks on Agrasta-128-4 and Agrasta-256-5, we need about 245×2.8 = 2126 and

4 One reviewer of Asiacrypt 2021 recommended to try different monomial orderings.
Although we did get some new exploitable equations, the degree-4 and degree-5
equations described in this paper still do not appear in the computed Gröbner basis.
We recommend the interested readers to try this by themselves.
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287×2.8 = 2243.6 bit operations, respectively, which are still significantly below
that of the optimized exhaustive search.

For attacks on reduced-round Rasta and Dasta based on the proposed polyno-
mial method [20] or the optimized exhaustive search [14], even with our method
to construct low-degree equations, the corresponding memory complexity and
time complexity will be much higher than the claimed security level because n is
much larger than κ. This shows the advantage of the linearization attacks which
can greatly benefit from an over-defined system of equations.

5.2 Experimental Verification

The main concern of the linearization attack is whether the constructed equa-
tions are indeed linearly independent. To address it, we performed some exper-
iments5 on the small-state Rasta with small n for r0 ∈ {2, 3}. Notice that
the number of possible monomials increases very fast as the number of rounds
increases. Consequently, the experiments are performed on 2 and 3 rounds of
Rasta for efficiency. We are aware that the linearization attacks on such instances
may not be competitive to the pure brute-force attack. However, we emphasize
that the experiments are mainly used to check whether the constructed equations
with our method are indeed linearly independent.

For the experiments on 2-round attack, only Eq. 2, Eq. 3 and Eq. 4 will be
considered, while Eq. 9 and Eq. 10 will be included in the 3-round attack. This is
because the degree of Eq. 9 and Eq. 10 is upper bounded by 4 and 5, respectively.

The aim of our experiments is to compute the number of linearly independent
equations after Gaussian elimination, which is denoted by EQA, i.e. the rank of
the coefficient matrix. If it is almost the same with the total number of equations
before Gaussian elimination, which is denoted by EQB, our assumption on the
linear independence between the equations is reasonable. We performed 100

Table 4. Experimental results on small-state versions, where #(= i) represents the
number of tests when EQB − EQA = i among the 100 tests.

r0 n EQB
EQB − EQA

#(= 0) #(= 1) #(= 2) #(= 3)

2 21 1561 29 54 17 0
2 23 2047 38 55 7 0
2 25 2625 32 51 17 0
2 27 3303 25 63 12 0
2 29 4089 27 56 16 1
3 9 381 25 67 7 1
3 11 1023 27 61 12 0
3 13 2379 25 56 19 0

5 The source code can be found at https://github.com/LFKOKAMI/
AlgebraicAttackOnRasta.git.

https://github.com/LFKOKAMI/AlgebraicAttackOnRasta.git
https://github.com/LFKOKAMI/AlgebraicAttackOnRasta.git
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random tests for each small instance, it was found that

0 ≤ EQB − EQA ≤ 3, (24)

which indicates that our assumption is reasonable. The experimental results are
displayed in Table 4.

6 Conclusion

While fully inverting the large-scale χ operation will make the linearization
attack worse for its high degree, by carefully studying the relations between
its input bits and output bits, we find that there exist some hidden low-degree
equations where the input bits are only allowed to form linear terms or quadratic
terms with the output bits. Combined with the key feed-forward operation in
Dasta and Rasta, these hidden equations can be utilized to significantly improve
the linearization attacks on reduced-round Rasta and Dasta. Especially, the
improvement directly allows us to theoretically break 2 out of 3 instances of
Agrasta. Based on our analysis, some recommended parameters of Dasta and
Rasta seem to be aggressive for their small security margins. Our cryptanalysis
also implies that the last nonlinear layer in Rasta and Dasta cannot effectively
increase the degree in a fast way as expected by the designers.
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Abstract. Collision attacks on AES-like hashing (hash functions con-
structed by plugging AES-like ciphers or permutations into the famous
PGV modes or their variants) can be reduced to the problem of finding a
pair of inputs respecting a differential of the underlying AES-like primi-
tive whose input and output differences are the same. The rebound attack
due to Mendel et al. is a powerful tool for achieving this goal, whose quan-
tum version was first considered by Hosoyamada and Sasaki at EURO-
CRYPT 2020. In this work, we automate the process of searching for
the configurations of rebound attacks by taking related-key differentials
of the underlying block cipher into account with the MILP-based app-
roach. In the quantum setting, our model guide the search towards char-
acteristics that minimize the resources (e.g., QRAM) and complexities of
the resulting rebound attacks. We apply our method to Saturnin-hash,
SKINNY, and Whirlpool and improved results are obtained.

Keywords: Quantum computation · Collision attacks · Rebound
attacks · Saturnin · SKINNY · Whirlpool · MILP

1 Introduction

A cryptographic hash function is a primitive that maps a binary string of
arbitrary length into a short fixed-length digest, enjoying collision resistance,
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preimage resistance, and second-preimage resistance. One popular approach for
building a cryptographic hash function is to plug a secure block cipher into one
of the twelve secure PGV modes [46] to build the compression function, and then
iterate it with the Merkle-Damg̊ard paradigm [13,41]. In this work, we focus on
the collision resistance of hash functions constructed in this way with AES-like
ciphers (named as AES-like hashing) in both the classical and quantum setting.

The differential attack plays an important role in analyzing the collision
resistance of a hash function H, since a successful collision attack implies a
pair of inputs x and x′ with nonzero difference x ⊕ x′ such that the output
difference H(x) ⊕ H(x′) is zero. In the context of AES-like hashing, due to the
feed-forward mechanism of the PGV modes, a collision means the identification
of a pair of different inputs conforming a differential of the underlying block
cipher whose input and output differences are the same. To be more concrete,
let us consider the MMO mode (one of the twelve secure PGV modes) shown in
Fig. 1: H(x)⊕H(x′) = 0 implies (m ⊕ EK(m))⊕ (m ⊕ Δ ⊕ EK(m ⊕ Δ)) = 0 or
EK(m)⊕EK(m⊕Δ) = Δ. Therefore, finding a collision is equivalent to finding
a pair conforming a differential of the underlying block cipher whose input and
output differences are of the same value. One method for achieving this goal is
the rebound attack [39], which is the main technique involved in this work.

mi−1 EK hi

hi−1

Fig. 1. (MMO) Matyas-Meyer-Oseas

fbw fin ffw

Inbound

OutboundOutbound

Fig. 2. The rebound attack

1.1 The Rebound Attack

The rebound attack was first introduced by Mendel et al. at FSE 2009 [39].
Essentially, it is a technique for generating a pair of inputs fulfilling a differen-
tial δ → Δ for a block cipher. In the rebound attack, the targeted primitive with
a truncated differential trail whose input and output differences share a com-
mon pattern is divided into three parts as shown in Fig. 2. Then, the attacker
generates a lot of pairs (named as starting points in the literature) conforming
the inbound differential. Finally, the starting points are propagated forward and
backward to identify data pairs fulfilling the outbound differentials and the addi-
tional constraint that the input and output differences of the whole trail should
be equal.

To increase the number of rounds covered by the inbound differential for AES-
like ciphers, the super S-box technique was introduced independently by Gilbert
et al. [21] and Lamberger et al. [38], where two consecutive AES-like rounds
are considered as a whole with several super S-boxes. Later, Sasaki et al. [48]
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showed that the memory complexity of the rebound attack can be significantly
reduced by exploiting the differential property of non-full-active Super S-boxes.
At CRYPTO 2011, Naya-Plasencia further improved the rebound attack by using
better algorithms for merging large lists and finding solutions of the underlying
differential trail [43]. The rebound attack has become a basic technique for col-
lision attacks [16,30–32,40,49] and distinguishing attacks on various hash func-
tions. It even finds applications in the context of DS-MITM attacks [14,15].

The Role of the Key Expansions. In rebound attacks, the generation of the
starting points relies on the degrees of freedom from the encryption data path of
the underlying block cipher. A natural idea is to utilize the degrees of freedom
from the key-schedule algorithm if we do not require the key to be a prefixed
value (e.g., the IV). For the sake of simplicity, let us consider the MMO mode
with a single message block (see Fig. 1). A standard collision message pair (m,m′)
satisfies H(IV,m) = H(IV,m′), where the master key of the underlying block
cipher is fixed and thus no degrees of freedom from the key-schedule algorithm
can be used. However, for a semi-free-start collision H(u,m) = H(u,m′) (u �=
IV ) or a free-start collision H(v,m) = H(v′,m′) (v �= v′), the key is allowed
to be changed and thus the degrees of freedom from the key-schedule algorithm
may be utilized. At ASIACRYPT 2009, Lamberger et al. presented the semi-
free-start collision attacks on reduced Whirlpool by exploiting the degrees of
freedom from the key schedule algorithm [38]. Since there is no difference in the
key material, this type of attack can be modeled with the MILP-based method
presented in [18,26]. At ASIACRYPT 2012, Sasaki et al. [49] applied the rebound
attack on Whirlpool with an 8-round related-key truncated differential trail
and find an 8-round free-start collision attack. To the best of our knowledge,
no automatic method is available to find such free-start collisions based on the
rebound attack. Finally, we would like to emphasize the importance of free-start
collision attacks: The Merkle-Damg̊ard security reduction assumes that any type
of collision for the compression function should be intractable for the attacker,
including free-start collisions.

1.2 Collision Attacks with Quantum Computing

For a long time, it was believed that quantum computing would have a limited
impact on symmetric ciphers due to the quadratic speedup of an exhaustive
search attack based on Grover’s algorithm [25]. In ISIT 2010, Kuwakado and
Morii showed how to break some provable secure schemes in the quantum set-
ting [36], and this naive view started to change. Some follow-up works break
more constructions [34,37]. However, a key step in these attacks involving the
application of Simon’s algorithm on a function with a hidden period related to
the secret key, which requires the access to the keyed quantum oracle of the
target. This is a strong requirement whose practical relevance is questioned.
Hence, quantum attacks with higher complexities are still meaningful if they
do not need to make online queries to superposition oracles of keyed primitives
[6,7,24,28,29,35,44].



244 X. Dong et al.

As keyless primitives, hash functions can be quantumly implemented offline
and the thus attackers can freely make quantum superposition queries. For a hash
function with n-bit output, classical algorithms find collisions with time com-
plexity O(2n/2). In the quantum setting, we have the following bounds induced
by generic quantum attacks on hash functions.

– The BHT algorithm [8] equipped with a qRAM with size S finds a collision
with a time complexity T = 2n/2√

S
. It achieves optimal tradeoff when T = 2n/3

and S = 2n/3.
– Since the existence of large qRAM is still doubtful [22,23], there is a time-

space tradeoff attack without qRAM, namely the quantum version of parallel
rho’s algorithm [4,26,50]. It achieves a time complexity of T = 2n/2

S with S
processors.

– The CNS algorithm [10] finds a collision with time complexity T = 22n/5

requiring a classical memory of size 2n/5 and O(n) qubits.

At EUROCRYPT 2020, Hosoyamada and Sasaki [26] introduced the first
dedicated quantum attack on hash functions (a quantum version of the rebound
attack), which reveals that a differential trail whose probability is too low to be
used in the classical setting may be exploitable in quantum attacks. However, the
presented attacks are inferior to the CNS attack when there is no large qRAMs.
At ASIACRYPT 2020, Dong et al. [18] reduced or even avoid the use of qRAM
in the quantum rebound attacks by leveraging the non-full-active Super S-box
technique. Recently, Hosoyamada and Sasaki [27] converted the classical semi-
free-start collision attack on reduced SHA-2 into quantum collision attack and
significantly improved the number of rounds attacked. At ToSC 2021, Chauhan
et al. [11] found quantum collisions on reduced AES-256 in double block length
hashing. Ni et al. [45] investigated the quantum collision attacks on reduced
Simpira v2 in hashing modes.

1.3 Our Contribution

In this paper, we introduce an automatic tool to determine the related-key dif-
ferentials, which are optimized for rebound attacks. More concretely, we focus
on the free-start collision attacks based on rebound attack technique.

The main task is to increase the probability of the differential trail of the
outbound part by properly consuming the degrees of freedom of the key. In
addition, we have to deal with the linear incompatibility, which are frequently
encountered in various automatic tools about related-key differential on AES-
like ciphers, such as [5,12,20]. At CRYPTO 2013, Fouque et al. [20] find that the
difference cancellation between the AES-128’s key state and the round state in
some round imposes some linear relationship between the key and state differ-
ences. Hence, difference cancellation in a different round cannot be independently
simulated.

On ciphers with linear key schedule, Cid et al. [12] described an MILP model
to search the related-key differentials, i.e., Deoxys-BC [33]. Since the relationship
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between Deoxys-BC’s round keys are somewhat weakened by the LFSRs, they
do not need to consider incompatibilities between many rounds. In this paper,
we study a more complex case, i.e., Saturnin [9], a round 2 candidate of NIST
LWC competition, proposed by Canteaut et al. In Saturnin, the round keys
are identical for the even or odd rounds, respectively, and the round key in the
odd rounds are derived by shifting the key in even round by 5 cells. Hence, the
relationships between the round keys in Saturnin are stronger, and Cid et al.’s
model may lead to many incompatible solutions for Saturnin. To deal with the
problem, we build an efficient method to fast abandon the incompatible solutions,
where the incompatibilities come from many rounds, for example, contradictions
between the truncated differentials in round 0 and round 6. In addition, we also
model the inbound phase with key differences, where both the 2-round and 3-
round inbound phases are considered. We build a uniform objective function on
the time complexity to perform the rebound attack, that takes the complexity
of solving the inbound phase and the probability of the outbound phase as a
whole. Thereafter, we find an 8-round trail for the rebound attacks and generate
an 8-round quantum free-start collision attack on the compression function of
Saturnin-hash. In addition, we also identify a 7-round quantum collision attack
on Saturnin-hash based on a 7-round single-key rebound attack trail.

We also apply the automatic model to SKINNY-128-384 [3]. Since SKINNY
adopts non-MDS matrix, we build a dedicated method to solve the super S-box
with non-MDS matrix. Compared to the usual super S-box with MDS matrix,
our method explores the details of the non-MDS matrix of SKINNY and decom-
poses the super S-box into a sequence of small S-boxes. Our super S-box tech-
nique with non-MDS matrix does not need to precompute the differential distri-
bution of the super S-box even in the full active case, which works efficiently in
quantum attack without qRAM and large classic memory. Concretely, about

√
2c

time is needed to solve the full active super S-box with non-MDS matrix quan-
tumly without qRAM, while the time is

√
2dc for full active super S-box with

MDS matrix, where d = 4 for SKINNY and AES. Thereafter, we give the 16-round
free-start quantum collision attacks on the hashing modes with SKINNY-128-384.

On ciphers with nonlinear key schedule, we study the compression function of
ISO standard hash function, Whirlpool [2]. In the automatic model, we place the
3-round inbound phase in both the key schedule path and data encryption path
(we do not find better trail with the two-round inbound phases). In its quantum
attack, we nest multiple Grover’s algorithms to solve several local searching
problems. For Saturnin, the role of the consumption of degrees of freedom for
key schedule is mainly to increase the probability of the outbound phase of
the encryption data path. However, for Whirlpool, we have to consume the
degrees of freedom of the key to increase the probabilities of the outbound phases
in both the key schedule and the encryption data path. Finally, we introduce
a 9-round quantum free-start collision attack on the compression function of
Whirlpool, while the best previous attack is 8-round in classical setting [49].
The results are summarized in Table 1. Our quantum attacks do not need qRAM
or classical memories, which perform better than the generic quantum collision
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attacks by parallel rho’s algorithm [4,26,50]. However, certain time complexities
may be inferior to the quantum attacks equipped with large classical memory
by Chailloux, Naya-Plasencia, and Schrottenloher’s algorithm [10].

Table 1. A summary of the results.

Whirlpool

Target Attack Rounds Time C-Mem qRAM Setting Ref.

Hash function Collision 4/10 2120 216 – Classic [39]

5/10 2120 264 – Classic [21,38]

6/10 2228 – – Quantum [26]

6/10 2248 2248 Classic [17]

Preimage 5/10 2504 28 – Classic [47]

6/10 2481 2256 – [49]

7/10 2497 2128 [1]

Compression function Semi-free-start 5/10 2120 216 – Classic [39]

Semi-free-start 7/10 2184 28 – Classic [38]

Free-start 8/10 2120 28 – Classic [49]

Free-start 9/10 2220.5 – – Quantum Sect. 6

Any Any 2256 – – Quantum [4,26,50]

any any 2170.7 – 2170.7 Quantum [8]

Any Any 2204.8 2102.4 – Quantum [10]

Saturnin-hash

Hash Collision 5/16 264 266 – Classic Full Ver. [19]

7/16 2113.5 – – Quantum Full Ver. [19]

Preimage 7/16 2232 248 – Classic [17]

Compression function Free-start 6/16 280 266 – Classic Full Ver. [19]

Semi-free 7/16 290.99 – – Quantum Full Ver. [19]

Free-start 8/16 2122.5 – – Quantum Sect. 4

Any Any 2128 – – Quantum [4,26,50]

Any Any 285.3 – 285.3 Quantum [8]

Any Any 2102.4 251.2 – Quantum [10]

SKINNY-128-384-MMO/MP

Compression func. Free-start 16 259.8 – Quantum Sect. 5

Any Any 264 – Quantum [4,26,50]

Any Any 242.7 – 242.7 Quantum [8]

Any Any 251.2 225.6 - Quantum [10]

2 Preliminaries

2.1 Quantum Computation and Quantum RAM

The state space of an n-qubit quantum system is the set of all unit vectors
in C

2n under the orthonormal basis {|0 · · · 00〉, |0 · · · 01〉, · · · , |1 · · · 11〉}, alterna-
tively written as {|i〉 : 0 ≤ i < 2n}. Quantum computation is achieved by manip-
ulating the state of an n-qubit system by a sequence of unitary transformations
and measurements.
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Superposition Oracles for Classical Circuit. The superposition oracle of
a Boolean function f : Fn

2 → F2 is the unitary transformation Uf acting on an
(n + 1)-qubit system with the following functionality

Uf

⎛
⎝ ∑

x∈F
n
2

ai|x〉|y〉
⎞
⎠ =

∑
x∈F

n
2

ai|x〉|y ⊕ f(x)〉.

Grover’s Algorithm. Given a quantum black-box access to a Boolean function
f : Fn

2 → F2 with 0 < f−1(1) � 2n. Grover’s algorithm finds an element x ∈ Fn
2

such that f(x) = 1 with O(
√

2n/|f−1(1)|) calls to the quantum oracle Uf that
outputs

∑
x ax|x〉|y ⊕ f(x)〉 upon input of

∑
x ax|x〉|y〉. To be more specific,

Grover’s algorithm iteratively apply the unitary transformation (2|ψ〉〈ψ| − I)Uf

to the uniform superposition |ψ〉 = 1√
2n

∑
x∈F

n
2

|x〉 of all basis vectors produced
by applying the Hadamard transformation H⊗n to |0〉⊗n. During this process,
the amplitudes of those values x with f(x) = 1 are amplified. Then, a final
measurement gives a value x of interest with an overwhelming probability [25].

Quantum Random Access Memories (qRAM). A quantum random access
memory (qRAM) uses n-qubit to address any quantum superposition of 2n mem-
ory cells. For a list of classical data L = {x0, · · · , x2n−1} with xi ∈ F

m
2 , the

qRAM for L is modeled as an unitary transformation UL
qRAM such that

UL
qRAM

(∑
i

ai|i〉 ⊗ |y〉
)

=
∑

i

ai|i〉 ⊗ |y ⊕ xi〉.

Currently, it is unknown how a large qRAM can be built. Therefore, quantum
algorithms using less or no qRAM are preferred.

2.2 The Full-Active and Non-full-Active Super S-Box Technique

The super S-box technique proposed by Gilbert et al. [21] and Lamberger et
al. [38] extends the Mendel et al.’s [39] inbound part into 2 S-box layers, by
identifying four non-interfering F

32
2 → F

32
2 permutations across two consecutive

AES rounds and regarding them as four super S-boxes as shown in Fig. 3(a). In
[48], Sasaki et al. further reduced the the memory complexity by considering
non-full-active super S-boxes as shown in Fig. 3(b).

Full-Active Super S-Box. We consider a more general scenario that the inter-
nal state of the cipher is a d × d matrix of c-bit cells. As shown in Fig. 3(a) with
d = 4, for the ith super S-box SSBi and given input difference ΔX

(i)
1 , we compute

ΔY
(i)
2 = SSBi(x ⊕ ΔX

(i)
1 ) ⊕ SSBi(x) for x ∈ F

dc
2 . Store the pair (x, x ⊕ ΔX

(i)
1 )

in a table L
(i)[ΔY

(i)
2 ]. In the inbound phase, given Δin = ΔZ0, we compute

ΔX
(i)
1 for 0 ≤ i ≤ d − 1, then we compute the d tables L

(0), L(1), ..., L(d−1).
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(a): Super Sbox (b): Non-full-active Super Sbox

Fig. 3. A differential with non-full-active super S-box

For each Δout = ΔW2 ∈ F
dc
2 , compute ΔY

(i)
2 with 0 ≤ i ≤ d − 1 to access the

table L
(i)[ΔY

(i)
2 ] to generate a pair conforming the truncated differential of the

inbound part. Hence, for given Δin, we need d × 2dc memory to store the four
tables, and will generate |Δout| = 2dc pairs on average satisfying the inbound
part.

At EUROCRYPT 2020, Hosoyamada and Sasaki [26] converted the classical
super S-box technique into a quantum one. They introduced two quantum ways.
The first one is to use the qRAM to replace the classical memory to store the
super S-box, which needs a exponential size of qRAM. The second one is to
apply the Grover’s algorithm to search a conforming pair for a given input-
output difference (ΔX

(i)
1 ,ΔY

(i)
2 ) of SSBi. This method needs about 2dc/2 super

S-box computations to find the right pair.

Non-full-Active Super S-Box. For the non-full-active super S-box in Fig. 3(b),
the Property 1 of MDS in MC is used. Look at ΔW1 = MC(ΔZ1), suppose there are
totally s non-active cells (s < d) and 2d−s active cells in ΔZ1 and ΔW1 (s = 3 in
Fig. 3(b)), then by guessing the differences of d − s active cells, we can determine
other differences according to Property 1. Then, for a fixed input-output differ-
ences (ΔX

(i)
1 ,ΔY

(i)
2 ) of SSBi, we can deduce all the input-output differences for

the 2d−s active cells of two S-box layers for each guess and then deduce their val-
ues by accessing the differential distribution table (DDT) of the S-box. Now, for the
equation W1 = MC(Z1), we have 2d − s known cells in W1 and Z1, hence it acts
of probability 2−(2d−s−d)c = 2(s−d)c. Hence, for a fixed (ΔX

(i)
1 ,ΔY

(i)
2 ), we get

2(d−s)c · 2(s−d)c = 1 conforming pair on average. The time complexity is 2(d−s)c.
The memory is 22c to store the DDT of S-box.

Property 1. MC · (Z[1], Z[2], · · · , Z[d])T = (W [1],W [2], · · · W [d])T can be used to
fully determine the remaining unknowns if any d cells of Z, W are known.

In the quantum setting, Dong et al. [18] converted the non-full-active super
S-box technique into a quantum one by searching the 2(d−s)c differences with
Grover’s algorithm, which gains a square root speedup. Both in quantum and
classical setting, the complexity is determined by the number of inactive cells in
(ΔX

(i)
1 ,ΔY

(i)
2 ), i.e., s.
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2.3 Inbound Part with Three Full Rounds
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Fig. 4. Details in inbound phase covering 3 rounds (Color figure online)

As shown in Fig. 4, given fixed differences ΔZ0 and ΔW3, Jean et al. [30] intro-
duced an algorithm to find the pairs of conforming to the 3-round differential.
At EUROCRYPT 2020, Hosoyamada and Sasaki [26] introduced a memoryless
algorithm (see Algorithm 9 of our full version paper). The time complexity is
2d2c/2+dc and there expects one conforming pair. Hosoyamada and Sasaki [26]
also introduced the quantum variant shown in Sect. 6.

3 Modeling Rebound Attacks in the Related-Key Setting

In the related-key setting, taken MMO mode as an example in Fig. 1, we con-
struct free-start collisions using related-key truncated differential trail of EK ,
which meets Eq. (1):

(m ⊕ EK(m)) ⊕ (m ⊕ Δm ⊕ EK⊕ΔK(m ⊕ Δm)) = Δm ⊕ Δm = 0. (1)

The procedures of the related-key rebound attack are:

1. Find a related-key truncated differential for EK ,
2. Choose a key pair (K,K ′) which meets the differential in the key-schedule,
3. Perform the rebound attack in the encryption data path with (K,K ′).

The Outbound Phase. In the single-key setting, previous works [18,26] con-
sider the probability of the truncated differential, which is mainly due to the



250 X. Dong et al.

cancellations of MC operation. In the related-key setting, we try to use simi-
lar method directly, i.e., calculating the probability of differential transition by
counting the number of inactive cells in the output of linear operations (e.g.
MC, AK etc.) whose input is active. We use the round function of AES as an
example without the SR. In Fig. 5(a), the four cells in first column of Yi are
active which are the input to the MC operation. The first column of Zi has one
inactive cell. Assume the differences in all active cells are independent uniform
random, then Prob(Yi → Zi) ≈ 2−c (one cell of the state is of c bits). Similarly,
Prob(Zi → Wi) ≈ 2−c. Thus the probability of the truncated differential trail
in Fig. 5(a) is about 2−2c.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ki

Xi Yi Zi Wi

SB SR MC AK

⊕

Ki

Xi Yi Zi Wi

SB SR MC AK

⊕

(a): Example I (b): Example II

Fig. 5. AES rounds in forward outbound phase.

The method borrowed from single-key rebound attack seems to work well,
but in related-key setting, this method may lead to a lower probability than the
reality. For example, in Fig. 5(b), two active cells are cancelled by AK operation.
Using the above method, we can calculate the probability of the trail is about
2−2c. Note that in the related-key rebound attack, the key pair is first deter-
mined, then perform the rebound attack in the encryption data path, where
key materials act as constants. Hence, the probability of the outbound phase
in the encryption data path is computed under a fixed key difference. There-
fore, ΔKi[0, 1] = ΔZi[0, 1] and ΔZi[0, 1] is fixed. Due to Property 1, all other
active cells of differences in Yi and Zi are determined. Hence, the probability
of the differential is determined by the differential propagation of the S-box,
i.e., Prob(ΔXi[15] S-box−−−→ ΔYi[3]) > 2−c with DDT, which is bigger than 2−2c. In
detail, we derive the relationship between the first column of Yi and Zi from MC
as shown in Eq. (2).

⎡
⎢⎢⎣

ΔZi[0]
ΔZi[1]
ΔZi[2]
ΔZi[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

ΔYi[0]
ΔYi[1]
ΔYi[2]
ΔYi[3]

⎤
⎥⎥⎦ . (2)

As 3 cells in the 1st column of ΔYi are 0 and ΔZi[0, 1] = ΔKi[0, 1], we have
⎡
⎢⎢⎣

ΔKi[0]
ΔKi[1]
ΔZi[2]
ΔZi[3]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

0
0
0
ΔYi[3]

⎤
⎥⎥⎦ ,
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which shows that ΔYi[3] = ΔKi[0] = ΔKi[1]. Hence, ΔKi[0] and ΔKi[1] are
related to each other. We call the number of cells in key, whose differences can
be chosen independent randomly, the degree of freedom in the key differential
states. In Fig. 5(b), key states have four active cells, among them two cells meet
the condition ΔKi[0] = ΔKi[1] that consumes one-cell degree of freedom. Hence,
the degrees of freedom in the key differential states are 4 − 1 = 3 in Fig. 5(b).
Therefore, the degree of freedom in K is reduced to increase the probability of
the trail in Fig. 5(b) from 2−2c to about 2−c. The consumption of freedom in
the whole differential trail should not be higher than the number of active cells
in key. Note that similar technique has already been used by Cid et al. [12] in
the cryptanalysis of Deoxys against related-key differential attack. We apply the
technique to the rebound attack by taking the features of rebound attack into
the model.

Degree of Freedom. For a target with linear key schedule algorithms (e.g.
Saturnin [9] and SKINNY [3]), we formulate its degree of freedom in the follow-
ing. Taking Saturnin as an example, if there are t active cells in the master
key, then we say that the initial degree of freedom for the key difference is t-
cell (denoted by DoK = t), since there are about (2c)t different choices for the
key difference. However, as discussed previously, in rebound attacks exploiting
related-key differentials, we may constrain the key difference by a system of lin-
ear equations with the active cells in the master key as variables to increase the
probability of the outbound differentials. Assuming we have l independent linear
equations, then l-cell degree of freedom is consumed (denoted by DoK− = l).
Therefore, to ensure there is at least one solution for the master key difference, we
require DoK ≥ DoK−. Otherwise, we have an over-defined system of equations
for the active cells of the master key, which may have some conflicts.

Besides the degree of freedom from the master key difference, another source
of degree of freedom should be considered. For a given master key difference,
we can form (2c)n̄ key pairs satisfying the given difference, where the key is
of n̄ c-bit cells. Taking the encryption data path into account and supposing
that for a given (Δin,Δout) and key pair (K,K ′), there is one solution for the
inbound part in the data encryption path on average, then we can generate
(2c)DoK−DoK−+n̄(|Δin| · |Δout|) starting points as (K,M,K ′M ′), which is called
the degrees of freedom for the rebound attack [39] (denoted by DoA). To expect
one solution fulfilling the outbound differential with probability p, we require
that (2c)DoA = (2c)DoK−DoK−+n̄(|Δin| · |Δout|) ≥ 1

p .

3.1 Dedicated Modelings and Case Study on Saturnin-hash

Saturnin is a suite of lightweight symmetric algorithms proposed by Canteaut
et al. [9]. It is among the 2nd round candidates of the NIST LWC. Based on a
256-bit AES-like block cipher with 256-bit key, two authenticated ciphers and a
hash function are designed. In this section, we focus on its hash function, called
Saturnin-Hash. The round function only consists of AK, SB layer and linear
layer, where MixRows (MR) and MixColumns (MC) are applied alternatively in
even or odd number of round. The key schedule is linear and simple. In even
round, K is used and in odd round the K is rotated by 5 cells (denoted as K̃).
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Related-Key Truncated Differential Model. For an R-round primitive, we
use several binary variables xi,j

r and yi,j
r to represent the state before and after

the MR (or MC) operations in the r-th round, where i and j mean that the cell is in
i-th row and j-th column. These variables are 1 if and only if the corresponding
cell is active. For the key states, we use Ki,j and K̃i,j to represent the rotated
key and the master key in the same way.

Without loss of generality, we only consider MR operation now. To model the
MR operations (similar constraints are also applied to MC), we use binary variables
bi
r to express MR operations are active or not in the i-th row of r-th round, and

use branch number to generate constraints just like Mouha et al.’s model [42].
Another operation is key addition. The constraint of key addition are quite

like constraint of XOR, except the result of two active cells addition can be
active or inactive.

The Outbound Phase. As shown in Fig. 5(b), the number of cancelled cells
could not show the real probability in a related-key model. Hence, the constraints
in our model are different from single-key models. We use Probi

r to represent
the probability of the i-th row in round r.

In forward part of the outbound phase, we use ci
r to represent the number

of cells cancelled after the r-th round MR operation in row i, and c̃i
r to represent

the number of cells cancelled after the next key addition operation in row i.
If

∑j≤3
j=0 xi,j

r ≥ ci
r + c̃i

r (like the trail in Fig. 5(a)), then the probability of this
MR operation in this row is estimated by ci

r + c̃i
r (to show the connection of

probabilities and variables in our MILP model, the probabilities are taken in
−log2c ). If

∑j≤3
j=0 xi,j

r < ci
r + c̃i

r (like the trail in Fig. 5(b)), then the probability is∑j≤3
j=0 xi,j

r , and the degree of freedom in key states is consumed ci
r+c̃i

r−
∑j≤3

j=0 xi,j
r .

Thus, Probi
r = min(ci

r + c̃i
r,

∑j≤3
j=0 xi,j

r ).

Ki

Yi+1Yi Zi Xi+1

SBMR AK

⊕

Ki

Yi+1Yi Zi Xi+1

SBMR AK

⊕

(a): Example III (b): Example IV

Fig. 6. Saturnin rounds in backward outbound phase.

Similar to forward part, in backward part, we also use ci
r to represent the

number of cells that are cancelled by the r-th round MR−1 operation in row i, and
c̃i
r to represent the number of cells are cancelled before the next key addition

operation in row i. If
∑j≤3

j=0 xi,j
r+1 ≥ ci

r (like the trail in Fig. 6(a)), then the
probability of this MR operation in this row is ci

r + c̃i
r. If

∑j≤3
j=0 xi,j

r+1 < ci
r(like
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the trail in Fig. 6(b)), then the cancellation of this MR operation in this row is∑j≤3
j=0 xi,j

r+1, and the degree of freedom in key states is consumed ci
r − ∑j≤3

j=0 xi,j
r .

Thus, Probi
r = min(ci

r + c̃i
r,

∑j≤3
j=0 xi,j

r+1).
To limit the consumption of freedom, we add the following constraint

∑
Forward

(ci
r + c̃i

r − Probi
r) +

∑
Backward

(ci
r − Probi

r) ≤
∑

0≤i,j≤3

Ki,j .

The Inbound Phase. We use a variable l to determine the inbound part and
outbound part, and the inbound part includes rin rounds. Thus round l + 1 to
l + rin are inbound part, while other rounds are outbound parts. If rin = 2, we
use the super S-box techniques to solve the inbound part. In classical setting,
it usually does not increase the overall time complexity, and only need some
memories as shown in Sect. 2.2. However, in quantum setting without qRAM,
the overall time complexity is also affected by the super S-box technique. As
shown by Dong et al. [18], if the super S-boxes are not fully active, the time
for quantum attack may be reduced. Following the notations in Sect. 2.2, the
number of inactive S-boxes in the i-th super S-box SSBi is denoted as si. Then the
quantum time to solve the inbound part is about

√
2d−min{s0,s1,s2,s3} according

to Dong et al. [18], where d is the number of cells in each row, and d = 4 for
Saturnin. In related-key setting, some cells in super S-boxes can be determined
by key difference. As we shown in Algorithm 2 of Sect. 4, cells with known
difference play the same role as inactive cells in non-full active super S-boxes
technique. Thus si denote the number of cells whose difference is fixed before or
after the MR or MC operation in the middle of a super S-box.

When rin = 3, the inbound phase in solved by the methods of Jean et al.
[30] classically or Hosoyamada et al. [26] quantumly. Both the time complexities
are fixed and independent to the rebound attack trails as shown in Sect. 2.3. We
will give more details in the attack on Whirlpool, whose rebound trail includes
a 3-round inbound part in both the key schedule and encryption data path.

Time Complexity and Objective Function. In quantum setting without
qRAM, we have two time complexities according to rin:

� rin = 2, the time complexity is about
√

2(
∑

Probir+
∑

xi,j
0 +d−min{s0,s1,s2,s3}),

where
∑

Probi
r corresponds to the probability of the truncated difference of

the outbound phase,
∑

xi,j
0 are the number of active cells to be collided for

the plaintext and ciphertext, d − min{s0, s1, s2, s3} corresponds to the time
to solve the inbound part. Hence, when rin = 2, the objective function is to
minimize

∑
Probi

r +
∑

xi,j
0 + d − min{s0, s1, s2, s3}.

� rin = 3, the objective function is
∑

Probi
r +

∑
xi,j
0 .

The Incompatibilities Within Many Rounds. Cid et al. [12] described
an MILP model to search the related-key differentials on ciphers with linear
key schedule, e.g., Deoxys-BC [33]. Since the relationship between Deoxys-BC’s
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round keys are somewhat weakened by the LFSRs, they do not need to con-
sider incompatibilities between many rounds. In Saturnin, the round keys are
identical for many rounds, which lead to strong relationship on the round keys.
Though we limit the consumption of degree of freedom in our MILP model, a
trail can be incompatible when the same key cell needs to satisfy two differ-
ent relationships in different rounds. For example, in Fig. 7, from Y2 to X3 we
have (ΔZ2[2],Δk11,Δk15,Δk0) = MR(ΔY2[2], 0, 0, 0). From Y4 to X5 we have
(Δk7,Δk11,Δk15,Δk0) = MR(ΔY4[2], 0, 0, 0). The above two linear equations
have 6 same cells., Due to Property 1, ΔZ2[2] = Δk7, then ΔX3[2] should be 0,
which is a contradiction.
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Fig. 7. An incompatible trail of Saturnin
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figure online)
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Fig. 9. A compatible trail (Color figure
online)
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Adding more constraints to remove this kind of contradictions in MILP model
is quite hard. According to Property 1, a set of equations of MC (or MR) operation
has 8 cells of variables, and if two sets of equations have at least 4 same cells,
then all cells of variables in the two sets of equations should be same. We use this
property to fast delete the incompatible trails. Figure 8 and Fig. 9 show examples
of incompatible and compatible trails. The inactive cells are in white and active
cells are in gray and green, and the difference in green cells are determined by key
difference. We can encode the truncated difference in Y and Z to a 8-dimensional
vector S = (y0, y1, y2, y3, z0, z1, z2, z3), where ym = 1 if ΔY [m] is inactive with
0 ≤ m ≤ 3, else ym = 0; zm = 1 if ΔZ[m] is 0 or equals to key differences, else
zm = 0. For example, in Fig. 8, we have Si = (1, 1, 0, 0, 1, 1, 0, 0) for round i and
Si = (1, 1, 1, 0, 1, 1, 0, 0) for round j with the same K. The dot product of two
vectors Si and Sj is the number of same cells of two sets of equations of MC (or MR)
operations. For example, 〈Si,Sj〉 = 4 in Fig. 8, hence, due to Property 1, all the
cells of differences in Yi and Yj (also for Zi, Zj and Xi+1, Xj+1) should be the
same. However, Yi[2] is active but Yj [2] is inactive, which leads to contradiction
and Fig. 8 is an incompatible trail. In Fig. 9, we have Si = (1, 1, 0, 0, 1, 1, 0, 0)
and Sj = (1, 0, 0, 0, 1, 1, 0, 0) with 〈Si,Sj〉 = 3 < 4, hence the trail is compatible.

Since we can derive the vector Si from the solutions of our MILP model, we
use the PoolSearchMode of Gurobi to get many solutions for our MILP model
and then check if one of the solutions does not have this kind of contradiction.
For 8-round Saturnin with l ≥ 1 and rin = 2, we get thousands of different
truncated differentials from our MILP model through the PoolSearchMode and
after checking them with the above method, none of them are left; for 8-round
Saturnin with l = 0 and rin = 2, we get a hundred of different truncated
differentials and most of them are compatible. For those left solutions, we pick
one trail to launch our rebound attacks. See supplementary materials for the
source code of constructing MILP model and detecting contradiction. We have
put the source code for the automatic model of Saturnin-hash in a public
domain at https://github.com/rebound-rk/rebound-rk.

4 Free-Start Collision on 8-Round Saturnin-hash

By applying the MILP model, we find an 8-round truncated differential on
Saturnin as shown in Fig. 10(a). We perform the quantum collision attack based
on the truncated differential. The inbound phase covers from Y0 to X3, including
two SB layers. The two outbound phases are from Y0 to the plaintext and X3

to the ciphertext. In the inbound phase, there are four parallel non-full active
super S-boxes. The input difference Δin = ΔX1 is determined by ΔY0. At round
2 and 3, from MR(ΔY2) ⊕ ΔK̃ = ΔX3, at the 3rd row, we get

MR−1(Δk7,Δk11,Δk15,Δk0) = (ΔY2[2], 0, 0, 0). (3)

For row 3 of the computation from ΔY4 to ΔX5, and from ΔY6 to ΔX7, the
same requirement of Eq. (3) is also applied, since the subkeys are all K̃ and the
truncated form are the same.

https://github.com/rebound-rk/rebound-rk
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At round 3 to 4, in the first column of the computation from ΔY3 to ΔX4,
we have ΔZ3[0] = Δk0 and ΔZ3[1] = Δk1. Further, we get

MC−1
(
Δk0,Δk1,ΔZ3[2],ΔZ3[3]

)T =
(
0, 0, 0,ΔY3[3]

)T
. (4)
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Fig. 10. 8-round related-key rebound-attack trail on Saturnin-hash
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The condition of Eq. (4) also applies to the computation from ΔY5 to ΔX6.
Hence, for Eq. (4) and (3), if we fixed Δk0, then Δk7, Δk11, Δk15, and Δk1 are
determined by Property 1. As shown in Fig. 10(a), at Round 0 and 1, ΔX1[2] =
Δk7 ⊕ ΔZ0[2] = 0, so ΔZ0[2] = Δk7. From ΔZ0 = MR(ΔY0), for the third row,
we have ΔY0[2, 10, 14] = 0 and ΔZ0[2] = Δk7 and Eq. (5) is derived. Hence, if
Δk7 is fixed, all other differences in the active cells of ΔY0 and ΔZ0 in row 3
are deduce by Property 1.

MR−1(Δk7,ΔZ0[6],ΔZ0[10],ΔZ0[14]) = (0,ΔY0[6], 0, 0). (5)

Algorithm 1: Determine the Differences From the Truncated Form

1 for Δk0 ∈ F
16
2 do

2 Deduce Δk7, Δk11, Δk15, Δk1 by Equation (4) and (3) and Property 1
3 /* All the differences in the key schedule are determined. */

4 Round 2: Deduce ΔZ2[2, 6, 10, 14], ΔY2[2]
5 Round 3: Deduce ΔY3[3] by Equation (4) and Property 1. Then Z3[0, 1, 2, 3]

and X4[2, 3] are fixed.
6 Round 4: Similar to Round 2 to get ΔZ4[2, 6, 10, 14], ΔY4[2]. In addition, we

have ΔZ4[15] = Δk1

7 Round 5: Similar to Round 3 to get ΔY5[3], Z5[0, 1, 2, 3] and X6[2, 3]
8 Round 6: Similar to Round 2 to get ΔZ6[2, 6, 10, 14], ΔY6[2]. In addition, we

have ΔZ6[15] = Δk1

9 Round 0: With Equation (5), we deduce ΔZ0[6, 10, 14] and ΔY0[6]. Then
ΔX1[6, 10, 14] are determined.

10 Round 1: Since ΔZ1[0] = Δk0 and ΔZ1[1] = Δk1, ΔZ1[0] and ΔZ1[1] is
fixed.

11 Round 7: In Saturnin-hash (MMO hashing mode), the plaintext is XORed
into the ciphertext of the internal block cipher to output the digest. We
have T = P ⊕ C = X0 ⊕ K ⊕ Z7 ⊕ K = X0 ⊕ Z7. Then, if two message
collide, we have ΔT = 0 = ΔX0 ⊕ ΔZ7.

12 As shown in Figure 10(b), from ΔX4 to ΔY5, multiple differential trails are
taken into account.

We derive an 8-round rebound-attack characteristic in Fig. 10(b) from the
truncated form in Fig. 10(a) by Algorithm 1. By traversing Δk0 ∈ F

16
2 in Algo-

rithm 1, we find characteristic with as higher probability as possible. The best
trail is given in Fig. 10(b), whose total probability of the outbound phase is
2−(12+59.8+16+59.8+64) = 2−211.6 including the probability of ΔX0 = ΔZ7. In
round 4, 2−59.8 is the total probability of a cluster differential trails from ΔX4

to ΔZ4. The same happens to round 6.
As shown in Fig. 10(b), the 2nd, 3rd and 4th super S-boxes are typical non-

full-active super S-boxes, where there are only 5 active cells among the 8 input-
ouput cells between MC in round 1 in each super S-box. However, the first super
S-box is not a typical one. In fact, between MC in round 1 in the first Super-Sbox,
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there are one non-active cell and two cells with fixed differences. However, we
can regard the two cells with fixed differences as another two “non-active” cells
to perform the quantum version of non-full active super S-box technique [18]
whose details will be given in Algorithm 2.

For the ith (i = 0, 1, 2, 3) non-full-active super S-box, we define G(i) : F16
2 ×

F
3
2 �→ F2 as G(i)(K,K ′,ΔX

(i)
1 ,ΔY

(i)
2 ;x, β), where x = X

(i)
1 [0] ∈ F

16
2 and β =

β0‖β1‖β2 ∈ F
3
2. G(i)(K,K ′,ΔX

(i)
1 ,ΔY

(i)
2 ;x, β) = 1 if and only if (x, β) leads to

a valid connection of (ΔX
(i)
1 ,ΔY

(i)
2 ) under the key pair (K,K ′). The quantum

implementation of UG(0) is given in Algorithm 2.

Complexity of UG(0) Is Given in Algorithm 2. The time is bounded by Line 7 to
Line 9 of Algorithm 2, which is about (including uncomputing) 3× π

4 ·
√

216 ·2·2 =
211.24 Sbox evaluations.

Algorithm 2: Implementation of UG(0) without using qRAMs
Input: |K, K′, ΔX

(0)
1 , ΔY

(0)
2 ;X

(0)
1 [0], β〉|y〉 with β = (β0, β1, β2) ∈ F

3
2

Output: |K, K′, ΔX
(0)
1 , ΔY

(0)
2 ;X

(0)
1 [0], β〉|y ⊕ G(0)(K, K′, ΔX

(0)
1 , ΔY

(0)
2 ;X

(0)
1 [0], β)〉

1 /* Please focus on the super Sbox marked by blue box in Fig. 10 */

2 Y
(0)
1 [0] ← S(X

(0)
1 [0])

3 ΔY
(0)
1 [0] ← S(X

(0)
1 [0] ⊕ ΔX

(0)
1 [0]) ⊕ S(X

(0)
1 [0])

4 Solving the system of equations MC(ΔY
(0)
1 ) = ΔZ

(0)
1 with the knowledge of

ΔZ
(0)
1 [0] = 0xFDE0, ΔZ

(0)
1 [1] = 0x0912 and ΔY

(0)
1 [2] = 0

5 /* All differences of cells in ΔY
(0)
1 , ΔZ

(0)
1 are known */

6 Let gj : F16
2 → F2 be a Boolean function such that gj(δin, δout, βj = 0; x) = 1 if and only if

S(x) ⊕ S(x ⊕ δin) = δout and x ≤ x ⊕ δin, and gj(δin, δout, βj = 1, x) = 1 if and only if

S(x) ⊕ S(x ⊕ δin) = δout, and x > x ⊕ δin.

7 Run the Grover search on the function g0(ΔX
(0)
1 [1], ΔY

(0)
1 [1], β0; ·) : F16

2 → F2. Let X
(0)
1 [1]

be the output.

8 Run the Grover search on the function g1(ΔX
(0)
1 [3], ΔY

(0)
1 [3], β1; ·) : F16

2 → F2. Let X
(0)
1 [3]

be the output.

9 Run the Grover search on the function g2(ΔX
(0)
2 [3], ΔY

(0)
2 [3], β2; ·) : F16

2 → F2. Let X
(0)
2 [3]

be the output.

10 Compute Y
(0)
1 [1], Y

(0)
1 [3] and Z

(0)
1 [3] ; /* Y

(0)
1 [0] is known */

11 Solve the equation MC(Y
(0)
1 ) = Z

(0)
1 for other unknown cells, i.e., Y

(0)
1 [2], Z

(0)
1 [0, 1, 2], and

X
(0)
1

12 /* the value Y
(0)
1 is known */

13 if S(Z
(0)
1 [2] ⊕ ΔZ

(0)
1 [2] ⊕ K′[2]) ⊕ S(Z

(0)
1 [2] ⊕ K[2]) = ΔY

(0)
2 [2] then

14 return |K, K′, ΔX
(0)
1 , ΔY

(0)
2 ;X

(0)
1 [0], β〉 |y ⊕ 1〉

15 else

16 return |K, K′, ΔX
(0)
1 , ΔY

(0)
2 ;X

(0)
1 [0], β〉 |y〉

Since the probability of the outbound phase is 2−211.6, after traversing 2211.6

starting points computed by the inbound phase, it is expected to find one col-
lision. Given the key difference ΔK = K ⊕ K ′, there are 2256 valid key pairs
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(K,K ′). Hence, we have enough degrees of freedom to find the collision. For
simplicity, we just fix the input difference ΔX1 of the inbound phase and com-
pute the starting points by traversing a 212-bit K to find the collision. Define
F : F212

2 × F
3
2 �→ F2 as F (ΔK,ΔX1,ΔY2;x, α), where x = K ∈ F

212
2 and α =

α0‖α1‖α2 ∈ F
3
2. F (ΔK,ΔX1,ΔY2;x, α) = 1 if and only if (ΔK,ΔX1,ΔY2;x, α)

leads a collision. The implementation of UF is given in Algorithm 3.

Algorithm 3: Implementation of UF without using qRAMs
Input: |ΔK, ΔX1, ΔY2; K, α〉 |y〉 with α = (α0, α1, α2) ∈ F

3
2

Output: |ΔK, ΔX1, ΔY2; K, α〉 |y ⊕ F (ΔK, ΔX1, ΔY2; K, α)〉
1 Compute K′ = K ⊕ ΔK
2 for i ∈ {0, 1, 2} do

3 Derive the ΔX
(i)
1 and ΔY

(i)
2 for SSB(i) from the ΔX1 and ΔY2

4 Run Grover search on the function G(i)(K, K′, ΔX
(i)
1 , ΔY

(i)
2 ; ·) : F19

2 �→ F2.

Let X
(i)
1 [0] ∈ F

16
2 , β(i) ∈ F

3
2 be the output.

5 Run Line 2 to Line 11 of Algorithm 2 with X
(i)
1 [0] ∈ F

16
2 , β(i) ∈ F

3
2 as input.

Let X
(i)
1 as ouput.

6 Let X̃
(i)
1 = max{X

(i)
1 , X

(i)
1 ⊕ ΔX

(i)
1 } if αi = 0, else

X̃
(i)
1 = min{X

(i)
1 , X

(i)
1 ⊕ ΔX

(i)
1 }

7 Derive the ΔX
(3)
1 and ΔY

(3)
2 for SSB(3) from the ΔX1 and ΔY2

8 Run Grover search on the function G(3)(K, K′, ΔX
(3)
1 , ΔY

(3)
2 ; ·) : F19

2 �→ F2. Let

X
(3)
1 [0] ∈ F

16
2 , β(3) ∈ F

3
2 be the output.

9 Run Line 2 to Line 11 of Algorithm 2 with X
(3)
1 [0] ∈ F

16
2 , β(3) ∈ F

3
2 as input.

Let X
(3)
1 as ouput.

10 Let X̃
(3)
1 = max{X

(i)
1 , X

(i)
1 ⊕ ΔX

(i)
1 }

11 /* Create the starting point (K, X1) with (ΔK, ΔX1, ΔY2) */

12 X1 ← (X̃
(0)
1 , X̃

(1)
1 , X̃

(2)
1 , X̃

(3)
1 )

13 X ′
1 ← X1 ⊕ ΔX1

14 Compute forward and backward to the beginning and ending of the 8-round
trail from (X1, X

′
1) with (K, K′)

15 if (X1, X
′
1) and (K, K′) lead to a collision then

16 return |ΔK, ΔX1, ΔY2; K, α〉 |y ⊕ 1〉
17 else
18 return |ΔK, ΔX1, ΔY2; K, α〉 |y〉

Complexity of UF in Algorithm 3. There are four Grover searches on G(i) in
Line 4 and 8. There are four calls of Algorithm 2 in Line 5 and Line 9. Those
procedures bound the time complexity of UF as 4·π

4 ·
√

219·211.24+4·211.24 = 222.39

S-box evaluations.
To find the collision on 8-round Saturnin-hash, we apply Grover search on

F (ΔK,ΔX1,ΔY2; ·) : F212+3
2 �→ F2 with UF in Algorithm 3, which costs

π

4
·
√

2212+3 · 222.39 = 2129.54 S-box evaluations.
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Since there are 16 × 8 = 128 Sbox applications, the time complexity to find the
collision is about 2129.54/128 = 2122.54 8-round Saturnin-hash.

In our full version paper, we also present a 7-round quantum collision attack,
a 5-round classical collision attack and a 6-round classical free-start collision
attack, and a 7-round quantum semi-free-start collision on Saturnin-hash.

5 Free-Start Collision on Reduced SKINNY-n-3n-MMO/MP

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [3]. In
this section, we apply our method to SKINNY-n-3n. Please find the structure of
SKINNY-n-3n in [3] or our full version paper. The MC operation is non-MDS:

MC

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a ⊕ c ⊕ d
a

b ⊕ c
a ⊕ c

⎞
⎟⎟⎠ and MC

−1

⎛
⎜⎜⎝

α
β
γ
δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

β
β ⊕ γ ⊕ δ

β ⊕ δ
α ⊕ δ

⎞
⎟⎟⎠ . (6)

Fig. 11. Super S-box with SKINNY’s non-MDS matrix

Since SKINNY applies non-MDS matrix in MC, we will adapt the method of
super S-box technique for SKINNY. Different from the super S-box technique
with MDS matrix [21,38], we do not need to an exponential memory to store
the differential distribution of the super S-box, which is friendly to quantum
attacks.

5.1 Super S-Box with Non-MDS Matrix

As shown in Fig. 11 (SR is omitted), the circled numbers indicate the computation
sequence. When computing the super S-box, the key pair is fixed, i.e., K and K ′

are known.

1. In step ①, we have D0[1] = C0[0] due to Eq. (6), then we have

ΔA1[1] = S(D0[1]) ⊕ S(D′
0[1])

= S(C0[0]) ⊕ S(C′
0[0]) = S(S(A0[0]) ⊕ K[0]) ⊕ S(S(A′

0[6]) ⊕ K′[0])
= S(S(A0[0]) ⊕ K[0]) ⊕ S(S(A0[0] ⊕ ΔA0[0]) ⊕ K′[0]).

(7)

Hence, given input-output differences (ΔA0[0],ΔA1[1]), we compute one con-
forming value of A0[0] that satisfy Eq. (7) by traversing a space of 2c for A0[0].
After that, all cells marked by “①” are determined.
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2. In step ②, we have D0[3] = C0[0] ⊕ C0[2] due to Eq. (6), then we have

ΔA1[3] = S(D0[3]) ⊕ S(D′
0[3]) = S(C0[0] ⊕ C0[2]) ⊕ S(C′

0[0] ⊕ C′
0[2])

= S(S(A0[0]) ⊕ K[0] ⊕ S(A0[2])) ⊕ S(S(A′
0[0]) ⊕ K′[0] ⊕ S(A′

0[2]))

= S(S(A0[0]) ⊕ K[0] ⊕ S(A0[2])) ⊕ S(S(A0[0] ⊕ ΔA0[0]) ⊕ K′[0] ⊕ S(A0[2] ⊕ ΔA0[2])).

(8)

Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[0] is determined by in step ①, only A0[2] is unfixed. We
search A0[2] in a space of 28 to find the right one that make Eq. (8) holds.
All cells marked by “②” are fixed.

3. In step ③, we have D0[2] = C0[1] ⊕ C0[2] due to Eq. (6), then we have

ΔA1[2] = S(D0[2]) ⊕ S(D′
0[2])

= S(C0[1] ⊕ C0[2]) ⊕ S(C′
0[1] ⊕ C′

0[2])

= S(S(A0[1]) ⊕ K[1] ⊕ S(A0[2])) ⊕ S(S(A′
0[1]) ⊕ K′[1] ⊕ S(A′

0[2]))

= S(S(A0[1]) ⊕ K[1] ⊕ S(A0[2])) ⊕ S(S(A0[1] ⊕ ΔA0[1]) ⊕ K′[1] ⊕ S(A0[2] ⊕ ΔA0[2])).

(9)

Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[2] is determined by in step ②, only A0[1] is unfixed. We
search A0[1] in a space of 28 to find the right one that make Eq. (9) holds.
All cells marked by “③” are fixed.

4. In step ④, we have D0[0] = C0[0] ⊕ C0[2] ⊕ C0[3] due to Equation (6), then
we have

ΔA1[0] = S(D0[0]) ⊕ S(D′
0[0])

= S(C0[0] ⊕ C0[2] ⊕ C0[3]) ⊕ S(C′
0[0] ⊕ C′

0[2] ⊕ C′
0[3])

= S(S(A0[0]) ⊕ K[0] ⊕ S(A0[2]) ⊕ S(A0[3])) ⊕ S(S(A′
0[0]) ⊕ K′[0] ⊕ S(A′

0[2]) ⊕ S(A′
0[3]))

= S(S(A0[0]) ⊕ K[0] ⊕ S(A0[2]) ⊕ S(A0[3]))⊕
S(S(A0[0] ⊕ ΔA0[0]) ⊕ K′[0] ⊕ S(A0[2] ⊕ ΔA0[2]) ⊕ S(A0[3] ⊕ ΔA0[3])).

Since all the input-output differences of the super S-box and the pair of K
are fixed, and A0[0] and A0[2] are already determined by in step ② and ③,
only A0[3] is unfixed. We search A0[3] in a space of 28 to find the right one
that make Eq. (9) holds. All cells marked by “④” are fixed.

Following the above computing order, given an input-output difference
(ΔA0,ΔA1) with fixed key pair, we find the conforming pair for the full active
super S-box in time complexity of about 28 two-round computations without any
memory. Note that if the MC operation adopts MDS matrix, without memory,
we need 232 classical time to find a conforming pair for full active super S-box.

5.2 Collision on Hashing Modes with Reduced SKINNY-128-384

By applying the model given in Sect. 3, we find 16-round rebound trail for
SKINNY-128-384 (see Fig. 19 in our full version paper). The inbound phase covers
round 11 and round 12. The probability of the outbound phase is 2−112. We
apply similar technique of super S-box with non-MDS matrix to the inbound
phase of the 16-round rebound trail, whose quantum time complexity is about
28.65 S-box evaluations. To be more clear, we list the details for solving the
inbound phase in Section D in our full version paper.
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Fig. 12. Free-start collision attack on 9-round Whirlpool

Define F : F
112
2 × F

3
2 �→ F2 as F (ΔK,ΔX11,ΔY12;x, α), where x = K ∈

F
112
2 and α = α0‖α1‖α2 ∈ F

3
2. F (ΔK,ΔX11,ΔY12;x, α) = 1 if and only if

(ΔK,ΔX11,ΔY12;x, α) leads a collision. The overall time complexity is

π

4
·
√

2112+3 · 4 · 28.65 = 267.8 S-box evaluations,

which is about 267.8/256 = 259.8 16-round SKINNY-128-384, since there are 256
S-boxes in the 16-round SKINNY-128-384.

6 Free-Start Collision Attack on 9-Round Whirlpool

Different from Saturnin and SKINNY, the key schedule of Whirlpool is nonlinear.
Hence, we have to tweak the automatic tool in Sect. 3 which targets on linear
key schedule ciphers. For Whirlpool, we place the rebound attacks in both the
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encryption data path and the key schedule path just like Sasaki et al.’s work
[49]. For the inbound part of the key schedule path, we only have input and
output differences ΔK

in and ΔK
out that act as the degrees of freedom to preform the

rebound attack in the key. We expect to get |ΔK
in| · |ΔK

out| key pairs conforming to
the inbound part of key schedule path. For each key pair, we will get |ΔE

in|·|ΔE
out|

pairs conforming to the inbound part of the encryption data path. Suppose the
total probability of outbound paths in the key and encryption path is p, then
the condition |ΔK

in| · |ΔK
out| · |ΔE

in| · |ΔE
out| ≥ 1/p should be satisfied to finally find

a key pair and data pair fulfilling the whole trails in the key schedule and the
encryption data path. We embed the 2-round full/non-full active super S-box
technique [21,48] or 3-round-inbound technique [30] in the inbound part. The
inbound phase in related-key setting is quite similar to the single-key setting. A
slight different point is to deal with the operation of XOR the key difference into
the internal state, where the constraint [42] for truncated differential in XOR
operation is applied. The outbound phase is also similar to single-key setting,
where only propagations of truncated differential are constrained with MILP.

At ASIACRYPT 2012, Sasaki et al. [49] introduced a free-start collision
attack on 8-round Whirlpool. In this section, we find a new 9-round rebound
characteristic in Fig. 12, and based on it, we give the quantum free-start collision
on 9-round Whirlpool.

6.1 Comparison Between Sasaki et al’s Trail and Ours

The number of active S-boxes in Sasaki et al.’s 8-round trail is shown below:
⎧⎨
⎩

Key : 64
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 64
5thR−→ 8

6thR−→ 1
7thR−→ 8

8thR−→ 64,

Data : 0
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 0
5thR−→ 8

6thR−→ 1
7thR−→ 8

8thR−→ 64.

The number of active S-boxes in our 9-round trail is shown below:
⎧⎨
⎩

Key : 64
1stR−→ 8

2ndR−→ 1
3rdR−→ 8

4thR−→ 64
5thR−→ 64

6thR−→ 64
7thR−→ 8

8thR−→ 8
9thR−→ 64,

Data : 0
1stR−→ 8

2ndR−→ 1
3rdR−→ 0

4thR−→ 64
5thR−→ 64

6thR−→ 64
7thR−→ 8

8thR−→ 8
9thR−→ 64.

In the key schedule, Sasaki et al.’s inbound phase “8 4thR−→ 64 5thR−→ 8” is

replaced by a longer inbound phase “8 4thR−→ 64 5thR−→ 64 6thR−→ 64 7thR−→ 8” in our
trail, namely we gain a 2-round extension in the inbound phase. In the meantime,

Sasaki et al.’s outbound part “8 6thR−→ 1 7thR−→ 8 6thR−→ 64” is shortened to “8 8thR−→
8 9thR−→ 64” to gain enough degrees of freedom. In Sasaki et al.’s 8-round trail, the
full active state to match in the inbound phase only happens to the key schedule
data path. In the inbound part of the encryption data path, many cells are
inactive, so that one can assign arbitrary values. Hence, we do not worry about
the degree of freedom for Sasaki et al.’s trail. However, in our 9-round trail, both
the key and data path adopt full state active inbound part, so that the internal
states are fully determined by a match-in-the-middle approach and the degree
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of freedoms only comes from the possible input and output differences of the
inbound part. Hence, the outbound phase is different to gain enough degrees of
freedom for the collision attack.

In the key schedule path, the inbound part covers from ΔB3 to ΔC6 that
includes 3 SB layers. We apply Jean et al.’s [30] 3-round-inbound technique and
their quantum version by Hosoyamada and Sasaki [26] to perform the attack.
We first define G in Algorithm 4 which marks the compatible cells in Fig. 4 for
(X1,X

′
1) for a given input difference ΔX1 and output difference ΔY3.

Complexity of UG in Algorithm 4. Taken uncomputing into account, there are
32 × 2 × 2 × 2 = 128 S-boxes operations in Line 3. In Line 5 to Line 8, we need
8 · π

4 ·
√

264 · 16 × 2 = 239.65 S-boxes operations.
In Line 10 of Algorithm 4, only the cells are needed to compute backward

to X1, hence, 32 × 2 × 2 × 2 = 128 S-boxes operations are needed. Totally, we
need about 239.65 S-boxes operations to implement UG.

Given (ΔX1,ΔY3), run Grover’s algorithm on UG to find the correct cells
for (X1,X

′
1) in Fig. 4. UG outputs 1 with probability of 2−256. Hence, the time

complexity to find the correct value with Grover’s algorithm is

π

4
·
√

2256 · 239.65 = 2167.3 S-boxes operations. (10)

6.2 Free-Start Collision on 9-Round Whirlpool

Classical Analysis on the 9-Round Rebound Trail. As shown in Fig. 12,
in the key schedule part, given an input-output difference ΔB3 and ΔC6 of
the inbound part, we have one conforming pair on average. In the outbound
phase of the key schedule, the probability that the truncated differential ΔC2

propogates to ΔB2 is 2−56. Hence, there will be 264×2−56 = 272 valid key pairs
that meet the truncated differential in the key schedule path. For each valid
key pair, we look at the encryption data path. ΔX4 is fixed by ΔC3, and there
are 264 possible differences in ΔW6. There is also a 3-round inbound phase
in the encryption data path with input difference ΔX4 and output difference
ΔW6. With a given (ΔX4, ΔW6), it is expected to find one data pair (X4,X

′
4).

Together with the key pair, we compute backward with the data pair (X4,X
′
4).

Since ΔW2 = ΔC2 and ΔB2 = MR−1(ΔC2) whose row 0 is of (∗, 0, 0, 0, 0, 0, 0, 0),
ΔZ2 is also of the truncated form (∗, 0, 0, 0, 0, 0, 0, 0) with probability 1. At round
0, ΔW0 = ΔC0 ⊕ ΔX1 = 0 holds with probability of 2−64. At the last round,
ΔB8 = ΔZ8 holds with probability 2−64, which finally leads to a collision. The
total degrees of freedom are derived from ΔB3, ΔC6 and ΔW6, which consists
of 2192 possible differences (24-byte). The probability to generate a collision is
2−56−128 = 2−184. The classical time complexity to solve the 3-round inbound
phase is about 2320. Obviously, the classical complexity will be much larger that
a generic birthday attack, which only needs 2256 time to find the 512-bit collision.

Quantum Free-Start Collision Attack on 9-Round Whirlpool. In the key
schedule path, for given C6[U] with U = {0, 15, 22, 29, 36, 43, 50, 57} positions of
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Algorithm 4: Implementation of UG without using qRAMs
Input: |ΔX1, ΔY3; X1[ ]〉 |y〉
Output: |ΔX1, ΔY3; X1[ ]〉 |y ⊕ G(ΔX1, ΔY3; X1[ ]〉

1 /* X1[ ] means the value of 32 cells in state X1 shown in Figure

4, and X ′
1[ ] is for state X ′

1 */

2 Compute X ′
1[ ] = ΔX1 ⊕ X1[ ]

3 Compute Z2[ ] and Z′
2[ ] by X1[ ] and X ′

1[ ], respectively

4 Define gj : F8×8
2 �→ F2 for row j = 0, 1, 2..., 7 of Z2. E.g., for row 0, define

g0(Z2[ ], Z′
2[ ]; x), where x is the cells of Z2 and Z′

2 in row 0, i.e.,
x = Z2[1, 2, 3, 4]‖Z′

2[1, 2, 3, 4] ∈ F
8×8
2 . g0(Z2[ ], Z′

2[ ]; x) = 1 if and only if
SB(MR(Z2[0, 1, ..., 7])) ⊕ SB(MR(Z′

2[0, 1, ..., 7])) = ΔY3[0, 1, ..., 7]. Similar property
holds for other gj

5 Run the Grover search on g0(Z2[ ], Z′
2[ ]; ·) : F8×8

2 �→ F2. Let
Z2[1, 2, 3, 4]‖Z′

2[1, 2, 3, 4] be the output.
6 Run the Grover search on g1(Z2[ ], Z′

2[ ]; ·) : F8×8
2 �→ F2. Let

Z2[10, 11, 12, 13]‖Z′
2[10, 11, 12, 13] be the output.

7
...

8 Run the Grover search on g7(Z2[ ], Z′
2[ ]; ·) : F8×8

2 �→ F2. Let
Z2[19, 20, 21, 22]‖Z′

2[19, 20, 21, 22] be the output.
9 /* Now the whole states Z2 and Z′

2 are fixed. */

10 Compute backward from Z2 and Z′
2 to X1 and X ′

1

11 if X1[ ] ⊕ X ′
1[ ] = ΔX1[ ] then

12 return |ΔX1, ΔY3; X1[ ]〉 |y ⊕ 1〉
13 else
14 return |ΔX1, ΔY3; X1[ ]〉 |y〉

active cells in C6, we define f : F8×8
2 �→ F2 as f(ΔC6[U];x), where x = ΔB3[V] ∈

F
8×8
2 with V = {0, 9, 18, 27, 36, 45, 54, 63}. f(ΔC6[U];x) = 1 if and only if the key

pair derived by solving the 3-round inbound satisfies the truncated differential
from ΔC2 to ΔB2. The implementation of Uf is given in Algorithm 5.

Complexity of Uf . The time is bounded by Line 2 of Algorithm 5, which is about
2167.3 S-boxes operations according to Eq. (10).

Run Grover’s algorithm on f(ΔC6[U]; ·), we will find a key pair (K,K ′) that
conforms to the truncated differential in Fig. 12. In encryption data path, for
the computed key pair (K,K ′), we define f̃ : F8×8

2 �→ F2 as f̃(K,K ′;x), where
x = ΔW6[U] ∈ F

8×8
2 . f̃(K,K ′;x) = 1 if and only if a collision occurs in the digest

that happens with probability of 2−128. The implementation of Uf̃ is given in
Algorithm 6.

Complexity of Uf̃ . The time complexity is bounded by Line 3 of Algorithm 6,
which is also 2167.3 S-boxes operations according to Eq. (10).

We define F : F
8×8
2 �→ F2 as F (x), where x = ΔC6[U] ∈ F

8×8
2 with U =

{0, 15, 22, 29, 36, 43, 50, 57}. F (x) = 1 if and only if the digests of two messages
collide. The implementation of UF is given in Algorithm 7.
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Algorithm 5: Uf of the quantum attack on 9-round Whirlpool

Input: |ΔC6[U]; ΔB3[V]〉 |y〉
Output: |ΔC6[U]; ΔB3[V]〉 |y ⊕ f(ΔC6[U]; ΔB3[V])〉

1 Compute ΔC3 and ΔA6 from ΔB3[V] and ΔC6[U]
2 Run Grover’s algorithm on G(ΔC3, ΔA6; ·) with UG implemented in Algorithm

4. Let A4[ ] be the output
3 /* A4[ ] are the cells in A4 in Figure 12 */

4 Run Line 2 to Line 10 of Algorithm 4 with input (ΔC3, ΔA6; A4[ ]). Let
(C3, C

′
3) be the output

5 Compute backward from (C3, C
′
3) to (B2, B

′
2)

6 if row 0 of ΔB is of the truncated form (∗, 0, 0, 0, 0, 0, 0, 0) then
7 return |ΔC6[U]; ΔB3[V]〉 |y ⊕ 1〉
8 else
9 return |ΔC6[U]; ΔB3[V]〉 |y〉

Algorithm 6: Uf̃ of the quantum attack on 9-round Whirlpool

Input: |K, K′; ΔW6[U]〉 |y〉
Output: |K, K′; ΔW6[U]〉 |y ⊕ f̃(K, K′; ΔW6[U])〉

1 Compute ΔX4 from (K, K′)
2 Compute ΔY6 from ΔW6[U]
3 Run Grover’s algorithm on G(ΔX4, ΔY6; ·) with UG implemented in Algorithm

4. Let Y4[ ] be the output
4 /* Y4[ ] are the cells in Y4 in Figure 12 */

5 Run Line 2 to Line 10 of Algorithm 4 with input (ΔX4, ΔY6, Y4[ ]). Let
(X4, X

′
4) be output

6 Together with (K, K′), compute backward from (X4, X
′
4) to (X1, X

′
1) and

forward to (W8, W
′
8)

7 Compute (C0, C
′
0) and (C8, C

′
8) by (K, K′)

8 if ΔX1 = ΔC0 and ΔW8 = ΔC8 then
9 return |K, K′; ΔW6[U]〉 |y ⊕ 1〉

10 else
11 return |K, K′; ΔW6[U]〉 |y〉

Complexity of UF . The time complexity of the implementation of UF in Algo-
rithm 7 is bounded by Line 1 and Line 4, which is π

4 ·
√

264−8 · 2167.3 + π
4 ·

√
264 ·

2167.3 = 2199.04 S-boxes operations.
. UF returns |ΔC6[U]〉|y ⊕ 1〉 with probability of 264−128 = 2−64. Hence,

applying Grover’s algorithm on F (x) will finally find the collision. Since only the
correct state ΔC6[U] is output, we have to re-run Line 1 to Line 6 of Algorithm
7 to finally find the collision. The total time complexity is bounded by the step
of applying Grover’s algorithm on F (x), which is

π

4
·
√

264 · 2199.04 = 2230.7 S-boxes operations.
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Since there are 128×9 = 1152 S-boxes operations in the 9-round Whirlpool, the
total time complexity of the attack is 2230.7/1152 = 2220.5 9-round Whirlpool.

Algorithm 7: UF of the quantum attack on 9-round Whirlpool

Input: |ΔC6[U]〉 |y〉
Output: |ΔC6[U]〉 |y ⊕ F (ΔC6[U])〉

1 Run Grover’s algorithm on f(ΔC6[U]; ·) with implementation of Uf in
Algorithm 5. Let ΔB3[V] as output

2 /* Note that the truncated differential ΔC2 to ΔB2 holds with

probability of 2−56, hence, about π
4

√
256 Grover iterations on

f(ΔC6[U]; ·) are needed to find a good one. */

3 Run Line 1 to Line 5 of Algorithm 5 to get (C3, C
′
3), then compute the key pair

(K, K′)
4 Run Grover’s algorithm on f̃(K, K′; ·) with implementation of Uf̃ in Algorithm

6. Let ΔW6[U] as output
5 /* Note that since Uf̃ returns 1 with probability of 2−128, however,

the size of its domain is 264. Then after 232 Grover iterations,

if a right ΔW6[U] is in the domain, then it will output. If all

the ΔW6[U] are wrong, then a random ΔW6[U] will output. */

6 Run Line 1 to Line 7 of Algorithm 6 to get (X1, X
′
1), then compute the message

pair (M, M ′) with (K, K′)
7 if (M, K)’s digest collides with (M ′, K′)’s then
8 return |ΔC6[U]〉 |y ⊕ 1〉
9 else

10 return |ΔC6[U]〉 |y〉

7 Conclusion

By taking the degrees of freedom of the key materials into consideration, we
build the automatic tools for the so-called related-key rebound attack, where
the degrees of freedom are used to increase the probability of the outbound
phase. We develop the new technique to deal with the incompatibilities when
searching rebound-attack trails on Saturnin, whose subkeys have very strong
relationships. Besides the automatic model, we build new super S-box technique
with non-MDS matrix for SKINNY, which is not seen before. For Whirlpool,
multiple nested Grover’s algorithms are applied to deal with the complex case
that both the key schedule path and encryption path adopt rebound attacks. All
in all, we achieve certain best free-start collision attacks.
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Abstract. Simon and Simeck are two lightweight block ciphers with
a simple round function using only word rotations and a bit-wise AND
operation. Previous work has shown a strong clustering effect for differ-
ential and linear cryptanalysis, due to the existence of many trails with
the same inputs and outputs.

In this paper, we explore this clustering effect by exhibiting a class of
high probability differential and linear trails where the active bits stay
in a fixed window of w bits. Instead of enumerating a set of good trails
contributing to a differential or a linear approximation, we compute the
probability distribution over this space, including all trails in the class.

This results in stronger distinguishers than previously proposed, and
we describe key recovery attacks against Simon and Simeck improving
the previous results by up to 7 rounds. In particular, we obtain an attack
against 42-round Simeck64, leaving only two rounds of security margin,
and an attack against 45-round Simon96/144, reducing the security mar-
gin from 16 rounds to 9 rounds.

Keywords: Lightweight cipher · Simon · Simeck · Differential
cryptanalysis · Linear cryptanalysis · Clustering effect

1 Introduction

Simon and Simeck are two lightweight block ciphers with a simple round func-
tion and very good hardware and software performances. Simon [5] was designed
by Beaulieu, Shors, Smith, Treatman-Clark, Weeks and Wingers and published
without a rationale, but has been considered for ISO standardisation. It follows
a Feistel structure with a very simple round function:

f(x) = ((x ≪ 8) ∧ (x ≪ 1)) ⊕ (x ≪ 2).

Simeck is an academic variant of Simon designed by Yang, Zhu, Suder, Aagaard
and Gong, and published at CHES 2015 [28]. It has the same number of rounds,
and the same round function as Simon, but with different rotation amounts:

f(x) = ((x ≪ 5) ∧ x) ⊕ (x ≪ 1).
c© International Association for Cryptologic Research 2021
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The key schedule of Simeck is also modified to reuse the function f .
Previous work has shown that the best attacks against these ciphers use dif-

ferential cryptanalysis or linear cryptanalysis [1,9,12,18,24], and has provided a
detailed analysis of differential paths and linear trails using various techniques
and tools [6,17,21,27]. Moreover they show a strong clustering effect for differen-
tial characteristics and linear trails. There exist many trails with the same input
and output, and the probability of a differential (respectively the potential of a
linear approximation) is significantly higher than the probability of the best char-
acteristic (respectively the best linear trail). In order to estimate the probability
of a differential or the potential of a linear approximation, we have to combine
the effect of as many trails as possible with the corresponding input/output. This
generates a lower bound on the quality of the differential or linear approxima-
tion. For instance, the best differential characteristic for 27-round Simeck64 has
probability 2−70 [18], but a 27-round differential (0, 11) → (5, 2) with probability
2−60.75 was given in [16].

Our Contribution. In this work, we explore this clustering effect in a more
systematic way. Instead of building a list of trails with a given input/output, we
consider a class of high probability trails where the active bits stay in a fixed
window of w bits. In particular, we observe that the differentials and linear hulls
used in most previous attacks fit in this framework.

Using properties of the round function, we compute efficiently the probability
distribution over this space by multiplication of the differential transition matrix,
or the linear correlation matrix. This provides a tighter lower bound on the
probability of the differential (or the potential of the linear approximation) than
used in previous works, because we implicitly consider all trails with intermediate
states fitting in the window. Concretely, the 27-round differential (0, 11) → (5, 2)
has probability at least 2−56.06 for Simeck64. In general, we obtain a good
understanding of the propagation of differences and linear masks in this class:
there is a high probability to stay in the class because of the slow diffusion of
Simon and Simeck.

We observe that this class includes many high quality distinguishers with
input/output that are independent of the number of rounds targeted by the
attacks. In particular, we use distinguishers with a single active bit in the input
and output, because we can add more rounds of key-recovery than when using
distinguishers with multiple active bits. Concretely, for Simeck64, the differen-
tial (0, 1) → (1, 0) has probability at least 2−54.72 over 27 rounds, and 2−60.41

over 30 rounds.
Finally, we use the distinguishers to build key-recovery attacks, using

dynamic key-guessing [24,26] for differential attacks, and the Fast Walsh Trans-
form approach of [15] for linear cryptanalysis. We observe that Simon and
Simeck are rotation-invariant, so that any differential or linear attack can be
repeated several times using rotations of the original distinguisher. In particu-
lar, we can exploit attack parameters with low success rates, and repeat them
several times to increase the success rate. We compare our results with the best
previous analysis in Table 1.
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Table 1. Summary of previous and new attacks against Simon and Simeck. Attacks
marked with † recover information about subkey bits, but the advantage is too low to
attack the cipher. Attacks marked with ‡ use the duality between linear and differential
distinguishers, which is not exact.

Cipher Rounds Attacked Data Time Ref Note

Simeck48/96 36 30 247.66 288.04 [25] Linear † ‡
32 247 290.9 New Linear

Simeck64/128 44 37 263.09 2121.25 [25] Linear † ‡
42 263.5 2123.9 New Linear

Simon96/96 52 37 295 287.2 [26] Differential
43 294 289.6 New Linear

Simon96/144 54 38 295.2 2136 [12] Linear
45 295 2136.5 New Linear

Simon128/128 68 50 2127 2119.2 [26] Differential
53 2127 2121 New Linear

Simon128/192 69 51 2127 2183.2 [26] Differential
55 2127 2185.2 New Linear

Simon128/256 72 53 2127.6 2249 [12] Linear
56 2126 2249 New Linear

Outline. We begin with preliminaries about differential and linear cryptanal-
ysis in general in Sect. 2. Then we apply them to Simon-like ciphers in Sect. 3,
starting with previous results and explaining our main contribution. We explain
in detail how to apply these ideas to Simeck with differential cryptanalysis
(Sect. 4) and linear cryptanalysis (Sect. 5). We apply the same techniques to
Simon in Sect. 6, and conclude in Sect. 7.

The code used to compute the probabilities of differentials and linear approx-
imations (Table 4), as well as the success probability of linear attacks (Sect. 5),
is available at https://github.com/Clustering-Simon.

1.1 Notations

The following notations are used in this paper:

n/κ block size and key size
x(i) left part of the input of round i
xj j-th bit of x
r number of rounds

P/C plaintext and ciphertext
P̃ /C̃ plaintext after the first round the ciphertext before the last round

D data complexity
C1 time complexity to run an attack a single time

FW /FR probability distribution function for a wrong/right key guess
PS success probability of an attack

a, b, c rotation constants: f(x) = ((x ≪ a) ∧ (x ≪ b)) ⊕ (x ≪ c)

https://github.com/Clustering-Simon
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1.2 Description of SIMON and SIMECK

Simonn/κ and Simeckn/κ are Feistel block ciphers with block size n ∈ {32, 48,
64, 96, 128} and key size κ ∈ {n, 1.5n, 2n}. There are 10 versions of Simon, with
the following parameters:

n 32 48 64 96 128

κ 64 72 96 96 128 96 144 128 192 256
r 32∗ 36 36∗ 42 44∗ 52 54 68 69 72

There are 3 versions of Simeck, using a subset of the Simon parameters marked
with ∗; in particular, Simeck has κ = 2n, and we often omit the κ parameter.
The plaintext P is divided in two parts of n/2 bits named x(0) and x(−1), which
correspond to the initialization of the left and the right parts of our Feistel
network. For the round i, we denote by x(i) and x(i−1) the left and the right
part of the input of this round. The round function is (Fig. 1):

x(i+1) = x(i−1) ⊕ f(x(i)) ⊕ k(i), with
f(x) = ((x ≪ a) ∧ (x ≪ b)) ⊕ (x ≪ c).

We denote by x ≪ d the cyclic rotation of d bits by left, ∧ the bitwise AND, and
⊕ the bitwise exclusive or (XOR). The j-th bit of x is noted xj where the index
j is taken modulo n/2. The rotations of Simon are defined as (a, b, c) = (1, 8, 2),
while those of Simeck are defined as (a, b, c) = (0, 5, 1) (the rotation amounts
are independent of the block size).

Since there is no whitening key, the first and last round functions do not
depend on the key. We define P̃ as the plaintext after the first round, C̃ as the
ciphertext before the last round, and we use them as input for our analysis:

P = (x(0), x(−1)) P̃ = (x(−1) ⊕ f(x(0)), x(0))

C = (x(r), x(r−1)) C̃ = (x(r−1), x(r) ⊕ f(x(r−1)))

The input of round 1 corresponds to P̃ ⊕ (k(0)‖0n/2) (see Fig. 5).
The key schedule allows to derive the subkeys k(i) for 0 ≤ i < r

from the master key k. First, the master key is divided into 2κ/n words
(k(2κ/n−1), . . . , k(1), k(0)). Then, the subkeys k(i) for i ≥ 2κ/n are obtained using
a recursion formula. For Simeck, the recursion is defined as

k(i+4) = k(i) ⊕ f(k(i+1)) ⊕ C ⊕ z(i),

with C and z(i) constants depending on the block size and f is the same function
as used in the data path. Simon uses a different key schedule, that is linear. We
omit further details because our analysis does not exploit them.

2 Differential and Linear Cryptanalysis

We begin with some preliminaries on differential and linear cryptanalysis.
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Fig. 5. Simon/Simeck with our nota-
tions: x̃(1) and x̃(r−2) respectively
stand for x(−1) ⊕ f(x(0)) and x(r) ⊕
f(x(r−1)).

2.1 Differential Cryptanalysis

Differential cryptanalysis is a technique introduced by Biham and Shamir [7,
8], exploiting the propagation of differences in (reduced versions of) a cipher.
Starting from a well-chosen difference δ, the distribution of Ek(x)⊕Ek(x⊕ δ) is
non-uniform, and there exist differences δ′ such that Prk,x[Ek(x)⊕Ek(x⊕δ) = δ′]
is high (significantly higher than 2−n). Such a pair (δ, δ′) is called a differential.
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In practice, we use the notion of differential characteristic (or trail) to esti-
mate the probability of a differential. A differential characteristic (δ0, δ1, . . . , δr)
specifies the intermediate state difference after each round of the function. There-
fore, we can easily compute the probability that each round follows the charac-
teristic, and we estimate the probability of the differential as the product of the
probability of each round, assuming that they are independent.

More formally, we use the following notations for the probability of the round
function, the probability of a characteristic, and the probability of a differential,
where R denotes the round function of a cipher, and E

(r)
k is a reduced version

of the cipher with r rounds:

Pr[δ → δ′] = Pr
x
[R(x) ⊕ R(x ⊕ δ) = δ′]

Pr[δ0 → δ1 → . . . → δr] = Pr
k,x

[E(i)
k (x) ⊕ E

(i)
k (x ⊕ δ0) = δi,∀i ≤ r]

Pr[δ r� δ′] = Pr
k,x

[E(r)
k (x) ⊕ E

(r)
k (x ⊕ δ) = δ′]

Lai, Massey and Murphy have defined the notion of a Markov cipher (Simon
and Simeck with independent round keys are Markov ciphers), where the prob-
ability of a characteristic is the product of the probabilities of the round function
transitions [19]:

Pr[δ0 → δ1 → . . . → δr] =
r∏

i=1

Pr[δi−1 → δi] .

When there is a dominant characteristic, it can be used as an approximation of
the probability of the differential. In general, the probability of a differential is
the sum over all compatible characteristics:

Pr[δ0
r� δr] =

∑

δ1,δ2,...δr−1

r∏

i=1

Pr[δi−1 → δi] .

If we write all the transition probabilities Pr[δ → δ′] in a differential transition
matrix A, the probabilities of all r-round differentials are given by Ar, as shown
by [19]. Computing Ar is infeasible for practical ciphers, but this approach can
be applied to a set of predetermined characteristics, and provide a good approx-
imation of the probability of a differential.

Differential Distinguisher. In order to distinguish a cipher with a high prob-
ability differential (δ, δ′) from a random permutation, we collect D ciphertexts
corresponding to pairs of plaintexts (P, P ⊕ δ), and we compute the number of
pairs following the differential:

Q = # {P : E(P ) ⊕ E(P ⊕ δ) = δ′} .

The expected value of Q is D × Pr[δ � δ′] for the cipher, and D × 2−n for a
random permutation; therefore the distinguisher succeeds with high probability
when D = O(1/Pr[δ � δ′]).
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2.2 Linear Cryptanalysis

Linear cryptanalysis was introduced by Matsui [22]; it uses linear approximations
of the round function in order to obtain a biased approximation of the (reduced)
cipher. A linear approximation is a pair of masks (α, α′) such that the distribu-
tion of x ·α⊕Ek(x) ·α′ is biased (|Prx[x ·α = Ek(x) ·α′]−1/2| 
 2−n/2 for most
keys k), where x · y =

⊕
i xiyi denotes the dot product. Since the correlation is

expected to be zero when averaged over all keys, we define the key-dependent
correlation as follows:

ck(α
r� α′) = 2Pr

x
[x · α = E

(r)
k (x) · α′] − 1 .

In practice, we use linear trails where a mask is specified for each intermediate
state. For an iterative cipher Ek = R

(r)
k ◦ · · · ◦ R

(2)
k ◦ R

(1)
k , we can express the

correlation ck(α0
r� αr) as the sum of the correlation over all corresponding

linear trails by defining the correlation of the keyed round function R
(i)
k [14]:

ck(α0
r� αr) =

∑

α1,α2,...αr−1

r∏

i=1

c
(i)
k (αi−1 → αi)

c
(i)
k (αi−1 → αi) = 2Pr

x
[x · α = R

(i)
k (x) · α′] − 1 .

If the cipher is a key-alternating cipher with independent round keys, the corre-
lation of the keyed round function can be expressed in terms of the correlation
of the unkeyed round function:

ck(α0
r� αr) =

∑

α1,α2,...αr−1

(−1)
⊕

i ki·αi

r∏

i=1

c(αi−1 → αi)

c(α → α′) = 2Pr
x
[x · α = R(x) · α′] − 1 .

Therefore, the correlation of a linear approximation is the sum of the corre-
lations over all linear trails, with signs that depend on the key. When there is a
single dominant trail, we can approximate the correlation of the linear approx-
imation as the correlation of the trail, up to a change of sign. However when
there are several dominant trails, they can interact constructively or destruc-
tively depending on the key.

Nyberg [23] defined the expected linear potential as the expected value of the
square correlation for a random key, and showed that it is equal to the sum of
the squared correlation over all linear trails (assuming a key-alternating cipher
with independent keys):

ELP(α0
r� αr) = Expk(c

2
k(α0

r� αr))

=
∑

α1,α2,...αr−1

r∏

i=1

c2(αi−1 → αi) .

Similarly to the differential case, we can compute the expected linear potential
for all linear approximations by computing the powers of a correlation matrix C
with coefficients c2(α → α′).
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Linear Distinguisher. In order to distinguish a cipher with a biased linear
approximation (α, α′) from a random permutation, we collect D known plain-
texts/ciphertexts, and we evaluate the experimental correlation

Q = (# {P,C : P · α ⊕ C · α′ = 0} − # {P,C : P · α ⊕ C · α′ = 1})/D

The expected value of Q is larger (in absolute value) for the cipher than for
a random permutation, and this can be detected with high probability when
D = O(ELP[α � α′]−1) (see Sect. 5.2 for more details).

2.3 Last-Round Key Recovery

In order to turn a statistical distinguisher (differential or linear) into a key
recovery attack, we add a few rounds at the top and/or bottom, and par-
tially encrypt/decrypt the available data to evaluate the statistical property.
We denote the statistic used by the distinguisher as Q, and we assume that it
can be evaluated by guessing only a subset of the key, shown as (kp, kt, kb, kc) in
Fig. 4. We let κg = κp+κt+κb+κc denote the corresponding number of key bits.
We denote the value obtained for key candidate k as Q(k), and consider it as a
random variable (depending on the choice of the encryption key, and the data
set). We evaluate Q(k) for all key candidates; in a naive approach, this requires
D × 2κg operations. However, this can often be reduced to roughly D + 2κg

operations using algorithmic tricks (details are given in the next sections).
By analysing the theoretical behaviour of the distinguisher, we can predict

the distribution of the random variables. We denote the probability distribution
function of the statistic for the right key as FR, and for wrong keys as FW . We
rank the key candidates according to Q(k), and expect that the correct key will
be in the top candidates if the distinguisher is strong enough (w.l.o.g., we assume
that the statistic used gives a higher value for the right key).

More precisely, we aim to have the correct key among the top 2κg−a candi-
dates, where a is called the advantage (in bits). If the key schedule of the cipher is
simple enough, the attacker can reconstruct the 2κ−a master keys corresponding
to these candidates and exhaustively test them. In particular, the key schedule
of Simon is linear, so that master key candidates can be constructed from any
subkey bits using linear algebra. The complexity of this type of attack is roughly:

T = D + 2κg + 2κ−a .

In order to keep a fraction 2−a of the key candidates, we set a threshold
of s = F−1

W (1 − 2−a) and keep all keys with Q(k) ≥ s. The attack succeeds if
the value of Q corresponding to the right key is higher than the threshold, this
happens with probability:

PS = 1 − FR(s) = 1 − FR(F−1
W (1 − 2−a)) . (1)

As a first condition, the parameters must satisfy:

D ≤ 2n D � 2κ 2κg � 2κ 2a 
 1 PS 
 0 (2)
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Complex Key Schedules. When the key schedule is complex and non-linear,
reconstructing the master key candidates corresponding to the κg recovered bits
can be an issue. In particular when adding rounds on both sides of the dis-
tinguisher, the attacker recovers candidates for keys bits in the first and last
rounds, but it is not possible to efficiently build the corresponding candidates
for the master key. In particular, some previous attacks on Simeck [16,24,25]
use a small advantage a and compute the time complexity as 2κ−a, but the
key recovery would actually have a complexity higher than 2κ with the param-
eters used. Instead the attacker can focus on the recovered bits on a single side
of the distinguisher, and exhaustively search the missing bits, with a cost of
2κ−a+min{κp+κt,κb+κc}.

3 Analysis of SIMON-Like Ciphers

Since the round function of Simon-like ciphers is quadratic, we can efficiently
compute the exact probability of a differential or linear transition through the
function f . This was explored in details by Kölbl, Leander and Tiessen [17]:

– For a given α, there is an affine space Uα such that

Pr
x
[f(α ⊕ x) ⊕ f(x) = β] =

{
2− dim(Uα) if β ∈ Uα

0 otherwise

Uα is a coset of the image of a linear function:

Uα = Img
(
x → f(x) ⊕ f(x ⊕ α) ⊕ f(α)

) ⊕ f(α)

Given the Feistel structure of the round function (Fig. 2), we deduce

Pr[(δL, δR) → (δ′
L, δ′

R)] =

{
2− dim(UδL

) if δL = δ′
R and δR ⊕ δ′

L ∈ UδL

0 otherwise

– For a given β, there is an affine space Vβ such that

c(x · α, f(x) · β)2 =

{
2− dim(Vβ) if α ∈ Vβ

0 otherwise

Vβ is a coset of the image of a linear function:

Vβ = Img
(
x → (

(β ∧ (x ≪ a − b)) ⊕ ((β ∧ x) ≫ a − b)
)

≫ b
)

⊕ (β ≫ c)

For the Feistel-based round function (Fig. 3), this implies

c((αL, αR) → (α′
L, α′

R))
2 =

{
2− dim(VαR

) if αR = α′
L and αL ⊕ α′

R ∈ VαR

0 otherwise

This provides an efficient representation of the differential transition matrix A
and of the squared correlation matrix C. However, computing the transitions
over the full space is still infeasible for n > 32, because we need at least to store
a vector with 2n elements.
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Table 2. An example of 12-round iterative trail (differential and linear) for Simeck.
We show a list of active bits.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

δi ∅ 0 1 0,2 3 0,2,3,4 1,2 0,2,4 3 0,2 1 0 ∅ 0
αi ∅ 4 3 4,2 1 4,2,1,0 3,2 4,2,0 1 4,2 3 4 ∅ 4

3.1 A Class of High Probability Trails

In this work we consider a class of trails that are only active in a window of
w bits of each word (e.g., the w least significant bits). Several previous works
have already shown that there exist iterative trails in this class for Simeck [3,
24,25] and Simon [21]; we give an example in Table 2. More generally, Simon
and Simeck have a relatively slow diffusion. If a difference is restricted to the
w least significant bits, it will stay on the w + 5 (for Simeck) or w + 8 (for
Simon) least significant bits after one round. Moreover, the diffusion to bit
w + 5 (respectively w + 8) is non-linear; if it is absorbed then the difference
stays on w + 1 (respectively w + 2) bits only. Therefore, we expect many high
probability trails in this class. We detail our results on Simeck in this section,
and we discuss Simon in Sect. 6.

Let w ≤ n/2 and Δw be the vector space of differences active only in the
w least significant bits (LSBs) of a word. Let Δ2

w be the product Δw × Δw

where the two words are considered. For a given δ0, δr ∈ Δw, we can compute a
lower bound of the probability of the differential δ0 → δr by summing over all
characteristics with intermediate differences in Δ2

w:

Pr[δ0
r�
w

δr] =
∑

δ1,δ2,...δr−1∈Δ2
w

r∏

i=1

Pr[δi−1 → δi] ≤ Pr[δ0
r� δr]

As mentioned in Sect. 2.1, we can compute these values by evaluating Ar
w where

the coefficients of the matrix Aw are the probabilities of transition Pr[δ → δ′] for
all δ, δ′ ∈ Δ2

w. In order to reduce the memory requirement, we do not explicitly
build the matrix Aw but we use the properties of the previous section to compute
it on the fly. Moreover, we focus on the probabilities Pr[δ0

r�
w

δ′] for a fixed δ0,
i.e., a single line of Ar

w. Indeed, we can evaluate Ar
w × eδ0 (where eδ0 is the basis

vector corresponding to δ0) using iterated matrix-vector products.
This is shown as Algorithm 1: we use a vector X to represent the probability

distribution of the differences, and we update it iteratively. The complexity of
the algorithm is bounded by r × 22w × maxα∈Δw

|Uα| elementary operations.
By increasing w, the lower bound is refined but the complexity increases, as
seen in Fig. 6. Our results show that the lower bounds grows very slowly after
w = 16, therefore we expect to have a rather tight approximation. Moreover,
we have performed experiments on 20-round distinguishers that closely match
the prediction (Fig. 7 and Fig. 8). In practice, it takes about a week to run the
algorithm with w = 18 and r = 30 using 1TB of RAM on a 48-core machine.
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We have used this approach to evaluate the probability of differentials used
in previous attacks against Simeck, and we find that the probability is signifi-
cantly better than estimated in previous works (See Table 3). In particular, our
approach covers a huge number of trails than cannot be listed individually (See
Table 4).

For large numbers of rounds, the best characteristics we have identified with
this search are a set of 64 characteristics with essentially the same probability,
of the form (using a hexadecimal notation to represent the value in Δw)

{(1, 2), (1, 3), (1, 22), (1, 23), (2, 5), (2, 7), (2, 45), (2, 47)}
→

{(2, 1), (3, 1), (22, 1), (23, 1), (5, 2), (7, 2), (45, 2), (47, 2)}

However, we note that the characteristic (0, 1) → (1, 0) is almost as good and will
lead to a more efficient key-recovery (because it has fewer active bits). Therefore,
we focus on this characteristic in the following. The corresponding probabilities
are given in Table 4.

3.2 Links Between Linear and Differential Trails

Alizadeh et al. have shown a duality between differential and linear trails in
Simon [2], that also applies to Simeck. Given a differential trail with probabil-
ity p:

(α0, β0) → (α1, β1) → . . . → (αr, βr)

we can convert it into a linear trail:

(
←−
β 0,

←−α 0) → (
←−
β 1,

←−α 1) → . . . → (
←−
β r,

←−α r)

where ←−x denotes bit-reversed x. If all the non-linear gates are independent, the
linear trail has squared correlation p. This explains that linear distinguishers
and differential distinguishers of Simon-like ciphers are very similar. However
they are not equivalent: when trails are more dense, there are dependencies when
two different AND gates share an input, and the probabilities of the linear and
differential trail are not the same.

Since our approach applies almost identically to differential cryptanalysis and
linear cryptanalysis, we have also applied it to linear cryptanalysis. We consider
masks in the set Λ2

w active only in the w least significant bits, and we compute
a lower bound on the ELP by summing over trails with intermediate masks in
the set Λ2

w. Since the diffusion of linear masks goes from most significant bits to
least significant bits, the highest-bias trail with a single active bit is (2w−1, 0) →
(0, 2w−1). For simplicity, we rotate the trail by w − 1 bits and display it as
(1, 0) → (0, 1). We obtain a set of 64 (almost) optimal trails, corresponding to
the bit-reversed versions of the optimal differential characteristics. We represent
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Table 3. Comparison of our lower bound on the differential probability for Simeck
(with w = 18), and estimates used in previous attacks.

Rounds Differential Proba (previous) Ref Proba (new)

26 (0, 11) → (22, 1) 2−60.02 [18] 2−54.16

26 (0, 11) → (2, 1) 2−60.09 [25] 2−54.16

27 (0, 11) → (5, 2) 2−61.49 [21] 2−56.06

27 (0, 11) → (5, 2) 2−60.75 [16] "
28 (0, 11) → (A8, 5) 2−63.91 [16] 2−59.16

Algorithm 1. Computation of Pr[(δL, δR)
r�
w

(δ′
L, δ′

R)]

X ← [0 for i ∈ Δ2
w]

X[δL, δR] ← 1
for 0 ≤ i < r do

Y ← [0 for i ∈ Δ2
w]

for α ∈ Δw do
for β ∈ Δw do

for γ ∈ Uα do
Y [β ⊕ γ, α] = Y [β ⊕ γ, α] + 2− dim(Uα)X[α, β]

X ← Y
return X[δ′

L, δ′
R]

them after a rotation of w − 7 bits for simplicity:

{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)}
→

{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)}

Our results are given in Table 4 (where the trail (1, 2) → (2, 1) corresponds to
(20, 40) → (40, 20)), and show that the results obtained for linear cryptanalysis
and differential cryptanalysis are very close, but not identical.

3.3 Key Bits for Last-Round Key Recovery

When a differential or linear distinguisher is extended into a key recovery attack,
we have to study what are the key bits necessary to evaluate the statistical
property after a few rounds. We denote the required key as kp, kt on the plaintext
side, and kb, kc on the ciphertext side (see Fig. 4), and the corresponding number
of bits as κp, κt (respectively κb, κc). The total number of required key bits is
denoted as κg = κp+κt+κb+κc. For simplicity, we focus on distinguishers with
a single active bit, as used in this work.
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Fig. 6. Effect of w on the probability of Simeck differentials.
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Experimental
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Fig. 7. Experimental verification of the 20-round differential distinguisher (0, 1) →
(1, 0) for Simeck64. We take 336 random keys with 246 random plaintext pairs each,
and we count the number of pairs following the differential. The theoretical curve is
a Poisson distribution with parameter λ = 246 × 2−41.75. We have 6408 good pairs in
total, which gives an experimental probability of 2−41.75, matching our analysis.

−4σ −3σ −2σ −σ 0 σ 2σ 3σ 4σ

Experimental
Theoretical

Fig. 8. Experimental verification of the 20-round linear distinguisher (1, 0) → (0, 1) for
Simeck64. We take 336 random keys with 248 random plaintexts each, and we measure
the experimental correlation over the available plaintexts. The theoretical curve is a
normal distribution with parameter σ2 = ELP+B/N ≈ 2−41.74 +2−48 ≈ 2−41.72. The
average square correlation observed is 2−41.7, matching the analysis.
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Table 4. Comparison of the probability of differentials and the linear potential of
linear approximations for Simeck (log2, computed with w = 18). We also give the
total number of trails included in the bound in parenthesis (log2)

Differential Linear

Rounds (0, 1) → (1, 0) (1, 2) → (2, 1) (1, 0) → (0, 1) (1, 2) → (2, 1)

1 0 (0) −∞ 0 (0) −∞
2 −∞ −4.00 −∞ −4.000

3 −∞ −4.00 −∞ −4.000

4 −∞ −∞ −∞ −∞
5 −∞ −∞ −∞ −∞
6 −∞ −∞ −∞ −∞
7 −∞ −∞ −∞ −∞
8 −∞ −∞ −∞ −∞
9 −∞ −∞ −∞ −∞
10 −∞ −∞ −∞ −∞
11 −23.25 (28.0) −27.25 −23.81 (23.9) −27.81

12 −26.40 (36.2) −26.17 −26.39 (31.7) −26.68

13 −28.02 (47.2) −26.90 −27.98 (42.0) −27.31

14 −30.06 (58.2) −29.59 −29.95 (52.5) −29.56

15 −31.93 (70.8) −31.37 −31.86 (64.9) −31.29

16 −33.96 (83.0) −33.35 −33.76 (77.0) −33.24

17 −35.48 (95.2) −35.25 −35.09 (88.8) −35.12

18 −37.95 (107.5) −37.12 −37.94 (100.7) −36.85

19 −39.92 (119.7) −38.97 −39.93 (112.6) −38.67

20 −41.75 (131.9) −41.26 −41.74 (124.5) −41.25

21 −43.47 (144.1) −43.17 −43.56 (136.4) −43.17

22 −45.42 (156.3) −44.97 −45.45 (148.4) −44.99

23 −47.27 (168.5) −46.77 −47.30 (160.3) −46.83

24 −49.14 (180.7) −48.68 −49.14 (172.2) −48.71

25 −51.01 (192.9) −50.54 −51.00 (184.1) −50.56

26 −52.88 (205.2) −52.41 −52.86 (196.0) −52.40

27 −54.72 (217.4) −54.28 −54.68 (207.9) −54.26

28 −56.64 (229.6) −56.15 −56.59 (219.8) −56.11

29 −58.53 (241.8) −58.02 −58.47 (231.7) −57.96

30 −60.41 (254.0) −59.92 −60.36 (243.6) −59.86

31 −62.29 (266.2) −61.81 −62.24 (255.5) −61.75

32 −64.17 (278.4) −63.69 −64.12 (267.4) −63.63

33 −66.05 (290.6) −65.57 −66.00 (279.3) −65.51

34 −67.93 (302.9) −67.45 −67.90 (291.2) −67.40

35 −69.81 (315.1) −69.33 −69.78 (303.1) −69.28

36 −71.69 (327.3) −71.21 −71.65 (315.0) −71.17

37 −73.57 (339.5) −73.09 −73.53 (326.9) −73.05

38 −75.45 (351.7) −74.97 −75.40 (338.8) −74.92
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Linear Cryptanalysis. For linear cryptanalysis, we have to compute an inter-
nal bit x

(i)
j from the plaintext (or from the ciphertext). We compute recursively

the necessary key bits following the expression of the round function. In the case
of Simeck (see Algorithm 3 in the full version [20]), the formula is:

x
(i)
j = (x(i−1)

j ∧ x
(i−1)
j+5 ) ⊕ x

(i−1)
j+1 ⊕ x

(i−2)
j ⊕ k

(i−1)
j . (3)

The algorithm returns the key bits that x
(i)
j depends on: a list of (linear combi-

nations of) key bits with a linear effect on x
(i)
j , and a list of (linear combinations

of) key bits with non-linear effect.

Differential Cryptanalysis. For differential cryptanalysis, we have to deter-
mine whether a pair of plaintexts (or ciphertexts) P, P ′ reaches a specific internal
state difference Δx(i) = x(i) ⊕ x′(i) after a few rounds. However, the plaintexts
are not chosen randomly. Instead they have a specific pattern of differences that
is fixed in advance, and known to potentially reach the target difference.

More precisely, we follow the approach of [24,26] to track the propagation of
differences in the additional rounds, assuming that a pair follows the differential.
We use the rule that the output difference of an AND operator is 0 if and only
if its input differences are (0, 0) and we identify bits with a fixed difference (0 or
1) and those with an unknown difference (∗), as shown in Table 6. The number
of bits with a fixed difference for round i is denoted �i.

Next, we determine sufficient bit conditions for pairs following the input and
output constraints of the extended path: a small set of bit conditions that ensure
that we get the desired difference at the input and output of our differential
when they are satisfied. The other differences are automatically satisfied if the
bit conditions of the external rounds have already been checked. To determine
the sufficient bit conditions, we proceed round by round, from the outer to the
inner rounds. For each bit with a fixed output difference (0 or 1, not ∗), we look
at the input of the associated AND operator, and if they are different from (0, 0),
then we add the condition corresponding to this output difference to the set of
sufficient bit conditions.

Finally, for each sufficient bit condition, we compute the set of subkey bits
required to check the condition. The goal is to determine which subkey bits are
needed to compute a difference Δx

(i)
j . For Simeck, we use the following relation:

Δx
(i)
j = (Δx

(i−1)
j ∧ x

(i−1)
j+5 ) ⊕ (Δx

(i−1)
j+5 ∧ x

(i−1)
j ) ⊕ (Δx

(i−1)
j ∧ Δx

(i−1)
j+5 )

⊕Δx
(i−1)
j+1 ⊕ Δx

(i−2)
j . (4)

The resulting algorithm for the upper part is given in the full version [20].

Comparison. Table 5 shows the number of key bits to guess for a linear or
differential attack on Simeck with a single active bit, depending on the number
of rounds. (Similar tables for Simon are given in the full version [20]). The
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Table 5. Comparison of key recovery rounds for differential and linear attacks against
Simeck64/128.

Key bits Differential Linear

Rounds Total Independent Total Independent

1 0 0 0 0
2 2 2 2 2
3 9 9 7 7
4 27 27 16 16
5 56 56 30 30
6 88 88 50 48
7 120 114 75 68
8 104 88

list of bits returned by the previous algorithms is simplified in order to keep
only linearly independent combinations of bits. Moreover, we report the number
of independent bits after removing bits that can be computed using the key
schedule. We see that linear cryptanalysis requires a lower number of key bits
to guess.

We now explain in detail key-recovery attacks against Simeck based on those
distinguishers. We consider differential attacks in Sect. 4, and linear attacks in
Sect. 5.

4 Key-Recovery Attacks Using Differential Cryptanalysis

In this section, we detail differential key-recovery attacks on Simeck. We explain
the dynamic key-guessing technique [24,26] in Sect. 4.1 and we give our results
in Sect. 4.2.

4.1 The Dynamic Key-Guessing Technique

Offline Phase. Starting from a differential Δi → Δo covering R rounds, we
append r0 rounds before and r1 rounds after and we build the extended differen-
tial as explained in Sect. 3.3. Then we identify sufficient bit conditions as shown
in Table 6, and we identify the key bits required to check whether a pair reaches
the difference specified by the distinguisher.

Online Phase. Here we describe how the attack takes place from the construc-
tion of the pairs to the recovery of the possible master keys. First, we build
structures of plaintexts such that the bits with a fixed difference in round 1 are
identical for all the plaintexts in each structure. Each structure is composed of
2n−�1 plaintexts and if D denotes the data complexity, there are D×2�1−n struc-
tures. The structures are associated in pairs such that the differences between
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the two structures for bits with a fixed difference in round 1 correspond to the
desired difference in the extended path. For each structure, the corresponding
ciphertexts are saved in a table according to their value in the bits with fixed
difference in C̃. This allows to filter the pairs at the output and 22(n−�1)−�r−1

pairs remains in each pair of structures.
Our goal is to associate partial key guesses to each of these pairs, such that

they validate the internal differential. We proceed in a dynamic way. Round
by round and for each sufficient bit condition, we associate to each pair the
possible combinations of key bits that lead to the desired difference in the input
and output of the distinguisher, according to the extended path. Some pairs
and/or combinations of key guesses are progressively eliminated when they create
an incompatibility with the required differential path. For each pair, when a
combination of key bits that leads to Δi and Δo is found, we increment the
counter corresponding to this combination of key bits. In total, at the end of
the procedure we have incremented λW × 2κg counters on average, with λW

the average value of a counter for a wrong key guess. This process is partially
compatible with the use of key schedule relations on one side of the distinguisher.
Indeed, we guess key bits independently, and filter the combinations of bits which
do not verify the relations given by the key schedule afterwards. The details of
the attack (round by round) must be considered to calculate the time complexity
of the attack.

When all pairs have been processed, we set a threshold s, and for each counter
greater than s, we have to find the corresponding master keys. The information
given by the κg key bits is separated into 2 parts: we have bits of information
on the first subkeys, and others on the last subkeys. Due to the non-linear key-
schedule of Simeck, we cannot directly combine this information and do an
exhaustive search on the κ − κg missing bits. Instead, we use only the side for
which we have the most information bits, and then we do an exhaustive search
on the missing bits.

Complexity and Success Probability. In order to compute the complexity
and the success probability of this attack, we need to estimate the average value
of the counters for the right key and for wrong key guesses: we denote those
values λR and λW .

As explained before, structures are associated in pairs. Let S1 and S2 denote
two structures that form a pair. For each plaintext P̃1 in S1 and for each key
guess, we compute P̃2 = E−1

1 (E1(P̃1) ⊕ Δi) such that we have the relation
E1(P̃1)⊕E1(P̃2) = Δi. P̃2 necessarily belongs to S2, due to structures construc-
tion. So, if D denotes the data complexity of the attack, for each key guess we
have D/2 pairs with the desired difference at the input of our distinguisher.

For the right key guess, if our differential occurs with probability p, we have
λR = p × D/2 pairs that satisfy Δo. By construction, all these pairs belong to
the structures and pass the filters. On the other hand, for wrong key guesses, P̃1

and P̃2 don’t actually have a difference Δi at the input of the distinguisher with
the real encryption key, so the probability that they have a fixed difference Δo
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at the output is 1/2n. The value of the counter for wrong key guesses is expected
to be λW = D/2n+1 on average1.

We model the counter associated to the right key guess and a wrong key
guess as a Poisson distribution with parameters λR and λW . We denote the
cumulative distributive function as FR and FW . The probability that a counter
associated to a wrong key guess is greater than a threshold s is 1 − FW (s), and
the expected number of counters greater than s is 2κg · (1 − FW (s)).

Let κmin and κmax be the minimum and the maximum of κp+κt and κb+κc.
The cost of reconstructing the master keys from the remaining combinations is
2κg · (1 − FW (s)) × 2κ−κmax = 2κ+κmin · (1 − FW (s)). The time complexity is
therefore determined by this term, but also by the data and the time required
to scan all the counters at the end of the key-recovery: 2κg . Knowing that most
of the counters are at 0, this term could be reduced to the number of remaining
pairs: 2κg · λW . The time complexity and success probability are:

C1 = D + 2κg · λW + 2κ+κmin · (1 − FW (s))

PS = 1 − FR(s)

4.2 40-Round Key-Recovery on SIMECK64/128

We apply the methods described in the previous subsection with the differential
(0, 1) to (1, 0) covering 30 rounds with probability p = 2−60.41. We append 3
rounds before and 7 rounds after. The extended path is given in Table 6 and
the details of the bits to guess round by round are given in the full version [20]
(Table 12). Round by round, we use the sufficient bit conditions from Table 6 to
guess the key bits that lead to the desired differences. When possible, we filter
using the relations of the key schedule. In the rightmost column, we detail the
time complexity of each step starting from 2t pairs. To compute this complexity
more precisely, we split the round 33 in two parts corresponding to the two
sufficient bit conditions. In total, the complexity of guessing the key bits leading
to Δi and Δo, and incrementing the corresponding counters is 2t+71. During this
step, κmin = 9 bits from the first subkeys and κmax = 114 from the last subkeys
are guessed.

Attack Parameters. If all the codebook (D = 264) is taken, knowing that
�1 = 57 and �39 = 19, we split the data into 257 structures of 27 plaintexts and
after constructing our pairs of structures and filtering the ciphertexts C̃, there
remain 257−1 × 27×2/219 = 251 pairs. So t = 51 and the time complexity for
the counter incrementing part is 2t+71 = 2122. The average value for the counter
of the right key guess is λR = p × D/2 = 22.59. And for a bad key guess, we
expect the counter to be close to λW = D/264−1 = 2−1. So, if we choose to set

1 The same result can be obtained using the formulas in [24] and the code provided
by the authors of this paper.
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Table 6. Extended path for 40 rounds of Simeck64/128. Red bold bits represent the
sufficient bit conditions.

r Differential path �i

0 000000000000000000000∗000∗∗001∗∗ 0000000000000000∗000∗∗00∗∗∗01∗∗∗ 50
1 00000000000000000000000000∗0001∗ 000000000000000000000∗000∗∗001∗∗ 57
2 00000000000000000000000000000001 00000000000000000000000000∗0001∗ 62
3 00000000000000000000000000000000 00000000000000000000000000000001 64

30-round differential (3 → 33)

33 00000000000000000000000000000001 00000000000000000000000000000000 64
34 00000000000000000000000000∗0001∗ 00000000000000000000000000000001 62
35 000000000000000000000∗000∗∗001∗∗ 00000000000000000000000000∗0001∗ 57
36 0000000000000000∗000∗∗00∗∗∗01∗∗∗ 000000000000000000000∗000∗∗001∗∗ 50
37 00000000000∗000∗∗00∗∗∗0∗∗∗∗1∗∗∗∗ 0000000000000000∗000∗∗00∗∗∗01∗∗∗ 41
38 000000∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 00000000000∗000∗∗00∗∗∗0∗∗∗∗1∗∗∗∗ 30
39 0∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 000000∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 19
40 ∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 0∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 10

Table 7. Attack parameters for differential attacks on Simeck. C1 is the time com-
plexity to run the attack a single time, and the corresponding success probability is
PS . The average time is obtained as C1/PS , by assuming that the attack is repeated
until it succeeds, using rotations of the initial differential.

Cipher Rounds κmin κmax D λR λW s C1 PS Time

Simeck64/128 40 = 3 + 30 + 7 9 114 264 22.59 2−1 6 2122 + 2117.07 0.40 2123.4

Simeck64/128 40 = 3 + 30 + 7 9 114 264 22.59 2−1 5 2122 + 2120.89 0.55 2123.4

Simeck64/128 40 = 3 + 30 + 7 9 114 263 21.59 2−2 4 2121 + 2119.79 0.19 2123.9

Simeck48/96 30 = 2 + 22 + 6 2 74 248 21.58 2−1 5 275 + 281.9 0.08 285.5

Simeck48/96 30 = 2 + 22 + 6 2 74 247 20.58 2−2 3 274 + 285.1 0.06 289.1

Simeck32/64 22 = 3 + 13 + 6 8 51 232 22.98 2−1 5 258 + 255.9 0.80 258.6

Simeck32/64 22 = 3 + 13 + 6 8 51 231 21.98 2−2 4 257 + 254.8 0.36 258.8

the threshold s at 5, the complexity is 2120.89 + 2122 = 2122.54 with a success
probability of 55%.

We show parameters with different time/data trade-offs, as well as parame-
ters for other variants of Simeck in Table 7.

5 Key-Recovery Attacks Using Linear Cryptanalysis

The first description of a last-round key recovery attack using linear cryptanaly-
sis was given by Matsui’s Algorithm 2 [22]. We consider a biased linear approx-
imation P ′ · α ⊕ C ′ · β with P ′ and C ′ intermediate values after a few rounds
of encryption/decryption. Given a set of D known plaintexts/ciphertexts pair
(P,C), we can compute the intermediate values P ′ and C ′ for each partial key
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guess kg = (kp, kt, kc, kb) for the first and/or last rounds, and compute the
experimental correlation of the linear approximation:

q(kp, kt, kc, kb) =
1
D

(
# {P,C : P ′ · α = C ′ · β} − # {P,C : P ′ · α �= C ′ · β} )

=
1
D

∑

P,C

(−1)P
′·α⊕C′·β

P ′ · α and C ′ · β are computed as a function of the partial key and some bits of
the plaintexts/ciphertexts denoted as χc(C) and χp(P ) respectively (we assume
that the bit positions correspond to the key bits in kp and kc):

P ′ · α = f(kt, kp ⊕ χp(P ))
C ′ · β = g(kb, kc ⊕ χc(C))

5.1 The FWT Approach of [13,15]

The time complexity of the attack is dominated by the time necessary to compute
the statistic for all key candidates. Several tricks have been introduced to make
this step more efficient. Since the values of P ′ · α and C ′ · β do not depend on
the full plaintext/ciphertext, we can “compress” the dataset using a distillation
phase where we only count how many plaintext/ciphertext pairs reach each value
of those bits [22]:

q(kp, kt, kc, kb)

=
1
D

∑

P,C

(−1)f(kt,kp⊕χp(P ))⊕g(kb,kc⊕χc(C))

=
1
D

∑

i∈F
κp
2

∑

j∈F
κc
2

# {P,C : χp(P ) = i, χc(C) = j} × (−1)f(kt,kp⊕i)⊕g(kb,kc⊕j)

We remark that the previous expression is actually a convolution:

=
1
D

∑

i,j

φ(i, j) × ψkt,kb
(kp ⊕ i, kc ⊕ j) =

1
D
(φ ∗ ψkt,kb

)(kp, kc),

with

φ(x, y) = # {P,C : χp(P ) = x, χc(C) = y}
ψkt,kb

(x, y) = (−1)f(kt,x)⊕g(kb,y)

Therefore, for a given kt, kb, we can evaluate q(kp, kt, kc, kb) for all kp, kc with
complexity Õ(2κp+κc) using a Fast Walsh Transform. This was first observed
in [13] (with additional rounds on one side only), and then generalized in [15].
The time complexity of the analysis is reduced to Õ(D + 2κg ).
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5.2 Statistical Models to Estimate the Success Probability

We follow the analysis of Blondeau and Nyberg [10,11], taking into account the
impact of the variance of the correlation due to the random key, and the sampling
model with a factor B depending on the type of attack: B = 1 if the plaintexts
are randomly chosen with repetition, and B = (2n − D)/(2n − 1) if they are
distinct (in the following, we assume distinct plaintexts).

Single Dominant Characteristic. When there is a single dominant charac-
teristic with absolute bias ε, the correlation of the approximation is either ε or
−ε depending of the key. The empirical correlation for the right key follows one
of two possible normal distributions, with parameters

μR = ±ε σ2
R = B/D + 2−n.

When the key guess is wrong, we assume that the computed statistic follows
the correlation of a random permutation; it follows a normal distribution with
parameters

μW = 0 σ2
W = B/D + 2−n.

Since there are two possible distributions for the right key, we have to slightly
modify the analysis of (1). For an attack with gain a, we set a threshold s =
F−1

W (1−2−a−1) = σW Φ−1(1−2−a−1) and keep key candidates with |q| ≥ s. The
attack succeeds with probability PS = 1−FR(s) when μR > 0, and PS = FR(−s)
otherwise:

PS = Φ

( |ε| − σW Φ−1(1 − 2−a−1)
σR

)
,

where Φ is the cumulative distribution function of the standard normal distri-
bution.

Single Approximation with Many Trails. When using a single linear hull
with many high correlation trails (rather than a dominant trail), the correlations
for the right and wrong keys follow normal distributions with parameters:

μR = 0 σ2
R = B/D + ELP

μW = 0 σ2
W = B/D + 2−n,

Following [10], we estimate the expected linear potential ELP using the correla-
tions ετ for characteristics τ in a set S of dominating characteristics:

ELP ≈ 2−n +
∑

τ∈S
ε2τ ,

using the results of Sect. 3.1 to compute
∑

τ∈S ε2τ with S the set of characteristics
with masks in Λw.
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The distributions are both centered on zero, but since the variance is larger
for the right key, we can sort the keys according to the absolute value of the
measured correlation, and we expect a larger value for the right key than for
wrong keys. More precisely, using a threshold s = σW Φ−1(1 − 2−a−1) on the
absolute value of the correlation, the success rate is given by [10, Theorem 2]:

PS = 2 − 2Φ
(

σW

σR
Φ−1(1 − 2−a−1)

)
.

Equivalently, we can consider the squared correlation, which follows a χ2

distribution with one degree of freedom, and use the generic formula (1) with
the following distributions:

FR/σR ∼ χ2
1 FW /σW ∼ χ2

1

Multiple Approximations. When using M linear approximations, there are
different ways to exploit the information to rank the keys. Again, we follow the
analysis of [10], and we rank the keys according to

Q(k) =
∑

qi(k)2

According to [10], we can model the statistics for the right key as a Gaussian
distribution with parameters

σ2
R = 2B2M + 4BD

∑

i

ELPi + 2D2
∑

i

ELP2
i

μR = BM + D
∑

i

ELPi

On the other hand the statistic for the wrong key is proportional to a χ2 distri-
bution with M degrees of freedom:

FW /(B + D2−n) ∼ χ2
M

In our analysis, we consider either a single approximation (1, 0) → (0, 1), or
the approximation (1, 0) → (0, 1) combined with lower quality approximations
that can be used with the same key bits.

5.3 12-Round Key-Recovery

We apply the previous techniques to Simeck64, starting from the linear approx-
imation (0, 1) → (0, 1), and adding 8 rounds on the plaintext side and 4 rounds
on the ciphertext side. Following Eq. 3, x

(8)
0 can be computed from κp = 54 bits

of P̃ , κp = 54 bits of the whitening key kp = k(0)‖k(1), and κt = 50 additional
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key bits. Similarly, x
(r−5)
0 can be computed from κc = 14 bits of C̃, κc = 14 bits

of the whitening key k(r−1)‖k(r−2), and κb = 2 additional key bits:

kp = k
(0)
[0,−1,...,−23,−25,−26,−27,−30,−31], k

(1)
[0,−1,...,−18,−20,−21,−22,−25,−26,−30]

kt = k
(2)
[0,−1,...,−13,−15,−16,−17,−20,−21,−25],

k
(3)
[0,−1,−2,−3,−5,−6,−7,−8,−10,−11,−12,−15,−16,−20],

k
(4)
[0,−1,−2,−5,−6,−7,−10,−11,−15], k

(5)
[0,−1,−5,−6,−10], k

(6)
[0,−5]

kb = k
(r−3)
[0,−5]

kc = k
(r−1)
[0,−1,−2,−5,−6,−7,−10,−11,−15], k

(r−2)
[0,−1,−5,−6,−10]

We ignore bits that have a linear effect because they only flip the sign of the
imbalance. Moreover, we can use key schedule relations to reduce κt by 2:

k
(6)
0 = k

(2)
0 ⊕ k

(3)
−1 ⊕ k

(3)
0 ∧ k

(3)
−5 ⊕ c

(6)
0

k
(6)
−5 = k

(2)
−5 ⊕ k

(3)
−6 ⊕ k

(3)
−5 ∧ k

(3)
−10 ⊕ c

(6)
−5

There are 14 additional relations between bits of κt and κp.
The attack is decomposed in three phases:

Distillation phase. Compute φ(x, y) = # {P,C : χp(P ) = x, χc(C) = y} for
0 ≤ x < 2κp , 0 ≤ y < 2κc .
This only requires to set up 2κp+κc counters, and to iterate over the D avail-
able plaintext/ciphertext pairs.

Analysis phase. For each guess of kt, kb, for all 0 ≤ x < 2κp , 0 ≤ y < 2κc ,
compute ψkt,kb

(x, y) = (−1)f(kt,x)⊕g(kb,y), then evaluate the convolution φ ∗
ψkt,kb

using the Fast Walsh Transform.
For each kt, kb, this requires 2κp+κc evaluations of f and g to generate ψkt,kb

,
and 3(κp + κc)2κp+κc additions and 2κp+κc multiplications to evaluate the
convolution. Assuming that the cost of κp + κc additions and the cost of
a multiplication are comparable to the cost of an encryption call, the total
complexity of the analysis phase is O(2κg ) using a memory of size 2κp+κc .

Search phase. For all keys with q(kp, kt, kc, kb) ≥ s, exhaustively try all master
keys corresponding to kp, kt, kc, kb.
With a threshold s = F−1

W (1 − 2−a) we expect a fraction 2−a of the keys to
remain. We iterate over 288+16 candidates kp, kt, kc, kb that satisfy the 14 key
schedule equations between kt and kp, keep only the 88 independent bits of
kp, kt for keys meeting the threshold, and exhaustively search the remaining
40 bits, with a complexity of 288+16−a × 240 = 2144−a.

With our parameters, we have κg = 118 (after removing the two relations
between bits of kt). Using the Walsh transform pruning technique of [15] (and
partially precomputing the Walsh transform of ψ), the complexity of the analysis
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phase is reduced to2:

68ρA268 + 2ρM2118 + ρA264(254 + 39 × 240) + ρA290(214 + 13 × 214) ≈ 2ρM2118

with ρA the cost of an addition, and ρM the cost of a multiplication. Assuming
that 2 multiplications correspond to roughly one evaluation of the cipher, we end
up with a complexity of 2κg . This variant uses a memory of 2κp+κc + 2κp+κt +
2κc+κb = 268 + 2102 + 216 ≈ 2102 elements.

5.4 Attack Parameters

We use this attack to target 41 or 42 rounds of Simeck64, and smaller variants
of Simeck, with various time/data trade-offs summarized in Table 8. We explain
two attacks in detail here and include others in the full version [20] (Appendix B).

42-Round Simeck64 with 263.5 Plaintexts. The ELP of the linear approxi-
mation (1, 0) → (0, 1) over 30 rounds is 2−64+2−60.36 = 2−60.25. The complexity
of the analysis phase is 2118. With an advantage of a = 24, the complexity of
the search phase is 2120 and the success probability is PS = 8.3%.

Since Simeck is rotation-invariant, we can repeat the attack 32 times by
rotating the linear approximation used. On average we expect the attack to
succeed after 1/PS = 12 attempts, leading to an average complexity of 2123.9.
If we fix this as the maximum complexity, we expect a success rate of roughly
1 − 1/e ≈ 63%.

41-Round Simeck64 with 263 Plaintexts. Alternatively, we can use multiple
linear approximations to reduce the time complexity of a 41-round attack. We
use the following 29-round linear approximations:

(1, 0) → (0, 1) : ELP = 2−64 + 2−58.47

(1, 0) → (1, 0) : ELP = 2−64 + 2−60.36

(1, 0) → (1, 1) : ELP = 2−64 + 2−60.36

(0, 1) → (0, 1) : ELP = 2−64 + 2−60.36

(1, 1) → (0, 1) : ELP = 2−64 + 2−60.36

The extra approximations have been chosen because the corresponding masks
can be computed from the same keys bits as the main approximation (1, 0) →
(0, 1); they have a combined capacity of 2−57.39. Thanks to the higher capacity,
we can aim for a higher advantage a = 52, and obtain a success rate of 23%
with 263 plaintexts. Therefore, we split the key recovery rounds as 7 rounds on
the plaintext side and 5 on the ciphertext side (rather than 8 and 4), leading
to parameters κp = 45, κt = 30, κc = 23, κb = 7; this reduces the complexity
of the analysis phase to 5 × 2105, while the search phase has a complexity of
2128+23+7−52 = 2106.
2 With their notations, we have k0 = 54, k1 = 50, k2 = 2, k3 = 14, l12 = 2, l0 = 14,

l3 = 0.
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Table 8. Attack parameters for linear attacks on Simeck. C1 is the time complexity
to run the attack a single time, and the corresponding success probability is PS . The
average time is obtained as C1/PS .

Cipher Rounds #app. Capacity D Adv. C1 PS Time

Simeck64 41 = 7+29+5 5 2−57.34 263 52 5 × 2105 + 2106 0.23 2110

41 = 8+29+4 1 2−58.44 262 26 2118 + 2118 0.11 2122.2

42 = 8+30+4 1 2−60.25 263.5 24 2118 + 2120 0.08 2123.9

42 = 8+30+4 1 2−60.25 264 29 2118 + 2115 0.10 2121.5

Simeck48 32 = 7+21+4 1 2−43.50 247 26 287 + 286 0.10 290.9

Simeck32 23 = 5+13+5 1 2−27.68 231.5 37 258 + 256 0.07 262.2

5.5 Experimentations

We have performed experimentations to verify the theory leading to the proba-
bilities of success PS . To do this, we take a set of D plaintext/ciphertext pairs
and we compute the experimental correlation Q(k) for the right key and for
a random sample of wrong keys. We choose an advantage a and we consider
that a success is obtained when the correlation of the right key is among the
2−a highest correlations. This experiment was repeated 1000 times with random
keys to compute an experimental success probability. Our results are presented
in Table 9. We compare attacks with a single approximation (1, 0) → (0, 1) and
attacks with five approximations (1, 0) → (0, 1), (1, 0) → (0, 1), (1, 0) → (0, 1),
(1, 0) → (0, 1), (1, 0) → (0, 1), as used in the 41-round attack with 263 plaintexts.
The experimental probability of success is close to the prediction, confirming that
both the model for the success probability, and our estimation of the ELP are
accurate.

For Simeck32, we compute the exact ELP of the linear approximation using
our algorithm with w = 16; we obtain an ELP of 2−30.73 over 15 rounds for
(1, 0) → (0, 1) and 2−31.59 for the four other approximations.

Table 9. Comparison of the theoretical (PS) and experimental success probability for
linear attacks. We perform 1000 experiments, taking D pairs of plaintext/ciphertext
and testing whether the correlation associated to the right key is among the 2−a highest
correlations with a sample of random wrong keys.

Cipher Rounds D # app. capacity # wrong keys Adv. Success PS

Simeck32/64 15 231 1 2−30.73 28 5 7.4% 9.9%
Simeck32/64 15 231 5 2−29.05 28 5 9% 7.4%
Simeck32/64 16 231 1 2−31.59 28 5 4.9% 4.5%
Simeck32/64 16 231 5 2−29.44 28 5 3.6% 2.3%
Simeck64/128 12 228 1 2−26.39 212 10 9.9% 10.1%
Simeck64/128 12 228 5 2−25.17 212 10 14.8% 14.8%
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6 Application to SIMON

Similarly to Simeck, previous results [21] have shown the existence of iterative
trails for Simon with a single active bit in the input and output, where all
intermediate states fit in a small window of active bits. This makes Simon an
interesting target for our analysis, just like Simeck. In this section we focus
on linear cryptanalysis, and we obtain improved attack against Simon96 and
Simon128, gaining between 3 and 7 rounds compared to previous attacks.

Previous works have shown that Simon offers a higher security against differ-
ential and linear cryptanalysis than Simeck. In particular, iterative trails have
a higher weight, and require a larger window of active bits. Moreover, we notice
that the trail (1, 0) → (0, 1) is only possible for round numbers of the form 4r+1,
because some bits have a linear update when the trail is limited to a window
smaller than the word size. More precisely, for linear trails, the high order bits
follow a pattern

(10*..., 0*0...) → (0*0..., 10*...) → (10*..., 0*1...) → (0*1..., 10*...) → (10*..., 0*0...)

Since the transition matrix is sparser than for Simeck we can run our analysis
with larger values of w. The lower bound on the ELP that we obtain for the trail
(1, 0) → (0, 1) is given in Table 11. The bounds show a smaller linear potential
(and differential probability) for Simon than for Simeck. However, we see in
Fig. 9 that the linear potential still increases significantly with the window size
w; this indicates that our bound is not as tight as on Simeck. Further work
is needed to capture the full clustering effect on Simon, and this could further
reduce the security margin of the cipher.

The approximations (1, 0) → (0, 1) can be extended by one round on either
side with correlation 2−2, leading to two active bits. After rotating the approxi-
mation by two bits to (4, 0) r→ (0, 4) with ELP c, the extended approximations
are (4, 0) r+1→ (4, 1) and (1, 4) r+1→ (0, 4) with ELP 2−2c, and (1, 4) r+2→ (4, 1) with
ELP 2−4c.

We summarize the parameters of the best attacks we have identified against
Simon96 and Simon128 in Table 10; our analysis does not seem to improve previ-
ous results on Simon32, Simon48 and Simon64. As shown in the full version [20]
(Table 13 and 14), we don’t have any key-schedule relation between bits of kt

or kb, but we have relations between kt and kp or between kb and kc. Therefore
we can use the Walsh transform pruning technique of [15], as in the Simeck
attacks. We explain two attacks in detail below.

56-Rounds Simon128/256. We use the 41-round linear approximation
(1, 0) → (0, 1) with ELP lower bound of 2−123.07 + 2−128. We add 8 rounds
on the plaintext side, and 7 rounds on the ciphertext side, obtaining parameters
κp = 80, κt = 65, κc = 64, κb = 37. The complexity of the analysis phase is
about 2246. With 2126 data, and an advantage a = 10, we have a success prob-
ability of 26% and the search phase has a complexity of 2246. Finally we obtain
an average complexity of (2246 + 2246)/0.26 ≈ 2249.
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Table 10. Attack parameters for linear cryptanalysis of Simon.

Cipher Rounds κp, κt, κc, κb D a C1 PS Time Approx

S128/256 56 = 8+41+7 80, 65, 64, 37 2126 10 2246 + 2246 0.26 2249 (1, 0) → (0, 1)
S128/192 55 = 7+42+6 64, 37, 56, 23 2127 10 2180 + 2182 0.13 2185.2 (4, 0) → (4, 1)
S128/128 53 = 6+42+5 47, 18, 38, 9 2127 10 2112 + 2118 0.13 2121 (4, 0) → (4, 1)
S96/144 45 = 6+33+6 47, 18, 47, 18 295 10 2130 + 2134 0.19 2136.5 (1, 0) → (0, 1)
S96/96 43 = 5+33+5 30, 7, 30, 7 294 10 274 + 286 0.08 289.6 (1, 0) → (0, 1)

Table 11. ELP of the linear approximation (1, 0) → (0, 1) and probability of the
differential (0, 1) → (1, 0) for Simon (log2, computed with w = 19)

r 13 17 21 25 29 33 37 41 45
ELP −41.99 −46.30 −67.87 −77.90 −87.25 −92.60 −113.06 −123.07 −132.95
Pr −40.68 −47.31 −67.56 −78.08 −86.96 −94.62 −113.67 −124.22 −133.66

55-Rounds Simon128/192. For Simon128/192, we use the 42-round linear
approximation (4, 0) → (4, 1) with an ELP lower bound of 2−125.07 + 2−128.
We add 7 rounds on the plaintext side, and 6 rounds on the ciphertext side,
obtaining parameters κp = 64, κt = 37, κc = 56, κb = 23. The complexity of
the analysis phase is about 2180. With 2127 data, and an advantage a = 10, we
have a success probability of 13% and the search phase has a complexity of 2182.
Finally we obtain an average complexity of (2180 + 2182)/0.13 ≈ 2185.2.

45-Rounds Simon96/144. We use the 33-round linear approximation (1, 0) →
(0, 1) with an ELP lower bound of 2−93.57+2−96. We add 6 rounds on each side,
obtaining parameters κp = 47, κt = 18, κc = 47, κb = 18. The complexity of
the analysis phase is about 2130. With 295 data, and an advantage a = 10, we
have a success probability of 19% and the search phase has a complexity of 2134.
Finally we obtain an average complexity of (2130 + 2134)/0.19 ≈ 2136.5.

7 Perspectives

Our work provides the first attack against 42-round Simeck64, showing that the
security margin is very slim (the full version has 44 rounds). Moreover, if the
designers of Simeck had proposed a 128-bit variant with the same number of
rounds as Simon128, the full version would be broken by our analysis.

We also improve significantly previous attacks on Simon. In particular we
show that Simon96/144 only has 17% of the rounds as security margin, while
the designers wrote [4]:

“After almost 4 years of concerted effort by academic researchers, the var-
ious versions of Simon and Speck retain a margin averaging around 30%,
and in every case over 25%. The design team’s analysis when making step-
ping decisions was consistent with these numbers.”
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Fig. 9. Effect of w on the probability of Simon linear hulls.

Comparison of Differential and Linear Cryptanalysis. Our work shows
that differential and linear attacks against Simon and Simeck are very similar.
The differential characteristics and linear approximations are almost equivalent;
we use trails with a single input/output bit in both cases, and the differen-
tial probability p is almost the same as the linear potential ELP (See Table 4).
Using advanced techniques (dynamic key-guessing and Fast Walsh Transform
respectively), both attacks have a complexity that is essentially D + 2κg (with
D = O(1/p) or D = O(1/ELP) respectively).

However, there is an important difference in the key-recovery part. As seen
in Table 5, we have to guess more key bits for differential cryptanalysis than for
linear cryptanalysis (for the same number of additional rounds). This explains
why linear cryptanalysis is more efficient than differential cryptanalysis on those
ciphers, as shown by previous analysis.

Impact of the Rotations. The main difference between Simeck and Simon
is the value of the rotations of the round function. In order to find which combi-
nations of the rotation constants a, b and c would be a bad or a good choice, we
reuse Algorithm 1 to obtain a lower bound for the probability of a differential
for several values of a, b and c. We set the following parameters: w = 13, r = 30,
and 0 ≤ a, b, c ≤ 10. A lower bound of the probability of all the differentials with
input (δL, δR) = (0, 1) is computed, and this allows to confirm that the following
trivial conditions must be verified: a, b and c must all be different, c must be
different from 0, and a, b and c must be of different parity: the three shifts must
not be all even or all odd.

We also notice that (a, b, c) must not be of the form (i, 2j−i, j) or (2j−i, i, j)
and that the bias we observe strongly decreases when c increases. However, this
does not allow us to conclude that taking a large value of c ensures a better
security since it is possible that there exists other differentials with high bias.
Our approach does not allow to conclude when a and b are smaller than c because
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in this case, the difference cannot remain in a fixed window after a large number
of rounds. This is due to the fact that the difference generated by the linear part
can never cancel out with the difference of the non-linear part.

Alternative Class. Instead of using differences or masks in a fixed window of
w bits, we could consider low-weight values. Indeed, this class also includes the
iterative trails given in previous works, and should contain many high-probability
trails. We have implemented the search algorithm with this alternative class,
using 32-bit words of weight at most 5 (a set of 217.9 values).

In terms of resources, this requires roughly the same amount of memory
as with a window of size w = 18, but it runs about 50 times faster, because
there are fewer possible transitions at each round: the probability to reach a
value with weight lower than 5 is smaller than the probability to stay in a fixed
window. However, the bounds given with this class on Simeck and Simon are
not competitive with those obtained with a fixed window. On Simeck, using
words of weight 5 gives probabilities comparable to using a window with w = 9,
largely below w = 18. On Simon, the gap is smaller: we obtain results similar
to using a window of size w = 15. In both cases, using a fixed window requires
fewer resources (time and memory) to achieve the same quality of results.
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Abstract. Cryptanalysis of the LowMC block cipher when the attacker
has access to a single known plaintext/ciphertext pair is a mathemat-
ically challenging problem. This is because the attacker is unable to
employ most of the standard techniques in symmetric cryptography like
linear and differential cryptanalysis. This scenario is particularly rele-
vant while arguing the security of the PICNIC digital signature scheme
in which the plaintext/ciphertext pair generated by the LowMC block
cipher serves as the public (verification) key and the corresponding
LowMC encryption key also serves as the secret (signing) key of the
signature scheme. In the paper by Banik et al. (IACR ToSC 2020:4), the
authors used a linearization technique of the LowMC S-box to mount
attacks on some instances of the block cipher. In this paper, we first make
a more precise complexity analysis of the linearization attack. Then, we
show how to perform a 2-stage MITM attack on LowMC. The first stage
reduces the key candidates corresponding to a fraction of key bits of the
master key. The second MITM stage between this reduced candidate set
and the remaining fraction of key bits successfully recovers the master
key. We show that the combined computational complexity of both these
stages is significantly lower than those reported in the ToSC paper by
Banik et al.

1 Introduction

The LowMC family of block ciphers was first proposed by Albrecht et al. in
[ARS+15] and was designed specifically for use in FHE and MPC applications
due to its low multiplicative complexity. The block cipher uses a 3-bit S-box
which is the only non-linear transformation in the construction. Both the linear
layers and round key generation are done by multiplying with full rank matrices
over GF (2) of appropriate dimensions. The designers propose several instances
of the block cipher, some of which have partial non-linear layers i.e. in which the
S-boxes are not applied over the entire internal state of the cipher.

Recently, LowMC has been used in the PICNIC digital signature scheme in
the following way. Let E(K, pt) be the LowMC encryption of the plaintext pt
using the key K. The plaintext/ciphertext pair (pt, ct = E(K, pt)) is used as the
public key of the signature scheme (verification key) and encryption key K is
used as the secret key (signing key). If an adversary can recover the encryption
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13090, pp. 303–331, 2021.
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key given only a single plaintext/ciphertext pair (pt, ct) i.e. the public key of the
signature scheme, then in effect he computes the secret signing key. This allows
him to forge a signature by following exactly the honest prover protocol with
the recovered signing key. This demonstrates that a data complexity one key
recovery attack on LowMC block cipher leads to a signature forgery on PICNIC.

1.1 Previous Work

In ICISC 2015 Dobraunig et al. [DEM15] proposed an attack on LowMC family
of block ciphers, based on cube attack strategies. The authors proposed an algo-
rithm which successfully recovers the key of the round reduced version of the
cipher, aiming for 80-bit security. Dinur et al. [DLMW15] showed that around
2−38 fraction of its 80-bit key instances could be broken 223 times faster than
exhaustive search. Moreover, all instances that claimed to provide 128-bit secu-
rity could be broken about 1000 times faster. In [DKP+19], the authors showed
that for the LowMC instances that employs partial linear layers, each instance
belonged to a large class of equivalent instances that differ in their linear layers.
This led to a more efficient implementation of the cipher that required reduces
the evaluation time and storage of computing the linear layers. In FSE 2018,
Rechberger et al. [RST18] proposed a meet-in-the-middle style attack, based on
possible output differentials, given an input differential, which affects the secu-
rity of the variants of LowMCv2 with partial S-box layers drastically. In [LIM20]
some results on LowMC were reported building on the techniques of [RST18],
albeit with higher data complexities, which naturally do not apply to the PIC-
NIC scenario. In [DN19] the authors proposed multi-target attacks on the PICNIC
signature scheme. For a survey of key recovery attacks on LowMC, readers may
check the survey done by Rechberger et al. [GKRS]. As mentioned, one of the
main use cases of LowMC, is the PICNIC post quantum signature scheme. Due
to PICNIC’s algebraic composition, the scheme would be trivially forged by a key
recovery attack on LowMC that uses only a single pair of plaintext/ciphertext.
In other words only attacks with data complexity one directly affect the security
of the signature scheme.

The LowMC cryptanalysis challenge asked for cryptanalysis of several
instances of LowMC (in which the blocksize and keysize are equal), with both
partial and complete non-linear layers given only one plaintext and ciphertext
pair. In [BBDV20], some instances of the challenge were successfully solved. The
authors used the fact that after guessing the value of any balanced quadratic
Boolean function on the inputs of the LowMC S-box, the transformation becomes
completely linear. The authors chose the 3-variable majority function for this
purpose, but they show that any balanced quadratic function can be used. Using
this fact, they showed various attacks on

A 2-round LowMC with complete non-linear layers.
B 0.8 · �n

s �-round LowMC with partial non-linear layers. Here n denotes the
blocksize of the LowMC instance, and s denotes the number of S-boxes in
each round.
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The authors in [BBDV20] report attack complexities in number of lin-
ear/quadratic expression evaluations. However it is always preferable to have
computational complexity reported in terms of number of encryptions. We actu-
ally show in this paper that the best complexity of these attacks are equivalent
to n

2r ×2rs encryptions (r denotes the number of rounds used in the encryption),
as will be discussed later in this paper. In [BBDV20], the authors then presented
a speedup of a factor of 8 over the MITM attack by using the 3-xor problem.

In [Din], the authors showed an ingenious method of finding roots of multiple
polynomial systems over GF (2). The n variables of the equation system are
partitioned into two disjoint sets y = y0, y1, . . . , ym−1 and z = z0, z1, . . . , zp−1

(with n = m + p). It is argued that any random linear combination of the
polynomials in the original equation system, has an isolated solution with high
probability, i.e. if (ŷ, ẑ) is an isolated solution then (ŷ, z′) is not a solution for
all z′ �= ẑ. The authors then observed that all such isolated solutions could be
recovered bit-by-bit by computing p+1 partial sums for each candidate solution
ŷ ∈ {0, 1}m. The first step is to randomly combine the original equation system
into a system with smaller number of equations whose solutions can be found by
brute force. These solutions are then used to compute partial sums and construct
a candidate solution of the original equation system. This generic method of
solving equations works quite well if the algebraic degree of the system is small
and so it was applied to attack 3, 4 and 5 round LowMC with complete non-
linear layers for some specific block-lengths. However, the method can not be
applied to LowMC instances with partial non-linear layers, since the number of
rounds in such instances are generally much higher, and the degree of the internal
state variables (as a function of the key) doubles every round. [LIM21] reports an
algebraic attack on LowMC. However the authors use the n2.8 estimate (ignoring
constant factors) to solve Gaussian elimination, to report the complexity of their
attack. As such it is unclear if the complexity bounds they report are tight.

1.2 Contribution and Organization of the Paper

In this paper we present new improved attacks on LowMC instances that use the
linearization technique of the LowMC S-box as a starting point. We first provide
a more precise complexity analysis of the linearization attack and of its proof.
Then, we present improved attacks on both a) the 2 and 3-round complete non-
linear layer instance, and b) the 0.8 · �n

s � and �n
s �-round LowMC instance with

partial non-linear layers. We show that the attack complexity can be reduced if
we perform the MITM in two separate stages: the first stage reduces the set of
possible key candidates of a fraction of key bits to smaller set. A second MITM
stage is then performed on this reduced candidate set and the candidates in
the remaining fraction of the key bits. The paper shows how to efficiently for-
mulate equations to perform the 2 MITM stages, and proves conclusively that
the correct key can be found with certainty. It also shows that the combined
computational complexity of the 2 attack stages is significantly lower than the
complexities reported in [BBDV20]. Table 1 tabulates in detail the complexities
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Fig. 1. LowMC Round Function

of the attacks reported in this paper and compares with the corresponding com-
plexities reported in [BBDV20]. Note that in this table, we have recalculated all
computational complexities in terms of number of encryptions.

The rest of the paper is organized in the following manner. In Sect. 2, we begin
by presenting a mathematical description of LowMC and some information about
the LowMC cryptanalysis challenge. In Sect. 3, we list out some of the issues
with the computational complexity reported in [BBDV20] and explain how we
have tried to compute all complexities in terms of number of encryptions. In
Sect. 4, we present our attack on the 2-round and 3-round LowMC instances
with complete non-linear layers. In Sect. 5, we present our attack on the 0.8 · �n

s �
and �n

s �-LowMC instance with partial non-linear layers. In Sect. 6, we present
some experimental results on reduced LowMC instances with smaller blocksizes.
This is done to prove that the attacks presented in Sects. 4, 5 can indeed be
applied to full-size LowMC instances. Section 7 concludes the paper.

2 Preliminaries

The LowMC round function is a typical SPN construction given in Fig. 1. It
consists of an n-bit block undergoing either a partial or a complete substitution
layer consisting of s 3-bit S-boxes where 3s ≤ n. It is followed by an affine layer
which consists of multiplication of the block with an invertible n × n matrix
over F2 and addition with an n-bit round constant. Finally the block is xored
with an n-bit round key. If the master secret key K is of size n-bits (which
is true for all the instances in the LowMC challenge), then each round key is
obtained by multiplication of K with an n×n invertible matrix. As in most SPN
constructions, a plaintext is first xored with a whitening key which for LowMC
is simply the secret key K, and the round functions are executed r times to
give the ciphertext. From the point of view of cryptanalysis, we note that the
design is completely known to the attacker, i.e. all the matrices and constants
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Table 1. Summary of results. Note for the complexity is given in #Encryptions

Instance n s r Type of Attack Recalculated Reference

Complexity

Full S-box layer 129 43 2 Linearization 291 [BBDV20]∗

192 64 2134

255 85 2176

Partial S-box layer 128 1 0.8 × �n
s
� Linearization 2102 [BBDV20]∗

192 1 2153

256 1 2204

Partial S-box layer 128 10 0.8 × �n
s
� Linearization 2103 [BBDV20]∗

192 10 2163

256 10 2203

Full S-box layer 129 43 2 Equation solving 2102 [Din]∗∗

3 2108

4 2113

Full S-box layer 192 64 2 Equation solving 2153 [Din]∗∗

3 2162

4 2170

5 2175

Full S-box layer 255 85 2 Equation solving 2204 [Din]∗∗

3 2216

4 2226

5 2232

Full S-box layer 129 43 2 2-Stage MITM 281 Sec 4

192 64 2122

255 85 2164

Full S-box layer 129 43 3 2-Stage MITM 2123 Sec 4

192 64 2186

255 85 2248

Partial S-box layer 128 1 0.8 × �n
s
� 2-Stage MITM 2101 Sec 5

192 1 2151

256 1 2202

Partial S-box layer 128 1 �n
s
� 2-Stage MITM 2125 Sec 5

192 1 2189

256 1 2253

Partial S-box layer 128 10 0.8 × �n
s
� 2-Stage MITM 291 Sec 5

192 10 2149

256 10 2188

Partial S-box layer 128 10 �n
s
� 2-Stage MITM 2111 Sec 5

192 10 2179

256 10 2238

*Complexities recalculated and do not always match those reported in [BBDV20]

**[Din] reports complexities in bit operations. We recalculate them in number of encryptions.
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used in the round function and key update are known. Note that in general
instantiations of LowMC, the key size and block size are not the same. The
whitening key and all the round keys are extracted by multiplying the master
key with full rank matrices over GF (2). However for all the instances of LowMC
used in the LowMC challenge the block size and key size are the same. This being
so, the lengths of the master key, whitening key and all the subsequent round
keys are the same. Effectively, this makes all these keys related to each other by
multiplication with an invertible matrix over GF (2). Thus all round keys can be
extracted by multiplying the whitening key with an invertible matrix. So for all
practical purposes used in this paper, the whitening key can also be seen as the
master secret key. This is true since given any candidate whitening key, all round
keys can be generated from it, and thus given any known plaintext-ciphertext
pair, it is possible to verify if that particular candidate key has been used to
generate the corresponding plaintext/ciphertext pair. As such we use the terms
master key/whitening key interchangeably.

The LowMC challenge specifies 9 challenge scenarios for key recovery given
only 1 plaintext-ciphertext pair, i.e. the data complexity d = 1.

• 1. [n = 128, s = 1] 2. [n = 128, s = 10] 3. [n = 129, s = 43]
• 4. [n = 192, s = 1] 5. [n = 192, s = 10] 6. [n = 192, s = 64]
• 7. [n = 256, s = 1] 8. [n = 256, s = 10] 9. [n = 255, s = 85]

The number of rounds r for instances with the full S-box layer is either 2, 3,
or 4 and for instances with a partial S-box layer can vary between 0.8×�n

s �, �n
s �

and 1.2 × �n
s �. When these are not integers, the number of rounds is taken as

the next higher integer. The key length k for all instances is n bits. PICNIC v3.0
[Zav] incidentally uses LowMC instances with the parameter sets [n, s, r] given
by [128, 10, 20], [192, 10, 30], [256, 10, 38] (partial S-box layer) and [129, 43, 4],
[192, 64, 4], [255, 85, 4] (complete S-box layer) for use under different security
levels.

3 Linearization Attack

The starting point of the attack in [BBDV20] was the following lemma that helps
linearize the LowMC S-box by guessing only one balanced quadratic expression
on its input bits.

Lemma 1. [BBDV20] Consider the LowMC S-box S defined over the input bits
x0, x1, x2. If we guess the value of any 3-variable quadratic Boolean function f
which is balanced over the input bits of the S-box, then it is possible to re-write
the S-box as affine function of its input bits.

The authors used the majority function f = x0x1 +x1x2 +x0x2 for this purpose
which is both quadratic and balanced. This is true since the LowMC S-box
output bits can be written as:
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s0 = x0 + x1 · x2 = f · (x1 + x2 + 1) + x0,

s1 = x0 + x1 + x0 · x2 = f · (x0 + x2 + 1) + x0 + x1,

s2 = x0 + x1 + x2 + x0 · x1 = f · (x0 + x1 + 1) + x0 + x1 + x2.

The same is true for the inverse LowMC S-box (which is incidentally affine
equivalent to the forward S-box):

t0 = x0 + x1 + x1 · x2 = f · (x1 + x2 + 1) + x0 + x1,

t1 = x1 + x0 · x2 = f · (x0 + x2 + 1) + x1,

t2 = x0 + x1 + x2 + x0 · x1 = f · (x0 + x1 + 1) + x0 + x1 + x2.

Using the above fact, the first attack proposed in [BBDV20] used only the lin-
earization technique to obtain affine equations relating plaintext and ciphertext.
The idea is as follows. The values of the majority function at the input of all the
S-boxes in the encryption circuit were guessed: this made expression relating the
plaintext and ciphertext completely linear in the key variables, i.e. of the form:

A · [k0, k1, . . . , kn−1]T = const, (1)

where A is an n × n matrix over GF (2). Thereafter the key could be found
by using Gaussian elimination. A wrong key found by this method could be
discarded by recalculating the encryption and checking if the given plaintext
mapped to the given ciphertext.

The above method would work if the total number of S-boxes in the encryp-
tion circuit is strictly less than the size of the key in bits. This happens for a)
2-round LowMC with complete non-linear layers and b) 0.8×�n

s �-round LowMC
with partial non-linear layers. However the authors pointed out 2 issues in this
approach:

1. If the total number of S-boxes in the encryption circuit is t, then the algorithm
requires in the worst case requires at least 2t computations of the encryption
function (for the verification of each computed candidate key). It additionally
requires 2t Gaussian elimination calculations. For large blocksizes, the authors
claimed this could prove to be a significant bottleneck.

2. For any guess of the majority values, the matrix A computed above may not
necessarily be invertible. If the dimension of the kernel of the matrix A is
dA, then we can see that O(2dA) keys would satisfy any equation of the form
A · K = const. Thus the verification would require running the verification
for 2dA candidate keys.

The authors could not find a closed form for the value of dA and so could not
assign a tight bound on the computational complexity incurred in this app-
roach. However we find that some of these issues can be resolved to get a closed
form expression of the complexity of the linearization algorithm. First of all, the
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expected number of solutions for the system A · [k0, k1, . . . , kn−1]T = const is 1
if the system is random. If const lies in the image of the linear transformation
defined by A then the system has 2dA solutions, and it has 0 solutions otherwise.
Now the probability that const lies in the image of A is exactly 2−dA and so the
average number of solutions by Bayes theorem is 2dA · 2−dA + (1 − 2−dA) · 0 = 1,
and testing this solution costs us one encryption.

Note that multiplying an n×n matrix with an n-bit column vector requires n2

bit operations. Every LowMC round therefore requires at least 2n2 bit operations
(n2 for computing the affine layer and another n2 for generating the round key).
Assuming calculation of the S-box layer can be done in linear time using a lookup
table and also since key xor with state also takes linear time, the sum total of
all the other bit operations in the round are linear in n. Suppressing these, the
total bit operations required in performing a LowMC encryption is around 2rn2.
Solving a system of linear equations by Gaussian elimination (GE) costs around
n3 bit operations which is equivalent to n3

2rn2 = n
2r encryptions.

Also note the computational complexity required to formulate the linear sys-
tem A · [k0, k1, . . . , kn−1]T = const. We argue that this is equivalent to n encryp-
tions. After guessing the majority bits, the system becomes completely linear.
Therefore finding the i-th column of A and the i-th bit of const is equivalent
to performing one encryption with the basis key vector [0, 0, . . . , ki, . . . , 0, 0].
Hence the result follows. Therefore the total computational complexity required
to perform the attack using only linearization in terms of number of encryptions
is

2rs (Guessing majority bits) × [ n (Formulating the linear system)+
n

2r
(Solving the linear system)+

1 (Testing one solution on average)].

We can simplify this to n · 2rs encryptions. Also note that 2rs is the worst case
complexity for guessing rs bits. The average case complexity is 2rs−1. How-
ever since we want to compare this complexity to the complexity of exhaustive
search 2n which is also a worst case complexity we use 2rs for all our complexity
estimations.

3.1 Improving Complexity Using Gray-Code Based Approach

The above complexity can be significantly improved if one were to make the
majority guesses in a Gray-code like manner. Recall that the encoding is defined
as follows: Graycode(i) = i ⊕ (i � 1). Note that hamming difference between
Graycode(i) and Graycode(i + 1) is always 1 for all values of i. The idea is
instead of ordering the majority guesses in lexicographic order, we use the order
defined by the Gray-code, i.e. in the i-th step the majority guess sequence is the
binary string defined by the bits of Graycode(i). When this is done the matrix A
defined above, changes very little from iteration i to i + 1. Thus having already
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constructed A in the i-th iteration, the corresponding construction in the i + 1-
th iteration can be done much faster and so the cost of formulating the linear
system of equations defined by Eq. (1) can be amortized over all the majority
guesses.

Let us state the algorithm formally. Let M = m0,m1, . . . ,ms−1, ms,ms+1,
. . . , m2s−1, . . . ,m(r−1)s,m(r−1)s+1, . . . ,mrs−1 be the rs majority guesses for the
s number of S-boxes in each of the r rounds. Let Mi denote the value of the
string M at the i-th iteration which we want to be equal to Graycode(i). Let the
linearized system of equations at the i-th iteration be denoted as Ai · k = ci. We
want to determine how Ai+1, ci+1 relate with respect to Ai, ci. Let x → Tx⊕v be
the linear map from {0, 1}n → {0, 1}n that is obtained as a result of linearizing
the S-boxes in any single round with the majority value string Str (note that
T is an n × n matrix and v is a n-element vector). Let x → T ′x + v′ be the
corresponding map when the majority string is Str ⊕ et (here et denotes the
t-th unit vector of length s and 0 ≤ t < s). Then we define Δt = T ⊕ T ′ and
λt = v⊕v′, so that Δtx+λt denotes the change of linear map when the majority
guess changes at the t-th S-box.

Let La denote the n × n matrix used in the linear layer in the a-th round
(with 1 ≤ a ≤ r). Also, let Graycode(i) ⊕ Graycode(i + 1) = ej for some j (by
slight abuse of notation ej here denotes the j-th unit vector of length rs). If
j < s, then it can be deduced that Ai ⊕ Ai+1 = (

∏r
a=1 La) · Δj := Bj (say) and

ci ⊕ ci+1 = (
∏r

a=1 La) · λj := bj . If j ∈ [(u − 1)s, us − 1], which means that the
change of majority guess occurs in the u-th round, then denote j′ = j − (u−1)s.
Bj is now defined as Ai ⊕Ai+1 = (

∏r
a=u La) ·Δj′ and bj = (

∏r
a=u La) ·λj′ . Note

that it is thus possible to precompute for all j ∈ [0, rs − 1] the matrix-vector
pair (Bj , bj) before the linearization step begins. Thus the linearization attack
can be restated as follows:

1. For all j ∈ [0, rs − 1] precompute the matrix-vector pair (Bj , bj).
2. Compute A0, c0 and try to solve the system A0 · k = c0 using GE.
3. For i = 1 → 2n − 1 do

– The majority guess is Mi = Graycode(i).
– Let Graycode(i) ⊕ Graycode(i − 1) = ej .
– Calculate Ai = Ai−1 ⊕ Bj and ci = ci−1 ⊕ bj .
– Try to solve the system Ai · k = ci using GE.

Note that since none of the Bj ’s are sparse matrices, we can not devise a quicker
method of doing GE on Ai from the knowledge of steps involved in the GE
of Ai−1. The additional complexity of constructing Ai, ci at each step is given
by a matrix and vector addition and so equal to n2 + n bit operations which
roughly corresponds to n2+n

2rn2 ≈ 1
2r encryption operations. Thus if P denotes the

cost involved in pre-computation (which is at most a polynomial in rs) then
the total complexity of the method can be written as P + 2rs · ( n

2r + 1 + 1
2r ) ≈

n
2r · 2rs encryptions which gives us an improvement of a factor of 2r over the
naive linearization method of the previous subsection. We have recalculated the
complexities in Table 1 using this expression.
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4 Attacking Instances with Complete S-Box Layers

4.1 MITM Attack on 2-Round LowMC in [BBDV20]

Before we present our attack, let us summarize the attack in [BBDV20] for
better understanding of the process. The attack is summarized in Fig. 2. The
idea is as follows: let us denote K = [k0, k1, . . . , kn−1] to be the whitening key
or the master key. Let us split the key into two parts K1 = [k0, . . . , kt−1]T and
K2 = [kt, . . . , kn−1]T , each of around t ≈ n

2 bits. We denote by R1, R2 the first
and second round functions i.e. R1(pt + K,RK1) = x and R2(x,RK2) = ct,
where x denotes the n-bit input to the second round and RK1, RK2 denotes the
first, second round keys, respectively, which are of course linear functions of the
whitening key K.

The idea is to formulate equations for the bits of x from both the plaintext
and ciphertext side. Let us begin from the plaintext in the forward direction.
Note that K1 and K2 have to be chosen so that the bits of K1 and K2 are never
multiplied in the first round function. For example if the number of S-boxes in
each round s = n/3 is odd, then t can be chosen to be 3(s−1)/2 (else t = 3s/2).
This way, K1 and K2 both contain close to n/2 key bits: the bits of K1 after
whitening are input to the first (s − 1)/2 S-boxes and K2 to the remaining
(s + 1)/2 S-boxes if s is odd (else both are input to s/2 S-boxes each). The

Fig. 2. Meet in the Middle attack in [BBDV20]
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only source of non-linearity in the first round are the S-boxes, and each S-box
either gets the bits of K1 or K2 as inputs and so K1 and K2 are not mixed in a
multiplicative sense in this round. This being the case, after the affine layer and
addition of RK1, each bit xi can be written as fi(K1) + gi(K2) + ci where each
fi, gi are at most quadratic functions over K1,K2 and ci is a single bit constant.

Now let us consider the expression for x from the ciphertext side in the back-
ward direction. To do this we first perform the inverse affine function operation
on the vector ct⊕RK2 (where RK2 is expressed in terms of K1 and K2). There-
after we guess the s majority bits η1, . . . , ηs at the input of the second round
inverse S-boxes to linearize R2. After this, each bit of x can be written as an
affine function of the key and the ciphertext. In fact each xi can be further
written as xi = Ai(K1) + Bi(K2) + di, ∀ i ∈ [0, n − 1], where each Ai, Bi are
linear functions over K1,K2 and di is a single bit constant. Given the equality
xi = fi(K1) + gi(K2) + ci = Ai(K1) + Bi(K2) + di, we can rearrange the terms
to get:

fi(K1) + Ai(K1) + ci = gi(K2) + Bi(K2) + di, ∀ i ∈ [0, n − 1].

Thereafter the attack is straightforward: first the algebraic expressions of
fi, gi and ci for all i ∈ [0, n − 1] are calculated. Then for each of the 2s guesses
of the second round majority values:

1. A hash table LIST1 indexed by the n-bit vector [fi(K1)⊕Ai(K1)⊕ ci], ∀ i ∈
[0, n−1] is created (2t evaluations). Note that each evaluation is done for only
t of the n key variables and costs roughly t

n of a round computation. Hence
the computational complexity incurred in this step is t

4n · 2t encryptions.
Let us argue this point more closely. Note that in the above expression the
fi(K1) terms are always constant and does not change with every new guess
of majority values. Thus we do not have to re-calculate it every new majority
guess, and so this expression (∀ i ∈ [0, n−1]) can be calculated once and stored
in a table. The part that varies with every new majority guess is Ai(K1) ⊕
ci: note that calculating the n bit-values Ai(K1) is equivalent to a matrix-
vector multiplication between a n× t matrix and the t-element vector K1 and
thus takes around nt bit operations. Adding ci and the precomputed fi(K1)
requires 2n more bit operations and so a total of nt + 2n bit operations are
required at every step. Since 2rn2 = 4n2 bit operations are required in a single
2-round LowMC encryption, this corresponds to nt+2n

4n2 ≈ t
4n encryptions, and

so the result follows.
2. A hash table LIST2 indexed by the n-bit vector [gi(K2)⊕Bi(K2)⊕di], ∀ i ∈

[0, n − 1] is created (2n−t evaluations). By following the previous logic this is
computationally equivalent to n−t

4n · 2n−t encryptions.

As a final remark, note that the complexity required to formulate the expressions
xi = Ai(K1)+Bi(K2)+di and hence fi(K1)+Ai(K1)+ci and gi(K2)+Bi(K2)+di

is around O(n) encryptions as explained in the previous section. However, this
only appears as an additive term along with t

4n · 2t and n−t
4n · 2n−t and since it

is much less as compared to both these terms, it can be ignored for simplicity.
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Although, it was not mentioned in [BBDV20], a Gray-code like approach as
outlined in Sec 3.1 may be adopted here too, but since the cost of formulating
the linear system is not the dominant term in the final complexity estimate, it
does not reduce the computational cost significantly.

A collision in the 2 lists gives us a candidate key and there are on average
2t · 2n−t · 2−n = 1 collisions in every MITM stage. Then a check is performed to
see if the majority bits calculated for this candidate key are consistent with the
initial guess η1, . . . , ηs. If yes, the attack terminates. The total complexity for
the steps inside the iterations is given as T = 2s ·( t

4n ·2t+ n−t
4n ·2n−t) encryptions.

The cost for precomputing the values fi(K1) and gi(K2) over all the points
in their input spaces can be done by using Möbius transforms over the respective
algebraic forms. Since any t variable Boolean function can be evaluated in t ·2t−1

bit operations using this method, the total complexity of evaluating them is
around n · ( t

2 · 2t + (n−t)
2 · 2n−t) bit-operations. This is considerably lower than

the complexity T of the MITM part. Specifically, for n = 129, we can take t = 63
and n − t = 66. The total complexity of the attack is around 243 · (260 + 263) ≈
243+63 = 2106 encryptions.

4.2 2-Stage MITM Attack on 2-Rounds with Full S-Box Layer

After guessing the majority bits of the second round and linearizing it, we have
already seen that the algebraic relation between the plaintext and ciphertext can
be written as

fi(K1) + Ai(K1) + ci = gi(K2) + Bi(K2) + di, ∀ i ∈ [0, n − 1]. (2)

Note that the functions Ai, Bi are linear and fi, gi are quadratic. It can be
seen that for Eq. (2) to hold we need not split K in such a way that K1 and
K2 have approximately n/2 bits. We can, for example, also split K so that K1

has around n/3 and K2 has around 2n/3 bits. The only condition that must be
satisfied is that the sizes of K1 and K2 are chosen so that they are never mixed
multiplicatively in the first round. It is easy to see that if we choose t = |K1| and
n − t = |K2| to be multiples of 3 then this condition is automatically satisfied.

Note that, fi, gi can be expressed as affine functions in an extension of the
input of double size. This comes from the structure of the Sbox: S(x0, x1, x2) is an
affine function on (x0, x1, x2, x0x1, x1x2, x2x0). Let f i, gi be the affine functions
associated with fi, gi. Therefore the above set of equations can be written as

f i(K1) + Ai(K1) + ci + di = gi(K2) + Bi(K2), ∀ i ∈ [0, n − 1], (3)

where if K1 = [k0, k1, k2, . . . , k3w−3, k3w−2, k3w−1], we define

K1 = [k0, k1, k2, k0k1, k1k2, k2k0, . . . . . . . . . , k3w−3, k3w−2, k3w−1,

k3w−3k3w−2, k3w−2k3w−1, k3w−1k3w−3].

Since K1 only has the first t = 3w bits of the master key and so K1 is of
size 6w. Since Fi = f i + Ai is an affine function over K1, the map φ : K1 →



New Attacks on LowMC Instances with a Single Plaintext/Ciphertext Pair 315

[F0, F1, . . . , Fn−1] can be seen as a linear code of length n and dimension 6w.
Let w be such that K1 contains around n/3 key bits i.e. w ≈ n/9 and hence
K2 contains the remaining 2n/3 key bits. Since φ is seen as a linear code, let
G be the corresponding generator matrix (of size n × 6w ≈ n × 2n/3), which
can be efficiently constructed from the algebraic forms of the functions Fi. Let
H be the parity check matrix of the code (of size (n − 6w) × n ≈ n/3 × n).
The parity check matrix is essentially obtained from the generator matrix by
employing one Gaussian elimination. Define Con to be the vector [c0 + d0, c1 +
d1, . . . cn−1 + dn−1]T . Note that the left side of Eq. (3), when written in matrix
notation for all i = 0, 1, . . . , n − 1 is essentially φ(K1) + Con. Therefore we have
H · [φ(K1) + Con] = H · [GK1 + Con] = H · Con = e (say). This follows from
the fact that since G and H are the generator and parity check matrices of a
linear code, we must have H · G = 0.

We can split K2 into two halves K21 and K22 such that both halves contain
approximately n/3 key bits each. Let’s say |K21| = 3u and |K22| = n − 3w − 3u
(our strategy would be to have 3u ≈ n − 3w − 3u so that the halves are of equal
size). We can rewrite gi(K2)+Bi(K2) as g1i (K21)+B1

i (K21)+g2i (K22)+B2
i (K22)

for all i ∈ [0, n − 1], where gj
i are quadratic and Bj

i are linear for j = 1, 2. Again
this is possible if we take |K21| and |K22| to be multiples of 3, so that the
bits of K21 and K22 after xor with the plaintext are input to different S-boxes.
Due to the structure of LowMC, the quadratic terms from adjacent S-boxes do
not combine multiplicatively after one round and so the separation into the 2
expressions is possible. Define the n-bit vectors:

M1 = [g10(K21) + B1
0(K21), . . . , g1n−1(K21) + B1

n−1(K21)]T , and

M2 = [g20(K22) + B2
0(K22), . . . , g2n−1(K22) + B2

n−1(K22)]T .

Note that if Eq. (3) for i = 0, 1, . . . , n − 1, can be written together as a vector
equation. The right hand side of the vector equation is essentially M1 + M2. We
have already seen that the left hand side of the vector equation when multiplied
by H results in the vector H · Con = e. Multiplying the right side of the vector
equation by H, we get the matrix equation:

H · (M1 + M2) = e, ⇒ H · M1 = H · M2 + e.

Pre-computation: In this phase we try and compute some expressions that
remain constant over different majority guesses. We compute the following vec-
torial functions over all points over its input space: (a) fi(K1), ∀i ∈ [0, n − 1]
over input space of K1 i.e. {0, 1}3w, (b) g1i (K21), ∀i ∈ [0, n−1] over input space
of K21 i.e. {0, 1}3u and (c) g2i (K22), ∀i ∈ [0, n − 1] over input space of K22 i.e.
{0, 1}n−3u−3w. Using Möbius transform the number of bit-operations required
are

n ·
(

3w

2
· 23w +

3u

2
· 23u +

n − 3u − 3w

2
· 2n−3u−3w

)

.

This follows since any t-variable Boolean polynomial can be evaluated over all
its input space using Möbius transform using t · 2t−1 bit operations.
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1st MITM Stage: Note that M1 and M2 only contain expressions on the key
bits in the sets K21 and K22 respectively. Thus we can conduct a first MITM
stage in which we create 2 lists L1, L2. L1 contains the (n − 6w), n-bit vector
pairs H ·M1, M1 for all 23u values of K21. And similarly the list L2 contains the
(n − 6w), n-bit vector pairs H · M2 + e,M2 for all 2n−3w−3u values of K22. We
look for a collision in the n − 6w co-ordinates of these lists. We are expected to
get around 23u+(n−3w−3u)−(n−6w) ≈ 23w collisions. Thus in the process we get
23w key values for the key bit set K2 = (K21,K22). For computing each entry in
the list L1 we do the following:

1. Compute the vectorial linear functions B1
0 , B

1
1 , . . . , B

1
n−1 over a given point k

in K21. Each such computation takes |K21| · n = 3un bit operations.
2. Add to the corresponding precomputed vector g1i (k), ∀i ∈ [0, n − 1]. This

requires n bit operations.
3. Multiply by H. Each such computation takes (n − 6w) · n bit operations.

This is computationally equivalent to 3un+n+(n−6w)n
2rn2 ≈ 3u+n−6w

4n of an encryp-
tion for r = 2. A similar argument holds for L2. Hence the total computational
cost incurred in this step is 3u+n−6w

4n · 23u + 2n−9w−3u
4n · 2n−3w−3u encryptions.

2nd MITM: Let us now turn to Eq. (2). The left side of this equation is defined
over approximately the 3w-bit set K1 which can have 23w values in total. And we
have just reduced K2 to a set of 23w values. Thus the next MITM is making two
more lists L3, L4 of size 23w each in the following way. L3 contains all 23w n-bit
vectors [fi(K1)⊕Ai(K1)⊕ci⊕di], ∀ i ∈ [0, n−1] enumerated for all the 23w values
of K1. For all the 23w values of K2 that have passed the previous MITM step we
make the list L4 containing the n-bit vector [gi(K2) ⊕ Bi(K2)], ∀ i ∈ [0, n − 1].
We now look for a collision between L3 and L4. On average we have 23w+3w−n =
26w−n < 1 collisions. This means that the correct key K will necessarily by the
output of one of these MITM steps for the correct guess of majority bits in the
second round. For constructing L3 we need to compute the n linear functions
Ai(K1) over the 3w-bit variable K1 which by the previous logic, requires 3wn
bit operations each and then n bit operations for addition to the precomputed
vector fi(K1). Populating L4 requires computing [gi(K2) ⊕ Bi(K2)] for all the
K2 that have passed the previous MITM step. However we can compute this
vector by simply adding the M1, M2 vectors that have collided in the previous
MITM stage. This stage therefore requires 3wn+n

4n2 · 23w + n
4n2 · 23w ≈ 3w

4n · 23w

encryptions. We are now ready to state the attack formally:

1. Calculate the functional forms of fi, gi, f i, g
1
i , g2i and ci for all i ∈ [0, n − 1].

2. Pre-compute fi(K1), g1i (K21), g2i (K22), ∀i ∈ [0, n − 1] over their respective
input spaces.

3. Guess the majority values η1, . . . , ηs at the output of 2nd round S-box layer
as in the previous attack. This step is done 2s times in the worst case (note
s = n/3).

– Compute Ai, Bi, di for all i ∈ [0, n − 1] using the guessed values.
– Compute the functions Fi = f i + Ai for all i ∈ [0, n − 1].
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– Using the Fi’s, construct the generator matrix G.
– Using Gaussian elimination, construct the parity check matrix H.
– Construct Con = [c0 + d0, c1 + d1, . . . cn−1 + dn−1]T , and e = H · Con.
– For all possible values of K21, create a hash table L1 indexed by the

(n − 6w)-bit vector H · M1.
– For all possible values of K22, create a hash table L2 indexed by the

(n − 6w)-bit vector H · M2 + e.
– Find all collisions between L1 and L2. Store all values of K21,K22

extracted from the collision in a list L.
– For all possible values of K1, create a hash table L3 indexed by the n-bit

vector [fi(K1) ⊕ Ai(K1) ⊕ ci ⊕ di], ∀ i ∈ [0, n − 1].
– For all values of K2 ∈ L, create a hash table L4 indexed by the n-bit

vector [gi(K2) ⊕ Bi(K2)], ∀ i ∈ [0, n − 1].
– When a collision is found for K1 and K2 check if the majority bits are

consistent with the guess of the key. If yes, this key is in fact the encryption
key. Otherwise try another guess of η1, . . . , ηs.

Complexity Estimation: We first consider the time complexity. For each guess
of 2s = 2n/3 majority values, we have to perform a Gaussian elimination and
2 MITM steps. The cost of Gaussian elimination and the linear terms required
to formulate Ai, Bi, di and pre-computation may be ignored in comparison with
2n/3. Hence the total time complexity for this attack is around

2n/3 ·
(

3u + n − 6w

4n
· 23u +

2n − 9w − 3u

4n
· 2n−3w−3u +

3w

4n
· 23w

)

. (4)

For w = u = n/9, the above evaluates to 2n/3 · ((16 + 1
6 + 1

12 ) ·2n/3) = 5
12 ·22n/3 ≈

22n/3−1.26 encryptions.

Memory Complexity: In the first MITM stage, we created 2 lists L1, L2 which
contain (n−6w), n-bit vector pairs for 23u possible values of K21 and (n−6w), n-
bit vector pairs for 2n−3w−3u possible values of K22, respectively. Note that in
practice, 2 different lists are not necessary. We can instead insert each new
vector of L1 and L2 into a single hash table. The memory complexity here is
(2n−6w)·(23u+2n−3w−3u) bits. In the second MITM stage, we create 2 more lists
L3, L4, both containing 23w n-bit vectors. By similar logic, memory complexity
here is thereby 2n · 23w bits. The pre-computation part generates n-bit vectors
over the input spaces of K1,K21,K22. Hence the memory complexity here is
n · (23w + 23u + 2n−3u−3w) bits. The total memory complexity for this attack is
around

(2n − 6w) · (23u + 2n−3w−3u) + 2n · 23w + n · (23w + 23u + 2n−3u−3w) bits. (5)

If we look at concrete parameters, for n = 129 and s = 43, we can choose
the parameters in the following manner: we can choose w = u = 14, which
makes |K1| = 42 and |K2| = 87 and hence |K21| = 42 and |K22| = 45. The
parity check matrix H is of size (n − 6w) × n = 45 × 129, which makes H · M1
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and H · M2 + e both 45-bit vectors. After the first MITM stage the number
of remaining candidates for K2 is ≈ 2|K21|+|K22|−45 = 242. The complexity of
the first MITM stage is thus 1

6 · (245 + 242) ≈ 1
6 · 245 ≈ 242.4 encryptions.

The second MITM stage requires 1
12 · 242 = 238.4 encryptions. Hence the total

attack complexity is 2s · (242.4 + 238.4) ≈ 285 encryptions and around 253 bits
of memory. This is lower than the linearization attack by a factor of 26 for this
LowMC instance.

4.3 Extending Attack to 3-Rounds

The attack can be extended to 3-round LowMC in which we keep the basic
character of the algorithm and run it by guessing the majority values of the last
2 rounds and linearizing both of them simultaneously. Hence a total of 22s values
would need to be guessed in stead of 2s. All other steps remain the same. Thus
the computational complexity will be given by:

22n/3 ·
(

3u + n − 6w

6n
· 23u +

2n − 9w − 3u

6n
· 2n−3w−3u +

3w

6n
· 23w

)

.

This is so since encryption is now given by 2rn2 = 6n2 bit operations. The
memory complexity is essentially the same as in the 2-round attack. For w =
u = n/9, the above evaluate of computational complexity is 22n/3 · ((19 + 1

9 + 1
18 ) ·

2n/3) ≈ 5
18 · 2n encryptions, which is better than exhaustive search by a factor

equal to approximately 2 bits. For n = 129 and s = 43, using the values w = 14,
|K1| = 42, |K21| = 42 and |K22| = 45, we get 1

9 · (245 + 242) ≈ 241.8 encryptions
for the first MITM. The second MITM requires 1

18 ·242 ≈ 237.8 encryptions. The
total complexity is therefore 22s · (241.8 + 237.8) ≈ 2128 encryptions.

4.4 Speedup Using Gray-Codes

There are 3 places in the above process where a speed-up may be applied using
a Gray-code like approach.

1. By ordering the majority guesses in a Gray-code like manner as in Sec 3.1
so that the affine expressions formed after linearizing the S-boxes can be
generated more efficiently. But we have already seen that this does not result
in significant speed-up when employed along with MITM.

2. Using a Gray-code like approach to do the pre-computations.
3. Using a Gray-code like approach to generate the values of the expressions

that are inserted in the tables in each of the MITM stages. We will see how
optimizing this stage results in significant speed-up.

There are several methods of evaluating an n-variable Boolean function over
all the 2n points of its input space, given its algebraic expression. One such
method, as we have already seen is the Möbius transform which evaluates the
function in-place by performing around n · 2n−1 bit operations. However the
method we will use for this method is the Gray-code based approach suggested
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by [BCC+10] which finds all roots of a polynomial over GF(2) by evaluating
it over all points of its input space by traversing the space in a Gray-code like
manner. We start with the following theorem from [BCC+10].

Theorem 1. [BCC+10] All the zeroes of a single multivariate polynomial f in
n variables of degree d can be found in essentially d · 2n bit operations (plus a
negligible overhead), using nd−1 bits of read-write memory, and accessing nd bits
of constants, after an initialization phase of negligible complexity O(n2d).

We present a top-level overview of the approach used in this paper. Consider
the derivative δf

δi : x → f(x + ei) ⊕ f(x). Then for any vector x, we have
f(x + ei) = f(x) ⊕ δf

δi (x). If the algebraic degree of f is d then δf
δi is of degree

d − 1. Thus the idea is to calculate δf
δi recursively for lower degrees till at the

lowest level of recursion δf
δi is a constant. Since we will only use this method

to evaluate linear or quadratic functions, we will use the method outlined in
[BCC+10, pg 209, Fig. (b)], that specifically caters to the case when f is of
degree less than or equal to 2. When we use this approach to optimize the pre-
computation part, we can evaluate each t-variable quadratic Boolean function
in 2t+1 bit-operations. As a result the pre-computation cost can be brought
down to 2n ·(23w + 23u + 2n−3u−3w

)
bit-operations. However, note that the pre-

computation is not the most dominant term in the total computational cost, and
so this gives only a slight improvement.

We now see how we can improve the complexity of the MITM stages by using
this approach. Note that we only evaluate linear functions inside the iterations
for each majority guess. Since only 2t bit-operations are required to evaluate
any linear function using the Gray-code approach we can accelerate this part
considerably. Note that in L1 we need to store both H · M1 and M1. To do
this, we begin by computing the quadratic expressions each one of the n bits
M1 and then each of the (n − 6w)-bits given by H · M1. We use the Gray-code
approach of [BCC+10], to evaluate these functions over all the points of their
input domains. The number of bit operations required are therefore n · 23u+1 +
(n− 6w) · 23u+1 ≈ 2n−6w

2rn2 · 23u+1 encryptions. Similarly the list L2 would require
around 2n−6w

2rn2 · 2n−3u−3w+1 encryptions.
The lists L3, L4 are simpler to construct. For L3 we need to compute the

n linear functions Ai(K1) which requires n · 23w bit operations each and then
add to the precomputed vector fi(K1). Populating L4, as before can be done
by simply adding the M1, M2 vectors that have collided in the previous MITM
stage. This stage therefore requires 2n

2rn2 ·23w+ n
2rn2 ·23w ≈ 3n

2rn2 ·23w encryptions.
This reduces the main terms of the computational complexity to

T = 2
(r−1)n

3 ·
(
n − 3w

rn2
· 23u+1 +

n − 3w

rn2
· 2n−3u−3w+1 +

3n

2rn2
· 23w

)
encryptions

For n = 129, r = 2 and u = w = 14, we have T = 280.7 encryptions. For
n = 129, r = 3 and u = w = 14, we have T = 2123.2 encryptions. The memory
complexity of this attack is the same as the attack in the previous sub-section
plus the additional cost for storing tables required for fast Gray-code based
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evaluations. Using Theorem 1, this additional memory is (3u)2 · (2n−6w)+(n−
3u − 3w)2 · (2n − 6w) + (3w) · n bits which is negligible when compared to the
space occupied by the lists.

5 2-Stage MITM Attack on Partial S-Box Layers

Fig. 3. Transforming the round function in the first r1 rounds. From A → B, the key
material not added to bits input to the S-box in round 1 (shown in orange background)
are carried to the next round, through the affine layer and merged with the round key
in round 2. B → C → D do the same from the second round onwards. Figure taken
from [BBDV20] (Color figure online)

In order to perform a MITM on the partial S-box layer instances of LowMC,
we use a trick used in both [BBDV20,RST18] to transform some of the initial and
final rounds so that the total number of different key bits involved in these rounds
is 3s per round. The transformations are shown in Figs. 3, 4 and are similar to the
ones used in [RST18]. In fact the transform used in the backward direction (see
Fig. 4) is exactly same as the one used in [RST18, Fig. 1]. The idea is that the
affine layer and key addition are interchangeable. Since L is a linear function, we
have L(x) + K = L(x + L−1(K)) and similarly L(x + K) = L(x) + L(K). Hence
the key addition can be moved before or after the affine layer as required, by
multiplying the round key by the appropriate matrix. Figure 3 further shows how
to transform the first r1 rounds. To mount this attack let us split the LowMC
into 4 parts as shown in Fig. 5:

1. First a + b rounds which have been transformed as per Fig. 3.
2. Final c rounds which have been transformed as per Fig. 4.
3. The remaining d = r − a − b − c rounds which lie in between.
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Fig. 4. Transforming the round function in the final r3 rounds. A → B flips the order
of the last round Affine layer and round key xor. B → C takes the bits of the last
round key that are not added to S-box outputs (shown in orange background), and
brings them back by 1 round and merges it with the penultimate round key. C → D
flips the order of the Affine layer and round key of the penultimate round, and D → E
generalizes the process from this point onwards. Figure taken from [BBDV20] (Color
figure online)

Let the set of round key bits in the first a, b and the last c rounds be denoted as

Ka = [κ0, κ1, . . . , κ3sa−1], Kb = [κ3sa, κ3sa+1, . . . , κ3sa+3sb−1], and
Kc = [κn−3sc, κn−3sc+1, . . . , κn−1].

Denote by Krem the remaining n − 3s(a + b + c) key bits such that Ka,Kb,Kc,
and Krem are linearly independent expressions of the master key and so any key
bit can be expressed as a linear function of them. Note that we implicitly assume
here that n ≥ 3s(a + b + c).

Let X = [x0, x1, x2, . . . , xn−1] be the output of the first a rounds, W =
[ω0, ω1, . . . , ωn−1] be the output of the first a+b rounds and Y = [y0, y1, . . . , yn−1]
be the input to the last c rounds as shown in Fig. 5. Observe the middle b and
d = r − a − b − c rounds closely, as seen in Fig. 6. Let us introduce 6b · s new
variables U = [u0, u1, . . . , u3bs−1] and Z = [z0, z1, . . . , z3bs−1] such that they
represent the input and output bits of the b · s S-boxes in the middle b rounds.
Our first aim is to find a linear expression relating the xi’s, yi’s and zi’s and the
key bits. Let D = [D0,D1, . . . , Dn−1] be the output of the first of the b rounds
(see Fig. 6). Then we can write D = Lin1(z0, z1, . . . , z3s−1, x3s, x3s+1, . . . , xn−1),
where Lin1 denotes a set of n affine functions. Similarly, if E = [E0, E1, . . . , En−1]
is the output of the next round we can write E as a set of linear functions
on (z3s, z3s+1, . . . , z6s−1,D3s,D3s+1, . . . , Dn−1) which means that we can write
E = Lin2(z0, z1, . . . , z6s−1, x3s, x3s+1, . . . , xn−1) as a set of linear functions on X
and the first 6s zi’s. Iterating upto all the b rounds, it can be seen that W can be
written as a set of linear functions on the entire Z and x3s, x3s+1, . . . , xn−1. Now
if we guess the majority bits at the inputs of the following d rounds, they become
completely linear. In that case Y itself becomes linear in W and Ka,Kb,Kc,Krem
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Fig. 5. Splitting LowMC into 4 sections

(since the key bits used in these d rounds can be seen as linear expressions in
Ka,Kb,Kc,Krem). Hence we have

Y = Lin(Z, x3s, x3s+1, . . . , xn−1,Ka,Kb,Kc,Krem). (6)

The above equation denotes a system of n affine equations (one for each bit in Y )
in all the n bits of the key. Our aim is to get a reduced set of equations by some-
how eliminating Z,Kb,Krem from this set. Note that the set Λ = {Z,Kb,Krem}
comprises a total of θ = 3sb + 3sb + (n − 3s(a + b + c)) variables. Consider the
system of n equations given in Eq. (6). Apart from the θ variables the system
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has n (for Y ) + (n − 3s) (for X) + (3as + 3cs) (for Ka,Kc) = 2n + 3(a + c − 1)s
variables. So the above system can be written in matrix notation as M · v = a,
where v is the set of 2n + 3(a + c − 1)s + θ = (3n + 3sb − 3s) variables, M is
a matrix over GF(2) of size n × (3n + 3sb − 3s), and a is a constant vector.
Rearrange v so that the variables in Λ are the first θ elements of v. Then we use
Gaussian elimination to sweep out at least the first θ columns of M. Then the
last n − θ rows of the matrix would then have the entries in the first θ columns
all equal to 0 and thus these are the linear equations in Ka,Kc,X, Y that we
get from this process. Note we have a total of n − θ = 3sa + 3sc − 3sb equations
of this form.

First MITM: The equations so obtained can be rearranged and written as
Aff1(Ka,X) = Aff2(Kc, Y ), where Aff1,Aff2 are the set of 3sa+3sc−3sb affine
functions on Ka,X and Kc, Y respectively, obtained above. We now state the
first MITM step: note that if we guess the value of Ka, we can easily obtain
the value of X by computing the forward a rounds from the plaintext. If we
guess Kc we can similarly compute Y , by computing backward the last c rounds
from the ciphertext. Hence for all the 23sa values of Ka we make the first list L1

that contains all the (3sa − 3sb + 3sc)-bit vectors calculated from Aff1(Ka,X).
Similarly for all the 23sc values of Kc we make the second list L2 that contains all
the 3sa−3sb+3sc-bit vectors calculated from Aff2(Kc, Y ). We look for collisions

Fig. 6. The middle b + d rounds
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in the two lists. We can expect around 23sa+3sc−(3sa−3sb+3sc) = 23sb collisions.
We store all the 23sb tuples (Ka,Kc) so obtained in a list L.

Second MITM: The second part of the attack focuses on getting an affine
relation between U , Z and Kb. From Fig. 6, we can see that ui = xi + κ3sa+i,
∀i ∈ [0, 3s − 1]. For the second round we have

u3s+i = Di + κ3sa+3s+i, ∀ i ∈ [0, 3s − 1]
= Lin1,i(z0, . . . , z3s−1, x3s, . . . , xn−1) + κ3sa+3s+i, ∀ i ∈ [0, 3s − 1]

where Lin1,i is the i-th linear function of Lin1 described above. The above holds
since we have already seen that all Di’s are linear functions in (z0, . . . , z3s−1, x3s,
. . . , xn−1). Similarly for the third round we have

u6s+i = Ei + κ3sa+6s+i, ∀ i ∈ [0, 3s − 1]
= Lin2,i(z0, . . . , z6s−1, x3s, . . . , xn−1) + κ3sa+6s+i, ∀ i ∈ [0, 3s − 1]

where Lin2,i is similarly the i-th linear function of Lin2. Iterating over all the b
rounds we can write the vector equation, U = Kb+ P(Z, x3s, . . . , xn−1), where P
denotes the set of 3bs linear expressions obtained by putting together the linear
expressions Lin1,i,Lin2,i etc. We can now replace Kb in Eq. (6) to get

Y = Lin(Z, x3s, x3s+1, . . . , xn−1,Ka, U + P(Z, x3s, . . . , xn−1),Kc,Krem)
= Lin′(Z, x3s, x3s+1, . . . , xn−1,Ka, U,Kc,Krem).

This time we eliminate Krem from the above set of linear equations using the
same Gaussian elimination method as in the previous stage. There are n−3s(a+
b + c) variables in Krem that we eliminate, which leaves us with 3s(a + b + c)
equations in Z, x3s, x3s+1, . . . , xn−1,Ka, U,Kc. We can rearrange the terms in
the equation to get Aff3(Z,U) = Aff4(X,Ka,Kc), where Aff3,Aff4 are a set of
3s(a + b + c) affine functions on Z,U and Ka,Kc,X respectively.

Note that if we guess Z, we can compute U since the S-box is bijective, and
we have already seen that guessing Ka lets us compute X by computing the a
forward rounds from the plaintext. Thus in the next MITM stage we make 2
lists L3, L4. In L3 we store the 3s(a + b + c)-bit vector given by the expressions
Aff3(Z,U) for each of 23bs values of Z. In L4 we store the 3s(a+b+c)-bit vector
given by the expressions Aff4(X,Ka,Kc) for each of 23bs values of (Ka,Kc) in
L. We again look for collisions in the 2 lists. The expected number of collisions is
23bs+3bs−3s(a+b+c) = 23sb−3sa−3sc. However the correct value of the key Ka,Kc

is guaranteed to be the outcome of the collision finding stage for the correct
guess of the majority values.

Once we get a candidate solution Ka,Kc, Z, U we can compute the vec-
tors X,Y by computing the a, c rounds forwards/backwards from the plain-
text/ciphertext. We can then compute Kb = U + P(Z, x3s, . . . , xn−1). As we
know the majority of the inputs of the S-boxes in r − a − b − c middle rounds,
we can solve an affine equation of form Affrem(W,Krem) = Y to recover the
value of Krem, which was the only part of the key which remained unknown.
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After this one can check if the key so obtained produces the required majority
values guessed at the beginning. If not the attacker can restart the process with
another set of majority values. The expected number of such checks is around
2s(r−a−b−c)+3sb−3sa−3sc = 2rs−4sa−4sc+2sb. We formally state the attack:

1. Separate the first a + b and last c rounds of the cipher
2. Denote the output of the first a rounds by X, the output of the b rounds by

W and the input of the last c rounds by Y .
3. Denote the inputs/outputs of the S-boxes in the b rounds by U/Z
4. Guess majority bits of the inputs of the S-boxes of r−a−b−c middle rounds.
5. For every majority guess do:

First MITM:
– Compute the relation Y = Lin(Z, x3s, . . . , xn−1,Ka,Kb,Kc,Krem)
– Eliminate Kb,Krem, Z from the relation and form and equation of form

Aff1(Ka,X) = Aff2(Kc, Y ).
– By exhausting all possible values of Ka keep a list of Aff1(Ka,X), where

X is computed knowing Ka and plaintext pt.
– Try all possible values of Kc and find collisions between Aff2(Kc, Y ) and

the list computed in the previous step. Keep a list L of (Ka,Kc) values
satisfying the condition.
Second MITM:

– Compute the relation Y = Lin′(Z, x3s, x3s+1, . . . , xn−1,Ka, U,Kc,Krem)
by replacing Kb.

– Eliminate Kb,Krem to get a relation of form Aff3(Z,U) =
Aff4(X,Ka,Kc).

– For every pair (Ka,Kc) in the list L, compute Aff4(X,Ka,Kc).
– For every possible value of Z, compute Aff3(Z,U), where U can be com-

puted efficiently from Z, and look for occurrence with Aff3(Z,U) in the
list from the previous step.

– For every (Ka,Kc, Z, U) satisfying the relation, compute Kb,W, Y as
shown before.

– Linearize the middle r − a − b − c rounds using the majority guess and
compute Krem from Affrem(Krem,Ka,Kb,Kc,W ) = Y .

– After the entire key is found, check if they result in the same majority
values assumed at the beginning of the attack or else retry with another
set of majority values.

Complexity Estimation: Before we state our analysis to calculate the com-
putational complexity, let us state a few observations:

1. Note that the number of variables on the right side of Eq. (6) is 2n+3sb−3s.
Hence using the basis vector logic, forming Eq. (6) is equivalent to 2n+3sb−3s
encryptions limited to r − a − c rounds, hence equivalent to (2n + 3sb − 3s) ·
(r−a−c)

r encryptions.
2. For the first MITM, eliminating θ = n−3s(a−b+c) variables in an n×(3n+

3sb − 3s) matrix using the sweeping out method costs around n·θ·(3n+3sb−3s)
2rn2

encryptions.
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3. Computing U from X and K is equivalent to the encryption of 2n base vectors
(for the n bits of X and the n bits of K) in b rounds instead of r. So, this
costs 2n · b

r encryptions
4. For the 2nd MITM, eliminating 3sb (Kb) and n−3s(a+b+c) (Krem) variables

in a n× (3n+6sb− 3s) matrix requires (n−3s(a+c))·n·(3n+6sb−3s)
2rn2 encryptions.

5. Solve the system of linear equations to get Krem from Affrem(Krem,Ka,Kb,
Kc,W ) = Y . This requires one Gaussian Elimination which is equivalent to
(n−3s(a+b+c))3

2rn2 encryptions.

Both MITM steps should be done for each majority guess for the middle rounds,
hence should be repeated 2s(r−a−b−c) times. Note that to evaluate Aff1(Ka,X)
we need to evaluate the first a encryption rounds to get X from the plaintext.
Thereafter we evaluate (3sa − 3sb + 3sc) linear expressions in (3sa + n) bits of
Ka, X, which requires around (3sa + 3sb − 3sc) · (3sa + n) bit-operations. Simi-
larly to evaluate Aff2(Kc, Y ) we need to evaluate the last c decryption rounds to
get Y from the ciphertext, followed by evaluation of linear expressions that take
(3sa+3sb−3sc)·(3sc+n) bit-operations. Hence the first MITM takes time equiva-
lent to T1 =

(
a
r + (3sa−3sb+3sc)·(3sa+n)

2rn2

)
·23sa +

(
c
r + (3sa−3sb+3sc)·(3sc+n)

2rn2

)
·23sc

encryptions. The number of pairs stored in the first MITM is around 23sb as
mentioned before.

Later on we replace Kb in the linear equation and eliminate Kb,Krem, this
can also be seen as a matrix multiplication followed by a Gaussian elimination.
Next we compute the values of Aff3(Z,U) and Aff4(X,Ka,Kc) having values of
Ka,Kc and Z. Computing the value of U from Z takes time less than required in
the b encryption rounds. Thereafter, evaluating 3s(a+b+c) linear expressions in
6bs bits requires 3s(a+b+c)·6bs bit-operations. Again for Aff4 computing X from
Ka requires evaluating the first a encryption rounds. Then evaluation of linear
expressions requires 3s(a + b + c) · (3sa + 3sc + n) bit-operations. Hence the 2nd
MITM takes T2 =

(
b
r + (3sa+3sb+3sc)·(6bs)

2rn2 + a
r + (3sa+3sb+3sc)·(3sa+3sc+n)

2rn2

)
· 23sb

encryptions. The expected number of collisions in this procedure is 23sb−3sa−3sc

which the attacker needs to filter whenever it is greater than 1. Hence the total
complexity of the attack is estimated as:

2s(r−a−b−c) ×
[

T1 + T2 (The 2 MITMs) + (23s(b−a−c)) (Filter Solutions)

+ (2n + 3sb − 3s) · (r − a − c)
r

+
n · θ · (3n + 3sb − 3s)

2rn2

+ 2n · b

r
+

(n − 3s(a + c)) · n · (3n + 6sb − 3s)
2rn2

+
(n − 3s(a + b + c))3

2rn2

]
.

As n and s go to infinity, the optimal parameters become a = b = c = 1 and
the asymptotic complexity is equivalent to 4

r ∗ 2sr, which is an improvement by
a factor n/8 compared to the linearization attack. When s remains small (e.g.
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s = 1), the optimal parameters can be larger. With a = b = c = log2(2n)
3s , the

complexity is asymptotically 4 log2(n)
3sr · 2sr. If we take sr = n, this is better than

exhaustive search by a factor Ω
(

n
log(n)

)
. The memory complexity is dominated

by the space required for the 2 MITM stages. It can be seen that the total
memory complexity in bits can be computed as

(3sa − 3sb + 3sc) · (23as + 23cs) + (3sa + 3sb + 3sc) · 23bs+1.

For the �n
s �-round instances, we get the following results. For n = 128, s =

1, r = 128, if we take a = b = c = 5, we get the total complexity around 2125

encryptions with 222 bits of memory. For n = 128, s = 10, r = 12, if we take
a = b = c = 1, we get the total complexity around 2119 encryptions with 238 bits
of memory. For the 0.8 × �n

s �-round instances, we get the following results. For
n = 128, s = 1, r = 103, if we take a = b = c = 5, we get the total complexity
around 2101 encryptions. For n = 128, s = 10, r = 10, if we take a = b = c = 1,
we get the total complexity around 299 encryptions. The memory complexity is
the same as the corresponding �n

s �-round attacks.

5.1 Speed-Up Using Gray-Codes

Note that the technique outlined in [BCC+10] to evaluate a function over all
points of its input domain, works best for linear or quadratic functions. As such,
it is best to employ the attack when the set of functions for which we want
to evaluate over the input space is quadratic/linear. This is only possible if we
restrict a = c = 1. Let us see why. The first MITM procedure finds collision
between two lists using the equation Aff1(Ka,X) = Aff2(Kc, Y ). Note that,
thus far, X (rep. Y ) has been computed from the plaintext (resp. ciphertext) by
guessing Ka (resp. Kc) and evaluating the first a rounds in the forward direction
(resp. last c rounds in the backward direction). In order to apply Gray-code based
speed-up we need to express X and Y as functions of Ka and Kc. These functions
happen to be quadratic only when a = c = 1. This condition automatically
ensures that in the second MITM equations are also quadratic. This is true since
the second MITM essentially equates Aff3(Z,U) = Aff4(X,Ka,Kc), and we
know that the relation between U, Z is quadratic since these are the input-output
bits of the LowMC S-box in the middle b rounds. However note that unlike, in
the MITM for the complete non-linear layers, there is no pre-computation in the
first MITM that helps us reduce the steps in the second MITM. Aff4(X,Ka,Kc)
needs to be only evaluated for the 23sb pairs of Ka,Kc that survive the 1st
MITM. However to employ Gray-code based speed up we need to evaluate Aff4

over all points of its input space. We could split Aff4 into Aff5(Ka,X)+Aff6(Kc)
and then evaluate each of the Aff5 and Aff6 separately. Thus the time required
for the first MITM would be TG1 = 3sa−3sb+3sc

2rn2 · (23as+1 + 23sc+1) encryptions.
The 2nd MITM requires TG2 = 3sa+3sb+3sc

2rn2 ·(23bs+1+23as+1+23sc) encryptions.
It only makes sense to employ Gray-codes if TG1 +TG2 < T1 +T2. For s = 1,

the optimal values of a, b, c are considerably higher and it does not make sense to
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Fig. 7. The base 2 logarithm of the complexity of the 2-stage MITM attack when
n = 128 and s = 1, 10, for n = 0.8 × �n

s
�, when a, b, c are kept equal and varied.

attempt the Gray-code speed-up using this algorithm. In fact even if we attempt
to use this method by forcing a = b = c = 1, the complexity is many times
higher. Intuitively this makes sense, if a, c and s are both 1 then the lists require
exhaustive search over only 3as = 3sc = 3 variables, for which employing even
a non-Gray-code approach would take only 23 function evaluations. However
when s = 10, using such Gray-codes to execute the MITM stages is beneficial.
For n = 128, s = 10, r = �n

s � = 12, if we take a = b = c = 1, we get the total
complexity around 2110.6 encryptions which is better than the previous estimate
by a factor of around 29. For r = 0.8 × �n

s � = 10 using the same parameters we
get the total complexity around 290.8 encryptions which again outperforms the
previous estimate by a factor of around 28.

6 Experimental Results

In this section we present experimental data to showcase how our new attacks
stack up in comparison to the attacks proposed in [BBDV20] on instances of
LowMC with smaller blocksizes. Our results indicate that for all instances tar-
geted in our paper, there is a significant speedup compared to the previous
attacks. Moreover, we provide experimental evidence that our attacks success-
fully recover the key with a better complexity than exhaustive search for both
3-round with full S-box layer and n/s-round with partial S-box layer variants.

All the attacks and variants of the encryption function were implemented in
Sage and ran on an Intel Xeon E5-2680 processor with 256 GB of memory. Each
attack was run for several randomly generated instances. The complexity figures
are reported by computing the base 2 logarithm of the amount of time taken by
the attack, divided by the amount of time one encryption takes.1

1 The source code of the attacks can be found at https://gitlab.epfl.ch/barooti/lowmc-
challenge-round-3.

https://gitlab.epfl.ch/barooti/lowmc-challenge-round-3
https://gitlab.epfl.ch/barooti/lowmc-challenge-round-3
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Fig. 8. The histogram of base 2 logarithm of the time complexity of all linearization,
2-stage MITM and 2-stage MITM with gray-code enumeration attacks for n = 18,
s = 6, r = 2, in terms of the time it takes to perform a single encryption with the same
key, the same affine layers, and the same key update functions.

Fig. 9. The histogram of base 2 logarithm of the time complexity of the gray-code
enumerated 2-stage MITM attack for n = 12, s = 4, r = 3, in terms of the time it
takes to perform a single encryption

Full S-box Layer: For the 2-round full S-box layer variant of the cipher, we
implemented all three Linearization, 2-step MITM and 2-step MITM with gray-
code enumeration attacks for n = 18. The results are presented in Fig. 8. On
average, the linearization attack required 216.38 encryptions to recover the key,
where as the 2-stage MITM, and the gray code enumeration attacks required
213.31 and 26.42 encryptions to yield a solution respectively.

We also implemented the attack using Gray-code enumeration for 3-round
variants of block size 12. Figure 9 show cases the complexity of this attack for
several randomly generated samples. Our experimental results indicate that the
3-round variant of this attack yields a solution faster than exhaustive search
for all the samples we ran the attack for and the average complexity of our
experiments was 25.88 encryptions for n = 12, s = 4, r = 3.
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(a) (b)

Fig. 10. (a) The logarithm of the complexity of 2-step MITM, 2-step MITM with
gray-code enumeration and linearization attacks for the partial S-box layer variant
with parameters n = 16, s = 1 and r = 12, (b) The logarithm of the complexity of the
two-step MITM attack for n = 12, s = 1, r = 12.

Partial Non-Linear Layer: For the partial S-box layer variant of the cipher
with number of rounds equal to r = �n

s �×0.8, we implemented the 2-stage MITM
attack described in Sect. 5, the linearization method described in [BBDV20] and
in addition the special case gray-code enumeration attack described at the end
of 5. For n = 16, s = 1 and r = 12 the linearization attack yielded a complexity
of 210.29 encryptions, and the two-step MITM and the gray-code enumeration
attacks yielded a solution in 28.46 and 28.50 encryptions respectively.

For the 2-step MITM attack, we ran the experiments for 3 instances of a =
b = c = 1, a = b = c = 2 and a = b = c = 3. According to our experimental
results the best performance was when a = b = c = 1. The results of the 3 attacks
are demonstrated in Fig. 10a, and it is evident that both our new attacks are
significantly faster than the linearization method.

We also experimented the attack for n = 12, s = 1 and r = n/s = 12 and
a = b = c = 1. According to our experimental results demonstrated in Fig. 10b,
this attack had an average complexity of 27.402 encryptions, indicating a speed
up over exhaustive search.

7 Conclusion

In this paper, we present a 2-stage MITM on several instances of LowMC using
only a single plaintext/ciphertext. The first MITM stage reduces the key candi-
dates corresponding to a fraction of key bits of the master key. The second MITM
stage between this reduced candidate set and the remaining fraction of key bits
successfully recovers the master key. We have shown with experimental evidence
on smaller versions of LowMC that the combined computational complexity of
both these stages is significantly lower than those reported in [BBDV20].
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Abstract. Integral cryptanalysis is a powerful tool for attacking sym-
metric primitives, and division property is a state-of-the-art framework
for finding integral distinguishers.

This work describes new theoretical and practical insights into tradi-
tional bit-based division property. We focus on analyzing and exploiting
monotonicity/convexity of division property and its relation to the graph
indicator. In particular, our investigation leads to a new compact repre-
sentation of propagation, which allows CNF/MILP modeling for larger
S-Boxes, such as 16-bit Super-Sboxes of lightweight block ciphers or even
32-bit random S-boxes. This solves the challenge posed by Derbez and
Fouque (ToSC 2020), who questioned the possibility of SAT/SMT/MILP
modeling of 16-bit Super-Sboxes. As a proof-of-concept, we model the
Super-Sboxes of the 8-round LED by CNF formulas, which was not fea-
sible by any previous approach.

Our analysis is further supported by an elegant algorithmic frame-
work. We describe simple algorithms for computing division property
of a set of n-bit vectors in time O(n2n), reducing such sets to min-
imal/maximal elements in time O(n2n), computing division property
propagation table of an n × m-bit S-box and its compact representation
in time O((n + m)2n+m). In addition, we develop an advanced algo-
rithm tailored to “heavy” bijections, allowing to model, for example, a
randomly generated 32-bit S-box.

Keywords: Division property · S-boxes · SAT · CNF · MILP · LED

1 Introduction

With the ongoing surge of lightweight cryptography, the field of cryptanalysis of
lightweight symmetric primitives is pressured to evaluate the security as precisely
as possible: adding a few extra rounds as a security margin is not affordable in
the lightweight setting. Among the most powerful cryptanalysis techniques are
linear and differential cryptanalysis, and integral cryptanalysis. For example,
the long-standing MISTY1 [24] block cipher was broken recently by integral
cryptanalysis [1,32] (based on division property, the topic of this work) with a
c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13090, pp. 332–361, 2021.
https://doi.org/10.1007/978-3-030-92062-3_12
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surprisingly low time complexity 270. While provable security arguments against
linear and differential cryptanalysis exist already since the design of the AES
block cipher [10], provable security arguments against integral attacks started to
appear only recently [18].

Division property is a state-of-the-art technique for finding integral distin-
guishers in symmetric ciphers. Since the seminal work of Todo [33] focusing
on word/state-based division property, many improvements and variants of the
technique were developed. The focus shifted towards bit-based division prop-
erty [34], followed by a surprisingly effective MILP-based approach [38] (mixed-
integer linear programming) of finding division property-based distinguishers
via the search of the so-called division trails. This line continued with a series
of works improving MILP and SAT/SMT-based (satisfiability modulo theories)
modeling [14,21,27,31]. Classic (also called traditional or conventional) divi-
sion property is imperfect : it may miss an integral distinguisher, although it
never produces a false positive. A more recent advancement is the development
of “perfect” monomial prediction techniques [17,18,20], which require counting
division trails and so far are computationally feasible only in a few cases. This
work focuses on traditional division property, as it remains powerful and the
most widely applicable tool for integral cryptanalysis.

From the theory side, following preliminary analysis [15,29], the work of
Boura and Canteaut [5] formalized and studied the state-based division property
in terms of parity sets. In particular, they showed that state-based division prop-
erty of a set is defined by the set’s algebraic degree. While many of their results
about parity sets translate directly into bit-based division property, such links
were not explicitly stated. To the best of our understanding, the theory behind
bit-based division property is not fully developed. Furthermore, very recently,
Carlet [7] proposed method for bounding the algebraic degree of a composition
of function from the degrees of their graph indicators. It is a natural question
whether division property can be improved by incorporating such bounds. A
recent work [9] studied formally relationships between different variants of divi-
sion property and algebraic degree bounds for composite functions, such as the
Boura-Canteaut bound [4]. However, this work did not consider graph indicator-
based bounds, leaving this gap open. As a part of this work, we aim to fill
the aforementioned gaps and extend the theory, focusing on the monotonic-
ity/convexity aspects of division property and relations with the graphs of the
analyzed functions.

The imperfectness of traditional bit-based division property shows up in
various ways. Division property analysis can be applied to any Boolean cir-
cuit implementation of a cipher (constructed from e.g. AND and XOR gates).
However, due to the imperfectness, information gets lost during propagation
through the circuit. Considering larger parts of the cipher, such as S-boxes and
linear maps, allows to slow down the loss of information. For example, Zhang
and Rijmen [39] showed that propagating division property through a linear
map via a basic COPY-and-XOR implementation is imperfect. The right way
to handle a linear map is to encode all invertible square submatrices of the
linear map’s matrix. A typical linear layer of a lightweight block cipher oper-
ates on at least 16 bits and its matrix may contain a large number of invertible
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submatrices. Encoding the division property propagation through such a layer in
a SAT/MILP instance deemed to be not feasible until recently, when Hu, Wang
and Wang [21] proposed a generic SMT-based solution, which is feasible for up to
64-bit linear maps. Lambin, Derbez and Fouque [22] showed that propagation
through S-boxes is also fragile: combining an S-Box with a linear map may also
result in loss or gain of information.

To battle the imperfectness of traditional division property, Derbez and
Fouque [11] proposed to increase its precision by considering a Super-Sbox -
a composition of the cipher’s linear map with the adjacent S-boxes - as a single
propagation unit. For many lightweight block ciphers, Super-Sboxes are 16-bit
bijections. The results of [11] shows that this approach increases precision sig-
nificantly and allows to find new integral distinguishers for 1–2 more rounds for
some ciphers. However, SAT/MILP modeling of Super-Sboxes was not feasible
by state-of-the-art techniques and the authors of [11] had to develop an ad-hoc
search technique. In fact, they challenged the community to develop SAT/MILP
modeling of such large mappings: “We also believe this work will challenge the
community in handling such large propagation tables with generic solvers for
MILP, SAT or SMT models.”. As a part of this work, we provide a solution to
this challenge, based on our theoretical advancement.

Our contribution. This work focuses on theory and practice of traditional divi-
sion property. All other variants, such as three-subset division property [34] (and
without the unknown subset [17]), monomial prediction [20], are out of scope of
this work. The main contributions of this work are:

1. Development of the theoretic framework behind the classic division property.
This includes fine-grained (bit-based) formulations of previous statements
about division property, exhibiting convexity of division property and its
relation to the recent graph indicator-based bounds by Carlet [7].

2. Compact characterization of division property propagation through a function
F by means of the (reduced) division property of its graph. This yields com-
pact constraint systems for MILP/SAT solvers, allowing us to model much
larger S-boxes than was previously possible, including 16-bit Super-Sboxes
and, as a proof-of-concept, randomly generated 32-bit S-boxes. We also intro-
duce additional techniques for improving modeling efficiency.

3. A framework for manipulation of dense sets of binary vectors. It includes sim-
ple algorithms for computing division property of a set of n-bit vectors (com-
plexity O(n2n)), reducing such sets to minimal/maximal elements (complex-
ity O(n2n)), computing division property propagation table of an n × m-bit
S-box and its compact representation (complexity O((n + m)2n+m)). These
algorithms improve previous best algorithms by a factor of 2n. In addition,
we develop an advanced algorithm for the compact representation tailored to
“heavy” n-bit bijections, for which it runs in time Õ(2n) (heuristically).

4. As a proof-of-concept, we apply our techniques to 8-round LED and show
that its Super-Sbox model does not yield integral distinguishers (although
they might still exist), even with linear masks applied to an input and an
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output Super-Sbox. This fills the gap left by [11], as their approach was not
feasible for LED.

Our implementations are written in a mix of Python and C++, featuring
performance and a convenientAPI. All the source code will be made publicly
available. For details, see:

https://github.com/CryptoExperts/AC21-DivProp-Convexity

Outline. Section 2 provides the necessary background with a focus on the partial
order on bit-vectors. In Sect. 3, we briefly reintroduce traditional division prop-
erty and develop its theory, culminating in a new compact representation. As a
byproduct, we exhibit a direct link between division property and graph indica-
tors. The following Sect. 4 focuses on CNF/MILP modeling aspects of the new
representation. Section 5 presents our algorithmic framework for manipulating
dense sets of binary vectors. Finally, in Sect. 6, we show how our techniques can
be applied to model the Super-Sbox representation of LED.

2 Preliminaries

Boolean operations AND, OR, XOR, NOT denoted respectively by ∧,∨,⊕,¬
can be applied to (pairs of) single bits or bitwise to bit-vectors. We use 1 ∈ F

n
2

(resp. 0) to denote the all-one (resp. all-zero) vector of a dimension n depending
on the context. We write ¬x := x ⊕ 1 and ¬X := {¬x | x ∈ X}, X ⊆ F

n
2 , to

disambiguate from the set complement X := {y ∈ F
n
2 | y /∈ X}. The unit vectors

ej ∈ F
n
2 , 0 ≤ j < n, are the vectors with the j-th (0-based) coordinate equal to

1 and all other coordinates equal to 0.
The notation xu, u ∈ F

n
2 , is used to denote the monomial

∏n−1
i=0 xui

i , letting
x0

i = 1. Any Boolean function f : F
n
2 → F2 has a unique expression f(x) =⊕

u∈F
n
2

auxu, where au ∈ F2. This expression is called the algebraic normal form
(ANF) of f . We say that f contains the monomial xu if au = 1 in the ANF of f .
The ANF support of f , denoted SuppANF (f), is the set of all exponents u with
au = 1 in the ANF of f .

The indicator vector of a set X ⊆ F
n
2 is the vector I ∈ F

2n

2 such that
Ix = 1 if and only if x ∈ X. Here we use the natural identification of
F

n
2 with {0, . . . , 2n − 1}. By an abuse of notation, we will identify a set X

with its indicator vector implicitly. The indicator function of X is the map
1X : F

n
2 → F2 : x 	→ Ix.

The graph of a function F : F
n
2 → F

m
2 , denoted ΓF , is the set

ΓF = {(x, y) | x ∈ F
n
2 , y = F (x)} ⊆ F

n
2 × F

m
2 .

The graph indicator of F is the indicator function of its graph ΓF .

https://github.com/CryptoExperts/AC21-DivProp-Convexity
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2.1 Partial Order

We use the product order on vectors over F2, which is, for x, y ∈ F
n
2 , x 
 y if

and only if xi ≤ yi for all i. We write x ≺ y if x 
 y and x �= y.

Definition 1. The lower closure of a set X ⊆ F
n
2 , denoted by LowerClosure (X),

is the set of all u ∈ F
n
2 with u 
 x for some x ∈ X:

LowerClosure (X) := {u ∈ F
n
2 | ∃x ∈ X : u 
 x} =

⋃

x∈X

{u ∈ F
n
2 | u 
 x} .

The upper closure of a set X ⊆ F
n
2 , denoted by UpperClosure (X), is the set of

all u ∈ F
n
2 with x 
 u for some x ∈ X:

UpperClosure (X) := {u ∈ F
n
2 | ∃x ∈ X : u � x} =

⋃

x∈X

{u ∈ F
n
2 | u � x} .

A set X is an upper set if its upper closure is X itself. A set X is a lower set
if its lower closure is X itself.

Remark 1. An intuitive interpretation is as follows. For each vector in X, the
upper closure converts positions with the value 0 into a wildcard, whereas the
lower closure converts positions with the value 1 into a wildcard.

Example 1. LowerClosure({110, 001}) = {000, 010, 100, 110, 000, 001}.

Example 2. UpperClosure({110, 001}) = {001, 011, 101, 110, 111}.

Proposition 1. Let X,Y be lower sets (resp. upper sets). Then, X ∪ Y and
X ∩ Y are lower sets (resp. upper sets); X is an upper set (resp. a lower set).

Definition 2. A subset X ⊆ F
n
2 is called convex, if for any a, b, c ∈ F

n
2 , a 


b 
 c and a, c ∈ X imply b ∈ X. An equivalent condition is

X = LowerClosure (X) ∩ UpperClosure (X).

Definition 3. The max-set of a set X ⊆ F
n
2 , denoted by MaxSet (X), is the set

of all maximal elements in X:

MaxSet (X) := {u ∈ X | �x ∈ X : x � u} .

The min-set of a set X ⊆ F
n
2 , denoted by MinSet (X), is the set of all minimal

elements in X:

MinSet (X) := {u ∈ X | �x ∈ X : x ≺ u} .

Max-/min-sets are compact representations of lower/upper sets. Max-/min-
sets are antichains (their elements are pairwise incomparable) and so are convex.

Proposition 2. The operator ¬ anti-commutes with MinSet, MaxSet,
LowerClosure, UpperClosure: for any set X,

¬MinSet (X) = MaxSet (¬X), ¬LowerClosure (X) = UpperClosure (¬X),

¬MaxSet (X) = MinSet (¬X), ¬UpperClosure (X) = LowerClosure (¬X).
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3 New Insights into Division Property

We start by briefly reformulating the traditional bit-based division property in
terms of parity sets in (Subsect. 3.1). Then, we present a complete link with the
set indicator (Subsect. 3.2). This link helps us to develop new characterization
of transitions (Theorem 1), which in turn leads to a compact representation.
Next, Subsect. 3.6 summarizes the observed convex structure of division property
transitions, setting the basement for modeling techniques described in Sect. 4.
In Subsect. 3.7, we revisit the approach of applying input/output linear masks
and reformulate it in our framework. Finally, relationships with recent graph
indicator-based degree bounds by Carlet [7] are investigated in Subsect. 3.8.

3.1 Division Property and Parity Sets

Boura and Canteaut [5] introduced the notion of parity sets as another view of
division property.

Definition 4 (Parity set [5]). The parity set of a set X ⊆ F
n
2 , denoted

ParitySet (X), is the set of all u ∈ F
n
2 such that

⊕
x∈X xu = 1.

We reformulate the bit-based division property [33,34] in terms of parity sets
and the partial order framework.

Definition 5 (Bit-based division property). A set X ⊆ F
n
2 satisfies bit-

based division property K ⊆ F
n
2 , if

ParitySet (X) ⊆ UpperClosure (K).

We define two special cases of division property mainly to simplify analysis.

Definition 6. For any set X ⊆ F
n
2 , define:

1. the minimal division property MinDP (X) of X as

MinDP (X) := MinSet (ParitySet (X)),

2. the full division property FullDP (X) of X as

FullDP (X) := UpperClosure (ParitySet (X)).

Boura and Canteaut developed distinguishers based on
UpperClosure (ParitySet (X)), however the link with the bit-based division
property was not explicitly established. In fact, they showed [5, Prop. 6]
that UpperClosure (ParitySet (X)) is precisely what is preserved when X goes
through a constant addition:

UpperClosure (ParitySet (X ⊕ c)) = UpperClosure (ParitySet (X))

for all c ∈ F
n
2 . It follows that bit-based division property is essentially equivalent

to parity sets in the presence of key additions.
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3.2 Link with the Set Indicator

We first note that the parity set of a set is closely linked to the ANF of the
indicator of the set.

Proposition 3. Parity set’s coefficients can be expressed in terms of the ANF
(Möbius) transform in the reverse direction:

u ∈ ParitySet (X) ⇔
⊕

x�u

1X(x) = 1 ⇔
⊕

x∈F
n
2

xu · 1X(x) = 1.

Proof. The elements x ∈ X contributing to the sum
⊕

x∈X xu = 1 in Definition 4
are precisely those with x � u. ��
Corollary 1. For any set X ⊆ F

n
2 ,

ParitySet (X) = ¬SuppANF (1¬X).

Several works [3,5,15] established independently the relation between the
degree of a set and its state-level division property. Let Dn

k consist of all vectors
of F

n
2 of weight at least k. Then, a set X ⊆ F

n
2 satisfies the division property

Dn
k if and only if the degree of the indicator 1X of the set is at most n − k. The

following proposition generalizes this relation to the case of bit-based division
property. Naturally, minimal vectors of a bit-based division property define maxi-
mal monomials that can occur in the ANF of the indicator. As minimal/maximal
vectors are compact representations of upper/lower sets, the same fact holds also
for the respective closures.

Proposition 4. Let X ⊆ F
n
2 . Then,

MinDP (X) := MinSet (ParitySet (X)) = ¬MaxSet (SuppANF (1X)),
UpperClosure (ParitySet (X)) = ¬LowerClosure (SuppANF (1X)).

Proof. Follows from Corollary 1, Proposition 2 and the fact that the set of max-
terms in the ANF does not change on adding a constant to the input:

MinSet (ParitySet (X)) = MinSet (¬SuppANF (1¬X))
=¬MaxSet (SuppANF (1¬X)) = ¬MaxSet (SuppANF (1X)). ��

3.3 Division Property Propagation

Xiang et al. [38] proposed a method to propagate division property through
a public function (an S-box). Essentially the same method was described by
Boura and Canteaut in terms of parity sets, although not linked to the division
property. We define division property transitions based on these methods.

Definition 7 (Division property transition). Let S : F
n
2 → F

m
2 , u ∈ F

n
2 , v ∈

F
m
2 . We say that (u, v) is a valid division property transition for S and write

u
S−→ v if there exist u′ � u, v′ 
 v, such that Sv′

(x) contains the monomial xu′
.

Otherwise, we write u �S−→ v.
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The defined kind of transition corresponds to full division property in the
output and is useful for analysis. In practice, minimal (reduced) output division
property is used as it reduces the search space of trail search algorithms.

Definition 8 (Minimal transition). Let u
S−→ v. If v is minimal such vector,

then we say that u
S−→ v is a minimal transition and write u

S−−−→
min.

v.

Transitions allow to propagate division property through a public function.
Due to monotonicity of division property, the propagation can be done by prop-
agating each element of division property set K into a set of elements of output
division property and taking a union over all such sets. This is a standard “propa-
gation rule” in the division property literature, and was also formulated in terms
of parity sets in [5, Prop. 7].

Proposition 5. Let S : F
n
2 → F

m
2 and let X ⊆ F

n
2 satisfy division property

K ⊆ F
n
2 . Then, the odd-multiplicity elements of S(X) satisfy division property

K
′, with

K
′ =

⋃

u∈K

{
v ∈ F

m
2 | u

S−→ v
}

.

Remark 2. It is sufficient to consider minimal transitions u
S−−−→

min.
v instead of all

u
S−→ v, however, even in this case the resulting division property K

′ is not guar-
anteed to be minimal and has to be reduced if required so by search algorithms.

3.4 Core Transitions and Their Characterizations

In this subsection, we describe the key component of our work: a new compact
description of the set of division property transitions of a function. This new
description is rather natural and turns out to be equivalent to the minimal
division property of the graph of the function, or, alternatively, to the set of
maximal monomials in the ANF of the graph indicator of the function.

First, we define a new subclass of transitions, called core transitions, which
are minimal transitions with additional maximality restriction of the input divi-
sion property vector. The idea is that, by Definition 7, a valid transition u

S−→ v

induces valid transitions u′ S−→ v for all u′ 
 u. As a result, it is sufficient to
store transitions with maximal u and minimal v. Indeed, any minimal transition
u

S−→ v can be covered by some maximal u′ such that u′ S−→ v is a core transition.

Definition 9 (Core transitions). Let u
S−→ v. If (u, v) is (maximal,minimal)

such pair, then we say that u
S−→ v is a core transition and write u

S−−→
core

v.

Remark 3. Todo and Morii [35] proposed alternative compact structure of divi-
sion property transitions. Their idea is to group input division property vectors
by the output division sets they propagate to. However, the main usage of their
compact structure was in an ad-hoc exhaustive trail search. It is not clear if
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SAT/MILP-based trail search can profit from such a structure. Our structure,
on the contrary, lends itself naturally to compact CNF/DNF/MILP encodings
(see Sect. 4).

We now show that core transitions have rich equivalent characterizations in
terms of the ANFs of products of outputs bits, in terms of the ANF of the graph
indicator and, finally, in terms of the (minimal) division property of the graph
of the function.

Lemma 1. Let f : F
n
2 → F2, u ∈ F

n
2 . Then,

⊕

x∈F
n
2

xuf(x) = 1 (1)

and u is minimal such vector if and only if the ANF of f contains maximal
monomial x¬u.

Proof. Let X be the support of f . By Proposition 3, (1) holds if and only if
u ∈ ParitySet (X). By Proposition 4, we get that u is minimal in ParitySet (X)
if and only if ¬u is maximal in SuppANF (1X) = SuppANF (f). ��
Theorem 1. Let S : F

n
2 → F

m
2 , u ∈ F

n
2 , v ∈ F

m
2 . The following statements are

equivalent:

1. u
S−−→

core
v (i.e., (u, v) is (maximal,minimal) such that u

S−→ v);

2. (u, v) is (maximal,minimal) such that Sv(x) contains the monomial xu;
3. (¬u, v) belongs to DivCoreS := MinDP (ΓS) := MinSet (ParitySet (ΓS));

(Definition 10 below)
4. the graph indicator 1ΓS

(x, y) contains the maximal monomial xuy¬v.

Proof. (1 ⇔ 2) Observe that u
S−−→

core
v implies that Sv(x) contains the monomial

xu. Conversely, if Sv(x) contains the monomial xu, then u
S−→ v. It follows that

the extremality is transferred in both directions.
(2 ⇔ 3) By Definition 4, (¬u, v) ∈ MinSet (ParitySet (ΓS)) if and only if

⊕

(x,y)∈ΓS

x¬uyv =
⊕

x∈F
n
2

x¬uSv(x) = 1 (2)

and (¬u, v) is minimal such pair. For any fixed v, by Lemma 1, (2) holds with
¬u minimal if and only if Sv(x) contains the maximal monomial xu. It follows
that the extremality is transferred in both directions.

(3 ⇔ 4) Follows from Proposition 4 applied to the set ΓS . ��
Remark 4. While characterizations 1 and 2 are related simply by definition, the
other relations are more interesting. Remarkably, (1 ⇔ 3) identifies division
property propagation through S with the (minimal) division property of the
graph of S; (2 ⇔ 4) identifies extreme exponents (u, v) such that Sv(x) contains
xu with maximal monomials in the graph indicator of S.
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Note that the asymmetry of maximality/minimality of u/v is not present
in characterizations 3 and 4: valid division property transitions of both S and
S−1 (if it exists) are determined by the same set of minimal vectors (¬u, v) ∈
ParitySet (ΓS), or, equivalently, by the same set of maximal monomials xuy¬v

in the ANF of the graph indicator of S. This yields the following proposition.

Proposition 6. Let S be a permutation of F
n
2 , u, v ∈ F

n
2 . Then,

u
S−→ v if and only if ¬v

S−1

−−→ ¬u,

u
S−−→

core
v if and only if ¬v

S−1

−−→
core

¬u.

Proof. If u
S−→ v, then by Definition 7 there exist u′ � u, v′ 
 v such that

u′ S−−→
core

v′ and then by Theorem1

⊕

(x,y)∈ΓS

x¬u′
yv′

= 1.

By swapping roles of x, y, we obtain ¬v′ S−1

−−→ ¬u′. Since ¬u′ 
 ¬u,¬v′ � ¬v, we

get ¬v
S−1

−−→ ¬u. Equivalence for core transitions holds because the extremality
condition is the same for both directions: (¬u, v) is minimal. ��
Remark 5. This result is an extension of [5, Lemma 3] to the framework of
division property transitions and extremality. The cited lemma states that Sv(x)
contains xu if and only if (¬S−1)¬u(¬x) contains x¬v. Furthermore, a similar
degree-based statement was given by Boura and Canteaut already in [4].

Importantly, this proposition shows a bijection between forward and back-
ward integral distinguishers based on division property. While this relation was
known before, it is unfortunately rarely used in the literature to convert discov-
ered forward distinguishers into backward distinguishers.

3.5 Division Core and Its Relation to Transition Classes

From now on, we focus on the studying the set of core transitions. Due to the
aforementioned symmetry, it is more convenient to study its characterization as
the min-set of the parity set of the graph of S. As we shall use this set extensively,
we introduce a new term for brevity.

Definition 10 (Division Core). Let S : F
n
2 → F

m
2 . Define the division core

of S, denoted DivCoreS, as the minimal division property of the graph of S:

DivCoreS := MinDP (ΓS) = MinSet (ParitySet (ΓS))

= MinSet

⎛

⎝

⎧
⎨

⎩
(u, v) ∈ F

n
2 × F

m
2

∣
∣
∣
∣

⊕

(x,y)∈ΓS

xuyv = 1

⎫
⎬

⎭

⎞

⎠.
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We deduce the following characterization of division property transitions
solely from the division core.

Theorem 2. Let S : F
n
2 → F

m
2 . Then,

1. u
S−→ v if and only if (¬u, v) ∈ UpperClosure (DivCoreS);

2. u
S−−−→

min.
v if and only if (¬u, v) ∈ MinSetv(UpperClosure (DivCoreS));

3. u
S−−→

core
v if and only if (¬u, v) ∈ DivCoreS.

If, in addition, n = m and S is bijective:

4. v
S−1

−−→ u if and only if (u,¬v) ∈ UpperClosure (DivCoreS);

5. v
S−1

−−−→
min.

u if and only if (u,¬v) ∈ MinSetu(UpperClosure (DivCoreS));

6. v
S−1

−−→
core

u if and only if (u,¬v) ∈ DivCoreS.

Here, the subscript of MinSet defines the variable on which the min-set is com-
puted (the vectors are labeled (u, v)).

On the Compactness of Division Core. By Sperner’s theorem, the division core,
as a min-set, has size bound O(2n+m/

√
n + m). This might seem as not so

“compact” representation. For example, linear functions with domain F
n
2 contain

only vectors of weight n (to show this, consider any minimal transition u
S−−−→

min.
v

and observe that wt(¬u) + wt(v) = n). Furthermore, for a random binary
matrix F

n×m
2 one can expect a large number of invertible submatrices which

translates into a large number of minimal/compact division property transitions
(see [21,39]). Perhaps counter-intuitively, it follows that linear maps are the ones
that may achieve the largest size of the division core, which could be interpreted
as having the most complex division property propagation. On the opposite side,
for a random function of full degree, most minimal transitions u

S−−−→
min.

v have v

of very small weight which translates into small-weight vectors in division core.
This in turn makes most vectors of larger weight redundant and so the division
core is expected to be a small set. The right intuition is that “heavier” functions
tend to have “simpler” division property propagation and this is exactly captured
by the division core as a compact representation.

Finally, we describe a new view on division trail composition in terms of the
division core. The proof is given in the full version of this paper [36].

Proposition 7. Let F : F
n
2 → F

m
2 , G : F

m
2 → F

r
2, u ∈ F

n
2 , w ∈ F

r
2. Then, there

exists a valid division trail

u
F−→ v

G−→ w

if and only if there exist a ∈ F
n
2 , b, b′ ∈ F

m
2 , c ∈ F

r
2 such that

a 
 ¬u, (a, b) ∈ DivCoreF , b ∧ b′ = 0, (b′, c) ∈ DivCoreG, c 
 w.
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3.6 Convex Structure of the Set of Minimal Transitions

In theory, identifying valid transitions (UpperClosure (DivCoreS)) is sufficient to
identify propagation of division property and resulting integral distinguishers.
In practice, it is crucial to also remove redundant transitions to reduce the
search space of automated SAT/MILP solvers or ad-hoc search engines such
as [11,33,34]. Therefore, we analyze the set of minimal/reduced transitions in
more details.

Definition 11. Let S : F
n
2 → F

m
2 . Define the following sets:

IS :=
{

(u, v) ∈ F
n
2 × F

m
2 | ¬u �S−→ v

}
,

MS :=
{

(u, v) ∈ F
n
2 × F

m
2 | ¬u

S−→ v, �v′ ≺ v : ¬u
S−→ v′

}
,

RS :=
{

(u, v) ∈ F
n
2 × F

m
2 | ¬u

S−→ v,∃v′ ≺ v : ¬u
S−→ v′

}
.

Remark 6. These sets contain respectively invalid transitions, minimal transi-
tions and redundant transitions through S. The defining condition of MS is
equivalent to ¬u

S−−−→
min.

v.

Proposition 8. The sets IS ,MS ,RS form a partition of F
n
2 × F

m
2 . Moreover,

IS is a lower set, MS is a convex set, RS is an upper set.

Proof. The conditions of set generators in the sets’ definitions clearly induce a
partition of F

n
2 × F

m
2 .

It is clear that MS ∪ RS = UpperClosure (DivCoreS) (both from the defini-
tions and the fact that it is the complement of IS). Since IS is the complement
of this upper set, it must be a lower set.

The convexity of MS follows from the fact that MS = (Fn
2 × F

m
2 ) \ RS \ IS .

Indeed, let a, c ∈ MS . If there exists b /∈ MS such that a 
 b 
 c, then from
b ∈ IS it would follow that a ∈ IS and so a /∈ Ms. The same argument applies
to c and RS , leading to contradiction. ��

We emphasize that all the three sets IS ,MS ,RS can be derived from the
division core DivCoreS , highlighting its universality as a compact representation:

IS = UpperClosure (DivCoreS),
MS = MinSetv(UpperClosure (DivCoreS)),

RS = IS ∪ MS .

Remarkably, these sets can themselves be expected to have compact represen-
tations in the form of max-set for IS , min-set for RS , and both min-set and
max-set for MS . We discuss concrete efficient algorithms for computing these
sets in Sect. 5.

Note that the maximal upper-set of removable vectors is given by

R′
S := LowerClosure (MS).
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Compared to RS , it may include some extra vectors from IS (but it always is a
superset of RS). While its size is not smaller than that of RS , most often it has
a simpler structure resulting in smaller models, as we shall see later on examples
(see Table 1 in Sect. 4).

3.7 Linear Combinations at the Input/output

Lambin, Derbez and Fouque [22] noticed that division property is not preserved
under a composition of S-boxes with linear maps. One has to consider such
maps in order to find integral distinguishers with a non-cube-shaped affine space
at the input and/or a balanced linear combination of bits at the output. The
authors of [22] exhausted all 4-bit linear maps to be composed with one S-box
at the input and one S-box at the output. In [11], Derbez and Fouque showed
that exhaustion of linear maps is unnecessary and exhaustion of linear masks is
sufficient, tremendously reducing the complexity.

For the input linear masks, they use the fact that an affine space of dimension
n−1 can be defined by its 1-dimensional orthogonal complement, i.e. by its single
non-zero vector. It is thus sufficient to define a linear bijective map that maps
this vector to a single bit (completed arbitrarily), compose its inverse at the input
of an S-box in the first round (and recompute the division property propagation
through the composition), and assume this bit to be a constant and all other
bits to be active in the division trail search.

For the output linear masks, the approach is more straightforward: define
a bijective linear map that maps the chosen linear combination to a single bit,
compose it at the output of an S-Box in the last round (and recompute the
division property propagation through the composition), and, finally, check if
this single output bit is balanced.

Formulation in Our Framework. We now formulate this problem and sim-
plify its solution in our framework. For simplicity, we assume that an “S-box”
covers the full state. The case when target S-boxes cover only part of the state
follows naturally. Our analysis is restricted to using traditional division property
to find such distinguishers.

Let Sin : F
n
2 → F

n
2 be a bijection, F : F

n
2 → F

m
2 , Sout : F

m
2 → F

r
2. Let α ∈

F
n
2 , β ∈ F

r
2 be the input and the output linear masks respectively, α �= 0, β �= 0.

We are interested in the integral (zero-sum) distinguishers of Sout ◦ F ◦ Sin with
the input linear mask α and the output mask β:

⊕

x∈F
n
2 ,〈α,x〉=c

〈β, Sout ◦ F ◦ Sin(x)〉 = 0, c ∈ F2 a constant.

The approach of [11,22] is to search for division trails through each of the three
steps of the composition

(〈β, Sout〉) ◦ F ◦ (Sin ◦ L−1
α ),
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where Lα ∈ GLn(F2) is any such that the first coordinate of Lα(x) equals to
〈α, x〉. To ensure the precision, the first and the last step must be propagated as
units. The following theorem states an equivalent to the method of [11] sufficient
condition of existence of such an integral distinguisher based on division property.
As we will show in Subsect. 4.3, this leads to easy and efficient CNF/MILP
modeling.

Theorem 3. Let Lα ∈ GLn(F2) be such that Lα(x) = (〈α, x〉 , . . .) Then, there
exists a division trail

(0, 1, . . . , 1)
Sin◦L−1

α−−−−−→ u
F−→ v

〈β,Sout〉−−−−−→ (1)

if and only if u
F−→ v and

¬u ∈ LowerClosure
(
SuppANF

〈
α, S−1

in

〉)
, (3)

v ∈ LowerClosure (SuppANF 〈β, Sout〉). (4)

Proof. The first transition by Proposition 6 is equivalent to ¬u
Lα◦S−1

in−−−−−→
(1, 0, . . . , 0), equivalently ¬u

〈α,S−1
in 〉−−−−−→ (1), equivalent to (3). The last transition

is similarly equivalent to (4). ��
Remark 7. For a non-invertible Sin : F

n′
2 → F

n
2 , one can replace the Boolean

function y 	→ 〈
α, S−1

in (y)
〉

by the function

y 	→
⊕

x∈(Sin◦L−1
α )−1(y)

〈α, x〉 .

3.8 Relationships with Graph Indicator-Based Degree Bounds

Recently, Carlet [7] derived new degree bounds on compositions of functions
based on the degrees of the graph indicators of the involved functions. It is
a natural question whether these bounds can beat traditional bit-based divi-
sion property and whether division property can be improved by incorporating
these bounds. In this section, we show a close relationship of these bounds with
division property propagations, based on the relationship of division property
propagation and the graph indicator given by Theorem1.

Carlet in [8] gives an elegant expression for the graph indicator of the com-
position of functions in terms of their graph indicators.

Proposition 9 ([7,8]). Let Gi : F
mi−1
2 → F

mi
2 , i ∈ {1, . . . , r}, let F = Gr ◦ . . . ◦

G1. Then,

1ΓF
(x, z) =

⊕

(y1,...,yr−1)

∈F
m1
2 ×...×F

mr−1
2

1ΓG1
(x, y1) · 1ΓG2

(y1, y2) · . . . · 1ΓGr
(yr−1, z).
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Example 3. Let H : F
n
2 → F

m
2 , G : F

m
2 → F

r
2. Then,

1ΓG◦H
(x, z) =

⊕

y∈F
m
2

1ΓH
(x, y)1ΓG

(y, z).

This expression naturally allows to bound possible monomials in 1ΓF
(x, z):

(i) 1ΓF
(x, z) does not contain a monomial multiple of xuz¬v if and only if (ii)

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr
(yr−1, z)

does not contain a monomial multiple of xuym1
1 ym2

2 . . . y
mr−1
r−1 z¬v. By Theorem 1,

the condition (i) is equivalent to: for any v′ 
 v, F v′
(x) does not contain a

monomial multiple of xu. Sufficient conditions for (ii) can be derived from degree
bounds of the involved graph indicators, as done in [7]. In this way, graph indica-
tors’ degrees allow to derive upper bounds on monomials occurring in products
of outputs of the composition F .

We now show that bit-based division property verifies a stronger condition,
which in fact can be seen as a bit-based formulation of the degree-based bounds.

Theorem 4. Let F,Gi be defined as above. Let I be the formal expansion (i.e.,
no ⊕-cancellations) of

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr
(yr−1, z).

Then, I contains a monomial multiple of

xuym1
1 ym2

2 . . . y
mr−1
r−1 z¬v (5)

if and only if there exists a valid division trail

u
G1−−→ w1

G2−−→ . . .
Gr−1−−−→ wr−1

Gr−−→ v. (6)

Proof. By Theorem 1, each link in the trail has an equivalent condition on the
monomial multiple in the corresponding graph indicator:

u
G1−−→ w1 ⇔ 1ΓG1

(x, y1) contains a monomial multiple of xuy¬w1
1 ,

w1
G2−−→ w2 ⇔ 1ΓG2

(y1, y2) contains a monomial multiple of yw1
1 y¬w2

2 ,

. . .

wr−1
Gr−−→ v ⇔ 1ΓGr−1

(yr−1, z) contains a monomial multiple of y
wr−1
r−1 z¬v.

(⇒) If I contains a monomial multiple of (5), there exists one monomial per
each of 1ΓG1

,1ΓG2
, . . . such that all these monomials multiply to (5). Clearly,

there must exist w1, . . . , wr−1 such that 1ΓG1
(x, y1) contains a monomial mul-

tiple of xuy¬w1
1 , 1ΓG2

(y1, y2) contains a monomial multiple of yw1
1 y¬w2

2 (to get
ym1
1 ), etc.

(⇐) If there exists a trail of the form (6), then there exist corresponding
monomial multiples of xuy¬w1

1 , yw1
1 y¬w2

2 , etc. that obviously multiply to a mono-
mial multiple of (5). ��
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This theorem gives an alternative view on division property trails: a divi-
sion property trail u

G1−−→ . . .
Gr−−→ v is equivalent to a chain of monomials, one

from each of the graph indicators of the composed functions G1, . . . , Gr, such
that, in their product, all intermediate variables are fully saturated, the input
variable has an exponent succeeding u and the output variable has an exponent
succeeding ¬v. In particular, division property allows to derive an upper bound
on monomials occurring in the graph indicator of the composition.

While an existence of such a trail/a monomial chain does not mean that 1ΓF

in fact contains a monomial multiple of xuy¬v (due to the possible cancellations),
the inverse is true: for 1ΓF

to contain such a monomial multiple, there must exist
a corresponding division trail.

We conclude that traditional bit-based division property is optimal in deter-
mining upper bounds on monomials in 1ΓF

as long as cancellations in the product

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr
(yr−1, z)

are not considered.

4 CNF Modeling of a Convex Set

In this section, we show that the convex structure of division property transi-
tions from Subsect. 3.6 naturally lends itself to CNF models. We recall that it is
sufficient to derive constraints removing the lower set IS and the upper set RS

(or R′
S).

Remark 8. Any CNF formula can be trivially converted to a MILP system,
however MILP inequalities are generally more expressive and one can expect
a significant reduction in the number of inequalities compared to the number
of clauses. Recently, Udovenko [37] developed techniques for constructing small-
est MILP models for Boolean functions. In particular, an efficient approach for
modeling monotone Boolean functions (lower/upper sets) is given and can be
directly applied to remove the lower set IS and the upper set RS/R′

S optimally
(separately).

Throughout this section, we consider division property transitions in the
“directionless” (symmetric) way: for a transition u

S−→ v, we consider the vector
(¬u, v). This is done for convenience and has no extra cost since the variable
negation is free in CNF/MILP models.

4.1 Basic Modeling

A lower set W is called principal if it is spanned by a single element: W =
LowerClosure ({w}). Such a lower set can be removed by one CNF clause pre-
cisely without removing any other point from the hypercube {0, 1}n. In fact,
up to negation of the variables, a principal lower set is exactly what can be
removed by a single CNF clause. It is thus a building block of general CNF
modeling tools such as the Quine-McCluskey algorithm [25,26].
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Proposition 10. Let w ∈ F
n
2 . Then,

x /∈ LowerClosure ({w}) ⇐⇒
∨

i:wi=0

xi

x /∈ UpperClosure ({w}) ⇐⇒
∨

i:wi=1

¬xi.

Since a general lower set is a union of principal lower sets by definition, it can
be removed by a set of clauses each removing a principal lower set spanned by
one of the maximal elements. The case of an upper set is completely analogous.

Corollary 2. The set MS of minimal division property transitions can be
modeled by |MaxSet (IS)| + |MinSet (RS)| constraints (CNF clauses or integer
inequalities).

It is also easy to show that such CNF model is optimal (in the number of clauses),
although separately for each of the two sets IS and RS . The proof is omitted
due to the page limit.

Proposition 11. Let L ⊆ F
n
2 be a lower set. If a CNF formula precisely removes

L from the hypercube {0, 1}n, then it contains at least |MaxSet (L)| clauses.

We provide the sizes of the relevant sets for a variety of S-boxes in Table 1.
For optimal CNF encodings, we used the Quine-McCluskey algorithm together
with the open source SCIP optimization suite [13] to find/bound the minimum
number of clauses (approach described in [6]).

Example 4. Consider the AES S-Box S : F
8
2 → F

8
2 as an example. Its division core

DivCoreS contains 122 vectors (u, v) ∈ F
8
2 × F

8
2 with (wt(u),wt(v)) distributed

as follows:
(0, 8) : 1, (1, 1) : 25, (1, 2) : 40, (1, 3) : 6,
(2, 1) : 26, (2, 2) : 4, (3, 1) : 19, (8, 0) : 1.

Here, weights (8, 0) and (0, 8) correspond to the vectors (1, 0), (0, 1) which in
turn correspond to the division property of the domain and of its image. The
set MaxSet (IS) contains 87 maximal invalid vectors, the MinSet (RS) contains
319 minimal redundant vectors. Therefore, minimal transitions through S can
be precisely described by 406 CNF clauses (and 87 are sufficient at the cost of
allowing redundant transitions). Using the alternative upper bound allows to
further reduce the number to 87 + 274 = 361 clauses.

We compare briefly with other tools/methods. The automated tool Solva-
tore [12] generates 2921 CNF clauses. A tool from Hu-Wang-Wang [21] uses
the STP solver and generates a DNF formula by enumerating all 2001 valid
non-redundant trails. Our approach can be easily adapted to compute two DNF
formulas with much less clauses: 122 + 119 = 241. With the Quine-McCluskey
algorithm (applied to division property in [14]) we obtain the optimal value of
234 CNF and a heuristic value of ≤151 DNF clauses. This is about 2 times
better than our result, showing however that our models are close to optimal



Convexity of Division Property Transitions 349

(in particular, removing invalid and redundant trails separately is done opti-
mally by Proposition 11). Most importantly, Quine-McCluskey is not applicable
to larger S-boxes while our method can produce CNF/DNF models of very good
quality.

Table 1. Sizes of the convex sets relevant for modeling division property for a variety
of S-boxes. MinDPPTS is the set of all minimal division property transitions. DivCoreS
is the compact set containing all the information about division property transitions.
MaxSet(IS) and one of MinSet(RS), MinSet(R′

S) define the number of CNF clauses
sufficient for SAT modeling (see Sect. 4). † since MixColumn of Midori-64/Skinny-64
consist of 4 parallel independent 4-bit maps, the optimal CNF was computed from
concatenating 4 optimal CNF models (28/21 clauses respectively) of each 4-bit block.

Func. S n |MinDPPTS | |DivCoreS | |MaxSet (IS)| |MinSet (RS)| ∣
∣MinSet

(R′
S

)∣
∣ CNF (our) CNF

(opt.)

Present 4 47 16 20 24 24 44 26

Knot 4 49 26 32 29 27 59 40

Ascon 5 190 71 83 93 83 166 115

Keccak 5 137 57 45 75 25 70 50

Fides 6 419 188 146 359 254 400 222

Misty S7 7 1779 436 396 1000 967 1363 607

AES 8 2001 122 87 319 274 361 234

Skinny-128 8 2089 611 193 1383 198 391 246

DryGASCON-
256

9 7983 631 480 1309 552 1032 475

Misty S9 9 27 623 6755 5120 18 575 16 868 21 988 10403-11819

LED MixColumn 16 177 643 913 177 643 913 33 412 334 974 429 33 061 66 473 –

Midori-64 Mix-
Column

16 9 834 496 9 834 496 56 39 337 984 56 112 112†

Skinny-64
MixColumn

16 1 185 921 1 185 921 40 6 324 912 44 84 84†

Midori-64 Super-
Sbox (all keys)

16 14 714 723 2 380 924 1 912 088 6 277 211 4 317 883 6 229 971 –

LED Super-Sbox
(all keys)

16 8 458 909 319 606 321 168 1 119 494 1 261 465 1 440 662 –

LED Super-Sbox
(zero key)

16 8 481 417 382 591 388 134 1 215 435 1 317 330 1 603 569 –

4.2 Cardinality Bounds

Cardinality bounds allow to bound the number of bits equal to 1 among a given
set of variables. A popular CNF construction for encoding cardinality bounds is
due to Sinz [28] and is based on the so-called sequential counters, which encode
addition of variables in the unary representation. Although it requires auxiliary
variables, it is known to perform well on practice, since it is decided by unit
propagation. Cardinality bounds using sequential counters were used recently
for differential/linear trail search using SAT-solvers [30].

Cardinality bounds may be particularly helpful for constraining division
property transitions, as they can remove a large number of transitions at a
very low cost. There are two particular use cases.

The first use is to replace a precise convex upper bound (e.g., MinSet (RS)
or MinSet

(
R̃S

)
) by a simpler (yet possibly imprecise) cardinality upper bound.
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Here, we use the fact that removing precisely all redundant transitions is not
necessary: it is usually done as a heuristic aid for SAT solvers to reduce the
search space. For a function S, this cardinality constraint is given by wt(u||v) ≤
h, where h := maxw∈MS

wt(w) and u, v are the division property variables
modeling the transition ¬u

S−→ v.
The second use is to supplement precise bounds to allow faster conflicts

during the SAT search. Cardinality bounds allow solvers to quickly skip a
large part of invalid transitions, and to process the remaining precise con-
straints on the remaining smaller search space. In addition to the upper bound
described above, a supplementary lower bound is given by l ≤ wt(u||v), where
l := minw∈MS

wt(w).

The Case of a Linear Map. We consider the particular case of a linear map
S : F

n
2 → F

n
2 . For a minimal transition ¬u

S−−−→
min.

v it is known that wt(¬u) =

wt(v) is necessary but not sufficient. In the symmetric form (u, v), this constraint
becomes

n − wt(u) = wt(v) ⇔ wt(u||v) = n.

A redundant transition (u, v) is such that wt(v) > wt(¬u), implying

wt(u||v) > n.

It follows that redundant transitions RS can be removed with a single cardinality
constraint wt(u||v) ≤ n.

Proposition 12. For a linear map S : F
n
2 → F

n
2 , for some I ⊆ IS, the set

RS ∪ I can be removed with a single cardinality constraint wt(u||v) ≤ n, where
(u||v) ∈ F

2n
2 .

Remark 9. It is natural to use the more strict constraint wt(u||v) = n, since it
may also remove a larger part of IS .

Remark 10. This constraint is equivalent to wt(¬u) = wt(v) and is basic and
well-known in the literature. What is important for our purposes is that it fully
removes RS .

Example 5. Consider the MixColumns matrix of LED [16], M : F
16
2 → F

16
2 (see

Table 1). It is such that:

|MM | = 177 643 913; |MinSet (RM )| = 334 974 429;
|MaxSet (IM )| = 33 412; |MinSet (R′

M )| = 33 061.

Despite a large number of minimal division property transitions (177M), it can
be modeled by only 33k CNF clauses plus a cardinality constraint, which adds
a negligible amount of clauses and auxiliary variables.
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Remark 11. The approach of [21] (using auxiliary variables) allows to model
large linear layers (up to 64 bits), by encoding the submatrix invertability con-
dition in the problem, in a way that requires the SMT solver to find the inverse
matrix. We remark though that it was only presented in the SMT form, not in
pure SAT or MILP.

The advantage of our SAT encoding (which although has a smaller feasible
range of about 16-bit linear maps) is its simpler form and the fact that it can be
decided by unit propagation: given the input and output mask (u, v), the SAT
solver can decide its validity without making further guesses (although at the
cost of verifying a possibly large number of clauses).

4.3 Linear Masks at the Input/at the Output

In Subsect. 3.7, we derived simple conditions for applying linear masks at the
input and/or at the output. We now show how to model these conditions. We
recall that we consider a composition Sout ◦ F ◦ Sin with an input linear mask
α and an output linear mask β. Theorem 3 provides the following necessary and
sufficient conditions (together with the validity of u

F−→ v):

¬u ∈ LowerClosure
(
SuppANF

〈
α, S−1

in

〉)
,

v ∈ LowerClosure (SuppANF 〈β, Sout〉).

These three conditions can be efficiently modeled by CNF/MILP formulas as
was described in Subsect. 4.1.

Moreover, it is sufficient to check if a transition u
F−→ v is valid for any of

maximal exponents ¬u, v in the ANFs of
〈
α, S−1

in

〉
and 〈β, Sout〉 respectively.

However, the maximality of v can not be guaranteed in practice since the corre-
sponding trail u

F−→ v may be redundant, while standard modeling approaches
disallow redundant transitions for efficiency reasons.

For the input case, we can restrict the division property mask of the input
to F to take values only from ¬MaxSet

(
SuppANF

〈
α, S−1

in

〉)
, with the goal of

reducing the search space. Since a max-set is an antichain, it is convex, and can
be modeled by removing the complementary lower and upper bounds. Formally,
define

U := MaxSet
(
SuppANF

〈
α, S−1

in

〉)
,

P := MaxSet
(
UpperClosure (U)

)
,

Q := MinSet
(
LowerClosure (U)

)
.

Then, a vector x ∈ F
n
2 belongs to U (we set x := ¬u) if and only if

(x /∈ LowerClosure (P )) ∧ (x /∈ UpperClosure (Q)),

which can be encoded by |P | + |Q| CNF clauses (or MILP inequalities).
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5 Algorithmic Framework for Dense Sets

5.1 Bitwise Transformations, Lower, Upper, Min-, Max-Sets

We start by introducing a simple yet very generic and powerful tool for manip-
ulating dense subsets of F

n
2 represented by their indicator vectors. This is a

straightforward abstraction of well-known algorithms such as the Möbius trans-
form for computing the ANF, the Walsh-Hadamard transform, sum-over-subsets
technique, etc. The tool is described in Algorithm1.

Algorithm 1. Bitwise multidimensional transform
Input: array X ∈ A2n

, transformation map f : A2 → A2, mask I ∈ F
n
2 set to 1 by

default
Output: in-place transformed array X ∈ A2n

Complexity: O(wt(I)2n) ≤ O(n2n)

1: function Transform[f, I](X)
2: for all i ∈ {0, . . . , n − 1}, s.t. I has i-th bit set do � 0-based
3: for all j ∈ {0, . . . , 2n − 1}, s.t. j has (n − 1 − i)-th bit set do � 0-based
4: (Xj−2i , Xj) ← f(Xj−2i , Xj)

5: return X

Definition 12. Define the following maps with the signature (F2)
2 → (F2)

2:

XOR-up : (a, b) 	→ (a, b ⊕ a),
XOR-down : (a, b) 	→ (a ⊕ b, b),

OR-up : (a, b) 	→ (a, b ∨ a),
OR-down : (a, b) 	→ (a ∨ b, a),
LESS-up : (a, b) 	→ (a, b ∧ ¬a), equiv. b ← b ∧ [a < b],

MORE-down : (a, b) 	→ (a ∧ ¬b, b), equiv. a ← a ∧ [a > b].

Proposition 13. The defined transformations have the following effects:

1. Transform[XOR-up] computes the Möbius transform (involution), i.e. trans-
forms the truth table of a Boolean function into its ANF and vice versa.

2. Transform[XOR-down] computes the involution ParitySet;
3. Transform[OR-up] computes UpperClosure.
4. Transform[OR-down] computes LowerClosure.
5. Transform[LESS-up] ◦ Transform[OR-up] computes MinSet.
6. Transform[MORE-down] ◦ Transform[OR-down] computes MaxSet.

Proof. The proofs can be done by induction on the bit-position. ��
Remark 12. The transformations can be efficiently batched in an efficient bitslice
fashion, by lifting the set A and operations from F2 to F

t
2 where t is the number

of considered sets.
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5.2 Division Property of a Set

Malviya and Tiwari [23] consider the problem of computing the minimal division
property of a given (multi)set X. They claim classical complexity O(n2n|X|) and
quantum complexity O(n2n

√|X|).
The relation between the division property and the set indicator given

by Proposition 4 together with the fast MinSet algorithm from the previous sub-
section lead to a simple and efficient classical algorithm with complexity O(n2n)
for the problem (see Algorithm 2).

Algorithm 2. Minimal division property of a set
Input: X ⊆ F

n
2

Output: MinDP (X) ⊆ F
n
2

Complexity: O(n2n)

1: G ← indicator vector of X (∈ F
2n

2 )
2: G ← Transform[XOR-down] (G) � parity set of X
3: G ← Transform[OR-up] (G) � upper set of parity masks
4: G ← Transform[LESS-up] (G) � min-set of parity masks
5: return G � MinDP (X)

5.3 Division Core and Propagation Table

Let S : F
n
2 → F

m
2 . By definition, DivCoreS := MinDP (ΓS), which can be com-

puted by Algorithm2. This approach leads to time and memory complexity
O((n + m)2n+m). In particular, for bijective S-Boxes we get the time complex-
ity O(n22n). The complexity is independent of the S-box and of the size of the
division core.

Recall that the set of all valid division property transitions through S can
be computed as (1, 0) ⊕ UpperClosure (DivCoreS). To obtain the usual reduced
division property propagation table (i.e., all minimal transitions), we can simply
compute partial min-set on the second coordinate. See Algorithm 3 for details.

Algorithm 3. Division property propagation table (only minimal transitions)
Input: S : F

n
2 → F

m
2 as a lookup-table

Output: reduced DPPT of S: D =
{

(u, v) ∈ F
n
2 × F

m
2 | u

S−−−→
min.

v
}

Complexity: O((n + m)2n+m)

1: D ← DivCoreS � Algorithm 2 on ΓS , without redundant steps 3-4
2: D ← Transform[OR-up] (D) � full DPPT (up to ¬u)
3: D ← Transform[LESS-up, (0, 1)] (D) � min-set on v; = MS from Definition 11
4: return D ← (1, 0) ⊕ D � compute ¬u
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This in particular achieves “quadratic” complexity O(n22n), an improvement
over the “cubic” complexity O(23n) claimed in [11] for computing the DPPT
using algorithm from [38] (in the case m = n).

Finally, from the set MS computed by Algorithm 3 we can easily compute
the necessary min-/max-sets and respective complementary sets required for
modeling:

IS = UpperClosure (DivCoreS),

RS = IS ∪ MS ,

R′
S = LowerClosure (DivCoreS).

For the compact CNF modeling (Sect. 4), it is left to compute MaxSet (IS) and
MinSet (RS) (or MinSet (R′

S)).

5.4 Compact Representation (Advanced Algorithm)

In this subsection, we describe a breadth-first search algorithm which performs
much better for “heavy” functions, i.e., those having many high-degree monomi-
als in most products of output bits, implying a small size of the division core and
a small number of non-trivial invalid transitions. In this algorithm, we assume
access to the lookup table of the function and the memory footprint is of the
same magnitude, so this approach is limited up to about 32-bit functions on
practice.

We restrict the description to the case of a bijective function S : F
n
2 → F

n
2

for simplicity, as non-bijective functions would require more fine-grained case
analysis due to possible degeneracy.

We consider first vectors (u, v) ∈ DivCoreS with u = 0 or v = 0. The case
of v = 0 corresponds to the minimal division property of the domain which
leads exactly to (1, 0) ∈ DivCoreS . The case of u = 0 can be exhausted by
computing the minimal division property of the image of S (more precisely, of
the set of its elements with odd multiplicity). For bijective S this case leads
to only (0, 1) ∈ DivCoreS . Note that all predecessors of these vectors define
invalid transitions (have parity zero), and should be explicitly excluded to avoid
enumeration of the 2 · 2n “trivial” pairs.

We are going to explore all possible nonzero u, v in a breadth-first manner
(from low weight to high weight), until we obtain the full division core of S.
Given a pair (u, v) of unknown parity, and a promise that all its strictly preceding
vectors have parity zero (due to the exploration order), we can compute its parity
by computing the parity set of (the support of) Sv or of (S−1)u; we choose the
one with the minimal weight (wt(v) or wt(u)). The parity set of, say, Sv, may
provide many other vectors (u′, v) ∈ DivCoreS . In particular, we consider all
minimal u′ in the parity set as candidates and save the corresponding pairs
(u′, v) in a set D. Although D may also include redundant vectors, each vector
of DivCoreS will be present in one of such lists of candidates.

After the main step, if (u, v) has parity one, we add it to the division core
(it is guaranteed to be minimal due to the exploration order) and continue with
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the next pair in the queue. Otherwise, if (u, v) has parity zero, we consider
its successors for adding to the exploration queue. However, for each pair, we
maintain a counter of its direct predecessors that were visited and have parity
zero. The pair is added to the queue only when the counter is full, i.e. when
the last direct predecessor is visited. This allows to avoid duplicate processing
of (u, v), and, more importantly, ensures that all predecessors have parity zero
and the new pair is not redundant. In this way, when a new pair is visited and
it belongs to the list D of parity-1 pairs, we know that this pair is minimal and
so belongs to the division core.

The algorithm effectively explores full set IS and the bordering subset of
UpperClosure (DivCoreS) (in fact, among them, only elements of DivCoreS are
visited), which is at most 2n times larger. Note that all the predecessors of (1, 0)
and (0, 1) are excluded. Let

I×
S := {(u, v) ∈ IS | u �= 0, v �= 0} .

Then, the algorithm performs at most 2n
∣
∣I×

S

∣
∣ iterations of the algorithm. Each

iteration is dominated by an n-bit ParitySet computation together with its min-
set (time n2n). The total time complexity is upper bounded by O (∣

∣I×
S

∣
∣ n22n

)
.

Note however that, due to maintaining the list D of parity-1 pairs, many visited
pairs do not incur a parity set computation. In addition, by storing masks u and
v for which the parity sets were already computed, we can avoid recomputing
them for many pairs from I×

S as well. We conclude that the algorithm is expected
to be much faster on practice.

Due to the page limit, the pseudocode is given in the full version of this paper
[36].

Computing complete compact representation. Since the algorithm effec-
tively enumerates full I×

S , its max-set can be computed by marking redundant
vectors during the enumeration (in addition, we need to manually add direct
predecessors of (0, 1) and (1, 0) to avoid enumerating their exponentially-sized
lower sets). For the compact modeling, it is left to compute MinSet (RS). For
this purpose, we derive an alternative expression for RS .

Proposition 14. Let S : F
n
2 → F

M
2 . Then,

RS =
⋃

(u,v)∈DivCoreS

{(u′, v′) ∈ F
n
2 × F

m
2 | u′ � u, v′ � v} .

Proof. Each set in the union defines redundant vectors identified by an element
(u, v) ∈ DivCoreS . Conversely, each redundant vector must have an associated
irredundant vector from (u, v) ∈ DivCoreS . ��

It follows that MinSet (RS) can be computed from DivCoreS by replacing
each vector (u, v) ∈ DivCoreS by the set of vectors (u, v′), where v′ is taken from
direct successors of v (i.e., v′ � v,wt(v′) = wt(v) + 1). However, redundant
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vectors may occur there and a final computation of MinSet is needed. Assuming
sparse DivCoreS , it makes sense to use the naive quadratic MinSet algorithm
instead of the dense one. The final complexity of computing MinSet (RS) is thus
upper-bounded by O(|DivCoreS |2 · n2).

Corollary 3. Let S : F
n
2 → F

m
2 . Then, |MinSet (RS)| ≤ m · |DivCoreS | .

Example 6. We ran the algorithm on a randomly generated 32-bit bijective S-
box. Together with the generation and inversion, it took less than a core-day on
a laptop with 64GB RAM. The resulting numbers are:

|DivCoreS | = 7152, |MaxSet (IS)| = 2958, |MinSet (RS)| = 40 093.

These numbers show that it would even be possible to model such an S-box in a
cipher. Although it is unlikely that such a cipher would be of interest, this proof-
of-concept show the power of the algorithm and of the compact representation to
capture the simplicity of “heavy” S-boxes (i.e., the compactness of the maximal
sets of monomials).

6 Application to LED

Derbez and Fouque [11] increased precision of traditional division property by
two techniques: (1) computing “perfect” division property propagation tables
of Super-Sboxes; (2) checking linear combinations of bits (inside Super-Sbox
boundaries) at the input and at the output. In addition, the authors designed
an ad-hoc search method, since modeling 16-bit S-boxes was not possible with
state-of-the-art techniques. They considered lightweight block ciphers with 4-bit
S-boxes and 16-bit Super-Sboxes, such as Midori64, Skinny-64, LED [16]. Their
approach succeeded for Midori64 and Skinny-64, for which they improved best
integral distinguishers by 1–2 rounds. However, the running time during their
experiments with LED was not reasonable.

In this section, we apply our new framework to handle this case. The best
integral distinguisher for LED is due to Hu, Wang and Wang [21], who managed
to model perfectly the MixColumn matrix of LED, which is MDS. The distin-
guisher covers 7 rounds, with 63 input active bits and full output state balanced.
Full balanced state may hint towards possibility of weaker distinguishers (par-
tially balanced state) on 8 or more rounds. We set to evaluate 8 rounds of LED
using the two techniques by Derbez and Fouque implemented using our advance-
ments. As we shall see, these two techniques are insufficient to find an 8-round
integral distinguisher, if it exists.

All experiments were done on the version of LED with 128-bit key (the key
size affects the constants in the Super-Sboxes).

6.1 Structure of LED and Its Model

The structure of LED is particularly convenient for our analysis. Each
round consists of four standard operations: AddConstants(AC), SubBytes(SB),
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ShiftRows(SR), MixColumns(MC). The state of LED is a 4 × 4 array of 4-bit
nibbles. The key is added only after every 4 rounds (a step).

The 8-round LED has a natural Super-Sbox decomposition: 4 rounds of
Super-Sboxes (SB → MC → AC2i+1 → SB, applied on columns) with the
SR → MC → SR linear layers in-between. For example, the following equa-
tion describes the Super-Sbox decomposition of the first two rounds (note that
SR commutes with SB):

AC0 → SB → SR → MC → AC1 → SB → SR → MC

= AC0 → SR → (SB → MC → AC1 → SB) → SR → MC.

The key addition happens outside of the Super-Sboxes and thus does not affect
the modeling. However, the constant addition AC does affect Super-Sboxes,
and we compute the division property transitions for each Super-Sbox sepa-
rately, using the actual constant in the middle. In the following subsection, we
describe modeling details for the two main components: Super-Sboxes and the
MixColumns linear layer.

6.2 Modeling Details

As our theoretical analysis shows that division property can be very naturally
modeled by pure CNF formulas, we set to use a bare SAT-solver (not an SMT-
solver). We chose Kissat [2], a recent solver which showed strong performance
at a recent SAT competition [19].

We modeled 2 Super-Sbox rounds with SR ◦ MC ◦ SR layers in-between and
outside. The missing 2 Super-Sbox rounds are treated by the linear mask analysis
(Subsect. 3.7) and by trivial Super-Sbox transitions 116 → 116, 016 → 016. Each
such model took less than a few minutes to solve on a laptop with an Intel(R)
Core(TM) i5-10210U CPU.

Modeling MixColumn matrix. The MixColumn matrix of LED is an MDS matrix
M mapping F

4
24 to itself. We apply directly our algorithms to compute the com-

plementary lower and upper bounds on division property transitions. The lower
bound (removing invalid transitions) consists of 33 412 vectors, the upper bound
(removing redundant transitions) contains 334 974 429 vectors, the alternative
upper bound contains 33 061 vectors. The total number of minimal transitions is
177 643 913. We observe that 33k clauses is reasonable for the lower bound. How-
ever, the upper bound is unnecessarily large. Therefore, we used the cardinality
constraint described in Subsect. 4.2 to remove RM and used the 33k clauses to
remove IM .

Modeling Super-Sbox. We provide numbers for the case of Super-Sbox with the
zero constant; the cases of other constants are similar. The division core contains
382 591 vectors and the number of valid minimal transitions is 8 481 417; the
complementary lower and upper bounds contain 388 134 and 1 215 435 vectors
respectively. These number are rather large, but still in a feasible range of modern
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SAT solvers. We used the 388 134 clauses to remove invalid trails precisely, while
we used a cardinality bound to remove a part of redundant trails, to avoid using
the 1 215 435 clauses per Super-Sbox for removing all redundant trails.

6.3 Exhausting All Linear Masks

We applied the approach from Subsect. 3.7 to search for distinguishers with linear
masks applied to an input and an output Super-Sbox.

Naive approach would be to exhaust all possible linear masks α, β and check
the existence of respective distinguishers. However, as noticed by [11], many lin-
ear masks are redundant: an absence of distinguishers for one mask may imply
absence of distinguishers for others, making them redundant (in case a distin-
guisher is found, redundant masks may be re-evaluated if needed).

On practice, many linear combinations turn to have the same set of maxterms
in the ANF. For example, for the Super-Sbox of LED with the zero constant,
the number of unique sets of maxterms among linear combinations of outputs is
only 1785 (out of 65 535). The first step is thus to remove masks with duplicate
sets of ANF maxterms.

From Theorem 3 it is clear that a mask is redundant if the lower closure of the
respective ANF (i.e., that of

〈
α, S−1

in

〉
or 〈β, Sout〉) covers the lower closure of the

ANF of another mask. As a result, we only need to consider masks corresponding
to minimal by inclusion lower closure of the ANF. In the example constant-0
Super-Sbox of LED, the 1785 maxterm-unique ANFs reduce further to 255 (by a
pairwise comparison). For the Super-Sbox’ inverse, among 2021 maxterm-unique
combinations again only 255 are minimal by (lower closure) inclusion.

Still, a straightforward search (as done in [11] for other ciphers) would require
solving 16×255×255 ≈ 1 million (4×4 combinations of input and output Super-
Sboxes) of search instances. This may be a feasible goal but it would require a
significant computational effort. We describe a natural optimization that shows
to be particularly helpful in the case of LED.

Reusing trails. Usually, one may expect that many linear combinations of
output bits have similar ANFs. Therefore, a trail ¬u

F−→ v satisfying conditions
of Theorem 3 for a pair of masks (α, β), may satisfy the conditions for some
other pairs of masks (α′, β′) as well, even if both pairs correspond to unique and
non-redundant ANFs. This condition can be checked much faster than solving a
SAT instance. This suggests the following optimization: before solving the SAT
instance for a pair of masks (α, β), check whether any previously found trail
satisfies the condition.

This approach works well for the 8-round LED. For each combination of
input/output Super-Sbox, about 30 trails are sufficient to show that the Super-
Sbox model of 8-round LED does not allow to find integral distinguishers. All
computed trails are provided in the code repository of the paper. An example
trail is provided in Fig. 1.
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α,x

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

SuperSbox

1111 1111 1111 1111

0010 1111 1111 1111

1111 1111 1111 1111

0110 1111 1111 1111

SR MC SR

1111 1011 1111 1101

1111 1111 1101 1111

1111 1111 1111 1111

1101 1111 1101 1111

SuperSbox

0100 0011 1000 1000

0001 1111 0100 1111

1111 0001 0100 1010

1111 1111 0110 0100

SR MC SR

0000 0000 1111 0000

0111 1011 0000 0011

1011 1101 1010 1101

0011 1101 0111 0111

SuperSbox

0000 0000 0100 0000

1010 0000 0000 0100

0000 0000 0000 0000

0000 0010 0010 0000

SR MC SR

0000 0000 0000 0000

0000 0000 0000 0000

1011 0000 0000 0000

0111 0000 0000 0000

SuperSbox 11

β,x

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

Fig. 1. Example division trail from the 1st input Super-Sbox to the 1st output Super-
Sbox. Covers input masks α such that the ANF of

〈
α, SSB−1

0,0(x)
〉

contains a multiple
of x4x5x7x12x15 (zeroes in the first column after the first Super-Sbox), output masks
β such that the ANF of 〈β, SSB3,0(y)〉 contains a multiple of y8y10y11y13y14y15 (ones
in the first column before the last Super-Sbox).

6.4 Summary

Using the described techniques, we managed to show that integral distinguishers
for the 8-round LED (and, by Proposition 6, for its inverse), if any exists, can not
be found using traditional bit-based division property even with perfect Super-
Sbox modeling and arbitrary linear masks applied to Super-Sboxes at the input
and at the output. To do this, we found a small set of division trails through
8-round LED that, together with Theorem3, proves the claim.
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Abstract. Integral attacks belong to the classical attack vectors against
any given block ciphers. However, providing arguments that a given
cipher is resistant against those attacks is notoriously difficult. In this
paper, based solely on the assumption of independent round keys, we
develop significantly stronger arguments than what was possible before:
our main result is that we show how to argue that the sum of cipher-
texts over any possible subset of plaintext is key-dependent, i.e., the non
existence of integral distinguishers.

Keywords: Block cipher · Integral distinguisher

1 Introduction

As symmetric primitives, due to their performance advantages, are a vital part
of our security building blocks, being able to assess their security is of great
practical importance and theoretical interest. The security of block ciphers, and
actually any symmetric primitive in use, is always the security against concrete
attacks. Two of the most important attacks are certainly differential and linear
attacks. Security arguments with respect to those attacks have been studied
for quite some time already, leading to important concepts like the Markov
model in [16]. Nowadays, we are usually able to bound, under the assumption
of independent round-keys, the probability of a differential characteristic (or the
correlation of a linear characteristic). Those are good, but certainly not fully
satisfactory security arguments, as we often ignore the differential or linear-hull
effect. Stronger arguments, like a bound of the expected differential probability,
require a dedicated design, see e.g. [18] and [8].

Another classical attack vector is integral attacks, which can be traced back
to high-order differentials by Lai [15], and then exploited by Knudsen to be used
in actual attacks [14] as well as the so-called “Square attack” [10]. In a nutshell,
given a block cipher Ek, those attacks work by identifying a subset of plaintexts
M such that summing over the corresponding ciphertexts results in a constant
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sum, i.e.,
∑

x∈M Ek(x) does not depend on the secret key k. Arguments for
security against those attacks, i.e. arguments showing that such a set M should
not exist for a given cipher, are very difficult to obtain. For most ciphers, we do
not have any argument at all and if arguments are given, they only cover very
specific sets M .

In most attacks, M is chosen as a subspace and more specifically by fixing
some bits in the plaintext to constants. This specific choice of M is not at all
necessary for a successful attack, and indeed there are examples of more involved
plaintext sets being used for improved attacks. The main reason for this choice
is the relation to the algebraic degree of the cipher. Indeed, for a cipher of
algebraic degree at most d, taking M as any subspace of dimension larger than d
leads to a successful distinguisher, as the sum is zero. Thus, a first step towards
arguing the security of a block cipher against integral attacks is to show that
its algebraic degree is maximal. However, even this special case was only settled
very recently. For a long time, only upper bounds on the algebraic degree have
been discussed. At ASIACRYPT’20 in [12], it was shown for the first time how to
compute meaningful lower bounds on the degree of round-reduced block ciphers.
Technically, this approach is based on recent progress on the division property
initially introduced in [20].

While [12] demonstrated how to compute lower bounds on the degree for
the first time, several drawbacks remained: It does not allow to exclude integral
attacks and its applicability is limited due to a lack of efficiency. Further, only
bounds for round-reduced variants could be computed.

Limited Arguments. As outlined above, even if the degree is high, there might
still be integral distinguishers and attacks. An integral distinguisher in general
makes use of a fixed set M ⊂ F

n
2 of plaintext values and a bit-mask β such that,

for any key k the value of
∑

x∈M 〈β,Ek(x)〉 is independent of the key. In [12], this
was shown for a natural, but very limited, choice of sets M , where M consists
of just fixing bits in the input. While this is, to the best of our knowledge, the
best argument against integral attacks so far, it is far from being satisfactory. In
particular, it does not capture integral distinguishers where M consists of fixing
linear combination in the input, used in [17] or [19]. More generally, it does not
capture integral distinguishers where M is not a linear subspace, as in [22].

Limited Number of Rounds. The arguments given in [12] allowed to compute
lower bounds on the algebraic degree for a fixed number of rounds. When the
number of rounds is increased, computing the bounds quickly becomes infeasible.
This is in sharp contrast to the expected result. If r rounds of a given cipher
have maximal degree n − 1, it is naturally expected that more than r rounds
have the same degree. While this intuition is probably true in most cases, it is
of course not a sound security argument. Making this argument more precise is
non-trivial. It is clear that in general, given F of degree n − 1, representing the
(fixed-key) first-part of the cipher there always exists a function G such that
G ◦ F is of lower degree than F . Indeed, the easiest example is to choose G as
the inverse of F , in case F is a permutation. One might hope that in the case
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of a keyed permutation, the situation is less bad, as at least the trivial example
above is not applicable anymore. However, even in the keyed case, as we show
in Example 4, there exist permutations F and G such that

deg(G ◦ (F (x) + k)) < min(deg(F ),deg(G)).

That is, the degree of the composition is actually smaller than the individual
degrees, for any key k. This shows that it cannot be excluded simply by assuming
independent round keys that the degree (as a keyed function) decreases.

Lack of Efficiency. The proof of the lower bound of degree proposed in [12]
strongly ties to the division property [20], which is originally a tool to detect
an integral distinguisher. To prove the lower bound, we need to generate a key
pattern whose number of division trails is odd, and countable in practical time.
As pointed out in [12], it is not easy because the number of trails exponentially
increases unless a key pattern is generated in a clever manner. The so-called trail
extension was used to generate such a key pattern and enabled to prove lower
bounds on the degree (especially the number of rounds so that this lower bound
is maximal, i.e. 63), for SKINNY-64, GIFT-64, and PRESENT. On the other hand,
the applicability of the trail extension to other block ciphers is an open ques-
tion. Interestingly, we faced potential difficulties of the trail extension when we
tried expanding applications (the tweakable block cipher CRAFT as an example).
The number of trails exceeds the practically countable range quickly, and it is
unfeasible to prove a lower bound on the degree of CRAFT.

Our Contribution. In this paper we derive strong and tight bounds against
integral distinguishers for several block ciphers. The only assumption on which
we rely for our bounds is having independent-round key, i.e., independent round
keys are XORed with the full state. Our bounds are strong as we show that for
a cipher Ek, the sum

∑
x∈M 〈β, Ek(x)〉 is key-dependent for any possible set M

(excluding only the whole input space and the empty set) and any possible non-
zero mask β. We refer to this as the integral-resistance property . Our bounds are
tight as (in most cases) the minimal number of rounds where we can show the
non-existence matches the best known distinguishers. Our arguments extend to
an arbitrary number of rounds greater than that.

First, we fix our notation and recall the basic techniques in Sect. 2. We
develop the necessary theory to achieve the strong arguments in Sect. 3. To
formalize the strong arguments, which means the guarantee of the non-existence
of integral distinguishers under the sole assumption of independent round keys,
we introduce the Proposition. We develop the theoretical background to utilize
the division property, for not only showing a lower bound of the degree of a
cipher as in [12], but to show the Proposition.

In Sect. 4 we study how adding more rounds (separated with a key addition)
will affect the algebraic degree, the minimum degree, and the strong argument
against integral distinguishers. For the minimum degree and the strong argu-
ment, we are able to show that adding (keyed or un-keyed) rounds is never a
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problem, as the minimum degree never decreases and the strong argument never
vanishes when doing so. The algebraic degree on the other hand potentially
decreases, as also sketched above. Here we are able to present efficiently com-
putable criteria on the S-box that allow to exclude such undesirable behavior.

The drawback of the lack of efficiency is handled in Sect. 5. We show that,
maybe counter-intuitively, a suitable rewriting of the cipher and in particular the
S-box, can have a significant effect on the running time of the techniques used in
[12]. We present (heuristic) conditions on how to choose a suitable description
of the cipher that allows to keep the number of division trails reasonably low -
a fact that is crucial as those have to be enumerated.

Finally, in Sect. 6 we apply the theory and tools developed to a set of ciphers.
Besides the ciphers treated in [12], and which present a large fraction of the prim-
itives used in the running NIST lightweight competition, we added a discussion
of CRAFT [5], which was previously out of reach and a discussion of the ciphers
SIMON and Simeck as examples of non-SPN ciphers. We assume independent
round keys for all ciphers. Further, for GIFT-64 and SKINNY-64, we assume,
contrary to the specification, a key addition on the full state.

For all those applications we are able to show the non-existence of integral
distinguishers. Interestingly, except for GIFT-64 and PRESENT, our result matches
the best known attacks tightly, as can be seen in Table 1.

We finally emphasize the meaning of our results. Our results guarantee that
improving integral distinguishers is impossible under our assumption. This is
strong claim compared to heuristic attack failure. For example, for CRAFT, we
guarantee no integral distinguisher for 14 rounds and more. Thus any such distin-
guisher would have to violate our assumptions. In other words, it has to exploit
the key scheduling. For SKINNY-64 and GIFT-64 our results are slightly weaker
compared to the other applications because here round keys are not XORed
with the whole state in both ciphers. Room of improvements still remains with-
out exploiting key scheduling, but it must exploit the fact that the round key is
XORed with the half of the state only.

2 Preliminaries

In this section, we are going to recall the definitions and the different notations
of degree that are commonly used for Boolean functions. We also recall what was
shown in [12] and briefly explain the necessary background on division property
to explain how this was done technically.

2.1 Degree of Keyed Functions - Definitions and Results

A block cipher can be seen as a family of (keyed) vectorial boolean permutations,
that is, bijective functions Ek : Fn

2 → F
n
2 with k ∈ F

m
2 . We can represent such

functions with their algebraic normal form (ANF)

Ek(x) =
∑

u∈F
n
2

pu(k)xu
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Table 1. Number of rounds of the best known integral distinguisher (together with a
reference for this) vs. the number of rounds we need to ensure the Propositionunder
the assumption that independent round keys are XORed to the full state. Numbers in
red indicate are tight results.

Cipher Known integral distinguisher Integral-resistance property

SKINNY-64 12 [11] 13

CRAFT 13 [5] 14

GIFT-64 10 [2] 12

PRESENT 9 [23] 13

SIMON32 15 [21] 16

SIMON48 16 [23] 17

SIMON64 18 [23] 19

SIMON96 22 [23] 23

SIMON128 26 [23] 27

Simeck32 15 [21] 16

Simeck48 18 [23] 19

Simeck64 21 [23] 22

with xu =
∏

i xui
i and pu(k) are functions pu : Fm

2 → F
n
2 mapping keys to values

in F
n
2 . We define the algebraic degree of Ek as the degree in the input variables

x, that is, the algebraic degree deg(Ek) is defined as

deg(Ek) := max
u

{wt(u) | pu �= 0},

where wt(u) denotes the Hamming weight of u, i.e. the number of non-zero
coordinates of u.

The minimum degree of Ek, is defined as the minimum degree over all non-
zero component functions 〈β,Ek〉

minDeg(Ek) = min
β �=0

deg(〈β,Ek〉).

Until recently, getting meaningful lower bounds for both the algebraic degree
and the minimum degree was deemed essentially impossible for block ciphers
of relevant size (i.e. at least 64-bit block size). However at ASIACRYPT’20,
Hebborn et al. [12] managed to obtain such lower bounds at least for round-
reduced variants. The main idea is that to show a lower bound d on the algebraic
degree of Ek, one “simply” needs to show that there exists a u ∈ F

n
2 such that

wt(u) ≥ d and pu �= 0. If we denote the coefficients of pu by λu,v ∈ F
n
2 , that is,

Ek(x) =
∑

u∈F
n
2 ,v∈F

m
2

λu,vxukv,

this is the same as finding a u ∈ F
n
2 with wt(u) ≥ d and v ∈ F

m
2 such that

λu,v �= 0, which is equivalent to pu �= 0.
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Finally, they also introduced an even stronger notion, namely the appearance
of all maximum-degree monomials, which is that for any given monomial xu of
algebraic degree n−1, and for any component function 〈β, F 〉, there always exists
at least one key k such that the monomial xu appears in the ANF of 〈β,Ek〉.

However this paper comes with significant limitations. It was shown that hav-
ing the all maximum-degree monomial property allows to rule out basic integral
distinguishers. Indeed, it can only rule out distinguishers constructed with a set
of plaintexts M built as an affine space of the form

M = {x ∈ F
n
2 s.t. ∀i ∈ I, xi = ci},

where I is a subset of {1, . . . , n} and ci are fixed constants in F2. On the other
hand, the case presented in [17], where the input set is an affine space with a
more convoluted structure, is not. For example, already the affine space

M = {x ∈ F
n
2 s.t. x0 + x1 = 0},

is out of scope, not to mention arbitrary subsets.
Despite these limitations, we can use the core idea of their work, which is,

after explaining how to compute such a λu,v, to decide how to choose these u
and v, allowing to actually compute λu,v in practical time so that we can prove
the various lower bounds and properties. We give more details about this in
Sect. 2.3. Before that, in the next section we first give a high-level overview of
the main tool used in their work, that is, division property.

2.2 High-Level Summary of Division Property

After the division property was first proposed in [20], many follow-up works
have been proposed [7]. In [12], the various notations, definitions, and theorems
about the division property were unified by using the parity set, which was used
as another view of the division property in [7]. Here we briefly recall the main
definitions and connections with the algebraic normal form.

Definition 1 (Parity Set). Let X ⊆ F
n
2 be a set. We define the parity set of

X as

U(X) :=

{

u ∈ F
n
2 such that

∑

x∈X

xu = 1

}

.

The addition of two subsets X,Y ⊆ F
n
2 is defined by

X + Y := (X ∪ Y) \ (X ∩ Y).

In other words, we view the set of all subsets of F
n
2 as a binary vector space

of dimension 2n, and this addition is isomorphic to adding the binary indicator
vectors of the sets. From this perspective, for Xi ⊆ F

n
2 ,

U
(∑

Xi

)
=

∑
U (Xi)
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holds, i.e. U is a linear mapping. Moreover, it was shown in [7] that there is a
one to one correspondence between sets and its parity set. That is the mapping
U : X �→ U(X) is a bijection and actually its own inverse, i.e., U(U(X)) = X.

We next define the propagation as follows.

Definition 2 (Propagation). Given F : Fn
2 → F

m
2 and a ∈ F

n
2 , b ∈ F

m
2 , we

say that the division property a propagates to the division property b, denoted
by a

F−→ b if and only if b ∈ U(F (U({a}))).

Here the image of a set X under F is defined as

F (X) :=
∑

a∈X

{F (a)},

that is again using the addition of sets as defined above. Given U1 = U(X), for
any function F , U2 = U(F (X)) is evaluated as

U2 = U(F (X)) =
∑

x∈X

U(F ({x})) =
∑

a∈U(X)

U(F (U({a}))) =
∑

a∈U1,a
F−→b

{b}. (1)

To determine U2 after applying the function F , it is enough to consider what
happens with individual elements of U1 to start with. Again, we emphasize that
the sum in Eq. 1 is modulo two, that is, if an element appears an even number
of times on the right side, it actually does not appear in U2. Note that the
propagation rules shown in [21] can be proven by assigning concrete operation
to F . More generally, the propagation for any function F is described as follows.

Proposition 1 ([12]). Let F : Fn
2 → F

m
2 be defined as F (x) = y. For a ∈ F

n
2

and b ∈ F
m
2 , it holds that a

F→ b if and only if yb contains the monomial xa.

We now generalize the definition above to the setting where F is actually
given as the composition of many functions as F = FR ◦ · · · ◦ F2 ◦ F1.

Definition 3 (Trail). Given F : Fn
2 → F

n
2 as F = FR ◦ · · · ◦ F2 ◦ F1, and

a0, . . . , aR ∈ F
n
2 we call (a0, . . . , aR) a (division) trail for the compositions of F

into the Fi if and only if

∀i ∈ {1, . . . , R}, ai−1
Fi−→ ai.

We denote such a trail by a0
F1−→ a1

F2−→ · · · FR−−→ aR.

Using the same considerations as in Eq. 1, we can now state the main reason of
why considering trails is useful.

Theorem 1 ([12]). Given F : Fn
2 → F

n
2 as F = FR ◦ · · · ◦ F2 ◦ F1, and X ⊆ F

n
2 .

Then
U(F (X)) =

∑

a0,...,aR,a0∈U(X),a0
F1−→a1

F2−→···
FR−−→aR

{aR}

Finally, we show the link between the division property and the ANF.
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s0 f
s1

. . . f
sR

k1 kR−1

uR = eiu1
u

v1 vR−1

Fig. 1. Notations for the trails of a key-alternating block cipher, where the terms in
red are the parity-set vector of the corresponding state

Corollary 1 ([12]). Let F : Fn
2 → F

n
2 be a function with algebraic normal form

F (x) =
∑

u∈F
n
2

λuxu

where λu = (λ(1)
u , . . . , λ

(n)
u ) ∈ F

n
2 . Furthermore, let X be the set such that U(X) =

{�}. Then

λ
(i)
� = 1 ⇔ ei ∈ U(F (X)) ⇔ #{a1, . . . , aR−1|� F1−→ a1

F2−→ · · · FR−−→ ei} = 1 mod 2

2.3 Proof of a Lower Bound on the Degree and Finding Key
Patterns

Now that we are equipped with the results from the previous section, we can give
more details about the work from [12] where the authors gave lower bounds on
the algebraic degree and minimum degree of block ciphers, as the techniques we
use in the next section to give strong arguments against integral distinguishers
strongly rely on their results. We put ourselves in the context of key-alternating
block ciphers, depicted in Fig. 1. We assume that we have a round function f ,
and the block cipher E is built by alternating applications of f with a round key
addition (with an XOR) between them. As in [12], we assume that the round
keys are independent from each other. The internal states are thus denoted by
s0, . . . , sR, where R is the number of rounds, s0 is the input (plaintext) of the
block cipher and sR the output (ciphertext). The round keys are denoted by
k1, . . . , kr−1. The key length m is (r − 1)n.

As mentioned in Sect. 2.1, showing a lower bound d on the algebraic degree
of a block cipher is equivalent to exhibiting vectors u ∈ F

n
2 of weight at least

d and v ∈ F
m
2 (where m is the key length) so that λu,v is non-zero, which in

particular means that one coordinate λ
(i)
u,v is equal to 1. As each round key is

independent, we can write v as (v1, . . . , vR−1) so that kv = kv1
1 kv2

2 . . . k
vR−1
R−1 .

According to the previous section, proving that λ
(i)
u,v = 1 is equivalent to

showing that the number of trails (u, v) E−→ ei is odd. We take the same denom-
ination as in [12], and call u the input pattern, v the key pattern and uR = ei

the output pattern. As mentioned in Sect. 2.1, to get lower bounds on the mini-
mum degree, instead of showing that a single λ

(i)
u,v is equal to 1, we now need to
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compute the value of several of these λ
(i)
u,v so that we end up with a set of λu,v

which spans a vector space of dimension n.
In both cases, the main goal is to find (several) u and v so that we can

compute the coefficients λ
(i)
u,v in practical time, which according to the previous

section, means being able to enumerate all corresponding trails. The core of the
work in [12] is thus to give a (heuristic) algorithm to determine which u and v to
choose so that we can actually enumerate all of these trails in a reasonable time.
As we also need to compute such λ

(i)
u,v for our results, we give a quick overview

of their algorithm and refer the reader to the full paper for more details. Their
main observation is that having a key pattern with a high weight tends to lower
the resulting number of trails, which is quite interesting since the lower this
number is, the easier (and quicker) enumerating them should be. However, the
naive idea of simply maximizing the weight of the key pattern is not enough,
and thus they used the following strategy. We start by fixing the input pattern
u and output pattern uR = ei, and focus on finding v = (v1, . . . , vR−1) so
that the number of trails is reasonably low. Starting from uR, we first search
for a (partial) key pattern vR−1 so that the number of trails (uR−1, vR−1) →
ei is odd and low (optimally, only one trail), maximizing the weight of the
(partial) key pattern vR−1 as it should help minimize the number of trails. After
finding such a vR−1, we now search in the same way for a partial key pattern
vR−2 so that again, the number of trails (uR−2, vR−2, vR−1) → ei is odd and
low (again, optimally, only one trail). The authors observed that this “local
optimization” strategy seems to fail if we keep going too close to the first round.
Thus, we only keep doing this up to some round “in the middle” Rmid , leading
us to a partial key pattern (vRmid

, . . . , vR−1) so that the number of trails from
(uRmid

, vRmid
, . . . , vR−1) to ei is odd and low. After that, we directly search for

the remaining parts of the key pattern (v1, . . . , vRmid−1) so that the number of
trails from (u, v1, . . . , vRmid−1) to uRmid

is odd and low, and finally verify that the
number of trails (u, v1, . . . , vR−1) → ei is still odd. If so, we proved that λ

(i)
u,v = 1

and keep using the same strategy until we found enough (u, v) as we need. One
limitation is that for various technical reasons, the authors of [12] were limited to
SPN block ciphers, so that they were able to exploit Super S-box representations,
making ciphers like Feistel networks out of reach, and some ciphers (e.g. CRAFT)
did not have a favorable behavior regarding the trail extension technique that we
just summarized. Nonetheless, we actually managed to get results for the Feistel
networks ciphers SIMON and Simeck, as shown in Sect. 6.5, as well as getting
results on CRAFT with new techniques in Sect. 5.

In summary, from [12], we can efficiently compute the value of some coeffi-
cients λu,v, which we will use in the upcoming sections to prove our results.

3 Strong Arguments Against Integral Distinguishers

Here, we are going to derive necessary and sufficient conditions on when integral
distinguishers are not possible. More precisely, we aim at conditions such that
we can conclude that, for a cipher Ek, the sum
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∑

x∈M

〈β,Ek(x)〉

is key-dependent for any possible set M (excluding only the whole input space
and the empty set) and any possible non-zero mask β. Note that this covers
a much larger set of possible integral distinguishers than commonly used in
previous works. Indeed, most classical integral distinguishers build the set M as
an affine space by fixing some bits to a constant value, while the other bits take
all possible values. Some recent works [11,17] extended this further and built
M still as an affine space, but now using constant linear combinations of bits
instead of single bits. What we aim to show here is the most general case as we
are considering any possible set M , including sets without an affine structure.

Before stating the general results and explaining how to verify those effi-
ciently for specific ciphers (under the assumption of independent round keys),
we are going to consider simple examples to clarify the approach beforehand.

For this, we consider Boolean functions only, i.e. only a single output bit.
This can be thought of as investigating a single fixed β. All the examples will
be key-dependent with a key consisting of the three-bit key k = (k0, k1, k2).

Example 1 (Missing High-Degree Terms). As a first example, let fk : F3
2 → F2

be given as

fk(x0, x1, x2) = k1x0x1 + k1x0 + x1 + (k1k2 + k3)x2

While this function reaches the maximal degree (for a balanced function), it
clearly does not satisfy the condition that

∑
x∈M fk(x) is key-dependent for any

non-trivial M . Indeed, considering simply M = {000} leads to a key-independent
sum, simply as the constant term of fk is key-independent. When considering
a version of fk using an additional whitening key h = (h0, h1, h2) defined as
fh,k(x) = fk(x + h), we get the polynomial expression

fh,k(x) = k1x0x1 + (k1h1 + k1)x0 + (k1h0 + 1)x1

+ (k1k2 + k3)x2 + (k1k2h2 + k1h0h1 + k1h0 + k3h2 + h1)

which now does contain a key-dependent constant term, but choosing M as
M ′ = {000, 001, 100, 101} leads to

∑
x∈M ′ fh,k(x) = 0 again. So while lower

degree integral attacks might be avoided by adding whitening keys, high degree
attacks remain unchanged. This is due to the fact that whitening keys do not
affect the coefficients of monomials of maximal degree.

Example 2 (Linearly Dependent High-Degree Terms). Consider now gk as

gk(x0, x1, x2) = k0x0x1 + k1x0x2 + (k0 + k1)x1x2.

Now, all quadratic terms are present. While for gk itself, there are key-
independent coefficients, e.g. the constant term, this is not the case for gh,k

defined as gh,k(x) = gk(x + h). The corresponding expression is
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gh,k(x) =
∑

u

λu(k)

= k0x0x1 + k1x0x2 + (k0h1 + k1h2)x0 + (k0 + k1)x1x2

+(k0h0 + k0h2 + k1h2)x1 + (k0h1 + k1h0 + k1h1)x2

+k0h0h1 + k0h1h2 + k1h0h2 + k1h1h2

and contains every monomial of degree smaller than n with a key-dependent
coefficient. However, there are still sets M such that the corresponding sum is
key-independent. For this example, there are exactly two non-trivial sets namely

M0 = {000, 110, 011, 101} and M1 = F
3
2 \ M0

which yield to constant sums. Concretely we have
∑

x∈M0

gh,k(x) =
∑

x∈M1

gh,k(x) = 0.

The reason for this is that the coefficients of gk (and thus of gh,k) of the mono-
mials x0x1, x0x2 and x1x2 are linearly dependent polynomials. Indeed, the set
can be written as M0 = U({110, 101, 011}). Thus, the sum can be written as

∑

x∈U({110,101,011})
gh,k(x) =

∑

u∈{110,101,011}
λu(k) = k0 + k1 + (k0 + k1),

that is the sum of the linearly dependent coefficients.

Example 3 (Linearly Independent High-Degree Terms). A slight modification of
the second example is given by

�k(x) = k0x0x1 + k1x0x2 + k0k1x1x2

and the version with whitening keys leads to

�h,k(x) = k0x0x1 + k1x0x2 + (k0h1 + k1h2)x0 + k0k1x1x2 + (k0k1h2 + k0h0)x1

+(k0k1h1 + k1h0)x2 + k0k1h1h2 + k0h0h1 + k1h0h2.

As can be checked by running through all possible non-empty sets of size less
than eight, none of the corresponding sums will be key-independent.

The reason why the last example does not lead to any integral distinguishers
is, as we will elaborate in general next, that �k(x) (i) contains all monomials
of degree n − 1 and (ii) the corresponding coefficients are linearly independent
polynomials.

Considering a Single Output Bit. For two vectors u, v ∈ F
n
2 , we define (as

usually in this context)

u � v ⇔ (vi = 1 ⇒ ui = 1).
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Lemma 1. Let fk : Fn
2 → F2 be a family of functions with ANF

fk(x) =
∑

u∈F
n
2

pu(k)xu

and consider a version of fk with an additional pre-whitening key k0, i.e.

fk,k0(x) := fk(x + k0) =
∑

v∈F
n
2

qv(k, k0)xv

Then we have
qv(k, k0) =

∑

u�v

pu(k)ku⊕v
0

Proof. We express qv(k, k0) in terms of pu. We get

fk,k0(x) = fk(x + k0) =
∑

u∈F
n
2

pu(k) (x + k0)
u

=
∑

u∈F
n
2

pu(k)

⎛

⎝
∑

v�u

xvku⊕v
0

⎞

⎠ =
∑

v∈F
n
2

⎛

⎝
∑

u�v

pu(k)ku⊕v
0

⎞

⎠ xv

��
Next, we show a sufficient criterion to ensure that all the polynomials

qv(k, k0) are linearly independent (for v �= (1, . . . , 1)). For this, we denote by
ui the vector in F

n
2 of weight n − 1 such that its ith position is zero. That is, ui

is the bitwise complement of the ith unit vector.

Theorem 2. Let fk and fk,k0 be defined as above. If the polynomials pui
(k) are

linearly independent and p(1,...,1)(k) = 0, then all polynomials

{qv(k, k0) | v ∈ F
n
2 \ {1}}

are linearly independent.

Proof. Assume there are coefficients αv ∈ F2 such that

T =
∑

v∈F
n
2 \{1}

αvqv(k, k0) = 0.

We have to show that this implies αv = 0 for all v. We first rewrite this as

T =
∑

v∈F
n
2 \{1}

αvqv(k, k0) =
∑

v∈F
n
2 \{1}

αv

⎛

⎝
∑

u�v

pu(k)ku⊕v
0

⎞

⎠

=
∑

v∈F
n
2 \{1}

αv

⎛

⎝
∑

v⊕w�v

pv⊕w(k)kw
0

⎞

⎠ =
∑

v∈F
n
2 \{1}

αv

⎛

⎜
⎝

∑

w∈F
n
2

Sup(w)∩Sup(v)=∅

pv⊕w(k)kw
0

⎞

⎟
⎠
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=
∑

w∈F
n
2

⎛

⎜
⎝

∑

v∈F
n
2 \{1}

Sup(w)∩Sup(v)=∅

αvpv⊕w(k)

⎞

⎟
⎠ kw

0

Here, we denote by Sup(x) the set of non-zero bit positions, that is

Sup(x) = {i | x(i) = 1}.

The above implies that T = 0 if and only if for all w ∈ F
n
2 , we have

T (w) :=
∑

v∈F
n
2 \{1}

Sup(w)∩Sup(v)=∅

αvpv⊕w(k) = 0.

We show that this implies αv = 0 by induction on the weight of v.

For wt(v) = 0, that is v being the all-zero vector, consider a vector w with
wt(w) = n−1. That is, w is one of the vectors ui. The set of vectors v such that
Sup(w) ∩ Sup(v) = ∅ contains only the all-zero vector and ei. We thus get,

T ((1, . . . , 1)) = α(0,...,0)pui
(k) + αei

p((1...,1))(k) = 0.

By assumption p((1...,1))(k) is zero, while pui
(k) is not, thus α(0,...,0) = 0.

wt(v) = t ≤ n − 2: We now assume by induction that αv = 0 for all v of weight
smaller than t. We consider a vector w of weight wt(w) = n − (t + 1). Then, the
set of vectors such that Sup(w)∩Sup(v) = ∅ contains one vector of weight t+1,
vectors of weight exactly t, and vectors of weight smaller than t. We split T (w)
accordingly as follows

T (w) =
∑

wt(v)=t+1
Sup(w)∩Sup(v)=∅

αvpv⊕w(k) +
∑

wt(v)=t
Sup(w)∩Sup(v)=∅

αvpv⊕w(k) +
∑

wt(v)<t
Sup(w)∩Sup(v)=∅

αvpv⊕w(k)

By the induction hypothesis, the last part is zero, as αv = 0 for wt(v) < t.
Furthermore, the first part is zero as here v ⊕ w = (1, . . . , 1) and p((1...,1))(k) is
zero, which implies

T (w) =
∑

wt(v)=t
Sup(w)∩Sup(v)=∅

αvpv⊕w(k) = 0.

Now here v⊕w is of weight n−1 and thus is one of the vectors ui. By assumption,
the polynomials pui

are linearly independent and thus T (w) = 0 implies αv = 0
for all v of weight t such that Sup(w)∩Sup(v) = ∅. As w was arbitrary of weight
n − (t + 1) this means that αv = 0 for all v of weight t. ��

This finally implies, as a corollary, that there are no key-independent integral
distinguishers in a very general sense. Any sum of output values, except for the
empty sum and summing all outputs, is key-dependent. More precisely,
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Corollary 2. Let fk and fk,k0 be defined as above and assume that the polyno-
mials pui

(k) are non-constant linearly independent, and p(1,...,1)(k) = 0. Then,
for any proper non-empty subset M ⊂ F

n
2 the sum

∑

x∈M

fk,k0(x)

depends on the value of the key (k, k0).

Proof. It holds that

∑

x∈M

fk,k0(x) =
∑

�∈U(M)

⎛

⎝
∑

x��

fk,k0(x)

⎞

⎠ =
∑

�∈U(M)

q�(k, k0).

As M is non-empty and not the full space, U(M) contains elements of weight
less than n. Then, the theorem above implies that the sum is non-zero viewed
as a polynomial in k and k0 and thus key-dependent as claimed. ��
We like to remark that this property is not only sufficient but also necessary.
Indeed, if the polynomials pui

are linearly dependent, there exist a linear combi-
nation that is constant zero. As the whitening key does not influence the value
of the monomials of degree n − 1, this directly leads to a set M corresponding
to a constant, i.e. key-independent, sum.

Linear Combinations of Output Bits. Let us next consider a family of vec-
torial Boolean functions Ek, with the most important example being a block
cipher. We want to extend the previous arguments to this case. Here, we want
to guarantee that any non-trivial linear combination of output bits is key depen-
dent. This can be done as follows.

Consider Ek : Fn
2 → F

n
2 be a family of functions with ANF

Ek(x) =
∑

u∈F
n
2

Pu(k)xu

where now Pu(k) is a vector in F
n
2 . A linear combination of output bits is specified

by fixing a β ∈ F
n
2 and considering

〈β,Ek(x)〉 = 〈β,
∑

u∈F
n
2

Pu(k)xu〉 =
∑

u∈F
n
2

〈β, Pu(k)〉xu

If we can ensure that, for each fixed non-zero β, the polynomials 〈β, Pu(k)〉 fulfill
the conditions of Corollary 2, we ensured that no integral distinguisher is possible
on any linear combination of output bits.

So, for any non-zero β, the polynomials 〈β, Pui
(k)〉 should be linearly inde-

pendent and 〈β, P(1,...,1)(k)〉 = 0. The latter is true if and only if P(1,...,1)(k) = 0.
Note that in the case of a block cipher, since we need the block cipher to be
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invertible, it can be at most of degree n − 1 and thus we are guaranteed to have
P(1,...,1)(k) = 0. For the former, we require that

∑

i

αi〈β, Pui
(k)〉 = 0 , αi ∈ F2

implies that all αi are equal to zero. This can be rewritten as

0 =
∑

i

αi〈β, Pui
(k)〉 =

∑

i

αi

∑

j

β(j)P (j)
ui

(k)

=
∑

i,j

αiβ
(j)P (j)

ui
(k) =

∑

i,j

γi,jP
(j)
ui

(k)

with γi,j = αiβ
(j) ∈ F2. One way to simplify this equation is to require something

(potentially significantly) stronger, namely that all n × n polynomials

pi,j(k) := P (j)
ui

are linearly independent.

On Key-Patterns and Matrices. Asking that all the polynomials pi,j are
linearly independent can be put into the following context for input-, output-
and key-pattern. Consider the polynomials in its ANF

pi,j(k) := P (j)
ui

=
∑

v∈F
�
2

λ(j)
ui,vkv.

The values of λ
(j)
ui,v are equal to the parity of the number of trails (ui, v) → ej ,

that is trails with input pattern ui, key-pattern v and output pattern ej . If we
want to show that all those polynomials are linearly independent, it is sufficient
(and actually necessary) to find a set of key-patterns v1, . . . vs, with s ≥ n2 such
that the integral-resistance matrix

I(E) =

⎛

⎜
⎜
⎜
⎜
⎝

λ
(1)
u1,v1 λ

(2)
u1,v1 λ

(n)
u1,v1 λ

(1)
u2,v1 λ

(2)
u2,v1 λ

(j)
ui,v1 λ

(n−1)
un,v1 λ

(n)
un,v1

λ
(1)
u1,v2 λ

(2)
u1,v2 · · · λ

(n)
u1,v2 λ

(1)
u2,v2 λ

(2)
u2,v2 · · · λ

(j)
ui,v2 · · · λ

(n−1)
un,v2 λ

(n)
un,v2

...
...

...
...

...
...

...
...

λ
(1)
u1,vs λ

(2)
u1,vs λ

(n)
u1,vs λ

(1)
u2,vs λ

(2)
u2,vs λ

(j)
ui,vs λ

(n−1)
un,vs λ

(n)
un,vs

⎞

⎟
⎟
⎟
⎟
⎠

has full rank. This brings us to the following proposition which we apply in
Sect. 6.

Proposition 2 (Integral-resistance property). Let E : Fn
2 × F

m
2 → F

n
2 be

a block cipher and I(E) be a corresponding integral-resistance matrix. If I(E)
has full rank and k0 is an independent whitening key, Ek(x + k0) fulfills the
Proposition, i.e. for every proper subset M ⊂ F

n
2 and output mask β ∈ F

n
2 the

sum ∑

x∈M

〈β,Ek(x + k0)〉

is key-dependent.
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4 Guarantee for More Rounds

Even if the lower bound on the degree of an R-round block cipher is d, it is not
clear that R+1 rounds have a degree at least d. Indeed, the next example shows
that this is not only non-trivial but simply wrong in general.

Example 4. Let F,G : F3
2 → F

3
2 be permutations of degree 2 defined as follows:

F (x1, x2, x3) :=

⎛

⎝
x1x2 + x3

x1

x2

⎞

⎠ , G(x1, x2, x3) :=

⎛

⎝
x1 + x2x3

x2

x3

⎞

⎠ .

Then we can write the composition of F and G with a key addition in the middle
as

G(F (x) + k) = G

⎛

⎝
x1x2 + x3 + k1

x1 + k2
x2 + k3

⎞

⎠ =

⎛

⎝
x3 + x1k3 + x2k2 + k1 + k2k3

x1 + k2
x2 + k3

⎞

⎠ ,

which has only degree 1 in x.

Thus, the algebraic degree can decrease if the highest-degree monomials are
cancelled out by applying an additional one round. Although it is nontrivial in
general, for some block ciphers (with independent round key assumption), we
show that we can guarantee that the algebraic degree does not decrease. Intrigu-
ingly, as we will see in this section, this argument does not work for all choices
of S-boxes. The case of minimal degree and for the strong arguments against
integral distinguishers, the situation is more clear: Here, as we will detail later
in this section, adding additional rounds never allows to decrease the minimal
degree nor invalidates the strong argument.

4.1 More Rounds for the Algebraic Degree

We split the discussion of how to argue about the algebraic degree into parts,
dealing step by step with the linear layer, a single Boolean function, and finally
an entire round.

The linear layer does not change anything as both the algebraic degree as
well as the minimal-degree are invariant under affine equivalence (see e.g. [9]).

Lemma 2. Let F : Fn
2 → F

n
2 be any function and A : Fn

2 → F
n
2 be an affine,

invertible function, then it holds that

deg(F ◦ A) = deg(A ◦ F ) = deg(F ),
minDeg(F ◦ A) = minDeg(A ◦ F ) = minDeg(F ).

To cover a layer of S-boxes, we consider the general situation of a parallel
application of functions. Since the algebraic degree is the maximum degree of all
output bits, it is enough to look at each output bit separately. Therefore, it is
sufficient to consider the influence of an isolated S-box on the algebraic degree.

As a next step, the following theorem gives efficient to verify conditions on
when appending a single Boolean function does not decrease the algebraic degree.
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Theorem 3. Let a Boolean function f : Fm
2 → F2 be given and consider a round

key k ∈ F
m
2 . Consider the algebraic normal form of the function

fk : Fm
2 → F2, fk(x) = f(x + k)

be given as
fk(x) =

∑

u∈F
m
2

pu(k)xu.

Assume that
pei

(k) /∈ span{pu(k) | u �= ei and u �= 0},

that is pei
is not linearly dependent on the other coefficients when viewed as

a polynomial in k. Then it holds that deg(fk ◦ F ) ≥ deg(Fi) for any function
F : Fn

2 → F
m
2 . That is, the degree of the ith coordinate of F is a lower bound of

the algebraic degree of the composition of F with fk.

Proof. We denote the algebraic normal form of Fi by

Fi(y) =
∑

v∈F
n
2

λvyv

Let the degree of Fi be d. Then, there exists a vector w of weight d such that
λw = 1. We now get

fk(F (y)) =
∑

u∈F
m
2

pu(k)F (y)u = pei
(k)Fi(y) +

∑

u�=ei

pu(k)F (y)u

= pei
(k)

⎛

⎝
∑

v∈F
n
2

λvy
v

⎞

⎠ +
∑

u�=ei

pu(k)F (y)u

= pei
(k)λwyw +

∑

v �=w

pei
(k)λvyv +

∑

u�=ei

pu(k)F (y)u.

By expanding the expression of F (y)u, the last sum can be rearranged into∑
�∈F

n
2

q�(k)y�, where each q�(k) corresponds to a linear combination of the pu(k)
for u �= ei.

fk(F (y)) = pei
(k)λwyw +

∑

v �=w

pei
(k)λvyv +

∑

�∈F
n
2

q�(k)y�

= (pei
(k)λw + qw(k)) yw +

∑

v �=w

(pei
(k)λv + qv) yv.

As pei
(k) is linearly independent from the pu(k) for u �= ei and qw corresponds

to such a sum, the key-dependent coefficient of yw is non-zero. As wt(w) equals
d we conclude that deg(fk ◦ F ) ≥ d. ��
If a given Boolean function f fulfills the conditions of the above theorem, we say
that f preserves the degree of its ith input component.



Strong and Tight Security Guarantees Against Integral Distinguishers 379

Example 5. Consider the Boolean function

f(x) = x0x1x2 + x0x1 + x0x2 + x0 + x1x2 + x2x3 + x3 + 1.

Then

fk(x) = x0x1x2 + (k2 + 1)x0x1 + (k1 + 1)x0x2 + (k1k2 + k1 + k2 + 1)x0

+(k0 + 1)x1x2 + (k0k2 + k0 + k2)x1 + x2x3 + (k0k1 + k0 + k1 + k3)x2

+(k2 + 1)x3 + k0k1k2 + k0k1 + k0k2 + k0 + k1k2 + k2k3 + k3 + 1.

The non-zero non constant coefficients to consider are

p1110(k) = 1 p1100(k) = k2 + 1 p1010(k) = k1 + 1
p0110(k) = k0 + 1 p1000(k) = k1k2 + k1 + k2 + 1 p0100(k) = k0k2 + k0 + k2
p0011(k) = 1 p0010(k) = k0k1 + k0 + k1 + k3 p0001(k) = k2 + 1.

While p1000, p0100, p0010 cannot be expressed as linear combination of the others
(as the quadratic term is unique in the non-constant terms) p0001 actually can
(as it is simply equal to p1100). So in this case we get that

deg(fk ◦ F ) ≥ max{deg(F0),deg(F1),deg(F2)},

and thus f preserves the degree of its first (x0), second (x1) and third (x2) input.
However, it does not always preserve the degree of its last input. Indeed, consider
F on four inputs y0, y1, y2, y3 such that

x0 = F0 = y0y1 x1 = F1 = y2y3 x2 = F2 = y2 x3 = F3 = y0y1y2y3.

Then deg(F ) = 4 while deg(fk ◦ F ) = 2.

Now, this theorem can be used to bound the algebraic degree as summarized in
the next corollary. For this, we denote by S

(r)
k an S-box layer (the r-fold parallel

application of S) together with an independent round key addition k, i.e.

Sk(x1, . . . , xr) = (S(x1 + k1), . . . , S(xr + kr)).

Corollary 3. Consider an S-box S : Fm
2 → F

m
2 . If, for each 1 ≤ i ≤ m there

exists a coordinate function Sj such that Sj preserves the degree of its ith input,
then for all functions F : Fmr

2 → F
mr
2 , we have deg(S(r)k ◦ F ) ≥ deg(F ).

Results. Based on Corollary 3, we computed which S-boxes preserve the degree.
For a single S-box, that can be checked efficiently for all practical relevant values
of n. The sage code that automatically checks the properties is given in the
full version. Especially, if we go through all 302 representatives of all affine
equivalence classes for 4-bit bijective S-boxes, there are 244 such S-boxes that
preserve the algebraic degree, while 58 do not. Some specific examples are that
the S-box of GIFT and PRESENT preserve the algebraic degree, while it is not the
case for the S-box of CRAFT, SKINNY-64 and SKINNY-128. We also tested the
inverse mapping over F2n for n = 3 to n = 8 (e.g. the AES S-box), and each of
them also preserves the algebraic degree. So in particular we see that any bound
on the algebraic degree of the AES implies the same bound for the full AES.
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4.2 More Rounds for the Minimal Degree

To bound the algebraic degree, we had to show that for any input bit i, there is
at least on output bit that preserves the degree of its ith input. For the minimal
degree, the situation is different in two ways. On the one hand, we have to ensure
more. As we want to bound the minimal degree, we have to bound the degree
of any linear combination of output bits. On the other hand, as we are going to
assume that F has a given minimal degree, we know that preserving the degree
of any linear combination of its input is sufficient. Finally, there is no direct
equivalence to Corollary 3 for minimal degree. However, the next theorem (and
its proof) shows that this can be dealt with. Indeed the case for minimal degree
is significantly easier.

Theorem 4. Let F : Fn
2 → F

m
2 be a function and S : Fm

2 → F
t
2 be a function such

that for any non-zero β ∈ F
t
2 the component function 〈β, S〉 is non-constant. If

we denote by Sk the function Sk(x) = S(x + k) parameterized by a key k ∈ F
m
2

then the minimal degree never decreases, that is

minDeg(Sk ◦ F ) ≥ minDeg(F ).

Proof. Let β ∈ F
t
2 be a non-zero vector. We consider the component function

f(x) = 〈β,S(x)〉 and show that the minimal degree of fk ◦ F is at least the
minimal degree of F . For this, consider a monomial of maximal degree in the
algebraic normal form of f , without loss of generality x0 · · · xd−1. For fk, this
will in particular generate the term k1 · · · kd−1x0. This key-monomial k1 . . . kd−1

could also appear as part of the coefficients of different linear monomials xi, but
not in coefficients of non-linear monomials. Thus fk can be written as

fk(x) = k1 · · · kt−1〈γ, x〉 + gk(x)

with a non-zero γ ∈ F
m
2 and a polynomial g such that k1 · · · kt−1 cannot

be expressed as a linear combination of its coefficients. That is, the term
k1 · · · kt−1〈γ, x〉 cannot cancel in the algebraic normal form of fk ◦ F . Finally
the degree of 〈γ, x〉 = 〈γ, F (y)〉 is bounded by the minimal degree of F by
definition. ��

4.3 More Rounds for Strong Arguments

The strong arguments extends to more rounds automatically without any addi-
tional requirements. Indeed, consider the composition Ek ◦ F where Ek fulfills
the strong arguments and F is a fixed permutation. Note that if F is actually
key-dependent (using an independent key-value), the same argument applies.
Considering any non-empty set M ⊂ F

n
2 , and any β, we get

∑

x∈M

〈β,Ek(F (x))〉 =
∑

y∈F (M)

〈β,Ek(y)〉,

which depends on k as any sum does for Ek. Note that in the context of block
ciphers where the round function is (most of the time) identical for each round
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Shuffle

Shuffle

L Shift

R Shift

SB

SB

SB

SB

PermuteNibblesMC k
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

15 3 7 11
10 6 2 14
9 5 1 13
4 8 12 0

Fig. 2. Round function of CRAFT.

(assuming independent round keys and thus absorbing round constants), even
though this arguments is valid when adding an arbitrary amount of rounds before
Ek, it also includes the case where we add an arbitrary amount of rounds after
Ek. Indeed in this context, F r ◦Ek = Ek′ ◦F r, where F is the round function. If
the previous arguments hold for Ek ◦F r, it thus automatically holds for F r ◦Ek,
i.e. any sum

∑
x∈M 〈β, F r(Ek(x))〉 is key-dependent.

5 Improvements of Efficiency by Using Equivalent
S-Boxes

The core part to guarantee the lower bound of degrees is to find a key pattern
where the number of division trails from a plaintext to a ciphertext is odd. To
find such a key pattern, the trail extension technique was proposed in [12]. A
key pattern is generated from the ciphertext side round by round as outlined in
Sect. 2.3. In the end, lower bounds on the (minimum) degree for round-reduced
variants of SKINNY-64, GIFT-64, and PRESENT could be efficiently computed. On
the other hand, it is open whether the trail extension technique can find such
key patterns for other ciphers. We used the tool provided in [12] and modified
it for the block cipher CRAFT. As a result, we failed to find key patterns in
spite of the similarity to SKINNY. This is because the round function of CRAFT
has fundamental problems to disturb trail extensions. In practice, the round
function of SKINNY-64 or GIFT-64 is significantly suited to the trail extension,
and the trail extension is unlikely succeeded in general.

We are only interested in the parity of the number of trails for a fixed pattern,
but in practice, we cannot know the parity unless all trails are enumerated.
Therefore, the feasibility highly depends on the number of trails, which we try
to keep significantly small. When the key pattern is sequentially generated in the
trail extension, the number of trails must be kept small throughout all iterations.

Let us focus on the CRAFT round function (see Fig. 2), in particular, a super
S-box, which consists of four 4-bit S-boxes, MixColumns, and four 4-bit S-boxes.
Let u, v, and w be the input, key, and output patterns on the super S-box, and the
trail extension technique generates (u, v) from w such that the Hamming weights
of u and v are as high as possible. As an example, we enumerated all (u, v) that
can propagate to w = 0x1200, where the two S-boxes and one MixColumns are
independently evaluated. Then, wt(u)+wt(v) = 13 is the maximum choice, e.g.,
(u = 0x7777, v = 0x2000) can propagate to w = 0x1200. Unfortunately, this
trail is not available because there are 4 different trails satisfying (u, v) → w.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >=20E >=20O
wt=13 0 0 0 1 0 0 0 8 0 0 0 8 0 0 0 16 0 0 0 48 0
wt=12 0 34 0 289 0 136 0 623 0 1 0 618 0 0 0 46 0 1 0 169 0
wt=11 28 873 24 3428 0 885 0 1476 0 19 0 1116 0 12 0 136 0 10 0 456 6
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Fig. 3. The number of (u, v) and their numbers of trails, output pattern is 0x1200. For
example, when wt(u) + wt(v) = 11, there are 3428 (u, v) whose number of trails is 4.
When the number of trails exceeds 20, the labels ≥20E and ≥20O are used for even
parity and odd parity, respectively.

Figure 3 summarizes the number of (u, v) and their numbers of trails when w =
0x1200. The numbers of (u, v) with wt(u) + wt(v) = 13 and wt(u) + wt(v) = 12
are 81 and 1917, respectively, but there is no (u, v) whose number of trails is
odd. When wt(u) + wt(v) = 11, there are 28 (u, v) whose number of trails is 1,
but the number is very few. In other words, the choice of the trail extension is
very limited among all trails. Even if such a rare propagation is adopted, after
several rounds, it is unlikely to restrict the number of trails to a size that is
able to handle in practice. This trend is not limited to w = 0x1200. Indeed, a
preferable propagation is very rare for many output pattern. This is our heuristic
explanation why the trail extension cannot find a key pattern for CRAFT.

5.1 Replacement to Equivalent S-Box

We tackle the problem to expand the class of ciphers that we can prove a lower
bound on the degree. The core of the problem is having too many trails. There-
fore, we propose a new method to decrease the number of trails fundamentally.
Generally, this method is based on rewriting the ciphers specification (potentially
up to a linear change of plaintext and ciphertext and a different key-scheduling).
We call such ciphers equivalent. More specifically, we replace the S-box in such a
way that we get the exact same cipher. Thus, while we keep the cipher identical,
its behaviour with respect to division trails might well change.

The first important remark is that even constant addition changes the prop-
agation table of the division property unlike the differential distribution table or
linear approximation table. Under the key-alternating ciphers, constant addition
before/after S-boxes results in a different representation of the original cipher
because such constant addition can be included in the round key addition.

Proposition 3 (Equivalent S-box for key-alternating ciphers). Replac-
ing an S-box S in a key-alternating cipher with an S-box S′ : S′(x) = S(x ⊕
cin) ⊕ cout results in an equivalent cipher under the independent round key.

To demonstrate the effect of the equivalent S-box, we use the CRAFT S-box as an
example. There are 76 possible transitions in the propagation table (see the left
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one in Table 2). On the other hand, in S′(x) = S(x ⊕ 0x7) ⊕ 0x7, there are only
56 possible transitions. The total number of trails decreases from 76 to 56. We
can expect that the use of S′ instead of S decreases the number of trails from a
plaintext to a ciphertext.

For ciphers whose linear layer consists of word-wise XOR and word-wise
shuffle such as CRAFT or SKINNY, there is a more wide equivalent class.

Proposition 4 (Equivalent S-box for ciphers with word-wise linear
layer). Replacing an S-box S in a key-alternating cipher whose linear layer
consists of word-wise XOR and word-wise shuffle with an S-box S′ : S′(x) =
A−1 × S(A × (x ⊕ cin)) ⊕ cout results in an equivalent cipher under the indepen-
dent round key.

An invertible linear transformation, denoted by A×x, is applied before the S-box,
and its inverse A−1 is multiplied after the S-box. Unlike in the generally studied
affine-equivalent class, we limit the second linear transformation to the inverse
of the former linear transformation. Since multiplication of A−1 and word-wise
XOR/shuffle are commutative, the multiplication of A−1 can be moved at the
beginning of the next round. Then, as A × A−1 is the identity, we see that the
ciphers are indeed equivalent.

The number of linear transformations is 20160 for 4-bit S-boxes. Therefore,
there are (at most) 20160 × 24 × 24 ≈ 222.23 equivalent S-boxes, and we can
choose a preferable S-box to prove the lower bound. Note that the target cipher
also changes to the cipher whose plaintext and ciphertext is linearly transformed,
but it never affects the algebraic degree, the minimum degree, and of course, the
claim of no integral distinguisher1.

5.2 Choice of Preferable Equivalent S-Boxes

The most important problem is how to choose a preferable S-box from the equiv-
alent class. Intuitively, the lower number of possible trails, the better. However,
as far as we tried, this problem is not so simple, and choosing an S-box whose
propagation table has the following property is better. In the following, let u
and v be an input pattern and an output pattern, respectively.

– For any u with wt(u) = n − 1, the possible output pattern v is uniquely
determined when wt(u) − wt(v) is maximized.

– For any v with wt(v) = 1, the possible input pattern u is uniquely determined
when wt(u) − wt(v) is maximized.

– The number of possible transitions is as small as possible.

Note that these conditions are heuristically found, and whether adopting these
conditions is optimal or not is an open question. As a consequence, the use of
S-boxes satisfying these conditions allows us to prove the lower bound of CRAFT.
1 Similar technique is already known in [11,17], but there is significant difference. In

previous works, a linear transformation is applied to S-boxes in the first and the last
rounds only. In our proposal, it is applied to all S-boxes in the middle rounds.
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Table 2. Propagation table for the CRAFT S-box. The left is the table of the original
S-box. The right is the table of the equivalent S-box described in Example 6

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x x x

1 x x x x

2 x x x x

4 x x x x

8 x x

3 x x x x x x

5 x x x x x x x x

6 x x x x

9 x x x x x x

A x x x x

C x x x x x

7 x x x x x x

B x x x x x x

D x x x x x

E x x x x x x x

F x

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x

1 x x x

2 x x x

4 x x x

8 x

3 x x x x x x x

5 x x x x x

6 x x x

9 x x x x x

A x x x

C x x x

7 x x x x x

B x x x

D x x x x x

E x x x x x

F x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >=20E >=20O
wt=12 26 12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
wt=11 448 230 4 46 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
wt=10 3021 1693 112 400 18 43 2 39 2 4 0 3 0 0 0 0 0 0 0 0 0

0

500

1000

1500

2000

2500

3000

3500 wt=12

wt=11

wt=10

Fig. 4. The number of (u, v) and their numbers of trails in the CRAFT super S-box using
the equivalent S-box described in Example 6. Output pattern is 0x1200.

Example 6. The following S-box

S′ : 0x0, 0xC, 0xA, 0x7, 0x9, 0x6, 0x1, 0xF, 0x8, 0xE, 0x4, 0x3, 0x2, 0x5, 0xD, 0xB

is equivalent to the original S-box of CRAFT and satisfies the three conditions.
Note that S′ is generated from the original S-box S as follows:

S′(x) = A−1 × S(A × (x ⊕ 0x5)) ⊕ 0xD, A =
(

1 0 1 1
0 0 0 1
0 1 0 0
1 0 0 1

)

,

where x = x4‖x3‖x2‖x1 is identical to the transpose of (x4, x3, x2, x1), i.e.,
(x4, x3, x2, x1)T . Table 2 shows the comparison between the propagation tables
of the original S-box and the equivalent S-box. The table of the equivalent S-box
is more sparse than that of the original one. Six propagations labeled in red color
correspond to the first and second conditions. For example, when v = 0x4, u with
maximum Hamming weight is uniquely determined to 0xA. As another example,
when u = 0xD, v with minimum Hamming weight is uniquely determined to 0x2.
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Finally, we test the same experiment using the super S-box, i.e., we enumerate
all (u, v) that can propagate to w = 0x1200. Figure 4 summarizes the number
of (u, v) and their numbers of trails. Unlike the original one shown in Fig. 3, the
majority of possible propagations has only one trail.

6 Applications

In this section we are going to apply our results, i.e. how to give stronger argu-
ments to a set of ciphers. For each cipher, we briefly explain some specific obser-
vations and improvements. The results for all ciphers are given in Table 1.

In all ciphers whose block length is n, we need n2 key patterns to guarantee
no integral distinguisher, and the integral-resistance matrix has n4 entries, i.e.,
224 and 228 on 64-bit and 128-bit block ciphers, respectively. To compute these
entries efficiently, we use a key pattern in which key patterns for the 1st and
last rounds are non-zero if it is possible. Then, almost all entries in the integral-
resistance matrix must be 0, and the integral-resistance matrix has the form of
a diagonal block matrix. When all block matrices have full rank, the integral-
resistance matrix has full rank. Another important remark is that even if some
entries are not determined, we can still prove that the integral-resistance matrix
has full rank. For example, since the following matrix

⎛

⎝
1 0 �
0 1 0
0 0 1

⎞

⎠ ,

has full rank independent of �, we do not need to determine the entry �. Note
that [1] observed that using the Convex Hull technique to modelize S-boxes [23]
in MILP can sometimes leads to inconsistencies. We double checked and made
sure that this phenomenon does not happen for the S-boxes that we use.

6.1 Applications to CRAFT

CRAFT is a lightweight tweakable block cipher published in ToSC 2019 [5]. The
block length is 64 bits, and 4-bit S-boxes are used as the nonlinear operation.
On our proof, we assume independent tweakeys each round.

The designers of CRAFT showed an 13-round integral distinguisher [5] in the
single tweak-key setting. For the tightness of results, our goal is therefore to
show that 14 rounds (and more) do not have any integral distinguisher under
the independent-tweakey assumption.

Figure 2 shows the round function of CRAFT. The propagation of the divi-
sion property for the SB and MixColumns are independently modeled, where
MixColumns is regarded as 16 parallel applications of 4-bit to 4-bit linear trans-
formation. Moreover, the first round consists of the SB only. As shown in Sect. 5,
we use an equivalent S-box instead of the original S-box to improve the efficiency.
Note that using the original S-box did neither allow to extend trails nor to find
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key patterns whose number of trails is odd. Therefore, our new proposal using
an equivalent S-box is necessary to handle CRAFT.

We start with the proof of having no integral distinguisher in 14 rounds. To
prove it, we need at least 4096 key patterns whose corresponding 4096 × 4096
integral-resistance matrix has full rank. Generating 4096 key patterns is time
consuming. Besides, it is unlikely that the integral-resistance matrix becomes full
rank when 4096 key patterns are generated without care. A systematic strategy
is required to efficiently generate such key patterns.

As a first improvement, we exploit the symmetry property of CRAFT. Denote

T

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

s8 s12 s0 s4
s9 s13 s1 s5
s10 s14 s2 s6
s11 s15 s3 s7

⎞

⎟
⎟
⎠ ,

then the round function R of CRAFT (excluding constant and tweakey additions)
fulfills R(T (s)) = T (R(s)). As we can ignore the impact of keys and constant
addition under the independent tweakey assumption, rotating by two columns
is thus invariant for the computation of key patterns. Therefore, once we find
a key pattern, the key pattern transformed by the symmetry property is also
available. Thanks to this property, 4096/2 = 2048 key patterns are enough.

As a second improvement, we use key patterns that share the same division
trail in the middle part. Concretely, we first construct 12-round input/key/out-
put patterns whose number of trails is odd, and then, the trail is systemati-
cally extended both forward and backward direction by 1 round, respectively.
Then, we can generate 2048 key patterns only from 32 12-round patterns. As a
consequence, we can generate 4096 key patterns whose corresponding integral-
resistance matrix has full rank. As shown in Sect. 4.3, once we can generate an
integral-resistance matrix of full rank for 14 rounds, it also guarantees no integral
distinguisher in 14 rounds and higher.

6.2 Applications to SKINNY-64

SKINNY is a lightweight block cipher published at CRYPTO’16 [4]. There are
two different version of SKINNY (64-bit block SKINNY-64 and 128-bit block
SKINNY-128).

In [12], the lower bounds of the algebraic degree and the minimum
degree reach the maximum, i.e., 63, in 10-round SKINNY-64 and 11-round
SKINNY-64, respectively. It also shows that 13-round SKINNY-64 has 64 maxi-
mum degree monomials. On the contrary, the best integral distinguisher reaches
11 rounds [11]2. Note that SKINNY does not have the pre-whitening key, the 11-
round integral distinguisher can be extended to a 12-round one for free.

Our goal is to show that 13 rounds and more never have integral distinguish-
ers under the assumption that each round-tweakey is independent and they are
2 In the 11-round distinguisher shown in [11], each tweakey is not XORed to the full

state. However, we confirmed that there are 11-round distinguishers even when each
tweakey is XORed to the full state.
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XORed to the full state. Again, SKINNY does not have a pre-whitening key.
Therefore, to prove no integral distinguisher in 13 rounds, we need to construct
a full-rank integral-resistance matrix for 12 rounds.

Similarly to CRAFT, the SC and MixColumns are independently modeled,
where MixColumns is regarded as 16 parallel applications of 4-bit to 4-bit lin-
ear transformation. Moreover, the last round consists of the SC only. Unlike the
CRAFT S-box, the division property table of the SKINNY-64 S-box is relatively
sparse. Therefore, the trail extension is possible without the equivalent S-box
technique [12]. However, using the equivalent S-box technique increases the effi-
ciency significantly. The following S-box

S′ : 0x1, 0xA, 0x2, 0xB, 0x3, 0xC, 0x4, 0x9, 0x6, 0xE, 0x5, 0xF, 0x8, 0x0, 0xD, 0x7

is equivalent to the original S-box of SKINNY-64 and satisfies the three conditions
shown in Sect. 5. We also use two improvements which are similar to CRAFT to
generate a full-rank integral-resistance matrix efficiently. The first improvement
is the so-called column rotation equivalence [12]. Once we find a key pattern,
three key patterns whose columns are rotated by 1, 2, and 3 are also available.
Thanks to this property, 4096/4 = 1024 key patterns are enough.

The second improvement used for CRAFT, i.e., to first generate division trails
which cover only 10 rounds and then extend it to 12 rounds, is also applicable
here. Unfortunately, we cannot use this trick for all of 1024 key patterns because
there is no 10-round division trail from specific input pattern to specific output
pattern. For key patterns where this is not possible, we need to generate key
patterns for 12 rounds directly.

As a consequence, we can generate 4096 key patterns whose corresponding
integral-resistance matrix has full rank. Again, once we generate a full rank
integral-resistance matrix for 12 rounds, it also guarantees that there is no inte-
gral distinguisher for 12 rounds and more.

6.3 Applications to GIFT-64

GIFT is a lightweight block cipher published as CHES’17 by Banik et al. [2],
with a 128-bit key and two variants depending on the block size : GIFT-64 and
GIFT-128 for 64-bit and 128-bit block size respectively. Its round function is
very simple and only consists of the key-addition, an S-box layer with 4-bit S-
boxes and a bit permutation layer. Note that in the original design, the round
key is only added to half of the state. As in [12] we are here considering a
slightly different variant where the round key is added to the full state, as well
as assuming that each round key is independent (as in the rest of this paper).

We reused the key patterns given by [12] for their proof of the “all max-
imal degree monomial” property, leading to key patterns v1, . . . , vs with s =
n2 = 4096 for 11 rounds. Note that these key patterns already have the special
property mentioned at the start of Sect. 6.

We set a time limit of one minute for the computation of each coefficient in
the integral-resistance matrix. That is, if we could not compute the total number
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xi yi

Sa

Sb

Sc

ki

xi+1 yi+1

Fig. 5. SIMON/Simeck round func-
tion [13].

F

⊕

x0

y0 ⊕
k
(1)
0

F

⊕ ⊕⊕
k
(0)
0 k1

· · ·

Fig. 6. SIMON/Simeck one round exten-
sion for pre-whitening key.

of trails in less than one minute, we replace the coefficient by �. By doing this
we are still able to compute enough coefficients so that we can prove that the
matrix is always full rank. Note that since GIFT doesn’t have a whitening key,
having the integral-resistance matrix at full rank for 11 rounds means that we
prove the resistance against integral distinguishers for 12 rounds (as in the case
of SKINNY-64). Thus with this, and assuming independent round keys, we were
able to prove that 12 rounds and higher of GIFT64 has no integral distinguisher,
according to Corollary 2.

6.4 Applications to PRESENT

PRESENT is another lightweight block cipher, published at CHES’07 [6], with a 64-
bit block size and the option between 80-bit and 128-bit key. Its round function is
also very simple, built with only a key addition, S-box layer of 4-bit S-boxes and
a bit permutation. Similarly to CRAFT, we first build input/output/key-patterns
leading to an odd number of trails for 11 rounds, and extend them by one round
both in the forward and backward direction using affine equivalent S-boxes for
the first and last round. In the end this allowed us to prove that 13 rounds and
higher of PRESENT, assuming independent round keys, does not have any integral
distinguisher, according to Corollary 2.

6.5 Applications to SIMON/Simeck

SIMON is a Feistel cipher which was published in 2013 [3]. Figure 5 shows the
round function where Si is the left circular shift by i positions. The shift con-
stants for SIMON are a = 8, b = 1, and c = 2. While the cipher operates on n-bit
words, the block length is 2n. SIMON supports the block lengths 32, 48, 64, 96,
and 128. The cipher Simeck [24] is very similar, it just replaces the shifts con-
stants by a = 0, b = 5, c = 1 (to allow an even more efficient implementation)
and supports the block lengths 32, 48, and 64.

For the division property of SIMON/Simeck we can observe the follow-
ing word rotation equivalence: let F (xi, yi, ki) = (xi+1, yi+1) be one round
of SIMON/Simeck. Then the round function is shift invariant, that is, for all
0 ≤ l < n
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(a1, a2, a3)
F−→ (b1, b2) ⇔ (Sl(a1), Sl(a2), Sl(a3))

F−→ (Sl(b1), Sl(b2)).

Showing the Propositionfor SIMON and Simeck requires, with a naive app-
roach, 4n2 key patterns. Based on the word rotation equivalence, we can reduce
this number down to 4n. Finding a key pattern where only one combination of
a monomial and an output bit leads to an odd number of trails and all other
combinations to an even number of trails leads to a unit vector as a column in
the integral-resistance matrix. In this row where the unit vector has the 1 entry,
we do not need to count the number of trails for other key pattern and just
insert a 0 there. If the number of trails is odd for the specific monomial/output
bit combination for another key pattern, we can just add the unit vector to this
column to create a 0 entry there. Unlike the other block ciphers examined in
this paper, the trail extension was not used, we simply maximized the weight of
the key patterns.

We iterated over all monomial/output bit combinations and try to find a
key pattern, so that the number of trails is odd. We parallelized the search of
key patterns, which leads to a program behaviour where for “easy” monomi-
al/output bit combinations key patterns are found very fast and often give unit
vectors. When the program found key patterns for “complicated” monomial/out-
put bit combinations, for many positions in the column the trail counting can
be omitted, which drastically improves the performance.

When we can compute the integral-resistance matrix of full rank for r rounds
of SIMON resp. Simeck, we still need a pre-whitening key on the full state to
ensure the Proposition. For that we add one additional round in the beginning
(see Fig. 6). As we already assume independent round keys, we can (virtually,
similarly to masking or secret sharing) split the second round key in two indepen-
dent parts (k1 and k

(0)
0 ), and add k

(0)
0 on the right word. Then (k(0)

0 , k
(1)
0 ) is our

pre-whitening key on the full state. The application of F before does not change
the Propositionas shown in Sect. 4.3. This leads to a proof of the Propositionfor
r + 1 rounds.

The best known integral distinguishers for SIMON32 and Simeck32 cover 15
rounds [21]. We can show that the Propositionholds for 16 rounds of both ciphers
which is tight in terms of number of rounds. The integral distinguishers shown
in [23] for SIMON48/64/96/128 and SIMECK48/64 can be extended by one round
with the technique shown in [22]. Adding another round gives our bounds in
Table 1 where we show the Proposition.

7 Conclusion and Future Work

In this paper, we were able to show strong security arguments against integral
distinguishers for several block ciphers following the SPN and Feistel designs.
Although these are the best security guarantees against integral distinguishers
so far, in theory, it could still be that it is easy to mount integral attacks. Our
result shows that any sum is key-dependent, however, this does not exclude the
case where the sum is simply one key bit, which could be exploited in an attack.
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A wider application to more (block) ciphers would be interesting, especially
under the aspect of more automatization and less optimization by hand. We see
further research directions in closing the gap for GIFT-64 and PRESENT between
the best known integral distinguisher and the Proposition, and a more intuitive
understanding of what allows the degree to be extended to more rounds. For the
question of covering more rounds, in the case of an algebraic degree, it would be
interesting to better understand which S-boxes, or family of S-boxes, allow to
preserve the degree for more rounds.

Our results are inherently non applicable to cryptographic permutations
because (i) the key addition is crucial for our results and to reduce the com-
plexity of the MILP models and (ii) the conditions for the integral distinguisher
cannot be fulfilled. Deriving similar results for permutations or permutation
based schemes would be interesting.
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Abstract. Determining the exact algebraic structure or some partial
information of the superpoly for a given cube is a necessary step in
the cube attack – a generic cryptanalytic technique for symmetric-key
primitives with some secret and public tweakable inputs. Currently, the
division property based approach is the most powerful tool for exact
superpoly recovery. However, as the algebraic normal form (ANF) of
the targeted output bit gets increasingly complicated as the number of
rounds grows, existing methods for superpoly recovery quickly hit their
bottlenecks. For example, previous method stuck at round 842, 190, and
892 for Trivium, Grain-128AEAD, and Kreyvium, respectively. In this
paper, we propose a new framework for recovering the exact ANFs of
massive superpolies based on the monomial prediction technique (ASI-
ACRYPT 2020, an alternative language for the division property). In
this framework, the targeted output bit is first expressed as a poly-
nomial of the bits of some intermediate states. For each term appear-
ing in the polynomial, the monomial prediction technique is applied to
determine its superpoly if the corresponding MILP model can be solved
within a preset time limit. Terms unresolved within the time limit are
further expanded as polynomials of the bits of some deeper intermediate
states with symbolic computation, whose terms are again processed with
monomial predictions. The above procedure is iterated until all terms are
resolved. Finally, all the sub-superpolies are collected and assembled into
the superpoly of the targeted bit. We apply the new framework to Triv-
ium, Grain-128AEAD, and Kreyvium. As a result, the exact ANFs of
the superpolies for 843-, 844- and 845-round Trivium, 191-round Grain-
128AEAD and 894-round Kreyvium are recovered. Moreover, with help
of the Möbius transform, we present a novel key-recovery technique based
on superpolies involving all key bits by exploiting the sparse structures,
which leads to the best key-recovery attacks on the targets considered.
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1 Introduction

The cube attack was proposed by Dinur and Shamir at EUROCRYPT 2009
against symmetric-key primitives with a secret key and a public input [16]. For
a cipher with a secret key k ∈ F

m
2 and a public input x ∈ F

n
2 , any output bit of

the cipher can be regarded as a Boolean function in k and x, denoted as f(x,k).
For a constant u ∈ F

n
2 , let xu =

∏
ui=1 xi where ui and xi are the ith coordinate

of u and x, respectively. Then f(x,k) can be written uniquely as

f(x,k) = p · xu + q(x,k),

where each term of q(x,k) misses at least one variable in {xi : ui = 1}. Let
Cu = {x ∈ F

n
2 : x � u}, where x � u means xi ≤ ui for all 0 ≤ i ≤ n−1. Then,

we have ⊕

x∈Cu

f(x,k) =
⊕

x∈Cu

(p · xu + q(x,k)) = p. (1)

We call p the superpoly of the cube term xu or the cube Cu . Note that p is
a Boolean function in k and x[ū] = {xi : ui = 0}, thus sometimes this fact is
signaled by the notation p(x[ū],k).

Typically, in the cube attack, the attacker first recovers the superpoly in the
offline phase, and then queries the cipher oracle over the cube to compute the
summation given by Eq. (1), i.e., the value of the superpoly. Information of the
secret keys can be obtained from the equation of the superpoly and its value.
Hence recovering superpolies is a crucial step in the cube attack.

In early applications of cube attacks [16,17,33,47], the target ciphers are
regarded as black boxes and the superpoly recovery is achieved by experimental
test. Hence, superpolies recovered in this way have to be extremely simple (typ-
ically linear or quadratic functions). In [39], the conventional bit-based division
property [41] was first introduced to probe the structure of the superpoly, which
allows us to identify some key bits that do not appear in the superpoly. This
is the first time that the targeted cipher is regarded as a non-black box object
in performing the cube attacks. By setting the key bits that are not involved in
the superpoly to arbitrary constants and varying the remaining l key bits, one
can obtain the truth table of the superpoly for a subsequent key-recovery attack
with complexity 2|I|+l, where I = {i : ui = 1} is the so-called cube indices. The
complexity of recovering the superpoly could be further improved by computing
the upper bound on the algebraic degree of the superpoly [42].

At ASIACRYPT 2019, Wang et al. took the three-subset bit-based division
property model with the pruning technique to recover the exact superpoly for the
first time [43]. However, as the method needs to test every possible monomial
in the superpoly, its usage is practically limited when the superpoly is dense.
In [44], Ye and Tian introduced a division property-aided algebraic method to
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recover the exact superpolies by recursively expressing the output of a cipher
as the bits of intermediate states and discarding those terms that have no con-
tribution to the superpoly. They found out that several superpolies recovered
in [42] were actually constants, based on which we can only perform distinguish-
ing attacks rather than key-recovery attacks. In [19,20], Hao et al. proposed the
three-subset division property without unknown subsets (3SDPwoU) and uti-
lized the Gurobi PoolSearchMode to enumerate all possible three-subset trails.
By counting the number of trails, they could recover the exact superpolies. In
[24], Hu et al. proposed the monomial prediction technique aided by the divide-
and-conquer strategy to speed up the enumeration of the monomial trials, and
more superpolies have been recovered. Besides, Ye and Tian also introduced a
pure algebraic method in [48]. By representing the output bit in a polynomial of
the intermediate states, the superpoly can be recovered for some so-called useful
cubes directly. Recently, Sun claimed that a superpoly of a 78-dimensional cube
for 843-round Trivium can be recovered [36] without describing details of the
method employed.

Contribution. As the number of rounds grows, the superpolies for certain cubes
become increasingly complex. Existing methods for superpoly recovery quickly
hit their bottlenecks [19,20,24,43,48,50]. Motivated by this fact, we propose a
new framework with nested monomial predictions which scales well for massive
superpoly recovery. In this framework, the targeted output bit is first expressed
as a polynomial of the bits of some intermediate state. For each term appearing
in the polynomial, the monomial prediction technique is applied to determine its
superpoly if the corresponding MILP model can be solved within a given time
limit. Terms unresolved within the time limit are further expanded as polyno-
mials of the bits of some deeper intermediate states with symbolic computation,
whose terms are again processed with monomial predictions. The above proce-
dure is iterated until all terms are resolved. Finally, all the sub-superpolies are
collected and assembled into the superpoly of the targeted bit. All the source
codes of our framework is available in the public domain https://github.com/
hukaisdu/massive_superpoly_recovery.git.

We apply the framework to some important symmetric-key ciphers, includ-
ing Trivium (ISO/IEC standard), Grain-128AEAD (one of the ten Finalists
of the NIST lightweight cryptography standardization process), and Kreyvium
(designed for fully Homomorphic encryption). For Trivium, we are the first
to obtain superpolies for up to 845-round Trivium. For Grain-128AEAD, we
recover two 191-round superpolies, while the previous best results reach only
190 rounds. For Kreyvium, we recover a 894-round superpoly, penetrating two
more rounds than the best previous results. The details of the superpolies recov-
ered by the new framework and the previous ones are shown in Table 1.

To perform key-recovery attacks based on these superpolies, we face a dif-
ficulty that makes existing key-recovery techniques inferior to exhaustive key
search: the superpolies are too complicated whose ANFs involve all secret key
bits. With help of the Möbius transformation, we present a novel key-recovery
technique based on superpolies involving all key bits exploiting the disjoint

https://github.com/hukaisdu/massive_superpoly_recovery.git
https://github.com/hukaisdu/massive_superpoly_recovery.git
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Table 1. Summary of the exact superpolies recovered practically for round-reduced
Trivium, Grain-128AEAD, and Kreyvium.

Cipher Rounds Dim # Term Degree Balancedness¶ Method Ref.

Trivium

818 35 189,540 22 2−11.8 Algberaic§ [48]

835 37 471,120 23 2−10.0 Algberaic§ [48]

837 37 5,011,664 26 2−8.0 Algberaic§ [48]

832 72 3 3 0.375 Pruning & GE† [39,43,50]

838 37 2,877,096 25 2−8.3 Algberaic§ [48]

840 78 67 4 0.5 3SDP/u [19,20]

840 75 41 4 0.5 Mon. Pred [24]

840 76 6 3 0.5 Mon. Pred [24]

840 76 4 2 0.5 Mon. Pred [24]

840 47 390,899 20 0.02 Nested [23, App. C.1]

840 49 357,989 20 0.08 Nested [23, App. C.1]

840 42 31,647 17 0.14 Nested [23, App. C.1]

840 53 116,145 17 0.26 Nested [23, App. C.1]

840 56 7,549 14 0.30 Nested [23, App. C.1]

840 62 1,253 12 0.44 Nested [23, App. C.1]

841 78 53 5 0.5 3SDP/u [19,20]

841 76 3,632 9 0.5 Mon. Pred [24]

841 77 11,161 8 0.5 Mon. Pred [24]

841 56 20,485 16 0.48 Nested [23, App. C.2]

842 78 975 6 0.5 3SDP/u [20]

842 76 5,147 8 0.5 Mon. Pred [24]

842 77 4,174 8 0.5 Mon. Pred [24]

842 56 343,000 17 0.50 Nested [23, App. C.3]

843 78 16,561 8 0.5 –‡ [36]

843 56 1,671,492 17 0.50 Nested Sect. 5.1

843 57 7,985,786 19 0.50 Nested Sect. 5.1

843 55 359,466 17 0.49 Nested Sect. 5.1

843 54 628,607 18 0.50 Nested Sect. 5.1

843 76 38,021 18 0.50 Nested Sect. 5.1

844 55 1,770,734 19 0.50 Nested Sect. 5.1

844 54 917,468 17 0.49 Nested Sect. 5.1

845 55 19,967,968 22 0.50 Nested Sect. 5.1

845 54 12,040,654 21 0.50 Nested Sect. 5.1

Grain-128AEAD

190∗ 95 178 ∼ 18, 958 19 ∼ 24 0.012 ∼ 0.196 3SDP/u [19,20]

190 96 1, 097 21 0.032 3SDP/u [19,20]

191 95 3,053,028 27 0.312 Nested Sect. 5.2

191 96 2,398,450 27 0.293 Nested Sect. 5.2

Kreyvium
892 115 6 1 0.5 3SDP/u [20]

893 118 5� 1 0.5 3SDP/u [20]

894 119 191 4 0.5 Nested Sect. 5.3
¶: The balancedness is measured by the probability that the superpoly is 1.
§: In [48], the complete ANFs are not given. We take our framework to recover them.
†: In [40], Todo et al. showed this superpoly could be recovered in 277 by the conventional bit-based
division property. In [43,50], the superpoly was recovered practically by the method of three subset
division property with a pruning technique and the recursively-expressing method.
‡: In [36], Sun claimed they recovered a superpoly for 843-round Trivium but no details of their technique
was present.
∗: In [19], the authors recovered superpolies for 15 different 95-dimensional cubes.
�: In [20], there is an extra term pre-computed offline with 2118 time complexity.

properties. Applying this technique with the recovered superpolies leads to the
best key-recovery attacks on the targets considered (see Table 2).
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Table 2. A summary of the key-recovery attacks on Trivium, Grain-128AEAD, and
Kreyvium. Here we do not consider the key recovery attacks under the weak-key seeting
such as the works in [30,48].

Cipher Rounds Type Data Time Ref.

Trivium

672 Cube 218.6 217 [16]

709 Cube 223 229.14 [33]

767 Cube 231 245 [16]

784 Cube 233 239 [17]

799 Cube 238 262 [17]

802 Cube 237 272 [47]

805 Corr. Cube 228 273 [31]

805 Cube 238 241.4 [49]

806 Cube 216 264 [49]

832 Cube 272 279 [40,43,50]

835 Corr. Cube 235 275 [31]

840 Cube 278 279.6 [19,20]

840 Cube 276.6 277.8 [24]

840 Cube 262 276.32 [23, App. C.1]

841 Cube 278 279.6 [24]

841 Cube 277 278.6 [24]

841 Cube 256 278 [23, App. C.2]

842 Cube 278 279.6 [24]

842 Cube 277 278.6 [24]

842 Cube 256 278 [23, App. C.3]

843 Cube 278 279.6 [36]

843 Cube 256 277
Sect. 6.2

844 Cube 256 278
Sect. 6.2

845 Cube 256 278
Sect. 6.2

Grain-128a†

169 Condit. Diff 247 small [30]

182 Cube 288 2129 [39,40]

182 Cube 288 2127 [39,40,42]

183 Cube 292 2127 [42]

183 Cube 295 2127 [42]

Grain-128AEAD
190 Cube 296 2123 [19,20]

– State Recovery – Practical∗ [12]

191 Cube 296 2126.26
Sect. 6.2

Kreyvium

849 Cube 261 2127 [40,42]

872 Cube 285 2127 [40,42]

891 Cube 2113 2127 [19,20]

892 Cube 2115 2127 [18–20]

893 Cube 2118 2119 [20]

894 Cube 2119 2127
Sect. 6.2

†: Since in our assumption, the Grain-128AEAD is the same as Grain-128a, we
provided the results for Grain-128a for a better comparison.
∗: In [12], the authors showed that if the state after the initialization (t = 384)
is known, then the secret key can be recovered in practical time.

2 Division Property and Monomial Prediction

The division property [38] was proposed by Todo initially as generalized
integral attacks [28] (a.k.a. Square attacks [13] or higher-order differential
attacks [27,29]). The division property was successfully applied to many primi-
tives. In particular, it was employed to break the full MISTY1 block cipher [32],
which undoubtedly demonstrates its powerfulness [6,37].
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At the early stage, the division property works in a word-oriented app-
roach, and the propagation of the division properties only considers the alge-
braic degrees of the local components. Subsequently, by considering the divi-
sion property at the bit level, Todo and Morii [41] introduced the bit-based
division property [7]. With a deeper understanding of the propagation of the
bit-based division properties for local components [8], Xiang et al. introduced a
MILP-based method to search for the conventional (a.k.a. two-subset) bit-based
division properties automatically [46].

From then on, a series of researches on extending the application scope or
increasing the accuracy of the algorithms for detecting division properties were
conducted [14,15,25,26]. To capture not only balanced but also constant output
bits as well as some cancellation characteristics ignored by the conventional bit-
based division property, the so-called three-subset bit-based division property
was proposed [41]. In [43,45], Wang et al. presented the automated methods for
detecting the three-subset bit-based division properties. In [19,20], Hao et al.
proposed the three-subset bit-based division property without unknown subsets
(3SDPwoU). Eventually, we arrive at methods for detecting division properties
with perfect accuracy.

The monomial prediction is another language for describing the division prop-
erties from a pure polynomial viewpoint [24]. They are equivalent although they
start from different perspectives. In this paper, we mainly take the conceptions
of the monomial prediction to interpret our new framework, so in the remaining
of this section, we introduce some basic language of the monomial prediction.

2.1 Notations and Definitions

We use bold italic lowercase letters to represent bit vectors. For an n-bit vector
u = (u0, · · · , un−1) ∈ F

n
2 , its complementary vector is denoted by ū, where

ui ⊕ ūi = 1 for 0 ≤ i < n. The Hamming weight of u is wt(u) =
∑n−1

i=0 ui.
For u,x ∈ F

n
2 , x[u] denotes a sub-vector of x with respect to u as x[u] =

(xi0 , xi1 , . . . , xiwt(u )−1) ∈ F
wt(u)
2 , where ij ∈ {0 ≤ i ≤ n − 1 : ui = 1}. For any

n-bit vectors u and u′, we define u � u′ if ui ≥ u′
i for all i. Similarly, we define

u � u′ if ui ≤ u′
i for all i.

Boolean Function. Let f : F
n
2 → F2 be a Boolean function whose algebraic

normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕

u∈F
n
2

au

n−1∏

i=0

xui
i ,

where au ∈ F2, and

xu = πu (x) =

n−1∏

i=0

xui
i with xui

i =

{
xi, if ui = 1,

1, if ui = 0,

is called a monomial. We use the notation xu → f to indicate that the coefficient
of xu in f is 1, i.e., xu appears in f . Otherwise, xu

� f . In this work, we will
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use xu and πu (x) interchangeably to avoid using the awkward notation x(i)u
(j)

when both x and u have superscripts.

Vectorial Boolean Function. Let f : F
m
2 → F

n
2 be a vectorial Boolean func-

tion with y = (y0, y1, . . . , ym−1) = f(x) = (f0(x), f1(x), . . . , fn−1(x)). For
v ∈ F

n
2 , we use yv to denote the product of some coordinates of y:

yv =
m−1∏

i=0

yvi
i =

m−1∏

i=0

(fi(x))vi ,

which is a Boolean function in x.

2.2 Monomial Prediction

Let f : F
n0
2 → F

nr
2 be a composite vectorial Boolean function of a sequence of r

smaller function f (i) : F
ni
2 → F

ni+1
2 , 0 ≤ i ≤ r − 1 as

f = f (r−1) ◦ f (r−1) ◦ · · · ◦ f (0). (2)

For 0 ≤ i ≤ r − 1, suppose x(i) ∈ F
ni
2 and x(i+1) ∈ F

ni+1
2 are the input and

output of the ith component function f (i). Considering a monomial of x(0),
say πu(0)(x(0)), it is easy to find all the monomials of πu(1)(x(1)) that contain
πu(0)(x(0)), i.e., πu(0)(x(0)) → πu(1)(x(1)); for every such πu(1)(x(1)), we then
find all the πu(2)(x(2)) satisfying πu(1)(x(1)) → πu(2)(x(2)); finally, if we are
interested in whether πu(0)(x(0)) → πu(r)(x(r)), we may collect some transitions
from πu(0)(x(0)) to πu(r)(x(r)) as

πu(0)(x(0)) → πu(1)(x(1)) → · · · → πu(r)(x(r)).

Every such transition is called a monomial trail from πu(0)(x(0)) to πu(r)(x(r)),
denoted by πu(0)(x(0)) � πu(r)(x(r)). All the trails from πu(0)(x(0)) to πu(r)(x(r))
are denoted by πu(0)(x(0)) � πu(r)(x(r)), which is the set of all trails. Then
whether πu(0)(x(0)) → πu(r)(x(r)) is determined by the size of πu(0)(x(0)) �

πu(r)(x(r)), represented as |πu(0)(x(0)) � πu(r)(x(r))|. If there is no trail from
πu(0)(x(0)) to πu(r)(x(r)), we say πu(0)(x(0)) 
� πu(r)(x(r)) and accordingly
|πu(0)(x(0)) � πu(r)(x(r))| = 0.

Theorem 1. (Integrated from [19–21,24]). Let f = f (r−1) ◦f (r−1) ◦· · ·◦f (0)

defined as above. πu(0)(x(0)) → πu(r)(x(r)) if and only if

|πu(0)(x(0)) � πu(r)(x(r))| ≡ 1 (mod 2).

Propagation Rules for the Monomial Trail and the MILP Model. Any
component of a symmetric cipher can be regarded as a vectorial Boolean func-
tion as f : F

n
2 → F

m
2 ,y = f(x). According to the definition of the monomial

prediction [24], the propagation rule for f can be described by a set of tuples
generated with [23, Algorithm5], which in turn can be described with a set linear
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inequalities [9,34,35] and thus modeled with MILP. Since any symmetric prim-
itive can be represented as a sequence of basic operations such as XOR, AND
and COPY, it suffices to give the propagation rules for these basic functions.
We provide their concrete propagation rules and MILP models in [23, App. A].

Gurobi Solver and PoolSearchMode. In this paper, we choose the Gurobi
solver [2] as our MILP tool to trace the propagation trails. Gurobi supports
a special mode called PoolSearchMode, which is useful to extract all possible
solutions of a model. In [19,20,24], this mode has been successfully used to
enumerate all the trails. In this paper, we use the notation

M.PoolSearchMode ← 1

to signal that the PoolSearchMode is turned on. For more on Gurobi and the
PoolSearchMode, readers are requested to refer to the Gurobi manual [3].

3 Cube Attack and Superpoly Recovery

In the context of the symmetric-key cryptanalysis, we typically regard each out-
put bit of a primitive as a parameterized Boolean function f : F

n
2 → F2 whose

algebraic normal form is

fk(x) =
⊕

u∈F
n
2

au (k)xu ,x ∈ F
n
2 ,k ∈ F

m
2 ,

where the coefficient au (k) of the monomial xu can be regarded as a Boolean
function of k. In this paper, we denote the coefficient of xu in f by au (k) =
Coe (f,xu ). Since the function mapping (x,k) to fk(x) can be expressed as a
Boolean function from F

n+m
2 to F2, we may use f(x,k) to denote the parame-

terized Boolean function fk(x) when there is no confusion.

3.1 Cube Attack

Let f(x,k) be a parameterized Boolean function from F
n+m
2 to F2, and u be a

constant vector. f(x,k) can be represented uniquely as

f(x,k) = p(x[ū],k) · xu + q(x,k),

where each term of q(x,k) is not divisible by xu . xu is called a cube term,
and Cu = {x ∈ F

n
2 : x � u} is called a cube. The cube we use is sometimes

represented by its cube indices I = {0 ≤ i ≤ n − 1 : ui = 1} ⊆ {0, 1, . . . , n − 1},
and the cube is also denoted by CI . If we compute the sum of f over Cu , we
have ⊕

x∈Cu

f(x,k) =
⊕

x∈Cu

(p(x[ū],k) · xu ⊕ q(x,k)) = p(x[ū],k),
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where p(x[ū],k) is called the superpoly of Cu . It is easy to check that the super-
poly of Cu is just the coefficient of xu in the parameterized Boolean function
f(x,k), i.e.,

p(x[ū],k) = Coe (f(x,k),xu ) .

If we set the variables in x[ū] to some fixed constants, the superpoly p(x[ū],k) =
Coe (f,xu ) is a Boolean function of k. In this paper, x[ū] will be always fixed
as 0.

As mentioned, in the cube attack the superpoly recovery plays a critical role.
If the attacker manages to recover the superpoly in the offline phase, then in
the online phase, he queries the encryption oracle with the cube and gets the
value of the superpoly (0 or 1). Then the attacker obtains an equation of some
key bits. By solving this equation, some key information can be extracted. The
remaining key bits can be recovered by exhaustive search.

3.2 Superpoly Recovery Based on the 3SDPwoU/Monomial
Prediction

To our best knowledge, currently there are four kinds of methods of recovering
the exact superpolies for a non-blackbox cipher. A brief introduction to the
four methods is provided in [23, App. B]. In this subsection, we recall some
details about the MILP model for recovering the exact superpoly based on the
3SDPwoU [19,20] or the monomial prediction [24].

As we mentioned, any cipher output bit can be decomposed into a sequence of
small vectorial Boolean functions. Then by constructing the MILP models for the
propagation rules of these small functions in the way shown in [23, Algorithm5],
we can construct the whole MILP model whose solutions are all valid monomial
trails. If we want to recover the superpoly of a cube term xu , then we use u to
assign the public input variables (plaintext, IV or tweak) in the MILP model. For
the secret input (secret key), we just leave them as free variables. And for those
constant values of the input, if they are zero, the MILP variable corresponding
to the variables are also assigned by zero, while for those constant one input, we
let them be free variables.

After the model is constructed, every solution will be a valid monomial trail
like the form kvxu � f . By calling the Gurobi solver with the PoolSearchMode
on, we can obtain all solutions of the MILP model. Once we collect all the
monomials from kvxu for f for any v ∈ F

m
2 , we can compute the superpoly of

xu as

Coe (f,xu ) = Coe

⎛
⎝ ⊕

|kv xu �f |≡1 (mod 2)

kv xu ,xu

⎞
⎠ =

⊕
|kv xu �f |≡1 (mod 2)

Coe (kv xu ,xu ) .

In [24], Hu et al. observed that for the composite function f , where

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0),
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if πu(0)(x(0)) � f , then for 0 < i < r,

|πu(0)(x(0)) � f | ≡
∑

π
u (r−i) (x(r−i))→f

∣
∣
∣πu(0)(x(0)) � πu(r−i)(x(r−i))

∣
∣
∣ (mod 2).

Since computing |πu(0)(x(0)) � πu(r−i)(x(r−i))| one by one is much easier than
computing |πu(0)(x(0)) � f | when i is significantly smaller than r, such a divide-
and-conquer strategy helps to speed up the search significantly.

4 Superpoly Recovery with Nested Monomial Predictions

In this section, we introduce a new framework for superpoly recovery that scales
well for massive superpolies. In some sense, the new framework is a hybrid of
the four previous methods described in [23, App. B]. First, we describe the new
framework in detail, and then a comprehensive comparison will be made with
existing methods.

4.1 The Nested Framework

Given a parameterized Boolean function which consists of a sequence of simple
vectorial Boolean functions as

f(x,k) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x,k),

let the output of f (i) is s(i+1). For simplicity, we always let the dimension of
s(i+1) be n. Then we choose a proper positive number (we will elaborate on how
to choose it later) r0 and express f in a polynomial of s(r−r0) ∈ F

n
2 , i.e.,

f(x,k) =
⊕

t(r−r0)∈F
n
2

π
t (r−r0) (s

(r−r0))∈S
(r−r0)

πt(r−r0)(s(r−r0)),

where S
(r−r0) = {πt(r−r0)(s(r−r0)) : πt(r−r0)(s(r−r0)) → f}. Suppose the cube

term is xu , we need to compute Coe
(
πt(r−r0)(s(r−r0)),xu

)
for each element in

S
(r−r0).

Compute Coe
(
πt(r−r0)(s(r−r0)),xu

)
. According to the definition, s(r−r0) is the

output vector of a new composite vectorial Boolean function as

s(r−r0) = f (r−r0−1) ◦ f (r−r0−2) ◦ · · · ◦ f (0),

then πt(r−r0)(s(r−r0)) is a polynomial of (x,k). Hence we can construct the MILP
model to enumerate all feasible trails representing kvxu � πt(r−r0)(s(r−r0))
to compute Coe

(
πt(r−r0)(s(r−r0)),xu

)
just like [19,20,24]. Different from the

previous methods, we set a time limit τ (r−r0) for the MILP model. For a MILP
model M, we use

M.TimeLimit ← τ (r−r0)



402 K. Hu et al.

to denote it. We refer the readers to, e.g., the Gurobi manual [3, p. 591] for more
details about the TimeLimit. If the solver hasn’t stopped when the time is up,
the procedure will be forcibly terminated. For each element in S

(r−r0), the model
of enumerating the trails will end up with three different kinds of status,

1. The model is solved and infeasible, then Coe
(
πt(r−r0)(s(r−r0)),xu

)
= 0;

2. The model is solved and feasible, and all the solutions has been enumerated,
then Coe

(
πt(r−r0)(s(r−r0)),xu

)
are obtained [19,20,24];

3. The model is not solved in the time limit τ (r−r0).

According to the three different results, we partition S
(r−r0) into three parts in

sequence, say
S
(r−r0) = S

(r−r0)
0

⋃
S
(r−r0)
p

⋃
S
(r−r0)
u ,

where S
(r−r0)
0 is called a solved-0 set that contains the elements of case 1, S

(r−r0)
p

is called a solved-p set containing the elements of case 2, and S
(r−r0)
u is called

an undecided set containing the elements of case 3. The intersection of any two
sets among S

(r−r0)
0 , S

(r−r0)
p and S

(r−r0)
u is empty.

The solved-0 set is discarded naturally since the elements in it have no con-
tribution to Coe (f,xu ). For the solved-p set,

p(r−r0) =
⊕

π
t (r−r0) (s

(r−r0))∈S
(r−r0)
p

Coe
(
πt(r−r0)(s(r−r0)),xu

)

is collected as a part of the whole superpoly Coe (f,xu ). The undecided set is
the only one we proceed with.

To deal with the monomials in the undecided set S
(r−r0)
u , we choose another

positive r1 and expand each monomial in S
(r−r0)
u in a polynomial of s(r−r0−r1).

All the monomials from the expression are inserted into the S
(r−r0−r1), i.e.,

S
(r−r0−r1) = {π

t(r−r0−r1) (s
(r−r0−r1)) : π

t(r−r0−r1) (s
(r−r0−r1)) → π

t(r−r0) (s
(r−r0)),

π
t(r−r0) (s

(r−r0)) ∈ S
(r−r0)
u }

Note that if even-number monomials πt(r−r0−r1)(s(r−r0−r1)) are inserted into
S
(r−r0−r1), they should cancel each other by combining the similar terms. Only

those occurring odd-number times should be held. Then we repeat the process
of dealing with S

(r−r0), and keep going to reduce r.
As r reduces, there are two possible results of the whole procedure, the first

is for some r′ = r− r0 − r1 −· · ·− ri, i > 0, S
(r′)
u is an empty set. Then we obtain

Coe (f,xu ) = p(r−r0) ⊕ p(r−r0−r1) ⊕ · · · ⊕ p(r
′),

the superpoly is recovered. The second result is we finally get S
(0), it is natural

to get the partial superpoly from monomials in S
(0). In this case, we also say

S
(0)
u is empty. Hence the superpoly is also recovered.

The nested framework can be illustrated by Fig. 1 and the procedure
superpolyRecFramework in Algorithm1. The procedure superpoly
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Fig. 1. The nested framework of the superpoly recovery for the cube term xu for
r-round cipher f , i.e., Coe (f,xu ).

RecFramework accepts four inputs: the first stands for the function of the output
bit of our target; the second is the round number we are interested in; the third
is the cube indices related to the cube term xu ; and the fourth is a MILP model
constructor for computing Coe

(
πu(r′)(x(r′)),xu

)
based on works in [19,20,24],

which is given when we introduce the concrete application. For example, when we
target Trivium, the fourth parameter should be ModelTrivium in Algorithm2.
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Algorithm 1: A framework for the superpoly recovery
1 Procedure SuperpolyRecFramework(f(x,k), r, I, ModelX ):
2 Prepare a polynomial p = 0

3 Initialize S
(r)
u = {f}

4 Prepare a hash table J whose key is the key monomial and the values is an
integer

5 while S
(r)
u �= ∅ do

6 r′ = r − ChooseRiX(S(r)
u , r)

7 for πt(r)(s
(r)) ∈ S

(r)
u do

/* Express πt(r)(s
(r)) in a polynomial of s(r′) */

8 S
(r′) ← Express(πt(r)(s

(r)), r, r′)

9 Remove the elements occurring even-number times in S
(r′)

10 for π
t(r

′)(s
(r′)) ∈ S

(r′) do
11 M ← ModelX(r′, π

t(r
′)(s

(r′)), I)

12 τ (r′) = ChooseTiX(r′)
13 M.PoolSearchMode ← 1

14 M.TimeLimit ← τ (r′)

15 Solve M
16 if M is solved and all the solutions are extracted then
17 Extract kv in every found solution
18 Increase J [kv ] by 1
19 Prepare p(r′) = 0
20 for kv whose J [kv ] is an odd number do
21 p(r′) = p(r′) ⊕ kv

22 p = p ⊕ p(r′)

23 else if M is not solved within τ (r′) then
24 S

(r′)
u ← π

t(r
′)(s

(r′))

25 return p

The Choices of ri and τ (ri). The choices of ri and τ (ri) play important roles in
the whole algorithm since they affect the efficiency directly. When ri is big, it is
sometimes difficult to express π

t(r−r0−···−ri−1)(s(r−r0−···−ri−1)) in s(r−r0−···−ri)

especially when r − r0 − . . . − ri−1 has been close to 0. On the contrary, if
ri is too small, the size of S

(r−r0−···−ri) will be small, too, then the program
is also not efficient, because we have to repeat more times of the expression.
Generally speaking, the choice of ri is heavily related to the position in the life
cycle of the nested framework. So we take a dynamic way to decide it. Given
S
(r−r0−···−ri−1), we choose that ri which makes the size of S

(r−r0−···−ri) become
larger than a given number N for the first time. In our application, we usually
choose N = 10, 000 or 100, 000. In Algorithm1, the choice of ri is represented
by ChooseRiX function, X stands for the concrete instance.
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The choice of τ (ri) affects the efficiency, too, as well as the memory consump-
tion. For a monomial πt(r−r0−···−ri)(s(r−r0−···−ri)) that is hard or even impossible
to compute out Coe

(
πt(r−r0−···−ri)(s(r−r0−···−ri)),xu

)
, a large τ (ri) is pure waste.

However, if Coe
(
πt(r−r0−···−ri)(s(r−r0−···−ri)),xu

)
can be obtained in, e.g., 100 s,

while we set τ (ri) = 50 s, then πt(r−r0−···−ri)(s(r−r0−···−ri)) will be pushed into
the undecided set S

(r−r0−···−ri)
u and wait to be expressed. Then the 50 s is also

waste. It is indeed a tough task to choose a proper τ (ri). We can only pro-
vide some principles and the τ (ri) should be obtained according to the concrete
instance.

When r − r0 − · · · − ri is closer to r, τ (i) should be smaller since it is more
likely that the model for computing Coe

(
πt(r−r0−···−ri)(s(r−r0−···−ri)),xu

)
needs

an unbearable amount of the time to solve or even impossible to solve. While
r−r0−· · ·−ri is closer to 0, the model is more likely to be solved in a limited time
and expressing πt(r−r0−···−ri)(s(r−r0−···−ri)) in π

t(r−r0−···−ri+1)(s(r−r0−···−ri+1)) is
more difficult and will spawn thousands of new monomials. Therefore, we prefer
to choose a larger τ (i). The concrete τ (i) we use for our applications will be given
on the spot, i.e., we will give ChooseRiX function when discussing the concrete
cipher.

4.2 A Comparison with Existing Methods

At first glance, the nested framework is similar to Ye and Tian’s recursively-
expressing method [50], as we need to express the polynomials in intermediate
states, too. However, there is one critical difference between the new frame-
work and the recursively-expressing method. In each step, we partition S

(r′)

into three parts, say solved-0, solved-p and undecided sets while the recursively-
expressing method partitions it into two parts, in the same language with ours,
solved-0 and undecided sets. Some parts of the superpoly could be computed
out by MILP model when we process the solved-1 set, whereas the recursively-
expressing method simply pushes all monomials that should have been in solved-
1 set into the undecided set. As a result, the size of the undecided set may become
larger and larger. Every such monomial is potential to spawn thousands of new
monomials in the next expression. Especially when the superpoly is massive,
the size may explode in an exponential way. This is the main reason why their
method is not suitable to a large superpoly recovery and longer rounds of Triv-
ium.

The 3SDPwoU and the monomial prediction are embedded in our nested
framework as a sub-procedure. However, we use the MILP model in an restrained
way rather than totally relying on the MILP solver as done in [19,20,24]. This
is important because the internal mechanisms of the MILP solver are unknown.
The time consumption is hard to predict beforehand. In some extreme cases, the
MILP model is even impossible to be solved but we have no measures to deal
with it at all. While in our framework, each MILP model is small and under
control by setting the time limit. Besides, since the superpoly is computed in
the offline phase, we only need to calculate it once. It is natural for us to resort
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more computation resources to compute it. Although some solvers like Gurobi
support the multithreading property, however, the improvement of the efficiency
is not always proportional to the number of threads we use in the experiments.
Whereas in the new framework, the program is naturally parallel when processing
the monomials in the undecided set, then the efficiency will be proportional to the
number of the threads we use. Hence, it is smooth for us to take a multithreading
strategy to speed up the search.

As discussed in [23, App. B], Ye and Tian’s algebraic methods is potential
for massive superpolies but it only works when we find the useful cubes so it
has many restrictions when dealing with a casual cube. Most importantly, such
requirements for useful cubes are hard to meet when the number of rounds
increases. Our method is more general and has no such limitations.

Since Wang’s et al. pruning method needs to test every possible monomial
of the polynomial one by one, it is meaningful more in theory rather than prac-
tice. Our new framework focuses more on the practical recovery of the massive
superpolies.

5 Massive Superpoly Recovery

In this section, we apply the new framework to Trivium, Grain-128AEAD,
and Kreyvium. As a result, the exact ANFs of the superpolies for 843-, 844-
and 845-round Trivium, 191-round Grain-128AEAD and 894-round Kreyvium
are recovered, though they are extraordinarily massive. All the experiments are
conducted by Gurobi Solver (version 9.1.1) on a work station with 2×AMD
EPYC 7302 16-core (32 siblings) Processor 3.3GHz, (totally 64 threads), 256G
RAM, and Ubuntu 20.10. In our platform, the superpolies for 843- and 844-
round Trivium are obtained less than two weeks, while the results for 845-round
Trivium consume less than three weeks. It costs 31 days to recovery the superpoly
for 894-round Kreyvium (who looks quite simple though). The two results for
Grain-128AEAD cost 3 and 5 days, respectively. The source codes (as well as the
superpolies we recovered) are available in our git repository.

5.1 Superpoly Recovery for TRIVIUM up to 845 Rounds

Trivium is a hardware oriented stream cipher designed by De Cannière and Pre-
neel [10]. It has been selected as part of the eSTREAM portfolio [1] and specified
as an International Standard under ISO/IEC 29192-3 [4]. At the initialization
phase, an 80-bit key and an 80-bit IV are loaded into the 288-bit initial state
(s0, s1, . . . , s287). Then the state is updated through 1152 rounds. This process
is summarized by the following pseudo-code:

(s0, s1, . . . , s92) ← (K0, K1, . . . , K79, 0, . . . , 0)

(s93, s95, . . . , s177) ← (IV0, IV1, . . . , IV79, 0, . . . , 0)

(s177, s179, . . . , s287) ← (0, . . . , 0, 1, 1, 1)

for i = 0 to 1151 do

https://github.com/hukaisdu/massive_superpoly_recovery.git
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t1 ← s65 ⊕ s90 · s91 ⊕ s92 ⊕ s170

t2 ← s161 ⊕ s174 · s175 ⊕ s176 ⊕ s263

t3 ← s242 ⊕ s285 · s286 ⊕ s287 ⊕ s68

(s0, s1, . . . , s92) ← (t3, s0, s1, . . . , s91)

(s93, s95, . . . , s177 ← (t1, s93, s94, . . . , s175)

(s177, s179, . . . , s287) ← (t2, s177, s178 . . . , s286)

end for

After the initialization phase, one key stream bit is generated by z = s65⊕s92⊕
s161 ⊕ s176 ⊕ s242 ⊕ s287. When we say r-round Trivium, we mean after r times
of updates in the initialization phase, one key bit denoted by zr is generated.
We assume that an attacker has the right to access zr.

In [19,20,24], the MILP model of Trivium for tracing the three-subset divi-
sion/monomial trails are proposed. In this paper, we slightly adjust their model
to make them suitable to the nested framework. The TriviumCore in Algorithm2
generates the MILP constraints for all the monomial trails of the update function,
which is directly borrowed from [19,20]. The procedure ModelTrivium generates
a model M as the input of Algorithm 1. All feasible solutions of M cover all
kvxu � πt(R)(s(R)) where v ∈ F

80
2 and xu is the cube term. The functions that

produce the sequences of r0, r1, . . . , ri and τ (r−r0), τ (r−r0−r1), . . . , τ (r−r0−···−ri)

for Trivium used in Algorithm 1, i.e., ChooseRiTrivium and ChooseTiTrivium
are given in Algorithm3.

Superpoly Recovery for 843-Round Trivium. Currently, there is no opti-
mal method of choosing a good cube, so we construct new cubes heuristically as
shown in Table 3. It is worth noting that we took the method in [24] to recover
the superpoly for I4, the program had not ended for more than one month and
we had to give up. Taking our nested framework, the superpoly for I4 could
be recovered in less than 12 days. Since the superpolies for I0, I1, . . . , I4 are too
complicated to present here, we provide them in the git repository. We here only
give some information of the five superpolies in Table 4. Since the superpolies
are too complicated, the balancedness of each superpoly is tested by 215 random
keys.

Superpoly Recovery for 844- and 845-Round Trivium. From Table 3,
we know the number of monomial trails and the terms in the superpoly for I2
is the minimum. We heuristically choose I2 for 844- and 845-round Trivium
and recover the superpolies. The information of the two superpolies are listed
in Table 5. Since the superpolies are too complicated, the balancedness of each
superpoly is tested by 215 random keys.

5.2 Superpoly Recovery for 191-Round Grain-128AEAD

Grain-128AEAD [22] is an authenticated encryption algorithm with support for
associated data, which has recently been selected as the one of the ten finalist
candidates of the NIST lightweight cryptography standardization process. The

https://github.com/hukaisdu/massive_superpoly_recovery.git


408 K. Hu et al.

Algorithm 2: Model for the propagation trails of R-round Trivium
1 Procedure TriviumCore( M, x0, x1, . . . , x287, i1, i2, i3, i4, i5):
2 M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3 M.con ← xij = yij ∨ zj for all j ∈ {1, 2, 3, 4}
4 M.con ← a = z3
5 M.con ← a = z4
6 M.con ← yi5 = xi5 + a+ z1 + z2
7 for i ∈ {0, 1, . . . , 287} w/o i1, i2, i3, i4, i5 do yi = xi
8 return (M, y0, y1, . . . , y287)

9 Procedure ModelTrivium( round R, πt(R)(s(R)), I):
10 Prepare empty MILP Model M
11 M.var ← s0i for i ∈ {0, 1, . . . , 287}
12 for i = 80 to 92 and i = 93+ 80 to 284 do M.con ← s0i = 0

13 for i = 93 to 172 do
14 M.con ← s0i = 1 ∀ i − 93 ∈ I
15 M.con ← s0i = 0 ∀ i − 93 /∈ I

16 for r = 0 to R − 1 do
17 (M, x0, . . . , x287) = TriviumCore(M, sr1, . . . , s

r
288, 65, 170, 90, 91, 92)

18 (M, y0, . . . , y287) = TriviumCore(M, x1, . . . , x288, 161, 263, 174, 175, 176)
19 (M, z0, . . . , z287) = TriviumCore(M, y1, . . . , y288, 242, 68, 285, 286, 287)
20 (sr+1

0 , . . . , sr+1
287 ) = (z287, z0, . . . , z286)

21 for i = 0 to 287 do
22 M.con ← sri = t

(R)
i // t(R) = (t0, t1, . . . , t287)

23 return M

Algorithm 3: ChooseRiTrivium and ChooseTiTrivium
1 Procedure ChooseRiTrivium(S, r):
2 r′ = 0
3 while |S′| < 100, 000 and r − r′ > 0 do
4 r′ = r′ + 1
5 S

′ = ∅
6 for s ∈ S do S

′ = S
′ ∪ Express(s, r, r′)

7 return r′

8 Procedure ChooseTiTrivium(r):
9 if r ≥ 600 then τ = 60 s

10 else if r ≥ 500 then τ = 120 s
11 else if r ≥ 400 then τ = 180 s
12 else if r ≥ 300 then τ = 360 s
13 else if r ≥ 200 then τ = 720 s
14 else if r ≥ 100 then τ = 1200 s
15 else if r ≥ 20 then τ = 3600 s
16 else if r ≥ 0 then τ = ∞
17 return τ
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Table 3. Cube indices we use for the superpoly recovery of 843-round Trivium

I |I| Indices

I0 56
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 45, 47, 49,

51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I1 57
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 40, 42, 45, 47,

49, 51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I2 55
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51,

53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I3 54
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53,

55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I4 76

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 79

Table 4. Details related to the Superpoly of CI for 843-round Trivium. The concrete
ANFs for them are provided in the git repository.

I # Trails # Monomials # Involved key bits Degree Balancedness

I0 44,586,510 1,671,492 80 17 0.50
I1 217,694,326 7,985,786 80 19 0.50
I2 6,124,212 359,466 80 17 0.49
I3 15,587,645 628,607 80 18 0.50
I4 1,977,228,919 38,021 80 10 0.50

design of Grain-128AEAD is closely based on the Grain-128a [5] which was
introduced in 2011. Before the pre-output bits are used for encryption, a 64-
bit shift register and a 64-bit accumulator are also initialized to generate the
authentication tag later. In [19,20], Hao et al. assumed that the first pre-output
bit could be observed, then the Grain-128AEAD is actually the same as Grain-
128a. In this work, we also analyze Grain-128AEAD under this setting.

The internal state of Grain-128AEAD is represented by two 128-bit states as
b = (b0, b1, . . . , b127) and s = (s0, s1, . . . , s127). The 128-bit key is loaded to the
first register b, and the 96-bit nonce (the initialization vector for Grain128a) is
loaded to the second register s. The other state bits are set to 1 except the least
one bit in the second register. Namely, the initial state bits are represented as

(b0, b1, . . . , b127) = (K0,K1, . . . , K127),
(s0, s1, . . . , s127) = (N0, N1, . . . , N95, 1, . . . , 1, 0).

https://github.com/hukaisdu/massive_superpoly_recovery.git
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Table 5. Details related to the Superpoly for I2 for 844- and 845-round Trivium. The
concrete ANFs of them are available in the git repository.

I Round # Trails # Monomials # Involved key bits Degree Balancedness

I2 844 186,128,078 1,770,734 80 19 0.50

I3 844 55,152,796 917,468 80 17 0.49

I2 845 4,731,073,108 19,967,968 80 22 0.50

I3 845 1,362,323,454 12,040,654 80 21 0.50

The pseudo code of the update function in the initialization is given as follows.

g ← b0 ⊕ b26 ⊕ b56 ⊕ b91 ⊕ b96 ⊕ b3b67 ⊕ b11b13 ⊕ b17b18 ⊕ b27b59 ⊕ b40b48

⊕ b61b65 ⊕ b68b84 ⊕ b88b92b93b95 ⊕ b22b24b25 ⊕ b70b78b82,

f ← s0 ⊕ s7 ⊕ s38 ⊕ s70 ⊕ s81 ⊕ s96,

h ← b12s8 ⊕ s13s20 ⊕ b95s42 ⊕ s60s79 ⊕ b12b95s94,

z ← h ⊕ s93 ⊕ b2 ⊕ b15 ⊕ b36 ⊕ b45 ⊕ b64 ⊕ b73 ⊕ b89,

(b0, b1, . . . , b127) ← (b1, . . . , b127, g ⊕ s0 ⊕ z),

(s0, s1, . . . , s127) ← (s1, . . . , s127, f ⊕ z).

In the initialization, the state is updated 256 times without producing an output.
After the initialization, the update function is tweaked such that z is not fed to
the state, and z is used as a pre-output key stream.

MILP Model. ModelGrain-128AEAD in [23, Algorithm6] produces the MILP
model as the fourth input of Algorithm 1. The MILP model is used to enumerate
all trails like kvxu � πt(R)(s(R)) where v ∈ F

128
2 , and xu is the cube term we

are interested in. [23, Algorithm 6] is slightly adapted from [19,20], the sup-
porting functions such as funcZ, funcG and funcF are directly borrowed ([23,
Algorithm 8]). The functions that produce the sequences of r0, r1, . . . , ri and
τ (r−r0), τ (r−r0−r1), . . . , τ (r−r0−···−ri) for Grain-128AEAD used in Algorithm1,
i.e., ChooseRiGrain-128AEAD and ChooseTiGrain-128AEAD are also given in
[23, Algorithm7]. Due to the page limits, all the algorithms are presented in [23,
App. D].

Superpoly Recovery for 191-Round Grain-128AEAD. For 191-round
Grain-128AEAD, we apply the nested framework to two cubes. The first is
I0 = {0, 1, 2, . . . , 95}, where all nonce bits are active. The second is I1 =
{0, 1, 2, . . . , 95}\{30}, where all IV bits except the 30th are active. The infor-
mation of the two superpolies are shown in Table 6.

Table 6. Details related to the Superpoly of I0 and I1 for 191-round Grain-128AEAD.
The concrete ANFs of them are available in the git repository.

I # Trails $ Monomials # Involved key bits Degree Balancedness

I0 58,442,962 2,398,450 80 27 0.31

I1 123,946,062 3,053,028 80 27 0.30

https://github.com/hukaisdu/massive_superpoly_recovery.git
https://github.com/hukaisdu/massive_superpoly_recovery.git
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5.3 Superpoly Recovery for 894-Round Kreyvium

Kreyvium is a stream cipher which was designed for the use of the fully Homo-
morphic encryption [11]. As a variant of Trivium, Kreyvium shares the same
internal structure but allows for bigger keys of 128 bits. The main advantage of
Kreyvium over Trivium is that it provides 128-bit security (instead of 80-bit)
with the same multiplicative depth, and inherits the same security arguments.
Kreyvium supports 128-bit IV and consists of five registers, two of them are
LFSRs denoted by K∗ and IV ∗, respectively. Each one of these two registers is
rotated independently from the rest of the cipher when updated. The remaining
three registers are NFSRs which are identical to those of Trivium. The five
registers are initialized as

(s0, s1, . . . , s92) ← (K0, K1, . . . , K92)

(s93, s95, . . . , s176 ← (IV0, IV1, . . . , IV83)

(s177, s179, . . . , s287) ← (IV85, . . . , IV127, 1, . . . , 1, 0)

(IV ∗
127, . . . , IV ∗

0 ) ← (IV127, . . . , IV0)

(K∗
127, . . . , K

∗
0 ) ← (K127, . . . , K0)

Then, the state is updated over 1152 rounds, which is also identical with Triv-
ium. The update function is as follows,

for i = 0 to 1151 do
t1 ← s65 ⊕ s92, t2 ← s161 ⊕ s176, t3 ← s242 ⊕ s287 ⊕ K∗

0

zi ← t1 ⊕ t2 ⊕ t3

t1 ← t1 ⊕ s90s91 ⊕ s170 ⊕ IV ∗
0

t2 ← t2 ⊕ s174s175 ⊕ s263

t3 ← t3 ⊕ s285s286 ⊕ s68

t4 ← K∗
0 , t5 ← IV ∗

0

(s0, s1, . . . , s92) ← (t3, s0, s1, . . . , s91)

(s92, s93, . . . , s176) ← (t1, s93, s94, . . . , s175)

(s177, s178, . . . , s287) ← (t2, s177, s178, . . . , s286)

(K∗
127, K

∗
126, . . . , K

∗
0 ) ← (t4, K

∗
127, K

∗
126, . . . , K

∗
1 )

(IV ∗
127, IV ∗

126, . . . , IV ∗
0 ) ← (t5, IV ∗

127, IV ∗
126, . . . , IV ∗

1 )

end for

Only after the initialization finishes, the key stream bit zi, i ≥ 1152 is produced.
In this paper, we focus on the variant of Kreyvium whose initialization is reduced
to R rounds, where the key stream bit is denoted by zR.

MILP Model. ModelKreyvium in [23, Algorithm10] produces the MILP model
as the fourth input of Algorithm 1. The MILP model is used to enumerate all
trails like kvxu � πt(R)(s(R)) where v ∈ F

128
2 , and xu is the cube term we

are interested in. [23, Algorithm10] is slightly adapted from [19,20] and the
TriviumCore subroutine is identical to that in Algorithm2. The functions that
produce the sequences of r0, r1, . . . , ri and τ (r−r0), τ (r−r0−r1), . . . , τ (r−r0−···−ri)
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for Kreyvium in Algorithm1, i.e., ChooseRiKreyvium and ChooseTiKreyvium
are given in [23, Algorithm 11]. These algorithms are provided in [23, App. E].

Superpoly Recovery for 893- and 894-Round Kreyvium. For 893- and
894-round Kreyvium, we let the 119-dimensional cube indices be

I = {0, 1, . . . , 127}\{6, 66, 72, 73, 78, 101, 106, 109, 110}.

We apply the nested framework to recover the superpolies. For the 893-round
Kreyvium, there are 53 trails are obtained. However, only the trails representing
the monomial 1 appear odd-number times, i.e., the superpoly of z893 is pI = 1.

For 894-round Kreyvium, we get 24,107 trails, and 191 terms are involved in
the superpoly in z894. The superpoly is a 4-degree polynomial and involves 77
key bits. Since k119 is an independent term, the superpoly is a balance Boolean
function. The superpoly is as follows,

6 Key-Recovery Attacks Exploiting Massive Superpolies

Suppose we have recovered the exact ANF of a superpoly p(k) for the cube term
xu (the corresponding cube is denoted by Cu ). In the online phase, we first
call the cipher oracle to encrypt all elements in the cube and get the value of
the superpoly with time complexity 2wt(u). In this paper, we always use small-
dimensional cubes such that the complexity of this step can be ignored. Next,
we try to obtain some information of the secret key from the equation:

p(k) =
⊕

x∈Cu

fk(x). (3)

Suppose that p(k) involves n′ bits of the n-bit secret key. In the simplest case
where n′ � n, i.e., p(k) involves only a small part of the secret key, as the
situation in [20,24], we can evaluate p(k) for every combination of the involved
n′ key bits and filter out those incorrect keys that violates Eq. (3).

However, for the case n′ = n, i.e., p(k) involves all the key bits, the method
presented above does not work any more. Indeed, the complexity of evaluating
Eq. (3) with all possible key values is larger than 2n, especially for massive super-
polies. To tackle this problem, we present a new key-recovery technique with the
binary Möbius transforms shown in Algorithm4 as its fundamental algorithm.

We first introduce a trivial method for the key recovery based on the Möbius
transform. It is well known that Möbius transformation is available for the con-
version between the ANF and the truth table of any Boolean function. It requires
n × 2n−1 1-bit XORs and 2n-bit memory complexity. Of course, the complex-
ity is higher than 2n in n ≥ 2, but the unit of the complexity is significantly
lower. One recovered superpoly can recover at most 1 bit of information, and the
exhaustive search is necessary to determine the whole of secret key bits. Consid-
ering the difference between each unit of the complexity, the use of the Möbius
transformation could be useful already. Although the superpolies we recovered
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Algorithm 4: Möbius transformation
1 Procedure MöbiusTransformation(a[i], 0 ≤ i ≤ 2n):
2 for k = 1 to n do
3 for i = 0 to 2n−k do
4 for j = 0 to 2k−1 − 1 do
5 a[2ki + 2k−1 + j] = a[2ki + j] ⊕ a[2ki + 2k−1 + j]

6 return a

are massive, they are still very sparse when compared with the random polyno-
mials (a random polynomial may contains about 2n−1 monomials). Considering
the sparse property, in [23, App. G] we give a more efficient algorithm to com-
pute the truth table from the ANF. With the efficient algorithm, the Möbius
transformation costs only n× 2n−2 XORs for the superpolies we consider in this
paper.

6.1 Divide-and-Conquer Method Using the Disjoint Set

Then, we exploit more detailed structural property of the recovered superpolies
to give a delicate key recovery attack on ciphers whose superpolies are massive.

Definition 1 (Disjoint set). Given a superpoly p(k) with n variables, if for
0 ≤ i 
= j < n, ki and kj are never multiplied mutually in all monomials
of p(k), then we say ki and kj are disjoint. If for a subset of variables D ⊆
{k0, k1, . . . , kn−1}, every pair of variables like ki, kj ∈ D are all disjoint, we call
D a disjoint set.

Search for a Disjoint Set of p(k). Obviously, there can be many different
disjoint sets for p(k), while usually we are only interested in the one with the
maximum size. To better study the disjoint sets of p(k), we introduce the disjoint
matrix. A matrix M ∈ F

n
2 is called the disjoint matrix of p(k), if M [i][j] = 0

when ki and kj are disjoint, M [i][j] = 1 otherwise, where M [i][j] stands for the
value located at the intersection of the ith row and the jth column. Obviously,
all the pairs of the disjoint variables can be reflected by the disjoint matrix.
Given the disjoint matrix, a locally-optimized disjoint set can be obtained by a
greedy algorithm as follows,

1. sort the variables in {k0, k1, . . . , kn−1} in certain order, e.g., an increasing
order according to the value

∑
0≤j<n M [i][j] for ki. The sorted variables are

denoted as {k′
0, k

′
1, . . . , k

′
n−1};

2. initialize a set D = {k′
0};

3. for 1 ≤ i < n, if k′
i is disjoint with all variables in D, put k′

i into D; otherwise,
process the next variable.

4. after all the variables are processed, D is one of the disjoint sets.
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Besides the greedy algorithm, noting that every disjoint set is one-to-one mapped
to a zero square sub-matrix of M that takes the diagonal of M as the axis of
symmetry, then an SAT/SMT model also works for finding a disjoint set with a
certain number of variables and sometimes it may find the optimal disjoint set.

We first consider the case where the targeted superpoly is balanced. And
later we consider the case where the superpolies are with a significant bias.

Key Recovery Attacks with Single Balanced Superpoly. If the bal-
anced superpoly p(k) has a disjoint set D with m variables and J =
{k0, k1, . . . , kn−1}/D, then p(k) can be written as the form

p(k0, k1, . . . , kn−1) =

⎛

⎝
⊕

0≤i<m

ki · pi(J)

⎞

⎠ ⊕ pm(J) (4)

where pi(J) is a polynomial of the variables in J .
Every pi(J) involves at most n − m variables, then we can use the Möbius

transform to compute the truth tables of p0, p1, . . . , pm over all possible values
of variables in J . Once we get the m + 1 truth tables, we can access them
and get the values for every key combination in J , then Eq. (4) will become a
linear expression of variables in D. Considering Eq. (3), we get a linear equation
of variables in D. For the linear equation, we can remove 1-bit key guessing
efficiently after guessing m − 1 key bits additionally.

As is pointed out, the complexity of computing the truth table from the ANF
of a Boolean function with κ variables by the Möbius transform is κ×2κ−2 XORs
(see [23, App. G] for more details about the complexity). Hence, if a superpoly
has a disjoint set with m variables, the above process costs (m+1)× (n − m)×
2n−m−2 XORs to construct the truth tables. For each of the 2n−m combinations
of variables in J , we access the m+1 truth tables to get the values of pi, 1 ≤ i ≤ m
and construct a linear equation for the variables in D. Thereafter, with 2m−1

guesses for the values of any m− 1 variables in the linear equations, the value of
the remaining one variable can be determined. Finally we call the cipher oracle
to test whether the key candidate is correct.

Key Recovery Attacks with Multiple Balanced Superpolies. Suppose
we have recovered N balanced superpolies p(0), p(1), . . . , p(N−1), if D is the dis-
joint set for all p(i), 0 ≤ i < N , we call D their common disjoint set. With N
superpolies, we may get more linear equations to gain more information of the
secret keys. The complexity of the case then consists of

1. constructing the truth tables, which costs N × (m + 1) × (n − m) × 2n−m−2

XORs;
2. constructing the linear equations, which is N × 2n−m × (m + 1) truth table

lookups;
3. guessing the value of m − N (we always let m > N) variables, then the

remaining N variables can be determined by solving a set of simple linear
equations. This step costs 2n−m × 2m−N guesses. For each guess in the third
step, call the cipher oracle to verify the key candidate.
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The analysis of the complexity actually contains many redundant compu-
tations. For example, each sub-polynomial of a superpoly in Eq. (4) at most
involves n − m variables, while in practice, some sub-polynomials may involves
less key bits. In this case, the complexity of constructing the truth tables and
the linear equations can be reduced. What’s more, for a superpoly, all linear
equations are limited within 2m+1 different types. So with a precomputed table
containing all the linear equations (and their solutions), the complexity of con-
structing the linear equations can be improved further. Finally, the dominant
part of the complexity is 2n−N cipher calls.

Compared with the previous cube attacks, our method requires considerable
memory complexities to store the N × (m+1) truth tables. We will provide the
memory cost for each concrete case later.

Key Recovery Attacks with Significantly Biased Superpolies. When the
superpolies we consider are not balanced, then there are some problems with the
above process. For example, when a superpoly p is highly biased towards zero,
then its component sub-polynomials are very likely to be zero, too. We may
get many identities like 0 = 0 rather than the useful linear equations about
the variables in the disjoint set. The information we gain from the superpolies
are also reduced. Fortunately, the information of the secret keys contained in
the superpolies can be measured by their entropy. In this line of works, Hao
et al. also took the entropy to measure the information we can gain from the
superpolies of the 190-round Grain-128AEAD in [19,20].

For N superpolies p(0), p(1), . . . , p(N−1), we are interested in the joint proba-
bility distribution of

P (p(0) = ν0, p
(1) = ν1, . . . , p

(N−1) = νN−1) = P(ν0,ν1,...,νN−1), (ν0, ν1, . . . , νN−1) ∈ F
N
2 .

(5)

The distribution can be determined by experiments, e.g., in this paper, we test
215 random keys to observe this distribution. The entropy of this distribution is

E = −
∑

(ν0,ν1,...,νN−1)∈F
N
2

P(ν0,ν1,...,νN−1) logP(ν0,ν1,...,νN−1), (6)

When we know the entropy of the targeted superpolies, the information we gain
from the key recovery process are also known. If we have gained E bit of the key
information, then the final complexity is approximately 2n−E cipher calls.

6.2 Applications to Trivium, Grain-128AEAD and Kreyvium

Key Recovery Attack on 843-round Trivium. Consider the five super-
polies for cubes listed in Table 3, if we choose the superpolies for I0, I2 and I3,
denoted by p(0), p(2) and p(3), one of their common disjoint sets is

D = {k1, k39, k43, k12, k37}.
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Then we can decompose p(0), p(2) and p(3) as follows,
⎧
⎪⎪⎨

⎪⎪⎩

p(0) = k37 · p
(0)
0 ⊕ k12 · p

(0)
1 ⊕ k43 · p

(0)
2 ⊕ k39 · p

(0)
3 ⊕ k1 · p

(0)
4 ⊕ p

(0)
5

p(2) = k37 · p
(2)
0 ⊕ k12 · p

(2)
1 ⊕ k43 · p

(2)
2 ⊕ k39 · p

(2)
3 ⊕ k1 · p

(2)
4 ⊕ p

(2)
5

p(3) = k37 · p
(3)
0 ⊕ k12 · p

(3)
1 ⊕ k43 · p

(3)
2 ⊕ k39 · p

(3)
3 ⊕ k1 · p

(3)
4 ⊕ p

(3)
5

The sub-polynomials of p(0), i.e., p
(0)
i , 0 ≤ i ≤ 5 involve respectively 58, 46, 67,

60, 69 and 75 key bits; the sub-polynomials of p(2), i.e., p
(2)
i , 0 ≤ i ≤ 5 involve

respectively 54, 18, 51, 33, 32 and 74 key bits; and the sub-polynomials of p(3),
i.e., p

(3)
i , 0 ≤ i ≤ 5 involve respectively 65, 40, 65, 47, 45 and 75 key bits. Then

it can be seen that comparing with p
(0)
5 , p

(2)
5 and p

(3)
5 , other sub-polynomials

involves much less key bits, then the complexity of constructing the truth tables
and linear equations for them can be neglected. According to Table 4, these
three superpolies are almost balanced. Then the complexity consists of (where
n = 80,m = 5, N = 3):

1. 3 × 75 × 273 XORs for constructing the truth tables;
2. 3 × 275 table lookups for constructing the linear equations;
3. 22 × 275 guesses to determine the remaining three bits of information of the

keys. For each guess, call the 843-round Trivium to verify the key candidate.

Therefore, the final time complexity is slightly more than 277 843-round Trivium
calls to recover all the secret key bits. To store all the truth tables, we need
approximately 276.6 bits of memory, which is equivalent to 270 80-bit blocks.

Key Recovery Attack on 844-Round Trivium. Consider the two super-
polies for 844-round Trivium of the cube I2 and I3, denoted by p(2) and p(3),
respectively, one of the common disjoint sets is

D = {k1, k10, k20, k43, k7, k22}.

Then we can decompose p(2) and p(3) as
{

p(2) = k22 · p
(2)
0 ⊕ k7 · p

(2)
1 ⊕ k43 · p

(2)
2 ⊕ k20 · p

(2)
3 ⊕ k10 · p

(2)
4 ⊕ k1 · p

(2)
5 ⊕ p

(2)
6

p(3) = k22 · p
(3)
0 ⊕ k7 · p

(3)
1 ⊕ k43 · p

(3)
2 ⊕ k20 · p

(3)
3 ⊕ k10 · p

(3)
4 ⊕ k1 · p

(3)
5 ⊕ p

(3)
6

The numbers of involved key bits in p
(2)
0 , p

(2)
1 , . . . , p

(2)
6 are respectively 69, 68,

67, 69, 64, 61 and 74, while the numbers for subpolies of p(3) are respectively 57,
62, 63, 62, 50, 63, 74. Furthermore, the superpoly is experimentally balanced.
Thereafter, the complexity consists of (where N = 2, n = 80,m = 6):

1. 2 × 74 × 272 XORs for constructing the truth tables;
2. 2 × 274 truth table lookups for constructing the linear equations;
3. 24 × 274 guesses to determine two key variables in the linear equation and for

each guess, call 844-round Trivium to check the candidate.
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Therefore, the final complexity is slightly more than 278 844-round Trivium calls
to recover all the secret key bits. The memory cost is about 275 bits, equivalent
to 269 80-bit blocks.

Key recovery attack on 845-round Trivium. Consider the superpoly p(2)

and p(3) for 845-round Trivium of the cubes I2 and I3, respectively, the only
common disjoint set is

D = {k1, k10}.

Then we can decompose p(2) and p(3) as
{

p(2) = k1 · p
(2)
0 ⊕ k10 · p

(2)
1 ⊕ p

(2)
2

p(3) = k1 · p
(3)
0 ⊕ k10 · p

(3)
1 ⊕ p

(3)
2

p
(2)
0 , p

(2)
2 , p

(3)
1 and p

(3)
2 involve 78 key bits while p

(2)
1 and p

(3)
0 involves only 77 key

bits. Therefore, the complexity consists of (where N = 2, n = 80,m = 2):

1. 4 × 78 × 276 + 2 × 77 × 275 XORs for constructing the truth tables;
2. 4 × 278 + 2 × 277 truth table lookups for constructing the linear equations;
3. Solver the linear equations of k1 and k10 to determine one key variables. For

each candidate, call the 845-round Trivium to verify the candidate.

Note the number of kinds of all linear equations of k1 and k10 is 8, so the
complexity of constructing the linear equations and solving them is very small.
Table lookups to the big tables may cost a lot. However, considering that the
values contained in the truth tables are all single bits. So we can construct these
tables parallely. Then once lookup can obtain all bits that are used to construct
the linear equations. Fairly speaking, the final complexity is slightly more than
278 845-round Trivium calls to recover all the secret key bits. The memory
complexity is about 280 bits, which is equivalent to about 274 80-bit blocks.

Key recovery attack on 191-round Grain-128AEAD. Consider the super-
polies p(0) and p(1) for 191-round Grain-128AEAD, one of their common disjoint
sets is

D = {k9, k6, k0, k2, k7, k8, k5, k4, k14, k3, k11, k1}.

Then we can decompose p(0) and p(1) as
{

p(0) = k1 · p
(0)
0 ⊕ k11 · p

(0)
1 ⊕ · · · ⊕ k9 · p

(0)
11 ⊕ p

(0)
12

p(1) = k1 · p
(1)
0 ⊕ k11 · p

(1)
1 ⊕ · · · ⊕ k9 · p

(1)
11 ⊕ p

(1)
12

The sub-polynomials of p(0), i.e., p
(0)
0 , p

(0)
1 , . . . , p

(0)
12 involves respectively 89, 115,

112, 116, 93, 83, 109, 110, 29, 93, 112, 100, 116 key bits; while the sub-polynomials
of p(1), i.e., p

(1)
0 , p

(1)
1 , . . . , p

(1)
12 involves respectively 86, 115, 115, 116, 92, 96, 110,

115, 39, 99, 115, 107, 115 key bits. So for the complexity, it is enough to consider
only those superpolies involving at least 115 key bits. Further, since p(0) and p(1)

are highly biased, we compute the entropy of them according to Eq. (5) and (6).
By taking 215 keys, the entropy contained in the two superpolies is about 1.74.
Then the complexity approximately consists of (where n = 128,m = 12, N = 2):
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1. 3 × 116 × 2114 + 6 × 115 × 2113 XORs for constructing the truth tables;
2. 3 × 2116 + 6 × 2115 table lookups for constructing the linear equations;
3. 210 × 2116 guesses to determine two bits of key information.
4. For about 2116.26 guesses from the previous step, we call 191-round Grain-

128AEAD for the verification for the key candidate.

The final complexity is then approximately 2116.26 191-round Grain-128AEAD
calls to recover all the secret key bits. The memory complexity is about 2118.6

bits which is equivalent to 2117.6 128-bit blocks.

Key recovery attack on 894-round Kreyvium. The superpoly for 894-
round Trivium is simple involving only 77 key variables, so we can recover all
the secret keys in 2127 Kreyvium calls by a normal way as done in [19,20,24].

7 Conclusion

In this paper, we propose a nested framework based on the monomial prediction
technique for efficiently recovering the massive superpolies. The nested frame-
work iteratively expands the cipher output in the polynomial of intermediate
states. For every term in the polynomial, we try to call the MILP solver to
recover a part of the superpoly from a smaller MILP model in a limited time.
For those terms which cannot be solved in the limited time, we proceed to
expand them in deeper intermediate states. Finally, the targeted superpoly can
be fully recovered. We apply this new framework to Trivium, Grain-128AEAD
and Kreyvium, superpolies for up to 845, 191 and 894 rounds of the three ciphers
are recovered. With the disjoint set method taking the sparse property of the
variables involved in the superpoly, the key recovery attacks on the correspond-
ing rounds of the three ciphers are improved. However, the disjoint set will take
huge memory cost which is a significant weakness. As the number of rounds
increases, the superpolies are expected to be more and more massive. Therefore,
we put up an open question: how to efficiently recover the secret keys in cube
attacks based on massive suoperpolies involving all secret key bits?
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Abstract. Recent works have shown that quantum period-finding can
be used to break many popular constructions (some block ciphers such as
Even-Mansour, multiple MACs and AEs. . . ) in the superposition query
model. So far, all the constructions broken exhibited a strong algebraic
structure, which enables to craft a periodic function of a single input
block. Recovering the secret period allows to recover a key, distinguish,
break the confidentiality or authenticity of these modes.

In this paper, we introduce the quantum linearization attack, a new
way of using Simon’s algorithm to target MACs in the superposition
query model. Specifically, we use inputs of multiple blocks as an inter-
face to a function hiding a linear structure. Recovering this structure
allows to perform forgeries.

We also present some variants of this attack that use other quantum
algorithms, which are much less common in quantum symmetric crypt-
analysis: Deutsch’s, Bernstein-Vazirani’s, and Shor’s. To the best of our
knowledge, this is the first time these algorithms have been used in quan-
tum forgery or key-recovery attacks.

Our attack breaks many parallelizable MACs such as LightMac,
PMAC, and numerous variants with (classical) beyond-birthday-bound
security (LightMAC+, PMAC+) or using tweakable block ciphers
(ZMAC). More generally, it shows that constructing parallelizable
quantum-secure PRFs might be a challenging task.

Keywords: Quantum cryptanalysis · MACs · Superposition query
model · Deutsch’s algorithm · Bernstein-Vazirani algorithm · Simon’s
algorithm · Shor’s algorithm

1 Introduction

The possible emergence of large-scale quantum computing devices in a near
future has prompted a wide move towards post-quantum security, which takes
c© International Association for Cryptologic Research 2021
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into account the new security threats that they pose. In particular, the most
popular asymmetric cryptosystems currently in use, such as RSA, can be broken
by an adversary capable of successfully implementing Shor’s algorithm [58]. An
ongoing standardization project led by the NIST [55] has structured the efforts
of the (asymmetric) cryptographic community on this question.

As symmetric primitives do not rely on a trapdoor, they seemed for a long
time to avoid the cases where quantum computers bring an exponential speedup
over the best classical algorithms. In fact, most problems in symmetric cryptog-
raphy, such as the search for the secret key of a black-box cipher, seem to admit
a quadratic speedup at best, given by Grover’s quantum search algorithm [29].
Although this speedup is significant, it could be countered by increasing the
parameters of symmetric cryptosystems, e.g., doubling the size of secret keys.

However, in the past few years, a series of works have shown the insecurity of
some symmetric cryptosystems against quantum adversaries entitled to super-
position queries. That is, some primitives become broken if they can be queried
inside a quantum algorithm. This started with the 3-round Feistel distinguisher
proposed by Kuwakado and Morii [44]. Later, they found a polynomial-time
key-recovery attack on the Even-Mansour cipher [45], which was the first quan-
tum key-recovery on a classically secure symmetric construction. These results
rely crucially on the fact that many popular designs in symmetric cryptogra-
phy have a strong algebraic structure, as they are built by combining smaller
primitives (such as permutations or block ciphers) using cheap operations such
as XORs. Kaplan et al. [39] showed that many other constructions exhibited
a structure exploitable by a quantum adversary, and designed the first forgery
attacks on MACs (notably CBC-MAC [11], OMAC [35], PMAC [12]) and authen-
ticated encryption schemes (e.g., OCB3 [43], GCM [49]).

In this paper, we will focus on idealized MAC constructions that authenticate
messages of arbitrary size using smaller primitives such as permutations, block
ciphers or tweakable block ciphers (TBCs) of block size n. These constructions
have classical proofs of security showing either that the MAC behaves as a
pseudo-random function, or that it is unforgeable, up to some exponential bound
in n. We will exhibit polynomial-time quantum attacks on constructions that
were not vulnerable to previous Simon’s attacks (like those of [39,57]).

Previous Attacks. Although there have been many of them, all the quantum
forgery attacks known so far follow the same paradigm. They query the MAC
with a constant number of blocks, using usually a single block of message x
in superposition. Inside the MAC, this block of message x is XORed to some
unknown value α depending on other blocks: thus, the result is MAC(x ⊕ α).
Having two different values α0, α1, we then have access to two functions f(x) =
MAC(x ⊕ α0) and g(x) = MAC(x ⊕ α1), such that f(x) = g(x ⊕ α0 ⊕ α1). From
there, we can use Simon’s Boolean hidden shift algorithm [59] as a black box. It
recovers α0 ⊕ α1 in quantum polynomial time, whereas any classical algorithm
would require exponentially many queries to f and g (thus to the MAC). The
recovery of the internal shift α0 ⊕ α1 then enables the adversary to forge new
messages, and in some cases to recover secret-key material.
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Let us point out the following important remark:

If the message blocks are not directly XORed to internal values (keys,
offsets, encryption of other blocks. . . ), then the previous attacks based on
Simon’s algorithm do not apply.

Contributions. In this paper, we present the quantum linearization attack,
which is a new family of quantum attacks on classically unforgeable MACs when
superposition queries are allowed. Thanks to the novelty of our approach, we are
able to attack many MACs that resisted previous cryptanalysis, as they do not
exhibit the property recalled above (a message block XORed to an internal state
value). In particular, our attack usually circumvents the use of TBCs instead of
block ciphers. It is also the first case of a quantum polynomial-time attack on
MACs with beyond-birthday security, where the internal state has a bigger size.
As an example, we break LightMAC with a linear number of queries, and we can
attack LightMAC+ with only twice as much.

Overview. Our attack starts with the following remark. Consider a function of �
blocks x1, . . . , x� of the form: G(x1, . . . , x�) = g1(x1) ⊕ . . . ⊕ g�(x�) ⊕ C , where
C is an independent constant, and the gi are independent random functions to
which the adversary does not have access. Then classically, this function cannot
be distinguished from random with a single query, though as little as four would
be enough: we make x3, . . . , x� constant, we query for every x1 ∈ {0, 1} and
x2 ∈ {0, 1}: the XOR of the four results is zero.

Our key idea is to linearize the function G by restricting the block inputs
so that the output is an affine function. Similarly to the simple classical dis-
tinguisher, we make the blocks x1, . . . , x� take only one-bit values and emulate
a function of an �-bit input: F (x) = F (b1‖ . . . ‖b�) = G(0n−1‖b1, . . . , 0n−1‖b�).
Now, we will remark that F is an affine function of b1, . . . , b�. As the gi are
XORed; flipping a bit bi in the input XORs gi(0) ⊕ gi(1) to the output.

It is well known that the Bernstein-Vazirani algorithm allows to distinguish
an affine function from a random one with a single quantum query. This shows
that, thanks to a multi-block input, we can access new vulnerabilities of crypto-
graphic constructions. But the power of our attack is clearly demonstrated when
we make G go through a new random function:

G′(x1, . . . , x�) = g(G(x)) = g (g1(x1) ⊕ . . . ⊕ g�(x�) ⊕ C) . (1)

All the functions g1, . . . , g�, g are unknown to the adversary, so she cannot find
the affine structure of the internal G. In fact, this function would be classically
secure as a MAC. However, when linearizing, we obtain: G′(x) = g(F (x)) where
F is an affine function of x = b1‖ . . . ‖b�. Thus, G′ embeds a hidden Boolean
period, and Simon’s algorithm can recover it in polynomial time.

Applications. In Sect. 4 and Sect. 5, we detail the applications of our algorithm.
We obtain the first polynomial-time attacks against the following MACs:

ΘCB3 [43,56], LightMAC [47], LightMAC+ [53], Deoxys [38], ZMAC [37],
PMAC TBC3k [52], PolyMAC [36], GCM-SIV2 [36]
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In addition, we provide attacks on the XOR-MACs of [4], on MACs based
on universal hashing (e.g., NMH∗ [31] and BRW Hashing [7]) and, in Sect. 5.5,
a new superposition forgery attack against Poly1305 [6]. A previous quantum
attack was given in [18], using a hidden shift structure. Using Shor’s algorithm
instead, we reduce the number of superposition queries from 238 to about 32.

On Parallelizable MACs. The quantum linearization attack leaves only little
space for quantum-secure parallelizable PRFs. Indeed, we are able to break any
PRF with extendable domain, where at least ≥ n independent input blocks of
≤ n bits are processed independently, then XORed. This works as well for any
operation that is linear on (F2)n. It is still possible to obtain an unforgeable IV-
or nonce-based MAC of this form, as shown in [9], but the security then relies
on the non-repetition of IVs. We do not know if an attack applies when we use
a modular addition instead of a XOR in (1). If this was the case, then it would
clearly mean that one has to rely on sequentiality or on nonlinear operations.

Organization. We start in Sect. 2 by reviewing some quantum computing notions,
the quantum algorithms used in this paper (Deutsch’s algorithm, Bernstein-
Vazirani, Simon’s algorithm, Shor’s algorithm), the Q1/Q2 attack scenarios and
notions of quantum unforgeability. In Sect. 3, we detail our new algorithmic ideas.
In Sect. 4, we apply our attack to many parallelizable MAC constructions. We
dedicate Sect. 5 to MACs based on universal hashing. We discuss the implications
of our attacks in Sect. 6 and conclude the paper in Sect. 7.

2 Preliminaries

In this section, we give some preliminaries about quantum computing, quan-
tum attacker models and the well-known quantum algorithms that will be used
throughout this paper. We elaborate about the Q2 attacker model and the notion
of quantum unforgeability for MACs, with or without IVs. Note that some details
of quantum computing will appear in this section. They are intended for the
interested reader. In the rest of this paper (with the exception of Sect. 5.5), we
will use the algorithms of this section as black boxes.

2.1 Notation

We consider n-bit string values, sometimes as elements of F2n , sometimes as
elements of F

n
2 . This shall be clear from context. We let ⊕ denote the XOR

(addition in F
n
2 ), � denote multiplication in F2n , and + modular addition. We

let · denote the scalar product of bit-strings seen as n-bit vectors.

2.2 On Quantum Computing

Although we choose to present in detail the quantum algorithms that we will use
for our attacks, most of our results can be obtained by applying them as black
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boxes. Thus we stress that our results, similarly as other structural attacks on
symmetric cryptosystems [39,45], can be understood from a high-level perspec-
tive, and our attacks do not require specific knowledge of quantum computing.
Further details are only required to prove the correctness of the algorithms.

A general presentation of the quantum circuit model can be found in [54].
The basic computation units are qubits, two-level quantum systems whose state
is represented by a superposition α |0〉 + β |1〉, with amplitudes α and β, which
is a normalized vector in C

2 (of norm |α2| + |β2| = 1). The state of an n-qubit
system belongs to C

2n

, its 2n basis vectors (in the computational basis) are the
2n n-bit strings.

A quantum algorithm is a sequence of unitary operators of C2n

, partial mea-
surements, and oracle calls. We say that a function f is queried in superposition
if the following unitary operator Of is made available: |x〉 |y〉 	→ |x〉 |y ⊕ f(x)〉 .
Indeed, this operator allows to query f on any quantum state, thus on any super-
position of inputs x. This is the standard oracle, equivalent to the phase oracle
Of,± which computes |x〉 	→ (−1)f(x) |x〉.

One of the basic unitary operations of the quantum circuit model (quantum
gates), and actually the most important one in the algorithms of Sect. 2.3, is
the Hadamard gate H which maps a single qubit |b〉 to 1√

2

(|0〉 + (−1)b |1〉). By
applying Hadamard gates to each individual qubit of an n-bit input, we compute
the Hadamard transform, a particular example of Quantum Fourier Transform:

H⊗n : |x〉 	→ 1
2n/2

∑

y∈{0,1}n

(−1)x·y |y〉 .

An important property is that the Hadamard transform is involutive. For better
readability, we often omit global amplitude factors such as the 1

2n/2 above, as
quantum states are always normalized.

Given a quantum state of the form
∑

x αx |x〉, the measurement operation
destroys the state and yields an element x with probability |αx|2. Partially mea-
suring the state projects it on a smaller superposition of elements. For a quantum
state of the form:

∑
x,y αxy |x〉 |y〉, measuring the register |x〉 yields a value x0

with probability
∑

y |αx0y|2, and projects on the state 1√∑
y |αx0y|2

∑
y αx0y |y〉.

2.3 Quantum Algorithms

Our new attacks are based on well-known quantum algorithms: Deutsch’s algo-
rithm [26], which is a single-bit version of the Deutsch-Jozsa algorithm [27],
the Bernstein-Vazirani algorithm [8], Simon’s algorithm [59] and Shor’s algo-
rithm [58]. These algorithms have in common to be based on Fourier sampling,
a process in which a quantum Fourier transform is applied before and after a sin-
gle query to a superposition oracle. They are also amongst the earliest quantum
algorithms proven to beat any classical algorithm, and as such are often pre-
sented in textbooks (see e.g. [54]). However, except for Shor’s algorithm, their
practical interest remained unclear for a long time.
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Algorithm 1. Deutsch’s algorithm
1: Start from |0〉 � |0〉
2: Apply a Hadamard gate � |0〉 + |1〉
3: Apply Of,± � (−1)f(0) |0〉 + (−1)f(1) |1〉 = (−1)f(0)

(
|0〉 + (−1)f(0)⊕f(1) |1〉

)

4: Apply a Hadamard gate � (−1)f(0) |f(0) ⊕ f(1)〉
5: Measure the state

Algorithm 2. Bernstein-Vazirani algorithm
1: Start from |0n〉 � |0n〉
2: Apply a Hadamard transform �

∑
i |i〉

3: Apply Of,± �
∑

i(−1)(a·i)⊕b |i〉
4: Apply a Hadamard transform
5: Measure the state � (−1)bH⊗n ∑

i(−1)a·i |i〉 = (−1)bH⊗n
(
H⊗n |a〉) = (−1)b |a〉

Deutsch’s Algorithm. Deutsch’s algorithm [26] solves Problem 1 with probability
1 using a single query to Of , whereas classically, two queries to f are needed for
the same success probability. This constant speedup might seem anecdotal, but
is crucial when the same function cannot be queried more than once.

Problem 1 (Deutsch’s problem). Given access to a quantum oracle Of for a func-
tion f : {0, 1} → {0, 1}, decide whether f is constant (f(0) = f(1)) or balanced
(f(0) �= f(1)).

Deutsch’s algorithm (Algorithm 1) is best presented with a phase oracle
Of,± |b〉 = (−1)f(b) |b〉. It can be seen that upon measurement, the algorithm
actually yields the value f(0) ⊕ f(1) (although a single query has been made to
f) whose knowledge solves Problem 1.

Bernstein-Vazirani Algorithm. The Bernstein-Vazirani algorithm [8] offers a
polynomial speedup for finding the slope of an affine function over F

n
2 .

Problem 2 (Bernstein-Vazirani). Given access to an oracle Of for an affine func-
tion f : {0, 1}n → {0, 1}, that is, f(x) = a · x ⊕ b for a, b unknown, find a.

Upon measurement in Algorithm 2, we obtain the unknown a with certainty,
using a single query to Of,±, while n queries would be needed classically.

Remark 1. This algorithm can be seen as a generalization of Deutsch’s algo-
rithm. Indeed, in the case n = 1, there are only two types of affine functions:
f(x) = x ⊕ b (a = 1) and f(x) = b (a = 0), and Bernstein-Vazirani allows to
distinguish them in one query.

Simon’s Algorithm. Simon’s algorithm [59] solves the problem of distinguishing
an injective function from a periodic one. Note that it was the first example of
an exponential quantum speedup relatively to an oracle.
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Algorithm 3. Simon’s algorithm
1: Y = ∅
2: Choose a number r depending on the required probability of error
3: Repeat n + r times
4: Start from |0n0n〉
5: Apply a Hadamard transform to the first register �

∑
x |x〉 |0〉

6: Apply Of (standard) �
∑

x |x〉 |f(x)〉
7: Measure the second register, obtain a �

∑
x|f(x)=a |x〉

8: Apply a Hadamard transform �
∑

y(
∑

x|f(x)=a(−1)x·y) |y〉
9: Measure a y, Y ← Y ∪ {y}

10: EndRepeat
11: if Y is of full rank then
12: return “injective case”
13: else if Y is of rank n − 1 then
14: return “periodic case” and the s orthogonal to Y
15: else
16: return “failure”
17: end if

Problem 3 (Simon). Given access to a function f : {0, 1}n → {0, 1}n for which
there exists s such that: ∀x, y, f(x) = f(y) ⇐⇒ y ∈ {x, x ⊕ s}, find s.

In Algorithm 3, at Step 9 in the injective case, the value a obtained before
has a single preimage xa. Thus, the current state is

∑
y((−1)xa·y) |y〉 and we

sample a uniformly random y ∈ {0, 1}n. After n + r such samples, the family Y
will grow to a full-rank family. In the periodic case, the value a has exactly two
preimages xa and xa ⊕ s which interfere with each other. The current state is

∑

y

((−1)xa·y + (−1)(xa⊕s)·y) |y〉 =
∑

y

(−1)xa·y(1 + (−1)s·y) |y〉

and only the vectors y orthogonal to s have a non-zero amplitude. Thus, the
family Y grows to span the euclidean subspace orthogonal to s. Computing the
rank of Y allows to detect the period and solving the linear system Y s = 0n

allows to recover it.

Generalizations. Although the original Simon’s problem concerns functions with-
out random collisions (that is, we cannot have f(x) = f(y) if x ⊕ y /∈ {0, s}), it
can be shown that the algorithm works as well for random functions having a
period, which models the cryptographic problems that we are interested in.

The following simple condition was given in [39]. For Simon’s algorithm to
run as expected (i.e., with O (n) queries), it is sufficient for the periodic function
f , of period s, to satisfy the following condition:

max
t/∈{0,s}

Prx [f(x ⊕ t) = f(x)] ≤ 1
2

. (2)
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That is, f should not admit another “unwanted partial period” t. In the
examples studied in this paper, the condition (2) will be easy to check.

Note that if we had f(x ⊕ t) = f(x) for all x, then t would simply turn
the set of periods of f into a vector space of dimension 2. In general, the space
of periods could be a vector space of any dimension. An extended version of
Simon’s algorithm by Brassard and Høyer [20] allows to recover this whole space
in polynomial time.

Finally, another important case is when the output set is smaller than the
input set. This was studied in [16] for Simon’s algorithm and [48] for period-
finding in general. The results in [16] show that as long as the functions behave as
random (but with the periodicity constraint), then for n input bits, the number
of output bits required to run correctly without any cost increase is of order
log2 n. The results in [48] show that the output can be hashed down to a single
bit, and the algorithms still work up to a constant increase in queries.

Shor’s Algorithm. We will use Shor’s algorithm [58] to solve the abelian hid-
den period problem. It will appear in a “black-box” manner in Sect. 5.4, and
in Sect. 5.5. We will analyse in detail the behavior of the algorithm on Poly1305.

Problem 4 (Abelian hidden period). Let (G,+) be an abelian group, X a set.
Given access to a function f : G → X which is either injective, or periodic
(∃s ∈ G, f(s + ·) = f(·)), then determine the case and/or find the period.

In particular, we consider G = ZM1 × . . .×ZMk
the product of multiple cyclic

groups of known order. For simplicity, and to prepare for Sect. 5.5, we present
the algorithm in the case of Z2

p for some prime p. Note that f is also periodic over
Zp in each of its parameters. This is the typical situation when Shor’s algorithm
is used to solve the Discrete Logarithm Problem. The periods of f form a two-
dimensional integer lattice, which is generated by (p, 0) and (−1, s) for some s. In
other words, the value of f(x, y) depends only on the value of xs + y mod p. We
may assume for simplicity that the function xs + y mod p 	→ f(x, y) is injective.

The algorithm only relies on an efficient implementation of the Quantum
Fourier Transform over Zp:

|x〉 	→
p−1∑

y=0

exp
(

2iπ
xy

p

)
|y〉 ,

which we assume exact. We represent the elements of X on m bits.
In Algorithm 4, at Step 4, we can only measure a vector |z, t〉 having a nonzero

amplitude. This means that we need:
p−1∑

x=0

exp
(

2iπ
(z − st)x

p

)
�= 0 ,

which happens only when (z − st) = 0. In that case, the sum simply gives p.
After renormalization, all vectors |z, t〉 with (z−st) = 0 have the same amplitude
1√
p , and we will measure one of them taken uniformly at random. If t �= 0, we

compute s by s = zt−1 mod p. This occurs with probability 1 − 1
p .



430 X. Bonnetain et al.

2.4 Attack Scenarios

We consider different attack scenarios throughout this paper.

Q1 and Q2 Setting. Following [17,33,40], we will adopt the Q1/Q2 terminology
to classify quantum attacks on symmetric schemes. Note that these models have
alternative names, for example “quantum chosen-plaintext attack” (qCPA) is
used for “Q2” in [22,34]. In the Q1 setting, the adversary is given only classical
encryption or decryption query access to black-boxes. In the Q2 setting, the
adversary is given quantum or superposition access, in the sense that a black-
box EK becomes a quantum oracle OEK

. This is the case for all the attacks of
this paper.

Algorithm 4. Shor’s algorithm
1: Start from |0, 0, 0m〉 � |0, 0, 0m〉
2: Apply a Quantum Fourier Transform on both input registers

�
∑p−1

x,y=0 |x, y〉 |0m〉
3: Apply Of �

∑p−1
x,y=0 |x, y〉 |f(x, y)〉

4: Measure the second register. The state collapses on a uniform superposition of all
(x, y) such that xs+ y = a mod p for some unknown a, meaning y = a−xs mod p:

p−1∑
x=0

|x〉 |a − xs〉 .

5: Apply a Quantum Fourier Transform again. The state becomes:

p−1∑
z,t=0

(
p−1∑
x=0

exp

(
2iπ

zx + (a − xs)t

p

))
|z, t〉

=

p−1∑
z,t=0

exp(2iπat/p)

(
p−1∑
x=0

exp

(
2iπ

(z − st)x

p

))
|z, t〉 .

6: Measure a |z, t〉 and return s = zt−1 mod p.

The study of quantum attacks on symmetric schemes in the Q2 setting was
sparkled by seminal work of Kuwakado and Morii [44,45], who showed that
the 3-round Luby-Rackoff construction and the Even-Mansour cipher became
insecure if exposed to superposition queries. More precisely, they can use Simon’s
algorithm to respectively distinguish the construction and recover the key of the
cipher in polynomial time, while classical proofs of security exist.

Attacks Based on Period-Finding. Since these earlier results, many works have
extended the reach of Q2 attacks [15,19,28,30,39,46]. However, the attack strat-
egy has remained the same. A hidden structure is embedded in the construction
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to be attacked, so that f(EK(x), x) for some choice of combination f , is a peri-
odic function of x; or that a shift exists between f(EK(x), x) and g(EK(x), x).
The recovery of this hidden period or shift, which is secret material, then leads
to a break. We can cite some examples:

Against the Even-Mansour Construction [45]: EK(x) = K2 ⊕ Π(x ⊕ K1) for a
random public permutation Π and two keys K1,K2. One has:

EK(x) ⊕ Π(x) = EK(x ⊕ K1) ⊕ Π(x ⊕ K1)

which leads to a recovery of K1 in O (n) queries and O (
n3

)
computations.

Against CBC-MAC with Two Blocks [39]: It can be defined as:

CBC-MAC(y, x) = EK′ ◦ EK

(
x ⊕ EK(y)

)
,

where K and K ′ are two keys that will remain unknown to the adversary. Due to
the structure of CBC-MAC, one can take two arbitrary values α0, α1, and define
the function:

F :
{{0, 1} × {0, 1}n 	→ {0, 1}n

(b, x) → CBC-MAC(αb, x) (3)

We have then that F (b, x) = F (b ⊕ 1, x ⊕ EK(α0) ⊕ EK(α1)). Thus F has a
hidden boolean period 1‖EK(α0) ⊕ EK(α1). Having obtained the internal value
EK(α0) ⊕ EK(α1), we can query the tag of any message starting with block α0,
and then forge a message starting with α1 with the same tag.

Constructions Based on IVs. We consider two types of constructions with quan-
tum access: some make use of an initialization value (IV, sometimes also named
a nonce) and some do not. In the IV case, we consider that the IV is a classical
value, chosen randomly before each oracle query, and not repeated. This model
follows from the idea that the IV is not controlled by the adversary, and it can
serve as an intermediate between the classical setting and a (much) stronger
model in which the adversary would completely (and quantumly) control the
IVs.

In fact, the latter case does not seem to have been studied so far in quantum
security. Well-known notions such as IND-qCPA [14] rely on classical random-
ness, and many modes of operation have been proven secure in this model [3,9].

In the classical setting, many MAC constructions have a security that relies
on the non-repetition of IVs, for example the MAC of OCB [43]. The same
happens in the quantum setting, since the MAC of QCB [9] has been proven
secure under quantum queries with classical non-repeated IVs.

Unforgeability. The first notion of quantum unforgeability for MACs was defined
by Boneh and Zhandry [13]. We will name it plus-one unforgeability (PO), fol-
lowing [1]. The idea is that an adversary making q quantum queries to the
construction, where q is polynomial, should not be able to produce q+1 valid
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{message, tag} pairs. A more recent definition is blind-unforgeability (BU), pro-
posed in [1]. It is strictly stronger than PO-unforgeability. In this paper, we will
give several quantum forgery attacks that break the PO notion, thereby also
breaking BU.

Quantum PRFs. A quantum pseudorandom function (qPRF) is a family of func-
tions FK , indexed by a key space K, such that no quantum adversary making
queries to an oracle Of can distinguish efficiently between a function FK , with
K drawn uniformly at random, and a truly random function. It is shown respec-
tively in [13] and [1] that a qPRF is also a quantum-secure deterministic MAC by
the PO and BU definitions. Therefore, any function that is not PO-unforgeable
is also not a secure qPRF. To the best of our knowledge, the only classical
symmetric construction that has been proven quantum-secure as a deterministic
MAC, the Cascade/NMAC/HMAC construction [60], is also a qPRF.

2.5 A Quantum Attack on OCB3

We detail the Q2 attack on the MAC of OCB3 from [39]. As the other previous
works recalled above, this attack relies on a Boolean period-finding problem.

Specification. OCB3 is an IV-based mode of authenticated encryption with
associated data (AEAD), based on a block cipher [43]. As OCB stands for offset
codebook, the scheme relies on the definition of offsets that are dependent on
the key and change between each block. We will focus on the authentication tag
of OCB3 (see Fig. 1). Our considerations are independent on the exact value of
the offsets, and apply to all versions of OCB, but we use OCB3 as a concrete
example.

A0

Δ0

EK

A1

Δ1

EK
. . .

. . .

Aj

Δj

EK

pad(A∗)

Δ∗

EK

M0 ⊕ . . . ⊕ M ⊕ pad(M∗)

ΔIV

EK

T

Fig. 1. Computation of the tag in OCB3. Only the offset ΔIV depends on the IV .

Forgery Attack with Simon’s Algorithm. Kaplan et al. showed in [39] how
to forge authentication tags using Simon’s algorithm. The idea is to query the
tag of an empty message with two AD blocks A0, A1 = x:

x → EK(ΔIV ) ⊕ EK(Δ0 ⊕ x) ⊕ EK(Δ1 ⊕ x) .
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A0

EK,t0

A1

EK,t1
. . .

. . .

Aj

EK,tj

pad(A∗)

EK,t∗

M0 ⊕ . . . ⊕ M ⊕ pad(M∗)

EK,t

T

Fig. 2. Computation of the tag in ΘCB3. Only the final tweak t depends on the IV.

One can then remark that this function of x is periodic, of period Δ0 ⊕ Δ1,
independent of the IV, and only on the secret key K. Although the function
changes at each query (since the IV changes), the period is always the same and
Simon’s algorithm allows to recover it with O (n) superposition queries. (For the
same reason, we could use a non-empty message, and even different messages
between the queries.)

Once Δ0 ⊕ Δ1 has been obtained, one can then query the tag of any pair of
AD blocks A0, A1 and forge the tag of A1, A0.

Remark 2. It is easy to check that Eq. (2) is satisfied in practice. If it wasn’t,
then the existence of an unwanted partial period t:

Prx [f(x ⊕ t) = f(x)] ≥ 1
2

,

would imply a higher-order differential of probability greater than 1
2 for EK ,

which is impossible if EK is a pseudorandom permutation (in other words, EK

would suffer from a classical break).

3 The Quantum Linearization Attack: Algorithmic Ideas

In this section, we present the algorithmic ideas underlying our new quantum
linearization attack. To that end, we keep the example of OCB3 [43] introduced
in Sect. 2.5. We explain a new way to forge with Q2 queries. The extensions and
applications of this new idea will be explored in the next sections.

Note that to the best of our knowledge, this is the first application of the
Deutsch and Bernstein-Vazirani algorithms for forgery attacks.

3.1 Attack on ΘCB with Deutsch’s Algorithm

The attack of Sect. 2.5 works only because of the offsets. In fact, the existence
of a controlled value (here x) XORed to a secret (here the offsets) has been so
far a prerequisite of all Q2 attacks.
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Here we present a forgery attack against the mode ΘCB3 [43,56], which is a
more abstract version of OCB3 in which the block cipher EK is replaced by a
tweakable block cipher (a family of independent block ciphers ẼK,t indexed by
a tweak t). This is shown in Fig. 2.

Here, the tweaks t0, . . . , tj , t∗ form an arbitrary sequence of distinct values,
that depend only on the block index; the tweak t is the only one dependent on
the IV. Again, we consider an empty message, but this time a single AD block
that is either 0 or 1. We define i functions which truncate the output of such a
call to the ith bit:

Fi :
{0, 1} → {0, 1}

b 	→ Trunci(ẼK,t0(b) ⊕ ẼK,t(0))
.

The functions Fi change at each new superposition query (because the IV
intervenes in ẼK,t(0)). Thus we need the ability to compute a query to Fi using
a single query to the untruncated mode itself. This is fortunately easy to do so
using the truncation technique of [33].

With this single query, Deutsch’s algorithm allows to recover the value:

Trunci(ẼK,t0(0) ⊕ ẼK,t(0)) ⊕ Trunci(ẼK,t0(1) ⊕ ẼK,t(0))

= Trunci(ẼK,t0(0) ⊕ ẼK,t0(1)) ,

and within n queries and uses of the algorithm, we can obtain the full value
ẼK,t0(0) ⊕ ẼK,t0(1).

We can now forge valid messages as follows: we query a message with 0 as
the first block, we XOR ẼK,t0(0) ⊕ ẼK,t0(1) to the tag, and we have obtained
the tag of the same message with 1 replacing the first block. This works for any
block and for any pair of messages.

This attack shows that XORing with an IV-dependent value, although it
provides sufficient protection against forgeries in the classical setting (since ΘCB
has a security proof), does not in the quantum setting.

Interestingly, it is possible to protect against this attack by using the IV in
the TBC calls, as done by Bhaumik et al. in [9]. While this simple modification
has practically no incidence on the classical security of the mode, it is crucial to
obtain unforgeability in the quantum setting.

Another Example: XOR-MACs. In [4], two XOR-MAC constructions are
defined, which can be attacked with Deutsch’s algorithm. They are both based
on a pseudorandom function FK and an IV. The first one, XMACR (random-
ized XOR scheme), considers that the IV is drawn uniformly at random, and
the second one, XMACC (counter-based XOR scheme) that it is maintained as a
counter. Both compute:

MAC(m1, . . . , m�; IV ) = FK(0‖IV ) ⊕
⊕

1≤i≤�

FK(1‖i‖mi) .

Then, since the contribution of the IV is only XORed, forgeries can be made.
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3.2 Using the Bernstein-Vazirani Algorithm

We propose here a generalization of the previous attack, with longer queries. We
now consider functions of the form

g1(x1) ⊕ g2(x2) ⊕ · · · ⊕ g�(x�) ⊕ C

with, as before, a C that is independent from all xi. Now, we can choose some
arbitrary α0

i and α1
i , and consider the function

Fj :
{0, 1}� → {0, 1}

(b1, . . . , b�) 	→ Truncj

(
�⊕

i=1

gi(αbi
i ) ⊕ C

)
,

It is easy to see that this function is affine: indeed, if we change the value of bi,
then we add Truncj

(
gi(α0

i ) ⊕ gi(α1
i )

)
to the output.

Hence, if we apply the Berstein-Vazirani algorithm, in one query, we recover
the values of the Truncj

(
gi(α0

i ) ⊕ gi(α1
i )

)
, for all i. Next, it suffices to repeat the

algorithm for each bit of the output to obtain the value of all the gi(α0
i )⊕gi(α1

i ).
This technique can be applied to OCB3/ΘCB3, as the tag is a function of

the form ⊕

i

gk
i (ADi) ⊕ fk(IV,M)

Hence, we can attack multiple blocks of associated data at once.

3.3 Attacking Any XOR of Permutations

The main limitation of the previous attacks is that they need a direct access to
the linear combination of independent blocks. In this section, we overcome this
limitation with an attack that leverages linear combinations of permutations in
a more intrinsic way, using Simon’s algorithm in a novel fashion.

We consider a MAC construction that processes m > n message blocks
x1, . . . , xm by pushing the xi through independent TBC calls ẼK,i, XORing
the result and applying an IV-dependent function afterwards.

IV, (x1, . . . , xm) 	→ fK

(

IV,

( ⊕

1≤i≤m

ẼK,i(xi)
))

.

Remark 3. We write the attack with a TBC, i.e., a family of independent block
ciphers ẼK,T indexed by a secret key K and a public tweak T . This is to empha-
size the application of our attack to parallelizable MACs; however, the attack
works in the same way if we replace the independent block ciphers by indepen-
dent functions.

In the case of ΘCB, the definition of fK is simple, since it only XORs the IV-
and the AD-dependent parts. But the attack of Sect. 3.2 does not apply anymore
if fK is a pseudorandom function. This will be the case of our new attack, which
is why it will apply to many MAC constructions.
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Quantum Attack. First of all, it is easy to see that if the ẼK,i are independent
block ciphers, and if fK is a pseudorandom function family, then this construc-
tion is a classically unforgeable MAC: this is the security of ΘCB3.

Our attack in the quantum setting starts from the same idea as above
(Sect. 3.2): we query the MAC with arbitrary blocks taking two values: x1 =
b1||0n−1, . . . , xm = bm||0n−1, where x = b1 . . . bm forms an m-bit input (in
the remaining of this paper, we will write the n − 1 zeroes used for completion
as a single 0). We will put x in superposition, and so, there will be only “one
superposed bit” in each individual block input.

One then observes that ẼK,1(x1)⊕ . . .⊕ ẼK,m(xm) is an affine function of x:

F (x) := ẼK,1(x1) ⊕ . . . ⊕ ẼK,m(xm)

=
⊕

i

(
bi �

(
ẼK,i(0) ⊕ ẼK,i(1)

)
⊕ ẼK,i(0)

)
.

More precisely, if we identify bit-strings with boolean column vectors,
F (b1 . . . bm) is equal to:

(
(ẼK,1(0) ⊕ ẼK,1(1)) · · · (ẼK,m(0) ⊕ ẼK,m(1))

)

︸ ︷︷ ︸
Mm

×

⎛

⎜
⎝

b1
...

bm

⎞

⎟
⎠ ⊕

⊕

i

ẼK,i(0) .

The matrix Mm has n rows and m columns, so when m ≥ n + 1, its kernel is
nontrivial. This means there will exist a non-zero m-bit boolean vector α such
that:

(
(ẼK,1(0) ⊕ ẼK,1(1)) · · · (ẼK,m(0) ⊕ ẼK,m(1))

)
× α =

⎛

⎜
⎝

0
...
0

⎞

⎟
⎠ ,

and for all such vectors α, seen as m-bit strings, we have:

F (x ⊕ α) = Mm × (x ⊕ α) ⊕
⊕

i

ẼK,i(0) = F (x) .

In other words, this function F hides a subgroup of (F2)m generated by all
the vectors α satisfying the condition above (it is easy to see that they indeed
form a group). Thus, F satisfies the promise of Simon’s algorithm: by making a
single superposition query, we can find y such that y · α = 0 for such an α, and
furthermore, as Brassard and Høyer showed [20], we can even recover the full
subspace of periods with a polynomial number of quantum queries to F .

However, in our model, we cannot query F directly and we have instead
access to: fK(IV, F (x)), where IV changes at each query. The key remark is
that the hidden subgroup is unchanged, since F is independent of the IV . This
assumption is enough to allow Simon’s algorithm and its extensions to work.
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Remark 4 (Smaller m). Some period might still arise if m ≤ n. Indeed, if m = n,
there will be a non-trivial period with probability around 1 − 1/e. This quickly
decays for smaller m.

Remark 5 (Unwanted collisions). Since the “inner” function F is affine, it does
not contain any unwanted collisions. If F (x ⊕ α) = F (x) for some α and x,
then this holds as well for all x. However, unwanted collisions might occur in
fK(IV, ·).

Assuming that Mm is full rank, we can express the probability of unwanted
partial periods for fK(IV, F (·)) as the probability of such unwanted collisions
for fK(IV, ·):

p = max
t,Mm×t
=0

Prx∈{0,1}� [fK(IV, F (x ⊕ t)) = fK(IV, F (x))]

= max
t,Mm×t
=0

Prx∈{0,1}� [fK(IV, F (x) ⊕ Mm × t) = fK(IV, F (x))]

= max
u
=0

Prx∈{0,1}� [fK(IV, F (x) ⊕ u) = fK(IV, F (x))]

= max
u
=0

Pry∈{0,1}n [fK(IV, y ⊕ u) = fK(IV, y)] .

Even if the output is truncated to less than n bits, p ≤ 1
2 follows trivially from

the fact that fK(IV, ·) should not admit a differential of such high probability.
To conclude, it is precisely the fact that the termination function fK(IV, ·) is a
good PRF, and does not admit an interfering period, that allows to apply easily
Simon’s algorithm in our case.

Thus, by making a polynomial number of Q2 queries to the MAC construc-
tion, we can obtain such an α. This allows to create forgeries as follows.

Forgeries Without IVs. We first make n queries to find a valid α with Simon’s
algorithm (with constant probability of success). Then, the knowledge of this α
allows us, for each tag x queried, to output a forged tag x ⊕ α. Thus we can
double the number of tags that we produce compared to the number of queries
we make. This breaks the PO notion as soon as, making r + n queries, we have
2r ≥ r +1+n tags, thus with 2n+2 queries in total. Note that by breaking PO,
we are actually showing that the MAC construction is not a qPRF (if it were,
it would be PO-secure).

Forgeries with IVs. As long as the IV (or nonce) is used only in the keyed
post-processing, we can recover a value α and run the attack as above. We will
indeed output more triples {IV,message, tag} than the number of queries made,
although some IVs are repeated in the outputs.

Universal Forgeries. Instead of taking the arbitrary values bi||0 in message
blocks, we can take any pair of values for each of them. That way, we can
even start from any m-block message y1, . . . , ym, and then define a function of
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x = b1 . . . bm that inputs yi in block i if bi = 1 and an arbitrary value 0 oth-
erwise. Using Simon’s algorithm, we will find a subset of the yi such that the
ẼK,i(yi) have the same XOR as the ẼK,i(0). Hence, we can produce a new mes-
sage having the same tag as y1, . . . , ym. This works as soon as m ≥ n (there just
needs to be enough message blocks for our attack).

4 Applications to Parallelizable MACs

In this section, we apply the quantum linearization attack to many parallelizable
MACs of the literature. In particular, we show that the attack can be extended to
parallelizable beyond birthday-bound (BBB) MACs, although they have a larger
internal state. Here is a summary of MACs attacked in this section (usually in
time quadratic in the internal state size n), whose previous best quantum attack
was exponential:

LightMAC [47], LightMAC+ [53], Deoxys [38], ZMAC [37],
PMAC TBC3k [52]

On the contrary, here are some MACs on which, to the best of our knowledge,
our attack does not apply: SUM-ECBC [61], 2K-ECBC-Plus [24], 3kf9 [62]. The
best Q2 attacks on these remain exponential-time (usually Õ (

2n/2
)

or O (
2k/2

)

where n is the internal block size, and k the key size).

4.1 First Examples

We will consider MAC designs with or without IVs or nonces. When there is no
IV, then the attack of Sect. 3.3 breaks them in the PO notion. This also shows
that even though they usually yield classical PRFs, these constructions are not
quantum-secure PRFs. When there is an IV, the MAC may be insecure as a
PRF but still secure as a MAC (since the IV is changed at each query, and
not repeated). Despite that, our attack may still yield a break, as we showed
in the example of ΘCB above. In that case, the period that is recovered with
Simon’s algorithm is independent of the IV, and can be reused to forge a new
valid (message, tag) pair under any previously queried IV.

LightMAC. LightMAC [47] is based on an n-bit block cipher and separates the
message in blocks of n− s bits, where s ≤ n/2 is some parameter that limits the
maximal message size. The function is the following:

LightMAC(m1, . . . , m�) = Trunct

(

EK2

(

(m�10∗) ⊕
�−1⊕

i=1

EK1(ismi)

))

,

where the is are s-bit constants. Calling LightMAC with single-bit blocks and
using Simon’s algorithm, we immediately obtain a sequence of indices j1, . . . , jv

such that EK1(ij11) ⊕ . . . ⊕ EK1(ijv
1) = EK1(ij10) ⊕ . . . ⊕ EK1(ijv

0) and thus,
we can produce existential forgeries, and universal forgeries of messages with a
linear number of blocks.
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Deoxys. Due to the similarity of its MAC with ΘCB, our attack applies to all
versions of Deoxys-II [38], one of the finalists of the CAESAR competition (it
also applies to Deoxys-I).

Protected Counter Sums. In [5], Bernstein defined the protected counter sum
construction, which uses a pseudorandom function f : {0, 1}d+c → {0, 1}c to
build a pseudorandom function with message space of at most 2c − 1 blocks of
length d:

f ′(m1, . . . , m�) = f (0‖f(1‖m1) ⊕ . . . ⊕ f(�‖m�)) .

The quantum linearization attack essentially shows that this construction, while
classically sound, does not yield a quantum-secure pseudorandom function (even
if f itself is a qPRF).

4.2 Attacks on BBB MACs

We consider here a variant of the previous construction typically used to design
Beyond Birthday MACs. We focus on deterministic MACs, but as before, the
same forgery attacks apply if IVs are used in the final processing of the tag.

In the most generic setting, the input x1, . . . , xm is processed with a TBC
ẼK,i, then combined in two different ways:

(x1, . . . , xm) 	→ fK

(⊕

i

ẼK,i(xi),
⊕

i

2iẼK,i(xi)
)

.

Here fK is a function whose details are insignificant for our attack.
A similar observation as above applies. By calling the MAC in superposition

with messages of the form x = b1||0, . . . , bm||0, we will obtain a periodic function.
Indeed, there are now two matrices Mm and M ′

m with n rows and m columns,
and two column vectors C,C ′ such that:

F (x) = F (b1, . . . , bm) := fK

⎛

⎜
⎝Mm ×

⎛

⎜
⎝

b1
...

bm

⎞

⎟
⎠ ⊕ C,M ′

m ×

⎛

⎜
⎝

b1
...

bm

⎞

⎟
⎠ ⊕ C ′

⎞

⎟
⎠ ,

where the columns of Mm correspond to ẼK,i(0) ⊕ ẼK,i(1) and the columns of
M ′

m correspond to 2i(ẼK,i(0)⊕ẼK,i(1)). Then, as soon as m ≥ 2n+1, the matrix:(
Mm

M ′
m

)
has 2n rows and at least 2n + 1 columns, and so, it has a non-trivial

kernel. There exists a non-zero vector α such that

Mmα = M ′
mα =

⎛

⎜
⎝

0
...
0

⎞

⎟
⎠ .

This α is a boolean period of F , for which MAC(x ⊕ α) = MAC(x). Again,
the further we increase m, the bigger the subspace of periods will become. This
whole space can be recovered using Brassard and Høyer’s extension of Simon’s
algorithm [20] in polynomial time.
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Related Works. In [30], Guo, Wang, Hu and Ye used combinations of Simon’s
algorithm and Grover’s algorithm to design forgery attacks on many BBB MACs,
in the Q2 setting. With this technique, they found two things. First, state-
recovery attacks of complexity Õ (

2n/2
)

where n is the block size of the underly-
ing block cipher, and the internal state is 2n bits in total. This comes from the
fact that the same input blocks are processed in two branches separately. The
standard use of Simon’s algorithm, where a controlled message block x is XORed
to an uncontrolled value, allows only to recover this value in one of the branches.
The n bits on the other branch have to be guessed with a Grover search, and so,
the attack is a Grover-meets-Simon [46] instance. And next, partial key-recovery
attacks for parallelizable MACs, of complexity O (

2k/2
)
, where k is the partial

key size (the total key size ranges from 3k to 5k). They consist in guessing part
of the key and breaking the MAC by using a symmetry of the branches. To these
attacks correspond classical partial key-recoveries of complexity O (

2k
)
.

Our attack has completely different requirements and offers different results.
We need longer messages (of roughly 2n blocks in this setting), but when it
applies, the complexity is always polynomial. Note that there are constructions
targeted by Guo et al., such as SUM-ECBC, that we cannot attack since the
blocks are processed sequentially and not linearly in parallel as we require.

LightMAC+. LightMAC+ [53], as its name suggests, is a BBB extension of
LightMAC.

As shown in Fig. 3, it processes � message blocks m1, . . . , m� as follows:

LightMAC+(m1, . . . , m�) = EK1(EK(1s‖m1) ⊕ . . . ⊕ EK(�s‖m�))

⊕ EK2(2
�−1 � EK(1s‖m1) ⊕ . . . ⊕ 20 � EK(�s‖m�) ,

1s m1

EK

2

2s m2

EK

2
. . .

. . .

. . .

s m

EK

EK1

EK2

T

Fig. 3. LightMAC+ with three keys K, K1, K2.

where the multiplications are done in the finite field F2n . This falls into our
framework and is thus forgeable in quadratic time (about 2n blocks are required
to embed a vector space in both branches, and this can then be recovered in a
linear number of queries).



Quantum Linearization Attacks 441

PMAC+. It is a double-block hash-then-sum construction similar to
LightMAC+, which also falls into our framework. In full generality, there are
three keys K1,K2,K3. The message blocks m1, . . . , m� are processed as follows:
yi = mi ⊕ 2i � EK1(0) ⊕ 22i � EK1(1) and then:

PMAC+(m1, . . . , m�) = EK2 (EK1(y1) ⊕ . . . EK1(y�))

⊕ EK3

(
2 � EK1(y1) ⊕ . . . 2� � EK1(y�)

)
.

The masking by 2i �EK1(0)⊕22i �EK1(1) simply makes the processing of each
block different, but this is insignificant for our attack. By recovering a period,
we can create forgeries and break PMAC+ as a qPRF.

Note that both LightMAC+ and PMAC+ were classically proven secure up to
23n/4 queries [41]. Besides, increasing the number of parallel branches may have
consequences on the bound, but only increases the complexity of our attack by
a constant factor. We considered here three-key versions, but of course, the two-
and one-key versions [24,25] are similarly broken.

4.3 Other MACs

LAPMAC. LAPMAC was defined in [50]. The definition depends on some paral-
lelization parameter μ. Successive chunks of μ message blocks will be processed
in parallel through the block cipher EK (except the last one), then some tweak
function depending on their index in the chunk. The results are XORed and
encrypted again, before being XORed to the next chunk of μ message blocks,
etc. When μ ≥ n, LAPMAC applied to n message blocks becomes similar to
LightMAC or PMAC, and there is sufficient parallelization to perform our attack.
Whether a variant of the attack applies for smaller values of μ is an interesting
question.

ZMAC. ZMAC [37] is a MAC that uses a TBC. It is based on the ZHASH double-
block hash construction followed by a finalization function. We can simply focus
on the abstraction ZHASH (see Fig. 5 in [37]):

ZHASH(X1
� ,X1

r , . . . , X l
�,X

l
r) =

⊕

i

2l+1−iẼ
i,Xi

r

K (Xi
�),

⊕

i

Xi
r ⊕

⊕

i

Ẽ
i,Xi

r

K (Xi
�) ,

where Ẽt
K is ẼK called with a tweak t. If we make the tweak inputs constant,

then the construction is similar to PMAC+ with a TBC, and different random
keyed permutations for each block. Our attack applies as well.

PMAC with a TBC. Naito [52] showed that PMAC+ used with a TBC could
achieve full PRF security (up to O (2n) queries). In this variant, the message
blocks are processed independently with different tweaks. This has no conse-
quence on our attack, which requires only O (n) queries of about 2n blocks each.
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5 Attacks on MACs Based on Universal Hashing

In this section, we focus on some attacks on MACs based on universal hashing.
In particular, we give polynomial-time attacks on PolyMAC [36], GCM-SIV2, and
we give a superposition attack on Poly1305 requiring about 32 queries.

5.1 Overview

Universal hash functions were introduced by Carter and Wegman in 1977 [21]
in order to build secure MACs, and are now used in many MAC constructions
and security proofs. The first proposal by Wegman and Carter was to hash the
message and to encrypt the result with a one-time-pad. This defines a MAC with
information-theoretic security, but the use of a one-time-pad is impractical, and
it was soon suggested to replace it with the output of a PRF, i.e., to replace the
one-time-pad by counter-mode encryption. This results in the Wegman-Carter
construction used in GCM and Poly1305-AES: M 	→ HK1(M) ⊕ FK2(N) where
F is a secure pseudorandom function family, and H an almost-XOR-universal
hash function family.

5.2 Universal Hash Functions and MAC Constructions

An almost-XOR-universal hash function family is a family of function H from
{0, 1}∗ to {0, 1}n indexed by a key K ∈ K such that:

∀m �= m′, ∀d ∈ {0, 1}n, #{K ∈ K : HK(m) ⊕ HK(m′) = d} ≤ ε#K
The most widely used universal hash function construction is polynomial hash-
ing. The input message is interpreted as the coefficients of a polynomial in a
field F, and the polynomial is evaluated on the hash key:

PolyHashK : F� → F m1,m2, . . . m� 	→
�∑

i=1

Ki � mi

Block cipher-based constructions such as the OCB3 MAC can also be analysed
as universal hashing-based, using

⊕
i EK(Ai ⊕ Δi) as a universal hash function.

There are many different ways to turn a universal hash function into a MAC:

One-time-MAC: HK (M). If the universal hash function satisfies extra prop-
erties (it must be strongly universal), it can be used directly as a MAC, if
a new key is used for each message. This construction is used in ChaCha20-
Poly1305, Grain128A and Grain128AEAD [32].

Wegman-Carter: HK1(M) ⊕ FK2(N). The Wegman-Carter construction is
a nonce-based MAC using a universal hash function H and a PRF F . It
authenticates several messages using the same key, as long as the nonce N
is not repeated (the security is lost as soon as two different messages are
authenticated with the same key). This construction is used in GMAC.
More generally, the construction H(M) 	F (N) with 	 a group operation and
F almost-	-universal is a secure MAC. This construction is used in Poly1305-
AES.
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Hash-then-PRF: FK2(HK1(M)). The hash-then-PRF construction builds a
deterministic MAC from a universal hash function H and a PRF F .
The PolyMAC construction discussed below follows this design. More gener-
ally, security proofs for several block cipher-based MACs consider the MAC
as following the hash-then-PRF construction; in particular this is the case of
double-block hash-then-sum constructions [24].

WMAC: FK2(HK1(M)‖N). WMAC [10] is a generalization of the hash-
then-PRF construction using an additional nonce input N to the PRF. This
requires a PRF with a larger input, but provides higher security when nonces
are unique, without breaking down when they are repeated.

EWCDM: EK3 (EK2(N) ⊕ N ⊕ HK1(M)). The Encrypted Wegman-
Carter with Davies-Meyer construction [23] is an alternative construction
offering high security with a nonce with graceful degradation when nonces
are repeated. Instead of using a 2n-bit PRF as in WMAC, it uses two calls
to an n-bit block cipher.

5.3 Attacking Wegman-Carter MACs

All MACs following the Wegman-Carter construction are exposed to the attack
using Deutsch’s algorithm that we presented in Sect. 3.1. More precisely, an IV-
respecting quantum adversary can retrieve the value of HK1(M1)⊕HK1(M2) for
an arbitrary pair of messages M1,M2. He can then repeatedly query the tag of
M1 under new nonces, and produce corresponding valid tags for M2.

When using the generalization with a group operation 	 instead of ⊕, this
simple attack does not apply. In particular, Poly1305-AES uses a modular addi-
tion and cannot be broken with Deutsch’s algorithm, but we will show a dedi-
cated attack in Sect. 5.5, using the fact that it is based on polynomial hashing.

5.4 Attacking Algebraic Universal Hash Functions

We can apply our linearization attack to MACs that reuse the same hash key for
several messages, whether deterministic (like hash-then-PRF), or nonce-based
(like Wegman-Carter, WMAC, and EWCDM). Indeed, it is enough for us to
linearize the function H, and the attack applies regardless of the security of the
operations that are computed afterwards, even if they involve a nonce.

Many Universal Hash Functions based on algebraic operations have a strong
linear structure. In particular, polynomial hashing is a linear function of the
message, making it a natural target for Simon’s algorithm (in characteristic 2)
or Shor’s algorithm (in general). We describe concrete attacks against a few
constructions.

PolyMAC. PolyMAC [24] is a double block hash-then-sum construction based
on polynomial hashing. The generic construction uses two hashing keys K1,K2

and two encryption keys K3,K4. For an �-block message m1, . . . , m�, this gives:
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PolyMAC(m1, . . . , m�) = EK3

(
K1 � m� ⊕ K2

1 � m�−1 ⊕ . . . ⊕ K�
1 � m1

)

⊕ EK4

(
K2 � m� ⊕ K2

2 � m�−1 ⊕ . . . ⊕ K�
2 � m1

)
.

If a single branch is used, then this looks like the GMAC construction [49]
(but without a nonce), using polynomial hashing. GMAC was already attacked
in [39] due to its similarities with CBC-MAC, and the fact that the nonce did not
influence the embedded hidden shift. However, we can use our attack here. By
taking �-block message inputs with blocks 0 or 1, we will recover with Simon’s
algorithm a period b1 · · · b� such that:

⊕

i

biK
i
1 = 0 and

⊕

i

biK
i
2 = 0 .

This immediately allows a forgery attack, but also, we can recover multiple
such periods and solve the corresponding equations to recover K1 and K2.

PolyMAC with Modular Additions. Interestingly, our attack applies as
well when the polynomial hashing does not use XORs, but modular additions
(modulo some value M). However, Simon’s algorithm has to be replaced by
Shor’s algorithm. Note that this is specific to polynomial hashing, and does not
apply to LightMAC or PMAC-style constructions in general.

We can define:

PolyMAC+(m1, . . . ,m�) = EK3

(
K1 � m� +K2

1 � m�−1 + . . .+K�
1 � m1 mod M

)

⊕ EK4

(
K2 � m� +K2

2 � m�−1 + . . .+K�
2 � m1 mod M

)
.

In that case, we can remark that there exists periods a1, . . . , a� such that:

K1a1 + . . . + K�
1a� mod M = 0 and K2a1 + . . . + K�

2a� mod M = 0 .

More precisely, these periods form a lattice in Z
�
M , and for all of them, we have:

∀m1, . . . , m�,PolyMAC+(m1 + a1, . . . , m� + a�) = PolyMAC+(m1, . . . , m�) .

Thus, the generalization by Mosca and Ekert [51] of Shor’s algorithm allows
to retrieve the full lattice of these periods: we can not only forge, but also recover
the internal hashing keys.

GCM-SIV2. This is a double-block variant of GCM-SIV defined in [36]. The tag
generation combines two independent polynomial hashes (with two keys K1,K2)
with a keyed-dependent combination function FK , of which we shall not study
the details. This mode is nonce-based. With an empty associated data, the tag
is computed as follows:

GCM-SIV2 − MAC(N,m1, . . . , m�)
= FK (N ⊕ HK1(m1, . . . , m�), N ⊕ HK2(m1, . . . , m�)) ,
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where HK1 and HK2 are polynomial hashes (this would be similar for the tag
of an empty message, replacing M by the associated data). Thus, although the
MAC is nonce-dependent, it falls into our framework since the periods of the
polynomial hashes remain independent of N .

Other Algebraic Hashing Constructions. There are many alternatives to
polynomial hashing based on field operations. Several constructions are linear,
such as the dot product construction, and Toeplitz hashing [42].1

Some other constructions can be linearized using specially crafted messages.

NMH∗ [31]. The NMH∗ universal hash function is defined as:

NMH∗(M) =
∑

(m2i + K2i)(m2i+1 + K2i+1) mod p

If we consider messages with blocks with an even index set to arbitrary con-
stants, we obtain a linear function of the odd message blocks. Therefore, Shor’s
algorithm can break MACs based on this hash function that reuse the hash key.

BRW Hashing [7]. The BRW universal hash function is based on a class of
polynomials that can be evaluated with �/2 multiplications with � inputs, using
a single key. The construction is defined recursively, depending on the input
length:

• BRWK() = 0
• BRWK(m1) = m1

• BRWK(m1,m2) = m1 � K + m2

• BRWK(m1,m2,m3) = (K + m1) � (K2 + m2) + m3

• BRWK(m1,m2, . . . m�) = BRWK(m1,m2, . . . mt−1) � (Kt + mt)+
BRWK(mt+1,mt+2, . . . m�) with t a power of 2, and 4 ≤ t ≤ n < 2t.

For instance, with 8 inputs, we obtain
((

(K+m1)�(K2+m2)+m3

)�(K4+m4)+(K+m5)�(K2+m6)+m7

)
�(K8+m8)

This construction can also be linearized by setting message blocks with an even
index set to arbitrary constants.

5.5 Period-Finding Against Poly1305

Poly1305 [6] is a polynomial MAC with some specific constraints that force a
dedicated analysis. It has already been cryptanalysed in [18], where the authors
proposed an attack in 238 time and queries. The authors managed to overcome
the specific constraints by leveraging a hidden shift structure. The attack we
propose here is drastically more efficient, and uses a hidden period instead.

1 Grain128A and Grain128AEAD [32] use Toeplitz hashing, but we can only attack
them in the nonce-misuse setting because they use the one-time-MAC construction.
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Poly1305 uses a hashing key r of 124 bits with at most 106 non-zero bits and
a 128-bit cipher key K. The MAC of a message m1, . . . , m� with the nonce N is
computed as:

Poly1305(m1, . . . , m�) = (c1r� + c2r
�−1 + . . . + c�r

1) mod 2130 − 5

+ AESK(N) mod 2128 ,

where c1, . . . , c� are the padded message blocks obtained from the message blocks
m1, . . . , m�. When message blocks are full 128-bit blocks, the ci are simply
obtained from the mi by adding 2128.

Let us assume that we query with two message blocks. We have:

Poly1305(m1,m2) =
((

m1 + 2128
) · r2 +

(
m2 + 2128

) · r
)

mod 2130 − 5

+ AESK(N) mod 2128

=
(
((m1 · r + m2) · r + C1) mod 2130 − 5

)
+ C2 mod 2128 ,

where C1, C2 are constants of our query that depend on r,K,N . Since the com-
putation ends with a reduction modulo 2128, which is smaller than 2130 − 5, we
must actually use a compressed instance of Shor’s algorithm [48]. This increases
mildly the number of queries, by less than a factor 2.

Two inputs (m1,m2) and (m′
1,m

′
2) lead to the same tag if

m1r + m2 = m′
1r + m′

2 mod 2130 − 5

⇔ (m1 − m′
1)r + (m2 − m′

2) = 0 mod 2130 − 5 .

Hence, the periods of the function Poly1305(m1,m2) are solutions of m1r+m2 =
0 mod 2130 − 5.

As the period is modulo 2130 − 5 but the input is 128-bit long, we cannot
do the query expected by Shor’s algorithm. Still, the fraction of inputs we can
actually query is large enough so that we can still apply Shor’s algorithm with
a partial query, and recover efficiently the period.

The initial query is:

1
2128

2128−1∑

m1,m2=0

|m1〉 |m2〉 |Poly1305(m1,m2)〉

=
1

2128

2128−1∑

m1,m2=0

|m1〉 |m2〉 |f(m1r + m2)〉 .

Here, f is a function that depends on r,K,N . The only relevant point is that it
does not depend on m1,m2 directly, but only on m1r + m2. For simplicity, in
the following we assume f is a permutation. We will now apply the QFT over
Z/(2130 − 5) on the input registers. We note p = 2130 − 5. We obtain
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1
p

1
2128

2128−1∑

m1,m2=0

p−1∑

x,y=0

exp
(

2iπ
xm1 + ym2

p

)
|x〉 |y〉 |f(m1r + m2)〉 .

We can rewrite the state by regrouping components with identical m1r + m2:

1
p

1
2128

p−1∑

x,y=0

p−1∑

c=0

2128−1
∑

m1,m2=0
m1r+m2=c

exp
(

2iπ
xm1 + ym2

p

)
|x〉 |y〉 |f(c)〉

=
1
p

1
2128

p−1∑

x,y=0

p−1∑

c=0

2128−1
∑

m1,m2=0
m1r+m2=c

exp
(

2iπ
xm1 + y(c − m1r)

p

)
|x〉 |y〉 |f(c)〉

=
1
p

1
2128

p−1∑

x,y=0

p−1∑

c=0

exp
(

2iπ
yc

p

) 2128−1
∑

m1,m2=0
m1r+m2=c

exp
(

2iπ
m1(x − yr)

p

)
|x〉 |y〉 |f(c)〉

Now, we can compute the probability to measure a nonzero tuple (x, y) with
x = yr.

As there are p − 1 such tuples, the overall probability is

(
1
p

1
2128

)2

(p − 1)
p−1∑

c=0

⎛

⎜
⎝

2128−1
∑

m1,m2=0
m1r+m2=c

1

⎞

⎟
⎠

2

=
p − 1
p22256

p−1∑

c=0

(
#{0 ≤ m1,m2 < 2128 : m1r + m2 = c})2

Now, as x 	→ x2 is a convex function, we can use Jensen’s inequality:

n∑

i=1

1
n

α2
i ≥

(
n∑

i=1

1
n

αi

)2

.

This allows us to lower bound the previous probability by

p − 1
p22256

p

(
p−1∑

c=0

1
p
#{0 ≤ m1,m2 < 2128 : m1r + m2 = c}

)2

=
p − 1
p2256

(
1
p
#{0 ≤ m1,m2 < 2128}

)2

=
p − 1
p2256

(
2256

p

)2

=
(p − 1)2256

p3
>

1
16

.

Thus, we measure a tuple (x, y) �= (0, 0) with x = yr with probability at least
1/16. As 2130 −5 is prime, one such tuple is enough to recover r. Hence, we need
at most 16 queries on average to recover r, assuming f is a permutation. Here,
as f is a function, we rely on [48] to bound the increase by a factor 2. Note that
as we are only a few bits of output short of having a permutation, this is a very
loose bound. Overall, the attack will require no more than 32 queries.
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6 On Parallelizable Quantum PRFs

Let us take a broader point of view. The deterministic MACs that we attacked
in this paper all have common points. Besides allowing inputs of any length
(as should be expected of any MAC construction), they • process their input
blocks independently; • compute one or more linear functions, with XORs, of
these processed input blocks; • process the authentication tag from the outputs
of these linear functions.

These characteristics are to be expected from any MAC that is: • of average
rate one, meaning that there are as many primitive calls as there are blocks;
• parallelizable; • having an internal state of size O (n), independent of the
query length. Our attack is easily defeated if the blocks are processed sequentially
by calling a compression function, as in the NMAC construction. However, the
construction becomes unparallelizable.

It may be possible to obtain a quantum-secure parallelizable qPRF using a
tree hashing, where the blocks are placed at the leaves of a binary tree, and each
node is computed by calling a (keyed) compression function on its two children.
However, such a construction requires an internal state greater than O (n), and
that increases with the amount of data. Typically to traverse the binary tree,
we will need to remember O (log m) nodes, where m is the number of leaves.

Open Question. If we stand by the characteristics listed above (efficient, paral-
lelizable, constant internal state size), then it seems that the only solution is to
use modular additions in place of XORs in the constructions that we attacked.
In that case, our attack does not seem to work anymore, due to the fact that
modular additions, contrary to XORs, are not involutive. Thus changing one of
the blocks in our n-block queries does not modify involutively the result, which
breaks the periodicity property that we used with Simon’s algorithm.

This makes this option worth investigating, both from a provable security
and a cryptanalysis perspective. Note that the situation is different from most
attacks with Simon’s algorithm, where the replacement of XORs by + changes
the attack complexity from polynomial to subexponential (see [2,18]). In our
case, it is possible that using + allows an exponential security level.

7 Conclusion

In this paper, we introduced a novel way of using quantum period-finding
to break parallelizable MAC constructions in the superposition query model,
breaking most of them in this setting. In full generality, our attack makes use
of multiple blocks to embed a hidden period, a surprisingly simple idea that
might have other applications. We gave new polynomial-time forgery or partial
key-recovery attacks on LightMAC, LightMAC+, PolyMAC, Poly1305, GCM-SIV2,
Deoxys, ZMAC, PMAC TBC3k. Our attack is not mitigated by the use of multiple
parallel branches (as in double-block hash-then-sum MACs). It can be prevented
for IV-based MACs if the non-reused IV intervenes in the processing of all mes-
sage blocks (as done in [9]).
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These results show that we cannot obtain a parallelizable quantum-secure
PRF by processing independently the message blocks, XORing the results, and
then hashing the output. If modular additions are used instead of XORs, our
attack does not apply anymore (except on polynomial hashing, which has a
simpler structure). Overcoming this limitation, or on the contrary, proving the
security of such a PRF, is an interesting open question.
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Abstract. We propose a general technique to improve the key-guessing
step of several attacks on block ciphers. This is achieved by defining
and studying some new properties of the associated S-boxes and by rep-
resenting them as a special type of decision trees that are crucial for
finding fine-grained guessing strategies for various attack vectors. We
have proposed and implemented the algorithm that efficiently finds such
trees, and use it for providing several applications of this approach, which
include the best known attacks on Noekeon, GIFT, and RECTANGLE.

Keywords: Cryptanalysis · S-box · Key-guessing · Affine decision
trees

1 Introduction

Literally all sensitive data needs to be encrypted, and it is vital to have trustwor-
thy symmetric primitives. The only way to build confidence in these primitives
is through a continuous effort to evaluate their security and constantly update
their security margin: this is the role of cryptanalysis.

Several different attack families against symmetric ciphers exist. The most
important are differential and linear cryptanalysis [3,16,17] and their variants.
While the boundary is often blurry (see e.g. [11]), many attacks can usually be
separated into two parts: a distinguisher and a key-recovery part.

A distinguisher highlights some non-random behaviour in a part of a cipher,
like linear correlation between several states or an output difference occurring
unusually often when a specific input difference is introduced.

The key-recovery part usually involves the rounds before and after the dis-
tinguisher, and makes use of this non-random behaviour to (partially) recover
the secret key. Fundamentally, the attacker guesses some key information from
this outer part, and checks if the non-random behaviour occurs with the dis-
tinguisher. If the data behaves as expected, the key guess is likely correct. Our
work focuses on the key-recovery step.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13090, pp. 453–483, 2021.
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Various commonly-used ideas to improve the efficiency of this part have been
proposed, such as reducing the data complexity by using plaintext structures (see
e.g. [15] for applications to ARX), improved statistical tools (e.g. [4]), and the
use of the Fast Fourier Transform (FFT) in linear cryptanalysis ([9] and the
improved [13]).

For SPN ciphers, the key-guessing is often done in a word-oriented fashion
in which key-words are guessed in alignment with the S-box layer. The S-box is
treated like a black box, and a full key-word is guessed when the attacker needs
some information about its output. There are examples of partial improvements
to the key-guessing in some specific attacks, albeit never in a generic manner.
Some decompose the S-box to either filter wrong pairs (e.g. [12]), avoid unnec-
essary key guesses [6], or improve filtering in meet-in-the-middle attacks [8].

A comprehensive and focused study of S-box properties with respect to opti-
mal key-guessing strategies is nevertheless missing.

Our Contribution

In this paper we provide this overdue analysis by introducing a unified and
generic framework to optimize the key-recovery part of various attacks. Inspired
particularly by the techniques used in [6], we aim to reduce the number of key
bits guessing to the strict minimum for which the output information is still
determined, avoiding unnecessary guesses of full-key words. To this end, we first
transform an S-box (or one of its component functions) into a binary decision
tree. We then show that all the important optimizations naturally arise as prop-
erties of this tree. We find that one of the most important properties is the num-
ber of leaves. Consequently, finding tree representations with a minimal number
of leaves directly optimizes the attacks.

While their application to cryptanalysis is new, (parity) decision trees for
boolean functions themselves are not. For an overview of the theory see [18].
The (asymptotic) size (which we call numLeaves) and approximation of parity
decision trees (i.e. decision trees with arbitrary instead of unit vector labels) is
subject to research (e.g. [20]). Here, a link to linear structures in the case of
vectorial boolean functions is examined.

We first describe this tree representation and discuss some basic properties
in Sect. 2. In particular, we show that optimizing the number of leaves automat-
ically considers linear structures, a simple and well-known property. Moreover,
we show that equivalence conditions for functions to lead to isomorphic trees,
which allows us to classify functions with respect to their optimal trees. In addi-
tion, this provides new criteria for choosing good S-boxes with better resistance
against attacks which exploit our representation explicitly or implicitly. We also
provide a simple yet efficient algorithm which computes an optimal tree for rea-
sonable S-box sizes (n < 8), which has been necessary for the applications. An
implementation is provided as supplementary material online1.

1 https://github.com/rub-hgi/ConditionsLib.

https://github.com/rub-hgi/ConditionsLib
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Before giving several specific application examples, we explain how using
trees can improve various generic attack families in a broader sense in Sect. 3.

Concrete applications are detailed in the following sections. In Sect. 4 we
explain how to optimize linear attacks by giving the current best attack on
Noekeon [10]. We then focus on differential attacks. We improve the best attack
on GIFT that was known at the time of writing ([14], see Sect. 5), a related-key
rectangle attack, and decrease its time complexity by a factor of more than 220

and its data complexity by a factor of 2. However, we are confident that an
improvement to the new best attack on GIFT [21] is also possible thanks to our
techniques. We also attack the cipher RECTANGLE (see Sect. 6) and improve
the time complexity of the best attack by a factor larger than 214. Finally, we
explain how meet-in-the-middle or more precisely sieve-in-the-middle attacks
can also benefit from our improvements on the example of PRESENT [5] in the
extended version of the paper [7]. Our attack provides just a small improvement
factor, but shows how our technique can be applied. Our on PRESENT concrete
findings are summarized in Table 1.

We expect that follow-up work will use our results for building even better
attacks, including attacks on more rounds. Our main aim was to provide applica-
tions that underline the usefulness of the framework. For covering more rounds,
one should design a whole new attack using our ideas. In particular, we expect
that a 19 round attack on RECTANGLE is within reach, due to the fact that the
already large margin for the key-guessing complexity can be further improved if
one aims at optimization (and not simplicity, as we do in the present work). Fur-
thermore, note that there is nothing fundamental that prevents the framework
from being applied to larger S-boxes.

Table 1. Overview of the Applications. The improvements on Noekeon and RECT-
ANGLE provide the new best known attacks on these ciphers. [14] was the best attack
on GIFT at the time of writing. An attack on 26-round GIFT was presented in [21].

Cipher (Block, Key) Rnds Type (Time, Data)-Previous This paper Best

Noekeon-128-128 12 linear (2124, 2124) [10] (2122.14, 2119) yes

GIFT-64-128 25 RK rectangle (2120.92, 263.78) [14] (299.18, 262.73) no

RECTANGLE -64-80 18 differential (278.88, 264) [22] (264, 264) yes

PRESENT-64-80 8 sieve-in-the-middle (273.42, 26) [8] (272.91, 26) no

2 Representing Functions as Affine Decision Trees
and Applications in Cryptanalysis

In this section, we develop our new, condition-centered representation of S-boxes
that is motivated by trying to compute (parts of) the output given only partial
information on the inputs.

We denote by F2 the field with two elements, i.e. a bit, and by F
n
2 the n-

dimensional vector space over it. For x, y in F
n
2 we denote the canonical inner

product
∑

i xiyi by 〈x, y〉.
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An S-box, or more generally, a part of a cipher, is a function

S : Fn
2 → F

m
2 .

Such functions are either represented by a simple look-up table or its algebraic
normal form.

However, for our purpose of improving the key-recovery part of several attacks,
the representation as a look-up table or as a polynomial is not very suitable, as they
hide possible short-cuts and finding an optimal solution with them often requires
exhaustively trying all the possible restrictions. The basic property we are going
to use in all the attacks is that we can deduce information about (parts of) the
output even when only partial information on the input is available.

As a first example we consider the Noekeon S-box S

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 7 a 2 c 4 8 f 0 5 9 1 e 3 d b 6

In particular, consider the function f(x) that outputs the most significant bit of
S(x), which is given as the following look-up table.

x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

f(x) 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0

A closer look at the table above reveals that the output of f actually does not
depend on x3 at all. This corresponds to the well-known property of a linear
structure of a Boolean function and in this example is given by the fact that

f(x) + f(x + (0, 0, 0, 1)) = 0 ∀x.

This is a first, trivial but very helpful example of the property we are looking
for. However, more can be said. To cite another example, in the case of x1 = 0
and x0 = 0 we get f(x) = 0 independent of the value of x2. If x1 = 0 and x0 = 1
we get f(x) = 1. In case x1 = 1 knowing a single bit in addition will not be
sufficient, however one additional bit of information actually is. Namely if x1 = 1
and x0 + x2 = 0 we get f(x) = 0. Finally, if x1 = 1 and x0 + x2 = 1, we get
f(x) = 1.

Now, instead of collecting these conditions in terms of equations, a better way
is to present them in terms of graphs which we will define formally below. The
example given here translates into the graph shown in Fig. 1. Starting with the
root, each node is labeled with a vector corresponding to a linear combination of
the inputs. Depending on the value of this linear combination of the inputs, the
left or right edge is taken until one ends up in a leaf. Leaves are labeled with the
value the function takes on all the inputs fulfilling the conditions corresponding
to the path leading there.
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x1 = α, x

α = (0, 1, 0, 0),

x0 = α, x

α = (1, 0, 0, 0)
x0 + x2 = α, x

α = (1, 0, 1, 0)

f(x) = 0 f(x) = 1 f(x) = 0 f(x) = 1

x1 = 0 x1 = 1

x0 = 0 x0 = 1 x0 + x2 = 0 x0 + x2 = 1

Fig. 1. Graph representation of the conditions for f

Thus, the graph is a representation of the function f that actually captures
exactly the conditions we wanted. It can also be thought of as a way of imple-
menting the function. Clearly given a function, the representation of the graph
is not unique. Indeed, the graph in Fig. 2 is a graph for the same function, but
intuitively (and also formally as we will see later) less helpful. Indeed, except x3,
which we know is not relevant, in order to compute the output, every input bit
has to be known in this representation.

Considering x + k as input to f , in order to evaluate the function for some
fixed x, we have to obtain (usually by guessing all the possible values) enough
bits of k to calculate 〈α, x+k〉 for inner nodes on the path which is taken during
the evaluation of f(x + k).

In the end, for each fixed x, we find that we must consider a different guess
of k for each possible evaluation path through the graph, or that is, one guess
for each leaf of the tree. Since the number of leaves is at most equal to 2n (which
is the “näıve” number of guesses), we can often reduce the time complexity of
the attack, as we will explain below when optimizing the tree towards a minimal
number of leaves.

In the remaining part of this section, we explain how to find good graphs
automatically, how those related to the linear structures, and how equivalent
functions lead to equivalent graphs.

All the guessing strategies we consider can be thought of as guessing one bit
at a time and depending on the result of the guess continue on the left branch
(in case we guess zero) or in the right branch (in case we guess one).

We assume that, along one path from the source to a leaf, all node labels
(the α-values) are independent. Then, at each stage, the linear combination of
inputs splits the space into equal parts, a subspace and its complement. Both
can be identified with a space again, and this is the space in the next level. The
advantage is that this view is very simple, general and recursive.
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x0 = α, x

α = (1, 0, 0, 0),

x1 = α, x

α = (0, 1, 0, 0)
x1 = α, x

α = (0, 1, 0, 0)

x2 = α, x

α = (0, 0, 1, 0)
x2 = α, x

α = (0, 0, 1, 0)

x0 = 0 x0 = 1

x1 = 1x1 = 0 x1 = 1x1 = 0

f(x) = 0 f(x) = 1

f(x) = 0

f(x) = 0 f(x) = 0

x2 = 0 x2 = 1 x2 = 0 x2 = 1

f(x) = 1

Fig. 2. Alternative Graph representation of the conditions for f

2.1 Formalization

Instead of starting with a function and building a tree in the above manner,
it is more convenient to directly start with a tree and discuss the function it
corresponds to afterwards. The trees we consider are binary trees, where each
node either has two or no children. More formally, we consider trees defined as
follows.

Definition 1 (Affine Decision Tree). An (n,m)-affine decision tree is a
regular and binary tree where each node v has a label v.label . A node without
children is called a leaf and has labels in F

m
2 . A node v which is not a leaf is

called an inner node and has labels in F
n
2 . Its children are denoted by v.left and

v.right.
We identify a tree and its root whenever it simplifies the formulation. For a

tree r, we also write v ∈ r when v is a node of r.

In Fig. 1 the labels for the inner nodes are denoted with α and the nodes for
the leafs correspond to the value the function takes on the corresponding inputs.

These trees correspond to maps (generalizing the example above) as follows.
We will take the liberty to use the same notation for both the tree and the
corresponding map.

Definition 2. Given an (n,m)-affine decision tree r we can construct an asso-
ciated map r : Fn

2 → F
m
2 . For x ∈ F

n
2 we define r(x), the value calculated by an

affine decision tree r, recursively:
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1. If r is a leaf, r(x) = r.label .
2. If r is an inner node and 〈r.label , x〉 = 0, r(x) = r.left(x).
3. If r is an inner node and 〈r.label , x〉 = 1, r(x) = r.right(x).

Given f : Fn
2 → F

m
2 , if r(x) = f(x) for all x, we say that r is a tree for f .

It is clear that for any given function, there can be many possible trees,
again see Figs. 1 and 2. However, for the applications considered later, we are
interested in trees which lead to a small overhead on attack complexity. In our
applications this is mostly achieved for trees with a low number of leaves, which
we denote by

numLeaves(r) = Number of leaves of r

for a tree r.
To give an example, Fig. 1 corresponds to a tree r1 with numLeaves(r1) = 4,

while Figure 2, implementing the same function, corresponds to a tree r2 with
numLeaves(r2) = 6.

Especially for linear cryptanalysis, besides the number of leaves, the union of
all inner labels r.label that have to be evaluated as 〈r.label, x〉 when evaluating
the function r on all possible inputs is of interest. This is what we call the actual
linear domain and is formally defined in the next definition.

Definition 3 (domsize, Actual Linear Domain). The actual linear domain
of r is the space spanned by all inner node labels:

Dom(r) = span{n.label . n is an inner node of r}.

We call its dimension domsize(r).

In the graph r1 from Figure 1 the actual linear domain is given by

Dom(r1) = span {(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 0)} ,

which corresponds to all vectors x of the form x = (∗, ∗, ∗, 0). The actual linear
domain of the graph r2 in Fig. 2 is exactly the same, even though the concrete
labels are different. In both cases we get

domsize(r1) = domsize(r2) = 3.

For a fixed function, we are interested in the optimal tree with respect to
the number of leaves and with respect to the actual linear domain. For a given
function f : Fn

2 → F
m
2 we denote the minimal number of leaves of all trees for f

by minLeaves(f). That is

minLeaves(f) = min
r:∀x.r(x)=f(x)

numLeaves(r).

A tree r for f taking on this minimum is called numLeaves-minimal.
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Similarly, we call the minimal actual linear domain of all trees for f the
optimal actual linear domain size of f , denoted by domopt(f). More formally,

domopt(f) = min
r:∀x.r(x)=f(x)

domsize(r).

Again, a tree r for f taking on this minimum is called domsize-minimal.
We are interested in finding trees which optimise either parameter depending

on the application. Luckily, any tree that is optimal with respect to the number
of leaves is also optimal with respect to the actual linear domain, as we show
now.

Connection Between Linear Structures and Dom(r). In order to see this,
it is helpful to have a closer look at all the values x ∈ F

n
2 that end up at the same

leaf N in the tree in the evaluation of r(x). As the evaluation of r for a given
input x consists of computing a sequence of inner products 〈r.label, x〉 along the
path from the root to a leaf, the exact values x that end up in the same leaf are
characterised by the values of those inner products.

For a node N of a tree r, let us denote by D(N) the set of all labels on the
path from the root to that node, excluding N itself.

D(N) := span{v.label : v is on the path leading from r to N, v �= N}

Furthermore, again for a given node N we denote by N.space the set of all inputs
x ∈ F

n
2 such that the evaluation path of r(x) contains N .

If N is a node, then D(N) corresponds to the set of inner products which
have been evaluated to reach it, while N.space corresponds to the set of inputs
which end up in that leaf during the evaluation of r(x). So N.space is an affine
subspace of the form

N.space = V (N) + a(N),

where V (N) ⊆ F
n
2 is a vector subspace and a(N) ∈ F

n
2 is a translation. In fact,

V (N) consists of all vectors v such that 〈r.label, v〉 = 0, for r.label ∈ D(N).
Thus, V (N) is the dual space of the span of D(N):

V (N) = D(N)⊥.

For example, the left-most leaf N of the tree in Fig. 1 is reached for all ele-
ments of N.space = D(N)⊥ + a(N) = span {(0, 1, 0, 0), (1, 0, 0, 0)}⊥ + 0 =
span {(0, 0, 1, 0), (0, 0, 0, 1)}. The underlying subspace V (N) of the two leaves
of the right subtree is span {(1, 0, 1, 0), (0, 0, 0, 1)}.

From these considerations we arrive at another interretation of the actual
linear domain:

Lemma 1.
Dom(r)⊥ =

⋂

N∈r

V (N) =
⋂

N∈r
N is a leaf

V (N)
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Proof. We rewrite Dom(r) in term of the grouped labels D(N):

Dom(r) = span

(
⋃

N∈r

D(N)

)

=
∑

N∈r

span(D(N)),

and considering the dual spaces we get

Dom(r)⊥ =
⋂

N∈r

span(D(N))⊥ =
⋂

N∈r

D(N)⊥ =
⋂

N∈r

V (N).

Since D(N2) ⊆ D(N1) whenever N2 is a descendant of N1, we deduce that
V (L) ⊆ V (N) if L is a leaf and N is one of its ancestors. This means that we
can restrict the intersection to just the leaves of the tree. 
�

The domain of the tree in Fig. 1 has already been given, its orthogonal com-
plement is span{(0, 0, 0, 1)}. The intersection of the two V (N) occurring in this
tree is the same, span {(0, 0, 1, 0), (0, 0, 0, 1)} ∩ span{(1, 0, 1, 0), (0, 0, 0, 1)}.

Since Dom(r) consists of all the inner products which may need to be eval-
uated, inner products v that are not contained in Dom(r) are never used when
computing r(x), and the value of 〈v, x〉 does not influence the image r(x) for
any x. This is a property which resembles the notion of linear structures. Lin-
ear structures, see e.g. [12]2, can be thought of as truncated differentials with
probability one. More formally, they are defined as follows:

Definition 4 (Linear Structures). The set of 0-linear structures of a func-
tion f : Fn

2 → F
m
2 is defined as

LS0 = {α : ∀x ∈ F
n
2 , f(x) + f(x + α) = 0}.

It can be easily shown that LS0 is in fact a vector subspace of Fn
2 .

To understand the connection with Dom(r), consider α ∈ Dom(r)⊥ and two
inputs x, y ∈ F

n
2 which differ by α, that is, x + y = α. Taking Lemma 1 into

account, this implies that x+ y ∈ ⋂
N∈r V (N) and thus x and y follow the same

evaluation path and map to the same image, r(x) = r(x+α). Thus α is a 0-linear
structure of r, and we conclude that

Lemma 2. For any affine decision tree r we have

Dom(r)⊥ ⊆ LS0

We note that given a funtion f , the space LS0 is independent of the tree r
we choose, and it can be computed directly from f . This allows to efficiently
bound the optimal actual linear domain size domopt(f) of any function simply
by computing the dimension of its 0-linear structures.

2 We use a slightly different definition of linear structures for vectorial Boolean func-
tions which suits our purpose better than the original.
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Theorem 1. Let f : F
n
2 → F

m
2 be a given map and r be an (n,m)−affine

decision tree for f which is optimal with respect to numLeaves. It holds that

LS0(f) = Dom(r)⊥

and consequently

domopt(f) = n − dim(LS0(f)) = domsize(r).

For our purposes, this has two important consequences: (i) any tree that is
optimal with respect to the number of leaves is actually optimal with respect to
the actual domain size, too, and (ii) computing the 0-linear structures of a target
function first allows to compute the optimal tree on the function modulo its 0-
linear structures, which provides a computationally less costly reduced input
space.

The intuition for proving Theorem 1 is that for any tree evaluations of inner
products 〈α, x〉 can be removed when they correspond to 0-linear structures. We
give a formal proof of Theorem 1 in the extended version of the paper [7].

Invariance Under Transformations of the Input and Output. The most
important cryptographic criteria, e.g. the algebraic degree, the maximal prob-
ability for differential transitions, or the maximal absolute linear correlations,
are invariant under affine equivalence. That is to say that, given a function
f : Fn

2 → F
m
2 and two affine permutations A : Fn

2 → Fn
2 and B : Fm

2 → F
m
2 the

function B ◦ f ◦ A has the same values for these criteria. This is of importance
as it in particular (i) allows to classify S-boxes with respect to these criteria and
(ii) gives larger freedom to the designer of a new primitive.

We next argue that the optimal number of leaves and the optimal actual
linear domain size are invariant under an even larger notion of equivalence.

For this, let f : Fn
2 → F

m
2 be a function and let r be a tree for f . Consider

an arbitrary, not necessarily affine, permutation π : Fm
2 → F

m
2 . Replacing the

labels of the leafs of r by their images under π, we automatically get a tree
for π ◦ f directly. Moreover, the structure of the tree, and thus the number of
leaves, is not affected by this modification. This implies that numLeaves(B◦f) =
numLeaves(f) for any function f and any permutation B.

Next, consider an affine permutation A : Fn
2 → F

n
2 . In order to change r, the

tree for f , into a tree for f ◦A two changes are necessary. First, the constant part
of A will (potentially) swap the children of a node. Second, the linear part will
be taken care of by changing the labels of all inner nodes of the tree (replacing
a label α by Atα in case A is linear). These observations, which are made more
precise in the extended version of the paper [7], are summarized in the following.

Theorem 2. Let r be a tree for a function f : Fn
2 → F

m
2 . Let A : Fn

2 → F
n
2 be

an affine permutation, and π : Fm
2 → F

m
2 be a permutation. It holds that

minLeaves(f) = minLeaves(π ◦ f ◦ A)

and
domopt(f) = domopt(π ◦ f ◦ A)
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We give a formal proof in the extended version of the paper [7].

Remark 1. Note that besides domopt and minLeaves any other criteria com-
puted from the trees that is invariant under graph-isomorphism, behaves as
described in Theorem 2. Examples that might be of interest include but are not
limited to the number of bits used averaged over all inputs, maximal depth of
the tree, and the number of leaves of a certain depth.

2.2 Computing Trees

In this part, we discuss the algorithmic aspects of computing (optimal) trees
for a given function f : Fn

2 → F
m
2 . Conceptually, it is easy to compute all pos-

sible trees recursively by choosing a root label r.label = α and then applying
the algorithm recursively to f |〈α,x〉=0 and f |〈α,x〉=1 until these functions become
constant. As we are mainly interested in optimal trees, and in order to (signifi-
cantly) decrease the run time of the algorithm, several improvements are helpful.
Those improvements basically avoid to search for, in a sense, “equivalent” trees
and use early abort strategies when searching for a tree with a minimal number
of leaves.

Algorithm 1 ListTrees(f, V,W )
Require: f : Fn

2 → F
m
2

1: Affine subpaces V, W ⊂ F
n
2 , V = U + c ⊆ W = Z + c, where U, Z are subspaces

and c is a translation in F
n
2

2: For the initial call we set V = W = F
n
2

Ensure: A list of trees for f |V .
3: Initialize an empty list L of all trees (generated) for f |V .
4: if f is constant on V then
5: Add leaf r with label f(c) to L.
6: return L.
7: end if
8: Calculate P such that P ⊕ U⊥ = Z.
9: for all α ∈ P \ {0} do

10: U0 := {x ∈ U : 〈α, x〉 = 0}.
11: Choose c′ ∈ U such that 〈c′, α〉 = 1. � Exists due to the choice of P .
12: b = 〈c, α〉. � Translating U0 into V can change the value of 〈α, ·〉.
13: Vb := U0 + c, V1−b := U0 + c′ + c.
14: Initialize a tree with root r and r.label = α.
15: for all (r.left , r.right) ∈ ListTrees(f, V0, V ) × ListTrees(f, V1, V ) do
16: Add a copy of r to L.
17: end for
18: end for
19: return L
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Improvements. We already stated that, when building a subtree we can omit
root labels which are linear combinations of the labels on the path leading to
this subtree. That is, in all trees we consider, the labels along a path are linearly
independent. Moreover, each label can be chosen up to the space spanned by the
labels aready used, i.e. a label for a node N can basically be chosen in F

n
2/D(N).

Algorithmically, this is done by running through a fixed complement space of
D(N). A pseudocode for the algorithm including this optimization is given in
Algorithm 1.

A numLeaves-minimal tree can have at most 2n−d leaves in a subtree of depth
d as otherwise it would involve redundant bits of information on a path. This
can be used to cut some recursive calls and reduce the run time of the algorithm.

For functions with linear structures in the sense of Definition 4 we can also
ignore choices of sister nodes which only differ by a linear structure due to
Theorem 1. This is equivalent to finding trees for the function g : Fn

2/LS0 → F
m
2

with g(x + LS0) = f(x). This can be done not only for the initial function but
also for each sub-tree recursively.

Using these kinds of optimizations we could analyze individual functions
up to dimension 7 in a reasonable amount of time. For our experiments we used
a standard PC with a 2.3-GHz CPU. For dimension 4 it is usually possible to
enumerate all trees using Algorithm 1 without optimizing the costs and filter
afterwards. For k-bit Boolean functions chosen uniformly at random computing
the optimal tree on a single core takes on average roughly 4 ms for k = 4, 190
ms for k = 5 and 21 s for k = 6. For k = 7 we could not test enough to get a
reliable run-time estimate, but the program usually takes somewhere around 1.7
h. For k = 8 we estimate an average running time of less than three weeks on
the above machine.

Analyzing Balanced Boolean Functions in Dimension up to 5. When
considering single components of S-boxes, only balanced Boolean functions are
of interest. Using Theorem 2 together with Algorithm 1 allows us to classify all
possible values for the optimal number of leaves at least for all balanced Boolean
functions in small dimensions.

3 Application to Generic Attack Families

The purpose of this section is to illustrate the time complexity improvements
which can be obtained by applying the tree descriptions of boolean functions to
some of the most widely-used attack families on SPN block ciphers.

The most natural case directly depends on minLeaves(S) which will become
the cost of performing the guess, compared to 2n. This natural case directly
applies to linear attacks with no FFT acceleration and to differential attacks
with more than one round covered by the key-guessing part, when some values
coming from non-active S-boxes are needed after the first round in order to
compute the differential transitions of the next rounds, automatically reducing
the key-guessing complexity of the latter.
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3.1 The Case of Linear Cryptanalysis with FFT Acceleration

Although our generalised approach can often reduce the time complexity of most
key-recovery attack families, sometimes other accelerations may provide better
results, and a method must be picked. This is the case of linear cryptanalysis
when combined with the fairly common FFT acceleration of [9].

Consider a linear attack using a single approximation. The “näıve” implemen-
tation consists of counting for how many of the N plaintexts the approximation
is zero for each of the 2k guesses of the key (where k is the number of bits) by
processing each combination individually. The time complexity is O

(
N2k

)
.

We now construct a tree for the S-box layer with minLeaves ≤ 2k (this
automatically considers things like inactive S-boxes). From each plaintext, we
can extract all the information from minLeaves key guesses. However, each leaf is
associated to different key guesses depending on the value of the same bits in the
plaintext. We thus have to keep a separate set of minLeaves key guess counters
for each of these plaintext groupings. When all the data has been processed, we
can filter promising partial key guesses (those which exhibit high correlation for
part of the plaintexts) and separate them into full guesses until the complete
guess with the highest counter can be located. This means we can reduce the
time complexity of this kind of attack to O (N · minLeaves).

When the data complexity is large, we first distill the data into a table
according to the bits which interact with the key (time complexity O(N)) and
then guess all possible values of the key for each entry (time complexity O

(
22k

)
),

as was first shown in [16]. If we apply guessing trees on the S-boxes, we find that
for each of the minLeaves guesses of the key, we still have to look up 2k entries
of the table. The distillation table must work for every key guess, so its size can
only be reduced to 2domopt. The best time complexity reduction we can achieve
on this attack algorithm is thus O(N) + O

(
minLeaves · 2domopt

)
.

Another common improvement to linear cryptanalysis makes use of the Fast
Fourier Transform, and was introduced in [9]. By using the FFT in order to pro-
cess the distilled data more quickly, the time complexity of the analysis phase can
be reduced to O

(
k2k

)
. Since the size of the distilled table cannot be reduced by

using decision trees, we can only reduce this complexity to O
(
domopt2domopt

)
.

The best approach here is to compute minLeaves and domopt for each S-box
and find an optimal trade-off between these approaches (as we can use different
techniques in each S-box), as we show with an example in the extended version
of the paper [7].

3.2 Applications to Differential Cryptanalysis

Intuitively, differential cryptanalysis improvements seem naturally more complex
than linear ones, as in addition to possibly determining some values we need to
determine some differences, and depending on the cases, several trees should be
studied. This also implies that the gain can be quite significant.
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Fig. 3. Finding good pairs over one round of an iterated cipher.

Besides the case presented earlier covered by the natural case, there are other
(usually coexistent) cases that often appear3: 1) given one plaintext x, determine
another one x′ that generates a certain difference Δ after the S-box φ along with
an associated partial guessed key; 2) given pairs of plaintexts (x, x′), determine
the ones that might generate a wanted difference Δ after φ; 3) given pairs of
plaintexts (x, x′), determine the optimal partial key guess that ensures Δ after
φ; 4) when at least two consecutive rounds are considered in the keyguessing, in
any of the above cases we might need to know, in addition, the value of certain
bits to verify the differential transition of further rounds; 5) when at least two
consecutive rounds are considered, a key guess of a later round can be absorbed
by a needed output defined by a linear equation.

We will next show how to use the S-box properties defined in the previous
section to propose improvements in each of the 5 cases, while considering the
example from Fig. 3 for the three first cases.

Case 1: Input Difference Not Determined. We are interested in determin-
ing x′ such that x′ = φ−1(φ(x + k) + Δ) + k. If we let y = x + k, the attacker
can try to find inexpensive trees for

fΔ(y) = φ−1(φ(y) + Δ) = x′ + k. (1)

These trees allow the attacker to cheaply deduce bits of x′ + k by guessing
a small amount of bits of x + k. Since the value of x is considered known,
this is equivalent to guessing bits of k (the tree is the same for all values of x
but different paths are taken for each value). Using this approach we only get
information about x′ + k and about some bits of x′, which correspond to the
bits of k which were guessed.

An important limitation of using fΔ is that some “evidently useful” relations
might be missed, like for example if there is a differential δ → Δ through φ with
probability 1, then fΔ(y) = y + δ: by simply looking at the relations of fΔ, it
would seem that we need to guess all the bits of the key, but no key-guessing is
necessary here since x′ = x+δ. In other words, decisions based on expressions of
the form 〈γ, (x′ + k) + (x + k)〉 are “key-free” and this can be incorporated into
the search. A way to get trees with cost 0 is to apply the tree search algorithm
to FΔ(y) = fΔ(y) + y = x′ + x. The resulting trees provide “direct” information
about x′ (as x is known) and only require guessing the bits of key directly

3 For the sake of simplicity, we will consider in this section that key-guessing rounds
are done in the beginning, but everything can be applied similarly in the last rounds.
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involved in the decision trees, as well as detecting completely free key guesses
like the one described above.

Furthermore, when the key addition is shorter than the S-box size (like for
GIFT), decisions on the same path involving only the same bits of the key
but also some bits of the unaltered plaintext have no additional cost in the
application, as the involved key bits cancel out. To deal with particular cases we
simply use our algorithm to generate a list of optimal trees filtered in accordance
to the individual requirements of the attack at hand, sometimes considering
restricted functions. An application is described in Sect. 5 and an example can
be found in the extended version of the paper [7].

Case 2: Preliminary Sieving. Filtering wrong pairs is important as it often
allows to reduce the time-complexity (and the noise) in attacks. We know that
(x, x′) is a wrong pair if x + x′ is not in the image of FΔ(x) = fΔ(x) + x. Note
that the image of FΔ is the same as the image of y �→ φ−1(y) + φ−1(y + Δ) and
thus exactly corresponds to the possible input differences for the given output
difference Δ. This idea has already been used in differential cryptanalysis already
in the beginning [3] and also more recently like for instance [19], but many recent
attacks do not use this despite the ample margin of improvement, as we show
for instance in our GIFT applications in Sect. 5, where using this for filtering in
the output already allows to reduce the complexity of the best known attacks.

Case 3: Fixed Input Difference. Suppose that we know the value of x (which
is the case for external rounds of keyguessing) and that x′ = x ⊕ δ for a fixed δ
(this is often the case in applications, since the difference of the pair is not key
dependent).

Clearly, the possible input differences δ are given by the image of (FΔ)−1.
However, we can say more: a pair (x ⊕ k, x ⊕ k ⊕ δ) satisfies

S(x ⊕ k) ⊕ S(x ⊕ δ ⊕ k) = Δ (2)

with x = x′ ⊕ δ if and only if x ⊕ k ∈ (FΔ)−1(δ). Notice that |(FΔ)−1(δ)| is in
fact the DDT with input difference δ and output difference Δ.

Let us define the function gδ
Δ : Fn

2 → F2 such that gδ
Δ(x) = 0 if and only if

x ∈ (FΔ)−1(δ). Our problem has now become equivalent to computing the value
of gδ

Δ(x ⊕ k) with as little information on k as possible: indeed, the best key-
guessing strategy to determine whether a pair is a good pair is the one given by
the optimal tree for gδ

Δ(x ⊕ k) and the cost of this guess is given by the number
of its leaves (minLeaves).

If we use this guessing strategy for each δ, we can drastically decrease the
average guessing cost for determining whether a pair is a good pair. As an
example, if we wanted to find what are the good pairs for the RECTANGLE
S-box and Δ = 2, this technique will allow to do so with an average guessing
cost of 3 for each pair, instead of the 16 when using the näıve strategy, where
for each possible value of k, one would compute Eq. (2). A detailed example for
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the slightly more general transition ???? → 00?0 can be found in the extended
version of the paper [7].

Case 4: Determining Values in Addition to Good Pairs. If we are mount-
ing an attack with two or more consecutive rounds of key-guessing, then in the
first round we do not only want to sieve the good pairs, but we also want to
determine the values of one or more output bits of the plaintexts that form those
pairs. To retrieve these bits in addition to the difference value we might need
less bits than a whole key word.

This can be easily done by looking at the optimal tree of the output bits that
we are interested in, where we fixed the first nodes based on what key bits have
already been guessed to determine the output difference.

Case 5: Absorbing Next Round Guessing. We can clearly apply the same
method to determine the good pairs seen in Case 3 for later rounds in a chained
manner. However, we have anticipated that it is actually not always necessary
to determine this value for middle rounds, contrary to the previous cases, thanks
to the following approach, that we call key absorption.

More concretely, consider the case of a two consecutive rounds of key-
guessing, where we indicate as k the round key of the first round and κ the
round key of the second one. Let (x⊕k, x′ ⊕k) be the pair before going through
the S-box layer S (which is a parallel application of S to each nibble) of the first
round, and (z + κ, z′ + κ) be the pair before going through the second S-box
layer, i.e. that we want to determine whether it is good or not for this second
S-box layer.

(x, x′) +k S L +κ S (t, t′)

(x + k, x′ + k)(y, y′) (z, z′)(z + κ, z′ + κ)

Suppose for simplicity that, in order to determine the output difference of S(z +
κ) + S(z + κ), following the strategies explained in Cases 1 and 3, we need to
determine the first bit

z0 + κ0 = L0(y) + κ0 = 〈α, y〉 + κ0,

of z + κ only, where α corresponds to the first row of L. Doing a step-by-step
guess would require to guess the key-bit κ0 and compute 〈α, y〉. Using the trees
as explained above, we can make use of the case where 〈α, y〉 depends linearly on
a linear combination 〈γ, k〉 of key-bits of k. Instead of guessing all those key-bits
we actually have to guess only their linear combination 〈γ, k〉 + κ0, i.e. only a
single bit.

A detailed example can be found in the extended version of the paper [7].
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3.3 Further Extensions

When several rounds are taken into account in the key-guessing parts, the best
interactions between the different trees need to be considered and carefully stud-
ied, which complicates the optimization of the application a bit. The automat-
ically generated trees with the algorithm are particularly useful in these cases,
which can become quite intricate. Some example of such applications can be
found in Sects. 5 and 6. In addition, the previous properties and techniques can
be extended to other types of attacks, like for instance:

Differential-Linear Attacks. All the improvements of both differential and lin-
ear key-guessing parts will be applicable also to these type of attacks. See for
example [6].

Rectangle and Boomerang Attacks. Using the properties of the S-box and of
FΔ for finding good pairs we can reduce the number of key guesses and total
complexity. An example can be found in Sect. 5.

Meet-in-the-Middle - Sieve-in-the-Middle. Though the framework is not the
same as the attacks based on distinguishers we presented in the beginning, using
the S-box properties that we enounced can allow to determine more known bits
in the middle and therefore have a higher sieving probability, improving the
complexity. To illustrate the principle of this improvement we provide a small
improved attacks on 8-round PRESENT. The time complexity of the 8-round
sieve-in-the-middle attack on PRESENT from [8] can be reduced from about
273.42 to about 272.91 full encryptions. We elaborated the details in the extended
version of the paper [7]. In short, you can use the trees to derive more bits
around the middle round after guessing the key and this decreases the sieving-
probability.

4 Application to Noekeon

In this section we describe the best known linear attacks on 12-round Noekeon.
Noekeon is a 16-round block cipher which was presented by Daemen et al. ([10])
to the Nessie competition and has a block and key length of 128 bits. A short
description of Noekeon can be found in the extended version of the paper [7].
We denote the linear transformation (including shifts) by θ̂. We can consider that
the key is added to the state either before or after this linear transformation by
considering an equivalent key.

Iterative Linear Trails of Noekeon. Our attacks are based on iterative two-
round linear trails with correlation 2−14. Since all the transformations in a
Noekeon round except for the constant and key additions are invariant under
rotation, we can obtain new trails from known ones by rotation and round swap-
ping. We have identified four families of trails, shown in Fig. 4.
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Fig. 4. Four two-round iterative linear trails of Noekeon.

4.1 Attacks on Reduced-Round Noekeon (Without Relations)

A 12-round linear attack on Noekeon is sketched by its designers in [10]. An
iterative trail is extended to nine rounds with correlation 2−62. The trail is used
as a distinguisher between rounds 1 and 9 to mount a 12-round linear attack
with the following key recovery structure:

Round 0
︷ ︸︸ ︷

Round 1
︷ ︸︸ ︷

Round 9
︷ ︸︸ ︷

Round 10
︷ ︸︸ ︷

Round 11
︷ ︸︸ ︷

θ π1 γ
︸ ︷︷ ︸
Key rec.

π2 θ π1 γ π2 . . . θ π1 γ π2 θ π1︸ ︷︷ ︸
Linear approximation

γ π2 θ
︸ ︷︷ ︸
Key rec.

π1 γ π2︸ ︷︷ ︸
Peelback

We guess 24 bits of the transformed keys after θ̂ in round 0 and before θ̂ in round
11, or 48 in total. The data complexity is around 262·2 = 2124 known plaintexts.
If a distillation table is used as in [16], the time complexity is 2124 +248·2 = 2124.

4.2 Attacks on Reduced-Round Noekeon (with Relations)

We propose a 12-round attack which modifies the nine-round distinguisher (using
the first iterative linear trail) which will reduce the data complexity to 2119. This
improvement in correlation is achieved by modifying the linear trail in two ways:

– In the first round, we remove S-box 15 from the approximation (so that the
input mask is “staggered”), increasing the correlation by a factor of 22.

– In the last round we substitute the S-box 15 approximation from 2 → 2 to
2 → b, the correlation changes from 2−2 to 2−1.

– We also modify the other transitions in the first and last rounds in order to
reduce the number of active S-boxes in the key recovery.
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Plaintext (after peelback)
28 24 20 16 12 8 4 0

γ
28 24 20 16 12 8 4 0

θ 28 24 20 16 12 8 4 0

γ
28 24 20 16 12 8 4 0

Linear approximation

28 24 20 16 12 8 4 0
γ

28 24 20 16 12 8 4 0 θ

28 24 20 16 12 8 4 0
γ

Ciphertext (after peelback)
28 24 20 16 12 8 4 0

Fig. 5. Attack on 12-round Noekeon with 2119 data and 2124.5 time complexity.

The correlation of the linear trail increases from 2−62 to 2−59. However, in
a key recovery attack, we would need to guess 92 key bits in the first round, 4
in the second, and 48 in the last. Even with the FFT techniques of [9] and [13],
the time complexity surpasses 2144. We look at the properties of the S-box:

– S-box 15 in the second round: if we only know x0, x1 and x3, y1 can still
be computed with probability 1/2. We can thus ignore input bit x2, which
doubles the data complexity (we’ll reject plaintexts for which x2 would be
used) but reduces the active bits and S-boxes in the first round.

– In the first and last rounds, whenever we need y2 or y3 at the output of an
S-box, which happens for 8 S-boxes in the first round and 7 in the last, we
can reduce the key guess by one bit because domopt = 3.

The key guess is now 124 bits. If we apply the FFT algorithm directly, the key
recovery cost would be 121 ·2124 � 2130.9 additions. It can be decreased by using
Walsh transform pruning as described in [13]. There are three key bits repeated
in the first and second rounds, as well as six last round key bits which can be
deduced from the first round. The time complexity can thus be reduced to

23 · (
2121 + (121 − 9)2121−9

) � 2124.29 additions.

The details of the key recovery are specified in Fig. 5. Blue bits represent the
masks of the linear approximation, while the active bits for the key recovery are
black. The S-boxes where domopt = 3 are in green, while the red bits on the
last round can be deduced from the first round key guess.



472 M. Broll et al.

We must also compare the costs of additions and a 12-round Noekeon
encryptions. A conservative estimate4 is at least 3840 bit operations for an
encryption. An addition of 3·128-bit integers takes around 768 bit operations.
Therefore its cost is at most one fifth of the cost of an encryption. The full time
complexity is thus 2119 + 0.2 · 2124.29 � 2122.14 encryptions.

Overall, the new attack has a data complexity of 2119 and a time complexity
of 2122.14, which is as far as we know the best on 12-round Noekeon. The best
attacks without relations have 2124 data and time complexity.

5 Application to GIFT

In this section we describe an improved version of the attack presented in [14].
This related-key rectangle attack is the known attack which reaches the most
rounds of GIFT-64 (25). We apply our improved key-guessing techniques in order
to improve its complexity. The section is structured as follows: We provide a brief
description of GIFT, next we present the original attack, and we propose two
ways of improving its complexity in the two last subsections.

5.1 Description of GIFT-64

GIFT-64 is a block cipher first introduced in [2] of block size 64 and key length
128. The 64-bit state consists of 16 4-bit nibbles which will be denoted by
b63 . . . b0 = x15‖ . . . ‖x0. Each round consists of three steps: the application of a
4-bit S-box, a bit permutation, and the addition of a 32-bit subkey.

The GIFT S-box. The GIFT S-Box is given as a lookup table.

xxx 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x)S(x)S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Bit Permutation and Key Addition. As a linear layer, GIFT uses the permutation

P64(i) = 4
⌊

i

16

⌋

+ 16
((

3
⌊

i mod16
4

⌋

+ (i mod4)
)

mod4
)

+ (i mod4) .

GIFT-64 uses 32-bit round subkeys which are XORed to the bit positions of
the state of the form b4i, b4i+1, i = 0, . . . , 15 (that is, the two rightmost bits of
each S-box before the non-linear layer). We won’t detail the keyschedule as it
won’t be used in the attack.

5.2 The Best Previous Attack on GIFT-64 ([14])

We now describe the attack on 25-round GIFT-64 from [14], which is a related-
key rectangle attack. The 20-round boomerang distinguisher can be found in

4 128 operations per S-box layer or key addition, 64 operations per linear layer.
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Table 2. ([14], Table 5) The related key rectangle attack on 25-round GIFT-64.

Plaintext ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? #0

R1 After S ??0? 1??0 01?? ?0?? 1?0? ?1?0 0??? ?0?? ??0? ???0 0??? ?0?? ??0? ???0 0??? ?0?? #1

After P, K ???? ???? ???? ???? 0000 0000 0000 0000 11?? ???? ???? ???? ???? 11?? ???? ???? #2

R2 After S 0?01 00?0 000? ?000 0000 0000 0000 0000 0100 00?0 000? ?000 ?000 0100 00?0 000? #3

After P, K ???? 0000 ?1?? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ?1?? #4

R3 After S 1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 #5

After P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1010 0000 0000 0000 #6

20-round rectangle distinguisher

R24 Before S 0000 0100 0000 0000 0000 0000 0000 0000 0000 0001 0010 0000 0001 0000 0000 0000 #7

Before P, K 0000 ???1 0000 0000 0000 0000 0000 0000 0000 ???? ???? 0000 ???? 0000 0000 0000 #8

R25 Before S 00?0 0000 00?? 0?00 0001 0000 ?00? 00?0 ?000 0000 ??00 000? 0?00 0000 0??0 ?000 #9

Before P, K ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? #10

Ciphertext ??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0?? #11

[14]. We just need to know that its probability is 2−np̂2q̂2 = 2−64 · 2−58.557.
The key recovery extends the distinguisher by three rounds at the top and two
rounds at the bottom and can be found in Table 2.

The authors build a key-recovery attack by applying the model from [23] to
the external rounds. We start with the initial difference right before the first key
addition, numbered #2 in Table 2. We have rb = 44 (? bits in #2), and mb = 30
(active key bits in the differential transitions of the initial rounds), rf = 48 (?
bits in #11), mf = 32 (involved key bits in the differential transitions of the
final rounds). Let s = 2 be the expected number of good quartets per structure.
The attack proceeds as follows:

1. Build y =
√

s 2n/2−rb

p̂q̂ = 217.79 structures of 2rb = 244 plaintexts. Encrypt each
plaintext four times, using the four keys K1 = K, K2 = K ⊕ Δ, K3 = K ⊕ ∇
and K4 = K ⊕ Δ ⊕ ∇. For each structure j, we obtain four lists Lj

1, L
j
2, L

j
3

and Lj
4, which we sort by the rb active bits in #2.

2. We guess the mb bits of the first two round subkeys as Kb. For each guess:
(a) For each structure, we partially encrypt all the plaintexts of Lj

1 until #6
using Kb, we add the difference α from the rectangle path, and partially
decrypt back to #0 with Kb ⊕ Δ. We find the plaintext in Lj

2 which
matches it. After doing this for all the structures, we obtain a list S1 which
contains y · 2rb pairs with the right input difference at the distinguisher.
We repeat this with lists Lj

3 and Lj
4 to obtain S2. We sort S1 and S2

according to the non-active bits of the ciphertexts.
(b) We go through S1 and S2 to find all collisions in the non-active bits of

the ciphertexts. We obtain a list S3 of y2 ·22rb+2rf−2n candidate quartets.
(c) For each guess of the mf bits of key Kf , we examine each candidate in

S3 to see how many satisfy the rectangle distinguisher. As we can guess
and filter S-box by S-box (detailed in [23]), the cost is negligible.

(d) Keep the h = 22 values of Kf with the most conforming quartets, and
find the correct one with an exhaustive search over the rest of the key.
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The data complexity of the attack is D = 4 ·y ·2rb = 263.78 chosen plaintexts.
The time complexity is

T = 4 · y · 2rb + 2mb

(

3 · y · 2rb + y2 · 22rb+2rf−2n · 4
25

)

+ 2k−h � 2120.92

encryptions with a success probability of 74%.

5.3 S-Box Properties in the First Rounds for Better Sieving

We now explain how to gain 6 bits in time complexity and slightly improve the
data complexity. The improvement is quite technical, but it can be summarized
as modifying the way we build the structures using the S-box properties. The
aim of organising the plaintexts in structures is for each one to produce enough
rectangle quartets so that we obtain enough in total. By taking all the possible
values for the active bits of the plaintext and partially encrypting forwards and
backwards, each possible guess of Kb will map one entry of Lj

1 to an entry of Lj
2.

Each structure thus produces exactly 2rb pairs which verify the input difference
α. As can be seen in the formula of y, this is discounted from the total number
of structures. By exploiting the properties of the S-boxes we can reduce the size
of the structures as well as the number of key bits mb, which will allow us to
reduce the time complexity, and potentially the data. For computing the new
needed number of structures, y′, we won’t use the same formula as before, as the
elements in the lists will have some particularities now, but instead will deduce
the new value of y′ from the wanted expected number of good quartets, S, and
from carefully computing how many potentially good pairs and quartets we keep
in each list with the new type of structures.

Finding S-box Properties. We applied the tree search algorithm on FΔ = fΔ +x
for all output differences and filtered them according to two criteria. First, we
wanted only one of the two key bits to be involved. We also forced at least one
subtree on level 2 not to be of full depth to reduce the search space.

Property of f(0010)2 + x. The most interesting tree we obtained was in the case
of f(0010)2 + x, where the following relation appeared:

x0 = x3 = 0 =⇒ F2(x) = 2.

It is useful with transitions of the form ???? → 00?0, which appear in S-boxes 1,
6 and 14 at round 2. In particular, it implies that guessing the key bit added to
x1 is not a priori necessary. The aim is to build smaller structures where these
properties are verified, and to guess less key bits, which will in turn reduce the
time complexity (the number of quartets to try stays the same, but the number
of guesses decreases). From now on, we consider that all the data has bit x3

of the input to S-boxes 1, 6 and 14 at R2 fixed to zero. Intuitively, though the
number of structures available is tight, guessing less key bits implies a relaxation
of the conditions, and this in turn implies proportionally more kept pairs and
quartets.
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Reducing the Bits in Round 3. We can also show that it is unnecessary to guess
the bit k1 in the three active S-boxes of round 3. In essence, not all the pairs
in Si will necessarily have this bit determined, which will allow us to keep more
quartets while guessing less bits.

The output differences of the three S-boxes can take two values, which in
turn affect the input differences of the active S-boxes in the third round (0, 13
and 15). We need to carefully compute how many pairs will verify the input
difference α when guessing six less key bits than before. The transitions of S-
boxes 0 and 13 in round 3 are ?1X? → 0010, where X depends on the transitions
from round 2 where the key guess was reduced, and can thus be active or not.
In S-box 15, the transition is ??X? → 1000.

Let us examine how we build the differential pairs from the lists Lj
i . After

guessing the key bits associated to all the active S-boxes of round 2 but 1,6 and
14, we can compute, for each plaintext, the three bits x0, x2, x3 at the input to
S-boxes 0, 13 and 15. Choosing the value of Δx1 for each S-box determines the
other plaintext so that the pair generates α. A priori this should produce 23

different plaintexts, but we should note:

– When the input bit x0 (which is known) of the three round 2 S-boxes 1,6,14
is 0, F(0010) is independent of x1.

– In order to exploit the property efficiently, we will only consider pairs of
plaintexts for which x0 = 0 for S-boxes 1, 6 and 14. The property therefore
always holds (as we also have x3 = 0) and we can focus on the active S-boxes
in the third round.

– Each element of the list Lj
i will have a different number of associated plain-

texts in the other list, and each pair will have determined one additional key
bit value per treated transition (so three in total). When looking at just one
S-box, for the sake of simplicity, this bit will not be the same for each pair:
some will exclusively determine the associated bit from round 3, which are
the ones involving a difference value in round 2 or a non difference value but
a 0 in the round 2 position 0 S-box, and some will determine the xor of the
not-guessed key bit of round 3 with the not-guessed bit from round 2 of the
related S-box: when the bit at position 0 of the S-box at round 2 takes a value
one, both values 1 or 0 are possible in the output at position 1, while only
one value is possible when x0 = 0.

Taking this into account, we can now say that the transitions of round 3 of
S-box 0 (or 13 that will behave the same way), for all the possible 23 values of
the 3 known input bits, 3 cases will imply that no difference exists at position 1
(no matter the value of bit at position 1), 3 cases imply that there is always a
difference and two cases imply that depending on the value of the bit at position
1 there will or there will not be a difference.

So for one S-box, for each input pair, we have a number of possible pairs
from L2 to be associated to L1 that is:

1/8(3(1/2 · 2 + 1/2 · 2) + 3(1/2 · 2) + 2(1/2 · 2 + 1/2 · 1)) = 1.5.
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Fig. 6. Representation of the lists S1 and S2 of size 242.75 and the distribution of
their elements. In each chunk we can see: 1) the proportion of their size (the first for

instance has a size of 23

33
242.75 as well as 2) the bits that are determined for these pairs

from rounds 2 and 3. When two bits are xored, this can be seen as the bits of values
K3

0,1, K
3
13,1 and K2

14,1 are three absorbed bits: κ1, κ2, and κ3. In order to build list S3,
we consider the subset of the crossproduct of all the elements of each list that verify the
output conditions and additionally that has the same value when some identical key
bits of information have been determined, as otherwise it would imply and impossible
quartet.

The previous amount includes pairs generated when the bit x0 of the input of
the associated S-box of round 2 is 0 or 1. As we saw in the previous facts, that will
change the key bits that become implicitely determined from the formed pairs
(bit from round 3, or xor of this with the bits from round 2). Let us separate the
previous amount regarding this: 1.5 = 1/8(3 + 2 + 3) + 1/8(3 + 1) = 8/8 + 4/8,
which implies that in 2/3’s of the cases the bit from round 3 will be determined,
and 1/3 it will be the xor of bit, which have no incompatibilities between them.

Regarding the transitions of round 3 of S-box 15 we have a different distribu-
tion of the cases, but it is easy to check that we arrive at the same configuration
of 2/3 and 1/3.

The lists S1 and S2 that we obtain this way are represented in Fig. 6. The
structures we build in this new attack will have size of 244−3 = 241, as the bit
at position 3 of the 3 considered S-boxes are fixed to 0. The size of S1 and S2

is given by 241 · 1.5 · 1.5 · 1.5 = 242.75. We now just have to compute the exact
number of compatible pairs that we can obtain from merging both lists before
taking into account the output conditions. This number that we will call P will
have to verify later (where 2y′

will be the new number of structures that we need
to compute now):

y′ = y2rb/
√

P = 217.78+44/
√

P .
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By looking at the properties of the different chunks in Fig. 6 and all their
possible crossproducts, that will determine how many common key bit conditions
that will filter they have, we can compute P as:

P = 242.75[23/33 · 242.75(23/33 · 2−3 + 3 · 22/33 · 2−2 + 3 · 2/33 · 2−1 + 1/33) + 3·
22/33 · 242.75(23/33 · 2−2 + 22/33 · 2−3 = 2 · 22/33 · 2−1 + 2/33 + 22/33 · 2−2 + 1/33·
2−1) + 3 · 2/33 · 242.75(23/33 · 2−1 + 22/33 + 2 · 22/33 · 2−2 + 2/33 · 2−3 + 2 · 2/33·
2−1 + 1/33 · 2−2) + 1/33 · 242.75(23/33 + 3 · 22/33 · 2−1 + 3 · 2/33 · 2−2 + 1/33 · 2−3)]

⇒ P = 285.5 · 2−9.509 · 28.09 = 284.09

And therefore we can compute the needed y′:

y′ = 217.78+44−(84.09/2) = 219.73.

We have now an improved data complexity of D = 4 · 219.73 · 241 = 262.73,
instead of 263.78 previously. Please note that the data limit here is 4 · 264, we are
encrypting each plaintext with 4 different keys, and that the limit of y is 220.

The time complexity will become:

T = 4y′ · 241 + 2mb−6(3y′241 + 22∗19.73284.092−2(n−rf ))22/25 = 2114.92

instead of 2120.92 with the same success probability.

5.4 Using S-Box Properties in the Final Rounds for Better Sieving

We use our improved key-guessing techniques to improve the complexity of the
previous attack. This idea will improve the overall complexity by reducing the
size of rf , which in turn reduces the size of S3 and therefore of the quartets to
try.

If we now have a look at the final rounds, we can see that the rightmost
S-box need to verify a transition of ???? to ?000 through S−1. That means that
this input difference can be 0 or 8 at the end of round 24. If the difference
is 0, we have 4 additional conditions when building up the quartets and we
will sieve more of them, if the difference is 8, then, by looking at the image of
F8(X3,X2,X1,X0) = S(S−1(X3,X2,X1,X0) ⊕ (1000)) ⊕ (X3,X2,X1,X0), we
see it can only take four values : (3, 7, F,B). In total, with the zero difference is a
total of 5, that leaves an additional factor of (4 + 1)/16 = 2−1.67. We can do the
same with the transitions ???? to 0?00 and ???? to 00?0 (that appear each two
times) and add a sieving factor of (5+1)/16 = 2−1.41 and of (6+1)/16 = 2−1.19

respectively per transition. Transition ???? to ?010 has a factor of (6+6−4)/16 =
2−1

Step 2(c), that before kept 291.56 quartets to try, was the bottleneck when
multiplied by the 230 complexity of guessing mb. We will see now how this
amount of quartets can be reduced:

291.56(2−1.67)2(2−1.41)4(2−1.19)4(2−1)2 = 291.56−15.74 = 275.82,
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where the first factor corresponds to the F8 relations, and it is squared as
it has to be verified by both of the pairs that form a quartet, the second factor
correspond to the relations of F4, that appears twice and should also be squared,
which gives a power of 4, and the same goes for the third factor from F2. The
fourth one that comes from the relation from transition ???? to ?010 where the
non-zero difference is not an option, and needs to be squared because of the two
pairs.

This 275.82 will be the new cost of this step (multiplied by 230 gives 2105.82

instead of 2121.56), as we can directly check the values from S2 that have a
difference that belongs to the image of their corresponding Fi, which means that
we have reduced the complexity by a factor 215.74. Thanks to the trees of Fi

step 2(d) could become slightly smaller than 22, but as the gain would be very
small we won’t detail it here (but we point out to consider this in other scenarios
where it could help).

When taking into account the factor of the computations for the attack com-
pared to an encryption we obtain a final complexity of 2105.18 instead of 2120.92.

5.5 Combining Both

As both improvements consider independent parts of the attack, they can both be
taken into account, generating a new improved time complexity of 2114.92−15.74 =
299.18 and data complexity of 262.73, improving time by a factor bigger than 221,
and data by a factor of 2.

6 Application to RECTANGLE-80

In the present section, we want to improve the best attack on the updated version
of the SPN cipher RECTANGLE-80 [22] which, to the best of our knowledge, is
the differential attack presented by the authors of the cipher themselves in the
same paper.5

A description of the cipher can be found in the extended version of the paper
[7].

In this section (following the same framework used in [19]), we will indicate
the round key i as Ki, the input of the S-box layer at round i as Ii and the
output of the S-box layer of round i as Oi. This means that the output of
the ShiftRow operation at round i is Ii+1. Similarly, we will call ΔIi,ΔOi the
respective differences of the state of a given a pair. We will sometimes indicate
a vector of F4

2 as an hexadecimal number.

5 A differential attack that requires less data is claimed by the authors of [1] thanks
to a distinguisher that covers the same number of rounds with better probability.
However, no description or time complexity of the attack was given and we could
not verify it due to the large time complexity of the key-guessing phase. We believe
that, with the techniques presented in this paper, it could be possible to make the
attack work, but the time and memory complexity would still be much worse than
the attack we present here.
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Table 3. The differential attack on 18 rounds of RECTANGLE-80 with the distin-
guisher from [22]. The ∅ indicates an active bit with difference 0. The ? indicates an
unknown difference value.

ΔP = ΔI0 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000 0000 ∅∅∅∅
ΔO0 ?000 0000 0000 000? 01?0 ?000 0000 0000 000? 0010 0000 0000 0000 0000 0000 0∅00

ΔI1 0000 0000 0000 ?∅?? 0000 0000 0000 0000 ?11? 0000 0000 0000 0000 0000 0000 0000

ΔO1 0000 0000 0000 0110 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000

ΔI2 0000 0000 0010 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000

14-round differential distinguisher

ΔI16 0000 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000

ΔO16 0000 0000 0000 ??11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000

ΔI17 0000 ?000 0?10 0001 0000 0000 ?000 0?00 0000 0000 0000 0000 0000 0?00 000? 0000

ΔO17 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000 0000 ???? ???? 0000

6.1 Description of the Attack

As already mentioned, we want to improve the best attack on the new variant
of RECTANGLE-80, which is a differential attack presented by the authors
themselves with time complexity of 278.67 18-round encryptions, data complexity
of 264 and memory complexity of 272 key counters [22]. The bottleneck in this
attack is given by the large amount of key-guessing needed in the two rounds
before and after the distinguisher.

We will show here how to cover these rounds of key-guessing using the frame-
work presented in [19] and how to reduce the complexity of the key-guessing
phase by a factor of about 228, thanks to the techniques introduced in Sect. 3.2.

During the key-guessing phase, we gradually guess the necessary bits of the
round key Ki nibble by nibble. We will actually simplify the guessing done to
determine good pairs with respect to Case 3 of Sect. 3.2, since this is anyway
going to make the key-guessing phase complexity negligible with respect to that
of the data collection phase. In particular, any time we have to guess whether a
pair (x ⊕ k, x ⊕ δ ⊕ k) determines an output difference Δ through S, we will not
do a gradual guess depending on the value of x using the tree of gδ

Δ, as would
be preferable. Instead, we will simply guess, whatever the value of x, the bits of
k given by the inner nodes of gδ

Δ (or, equivalently, by Dom). The guessing cost,
then, will be 2domopt and not numLeaves. An example of this simpler guessing
strategy is given in the extended version of the paper [7].

In order for the attack to work, we need to prepare enough pairs of plaintext
that can satisfy the desired input difference ΔI2, so that at least 262.83 = p−1

such pairs are available to the distinguisher starting at round 2 (see [3] for the
heuristic).

To this end, we prepare a number of 2y of data structures, each containing
all possible plaintexts with a fixed value in the non-active bits in ΔI0. Since
the linear layer of RECTANGLE-80 is a permutation of the bits, it is easy to
see from Table 3 that the amount of active bits in the first round is 24, i.e. the
number of ?. Thanks to the properties of S, we can see that the real number of
active bits is actually 23: in fact, for S-box 6 of I0 we only need to determine the
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active output bit y1 of O0, in addition to the good pairs, and from the trees of
y1 and F2 we see that their actual domain is generated by the vectors 1, 2 and
8, implying that the bit at position 4 from S-box 6 of a plaintext won’t affect at
all the key-guessing, i.e. it is not active.

Therefore, from each data structures we can generate 223 plaintexts, by let-
ting the active bits vary through all the possible values (while keeping fixed the
non-active ones) and build a maximum of 245 ordered pairs. In order to deter-
mine the necessary number of structures, we see that for a fixed key guess, we
expect 2y+22 pairs to lead to the desired input difference ΔI2: this means that
we want y + 22 − 62.83 ≥ 0, i.e. y = 41.

However, by looking at the possible values that the states ΔP and ΔO17

can take, we can sieve the pairs to use in the key-guessing phase and keep, on
average, 25.71 pairs for each structure (see the extended version of the paper [7]
for details).

Step 1 (guess of K0 to Determine the Good Pairs of Round 0 and Retrieve Linear
Relations for the Active Bits of O0). We gradually guess nibble by nibble the
necessary amount of key material to determine whether each plaintext pair is
a good pair and retrieve linear relations that describe the active bits of O0 in
terms of K0 (the latter are necessary for key absorption). Just as an example,
in order to guess the relevant key-material for S-box 7, we can compute both
the good pairs and the linear relations for the active output bit y0 (necessary
for the key absorption in Step 2) with an average number of key-guesses of
2 × 1/8 + 7 × 7/8 = 22.73. In fact, in case the input difference is δ = 0 (which we
expect to happen for 1/8 of the pairs) we only need to guess one key-bit of K0

to find a linear relation of y0 (as suggested by the optimal tree for 〈S(x), 1〉);
if δ �= 0 (which we expect to happen for 7/8 of the pairs), we need to make 7
guesses to determine which pairs are good (thanks to the tree for gδ

1); indeed,
these guesses are always enough to also determine a linear relation on y0 and we
need to guess no further. After that, we can sieve all the pairs such that

S(x ⊕ K0) ⊕ S(x ⊕ Δ + K0) �= {1, 0},

which happens with a probability of 2/8 = 2−2. Notice that the verification of
this condition costs 2× 1/18× 1/16 18-round encryptions for each pair. Overall,
this process is applied to each nibble, for a total time complexity of this step is
2y+4.90 18-round encryptions.

Step 2 (guesses of K1,K0 to determine the pairs that satisfy ΔO1). In this step,
we guess the remaining key bits to ensure the right difference after the first two
rounds. First, we notice that we can discard any pair which has not an input
difference that could lead to ΔO1, by looking at FΔ for S-box 7 and 12, and
find out that we can keep only 3/4 of the remaining pairs so far. Thanks to the
key absorption technique of Sect. 3.2, we can jointly guess an average of 2 bits
of (K0,K1). Notice that deciding whether a pair satisfies the transition of S-box
7 is independent of the third input bit (and therefore of the second output bit
of nibble 13 in round 17, as was anticipated), thanks to the fact that F2 has
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domopt = 3 (i.e. independent of bit 4). This also implies that output bit y2 of
S-box 11 of round 0 does not need to be guessed. The total complexity of this
step is then 2y+4.52 18-round encryptions.

Step 3 (guess of K18 to determine the pairs that satisfy ΔI17 and retrieve linear
relations for the active input bits of I17). As was done in Step 1, we want to filter
the good pairs by gradually guessing the necessary key material for each S-box
and retrieve linear relations for the active input bits of I17. In the hypothesis
that the values of the active bits of O18 are uniformly distributed, we expect an
average complexity of this step of 2y+8.98 18-round encryptions.

Step 4 (guess of K17,K18 to Determine the Pairs that Satisfy ΔI16). As done in
Step 2, we first sieve all the pairs whose output difference cannot lead to a good
pair, using as before FΔ, and then do a combined guess of K17 and K18 with
key absorption. As before, we notice that determining good pairs through S-box
12 is independent of the second input bit (and therefore of the second output
bit of nibble 13 in round 17) by looking at F2. The total complexity of this step
of 2y+7.42 18-round encryptions.

Final Complexity. The time complexity for the key-guessing is about 2y+9.50 =
250.50 18-round encryptions, which means that the bottleneck is no longer the
key-guessing, as was in the attack of [22]. Together with the data collection
phase, the time complexity of the attack is then 264 18-round encryptions.

7 Conclusion

Using our description of S-boxes as decision trees allows us to improve the best
known attacks against Noekeon, GIFT, and RECTANGLE . These attacks
belong to different families, yet our general framework to optimized the key-
guessing part has been applied to all of them.

As future work, it might be of interest to attempt to handle larger functions,
that is, with more input bits. For now, all the applications shown above require
some degree of manual analysis of the trees (e.g. when combining several rounds
in the GIFT or RECTANGLE application). A more heuristic search for the
trees might produce trees for significantly larger functions, thus analyzing more
than one S-box or even more than one round. This would have the potential to
automatically include many of the manual improvements.

In addition, understanding the general behaviour of the minimal number of
leaves is an interesting problem on its own. A non-trivial upper bound on the
minimal number of leaves for an arbitrary (balanced) Boolean function of n bits
would be of great interest.

We expect that many other attack scenarios will benefit from our framework
for gradually performing the key-guessing using binary trees, improving other
attacks complexities, as it is quite generic.
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Abstract. Key encapsulation mechanism (KEM) variants of the
Fujisaki-Okamoto (FO) transformation (TCC 2017) that turn a weakly-
secure public-key encryption (PKE) into an IND-CCA-secure KEM, were
widely used among the KEM submissions to the NIST Post-Quantum
Cryptography Standardization Project. Under the standard CPA secu-
rity assumptions, i.e., OW-CPA and IND-CPA, the security of these
variants in the quantum random oracle model (QROM) has been proved
by black-box reductions, e.g., Jiang et al. (CRYPTO 2018), and by non-
black-box reductions (EUROCRYPT 2020). The non-black-box reduc-
tions (EUROCRYPT 2020) have a liner security loss, but can only apply
to specific reversible adversaries with strict reversible implementation.
On the contrary, the existing black-box reductions in the literature can
apply to an arbitrary adversary with an arbitrary implementation, but
suffer a quadratic security loss.

In this paper, for KEM variants of the FO transformation, we first
show the tightness limits of the black-box reductions, and prove that a
measurement-based reduction in the QROM from breaking the standard
OW-CPA (or IND-CPA) security of the underlying PKE to breaking the
IND-CCA security of the resulting KEM, will inevitably incur a quadratic
loss of the security, where “measurement-based” means the reduction mea-
sures a hash query from the adversary and uses the measurement outcome
to break the underlying security of PKE. In particular, most black-box
reductions for these FO-like KEM variants are of this type, and our results
suggest an explanation for the lack of progress in improving this reduction
tightness in terms of the degree of security loss. Then, we further show that
the quadratic loss is also unavoidable when one turns a search problem into
a decision problem using the one-way to hiding technique in a black-box
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manner, which has been recognized as an essential technique to prove the
security of cryptosystems involving quantum random oracles.

Keywords: Non-tightness · Quantum random oracle model · Key
encapsulation mechanism · Fujisaki-okamoto · One-way to hiding

1 Introduction

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] has been
considered as a standard security notion for a key encapsulation mechanism
(KEM) [2]. For designing efficient cryptographic protocols, an idealized model
called Random oracle model (ROM) [3] is usually used, where a hash function is
idealized to be a publicly accessible random oracle (RO). Generic constructions
of an IND-CCA-secure KEM in the ROM were well studied by Dent [4] and
Hofheinz, Hövelmanns and Kiltz [5].

Essentially, the generic constructions in [5] can be classified into two cat-
egories. One category is the KEM variants of the Fujisaki-Okamoto (FO)
transformation [6,7] including FO⊥, FO⊥

m, FO�⊥, FO�⊥
m, QFO⊥

m and QFO�⊥
m

1,
which turn a public-key encryption (PKE) with the standard CPA security
(one-wayness against chosen-plaintext attacks (OW-CPA) or indistinguishability
against chosen-plaintext attacks (IND-CPA)) into an IND-CCA KEM. The sec-
ond category is the KEM variants of the REACT/GEM transformation [9,10],
including U�⊥, U⊥, U�⊥

m, U⊥
m, QU�⊥

m and QU⊥
m, which turn a PKE with non-

standard security (e.g., OW-PCA, one-way against plaintext checking attack
[9,10]) or a deterministic PKE (DPKE, where the encryption algorithm is deter-
ministic) into an IND-CCA-secure KEM. The modular analysis of the FO trans-
formation by Hofheinz et al. [5] suggests that the FO transformation implicitly
contains the REACT/GEM transformation at least as far as the proof techniques
are concerned. Thus, in what follows, we just call these variants FO-like KEMs
for brevity.

In modern cryptography, cryptosystem constructions are usually proposed
together with a proof of security. Typically, when proving a security of a crypto-
graphic scheme S under a hardness assumption of an underlying problem P , one
usually constructs a reduction algorithm RA that runs an adversary A against S
as a subroutine to break the underlying hardness assumption of P . Let (TA, εA)
and (TR, εR) denote the running times and advantages of A and RA, respec-
tively. The reduction is said to be tight if TA ≈ TR and εA ≈ εR. Otherwise, if
TR � TA or εR � εA, the reduction is non-tight. Generally, the tightness gap,
(informally) defined by TAεR

TRεA
[11], is used to measure the quality of a reduc-

tion. Tighter reductions with smaller tightness gap are desirable for practical
cryptographic applications especially in large-scale scenarios, since the tightness
of a reduction determines the strength of the security guarantees provided by

1 Q means an additional Targhi-Unruh hash [8] (a length-preserving hash function) is
appended to the ciphertext. m (without m) means K = H(m) (K = H(m, c)).�⊥ (⊥)
means implicit (explicit) rejection. In implicit (explicit) rejection, a pseudorandom
key (an abnormal symbol ⊥) is returned for an invalid ciphertext.
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the security proof. Thus, pursuing tighter reduction has been recognized as a
vital goal in cryptographic community.

A reduction is called black-box if it merely uses the adversary’s input-output
behavior, and does not depend on the internals like the adversary’s code (e.g.,
concrete gate operations). As surveyed by Marc Fischlin [12], black-box reduc-
tions are pervasive in cryptography. In contrast, a non-black-box reduction
requires knowledge of the adversary’s internals. For several cryptographic tasks,
e.g., zero-knowledge proofs [13], it can be shown that non-black-box reductions
have significantly more power than black-box ones [14]. In particular, this addi-
tional power of non-black-box reductions can be used to obtain new results,
which were previously proven to be impossible to obtain when using only black-
box techniques [14]. However, in some settings, e.g. secure computation, non-
black-box reductions may cause high efficiency costs, and are unlikely to be
very useful in practice [15]. In addition, as argued by Pass, Tseng and Venki-
tasubramaniam [16], in the context of basing cryptographic primitives on one
another, black-box reductions provide a semantically stronger notion of secu-
rity than non-black-box reductions, since non-black-box reductions require an
explicit description of the adversary’s code that might be hard to find in prac-
tical attacks. Thus, typically, when proving the security of a cryptosystem, a
black-box reduction is always the first choice.

In the ROM, if an adversary queries the random oracle with m, the reduction
can see this query and learn m. This is sometimes called extractability. When
proving the IND-CCA security of a PKE/KEM under various standard assump-
tions in the ROM, one usually constructs a query-based2 reduction that uses
a hash query from the adversary to break the underlying hard problem, such
as when proving the FO transformation [6,7], the REACT/GEM transforma-
tion [9,10], the Bellare-Rogaway transformation [3], the OAEP transformation
[18,19], and the hashed ElGamal encryption scheme [20]. A query-based reduc-
tion is also used in getting a tight security proof for a unique signature [17].
In particular, for FO-like KEMs from standard CPA assumptions (in what fol-
lows, standard CPA assumptions refer to OW-CPA and IND-CPA), the currently
known security reductions in the ROM [4,5,21] are all query-based.

Recently, post-quantum security of FO-like KEMs has gathered great inter-
est [5,22–29] due to the widespread adoption [23, Table 1] in KEM submissions
to the NIST Post-Quantum Cryptography (PQC) Standardization Project [30].
The goal of this project is to standardize new public-key cryptographic algo-
rithms with security against quantum adversaries. Motivated by the fact that
quantum adversaries can execute all “offline primitives” such as hash functions
on arbitrary superpositions, Boneh et al. [31] introduced quantum random oracle
model (QROM), where the adversary can query the random oracle with quan-
tum state, and argued that to prove post-quantum security one needs to prove
security in the QROM3.

Unfortunately, the aforementioned query-based reduction in the ROM can
not carry over to the QROM setting offhand due to the fact that the extractabil-
ity might be problematic when the query is a quantum state which can be a
superposition of exponentially many classical states [31]. In a quantum world,

2 This name comes from Guo et al.’s paper [17].
3 Separations of ROM and QROM were given by [31–33].
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measurement allows us to extract classical information from a quantum state and
thus is a way that we can “read out” information. Thus, naturally, a QROM ver-
sion of the aforementioned query-based reduction can be a reduction that mea-
sures a hash query from the adversary and uses the measurement outcome to
break the underlying hard problem. In this paper, we call this type of reductions
a measurement-based reduction.

Particularly, for FO-like KEMs from standard CPA assumptions, most black-
box reductions4 (e.g., [5,22–27]) and non-black-box reductions [37] in the QROM
are of this type, and have the tightness5, (1) TR is about TA; (2) εR ≈ 1

κετ
A, where

κ and τ are respectively called the factor and degree of security loss in the
following. Let q be the total number of adversary’s queries (including quantum
and classical) to various oracles.

– In [5], Hofheinz et al. presented security reductions for QFO�⊥
m and QFO⊥

m

from the OW-CPA security of the underlying PKE with κ = O(q6) and τ = 4,
for QU�⊥

m and QU⊥
m from the OW-PCA security of the underlying PKE with

κ = O(q2) and τ = 2.
– In [22], Saito, Xagawa and Yamakawa presented a tight security reduction

(i.e., κ = O(1) and τ = 1) for U�⊥
m from a new non-standard security called

disjoint simulatability (DS) of the underlying DPKE, and also provided a
security reduction for a variant of FO�⊥

m from the standard IND-CPA security
of the underlying PKE with κ = O(q2) and τ = 2.

– In [23], Jiang et al. first presented security reductions for FO�⊥ and FO�⊥
m from

the standard OW-CPA security of the underlying PKE with κ = O(q2) and
τ = 2. Then, they presented security reductions for U�⊥ (U⊥, resp.) from the
OW-qPCA (OW-qPVCA, resp.) security of the underlying PKE, U�⊥

m (U⊥
m,

resp.) from the OW-CPA (OW-VA, resp.) security of the underlying DPKE
with κ = O(q2) and τ = 2, where OW-qPCA, OW-qPVCA and OW-VA are
new non-standard security notions of PKE introduced by [5,23].

– Using the semi-classical oracle technique in [24,25,27,38] improved the tight-
ness of security reductions in [23]. Precisely, under the standard IND-CPA
security of the underlying PKE, security reductions with tightness κ = O(q)
and τ = 2 were given for FO�⊥, FO�⊥

m and their variants with explicit rejec-
tion. For U�⊥, U⊥, U�⊥

m and U⊥
m, the reduction tightness was improved to be

κ = O(q) and τ = 2 under the same security assumptions as in [23].
– In [26], following Zhandry’s compressed oracle technique [34], Bindel et al.

further gave tighter security reduction for U�⊥ and its variants with κ = O(1)
and τ = 2.

4 The reductions in [34–36] that use the compressed oracle technique developed by
[34] do not belong to the class of measurement-based reductions, since they access
information contained in the adversary’s queries in a non-trivially different way than
by measurement.

5 When comparing the tightness of different reductions, we assume perfect correctness
of the underlying scheme for brevity.
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– In [37], introducing a new technique called “Measure-Rewind-Measure”
(MRM), Kuchta et al. first gave non-black-box reductions for FO-like KEMs.
In particular, for U�⊥ (FO�⊥, resp.) and its variants, the reduction tightness
was improved to be κ = O(q) and τ = 1 (κ = O(q2) and τ = 1, resp.).

As we can see, the existing black-box reductions in the QROM for FO-
like KEMs from standard CPA assumptions, are far from desirable due to the
quadratic security loss (at least). Although this quadratic loss can be avoided
by non-black-box reductions [37], as we will show in Sect. 1.4, the non-black-box
reductions in [37] can only apply to specific reversible adversaries6 with strict
reversible implementation (the existing black-box reductions in the literature
can cover arbitrary adversaries with arbitrary implementations). These results
are quite different from the ones in the ROM setting, where security reductions
with linear loss can be achieved in a black-box manner [4,5].

The quadratic loss in these security proofs arises from the usage of the one-
way to hiding (OW2H) technique [40], which essentially gives a reduction from
an extraction algorithm against the one-wayness-style property (search problem)
to a distinguishing adversary against hiding-style property (decision problem)
with quadratic loss. Actually, the OW2H technique has been recognized as an
essential technique to prove security of various cryptosystems involving quantum
random oracles [38,40]. Besides FO-like constructions, the OW2H technique was
also used to prove the security of revocable timed-release encryption schemes
[40], authenticated key exchange [27], position verification protocol [41], PRF and
MACs [42], non-interactive zero-knowledge proof systems and signature schemes
[43–45]. Very recently, several works [26,37,38] tried to improve the tightness of
the OW2H technique. However, as in the case of the aforementioned proofs for
FO-like KEMs, the tightness improvements are only restricted to the factor of
reduction loss, and the quadratic loss still exists (except the improvement using
a non-black-box reduction for reversible distinguishing adversaries in [37]).

Thus, a natural question is that

For FO-like KEMs and the one-way to hiding technique, is the quadratic loss
unavoidable for measurement-based black-box reductions?

1.1 Our Contributions

In this paper, we give an affirmative answer for the above question, and show
that the current quadratic loss is indeed unavoidable for any measurement-based
black-box reduction that runs the adversary once without rewinding7.
6 In post-quantum setting, most adversaries are irreversible since most oracles (e.g.,

decapsulation oracle) in the security model can only be classically queried. Thus,
a quantum adversary has to measure his quantum query registers to perform a
classical query. Moreover, adversaries may also perform a mix of classical (probably
irreversible) and quantum algorithm, see the full version [39] for details.

7 Our impossibility results can also be extended to cover measurement-based reduc-
tions with simple rewinding (a quantum counterpart of classical sequential rewinding
[46]), see Remark 5 and Appendix C.
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Given a real p (0 ≤ p ≤ 1) and a FO-like KEM construction,

1. We first construct an unbounded quantum adversary A that breaks the IND-
CCA security of the resulting KEM by querying the random oracle with a
well-designed quantum state and solving a discrimination problem between
two quantum states. The advantage of A is at least

√
p, i.e., εA � √

p.
2. Then, using the meta-reduction methodology [47,48], we bound the advantage

εR of a measurement-based reduction RA that runs above A as a subroutine
to break the OW-CPA (or IND-CPA) security of the underlying PKE. In
particular, the advantage εR can not substantially exceed p, i.e., εR � p, unless
there exists an algorithm breaking the OW-CPA (or IND-CPA) security of
the underlying PKE efficiently.

Therefore, for FO-like KEMs, our results show that a measurement-based
black-box reduction in the QROM from breaking the standard OW-CPA (or
IND-CPA) security of the underlying PKE to breaking the IND-CCA security
of the resulting KEM, will inevitably incur a quadratic loss of the security.

Moreover, our impossibility results can also be extended to show that the
quadratic loss is also unavoidable when one turns a search problem into a decision
problem via the essential OW2H technique in a black-box manner. That is,
the black-box OW2H technique [26,38,40] is essentially optimal in terms of the
degree of reduction loss.

1.2 The Interest of Our Result

As pointed out by [5, Sect. 1.2], FO-like constructions remain the only known
generic constructions from CPA to CCA security. That is, our results cover all
the current generic constructions of an IND-CCA-secure KEM based on a CPA-
secure PKE. On the other hand, our impossibility results can apply to typical
measurement-based reduction, which is a QROM version of the query-based
reduction that has been widely used in proving CCA security of a PKE/KEM
under various standard assumptions. For FO-like KEMs from a standard CPA
PKE, the currently known black-box reductions in [5,22–27] belong to this type.
Thus, our results suggest an explanation for the lack of progress in improving
the reduction tightness in terms of the degree of security loss in these works
[5,22–27].

The tightness of security reductions is important to evaluate the concrete
security of a cryptosystem [11]. Our results first give a black-box reduction bound
for FO-like KEMs, which can be taken as a baseline for tightness comparison. For
example, at TCC 2019, Bindel et al. [26] took this result as a theoretical support
for their “tight” reduction (their main contribution) for U�⊥ and its variants since
their black-box reductions essentially match our impossibility bound.

As pointed out by Baecher et al. [49], an impossibility result, which clearly
specifies the type of reduction it rules out, enables us to identify the potential
leverages to bypass the limits. Fischlin [12] mentioned that the impossibility
result can also been viewed as a shortcoming of the proof technique itself, and
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non-black-box techniques can be used to circumvent a black-box impossibility
result. At EUROCRYPT 2020, following our work, Kuchta et al. [37] intro-
duced a new technique called “measure-rewind-measure” (MRM), and proposed
a non-black-box reduction that can bypass our black-box impossibility results to
achieve a linear loss, see Sect. 1.4 for detailed discussion. Therefore, our impos-
sibility results can be taken as guidance toward a positive answer, and will be a
step forward into looking for new approaches to prove security in the QROM.

In NIST PQC standardization process, all the Round-3 KEM candidates
use FO-like constructions to achieve the CCA security [30]. For NIST’s round-3
evaluations, our results suggest that in order to derive a tight QROM proof, one
(especially the NIST submission teams) has to research on developing new proof
techniques (particularly for their specific constructions).

1.3 Technique Overview

In FO-like KEMs, the (session) key K is derived by H(m) (or H(m, c)) and the
ciphertext c = Enc(pk,m;G(m)) (or Enc(pk,m) if Enc is deterministic) is the
corresponding encapsulation of the key K, where Enc is the encryption algorithm
of the underlying PKE, m is uniformly picked at random, G and H are random
oracles. In this section, for a concise presentation, we just take KEM − U�⊥

m (see
Fig. 1 for details) as an example, and thus K = H(m) and c = Enc(pk,m). It
is easy to extend the techniques here to other FO-like KEMs and the general
OW2H technique, see Sects. 5.1 and 6.

Meta-reduction methodology. Since the introduction by Boneh and Venkate-
san in [47], the meta-reduction methodology has proven to be a versatile tool in
deriving impossibility results and tightness bounds of security proofs for many
cryptosystem constructions [46–48,50–57], please see the review [12]. Let R be a
reduction that breaks the underlying hard problem P with access to an adver-
sary A against a scheme S. Roughly speaking, a meta-reduction MRR simulates
the adversarial part A, runs R as a subroutine, and break the underlying hard
problem P directly without reference to an allegedly successful adversary. That
is, a meta-reduction MRR treats the reduction R as an adversary itself, and
reduces the existence of such a reduction R to a presumably hard problem. Note
that the meta-reduction methodology clearly requires the existence of a success-
ful adversary A against the scheme S in the first place, and such an adversary
is usually unbounded [12]. A more detailed description of the meta-reduction
methodology can be found in the full version [39].

When attacking the IND-CCA security of KEM − U�⊥
m, an adversary A(pk, c∗,

Kb) needs to distinguish K0 = H(m∗) from a uniformly random key K1, where
c∗ = Enc(pk,m∗) is an encryption of a uniformly random m∗, the coin b ∈
{0, 1} is uniformly random. We note that the random oracle H has a useful
property that if m∗ has not been queried by A, then the value H(m∗) is uniformly
random in A’s view. Thus, A’s distinguishing advantage is negligible when A
does not query H with m∗. Intuitively, to achieve a non-negligible distinguishing
advantage, A has to query H with m∗.



494 H. Jiang et al.

In the ROM, A can only make classical queries to H. For any p (0 ≤ p ≤ 1),
if A makes a query m∗ to H with probability p, he will learn K0 = H(m∗) with
probability p and break the IND-CCA security with advantage approximately p
by testing whether K0 is equal to Kb. For a reduction RA against the OW-CPA
security of the underlying DPKE, a natural way is to take A’s query as a return.
Then, with probability p, RA will return the m∗ and break the OW-CPA security
of the underlying DPKE. That is, the advantages of RA and A are approximately
equal, which is consistent with the currently known tight reduction in [5].

Unbounded quantum adversary A. In the QROM, a quantum adversary A
makes queries to H with quantum states. Consider the following quantum state

|ψ−1〉 :=
√

p|m∗〉|0〉 +
√

1 − p|m′〉|Σ〉,
where m′ 	= m∗, |Σ〉 =

∑
k∈K 1/

√|K||k〉 and K is the (session) key space. For a
quantum query with |ψ−1〉, the random oracle H will return

|ψ0〉 : =
√

p|m∗〉|K0〉 +
√

1 − p|m′〉|Σ〉.
We remark that if the adversary A directly measures |ψ0〉 in the standard com-
putational basis, he will obtain K0 with probability p, and break the IND-CCA
security with advantage (approximately) p by testing whether K0 is equal to Kb

as the aforementioned ROM adversary does.
Here, we construct an unbounded quantum adversary A(pk, c∗,Kb) that first

determines m∗ such that c∗ = Enc(pk,m∗) by exhaustive search (if none is
found, A outputs 1) and randomly selects a uniform m′ such that m′ 	= m∗,
then queries H with |ψ−1〉, lastly guesses b by testing whether |ψ0〉 is equal to
|ψb〉, where

|ψb〉 : =
√

p|m∗〉|Kb〉 +
√

1 − p|m′〉|Σ〉.
Testing whether |ψ0〉 is equal to |ψb〉8 can be accomplished using the standard
state discrimination method (known as Helstrom measurement) [58,59] with
advantage (approximately) at least

√
p. Thus, quantum adversary A can break

the IND-CCA security with advantage (approximately) at least
√

p. That is,
εA � √

p.
In the currently known proofs for KEM − U�⊥

m in [23], the reduction algorithm
RA against the OW-CPA security of the underlying DPKE just randomly mea-
sures one of A’s queries to H in the standard computational basis and takes the
measurement outcome as a return. The security bound is given by εA � q

√
εR.

We note that the aforementioned unbounded adversary A does not query the
decapsulation oracle, and just reveals one quantum query |ψ−1〉 to H and a
guessing of b. Thus, the total number of A’s queries to various oracles is one,
i.e., q = 1. We also note that the advantage of the reduction algorithm RA in
[23] is exactly the probability of the measurement outputting m∗, which is equal
to p. That is, εR = p. Thus, for above unbounded quantum adversary A, the
advantage can match the bound εA � q

√
εR in [23].

8 Formally, we need to judge |ψ0〉〈ψ0| comes from |ψb〉〈ψb| or EK1−b |ψ1−b〉〈ψ1−b| (the

the expectation is taken over K1−b
$← K), please refer to Sect. 3 for details.
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The advantage of a measurement-based reduction. Here, we consider
a measurement-based black-box reduction RA that runs A once and without
rewinding, measures A’s query |ψ−1〉 and uses the measurement outcome (any
further postprocessing is allowed) to break the OW-CPA security of the underly-
ing DPKE. We say a reduction R is efficient if the running time of R (excluding
A’s running time) is polynomial in the security parameter. We make a convention
that RA measures |ψ−1〉 in the standard computational basis9.

Consider the advantage of RA in the following three cases, where Ine is
denoted as the event that the exhaustive search does not return an m∗ such
that Enc(pk,m∗) = c∗, Exi is denoted as the event that such an m∗ is found,
Good is denoted as the event that the measurement outcome is m∗, and Bad
is denoted as the event that the measurement outcome is not m∗.

Case 1:Ine. In this case, A just outputs 1 without queries to H. Thus, exhaustive
search for m∗ in this case is vain, and A can be replaced by an adversary A1

that always outputs 1 without the search for m∗ and the query to the random
oracle H. Therefore, we can easily construct a meta-reduction MRR

1 that
simulates A1 and takes RA1 as a subroutine to break the OW-CPA security
of the underlying DPKE such that the running time of MRR

1 is about the
running time of R, and under the condition Ine the advantage of MRR

1 is
about the advantage of R.

Case 2:Exi ∧ Good. Since Pr[Good|Exi] = p, we can bound the advantage of
R in this case by p.

Case 3:Exi ∧ Bad. In this case, R gets m′ 	= m∗. Let A2 be an adversary that
makes a single query to H with quantum state

∑
m,k 1/

√|M| · |K||m〉|k〉
and outputs 1 without searching for m∗. Thus, the advantage of R under the
condition Exi∧Bad remains unchanged when A is replaced by A2. As in the
case 1, we can also construct a meta-reduction MRR

2 against the underlying
OW-CPA security that simulates A2 and takes RA2 as a subroutine such
that the running time of MRR

2 is about the running time of R, and under the
condition Exi ∧ Bad the advantage of MRR

2 is about the advantage of R.

Under the assumption that the advantage of any efficient algorithm breaking
the OW-CPA security of the underlying DPKE is negligible, we have that both
advantages of MRR

1 and MRR
2 are negligible since the running time is polynomial

in the security parameter. Thus, both advantages of R in Case 1 and Case 3 are
negligible, which implies that the upper bound of R’s advantage is approximately
p. That is, the advantage of a measurement-based black-box reduction against
the OW-CPA security of the underlying DPKE can not substantially exceed p
unless there exists an algorithm that can break the OW-CPA security of the
underlying DPKE efficiently.

1.4 Subsequent Work

Observing our constructed quantum state distinguisher, Kuchta et al. [37] found
that in one of the measurement basis states, the amplitude of |m∗〉 has a rela-
9 The discussion on other measurements is given by Sect. 4.
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tively high norm. That is, such a measurement basis state essentially encodes
m∗, thus measuring this measurement basis state can give m∗ with a high prob-
ability. In order to extract m∗ from adversary’s quantum registers, Kuchta et
al. [37] developed a novel MRM extractor. In particular, the extractor of m∗

first runs the adversary A until the end, performs the first-measurement on
A’s internal outputting registers, and then rewinds A conditioned on the first-
measurement outcome, finally conducts a second-measurement on A’s query reg-
isters. Note that above rewinding is done in the end of A’s run by applying the
inverses of the quantum gate operations (i.e., codes) that A has applied earlier,
rather by restarting A in a black-box manner from the very beginning. Thus, the
MRM extractor can only apply to reversible adversaries. In particular, the MRM
extractor must access A in a non-black-box way since it requires knowledge of
A’s internal codes and needs to access A’s internal quantum registers.

Based on the aforementioned MRM extractor, Kuchta et al. [37] gave a new
non-black-box version of the OW2H lemma. Modifying the proofs in [26] by
replacing the black-box OW2H with this non-black-box one, Kuchta et al. first
achieved a linear reduction loss for FO-like KEMs. However, due to fact the MRM
extractor can only be used for reversible adversaries, thus the non-black-box
proofs [37] can only cover reversible CCA adversaries with reversible implemen-
tation. We also note that the prior black-box security proofs, including [5,22–27],
can apply to arbitrary adversaries with arbitrary implementation. In particular,
the prior black-box OW2H lemmas do not require the underlying adversary A
unitary, e.g., [38, Theorems 1 and 3], see the full version [39].

Unfortunately, most adversaries in post-quantum setting are irreversible since
most oracles (e.g., decapsulation oracle) in the security model can only be clas-
sically queried. That is, a quantum adversary has to measure his quantum query
registers to perform a classical query. There are a well-known generic transform
[60, Chap. 3.2.5] that can convert any irreversible adversary into a reversible one,
and can be used to extend Kuchta et al.’s non-black-box OW2H to cover arbi-
trary adversaries with arbitrary implementation. However, on the one hand, such
a transform will cost a space overhead linearly increased with the adversary’s
running time. On the other hand, it requires that the oracles (e.g., decapsulation
oracle) accessed by the adversary must be simulated such that the adversary can
make quantum queries instead of classical queries considered in the typical post-
quantum setting. That is, the MRM OW2H extended by the aforementioned
generic transform can only apply to the case where there are efficient quantum
simulations for all the oracles accessed by the adversary. We provide a detailed
discussion on these issues in the full version [39].

1.5 Other Related Works

Before our work, the meta-reduction methodology was only used to derive
a QROM impossibility for Fiat-Shamir signature by Dagdelen, Fischlin, and
Gagliardoni [54]. More specifically, they used the meta-reduction technique to
show that if the Fiat-Shamir transformation applied to the identification pro-
tocol would support a knowledge extractor, then a contradiction to the active
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security will be obtained. In this paper, we focus on the limits of FO-like KEMs
and more general one-way to hiding, and the meta-reduction constructions are
totally different from theirs.

At ASIACRYPT 2020, Hosoyamada and Yamakawa [61] also studied black-
box impossibility in quantum setting, and showed that there does not exist
a quantum black-box reduction from collision-resistant hash functions to one-
way permutations (or even trapdoor permutations). In particular, different from
our work where the meta-reduction methodology is used, the results in [61] is
obtained by using another typical technique called two-oracle technique [62] that
is also popular in deriving the limitations of black-box reductions.

2 Preliminaries

The cryptographic primitives used in this paper are given by Appendix A. For
basics of quantum computation, one can refer to [60].

Symbol description. A security parameter is denoted by λ. We use the standard
O-notations: O and ω. The abbreviation PPT stands for probabilistic polynomial
time. A function f(λ) is said to be negligible if f(λ) = λ−ω(1). We denote a set of
negligible functions by negl(λ). K, M, C and R are respectively denoted as key
space, message space, ciphertext space and randomness space. Given a finite set
X, we denote the sampling of a uniformly random element x by x

$← X. Denote
the sampling from some distribution D by x←D. x =?y is denoted as an integer
that is 1 if x = y, and otherwise 0. Denote deterministic computation of an
algorithm A on input x by y = A(x). Probabilistic computation of an algorithm
A on input x is denoted by y ← A(x). If necessary, we also make the used
randomness r explicit by writing y = A(x; r). Let |X| be the cardinality of set
X. AH means that the algorithm A gets access to the oracle H. Time(R) is the
running time (computational steps) of an algorithm R. Time(RA) = Time(R) +
kTime(A) is the running time of an algorithm RA that takes A as a subroutine10,
where k is the number of times A is invoked by R.

3 An Unbounded Quantum Adversary Against
the IND-CCA Security of KEM

In this section, we will construct an unbounded quantum adversary against the
IND-CCA security of KEM − U�⊥

m = U�⊥
m[DPKE,H,f ] shown by Fig. 1, where

DPKE = (Gen′, Enc′,Dec′), a hash function H : M → K, and a pseudorandom
function (PRF) f with key space Kprf . The IND-CCA game of KEM − U�⊥

m is
given by Fig. 2.

Let A(pk, c∗,Kb; r1, r2) (r1 and r2 are classical randomness) be a quantum
adversary against the IND-CCA game of KEM − U�⊥

m that does as follows.

10 Here, in this paper, A is forbidden to call R as a subroutine.
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Gen

1 : (pk, sk) ← Gen

2 : k
$← Kprf

3 : sk := (sk, k)

4 : return (pk, sk )

Encaps(pk)

1 : m
$← M

2 : c := Enc (pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk , c)

1 : Parse sk = (sk, k)

2 : m := Dec (sk, c)

3 : if Enc (pk,m ) = c

4 : return K := H(m )

5 : else return K := f(k, c)

Fig. 1. IND-CCA-secure KEM − U�⊥m = U�⊥m[DPKE,H,f ]

IND-CCA game of KEM − U⊥
m

1 : (pk, sk ) ← Gen;H $← ΩH

2 : m∗ $← M; c∗ := Enc (pk, m∗)

3 : K∗
0 := H(m∗);K∗

1
$← K; b $← {0, 1}

4 : b ← AH,Decaps(pk, c∗, K∗
b )

5 : return b =?b

Decaps (c = c∗)

1 : Parse sk = (sk, k)

2 : m := Dec (sk, c)

3 : if Enc (pk, m ) = c

4 : return K := H(m )

5 : else return K := f(k, c)

Fig. 2. IND-CCA game of KEM − U�⊥m

A(pk, c∗,Kb; r1, r2)

1 : Search a m∗ ∈ M such that Enc′(pk, m∗) = c∗

// If no one (or more than one) is found, output 1 and terminate the procedure.

2 : Sample a real p ∈ [0, 1] using randomness r1

3 : Sample a uniform m′ from {m′ ∈ M : m′ �= m∗} using randomness r2

4 : Query H with quantum state |ψ−1〉 :=
√

p|m∗〉|0〉 +
√

1 − p|m′〉|Σ〉
// |Σ〉 =

∑

k∈K
1/

√
|K||k〉 can be derived by H

⊗ log |K||0〉.

5 : Perform Helstrom measurement M on |ψ0〉 (the state returned by H)

6 : Return the measurement outcome.

Remark 1. The |ψ0〉 returned by H is given by

|ψ0〉 = OH |ψ−1〉 =
√

p|m∗〉|H(m∗)〉 +
√

1 − p|m′〉|(
∑

k∈K
1/

√
|K||k ⊕ H(m′)〉)

=
√

p|m∗〉|K0〉 +
√

1 − p|m′〉|(
∑

k∈K
1/

√
|K||k〉)

=
√

p|m∗〉|K0〉 +
√

1 − p|m′〉|Σ〉.
Remark 2. Helstrom measurement M is a binary POVM measurement with
measurement operators M1 and M0 = I − M1. M1 can be derived by fol-
lowing the standard method in [58,59]. In details, let ψb = |ψb〉〈ψb| and
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ψ1−b = EK1−b
|ψ1−b〉〈ψ1−b|, where the expectation is taken over K1−b

$← K
and |ψb〉 =

√
p|m∗〉|Kb〉 +

√
1 − p|m′〉|Σ〉. Note that A knows ψb and ψ1−b

since he gets m∗, p, m′ and Kb. Thus, by the spectral decomposition of
ψb − ψ1−b = λ+M1 − λ−M0, A can easily obtain M1 and M0. Theorem 3.1
shows that the adversary A using Helstrom measurement can break security
with advantage at least

√
p(1 − 1/|K|). It is well-known that Helstrom mea-

surement has the optimal distinguishing advantage for two state discrimina-
tion11. But for our specific case, there still exist some alternative measure-
ments that can also be adopted by the adversary to attain advantage at least√

p(1 − 1/|K|) (although they are not optimal). For example, the adversary can
adopt the measurement with operators M1 = |Ψ〉〈Ψ | and M0 = I − M1, where
|Ψ〉 = sin(x)|m∗〉|Kb〉 + cos(x)|m′〉|Σ〉 and x = 1

2 arccos(−
√

p√
4−3p

) (sin(2x) ≥ 0).
In Appendix B, we will show the adversary with such an alternative measurement
can also have advantage at least

√
p(1 − 1/|K|).

Theorem 3.1 (The advantage of A in the QROM). If the underlying
DPKE is perfectly correct, the advantage of A against the IND-CCA security
of KEM − U�⊥

m is at least
√

p(1 − 1/|K|).

Proof. In the IND-CCA game of KEM − U�⊥
m, c∗ = Enc′(pk,m∗), where m∗ $←

M, thus there exists at least one m∗ ∈ M such that Enc′(pk,m∗) = c∗.
Since DPKE is perfectly correct, there are no more than one m∗ such that
Enc′(pk,m∗) = c∗. Thus, the m∗ that A gets is exactly the one chosen by the
challenger.

Note that the adversary A knows nothing about K1−b. Thus, in A’s view, the
state |ψ0〉 returned by H can be described by a mixed state ψ0 = EK1−b

|ψ0〉〈ψ0|,
where the expectation is taken over K1−b

$← K. It is obvious that ψ0 is equal to ψb

if b = 0, and ψ1−b if b = 1, where ψb and ψ1−b are defined in Remark 2. Therefore,
we have AdvIND-CCA

KEM−U�⊥m
(A) = |Pr[A ⇒ 1|b = 0] − Pr[A ⇒ 1|b = 1]| = |tr(M1ψb)−

tr(M1ψ1−b)|.
Since b

$← {0, 1} and A adopts Helstrom (optimal) measurement,
‖tr(M1ψb)− tr(M1ψ1−b)| is the optimal advantage of solving the minimum-error
state discrimination between ψb and ψ1−b. Thus, |tr(M1ψb) − tr(M1ψ1−b)| =
‖ψb − ψ1−b‖1 = |λ+| + |λ−| ≥ 2(1 − 1/|K|)√p2/4 + p(1 − p) = 2(1 −
1/|K|)√p

√
1 − 3/4p ≥ (1 − 1/|K|)√p ≈ √

p, where λ+ and λ− are respectively
positive eigenvalue and negative eigenvalue of operator ψb − ψ1−b. ��

In the ROM, A can only classically query the random oracle H. That is,
before querying H, the input state is measured in the standard computational
basis. Then, A will query H on m∗ with probability p, and on m′ with probability
1 − p. Accordingly, H(m∗) or H(m′) will be returned. Note that classical states
(orthogonal quantum states) can be perfectly distinguished. Thus, by testing

11 Optimal quantum state discrimination is in general difficult apart from the case of
two state discrimination, see the review [59].
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whether the returned hash value is equal to Kb, A can break the IND-CCA
security of KEM − U�⊥

m with advantage 1 − 1
K if m∗ is queried, and 0 if m′ is

queried. Thus, in the ROM, the advantage of A will become p(1 − 1
|K| ).

4 The Advantage of a Measurement-Based Reduction

In this section, we will bound the advantage of a measurement-based black-box
reduction that runs the quantum adversary A (given by Sect. 3) once without
rewinding12, measures A’s hash query and uses the measurement outcome to
break the OW-CPA security of the underlying DPKE. Note that the quantum
adversary A in Sect. 3 just makes a single query to the random oracle H and no
queries to the Decaps oracle. Thus, the total number q of A’s queries to various
oracles is one, i.e., q = 1.

Before giving our general result for a general measurement-based reduction,
we first discuss a simple measurement-based reduction adopted by the current
(black-box) proofs [23]. A simple measurement-based reduction RA(pk, c∗) sam-
ples a Kb ∈ K, runs A(pk, c∗,Kb), measures A’s query to H in the computational
basis, and returns the measurement outcome without any further analysis. It is
obvious that the advantage of RA(pk, c∗) against the OW-CPA security of the
underlying DPKE is p, that is AdvOW-CPA

DPKE (RA) = p. Thus, through the adver-
sary A, a simple measurement-based reduction in [23] inevitably has a quadratic

security loss, AdvIND-CCA

KEM−U�⊥m
(A) � √

p =
√

AdvOW-CPA
DPKE (RA), which matches the

bound given by [23].
Next, we consider a general measurement-based (black-box) reduction R

described as follows. Since only one RO-query is revealed by the constructed
adversary in Sect. 3, we just need to consider the behaviors of a reduction inter-
acting with an adversary that just makes a single RO-query.

1. Reduction R receives a challenge inpt1 as input, runs a PPT preprocess-
ing (quantum) subalgorithm (inpt, rand, s) ← R1(inpt1), and then launches
A(inpt; rand)13.

2. When A makes a query to the RO with quantum state φ, R measures φ in
the computational basis14, and gets the measurement outcome mest.

3. Reduction R runs a PPT postprocessing (quantum) subalgorithm out ←
R2(s,mest), and returns out.

Take the adversary A in Sect. 3 and a reduction R against the OW-CPA
security of DPKE as an example. The reduction RA(inpt1 = (pk1, c

∗
1)) runs

A(inpt = (pk, c∗,Kb); rand = (r1, r2)) in a black-box manner (any preprocessing
subalgorithm R1 is allowed and (pk, c∗) is not required to be (pk1, c

∗
1)), measures

A’s query in the computational basis, and uses the measurement outcome (any
12 An extension to measurement-based reductions with simple sequential rewinding can

be found in Appendix C.
13 Here, inpt1, inpt and rand are classical, and s can be a quantum state.
14 The reduction R just measures the query input registers.
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postprocessing subalgorithm (R2 or R3) is allowed) to break the DPKE OW-
CPA security.

Remark 3. Performing an additional quantum (unitary) operation on adver-
sary’s query before measuring isn’t allowed. But, such an additional unitary
operation U cannot substantially increase reduction’s advantage. The sole RO-
query by our adversary in Sect. 3 is |ψ−1〉 =

√
p|m∗〉|0〉 +

√
1 − p|m′〉|Σ〉,

where |m′〉|Σ〉 can be efficiently derived without m∗. The direct measurement
P = |m∗〉〈m∗| gives advantage p. If U is applied before P , we still have advantage
‖PU |ψ−1〉‖2 � ‖PU

√
p|m∗〉|0〉‖2 ≤ p, since ‖PU |m′〉|Σ〉‖2 is negligible (other-

wise we can easily construct |m′〉|Σ〉, and use U to break the DPKE OW-CPA
security without adversary’s aid).

Remark 4. The currently known black-box reductions [5,22–27], run the adver-
sary once without rewinding, measure the adversary’s queries, and directly take
the measurement outcome as a return (without any further postprocessing) to
break the underlying assumption. These measurements are standard measure-
ment in computational basis, semi-classical measurement in [38] or the com-
pressed measurement based on Zhandry’s compressed oracle technique [26].
Since the adversary’s RO query is the superposition of two terms |m∗〉|0〉 and
|m′〉|Σ〉, the semi-classical measurement and the compressed measurement are
equivalent to the standard measurement considered in this paper. In addition,
measurement-based reductions do not restrict the simulations of random ora-
cles and other oracles that adversary queries. Thus, our results can cover the
black-box reductions in [5,22–27].

Constructing meta-reductions against the OW-CPA security, we bound the
advantages of a measurement-based black-box reduction by the advantages of the
meta-reductions. In general, the construction and analysis of meta-reductions are
complicated since the meta-reductions need to efficiently simulate the unbounded
adversary. But, thanks to our well-designed adversary in Sect. 3, the construction
of our meta-reductions is concise, and the analysis is generally accessible.

Theorem 4.1. If the underlying DPKE is perfectly correct, for any above
described measurement-based reduction RA that run the adversary A once with-
out rewinding, there exist two meta-reductions MRR

1 and MRR
2 against the OW-

CPA security of the underlying DPKE such that

AdvOW-CPA
DPKE (RA) ≤ p + AdvOW-CPA

DPKE (MRR
1 ) +

|M|
|M| − 1

AdvOW-CPA
DPKE (MRR

2 ),

and Time(R) ≈ Time(MRR
1 ) ≈ Time(MRR

2 ).

Let (pk1, c
∗
1) be the challenge given to RA against the OW-CPA security of

underlying PKE, where (pk1, sk1) ← Gen′, m∗
1

$← M, and c∗
1 = Enc′(pk1,m

∗
1).

Then, AdvOW-CPA
DPKE (RA) = Pr[RA ⇒ m∗

1]. Let (pk, c∗,Kb) be the input to A
provided by RA. Since the underlying DPKE is perfectly correct, there are no
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more than one m∗ such that Enc′(pk,m∗) = c∗. Let Exi be the event that there
exists an m∗ such that Enc′(pk,m∗) = c∗, and Ine be the event that such an
m∗ dose not exist. Thus,

AdvOW-CPA
DPKE (RA) = Pr[RA ⇒ m∗

1 ∧ Exi] + Pr[RA ⇒ m∗
1 ∧ Ine]

≤ Pr[Exi] · Pr[RA ⇒ m∗
1|Exi] + Pr[RA ⇒ m∗

1 ∧ Ine]. (1)

Denote Good as the event that the measurement on A’s query returns an m∗

such that Enc(pk,m∗) = c∗, and Bad as the event that an m′ 	= m∗ is returned.
It’s apparent that Pr[Good|Exi] = p and Pr[Bad|Exi] = 1 − p. Thus, we have

Pr[RA ⇒ m∗
1|Exi] = Pr[RA ⇒ m∗

1|Exi ∧ Good] Pr[Good|Exi]
+ Pr[RA ⇒ m∗

1|Exi ∧ Bad] Pr[Bad|Exi]
≤ p + Pr[RA ⇒ m∗

1|Exi ∧ Bad]. (2)

Combining the Eqs. (1) and (2), we have

AdvOW-CPA
DPKE (RA) ≤ p+Pr[RA ⇒ m∗

1 ∧ Ine] +Pr[Exi] ·Pr[RA ⇒ m∗
1|Exi∧Bad].

Then, we give upperbounds of Pr[RA ⇒ m∗ ∧ Ine] and Pr[Exi] · Pr[RA ⇒
m∗

1|Bad ∧ Exi] by the following Lemmas 4.1 and 4.2.

Lemma 4.1. There exists a meta-reduction MRR
1 such that Pr[RA ⇒ m∗ ∧

Ine] ≤ AdvOW-CPA
DPKE (MRR

1 ), and Time(R) ≈ Time(MRR
1 ).

Proof. Let A1(pk, c∗,Kb) be a trivial adversary against the IND-CCA game
of KEM − U�⊥

m that always returns 1 and does nothing else. It is obvious that
when Ine happens, both A and A1(pk, c∗,Kb) just outputs 1, and Pr[RA ⇒
m∗ ∧ Ine] = Pr[RA1 ⇒ m∗ ∧ Ine].

Let MRR
1 (pk1, c

∗
1) be a meta reduction that simulates A1, runs

RA1(pk1, c
∗
1), and returns RA1 ’s output. It’s obvious that AdvOW-CPA

DPKE (MRR
1 ) =

AdvOW-CPA
DPKE (RA1). Since AdvOW-CPA

DPKE (RA1) ≥ Pr[RA1 ⇒ m∗ ∧ Ine], we have

Pr[RA ⇒ m∗ ∧ Ine] ≤ AdvOW-CPA
DPKE (MRR

1 ).

Since Time(A1) is negligible, Time(MRR
1 ) ≈ Time(R)+Time(A1) ≈ Time(R). ��

Lemma 4.2. There exists a meta-reduction MRR
2 such that Pr[Exi] · Pr[RA ⇒

m∗
1|Exi ∧ Bad] ≤ |M|

|M|−1Adv
OW-CPA
DPKE (MRR

2 ), and Time(R) ≈ Time(MRR
2 ).

Proof. Let A2 be an adversary against the IND-CCA game of KEM − U�⊥
m which

queries the random oracle H with quantum state ψ′
−1 =

∑
m,k

1√
|M|·|K| |m〉|k〉,

and outputs 1 with probability 1 (after the return of the random oracle H).
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We note that under the condition Exi ∧ Bad, both measurement outcomes
of A’s query and A2’s query obey the uniform distribution over {m′ ∈ M : m′ 	=
m∗}. Thus, Pr[RA ⇒ m∗

1|Exi ∧ Bad] = Pr[RA2 ⇒ m∗|Exi ∧ Bad].
Construct a meta reduction MRR

2 (pk1, c
∗
1) against the OW-CPA security of

the underlying DPKE that simulates A2, runs RA2(pk1, c
∗
1), and returns RA2 ’s

output.
It is easy to see that for above A2 and MRR

2 , Pr[Good|Exi] = 1
|M| and

Pr[Bad|Exi] = 1 − 1
|M| . Then, we have

AdvOW-CPA
DPKE (MRR

2 ) = AdvOW-CPA
DPKE (RA2) ≥ Pr[RA2 ⇒ m∗|Exi] · Pr[Exi]

≥ (1 − 1
|M| ) Pr[RA2 ⇒ m∗|Exi ∧ Bad] · Pr[Exi]

= (1 − 1
|M| ) Pr[RA ⇒ m∗

1|Exi ∧ Bad] · Pr[Exi]

as we wanted. Since Time(A2) is negligible, Time(MRR
2 ) ≈ Time(R) +

Time(A2) ≈ Time(R). ��

5 Impossibility Results for FO-Like KEMs

Combing Theorems 3.1 and 4.1, we can directly obtain the following main The-
orem.

Theorem 5.1. If the underlying DPKE is perfectly correct, there exists a quan-
tum adversary A against the IND-CCA security of KEM − U�⊥

m such that for any
measurement-based black-box reduction RA that runs A (once without rewind-
ing), measures A’s query and uses the measurement outcome to break the OW-
CPA security of the underlying DPKE, there exist two meta-reductions MRR

1

and MRR
2 which take R as a subroutine to break the OW-CPA security of the

underlying DPKE such that AdvIND-CCA

KEM−U�⊥m
(A) ≥

(1− 1
|K| )×

√
AdvOW-CPA

DPKE (RA) − AdvOW-CPA
DPKE (MRR

1 ) − |M|
|M|−1 · AdvOW-CPA

DPKE (MRR
2 )

and Time(R) ≈ Time(MRR
1 ) ≈ Time(MRR

2 ).

Assuming that no PPT adversary can break the OW-CPA security of the
underlying DPKE with non-negligible probability, we must have that AdvOW-CPA

DPKE

(MRR
1 ) ≈ AdvOW-CPA

DPKE (MRR
2 ) ∈ negl(λ) since Time(MRR

1 ) ≈ Time(MRR
2 ) ≈

Time(R) is polynomial15, and the message space M is exponentially large due
to the brute-force attack. For real-world applications, the key space K is also
exponentially large. Thus, 1 − 1

|K| ≈ 1 and |M|
|M|−1 ≈ 1.

15 We remark that Time(RA) = Time(R) + Time(A) is exponential since A is an
unbounded adversary.
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Thus, informally, Theorem 5.1 shows the existence of a quantum adver-
sary A against the IND-CCA security of KEM − U�⊥

m with advantage εA =
AdvIND-CCA

KEM−U�⊥m
(A) such that for any measurement-based black-box reduction RA

that takes A as a subroutine to break the OW-CPA security of the under-
lying DPKE, the advantage εR = AdvOW-CPA

DPKE (RA) is approximately at most
εA2, i.e., εR � εA2. Namely, for KEM − U�⊥

m from a OW-CPA-secure DPKE,
measurement-based black-box reductions inevitably have a quadratic security
loss.

As discussed in Sect. 4, the black-box reductions in [22–27] belong to the
class of measurement-based reductions considered in this paper. Thus, Theorem
5.1 suggests an explanation for the lack of progress in improving the black-box
reduction tightness in terms of the degree of security loss.

Remark 5. The impossibility result in Theorem 5.1 and subsequent generaliza-
tions in Sects. 5.1 and 6.2 can be extended to cover measurement-based reduc-
tions with simple rewinding16. The simple rewinding here is a quantum coun-
terpart of classical sequential rewinding [46]. In this rewinding, the reduction
restarts the adversary with the same input and randomness from the very begin-
ning, which is different from the rewinding in [37] where the reduction applies the
inverses of the adversary’s quantum operations (that have been applied already)
on the adversary’s registers from the end of adversary’s run. In addition, the
adversary is not allowed to use the intrinsic “quantum randomness” or have
auxiliary quantum input, which guarantees the reduction can re-create the same
quantum query state as before at every interaction point. In Appendix C, we
will show that when simple rewinding is applied r times (r ≥ 1), we still have
εR � (r + 1)εA2. Namely, the simple rewinding might increase the advantage
of R by r · εA2, but the running time of R will be accordingly increased by
r · Time(A), where Time(A) is the running time of A.

5.1 Extension to Other FO-Like KEMs

U⊥
m, U⊥, U�⊥, QU�⊥

m and QU⊥
m are variants of U�⊥

m, where m (without m, resp.)
means K = H(m) (K = H(m, c), resp.), �⊥ (⊥, resp.) means implicit (explicit,
resp.) rejection17 and Q means adding an additional Targhi-Unruh hash to the
ciphertext. It is easy to see that our main results for U�⊥

m can also apply to above
variants from one-wayness security assumption. That is, measurement-based
black-box reductions for these variants from one-wayness security assumption
will inevitably have a quadratic security loss.

FO�⊥, FO⊥, FO�⊥
m, FO⊥

m, QFO�⊥
m and QFO⊥

m in [5] are KEM variants of the FO
transformation [6,7], and widely used in the NIST KEM submissions. Following

16 In general, the rewinding is challenging when quantum adversaries are considered,
see [63].

17 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is
returned for an invalid ciphertext.
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the same analysis for KEM − U�⊥
m, we can also show that for these KEM variants

of the FO transformation from standard OW-CPA security (and even IND-CPA
security) of the underlying PKE, quadratic security loss is also inevitable for
measurement-based black-box reductions.

Gen

1 : (pk, sk) ← Gen

2 : k
$← Kprf

3 : sk := (sk, k)

4 : return (pk, sk )

Encaps(pk)

1 : m
$← M

2 : c = Enc (pk, m;G(m))

3 : K := H(m)

4 : return (K, c)

Decaps(sk , c)

1 : Parse sk = (sk, k)

2 : m := Dec (sk, c)

3 : if Enc (pk,m ;G(m )) = c

4 : return K := H(m )

5 : else return K := f(k, c)

Fig. 3. KEM − FO�⊥m = FO�⊥m[PKE,G,H,f ], where PKE = (Gen′, Enc′, Dec′) with
message space M and randomness space R, G : M → R, H : M → K are hash
functions, and f is a PRF with key space Kprf .

Theorem 5.2. If the underlying PKE is perfectly correct, there exists a quan-
tum adversary A against the IND-CCA security of KEM − FO�⊥

m (see Fig. 3)
such that for any measurement-based black-box reduction RA that runs A (once
without rewinding), measures A’s query in the computational basis, and uses the
measurement outcome to break the IND-CPA security (OW-CPA security, resp.)
of the underlying PKE, there exist two meta-reductions MRR

1 and MRR
2 which

take R as a subroutine to break the IND-CPA security (OW-CPA security, resp.)
of the underlying PKE such that Time(R) ≈ Time(MRR

1 ) ≈ Time(MRR
2 ) and

AdvIND-CCA

KEM-FO�⊥m
(A) ≥

(1 − 1
|K| )

√
AdvIND-CPA

PKE (RA) − εIND
1 − |M|

|M|−1 · (εIND
2 + 1

|M| )

((1 − 1
|K| )

√
AdvOW-CPA

PKE (RA) − εOW
1 − |M|

|M|−1 · εOW
2 , resp.),

where εIND
1 = AdvIND-CPA

PKE (MRR
1 ), εIND

2 = AdvIND-CPA
PKE (MRR

2 ), εOW
1 =

AdvOW-CPA
PKE (MRR

1 ) and εOW
2 = AdvOW-CPA

PKE (MRR
2 ).

Remark 6. It is not hard to extend above results to other KEM variants of the
FO transformation, including FO�⊥, FO⊥, FO⊥

m, QFO�⊥
m and QFO⊥

m, we just omit
them in this paper.

The proof of Theorem 5.2 is similar to the proof of Theorem 5.1. We first con-
struct a quantum adversary A against the IND-CCA security of KEM − FO�⊥

m

with advantage at least (1− 1
|K| )

√
p, and then use the meta-reduction methodol-

ogy to bound the advantage of a measurement-based black-box reduction against
the IND-CPA security (OW-CPA security, resp.) of the underlying PKE. The
complete proofs are presented in the full version [39].
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6 A Generalization of Our Impossibility Results

We note that the quantum adversaries against the IND-CCA security of FO-
like KEMs in Sect. 5 make no queries to the decapsulation oracle. Therefore, the
distinction between the IND-CPA security and the IND-CCA security of KEM is
irrelevant. Thus, the impossibility results in Sect. 5 can be roughly interpreted
as the unavoidable quadratic loss incurred by the black-box reduction from a
search problem to an indistinguishability-based security.

In this section, we give a generalization of our impossibility results and
show that a black-box one-way-to-hiding (OW2H) technique18 that turns a one-
wayness-style (search) problem into a hiding-style (decision) problem via a quan-
tum random oracle, will inevitably incur a quadratic reduction loss. Thus, our
impossibility results can also be used to explain why the quadratic loss in the
black-box OW2H lemmas is unavoidable.

6.1 One-Way to Hiding

Here, the description of one-way to hiding reduction follows [40].
Given a one-way function f : {0, 1}m → {0, 1}n and a random oracle H :

{0, 1}m → {0, 1}n′
, a hiding-style problem can be given as follows.

Construct a distinguishing game DIST for an adversary A.

DIST(|ψ0〉, |ψ1〉)
b

$← {0, 1}, x
$← {0, 1}m, K0 = H(x), K1

$← {0, 1}n′

b′ ← A(f(x), Kb), return b′ =?b

Define the advantage of A against the game DIST as AdvDIST
Hiding(A) :=

|2Pr[DISTA
Hiding = 1] − 1| = |Pr[A ⇒ 1|b = 0] − Pr[A ⇒ 1|b = 1]|.

Such a one-way to hiding technique can be seen as a generalization of FO-
like KEMs. In particular, the one-way function f can be instantiated by the
encryption algorithm of the underlying PKE, the one-wayness of f is exactly
the one-way security of the underlying PKE, and the hardness of solving the
hiding-style problem is exactly the indistinguishable security of the resulting
KEM.

Query-based reduction in the ROM. We note that AdvDIST
Hiding(A) can be

bounded by the probability of the adversary A querying H with x. Thus, in
the ROM, it is easy to construct a query-based reduction RA against the one-
wayness of f by running A and taking one of A’s queries to H as a return.
Obviously,

AdvDIST
Hiding(A) ≤ qAdvOW

f (RA).

Thus, the indistinguishability between K0 and K1 is reduced to the hardness of
inverting f(x).
18 This name follows Unruh’s paper [40].
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Measurement-based reduction in the QROM. The case in the QROM is
complicated since A may make queries to H with quantum state and it’s hard to
well define whether x is queried. To circumvent this issue, Unruh [40] gave the
following OW2H lemma, which essentially gives a measurement-based black-box
reduction from a one-wayness-style property (unpredictability) to a hiding-style
property (indistinguishability security) with quadratic loss.

Lemma 6.1. ([40, Lemma 6.2] and [38, Theorem 3] (OW2H)). Let
S ⊆ X be random. Let G,H : X → Y be random functions satisfying
∀m /∈ S,G(m) = H(m). Let z be a random value. (S,G,H, z may have arbi-
trary joint distribution.) Consider an oracle algorithm AO (not necessarily
reversible19) that makes at most q queries to O (O ∈ {G,H}). Let B be an

oracle algorithm that on input z does the following: pick i
$← {1, . . . , q}, run

AH(z) until (just before) the i-th query, measure the query input registers in
the computational basis, output the set T of measurement outcomes. (When A
makes less than i queries, B outputs ⊥/∈ X).

Let
P 1

A = Pr[b′ = 1 : b′ ← AH(z)],
P 2

A = Pr[b′ = 1 : b′ ← AG(z)],
PB := Pr[S ∩ T 	= ∅ : T ← BH(z)].

Then,
|P 1

A − P 2
A| ≤ 2q

√
PB .

The OW2H lemma can be used to reduce the one-wayness of the function f
(search problem) to the hardness of solving the aforementioned distinguishing
problem between K0 = H(x) and a uniformly random K1 (decision problem)
in a black-box manner. Let X = {0, 1}m, Y = {0, 1}n′

, S = {x}, H = H,
G(x) = K1 and z = (f(x),K1). Let AO(z) (O ∈ {G,H}) be an oracle algorithm
that runs AO(z), and returns A’s guessing. Then, we have P 1

A = Pr[A ⇒ 1|b = 1]
and P 2

A = Pr[A ⇒ 1|b = 0]. Let RA(f(x)) be a measurement-based black-box

reduction that picks i
$← {1, . . . , q} and y

$← {0, 1}n′
, runs A(f(x), y) until (just

before) the i-th query, measures the query in the computational basis, output
the measurement outcome. Thus, PB = AdvOW

f (RA). Applying Lemma 6.1, we
have

AdvDIST
Hiding(A) ≤ 2q

√
AdvOW

f (RA).

6.2 Impossibility Results for One-Way to Hiding

As we can see, the reduction given by the OW2H lemma (Lemma 6.1) is highly
non-tight. The degree of reduction loss is two (i.e., τ = 2), and the factor of
reduction loss is about O(q2) (i.e., κ = O(q2)). Very recently, several variants
of the OW2H lemma [26,38] are introduced with tighter bounds in some special

19 In [38, Theorem 3], Ambainis et al. state that AO is not necessarily unitary. Note
that a unitary algorithm must be reversible. To make a clear comparison with the
non-black-box OW2H in [37], we substitute ‘unitary’ by ‘reversible’.
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cases. In particular, using the semi-classical oracle technique, [38] improved the
factor of reduction loss κ to be O(q). Following the compressed oracle technique
developed by [34] to record adversary’s queries, [26] further improved κ to be
O(1). However, all these OW2H lemmas still have a quadratic reduction loss.
The reductions in [26,38,40] are black-box. In the following, we will show such
a quadratic loss is unavoidable for these black-box reductions [26,38,40].

Theorem 6.1. If the underlying f is injective, there exists a quantum adversary
A solving the hiding-style problem such that for any measurement-based black-
box reduction RA that runs A (once without rewinding), measures A’s query
and uses the measurement outcome to break the one-wayness of the underlying
f , there exist two meta-reductions MRR

1 and MRR
2 which take R as a subroutine

to break the one-wayness of the underlying f such that AdvDIST
Hiding(A) ≥

2n′ − 1
2n′

√

AdvOW
f (RA) − AdvOW

f (MRR
1 ) − 2m

2m − 1
· AdvOW

f (MRR
2 ),

and Time(R) ≈ Time(MRR
1 ) ≈ Time(MRR

2 ).

The proof of Theorem 6.1 is essentially the same as the one of Theorem 5.1.
We present it in the full version [39].

Assuming f is a one-way function, we have AdvOW
f (MRR

1 ) ≈ AdvOW
f (MRR

2 ) ∈
negl(λ) since Time(MRR

1 ) ≈ Time(MRR
2 ) ≈ Time(R) is polynomial. Note that

2m

2m−1 ≤ 2. Thus, informally, Theorem 6.1 shows the existence of a quantum
adversary A solving the hiding-style problem with advantage εA = AdvDIST

Hiding(A)
such that for any measurement-based black-box reduction RA that takes A
as a subroutine to break the one-wayness of the underlying f , the advantage
εR = AdvOW

f (RA) is approximately at most εA2, i.e., εR � εA2. Namely, for the
one-way to hiding technique, measurement-based black-box reductions inevitably
have a quadratic loss.
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A Cryptographic Primitives

Definition A.1 (One-way function (OWF)). We say a function f :
{0, 1}n → {0, 1}m is a one way function if for any PPT adversary A, the fol-

lowing advantage function is negligible in λ: AdvOW
f (A) := Pr[x′ = x∗ : x∗ $←

{0, 1}n; y∗ ← f(x∗);x′ ← A(1λ, y∗)].
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Definition A.2 (Public-key encryption). A public-key encryption scheme
PKE = (Gen,Enc,Dec) consists of a triple of polynomial time (in the security
parameter λ) algorithms and a finite message space M. (1) Gen(1λ) → (pk, sk):
the key generation algorithm, is a probabilistic algorithm which on input 1λ out-
puts a public/secret key-pair (pk, sk). Usually, for brevity, we will omit the input
of Gen. (2) Enc(pk,m) → c: the encryption algorithm Enc, on input pk and a
message m ∈ M, outputs a ciphertext c ← Enc(pk,m). If necessary, we make
the used randomness of encryption explicit by writing c := Enc(pk,m; r), where

r
$← R (R is the randomness space). (3) Dec(sk, c) → m: the decryption algo-

rithm Dec, is a deterministic algorithm which on input sk and a ciphertext c
outputs a message m := Dec(sk, c) or a rejection symbol ⊥/∈ M.

A PKE is deterministic if Enc is deterministic. We denote DPKE to stand for
a deterministic PKE.

Definition A.3 (Correctness). A public-key encryption scheme PKE is per-
fectly correct if for any (pk, sk) ← Gen and m ∈ M, we have that
Pr[Dec(sk, c) = m|c ← Enc(pk,m)] = 1.

Definition A.4 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game
of PKE as in Fig. 4. Define the OW − CPA advantage of an adversary A against
PKE as AdvOW-CPA

PKE (A) := Pr[OW-CPAA
PKE = 1].

Game OW-CPA

1 : (pk, sk) ← Gen;m∗ $← M
2 : c∗ ← Enc(pk, m∗)

3 : m ← A(pk, c∗)

4 : return m =?m∗

Game IND-CPA

1 : (pk, sk) ← Gen; b ← {0, 1}
2 : (m0, m1)←A(pk); c∗ ← Enc(pk, mb)

3 : b ← A(pk, c∗)

4 : return b =?b

Fig. 4. Game OW-CPA and game IND-CPA for PKE.

Game IND-CCA

1 : (pk, sk) ← Gen; b $← {0, 1}
2 : (K∗

0 , c∗) ← Encaps(pk);K∗
1

$← K
3 : b ← ADecaps(pk, c∗, K∗

b )

4 : return b =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 5. Game IND-CCA for KEM.
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Definition A.5 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define IND − CPA game of
PKE as in Fig. 4, where m0 and m1 have the same length. Define the advantage
of an adversary A against the IND − CPA security of PKE as AdvIND-CPA

PKE (A) :=
|2Pr[IND-CPAA

PKE = 1] − 1|.
Definition A.6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps. (1) Gen(1λ) → (pk, sk):
the key generation algorithm Gen outputs a key pair (pk, sk). Usually, for brevity,
we will omit the input of Gen. (2) Encaps(pk) → (K, c): the encapsulation
algorithm Encaps, on input pk, outputs a tuple (K, c), where K ∈ K and c is said
to be an encapsulation of the key K. (3) Decaps(sk, c) → K: the deterministic
decapsulation algorithm Decaps, on input sk and an encapsulation c, outputs
either a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K.

Definition A.7 (IND-CCA-secure KEM). We define the IND − CCA game
as in Fig. 5 and the IND − CCA advantage of an adversary A against KEM as
AdvIND-CCA

KEM (A) := |2Pr[IND-CCAA
KEM = 1] − 1|.

B An Alternative Measurement for the Adversary
in Sect. 3

In this section, we show that an alternative measurement with operators M1 =
|Ψ〉〈Ψ | and M0 = I − M1 can also help the adversary in Sect. 3 to achieve
advantage at least

√
p(1 − 1/|K|), where |Ψ〉 = sin(x)|m∗〉|Kb〉 + cos(x)|m′〉|Σ〉

and x = 1
2 arccos(−

√
p√

4−3p
) (sin(2x) ≥ 0).

Theorem B.1 (The advantage of A with an alternative measurement).
If the underlying DPKE is perfectly correct, the IND-CCA advantage of A with
the above alternative measurement is at least

√
p(1 − 1

|K| ).

Proof. According to the proof of Theorem 3.1, the m∗ that A gets is exactly the
one chosen by the challenger.

Let |ψ0〉 =
√

p|a〉 +
√

1 − p|c〉, |ψ1〉 =
√

p|b〉 +
√

1 − p|c〉, |Ψ0〉 = sin(x)|a〉 +
cos(x)|c〉 and |Ψ1〉 = sin(x)|b〉+cos(x)|c〉, where |a〉 = |m∗〉|K0〉, |b〉 = |m∗〉|K1〉,
and |c〉 = |m′〉|Σ〉. Then, the probability Pr[A ⇒ 1] is |〈ψ0|Ψ0〉|2 if b = 0, and
|〈ψ0|Ψ1〉|2 if b = 1. Thus,

AdvIND-CCA

KEM−U�⊥m
(A) = ||〈ψ0|Ψ0〉|2 − |〈ψ0|Ψ1〉|2|.

When K0 = K1, |Ψ0〉 = |Ψ1〉 and the advantage of A is 0. In the following,
we consider the case K0 	= K1. It’s easy to verify that when K0 	= K1, 〈a|b〉 =
〈a|c〉 = 〈b|c〉 = 0 since m∗ 	= m′. Thus, |〈ψ0|Ψ1〉|2 = |〈ψ1|Ψ0〉|2. Therefore, the
advantage of A will become

AdvIND-CCA

KEM−U�⊥m
(A) = ||〈ψ0|Ψ0〉|2 − |〈ψ1|Ψ0〉|2|.
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Simple calculations show that ||〈ψ0|Ψ0〉|2 − |〈ψ1|Ψ0〉|2| =
√

p(
√

p+
√
4−3p

2 ). It
is easy to verify that

√
p +

√
4 − 3p ≥ 2 for 0 ≤ p ≤ 1. Thus, we can have

||〈ψ0|Ψ0〉|2 − |〈ψ1|Ψ0〉|2| ≥ √
p. Note that K0 	= K1 with probability 1 − 1

|K| .
Therefore, we have AdvIND-CCA

KEM−U�⊥m
(A) ≥ √

p(1 − 1
|K| ) ≈ √

p. ��

C Impossibility Results with Sequential Rewinding

In this section, we show Theorem 5.1 can be extended to cover measurement-
based reductions with simple rewinding. Similarly, the generalized impossibility
results in Secs. 5.1 and 6.2 can be also extended, we just omit them here.

As noted by Remark 5, simple rewinding considered here is a simple quan-
tum counterpart of classical sequential rewinding [46]. In particular, quantum
adversary A is not allowed to use intrinsic “quantum randomness” or have aux-
iliary quantum input. The reduction R can sequentially restart A with the same
input and (classical) randomness used in the first invocation. Thus, A queries
with a fixed quantum state in every invocation. Take the adversary in Sect. 3 as
an example. When reduction RA rewinds A, RA restarts A with the same input
(pk, c∗,Kb) and randomness (r1, r2) from the beginning.

Next, we will bound the advantage of a measurement-based black-box reduc-
tion with simple rewinding, and extend Theorem 4.1 to the following theorem.

Theorem C.1. If the underlying DPKE is perfectly correct, for any
measurement-based black-box reduction RA that sequentially rewinds the adver-
sary A at most r (r ≥ 1) times, there exist two meta-reductions MRR

1 and MRR
2

against the OW-CPA security of the underlying DPKE such that

AdvOW-CPA
DPKE (RA) ≤ (r + 1) · p+ AdvOW-CPA

DPKE (MRR
1 ) + (

|M|
|M| − 1

)r+1AdvOW-CPA
DPKE (MRR

2 ),

and Time(R) ≈ Time(MRR
1 ) ≈ Time(MRR

2 ).

Proof. The proof of Theorem C.1 has the same skeleton as the one of Theorem
4.1. Let (pk1, c

∗
1) be the challenge given to RA against the OW-CPA security of

underlying PKE, and AdvOW-CPA
DPKE (RA) = Pr[RA ⇒ m∗

1], where Enc(pk1,m
∗
1) =

c∗
1. Let (pk, c∗,Kb) be the input to A provided by RA. We only consider the

reduction that rewinds the adversary with the same input and randomness.
Thus, (pk, c∗,Kb) and r1, r2 are fixed in every rewinding of A. If the event Exi
(Ine, resp. ) happens in the first invocation of A, then the event Exi (Ine,
resp.) happens in the sequent rewinding with probability 1, where the events
Exi and Ine are defined as in Sect. 4. Then, define Ine (Exi, resp.) as the
event that Ine (Exi, resp.) happens in every invocation of A. Denote Goodi

(i ∈ {1, . . . , r + 1}) as the event that Exi happens, the measurement of A’s
query in the i-th invocation returns m∗ such that Enc(pk,m∗) = c∗, and all the
measurement outputs of A’s queries in the previous i − 1 invocations are not
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m∗. Denote Bad as the event that Exi happens, and all the the measurement
outputs of A’s queries in the r + 1 invocations are not m∗. Thus, we have

AdvOW-CPA
DPKE (RA) =

∑

i∈[r+1]

Pr[RA ⇒ m∗
1 ∧ Exi ∧ Goodi]

+ Pr[RA ⇒ m∗
1 ∧ Exi ∧ Bad] + Pr[RA ⇒ m∗

1 ∧ Ine] (3)

Note that for any i ∈ {1, . . . , r + 1}, Pr[RA ⇒ m∗
1 ∧ Exi ∧ Goodi]

= Pr[RA ⇒ m∗
1|Exi ∧ Goodi] Pr[Goodi ∧ Exi]

≤ Pr[Goodi ∧ Exi] = Pr[Goodi|Exi] Pr[Exi]
≤ Pr[Goodi|Exi] = (1 − p)i−1 · p ≤ p (4)

Thus, combing the Eqs. (3) and (4), we have AdvOW-CPA
DPKE (RA)

≤ (r + 1) · p + Pr[RA ⇒ m∗
1 ∧ Exi ∧ Bad] + Pr[RA ⇒ m∗

1 ∧ Ine]
≤ (r + 1) · p + Pr[RA ⇒ m∗

1|Exi ∧ Bad] · Pr[Exi] + Pr[RA ⇒ m∗
1 ∧ Ine] (5)

Note that when the event Ine happens, A just outputs 1 for every invocation,
and can be replaced by a trivial adversary A1 that always returns 1 and does
nothing else. Then, we can construct a meta reduction MRR

1 against the OW-
CPA security of DPKE that simulates A1, runs RA1 and returns RA1 ’s output.
Obviously, Time(R) ≈ Time(MRR

1 ). As in Lemma 4.1, we can have

Pr[RA ⇒ m∗
1 ∧ Ine] ≤ AdvOW-CPA

DPKE (MRR
1 ). (6)

Meanwhile, if the event Exi ∧ Bad happens, A can be substituted with A2

that queries the random oracle H with ψ′
−1 =

∑
m,k

1√
|M|·|K| |m〉|k〉, and outputs

1 with probability 1 in every invocation. Then, we can construct a meta reduction
MRR

2 against the OW-CPA security of DPKE that simulates A2, runs RA2 and
returns RA2 ’s output. It is easy to see Time(R) ≈ Time(MRR

2 ).
We note that conditioned on Exi∧Bad, both measurement outcomes of A’s

query and A2’s query obey the uniform distribution over {m′ ∈ M : m′ 	= m∗}
in every invocation. Thus, Pr[RA ⇒ m∗

1|Exi∧Bad] = Pr[RA2 ⇒ m∗
1|Exi∧Bad].

Since Pr[Bad|Exi] = (1 − 1
|M| )

r+1,

AdvOW-CPA
DPKE (MRR

2 ) = AdvOW-CPA
DPKE (RA2) ≥ Pr[RA2 ⇒ m∗

1|Exi] · Pr[Exi]

≥ (1 − 1
|M| )

r+1 Pr[RA2 ⇒ m∗
1|Exi ∧ Bad] · Pr[Exi]

= (1 − 1
|M| )

r+1 Pr[RA ⇒ m∗
1|Exi ∧ Bad] · Pr[Exi]. (7)

Combing the Eqs. (5), (6) and (7), we can get the desired bound in Theorem
C.1. ��
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Assuming that no PPT adversary can break the OW-CPA security of the
underlying DPKE with non-negligible probability, we have AdvOW-CPA

DPKE (MRR
1 ) ≈

AdvOW-CPA
DPKE (MRR

2 ) ∈ negl(λ). In addition, ( |M|
|M|−1 )r+1 ≤ (1 + 1

|M|−1 )|M|−1 <

exp(1) (assuming r ≤ |M| − 2). Thus, Theorem C.1 essentially says εR =
AdvOW-CPA

DPKE (RA) � (r+1)·p. According to Theorem 3.1, εA = AdvIND-CCA

KEM−U�⊥m
(A) �

√
p. Thus, for r ≥ 1 (the reduction rewinds the adversary r times), we have

εR � (r + 1) · εA2. Namely, although the rewinding considered in this paper
might increase the advantage of R by r · εA2, the running time of R will be
accordingly increased by r · Time(A). Therefore, the current quadratic loss is
also unavoidable for any measurement-based black-box reduction with simple
rewinding.
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Abstract. Indifferentiability is used to analyze the security of construc-
tions of idealized objects, such as random oracles or ideal ciphers. Reset
indifferentiability is a strengthening of plain indifferentiability which is
applicable in far more scenarios, but has largely been abandoned due to
significant impossibility results and a lack of positive results. Our main
results are:

– Under weak reset indifferentiability, ideal ciphers imply (fixed size)
random oracles, and domain shrinkage is possible. We thus show
reset indifferentiability is more useful than previously thought.

– We lift our analysis to the quantum setting, showing that ideal
ciphers imply random oracles under quantum indifferentiability.

– Despite Shor’s algorithm, we observe that generic groups are still
meaningful quantumly, showing that they are quantumly (reset)
indifferentiable from ideal ciphers; combined with the above, crypto-
graphic groups yield post-quantum symmetric key cryptography. In
particular, we obtain a plausible post-quantum random oracle that
is a subset-product followed by two modular reductions.

1 Introduction

The random oracle model [BR93] (ROM) has become a critical tool for justi-
fying the security cryptosystems, both real-world and theoretical. In the ROM,
all parties, including the cryptosystem and adversary, are given oracle access
to a function H sampled uniformly from the set of all functions. To actually
implement the cryptosystem, H is replaced with a concrete cryptographic hash
function, with the hope that there is no way to exploit the structure of a well-
designed H to attack the cryptosystem. For many of the most efficient cryp-
tosystems, the random oracle model is the only known justification for security,
and constructions in the random oracle model tend to be simpler and require
milder computational assumptions than those without random oracles.

Random oracles are members of a larger class of “idealized” objects, where
an adversary is modeled as only having black box access. Ideal ciphers are ide-
alizations of block ciphers, modeled as random keyed permutations. Generic
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groups are idealizations of cryptographic groups, modeled as random embed-
dings of Zp into strings. Idealized objects have been used to design numerous
cryptosystems (e.g. [RST01,Des00,BSW07,AY20,CLMQ20]) or justify the secu-
rity of new computational assumptions (e.g. Diffie-Hellman [Sho97] and its many
variants [BBG05,BFF+14,DHZ14,BMZ19]). Ideal objects simplify the task of
protocol design and analysis while providing meaningful heuristics for security.

1.1 Indifferentiability

Hash functions and other objects are usually built from lower-level building
blocks. If one is not careful, such structure can be exploited in attacks [CDMP05],
thus violating the random oracle assumption, even if the lower-level building
block is treated ideally. The resolution is the indifferentiability framework of
Maurer, Renner, and Holenstein [MRH04], a composable simulation-based def-
inition which captures what it means for a construction to be “as good as”
an ideal object, despite its structure, provided the underlying building block
is treated ideally. Here, “as good as” applies to a wide array of settings called
“single-stage games”, capturing most standard cryptographic definitions. Indif-
ferentiability has become a gold standard for analyzing hash function construc-
tions, and numerous positive results are known such as domain extension and
the equivalence of random oracles and ideal ciphers [CPS08,HKT11,DS16].

Two Motivations for Reset Indifferentiability. In the more general setting of
“multi-stage” games, which capture cases where there are multiple distinct adver-
sary parties, indifferentiability is insufficient [RSS11]. Such games include leak-
age resilience, deterministic encryption, key-dependent message security, and
non-malleability, among others. In order to generically guarantee composition
for multi-stage games including these critical applications, one needs a much
stronger notion called reset indifferentiability, which is equivalent to requiring
that the simulator be stateless. Given the limitations of plain indifferentiability,
reset indifferentiability should be the gold standard, rather than plain indiffer-
entiability.

Unfortunately, reset indifferentiability is subject to significant impossibility
results [RSS11,LAMP12,DGHM13,BBM13]; in particular, any sort of domain
extension is known to be impossible. Most prior work on reset indifferentiability
focuses on a “strong” variant, which requires a single universal simulator to work
for any distinguisher; under this variant, even stronger impossibilities are known.
In particular, domain shrinkage is even impossible, which can in turn be used
to prove other impossibilities such as constructing constant-sized ideal ciphers
from infinite-sized random oracles, or vice versa [BBM13]. These are surprising
and counter-intuitive results, and seem to have been interpreted as implying that
reset indifferentiability is too strong to be useful. As such, reset indifferentiability
seems to have been largely abandoned, with authors instead proposing milder
notions of indifferentiability and showing that they apply to restricted classes
of games [RSS11,DGHM13,Mit14]. However, reset indifferentiability is exactly
characterized by general multi-stage games, meaning there will necessarily be
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applications where such restricted notions cannot be applied. Thus, under these
weaker notions, security for a particular game has to be carefully analyzed.

However, we note that, beyond the impossibility of domain extension, not
much is actually known about the “weak” variant of reset indifferentiability,
where the stateless simulator can depend on the distinguisher. This variant still
captures general multi-stage games, meaning any weak reset indifferentiability
result implies full applicability of the construction. Even though domain exten-
sion is still not possible, the notion may still be useful in many applications. For
example, if one is considering public key encryption with fixed-sized messages,
then domain extension may not be necessary.

An independent, perhaps unexpected, motivation for reset indifferentiabil-
ity comes from the threat of quantum computing. The ability of a quan-
tum algorithm to query the idealized object in superposition invalidates most
classical results, and certain impossibilities are known [BDF+11,YZ20]. The
difficulty is that even a single superposition query “views” the entire ora-
cle; in order to ensure that the simulation of the ideal object is consistent
and “looks like” the true ideal object, the approach employed by most works
(e.g. [BDF+11,Zha12b,Unr15,TU16]) has been to simulate essentially state-
lessly, with the simulator usually depending on the distinguisher. In the context
of indifferentiability, such an approach would correspond exactly to weak reset
indifferentiability. We note that some recent techniques [Zha19,LZ19,CMSZ19,
DFMS19,DFM20,KSS+20,YZ20] utilize stateful quantum simulators, and in
particular [Zha19] proves the (non-reset) indifferentiability of domain extension
for random oracles. However, these techniques are far more complex and require
comparatively heavy quantum machinery, making the techniques more difficult
to use.

We highlight the specific case of random permutations, which has been partic-
ularly challenging with few quantum results and techniques known for the setting
where inverse queries are allowed. In fact, we are only aware of two such prior
results: [AR16] considers the Even-Mansour cipher, but only considers adver-
saries with perfect success probability. [Zha16] constructs (non-indifferentiable)
quantum-secure PRPs in such a model, but side-steps the issue of quantum
queries entirely by having the entire oracle truth table be statistically close to a
random permutation.

Questions. The prior discussion raises the following natural questions:

– Can weak reset indifferentiability be used to achieve any non-trivial result,
even domain shrinkage?

– If so, how can one make non-black box use of the distinguisher to design an
indifferentiability simulator?

– Can fixed-size random oracles be built from ideal ciphers, or vice versa?
– Can random oracles (fixed-size or infinite size) be built from ideal ciphers

quantumly, even in the single-stage setting? In particular, can anything be
said about the Sponge construction?

Making progress on these questions will be the focus of our work.
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1.2 Our Results
On Prior Impossibilities. Essentially the main prior impossibility for weak
reset indifferentiability is that of domain extension [RSS11,LAMP12,DGHM13,
BBM13], with other impossibilities [BBM13] relying crucially on the strong reset
variant. We first observe that the techniques yielding the impossibility of domain
extension apply even in the setting of query-unbounded simulators.

In contrast, we prove weak reset indifferentiability for random oracle
domain shrinkage, ideal ciphers from random oracles, and vice versa, in
such an unbounded simulator setting. More generally, we demonstrate that
indistinguishability against query-unbounded attackers can usually be lifted to
reset indifferentiability using query-unbounded simulators. The inefficient sim-
ulator makes these results rather un-useful for positive results. Nevertheless, it
shows that the known techniques for negative results are unlikely to extend to
a variety of interesting problems, in the weak reset setting. Combined with the
lack of prior positive results for reset indifferentiability, this shows that weak
reset indifferentiability is essentially completely open for any application that
does not require domain extension. The question then is: how can we achieve an
efficient simulator in these settings?

Positive Results for Weak Reset Indifferentiability. We first show that domain
shrinking is possible, under weak reset indifferentiability with an efficient simu-
lator. We thus see that random oracles with larger domain are strictly stronger
that random oracles with smaller domain. This is in sharp contrast to the “dual-
ity” of strong reset indifferentiability, where any two objects are either equivalent
or incomparable, with most examples being incomparable [BBM13].

We also show how to construct a (fixed-size) random oracle from an ideal
cipher under weak reset indifferentiability, again with an efficient simulator.
Specifically, we show that a natural pad-and-truncation of an ideal cipher—that
is, the Sponge construction for a single-block message—gives a random oracle,
for sufficient padding and truncation. An interesting feature of our analysis of
pad-and-truncate is that the sum of the input and output sizes must be less than
the width of the cipher. We show that this is tight: any larger input/output size
will not be weakly reset indifferentiable, thus giving (to the best of our knowl-
edge) the first negative result for weak reset indifferentiability that does not rely
on domain extension. This is in contrast to the plain (non-reset) indifferentiabil-
ity setting, where any non-trivial truncation gives indifferentiability [DRRS09].
Our result may help guide the design of Sponge-based hash functions.

These positive results are obtained by first proving reset indifferentiability
in certain shared randomness models, which allows the simulator access to some
consistent randomness, while still being stateless. We show that, for weak reset
indifferentiability and for certain classes of “nice” ideal objects (including ran-
dom oracles and ideal ciphers), the shared randomness can be removed to get a
standard reset indifferentiability result.

Quantum. All of our results extend to the quantum setting. The simulators are
identical to their classical counterparts. However, very few prior quantum results
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handle inverse queries, meaning a handful of new ideas are needed to lift our ideal
cipher results to the quantum setting. We thus obtain the first proof of quantum
indifferentiability (reset or otherwise) for a random oracle from an ideal cipher—
and in particular the sponge construction for single-block messages. This may
give some evidence for the post-quantum (non-reset) indifferentiability of SHA3,
which is based on the full sponge construction. While we cannot prove indiffer-
entiability for the full Sponge construction1, we can plug pad-and-truncate into
the domain extension result of Zhandry [Zha19], obtaining the first quantum
indifferentiability proof of an arbitrary-size random oracle from an ideal cipher,
under (plain) indifferentiability.

The Post-quantum Generic Group Model. We observe that Shor’s algorithm, by
virtue of being generic, is captured by the generic group model [Sho97] (GGM),
albeit the quantum variant allowing quantum access to the group. Thus, despite
Shor’s algorithm, the GGM may remain a plausible heuristic in the quantum
setting. Shor’s algorithm, however, shows that the discrete-logarithm problem is
easy in the quantum accessible GGM, so the question is then: what use is it?

We demonstrate that the quantum accessible GGM is equivalent to an ideal
publicly-invertible injective function under (reset) indifferentiability. Our above
positive results for ideal ciphers extend to the injective function case. In par-
ticular, by plugging in the above results, we obtain a quantum indifferentiable
random oracle from the generic group model2. When instantiating with the mul-
tiplicative group over finite fields, the result is a plausible post-quantum hash
function that is simply a subset-product, followed by two modular reductions.

1.3 Discussion

We significantly expand the set of techniques and results for reset indifferentia-
bility, both classically and quantumly. We thus show that reset indifferentiability
is more useful than suggested by prior works. Perhaps the main open question
in the classical setting is whether ideal ciphers can be built from random oracles
under reset indifferentiability.

We in particular expand the set of techniques available for analyzing quantum
queries to permutation inverses, and in doing so expand the applicability of
“old school” quantum simulation techniques, showing for the first time that
stateless simulation is capable of achieving non-trivial indifferentiability results.
Our hope is that our techniques can be combined with the sophisticated “new
school” quantum techniques to aid in additional positive results. For example,
can quantum indifferentiable ideal ciphers be built from random oracles?

1 Our techniques work within the framework of reset indifferentiability, which cannot
achieve domain extension, and therefore our techniques cannot apply to the full
Sponge construction.

2 [ZZ21] previously suggest building a random oracle from generic groups. Their result
however is in the classical setting using stateful simulators, which does not translate
to quantum. Our results are required to get a quantum indifferentiability proof.
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Our results also show that cryptographic groups remain potentially useful in
the quantum setting, just that they are limited to the symmetric key setting.
While existing symmetric cryptography appears somewhat resilient to quantum
attacks, we believe it is nevertheless important to study alternative techniques
for building quantum-resistant symmetric cryptography.

1.4 Concurrent and Independent Work

Currently and independently of our work, Czajkowski [Cza21] prove the (plain)
indifferentiability of the full Sponge construction in the quantum setting, nec-
essarily using a stateful quantum simulation technique. In particular, this also
justifies the plain quantum indifferentiability of the pad-and-truncate construc-
tion. The results and techniques are largely incomparable to ours, as we focus
on reset indifferentiability.

2 Technical Overview and Discussion

Indifferentiability. Recall the usual notion of indistinguishability between two
distributions over functions F, G, which says that the functions cannot be dis-
tinguished by oracle access. We will denote such indistinguishability as

F ≈ G.

Indistinguishability is sufficient for settings like constructing a PRP from a PRF,
as the underlying PRF building block is private and not directly accessible to the
adversary. In the settings of length extension for hash functions, building ideal
ciphers from random oracles, etc., indistinguishability is not sufficient since the
adversary additionally can query the underlying building block, and indifferen-
tiability [MRH04] is required instead. A construction C making oracle queries
to an ideal object A (denoted CA), is indifferentiable from an ideal object B if
there exists a simulator S making queries to B (denoted SB) such that

(CA, A) ≈ (B, SB).

The above says that an adversary with two query interfaces—an “honest” inter-
face to B and “adversarial” interface to A—cannot distinguish the “Real Word”
where B is set to CA for ideal object A from the “Ideal World” where B is ideal
and A is simulated as SB . For building an ideal cipher from a random oracle, A
represents a random oracle and B an ideal cipher, with CA being a construction
of a cipher from a hash function.

Note that, while the expression above appears symmetric between A and B,
for plain indifferentiability the notation hides the fact that S can keep state
between queries, whereas C is usually considered to be stateless. Reset indiffer-
entiability is a strengthening of indifferentiability to require S to be stateless as
well. As discussed above, reset indifferentiability is required in settings known as
“multi-stage games.” We disambiguate between strong and weak security, were
strong requires a universal simulator that works for any potential distinguisher
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between (CA, A) and (B, SB), whereas weak allows for a distinguisher-dependent
simulator. Weak reset indifferentiability is sufficient for composition and multi-
stage games [RSS11]. Strong reset indifferentiability turns out to fully symmetric,
with the roles of C and S being interchangeable [BBM13]. This means that any
construction (resp. impossibility) of B from A immediately gives a construct
(resp. impossibility) of constructing A from B.

2.1 On Prior Impossibilities

We show that if one relaxes to query-unbounded simulation, then indistinguisha-
bility can be upgraded to weak reset indifferentiability, provided the indistin-
guishability holds against query-unbounded distinguishers. The idea is that the
simulator can query the entire object B, and then sample A conditioned on CA

being functionally identical to B; such sampling is guaranteed by plain indis-
tinguishability against unbounded queries. The difficulty is that there may be
many A such that CA is equivalent to B, and we must ensure that the simulator
can consistently choose the same A each time. For this, we show the simulator
can basically have a choice of A hard-coded for each separate B. The details are
given in Sect. 4.

Query-unbounded indistinguishability follows from known results in various
settings. For example, perfect shuffles [GP07] allow for constructing PRPs from
random oracles. Indistinguishable domain shrinkage is also trivial. Our general
theorem lifts these results to weak reset indifferentiability, albeit with inefficient
simulators. Due to the above inefficient simulator, the result is not immediately
useful. However, we observe that the impossibility of domain extension holds
even under such inefficient simulators; for completeness, we give the result in
the full version [Zha21]. Since domain extension is the main impossibility known
to hold for weak reset indifferentiability, this shows that new techniques would
be required to rule efficient simulation in settings where inefficient simulation is
possible. We thus demonstrate that weak reset indifferentiability is largely open
for settings that do not involve domain extension.

2.2 Shared Randomness Indifferentiability

We next discuss a model of indifferentiability, which we call shared randomness
reset indifferentiability, that we will use as a stepping-stone to full reset indif-
ferentiability. Here, the simulator S is still stateless, but is allowed to query a
random oracle R—independent from A and B—in addition to querying B; we
require that:

(CA, A) ≈ (B, SB,R).

Note that the random oracle breaks the symmetry between A and B. In partic-
ular, we note that domain shrinking is trivial in this setting, as the simulator
can use R to simulate the parts of A that are ignored by CA.

In Sect. 6, we also show that shared randomness is sufficient for constructing a
fixed-size random oracle h from a (keyless) ideal cipher P, P −1. The construction
is the natural one based on truncation:
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PadTruncP,P −1

c,d (x) = P (x||0(1−c)n)|[dn].

Here, c, d ∈ (0, 1) are constants, P is an ideal cipher on n-bit inputs, x is cn bits
and y|[r] is the first r bits of y. Interestingly, we show that if c + d > 1, then the
truncation-based construction is actually not reset indifferentiable:

Theorem 1 (Informal). If c + d > 1, PadTruncc,d is not shared-randomness
weakly reset indifferentiable from a random oracle.

The proof of this theorem is as follows. Consider a distinguisher D with query
access to a function H and permutation P, P −1. It first chooses a random x ∈
{0, 1}cn and queries w||z ← P (x||0(1−c)n). It also queries w′ ← H(x), and checks
that w′ = w. Then it queries x′||y′ ← P −1(w||z), and checks that x′ = x, y′ =
0(1−c)n. D outputs 1 if and only if all checks pass. Note that in the “Real world”
where H = PadTruncP,P −1

c,d , D outputs 1 always. However, in the “Ideal world”
with P, P −1 being supposedly simulated by a stateless simulator SH , we argue
that D outputs 0 almost always. Indeed, a stateless simulator must have w = w′

to pass the distinguisher’s first check. But then to answer the query P −1(w||z),
it must somehow come up with the original pre-image x of w. Since the simulator
is stateless, it cannot remember x, and so computing x would seem to require
inverting H on w, which is impossible for a random oracle H.

This intuition is not quite correct, as the simulator is also given z as input,
which can be seen as some side-information about x. However, for c + d > 1,
z is shorter than x, and therefore there must be some entropy left in x. Since
random oracles remain hard to invert even for entropic sources, the inability for
the simulator to output x follows.

On the other hand, for c + d ≤ 1, we show that PadTruncc,d actually is reset
indifferentiable:

Theorem 2 (Informal). If c + d ≤ 1, PadTruncc,d is (strongly) reset indiffer-
entiable from a random oracle in the shared randomness model.

Inspired by the impossibility above, we devise a simulator that statelessly
encodes x into z so that x can be recovered from z alone. It does this by set-
ting z to be the result of a random injection I applied to x, in the case that
y = 0(1−c)n. For I to indeed be a random injection, we must have c + d ≤ 1. The
problem is that I represents state, which is not allowed in reset indifferentiabil-
ity. Fortunately, for shared randomness reset indifferentiability, S has access to
a random oracle R; it can use this single random oracle to build I. Essentially, it
follows typical approaches to building block ciphers from pseudorandom random
functions, but instantiating the pseudorandom function using R.

In Sect. 5, we show that shared randomness reset security actually implies
standard weak reset security, in many settings:

Theorem 3 (Informal). Suppose a construction CA is shared randomness
weakly reset indifferentiable from B, and that B has certain nice “extraction”
properties. Then CA is also weakly reset indifferentiable from B, without shared
randomness.
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Combining with the above results shows that the ideal cipher model implies
random oracles under weak reset indifferentiability.

The theorem is proved in two steps. First, we replace the shared randomness
R with a q-wise independent hash function Rq, where q is set sufficiently large
relative to the number of queries made by the adversary. The result is perfectly
indistinguishable from a truly random R. Next, we use a trick from [BBM13]
to compute Rq from the oracle B itself, in a way such that Rq is random and
independent from the adversary’s view.

We note that our simulator is almost black box, but requires knowledge of
the number of queries made by the distinguisher, both to select q and to apply
the trick from [BBM13].

2.3 Quantum Distinguishers and Generic Groups

Reset indifferentiability is conveniently amenable to quantum proof techniques,
and we show how to upgrade our positive results to the quantum setting. This
is not trivial, but we show how to structure the classical proofs in such a way
that they can be lifted to the quantum setting by plugging in known quantum
query lower bounds in key steps. This requires care, since existing techniques
mostly prohibit inverse queries to random permutations, whereas our results
require such inverse queries. We thus must carefully embed prior inverse-query-
less results into our setting to achieve our results. As a result, we obtain fixed-
size random oracles from ideal ciphers quantumly. Generically plugging into the
domain extension result of Zhandry [Zha19], we obtain the first proof of quantum
indifferentiability of an (arbitrary) size random oracle from an ideal cipher:
Corollary 1. There exists a construction C of an (arbitrary-size) random oracle
from an ideal cipher that is quantum (non-reset) indifferentiable.

We note that our lower bound on the necessary truncation of ideal ciphers
also trivially extend to the quantum setting, since a classical distinguisher is in
particular a quantum distinguisher3.

We next investigate the generic group model, quantumly. It is well known
that Shor’s quantum discrete log algorithm [Sho94] works on any cryptographic
group; another interpretation is that Shor’s algorithm works in the quantum-
accessible generic group model. This interpretation of the generality of Shor’s
algorithm is usually seen as a negative, since it means that there is no hope of
circumventing the algorithm by using alternate groups. But we interpret this as
showing that Shor’s algorithm does not fundamentally alter the validity of the
generic group model quantumly. It just shows that discrete logarithms are now
tractable.

The ability of Shor’s algorithm to solve discrete log essentially shows that
the generic group gives a random injection, quantumly, which we prove formally
3 There is a slight subtlety here, as quantum (reset) indifferentiability allows for a

quantum simulator, whereas classical indifferentiability does not. Thus, quantum and
classical indifferentiability are technically incomparable. Nevertheless, our impossi-
bility results trivially adapt to the quantum simulator case.
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under reset indifferentiability. Our positive results from above readily apply to
publicly invertible injections, and therefore give an quantum indifferentiable hash
function from generic groups.

If we in particular focus on the case of finite fields, what we get is the hash
function H(x) = (gx mod p) mod 2n, where x ∈ {0, 1}n for 2n ≤ log p. By pre-
computing the various powers of 2, gx becomes a modular subset-product com-
putation. The overall hash function is then a modular subset product followed
by an additional modular reduction that can plausibly be used as a (quantum
immune) random oracle.

3 Preliminaries

Unless otherwise noted, all functions, sets, algorithms, adversaries, distinguish-
ers, simulators, and distributions are functions of a security parameter λ. We
will often omit the security parameter; for example, when we say that X is a
set, we mean that X is a family of sets {Xλ}λ. When we say that a function is
polynomial or negligible, we mean polynomial or negligible in λ. When there are
multiple functions of λ, we assume all functions use the same λ.

For an algorithm A making queries to another (potentially stateful) algorithm
B, we will denote their interaction by AB .

Ideal Objects. For sets X , Y, a ideal object is a distribution over functions from
X to Y. Some idealized objects we will consider:

– Random oracles. A random oracle is just the uniform distribution over all
functions RO from X to Y. We denote this distribution by YX . Note that
we will usually think of X , Y as finite exponential size. It is also possible to
consider an infinite random oracle, in which case X is infinite.

– Ideal ciphers. Let X = {0, 1} × K × Y for exponential-size Y, and K be
another set. An ideal cipher is sampled by choosing a function P : K×Y → Y,
where for each k, the function P (k, ·) is a uniformly random permutation.
Let P −1(k, ·) be the inverse of P (k, ·). The oracle is then IC(b, k, x) ={

P (k, x) if b = 0
P −1(k, x) if b = 1

. We note that ideal ciphers are typically modeled as

being keyed, which corresponds to an exponential-sized family of independent
ideal permutations. It is also possible to consider the keyless setting, where
K = {1}, and can be omitted.

– (Keyed) Random Injections. Let Y = Y ′ ∪ {⊥}, Z an exponential-sized
set such that |Z| ≤ |Y ′|, and K be another set. Then let X = ({0} × K × Z) ∪
({1} × K × Y ′). A keyed random injection is sampled by choosing a function
I : K × Z → Y ′ where for each k, the function I(k, ·) is a uniformly random
injection. Let I−1(k, y) be the function that outputs x such that I(k, x) = y if

it exists, and otherwise outputs ⊥. Then RI(b, k, x) =
{

I(k, x) if b = 0
I−1(k, x) if b = 1

.
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– Generic groups. Let p be an exponentially-large prime such that |Y| ≥ p,
and let L be a random injection from Zp to Y. The function GG then maps
x 
→ L(x), and also (�1, �2) 
→ L( L−1(�1) + L−1(�2) ). Here, if L−1 is
undefined on an input �, the entire expression outputs ⊥. Note that the generic
group model usually also allows for subtraction, but this is redundant since
p is known, and −1 ≡ p − 1 mod p can be computed using just the addition
operation.

Quantum. We will not need much quantum background in this work. In par-
ticular, all of our quantum results basically follow the classical proofs, but with
key parts replaced with quantum equivalents.

3.1 Indifferentiability

Let A, B be two distributions over functions, and C a polynomial-time oracle-
aided circuit. We write CA to be the distribution over CA where A ← A.

Definition 1. CA is (strong statistical classical plain) indifferentiable from B if
there exists a polynomial-size, potentially stateful, oracle-aided simulator S such
that, for any probabilistic potentially unbounded oracle-added Turing machine D
making at most a polynomial number of queries, there is a negligible ε such that∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B

[
DB,SB

() = 1
]∣∣∣ ≤ ε.

Variants. We now discuss some variants of the indifferentiability definition:

– Weak vs strong. Weak indifferentiability allows for S to depend on D,
flipping the order of quantifiers.

– Computational vs statistical vs perfect. Computational indifferentiabil-
ity only requires security to hold for polynomial-sized D. Note that in the
statistical case, we still bound the number of queries made by D to be poly-
nomial. On the other hand, perfect indifferentiability requires security to hold
for unbounded Turing machines, and for ε to be 0.

– Quantum vs classical. Quantum indifferentiability requires security to hold
for quantum distinguishers D which can make quantum queries to their ora-
cles, but potentially allows for quantum simulators S which can make quan-
tum queries as well.

– Reset vs plain. Reset indifferentiability requires S to be stateless. We note
that [RSS11] define reset indifferentiability differently, allowing the simulator
to be stateful but allowing the distinguisher to “reset” the simulator to its
initial state at any point. The two versions are readily seen to be equivalent,
and we prefer the stateless simulator definition for its simplicity.

We note that the four variants above are all orthogonal and any subset can be
considered, giving a total of 24 possible notions of indifferentiability. Note that
strong implies weak, reset implies plain, and perfect implies statistical implies
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computational, for any settings of the other variants. Quantum does not neces-
sarily imply classical since it could be the case that a quantum simulator can
fool a classical distinguisher, but no classical simulator can. However, in all cases
we will consider in this work, if the scheme is quantum indifferentiable for some
setting of the other variants, it will also be classical indifferentiable for the same
variants. Thus, for our purposes, we will treat quantum indifferentiability as
being stronger.

4 Lifting Indistinguishability to Indifferentiability
in the Unbounded Setting

Here, we show how to lift query-unbounded indistinguishability into weak reset
indifferentiability, albeit with query-unbounded simulation.

Theorem 4. Let A, B be distributions and C a construction. Suppose the dis-
tributions of truth tables B and CA for A ← A, B ← B are statistically
close. Suppose further that B has super-logarithmic min-entropy H∞(B) :=
minB log 1/ Pr[B ← B]. Then for any (potentially query unbounded, classical
or quantum) distinguisher D, there exists a query unbounded classical simulator
S and a negligible ε such that:∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B

[
DB,SB

() = 1
]∣∣∣ ≤ ε.

In other words, if CA is indistinguishable from B against unbounded distinguish-
ers, then CA is also indifferentiable from B, albeit using a query unbounded
simulator.

Proof. Fix any distinguisher D. For any B, let QB be the distribution over
A ← A, conditioned on CA being identical to B. Then, by the statistical closeness
of CA and B, we have that there exists a negligible δ such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B,A←QB

[
DB,A() = 1

]∣∣∣∣ ≤ δ

Now consider the following distribution J over functions J : for each B, J(B) is
sampled from QB , independently from all other inputs. Then we have that

Pr
B←B,J←J

[
DB,J(B)() = 1

]
= Pr

B←B,A←QB

[
DB,A() = 1

]
We now describe our simulator S. S will have a J hard-coded. For every query,
it will compute the truth table for B in its entirety by making exponentially
many queries, and then set A = J(B). It will then answer the query using
A. It remains to show how to select J . What we show is that, for any D, a
random J drawn from J will do. Concretely, consider the random variable p :=
PrB←B

[
DB,J(B)() = 1

]
, which depends on J . We observe that p is identical to

the random variable
∑

B Pr[B ← B]pB , where the pB ∈ [0, 1] are independent
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random variables obtained by sampling A ← QB and outputting Pr[DB,A() = 1],
where the last probability is over any random coins of D. Each pB is in [0, 1],
and the expectation of p is exactly q := PrB←B,A←QB

[
DB,A() = 1

]
.

We apply Hoeffding’s inequality to the random variables Pr[B ← B]pB , giv-
ing:

Pr[|p − q| ≥ γ] ≤ 2e−2γ2/
∑

B
Pr[B←B]2

≤ 2e−2γ22H∞(B)/
∑

B
Pr[B←B] = 2e−2γ22H∞(B)

(1)

Since 2H∞(B) is super-polynomial, we can choose γ negligible while still having
Line 1 be less than 1. Thus, there is some value of pB for each B (and hence
choice of J) such that | PrB←B

[
DB,J(B)() = 1

]−p| ≤ γ. The simulator therefore
uses this choice of J , and we have∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B

[
DB,SB

() = 1
]∣∣∣ ≤ δ + γ

which is negligible. �

5 Shared Randomness Indifferentiability

In this section, we present shared randomness models of reset indifferentiability.
In this model, the simulator has access to a source of randomness, and the same
randomness is used in every invocation of the simulator. We will actually consider
two variants, one where the shared randomness is simply a random string, and
the other where the shared randomness is a random oracle.

Shared Random String (SRS). This model is equivalent to read-only indifferen-
tiability [BDG20]. The simulator has access to an arbitrary-size random string.

Definition 2. CA is (strong statistical classical) reset indifferentiable from B in
the SRS model if there exists set R and a polynomial-sized stateless oracle-aided
simulator S such that, for any probabilistic potentially unbounded oracle-added
Turing machine D making at most a polynomial number of queries, there exists
a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B,r←R

[
DB,SB(· ; r)() = 1

]∣∣∣∣ ≤ ε.

Above, SB(· ; r) means that queries x to S are answered as SB(x ; r).

Remark 1. [DGHM13] consider a notion of resource restricted indifferentiability,
where the simulator’s space is bounded but potentially non-zero. While the SRS
model can be seen as a form of storage, the model is incomparable: SRS allows
for unbounded length random string, but the string must be read-only.
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Shared Random Oracle (SRO). Here, the simulator has access to an arbitrary-
sized random oracle.

Definition 3. CA is (strong statistical classical) reset indifferentiable from B in
the SRO model if there exists sets X , Y and a polynomial-sized stateless oracle-
aided simulator S such that, for any oracle-aided Turing machine D making at
most a polynomial number of queries, there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B,H←YX

[
DB,SB,H

() = 1
]∣∣∣∣ ≤ ε.

Above, YX is the uniform distribution over the set of all functions from X to Y.

When contrasting SRS or SRO indifferentiability from Definition 1, we call
Definition 1 the standard model. Strong vs weak, computational vs statistical vs
perfect, and quantum vs classical are defined analogously to the setting without
shared randomness. Note that the definitions also makes sense in the plain (non-
reset) setting. However, the SRS and SRO models are redundant in the plain
setting, as shown in the following:

Lemma 1. Let Φ ∈ {strong, weak}, Γ ∈ {computational, statistical, perfectly}
and Δ ∈ {classical, quantum}. If CA is Φ Γ Δ plain indifferentiable from B in
either the of the SRS or SRO models, then it is also Φ Γ Δ plain indifferentiable
from B in the standard model.

Proof. All 12 settings of Φ, Γ, Δ are essentially identical. We first show the SRS
case. Given a simulator S for SRS indifferentiability, we can simply create a new
simulator which chooses a random string r at the first query, and answers all
queries using S(· ; r). For the SRO case, we can simulate the shared random
oracle on the fly. In the classical case, this is done via lazy sampling; in the
quantum case, this is done using Zhandry’s compressed oracles [Zha19]. �
We note that shared randomness is not necessarily redundant in the reset setting
since there is no explicit ability to store r in order to maintain consistency
between the different executions. Looking forward, our results imply that shared
randomness is an extra resource in the strong reset setting (in the sense that it
makes the notion weaker), but it is usually redundant in the weak reset setting.

5.1 Domain Shrinkage

To illustrate the utility of the shared randomness models, we show that the
SRO model is sufficient for domain shrinkage, even with reset indifferentiability.
This is in contrast to strong reset indifferentiability without shared randomness,
where [BBM13] show that domain extension and shrinkage are impossible.

Our domain shrinker is the obvious one, which just ignores part of the
domain. Let X , Y be sets with A : X → Y. Let X ′ ⊂ X . Then ShrinkA : X ′ → Y
is simply defined as ShrinkA(x) = A(x).
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Theorem 5. ShrinkRO is strong perfectly quantum and classical reset indiffer-
entiable from a random oracle, in the SRO model.

Proof. Let B : X ′ → Y and H : X → Y. Let

SB,H(x) =
{

B(x) if x ∈ X ′

H(x) if x /∈ X ′ .

First, note that ShrinkSB,H

(x) = B(x). Also note that if B, H are random func-
tions, then SB,H(·) is a random function. Thus, for any distinguisher D (quantum
or classical, computationally unbounded), we have that Pr

[
DShrinkA,A() = 1

]
=

Pr
[
DB,SB,H () = 1

]
. �

In the next few subsections, we will show how to remove the SRO model in the
setting of weak reset indifferentiability, ultimately achieving domain shrinkage
in the standard model with weak reset indifferentiability.

5.2 SRO Implies Weak SRS

Here, we show that indifferentiability with shared random oracles implies indif-
ferentiability with shared random strings, in the weak indifferentiability setting.
The idea is to simulate the random oracle using a k-wise independent hash func-
tion, which can be set as the shared random string. We note that [BDG20] employ
a similar technique, but use a PRF instead, meaning their results require compu-
tational assumptions. Our Theorem 6 shows that such computational assump-
tions are unnecessary.

Theorem 6. Let Γ ∈ {comp., stat., perfect}, Δ ∈ {classical, quantum}. If CA is
weak Γ Δ reset indifferentiable from B in the SRO model, then it is also weak
Γ Δ reset indifferentiable from B in the SRS model.

Proof. The computational, statistical, and perfect settings are identical, and will
be proved together. We first prove the classical case, the quantum case being a
small modification that we describe at the end.

Let D be a supposed distinguisher for reset indifferentiability, which we will
interpret as a potential distinguisher in both the SRS and SRO models. By
SRO indifferentiability, there exists sets X , Y and a simulator SB,H satisfying
Definition 3, meaning there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B,H←YX

[
DB,SB,H

() = 1
]∣∣∣∣ ≤ ε.

Now, let q0 be an upper bound on the number of queries D makes, and q1
an upper bound on the number of queries S makes to H on any call to S. Then
DB,SB,H () makes at most k = q0q1 calls to H. Let F be a family of k-wise
independent functions. Then
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Pr
B←B,H←YX

[
DB,SB,H

() = 1
]

= Pr
B←B,f←F

[
DB,SB,f

() = 1
]

Our new simulator therefore sets F as the space of random strings, and f
the shared randomness. SRS security immediately follows.

For the quantum case, we just set F to be a family of 2k-wise independent
functions, and security follows from the following Lemma of Zhandry [Zha12b]:

Lemma 2 ([Zha12b]). Let F to be a family of 2q-wise independent functions
from X to Y. Then for any algorithm D making at most q quantum queries,
Prf←F [Df () = 1] = Prf←YX [Df () = 1].

This completes the proof of Theorem 6. �

5.3 SRS Often Implies Standard Weak Indifferentiability

Here, we show that SRS (and therefore SRO) indifferentiability often gives weak
indifferentiability in the standard model. The intuition is to use the idealized
object A itself to simulate the random string.

Extractable Distributions. Here, we define a notion of extractability for a distri-
bution, which captures the ability to extract randomness from the function.

Definition 4. A distribution A over functions A : X → Y is statistically clas-
sically extractable if, for any polynomial � and any computationally unbounded
distinguisher D making a polynomial number of classical queries, there exists a
deterministic polynomial time oracle-aided Turing machine ExtA() which outputs
� bit strings, and a negligible function ε such that:∣∣∣∣ Pr

A←A,r←{0,1}�

[
DA(r) = 1

] − Pr
A←A

[
DA(ExtA()) = 1

]∣∣∣∣ ≤ ε.

In other words, D cannot distinguish the output of ExtA from random. We define
computational, perfect, and quantum extractability analogously.

We expect most idealized models of interest to be extractable. In particular,
we demonstrate that random oracles are extractable, as is any idealized model
that can build random oracles under plain (non-reset) indifferentiability.

Theorem 7. Random oracles are perfectly classically and quantumly extractable.

Proof. Our proof follows ideas from [BBM13], who show how to remove
ephemeral (per query) randomness from “pseudo-deterministic” simulators. We
generate randomness in the same way, but with a different application and addi-
tionally prove the quantum case. First, we will assume for simplicity that A has
�-bit outputs, which is without loss of generality since we can always trade off
input and output length in a random oracle, the result potentially multiplying
the number of queries by up to � while being perfectly indifferentiable.
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Then we have ExtA() work as follows. For a parameter k to be chosen latter,
Ext arbitrarily (but deterministically) chooses k distinct points (xi)i∈[k], and
outputs r = ⊕i∈[k]A(xi). Since we require random oracles to have exponential-
sized domains, there will always exist k distinct points. To prove extractability,
we first consider the classical case. We set k = q+1. Then any q-query algorithm
D cannot possibly query all the xi. As such, at least one of the A(xi) values
will be information-theoretically hidden from D, meaning r = ⊕i∈[k]A(xi) is
information-theoretically hidden. As such, D cannot distinguish r from random.

For the quantum case, more care is required since the distinguisher can query
on superpositions of potentially all xi, meaning we cannot argue any particular
A(xi) is hidden. Instead, we use the following result of Zhandry [Zha15b]:

Lemma 3 ([Zha15b], Theorem 5.1). Let Q be a q-quantum query algorithm
to A. Then Pr[QA() = ⊕i∈[k]A(xi)] ≤ �k/(k − q)�/2�. In particular, if q < k/2,
then the probability is at most 2−�.

We now turn the very strong intractability of computing r into the desired
indistinguishability. Let k = 2q + 1 and let D be a q-query distinguisher. Let
p0 be the probability D outputs 1 when given ⊕i∈[k]A(xi), and let p1 be the
probability D outputs 1 when given a random r �= ⊕i∈[k]A(xi) as input. Suppose
p0 �= p1. In this case, assume without loss of generality that p0 > p1, by flipping
the output bit of D if necessary.

We construct Q as follows: QA() chooses a random r, and runs b ← DA(r).
If b = 1, it outputs r; otherwise it chooses a new random r′ and outputs r′.

We now compute the probability QA() outputs ⊕i∈[k]A(xi). Conditioned on
r = ⊕i∈[k]A(xi), then QA() outputs r (and is hence correct) with probability
p0; otherwise it outputs a random r′, which is correct with probability 2−�.
Conditioned on r �= ⊕i∈[k]A(xi), QA() is only correct if it outputs r′ (which
happens with probability 1 − p1) and r′ is correct (which has probability 2−�).
Over, the probability QA() is correct is then

Pr[QA() = ⊕i∈[k]A(xi)] = 1
2�

(
p0 + (1 − p0) 1

2�

)
+ 2� − 1

2�
(1 − p1) 1

2�

>
1
2�

(
p0 + (1 − p0) 1

2�

)
+ 2� − 1

2�
(1 − p0) 1

2�

= 1
2�

p0 + 1
2�

(1 − p0) = 1
2�

thus contradicting Lemma 3. �
Though not needed for our main results, we would also like to show that

ideal ciphers are extractable. Classically, the same Ext from the proof of Theo-
rem 7 also works for ideal ciphers. Quantumly, however, the situation is more
difficult, in particular because do not know a suitable analog of Lemma 3 for the
ideal cipher setting. While it is possible to directly prove that ideal ciphers are
quantum extractable by carefully adapting known techniques, we will prove a
more general theorem which shows that any ideal model which implies random
oracles under indifferentiability is also extractable.
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Theorem 8. Let Γ ∈ {comp., stat., perfect}, Δ ∈ {classical, quantum}. Suppose
A is a distribution over functions such that there exists a construction CA that
is strong Γ Δ plain indifferentiable from a random oracle. Then A is Γ Δ
extractable.

Proof. We prove the classical statistical case, the quantum, perfect, and compu-
tational cases being essentially identical. Let � be a polynomial and D a potential
distinguisher for the extractability of A. Let S be the universal simulator guar-
anteed by the strong (plain) indifferentiability of CA. Then consider the distin-
guisher DB

0 = DSB for the extractability of the random oracle B. By Theorem 7,
there must exist an extraction procedure ExtB0 and negligible ε with∣∣∣∣ Pr

B←B,r←{0,1}�

[
DB

0 (r) = 1
] − Pr

B←B

[
DB

0 (ExtB0 ()) = 1
]∣∣∣∣ = 0.

Remembering that DB
0 = DSB , we interpret DA(ExtB0 ) and DA(r) as indifferen-

tiability distinguishers for CA, meaning there exists a negligible ε, ε′ and∣∣∣ Pr
B←B

[
DB

0 (ExtB0 ()) = 1
]

− Pr
A←A

[
DA(ExtC

A

0 ()) = 1
]∣∣∣ ≤ ε∣∣∣∣ Pr

B←B,r←X
[
DB

0 (r) = 1
] − Pr

A←A,r←X
[
DA(r) = 1

]∣∣∣∣ ≤ ε′.

We now let ExtA() = ExtC
A

(), and we conclude that∣∣∣∣ Pr
A←A,r←{0,1}�

[
DA(r) = 1

] − Pr
A←A

[
DA(ExtA()) = 1

]∣∣∣∣ < ε + ε′.

Thus Ext satisfies Definition 4. �
Looking ahead, in Sect. 6, we will prove that ideal ciphers can be used to con-
struct random oracles that are sufficiently indifferentiable to apply Theorem 8.
This means that ideal ciphers are extractable.

Removing Shared Randomness for Extractable Sources. We now show that, if
the source is extractable, we can remove shared randomness in the weak indif-
ferentiability setting.

Theorem 9. Let Γ ∈ {comp., stat., perfect}, Δ ∈ {classical, quantum}. If CA

is weak Γ Δ reset indifferentiable from B in the SRS model, and if B is Γ
Δ extractable, then CA is also weak Γ Δ reset indifferentiable from B in the
standard model.

Proof. All six settings are essentially identical, so we prove the statistical clas-
sical case. Let D be a supposed distinguisher for reset indifferentiability, which
we will interpret as both a potential distinguisher in both the SRS and stan-
dard models. By SRS indifferentiability, there exists a set X and a simulator SB

satisfying Definition 2, meaning there exists a negligible ε such that∣∣∣∣ Pr
A←A

[
DCA,A() = 1

]
− Pr

B←B,r←X

[
DB,SB(· ; r)() = 1

]∣∣∣∣ ≤ ε.
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Consider the extractability distinguisher EB(r) := DB,SB(· ; r)() for B. By
the assumed extractability of B, there exists an extraction procedure Ext and
negligible δ such that∣∣∣∣ Pr

B←B,r←X

[
DB,SB(· ; r)() = 1

]
− Pr

B←B

[
DB,SB(· ; r)() = 1 : r = ExtB()

]∣∣∣∣ ≤ δ.

We therefore define a new standard-model simulator T B(x) = SB(x ; ExtB()).
The result is that∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

A←A

[
DB,T B

() = 1
]∣∣∣ ≤ ε + δ

Thus establishing reset indifferentiability in the standard model. �
As an immediate corollary, we have:

Corollary 2. For any X ′ ⊆ X , ShrinkRO is weak statistical (classical and quan-
tum) reset indifferentiable from a random oracle, in the standard model.

Remark 2. It may seem odd that we can use extractability to prove reset indif-
ferentiability, when Theorem 8 only needs plain indifferentiability to justify
extractability. Note, however, that the actual indifferentiability simulator uses
Ext, which is indeed stateless. The simulator used to justify extractability only
comes up as a hybrid in the security analysis, where it is okay to keep state.

5.4 Extensions

Here, we consider shared randomness beyond random oracles, namely a gener-
alization to oracle distributions are constructible from random oracles.

Definition 5. We say a distribution F is statistically classically constructible
from G if there is a deterministic polynomial-time oracle-aided Turing machine
C such that, for any computationally unbounded distinguisher D making a poly-
nomial number of classical queries, there exists a negligible ε such that

| Pr
F ←F

[DF () = 1] − Pr
G←G

[DCG

() = 1]| ≤ ε

We analogously define computational, perfect, and quantum constructibility.

Note that constructibility does not give the distinguisher access to G, meaning
plain indistinguishability suffices. Let Γ ∈ {computational, statistical, perfectly}
and Δ ∈ {classical, quantum}. We note that constructibility has some basic
composition properties:

– If F is Γ Δ constructible from G, and G is Γ Δ constructible from H, then
F is Γ Δ constructible from H.

– Let F1, . . . , Fn be distributions, and denote (F1, . . . , Fn) denote the distri-
bution on functions (i, x) → Fi(x) where Fi ← Fi. If each Fi is Γ Δ con-
structible from Gi for i = 1, . . . , n, then (F1, . . . , Fn) is Γ Δ constructible
from (G1, . . . , Gn)
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– Let RO1, . . . ,ROn be independent random oracles. Then (RO1, . . . ,ROn) is
perfectly classical and quantum constructible from appropriately-sized ran-
dom oracles, by simple domain separation.

Next, we observe that existing results imply the constructibility of ideal ciphers
from random oracles:

Lemma 4. Ideal ciphers are perfectly quantumly and classically constructible
from appropriately-sized random oracles.

Proof. In the classical statistical case, we can use Luby-Rackoff [LR86]. Quan-
tum Luby-Rackoff unfortunately is unknown since we need to handle inversion
queries. Instead, we follow [Zha16], and use perfect shuffles. In particular, [GP07]
shows the existence of a perfect random permutation from a random oracle,
which therefore achieves perfect constructibility, even under quantum queries.�
Corollary 3. Keyed random injections are perfectly quantumly and classically
constructible from appropriately-sized random oracles.

Proof. Keyed random injections are perfectly classically and quantumly con-
structible from keyed ideal ciphers, by simply padding the input. Then compo-
sition gives the desired result. �

Generalizing Shared Randomness. We now give our general definition.

Definition 6. Let F be a distribution over functions. CA is (strong statistical
classical) reset indifferentiable from B in the Shared-F model if there exists a
polynomial-time stateless oracle-aided simulator S such that, for any oracle-aided
Turing machine D making at most a polynomial number of queries, there exists
a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr

B←B,f←F

[
DB,SB,f

() = 1
]∣∣∣∣ ≤ ε.

We similarly define weak, computational, perfect, and quantum Shared-F models.

Lemma 5. Let Φ ∈ {strong, weak}, Γ ∈ {computational, statistical, perfectly}
and Δ ∈ {classical, quantum}. If CA is Φ Γ Δ reset indifferentiable from B in
the Shared-F model, and F is Γ Δ constructible from G, then CA is also Φ Γ
Δ reset indifferentiable from B in the Shared-G model.

6 Random Oracles from Ideal Ciphers

Here, we show how to build random oracles from ideal ciphers using weak reset
indifferentiability. Concretely, we prove that an ideal cipher gives a random oracle
with strong reset indifferentiability in the shared random oracle (SRO) model:

Theorem 10. Let A be an ideal cipher. There exists a construction CA that is
strong statistical (classical and quantum) reset indifferentiable from a random
oracle in the SRO model.
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We prove Theorem 10 in Sect. 6.1, but first show two corollaries:
Corollary 4. Ideal ciphers are statistical (classical and quantum) extractable.
Proof. By Lemma 1, CA is strong statistical quantum plain indifferentiable in
the standard model. The result then follows from Theorem 8. �
Corollary 5. Let A be an ideal cipher. There exists a construction CA that
is weak statistical (classical and quantum) reset indifferentiable from a random
oracle in the standard model.
Proof. We apply Theorem 6 to Theorem 10 to get that CA is weak statistical
(classical and quantum) reset indifferentiable in the SRS model. Then we use
the extractability of random oracles and Theorem 9 to conclude weak statistical
(classical and quantum) reset indifferentiability in the standard model. �

6.1 The Pad-and-Truncate Construction
Our construction can be seen as the Sponge construction for 1-block messages.
Fix real numbers c, d ∈ (0, 1). Let A : K × X → Y be a keyed injection with
inverse A−1. Let X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| ≤ |Y|c and |Y ′| ≤ |Y|d.
Assume for simplicity that |Y ′| divides |Y|, interpret Y = Y ′ × Z, and define
Proj(y, z) = y. Then define PadTruncA,A−1

c,d : K×X ′ → Y ′ as PadTruncA,A−1

c,d (x) =
Proj(A(x)). We now restate Theorem 10, using PadTrunc:
Theorem 10. For any constants c, d ∈ (0, 1) such that c + d ≤ 1, PadTruncICc,d is
strongly shared randomness statistically (classically and quantumly) reset indif-
ferentiable from a random oracle.

6.2 The Simulator
In order to be consistent with PadTruncc,d, our simulator needs to answer queries
to A(k, x) with (B(k, x), z) for some z. At the same time, it needs to be able to
answer queries to A−1(k, (B(k, x), z) ) with x ∈ X ′. For all other queries, the
simulator needs to answer in a way that “looks like” a random keyed injection.

The central difficulty is that, by virtue of having a stateless simulator, we
cannot answer these queries lazily, and we cannot “remember” how previous
queries were answered. This particularly represents a problem for answering
A−1(k, (B(k, x), z) ) queries, since we somehow have to recover x, even though
B is a random oracle which would hide x. Our solution is to do the following.
Following Lemma 5, it suffices to have our simulator work in the Shared-(RI,RI)
model, having access to random keyed injections I : K×X ′ → Z, Q : K×X → Y,
and their inverses I−1, Q−1. The simulator SB,I,Q answers A and A−1 queries
as P and P −1 respectively, where:

P (k, x) =
{

(B(k, x), I(k, x)) if x ∈ X ′

Q(k, x) otherwise
(2)

P −1(k, (w, z)) =
{

x if w = B(k, x) where x = I−1(k, z)
Q−1(k, (w, z)) otherwise

(3)
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6.3 Indifferentiability Proof

We now need to prove that this simulator is indistinguishable from the case
where A, A−1 are uniformly random permutations, and B = PadTruncA,A−1

c,d .
First, we show that without loss of generality we can focus on the key-less

case (|K| = 1). This follows immediately from a generalization of a result of
Zhandry [Zha12a], which we prove in the full version [Zha21]:

Lemma 6. Let D0, D1 be distributions over oracles from X to Y. Let O1, O2 be
distributions on oracles from K × X to Y, where for each k, Ob(k, ·) is sampled
from Db. Suppose there exists a q quantum query algorithm A with access to an
oracle O0 or O1 such that | Pr[AO0() = 1] − Pr[AO1() = 1]| = ε. Then there is a
quantum algorithm B such that | Pr[BD0 = 1] − Pr[BD1 = 1]| ≥ Ω(ε2/q3).

Now let D be a (potentially quantum) distinguisher making polynomially-
many queries in the keyless case, and define several hybrid experiments:

– Hybrid 0. This is the “Ideal World” where B is a random oracle and A, A−1

are set to P, P −1 as defined in our simulator in Lines 2 and 3, with I, Q being
random (key-less) injections. Let p0 be the probability D outputs 1.

– Hybrid 1. This is the same as Hybrid 0, except that we replace D’s queries
to B(x) with PadTruncP,P −1

c,d (x). Let p1 be the probability D outputs 1. Note
that PadTrunc only makes A queries on inputs x ∈ X ′, which S answers as
(B(x), I(x)). Thus PadTruncP,P −1

c,d (x) = B(x), and therefore the distribution
of oracles seen by D is identical in Hybrids 0 and 1. Thus p0 = p1.

– Hybrid 2. This is the “Real World”, where A, A−1 are a random (keyed)
injection and its inverse, and B(k, x) = PadTruncA,A−1

c,d (x). Equivalently,
Hybrid 2 is the same as Hybrid 1, except that P, P −1 in Eqs. 2 and 3
are replaced by a random keyed injection A and its inverse A−1. Let p2 be
the probability D outputs 1.

It remains to show that |p2 − p1| is negligible, which constitutes the bulk of the
indifferentiability proof. For this, the following claim suffices:

Lemma 7. For any distinguisher E making at most a polynomial number of
classical or quantum queries, we have that | Pr[EP,P −1() = 1]−Pr[EA,A−1() = 1]|
is negligible, where A, A−1 are a random (keyless) injection and its inverse, and
P, P −1 are as in Eqs. 2 and 3, with I, Q are random keyed injections.

Lemma 7 proves Theorem 10 by letting EA,A−1() = DPadTruncA,A−1
c,d

,A,A−1
(). We

now prove Lemma 7.

Proof. Classically, proving this is possible using lazy sampling. However, ulti-
mately we will also want to prove the indistinguishability under quantum queries.
This is somewhat more challenging, and requires a more careful proof, given lim-
itations of known techniques. We will therefore structure the proof in a way that
allows us to prove both classical and quantum indistinguishability.
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Let E be a potential distinguisher. We prove the indistinguishability through
another sequence of hybrids:

– Hybrid α. Here we give E the oracles A, A−1 that are a uniformly random
(keyless) injection and its inverse. Define pα as the probability E outputs 1.

– Hybrid β. Here, we sample a uniformly random injection J : X ′ → Y. We
give E the oracles Aβ , A−1

β , where

Aβ(x) =
{

A( J−1( A(x) ) ) if A(x) ∈ Img(J), x /∈ X ′

A(x) otherwise

A−1
β (y) =

{
A−1(J−1(A−1(y))) if y ∈ Img(J), A−1(y) /∈ X ′

A−1(y) otherwise

Here, Img(J) is the set of images of J . Note the J−1 in both the definition of
Aβ and A−1

β . Let pβ be the probability E outputs 1.
Note that Aβ , A−1

β are identical to A, A−1, except on points determined by
the sparse image of J . Since J is random, these points should be hidden from
the view of E. Indeed, it is straightforward that, in the classical case, such
points will only be queried with negligible probability, and in the absence of
querying these points the distributions are identical.
In the quantum case, we have to work slightly harder. We prove the following
in the full version [Zha21], which follows from known quantum techniques:

Lemma 8. Let D be a distribution over subsets V of X such that each element
in X is placed in V with probability ε (not necessarily independently). Consider
any quantum algorithm E making q queries to an oracle O with domain X , and
let p0 be the probability EO() outputs 1. Let O′ that is identical to O, except that
on a set V sampled from D, O′ is changed arbitrarily. Let p1 be the probability
EO′() outputs 1. Then |p0 − p1| < O(q

√
ε).

The random injection J defines such a set V where each input to A or A−1

is placed in the changed set with probability |X ′|/|Y| = |Y|−(1−c). Therefore
|pβ − pα| < O(q|Y|−(1−c)/2), which is negligible.

– Hybrid γ. Here, we sample J, A, A−1, Aβ , A−1
β as in Hybrid β. Let K : X ′ →

Y be the restriction of A to X ′: K(x) = A(x). Also define Q(x) = Aβ(x) for
x /∈ X ′. The values Q(k, x) for x ∈ X ′ are random and distinct values from
the set Y \ {Aβ(x) : x /∈ X ′}. Plugging in the definition of Aβ , K, this gives

Q(x) =
{

K(J−1(A(x))) if A(x) ∈ Img(J), x /∈ X ′

A(x) if A(x) /∈ Img(J), x /∈ X ′ .
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We then give the adversary the oracles Aγ , A−1
γ defined as

Aγ(x) =
{

K(x) if x ∈ X ′

Q(x) otherwise

A−1
γ (y) =

{
K−1(y) if y ∈ Img(K(·))
Q−1(y) otherwise

Let pγ be the probability E outputs 1. Plugging in the definitions of Q, K, we
see that Aγ = Aβ , A−1

γ = A−1
β . Therefore, pγ = pβ .

Note that in Hybrid γ, Q is a uniformly random keyless permutation, and
K is a uniformly random keyless injection.

– Hybrid δ. Now give E the oracles Aγ , A−1
γ , except where K is chosen as

K(x) = (B(x), I(x)), B is a random function, and I(x) is a random keyless
injection. Note that the result is equivalent to the oracles P, P −1 defined as
in Eqs. 2 and 3. Let pδ be the probability E outputs 1.

It remains to show that pγ is close to pδ. Since Q is identically distributed in
both hybrids, it suffices to prove that the distribution over K in the two hybrids
is indistinguishable:

Lemma 9. Fix c, d ∈ (0, 1), and let X ′, Y ′, Z, Y, Y = Y ′ × Z, be sets such
that |X | ≤ |Y|c and |Y ′| ≤ |Y|d. Write K : X ′ → Y as K(x) = (B(x), I(x))
for B : X ′ → Y ′ and I : X ′ → Z. Then for any adversary making q classical
or quantum queries to K and its inverse, the following two distributions are
indistinguishable:

– K is chosen as a random keyless injection
– I is a random keyless injection, and B is a random function.

Proof. In the classical case, this is straightforward: the only way an adversary
can distinguish is by finding x0, x1 such that I(x0) = I(x1), which cannot happen
in the case where I is injective. To prove that such tuples are infeasible to find,
we rely on the fact that the adversary cannot make inverse queries on valid
images (whp), except on values that were the result of prior forward queries.

In the quantum setting, what makes proving this non-trivial is that the attacker
has query access to both K and K−1, whereas the vast majority of the quantum
literature does not consider inversion queries. In order to prove security, then,
we carefully embed an instance of a problem that does not use inversion queries,
and then rely on known quantum complexity techniques to prove the hardness
of the inversion-less problem.

We first consider the case where c < d. The reason this case is easier is that
we can switch from using I(x) to recover x to using B(x) to recover x. Then
since we do not need to query I−1, we can rely on known quantum query lower
bound techniques to switch to I being random.

To prove indistinguishability in the c < d case, we define a few more hybrids.
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– Hybrid i. This hybrid sets K : X ′ → Y to be a uniformly random (keyless)
injection. Let pi be the probability of outputting 1.

– Hybrid ii. This hybrid sets K to be a random function. The problem with K
being a uniformly random function is that there might be collisions, meaning
the inverse is not well defined. We define K−1(y) to be x is there is a unique x
such that K(x) = y. Otherwise, if there are 0 or ≥ 2 solutions, K−1(y) = ⊥.
Let pii be the probability of outputting 1.
Since c < d and c+d ≤ 1, we have that 2c < 1. As such, a random function is
an injection with overwhelming probability by a union bound. Thus |pi−pii| ≤
O(|Y|−(1−2c)).
Note here that if we write K(x) = (B(x), I(x)), then B, I are independent
uniform random functions.

– Hybrid iii. Here, we change how we answer K−1(w, z) queries. Rather than
directly computing the inverse (supposing it exists and is unique), we instead
compute Lw := {x : B(x) = w}, and then for each x ∈ Lw, we check if
I(x) = z by querying I. To bound the number of queries to I, we abort if
|Lw| > r, for some parameter r. Let piii be the probability of outputting 1.
By standard balls-and-bins arguments, for each w ∈ Y ′, Lw is at most r,
except with probability

(|X ′|
r

)|Y ′|−r ≤ |Y|−(d−c). Union bounding over all
w gives that maxw |Lw| ≤ r except with probability ≤ |Y|d−(d−c)r. Setting
r = O(1), this bound becomes |Y|−1. In the case all Lw have size at most
r, there are no aborts and inverse procedure outputs the same value as in
Hybrid ii. Thus |pii − piii| ≤ |Y|−1. Moreover, the number of queries made
to I for each K−1 query is at most a polynomial.

– Hybrid iv. Here, we change I to be a keyless injection, and let piv be the
probability of outputting 1. If the adversary makes q queries, we ultimately
make O(q) queries to I (and no queries to I−1). We can use the indistin-
guishability of random functions from random injections [AS04,Zha15a] to
bound |piii − piv| ≤ O(q3/|Z|) = O(q3/|Y|1−d), which is negligible.
This completes the case c < d. We now extend to all c, d > 0 such that

c + d ≤ 1. The problem with the above proof is that the output of B is no
longer large enough to uniquely decode x. Nevertheless, we show how to embed
an instance of the problem for c′ < d′ into the general case, thereby proving
security.

Let c′, d′ ∈ (0, 1) be constants to be chosen later. Write X ′ = W × X ′′ and
Z = W × Z ′ for |X ′′| = |Y|c′d/d′

, |W| = |Y|c−c′d/d′
, |Z ′| = |Y|d/d′−d. Since

Z = W × Z ′, we must have d′ = d(1 − c′)/(1 − c). Moreover, for the sizes of the
sets involved to be non-negative, we must have c′ ≤ c, which implies d′ ≥ d.

We will sample K as follows:
– First choose random keyless permutations W, W ′ : (W × Z ′) → (W × Z ′).
– Next, choose a keyed function K ′ : W × X ′′ → Y ′ × Z ′
– Set K(x) to be the following: Let x′ = W ′(x) and write x′ = (η, μ) ∈ W ×X ′′.

Then compute (ζ, τ) ← K ′(η, μ) ∈ Y ′ × Z ′. Then output (ζ, W (η, τ).
It is straightforward that, if K ′ is a random keyed injection, then K is a random
keyed injection. On the other hand, suppose for any η, the mapping under K ′
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of μ 
→ τ was a random injection whereas the mapping μ 
→ ζ was a random
function. Then it is straightforward that K satisfies the distribution for Hybrid
iv. Thus, proving the indistinguishability for the two cases of K reduces to
proving the indistinguishability for the two cases of K ′. By applying Lemma 6,
we can further reduce to the keyless case and ignore η. Since the range of K ′

has size |Y|d/d′ , we have that K ′ is an instance of Lemma 9 with parameters
c′, d′. Choose an arbitrary c′ ≤ c such that d′ = d(1 − c′)/(1 − c) > c′, which is
equivalent to c′ < d/(1 + d − c). We can then invoke the c < d case of Lemma 9
as proved above on K ′, obtaining the indistinguishability of the two settings. �

This completes the proof of Lemma 7. Putting everything together, this com-
pletes the proof of Theorem 10. �

6.4 On Necessary Shrinkage

Our positive result works for any c + d ≤ 1. Here, we show that this is tight.

Theorem 11. For any constants c, d > 0 such that c + d > 1, if A is a random
permutation, then PadTruncA,A−1

c,d is not even weak computational (classical or
quantum) reset indifferentiable from a random oracle.

Proof. For simplicity, we focus on the keyless case (s = 0), which is without
loss of generality. The intuition behind the proof is that the simulator, when
answering queries of the form A−1(B(x), z), cannot invert B to recover x. It
must therefore recover x from z. But this is only possible if |z| ≥ |x|.

Consider the distinguisher D, which chooses a random x ∈ X ′, and runs
(w, z) ← A(x) ∈ Y ′×Z. Then it runs x′ ← A−1(w, z) and w′ ← B(x′) (assuming
x′ ∈ X ′), and outputs 1 if and only if w′ = w, x′ = x. Consider a supposed
simulator SB for D, where we write SB

0 , SB
1 for the simulator’s responses to A

and A−1 queries, respectively. We have that there exists a negligible ε such that

Pr
[
DB,SB

0 ,SB
1 () = 1

]
≥ 1 − ε.

We turn SB into an algorithm UB(w), which finds an x such that B(x) = w.
UB(w) works as follows: choose a random z∗ ∈ Z, and output x ← SB

1 (w, z∗).

Claim. For a random x ∈ X ′, Pr[UB(B(x)) = x] ≥ (1 − ε)/|Y|1−max(c,d).

Proof. Imagine running D on a random x ∈ X ′. We therefore know that, with
probability at least 1−ε, the following are both true: (1) SB

0 (x) outputs (B(x), z)
for some z, and (2) SB

1 (z, w) = x ∈ X ′. We will therefore say that x is “good”
if the above both hold; there are at least (1 − ε)|X ′| good x. In the case c ≤ d,
suppose that x is good. Then UB(B(x)) will successfully invert provided z∗ = z,
which occurs with probability |Y|−(1−d).

In the case c > d, then there will be multiple good x for each w. Consider
the set of good x′ ∈ X ′ such that B(x′) = w, and let z′ be the associated value
outputted by SB

0 (x′). Let pw be the number of such x′. Then as long as z∗ is
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equal to any z′ for a good x′, UB(w) will output x′, a pre-image of w. Thus, the
probability of success for a given w is at least pw|Y|−(1−d). Since the total number
of good x′ is (1− ε)|X ′|, the expectation of pw is (1− ε)|X ′|/|Y ′| = (1− ε)|Y|c−d,
meaning B succeeds with probability (1 − ε)|Y|−(1−c). �
We now contrast Claim 6.4 with the (quantum) hardness of pre-image search:

Lemma 10 ([BBBV97]). For any q quantum query algorithm A making queries
to a random function O : |X | → |Y|, Prx←X [O( AO( O(x) ) ) = O(x)] ≤
O(q2/ min(|X |, |Y|)). In other words, a random oracle is quantum one-way4.

This shows that no q-query (quantum) algorithm can invert B except with prob-
ability at most O(q2|Y|− min(c,d)). We thus have q2 ≥ Ω(|Y|min(c,d)+max(c,d)−1) =
Ω(|Y|c+d−1) = |Y|Ω(1) (since c + d > 1), which is exponential. �

7 Post-quantum Groups

Here, we demonstrate that generic groups are strongly reset indifferentiability
from random injections in the quantum setting.

Theorem 12. Let GG be a generic group of order p and label space {0, 1}n.
Then the labeling function for GG, namely L, is strongly statistical quantum
reset indifferentiable from a (keyless) random injection I : {0, 1}log p → {0, 1}n.

Proof. We use Shor’s algorithm [Sho94] to invert the labeling function. We can
simulate the group operations by inverting the labeling function, performing the
group operation in Zp, and then re-applying the labeling function. �

7.1 Instantiations and Applications

We can instantiate the generic group using either subgroups of the multiplicative
group of finite fields, or over elliptic curves. Then, applying the pad-and-truncate
construction, we obtain a plausible post-quantum random oracle. We briefly
discuss the case of finite fields. Let q be a prime and g an element generating
a large subgroup of Z∗

q . As we do not need discrete logarithms to be hard, the
order of g does not seem to matter, and g can even be a generator of Z∗

q . Let
gi = g2i mod q. Then ga mod q =

∏n−1
i=0 gai

i , where ai is the ith binary bit
of a. Our pad-and-truncate construction is then a 
→ (

∏n−1
i=0 gai

i mod q) mod r,
for some sufficiently small r, giving a simple plausible a post-quantum random
oracle.

4 Note that [BBBV97] phrase their result as finding a marked item in a list. Never-
theless, the statement of their result and its proof can be rephrased as in Lemma 10.
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Key-Less Classical Permutations. One limitation of the above is that the generic
group is only quantumly equivalent to a key-less injection, requiring Shor’s algo-
rithm to perform inverses. However, an easy fix is to make the discrete log
classically easy, by having the group order be smooth. Let q be such that q − 1
has all small prime factors. Then computing discrete logs in Z∗

q is even classically
easy by solving discrete log mod each of the factors of q − 1, and then Chinese
Remaindering. Our labeling function maps Zq−1 → Z∗

q ; this can be turned into
a permutation by simply subtracting 1 from the final result.

References

[AR16] Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography
based on hidden shifts. Cryptology ePrint Archive, Report 2016/960
(2016). http://eprint.iacr.org/2016/960

[AS04] Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the
element distinctness problems. J. ACM 51(4), 595–605 (2004)

[AY20] Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and
LWE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12105, pp. 13–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45721-1_2

[BBBV97] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and
weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523
(1997)

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.
org/10.1007/11426639_26

[BBM13] Baecher, P., Brzuska, C., Mittelbach, A.: Reset indifferentiability and its
consequences. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8269, pp. 154–173. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42033-7_9

[BDF+11] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C.,
Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

[BDG20] Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC
KEMs, oracle cloning and read-only indifferentiability. In: Canteaut, A.,
Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_1

[BFF+14] Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.:
Automated analysis of cryptographic assumptions in generic group models.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
95–112. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2_6

[BMZ19] Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and ran-
dom generators in group-based assumptions. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 801–830. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7_27

http://eprint.iacr.org/2016/960
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-642-42033-7_9
https://doi.org/10.1007/978-3-642-42033-7_9
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-030-26951-7_27


546 M. Zhandry

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

[BSW07] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based
encryption. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–
334. IEEE Computer Society Press, May 2007

[CDMP05] Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revis-
ited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005). https://doi.
org/10.1007/11535218_26

[CLMQ20] Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does Fiat-Shamir require a
cryptographic hash function? Cryptology ePrint Archive, Report 2020/915
(2020). https://eprint.iacr.org/2020/915

[CMSZ19] Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling
and game-playing proofs for quantum indifferentiability. Cryptology ePrint
Archive, Report 2019/428 (2019). https://eprint.iacr.org/2019/428

[CPS08] Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the
ideal cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85174-5_1

[Cza21] Czajkowski, J.: Quantum indifferentiability of SHA-3. Cryptology ePrint
Archive, Report 2021/192 (2021). https://eprint.iacr.org/2021/192

[Des00] Desai, A.: The security of all-or-nothing encryption: protecting against
exhaustive key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol.
1880, pp. 359–375. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44598-6_23

[DFM20] Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0:
multi-round Fiat-Shamir and more. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56877-1_21

[DFMS19] Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir
transformation in the quantum random-oracle model. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_13

[DGHM13] Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indiffer-
entiability. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 664–683. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38348-9_39

[DHZ14] Damgård, I., Hazay, C., Zottarel, A.: Short paper on the generic hardness
of DDH-II (2014)

[DRRS09] Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of
permutation-based compression functions and tree-based modes of opera-
tion, with applications to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 104–121. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03317-9_7

[DS16] Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
95–120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53018-4_4

https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://eprint.iacr.org/2020/915
https://eprint.iacr.org/2019/428
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://eprint.iacr.org/2021/192
https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-03317-9_7
https://doi.org/10.1007/978-3-642-03317-9_7
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4


Redeeming Reset Indifferentiability and Applications 547

[GP07] Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74619-5_28

[HKT11] Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random
oracle model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan,
S.P. (eds.) 43rd ACM STOC, pp. 89–98. ACM Press, June 2011

[KSS+20] Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-
rewind-measure: tighter quantum random oracle model proofs for one-way
to hiding and CCA security. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12107, pp. 703–728. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3_24

[LAMP12] Luykx, A., Andreeva, E., Mennink, B., Preneel, B.: Impossibility results for
indifferentiability with resets. Cryptology ePrint Archive, Report 2012/644
(2012). http://eprint.iacr.org/2012/644

[LR86] Luby, M., Rackoff, C.: How to construct pseudo-random permutations
from pseudo-random functions. In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 447–447. Springer, Heidelberg (1986). https://doi.org/
10.1007/3-540-39799-X_34

[LZ19] Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_12

[Mit14] Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 603–621. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5_33

[MRH04] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodol-
ogy. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_2

[RSS11] Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition:
limitations of the indifferentiability framework. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4_27

[RST01] Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-45682-1_32

[Sho94] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and
factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press,
November 1994

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

[TU16] Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto
and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53644-5_8

[Unr15] Unruh, D.: Non-interactive zero-knowledge proofs in the quantum ran-
dom oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46803-6_25

https://doi.org/10.1007/978-3-540-74619-5_28
https://doi.org/10.1007/978-3-030-45727-3_24
http://eprint.iacr.org/2012/644
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-55220-5_33
https://doi.org/10.1007/978-3-642-55220-5_33
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25


548 M. Zhandry

[YZ20] Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. Cryp-
tology ePrint Archive, Report 2020/1270 (2020). https://eprint.iacr.org/
2020/1270

[Zha12a] Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS,
pp. 679–687. IEEE Computer Society Press, October 2012

[Zha12b] Zhandry, M.: Secure identity-based encryption in the quantum random ora-
cle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5_44

[Zha15a] Zhandry, M.: A note on the quantum collision and set equality problems.
Quantum Info. Comput. 15(7–8), 557–567 (2015)

[Zha15b] Zhandry, M.: Quantum oracle classification - the case of group structure
(2015)

[Zha16] Zhandry, M.: A note on quantum-secure PRPs. Cryptology ePrint Archive,
Report 2016/1076 (2016). http://eprint.iacr.org/2016/1076

[Zha19] Zhandry, M.: How to record quantum queries, and applications to quantum
indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26951-7_9

[Zha21] Zhandry, M.: Redeeming reset indifferentiability and applications to post-
quantum security. Cryptology ePrint Archive, Report 2021/288 (2021).
https://eprint.iacr.org/2021/288

[ZZ21] Zhandry, M., Zhang, C.: The relationship between idealized models under
computationally bounded adversaries. Cryptology ePrint Archive, Report
2021/240 (2021). https://eprint.iacr.org/2021/240

https://eprint.iacr.org/2020/1270
https://eprint.iacr.org/2020/1270
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
http://eprint.iacr.org/2016/1076
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://eprint.iacr.org/2021/288
https://eprint.iacr.org/2021/240


Franchised Quantum Money

Bhaskar Roberts1(B) and Mark Zhandry2,3(B)

1 UC Berkeley, Berkeley, USA
bhaskarr@eecs.berkeley.edu

2 Princeton University, Princeton, USA
mzhandry@princeton.edu

3 NTT Research, Sunnyvale, USA

Abstract. The construction of public key quantum money based on
standard cryptographic assumptions is a longstanding open question.
Here we introduce franchised quantum money, an alternative form of
quantum money that is easier to construct. Franchised quantum money
retains the features of a useful quantum money scheme, namely unforge-
ability and local verification: anyone can verify banknotes without com-
municating with the bank. In franchised quantum money, every user
gets a unique secret verification key, and the scheme is secure against
counterfeiting and sabotage, a new security notion that appears in the
franchised model. Finally, we construct franchised quantum money and
prove security assuming one-way functions.

1 Introduction

The application of quantum information to unforgeable currency was first envi-
sioned by Wiesner [Wie83], and these early ideas laid the foundation for the
field of quantum cryptography. However, Wiesner’s scheme for quantum money
has a major drawback: verifying that a banknote is valid requires a classical
description of the state, so the banknote must be sent back to the bank for
verification.

The key properties that make cash (paper bills) useful are that anyone can
verify banknotes locally, without communicating with the bank, and the ban-
knotes are hard to counterfeit. In a classical world, digital currency cannot hope
to achieve these properties because any classical bitstring can be duplicated.
In a quantum world, we have hope for uncounterfeitable money because of the
no-cloning theorem.

Recent works [Aar09,FGH+12,AC12,Zha19] have sought a public test to ver-
ify banknotes. A scheme with such a test is called public key quantum money
(or PKQM). Unfortunately, a convincing construction of public key quantum
money has been notoriously elusive. Most proposals have been based on new
ad hoc complexity assumptions, and in many cases those assumptions were bro-
ken [FGH+12,PFP15,Aar16]. Recently, Zhandry [Zha19] showed that the [AC12]
scheme can be instantiated using recent indistinguishability obfuscators. How-
ever, the quantum security of such obfuscators is currently unclear. Zhandry
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also proposed a new quantum money scheme in [Zha19], but the security of his
scheme was also called into question [Rob21].

Franchised Quantum Money: In this work, we introduce franchised quantum
money (FQM), which is useful as a currency system, easier to construct than
public key quantum money, and potentially a stepping stone to PKQM. In fran-
chised quantum money, every user receives a unique secret verification key. With
their key, a user can verify banknotes locally, but they cannot create counterfeit
money that would fool another user. Our main result is to show how to real-
ize franchised quantum money under essentially minimal assumptions, namely
one-way functions.

Franchised quantum money is a secret key scheme that approximates the
functionality of a public key scheme. In particular, franchised quantum money
achieves local verification1.

The franchised verification model is broadly useful for approximating the
security guarantees of public key verification. Building off of an earlier, unpub-
lished version of this paper, [KNY21] proposed a franchised verification model
for quantum lightning, and combined with a lattice assumption that we also
proposed, they constructed a scheme for secure software leasing.

The central feature of franchised quantum money is that each user has a
unique secret key. Furthermore, we only require that an adversary cannot trick
a different user into accepting a counterfeit banknote.

The difficulty with PKQM is that if the adversary knows the verification key,
they know what properties of the state will be tested during verification. It is
hard to design a verification procedure that reveals just enough information to
verify banknotes, without giving enough information to create fake banknotes
that fool the verifier.

Franchised quantum money does not have this issue. The adversary does not
know any other user’s key, so they don’t know what properties the other user
will test during verification. Therefore it is hard for the adversary to trick the
other user into accepting a counterfeit banknote.

1.1 Technical Details

Definition of Franchised Quantum Money: In franchised quantum money,
there is a trusted party, called the bank, that administers the currency system
by generating verification keys and banknotes. A banknote is valid if it was
generated by the bank.

The other participants in the system are untrusted users, who send and
receive banknotes among each other. Each user can request a unique secret

1 [BS20] also propose a quantum money scheme that tries to approximate the func-
tionality of PKQM. However, their scheme does not achieve local verification: their
banknotes must be periodically sent back to the bank for verification. Furthermore,
the way they define security is hard to justify.
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verification key from the bank. The key allows the user to verify any banknote
they receive, and valid banknotes are accepted by verification with overwhelming
probability.

Some users (the adversaries) are malicious and try to trick other users into
accepting invalid banknotes. However it’s hard for an adversary to create invalid
banknotes that another user would accept.

Security: In order to be considered secure, a franchised quantum money scheme
must be secure against both counterfeiting and sabotage.

Security Against Counterfeiting: We say that the scheme is secure against coun-
terfeiting if it is hard for an adversary with m valid banknotes to get any other
users to accept m + 1 banknotes. The key difference from public key quantum
money lies in the word other. We don’t care if the adversary can produce m + 1
banknotes that they themself would accept.

In fact in our construction, it’s easy for the adversary to “trick themself”
into accepting invalid banknotes, because if they know what key will be used in
verification, they can create invalid banknotes that will be accepted. However, a
different user with a key that is unknown to the adversary will recognize these
banknotes as invalid.

Security Against Sabotage: Because each user has a different key, there is a
second kind of security we need to consider. We don’t want one user to accept
an invalid banknote that another user would reject.

We call this attack sabotage:2 the adversary takes a valid banknote and mod-
ifies it. Then they give it to one user, who accepts it even though the banknote is
invalid. But when the first user tries to spend the banknote with a second user,
the second user rejects the banknote.

How could sabotage be possible if the scheme is secure against counterfeiting?
The adversary does not need to spend more banknotes than they received in
order to succeed at sabotage.

A scheme is secure against sabotage if the adversary cannot produce a ban-
knote that one other user accepts but which a second other user rejects.

Remark 1. We note that sabotage attacks are also a potential concern for public
key quantum money schemes. Even though all users run the same verification
procedure, technically two successive runs of the procedure may not output
the same result. However, this problem can always be avoided by implementing
verification as a projective measurement.

Furthermore, in practice, decoherence between runs may cause successive
runs to behave differently. In this case too, sabotage attacks may be relevant.

To the best of our knowledge, this is the first work to point out these potential
problems.

2 We borrow this name from [BS20].
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If an FQM scheme is secure against counterfeiting and sabotage, then it is
practically useful as currency. This is because users can trust that any banknote
they accept will be accepted by all other users, and the money supply will not
increase unless the bank produces more banknotes. Therefore, these banknotes
can hold monetary value. Quantum money does not need to be public key in
order to be useful as a currency system.

Construction from Hidden Subspaces: Our construction of FQM is based
on [AC12]’s proposal for PKQM from black-box subspace oracles. Below is a
simplified version of our construction. A less-simplified version is given in Sect. 4,
and the full version is given in Sect. 5.

Banknote: The banknote is an n-qubit quantum state. We can think of its com-
putational basis states as vectors in Z

n
2 . The banknote |A〉 is a superposition

over some random subspace A ≤ Z
n
2 such that dim(A) = dim(A⊥) = n/2. We

call this state a subspace state.

|A〉 =
1

√|A|
∑

x∈A

|x〉

Verification Key: For a given banknote |A〉, each verification key is a pair of
random subspaces (V,W ). V ≤ A and W ≤ A⊥, and the dimension of V and W
is t := Θ(

√
n). Each verifier gets an independently random (V,W ).

Verification: To verify a banknote, the verifier performs two tests, one in the
computational basis, and one in the Fourier basis.

First we test that the classical basis states of |A〉 are in W⊥.
Then we take the quantum Fourier transform of the banknote. If the banknote

is valid, the resulting state, |̃A〉, is a superposition over A⊥ ([AC12]):

|̃A〉 = |A⊥〉 =
1

√|A⊥|
∑

y∈A⊥
|y〉

Next, in the Fourier basis, we test that the vectors in |̃A〉’s superposition are
in V ⊥. Finally we take the inverse quantum Fourier transform, and return the
resulting state. We accept the banknote if both tests passed. If the banknote was
valid, the final state is the same as the initial one.

Discussion: A verifier will accept any subspace state |B〉 where V ≤ B ≤ W⊥.
Note that the adversary can easily construct a |B〉 based on their key (V,W )
that they themself would accept.

However, an adversary cannot trick other users into accepting an invalid
banknote. With probability overwhelming in n, the other user’s (V,W ) include
dimensions of A and A⊥, respectively, that are unknown to the adversary. Any
banknote the adversary tries to produce, other than an honest banknote, will
almost certainly get “caught” by these other dimensions and rejected.
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Multiple Banknotes. In the simplified construction above, one verification key
(V,W ) cannot verify multiple banknotes. Each banknote uses a different sub-
space A, and (V,W ) depend on the choice of A.

However in the full construction, one verification key needs to verify every
banknote the user receives. To achieve this, we assume the existence of one-way
functions, which implies CPA-secure encryption. First, (V,W ) are encrypted
and appended to the banknote as a classical ciphertext. Then the decryption
key serves as the verification key – the verifier decrypts the ciphertext to get
(V,W ), which they use to verify the banknote.

It is straightforward to see that some computational assumptions are nec-
essary for franchised quantum money, since given an unlimited number of ban-
knotes, the bank’s master secret key is information-theoretically determined. So
our construction of franchised quantum money uses essentially minimal assump-
tions.

Franchised vs. Obfuscated Verification: The franchised verification model allows
us to avoid using obfuscation when constructing quantum money, and the model
may be useful beyond quantum money as a way to avoid obfuscation.

[AC12,Zha19]’s construction of PKQM relies on strong forms of obfuscation,
such as post-quantum-secure iO, for which we have no convincing construction.
The PKQM construction is like our FQM construction, except every verifier
uses V = A and W = A⊥. We call this full verification, in contrast to franchised
verification. Additionally, the oracles checking membership in A and A⊥ are
obfuscated so the adversary can’t learn A.

In the franchised model, there is no need for obfuscation. The adversary
only gets query access to the verifier, and they do not know the other users’
verification keys. It is therefore feasible to construct FQM from assumptions
weaker than obfuscation.

Finally, the franchised verifiers enjoy essentially the same security as full
verifiers. We will show that the adversary cannot distinguish whether they’re
interacting with a full verifier or a franchised verifier, so our FQM construction
inherits the security guarantees of the PKQM construction.

Colluding Adversaries: As we defined FQM above, each user receives one
verification key. But in the real world, it’s possible that multiple adversaries
collude: they pool their verification keys to gain more counterfeiting or sabotage
power.

In our construction, each key gives a small number of dimensions of A and
A⊥. If the adversary has unlimited verification keys, then they can learn all of
A and A⊥ and produce as many copies of |A〉 as they want. So we will impose
a collusion bound: no more than C = n

4t adversaries can work together. This
means no adversary learns more than n/4 dimensions of A (or A⊥). With this
collusion bound, the scheme is secure.
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Although our scheme needs large banknotes to handle a large collusion bound,
this may be reasonable in any scenario where the number of users is small – for
example, in markets for certain financial securities, event tickets, etc.3

Additionally, collusion bounds are commonplace in cryptography, for exam-
ple in traitor tracing. Our construction is analogous to the early days of traitor
tracing, where the initial schemes [CFN94] had ciphertexts with size linear in the
collusion bound, and the main goal became to shrink the ciphertext size. Even-
tually, [GKW18] essentially removed the collusion bound, giving a construction
that is secure against exponentially many colluding adversaries, as a function of
the ciphertext size.

Finally, we expect that any FQM scheme will require a collusion bound of
some kind or else it would likely yield PKQM. See Sect. 1.2 for more detail.

1.2 Next Steps

Increase the Collusion Bound: The main open problem is to increase the col-
lusion bound, while maintaining small banknotes and verification keys. In our
construction of FQM, the size of the banknotes (n) grows faster than the col-
lusion bound (C = Θ(

√
n)). A reasonable next step is to construct a scheme

whose banknote size grows slower than the collusion bound.
Here are two possible approaches: first, we might use LWE or similar assump-

tions to add noise to the verification keys. Given many noisy keys, an adversary
would hopefully be unable to learn the secret information needed for counter-
feiting. LWE has been used in traitor tracing [GKW18] to increase the collusion
bound while achieving short ciphertexts and secret keys (which are analogous to
banknotes and verification keys).

Second, we can use combinatorial techniques, such as those used for traitor
tracing in [BN08]. [BN08]’s techniques have resulted in optimally short cipher-
texts and might be used to achieve short banknotes. However, combinatorial
techniques in traitor tracing usually come at the cost of much larger secret keys,
and we might expect something similar for franchised quantum money.

Work Up to Public Key Quantum Money: Franchised quantum money is a poten-
tial stepping stone to PKQM. Intuitively, the larger the collusion bound, the
more the scheme behaves like PKQM, and we expect that PKQM can be easily
constructed from an FQM construction that has unbounded collusion.

Hypothetically, how would we prove security for an FQM scheme with
unbounded collusion? The reduction would have to generate the adversary’s
verification keys, and somehow use the adversary’s forgery for honest keys to
break some underlying hard problem. But if the reduction could generate new
verification keys for itself, then the construction might also be able to generate
these new keys. If this were the case, we would easily get a public key quantum
money scheme: to verify a banknote, generate a new verification key for yourself,
and use that key.

3 We thank an anonymous reviewer for suggesting these applications.



Franchised Quantum Money 555

Franchised Semi-quantum Money: We can make the mint in our scheme entirely
classical, similar to the semi-quantum money scheme of [RS19], which is a secret
key scheme. This follows from the fact that anyone can create new (un-signed)
banknotes. To create and send a new banknote to a recipient, the recipient will
generate a new un-signed banknote |$〉 with serial number y on its own. It will
then send y to the mint, who will sign y with a classical signature scheme.

2 Preliminaries

Subspaces

◦ For any subspace A ≤ Z
n
2 , A will also refer to a matrix whose columns are a

basis of the subspace A. The matrix serves as a description of the subspace.
◦ Let A⊥ = {x ∈ Z

n
2 |∀a ∈ A, 〈x,a〉 = 0} be the orthogonal complement of A.

◦ Let |A〉 = 1√
|A|

∑
x∈A |x〉

◦ Let OA : Zn
2 → {0, 1} decide membership in A. That is, ∀x ∈ Z

n
2 :

OA(x) = 1x∈A

Given a basis B of A⊥, we can compute OA as follows:

OA(x) = 1BT ·x=0

Quantum Computation

Here we recall the basics of quantum computation, and refer to Nielsen and
Chuang [NC00] for a more detailed overview.

A quantum system is a Hilbert space H and an associated inner product 〈·|·〉.
The state of the system is given by a complex unit vector |ψ〉. Given quantum
systems H1 and H2, the joint quantum system is given by the tensor product
H1 ⊗ H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, we denote the product state by
|ψ1〉|ψ2〉 ∈ H1 ⊗H2. A quantum state |ψ〉 can be “measured” in an orthonormal
basis B = {|b0〉, ..., |bd−1〉} for H, which gives value i with probability |〈bi|ψ〉|2.
The quantum state then collapses to the basis element |bi〉.

For a state over a joint system H1 ⊗ H2, we can also perform a partial
measurement over just, say, H1. Let {|a0〉, ...〉} be a basis for H1 and {|b0〉, ...〉}
a basis for H2. Then for a general state |ψ〉 =

∑
i,j αi,j |ai〉|bj〉, measuring in H1

will give the outcome i with probability pi =
∑

j |αi,j |2. In this case, the state
collapses to

√
1/pi

∑
j αi,j |ai〉|bj〉.

Operations on quantum states are given by unitary transformations over H.
An efficient quantum algorithm is a unitary U that can be decomposed into a
polynomial-sized circuit, consisting of unitary matrices from some finite set.
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Miscellaneous

A function f(λ) is negligible, written as f(λ) = negl(λ), if f(λ) = o(λ−c) for any
constant c. poly(λ) is a generic polynomial in λ. A probability p is overwhelming
if 1− p = negl(λ). Finally [λ] = {1, . . . , λ}, for any λ ∈ N. Numbers are assumed
to be in N unless otherwise stated.

3 Definition of Franchised Quantum Money

Here we’ll define franchised quantum money and its notions of security in detail.

Definition 1 (Main Variables).

◦ Let λ ∈ N be the security parameter.
◦ Let N ∈ N be the number of verification keys that the bank distributes.

N = O(poly(λ)) in the security game because the adversary cannot query
more than polynomially-many users.

◦ Let C ∈ [N ] be the collusion bound, the maximum number of verification
keys that the adversary can receive.

◦ Let msk be the master secret key, known only by the bank.
◦ Let svk be a secret verification key given to a user.
◦ Let |$〉 be a valid banknote. Let |P 〉 be a purported banknote, which may or

may not be valid.
◦ After verification, |$〉 becomes |$′〉, and |P 〉 becomes |P ′〉.

Definition 2. A franchised quantum money scheme F comprises four
polynomial-time quantum algorithms: Setup, Franchise, Mint, and Ver.

1. Setup: The bank runs Setup to initialize the FQM scheme.

msk ← Setup(1λ)

2. Franchise: The bank runs Franchise whenever a user requests a secret verifi-
cation key. Then the bank sends svk to the user.

svk ← Franchise(msk)

3. Mint: The bank runs Mint to create a new banknote |$〉. Then the bank gives
|$〉 to someone who wants to spend it.

|$〉 ← Mint(msk)

4. Ver: Any user with a secret verification key can run Ver to check whether a
purported banknote |P 〉 is valid. Ver accepts |P 〉 (b = 1) or rejects |P 〉 (b = 0).
Finally, |P 〉 becomes |P ′〉 after it is processed by Ver.

b, |P ′〉 ← Ver(svk, |P 〉)
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In order to function as money, |$〉 should be accepted by Ver with overwhelm-
ing probability, and |$′〉 should be close to |$〉. This way, we can verify the state
in future transactions. The following definition, for correctness, achieves these
properties.

Definition 3. F is correct if for any svk ← Franchise(msk), any |$〉 ←
Mint(msk), and any N and C that are polynomial in λ,

1. Ver(svk, |$〉) accepts with probability overwhelming in λ, and
2. The trace distance between |$〉 and |$′〉 is negl(λ).

Next, franchised quantum money needs two forms of security: security against
counterfeiting and sabotage. Security against counterfeiting, defined below,
means that an adversary given m banknotes cannot produce m + 1 banknotes
that pass verification, except with negl(λ) probability.

Definition 4. F is secure against counterfeiting if for any polynomial-time
quantum adversary, the probability that the adversary wins the following security
game is negl(λ):

1. Setup: The challenger is given λ,N, and C, where N,C = poly(λ). Then the
challenger runs Setup(1λ) to get msk, and finally creates N verification keys
(svk1, . . . , svkN ) by running Franchise(msk) N times.

2. Queries: The adversary makes any number of franchise, mint, and verify
queries, in any order:

◦ Franchise: the challenger sends a previously unused key to the adver-
sary. By convention, let the last C keys be sent to the adversary:
svkN−C+1, . . . , svkN .

◦ Mint: The challenger samples |$〉 ← Mint(msk) and sends |$〉 to the
adversary.

◦ Verify: The adversary sends a state |P 〉 and an index id ∈ [N − C]
to the challenger. The challenger runs Ver(svkid, |P 〉), and sends the
results (b, |P ′〉) back to the adversary.

Let m be the number of mint queries made, which represents the number of
valid banknotes the adversary receives.

3. Challenge: The adversary tries to spend m + 1 banknotes. The adversary
sends to the challenger u > m purported banknotes, possibly entangled, each
with an id ∈ [N − c]:

(id1, |P 〉1), (id2, |P 〉2), . . . , (idu, |P 〉u)

Then for each purported banknote |P 〉k, the challenger runs Ver:

bk, |P ′〉k ← Ver(svkidk
, |P 〉k)

The adversary wins the game if at least m + 1 of the purported banknotes are
accepted.
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The second form of security is security against sabotage. Sabotage is when
the adversary tricks one user into accepting an invalid banknote that is then
rejected by a second user.

Definition 5. F is secure against sabotage if for any polynomial-time quan-
tum adversary, the probability that the adversary wins the following security game
is negl(λ):

1. Setup: same as in Definition 4
2. Queries: same as in Definition 4
3. Challenge: The adversary sends to the challenger a banknote |P 〉 and two

distinct indices id1, id2 ∈ [N − c].
The challenger runs Ver using svkid1 , then svkid2 :

b1, |P ′〉 ← Ver(svkid1 , |P 〉)
b2, |P ′′〉 ← Ver(svkid2 , |P ′〉)

The adversary wins the game if the first verification accepts (b1 = 1) and the
second verification rejects (b2 = 0).

4 Simple Construction

Here we give a simpler version of our construction of FQM in order to illustrate
the main ideas. The simple construction is correct and secure, but only if the
adversary gets just one banknote. The full construction of FQM is given in
Sect. 5.

Variables and Parameters

◦ Let N be any poly(λ).
◦ Let n = Ω(λ) be the dimension of the ambient vector space: Zn

2 .
◦ Let A < Z

n
2 be a subspace, and let dim(A) = dim(A⊥) = n/2.

◦ Let V ≤ A and W ≤ A⊥ be two subspaces given by an svk.
◦ Let t = Θ(

√
n) be an upper bound on the dimension of V and W .

◦ Let C = n
4t .

Setup
Input: 1λ

1. Choose values for N,n, and t.
2. Sample A ≤ Z

n
2 such that dim(A) = dim(A⊥) = n/2.

3. For each id ∈ [N ]: sample t indices uniformly and independently from [n/2].
Call this set Iid. Then sample another set called Jid from the same distribu-
tion.

4. Sample v1, . . . ,vn/2 ∈ A independently and uniformly at random.
Sample w1, . . . ,wn/2 ∈ A⊥ independently and uniformly at random.
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5.
Let msk =

(
A, {vi}i∈[n/2], {wj}j∈[n/2], {Iid, Jid}id∈[N ]

)

and output msk.

Franchise
Input: msk

1. Choose an id ∈ [N ] that hasn’t been chosen before.
2. Let svkid =

(
Iid, Jid, {vi}i∈Iid , {wj}j∈Jid

)
, and output svkid.

Mint
Input: msk

1. Generate and output |$〉 = |A〉.
Ver
Input: svk, |P 〉

Let svk =
(
I, J, {vi}i∈I , {wj}j∈J

)
. Then let

V := span({vi}i∈I) and W = span({wj}j∈J)

1. Computational basis test: Check that OW ⊥
(|P 〉) = 1. Now |P 〉 becomes

|P1〉.
2. Take the quantum Fourier transform of |P1〉 to get |̃P1〉.
3. Fourier basis test: Check that OV ⊥

(|̃P1〉
)

= 1. Now |̃P1〉 becomes |̃P2〉.
4. Take the inverse quantum Fourier transform of |̃P2〉 to get |P2〉. Let |P ′〉 =

|P2〉. Output 1 (accept) if both tests pass, and 0 (reject) otherwise. Also
output |P ′〉.

Proofs of Correctness and Security

Theorem 1. The simple FQM construction is correct.

Proof. We will show that for any valid banknote |$〉 = |A〉, Ver(svk, |$〉) outputs
(1, |$〉) with probability 1.

1. The computational basis test passes with probability 1. W ≤ A⊥, so A ≤ W⊥,
and OW ⊥(|A〉) = 1 with probability 1. Also the banknote is unchanged by
this test.

2. The quantum Fourier transform of the banknote is |A⊥〉 ([AC12]).
3. The Fourier basis test also passes with probability 1. Since V ≤ A, then

A⊥ ≤ V ⊥, and OV ⊥(|A⊥〉) = 1 with probability 1. The banknote is also
unchanged by this test.

4. Finally, the inverse quantum Fourier transform restores the banknote to its
initial state |A〉, and the banknote is accepted by Ver with probability 1.

�



560 B. Roberts and M. Zhandry

Theorem 2. The simple FQM construction is secure against counterfeiting if
the adversary receives only m = 1 banknote.

Proof.
1) Preliminaries
Let’s say without loss of generality that the adversary receives C verification
keys, which correspond to the last C identities: id ∈ {N − C + 1, . . . , N}. Then
they receive 1 banknote, and then they make any polynomial number of verifi-
cation queries. Finally, they attempt the counterfeiting challenge.

We can define the subspaces Vadv ≤ A and Wadv ≤ A⊥ as the subspaces
known to the adversary. We also define Vid and Wid analogously for each id ∈ [N ]:

Definition 6.

◦ Let Iadv =
⋃

id>N−C Iid and Jadv =
⋃

id>N−C Jid.
◦ For any id ∈ [N ], let Vid = span

({vi}i∈Iid

)
. Let Wid, Vadv, and Wadv be

defined analogously.

Let’s assume for simplicity that

dim(Vadv) = dim(Wadv) =: d

where d is fixed. This assumption isn’t necessary for proving security, but it does
make the proof simpler. Also note that d ≤ n/4.
2) We’ll use a hybrid argument to reduce the counterfeiting game to [AC12]’s
security game for secret key quantum money:

◦ h0 is the counterfeiting security game for the simple FQM construction. In
particular, the adversary receives one banknote |A〉, along with C franchised
verification keys.

◦ h1 is the same as h0, except the challenger simulates full verifiers: whenever
the adversary makes a verification query (id, |P 〉), the challenger verifies the
state using OA and OA⊥ instead of OW ⊥

id
and OV ⊥

id
.

◦ h2 is essentially [AC12]’s security game for secret key quantum money: let
A ≤ Z

n−2d
2 be a uniformly random subspace such that dim(A) = dim(A⊥) =

n/2 − d. Next, the adversary gets a banknote |A〉 but no verification keys.
They can make verification queries, and the challenger will run Ver using
full verifiers: (OA and OA⊥).

Lemma 1. For any polynomial-time adversary A, their success probabilities in
h0 and in h1 differ by a negl(λ) function.

We’ll defer the proof of Lemma 1 to Sect. 6.

Lemma 2. If A is a polynomial-time adversary with non-negligible success prob-
ability in h1, then there is a polynomial-time adversary A′ with non-negligible
success probability in h2.
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Proof. We can reduce the security game in h2 to the security game in h1. Let
A′ be given an h2 banknote |A〉, where A ≤ Z

n−2d
2 and dim(A) = dim(A⊥) =

n/2−d. We will turn |A〉 into an h1 banknote |B〉, where B ≤ Z
n
2 , and dim(B) =

dim(B⊥) = n/2:

1. Prepend |A〉 with |0〉⊗d|+〉⊗d:

Let |A′〉 = |0〉⊗d|+〉⊗d|A〉
|A′〉 is a subspace state, a uniform superposition over the subspace

A′ := span[êd+1, . . . , ê2d, (0×2d × A)]

where 0×2d × A is all vectors in Z
n
2 for which the first 2d bits are 0 and the

rest form a vector in A. Also, dim(A′) = dim(A′⊥) = n/2.
2. Sample an invertible matrix M ∈ Z

n×n
2 uniformly at random. Then apply M

to |A′〉:
Let B = M · A′ and |B〉 = M(|A′〉)

Observe that |B〉 is a uniformly random h1 banknote.

Additionally, the adversary knows d dimensions of B and d dimensions of
B⊥:

Vadv = M · span(êd+1, . . . , ê2d)
Wadv = M · span(ê1, . . . , êd)

A′ derives C h1-verification keys whose vectors span Vadv and Wadv. Finally, A′

runs A, giving it the banknote |B〉 along with the verification keys.
When A makes a verification query (id, |P 〉), A′ simulates the h1 challenger’s

response as follows, by converting |P 〉 into an h2 banknote:

1. Let |P ′〉 = M−1(|P 〉).
2. Check that the first 2d qubits of |P ′〉 are |0〉⊗d|+〉⊗d.
3. Query the h2 challenger with the remaining n − 2d qubits of |P ′〉. Let |P ′′〉

be the state returned by the challenger. Accept the banknote if and only if
the first 2d qubits passed their test, and the challenger accepted as well.

4. Return M(|0〉⊗d|+〉⊗d|P ′′〉) to the h1 adversary.

This procedure simulates h1 for A. Also, note that the probability that |P ′〉
passes h2 verification is at least the probability that |P 〉 passes h1 verification.

Finally, when A attempts to win the challenge by outputting several pur-
ported h1 banknotes, A′ converts these into h2 banknotes. If A wins in h1 with
non-negligible probability, then A′ wins in h2 with at least that probability. �
Lemma 3. In h2, any polynomial-time adversary has negligible success proba-
bility.

Proof. [AC12]’s security game is similar to h2, except the adversary can query
both OA and OA⊥ . They proved the following:
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Theorem 3 ([AC12], Theorem 25). Let the adversary get |A〉, a random n′-
qubit banknote, along with quantum query access to OA and OA⊥ . If the adver-
sary prepares two possibly entangled banknotes that both pass verification with
probability ≥ ε, for all 1/ε = o(2n′/2), then they make at least Ω(

√
ε2n′/4) ora-

cle queries.

Let n′ = n − 2d, the size of the banknote in h2. Note that n′ ≥ n/2. Next, let
ε = 2−n′/3. Note that ε = negl(λ). Finally, the number of queries needed to win
with probability ≥ ε is

Ω(
√

ε2n′/4) = Ω(2n′/4−n′/6) = Ω(2n′/12)

Any polynomial-time adversary makes fewer than that many queries, so no
polynomial-time adversary can win with non-negligible probability. �

Putting together Lemmas 1, 2, 3, we get that any polynomial-time adversary
has negligible probability of winning the counterfeiting security game for the
simple construction of FQM. �
Theorem 4. The simple FQM construction is secure against sabotage if the
adversary receives only m = 1 banknote.

Proof. The proof of this theorem follows the proof of 2, except at the end. We
need to show that in h2, any polynomial-time adversary has negligible probability
of succeeding at sabotage. To show this, we need the following lemma:

Lemma 4 ([AC12], Lemma 21). In h2, Ver projects |P 〉 onto |A〉 if it accepts
and onto a state orthogonal to |A〉 if it rejects.

That means that if a purported banknote is verified twice, it is either accepted
both times or rejected both times. Therefore, sabotage is not possible in h2.

Again, by Lemmas 1 and 2, any polynomial-time adversary has negligible
probability of winning the sabotage security game for the simple construction of
FQM. �

5 Full Construction

The full construction of FQM adds a signature scheme and a secret key encryp-
tion scheme, which let us hand out the subspaces Vid,Wid as part of the ban-
knote. As a result, a user can verify many banknotes, each for a different subspace
A, without needing to call Franchise for each banknote.

The signature and encryption schemes have the following syntax.

Definition 7 ([KL14], Definition 12.1). A signature scheme comprises the
following three probabilistic polynomial-time algorithms:

◦ SigKeyGen takes a security parameter λ, and returns (sig pk, sig sk), the
public and secret keys.

sig pk, sig sk ← SigKeyGen(1λ)
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◦ Sign takes a message msg ∈ {0, 1}∗ and the secret key and produces σ, the
signature for msg.

σ ← Sign(sig sk,msg)

◦ SigVer takes msg, σ, and the public key, and outputs a bit b to indicate the
decision to accept (b = 1) or reject (b = 0) the signature-message pair. Also,
SigVer is deterministic.

b := SigVer(sig pk,msg, σ)

The signature scheme is existentially unforgeable under an adaptive chosen-
message attack. Such a signature scheme can be constructed from one-way func-
tions ([KL14]).

Definition 8 ([KL14], Definition 3.7). A secret key encryption scheme
comprises the following three probabilistic polynomial-time algorithms:

◦ EncKeyGen takes a security parameter λ and produces a secret key enc k.

enc k ← EncKeyGen(1λ)

◦ Enc encrypts a message msg ∈ {0, 1}∗ using the key enc k to produce a
cyphertext c.

c ← Enc(enc k,msg)

◦ Dec decrypts c, again using enc k. Dec is deterministic, so for any enc k
produced by EncKeyGen, Dec always decrpyts c correctly.

msg := Dec(enc k, c)

The secret key encryption is CPA-secure, and it can also be constructed from
one-way functions ([KL14]).

Variables

◦ Let |$〉, a valid banknote, comprise a quantum state |Σ〉 and some classical
bits.

◦ Let |P 〉, a purported banknote, comprise a quantum state |Π〉 and some
classical bits.

setup

Input: 1λ

1. Choose values for the parameters: n = Ω(λ), t = Θ(
√

n).
2. Set up one signature scheme and n encryption schemes by computing:

(sig pk, sig sk) ← SigKeyGen(1λ)

(enc k1, . . . , enc kn) ← EncKeyGen(1λ), . . . ,EncKeyGen(1λ)

3. Let msk = (sig pk, sig sk, enc k1, . . . , enc kn), and then output msk.



564 B. Roberts and M. Zhandry

Franchise

Input: msk

1. Sample t indices uniformly and independently from [n/2]. Call this set I.
Then sample another set called J from the same distribution.

2. Let svk = (sig pk, I, J, {enc ki}i∈I , {enc kj+n/2}j∈J), and then output svk.

Mint

Input: msk

1. Sample a subspace A < Z
n
2 such that dim(A) = dim(A⊥) = n/2, uniformly

at random.
2. Create the subspace state for A, and let |Σ〉 = |A〉.
3. Sample n/2 random vectors in A: {v1, . . . ,vn/2} ∈R A. And sample n/2

random vectors in A⊥: {w1, . . . ,wn/2} ∈R A⊥.
4. Encrypt the vs and ws, each with a different enck:

Let c1, . . . , cn
2

=
[
Enc(enc k1,v1), . . . ,Enc(enc kn

2
,vn

2
)

cn
2 +1, . . . , cn =

[
Enc(enc kn

2 +1,w1), . . . ,Enc(enc kn,wn
2
)

5. Sign the ciphertexts. Let σ ← Sign[sig sk, (c1, . . . , cn)].
6. Construct the banknote. Let |$〉 = (|Σ〉, c1, . . . , cn, σ). Finally, output |$〉.
Ver

Inputs: svkid, |P 〉
1. Check the signature: SigVer(sig pk, (c1, . . . , cn), σ).
2. Decrypt any ciphertexts for which the key is available. For every i ∈ Iid

compute vi = Dec(enc ki, ci), and for every j ∈ Jid, compute wj =
Dec(enc kj+n/2, cj+n/2).
Additionally, define two subspaces, Vid,Wid:

Vid := span({vi}i∈Iid)
Wid := span({wj}j∈Jid

)

3. Recall that |P 〉 comprises a quantum state |Π〉 and some classical bits.
Computational basis test: Check that OW ⊥

id
(|Π〉) = 1. After this step, |Π〉

becomes |Π1〉.
4. Take the quantum Fourier transform of |Π1〉 to get ˜|Π1〉.
5. Fourier basis test: Check that OV ⊥

id
( ˜|Π1〉) = 1. After this step, ˜|Π1〉

becomes ˜|Π2〉.
6. Take the inverse quantum Fourier transform of ˜|Π2〉 to get |Π2〉.

Let |P ′〉 be the state that |P 〉 has become, with |Π〉 replaced with |Π2〉.
Output 1 (accept) if both tests pass, and 0 (reject) otherwise. Also output
|P ′〉.
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Proofs of Correctness and Security

Theorem 5. The full construction of franchised quantum money is correct.

Proof. In steps 1 and 2 of Ver, we check the signature and decrypt the cipher-
texts. With probability 1, the signature check passes, and the ciphertexts are cor-
rectly decrypted. This follows from the correctness of the signature and encryp-
tion schemes.

After the first two steps, Ver is the same as it was in the simple construction.
Because the simple construction is correct, the full construction is correct as
well. �
Theorem 6. The full construction of franchised quantum money is secure
against counterfeiting and sabotage.

Proof. We will use a hybrid argument to show that the adversary’s success prob-
ability at counterfeiting or sabotage with the full construction is close to what it
is with the simple construction. Since the simple construction is secure against
counterfeiting and sabotage, the full construction is secure as well.

1) Preliminaries
Without loss of generality, let us say that the adversary receives C svks, then
receives m valid banknotes from the challenger, and finally makes multiple Ver
queries.

Furthermore, let the challenger keep a record of all the banknotes and svks
it generated. Finally let the ciphertexts (c1, . . . , cn) of each valid banknote be
unique. This occurs with overwhelming probability.

2) Next, we’ll use a sequence of hybrids to simplify the situation and remove the
need for the signature and encryption schemes.

◦ h0 uses the full FQM construction in the counterfeiting or sabotage security
game.

◦ h1 is the same as h0, except Ver only accepts a purported banknote if its
ciphertexts (c1, . . . , cn) match those of one of the m valid banknotes given
to the adversary.

◦ h2 is the same as h1, except for any ciphertext ci for which the adversary
does not have the decryption key, ci is replaced with junk: the encryption
under enc ki of a random message.

The adversary has negl(λ) advantage in distinguishing h0 and h1. The sig-
nature scheme is existentially unforgeable under an adaptive chosen-message
attack, so except with negl(λ) probability, any banknote that passed Ver in h0
had ciphertexts that matched one of the m valid banknotes.

The adversary has negl(λ) advantage in distinguishing h1 and h2 because the
encryption scheme is CPA-secure. For any i for which the adversary does not
have the decryption key, the adversary receives either m ciphertexts of random
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messages or m ciphertexts of potentially useful messages. CPA security is equiv-
alent to left-or-right security ([KL14]), which implies that the adversary cannot
distinguish these two cases.

3) Next, we’ll use another set of hybrids to relate the full construction with the
simple construction.

◦ h3 is the same as h2, except we do not use the signature or encryption
schemes. Each valid banknote comprises a subspace state |ψA〉 and a set
of plaintext v vectors in A and w vectors in A⊥. Finally, to verify a pur-
ported banknote, the challenger checks that the v and w vectors associated
with a purported banknote match those of a valid banknote. Then they use
whatever svks were recorded along with the valid banknote to verify the
subspace state.

◦ h4 is the simple FQM construction with just one banknote. This is the same
as h3, except the adversary receives only 1 valid banknote, and the v and
w vectors are given by Franchise and are not included with the banknote.

The adversary’s best success probability is the same in h2 and h3 because
the signature and encryption schemes were not necessary in h2, so h3 presents
essentially the same security game to the adversary.

Lemma 5. The best success probability for an adversary in h3 is at most m
times the best success probability in h4.

Proof. Given any h3 adversary A, there is an h4 adversary A′ that simulates A.
A′ receives one valid banknote and generates m − 1 other banknotes. Then A′

runs A with the m banknotes. When A makes a verification query, A′ simulates
the verifier for the m − 1 banknotes it generated and queries the h4 verifier for
the banknote that it received. Finally, A outputs some purported banknotes at
the challenge step, which A′ outputs as well.

If A wins in h3, then there are at least m+1 purported banknotes that pass
verification, and at least two of them have the same v and w vectors. A′ wins
in h4 if the two banknotes with matching vectors also match the vectors of the
banknote given to A′. This happens with probability 1

m , by the symmetry of the
m banknotes. Therefore, A′’s success probability is 1

m times A’s. �
4) In h4, the adversary has negligible probability of winning the counterfeit-
ing or sabotage games, by Theorems 2 and 4. Since m = O(poly(λ)), for any
polynomial-time adversary, then any polynomial-time adversary has negligible
probability of winning the counterfeiting or security games for the full FQM
construction. �

6 Distinguishing Game

In order to prove Lemma 1, we will use the adversary method of [Amb02]. We
will study the distinguishing game, in which an adversary that is more powerful



Franchised Quantum Money 567

than the one in Lemma 1 tries to distinguish full and franchised verifiers. Then
we show that the more-powerful adversary still has negligible advantage.

In the distinguishing game, the adversary is given a classical description of A,
along with other information that is more than what they receive in the security
game. However, one piece of information remains hidden to them: the verification
keys used by the franchised verifiers. More formally, we say the adversary is
given the msk, which includes every (Vid,Wid). But the verifiers will actually
use (M ·Vid,M ·Wid) for some random matrix M . The next two definitions make
this precise.

Definition 9. Let M(A) be the set of all matrices M ∈ Z
n×n
2 such that:

◦ M is invertible
◦ If x ∈ A, then MTx ∈ A, and if x ∈ A⊥, then MTx ∈ A⊥.

Definition 10. For any M ∈ M(A), we also treat M as a function mapping
one master secret key to another. Essentially, M is applied to every v or w
vector that the adversary did not receive. More formally, for any msk:

M(msk) =
(
A, {vi}i∈Iadv

, {M · vi}i�∈Iadv
, {wj}j∈Jadv

, {M ·wj}j �∈Jadv
, {Iid, Jid}id∈[N ]

)

Let msk′ = M(msk), and let V ′
adv,W ′

adv, V ′
id, and W ′

id be defined analogously.
Then V ′

adv = Vadv and W ′
adv = Wadv because the adversary’s v and w vectors

are not changed by M . Therefore, in the counterfeiting and sabotage security
games, the adversary receives the same information, whether the master secret
key is msk or msk′.

Next, the adversary in the distinguishing game can also query OW ⊥
id

and OV ⊥
id

,
rather than just Ver. The following definitions bundle together the oracles that
the adversary can query.

Definition 11. The franchised verification oracle for a given msk is
OFran[msk]. It takes as input an id ∈ [N − C], a selection bit s ∈ {0, 1}, and a
vector x ∈ Z

n
2 . Then

OFran[msk](id, s,x) =

{
OW ⊥

id
(x) s = 0

OV ⊥
id

(x) s = 1

Definition 12. The full verification oracle for a given msk is OFull[msk]
or OFull[A]. It takes as input id ∈ [N − C], s ∈ {0, 1}, and x ∈ Z

n
2 . Then

OFull[A](id, s,x) =

{
OA(x) s = 0
OA⊥(x) s = 1

Now we can define the distinguishing game precisely.

Definition 13. The distinguishing game takes as input an msk, which is
given to the challenger and the adversary. Then:
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1. The challenger samples b ∈R {0, 1} and M ∈R M(A).
2. The adversary makes quantum queries to the challenger. If b = 0, the chal-

lenger uses OFull[A] to answer the queries; if b = 1, the challenger uses
OFran[M(msk)].

3. The adversary outputs a bit b′, and they win if and only if b′ = b.

Theorem 7. Any polynomial-time quantum adversary A has negligible advan-
tage in the distinguishing game. That is:

∣∣∣P [A = 1|b = 0] − P [A = 1|b = 1]
∣∣∣ ≤ negl(λ)

where the probabilities are over the choice of M ∈ M(A) and A’s randomness.

We’ll prove Theorem 7 later using the adversary method, but assuming The-
orem 7 for now, we can prove Lemma 1.

Proof of Lemma 1

We want to show that for any polynomial-time adversary A, their success proba-
bilities in h0 and in h1 differ by a negl(λ) function. Recall that h0 uses franchised
verifiers, whereas h1 uses full verifiers.

Assume toward contradiction that A’s success probabilities in h0 and h1
differ by a non-negligible amount. Then we can construct an adversary A′ that
has non-negligible advantage in the distinguishing game.

A′ simulates the counterfeiting security game and runs A on it. Given msk, A′

constructs |A〉 and the C franchised verification keys. When A queries a verifier,
A′ simulates this by querying either OFull[A] (if we’re in h1) or OFran[M(msk)]
(if we’re in h0). A′ can even simulate the counterfeiting challenge, checking if
A successfully counterfeited. Finally, A′ outputs 1 if A won the security game,
and 0 otherwise. h0 and h1 for the counterfeiting game correspond to b = 1
and b = 0 in the distinguishing game, so A′ has non-negligible advantage in the
distinguishing game.

This is a contradiction, by Theorem 7, so in fact, the success probabilities of
A in the two hybrids must be negligibly close.

The Adversary Method

Now we’ll prove Theorem 7 using the adversary method4. First, we’ll define the
scenario that [Amb02] considered, which is an abstract version of the distin-
guishing game, and then we’ll state their main theorem.

Definition 14. Let O be a set of oracles, each of which has range {0, 1}. Let
f : O → {0, 1} be a predicate that takes an oracle as input. Let X,Y partition
O such that f(Ox) = 0, for all Ox ∈ X, and f(Oy) = 1, for all Oy ∈ Y .

4 Our proof is inspired by [AC12].
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Next, the adversary will try to compute f on every input, so it must distin-
guish oracles in X from oracles in Y .

Definition 15. Let AO be a quantum algorithm with query access to an O ∈ O.
We say that A approximately computes f if for every O ∈ O, P [AO =
f(O)] ≥ 2/3.

Definition 16. Let u, u′ be upper bounds that satisfy:

◦ For any Ox ∈ X and any input i to Ox, POy∈Y [Ox(i) �= Oy(i)] ≤ u.
◦ For any Oy ∈ Y and any input i to Oy, POx∈X [Ox(i) �= Oy(i)] ≤ u′.

Theorem 8 ([Amb02], Thm. 2). If A approximately computes f , then A
makes at least Ω

(
1√
u·u′

)
queries to O.

Proof of Theorem 7

The distinguishing game’s format matches the format considered by the adver-
sary method. For a given msk, let X comprise only the full verification ora-
cle, {OFull[A]}. Let Y comprise all possible franchised verification oracles:
Y = {OFran[M(msk)]|M ∈ M(A)}. And let O = X

⋃
Y . Then f equals b

from the distinguishing game.

Next, we will assume that each honest verifier gets at least t/4 dimensions of
Vid and t/4 dimensions of Wid that are unknown to the adversary. As a result,
each verifier accepts a negligible fraction of the vectors in Z

n
2 . So it is hard for

the adversary to find an x ∈ Z
n
2 on which the full and franchised oracles behave

differently, which makes distinguishing them hard. The next definition and next
two lemmas expand on this argument.

Definition 17. An msk ← Setup(1λ) is good if for every id ∈ [N − C],

◦ dim[span(Vadv, Vid)] ≥ dim(Vadv) + t/4
◦ dim[span(Wadv,Wid)] ≥ dim(Wadv) + t/4

Lemma 6. With overwhelming probability in λ, msk ← Setup(1λ) is good.

Proof. 1) With overwhelming probability, |Iid\Iadv| ≥ t/4 for all id ∈ [N − C].
First, |Iadv| ≤ Ct = n/4, so the probability that a uniformly random i ∈ [n/2]
is in Iadv is ≤ 1/2. Then

Let μ = EIid [|Iid\Iadv|] ≥ t/2

Next we use the multiplicative Chernoff bound:

P
[|Iid\Iadv| ≤ t/4

] ≤ P
[|Iid\Iadv| ≤ μ/2

]

<

(
e−1/2

(1/2)1/2

)μ

=
(2

e

)μ/2

≤
(2

e

)t/4

=
(2

e

)Θ(
√

n)

= negl(λ)
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Then by the union bound, the probability that |Iid\Iadv| ≥ t/4 for all id ∈
[N − C] is 1 − (N − C) · negl(λ) = 1 − negl(λ).

2) For convenience, let’s say that Iid\Iadv =
[|Iid\Iadv|]. Given that |Iid\Iadv| ≥

t/4, the following event E occurs with overwhelming probability:

E : dim
[
span(Vadv,v1, . . . ,vt/4)

]
= dim(Vadv) + t/4

P{vi}i∈[t/4]
(E) ≥ 1 − P (v1 ∈ Vadv) − . . . − P [vt/4 ∈ span(Vadv,v1, . . . ,vt/4−1)]

≥ 1 − 2n/4−n/2 − . . . − 2n/4+t/4−1−n/2

≥ 1 − t

4
· 2(t/4−n/4) = 1 − 2−Θ(n) = 1 − negl(λ)

3) Putting together steps 1 and 2, we have that with overwhelming probability
in λ,

dim
[
span(Vadv, Vid)

] ≥ dim(Vadv) + t/4

�
Lemma 7. Let msk be good, let M ∈R M(A), and let msk′ = M(msk). Then
for any id ∈ [N − C] and any x ∈ Zn

2 ,

◦ If x �∈ A, then P
(
x ∈ W ′

id
⊥)

= 2−Ω(
√

n).
◦ If x �∈ A⊥, then P

(
x ∈ V ′

id
⊥)

= 2−Ω(
√

n).

The probability is over the choice of M ∈R M(A).

Proof. We’ll prove the first claim – the second claim’s proof is similar.

1) Let S = span({wj}j∈Jid\Jadv
). This is the random subspace that verifier id has

that the adversary cannot predict. We know from Lemma 6 that dim(S) ≥ t/4.
Also M · S ≤ W ′

id, so W ′⊥
id ≤ (M · S)⊥. Then:

PM

(
x ∈ W ′

id

) ≤ PM

(
x ∈ (M · S)⊥)

= PM

(
xT · M · S = 0

)

2) MTx is a random vector satisfying MTx �∈ A. First, MT maps A to A and
A⊥ to A⊥. Since x �∈ A, x has a non-zero component in A⊥, which MT maps to
a non-zero component in A⊥. Therefore, MTx �∈ A.

PM

(
xT · M · S = 0

)
= PM

(
MTx ∈ S⊥) ≤ |S⊥|

|Zn
2\A|

=
2dim(S⊥)

2n − 2n/2
≤ 2n−t/4

2n−1
= 21−t/4 = 2−Ω(

√
n)

�
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Lemma 8. If msk is good, then any quantum algorithm that approximately com-
putes f needs at least 2Ω(

√
n) oracle queries.

Proof. 1) If OFull and OFran differ on an input, then OFull rejects the input,
and OFran accepts it.

For any input (id, s,x) to an oracle, if OFull[A](id, s,x) = 1, then
OFran[M(msk)](id, s,x) = 1 as well. When s = 0, OFull accepts iff x ∈ A. Since
A ≤ W⊥

id , OFran accepts as well. Similar reasoning shows that when s = 1, if
OFull accepts, then OFran accepts as well.

Therefore, the only way for OFull and OFran to give different responses to
an input is if:

OFull[A](id, s,x) = 0, and OFran[M(msk)](id, s,x) = 1

2) Lemma 7 says that if OFull[A](id, s,x) = 0, then

PM←M(A)

(
OFran[M(msk)](id, s,x) = 1

)
= 2−Ω(

√
n)

so we can set u = 2−Ω(
√

n). Also, we can set u′ = 1 because 1 is greater than or
equal to any probability.

Finally, in order to approximately compute f , the number of oracle queries
needed is Ω

(
1√
u·u′

)
= 2Ω(

√
n). �

Lemma 9. For any polynomial-time quantum algorithm A, and any good msk,
there exists an M ∈ M(A) such that:

∣∣∣P (AOFull[A] = 1) − P (AOFran[M(msk)] = 1)
∣∣∣ ≤ 2−Θ(

3√
n)

Proof.
1) Let Δ be the minimum value of

∣∣∣P (AOFull[A] = 1) − P (AOFran[M(msk)] = 1)
∣∣∣

over all M , and let p = P (AOFull[A] = 1).
Next, assume toward contradiction that there is some polynomial-time algo-

rithm A and some good msk such that Δ > 2−Θ(
3√

n). Then we’ll construct an
algorithm A′ that approximately computes f using 2Θ(

3√
n) queries (by Lemma

8, we know this is not possible).
A′ runs 4n/Δ2 independent iterations of A and averages the outputs. Let p̄

be the average number of iterations of A that output 1. Next, A′ outputs 0 if
|p̄ − p| ≤ Δ/2 and outputs 1 otherwise.

2) A′ gives the incorrect value for f if:

1. |p̄ − p| ≤ Δ/2, but the oracle is franchised.
2. |p̄ − p| > Δ/2, but the oracle is full.
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In the first case,
∣∣E[p̄] − p

∣∣ > Δ, so
∣∣p̄ −E[p̄]

∣∣ ≥ Δ/2. In the second case as well,∣∣p̄ − E[p̄]
∣∣ ≥ Δ/2.

The probability of an error is bounded by the Hoeffding inequality:

P
(∣∣p̄ − E[p̄]

∣∣ ≥ Δ/2
)

≤ 2e−2(Δ/2)2·(4n/Δ2) = 2e−2n

Next, A′ approximately computes f because for any O ∈ O, A′ computes
f(O) with probability ≥ 1 − 2e−2n > 2/3.

3) Finally, A′ makes 2Θ(
3√

n) queries. First, A makes 2O(log n) queries because it
runs in polynomial time. So the number of queries that A′ makes is:

4n

Δ2
· 2O(log n) = 2O(log n)+O(

3√
n) = 2O(

3√
n)

Since no algorithm can approximately compute f using 2O(
3√

n) queries, this
is a contradiction. So for any polynomial-time A, and any good msk, there exists
an M such that

∣∣
∣P (AOFull[A] = 1) − P (AOFran[M(msk)] = 1)

∣∣
∣ ≤ 2−Θ(

3√
n)

�
Lemma 10. For any polynomial-time quantum algorithm A, any good msk, and
a uniformly random M ∈R M(A),

∣
∣∣P (AOFull[A] = 1) − P (AOFran[M(msk)] = 1)

∣
∣∣ ≤ 2−Θ(

3√
n)

The probability is over A’s randomness and the choice of M .

Note that Lemma 10 is equivalent to Theorem 7.

Proof. The problem of distinguishing full and franchised oracles is random self-
reducible. Since Lemma 9 says the algorithm’s distinguishing advantage is neg-
ligible in the worst case, then their advantage is also negligible in the average
case.

Assume toward contradiction that there exists a polynomial-time quantum
algorithm A such that for a uniformly random M ∈R M(A),

δ :=
∣∣
∣P (AOFull[A] = 1) − P (AOFran[M(msk)] = 1)

∣∣
∣ = 2−o(

3√
n)

Then we’ll construct a polynomial-time algorithm A′ that runs A as a subroutine
and achieves δ = 2−o(

3√
n) for all M (by Lemma 9, this is impossible).

Given any M ∈ M(A), A′ samples a uniformly random R ∈R M(A).
Then R[M(msk)] is an “average-case” master secret key in the sense that
R[M(msk)] = (R · M)(msk), and R′ := R · M is uniformly random in M(A).
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A′ gives msk to A and simulates the distinguishing game in which the fran-
chised verifiers are using R[M(msk)]. Whenever A queries the oracle, A′ uses R
as a change-of-basis for the query before forwarding it to the challenger. In A’s
view, it is dealing with a uniformly random R′ ∈ M(A), so A has distinguishing
advantage δ. Therefore, A′ has the same advantage δ = 2−o(

3√
n), but for every

M . This contradicts Lemma 9, so in fact, Lemma 10’s claim is true. �
Lemma 10 proves Theorem 7.
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Abstract. A quantum bit commitment scheme is to realize bit (rather
than qubit) commitment by exploiting quantum communication and
quantum computation. In this work, we study the binding property of the
quantum string commitment scheme obtained by composing a generic
quantum perfectly(resp. statistically)-hiding computationally-binding bit
commitment scheme (which can be realized based on quantum-secure
one-way permutations(resp. functions)) in parallel. We show that the
resulting scheme satisfies a stronger quantum computational binding
property, which we will call predicate-binding, than the trivial honest-
binding. Intuitively and very roughly, the predicate-binding property
guarantees that given any inconsistent predicate pair over a set of strings
(i.e. no strings in this set can satisfy both predicates), if a (claimed) quan-
tum commitment can be opened so that the revealed string satisfies one
predicate with certainty, then the same commitment cannot be opened
so that the revealed string satisfies the other predicate (except for a neg-
ligible probability).

As an application, we plug a generic quantum perfectly(resp.
statistically)-hiding computationally-binding bit commitment scheme in
Blum’s zero-knowledge protocol for the NP-complete language Hamilto-
nian Cycle. This will give rise to the first quantum perfect(resp. sta-
tistical) zero-knowledge argument system (with soundness error 1/2)
for all NP languages based solely on quantum-secure one-way permuta-
tions(resp. functions). The quantum computational soundness of this sys-
tem will follow immediately from the quantum computational predicate-
binding property of commitments.

Keywords: Cryptographic protocols · Quantum bit commitment ·
Quantum computational binding · Parallel composition · Quantum
zero-knowledge argument
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1 Introduction

Bit commitment is an important cryptographic primitive; it can be viewed as an
electronic realization of a locked box [16]. Roughly speaking, a bit commitment
scheme is a two-stage (consisting of a commit stage and a reveal stage) interac-
tive protocol between a sender and a receiver, providing two security guarantees:
hiding and binding. Intuitively, the hiding property states that the commitment
to 0 and that to 1 are indistinguishable (to the receiver) in the commit stage,
whereas the binding property states that any (claimed) bit commitment cannot be
opened (by the sender) as both 0 and 1 (except for a negligible probability) later in
the reveal stage. Unfortunately, hiding and binding properties cannot be satisfied
information-theoretically at the same time; one of them has to be conditional, e.g.
based on complexity assumptions such as the existence of one-way functions.

Turning to the quantum setting, there are two different meanings of quantum
bit commitment in the literature (depending on the context). The first refers
to the classical realization of bit commitment that is secure against quantum
attacks, or the post-quantum secure (classical) bit commitment [1,31,32]. The
second refers to a realization of bit commitment by exploiting quantum features
[4,7,8,10,11,14,15,23,24,34,36]; that is, now the honest parties are allowed to be
quantum computers and exchange quantum messages. (But it is still a classical
bit that is secured.) Clearly, the first meaning of quantum bit commitment can
be viewed as a special case of the second one. In this paper, the term “quantum
bit commitment” will be reserved for the second, more general meaning, which
will also be the focus of this work.

The concept of quantum bit commitment is natural and sounds exciting.
Though unconditional quantum bit commitment is still impossible [25,27], as
a compromise we may consider quantum bit commitment based on complexity
assumptions like in the classical cryptography. Somewhat counter-intuitive at
the first glance, but the binding property of a general quantum bit commitment
is inherently weaker than the classical binding property (that is guaranteed by
a classical bit commitment secure against classical attacks, which roughly states
that any claimed bit commitment is bound to a unique bit that is typically
referred to as the committed value). In more detail, this weakness of the general
quantum binding property comes from the possible superposition attack of the
sender of the quantum bit commitment, who may commit to an arbitrary super-
position of bits 0 and 1, and later open the commitment as this superposition
(rather than a classical 0 or 1) successfully with certainty [10,14]. By this kind
of quantum superposition attack, a fixed quantum bit commitment is no longer
bound to a unique classical bit any more. The quantum binding property that
can be guaranteed by a general quantum bit commitment is often referred to as
sum-binding (named after [31]).

Difficulties in Basing Security on Quantum Binding. It is natural to ask
what happen if we replace classical bit commitment with quantum bit commit-
ment in cryptographic applications. Due to the weakness of the general quantum
binding property as aforementioned, the security based on the classical binding
property may deteriorate after the replacement.
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In greater detail, note that in applications we typically commit to a binary
string by committing it in a bitwise fashion; later, a subset of bit commitments
may be opened for some verification. For example, it is helpful to keep GMW-
type zero-knowledge protocols [5,17] in one’s mind. When quantum bit commit-
ments are used, we can no longer say that a claimed quantum commitment to an
m-bit string is really bound to some m-bit string; instead, the committed value
of such a quantum string commitment could be a superposition of a bunch of
m-bit strings of the form

∑
s∈{0,1}m αs |s〉, where the integer m ≥ 1 and complex

coefficients αs’s satisfy
∑

s∈{0,1}m |αs|2 = 1. One may tend to argue in security
analysis that this superposition behaves similar to its induced probability distri-
bution (|αs|2)s∈{0,1}m : if this is true, then the classical security analysis extend to
the quantum setting straightforwardly. Unfortunately, this argument is not nec-
essarily true, because a superposition is generally not equivalent to its induced
probability distribution; in fact, this is usually where the quantum advantage
comes from in algorithm design. Actually, if one goes into detail of the security
analysis, one will find that a malicious quantum sender of commitments may
attack by making the opening information (which is entangled with quantum
commitments and their decommitments) about which bit commitments will be
opened as what value in an arbitrary superposition. By tuning this superposi-
tion, the sender may adjust the receiver’s acceptance probabilities in different
verifications. This kind of superposition attack will make the security analysis
based on the general quantum binding property (if possible) much harder than
that based on the classical binding property.

Why Quantum Bit Commitment Is Interesting? Besides the weakness as
well as technical difficulties in security analysis mentioned above, another short-
coming of quantum bit commitment is that by today’s quantum technology, the
physical realization of a general quantum bit commitment scheme is still far
beyond our reach. In spite of this, quantum bit commitment still interests us
for several reasons. First, since as early as 2000 researchers have come to realize
that merely based on quantum-secure one-way functions/permutations, one can
construct non-interactive quantum bit commitments of both flavors (i.e. statis-
tical binding and statistical hiding), whose commit and reveal stages consist of
just a single quantum message from the sender to the receiver [14,23,24,34].
It turns out that these constructions are not coincidences: recently, Yan [34]
has shown that any (interactive) quantum bit commitment scheme can be con-
verted into a non-interactive one of a generic form1 (whose informal definition is
referred to the first graph of “Notations” in Subsect. 1.3, and formal definition to
Definition 2). This is in contrast to the constant [26] or even polynomial
[20] number of rounds in the commit stage by classical constructions of bit
1 Actually, it is shown in [34] a much stronger result that any quantum bit commitment

schemes just secure against the purification attack can be converted into a non-
interactive one of the generic form. For this reason, in this paper we can focus on
this generic form without loss of generality. At a very high level, the basis idea of
how such a quantum round-collapse is possible is similar to the old idea of converting
any non-interactive quantum bit commitment scheme into the generic form [15,36].
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commitment. Thus, using quantum bit commitments instead of the classical ones
in applications can potentially reduce the number of rounds of the interaction2

while keeping the complexity assumption to the minimum.
More interestingly, Fang, Unruh, Yan and Zhou [15] and Yan [34] also

observe that the (either statistical or computational) binding of a generic
non-interactive quantum bit commitment scheme is automatically information-
theoretically strict3. Here, the strictness of the quantum binding extends the one
in [30] for a classical construction of bit commitment, which roughly states that
not only the revealed value but also the decommitment state used in opening a
quantum bit commitment are “unique”. We highlight that this strictness of the
quantum binding originates from the entanglement between the commitment
and its decommitment, as opposed to the classical correlation in the definition
of the classical strict-binding [30]. We also stress that even the quantum com-
putational binding can be information-theoretically strict simultaneously (which
may sound contradictory as it appears)4. This is in contrast to the computational
binding of a classical bit commitment, which is impossible to be information-
theoretically strict: though it may be computationally hard to find an alternative
opening, there actually exist a bunch of them! It turns out that this strictness of
the quantum binding can play an important role in applications; in particular,
it can help circumvent existing barriers only known for classical constructions,
as confirmed in [15] and this paper (Theorem 1).

Overall, if we are optimistic about the development of quantum technology
and believe that general quantum computation and communication will be avail-
able in future, then the application of quantum bit commitment as a primitive
in quantum cryptography is worthy of study.

Progress and Perspective Towards Basing Security on Quantum Bind-
ing. In the past two decades, there were only few works studying the secu-
rity based on the binding property of a general quantum bit commitment [36].
Recently, some generic techniques to cope with the quantum perfect/statistical
binding property are developed in [15], by which in many cases the security
based on the classical statistical binding property can be lifted to the quantum
setting. Unfortunately, when it comes to the question of the security based on
the quantum computational binding property, the answer remains elusive. To the
best of our knowledge, we are aware of no such results before. In our opinion, the
perhaps most important open question towards using quantum bit commitment
as a primitive in quantum cryptography is:

Can we base quantum security on the computational binding property of a
general quantum bit commitment?

2 The round complexity of any cryptographic task might be one of the most important
parameters.

3 We do not claim that this holds w.r.t. a general quantum bit commitment. But
any quantum bit commitment scheme can be converted to the generic form [34], as
aforementioned.

4 All mentioned above about the strictness of the quantum binding will become clear
once one reads Definition 2, which is quite simple and intuitive.
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Based on the state-of-the-art knowledge, the answer to the question above is
unclear. On one hand, intuitively it will be true if we can view the superposition
of strings underlying quantum bit commitments as its induced probability distri-
bution (as aforementioned). Actually, this motivates Unruh [31,32] to introduce
(computationally) collapse-binding commitments. Unfortunately, general quan-
tum commitments cannot be collapse-binding [34]. In spite of this, it turns out
that by some tricks this intuitive strategy is enabled to work (in many cases)
when perfectly/statistically-binding quantum bit commitments are used [15].
More positive evidences come from the success in various security analysis in
the quantum random oracle model, in which adversaries can query a random
oracle in an arbitrary superposition [6].

On the other hand, however, after a first attempt towards the security anal-
ysis, it turns out that for a naive analysis (r.f. Subsect. 1.3) to work it requires
that the binding error be sub-exponentially or even exponentially small, rather
than negligiblly small as typical in cryptography. We will refer to this techni-
cal difficulty as “exponential curse”, which arises from the fact that polynomial
number of qubits could be in a superposition of exponentially many basis states.
Moreover, the impossibility of the general quantum rewinding [18], as well as
other related impossibility results on classical constructions of bit commitment
secure against quantum attacks [2], may suggest a negative answer to the open
question above.

One motivation of this work is to explore the application of general quan-
tum computationally-binding bit commitments5 in cryptographic applications,
notably in constructing quantum zero-knowledge arguments for NP languages.

1.1 Our Contribution

In spite of the technical difficulty and negative evidences just mentioned, we make
some progress towards answering the main open question affirmatively in this
work. Interestingly, our security analysis will use a more straightforward strategy
that is completely different from that of viewing the superposition of strings
underlying quantum bit commitments as its induced probability distribution.

Specifically, our contribution is two-fold.

1. A quantum construction of perfect/statistical zero-knowledge argu-
ment system (with soundness error 1/2 ) for all NP languages

We prove the following main theorem of this paper:

Theorem 1. Plugging a generic quantum perfectly(resp. statistically)-hiding
computationally-binding bit commitment scheme (Definition 2) in Blum’s pro-
tocol [5] gives rise to a three-round public-coin quantum perfect(resp. statisti-
cal) zero-knowledge argument system for the NP-complete language Hamiltonian
Cycle, with perfect completeness and soundness error 1/2.

5 Though we will actually focus on quantum bit commitment schemes of the generic
form (Definition 2) in this paper (as will become clear later), this restriction does
not lose any generality due to [34], as aforementioned.



580 J. Yan

Following [14,23,24,34], since a generic quantum perfectly(resp.
statistically)-hiding computationally-binding bit commitment scheme can be
constructed from quantum-secure one-way permutations(resp. functions), the
theorem above gives the first quantum perfect(resp. statistical) zero-knowledge
argument for all NP languages based on the same assumption.

Compared with classical GMW-type statistical zero-knowledge arguments
secure against classical attacks for NP [21,28], our quantum construction reduces
the rounds of the interaction from polynomial to three, thanks to the non-
interactivity of a generic quantum computationally-binding bit commitment
scheme. Compared with the classical statistical zero-knowledge argument for
NP secure against quantum attacks given in [31,32], which assumes collapsing
hash functions, our quantum construction relies on a weaker (perhaps minimum)
complexity assumption without setup.

We highlight that our proof of Theorem 1 relies heavily on (though implicitly)
that the (computational) binding of a generic quantum bit commitment scheme
is information-theoretically strict (as aforementioned). It is this strict-binding
property that enables a simple quantum rewinding [15,36] to work even in our
quantum computational soundness analysis. This circumvents a barrier which is
only known for classical constructions [2].

As a final remark, in this work we only study stand-alone Blum’s proto-
col. But we believe it should be meaningful as a first step toward using non-
interactive computationally-binding quantum bit commitments in more gen-
eral protocols. Some remarks on the sequential and the parallel compositions
of Blum’s atomic protocol is referred to the end of Sect. 4.

2. A non-trivial computational binding property of the quantum
string commitment scheme obtained by composing a generic quan-
tum bit commitment scheme in parallel

A natural way to construct a string commitment is to compose a bit com-
mitment scheme in parallel, i.e. committing a string in a bitwise fashion. For
the purpose of proving Theorem 1, we introduce a new binding property of
quantum string commitments which we call “predicate-binding”. And we show
that the parallel composition of a generic quantum computationally-binding bit
commitment scheme gives rise to a quantum computationally predicate-binding
string commitment scheme. When we instantiate Blum’s protocol with a generic
quantum computationally-binding bit commitment scheme, the quantum com-
putational soundness of the protocol (which is required towards establishing
Theorem 1) can be easily based on the predicate-binding property of quantum
string commitments.

In more detail, we first formalize a kind of predicates which we will call
“pattern-predicates” (Definition 3): informally speaking, for a string to satisfy
a pattern-predicate, it should exhibit a certain “pattern” somewhere. The intu-
ition underlying our definition is that in typical applications of bit commitments,
the receiver (of commitments) will check whether the value of the opened com-
mitments will cause it to accept. For example, in Blum’s protocol the (honest)
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verifier’s verification corresponding to each challenge naturally induces a pattern-
predicate.

With our definition of pattern-predicate, the predicate-binding property (Def-
inition 4, or fomally Definition 5) guarantees that given an arbitrary pair of
inconsistent pattern-predicates on a set of strings of the same length (i.e. no
strings in this set can satisfy both predicates), if a (claimed) quantum commit-
ment can be opened such that the revealed string6 satisfies one predicate with
certainty, then the same commitment cannot be opened so as to satisfy the other
predicate (except for a negligible probability)7.

The proof of predicate-binding is the main technical contribution of this
work, which is highly non-trivial; in particular, the trivial reduction (via a sim-
ple hybrid argument) from string binding to bit binding in the classical setting
will fail completely here. Actually, for a technical reason we did not prove the
full predicate-binding property (i.e. w.r.t. the most general inconsistent pattern-
predicate pairs) in this work; rather, we can only show predicate-binding such
that one predicate is allowed to be of the general form, whereas the other is
subject to the restriction that it only depends on a fixed portion of the string
(Thereom 2, or formally Theorem 3). In spite of this restriction, the predicate-
binding property we obtain is more than enough to prove Theorem 1. Any exten-
sion of our result is left as an open problem. We believe that quantum predicate-
binding string commitments could be of independent interest and will be found
useful elsewhere.

A Comparison with Existing Quantum Computational String Binding
Properties. The parallel composition of a generic quantum bit commitment
scheme trivially gives a quantum honest-binding string commitment scheme [36].
Roughly speaking, the honest-binding states that the honest commitment to a
string cannot be opened as any other string (except for a negligible probability).
Unfortunately, this binding property seems too weak to be useful in applications.
This is because a malicious sender may not commit honestly.

In [10], a so-called computational f-binding property w.r.t. a function f :
{0, 1}m → {0, 1}l for quantum string commitments is proposed, where integers
l ≤ m. Unfortunately, no constructions for quantum f-binding commitments
are provided in [10]. Our predicate-binding implies the f -binding w.r.t. to any
efficiently computable function f whose image is just the set {0, 1} (i.e. l = 1),
if we view preimages mapped to 0 as inducing one predicate while preimages
mapped to 1 as inducing the other.

Damg̊ard, Fehr and Salvail [12] introduced the so-called Q-binding prop-
erty for classical commitments secure against quantum attacks, which can be
extended to quantum commitments in a straightforward way. Here, the “Q”

6 Generally, the revealed value of a quantum string commitment could be a probability
distribution over this set of strings.

7 We note that the parallel composition of classical bit commitments secure against
classical attacks gives a string commitment that is trivially predicate-binding secure
against classical attacks. This is simply because the resulting string commitment (by
the parallel composition) is bound to a unique classical string.
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stands for an arbitrary predicate whose form is close to our pattern-predicate8:
very roughly, this predicate Q can be viewed as combining various pattern-
predicates into one by introducing a “choice” parameter u, and the predicate-
binding we establish here can also be viewed as the Q-binding w.r.t. the predicate
Q of a special form such that |U | = 2 and pideal = 1 (in the notation used in
[12]). The general framework for constructing Q-binding (classical) commitments
in [12] requires a setup and relies on much stronger assumptions than quantum-
secure one-way functions; in particular, one crucial assumption9 on which it relies
has a similar structure as the security game in defining Q-binding, which makes
the security proof for Q-binding there much more straightforward than ours for
predicate-binding here.

Unruh [31,32] introduced computational collapse-binding classical commit-
ments secure against quantum attacks. However, a straightforward extension of
collapse-binding to quantum commitments cannot hold generally, as aforemen-
tioned; more detail is referred to [34].

1.2 A Comparison with Two Recent Works

In two concurrent and independent recent works, statistically-hiding [3] (resp.
computationally-hiding [19]) computationally-binding quantum bit commit-
ments that additionally satisfy two nice properties called extractable and equiv-
ocal properties are constructed, also based solely on quantum-secure one-
way functions. Compared with our scheme used in this work, i.e. the generic
statistically-hiding computationally-binding quantum bit commitment scheme
(Definition 2), theirs are more advantageous in the following aspects:

1. Their schemes satisfy both extractable and equivocal properties simultane-
ously, whereas ours is generally unlikely to satisfy.

2. The committed value of the commitments by running the commit stage of
their schemes is a probability distribution over the set {0, 1}10, rather than a
superposition as our scheme. This makes the quantum (computational) bind-
ing property of their schemes almost as strong as the classical binding prop-
erty. As such, their schemes are likely to be more versatile in applications than
ours; and the corresponding security analysis with their commitments should
be easier, too. In this regard, we believe that plugging their commitments in
Blum’s protocol will yield a quantum zero-knowledge argument-of-knowledge
(rather than just argument as achieved in this paper) system for NP, whose
security analysis can be adapted from the classical one in a straightforward
way (avoiding the issue arisen from the general quantum binding as studied
in this paper).

8 As communicated by the authors of [12] recently [13], the definition of Q-binding
in the conference version of [12] has a flaw: it misses an additional information z as
another input of the predicate Q to make it efficiently computable, and the sentence
“We do not require Q to be efficiently computable” there should be removed.

9 Namely, the third assumption in [12, section “A General Framework”].
10 This can be seen from the extractability of their commitments.
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3. Both their schemes and ours use quantum communication. But theirs only
send (and receive) BB84 states, in contrast to arbitrary quantum states that
might be sent by our scheme.

In spite of the above, we stress that commitments in [3,19] achieve better
properties (than ours) at the cost of the extremely high round complexity : they
need polynomial (in the security parameter) rounds of the interaction at least in
the commit stage11, which makes them almost impractical even when quantum
computation and communication are realized one day. This is in sharp contrast
to the non-interactivity of both the commit and the reveal stages of our scheme.

1.3 Technical Overview

We sketch the soundness analysis of Blum’s protocol instantiated with a generic
quantum computationally-binding bit commitment scheme, which is the key step
towards establishing Theorem 1. Our goal is to reduce the soundness of the result-
ing protocol to the predicate-binding property of quantum string commitment
(Lemma 3).

We assume that readers are familar with Blum’s protocol [5], which is
also sketched in Subsect. 2.3. In its soundness analysis, the (possibly cheating)
prover’s first message constitutes a (claimed) quantum string commitment. The
(honest) verifier’s acceptance conditions corresponding to challenges 0 and 1
induce two predicates on graphs with the same number of vertices as the input
graph. When the input graph is not Hamiltonian, these two predicates will
become inconsistent, in that no single graph can satisfy both of them simulta-
neously. Technically, at the heart of the reduction from the soundness of Blum’s
protocol to the predicate-binding property of the quantum string commitment
lies a simple quantum rewinding technique (Lemma 1) that extends from ones
used in [15,36] but for the quantum statistical binding setting. We remark that
though this extension is technically trivial, conceptually why it is possible relies
heavily on that a generic quantum computationally-binding bit commitment
scheme is information-theoretical strict-binding.

We are then left with showing that the parallel composition of a generic
quantum computationally-binding bit commitment scheme indeed gives rise to a
quantum computationally predicate-binding string commitment scheme (a spe-
cial case in Lemma 2 and a more general case in Theorem 3). This is the main
technical part of the paper. In the below, we first explain a technical difficulty
towards this goal by a naive try, and then sketch at a high level how to overcome
it. But before doing this, we first set up some notations that are necessary for
our exposition.

Notations. A generic quantum bit commitment commitment scheme can be
represented by a quantum circuit pair12 (Q0, Q1) performing on quantum regis-
ters (C,R). To commit a bit b ∈ {0, 1}, in the commit stage the sender performs
11 It appears that even the reveal stage of the commitment scheme given in [19] also

needs polynomial rounds of the interaction.
12 For the moment, we drop the security parameter to simplify the notation.
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the quantum circuit Qb on quantum registers (C,R) initialized in the state |0〉,
and then sends the commitment register C to the receiver; later in the reveal
stage, the sender sends the bit b together with the decommitment register R to the
receiver, who then does the reversible computation (i.e. performing the quantum
circuit Q†

b) to decide whether to accept or not (i.e. checking whether the regis-
ters (C,R) return to the all |0〉 state). Informally, we say that the quantum bit
commitment scheme (Q0, Q1) is computationally binding if for any polynomial-
time realizable unitary transformation U performing on the register R, the inner
product

∣
∣ 〈0| Q†

1UQ0 |0〉 ∣
∣ is negligible; that is, unit vectors UQ0 |0〉 and Q1 |0〉

are almost orthogonal13.
To commit a string of length m, we commit it in a bitwise fashion using

the scheme (Q0, Q1). Let Qs denote the corresponding quantum circuit used to
commit the string s; that is, Qs =

⊗m
i=1 Qsi

, which performs on m copies of the
quantum registers (C,R).

Let P1, P2 be two (pattern-)predicates14 on all m-bit strings. We use s ∈ P1

(resp. P2) to denote that the string s ∈ {0, 1}m satisfies the predicate P1 (resp.
P2). We say that two predicates P1, P2 are inconsistent if no string s ∈ {0, 1}m

can satisfy both P1 and P2. More details about the formalization of predicates
are referred to Subsect. 3.1.

A Technical Difficulty: Exponential Curse. We first consider the sim-
plest scenario, in which an m-bit string is firstly committed and later all (bit)
commitments will be opened. Note that a cheating sender can first prepare
an arbitrary superposition of the form

∑
s∈P1

αs |s〉D (Qs |0〉)C⊗mR⊗m

(resp.
∑

s∈P2
βs |s〉 Qs |0〉) in registers (D,C⊗m,R⊗m), and then send all commitment

registers C⊗m to the receiver in the commit stage15. Later in the reveal stage, the
sender sends the register D (which is supposed to contain the classical informa-
tion about what string is to reveal), together with all decommitment registers
R⊗m, to the receiver. By this strategy, the sender can open all commitments
successfully with certainty as a distribution (which is determined by coefficients
αs’s (resp. βs’s)) of strings that satisfy the predicate P1 (resp. P2). To show
predicate-binding, it is sufficient to show that up to any polynomial-time realiz-
able unitary transformation U that does not touch commitment registers C⊗m

(which represents the sender’s strategy in opening commitments), any two super-
positions

∑
s∈P1

αs |s〉 Qs |0〉 and
∑

s∈P2
βs |s〉 Qs |0〉 are almost orthogonal, i.e.

their inner product is negligible, w.r.t. any inconsistent predicate pair (P1, P2).
A technical difficulty in showing this lies in that a potential exponential blow-up
may occur in bounding this inner product. This difficulty is referred to as the
exponential curse in [15,36], which we believe is universal when one tries to base
13 The formal definitions of a generic quantum bit commitment scheme and its com-

putational binding propery are referred to Definition 2. Here for simplification, we
neglect the auxiliary input state that the cheating sender may receive.

14 For the moment, we can think of them as efficiently computable predicates in the
common sense for simplicity.

15 The tensor product m in superscripts indicates that there are m copies of the cor-
responding quantum register.
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security on quantum binding; a similar difficulty also appears in [10]. Now let us
go into some detail in the below.

By the computational binding property of the quantum bit commitment
scheme (Q0, Q1), the inner product | 〈0| Q†

s′UQs |0〉 | where s �= s′ can be
bounded by its binding error, which is negligible (as typical in cryptography).
Thus, a naive way to bound the inner product

∣
∣

∑

s∈P1

α∗
s 〈s| (〈0| Q†

s) U
∑

s′∈P2

βs′ |s′〉 (Qs′ |0〉)∣∣

is first to expand it and bound each term indexed by (s, s′) using the binding
error bound (while neglecting its coefficient that can be bounded by 1), and
then apply the triangle inequality. However, when there are super-polynomial
(typically exponentially many) strings s ∈ P1 or s′ ∈ P2, this naive approach
will fail.

Actually, whether the inner product above could really be bounded by some
negligible quantity is questionable a prior. This is because generally, two superpo-
sitions of the form

∑
x αx |φx〉 and

∑
y βy |ξy〉, where {|φx〉}x and {|ξy〉}y are two

orthonormal bases, are not necessarily almost orthogonal, even when |φx〉 and
|ξy〉 are almost orthogonal for each (x, y) pair. To see this, consider the following
simple example. The Hilbert space is induced by m qubits, where {|x〉}x∈{0,1}m is
the standard basis and {H⊗m |y〉}y∈{0,1}m is the Hadamard basis. Then consider
an arbitrary vector in this space, which can be written as a superposition of basis
vectors either in the standard basis or the Hadamard basis. Clearly, these two
superpositions are actually the same vector, so that their inner product is one.
But the inner product between |x〉 and H⊗m |y〉 for arbitrary x, y ∈ {0, 1}m is
exponentially small! This example tells us that to bound the inner product afore-
mentioned, we need to exploit the structures of the two superpositions (which
are induced by the structures of predicates P1 and P2).

The similar technical difficulty also appears in the quantum statistical bind-
ing setting, where two generic techniques were invented to overcome this expo-
nential curse: perturbation and hypothetical commitment measurement [15,36].
Unfortunately, neither of them extend to the quantum computational binding
setting straightforwardly. Reasons are as below. We note that the fundamen-
tal difference between these two settings lies in that in the quantum statistical
binding setting, the bit commitment to 0 and that to 1 (stored in the commit-
ment register C) themselves are already almost orthogonal, and which will never
be touched by the (possibly cheating) sender after they are sent. Thus, we can
assume that commitments will collapse immediately by hypothetical commit-
ment measurements at the moment they are sent; after the collapse, everything
will be similar to that in the classical perfect binding setting. However, in case
of quantum computational binding, the commitment to 0 and that to 1 could
be close or even identical, where we are only guaranteed that in the reveal stage
the joint states of the commitment register C and the decommitment register
R are almost orthogonal. But the state of the decommitment register R can
be affected by the sender’s operation after the commitment stage. As such, the
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hypothetical-collapse trick to handle quantum statistically-binding commitments
[15] fails completely here.

In summary, new techniques are needed to establish the quantum computa-
tional predicate-binding property (if possible).

Our Approach. For the ease of the exposition, instead of considering the
aforementioned inner product, now let us equivalently consider the projection
of an arbitrary superposition of the form

∑
s∈P1

αs |s〉 Qs |0〉 on the subspace
∑

s∈P2
|s〉 〈s| ⊗ (Qs |0〉 〈0| Q†

s), up to any polynomial-time realizable unitary
transformation U that does not touch commitment registers C⊗m. We overload
the notation and denote this projection also by P2 for simplicity. Our goal then
becomes to show that this projection is negligible (in the security parameter
which we have dropped to simplify the notation; see footnote 12). Our idea is
based on the following key observation: when the predicate P1 is sparse, i.e. the
number of the m-bit strings satisfying it is polynomially bounded, then combin-
ing a new perturbation technique (which looks similar but is inherently different
from the one developed in the quantum statistical binding setting [15,36]) and
the triangle inequality, we can bound the aforementioned projection by a neg-
ligible quantity. However, to remove this sparsity requirement, we still need to
overcome the exponential curse. To this end, we need to take into account of
the coefficients of the superposition, and make an essential use of the following
structure of predicates P1 and P2: to check whether a string satisfies P1 or P2,
all its bits are to examine.

For more technical details, we are to bound the norm
∥
∥
∥

∑

s∈P1

αs P2U (|s〉Qs |0〉)
∥
∥
∥,

where in the summation there could be exponentially many terms. At a high
level, our trick is to order these terms properly in such a way that they can be
treated as leaves of a binary tree, whose internal nodes will correspond to the
summation of leaves of the subtree it determines; in particular, the root of the
tree will correspond to the summation of all leaves, whose norm is just what we
want to bound. We will actually bound norms of all internal nodes, including the
root, in a bottom-up fashion. The formal proof (of Lemma 2) is by induction on
the depth of internal nodes. Within the induction step, we will use the triangle
inequality. It turns out that the accumulated error will grow only linearly in the
depth of the tree, which is just m.

Extension. However, the (simplest) scenario (i.e. all commitments will be
opened) considered above is usually not sufficient for applications. This is
because in many cases where bit commitments are used in a larger protocol,
not all bit commitments will be opened for a verification. Even worse, positions
of which bit commitments will be opened may not even be fixed: they might
depend on the party who plays the role of the (cheating) sender. For exam-
ple, consider an execution of Blum’s protocol in which a Hamiltonian cycle is
challenged to open.
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Fortunately, we can extend the predicate-binding property established in the
simplest case to a more general case in which it holds that for at least one
predicate (P1 or P2), the positions of which bit commitments will be opened for
its verification are fixed, while the other predicate could be arbitrary (Theorem
3). It turns out that this extension already suffices for our purpose of establishing
Theorem 1.

For the formal proof of such an extension, there are more technical issues we
need to handle.

Organization. We first give preliminaries in Sect. 2. In Sect. 3, we formally intro-
duce and establish the computational predicate-binding property of the quan-
tum string commitment scheme that is obtained by composing a generic quan-
tum computationally-binding bit commitment scheme in parallel. As an appli-
cation of predicate-binding, in Sect. 4 we show that Blum’s zero-knowledge pro-
tocol for the NP-complete language Hamiltonian Cycle with a generic quantum
computationally-binding bit commitment scheme plugged in is sound against
any quantum computationally bounded prover. We conclude with Sect. 5.

2 Preliminaries

A quantum system or register induces a Hilbert space. A quantum operation per-
forming on a quantum system induces an operator acting on the Hilbert space
associated with the system. In particular, a unitary operation induces a unitary
transformation, and a binary projective measurement induces a projector (cor-
responding to the outcome one). We will interchangeably use quantum system
and its induced Hilbert space, quantum operation and its induced operator. For
example, we may say that a unitary transformation or a projector perform on
or do not touch a quantum register.

Notations. We will explicitly write quantum register(s) as a superscript of an
operator to indicate or highlight on which register(s) this operator performs.
Similarly, we will also explicitly write quantum register(s) as a superscript of a
quantum state to indicate or highlight in which register(s) this quantum state
is stored. For example, let A be a quantum register. Then we may write UA,
|ψ〉A (resp. ρA), to indicate that the operator U performs on the register A,
the quantum pure (resp. mixed) state |ψ〉 (resp. ρ) is stored in the register A,
respectively. We may also write U⊗1A to highlight that the operation U does not
touch the register A. But when it is clear from the context, we often drop such
superscripts or the tensor product with the identity to simplify the notation;
this in particular happens in many of derivations within our proofs, where we
often write out registers as superscripts or the tensor product with the identity
explicitly in the first step, while dropping them subsequently. When there are m
copies of the register A, for a subset T ⊆ {1, 2, . . . , m}, we write A⊗T to refer to
the copies of the register A indexed by the subset T ; when the subset T is the
whole set, we may just write A⊗m.
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Efficiently Realizable Quantum Computation. In this work, without loss
of generality, we restrict to consider the following quantum computational model:

1. Quantum systems or registers are constituted of qubits.
2. There are only two kinds of quantum operations: unitary transformation and

projective measurement.

We also need to formalize efficiently realizable quantum operations. By [37],
any efficiently realizable quantum algorithm or unitary transformation can be
formalized by a family of quantum circuits {Qn}n≥1 such that:

1. Each gate of the quantum circuit Qn comes from a pre-fixed finite, unitary,
and universal quantum gate set, e.g. {Hadamard,phase,cnot, π/8} [29].

2. Quantum circuit Qn is of polynomial size (w.r.t. the index n).
3. The quantum circuit family {Qn}n≥1 can be uniformly generated, i.e. there

exists a polynomial-time classical algorithm A which on input 1n outputs the
description of the quantum circuit Qn.

Since any projective measurement can be realized by first performing a uni-
tary transformation, followed by a measurement of all qubits in the standard
basis, we say that a projective measurement is efficiently realizable if the corre-
sponding unitary transformation is efficiently realizable.

Any projector Π induces a binary measurement {Π,1 − Π}, which produces
the outcome 1 (resp. 0) when the quantum state collapses into the subspace
induced the projector Π (resp. 1− Π). We say that the projector Π is efficient
realizable if its induced binary measurement is efficiently realizable.

Quantum Rewinding. A quantum rewinding technique as stated in the lemma
below is adapted from the one given in [15] directly, whereas now we restrict to
consider projectors and unitary transformations that are efficiently realizable. In
spite of this, its proof follows the same line as the one in [15].

Lemma 1 (A quantum rewinding). Let X and Y be two Hilbert spaces. Unit
vector |ψ〉 ∈ X ⊗ Y. Efficiently realizable projectors Γ1, . . . , Γk perform on the
space X⊗Y, and efficiently realizable unitary transformations U1, . . . , Uk perform
on the space Y. If 1/k ·∑k

i=1

∥
∥Γi(Ui ⊗ 1X) |ψ〉∥∥2 ≥ 1− η, where 0 ≤ η ≤ 1, then

∥
∥
∥(U†

k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U†
1 ⊗ 1X)Γ1(U1 ⊗ 1X) |ψ〉

∥
∥
∥ ≥ 1 −

√
kη. (1)

2.1 A Generic Quantum Bit Commitment Scheme

We first need to define quantum (in)distinguishability based on the efficiently
realizable quantum computation we fixed above. Our definition follows [33].

Definition 1 ((In)distinguishability of quantum state ensembles). Two
quantum state ensembles {ρn}n≥1 and {ξn}n≥1 are quantum statistically (resp.
computationally) indistinguishable if for any quantum state ensemble {σn}n≥1
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and any unbounded (resp. efficiently realizable) quantum algorithm D which out-
puts a single qubit that will be measured in the standard basis, it holds that

|Pr[D(1n, ρn ⊗ σn) = 1] − Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n, where negl(·) is some negligible function.

Following Yan [34], the definition of a generic quantum computationally-
binding bit commitment scheme is given as below.

Definition 2 (A generic computationally-binding quantum bit com-
mitment scheme). A generic computationally-binding quantum bit com-
mitment scheme is a two-party, two-stage protocol. It can be represented
by an ensemble of polynomial-time uniformly generated quantum circuit pair
{(Q0(n), Q1(n))}n≥1. Specifically,

– The scheme involves two parties, a sender and a receiver, proceeding in two
stages: a commit stage followed by a reveal stage.

– In the commit stage, to commit bit b ∈ {0, 1}, the sender performs the quan-
tum circuit Qb(n) on quantum registers (C,R) initialized in all |0〉’s state16.
Then the sender sends the commitment register C, whose state at this moment
denoted by ρb(n), to the receiver.

– In the (canonical) reveal stage, the sender announces b, and sends the decom-
mitment register R to the receiver. The receiver then performs Qb(n)† on the
registers (C, R), accepting if (C, R) return to all |0〉’s state. (This can be done
by a measurement in the computational basis on each qubit that belongs to the
registers (C, R).)

We are next to define the hiding (or concealing) and the binding properties
of the scheme {(Q0(n), Q1(n))}n≥1.

• Statistically hiding. We say that the scheme is statistically hiding if the
quantum state ensembles {ρ0(n)}n≥1 and {ρ1(n)}n≥1 are quantum statisti-
cally indistinguishable.

• Computationally ε(n)-binding. We say that the scheme is quantum com-
putationally ε(n)-binding if for any state |ψ〉 in auxiliary register Z, and any
efficiently realizable unitary transformation U performing on (R, Z),

∥
∥
∥
(
Q1 |0〉 〈0| Q†

1

)CR
URZ

(
(Q0 |0〉)CR |ψ〉Z )∥∥

∥ < ε(n), (2)

By the reversibility of quantum computation, the binding property can also be
equivalently defined by swapping the roles of Q0 and Q1 in the above. Then
the inequality (2) becomes

∥
∥
∥
(
Q0 |0〉 〈0| Q†

0

)CR
URZ

(
(Q1 |0〉)CR |ψ〉Z )∥∥

∥ < ε(n). (3)

We call ε(n) the binding error. When ε(n) is some negligible function, we
usually drop it and just say that the scheme is computationally binding.

16 The number of qubits in the state |0〉 that are needed depends on the quantum
circuit Q0(n) (or Q1(n)).
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Remark

1. The (computational) binding property stated in the definition above is actu-
ally the honest-binding, which is equivalent to the sum-binding w.r.t. a generic
quantum bit commitment scheme [34].

2. On instantiations of non-interactive computationally-bindng quantum bit
commitments of the generic form based on quantum-secure one-way func-
tions/permutations, one is referred to [34] for the details. Briefly, it is argued
in [34] that any interactive quantum bit commitment schemes (including both
classical and quantum constructions) secure against the purification attack17,
which in particular include schemes proposed in [11,14,24,28], can be con-
verted into a non-interactive one of the generic form with the same flavors of
hiding and binding properties.

In the sequel, to simplify the notation we often drop the security parameter
n and just write (Q0, Q1) to denote a generic quantum computationally-binding
bit commitment scheme.

We will use the scheme (Q0, Q1) to commit a binary string in a bitwise
fashion. Namely, the quantum circuit to commit a string s = s1s2 · · · sm ∈
{0, 1}m is given by

Qs
def
=

m⊗

i=1

Qsi
, (4)

which performs on m copies of the quantum register pair (C,R).

2.2 Modeling an Attack of the Sender of Quantum Commitments

Consider a running of a larger two-party protocol in which a generic quantum
bit commitment scheme is used and the sender of quantum commitments is
malicious. The other party who will be referred to as the receiver is honest. The
sender is supposed to commit to a string in {0, 1}m in a bitwise fashion at some
moment, and later try to open the commitments in a way as determined by the
larger protocol. Then the behavior of the sender can be modeled by (U, |ψ〉) such
that:

1. The sender prepares the system (C⊗m,R⊗m,D,Z) in the quantum state |ψ〉
at the end of the commit stage, and sends the commitment registers C⊗m to
the receiver.

2. In the reveal stage, the sender first performs the unitary transformation U
on the system (R⊗m,D,Z), and then sends registers (R⊗m,D) to the receiver.
The register D is supposed to contain the classical information indicating
which quantum bit commitments will be opened as what value, and R⊗m are
decommitment registers.

We have two remarks about the modeling as above:
17 Informally speaking, this is a kind of security that turns out to be just slightly

stronger than the semi-honest security yet much weaker than the full security.
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1. We note that there might be other operations performed by both the sender
and the receiver between the end of the commit stage and the beginning of
the reveal stage within the larger protocol. But in many cases, this can be
simulated by absorbing these operations and auxiliary states introduced into
the operation U and the state |ψ〉, respectively. Anyway, in this work we just
restrict to consider the modeling as above for simplicity.

2. In the second item above, we assume without loss of generality that all decom-
mitment registers R⊗m are sent to the receiver in the reveal stage, though
sometimes only a proper subset of commitments will be opened18. We can do
this because the receiver is honest ; sending all decommitment registers will
not affect the security against the sender.

2.3 Blum’s Zero-Knowledge Protocol for Hamiltonian Cycle

Basically, Blum’s protocol [5] proceeds as follows: on input a graph G (assuming
it is represented by its adjacency matrix) with n vertices:

1. The prover first chooses a random permutation Π ∈ Sn, where Sn consists
of all permutations over the set {1, 2, . . . , n}. Then it commits to the graph
π(G), sending all n2 (quantum) bit commitments to the verifier.

2. Upon receiving the prover’s commitments, the verifier tosses a random coin
to obtain the challenge bit b ∈ {0, 1} and sends it to the prover.

3. If the challenge b = 0, then the prover sends the permutation π together with
the decommitment registers for all bit commitments to the verifier. If the
challenge b = 1, then the prover sends the location of a Hamiltonian cycle H
together with the decommitment registers for the commitments of all edges
of the cycle H to the verifier.

4. If the challenge b = 0, then the verifier accepts if all bit commitments are
opened as π(G) successfully. If the challenge b = 1, then the verifier accepts
if the H is a possible location of a Hamiltonian cycle and all commitments to
the edges of H are opened as 1 successfully.

3 The Predicate-Binding Property of Quantum String
Commitments

In this section, we first introduce the notion of pattern-predicate and then the
predicate-binding property of quantum string commitments. Next, we show that
the parallel composition of a generic quantum computationally-binding bit com-
mitment scheme gives rise to a quantum string commitment scheme that is
predicate-binding w.r.t. a pair of inconsistent pattern-predicates of a special
form. Last, we extend this predicate-binding property to a setting that is suffi-
cient for our application, i.e. quantum zero-knowledge arguments for NP.
18 For example, consider a running of Blum’s zero-knowledge protocol for the language

Hamiltonian Cycle in which the cheating prover responds to the challenge 1 of the
verifier.
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3.1 Pattern-Predicate

Informally, the pattern-predicate defined in the below states that for a string
to satisfy some predicate, it should exhibit a certain “pattern” somewhere. The
intuition underlying our definition is that in typical applications of bit commit-
ments, the receiver will check whether the value of the opened commitments will
cause it to accept.

Definition 3 (Pattern-predicate). A pattern-predicate P on binary strings
{0, 1}m (m ≥ 1) can be represented by a triplet of functions (val(·), T (·), s(·)),
where given a candidate witness w ∈ {0, 1}poly(m) as input: val(w) = 1 if w is
a valid witness, and 0 otherwise19; T (w) is a subset of {1, 2, . . . ,m}; s(w) is a
string of length |T (w)|; all three functions val(·), T (·), and s(·) can be computed
in poly(m) time. A string str ∈ {0, 1}m satisfies the predicate P if there exists
a (valid) witness w ∈ {0, 1}poly(m) satisfying val(w) = 1 and str[T (w)] = s(w),
where str[T (w)] denotes the substring obtained from the string str by projecting
it on coordinates in the subset T (w).

Remark. Intuitively, a valid witness w for a string str guides us to find a
pattern s(w) locating at positions specified by T (w) efficiently. This pattern will
certify that the string str satisies the pattern-predicate P . However, it might be
computationally hard to find a valid witness for a given string str.

In this work, for simplicity we often drop the prefix “pattern” and just write
“predicate” to refer to a pattern-predicate. For a predicate P , it induces a subset
P (by abusing the notation) of strings in {0, 1}m such that a string s ∈ P
if and only if it satisfies the predicate P ; we will identify a predicate as the
subset induced by it. We say that two predicates P1, P2 on the set {0, 1}m are
inconsistent if P1 ∩P2 = ∅; that is, no strings in {0, 1}m can satisfy both P1 and
P2 simultaneously.

In a typical application of commitments within a larger protocol, at some
stage of this protocol the party who plays the role of the possibly cheating sender
of commitments will open commitments, and the party who plays the role of the
honest receiver of commitments will do some verification. We note that it is this
verification that natually induces a pattern-predicate. See the following example.

Example 1. Consider a running of Blum’s zero-knowledge protocol for the NP-
complete language Hamiltonian Cycle, in which the verifier is honest while the
prover might be cheating, and the common input graph G has n vertices. Let
m = n2. Each graph with n vertices can be represented by an m-bit string. This
running of Blum’s protocol induces two predicates on strings over {0, 1}m, corre-
sponding to the verifier’s verifications w.r.t. two possible challenges, respectively.
In more detail, when the verifier’s challenge is 0, it will check that all bit commit-
ments are opened as a graph that is isomorphic to the input graph. This induces
a predicate P0 which consists of all graphs that are isomorphic to the input

19 Sometimes, it will be more covenient to identify the function val(·) as an algorithm
that decides the validity of a candidate witness.
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graph. Formally, the predicate P0 can be represented by a triplet of functions
(val(·), T (·), s(·)) such that: given a claimed permutation π over {1, 2, . . . , n},
val(π) = 1 if π indeed represents a valid permutation; T (·) ≡ {1, 2, . . . , m}, and
s(π) = π(G). When the verifier’s challenge is 1, it will check that n (out of n2)
bit commitments are opened as all 1’s; moreover, these n positions (of opened bit
commitments) should correspond to a possible location of a Hamiltonian cycle.
This induces a predicate P1 which consists of all n-vertices graphs containing a
Hamiltonian cycle. Formally, the predicate P1 can be represented by a triplet
of functions (val(·), T (·), s(·)) such that: given a claimed Hamiltonian cycle H,
val(H) = 1 if H indeed represents a possible location of a Hamiltonian cycle;
T (H) is set of coordinates corresponding to edges of H, and s(·) ≡ 1n. If the
input graph is not Hamiltonian, then the two predicates P0 and P1 are obviously
inconsistent.

Another example given below consider a simpler scenario, where a special
form of pattern-predicates is introduced. In the sequel, we will study these special
pattern-predicates first before more general ones.

Example 2. Consider the following scenario. The sender first commits to a
string in a bitwise fashion. Later, all (bit) commitments will be opened, and the
receiver (of commitments) will check whether the whole revealed string satisfies
an efficiently computable predicate P in the common sense (i.e. a predicate which
can be evaluated on any input string in polynomial time, rather than pattern-
predicate introduced in this work). Let A(·) be an algorithm which runs in time
poly(m) and can decide whether a string str ∈ {0, 1}m satisies P . We note that
the predicate P can also be viewed as a pattern-predicate (A(·), T (·), s(·)) where
T (·) ≡ {1, 2, . . . ,m} and s(·) is the identity function; any string str ∈ P itself
serves as its witness.

3.2 String Predicate-Binding

We first give an informal definition of the predicate-binding property of a quan-
tum string commitment scheme, and then informally state we have achieved
towards predicate-binding by composing a generic computationally-binding
quantum bit commitment scheme in parallel. Last, we restate the definition
of the predicate-binding w.r.t. the parallization of a generic computationally-
binding quantum bit commitment scheme in a formal way for the purpose of
proving predicate-binding in the sequel.

Definition 4 (Predicate-binding, informal). Let P1, P2 be two inconsis-
tent pattern-predicates. We say that a quantum string commitment scheme is
predicate-binding w.r.t. (P1, P2) if any cheating sender, who can succeed in con-
vincing the receiver that the committed value of the (claimed) quantum string
commitment satisfies the predicate P1 with certainty, will fail to convince the
receiver that the committed value satisfies the predicate P2 (except for a negligi-
ble probability). We say that a quantum string commitment scheme is predicate-
binding if it is predicate-binding w.r.t. any pair of inconsistent predicates.
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Remark. Classical commitments secure against classical attacks are trivially
predicate-binding, simply because there is at most one string (i.e. the committed
value) associated with each (claimed) commitment. However, this no longer holds
w.r.t. either classical or quantum commitments secure against quantum attacks.

Restricting to consider the quantum string commitment scheme obtained by
composing a generic computationally-binding quantum bit commitment scheme
(Q0, Q1) in parallel, our goal is to show that it is predicate-binding w.r.t. incon-
sistent pattern-predicates pairs that are general enough for our application
(Sect. 4). Informally, we can prove a theorem as below. We highlight (again)
that we do not achieve the full predicate-binding, which is left as an interesting
open problem.

Theorem 2. Suppose that the quantum bit commitment scheme (Q0, Q1) is
computationally binding. Let P1, P2 be two inconsistent predicates on the set
{0, 1}m such that for (at least) one of them, the verification of whether an m-bit
string satisfies it needs to examine the bits at some fixed positions of the string
(regardless of the witness provided). Then the parallel composition of the scheme
(Q0, Q1) gives rise to a quantum string commitment scheme that is computa-
tionally predicate-binding w.r.t. (P1, P2).

For the purpose of proving Theorem 2, now let us restate Definition 4 w.r.t.
the parallization of a generic computationally-binding quantum bit commitment
scheme in a more formal way.

Suppose that a cheating sender who is modeled as in Sect. 2.2 tries to con-
vince the (honest) receiver that the committed value of a (claimed) quantum
string commitment satisfies a predicate P = (val(·), T (·), s(·)), i.e. the (claimed)
commitment can be opened in such a way that if w is a valid witness, then the
bit commitments indexed by the subset T (w) are opened as the string s(w). The
predicate P natually induces a projector P (also by abusing the notation) whose
expression is given by

P =
∑

w

( |w〉 〈w| )D ⊗ (
Qs(w) |0〉 〈0| Q†

s(w)

)C⊗T (w)R⊗T (w)

. (5)

Its explanation follows. The summation is over all valid witnesses20 for m-bit
strings in P1; the quantum circuit Qs(w) (whose meaning is referred to the equa-
tion (4)) performs on the copies of the quantum register pair (C,R) indexed by
the subset T (w); in the reveal stage, the receiver will perform the binary mea-
surement {P,1 − P} on its system to decide whether to accept or not. Hence,
the sender’s success probability of convincing the receiver to accept is given by
‖PU |ψ〉‖2, where recall that |ψ〉 is the quantum state of the whole system at the
end of the commit stage and U is the sender’s operation in the reveal stage. We
also note that the projector P is efficiently realizable, since all functions val(·),
T (·) and s(·) are efficiently computable.

Based on the expression (5), we can formalize the predicate-binding property
of the parallelization of a generic quantum bit commitment scheme as follows.
20 We point out that a string in P1 may have multiple witnesses.
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Definition 5 (Predicate-binding w.r.t. the parallel composition of
QBC). Let P1, P2 be two inconsistent pattern-predicates. We say that the
quantum string commitment scheme obtained by composing a generic quan-
tum bit commitment scheme (Q0, Q1) in parallel is predicate-binding w.r.t.
(P1, P2) if ‖P2UP1 |ψ〉‖2 is negligible, where |ψ〉 is an arbitrary state of registers
(C⊗m,R⊗m,D,Z), and U could be any efficiently realizable unitary transforma-
tions that do not touch the quantum commitment (i.e. the commitment registers
C⊗m). We say that this quantum string commitment scheme is predicate-binding
if it is predicate-binding w.r.t. any pair of inconsistent pattern-predicates.

In the subsequent two subsections, we will prove Theorem 2. We will first
establish predicate-binding w.r.t. a special form of inconsistent pattern-predicate
pair (as formalized in Lemma 2), and then extend it to a general case (as for-
malized in Theorem 3).

3.3 Towards Predicate-Binding: A Special Case

We first restrict to consider pattern-predicates arising in Example 2 in Sub-
sect. 3.1, and try to establish predicate-binding w.r.t. such a pair of inconsistent
predicates.

By instantiating the predicate P in the Eq. (5) with the predicate of the form
introduced in Example 2, the expression of the projector P will become

P =
∑

s∈P

( |s〉 〈s| )D ⊗ (
Qs |0〉 〈0| Q†

s

)C⊗mR⊗m

. (6)

For any inconsistent predicate pair (P1, P2) whose corresponding projectors
P1 and P2 are both of the form (6), we can prove the following main technical
lemma of this work.

Lemma 2. Suppose that the scheme (Q0, Q1) is computationally ε-binding for
some arbitrary negligible function ε(·). Both predicates P1 and P2 are of the
form given by the expression (6). Then for any quantum state |ψ〉 of registers
(C⊗m,R⊗m,D,Z), and any efficiently realizable unitary transformation U that
does not touch the commitment registers C⊗m, we have ‖P2UP1 |ψ〉‖2 ≤ m2ε2 +
2mε.

Proof. According to the expression (6), we can write

P1 |ψ〉 =
∑

s∈P1

αs |s〉D ⊗ Qs |0〉C⊗mR⊗m ⊗ |φs〉Z (7)

=
∑

s∈{0,1}m

αs |s〉D ⊗ Qs |0〉C⊗mR⊗m ⊗ |φs〉Z
, (8)
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where for each s �∈ P1, we let αs = 0 and |φs〉 be arbitrary21; moreover, the com-
plex coefficients αs’s satisfy

∑
s∈{0,1}m |αs|2 ≤ 1. For convenience, we introduce

the shorthand
|ψs〉 def

= |s〉 ⊗ Qs |0〉 ⊗ |φs〉 (9)

for each s ∈ {0, 1}m. With these notations, our goal becomes to show

∥
∥
∥P2U

∑

s∈{0,1}m

αs |ψs〉
∥
∥
∥
2

≤ m2ε2 + 2mε. (10)

We will actually prove a strengthening of the inequality (10) by induction.
Specifically, we will prove that for each k (0 ≤ k ≤ m) and each string x ∈
{0, 1}m−k, it holds that

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

≤ (m2ε2 + 2kε)
∑

s∈{0,1}k◦x

|αs|2 , (11)

where {0, 1}k ◦ x denotes the set of all m-bit strings with a suffix x of length
m − k. For each x ∈ {0, 1}m−k where 0 ≤ k ≤ m, if we view it as inducing
an internal node/leaf of a binarty tree which corresponds to the summation
P2U

∑
s∈{0,1}k◦x αs |ψs〉, then we will bound the (squared) norm of each internal

node in a bottom-up way. Thus, the root of the tree will correspond to the case
where k = m (then x becomes an empty string), i.e. l.h.s. of the inequality (10)
without the squared norm. If we can prove the inequality (11), then plugging in
k = m and the inequality

∑
s∈{0,1}m |αs|2 ≤ 1, we will arrive at the inequality

(10).
Now we are ready to prove the inequality (11) by induction on k, where

0 ≤ k ≤ m.

Base. We show that the inequality (11) holds when k = 0. In this case, x is a
string of length m. Since the coefficient αx = 0 for x �∈ P1, in which case the
inequality (11) holds trivially, it suffices to fix an arbitrary x ∈ P1 and show that
‖P2U |ψx〉‖ ≤ mε. To this end, our technique is the perturbation that is similar
to the quantum statistical binding setting [15]. Specifically, we will first show
that the unit vector U |ψx〉 is negligibly close to the (unnormalized) vector

|ψ̃x〉 def
=

m⊗

i=1

(
1 − (Qx̄i

|0〉 〈0| Q†
x̄i

)
)
U |ψx〉 , (12)

where x̄i = 1−xi, and the projector Qx̄i
|0〉 〈0| Q†

x̄i
performs on the i-the copy of

the register pair (C,R). Second, we show that from the inconsistency of the pred-
icate pair (P1, P2), it follows that the vector |ψ̃x〉 is orthogonal to the subspace

21 Here, our purpose of introducing αs and |φs〉 for s �∈ P1 is mainly for a cleaner way
of writing the proof; it will not affect the places in the subsequent proof where the
quantum computational binding property is applied.
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P2. Combining these two facts, we know that ‖P2U |ψx〉‖ is negligible. Detail
follows.

We first show that
∥
∥U |ψx〉 − |ψ̃x〉∥∥ < mε via a simple hybrid argument.

Specifically, we introduce hybrids for each 0 ≤ j ≤ m such that Hj
def
=

⊗j
i=1

(
1−

Qx̄i
|0〉 〈0| Q†

x̄i

)
U |ψx〉; then U |ψx〉 = H0 and |ψ̃x〉 = Hm. It suffices to show that

any two adjacent hybrids are negligibly close: if this is true, then applying the
triangle inequality of the operator norm m times will yield the desired bound.

Indeed, for each 1 ≤ j ≤ m,

‖Hj − Hj−1‖

=

∥
∥
∥
∥
∥

j⊗

i=1

(
1 − Qx̄i

|0〉 〈0| Q†
x̄i

)
U |ψx〉 −

j−1⊗

i=1

(
1 − Qx̄i

|0〉 〈0| Q†
x̄i

)
U |ψx〉

∥
∥
∥
∥
∥

≤
∥
∥
∥
(
1 − Qx̄j

|0〉 〈0| Q†
x̄j

)
U |ψx〉 − U |ψx〉

∥
∥
∥

=
∥
∥
∥
(
Qx̄j

|0〉 〈0| Q†
x̄j

)
U(|x〉 Qx |0〉 |φx〉)

∥
∥
∥

< ε,

where the last “<” follows from the quantum computational binding property
by considering the j-th quantum bit commitment.

We then show that the (unnormalized) vector |ψ̃x〉 is orthogonal to the sub-
space P2, i.e.

∥
∥P2|ψ̃x〉∥∥ = 0. This follows straightforwardly from the assumption

that the predicate P2 is inconsistent with the predicate P1. In greater detail, for
each s ∈ P2, we know that it is different from the string x ∈ P1; that is, there
exists some index j (1 ≤ j ≤ m) such that sj = x̄j . Combining this with the
Eq. (12), it follows that

∥
∥
∥
( |s〉 〈s| ⊗ Qs |0〉 〈0| Q†

s

)|ψ̃x〉
∥
∥
∥ ≤

∥
∥
∥
(
Qs |0〉 〈0| Q†

s

)|ψ̃x〉
∥
∥
∥

≤
∥
∥
∥
(
Qx̄j

|0〉 〈0| Q†
x̄j

)( m⊗

i=1

(
1 − (Qx̄i

|0〉 〈0| Q†
x̄i

)
)
U |ψx〉

)∥
∥
∥

= 0.

Then summing over all s ∈ P2, we obtain
∥
∥
∥

∑

s∈P2

( |s〉 〈s| ⊗ Qs |0〉 〈0| Q†
s

)|ψ̃x〉
∥
∥
∥ =

∥
∥P2|ψ̃x〉∥∥ = 0.

Combining
∥
∥U |ψx〉 − |ψ̃x〉∥∥ < mε with

∥
∥P2|ψ̃x〉∥∥ = 0, we arrive at

‖P2U |ψx〉‖ ≤ mε.

Induction. Now suppose that the inequality (11) holds for k − 1 and each binary
string x of length m − (k − 1). We are to show that it also holds for k and an
arbitrary binary string x of length of m − k.
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For an arbitrary x ∈ {0, 1}m−k, we first expand the l.h.s. of the inequality
(11):

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥

2
=

∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉 + P2U
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′ 〉
∥
∥
∥

2

≤
∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉
∥
∥
∥

2
+

∥
∥
∥P2U

∑

s′∈{0,1}k−1◦1x

αs′ |ψs′ 〉
∥
∥
∥

2
(13)

+2
∣
∣
∣

∑

s∈{0,1}k−1◦0x

αs 〈ψs| · U†P2U ·
∑

s′∈{0,1}k−1◦1x

αs′ |ψs′ 〉
∣
∣
∣.

For convenience, we introduce shorthands

α2
0x

def
=

∑

s∈{0,1}k−1◦0x

|αs|2 , α2
1x

def
=

∑

s′∈{0,1}k−1◦1x

|αs′ |2 , α2
x

def
= α2

0x + α2
1x.

Without loss of generality, we can assume that all α0x, α1x, αx ≥ 0. With these
notations, our goal (i.e. inequality (11)) becomes to show

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

≤ α2
x(m2ε2 + 2kε),

and the induction hypothesis implies
∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉
∥
∥
∥
2

≤ α2
0x(m2ε2 + 2(k − 1)ε),

∥
∥
∥P2U

∑

s∈{0,1}k−1◦1x

αs |ψs〉
∥
∥
∥
2

≤ α2
1x(m2ε2 + 2(k − 1)ε).

The remainder of the analysis splits into two cases.

Case 1: either α0x = 0 or α1x = 0. Without loss of generality, we can assume
that α1x = 0. This implies that αs′ = 0 for each s′ ∈ {0, 1}k−1 ◦ 1x. Thus,
∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

=
∥
∥
∥P2U

∑

s∈{0,1}k−1◦0x

αs |ψs〉
∥
∥
∥
2 ≤ α

2
0x(m

2
ε
2
+ 2(k − 1)ε) ≤ α

2
x(m

2
ε
2
+ 2kε),

where the first “≤” uses the induction hypothesis.

Case 2: both α0x > 0 and α1x > 0. Following the inequality (13) and using
the induction hypothesis, we have

∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2 ≤ α

2
0x(m

2
ε
2
+ (k − 1)ε) + α

2
1x(m

2
ε
2
+ 2(k − 1)ε)

+2α0xα1x ·
∣
∣
∣

1

α0x

∑

s∈{0,1}k−1◦0x

αs 〈ψs| · U
†
P2U · 1

α1x

∑

s′∈{0,1}k−1◦1x

αs′
∣
∣ψs′

〉
∣
∣
∣

︸ ︷︷ ︸

(∗)

.
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We claim (refer to Claim 1 in the below) that the absolute value (∗) in the above
can be bounded by 2ε. Then
∥
∥
∥P2U

∑

s∈{0,1}k◦x

αs |ψs〉
∥
∥
∥
2

≤ (α2
0x + α2

1x)(m2ε2 + 2(k − 1)ε) + 2α0xα1x · 2ε

≤ (α2
0x + α2

1x)(m2ε2 + 2(k − 1)ε) + (α2
0x + α2

1x) · 2ε

= α2
x(m2ε2 + 2kε).

The induction step is thus completed in both cases.
We finish the proof the inequality (11), and in turn the whole lemma.

We are left to prove the following claim, whose proof is referred to the full
version of this paper [35].

Claim 1. The absolute value (∗) is less than 2ε.

3.4 Extension

By slightly adapting its proof, we can extend Lemma 2 so that it holds w.r.t. more
general inconsistent predicate pairs (and thus could be useful in cryptographic
applications). Specifically, we can prove Theorem 2. Now let us restate Theorem 2
in a more formal way.

Suppose that (P1, P2) is an inconsistent pattern-predicate pair such that
the predicate P2 is of the most general form as described by the Eq. (5). The
predicate P1 is restricted to be such that the verification of whether an m-bit
string satisfies it only needs to examine the bits at some fixed positions of the
string (regardless of the witness provided). Formally, let T1 be the fixed subset
that prescribes which bits are to examine for the verification of P1, and l = |T1|.
Then whether a string str ∈ {0, 1}m satisfies the predicate P1 actually only
depends on its substring str[T1]. The predicate P1 in turn induces a predicate
P1[T1] on the set {0, 1}l which consists of strings obtained by projecting strings in
P1 on positions prescribed by the subset T1. Specifically, P1 = (val(·), T (·), s(·)),
where T (·) ≡ T1 and |s(·)| ≡ l. Following the equation (5), the projector P1 can
be written as

P1 =
∑

w

( |w〉 〈w| )D ⊗ (
Qs(w) |0〉 〈0| Q†

s(w)

)C⊗T1R⊗T1
(14)

=
∑

str∈P1[T1]

∑

w:s(w)=str

( |w〉 〈w| )D ⊗ (
Qstr |0〉 〈0| Q†

str

)C⊗T1R⊗T1
. (15)

Then Theorem 2 can be restated as follows formally.

Theorem 3. Suppose that the scheme (Q0, Q1) is computationally ε-binding.
Let P1, P2 be two inconsistent predicates on the set {0, 1}m, which induce
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two projectors of the form (15) and (5), respectively. Then for any quantum
state |ψ〉 of registers (C⊗m,R⊗m,D,Z), and any efficiently realizable unitary
transformation U that does not touch the commitment registers C⊗m, we have
‖P2UP1 |ψ〉‖2 ≤ m2ε2 + 3mε.

Due to the space limitation, an informal discussion on why such an extension
as described in Theorem 2 (or formally Theorem 3) is possible, as well as the
proof of Theorem 3 is referred to the full version of this paper [35].

4 Application: Quantum Zero-Knowledge Argument

In this section, we give an application of the quantum computationally predicate-
binding string commitment scheme as shown in the proceeding section. Specif-
ically, we show that Blum’s protocol for the NP-complete language Hamilto-
nian Cycle [5] with a generic quantum computationally-binding bit commit-
ment scheme plugged in gives rise to a quantum zero-knowledge argument sys-
tem. While its quantum (perfect or statistical) zero-knowledge property can
be obtained by a straightforward application of Watrous’s quantum rewinding
technique22 [30,32,33,36], its quantum computational soundness is established
by Lemma 3 as stated below. Combing them we arrive at Theorem 1.

Lemma 3. Blum’s protocol for the language Hamiltonian Cycle with a generic
quantum computationally-binding bit commitment scheme (Q0, Q1) plugged in
is sound against any quantum provers who are polynomial-time bounded, with
soundness error 1/2 + negl(·).
Proof. This can be proved by instantiating Theorem 3 with proper predicates
induced by Blum’s protocol. Detail follows.

Suppose that the binding error of the scheme (Q0, Q1) is ε(·), which is a
negligible function. We inherit notations as introduced in Subsect. 2.3. Following
Subsect, 2.2, we can model a generic attack of the prover of Blum’s protocol
in the following way. The combined (quantum) system of the (cheating) prover
and the (honest) verifier is given by (P,D,C⊗n2

,R⊗n2
), where the n2 copies of

the register pair (C,R) are used for (in total n2) quantum bit commitments; the
register D will hold the classical information of the prover’s response (i.e. the
permutation π when the challenge b = 0 or the location of a Hamiltonian cycle H
when b = 1); the register P is the prover’s (private) workspace. Suppose that the
whole system is initialized in the state |ψ〉. The prover sends the quantum register
C⊗n2

to the verifier as its first message. Then depending on the challenge b, the
prover will perform some polynomial-time realizable unitary transformation Ub

22 We highlight that in the literature we cite, various quantum zero-knowledge proper-
ties are based on different hiding properties of (classical or quantum) commitments
(secure against quantum attacks) than the one considered in this work. However,
their proofs extend to our setting straightforwardly, especially the proof of quantum
zero-knowledge in [36].
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on the registers (P,D,R⊗n2
). After receiving the prover’s response, the verifier

will perform some binary measurement, which also depends on the challenge b
(as prescribed in the below), to decide to whether accept or not.

Formally, depending on the challenge b, the verifier’s accepting conditions
induce two pattern-predicates, which in turn induces two efficiently realizable
projectors/binary measurements as follows:

1. The projector corresponding to b = 0 is given by

P0 =
∑

π∈Sn

( |π〉 〈π| )D ⊗ (
Qπ(G) |0〉 〈0| Q†

π(G)

)C⊗n2
R⊗n2

=
∑

s∈{0,1}n2 :
∃π∈Sn,π(G)=s

∑

π∈Sn:π(G)=s

( |π〉 〈π| )D ⊗ (
Qs |0〉 〈0| Q†

s

)C⊗n2
R⊗n2

.

2. The projector corresponding to b = 1 is given by

P1 =
∑

H:n cycle

( |H〉 〈H| )D ⊗ (
Q1n |0〉 〈0| Q†

1n

)C⊗HR⊗H

,

where the projector Q1n |0〉 〈0| Q†
1n performs on the n copies of the register

pair (C,R) that are determined by the location of the Hamiltonian cycle H.

We highlight that here we implicitly assume that the verifier just performs a big
binary measurement (induced by either P0 or P1) to decide whether to accept
or not; it in particular does not measure the register D to extract any classical
information. It is easy to see that whether measuring the register D or not will
not change the verifier’s acceptance probability. But by doing this, we are then
allowed to apply the quantum rewinding lemma (Lemma 1).

Now we are ready to argue the quantum computational soundness of Blum’s
protocol. Suppose for contradiction that there exists a efficiently realizable cheat-
ing prover given by (|ψ〉 , U0, U1) as aforementioned who can break the quantum
computational soundness. Namely,

1
2

∑

b∈{0,1}
‖PbUb |ψ〉‖2 >

1
2

+ n−c,

where c is some constant. Then applying the quantum rewinding lemma (Lemma
1), it follows that ∥

∥
∥P1U1U

†
0P0U0 |ψ〉

∥
∥
∥ > n−c. (16)
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On the other hand, we invoke Theorem 3 by doing the replacements as sum-
marized in the following table:

Theorem 3 Blum’s protocol
m n2

Registers (C⊗m,R⊗m) Registers (C⊗m,R⊗m)
Register D Register D
Register Z Register P

Projector P1 Projector P0

Projector P2 Projector P1

Quantum state |ψ〉 Quantum state U0 |ψ〉
Unitary transformation U Unitary transformation U1U

†
0

In case that the input graph G is not Hamiltonian, the two predicates P0 and P1

are inconsistent. Applying Theorem 3 will yield an upper bound n4ε2 + 3n2ε of
the squared norm

∥
∥P1U1U

†
0P0U0 |ψ〉 ∥

∥2, which is negligible. But this contradicts
with the inequality (16).

We finish the proof of the lemma.

On Compositions. In this section, we only consider the stand-alone Blum’s
protocol, whose soundness error is not tolerable in practice. It is not hard to see
that if we compose it in sequence, it gives rise to a quantum perfect or statistical
zero-knowledge arguments for NP with negligible soundness error (but at the
cost of a significant increase of the round complexity). We may also consider
composing Blum’s atomic protocol in parallel, which we believe can reduce the
soundness error to be negligible23, too However, we do not known whether the
parallelization preserves the quantum zero-knowledge property. Actually, the
same problem is notorious hard w.r.t. classical zero-knowledge secure against
quantum attacks [9,22].

5 Conclusion

In this work, we show that the parallel composition of a generic quantum
computationally-binding bit commitment scheme gives rise to a quantum string
commitment scheme that is computationally predicate-binding, which is non-
trivial and turns out to be useful in constructing quantum zero-knowledge argu-
ments for NP languages. The main technical part of this work lies in establishing
this quantum computational predicate-binding property.

Acknowledgements. We thank Dominique Unruh for helpful and inspiring discus-
sions on the strictness of the quantum binding property and the possibility of basing

23 This can be done by combining the predicate-binding of quantum commitments
with a different quantum rewinding lemma (say the one used in [30] to cope with
Σ-protocol) than ours (i.e. Lemma 1).
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Abstract. Broadbent and Islam (TCC ’20) proposed a quantum cryp-
tographic primitive called quantum encryption with certified deletion. In
this primitive, a receiver in possession of a quantum ciphertext can gen-
erate a classical certificate that the encrypted message has been deleted.
Although their construction is information-theoretically secure, it is lim-
ited to the setting of one-time symmetric key encryption (SKE), where
a sender and receiver have to share a common key in advance and the
key can be used only once. Moreover, the sender has to generate a quan-
tum state and send it to the receiver over a quantum channel in their
construction. Deletion certificates are privately verifiable, which means
a verification key for a certificate must be kept secret, in the definition
by Broadbent and Islam. However, we can also consider public verifia-
bility. In this work, we present various constructions of encryption with
certified deletion.

– Quantum communication case: We achieve (reusable-key) public key
encryption (PKE) and attribute-based encryption (ABE) with certi-
fied deletion. Our PKE scheme with certified deletion is constructed
assuming the existence of IND-CPA secure PKE, and our ABE
scheme with certified deletion is constructed assuming the existence
of indistinguishability obfuscation and one-way functions. These two
schemes are privately verifiable.

– Classical communication case: We also achieve interactive encryp-
tion with certified deletion that uses only classical communication.
We give two schemes, a privately verifiable one and a publicly ver-
ifiable one. The former is constructed assuming the LWE assump-
tion in the quantum random oracle model. The latter is constructed
assuming the existence of one-shot signatures and extractable wit-
ness encryption.
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1 Introduction

The no-cloning theorem, which states that an unknown quantum state cannot be
copied in general, is one of the most fundamental principles in quantum physics.
As any classical information can be trivially copied, this indicates a fundamental
difference between classical and quantum information. The no-cloning theorem
has been the basis of many quantum cryptographic protocols, including quantum
money [Wie83] and quantum key distribution [BB84].

Broadbent and Islam [BI20] used the principle to construct quantum encryp-
tion with certified deletion. In this primitive, a sender encrypts a classical mes-
sage to generate a quantum ciphertext. A receiver in possession of the quantum
ciphertext and a classical decryption key can either decrypt the ciphertext or
“delete” the encrypted message by generating a classical certificate. After gen-
erating a valid certificate of deletion, no adversary can recover the message even
if the decryption key is given.1 We remark that this functionality is classically
impossible to achieve since one can copy a classical ciphertext and keep it so
that s/he can decrypt it at any later time. They prove the security of their
construction without relying on any computational assumption, which ensures
information-theoretical security. Although they achieved the exciting new func-
tionality, their construction is limited to the one-time symmetric key encryption
(SKE) setting. A sender and receiver have to share a common key in advance in
one-time SKE, and the key can be used only once.

A possible application scenario of quantum encryption with certified dele-
tion is the following. A user uploads encrypted data on a quantum cloud server.
Whenever the user wishes to delete the data, the cloud generates a deletion cer-
tificate and sends it to the user. After the user verifies the validity of the certifi-
cate, s/he is convinced that the data cannot be recovered even if the decryption
key accidentally leaks later. Such quantum encryption could prevent data reten-
tion and help to implement the right to be forgotten [GDP16]. In this scenario,
one-time SKE is quite inconvenient. By the one-time restriction, the user has to
locally keep as many decryption keys as the number of encrypted data in the
cloud, in which case there seems to be no advantage of uploading the data to
the cloud server: If the user has such large storage, s/he could have just locally
kept the messages rather than uploading encryption of them to the cloud. Also,
in some cases, a party other than the decryptor may want to upload data to the
cloud. This usage would be possible if we can extend the quantum encryption
with certified deletion to public key encryption (PKE). We remark that the one-
time restriction is automatically resolved for PKE by a simple hybrid argument.
Even more flexibly, a single encrypted data on the cloud may be supposed to be
decrypted by multiple users according to some access control policy. Attribute-
based encryption (ABE) [SW05,GPSW06] realizes such an access control in

1 We note that if the adversary is given the decryption key before the deletion, it can
decrypt the ciphertext to obtain the message and keep it even after the deletion, but
such an “attack” is unavoidable.
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classical cryptography. Thus, it would be useful if we have ABE with certified
deletion. Our first question in this work is:

Can we achieve PKE and ABE with certified deletion?

Moreover, a sender needs to send quantum states (random BB84
states [BB84]) over a quantum channel in the construction by Broadbent and
Islam [BI20]. Although generating and sending random BB84 states are not
difficult tasks (and they are already possible with current technologies), a clas-
sical sender and communication over only a classical channel are much eas-
ier. Besides, communicating over a classical channel is desirable in the appli-
cation scenario above since many parties want to upload data to a cloud.
In addition to these practical motivations, achieving classical channel cer-
tified deletion is also an interesting theoretical research direction given the
fact that many quantum cryptographic protocols have been “dequantized”
recently [Mah18,CCKW19,RS19,AGKZ20,KNY20]. Thus, our second question
in this work is:

Can we achieve encryption with certified deletion, a classical sender, and
classical communication?

In the definition by Broadbent and Islam [BI20], a verification key for a
deletion certificate must be kept secret (privately verifiable). If the verification
key is revealed, the security is no longer guaranteed in their scheme. We can also
consider public verifiability, which means the security holds even if a verification
key is revealed to adversaries. Broadbent and Islam left the following question
as an open problem:

Is publicly verifiable encryption with certified deletion possible?

1.1 Our Result

We solve the three questions above affirmatively in this work.

PKE and ABE with Certified Deletion and Quantum Communication. We
present formal definitions of PKE and ABE with certified deletion, and present
constructions of them:

– We construct a PKE scheme with certified deletion assuming the existence of
(classical) IND-CPA secure PKE. We also observe that essentially the same
construction gives a reusable SKE scheme with certified deletion if we use
IND-CPA secure SKE, which exists under the existence of one-way function
(OWF), instead of PKE.

– We construct a (public-key) ABE scheme with certified deletion assuming
the existence of indistinguishability obfuscation (iO) [BGI+12] and OWF.
This construction satisfies collusion resistance and adaptive security, i.e., it is
secure against adversaries that adaptively select a target attribute and obtain
arbitrarily many decryption keys.
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All building blocks above are post-quantum secure in this work. We note that our
constructions rely on computational assumptions and thus are not information-
theoretically secure, unlike the construction in [BI20]. This is unavoidable since
even plain PKE or ABE cannot be information-theoretically secure. We also note
that the constructions above are privately verifiable as the definition of one-time
SKE by Broadbent and Islam [BI20].

Our main technical insight is that we can combine the one-time secure SKE
with certified deletion of [BI20] and plain PKE to construct PKE with certified
deletion by a simple hybrid encryption technique if the latter satisfies receiver
non-committing (RNC) security [CFGN96,JL00,CHK05]. Since it is known that
PKE/SKE with RNC security can be constructed from any IND-CPA secure
PKE/SKE [CHK05,KNTY19], our first result follows.

For the second result, we first give a suitable definition of RNC security for
ABE that suffices for our purpose. Then we construct an ABE scheme with
RNC security based on the existence of iO and OWF. By combining this with
one-time SKE with certified deletion by hybrid encryption, we obtain an ABE
scheme with certified deletion.

Interactive Encryption with Certified Deletion, a Classical Sender, and Classi-
cal Communication. We also present formal definitions of PKE with certified
deletion and classical communication, and present two constructions:

– We construct an interactive encryption scheme with privately verifiable cer-
tified deletion and classical communication in the quantum random ora-
cle model (QROM) [BDF+11]. Our construction is secure under the LWE
assumption in the QROM.

– We construct an interactive encryption scheme with publicly verifiable certi-
fied deletion and classical communication. Our construction uses one-shot sig-
natures [AGKZ20] and extractable witness encryption [GGSW13,GKP+13].
This solves the open problem by Broadbent and Islam [BI20].

A sender is a classical algorithm in both constructions but needs to interact with
a receiver during ciphertext generation.

An encryption algorithm must be interactive in the classical communication
case even if we consider computationally bounded adversaries (and even in the
QROM). The reason is that a malicious QPT receiver can generate two copies
of a quantum ciphertext from classical messages sent from a sender. One is used
for generating a deletion certificate, and the other is used for decryption.

Moreover, both constructions rely on computational assumptions and thus
are not information-theoretically secure, unlike the construction by Broadbent
and Islam [BI20]. This is unavoidable even if an encryption algorithm is interac-
tive (and even in the QROM). The reason is that a computationally unbounded
malicious receiver can classically simulate its honest behavior to get a classical
description of the quantum ciphertext.

For the first construction, we use a new property of noisy trapdoor claw-free
(NTCF) functions, the cut-and-choose adaptive hardcore property (Lemma 4.1),
which we introduce in this work. We prove that the cut-and-choose adaptive
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hardcore property is reduced to the adaptive hardcore bit property [BCM+18]
and injective invariance [Mah18]. Those properties hold under the LWE assump-
tion [BCM+18,Mah18]. This new technique is of independent interest. The idea
of the second construction is to encrypt a plaintext by witness encryption so
that a valid witness is a one-shot signature for bit 0. We use a valid one-shot
signature for bit 1 as a deletion certificate. The one-shot property of one-shot sig-
natures prevents decryption of witness encryption after issuing a valid deletion
certificate. Georgiou and Zhandry [GZ20] used a similar combination of one-shot
signatures and witness encryption to construct unclonable decryption keys.

1.2 Related Work

Before the work by Broadbent and Islam [BI20], Fu and Miller [FM18] and
Coiteux-Roy and Wolf [CRW19] also studied the concept of certifying deletion
of information in different settings. (See [BI20] for the comparison with these
works.)

The quantum encryption scheme with certified deletion by Broadbent and
Islam [BI20] is based on Wiesner’s conjugate coding, which is the backbone of
quantum money [Wie83] and quantum key distribution [BB84]. A similar idea
has been used in many constructions in quantum cryptography that include (but
are not limited to) revocable quantum timed-release encryption [Unr15], unclone-
able quantum encryption [BL20], single-decryptor encryption [GZ20], and copy
protection/secure software leasing [CMP20]. Among them, revocable quantum
timed-release encryption is conceptually similar to quantum encryption with
certified deletion. In this primitive, a receiver can decrypt a quantum cipher-
text only after spending a certain amount of time T . The receiver can also
choose to return the ciphertext before the time T is over, in which case it is
ensured that the message can no longer be recovered. As observed by Broad-
bent and Islam [BI20], an essential difference from quantum encryption with
certified deletion is that the revocable quantum timed-release encryption does
not have a mechanism to generate a classical certificate of deletion. Moreover,
the construction by Unruh [Unr15] heavily relies on the random oracle heuris-
tic [BR97,BDF+11], and there is no known construction without random oracles.

Kundu and Tan [KT20] constructed (one-time symmetric key) quantum
encryption with certified deletion with the device-independent security, i.e., the
security holds even if quantum devices are untrusted. Moreover, they show that
their construction satisfies composable security.

The notion of NTCF functions was first introduced by Brakerski et
al. [BCM+18], and further extended to construct a classical verification of quan-
tum computing by Mahadev [Mah18]. (See also a related primitive so-called
QFactory [CCKW19].) The adaptive hardcore bit property of NTCF functions
was also used for semi-quantum money [RS19] and secure software leasing with
classical communication [KNY20].

Ananth and Kaleoglu concurrently and independently present reusable secret
key and public key uncloneable encryption schemes [AK21]. Uncloneable encryp-
tion [BL20] is related to but different from quantum encryption with certified
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deletion. Uncloneable encryption prevents adversaries from creating multiple
ciphertexts whose plaintext is the same as that of the original ciphertext. Their
constructions are based on a similar idea to one of our main ideas. Specifically,
their construction is obtained by combining one-time secret key uncloneable
encryption and standard SKE/PKE with the “fake-key property”, which is sim-
ilar to the RNC security.

1.3 Technical Overview Part I: Quantum Communication Case

We provide an overview of how to achieve PKE and ABE with certified deletion
using quantum communication in this section. To explain our idea, we introduce
the definition of PKE with certified deletion.

Definition of Quantum Encryption with Certified Deletion. A PKE with certified
deletion consists of the following algorithms.

KeyGen(1λ) → (pk, sk): This is a key generation algorithm that generates a pair
of public and secret keys.

Enc(pk,m) → (vk,CT): This is an encryption algorithm that generates a cipher-
text of plaintext and a verification key for this ciphertext.

Dec(sk,CT) → m′: This is a decryption algorithm that decrypts a ciphertext.
Del(CT) → cert: This is a deletion algorithm that generates a certificate to guar-

antee that the ciphertext CT was deleted.
Vrfy(vk, cert) → � or ⊥: This is a verification algorithm that checks the validity

of a certificate cert by using a verification key. As correctness, we require that
this algorithm returns � (i.e., it accepts) if cert was honestly generated by
Del(CT) and (vk,CT) was honestly generated by Enc.

Roughly speaking, certified deletion security requires that no quantum polyno-
mial time (QPT) adversary given pk and CT can obtain any information about
the plaintext in CT even if sk is given after a valid certificate cert ← Del(CT) is
generated. The difference between PKE and reusable SKE with certified deletion
is that, in reusable SKE, KeyGen outputs only sk. In the one-time SKE case by
Broadbent and Islam [BI20], Enc does not output vk and Vrfy uses sk instead of
vk.

Our Idea for PKE. We use the construction of one-time SKE with certified
deletion by Broadbent and Islam [BI20]. However, we do not need to know
the detail of the SKE scheme since we use it in a black-box way in our PKE
scheme. What we need to understand about the SKE scheme are the following
abstracted properties: (1) A secret key and a plaintext are classical strings. (2) A
ciphertext is a quantum state. (3) The encryption algorithm does not output a
verification key since the verification key is equal to the secret key. (4) It satisfies
the verification correctness and certified deletion security explained above.

Our idea is to convert the SKE with certified deletion scheme into a PKE
with certified deletion scheme by combining with a standard PKE scheme (stan-
dard hybrid encryption technique). This conversion is possible since a secret
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key of the SKE scheme is a classical string. Let PKE.(KeyGen,Enc,Dec) and
SKE.(KeyGen,Enc,Dec,Del,Vrfy) be normal PKE and one-time SKE with certi-
fied deletion schemes, respectively. Our PKE with certified deletion scheme is
described as follows.

KeyGen(1λ): This outputs (pke.pk, pke.sk) ← PKE.KeyGen(1λ).
Enc(pk,m): This generates ske.sk ← SKE.KeyGen(1λ),

ske.CT ← SKE.Enc(ske.sk,m), and pke.CT ← PKE.Enc(pke.pk, ske.sk), and
outputs vk := ske.sk and CT := (ske.CT, pke.CT).

Dec(sk,CT): This computes ske.sk′ ← PKE.Dec(pke.sk, pke.CT) and m′ ←
SKE.Dec(ske.sk′, ske.CT), and outputs m′.

Del(CT): This generates and outputs cert ← SKE.Del(ske.CT).
Vrfy(vk, cert): This outputs the output of SKE.Vrfy(ske.sk, cert) (note that vk =

ske.sk).

At first glance, this naive idea seems to work since even if pke.sk is given to
an adversary after a valid cert is generated, ske.CT does not leak information
about the plaintext by certified deletion security of the SKE scheme. Note that
PKE is used to encrypt ske.sk (not m). One-time SKE is sufficient since ske.sk
is freshly generated in Enc. The proof outline is as follows. First, we use IND-
CPA security of normal PKE to erase information about ske.sk. Then, we use
the one-time certified deletion security of SKE. Unfortunately, we do not know
how to prove the first step above because we must give pke.sk to an adversary
in a security reduction. In the first step, we need to show that if a distinguisher
detects that PKE.Enc(pke.pk, ske.sk) is changed to PKE.Enc(pke.pk, 0|ske.sk|), we
can break IND-CPA security of the normal PKE. However, to run the distin-
guisher, we need to give pke.sk to the distinguisher after it sends a valid certificate
for deletion. The reduction has no way to give pke.sk to the distinguisher since
the reduction is trying to break the PKE scheme!

To solve this problem, we use RNC encryption (RNCE) [JL00,CHK05].
RNCE consists of algorithms (KeyGen,Enc,Dec,Fake,Reveal). The key gener-
ation algorithm outputs not only a key pair (pk, sk) but also an auxiliary trap-
door information aux. The fake ciphertext generation algorithm Fake(pk, sk, aux)
can generate a fake ciphertext ˜CT that does not include information about a
plaintext. The reveal algorithm Reveal(pk, sk, aux, ˜CT,m) can generate a fake
secret key that decrypts ˜CT to m. The RNC security notion requires that
(˜CT = Fake(pk, sk, aux),Reveal(pk, sk, aux, ˜CT,m)) is computationally indistin-
guishable from (Enc(pk,m), sk).

RNCE perfectly fits the scenario of certified deletion. We use an RNCE
scheme RNCE.(KeyGen,Enc,Dec,Fake,Reveal) instead of a normal PKE in
the PKE with certified deletion scheme above. To erase ske.sk, we use the
RNC security. We change RNCE.Enc(rnce.pk, ske.sk) and rnce.sk into
rnce.˜CT = RNCE.Fake(rnce.pk, rnce.sk, rnce.aux) and RNCE.Reveal(rnce.pk,
rnce.sk, rnce.aux, rnce.˜CT, ske.sk), respectively. Thus, as long as ske.sk is given after
a valid certification is generated, we can simulate the secret key of the PKE with
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certified deletion scheme. Using RNCE solves the problem above since the reduc-
tion obtains both a target ciphertext and a secret key (real or fake) in the RNC
security game. To complete the security proof, we use the certified deletion security
of SKE. Here, the point is that the reduction can simulate a secret key by Reveal
since the reduction is given ske.sk after a valid certificate is sent in the certified
deletion security game.

If we use secret key RNCE instead of public key RNCE, we can achieve
reusable SKE with certified deletion via the design idea above. Secret/public
key RNCE can be constructed from IND-CPA SKE/PKE, respectively [CHK05,
KNTY19], and SKE with certified deletion exists unconditionally [BI20]. Thus,
we can achieve PKE (resp. reusable SKE) with certified deletion from IND-CPA
PKE (resp. OWFs).

Note that the RNCE technique above is the fundamental technique in this
work. We use this technique both in the quantum communication case and in
the classical communication case.

Our Idea for ABE. We can extend the idea for PKE to the ABE setting. In this
work, we focus on key-policy ABE, where a policy (resp. attribute) is embedded
in a secret key (resp. ciphertext). The crucial tool is (receiver) non-committing
ABE (NCABE), which we introduce in this work.

Although the definition of NCABE is basically a natural extension of that of
RNCE, we describe algorithms of NCABE for clarity. It helps readers who are
not familiar with normal ABE. The first four algorithms below are algorithms
of normal ABE.

Setup(1λ) → (pk,msk): This is a setup algorithm that generates a public key and
a master secret key.

KeyGen(msk, P ) → skP : This is a key generation algorithm that generates a
secret key for a policy P .

Enc(pk,X,m) → CTX : This is an encryption algorithm that generates a cipher-
text of m under an attribute X.

Dec(skP ,CTX) → m′ or ⊥: This is a decryption algorithm that decrypts CTX if
P (X) = �. If P (X) = ⊥, it outputs ⊥.

FakeSetup(1λ) → (pk, aux): This is a fake setup algorithm that generates a public
key and a trapdoor auxiliary information aux.

FakeCT(pk, aux,X) → ˜CTX : This is a fake ciphertext generation algorithm that
generates a fake ciphertext ˜CTX under an attribute X.

FakeSK(pk, aux, P ) → ˜skP : This is a fake key generation algorithm that generates
a fake secret key ˜skP for P .

Reveal(pk, aux, ˜CT,m) → ˜msk: This is a reveal algorithm that generates a fake
master secret key ˜msk.

Roughly speaking, the NCABE security notion requires that the fake public key,
master secret key, ciphertext, and secret keys are computationally indistinguish-
able from the normal public key, master key, ciphertext, and secret keys. It is
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easy to see that the hybrid encryption approach works in the ABE setting as
well. Thus, the goal is to achieve an NCABE scheme.

Our NCABE construction follows the RNCE construction based on IND-
CPA PKE [CHK05,KNTY19]. However, the crucial difference between the PKE
and ABE settings is that, in the ABE setting, adversaries are given many secret
keys for queried policies (that is, we consider collusion-resistance). There is an
obstacle to achieving collusion resistance because secret keys for policies depend
on a master secret key. Note that adversaries can send secret key queries both
before and after the target ciphertext is given.

First, we explain the RNCE scheme from PKE. Although we explain the
1-bit plaintext case, it is easy to extend to the multi-bit case. The idea is
the simple double encryption technique by Naor and Yung [NY90], but we do
not need non-interactive zero-knowledge (NIZK). We generate two key pairs
(pk0, sk0) and (pk1, sk1) and set pk := (pk0, pk1), sk := skz, and aux =
(sk0, sk1, z∗) where z, z∗ ← {0, 1}. A ciphertext consists of Enc(pk0, b) and
Enc(pk1, b). We can decrypt the ciphertext by using skz. A fake ciphertext ˜CT is
(Enc(pkz∗ , 0),Enc(pk1−z∗ , 1)). To generate a fake secret key for a plaintext m∗,
the reveal algorithm outputs skz∗⊕m∗ . It is easy to see that decrypting ˜CT with
skz∗⊕m∗ yields m∗.

Our NCABE is based on the idea above. That is, we use two key pairs
(pk0,msk0) and (pk1,msk1) of a normal ABE scheme ABE.(Setup,KeyGen,
Enc,Dec), and a ciphertext consists of (ABE.Enc(pk0,X, b),ABE.Enc(pk1,
X, b)) where X is an attribute. Our reveal algorithm outputsmskz∗⊕m∗ for a plain-
text m∗ as in the PKE case. The problem is a secret key for a policy P . A naive idea
is that a key generation algorithm outputs skP ← ABE.KeyGen(mskz, P ) where
z ← {0, 1} is chosen in the setup algorithm, and a fake key generation algorithm
outputs ˜skP ← ABE.KeyGen(mskz∗⊕m∗ , P ). However, this apparently does not
work since ˜skP depends on m∗. Unless ˜skP is independent of m∗, we cannot use
NCABE to achieveABEwith certified deletion because ske.sk of SKEwith certified
deletion is sent after a valid certification is generated (ske.sk would be a plaintext
of ABE in the hybrid encryption). To make a fake key generation be independent
of m∗, we need to hide which master secret key is used to generate a secret key for
P . If a secret key leaks information about which secret key (extracted from msk0
or msk1) is used, we cannot adaptively select a fake master secret key in the reveal
algorithm.

iO helps us to overcome this hurdle. Our idea is as follows. A key generation
algorithm outputs an obfuscated circuit of a circuit D[skz] that takes a cipher-
text (abe.CT0, abe.CT1) := (ABE.Enc(pk0,X, b),ABE.Enc(pk1,X, b)) and out-
puts ABE.Dec(skz, abe.CTz) where z ← {0, 1} and skz ← ABE.KeyGen(mskz, P )
is hard-coded in D. A fake key generation algorithm outputs an obfus-
cated circuit of a circuit D0[sk0] that takes (abe.CT0, abe.CT1) and outputs
ABE.Dec(sk0, abe.CT0) where sk0 ← ABE.KeyGen(msk0, P ) is hard-coded in D0.
Note that the fake secret key cannot be used to decrypt a fake ciphertext
(abe.CTz∗ , abe.CT1−z∗) := (ABE.Enc(pkz∗ ,X, 0),ABE.Enc(pk1−z∗ ,X, 1)) where
z∗ ← {0, 1} since P (X) = ⊥ must hold by the requirement on ABE security.
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Since the decryption circuits D and D0 are obfuscated, adversaries have no idea
about which secret key (sk0 or sk1) is used for decryption. This idea is inspired
by the functional encryption (FE) scheme by Garg et al. [GGH+16].

The final issue is that adversaries can detect whether a secret key is real or
fake if they use an invalid ciphertext (ABE.Enc(pk0, b),ABE.Enc(pk1, 1 − b)) as
an input to the obfuscated circuits. To prevent this attack, we use statistically
sound NIZK to check the consistency of double encryption as the FE scheme by
Garg et al. [GGH+16]. By the statistical soundness of NIZK, we can guarantee
that the obfuscated decryption circuit does not accept invalid ciphertexts, and D
and D0 are functionally equivalent. Note that a secret key for policy P outputs
⊥ for the target ciphertext since a target attribute X∗ in the target ciphertext
satisfies P (X) = ⊥. We do not need the simulation-soundness, unlike the FE
scheme by Garg et al. due to the following reason. In the FE scheme, plain PKE
schemes are used for the double encryption technique and a secret key sk0 or sk1
is hard-coded in a functional decryption key. Before we use PKE security under
pkb, we need to switch the decryption key from skb to sk1−b by iO security. During
this phase, we need to use a fake simulated proof of NIZK. Thus, the simulation-
soundness is required. However, in our ABE setting, a secret key for P (not the
master secret keys msk0,msk1) is hard-coded in D (or D0) above. Thanks to the
ABE key oracle, sk0 and sk1 for P are always available in reductions. We can
first use iO security to switch from D to D0. After that, we change a real NIZK
proof into a fake one. Thus, our NCABE scheme does not need the simulation-
soundness. This observation enables us to achieve the adaptive security rather
than the selective security, unlike the FE scheme by Garg et al.2 Thus, we can
achieve NCABE from iO and OWFs since adaptively secure standard ABE can
be constructed from iO and OWFs.

1.4 Technical Overview Part II: Classical Communication Case

We provide an overview of how to achieve privately verifiable and publicly verifi-
able interactive encryption with certified deletion using classical communication
in this section. We note that both of them rely on interactive encryption algo-
rithms.

Privately Verifiable Construction. For realizing a privately verifiable construc-
tion with classical communication, we rely on NTCF functions [BCM+18,
Mah18]. In this overview, we consider an ideal version, noise-free claw-free
permutations for simplicity. A trapdoor claw-free permutation is f : {0, 1} ×
{0, 1}w → {0, 1}w such that (1) f(0, ·) and f(1, ·) are permutations over
{0, 1}w, (2) given the description of f , it is hard to find x0 and x1 such that
f(0, x0) = f(1, x1), and (3) there is a trapdoor td that enables one to effi-
ciently find x0 and x1 such that f(0, x0) = f(1, x1) = y for any y. In addi-
tion, the existing work showed that (a noisy version of) it satisfies a property
2 In the initial version of this work [NY21], we achieve only the selective security

because we use statistical simulation-sound NIZK as the FE scheme by Garg et al.
[GGH+16]. We improve the result.
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called the adaptive hardcore bit property under the LWE assumption [BCM+18].
To explain this, suppose that one generates the state

∑

b,x |b〉 |x〉|f(b, x)〉, and
measures the third register in the computational basis to get a result y. Then
the first and second registers collapse to the state 1√

2
(|0〉 |x0〉 + |1〉 |x1〉) with

f(0, x0) = f(1, x1) = y. If one measures the state in the computational basis,
the measurement outcome is (0, x0) or (1, x1). If, on the other hand, one mea-
sures the state in the Hadamard basis, the measurement outcome is (e, d) such
that e = d · (x0 ⊕ x1). The adaptive hardcore bit property roughly means that
once one gets (0, x0) or (1, x1), it cannot output (e, d) such that d �= 0 and
e = d · (x0 ⊕ x1) with probability better than 1/2 + negl(λ). Note that this is a
tight bound since e = d · (x0 ⊕ x1) holds with probability 1/2 if we randomly
choose e. Existing works showed that this property can be amplified by parallel
repetition [RS19,KNY20]: Specifically, let (0, xi,0) and (1, xi,1) be the preimages
of yi under fi for i ∈ [n] where n = ω(log λ). Then once one gets a sequence
{bi, xi,bi

}i∈[n] for some b1‖...‖bn ∈ {0, 1}n, it can get a sequence {ei, di}i∈[n] such
that di �= 0 and ei = di · (xi,0 ⊕ xi,1) only with negligible probability.

We use this property to construct an encryption scheme with certified
deletion. A natural idea would be as follows: The sender sends n functions
{fi}i∈[n] to the receiver, the receiver generates {yi}i∈[n] along with states
{ 1√

2
(|0〉 |xi,0〉 + |1〉 |xi,1〉)}i∈[n] as above and sends {yi}i∈[n] to the sender, and

the sender sends receiver a ciphertext CT decryptable only when {bi, xi,bi
}i∈[n]

for some b1‖...‖bn ∈ {0, 1}n is available. We discuss how to implement such a
ciphertext later. We use {ei, di}i∈[n] such that ei = di · (xi,0 ⊕ xi,1) as a deletion
certificate. The receiver can decrypt the ciphertext by measuring the states in
the computational basis, and once it outputs a valid deletion certificate, it must
“forget” preimages by the amplified adaptive hardcore property and thus cannot
decrypt the ciphertext. This idea can be implemented in a straightforward man-
ner if we generate CT by (extractable) witness encryption [GGSW13,GKP+13]
under the corresponding NP language. However, since witness encryption is a
strong assumption, we want to avoid this. Indeed, we can find the following can-
didate construction using a hash function H modeled as a random oracle. We
set the ciphertext as CT := {CTi,b}i∈[n],b∈{0,1} where {mi}i∈[n] is an n-out-of-n
secret sharing of the message m and CTi,b := mi ⊕ H(b‖xi,b). The intuition is
that an adversary has to get mi for all i ∈ [n] to get m and it has to know
(0, xi,0) or (1, xi,1) to know mi. Therefore, it seems that any adversary that
gets any information of m can be used to extract a sequence {bi, xi,bi

}i∈[n] for
some b1‖...‖bn ∈ {0, 1}n. If this is shown, it is straightforward to prove that the
adversary can get no information of m once it submits a valid deletion certifi-
cate by the amplified adaptive hardcore property as explained above. However,
turning this intuition into a formal proof seems difficult. A common technique
to extract information from adversary’s random oracle queries is the one-way
to hiding lemma [Unr15,AHU19]. The lemma roughly claims that if the adver-
sary distinguishes H(X) from random, then we would get X with non-negligible
probability by measuring a randomly chosen query. Here, a problem is that we
have to extract n strings {bi, xi,bi

}i∈[n] simultaneously. On the other hand, the
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extraction by the one-way to hiding lemma disturbs adversary’s state by a mea-
surement, and thus we cannot use this technique sequentially.3

The difficulty above comes from the fact that the sender cannot know which
of (0, xi,0) and (1, xi,1) the receiver will get, and thus it has to send a cipher-
text that can be decrypted in either case. To resolve this issue, we rely on the
injective invariance, which roughly says that there is an injective function g
that is computationally indistinguishable from f [Mah18]. First, suppose that
we just use g instead of f in the above idea. Since g is injective, there is a unique
preimage (bi, xi) of yi, in which case the sender knows that the receiver will get
{(bi, xi)}i∈[n] by the standard basis measurement. In this case, the aforemen-
tioned problem can be easily resolved by setting CT := m ⊕ H(b1‖x1‖...‖bn‖xn)
as the ciphertext. In this case, it is easy to prove that we can extract {bi, xi}i∈[n]

if an adversary obtains some information of m by applying the standard one-way
to hiding lemma. However, the obvious problem is that the deletion certificate
no longer works for g since the receiver’s state collapses to a classical state after
the measurement of {yi}i∈[n] and thus the Hadamard basis measurement results
in just uniform bits.

Our idea is to take advantages of both of them. Specifically, the sender sends
functions {ηi}i∈[n], where ηi is the g-type function for i ∈ S and it is the f -type
function for i ∈ [n] \ S with a certain set S ⊂ [n]. The receiver generates a set
of states. Each state is a superposition of two preimages of a f -type function
or a state encoding the unique preimage of a g-type function. The preimages of
g-type functions are used for encryption/decryption, and the Hadamard mea-
surement results are used for deletion certificate, whose validity is only checked
on positions where f -type functions are used. We also include a ciphertext of
the description of the subset S in the ciphertext. The ciphertext enables a legit-
imate receiver to know which position should be used in the decryption. More
precisely, we set CT := (Enc(S),m⊕H({bi, xi}i∈[S])) where Enc is a PKE scheme
with the RNC security.4,5 A deletion certificate {ei, di}i∈[n] is valid if we have
di �= 0 and ei = di · (xi,0 ⊕ xi,1) for all i ∈ [n] \ S. For the security proof of this
construction, the amplified adaptive hardcore property cannot be directly used,
because it is a property about f -type functions whereas the above construction
mixes f -type functions and g-type functions, and what we want to have is the
mutually-exclusive property between preimages of g-type functions and deletion
certificates of f -type functions. To solve the problem, we introduce a new prop-
erty which we call the cut-and-choose adaptive hardcore property (Lemma 4.1).

3 A recent work by Coladangelo, Majenz, and Poremba [CMP20] studied what is called
“simultaneous one-way to hiding lemma”, but their setting is different from ours and
their lemma cannot be used in our setting.

4 We require Enc to satisfy the RNC security due to a similar reason to that in Sect. 1.3,
which we omit to explain here.

5 In the actual construction, there is an additional component that is needed for
preventing an adversary from decrypting the ciphertext before outputting a valid
deletion certificate without the decryption key. This is just a security as standard
PKE and can be added easily. Thus, we omit this and focus on the security after
outputting a valid deletion certificate.
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The cut-and-choose adaptive hardcore property intuitively means that once the
receiver issues a deletion certificate {ei, di}i∈[n] that is valid for all i ∈ [n] \ S
before knowing S, it can no longer generate correct preimages {bi, xi}i∈[S] even
if it receives S later. Intuitively, this holds because the only way to obtain such
{ei, di}i∈[n] before knowing S would be to measure the states in the Hadamard
basis for all i ∈ [n], in which case the receiver should forget all preimages. We
show that the cut-and-choose adaptive hardcore property can be reduced to the
adaptive hardcore bit property and injective invariance. The new property we
show itself is of independent interest, and we believe it will be useful in many
other applications of quantum cryptography.

Because the only known construction of NTCF functions [BCM+18,Mah18]
assumes the LWE assumption, our construction of the interactive encryption
with privately verifiable certified deletion with classical communication is also
based on the LWE assumption, and our security proof is done in the QROM. We
note that the construction only achieves private verification because verification
of deletion certificates requires both of two preimages of f -type functions, which
cannot be made public.

Publicly Verifiable Construction. The above construction is not publicly verifi-
able because the verification of the validity of (ei, di) requires both preimages xi,0

and xi,1, which cannot be made public. One might notice that the validity check
of the preimage can be done publicly, and might suggest the following construc-
tion: preimages are used for deletion certificate, and Hadamard measurement
outcomes {ei, di}i∈[n] are used as the decryption key of the encryption. Because
a valid {ei, di}i∈[n] is a witness of an NP statement, we could use (extractable)
witness encryption [GGSW13,GKP+13] to ensure that a receiver can decrypt
the message only if it knows a valid {ei, di}i∈[n]. However, this idea does not
work because the statement of the witness encryption contains private informa-
tion (i.e., preimages), and witness encryption ensures nothing about privacy of
the statement under which a message is encrypted.

Our idea to solve the problem is to use the one-shot signature [AGKZ20].
Roughly speaking, one-shot signatures (with a message space {0, 1}) enable one
to generate a classical public key pk along with a quantum secret key sk, which
can be used to generate either of a signature σ0 for message 0 or σ1 for message
1, but not both. We note that a signature can be verified publicly.

We combine one-shot signatures with extractable witness encryption.6 The
encryption Enc(m) of a message m in our construction is a ciphertext of witness
encryption of message m under the statement corresponding to the verification
of one-shot signature for message 0. The deletion certificate is, on the other hand,
a one-shot signature for message 1. Once a valid signature of 1 is issued, a valid
signature of 0, which is a decryption key of our witness encryption, is no longer
possible to generate due to the security of the one-shot signature. This intuitively

6 We note that a combination of one-shot signatures and extractable witness encryp-
tion appeared in the work of Georgiou and Zhandry [GZ20] in a related but different
context.



Quantum Encryption with Certified Deletion 619

ensures the certified deletion security of our construction. Because signatures are
publicly verifiable, the verification of our construction is also publicly verifiable.
In the actual construction, in order to prevent an adversary from decrypting the
ciphertext before issuing the deletion certificate, we add an additional layer of
encryption, for which we use RNCE due to a similar reason to that in Sect. 1.3.

Unfortunately, the only known construction of the one-shot signature needs
classical oracles. Thus, the security proof of existing one-shot signature construc-
tions is a heuristic. Our publicly verifiable construction assumes the existence of
provably secure one-shot signatures. It is an open question whether we can con-
struct an interactive encryption with publicly verifiable certified deletion with
classical communication based on only standard assumptions such as the LWE
assumption.

2 Preliminaries

2.1 Notations and Mathematical Tools

We introduce basic notations and mathematical tools used in this paper.
In this paper, x ← X denotes selecting an element from a finite set X uni-

formly at random, and y ← A(x) denotes assigning to y the output of a proba-
bilistic or deterministic algorithm A on an input x. When we explicitly show that
A uses randomness r, we write y ← A(x; r). When D is a distribution, x ← D
denotes sampling an element from D. Let [�] denote the set of integers {1, · · · , �},
λ denote a security parameter, and y := z denote that y is set, defined, or sub-
stituted by z. For a string s ∈ {0, 1}�, s[i] denotes i-th bit of s. QPT stands for
quantum polynomial time. PPT stands for (classical) probabilistic polynomial
time. For a subset S ⊆ W of a set W , S is the complement of S, i.e., S := W \S.

A function f : N → R is a negligible function if for any constant c, there
exists λ0 ∈ N such that for any λ > λ0, f(λ) < λ−c. We write f(λ) ≤ negl(λ)
to denote f(λ) being a negligible function. A function g : N → R is a noticeable
function if there exist constants c and λ0 such that for any λ ≥ λ0, g(λ) ≥ λ−c.
The trace distance between two states ρ and σ is given by ‖ρ − σ‖tr, where
‖A‖tr := Tr

√
A†A is the trace norm. We call a function f a density on X if

f : X → [0, 1] such that
∑

x∈X f(x) = 1. For two densities f0 and f1 over the
same finite domain X, the Hellinger distance between f0 and f1 is H2(f0, f1) :=
1 − ∑

x∈X

√

f0(x)f1(x).

2.2 Cryptographic Tools

In this section, we review cryptographic tools used in this paper. Some explana-
tions are omitted, and given in the full version.

Encryption with Certified Deletion. Broadbent and Islam introduced the notion
of encryption with certified deletion [BI20]. Their notion is for secret key encryp-
tion (SKE). They consider a setting where a secret key is used only once (that is,
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one-time SKE). Although it is easy to extend the definition to the reusable secret
key setting, we describe the definition for the one-time setting in this section.
We provide a definition that is accommodated to the reusable setting in the full
version.

Definition 2.1 (One-Time SKE with Certified Deletion (Syntax)). A
one-time secret key encryption scheme with certified deletion is a tuple of QPT
algorithms (KeyGen,Enc,Dec,Del,Vrfy) with plaintext space M and key space K.

KeyGen(1λ) → sk: The key generation algorithm takes as input the security
parameter 1λ and outputs a secret key sk ∈ K.

Enc(sk,m) → CT: The encryption algorithm takes as input sk and a plaintext
m ∈ M and outputs a ciphertext CT.

Dec(sk,CT) → m′ or ⊥: The decryption algorithm takes as input sk and CT and
outputs a plaintext m′ ∈ M or ⊥.

Del(CT) → cert: The deletion algorithm takes as input CT and outputs a certifi-
cation cert.

Vrfy(sk, cert) → � or ⊥: The verification algorithm takes sk and cert and outputs
� or ⊥.

Definition 2.2 (Correctness for One-Time SKE with Certified Dele-
tion). There are two types of correctness. One is decryption correctness and the
other is verification correctness.

Decryption Correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈ M,

Pr
[

Dec(sk,CT) �= m

∣

∣

∣

∣

sk ← KeyGen(1λ)
CT ← Enc(sk,m)

]

≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈ M,

Pr

⎡

⎣Vrfy(sk, cert) = ⊥
∣

∣

∣

∣

∣

∣

sk ← KeyGen(1λ)
CT ← Enc(sk,m)
cert ← Del(CT)

⎤

⎦ ≤ negl(λ).

Definition 2.3 (Certified Deletion Security for One-Time SKE). Let
Σ = (KeyGen,Enc,Dec,Del,Vrfy) be a secret key encryption with certified dele-
tion. We consider the following security experiment Expotsk-cert-delΣ,A (λ, b).

1. The challenger computes sk ← KeyGen(1λ).
2. A sends (m0,m1) ∈ M2 to the challenger.
3. The challenger computes CTb ← Enc(sk,mb) and sends CTb to A.
4. A sends cert to the challenger.
5. The challenger computes Vrfy(sk, cert). If the output is ⊥, the challenger sends

⊥ to A. If the output is �, the challenger sends sk to A.
6. A outputs b′ ∈ {0, 1}.
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We say that the Σ is OT-CD secure if for any QPT A, it holds that

Advotsk-cert-delΣ,A (λ) :=
∣
∣
∣Pr

[

Expotsk-cert-delΣ,A (λ, 0) = 1
]

− Pr
[

Expotsk-cert-delΣ,A (λ, 1) = 1
]∣
∣
∣ ≤ negl(λ).

We sometimes call it one-time SKE with certified deletion if it satisfies OT-CD
security.

Remark 2.1. Definition 2.3 intuitively means that once the valid certificate is
issued, decrypting the ciphertext becomes impossible. One might think that it
would also be possible to define the inverse: once the ciphertext is decrypted, the
valid certificate can no longer be issued. However, this property is impossible to
achieve due to the decryption correctness (Definition 2.2). In fact, if the quantum
decryption algorithm Dec on a quantum ciphertext CT succeeds with probability
at least 1 − negl(λ), then the gentle measurement lemma guarantees that CT is
only negligibly disturbed, from which the valid certificate can be issued.

Remark 2.2. We modified the security definition of certified deletion due to the
following reason. Broadbent and Islam [BI20] require ciphertext indistinguisha-
bility, which is security as a normal one-time SKE, in addition to the certified
deletion security. We observe that these two security notions can be captured
in a single security game if we allow the adversary to make a guess even if the
deletion certificate is invalid.

We emphasize that in the existing construction of SKE with certified deletion,
a secret key is a classical string though a ciphertext must be a quantum state.
Broadbent and Islam prove the following theorem.

Theorem 2.1 ([BI20]). There exists OT-CD secure SKE with certified deletion
with M = {0, 1}�m and K = {0, 1}�k where �m and �k are some polynomials,
unconditionally.

Receiver Non-committing Encryption. We introduce the notion of (public key)
receiver non-committing encryption (RNCE) [CFGN96,JL00,CHK05], which is
used in Sects. 3.2 and 4.3. See the full version for the definition of secret key
RNCE.

Definition 2.4 (RNCE (Syntax)). An RNCE scheme is a tuple of PPT algo-
rithms (KeyGen,Enc,Dec,Fake,Reveal) with plaintext space M.

KeyGen(1λ) → (pk, sk, aux): The key generation algorithm takes as input the secu-
rity parameter 1λ and outputs a key pair (pk, sk) and an auxiliary information
aux.

Enc(pk,m) → CT: The encryption algorithm takes as input pk and a plaintext
m ∈ M and outputs a ciphertext CT.

Dec(sk,CT) → m′ or ⊥: The decryption algorithm takes as input sk and CT and
outputs a plaintext m′ or ⊥.

Fake(pk, sk, aux) → ˜CT: The fake encryption algorithm takes pk, sk and aux, and
outputs a fake ciphertext ˜CT.
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Reveal(pk, sk, aux, ˜CT,m) → ˜sk: The reveal algorithm takes pk, sk, aux, ˜CT and m,
and outputs a fake secret key ˜sk.

Correctness is the same as that of PKE.

Definition 2.5 (Receiver Non-Committing (RNC) Security). An
RNCE scheme is RNC secure if it satisfies the following. Let Σ =
(KeyGen,Enc,Dec,Fake,Reveal) be an RNCE scheme. We consider the follow-
ing security experiment Exprec-ncΣ,A (λ, b).

1. The challenger computes (pk, sk, aux) ← KeyGen(1λ) and sends pk to A.
2. A sends a query m ∈ M to the challenger.
3. The challenger does the following.

– If b = 0, the challenger generates CT ← Enc(pk,m) and returns (CT, sk)
to A.

– If b = 1, the challenger generates ˜CT ← Fake(pk, sk, aux) and ˜sk ←
Reveal(pk, sk, aux, ˜CT,m) and returns (˜CT, ˜sk) to A.

4. A outputs b′ ∈ {0, 1}.
Let Advrec-ncΣ,A (λ) be the advantage of the experiment above. We say that the Σ is
RNC secure if for any QPT adversary, it holds that

Advrec-ncΣ,A (λ) :=
∣

∣Pr
[

Exprec-ncΣ,A (λ, 0) = 1
] − Pr

[

Exprec-ncΣ,A (λ, 1) = 1
]∣

∣ ≤ negl(λ).

Theorem 2.2 ([KNTY19], Sect. 7.2 in the eprint version). If there exists
an IND-CPA secure SKE/PKE scheme (against QPT adversaries), there exists
an RNC secure secret/public key RNCE scheme (against QPT adversaries) with
plaintext space {0, 1}�, where � is some polynomial, respectively.

Note that Kitagawa, Nishimaki, Tanaka, and Yamakawa [KNTY19] prove
the theorem above for the SKE case in the classical setting, but it is easy to
extend their theorem to the post-quantum PKE setting by using post-quantum
PKE schemes as building blocks. We also note that the core idea of Kitagawa et
al. is based on the observation by Canetti, Halevi, and Katz [CHK05].

3 Public Key Encryption with Certified Deletion

In this section, we define the notion of PKE with certified deletion, which is a
natural extension of SKE with certified deletion and present how to achieve PKE
with certified deletion from OT-CD secure SKE and IND-CPA secure (standard)
PKE.

3.1 Definition of PKE with Certified Deletion

The definition of PKE with certified deletion is an extension of SKE with certified
deletion. Note that a verification key for verifying a certificate is generated in
the encryption algorithm.
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Definition 3.1 (PKE with Certified Deletion (Syntax)). A PKE with
certified deletion is a tuple of QPT algorithms (KeyGen,Enc,Dec,Del,Vrfy) with
plaintext space M.

KeyGen(1λ) → (pk, sk): The key generation algorithm takes as input the security
parameter 1λ and outputs a classical key pair (pk, sk).

Enc(pk,m) → (vk,CT): The encryption algorithm takes as input the public key
pk and a plaintext m ∈ M and outputs a classical verification key vk and a
quantum ciphertext CT.

Dec(sk,CT) → m′ or ⊥: The decryption algorithm takes as input the secret key
sk and the ciphertext CT, and outputs a classical plaintext m′ or ⊥.

Del(CT) → cert: The deletion algorithm takes as input the ciphertext CT and
outputs a classical certificate cert.

Vrfy(vk, cert) → � or ⊥: The verification algorithm takes the verification key vk
and the certificate cert, and outputs � or ⊥.

Definition 3.2 (Correctness for PKE with Certified Deletion). There
are two types of correctness. One is decryption correctness and the other is ver-
ification correctness.

Decryption Correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈ M,

Pr
[

Dec(sk,CT) �= m

∣

∣

∣

∣

(pk, sk) ← KeyGen(1λ)
(vk,CT) ← Enc(pk,m)

]

≤ negl(λ).

Verification Correctness: There exists a negligible function negl such that for
any λ ∈ N, m ∈ M,

Pr

⎡

⎣Vrfy(vk, cert) = ⊥
∣

∣

∣

∣

∣

∣

(pk, sk) ← KeyGen(1λ)
(vk,CT) ← Enc(pk,m)
cert ← Del(CT)

⎤

⎦ ≤ negl(λ).

Definition 3.3 (Certified Deletion Security for PKE). Let Σ =
(KeyGen,Enc,Dec,Del,Vrfy) be a PKE with certified deletion scheme. We con-
sider the following security experiment Exppk-cert-delΣ,A (λ, b).

1. The challenger computes (pk, sk) ← KeyGen(1λ) and sends pk to A.
2. A sends (m0,m1) ∈ M2 to the challenger.
3. The challenger computes (vkb,CTb) ← Enc(pk,mb) and sends CTb to A.
4. At some point, A sends cert to the challenger.
5. The challenger computes Vrfy(vkb, cert). If the output is ⊥, it sends ⊥ to A.

If the output is �, it sends sk to A.
6. A outputs its guess b′ ∈ {0, 1}.
Let Advpk-cert-delΣ,A (λ) be the advantage of the experiment above. We say that the
Σ is IND-CPA-CD secure if for any QPT adversary A, it holds that

Advpk-cert-delE,A (λ) :=
∣
∣
∣Pr

[

Exppk-cert-delΣ,A (λ, 0) = 1
]

− Pr
[

Exppk-cert-delΣ,A (λ, 1) = 1
]∣
∣
∣ ≤ negl(λ).
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3.2 PKE with Certified Deletion from PKE and SKE with Certified
Deletion

In this section, we present how to construct a PKE scheme with certified deletion
from an SKE scheme with certified deletion and an RNCE scheme, which can
be constructed from standard IND-CPA PKE schemes.

Our PKE Scheme. We construct Σpkcd = (KeyGen,Enc,Dec,Del,Vrfy) with
plaintext space M from an SKE with certified deletion scheme Σskcd =
SKE.(Gen,Enc,Dec,Del,Vrfy) with plaintext space M and key space K and a
public key RNCE scheme Σrnce = RNCE.(KeyGen,Enc,Dec,Fake,Reveal) with
plaintext space K.

KeyGen(1λ):
– Generate (rnce.pk, rnce.sk, rnce.aux) ← RNCE.KeyGen(1λ) and output

(pk, sk) := (rnce.pk, rnce.sk).
Enc(pk,m):

– Parse pk = rnce.pk.
– Generate ske.sk ← SKE.Gen(1λ).
– Compute rnce.CT ← RNCE.Enc(rnce.pk, ske.sk) and ske.CT ←
SKE.Enc(ske.sk,m).

– Output CT := (rnce.CT, ske.CT) and vk := ske.sk.
Dec(sk,CT):

– Parse sk = rnce.sk and CT = (rnce.CT, ske.CT).
– Compute sk′ ← RNCE.Dec(rnce.sk, rnce.CT).
– Compute and output m′ ← SKE.Dec(sk′, ske.CT).

Del(CT):
– Parse CT = (rnce.CT, ske.CT).
– Generate ske.cert ← SKE.Del(ske.CT).
– Output cert := ske.cert.

Vrfy(vk, cert):
– Parse vk = ske.sk and cert = ske.cert.
– Output b ← SKE.Vrfy(ske.sk, ske.cert).

Correctness. The decryption and verification correctness easily follow from the
correctness of Σrnce and Σskcd.

Security. We prove the following theorem.

Theorem 3.1 If Σrnce is RNC secure and Σskcd is OT-CD secure, Σpkcd is IND-
CPA-CD secure.

Proof of Theorem 3.1 Let A be a QPT adversary and b ∈ {0, 1} be a bit. We
define the following hybrid game Hyb(b).
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Hyb(b): This is the same as Exppk-cert-delΣpkcd,A (λ, b) except that the challenger gener-
ate the target ciphertext as follows. It generates ske.sk ← SKE.Gen(1λ) and
computes rnce.CT∗ ← RNCE.Fake(rnce.pk, rnce.sk, rnce.aux) and ske.CT∗ ←
SKE.Enc(ske.sk,mb). The target ciphertext is CT∗ := (rnce.CT∗, ske.CT∗).
In addition, we reveal ˜sk ← Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.CT∗, ske.sk)
instead of rnce.sk.

��
Proposition 3.1. If Σrnce is RNC secure,

∣
∣
∣Pr

[

Exppk-cert-delΣpkcd,A (λ, b) = 1
]

− Pr[Hyb(b) = 1]
∣
∣
∣ ≤

negl(λ).

Proof of Proposition 3.1. We construct an adversary Brnce that breaks the
RNC security of Σrnce by assuming that A distinguishes these two experi-
ments. First, Brnce is given rnce.pk from the challenger of Exprec-ncΣrnce,Brnce

(λ, b′)
for b′ ∈ {0, 1}. Brnce generates ske.sk ← SKE.Gen(1λ) and sends rnce.pk to A.
When A sends (m0,m1), Brnce sends ske.sk to the challenger of Exprec-ncΣrnce,Brnce

(λ, b′),
receives (rnce.CT∗, ˜sk), and generates ske.CT ← SKE.Enc(ske.sk,mb). Brnce sends
(rnce.CT∗, ske.CT) to A as the challenge ciphertext. At some point, A outputs
cert. If SKE.Vrfy(ske.sk, cert) = �, Brnce sends ˜sk to A. Otherwise, Brnce sends ⊥
to A. Finally, Brnce outputs whatever A outputs.

– If b′ = 0, i.e., (rnce.CT∗, ˜sk) = (RNCE.Enc(rnce.pk, ske.sk), rnce.sk), Brnce per-
fectly simulates Exppk-cert-delΣpkcd,A (λ, b).

– If b′ = 1, i.e., (rnce.CT∗, ˜sk) = (RNCE.Fake(rnce.pk, rnce.sk, rnce.aux),RNCE.
Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.CT∗, ske.sk)), Brnce perfectly simulates
Hyb(b).

Thus, if A distinguishes the two experiments, Brnce breaks the RNC security
of Σrnce. This completes the proof. ��
Proposition 3.2. If Σskcd is OT-CD secure, |Pr[Hyb(0) = 1] − Pr[Hyb(1) = 1]|
≤ negl(λ).

Proof. of Proposition 3.2. We construct an adversary Bskcd that breaks the
OT-CD security of Σskcd assuming that A distinguishes these two experi-
ments. Bskcd plays the experiment Expotsk-cert-delΣskcd,Bskcd

(λ, b′) for some b′ ∈ {0, 1}.
First, Bskcd generates (rnce.pk, rnce.sk, rnce.aux) ← RNCE.KeyGen(1λ) and
sends rnce.pk to A. When A sends (m0,m1), Bskcd sends (m0,m1) to the
challenger of Expotsk-cert-delΣskcd,Bskcd

(λ, b′), receives ske.CT∗, and generates rnce.˜CT ←
RNCE.Fake(rnce.pk, rnce.sk, rnce.aux). Bskcd sends (rnce.˜CT, ske.CT∗) to A as the
challenge ciphertext. At some point, A outputs cert. Bskcd passes cert to the
challenger of OT-CD SKE. If the challenger returns ske.sk, Bskcd generates
˜sk ← RNCE.Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.˜CT, ske.sk) and sends ˜sk to A.
Otherwise, Bskcd sends ⊥ to A. Finally, Bskcd outputs whatever A outputs.

– If b′ = 0, i.e., ske.CT∗ = SKE.Enc(ske.sk,m0), Bskcd perfectly simulates
Hyb(0).
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– If b′ = 1, i.e., ske.CT∗ = SKE.Enc(ske.sk,m1), Bskcd perfectly simulates
Hyb(1).

Thus, if A distinguishes the two experiments, Bskcd breaks the OT-CD security.
This completes the proof. ��
By Propositions 3.1 and 3.2, we immediately obtain Theorem3.1.

��
By Theorems 2.1, 2.2 and 3.1, we immediately obtain the following corollary.

Corollary 3.1. If there exists IND-CPA secure PKE against QPT adversaries,
there exists IND-CPA-CD secure PKE with certified deletion.

Reusable SKE with Certified Deletion. We can construct a secret key variant
of Σpkcd above (that is, reusable SKE with certified deletion) by replacing Σrnce

with a secret key RNCE scheme. We omit the proof since it is almost the same as
that of Theorem 3.1. By Theorem 2.2 and the fact that OWFs imply (reusable)
SKE [HILL99,GGM86], we also obtain the following theorem.

Theorem 3.2. If there exists OWF against QPT adversaries, there exists IND-
CPA-CD secure SKE with certified deletion.

See the full version for the definition and construction of reusable SKE with
certified deletion.

3.3 Attribute-Based Encryption with Certified Deletion

By extending the idea in the previous subsections, we construct ABE with cer-
tified deletion based on indistinguishability obfuscation and one-way functions.
See the full version for details.

4 Interactive Encryption with Certified Deletion
and Classical Communication

In this section, we define the notion of interactive encryption with certified dele-
tion and classical communication, and construct it from the LWE assumption in
the QROM. In Sect. 4.1, we present the definition of the interactive encryption
with certified deletion and classical communication. In Sect. 4.2, we introduce
what we call the cut-and-choose adaptive hardcore property, which is used in
the security proof of the interactive encryption with certified deletion and clas-
sical communication. In Sect. 4.3, we construct an interactive encryption with
certified deletion and classical communication, and show its security.
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4.1 Definition of Interactive Encryption with Certified Deletion
and Classical Communication

We define interactive encryption with certified deletion and classical commu-
nication. Note that the encryption algorithm of an interactive encryption with
certified deletion and classical communication is interactive unlike PKE with cer-
tified deletion and quantum communication as defined in Definition 3.1. It is easy
to see that the interaction is necessary if we only allow classical communication.

Definition 4.1 (Interactive Encryption with Certified Deletion and
Classical Communication (Syntax)). An interactive encryption scheme with
certified deletion and classical communication is a tuple of quantum algorithms
(KeyGen,Enc,Dec,Del,Vrfy) with plaintext space M.

KeyGen(1λ) → (pk, sk): The key generation algorithm takes as input the security
parameter 1λ and outputs a classical key pair (pk, sk).

Enc〈S(pk,m),R〉 → (vk,CT): This is an interactive process between a classical
sender S with input pk and a plaintext m ∈ M, and a quantum receiver
R without input. After exchanging classical messages, S outputs a classical
verification key vk and R outputs a quantum ciphertext CT.

Dec(sk,CT) → m′ or ⊥: The decryption algorithm takes as input the secret key
sk and the ciphertext CT, and outputs a plaintext m′ or ⊥.

Del(CT) → cert: The deletion algorithm takes as input the ciphertext CT and
outputs a classical certificate cert.

Vrfy(vk, cert) → � or ⊥: The verification algorithm takes the verification key vk
and the certificate CT, and outputs � or ⊥.

Definition 4.2 (Correctness for Interactive Encryption with Certified
Deletion and Classical Communication). There are two types of correct-
ness. One is decryption correctness and the other is verification correctness.

Decryption Correctness: For any λ ∈ N, m ∈ M,

Pr
[

Dec(sk,CT) �= m

∣

∣

∣

∣

(pk, sk) ← KeyGen(1λ)
(vk,CT) ← Enc〈S(pk,m),R〉

]

≤ negl(λ).

Verification Correctness: For any λ ∈ N, m ∈ M,

Pr

⎡

⎣Vrfy(vk, cert) = ⊥
∣

∣

∣

∣

∣

∣

(pk, sk) ← KeyGen(1λ)
(vk,CT) ← Enc〈S(pk,m),R〉
cert ← Del(CT)

⎤

⎦ ≤ negl(λ).

Definition 4.3 (Certified Deletion Security for Interactive Encryption
with Classical Communication). Let Σ = (KeyGen,Enc,Dec,Del,Vrfy) be a
PKE scheme with certified deletion and classical communication. We consider
the following security experiment Expccpk-cert-delΣ,A (λ, b).

1. The challenger computes (pk, sk) ← KeyGen(1λ) and sends pk to A.
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2. A sends (m0,m1) ∈ M2 to the challenger.
3. The challenger and A jointly execute (vkb,CTb) ← Enc〈S(pk,mb),A(pk)〉

where the challenger plays the role of the sender and A plays the role of
the receiver.

4. At some point, A sends cert to the challenger.
5. The challenger computes Vrfy(vkb, cert). If the output is ⊥, the challenger

sends ⊥ to A. If the output is �, the challenger sends sk to A.
6. A outputs its guess b′ ∈ {0, 1}.
Let Advccpk-cert-delΣ,A (λ) be the advantage of the experiment above. We say that the
Σ is IND-CPA-CD secure if for any QPT adversary A, it holds that

Advccpk-cert-delΣ,A (λ) :=
∣
∣
∣Pr

[

Expccpk-cert-delΣ,A (λ, 0) = 1
]

− Pr
[

Expccpk-cert-delΣ,A (λ, 1) = 1
]∣
∣
∣ ≤ negl(λ).

4.2 Preparation: Cut-and-Choose Adaptive Hardcore Property

We prove that any injective invariant NTCF family satisfies a property which we
call the cut-and-choose adaptive hardcore property, which is used in the security
proof of our interactive encryption with certified deletion with classical commu-
nication.

Lemma 4.1 (Cut-and-Choose Adaptive Hardcore Property). Let F be
an injective invariant NTCF family and G be the corresponding trapdoor injective
family. Then F and G satisfy what we call the cut-and-choose adaptive hardcore
property defined below. For a QPT adversary A and a positive integer n, we
consider the following experiment Expcut-and-choose(F,G),A (λ, n).

1. The challenger chooses a uniform subset S ⊆ [4n] such that |S| = 2n.7

2. The challenger generates (ki, tdi) ← GenG(1λ) for all i ∈ S and (ki, tdi) ←
GenF (1λ) for all i ∈ S and sends {ki}i∈[4n] to A.

3. A sends {yi, di, ei}i∈[4n] to the challenger.
4. The challenger computes xi,β ← InvF (tdi, β, yi) for all (i, β) ∈ S × {0, 1} and

checks if di ∈ Gki,0,xi,0 ∩ Gki,1,xi,1 and ei = di · (J(xi,0) ⊕ J(xi,1)) hold for all
i ∈ S. If they do not hold for some i ∈ S, the challenger immediately aborts
and the experiment returns 0.

5. The challenger sends S to A.
6. A sends {bi, xi}i∈S to the challenger.
7. The challenger checks if ChkG(ki, bi, xi, yi) = 1 holds for all i ∈ S. If this

holds for all i ∈ S, the experiment returns 1. Otherwise, it returns 0.

Then for any n such that n ≤ poly(λ) and n = ω(log λ), it holds that

Advcut-and-choose(F,G),A (λ, n) := Pr
[

Expcut-and-choose(F,G),A (λ, n) = 1
]

≤ negl(λ).

Its proof is given in the full version.
7 We can also take S ⊆ [2n] such that |S| = n, but we do as above just for convenience

in the proof.
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4.3 Construction

We construct an interactive encryption scheme with certified deletion and clas-
sical communication Σcccd = (KeyGen,Enc,Dec,Del,Vrfy) with plaintext space
M = {0, 1}� from an NTCF family F with the corresponding trapdoor injec-
tive family G for which we use similar notations as in [Mah18], a public key
RNCE scheme Σrnce = RNCE.(KeyGen,Enc,Dec,Fake,Reveal) with plaintext
space {S ⊆ [4n] : |S| = 2n} where n is a positive integer such that n ≤ poly(λ)
and n = ω(log λ) and we just write S to mean the description of the set S by
abuse of notation, a OW-CPA secure PKE scheme Σow = OW.(KeyGen,Enc,Dec)
with plaintext space {0, 1}λ, and a hash function H from {0, 1}λ ×({0, 1}×X )2n

to {0, 1}� modeled as a quantumly-accessible random oracle.

KeyGen(1λ):
– Generate

(rnce.pk, rnce.sk, rnce.aux) ← RNCE.KeyGen(1λ) and (ow.pk, ow.sk) ←
OW.KeyGen(1λ) and output (pk, sk) := ((rnce.pk, ow.pk), (rnce.sk, ow.sk)).

Enc〈S(pk,m),R〉: This is an interactive protocol between a sender S with input
(pk,m) and a receiver R without input that works as follows.

– S parses pk = (rnce.pk, ow.pk).
– S chooses a uniformly random subset S ⊆ [4n] such that |S| = 2n, gen-

erates

(ki, tdi) ←
{

GenG(1λ) i ∈ S

GenF (1λ) i ∈ S

for i ∈ [4n], and sends {ki}i∈[4n] to R.
– For i ∈ [4n], R generates a quantum state

|ψ′
i〉 =

⎧

⎨

⎩

1√
|X |

∑

x∈X ,y∈Y,b∈{0,1}
√

(gki,b(x))(y)|b, x〉|y〉 (i ∈ S)

1√
|X |

∑

x∈X ,y∈Y,b∈{0,1}
√

(f ′
ki,b

(x))(y) |b, x〉 |y〉 (i ∈ S)

by using Samp, measure the last register to obtain yi ∈ Y, and let |φ′
i〉

be the post-measurement state where the measured register is discarded.
Note that this can be done without knowing S since SampF = SampG ,
which is just denoted by Samp. Then, we can see that for all i ∈ [4n], |φ′

i〉
has a negligible trace distance from the following state:

|φi〉 =

{

|bi〉 |xi〉 (i ∈ S)
1√
2

(|0〉 |xi,0〉 + |1〉 |xi,1〉) (i ∈ S)

where (xi, bi) ← InvG(tdi, yi) for i ∈ S and xi,β ← InvF (tdi, β, yi) for
(i, β) ∈ S × {0, 1}.8 R sends {yi}i∈[4n] to S and keeps {|φ′

i〉}i∈[4n].

8 Indeed, |φ′
i〉 = |φi〉 for i ∈ S.
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– S chooses K ← {0, 1}λ and computes (bi, xi) ← InvG(tdi, yi) for all i ∈ S.
If ChkG(ki, bi, xi, yi) = 0 for some i ∈ S, S returns ⊥ to R. Otherwise,
let i1, ..., i2n be the elements of S in the ascending order. S sets Z :=
(K, (bi1 , xi1), (bi2 , xi2), ..., (bi2n

, xi2n
)), computes

rnce.CT ← RNCE.Enc(rnce.pk, S),
ow.CT ← OW.Enc(ow.pk,K),
CTmsg := m ⊕ H(Z),

and sends (rnce.CT, ow.CT,CTmsg) to R.
– S outputs vk := {tdi, yi}i∈S and R outputs CT := ({|φ′

i〉}i∈[4n],
rnce.CT, ow.CT,CTmsg).

Dec(sk,CT):
– Parse sk = (rnce.sk, ow.sk) and CT = ({|φ′

i〉}i∈[4n], rnce.CT,
ow.CT,CTmsg).

– Compute S′ ← RNCE.Dec(rnce.sk, rnce.CT).
– Compute K ′ ← OW.Dec(ow.sk, ow.CT).
– For all i ∈ S′, measure |φ′

i〉 in the computational basis and let (b′
i, x

′
i) be

the outcome.
– Compute and output m′ := CTmsg ⊕ H(K ′, (b′

i1
, x′

i1
), (b′

i2
, x′

i2
), ...,

(b′
i2n

, x′
i2n

)) where i1, ..., i2n are the elements of S′ in the ascending order.9

Del(CT):
– Parse CT = ({|φ′

i〉}i∈[4n], rnce.CT, ow.CT,CTmsg).
– For all i ∈ [4n], evaluate the function J on the second register of |φ′

i〉.
That is, apply an isometry that maps |b, x〉 to |b, J(x)〉 to |φ′

i〉. (Note that
this can be done efficiently since J is injective and efficiently invertible.)
Let |φ′′

i 〉 be the resulting state.
– For all i ∈ [4n], measure |φ′′

i 〉 in the Hadamard basis and let (ei, di) be
the outcome.

– Output cert := {(ei, di)}i∈[4n].
Vrfy(vk, cert):

– Parse vk = {tdi, yi}i∈S and cert = {(ei, di)}i∈[4n].
– Compute xi,β ← InvF (tdi, β, yi) for all (i, β) ∈ S × {0, 1}.
– Output � if di ∈ Gki,0,xi,0 ∩Gki,1,xi,1 and ei = di · (J(xi,0)⊕J(xi,1)) hold

for all i ∈ S and output ⊥ otherwise.

Correctness. As observed in the description, |φ′
i〉 in the ciphertext has a negligi-

ble trace distance from |φi〉. Therefore, it suffices to prove correctness assuming
that |φ′

i〉 is replaced with |φi〉. After this replacement, decryption correctness
clearly holds assuming correctness of Σrnce and Σow.

9 If S′ = ⊥ or K′ = ⊥, output ⊥.
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We prove verification correctness below. For i ∈ S, if we apply J to the
second register of |φi〉 and then apply Hadamard transform for both registers as
in Del, then the resulting state can be written as

2− w+2
2

∑

d,b,e

(−1)d·J(xi,b)⊕eb |e〉 |d〉

= 2− w
2

∑

d∈{0,1}w

(−1)d·J(xi,0) |d · (J(xi,0) ⊕ J(xi,1))〉 |d〉 .

Therefore, the measurement result is (ei, di) such that ei = di ·(J(xi,0)⊕J(xi,1))
for a uniform di ← {0, 1}w. By the definition of an NTCF family [Mah18], it
holds that di ∈ Gki,0,xi,0 ∩ Gki,1,xi,1 except for a negligible probability. There-
fore, the certificate cert = {(ei, di)}i∈[4n] passes the verification by Vrfy with
overwhelming probability.

Security. We prove the following theorem.

Theorem 4.1. If Σrnce is RNC secure, Σow is OW-CPA secure, and F is an
injective invariant NTCF family with the corresponding injective trapdoor fam-
ily G, Σcccd is IND-CPA-CD secure in the QROM where H is modeled as a
quantumly-accessible random oracle.

Proof of Theorem 4.1. What we need to prove is that for any QPT adversary A,
it holds that

Advccpk-cert-delΣcccd,A (λ) :=
∣
∣
∣Pr

[

Expccpk-cert-delΣcccd,A (λ, 0) = 1
]

− Pr
[

Expccpk-cert-delΣcccd,A (λ, 1) = 1
]∣
∣
∣ ≤ negl(λ).

Let q = poly(λ) be the maximum number of A’s random oracle queries. For
clarity, we describe how Expccpk-cert-delΣcccd,A (λ, b) works below.

1. A uniformly random function H from {0, 1}λ × ({0, 1} × X )2n to {0, 1}� is
chosen, and A can make arbitrarily many quantum queries to H at any time
in the experiment.

2. The challenger generates (rnce.pk, rnce.sk, rnce.aux) ← RNCE.KeyGen(1λ) and
(ow.pk, ow.sk) ← OW.KeyGen(1λ) and sends pk := (rnce.pk, ow.pk) to A.

3. A sends (m0,m1) ∈ M2 to the challenger.
4. The challenger chooses a uniform subset S ⊆ [4n] such that |S| = 2n, gener-

ates

(ki, tdi) ←
{

GenG(1λ) i ∈ S

GenF (1λ) i ∈ S

for i ∈ [4n], and sends {ki}i∈[4n] to A.
5. A sends {yi}i∈[4n] to the challenger.
6. The challenger chooses K ← {0, 1}λ and computes (bi, xi) ← InvG(tdi, yi) for

all i ∈ S. If ChkG(ki, bi, xi, yi) = 0 for some i ∈ S, the challenger sets Z := null
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and returns ⊥ to A where null is a special symbol indicating that Z is unde-
fined. Otherwise, let i1, . . . , i2n be the elements of S in the ascending order.
The challenger sets Z := (K, (bi1 , xi1), (bi2 , xi2), ..., (bi2n

, xi2n
)), computes

rnce.CT ← RNCE.Enc(rnce.pk, S),
ow.CT ← OW.Enc(ow.pk,K),
CTmsg := mb ⊕ H(Z),

and sends (rnce.CT, ow.CT,CTmsg) to A.
7. A sends cert = {(ei, di)}i∈[4n] to the challenger.
8. The challenger computes xi,β ← InvF (tdi, β, yi) for all (i, β) ∈ S × {0, 1}. If

di ∈ Gki,0,xi,0 ∩ Gki,1,xi,1 and ei = di · (J(xi,0) ⊕ J(xi,1)) hold for all i ∈ S,
sends sk := (rnce.sk, ow.sk) to A, and otherwise sends ⊥ to A.

9. A outputs b′. The output of the experiment is b′.

We define the following sequence of hybrids.

Hyb1(b): Let Revealsk be the event that the challenger sends sk in Step 8. Hyb1(b)
is identical to Expccpk-cert-delΣcccd,A (λ, b) except that K is chosen at the beginning
and the oracle given to A before Revealsk occurs is replaced with HK‖∗→H′ ,
which is H reprogrammed according to H ′ on inputs whose first entry is K
where H ′ is another independent random function. More formally, HK‖∗→H′

is defined by

HK‖∗→H′(K ′, (b1, x1), ..., (b2n, x2n))

:=

{

H(K ′, (b1, x1), ..., (b2n, x2n)) (K ′ �= K)
H ′(K ′, (b1, x1), ..., (b2n, x2n)) (K ′ = K)

.

We note that the challenger still uses H to generate CTmsg and the oracle
after Revealsk occurs is still H similarly to the real experiment. On the other
hand, if Revealsk does not occur, the oracle HK‖∗→H′ is used throughout the
experiment except for the generation of CTmsg.

Hyb2(b): This is identical to Hyb1(b) except that rnce.CT and rnce.sk that may
be sent to A in Step 6 and 8 are replaced by

rnce.˜CT ← RNCE.Fake(rnce.pk, rnce.sk, rnce.aux),

rnce.˜sk ← RNCE.Reveal(rnce.pk, rnce.sk, rnce.aux, rnce.˜CT, S).

Hyb3(b): This is identical to Hyb2(b) except that the oracle given to A after
Revealsk occurs is replaced with HZ→r, which is H reprogrammed to output
r on input Z = (K, (bi1 , xi1), ..., (bi2n

, xi2n
)) where r is an independently

random �-bit string. More formally, HZ→r is defined by

HZ→r(Z ′) :=

{

H(Z ′) (Z ′ �= Z)
r (Z ′ = Z)

.

Note that we have HZ→r = H if Z = null, i.e., if ChkG(ki, bi, xi, yi) = 0 for
some i ∈ S in Step 6.
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Proposition 4.1. If Σow is OW-CPA secure,
∣

∣

∣Pr
[

Expccpk-cert-delΣcccd,A (λ, b) = 1
]

−
Pr[Hyb1(b) = 1]

∣

∣

∣ ≤ negl(λ).

The only difference between Expccpk-cert-delΣcccd,A (λ, b) and Hyb1(b) is that the ran-
dom oracle is reprogrammed on inputs with prefix K before Revealsk occurs.
By applying the one-way to hiding lemma [AHU19], if A distinguishes these two
games, then we can use it to extract K before Revealsk occurs. This contradicts
the OW-CPA security of Σow. Therefore, these two games are indistinguishable.
The full proof is given in the full version.

Proposition 4.2. If Σrnce is RNC secure, |Pr[Hyb1(b) = 1] − Pr[Hyb2(b) = 1]| ≤
negl(λ).

This can be reduced to the RNC security of Σrnce in a similar manner to that
in Proposition 3.1. The full proof is given in the full version.

Proposition 4.3. If F and G satisfy the cut-and-choose adaptive hardcore prop-
erty described in Lemma 4.1, |Pr[Hyb2(b) = 1] − Pr[Hyb3(b) = 1]| ≤ negl(λ).

The only difference between Hyb2(b) and Hyb3(b) is that the random oracle
is reprogrammed on Z = (K, (bi1 , xi1), ..., (bi2n

, xi2n
)) after Revealsk occurs. By

applying the one-way to hiding lemma [AHU19], if A distinguishes these two
games, then we can use it to extract Z = (K, (bi1 , xi1), ..., (bi2n

, xi2n
)) after

Revealsk occurs. This can be used to break the cut-and-choose adaptive hardcore
property of (F ,G). Therefore, these two games are indistinguishable. The full
proof is given in the full version.

Proposition 4.4. It holds that Pr[Hyb3(0) = 1] = Pr[Hyb3(1) = 1].

Proof of Proposition 4.4. In Hyb3, the challenger queries H while the adversary
queries HK‖∗→H′ or HZ→r. Therefore, H(Z) is used only for generating CTmsg

in Hyb3 and thus CTmsg is an independently uniform string regardless of b from
the view of the adversary. Therefore Proposition 4.4 holds. ��
By combining Propositions 4.1 to 4.4 Theorem 4.1 is proven. ��

4.4 Publicly Verifiable Construction

The scheme given in the previous subsection is privately verifiable. We con-
struct publicly verifiable interactive encryption with certified deletion and clas-
sical communication based on extractable witness encryption and one-shot sig-
natures. See the full version for details.
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Abstract. The random oracle model (ROM) enjoys widespread popu-
larity, mostly because it tends to allow for tight and conceptually sim-
ple proofs where provable security in the standard model is elusive or
costly. While being the adequate replacement of the ROM in the post-
quantum security setting, the quantum-accessible random oracle model
(QROM) has thus far failed to provide these advantages in many settings.
In this work, we focus on adaptive reprogrammability, a feature of the
ROM enabling tight and simple proofs in many settings. We show that
the straightforward quantum-accessible generalization of adaptive repro-
gramming is feasible by proving a bound on the adversarial advantage in
distinguishing whether a random oracle has been reprogrammed or not.
We show that our bound is tight by providing a matching attack. We
go on to demonstrate that our technique recovers the mentioned advan-
tages of the ROM in three QROM applications: 1) We give a tighter proof
of security of the message compression routine as used by XMSS. 2) We
show that the standard ROM proof of chosen-message security for Fiat-
Shamir signatures can be lifted to the QROM, straightforwardly, achiev-
ing a tighter reduction than previously known. 3) We give the first QROM
proof of security against fault injection and nonce attacks for the hedged
Fiat-Shamir transform.

Keywords: Post-quantum security · QROM · Adaptive
reprogramming · Digital signature · Fiat-Shamir transform · Hedged
Fiat-Shamir · XMSS

1 Introduction

Since its introduction, the Random oracle model (ROM) has allowed cryptog-
raphers to prove efficient practical cryptosystems secure for which proofs in the
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standard model have been elusive. In general, the ROM allows for proofs that
are conceptually simpler and often tighter than standard model security proofs.

With the advent of post-quantum cryptography, and the introduction of quan-
tum adversaries, the ROM had to be generalized: In this scenario, a quantum
adversary interacts with a non-quantum network, meaning that “online” prim-
itives (like signing) stay classical, while the adversary can compute all “offline”
primitives (like hash functions) on its own, and hence, in superposition. To account
for these stronger capabilities, the quantum-accessible ROM (QROM) was intro-
duced [8]. While successfully fixing the definitional gap, the QROM does not gen-
erally come with the advantages of its classical counterpart:

– Lack of conceptual simplicity. QROM proofs are extremely complex for vari-
ous reasons. One reason is that they require some understanding of quantum
information theory. More important, however, is the fact that many of the
useful properties of the ROM (like preimage awareness and adaptive pro-
grammability) are not known to translate directly to the QROM.

– Tightness. Many primitives that come with tight security proofs in the ROM
are not known to be supported by tight proofs in the QROM. For example,
there has been an ongoing effort [7,21,24,25,27,33] to give tighter QROM
proofs for the well-known Fujisaki-Okamoto transformation [18,19], which is
proven tightly secure in the ROM as long as the underlying scheme fulfills
IND-CPA security [20].

In many cases, we expect certain generic attacks to only differ from the
ROM counterparts by a square-root factor in the required number of queries
if the attack involves a search problem, or no significant factor in the case of
guessing. Hence, it was conjectured that it might be sufficient to prove security
in the ROM, and then add a square-root factor for search problems. However,
recent results [38] demonstrate a separation of ROM and QROM, showing that
this conjecture does not hold true in general, as there exist schemes which are
provably secure in the ROM and insecure in the QROM. As a consequence, a
QROM proof is crucial to establish confidence in a post-quantum cryptosystem.1

Adaptive programmability. A desirable property of the (classical) ROM is
that any oracle value O(x) can be chosen when O is queried on x for the first time
(lazy-sampling). This fact is often exploited by a reduction simulating a security
game without knowledge of some secret information. Here, an adversary A will
not recognize the reprogramming of O(x) as long as the new value is uniformly
distributed and consistent with the rest of A’s view. This property is called
adaptive programmability.

The ability to query an oracle in superposition renders this formerly simple
approach more involved, similar to the difficulties arising from the question how
to extract classical preimages from a quantum query (preimage awareness) [4,
7,10,14,16,27,28,35,39]. Intuitively, a query in superposition can be viewed as
a query that might contain all input values at once. Already the first answer
of O might hence contain information about every value O(x) that might need
to be reprogrammed as the game proceeds. It hence was not clear whether it is
1 Unless, of course, a standard model proof is available.
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possible to adaptively reprogram a quantum random oracle without causing a
change in the adversary’s view.

Until recently, both properties only had extremely non-tight variants in the
QROM. For preimage awareness, it was essentially necessary to randomly guess
the right query and measure it (with an unavoidable loss of at least 1/q for q
queries, and the additional disadvantage of potentially rendering the adversary’s
output unusable due to measurement disturbance). In a recent breakthrough
result, Zhandry developed the compressed oracle technique that provides preim-
age awareness [39] in many settings. For adaptive reprogramming, variants of
Unruh’s one-way-to-hiding lemma allowed to prove bounds but only with a
square-root loss in the entropy of the reprogramming position [17,23,34,36].

In some cases [8,21,26,33], reprogramming could even be avoided by giving
a proof that rendered the oracle “a-priori consistent”, which is also called a
“history-free” proof: In this approach, the oracle is completely redefined in a way
such that it is enforced to be a priori consistent with the rest of an adversary’s
view, meaning that it is redefined before execution of the adversary, and on all
possible input values. Unfortunately, it is not always clear whether it is possible
to lift a classical proof to the QROM with this strategy. Even if it is, the “a-
priori” approach usually leads to conceptually more complicated proofs. More
importantly, it can even lead to reductions that are non-tight with respect to
runtime, and may necessitate stronger or additional requirements like, e.g., the
statistical counterpart of a property that was only used in its computational
variant in the ROM. One example are history-free proofs of CMA security for
Fiat-Shamir signatures as e.g. given in [37] and later in [26].

Hence, in this work we are interested in the question:

Can we tightly prove that adaptive reprogramming can also be
done in the quantum random oracle model?

Our contribution. For common use cases in the context of post-quantum cryp-
tography, this work answers the question above in the affirmative. In more detail,
we present a tool for adaptive reprogramming that comes with a tight bound,
supposing that the reprogramming positions hold sufficiently large entropy, and
reprogramming is triggered by classical queries to an oracle that is provided by
the security game (e.g., a signing oracle). These preconditions are usually met
in (Q)ROM reductions: The reprogramming is usually triggered by adversar-
ial signature or decryption queries, which remain classical in the post-quantum
setting, as the oracles represent honest users.

While we prove a very general lemma, using the simplest variant of the
superposition oracle technique [39], we present two corollaries, tailored to cases
like a) hash-and-sign with randomized hashing and b) Fiat-Shamir signatures.
(Note that we do not have to give a full proof for Fiat-Shamir: We only tend to
proving that UF-KOA implies UF-CMA security, as UF-KOA security has already
been covered by [16,26,37].) In both cases, reprogramming occurs at a position
of which one part is an adversarially chosen string. For a), the other part is a
random string z, sampled by the reduction (simulating the signer). For b), the
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other part is a commitment w chosen from a distribution with sufficient min-
entropy, together with additional side-information. In both cases, we manage to
bound the distinguishing advantage of any adversary that makes qs signing and
qH random oracle queries by

1.5 · qs

√
qH · 2−r ,

where r is the length of z for a), and the min-entropy of w for b). We note that it
might be possible to alternatively prove a less general adaptive reprogramming
lemma covering the special cases a) and b) above by generalizing the semi-
classical O2H lemma from [4].

We then demonstrate the applicability of our tool, by giving

– a tighter proof for hash-and-sign applications leading to a tighter proof for
message-compression as used by the hash-based signature scheme XMSS in
RFC 8391 [22] as a special case,

– a runtime-tight reduction of unforgeability under adaptive chosen message
attacks (UF-CMA) to plain unforgeability (UF-CMA0, sometimes denoted
UF-KOA or UF-NMA) for Fiat Shamir signatures.

– the first proof of fault resistance for the hedged Fiat-Shamir transform,
recently proposed in [5], in the post-quantum setting.

Hash-and-sign. As a first motivating and mostly self-contained application we
analyze the hash-and-sign construction that takes a fixed-message-length signa-
ture scheme SIG and turns it into a variable-message-length signature scheme
SIG′ by first compressing the message using a hash function. We show that if
SIG is secure under random message attacks (UF-RMA), SIG′ is secure under
adaptively chosen message attacks (UF-CMA). Then we show that along the
same lines, we can tighten a recent security proof [9] for message-compression
as described for XMSS [11] in RFC 8391. Our new bound shows that one can
use random strings of half the length to randomize the message compression in
a provably secure way.

The Fiat-Shamir transform. In Sect. 4.1, we show that if an identification
scheme ID is Honest-Verifier Zero-Knowledge (HVZK), and if the resulting Fiat-
Shamir signature scheme SIG := FS[ID,H] furthermore possesses UF-CMA0 secu-
rity, then SIG is also UF-CMA secure, in the quantum random oracle model. Here,
UF-CMA0 denotes the security notion in which the adversary only obtains the
public key and has to forge a valid signature without access to a signing oracle.
While this statement was already proven in [26], we want to point out several
advantages of our proof strategy and the resulting bounds.
Conceptual simplicity. A well-known proof strategy for HVZK,UF-CMA0 ⇒
UF-CMA in the random oracle model (implicitly contained in [1]) is to replace
honest transcripts with simulated ones, and to render H a-posteriori consistent
with the signing oracle during the proceedings of the game. I.e., H(w,m) is
patched after oracle SIGN was queried on m. Applying our lemma, we observe
that this approach actually works in the quantum setting as well. We obtain a
very simple QROM proof that is congruent with its ROM counterpart.
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In [26], the issue of reprogramming quantum random oracle H was circum-
vented by giving a history-free proof: In the proof, messages are tied to potential
transcripts by generating the latter with message-dependent randomness, a pri-
ori, and H is patched accordingly, right from the beginning of the game. During
each computation of H(w,m), the reduction therefore has to keep H a-priori
consistent by going over all transcript candidates (wi, ci, zi) belonging to m, and
returning ci if w = wi.
Applicability to a broader class of signature schemes. To achieve a-
priori consistency, [26] crucially relies on statistical HVZK. Furthermore, they
require that the HVZK simulator outputs transcripts such that the challenge c
is uniformly distributed. We are able to drop the requirement on c altogether,
and to only require computational HVZK. As a practical example, alternate
NIST candidate Picnic [12] satisfies only computational HVZK: here, we give
the first QROM reduction from chosen-message security, i.e. UF-CMA, to plain
unforgeability, i.e. UF-CMA0.2

Tightness with regards to running time. Our reduction B has about the
running time of the adversary A, as it can simply sample simulated transcripts
and reprogram H, accordingly. The reduction in [26] suffers from a quadratic
blow-up in its running time: They have running time Time(B) ≈ Time(A)+qHqS ,
as the reduction has to execute qS computations upon each query to H in order
to keep it a-priori consistent. As they observe, this quadratic blow-up renders the
reduction non-tight in all practical aspects. On the other hand, our upper bound
comes with a bigger disruption in terms of commitment entropy (the min-entropy
of the first message (the commitment) in the identification scheme). While the
source of non-tightness in [26] can not be balanced out, however, we offer a
trade-off: If needed, the commitment entropy can be increased by appending a
random string to the commitment.3

Robustness of the hedged Fiat-Shamir transform against fault
attacks. When it comes to real-world implementations, the assessment of a sig-
nature scheme will not solely take into consideration whether an adversary could
forge a fresh signature as formalized by the UF-CMA game, as UF-CMA does not
capture all avenues of real-world attacks. For instance, an adversary interacting

2 As a matter of fact, the inapplicability of the history-free reduction from [26], that
was used in [16] to give a full reduction for Fiat Shamir signatures (starting with
a quantum-extractable identification scheme) was initially overlooked by the Picnic
Team. The Picnic team has acknowledged that, and is working on a revision of the
Picnic submission to the NIST standardization process for post-quantum crypto-
graphic schemes that will use our reduction.

3 While this increases the signature size, the increase is mild in typical post-quantum
Fiat-Shamir based digital signature schemes. As an example, suppose Dilithium-
1024x768, which has a signature size of 2044 bytes, had zero commitment entropy
(it actually has quite some, see remarks in [26]). To ensure that about 2128 hash
queries are necessary to make the term in our security bound that depends on the
commitment entropy equal 1, about 32 bytes would need to be added, an increase
of about 1.6% (assuming 264 signing queries).
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with hardware that realizes a cryptosystem can try to induce a hardware mal-
function, also called fault injection, in order to derail the key generation or sign-
ing process. Although it might not always be straightforward to predict where
exactly a triggered malfunction will affect the execution, it is well understood
that even a low-precision malfunction can seriously injure a schemes’ security. In
the context of the ongoing effort to standardize post-quantum secure primitives
[31], it hence made sense to affirm [32] that desirable additional security fea-
tures include, amongst others, resistance against fault attacks and randomness
generation that has some bias.

Recently [5], the hedged Fiat-Shamir construction was proven secure against
biased nonces and several types of fault injections, in the ROM. This result
can for example be used to argue that alternate NIST candidate Picnic [12] is
robust against many types of fault injections. We revisit the hedged Fiat-Shamir
construction in Sect. 4.2 and lift the result of [5] to the QROM. In particular,
we thereby obtain that Picnic is resistant against many fault types, even when
attacked by an adversary with quantum capabilities.

We considered to generalize the result further by replacing the standard Fiat-
Shamir transform with the Fiat–Shamir with aborts transform [26,29]. While our
security statements can be extended in a straightforward manner, we decided not
to further complicate our proof with the required modifications. For Dilithium,
the implications are limited anyway, as several types of faults are only proven
ineffective if the underlying scheme is subset-revealing, which Dilithium is not.4

Optimality of our bound. We also show that our lower bound is tight for
the given setting, presenting a quantum attack that matches our bound, up to
a constant factor. Let us restrict our attention to the simple case where H :
{0, 1}n → {0, 1}k is a random function, which is potentially reprogrammed at a
random position x∗ resulting in a new oracle H ′. Consider an attacker that is
allowed 2q queries to the random oracle.

A classical attack that matches the classical bound for the success probabil-
ity, O(q · 2−n), is the following: pick values x1, ..., xq and compute the XOR of
the outputs H(xi) . After the oracle is potentially reprogrammed, the attacker
outputs 0 iff the checksum computed before is unchanged.

In order to match the quantum lower bound, we use the same attack, but on a
superposition of tuples of inputs: the attacker queries H with the superposition
of all possible inputs, and then applies a cyclic permutation σ on the input
register. This process is repeated q − 1 times (on the same state). After the
potential reprogramming, we repeat the same process, but now applying the
permutation σ−1 and querying H ′. Using techniques from [2], we show how to
distinguish the two cases with advantage Ω

(√
q
2n

)
in time poly(q, n).

4 Intuitively, an identification scheme is called subset-revealing if its responses do not
depend on the secret key. Dilithium computes its responses as z := y + c · s1, where
s1 is part of the secret key.
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2 Adaptive Reprogramming: The Toolbox

Before we describe our adaptive reprogramming theorem, let us quickly recall
how we usually model adversaries with quantum access to a random oracle: As
established in [6,8], we model quantum access to a random oracle O : X × Y
via oracle access to a unitary UO, which is defined as the linear completion of
|x〉X |y〉Y �→ |x〉X |y ⊕ O(x)〉Y , and adversaries A with quantum access to O as
a sequence of unitaries, interleaved with applications of UO. We write A|O〉 to
indicate that O is quantum-accessible.

As a warm-up, we will first present our reprogramming lemma in the simplest
setting. Say we reprogram an oracle R many times, where the position is partially
controlled by the adversary, and partially picked at random. More formally, let
X1 and X2 be two finite sets, where X1 specifies the domain from which the
random portions are picked, and X2 specifies the domain of the adversarially
controlled portions. We will now formalize what it means to distinguish a random
oracle O0 : X1 × X2 → Y from its reprogrammed version O1. Consider the two
Repro games, given in Fig. 1: In games Reprob, the distinguisher has quantum
access to oracle Ob (see line 03) that is either the original random oracle O0

(if b = 0), or the oracle O1 which gets reprogrammed adaptively (b = 1). To
model the actual reprogramming, we endow the distinguisher with (classical)
access to a reprogramming oracle Reprogram. Given a value x2 ∈ X2, oracle
Reprogram samples random values x1 and y, and programs the random oracle
to map x1‖x2 to y (see line 06). Note that apart from already knowing x2, the
adversary even learns the part x1 of the position at which O1 was reprogrammed.

Fig. 1. Adaptive reprogramming games Reprob for bit b ∈ {0, 1} in the most basic
setting.

Proposition 1. Let X1, X2 and Y be finite sets, and let A be any algorithm
issuing R many calls to Reprogram and q many (quantum) queries to Ob as
defined in Fig. 1. Then the distinguishing advantage of A is bounded by

|Pr[ReproA
1 ⇒ 1] − Pr[ReproA

0 ⇒ 1]| ≤ 3R

2

√
q

|X1| . (1)

The above theorem constitutes a significant improvement over previous bounds.
In [34] and [17], a bound proportional to q|X1|−1/2 for the distinguishing advan-
tage in similar settings, but for R = 1, was given. In [23], a bound proportional
to q2|X1|−1 is claimed, but that seems to have resulted from a “translation mis-
take” from [17] and should be similar to the bounds from [17,34]. What is more,
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we show in Sect. 6 that the above bound, and therefore also its generalizations,
are tight, by presenting a distinguisher that achieves an advantage equal to the
right hand side of Eq. (1) for trivial X1, up to a constant factor.

In fact, we prove something more general than Proposition 1: We prove that
an adversary will not behave significantly different, even if

– the adversary does not only control a portion x2, but instead it even controls
the distributions according to which the whole positions x := (x1, x2) are
sampled at which O1 is reprogrammed,

– it can additionally pick different distributions, adaptively, and
– the distributions produce some additional side information x′ which the

adversary also obtains,

as long as the reprogramming positions x hold enough entropy.
Overloading notation, we formalize this generalization by gamesRepro, given

in Fig. 2: Reprogramming oracle Reprogram now takes as input the description
of a distribution p that generates a whole reprogramming position x, together with
side information x′. Reprogram samples x and x′ according to p, programs the
random oracle to map x to a random value y, and returns (x, x′).

Fig. 2. Adaptive reprogramming games Reprob for bit b ∈ {0, 1}.

We are now ready to present our main Theorem 1. On a high level, the only
difference between the statement of Proposition 1 and Theorem 1 is that we now
have to consider R many (possibly different) joint distributions on X × X ′, and
to replace 1

|X1| (the probability of the uncontrolled reprogramming portion) with
the highest likelihood of any of those distributions generating a position x.

Theorem 1 (“Adaptive reprogramming” (AR)). Let X, X ′, Y be some
finite sets, and let D be any distinguisher, issuing R many reprogramming
instructions and q many (quantum) queries to O. Let qr denote the number
of queries to O that are issued inbetween the (r − 1)-th and the r-th query to
Reprogram. Furthermore, let p(r) denote the rth distribution that Reprogram

is queried on. By p
(r)
X we will denote the marginal distribution of X, according

to p(r), and define
p(r)max := Emax

x
p
(r)
X (x),

where the expectation is taken over D’s behaviour until its rth query to
Reprogram.

|Pr[ReproD
1 ⇒ 1] − Pr[ReproD

0 ⇒ 1]| ≤
R∑

r=1

(√
q̂rp

(r)
max +

1
2
q̂rp

(r)
max

)
, (2)
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where q̂r :=
∑r−1

i=0 qi.

For R = 1 and without additional side information output x′, the proof of
Theorem 1 is given in Sect. 5. The extension to general R is proven in the full
version via a standard hybrid argument. Finally, all our bounds are information-
theoretical, i.e. they hold against arbitrary query bounded adversaries. The addi-
tional output x′ can therefore be sampled by the adversary.

We will now quickly discuss how to simplify the bound given in Eq. (2) for
our applications, and in particular, how we can derive Eq. (1) from Theorem
1: Throughout Sects. 3 and 4, we will only have to consider reprogramming
instructions that occur on positions x = (x1, x2) such that

– x1 is drawn according to the same distribution p for each reprogramming
instruction, and

– x2 represents a message that is already fixed by the adversary.

To be more precise, x1 will represent a uniformly random string z in 3, and
no side information x′ has to be considered. In Sect. 4, (x1, x

′) will represent a
tuple (w, st) that is drawn according to Commit(sk).

In the language of Theorem 1, the marginal distribution p
(r)
X will always be

the same distribution p, apart from the already fixed part x2. We can hence upper
bound p

(r)
max by pmax := maxx1 p(x1), and q̂r by q, to obtain that q̂rp

(r)
max < qpmax

for all 1 ≤ r ≤ R.
In our applications, we will always require that p holds sufficiently large

entropy. To be more precise, we will assume that pmax < 1
q . In this case, we have

that qpmax < 1, and that we can upper bound qpmax by
√

qpmax to obtain

Proposition 2. Let X1, X2, X ′ and Y be some finite sets, and let p be a dis-
tribution on X1 × X ′. Let D be any distinguisher, issuing q many (quantum)
queries to O and R many reprogramming instructions such that each instruction
consists of a value x2, together with the fixed distribution p. Then

|Pr[ReproD
1 ⇒ 1] − Pr[ReproD

0 ⇒ 1]| ≤ 3R

2
√

qpmax ,

where pmax := maxx1 p(x1).

From this we obtain Proposition 1 setting pmax = |X1|−1.

3 Basic Applications

In this section, we present two motivating examples that benefit from the most
basic version of our bound as stated in Proposition 1. As a first example we
chose the canonical hash-and-sign construction when used to achieve security
under adaptive chosen message attacks (UF-CMA) from a scheme that is secure
under random message attacks (UF-RMA). It is mostly self-contained and similar
to our second example. The second example is a tighter bound for the security
of hash-and-sign as used in RFC 8391, the recently published standard for the
stateful hash-based signature scheme XMSS.
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3.1 From RMA to CMA Security via Hash-and-Sign

In the following, we present a conceptually easy proof with a tighter bound
for the canonical UF-RMA to UF-CMA transform using hash-and-sign SIG′ =
HaS[SIG,H], in the QROM (which additionally allows for arbitrary message space
expansion). Recall that Sign′(sk ,m′) first samples a uniformly random bitstring
z ←$ Z, computes σ ← Sign(sk ,H(z‖m′)) and returns the pair (z, σ). Vrfy′

accordingly first computes m := H(z‖m′) and then calls Vrfy(pk ,m, σ).
The reduction M from UF-RMA to UF-CMA in this case works as follows:

First, we have to handle collision attacks. We show that an adversary which
finds a forgery for SIG′ that contains no forgery for SIG breaks the multi-target
version of extended target collision resistance (M-eTCR) of H, and give a QROM
bound for this property. Having dealt with collision attacks leaves us with the
case where A generates a forgery that contains a forgery for SIG. The challenge in
this case is how to simulate the signing oracle SIGN. Our respective reduction M
against UF-RMA proceeds as follows: Collect the qs many message-signature pairs
{(mi, σi)}1≤i≤qs

, provided by the UF-RMA game. When A queries SIGN(m′
i) for

the ith time, sample a random zi, reprogram H(zi‖m′
i) := mi, and return (zi, σi).

See also Fig. 5 below.
In the QROM, this reduction has previously required qs applications of the

O2H Lemma in two steps, loosing an additive O(qs · q/√|Z|) term. In contrast,
we only loose a O(qs

√
q/|Z|) (both constants hidden by the O are small):

Theorem 2. For any (quantum) UF-CMA adversary A issuing at most qs (clas-
sical) queries to the signing oracle SIGN and at most qH quantum queries to H,
there exists an UF-RMA adversary M such that

SuccUF-CMA
SIG′ (A) ≤ SuccUF-RMA

SIG (M) +
8qs(qs + qH + 2)2

|M′| + 3qs

√
qH + qs + 1

|Z| ,

and the running time of M is about that of A.

The second term accounts for the complexity to find a second preimage for
one of the messages mi, which is an unavoidable generic attack. The third term
is the result of 2qs reprogrammings. Half of them are used in the QROM bound
for M-eTCR, the other half in the reduction M. This term accounts for an attack
that correctly guesses the random bitstring used by the signing oracle for one of
the queries (such an attack still would have to find a collision for this part but
this is inherently not reflected in the used proof technique).

Proof. We now relate the UF-CMA security of SIG′ to the UF-RMA security of
SIG via a sequence of games.

Game G0. We begin with the original UF-CMA game for SIG′ in game G0. The
success probability of A in this game is AdvUF-CMA

SIG′ (A) per definition.

Game G1. We obtain game G1 from game G0 by adding an additional condition.
Namely, game G1 returns 0 if there exists an 0 < i ≤ qs such that H(z∗‖m′∗) =
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H(zi‖m′
i), where z∗ is the random element in the forgery signature, and zi is the

random element in the signature returned by SIGN(m′
i) as the answer to the

ith query. We will now argue that

|Pr[GA
0 ⇒ 1] − Pr[GA

1 ⇒ 1]| ≤ 8qs(qs + qH + 2)2

|M′| +
3qs

2

√
qH + qs + 1

|Z| .

Towards this end, we give a reduction B in Fig. 3, that breaks the M-eTCR
security of H whenever the additional condition is triggered, making qs + qH + 1
queries to its random oracle. B simulates the UF-CMA game for SIG′, using H
and an instance of SIG. Clearly, B runs in about the same time as game GA

0 ,
and succeeds whenever A succeeds and the additional condition is triggered. To
complete this step, it hence remains to show that the success probability of any
such (qs + qH + 1)-query adversary is

SuccM-eTCR
H (B, qs) ≤ 8qs(qs + qH + 2)2

|M′| +
3qs

2

√
qH + qs + 1

|Z| . (3)

We delay the proof of Eq. (3) until the end.

Fig. 3. Reduction B breaking M-eTCR. Here, Box is the M-eTCR challenge oracle.

Game G2. The next game differs from G1 in the way the signing oracle works.
In game G2 (see Fig. 4), the ith query to SIGN is answered by first sampling
a random value zi, as well as a random message mi, and programming H′ :=
H′(zi‖m′

i) �→mi . Then mi is signed using the secret key. We will now show that

|Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]| ≤ 3qs

2

√
qH + qs + 1

|Z| .

Consider a reduction C that simulates game G2 for A to distinguish the
Reprob game. Accordingly, C forwards access to its own oracle Ob to A instead
of H. Instead of sampling zi,mi itself in line 08 and programming H in line 09,
C obtains zi ← Reprogram(m′

i) from its own oracle and computes mi :=
Ob(zi‖m′

i) as the output of its random oracle. Now, if C plays in Repro0 it
perfectly simulates G1 for A, as the oracle remains unchanged. If C plays in
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Repro1 it perfectly simulates G2, as can be seen by inlining Reprogram and
removing doubled calls used to recompute mi. Consequently,

|Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]|

= |Pr[ReproCA

0 ⇒ 1] − Pr[ReproCA

1 ⇒ 1]| ≤ 3qs

2

√
qH + qs + 1

|Z| .

Fig. 4. Game G2.

Fig. 5. Reduction M reducing UF-RMA to UF-CMA.

To conclude our main argument, we will now argue that

Pr[GA
2 ⇒ 1] = AdvUF-RMA

SIG (M) ,

where reduction M is given in Fig. 5. Since reprogramming is done a-posteriori in
game G2, M can simulate a reprogrammed oracle H′ via access to its own oracle
H and an initial table look-up: M keeps track of the (classical) values on which
H′ has to be reprogrammed (see line 08) and tweaks A’s oracle H′, accordingly.
The latter means that, given the table LH′ of pairs (zi‖m′

i,mi) that were already
defined in previous signing queries, controlled on the query input being equal
to zi‖m′

i output mi, and controlled on the input not being equal to any zi‖m′
i,
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forward the query to M’s own oracle H. If needed, M reprograms values (see
line 07) by adding an entry to its look-up table. Given quantum access to H, M
can implement this as a quantum circuit, allowing quantum access to H′.

Hence, M perfectly simulates game G2 towards A. The only differences are
that M neither samples the mi itself, nor computes the signatures for them. Both
are given to M by the UF-RMA game. However, they follow the same distribution
as in game G2. Lastly, whenever A would win in game G2, M succeeds in its
UF-RMA game as it can extract a valid forgery for SIG on a new message. This
is enforced with the condition we added in game G1.

The final bound of the theorem follows from collecting the bounds above,
and it remains to prove the bound on M-eTCR claimed in Eq. (3). We improve
a bound from [23], in which it was shown that for a small constant c,5

SuccM-eTCR
H (B, qs) ≤ 8qs(qH + 1)2

|M′| + c
qsqH√|Z| .

Their proof of this bound is explicitly given for the single target step. It
is then argued that the multi-target step can be easily obtained, which was
recently confirmed in [9]. The proof proceeds in two steps. The authors construct
a reduction that generates a random function from an instance of an average-
case search problem which requires to find a 1 in a boolean function f . The
function has the property that all preimages of a randomly picked point m in
the image correspond to 1s of f . When A makes its query to Box, the reduction
picks a random z and programs H(z‖m′) �→m. An extended target collision for
(z‖m′) hence is a 1 in f by design. This gives the first term in the above bound,
which is known to be optimal.

The second term in the bound is the result of above reprogramming. I.e., it
is a bound on the difference in success probability of A when playing the real
game or when run by the reduction. More precisely, the bound is the result of
analyzing the distinguishing advantage between the following two games (which
we rephrased to match our notation):

Game Ga. A gets access to H. In phase 1, after making at most q1 queries to
H, A outputs a message m′ ∈ M′. Then a random z ←$ Z is sampled and
(z,H(z‖m′)) is handed to A. A continues to the second phase and makes at most
q2 queries. A outputs b ∈ {0, 1} at the end.

Game Gb. A gets access to H. After making at most q1 queries to H, A outputs
a message m′ ∈ M′. Then a random z ←$ Z is sampled as well as a random
range element m ←$ M. Program H := H(z‖m′) �→m. A receives (z,m = H(z‖m′))
and proceeds to the second phase. After making at most q2 queries, A outputs
b ∈ {0, 1} at the end.

The authors of [23] showed that for a small constant c (see Footnote 5),

|Pr[GA
b ⇒ 1] − Pr[GA

a ⇒ 1]| ≤ c
qH√|Z| .

5 This is a corrected bound from [23], see discussion in Sect. 2.
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A straightforward application of Proposition 1 shows that

|Pr[GA
b ⇒ 1] − Pr[GA

a ⇒ 1]| ≤ 3
2

√
qH + 1

|Z| .

as the games above virtually describe the games Reprob with the exception that
in Reprob the oracle Reprogram only returns z and not H(z‖m′)). Hence, a
reduction needs one additional query per reprogramming.

When applying this to the qs-target case, a hybrid argument shows that
the bound becomes 3qs/2

√
qH+1/|Z|. Combining this with the reduction of [23]

and taking into account that B makes (qs +qH +1) queries confirms the bound
claimed in Eq. (3).

3.2 Tight Security for Message Hashing of RFC 8391

Another extremely similar application of our basic bound is for another case of
the hash-and-sign construction, used to turn a fixed message length UF-CMA-
secure signature scheme SIG into a variable input length one SIG′. This case is
essentially covered already by Sect. 3.1: A proof can omit game G2 and state
a simple reduction that simulates game G1 to extract a forgery. The bound
changes accordingly, requiring one reprogramming bound less and becoming
SuccUF-CMA

SIG′ (A) ≤ SuccUF-CMA
SIG (M) + 8qs(qs+qH)

2
/|M′| + 1.5qs

√
qH+qs/|Z|.

In [22] , it was suggested that for stateful hash-based signature schemes like
XMSS [22], the multi-target attacks which cause the first occurrence of qs in
the bound could be avoided. This was recently formally proven in [9]. The idea
is to exploit the property of hash-based signature schemes that every signature
has an index which binds the signature to a one-time public key. Including this
index into the hash forces an adversary to also include it in a collision to make
it useful for a forgery. Even more, the index is different for every signature and
therefore for every target hash.

Summarizing, the authors of [9] showed that there exists a tight standard
model proof for the hash-and-sign construction, as used by XMSS in RFC 8391,
if the used hash function is qs-target extended target-collision resistant with
nonce (nM-eTCR, an extension of M-eTCR that considers the index.

To demonstrate the relevance of this result, the authors analyzed the
nM-eTCR-security of hash functions under generic attacks, proving a bound
for nM-eTCR-security in the QROM in the same way as outlined for M-eTCR
above. So far, this bound was suboptimal, as it included a bound on distin-
guishing variants of games Ga and Gb above in which H takes an additional,
externally given index as input). Hence, the bound was SuccnM-eTCR

H (A, p) ≤
8(qs+qH)

2
/|M′| + 32qsq2

H/|Z|. Due to the translation error, we believe that the sec-
ond term needs to be updated to 32qs ·α, where α = qH/

√
|Z|, instead of 32qs ·α2.

In [9], it was conjectured that in α, a factor of
√

qH can be removed. We can con-
firm this conjecture. As in the case above, Proposition 1 can be directly applied
to the distinguishing bound for games Ga and Gb. A reduction would simply
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treat the index as part of the message sent to Reprogram. Plugging this into
the proof in [9] leads to the bound

SuccnM-eTCR
H (A, p) ≤ 8(qs + qH)2

|M′| + 1.5qs

√
qH + qs

|Z| .

4 Applications to the Fiat-Shamir Transform

For the sake of completeness, we include all used definitions for identification and
signature schemes in the full version . The only non-standard (albeit straightfor-
ward) definition is computational HVZK for multiple transcripts, which we give
below.

(Special) HVZK simulator. We first recall the notion of an HVZK simulator.
Our definition comes in two flavours: While a standard HVZK simulator gener-
ates transcripts relative to the public key, a special HVZK simulator generates
transcripts relative to (the public key and) a particular challenge.

Definition 1 ((Special) HVZK simulator). An HVZK simulator is an algo-
rithm Sim that takes as input the public key pk and outputs a transcript (w, c, z).
A special HVZK simulator is an algorithm Sim that takes as input the public
key pk and a challenge c and outputs a transcript (w, c, z).

Computational HVZK for multiple transcripts. In our security proofs,
we will have to argue that collections of honestly generated transcripts are
indistinguishable from collections of simulated ones. Since it is not always clear
whether computational HVZK implies computational HVZK for multiple tran-
scripts, we extend our definition, accordingly: In the multi-HVZK game, the
adversary obtains a collection of transcripts (rather than a single one). Simi-
larly, we extend the definition of special computational HVZK from [5].

Definition 2 ((Special) computational multi-HVZK). Assume that ID
comes with an HVZK simulator Sim. We define multi-HVZK games t-HVZK as
in Fig. 6, and the multi-HVZK advantage function of an adversary A against ID
as

Advt-HVZK
ID (A) :=

∣∣∣Pr[t-HVZKA
1 ID ⇒ 1] − Pr[t-HVZKA

0 ID ⇒ 1]
∣∣∣ .

To define special multi-HVZK, assume that ID comes with a special HVZK sim-
ulator Sim. We define multi-sHVZK games as in Fig. 6, and the multi-sHVZK
advantage function of an adversary A against ID as

Advt-sHVZK
ID (A) :=

∣∣∣Pr[t-sHVZKA
1 ID ⇒ 1] − Pr[t-sHVZKA

0 ID ⇒ 1]
∣∣∣ .

Statistical HVZK. Unlike computational HVZK, statistical HVZK can be gen-
eralized generically, we therefore do not need to deviate from known statistical
definitions.

We denote the respective upper bound for (special) statistical HVZK by
ΔHVZK (ΔsHVZK).
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Fig. 6. Multi-HVZK game and multi-sHVZK game for ID. Both games are defined
relative to bit b ∈ {0, 1}, and to the number t of transcripts the adversary is given.

4.1 Revisiting the Fiat-Shamir Transform

In this section, we show that if an identification scheme ID is HVZK, and if
SIG := FS[ID,H] possesses UF-CMA0 security (also known as UF-KOA security),
then SIG is also UF-CMA secure, in the QROM. Note that our theorem makes
no assumptions on how UF-CMA0 is proven. For arbitrary ID schemes this can
be done using a general reduction for the Fiat-Shamir transform [16], incurring
a q2H multiplicative loss that is, in general, unavoidable [15]. For a lossy ID
scheme ID, UF-CMA0 of FS[ID,H] can be reduced tightly to the extractability
of ID in the QROM [26]. In addition, while we focus on the standard Fiat-
Shamir transform for ease of presentation, the following theorem generalizes to
signatures constructed using the multi-round generalization of the Fiat-Shamir
transform like, e.g., MQDSS [13].

Theorem 3. For any (quantum) UF-CMA adversary A issuing at most qs (clas-
sical) queries to the signing oracle SIGN and at most qH quantum queries to H,
there exists a UF-CMA0 adversary B and a multi-HVZK adversary C such that

SuccUF-CMA
FS[ID,H](A) ≤ SuccUF-CMA0

FS[ID,H] (B) + Advqs−HVZK
ID (C) (4)

+
3qs

2

√
(qH + qs + 1) · γ(Commit) , (5)

and the running time of B and C is about that of A. The bound given in Eq.
(4) also holds for the modified Fiat-Shamir transform that defines challenges by
letting c := H(w,m, pk) instead of letting c := H(w,m).

Note that if ID is statistically HVZK, we can replace Advqs−HVZK
ID (C) with

qs · ΔHVZK.

Proof. Consider the sequence of games given in Fig. 7.
Game G0. Since game G0 is the original UF-CMA game,

SuccUF-CMA
FS[ID,H](A) = Pr[GA

0 ⇒ 1] .
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Fig. 7. Games G0 - G2 for the proof of Theorem 3.

Game G1. In game G1, we change the game twofold: First, the transcript is
now drawn according to the underlying ID scheme, i.e., it is drawn uniformly at
random as opposed to letting c := H(w,m), see line 14. Second, we reprogram
the random oracle H in line 10 such that it is rendered a-posteriori-consistent
with this transcript, i.e., we reprogram H such that H(w,m) = c.

To upper bound the game distance, we construct a quantum distinguisher
D in Fig. 8 that is run in the adaptive reprogramming games ReproR,b with
R := qS many reprogramming instances. We identify reprogramming position x
with (w,m), additional input x′ with st, and y with c. Hence, the distribution
p consists of the constant distribution that always returns m (as m was already
chosen by A), together with the distribution Commit(sk). Since D perfectly sim-
ulates game Gb if run in its respective game Reprob, we have

|Pr[GA
0 = 1] − Pr[GA

1 = 1]| = |Pr[ReproD
1 ⇒ 1] − Pr[ReproD

0 ⇒ 1]| .

Since D issues qS reprogramming instructions and (qH +qS +1) many queries
to H, Proposition 2 yields

|Pr[ReproD
1 ⇒ 1] − Pr[ReproD

0 ⇒ 1]| ≤ 3qS

2

√
(qH + qS + 1) · pmax , (6)

where pmax = EIG maxw PrW,ST←Commit(sk)[W = w] = γ(Commit).

Fig. 8. Reprogramming distinguisher D for the proof of Theorem 3.

Game G2. In game G2, we change the game such that the signing algorithm
does not make use of the secret key any more: Instead of being defined relative
to the honestly generated transcripts, signatures are now defined relative to the
simulator’s transcripts. We will now upper bound |Pr[GA

1 = 1]−Pr[GA
2 = 1]| via
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computational multi-HVZK. Consider multi-HVZK adversary C in Fig. 9. C takes
as input a list of qs many transcripts, which are either all honest transcripts or
simulated ones. Since reprogramming is done a-posteriori in game G1, C can
simulate it via an initial table look-up, like the reduction M that was given in
Sect. 3.1 (see the description on p. 13). C perfectly simulates game G1 if run on
honest transcripts, and game G2 if run on simulated ones, hence

|Pr[GA
1 = 1] − Pr[GA

2 = 1]| ≤ AdvqS−HVZK
ID (C) .

Fig. 9. HVZK adversary C for the proof of Theorem 3.

It remains to upper bound Pr[GA
2 ⇒ 1]. Consider adversary B, given in

Fig. 10. B is run in game UF-CMA0 and perfectly simulates game G2 to A. If
A wins in game G2, it cannot have queried SIGN on m∗. Therefore, H′ is not
reprogrammed on (m∗, w∗) and hence, σ∗ is a valid signature in B’s UF-CMA0

game.
Pr[GA

2 ⇒ 1] ≤ SuccUF-CMA0
FS[ID,H] (B) .

Collecting the probabilities yields the desired bound.

Fig. 10. Adversary B for the proof of Theorem 3.

It remains to show that the bound also holds if challenges are derived by
letting c := H(w,m, pk). To that end, we revisit the sequence of games given in
Fig. 7: We replace c := H(w,m) (and c∗ := H(w∗,m∗)) with c := H(w,m, pk)
(and c∗ := H(w∗,m∗, pk)) in line 13 (line 05), and change the reprogram instruc-
tion in line 10, accordingly. Since pk is public, we can easily adapt both distin-
guisher D and adversaries B and C to account for these changes. In particular,
D will simply include pk as a (fixed) part of the probability distribution that is
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forwarded to its reprogramming oracle. Since the public key holds no entropy
once that it is fixed by the game, this change does not affect the upper bound
given in Eq. (6).

4.2 Revisiting the Hedged Fiat-Shamir Transform

In this section, we show how Theorem 1 can be used to extend the results of [5]
to the quantum random oracle model: We show that the Fiat-Shamir transform
is robust against several types of one-bit fault injections, even in the quantum
random oracle model, and that the hedged Fiat-Shamir transform is as robust,
even if an attacker is in control of the nonce that is used to generate the signing
randomness. In this section, we follow [5] and consider the modified Fiat-Shamir
transform that includes the public key into the hash when generating challenges.
We consider the following one-bit tampering functions:

flip-biti(x): Does a logical negation of the i-th bit of x.
set-biti(x, b): Sets the i-th bit of x to b.

Hedged signature schemes. Let N be any nonce space. With a signature
scheme SIG = (KG,Sign,Vrfy) with secret key space SK and signing randomness
space RSign, and random oracle G : SK × M × N → RSign, we associate

R2H[SIG,G] := SIG′ := (KG,Sign′,Vrfy) ,

where the signing algorithm Sign′ of SIG′ takes as input (sk ,m, n), deterministi-
cally computes r := G(sk ,m, n), and returns σ := Sign(sk ,m; r).

Security of (hedged) Fiat-Shamir against fault injections and nonce
attacks. Next, we define UnForgeability in the presence of Faults, under
Chosen Message Attacks (UF-F-CMA), for Fiat-Shamir transformed schemes. In
game UF-F-CMA, the adversary has access to a faulty signing oracle FAULTSIGN
which returns signatures that were created relative to an injected fault. To be
more precise, game UF-FF -CMA is defined relative to a set F of indices, and the
indices i ∈ F specify at which point during the signing procedure exactly the
faults are allowed to occur. An overview is given in Fig. 11.

For the hedged Fiat-Shamir construction, we further define UnForgeability,
with control over the used Nonces and in the presence of Faults, under Chosen
Message Attacks (UF-N-F-CMA). In game UF-N-F-CMA, the adversary is even
allowed to control the nonce n that is used to derive the internal randomness of
algorithm Commit. We therefore denote the respective oracle by N-FAULTSIGN.
Our definitions slightly simplify the one of [5]: While [5] also considered fault
attacks on the input of algorithm Commit (with corresponding indices 2 and
3), they showed that the hedged construction can not be proven robust against
these faults, in general. We therefore omitted them from our games, but adhered
to the numbering for comparability.

The hedged Fiat-Shamir scheme derandomizes the signing procedure by
replacing the signing randomness by r := G(sk ,m, n). Hence, game UF-N-F-CMA
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Fig. 11. Faulting a (hedged) Fiat-Shamir signature. Circles represent faults, and their
numbers are the respective fault indices i ∈ F (following [5], for the formal definition
see Fig. 12). Greyed out fault wires indicate that the hedged construction can not
be proven robust against these faults, in general. Dashed fault nodes indicate that the
Fiat-Shamir construction is robust against these faults if the scheme is subset-revealing.

considers two additional faults: An attacker can fault the input of G, i.e., either
the secret key (fault index 1), or the tuple (m,n) (fault index 0). As shown in
[5], the hedged construction can not be proven robust against faults on (m,n),
in general, therefore we only consider index 1.

Furthermore, we do not formalize derivation/serialisation and drop the cor-
responding indices 8 and 10 to not overly complicate our application example. A
generalization of our result that also considers derivation/serialisation, however,
is straightforward.

Definition 3. (UF-F-CMA and UF-N-F-CMA) For any subset F ⊂ {4, · · · , 9},
we define the UF-FF -CMA game as in Fig. 12, and the UF-FF -CMA success prob-
ability of a quantum adversary A against FS[ID,H] as

SuccUF-FF -CMA
FS[ID,H] (A) := Pr[UF-FF -CMAA

FS[ID,H] ⇒ 1] .

Furthermore, we define the UF-N-FF -CMA game (also in Fig. 12) for any
subset F ⊂ {1, 4, · · · , 9}, and the UF-N-FF -CMA success probability of a quantum
adversary A against SIG′ := R2H[FS[ID,H],G] as

SuccUF-N-FF -CMA
SIG′ (A) := Pr[UF-N-FF -CMAA

SIG′ ⇒ 1] .

From UF-CMA0 to UF-F-CMA. First, we generalize [5, Lemma 5] to the quan-
tum random oracle model. The proof is given in the full version .

Theorem 4. Assume ID to be validity aware . If SIG := FS[ID,H] is UF-CMA0

secure, then SIG is also UF-FF -CMA secure for F := {5, 6, 9}, in the quantum
random oracle model. Concretely, for any adversary A against the UF-FF -CMA
security of SIG, issuing at most qS (classical) queries to FAULTSIGN and qH
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Fig. 12. Left: Game UF-FF -CMA for SIG = FS[ID,H], and game UF-N-FF -CMA for
the hedged Fiat-Shamir construction SIG′ := R2H[FS[ID,H],G], both defined relative
to a set F of allowed fault index positions. φ denotes the fault function, which either
negates one particular bit of its input, sets one particular bit of its input to 0 or 1, or
does nothing. We implicitly require fault index i to be contained in F , i.e., we make
the convention that both faulty signing oracles return ⊥ if i /∈ F .

(quantum) queries to H, there exists an UF-CMA0 adversary B and a multi-
sHVZK adversary C such that

SuccUF-F{5,6,9}-CMA

SIG (A) ≤ SuccUF-CMA0
SIG (B) + Advqs−sHVZK

ID (C)

+
3qS

2

√
2 · (qH + qS + 1) · γ(Commit) . (7)

and B and C have about the running time of A.
If we assume that ID is subset-revealing, then SIG is even UF-FF ′-CMA secure

for F ′ := F ∪ {4, 7}. Concretely, the bound of Eq. (7) then holds also for F ′ =
{4, 5, 6, 7, 9}.

From UF-F-CMA to UF-N-F-CMA. Second, we generalize [5, Lemma 4] to the
QROM. The proof is given in the full version.

Theorem 5. If SIG := FS[ID,H] is UF-FF -CMA secure for a fault index set
F , then SIG′ := R2H[SIG,G] is UF-N-FF ′-CMA secure for F ′ := F ∪ {1},
in the quantum random oracle model, against any adversary that issues no
query (m,n) to N-FAULTSIGN more than once. Concretely, for any adversary A
against the UF-N-FF -CMA security of SIG′ for F ′, issuing at most qS queries to
N-FAULTSIGN, at most qH queries to H, and at most qG queries to G, there exist
UF-FF -CMA adversaries B1 B2 such that

SuccUF-N-FF′ -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B1) + 2qG ·
√

SuccUF-FF -CMA
SIG (B2) ,

and B1 has about the running time of A, while B2 has a running time of roughly
Time(B2) ≈ Time(A) + |sk | · (Time(Sign) + Time(Vrfy)), where |sk | denotes the
length of sk.

With regards to the reduction’s advantage, this proof is not as tight as the
one in [5]: R2H[SIG,G] derives the commitment randomness as r := G(sk ,m, n).
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During our proof, we need to decouple r from the secret key. In the ROM, it is
straightforward how to turn any adversary noticing this change into an extractor
that returns the secret key. In the QROM, however, all currently known extrac-
tion techniques still come with a quadratic loss in the extraction probability. On
the other hand, our reduction is tighter with regards to running time, which we
reduce by a factor of qG when compared to [5]. If we hedge with an indepen-
dent seed s of length � (instead of sk), it can be shown with a multi-instance
generalization of [33, Lem. 2.2] that

SuccUF-N-FF -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B) + (� + 1) · (qS + qG) ·
√

1/2�−1 .

5 Adaptive Reprogramming: Proofs

We will now give the proof for our main Theorem 1, which can be broken down
into three steps: In this section, we consider the simple special case in which
only a single reprogramming instance occurs, and where no additional input
x′ is provided to the adversary. The generalisation to multiple reprogramming
instances follows from a standard hybrid argument. The generalisation that
considers additional input is also straightforward, as the achieved bounds are
information-theoretical and a reduction can hence compute marginal and con-
ditioned distributions on its own. For the sake of completeness, we include the
generalisation steps in the full version .

In this and the following sections, we need quantum theory. We stick to the
common notation as introduced in, e.g. [30]. Nevertheless we introduce some of
the most important basics and notational choices we make. For a vector |ψ〉 ∈ H
in a complex Euclidean space H, we denote the standard Euclidean norm by
‖ |ψ〉 ‖. We use a subscript to indicate that a vector |ψ〉 is the state of a quantum
register A with Hilbert space H, i.e. |ψ〉A. Similarly, MA indicates that a matrix
M acting on H is considered as acting on register A. The joint Hilbert space
of multiple registers is given by the tensor product of the single-register Hilbert
spaces. Where it helps simplify notation, we take the liberty to reorder registers,
keeping track of them using register subscripts. The only other norm we will
require is the trace norm. For a matrix M acting on H, the trace norm ‖M‖1
is defined as the sum of the singular values of M . An important quantum gate
is the quantum extension of the classical CNOT gate. This quantum gate is a
unitary matrix CNOT acting on two qubits, i.e. on the vector space C

2 ⊗ C
2,

as CNOT |b1〉 |b2〉 = |b1〉 |b2 ⊕ b1〉. We sometimes subscript a CNOT gate with
control register A and target register B with A : B, and extend this notation to
the case where many CNOT gates are applied, i.e. CNOT⊗n

A:B means a CNOT
gate is applied to the i-th qubit of the n-qubit registers A and B for each
i = 1, ..., n with the qubits in A being the controls and the ones in B the targets.

5.1 The Superposition Oracle

For proving the main result of this section, we will use the (simplest version
of the) superposition oracle introduced in [39]. In the following, we introduce
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that technique, striving to keep this explanation accessible even to readers with
minimal knowledge about quantum theory.

Superposition oracles are perfectly correct methods for simulating a
quantum-accessible random oracle O : {0, 1}n → {0, 1}m. Different variants of
the superposition oracle have different additional features that make them more
useful than the quantum-accessible random oracle itself. We will use the fact
that in the superposition oracle formalism, the reprogramming can be directly
implemented by replacing a part of the quantum state held by the oracle, instead
of using a simulator that sits between the original oracle and the querying algo-
rithm. Notice that for this, we only need the simplest version of the superposition
oracle from [39].6 In that basic form, there are only three relatively simple con-
ceptual steps underlying the construction of the superposition oracle, with the
third one being key to its usefulness in analyses:

– For each x ∈ {0, 1}n, O(x) is a random variable uniformly distributed on
{0, 1}m. This random variable can, of course, be sampled using a quantum
measurement, more precisely a computational basis measurement of the state

|φ0〉 = 2−m/2
∑

y∈{0,1}m

|y〉 .

– For a function o : {0, 1}n → {0, 1}m, we can store the string o(x) in a quantum
register Fx. In fact, to sample O(x), we can prepare a register Fx in state |φ0〉,
perform a computational basis measurement and keep the collapsed so-called
post-measurement state. Outcome y of the measurement corresponds to the
projector |y〉〈y|, and a post-measurement state proportional to

|y〉〈y| |φ0〉 = 2− m
2 |y〉 .

Now a query with input |x〉X |ψ〉Y can be answered using CNOT gates, i.e.
we can answer queries with a superposition oracle unitary O acting on input
registers X,Y and an oracle register F = F0mF0m−11...F1m such that

OXY F |x〉〈x|X = |x〉〈x|X ⊗ (
CNOT⊗m

)
Fx:Y

.

– Since the matrices |y〉〈y|Fx
and

(
CNOT⊗m

)
Fx:Y

commute, we can delay the
measurement that performs the sampling of the random oracle until the end
of the runtime of the querying algorithm. Queries are hence answered using
the unitary O, but acting on oracle registers Fx that are all initialized in the
uniform superposition state |φ0〉, and only after the querying algorithm has
finished, the register F is measured to obtain the concrete random function O.

A quantum-accessible oracle for a random function O : {0, 1}n → {0, 1}m is
thus implemented as follows:
6 Note that this basic superposition oracle does not provide an efficient simulation of

a quantum-accessible random oracle, which is fine for proving a query lower bound
that holds without assumptions about time complexity.
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– Initialize: Prepare the initial state

|Φ〉F =
⊗

x∈{0,1}n

|φ0〉Fx
.

– Oracle: A quantum query on registers X and Y is answered using OXY F

– Post-processing: Register F is measured to obtain a random function O. The
last step can be (partially) omitted whenever the function O is not needed
for evaluation of the success or failure of the algorithm. In the following, the
querying algorithm is, e.g. tasked with distinguishing two oracles, a setting
where the final sampling measurement can be omitted.

Note that it is straightforward to implement the operation of reprogramming a
random oracle to a fresh random value on a certain input x: just discard the
contents of register Fx and replace them with a freshly prepared state |φ0〉. In
addition, we need the following lemma

Lemma 1 (Lemma 2 in [3], reformulated). Let |ψq〉AF be the joint
adversary-oracle state after an adversary has made q queries to the superpo-
sition oracle with register F . Then this state can be written as

|ψq〉AF =
∑

S⊂{0,1}n

|S|≤q

|ψ(S)
q 〉

AFS
⊗

(
|φ0〉⊗(2n−|S|)

)

FSc

,

where for any set R = {x1, x2, ..., x|R|} ⊂ {0, 1}n we have defined FR =
Fx1Fx2 ...Fx|R| and |ψ(S)

q 〉AFS
are vectors such that 〈φ0|Fx

|ψ(S)
q 〉AFS

= 0 for all
x ∈ S.

5.2 Reprogramming Once

We are now ready to study our simple special case. Suppose a random oracle
O is reprogrammed at a single input x∗ ∈ {0, 1}n, sampled according to some
probability distribution p, to a fresh random output y∗ ← {0, 1}m. We set O0 =
O and define O1 by O1(x∗) = y and O1(x) = O(x) for x �= x∗. We will show that
if x∗ has sufficient min-entropy given O, such reprogramming is hard to detect.

More formally, consider a two-stage distinguisher D = (D0,D1). The first
stage D0 has trivial input, makes q quantum queries to O and outputs a quantum
state |ψint〉 and a sampling algorithm for a probability distribution p on {0, 1}n.
The second stage D1 gets x∗ ← p and |ψint〉 as input, has arbitrary quantum
query access to Ob and outputs a bit b′ with the goal that b′ = b. We prove the
following.

Theorem 6. The success probability for any distinguisher D as defined above is
bounded by

Pr[b = b′] ≤ 1
2

+
1
2

√
qpDmax +

1
4
qpDmax,
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where the probability is taken over b ← {0, 1}, (|ψint〉 , p) ← DO
0 (1n) and b′ ←

DOb
1 (x∗, |ψint〉), and pDmax = E

(|ψint〉,p)←D
O0
0 (1n)

maxx p(x).

Proof. We implement O = O0 as a superposition oracle. Without loss of gener-
ality7, we can assume that D proceeds by performing a unitary quantum com-
putation, followed by a measurement to produce the classical output p and the
discarding of a working register G. Let |γ〉RGF be the algorithm-oracle-state
after the unitary part of D0 and the measurement have been performed, condi-
tioned on its second output being a fixed probability distribution p. R contains
D0’s first output .

Define εx = 1 − ∥∥ 〈φ0|Fx
|γ〉RGF

∥∥2
, a measure of how far the contents of

register Fx are from the uniform superposition. Intuitively, this is the ‘probabil-
ity’ that the distinguisher knows O(x), and should be small in expectation over
x ← p. We therefore begin by bounding the distinguishing advantage in terms
of this quantity. For a fixed x, we can write the density matrix ρ(0) = |γ〉〈γ| as

ρ
(0)
RGF = 〈φ0|Fx

ρ
(0)
RGF |φ0〉Fx

⊗ |φ0〉〈φ0|Fx
+ ρ

(0)
RGF

(
1 − |φ0〉〈φ0|Fx

)

+
(
1 − |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

. (8)

The density matrix ρ
(1,x)
RGF for the algorithm-oracle-state after D0 has finished

and the oracle has been reprogrammed at x (i.e. b = 1) is8

ρ
(1,x)
RGF = TrFx

[ρ(1,x)
RGF ] ⊗ |φ0〉〈φ0|Fx

= 〈φ0|Fx
ρ
(0)
RGF |φ0〉Fx

⊗ |φ0〉〈φ0|Fx

+ TrFx
[(1 − |φ0〉〈φ0|Fx

)ρ(0)RGF ] ⊗ |φ0〉〈φ0|12Fx
, (9)

where the second equality is immediate when computing the partial trace in an
orthonormal basis containing |φ0〉.

We analyze the success probability of D. In the following, set x∗ = x. The
second stage, D1, has arbitrary query access to the oracle Ob. In the superposition
oracle framework, that means D1 can apply arbitrary unitary operations on its
registers R and G, and the oracle unitary O to some sub-register registers XY
of G and the oracle register F . We bound the success probability by allowing
arbitrary operations on F , thus reducing the oracle distinguishing task to the
task of distinguishing the quantum states ρ

(b,x)
RF = TrGρ

(b,x)
RGF for b = 0, 1, where

ρ(0,x) := ρ(0). By the bound relating distinguishing advantage and trace distance,

Pr[b = b′|x∗ = x] ≤1
2

+
1
4

∥∥ρ
(0)
RF − ρ

(1,x)
RF

∥∥
1

≤ 1
2

+
1
4

∥∥ρ
(0)
RGF − ρ

(1,x)
RGF

∥∥
1
, (10)

7 This can be seen by employing the Stinespring dilation theorem, or by using standard
techniques to delay measurement and discard operations until the end of a quantum
algorithm.

8 Note that the partial trace expression yields a positive semidefinite matrix due to
the cyclicity of the trace and the fact that 1 − |φ0〉〈φ0|Fx

is a projector and hence
Hermitian.
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where the probability is taken over b ← {0, 1}, |ψint〉 ← DO0
0 (1n) and b′ ←

DOb
1 (x, |ψint〉), and we have used that the trace distance is non-increasing under

partial trace. Using Eqs. (8) and (9), we bound

∥∥ρ
(0)
RGF − ρ

(1,x)
RGF

∥∥
1

≤
∥∥∥ρ

(0)
RGF

(
1 − |φ0〉〈φ0|Fx

)
+

(
1 − |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

− TrFx
[(1 − |φ0〉〈φ0|Fx

)ρ(0)RGF ] ⊗ |φ0〉〈φ0|Fx

∥∥∥
1

≤
∥∥∥ρ

(0)
RGF

(
1 − |φ0〉〈φ0|Fx

) ∥∥∥
1

+
∥∥∥

(
1 − |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

∥∥∥
1

+
∥
∥∥TrFx

[(1 − |φ0〉〈φ0|Fx
)ρ(0)RGF ] ⊗ |φ0〉〈φ0|Fx

∥
∥∥
1
,

Where the last line is the triangle inequality. The trace norm of a positive
semidefinite matrix is equal to its trace, so the last term can be simplified as

∥∥∥TrFx
[(1 − |φ0〉〈φ0|Fx

)ρ(0)RGF ] ⊗ |φ0〉〈φ0|Fx

∥∥∥
1

= Tr[(1 − |φ0〉〈φ0|Fx
) |γ〉〈γ|RGF ] = εx.

The second term is upper-bounded by the first via Hölder’s inequality, which
simplifies as

∥∥∥ρ
(0)
RGF

(
1 − |φ0〉〈φ0|Fx

) ∥∥∥
1

=
∥∥∥ |γ〉〈γ|RGF

(
1 − |φ0〉〈φ0|Fx

) ∥∥∥
1

=
∥∥∥

(
1 − |φ0〉〈φ0|Fx

) |γ〉RGF

∥∥∥
2

=
√

εx

where the second equality uses that |γ〉 is normalized. In summary we have

∥∥ρ
(0)
RGF − ρ

(1,x)
RGF

∥∥
1

≤ 2
√

εx + εx. (11)

It remains to bound εx in expectation over x ← p. To this end, we prove

Ex∗←p

[∥
∥ 〈φ0|Fx∗ |γ〉RGF

∥
∥2

]
≥ 1 − qpmax, (12)

where pmax = maxx p(x). In the following, sums over S are taken over S ⊂
{0, 1}n : |S| ≤ q, with additional restrictions explicitly mentioned. We have

Ex∗←p

[∥∥ 〈φ0|Fx∗ |γ〉RGF

∥∥2
]

=
∑

x∗∈{0,1}n

p(x∗)
∥∥ 〈φ0|Fx∗ |γ〉RGF

∥∥2

=
∑

x∗∈{0,1}n

p(x∗)
∥∥

∑

S

〈φ0|Fx∗ |ψ(S)
q 〉

RGFS
⊗

(
|φ0〉⊗(2n−|S|)

)

FSc

∥∥2
,

where we have used Lemma 1 as well as the notation |ψ(S)
q 〉 from there. (Lemma

1 clearly also holds after the projector corresponding to second output equaling
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p is applied). Using 〈φ0|Fx
|ψ(S)

q 〉RGFS
= 0 for all x ∈ S we simplify

∑

x∗∈{0,1}n

p(x∗)
∥∥

∑

S

〈φ0|Fx∗ |ψ(S)
q 〉

RGFS
⊗

(
|φ0〉⊗(2n−|S|)

)

FSc

∥∥2

=
∑

x∗∈{0,1}n

p(x∗)
∥∥

∑

S ��x∗
|ψ(S)

q 〉
RGFS

⊗
(
|φ0〉⊗(2n−|S|−1)

)

FSc\{x∗}

∥∥2
.

The summands in the second sum are pairwise orthogonal, so
∑

x∗∈{0,1}n

p(x∗)
∥∥

∑

S ��x∗
|ψ(S)

q 〉
RGFS

⊗
(
|φ0〉⊗(2n−|S|−1)

)

FSc\{x∗}

∥∥2

=
∑

x∗∈{0,1}n

p(x∗)
∑

S ��x∗

∥∥ |ψ(S)
q 〉

RGFS
⊗

(
|φ0〉⊗(2n−|S|−1)

)

FSc\{x∗}

∥∥2

=
∑

S

∑

x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉
RGFS

⊗
(
|φ0〉⊗(2n−|S|−1)

)

FSc\{x∗}

∥∥2

=
∑

S

∑

x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉
RGFS

⊗
(
|φ0〉⊗(2n−|S|)

)

FSc

∥∥2

where we have used the fact that the state |φ0〉 is normalized in the last line.
But for any S ⊂ {0, 1}n we have

∑

x∗∈Sc

p(x∗) =1 −
∑

x∗∈S

p(x∗) ≥ 1 − |S|pmax,

where here, pmax = maxx p(x). We hence obtain

∑

S

∑

x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉
RGFS

⊗
(
|φ0〉⊗(2n−|S|)

)

FSc

∥∥2

≥
∑

S

(1 − |S|pmax)
∥∥ |ψ(S)

q 〉
RGFS

⊗
(
|φ0〉⊗(2n−|S|)

)

FSc

∥∥2

≥ (1 − qpmax)
∑

S

∥
∥ |ψ(S)

q 〉
RGFS

⊗
(
|φ0〉⊗(2n−|S|)

)

FSc

∥
∥2 = 1 − qpmax,

where we have used the normalization of |γ〉RGF in the last equality. Combining
the above equations proves Eq. (12). Putting everything together, we bound

Pr[b = b′] =EpEx Pr[b = b′|p, x] ≤ 1
2

+
1
4
EpEx[2

√
εx + εx]

≤1
2

+
1
4
Ep[2

√
qpmax + qpmax] ≤ 1

2
+

1
2

√
qpDmax + qpDmax.

Here, the inequalities are due to Eq. (10) and Eq. (11), Eq. (12) and Jensen’s
inequality, and another Jensen’s inequality, respectively. ��
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6 A Matching Attack

We now describe an attack matching the bound presented in Theorem 6. For sim-
plicity, we restrict our attention to the case where just one point is (potentially)
reprogrammed.

Our distinguisher makes q queries to O, the oracle before the potential
reprogramming, and q queries to O′, the oracle after the potential reprogram-
ming. In our attack, we fix an arbitrary cyclic permutation σ on [2n], and for
the fixed reprogrammed point x∗, we define S = {x∗, σ−1(x∗), ..., σ−q+1(x∗)},
S = {0, 1}n \ S, Π0 = 1

2

(|S〉 + |S〉) (〈S| + 〈S|) and Π1 = I − Π0.9 The distin-
guisher D is defined in Fig. 13.

Fig. 13. Distinguisher for a single reprogrammed point.

Theorem 7. For every 1 ≤ q < 2n−3, the attack described in Fig. 13 can be
implemented in quantum polynomial-time. Performing q queries each before and
after the potential reprogramming, it detects the reprogramming of a random
oracle O : {0, 1}n → {0, 1}m at a single point with probability at least Ω(

√
q
2n ).

Proof (sketch). We can analyze the state of the distinguisher before its measure-
ment. If the oracle is not reprogrammed, then its state is

1√
2n

∑

x

|x〉 |0〉 ,

whereas if the reprogramming happens, its state is
∑

x∈S

|x〉 |O(x∗) ⊕ O′(x∗)〉 +
∑

x∈S

|x〉 |0〉 ,

where O(x∗) ⊕ O′(x∗) is a uniformly random value. The advantage follows by
calculating the probability that these states project onto Π0.

For the efficiency of our distinguisher, we can use the tools provided in [2]
to efficiently implement Π0 and Π1, which are the only non-trivial operations of
the attack.

Due to space restrictions, we refer to the full version , where we give the full
proof of Theorem 7 and discuss its extension to multiple reprogrammed points.
9 Formally, S, Π0 and Π1 are functions of x∗ but we omit this dependence for sim-

plicity, since we can assume that x∗ is fixed.
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Abstract. It was long thought that symmetric cryptography was only
mildly affected by quantum attacks, and that doubling the key length
was sufficient to restore security. However, recent works have shown that
Simon’s quantum period finding algorithm breaks a large number of
MAC and authenticated encryption algorithms when the adversary can
query the MAC/encryption oracle with a quantum superposition of mes-
sages. In particular, the OCB authenticated encryption mode is broken
in this setting, and no quantum-secure mode is known with the same
efficiency (rate-one and parallelizable).

In this paper we generalize the previous attacks, show that a large
class of OCB-like schemes is unsafe against superposition queries, and
discuss the quantum security notions for authenticated encryption modes.
We propose a new rate-one parallelizable mode named QCB inspired by
TAE and OCB and prove its security against quantum superposition
queries.

Keywords: Authenticated encryption · Lightweight cryptography ·
QCB · Post-quantum cryptography · Provable security · Tweakable
block ciphers

1 Introduction

The cryptographic community has launched many competitions and standard-
ization efforts recently. The most recent ones are the CAESAR competition
for authenticated encryption (AE) and the NIST standardization processes for
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post-quantum public-key primitives (PQC) [26] and lightweight cryptography
(LWC) [27]. While these competitions have attracted a lot of attention, they
have represented rather disjoint efforts: the PQC process focuses on public key
cryptography, and post-quantum security has remained out of the scope of most
schemes submitted to the LWC process and to the CAESAR competition. A
few exceptions exist, like the LWC second-round candidate Saturnin [15] for
instance, which proposes a block cipher and an AE mode aiming at post-quantum
security. This is understandable because the impact of quantum computers on
symmetric cryptography is expected to be quite limited, and doubling the key
length is usually considered a sufficient measure to resist quantum attacks (such
as exhaustive key search with Grover’s algorithm).

Security in the Superposition Model. However, recent works [21,31] have shown
that many MAC and AE modes are broken in the superposition model using
Simon’s quantum period finding algorithm [32]. In this model, the adversary is
capable of accessing a quantum encryption oracle, and of encrypting quantum
states. Though the practical significance of attacks in this model is an unsettled
issue in the community and opinions might differ, there is a clear consensus on
the importance of having provable security in this scenario. First of all, this
model is non-trivial, meaning that there exist secure schemes in this model.1
It also offers better composability, even if we are interested only in quantum
adversaries making classical queries. Finally, it captures intermediate scenarios
with some level of quantum interaction between the attacker and the oracle and
covers the scenarios of obfuscation or white-box encryption.

Though lightness and security against quantum adversaries are two very dif-
ferent topics, let us remark that they are not orthogonal. In particular, Sat-
urnin is a submission to the LWC effort claiming security in the superposi-
tion model, based on a block cipher. But its authenticated encryption mode is
not parallelizable and requires two encryption calls per message block. More
precisely, it uses the encrypt-then-MAC construction and combines a quantum-
secure mode of encryption (the Counter Mode) with a quantum-secure MAC
similar to HMAC/NMAC.

Towards a Quantum-Safe Rate-One AE Mode. OCB [22] is one of the most
influential authenticated encryption modes. OCB3 is parallelizable, and is a rate-
one scheme, using just one block cipher call per block of message. It is proven
secure in the classical setting provided that its underlying block cipher is a
strong PRP [9]. Nevertheless, several attacks using Simon’s algorithm [32] were
proposed in [21], with a complexity that is linear in the size of the state. These
attacks, that we recall in Sect. 3, can efficiently recover a hidden secret period if
the attacker is allowed to query messages in superposition.

Our work started with the idea to make OCB post-quantum secure: we
wanted to identify its weaknesses, correct them and obtain a proof of quantum
security. The main contribution of this paper is to fill this gap and to propose
such a mode together with a proof of security.
1 For example, indistinguishability under quantum encryption queries can be achieved

by the Counter Mode from a classical PRP assumption [3].
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Results and Organization of the Paper. In Sect. 2, we recall some standard defini-
tions and technical material for our quantum security proofs and attacks. Note
that contrary to most of the recent works on this topic, we shall not require
Zhandry’s random oracle recording technique [34] and we will use instead sim-
pler proof arguments, that we introduce here. We also introduce an extension
of Hosoyamada and Sasaki’s truncation technique [19] that allows to compose
any linear function with a quantum oracle and compute it with a single query.
In Sect. 3, we define an OCB-like mode with more complex offsets. The previous
quantum attack on OCB used the fact that the difference between some offsets
was independent of the nonce. We show how to attack this modified OCB with
a single quantum query, yielding an attack that can be applied regardless of the
nonce dependence. In Sect. 4, we define quantum-secure tweakable block ciphers.
We are interested in adversaries making queries with classical tweaks and a super-
position of messages, a setting which corresponds to the attacks on OCB. In this
setting, we propose the key-tweak insertion TBC, which requires a related-key
secure block cipher. In Sect. 5 we define the new rate-one parallelizable quan-
tum safe mode, QCB, and propose two instances: one using Saturnin with the
key-tweak insertion TBC and one using the dedicated TBC TRAX-L-17 [4]. We
prove in Sect. 6 the security of QCB if it is used with a secure TBC. We use two
notions: IND-qCPA [11] and BZ-unforgeability [10]. We discuss other possible
definitions in Sect. 7.

2 Preliminaries

We open this section with standard notations for permutations, block ciphers
and AEAD schemes. We also define the quantum oracle access that will be given
to such a scheme in our proof. We recall some standard results and definitions
related to quantum provable security. Finally, we introduce our new linear post-
processing lemma (Lemma 2) that we will use in Sect. 3 and Sect. 7.

2.1 Definitions and Notations

We let Pn denote the set of permutations acting on {0, 1}n. By x
$←− S we mean

that x is taken uniformly at random from the set S. We let Af(·) ⇒ b (resp.
Af(�) ⇒ b) denote an algorithm that performs classical queries to oracle f

(resp. quantum queries to f) and outputs b. We write Af±(· or �) when A has
access to the f and the f−1 oracle, which we blend into a single oracle f±.

Block Ciphers. A block cipher with key space {0, 1}k and message space {0, 1}n is
a map E : {0, 1}k × {0, 1}n → {0, 1}n such that for every key K ∈ {0, 1}k, M �→
E(K, M) is a permutation on {0, 1}n. We let EK denote the map M �→ E(K, M).
If E is a block cipher then its inverse is the map E−1 : {0, 1}k ×{0, 1}n → {0, 1}n

defined by E−1(K, C) = E−1
K (C).
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AEADs. An authenticated encryption scheme with associated data (AEAD) is
specified by a tuple of sets (K, IV, A, M, C) where K is the key space, IV is
the IV space, A is the associated data space, M is the message space, and C
is the ciphertext space, and a pair of deterministic algorithms (Enc,Dec) with
signatures

Enc : K × IV × A × M → C
Dec : K × IV × A × C → M ∪ {⊥}.

We require an AEAD scheme to be correct, i.e., for all (K, IV, A, M) ∈ K×IV ×
A × M,

Dec (K, IV, A,Enc (K, IV, A, M)) = M.

We write EncK (IV, A, M) for Enc (K, IV, A, M) and similarly DecK (IV, A, C).
Note that this is the most generic definition of an AEAD, but in our case, we
will replace the ciphertext space C by C × T , and the scheme will output a
ciphertext C of variable length and an authentication tag T ∈ T of fixed size.
As we consider AEADs based on block ciphers, C and M will be parsed into
blocks that we index M0, . . . , M� (resp. C0, . . . , C�) where � is the block length
of M (resp. of C).

Quantum Computing. In this paper, an adversary is a quantum algorithm that
accesses one or more oracles. We use the quantum circuit model, whose basics
can be found in [28]. A quantum algorithm is initiated with a set of m qubits
(two-level quantum systems) in a fixed state |0〉. The state of the algorithm lies
in a Hilbert space of dimension 2m, with a canonical basis {|i〉 , 0 ≤ i ≤ 2m − 1}.
Basic unitary operators, called quantum gates (drawn from a universal gate
set), are applied on the qubits. These computations are interleaved with oracle
calls and partial measurements, which transform a pure state (an element of the
Hilbert space) into a mixed state (a probability distribution of pure states). For
ease of notation, we often omit normalization factors from quantum states (e.g.,
1√
2 (|0〉 + |1〉) can be written |0〉 + |1〉).

2.2 Quantum Oracles and Query Model

We model quantum oracle access to any function f : X → Y as a unitary
operation: |x〉 |y〉 �→ |x〉 |y ⊕ f(x)〉 (this is the standard oracle) or as |x〉 |y〉 �→
(−1)y·f(x) |x〉 |y〉 (this is the phase oracle). Standard and phase oracles are well-
known to be equivalent.

Choice of IVs. In the classical setting, the security of IV-based AEADs draws on
the fact that the IVs of successive queries are distinct and/or randomly chosen.
So far, all security notions defined in the quantum setting have followed this
setting [3,11,16], by considering randomness-based modes where the random
IV is chosen at each new (quantum) query. Although a non-trivial extension to
superposition IVs might be possible, it remains out of scope of our work.
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In this paper, we will use classical and distinct IVs, but relax the randomness
assumption. In the security games for AEAD defined and used in Sect. 6, we start
the game by an initialization phase in which the adversary declares the IVs that
he is going to query. This makes our reasoning easier and (as we will justify
in Sect. 6) it includes the cases where IVs are generated at random, or with a
stateful counter.

Quantum Query Model. The input plaintext and AD will be in superposition.
Furthermore, the bit-length of the message, AD and ciphertext have to be chosen
classically and cannot differ within a query; that is, we encrypt a superposition
of messages of a fixed length. We let the adversary choose the bit-length of the
message and AD in the queries between 0 and n� for a fixed � (which deter-
mines the maximal number of blocks to be queried). Thus, � will intervene as a
parameter in our bounds, together with the number of queries q.

Hence, our encryption and decryption oracles are actually families of unitary
operators, indexed by these lengths and by the IV choice. As the ciphertext will
be longer than the plaintext, we consider that the encryption oracles for messages
of m bits output c(m) > m bits. Conversely, messages of distinct lengths may
be encrypted to ciphertexts of the same length. Hence, the decryption oracle of
a ciphertext of c bits writes a canonical encoding of either the message or ⊥ on
c bits. We write these oracles Om,a,IV

EncK and Oc,a,IV
DecK respectively, with 0 ≤ m, a ≤

�n.
The encryption Om,a,IV

EncK is a standard oracle for EncK with messages of length
m, AD of length a and a fixed IV ∈ IV:

|A〉
︸︷︷︸

a qubits

|M〉
︸︷︷︸

m qubits

|X〉
︸︷︷︸

c(m)
qubits

�→ |A〉 |M〉 |X ⊕ EncK (IV, A, M)〉
︸ ︷︷ ︸

c(m) qubits

.

The decryption Oc,a,IV
DecK is a standard oracle for DecK with ciphertexts of

length c, AD of length a and a fixed IV:

|A〉
︸︷︷︸

a qubits

|C〉
︸︷︷︸

c qubits

|Y 〉
︸︷︷︸

c qubits

�→

⎧

⎨

⎩

|A〉 |C〉
∣

∣

∣Y ⊕ ̂M
〉

if C = EncK (IV, A, M)

|A〉 |C〉
∣

∣

∣Y ⊕ ̂⊥
〉

otherwise

with ̂M the encoding of M and ̂⊥ the encoding of ⊥.

Counting Data, Time and Memory. While the oracles authorize messages, AD
and ciphertexts to take any number of bits, the modes that we will consider are
built on block ciphers with a fixed block size n. Hence, we can count the data
complexity in the number of blocks queried: a query to EncK or to OEncK with
� blocks costs � data. We count the time complexity either in the number of
quantum gates, or in the number of block cipher calls, as a quantum standard
oracle. We consider the cost of a single block cipher call to be marginal with
respect to the other terms, as it is polynomial in n, making these definitions
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equivalent. The memory will also be counted in n-bit registers, either classical
or quantum.

2.3 Distances

Usually, in game-based definitions, the adversary’s advantage is a difference in
probabilities to output 1 or 0. However, since our adversaries are quantum, their
final state is a quantum state. It is well-known that the Euclidean distance
between quantum states is related to the distance between the distributions that
result from measuring these states. Thus, the probabilistic interpretation of the
adversary’s result (measuring 0 or 1) can be replaced by a Euclidean distance.

Definition 1 (Euclidean distance). The Euclidean distance between |φ〉 =
∑

αi |i〉 and |ψ〉 =
∑

βi |i〉 is given by: ‖ |φ〉 − |ψ〉 ‖ =
√∑

i |αi − βi|2.

Two quantum states |φ〉 =
∑

αi |i〉 and |ψ〉 =
∑

βi |i〉, obtained after running
an adversary in two different scenarios, incur two distributions D and D′ over the
states in the computational basis (we could also take another basis, without any
change, since composing by a unitary operator leaves the distance unchanged).
These distributions are such that D(i) = |αi|2 and D′(i) = |βi|2. The total
variation distance between D and D′ is defined as

∑

i |D(i) − D′(i)| and equal
to
∑

i ||αi|2 − |βi|2|. From Lemma 3.6 in [7], we obtain:
∑

i ||αi|2 − |βi|2| ≤
4‖ |φ〉 − |ψ〉 ‖.

The decision of a quantum adversary to output 0 or 1 is conditioned only
on its final state. Thus, if two adversaries have similar end states, they can only
win with similar probabilities.

Lemma 1. Let A be a quantum adversary that outputs a bit b. Let B be another
adversary that also outputs a bit b, and let |ψ〉 and |φ〉 be their respective states
after the last oracle query, before measuring their output in the computational
basis. Then:

| Pr [A(·) = 1] − Pr [B(·) = 1] | ≤ 4‖ |ψ〉 − |φ〉 ‖.

In practice, we will consider a game in which some parameter is selected
at random (e.g., the key K), then the game runs and the final state of the
adversary depends on K. We are interested in the quantity | Pr

K
$←K [A(·) = 1]−

Pr
K

$←K [B(·) = 1] | which determines the difference in advantage between the two
adversaries. We have: Pr

K
$←K [A(·) = 1] =

∑

k∈K Pr [K = k] Pr [A(·) = 1|K = k].
That is, we can write:

| Pr
K

$←K
[A(·) = 1] − Pr

K
$←K

[B(·) = 1] |

≤ 1
|K|
∑

k∈K
| Pr [A(·) = 1|K = k] − Pr [B(·) = 1|K = k] |

≤ 4
|K|
∑

k

‖ |ψk〉 − |φk〉 ‖,
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where |ψk〉 and |φk〉 are the final states conditioned on the fact that the selected
key is k. So in practice, we will fix all the random parameters, compute the
euclidean distance between the end states and take the average.

2.4 Query Magnitude

We will use a “query magnitude” argument, taken from [6]. Considering an oracle
O with arbitrarily defined input and output registers, we modify O on a subset
D of its inputs to make the oracle O′. If an algorithm asks queries to O, but
puts only “low amplitude” on the inputs of D, then changing O into O′ does not
have any significant impact on the final state.

Theorem 1 (Adapted from [6], Theorem 3.3). Let A be a quantum algo-
rithm that makes q queries to an oracle O and let |ψ0〉, . . . , |ψq〉 be the current
state before each query (|ψq〉 is the final state). Let O′ be an oracle that is the
same as O, except on some subset D of its inputs, A′ be the same as A, except
that every query to O is replaced by a query to O′, and |ψ′

i〉 the state of A′.
At each step of the circuit computation, we let |x〉 |y〉 |a〉 denote the basis states,
where |x〉 is the input to O (or O′), |y〉 is the output register and |a〉 the rest of
the qubits. Let PD be the projector on the basis states such that x ∈ D. Then:

‖ |ψq〉 −
∣

∣ψ′
q

〉

‖ ≤ 2
∑

i

|PD(|ψi〉)|.

2.5 On Random Functions and Permutations

We will use the following results from the literature. First of all, as shown by
Zhandry, it is impossible to distinguish a random function with n-bit domain
from a random permutation with probability bigger than O

(
q3

2n
)

with q queries
(where the constant in the O is fixed by the theorem); and conversely. We refer
to this statement as PRF-PRP switching.

Theorem 2 ([33], Theorem 3.1). Let h : {0, 1}n → {0, 1}m be a random
function. Any quantum algorithm making q quantum queries to h can only find a
collision with probability at most O

(
q3

2m
)

. If n ≤ m, then any quantum algorithm
making q queries cannot distinguish h from a random injective function except
with probability O

(
q3

2m
)

.

Second, we use a theorem by Boneh and Zhandry that shows that a quantum
algorithm making q queries to a random oracle with a domain of exponential
size can only output q + 1 valid {input, output} pairs with negligible probability.

Theorem 3 ([10], Theorem 4.1). Let A be a quantum algorithm making q
queries to a random oracle h : {0, 1}n → {0, 1}m, and producing k > q pairs
(xi, yi) ∈ {0, 1}n ×{0, 1}m. The probability that the xi are distinct and yi = h(xi)

for all 1 ≤ i ≤ k is at most: 1
2mk

∑q
r=0

(

k
r

)

(2m − 1)r. If k = q + 1 then the

adversary succeeds with probability at most q+1
2m .
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We will use the terminology “(q, q +1) security game” to refer to the game in
which A accesses Oh q times and must produce q + 1 valid pairs. An alternative
proof of Theorem 3 for the q, q + 1 case can be found in the full version of [1].
By combining this theorem with Theorem 2, we obtain a similar statement for
random permutations.

Corollary 1. There exists a constant c such that, if A is a quantum algorithm
making q queries to a random permutation Π : {0, 1}n → {0, 1}n and trying to
produce q + 1 valid input-output pairs, then A can only succeed with probability
at most: c q3

2n .

The term in Corollary 1 is simply the sum of the PRP-PRF distinguishing
advantage and the (q, q + 1) advantage. The former grows much faster with q,
but we will mostly use Corollary 1 with a single query, where both terms are
O (2−n).

2.6 Computing a Linear Function of a Quantum Oracle

In [19] Hosoyamada and Sasaki show that given access to a standard oracle
Of for a function f , it is possible to make a quantum query to Trunc(f(x)),
the truncation of the output f(x) to some bits, using only one quantum query
to f . We now extend this result, and show that it is possible to compute any
linear function of the output using only one quantum query. This is especially
important with the oracles we will be using, since they involve IVs that are
changed at each new quantum query.

The core observation in [19] is simple: the state |0〉 + |1〉 is invariant whether
we XOR a 0 or a 1 on it. Hence, before the query, in the output register, we can
set the qubits we want to drop to |0〉 + |1〉 and the qubits we want to keep to
|0〉. We will now extend this result, with the following lemma:

Lemma 2 (Computing a linear function of a quantum oracle). Let f :
{0, 1}n → {0, 1}m be a function, Of : |x〉 |y〉 �→ |x〉 |y ⊕ f(x)〉. Let g : {0, 1}m →
{0, 1}o be an F2-linear function. Then it is possible to construct the oracle Og◦f :
|x〉 |y〉 �→ |x〉 |y ⊕ (g ◦ f)(x)〉 using two queries to Og and a single query to Of .

Proof. Let Og be a quantum oracle that implements g, assume we are given the
quantum state |x〉 |y〉. We first add an ancilla register containing the uniform
superposition on m bits. We then have the state |x〉 |y〉

∑2m−1
z=0 |z〉 . Then, we

apply Og with register z as input and y as output, and we get

|x〉
2m−1
∑

z=0
|y ⊕ g(z)〉 |z〉 .

Then, we apply Of with register x as input and z as output. We get

|x〉
2m−1
∑

z=0
|y ⊕ g(z)〉 |z ⊕ f(x)〉 .
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Finally, we reapply Og with register z as input and y as output. We get

|x〉
2m−1
∑

z=0
|y ⊕ g(z) ⊕ g(z ⊕ f(x))〉 |z ⊕ f(x)〉 .

As g is linear, we have g(z) ⊕ g(z ⊕ f(x)) = g(f(x)). Hence, the state can be
rewritten as

|x〉 |y ⊕ g(f(x))〉
2m−1
∑

z=0
|z ⊕ f(x)〉 .

This state can then be simplified, as the z register contains the uniform super-
position over m bits, independently of the value of f(x), to

|x〉 |y ⊕ g(f(x))〉
2m−1
∑

z=0
|z〉 .

We can now remove the z register, as it is not entangled with the others, and
obtain the quantum state we wanted. ��

Remark 1. Lemma 2 can also be applied if the quantum oracle to f uses a group
law different from ⊕ to update its output register. In that case, g shall be a
linear function for the corresponding group law.

3 Offsets Don’t Work

In this section we start by recalling the superposition attacks on OCB from [21].
We will next present a first attempt to repair it, that consists of tweaking the
value of the offsets, along with a new original superposition attack that shows
that any offset-based variant can be broken using Simon’s algorithm.

3.1 Attack with Simon’s Algorithm on OCB

OCB2 [22] is one of the most influential authenticated modes. OCB3 is repre-
sented in Fig. 1, with Δi = gray(i) · EK(0n) (using a finite field multiplication)
and ΔIV

i = Δi ⊕ FK(IV ), with F a simple function of K and IV and gray(i)
the gray encoding of i.

OCB3 is classically proven secure if its underlying cipher is a strong PRP.

Simon’s Algorithm. Simon’s algorithm, proposed in [32] allows to solve effi-
ciently, with a complexity of O(n), the following problem when we are allowed
to ask superposition queries to F :

Given a Boolean function F on n bits and the promise that there exists s such
that, for any x �= y, F(x) = F(y) ⇐⇒ x = y ⊕ s, find s.

2 Three versions of OCB have been proposed. We focus here on the last one, OCB3,
while all three suffer from similar superposition attacks.
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Fig. 1. OCB3. (Mi) is the message, (Ai) is the associated data.

Simon’s algorithm recovers a vector orthogonal to the period with a single
quantum query; with O(n) queries, the period is deduced with linear algebra.
As shown in [21], a sufficient condition on F is that there exists no “unwanted
period” t �= s such that F(x ⊕ t) = F(x) holds with probability ≥ 1

2 . For
comparison, classically, the best algorithm requires Ω

(√
2n
)

queries.

Quantum Superposition Attacks on OCB. Two polynomial-time attacks
against OCB that require quantum superposition queries to the construction
were proposed in [21]. They both use Simon’s algorithm3.

The main weakness of OCB is that the nonce only influences the construction
through the value Δ, which is XORed to the internal state. The scenario of
the attack considers that the attacker has access to a superposition oracle that
given a superposition of messages as input, returns the superposition of their
encryption. The key is a secret value and the IV is different for each query.

The first attack considers an empty message, and two variable identical blocks
x of associated data. The output is then

EK(FK(IV )) ⊕ EK(x ⊕ Δ1) ⊕ EK(x ⊕ Δ2).

This function is periodic, of period Δ1 ⊕ Δ2. It is IV-dependent, but the period
is not. This allows to use Simon’s algorithm to recover the period.

The second attack uses the same idea, but attacks the encryption part and
not the authentication. Its core idea is to consider the XOR of two distinct
blocks i and j that encrypt the same message block. This is equal to fi,j(x) =
EK(ΔIV

i ⊕ x) ⊕ EK(ΔIV
j ⊕ x) ⊕ ΔIV

i ⊕ ΔIV
j .

This function is periodic, of period ΔIV
i ⊕ΔIV

j = (gray(i)⊕gray(j))·EK(0n).
We can then use Simon’s algorithm, and this time we need to use Lemma 2 to
compute the XOR of two blocks using only one query.

3 One attack on OCB presented in [21] was partial, as it assumed without any mention
the use of Lemma 2.
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Both attacks recover the difference of two offsets, which is sufficient to make
some forgeries. Note that in both cases, the existence of an unwanted period
t would imply a high-probability higher-order differential of EK , which would
result in a classical break.

3.2 A First (Failed) Attempt to Fix OCB

To protect a mode vulnerable to Simon’s algorithm, Alagic and Russell [2] pro-
posed to replace the XOR by modular addition. However, this merely increases
the attack complexity from polynomial to subexponential [14], which does not
give acceptable security levels for standard block sizes (e.g., 256 bits).

In order to make OCB quantum-resistant, we will rather try to avoid these
attacks entirely. Our first idea is to avoid having an IV-independent period, by
making the influence of EK(IV ) different for each block. For instance, Δi could
be changed to a multiple of EK(IV ): Δi = i · EK(IV ). (The multiplication is
still done in the finite field, like in OCB’s offsets). This way, the previous attack
could only recover one bit of EK(IV ) at a time, which is useless if the IV changes
for each query.

New Superposition Attack for Any Nonce-Based Solution. Actually, the
previous proposal is still unsafe, but it requires a new more advanced attack that
we present here. This evolved attack is inspired by the multiple-period attacks
from [12]. Its core idea is to leverage the possibility to encrypt a long message to
construct multiple copies of the periodic function, in such a way that one query
will likely be enough to recover all the bits of the period.

Let g be the function that maps the sequence (x1, x2, . . . , x2n−1, x2n) to (x1⊕
x2, x3 ⊕ x4, . . . , x2n−1 ⊕ x2n).

We consider the function

f(x1, . . . , xn) = g ◦ OCB(x1, x1, x2, x2, . . . , xn, xn)

Reusing the notation fi,j(x) = EK(Δi ⊕ x) ⊕ EK(Δj ⊕ x) ⊕ Δi ⊕ Δj , we have

f(x1, . . . , xn) = (f1,2(x1), f3,4(x2), . . . f2n−1,2n(xn))

This function is periodic, of period:

s = Δ1 ⊕Δ2, . . . , Δ2n−1 ⊕Δ2n = (1⊕2) ·EK(IV ), . . . , ((2n−1)⊕(2n)) ·EK(IV )

We can also bound the probability of unwanted collisions. If f admits an
unwanted period t with probability greater than 1

2 , then one of the fi,j would also
admit an unwanted period ti,j with probability greater than 1

2n . As before, this
is impossible if EK does not admit a high-probability higher-order differential.

Hence, Simon’s algorithm allows us to sample one vector orthogonal to each
of the periods of the involved fi,j . As these periods are linearly dependent, this
is enough to recover completely the value EK(IV ), assuming n is large enough.
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Conclusion. This attack shows that a solution based on offsets is unlikely to
work. After this failed attempt, we decided to move one step backwards. OCB
can be seen as an instantiation of the mode TAE or ΘCB, which is defined with a
Tweakable Block Cipher (TBC). The TBC used in OCB is the LRW mode [24],
which builds upon a block cipher, and is quantumly broken [21]. The attacks
that we gave all seem to stem from the TBC itself, not the mode.

4 Quantum-Secure Tweakable Block Ciphers

In this section, we define quantum-secure tweakable block ciphers (TBCs). We
give a TBC construction based on a block cipher in the ideal cipher model, which
we will recall below, and explicitly provide its security guarantees.

4.1 Definitions

Definition 2. Let E be a block cipher. Let A be an oracle algorithm (making
either classical or quantum queries depending on the case) which outputs a bit.
The advantage of A against the PRP and Strong PRP (SPRP) security of E is
defined as:

AdvPRP
E(∗)(A) :=

∣

∣

∣

∣

∣

∣

Pr
K

$←−{0,1}k

[AEK(∗) ⇒ 1] − Pr
Π

$←−Pn

[AΠ(∗) ⇒ 1]

∣

∣

∣

∣

∣

∣

AdvSPRP
E(∗) (A) :=

∣

∣

∣

∣

∣

∣

Pr
K

$←−{0,1}k

[AE±
K
(∗) ⇒ 1] − Pr

Π
$←−Pn

[AΠ±(∗) ⇒ 1]

∣

∣

∣

∣

∣

∣

Depending on the access that the adversary has (classical or quantum) to
the messages, we replace the ∗ symbol by · (classical) or � (quantum).

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space
{0, 1}k, tweak space {0, 1}t, and message space {0, 1}n is a map ˜E : {0, 1}k ×
{0, 1}t × {0, 1}n → {0, 1}n such that for every key K ∈ {0, 1}k and every tweak
T ∈ {0, 1}t, M �→ ˜E(K, T, M) is a permutation of {0, 1}n. We let ˜EK denote
the map (T, M) �→ ˜E(K, T, M). If ˜E is a TBC then its inverse is the map
˜E−1 : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n defined by ˜E−1(K, T, C) being the
unique M such that ˜E(K, T, M) = C. A tweakable permutation with tweak
space {0, 1}t and message space {0, 1}n is a map ˜Π : {0, 1}t × {0, 1}n → {0, 1}n

such that for every tweak T ∈ {0, 1}t, M �→ ˜Π(T, M) is a permutation of {0, 1}n.
We let ˜Pt,n denote the set of all tweakable permutations with tweak space {0, 1}t

and message space {0, 1}n.



680 R. Bhaumik et al.

Definition 3. Let A be an oracle algorithm making (classical or quantum)
queries and which outputs a bit. The advantage of A against the TPRP, resp.
strong TPRP (STPRP) security of ˜E is defined as

AdvTPRP
Ẽ(∗,∗)(A) :=

∣

∣

∣

∣

∣

∣

Pr
K

$←−{0,1}k

[AẼK(∗,∗) ⇒ 1] − Pr
Π̃

$←−P̃t,n

[AΠ̃(∗,∗) ⇒ 1]

∣

∣

∣

∣

∣

∣

AdvSTPRP
Ẽ(∗,∗) (A) :=

∣

∣

∣

∣

∣

∣

Pr
K

$←−{0,1}k

[AẼ±
K
(∗,∗) ⇒ 1] − Pr

Π̃
$←−P̃t,n

[AΠ̃±(∗,∗) ⇒ 1]

∣

∣

∣

∣

∣

∣

.

Depending on the access that the adversary has (classical or quantum) to
the messages and to the tweaks, we replace the ∗ symbols by · (classical) or �
(quantum).

The Modified (S)TPRP Game. In the proofs of this section, we consider an
adversary A playing a modified (S)TPRP game that consists of three phases:

• Pre-Declaration Phase: In the first phase, A declares a set of m tweaks
{T1, . . . , Tm}.

• Quantum Phase: In the second phase, A gets access to a standard oracle
implementing either ˜E(±)

K or ˜Π(±), and can make q1 quantum queries with
classical tweaks, subject to the restriction that the tweak is always chosen
from the set of pre-declared tweaks {T1, . . . , Tm}, then measures its final
state and outputs s0 classical bits;

• Classical Phase: In the final phase, A makes an additional q2 classical queries
to the oracle, this time with no restriction on the set of tweaks that can be
queried, such that the queries are deterministic functions of the s0 classical
bits output at the end of the previous phase.

Thus, the bounds that we will obtain will depend on the number of pre-declared
tweaks m, the number of quantum queries q1 made by A, the number of classical
bits s0 output at the end of the quantum phase, and the number of classical
queries q2 made by A. Note that in the quantum phase some of the pre-declared
tweaks may be used multiple times, and some can be ignored entirely. We use
the notation Adv(S)TPRP

Ẽ(·,�)
(A) for this restricted case.

TBCs from Block Ciphers. In this section, we will construct a TBC from
a block cipher, and prove security in the ideal cipher model. In the quantum
setting, this model was previously considered by Hosoyamada and Yasuda [20]
to analyze the Davies-Meyer and Merkle-Damgard constructions. This means
that the underlying block cipher E is chosen uniformly at random from the set
BCk,n of all block ciphers with key space {0, 1}k and message space {0, 1}n at the
beginning of the (S)TPRP distinguishing game and the adversary is allowed to
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make quantum queries to E± (specifying the key and the plaintext/ciphertext).
The advantage is then defined as

Adv(S)TPRP
Ẽ

(A) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr
K

$←−{0,1}k

E
$←−BCk,n

[AẼ
(±)
K

(∗,∗),E±
�(�) ⇒ 1] − Pr

Π̃
$←−P̃t,n

E
$←−BCk,n

[AΠ̃(±)(∗,∗),E±
�(�) ⇒ 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(Note that the adversary has access to E± even in the non-strong TPRP
definition.)

4.2 Impossibility Results

In order to illustrate the difficulties of building a quantum-secure TBC, even in
a weak sense, let us first consider a few examples.

LRW. The LRW mode [24] uses an almost 2-XOR universal hash function
family H and adds h ∈ H to the key:

˜EK,h(T, x) = EK(h(T ) ⊕ x) ⊕ h(T ).

An ε-almost 2-XOR universal hash function family H is such that for all
x, y, z with x �= y, the probability of h(x) ⊕ h(y) = z is small (less than ε) when
h is chosen at random. Classically, LRW is a strong TBC.

However, the LRW mode is not a quantum-secure TBC even if we allow only
classical queries to the tweaks. This was shown in [21], with an attack that is
close to the OCB attacks: by querying only two classical tweaks T0, T1, one can
build a function: f(x) = Ek(h(T0) ⊕ x) ⊕ h(T0) ⊕ Ek(h(T1) ⊕ x) ⊕ h(T1) which is
periodic, of period h(T0) ⊕ h(T1). Using Simon’s algorithm, we can recover the
period of this function in O (n) queries. This provides a powerful distinguisher,
as this property is extremely unlikely with random permutations. Note that this
distinguisher still applies for any function h, even if it is an unknown qPRF.

Key-Tweak Insertion. We will consider the key-tweak insertion TBC, built
from a block cipher E as: ˜EK(T, M) = EK⊕T (M). It admits a simple dis-
tinguisher based on Simon’s algorithm if the tweaks are queried in super-
position: this is the quantum related-key attack of [30]. Indeed, the function
f(�) = EK⊕�(0) ⊕ E�(0) admits K as a period, and so we can use Simon’s
algorithm again.

4.3 Proof of Security for the Key-Tweak Insertion TBC

Let ˜E±
K(T, x) = E±

K⊕T (x) denote the key-tweak insertion TBC. The following
proposition shows the STPRP security of this TBC in the ideal cipher model
against an adversary playing the modified STPRP game described earlier. We
give its proof in the full version of the paper [8].
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Proposition 1. Let A be an adversary who makes q1 quantum queries to an
oracle implementing ˜E±

K or ˜Π± with a pre-declared set of tweaks of size m, and
q′ queries to E±, followed by outputting s0 bits and making q2 classical queries
to the same oracle. Then:
∣

∣

∣

∣

∣

∣

Pr
K

$←−K
[AẼ±

K
(·,�),E±

�(�) ⇒ 1] − Pr
{ΠT } $←−Pn

[AΠ±(·,�),E±
�(�) ⇒ 1]

∣

∣

∣

∣

∣

∣

≤ 8
√

mq′2

2k
+
√

q2s0
2 · 2k

.

Notice that the above bound depends on m but not on q1 which is remi-
niscent of the classical security bound of this TBC (see [5], Theorem 6.3 and
Corollary 6.5) that depends on the number of different tweaks used and not on
the number of queries to ˜E±.4

We do not explicit how this set of tweaks is determined. It could for example
be chosen by the adversary. In that case of course we should not allow him to
have a complete control over the size of this set, i.e., the choice of m, or else he
could choose m extremely large which would make the above bound useless.

This proposition implies the security when the adversary queries non-
adaptive tweaks (so they are predetermined from the start) in which case m = q1,
but also allows some adaptivity from a predefined set of tweaks for which we can
control the size.

When proving the quantum security of QCB in Sect. 6, we will use the above
proposition, but we will be able to control the value of m which will not be
significantly larger than q1.

4.4 Other Directions
Quantum-secure TBCs have been independently considered by Hosoyamada and
Iwata in [18]. They used a stronger notion of security where tweaks can be queried
in superposition, and showed how to construct such a TBC from a block cipher.
Their TBC (LRWQ) does not use the ideal cipher model, and only requires the
block cipher to be secure as a qPRP. However, they use three block cipher calls
for each TBC call, one to process the tweak, and two for the plaintext (before
and after XORing the encrypted tweak). Thus, this construction cannot achieve
the efficiency that we target. Note that they bound the adversary’s advantage,
after q queries, by O(

√

q6/2n), compared to a classical O(
√

q2/2n) (assuming
respectively that the cipher behaves as a qPRP, and a PRP).

5 Definition of QCB
In this section, we describe the QCB mode, an AEAD based on a Tweakable
Block Cipher. It is similar to the TAE mode [23,24] and to ΘCB [22,29]. Through-
out this section, ˜EK,t will denote a TBC used with key K and tweak t, of block
4 Theorem 6.3 in [5] is about related-key attacks, but this implies a corresponding

result for the key-tweak insertion TBC, see Theorem 7.1 of the same paper.
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Algorithm 1. QCB
Input: message M , associated data A, IV , key K
Requirements: Initialization vectors should not be reused
Output: ciphertext C, tag T

1: Pad the initialization vector if necessary
2: Split M into full blocks M0, M1, . . . M� and a final block M∗ (partial or

empty)
3: Split A into A0, A1, . . . Aj , A∗
4: for all i = 0 to � do
5: Ci ← ˜EK,(0,IV,i)(Mi) � Encryption of block i
6: end for
7: C∗ ← ˜EK,(1,IV,�)(pad(M∗)) � Encryption of the final block
8: T ← 0
9: for all i = 0 to j do

10: T ← T ⊕ ˜EK,(2,IV,i)(Ai) � Absorb AD block i
11: end for
12: T ← T ⊕ ˜EK,(3,IV,j)(pad(A∗)) � Absorb the final AD block
13: T ← T ⊕ ˜EK,(4,IV,�) (M0 ⊕ . . . ⊕ M� ⊕ pad(M∗))
14: return C = (C0‖C1‖ . . . ‖C�‖C∗), T

size n. We separate the tweak space in a cartesian product: T = D × IV × L.
Thus, tweaks are triples (D, IV, j) where D is a domain separator, IV will be
an IV, and j will be a block index. Only 5 values of domain separator need to
be used.

The mode is defined in Algorithm 1 and represented in Fig. 2 and Fig. 3.
When the message and AD are cut in blocks, the last block (M∗ and a∗ respec-
tively) may be empty. We define the padding scheme pad(M∗) as appending 10∗
(a 1 followed by as many zeroes as necessary to fill the block). Note that due to
the padding and structure of QCB, the ciphertext C is always longer than the
plaintext M (by n bits at most).

Fig. 2. QCB, encryption.
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Fig. 3. QCB, processing of the associated data and computation of the tag.

Avoiding Quantum Attacks. It is important to include the IV in the tweak
when processing the AD. Otherwise, there is a quantum forgery attack based
on Deutsch’s algorithm [13]. In Sect. 6, we will prove that QCB is secure assum-
ing a weak quantum-secure TBC. We will use the following property, which
follows from its definition.

Proposition 2 (Number of tweaks (informal)). For a given IV , there
exists a set of tweaks T (IV ) of size |T (IV )| = 5(� + 1) such that any QCB
query comprised of at most �n (included) bits of AD and �n bits of message can
only reach tweaks in the set T (IV ).

Proof. The tweaks are of the form (d, IV, i) where i is a block number between
0 and � (included) and d a domain separator that takes 5 values. ��

Instantiation with Saturnin: Saturnin-QCB. We propose to instantiate QCB
with the block cipher Saturnin [15], a second-round candidate of the NIST
LWC process [27]. Saturnin has 256-bit blocks and keys. In addition, the
cipher admits a domain separator D of 4 bits. The other modes of opera-
tion of the Saturnin submission use values from 0 to 8 included, so we use
D = 9, 10, 11, 12 and 13 in Algorithm 1. More precisely, the authors of [15]
define a variant of Saturnin with 16 Super-rounds aiming at an increased
security margin in the related-key scenario, denoted Saturnin16. We define:
˜Ek,(D,IV,i)(x) = SaturninD

16(k ⊕ (IV ||i), x), where we use the key-tweak inser-
tion construction of Sect. 4 to turn SaturninD

16 into a TBC with 256-bit tweaks.
The IV and the block number are simply concatenated. We use IVs of at most
160 bits and authorize up to 295 blocks of data. This construction motivates
further inquiry of related-key attacks, as it needs Saturnin16 to be related-key
secure.

Instantiation with a Dedicated TBC: TRAX-QCB. Block ciphers of 256 bits
seem more convenient for post-quantum security. However, they are relatively
rare (for example, Saturnin is the only such one in the LWC standardization
process). Fortunately, it is possible to instantiate QCB with a dedicated TBC
with 256-bit blocks, the TRAX-L-17 cipher of [4]. It has smaller tweaks of 128
bits, contrary to the key-tweak-insertion TBC with Saturnin, but it has the
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advantage of being a dedicated design, with possibly a better security than the
tight bound for the key-tweak-insertion. 128 bits allow to fit the 3 bits required
for domain separation, 80 bits of IV and 45 bits of block numbering. Thus we
can encrypt at most 245 − 1 blocks of plaintext and AD.

6 Security of QCB

We show that, if the underlying TBC is secure under classical tweak queries:

• QCB is IND-qCPA secure (Sect. 6.2): an adversary making quantum encryp-
tion queries cannot distinguish between the encryptions of two classical chal-
lenge messages;

• QCB is BZ-unforgeable (Sect. 6.3): an adversary making q quantum encryp-
tion queries cannot output q + 1 valid IV/AD/ciphertext/tag quadruples.

We discuss other possible (and impossible) security definitions in Sect. 7.

6.1 Definitions

In all our definitions, the adversary makes q superposition queries with distinct
pre-declared IVs. The messages and ADs both have a maximal length of � com-
plete blocks, but the exact length of queries can be chosen adaptively. We will
bound the advantage depending only on q and �. We will use superscripts for
separate queries, and subscripts for individual blocks within a query.

IND-qCPA. First of all, we recall the definition of the IND-qCPA security game
from [11]. In [11], each call to the encryption oracle contains randomness. We
extend slightly this definition by making the adversary capable of choosing his
IVs. However, we request this choice to be non-adaptive. Thus, the adversary
specifies at the start of the game the sequence of IVs that she is going to use.

IND-qCPA game

Key generation: K
$← K, b

$← {0, 1}.
Initialization: A sends to the challenger a sequence of distinct IVs:

(IV 1, . . . , IV q), one for each subsequent query.

A can perform q − 1 encryption queries and one challenge query (at the
very end or somewhere in between). For the kth query, the current IV
is IV k.

Encryption queries: A chooses a message and AD pair (M, A), the
encryption oracle encrypts (IV, M, A) with the current IV and returns
the output (C, T ) to A. Queries can be in superposition.
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Challenge query: A chooses two classical message/AD pairs (M0, A0),
(M1, A1) of the same length and sends them to the challenger. The
challenger encrypts (IV, M b, Ab) with the current IV and returns the
output (Cb, T b).

Guess: A outputs a bit b′ and wins if b = b′.

For each query, the message and AD length are chosen between 0 and
�n bits for a fixed � (superposed messages must have the same length).

The IND-qCPA advantage of an adversary A against an AEAD E is:

AdvIND-qCPA
E (A) =

∣

∣

∣

∣
Pr [A succeeds] − 1

2

∣

∣

∣

∣
.

BZ. We define our “Boneh-Zhandry” (BZ) unforgeability game, which is analo-
gous to the definition of unforgeability for MACs of [10].

BZ game

Key generation: K
$← K.

Initialization: A sends to the challenger a sequence of distinct IVs:
(IV 1, . . . , IV q), one for each subsequent query.

Encryption queries: A chooses a message and AD pair (M, A), the
encryption oracle encrypts (IV, M, A) with the current IV and returns
the output (C, T ) to A. Queries can be in superposition.

Forgeries: A produces q+1 quadruples (A, IV, C, T ) with any IVs of her
choice and succeeds if all these quadruples are valid, that is, for each
quadruple, there exists an M such that the encryption of (IV, M, A)
is (C, T ).

Note that verifying the forgery attempts requires additional queries. Since
we assumed a limit on the message and AD lengths of � blocks at most, we will
also impose this limit on the forgery attempts of the adversary.

In practice, IVs are often either specified by a counter or chosen at random.
We argue here that our security definitions are stronger than these 2 scenarios:

• If the challenger chooses at random IV i for each encryption query. Then, he
could as well generate all the possible IV 1, . . . , IV q from the start. In our
model, an adversary can generate IV 1, . . . , IV q at random and send them to
the challenger. The security is the same as before except that the adversary
knows the different IVs. This can only help the adversary so being secure in
our model implies security in the model where the IVs are chosen at random
by the challenger.
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• If the IVs are determined by a counter controlled by the challenger. The
adversary can decide when he starts the attack and even assume he has control
over the first IV which we call IV1, then the set of IVs will be {IV1, IV1 +
1, . . . , IV1 + (q − 1)}. In our model, an adversary can do that by declaring
this set so again, our model is stronger5.

In the IND-qCPA and BZ definitions above, the adversary chooses a sequence
of distinct IVs: (IV 1, . . . , IV q). When proving the security of QCB with oracle
access to a tweakable block cipher ˜E, this immediately implies that the set T of
possible tweaks to ˜E is T = ∪q

i=1T (IV i) hence |T | ≤ 5(� + 1)q where � is the
maximal block length of encryption queries. This control on the size of T allows
us to use Proposition 1 in a meaningful way.

6.2 IND-qCPA Security

Theorem 4. Let QCB[ ˜E] denote the QCB function with oracle access to the
tweakable blockcipher ˜E. We consider adversaries making q queries of block
length ≤ � to QCB[ ˜E], then we have:

AdvInd-qCPA
QCB[Ẽ]

(A) ≤ AdvTPRP
Ẽ(·,�)(5(� + 1)q), (1)

where the right-hand term is the maximal advantage over all adversaries querying
˜E(·, �) with at most 5(� + 1)q pre-declared tweaks.

Proof. Suppose A is an adversary trying to break the IND-qCPA security
of QCB[ ˜E]. A performs q encryption or challenge queries of maximum block
length � (the exact bit length of the queries can be chosen freely in the range
0, . . . , n�). Consider the query number i made to QCB (encryption or challenge).
From Proposition 2, in this query, the tweakable block cipher ˜E is queried with
tweaks in the set T (IV i) having a fixed size |T (IV i)| = 5(� + 1).

We can therefore see A as an algorithm performing at most q(2� + 3) queries
to ˜E, with each tweak lying in the fixed set T = ∪q

i=1T (IV i) with |T | ≤ 5q(�+1)
(each query contains at most � message and AD blocks, padding blocks and a
final checksum block). If we replace ˜E with ˜Π for a random ˜Π, we get:

∣

∣

∣

∣
AdvInd-qCPA

QCB[Ẽ]
(A) − AdvInd-qCPA

QCB[Π̃]
(A)
∣

∣

∣

∣
≤ AdvTPRP

Ẽ(·,�)(5(� + 1)q). (2)

Finally, consider an adversary A playing an IND-qCPA game with QCB[ ˜Π].
Recall that in the challenge phase, A picks two classical plaintext/AD pairs
(M0, A0) and (M1, A1) of the same length, after which the challenger picks a
5 There is only one case in which the use of a counter may enable an adversary to

choose his IVs adaptively: he may wait for the counter to increase in order to reach a
wanted IV. But the IV increases only when a message is encrypted so waiting for an
IV increase should be essentially considered as costly as performing a query, which
implies that the IVs that will be used will be in {IV1, . . . , IV1 + (q − 1)} .
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random bit b and gives (Cb, T b)—the encryption (and tag) of (M b, Ab)—to A.
Since the tweaks used for computing this encryption are all different from all the
tweaks used during the query phase, and since ˜Π is an ideal tweakable random
permutation, the distribution of (Cb, T b) is independent of the distribution of
the responses received by A during the query phase. Since b is a random bit, if
b′ is the bit output by A, the probability that b = b′ is always 1/2. Furthermore,
this holds irrespective of the choice of A. Thus,

AdvInd-qCPA
QCB[Π̃]

(A) = 0. (3)

Our result follows directly by putting this equality into Eq. 2. ��

Theorem 4 is the only result required if we use a dedicated TBC. If we want
to use a block cipher, we can replace ˜E by the key-tweak insertion TBC of Sect. 4.
The security will then hold in the ideal cipher model. We use Proposition 1 in
the special case where s0 = 0 (in the reduction, there is no second phase of
classical queries).

Corollary 2. In the case of the key-tweak insertion TBC of Sect. 4, we consider
adversaries making also q′ queries to E± and we have:

AdvInd-qCPA
QCB[Ẽ]

(A) ≤ AdvTPRP
Ẽ(·,�),E�(�)(5(� + 1)q, q′) ≤ 8

√

5(� + 1)qq′2

2n
. (4)

6.3 Unforgeability

Now, we prove that QCB is BZ-unforgeable. Again, the first statement holds in
the standard model, the second in the ideal cipher model.

Theorem 5. Let A be an adversary making q superposition queries to QCB, of
maximally � blocks each (message and AD), and q′ queries to E. Let A succeed
if it outputs q + 1 valid quadruples (A, IV, C, T ). Then the success probability of
A is upper bounded as:

Pr [A succeeds] ≤ AdvSTPRP
Ẽ±(·,�)(B) + 3 + c

2n
,

where c is the constant from Corollary 1 and B an adversary playing the
modified STPRP game against ˜E±, who uses at most 5q� pre-declared tweaks,
makes at most q� queries in the quantum phase, saves at most (q + 1)(2� + 4)n
classical bits to carry on to the next phase, and makes at most (q + 1)(2� + 2)
queries in the classical phase.

In the case of the key-tweak insertion TBC of Sect. 4, we consider adversaries
making also q′ queries to E± and we have:

Pr [A succeeds] ≤ 8
√

5�qq′2

2n
+ 3
√

�2nq2

2n
.
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Proof. Let G0 be the original BZ game in which A interacts with QCB, instan-
tiated with the TBC ˜E and a randomly selected key k. Let G1 be the game
in which ˜E is replaced by a family of independent random permutations Πt for
all tweaks t. We first show the following lemma, where B is as described in the
theorem statement.

Lemma 3. PrG0 [A succeeds] ≤ PrG1 [A succeeds] + AdvSTPRP
Ẽ±(·,�)(B).

Proof. The proof of this lemma is similar, but not equivalent to the proof of
Theorem 4. In G0, A performs q encryption queries of block length at most �.
Consider the ith query. From Proposition 2, in this query, the tweakable block
cipher ˜E is queried with tweaks in the set T (IV i) having a fixed size |T (IV i)| =
5(� + 1).

We can therefore use A to create a strong TPRP adversary B for our modified
game. B first declares the tweak-set T = ∪q

i=1T (IV i) with |T | ≤ 5q(� + 1), and
then runs A, performing at most q� queries to ˜E, with each tweak lying in T . A
outputs q+1 quadruples, which B stores in s0 classical bits; since each quadruple
has at most 2� + 4 n-bit blocks (� + 1 each for A and C, one each for IV and T ),
s0 ≤ (q +1)(2�+4)n. Finally, the validity of these quadruples is checked using q2
non-adaptive classical queries to the TBC (decryption attempts); each quadruple
needs at most 2� + 2 TBC calls to verify (� + 1 each for A and C), so q2 ≤
(q + 1)(2� + 2).

If we replace ˜E with ˜Π for a random ˜Π, we go from G0 to G1. We therefore
have

Pr
G0

[A succeeds] ≤ Pr
G1

[A succeeds] + AdvSTPRP
Ẽ±(·,�)(B). �

Our goal is now to bound PrG1 [A succeeds]. We run A. Let I = {IV ′i |
1 ≤ i ≤ q} be the q declared IVs that A uses during its encryption queries. Let
also S = {(Ai, IV i, Ci, T i) | 1 ≤ i ≤ q + 1} denote the forge-set, i.e., the q + 1
quadruples in A’s output. Finally, let [[·]] denote block-length. We define the
following disjoint bad events which correspond to A winning the game:

• bad-a: For some i, IV i �∈ I.
• bad-b: For some i, k �= i, IV i = IV k ∈ I, and [[Ci]] �= [[Ck]]
• bad-c: For some i, k �= i, IV i = IV k ∈ I, [[Ci]] = [[Ck]], and [[Ai]] �= [[Ak]].
• bad-d: For some i, k �= i, IV i = IV k ∈ I, [[Ci]] = [[Ck]], and [[Ai]] = [[Ak]].

A succeeds in G1 when the q + 1 quadruples she outputs are valid. As the
q+1 outputs shall be distinct and |I| = q, this implies that one of the bad events
has occurred. We therefore have

Pr
G1

[A succeeds] ≤ Pr
G1

[bad-a] + Pr
G1

[bad-b] + Pr
G1

[bad-c] + Pr
G1

[bad-d] . (5)
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We bound separately the probability of each bad event in order to con-
clude. For a quadruple (A, IV, C, T ), with A = (A0, . . . , Aj , pad(A∗)) and C =
(C1, . . . , C�, pad(C∗)), we define Mi := Π−1

(0,IV,i)(Ci), pad(M∗) := Π−1
(1,IV,�)(C∗)

and MCS := pad(M∗) ⊕
(
⊕�

i=0 Mi

)

. If the quadruple (A, IV, C, T ) is valid in
game G1, this gives us

Π(4,IV,�)(MCS) ⊕ Π(3,IV,j)(pad(A∗)) ⊕
(

j
⊕

i=0
Π(2,IV,i)(Ai)

)

= T. (6)

From there, we have for each i ∈ {0, . . . , �}

Mi = Π−1
(4,IV,�)

(

T ⊕ Π(3,IV,j)(pad(A∗)) ⊕
(

j
⊕

i=0
Π(2,IV,i)(Ai)

))

⊕pad(M∗) ⊕

⎛

⎝

⊕

k 
=i

Mk

⎞

⎠ . (7)

This means that from a valid quadruple (A, IV, C, T ), we can reconstruct
each Mi = Π−1

(0,IV,i)(Ci) without any query to Π0,IV,i or Π−1
0,IV,i (but with access

to other Πt and Π−1
t , in particular to compute pad(M∗) and the Mk for k �= i).

Similarly, for each i ∈ {0, . . . , j}, we have

Π(2,IV,i)(Ai) = T ⊕Π(4,IV,�)(MCS)⊕Π(3,IV,j)(pad(A∗))⊕

⎛

⎝

⊕

k 
=i

Π(2,IV,k)(Ak)

⎞

⎠ .

(8)
This means that for a valid quadruple (A, IV, C, T ), we can reconstruct each

Π(2,IV,i)(Ai) without any query to Π(2,IV,i) or Π−1
(2,IV,i) (but with access to other

Πt and Π−1
t ).

With these 2 constructions in mind, we can bound the probability of each
bad event with the following lemmas.

Lemma 4.

Pr
G1

[bad-a] ≤ 1
2n

.

Proof. Assume A outputs a quadruple (Ai, IV i, Ci, T i) with IV i /∈ I. Since IV i /∈
I, the permutations Π0,IV i,0 and Π−1

0,IV i,0 have not been queried to compute the
quadruple. From the above discussion, if the quadruple is valid, we know how to
construct a valid input/output pair (M i

0, Π(0,IV i,0)(M i
0) = Ci

0) without any calls
to Π0,IV i,0 or Π−1

0,IV i,0. Because Π0,IV i,0 is a uniformly random permutation and
independent from the others, this happens with probability 1

2n . �
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Lemma 5.

Pr
G1

[bad-b] ≤ 1
2n

.

Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, and [[Ci]] �= [[Ck]]. Without loss of generality, we
assume that there exists u such that IV i = IV ′u, and �i = [[Ci]] is different
from the output block length �′u of query number u (which is a fixed value of
the query). This property must be true for i or for k. If the adversary succeeds,
the quadruple (Ai, IV i, Ci, T i) must be valid even though the function Π4,IV i,�i

has never been queried. Let ji = [[Ai]]. From (Ai, IV i, Ci, T i), we define M i
v :=

Π−1
(0,IV i,v)(C

i
v), pad(M i

∗) := Π−1
(1,IV i,�i)(C

i
∗) and M i

CS := pad(M i
∗)⊕

(
⊕�i

u=0 M i
u

)

.
If the quadruple (Ai, IV i, Ci, T i) is valid, we have

Π4,IV i,�i(M i
CS) = T i ⊕ Π(3,IV i,ji)(pad(Ai

∗)) ⊕

⎛

⎝

ji

⊕

v=0
Π(2,IV i,v)(Ai

j)

⎞

⎠ .

This means we can construct a pair (M i
CS , Π4,IV i,�i(M i

CS)) without any calls
to Π4,IV i,�i or Π−1

4,IV i,�i . Since Π4,IV i,�i is a uniformly random permutation and
independent from the others, this happens with probability 1

2n . �

Lemma 6.

Pr
G1

[bad-c] ≤ 1
2n

.

Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, [[Ci]] = [[Ck]] and [[Ai]] �= [[Ak]]. Without loss of
generality, we assume that there exists u such that IV i = IV ′u, and ji = [[Ai]]
is different from the AD block length j′u queried in query u. (This happens
either for index i or index k). We focus on this quadruple (Ai, IV i, Ci, T i) for
which Π3,IV i,ji has never been queried. We let �i = [[Ci]]. we define M i

u :=
Π−1

(0,IV i,u)(C
i
u), pad(M i

∗) := Π−1
(1,IV i,�i)(C

i
∗) and M i

CS := pad(M i
∗)⊕

(
⊕�i

u=0 M i
u

)

.
If the quadruple is valid, we have

Π(3,IV,ji)(pad(Ai
∗)) = T i ⊕ Π4,IV i,�i(M i

CS) ⊕

⎛

⎝

ji

⊕

u=0
Π(2,IV i,u)(Ai

u)

⎞

⎠ .

This means we can construct a pair (pad(Ai
∗), Π(3,IV i,ji)(pad(Ai

∗))) without any
calls to Π(3,IV i,ji) or its inverse. Since it is a uniformly random permutation and
independent from the others, this happens with probability 1

2n . �

Lemma 7. Let c be the constant of Corollary 1, we have

Pr
G1

[bad-d] ≤ c

2n
.
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Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, [[Ci]] = [[Ck]] := � and [[Ai]] = [[Ak]] := j. This
means we can write Ci = (C1

0 , . . . , Ci
�, Ci

∗), Ai = (Ai
0, . . . , Ai

j , pad(Ai
∗)) and

similarly for Ck, Ak. Assume the 2 quadruples are valid, we distinguish 2 cases:
• ∃u, Ci

u �= Ck
u . According to the construction following Eq. 7, we can con-

struct two different input/output pairs (M i
u, Π0,IV i,u(M i

u) = Ci
u) and

(Mk
u , Π0,IV i,u(Mk

u ) = Ck
u) without additional queries to Π±

0,IV i,u. However,
there has been only 1 call to Π0,IV i,u during the game (since each IV in the
challenge queries is different). Therefore, we have from Corollary 1 that this
can happen with probability at most c

2n .
• ∃u, Ai

u �= Ak
u. From the construction following Eq. 7, we can construct two

different input/output pairs (Ai
u, Π2,IV i,u(Ai

u)) and (Ak
u, Π2,IV i,u(Ak

u)) with-
out additional queries to Π±

2,IV i,u. We conclude using a similar argument as
above.

In order to conclude, notice that we have to be in one of the 2 cases above if the
2 quadruples are valid, otherwise they are equal. �

The first assertion of the theorem follows from Eq. 5 and Lemmas 3–7. For the
second assertion specific to the key-tweak insertion TBC, we use the following
additional lemma to bound AdvSTPRP

Ẽ±(·,�)(B).

Lemma 8. When B plays the modified STPRP game against the key-tweak
insertion TBC of Sect. 4 and makes an additional q′ queries to E±,

AdvSTPRP
Ẽ±(·,�)(B) ≤ 8

√

5�qq′2

2n
+ 3
√

�2nq2

2n
.

Proof. From Proposition 1 and the definition of AdvSTPRP
Ẽ±(·,�)(B), we have

AdvSTPRP
Ẽ±(·,�)(B) ≤ 8

√

mq′2

2k
+
√

q2s0
2 · 2k

,

where m, q1, s0, q2 are defined as in Proposition 1. From the description of B in
the theorem statement, we can plug in the bounds

m ≤ 5q�, q1 ≤ q�,

s0 ≤ (q + 1)(2� + 4)n, q2 ≤ (q + 1)(2� + 2),
and put k = n to get

AdvSTPRP
Ẽ±(·,�)(B) ≤

√

5�qq′2

2k
+
√

2(q + 1)2(� + 1)(� + 2)n
2n

.

Finally to obtain the bound in the lemma we apply the simplification
2(q + 1)2(� + 1)(� + 2) ≤ 9q2�2

which holds for any reasonable choice of q and � (for instance, q ≥ 2, � ≥ 2 and
q + � ≥ 6). ��

Substituting the bound from Lemma 8 in the first inequality of the theorem
yields the second inequality, thus completing the proof. ��
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7 Discussion on Security Notions

In this section, we take a broader viewpoint at suitable notions of quantum
security for a combined AEAD mode. In particular, we show an attack that
breaks the qIND-qCPA notion [17,25] for all online modes (hence all practical
AEAD modes). We also discuss the definition of blind unforgeability from [1].

7.1 The qIND-qCPA Notion and Attacking All Online Modes
It is well-known that for any mode of encryption that XORs a keystream to
the message, IND-CPA security implies IND-qCPA. In other words, a quantum
adversary does not benefit from having superposition query access. This comes
from the malleability of such a mode.
Lemma 9 ([3], informal). Define an encryption mode as EK(M ; IV ) = M ⊕
f(K, IV ) where IV is a randomly chosen IV and f is any function. If EK is
IND-CPA, then it is also IND-qCPA.
Informal. Given a quantum adversary B that attacks the IND-qCPA security
notion, we can construct a (quantum) adversary A that attacks the IND-CPA
security of the mode. A simulates B. When B wants a quantum query, A queries
EK(0; IV ) and XORs this value on the input register of B. ��

However, such a mode also admits a well-known quantum distinguishing
attack using a single superposition query. This attack applies regardless of the
function f chosen, and in particular if f is a random oracle (the one-time pad).

The qIND-qCPA Notion. In [17], Chevalier, Ebrahimi and Vu propose the
“qIND-qCPA” security game where an adversary must distinguish between a
quantum oracle for EK(M ; IV ) = M ⊕ f(K, IV ) (with IV selected uniformly
at random at each new query) and a random oracle. They use Zhandry’s record-
ing technique [34] in the latter case. They also show that certain modes like
CFB, OFB and CTR are insecure under this notion. By design, the qIND-qCPA
security notion makes the one-time pad attack valid.

We can extend the one-time pad distinguisher in order to attack not only
keystream-based modes like CTR, but all “online” modes. By “online” mode, we
mean a mode of encryption in which the plaintext blocks are read and encrypted
in sequence, so that the first ciphertext block C0 depends only on the first
plaintext block M0, the second ciphertext block C1 depends only on M0, M1,
etc.. In fact, it is enough to have one bit of the complete ciphertext, say the
last one, independent from one bit of the complete plaintext, say the first one.
For the sake of simplicity, we consider messages of a fixed size (since we make a
single query anyway). Note that a similar result was proposed in [16].
Lemma 10. Let EK(M ; IV ) be an encryption function of messages of length
m, where the first ciphertext bit is independent of the last plaintext bit. Then
there exists a quantum adversary AO making a single query to its oracle O and
distinguishing EK(M ; IV ) (“real world”) from a random family of permutations
ΠK,IV (M) (“random world”) with probability of success 3

4 ≥ 1
2 .
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Proof. Our distinguisher is based on Deutsch-Jozsa’s algorithm and on the post-
processing of quantum oracles of Lemma 2. The adversary fixes all the bits of
M except the last one to an arbitrary value, say 0, and puts |0〉 + |1〉 in the last
bit. She queries the oracle and truncates the output to its first bit. Her state
becomes: |0〉 |f(0)〉 + |1〉 |f(1)〉, where f is the first ciphertext bit as a function
of the last plaintext bit (after the other bits have been fixed). She then uses
Deutsch-Josza’s algorithm to determine whether f is constant or non-constant.
If f is constant, she decides that this is the real world and otherwise, the random
world.

• In the random world (O = ΠK,IV (M)), this f should remain a random
function. Thus the outputs are equal only with probability 1

2 : the guess is correct
with probability 1

2 . • In the real world, f is always constant. The guess is always
correct.

Overall, the adversary is correct with probability 1
2
(

1 + 1
2
)

= 3
4 . Using a full

block instead of a mere bit makes the success probability exponentially close to
1 with a single query, as in the one-time pad attack. ��

A consequence of this attack is that, while the qIND-qCPA definition seems
nontrivial, it cannot be achieved by an online mode, including e.g. CBC or our
proposal QCB. If we require the adversary to distinguish the mode from an
ideal online mode, instead of a random permutation, our attack should not be
applicable anymore. However, the definition and proofs of security may be far
more involved, and we leave further exploration of this topic as an open problem.

7.2 Unforgeability for a Combined AEAD Mode

The Blind Unforgeability notion was introduced in [1] as a replacement for BZ-
unforgeability for MACs. In [1], the authors prove that it is possible to create a
BZ-secure MAC scheme (given by a pair MacK , VerK) such that, after having
made q superposition queries to some subset of the message space, one can forge
the MAC of another message outside this space.

Note that the example given in [1] is very technical, and relies heavily on the
fact that the MAC treats differently different subsets of its input. This is usually
not the case for practical constructions (including QCB).

Blind-unforgeability (BU) is a stronger security notion defined with the fol-
lowing game: the adversary is given access to a blinded version of MacK , that
returns ⊥ on some fraction ε of the message space. To win, the adversary has to
output a valid forgery in this space. In the game, the uniform random blinding
Bε is created by putting every message of the message space with probability ε.
Alternatively, the adversary could choose her own blinding, but this is equivalent
for inverse-polynomial values of ε: in [1] (Theorem 2) the authors prove that an
adversary capable of outputting a “good” forgery will still do so even if the MAC
has been blinded.
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BU game
Setup: the adversary selects a parameter ε < 1. The challenger picks

a random key K, a random blinding Bε which is a fraction of the
message space M of size ε.

Forgery: the adversary produces a pair (M, T ) and wins if M ∈ Bε and
VerK(M, T ) = �.

MAC queries: the adversary queries the “blinded” MAC:

M �→
{

⊥ if M ∈ Bε,

MacK(M) otherwise.
(9)

The following result, together with the example given in [1], shows that BU-
unforgeability is a strictly stronger notion than BZ-unforgeability for a MAC.

Theorem 6 ([1], Theorem 1). Any BU-unforgeable MAC is BZ-unforgeable.

This notion is adapted for a standalone MAC. In our case, we consider a
combined AEAD mode, and we would need to adapt the definition. We can
propose, for example, to blind the message space. We select a subset Bε of
message, AD and IVs (possibly the same pairs of AD and message for all IVs,
or selected differently for each one). We give the adversary access to an oracle
that encrypts (IV, A, M) if it does not belong to Bε and otherwise, returns ⊥.
The adversary then succeeds if she outputs a valid quadruple (A, IV, C, T ) whose
corresponding message M is such that (IV, A, M) ∈ Bε.

The main difference with the original BU definition is that the condition
of success relies on the message M , which is not necessarily an output of the
forgery (the adversary can forge on an unknown message M). Despite that, we
conjecture that this definition is non-trivial and that it might be proven for QCB.
This proof would likely be more technical than our original one, and we leave it
as an open problem.

8 Conclusion

In this paper, we designed the first AEAD of rate one with quantum security
guarantees. With a definition similar to TAE and OCB, our proposal, QCB,
retains high security guarantees as soon as it is used with a quantum-secure
tweakable block cipher. We explicited this security requirement and proposed a
construction based on a block cipher, in the ideal cipher model: the key-tweak
insertion of Sect. 4.

In the classical setting, the LRW construction provides a TBC of rate one
(one block cipher call per TBC call) from a PRP assumption. Ours requires
related-key security for the underlying block cipher. Although we do not rule
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out the possibility of a rate-one TBC without related-key security, the LRW
approach does not seem applicable.

Thus, an interesting open question is whether it is possible to build a post-
quantum AEAD of rate one from a block cipher, with a qPRP assumption only.
It may be possible to obtain directly the security without relying explicitly on a
secure TBC, though this was the subject of our first attempt, which failed due
to a new attack on OCB with a single query.

In our security proofs, we used the IND-qCPA and BZ security notions for
indistinguishability and unforgeability. We note that other security definitions
have been proposed in the more recent literature and seem worth investigating.
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