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This book is dedicated to

Sir Syed Ahmad Khan
(October 17, 1817–March 27, 1898)

Sir Syed Ahmad Khan, one of the architects of
modern India, was born on October 17, 1817,
in Delhi and started his career as a civil
servant.
The 1857 revolt was one of the turning points
in Syed Ahmed’s life. He clearly foresaw the
imperative need for the Muslims to acquire
proficiency in the English language and
modern sciences, if the community were to
maintain its social and political clout,
particularly in Northern India.



He was one of those early pioneers who
recognized the critical role of education in the
empowerment of the poor and backward
Muslim community. In more than one way, Sir
Syed was one of the greatest social reformers
and a great national builder of modern India.
He began to prepare the road map for the
formation of a Muslim University by starting
various schools. He instituted Scientific
Society in 1863 to instil a scientific
temperament into the Muslims and to make
the Western knowledge available to Indians in
their own language.
The Aligarh Institute Gazette, an organ of the
Scientific Society, was launched in March
1866 and succeeded in agitating the minds in
the traditional Muslim society. Anyone with a
poor level of commitment would have backed
off in the face of strong opposition but Sir
Syed responded by bringing out another
journal, Tehzibul Akhlaq which was rightly
named in English as “Mohammedan Social
Reformer.”
In 1875, Sir Syed founded the Madarsatul
Uloom in Aligarh and patterned the MAO
College after Oxford and Cambridge
universities that he went on a trip to London.
His objective was to build a college in line
with the British education system but without
compromising its Islamic values. He wanted
this College to act as a bridge between the old
and the new, the East and the West. While he
fully appreciated the need and urgency of
imparting instruction based on Western
learning, he was not oblivious to the value of
oriental learning and wanted to preserve and
transmit to posterity the rich legacy of the
past. Dr. Sir Mohammad Iqbal observes:



“The real greatness of Sir Syed consists in the
fact that he was the first Indian Muslim who
felt the need of a fresh orientation of Islam
and worked for it—his sensitive nature was
the first to react to modern age.”
The aim of Sir Syed was not merely restricted
to establishing a college at Aligarh but at
spreading a network of Muslim Managed
educational institutions throughout the length
and breadth of the country keeping in view
this end, he instituted All India Muslim
Educational Conference that revived the spirit
of Muslims at national level. The Aligarh
Movement motivated the Muslims to help open
a number of educational institutions. It was
the first of its kind of such Muslim NGO in
India, which awakened the Muslims from their
deep slumber and infused social and political
sensibility into them.
Sir Syed contributed many essential elements
to the development of the modern society of
the subcontinent. During Sir Syed’s own
lifetime, The Englishman, a renowned British
magazine of the nineteenth century, remarked
in a commentary on November 17, 1885: ‘Sir
Syed’s life “strikingly illustrated one of the
best phases of modern history.” He died on
March 27, 1898, and lies buried next to the
main mosque at Aligarh Muslim University.



Preface

Plants have evolved an incredible arrangement of metabolic pathways leading to
molecules/compounds capable of responding promptly and effectively to challeng-
ing situations imposed by biotic and abiotic factors. Medicinal plants supply the
ever-growing needs of humankind for natural chemicals, such as pharmaceuticals,
nutraceuticals, agrochemicals, and chemical additives. Medicinal plants are used in
traditional medicine to cure various ailments, and several studies have highlighted
the therapeutic properties and biological activities of medicinal plants. These plants
contain bioactive secondary metabolites which possess antimalarial, anthelminthic,
anti-inflammatory, analgesic, antimicrobial, antiarthritic, antioxidant, antidiabetic,
antihypertensive, anticancer, antifungal, antispasmodic, cardioprotective, antithy-
roid, and antihistaminic properties. Secondary metabolites play a major role in the
adaptation of plants to the changing environment and stress conditions as they are
affected by both biotic and abiotic stress.

Humans rely on medicinal plants for various needs since ancient times, and their
population still seems enough for fulfilling our demands. But in the foreseeable
future we will be forced to think about the accessibility of resources for the
generations to come. For these reasons, we must look for alternative sustainable
options of resources which can protect these immensely important medicinal plants
from various stresses induced by the challenging environment. Moreover, we need
to understand current advancements of molecular mechanisms of cross talk in
relation to plant abiotic stress in order to create climate resilient medicinal plants
which can survive under stress combinations. Evolving eco-friendly methodologies
and mechanisms to improve these plants’ responses to unfavorable environmental
circumstances is important in creating significant tools for a better understanding of
plant adaptations to various abiotic stresses and sustaining the supply of pharma-
ceuticals as global climate change intensifies.

One of the great challenges in the near future will be the sustainable production of
medicinal plants in growing climate changes. A combination of adverse demo-
graphic factors and climatological perturbations is expected to impact food and
pharmaceutical production globally. Despite the induction of several tolerance
mechanisms, medicinal plants often fail to survive under environmental extremes.
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To ensure their sustainable production under adverse conditions, multidisciplinary
approaches are needed, and useful leads are likely to emerge. However, improving
plants’ performance under restrictive growth conditions requires a deep understand-
ing of the molecular processes that underlie their extraordinary physiological plas-
ticity. Therefore, this book aims to review and analyze the studies that investigate
impacts of environmental challenges on medicinal plants and the possibilities for
increased sustainable production. This book reviews the emerging importance of
medicinal plants and how their production and sustainability is affected by environ-
mental factors and provides eco-friendly solutions for the production of medicinal
plants under challenging environmental conditions.

This comprehensive volume emphasizes the recent updates about the current
research on the medicinal plants covering different aspects related to challenges
and opportunities in the concerned field. This book is an attempt to bring together
global researchers who have been engaged in the area of stress signaling, cross talk,
and mechanisms of medicinal plants. The book will provide a direction toward the
implementation of programs and practices that will enable sustainable production of
medicinal plants, resilient to challenging environmental conditions. I believe that
this book will instigate and commence readers to state-of-the-art developments and
trends in this field. Moreover, I hope to have disseminated the chapters of this book
in a way that will be novel for the readers and can be readily adopted as references
for newer and further research.

I am highly grateful to all our contributors for accepting our invitation for not only
sharing their knowledge and research but for venerably integrating their expertise in
dispersed information from diverse fields in composing the chapters and enduring
editorial suggestions to finally produce this venture. I also thank the Springer Nature
team for their generous cooperation at every stage of the book production.

Lastly, thanks are also due to well-wishers, research students, and editor’s family
members for their moral support, blessings, and inspiration in the compilation of
this book.

Aligarh, India Tariq Aftab
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Chapter 1
Current Status of Medicinal Plants
in Perspective of Environmental Challenges
and Global Climate Changes

Mohammad Javad Ahmadi-Lahijani and Saeed Moori

Abstract The elevation in [CO2] since the industrialization era has become a severe
problem in plant physiology and human life. The level of CO2 emission has
drastically increased during the past 40 years mainly due to anthropogenic activities,
which created a significant environmental challenge for plants. The expected behav-
ior of plants is influenced by the climatic changing factors, which finally impact the
morphophysiological traits and secondary metabolites (SMs) of pharmaceuticals.
Medicinal plant SMs have been utilized to discover new drugs in the alleviation of
many diseases over the past two decades. Medicinal plants possibly are able to adapt
to their changing environment; hence, metabolic elasticity may impact metabolite
production, which is the basis for their medicinal values. Primary metabolites such as
the SMs are also impacted by climatic change. Medicinal plant growth, biomass
production, and SMs are influenced by climatic fluctuations, e.g., temperature and
[CO2], due to alterations in the metabolic pathways, which regulate plant signaling,
physiology, biochemistry, and defense mechanisms. The population of plant species
including medicinal plants may be threatened by the elevated [CO2], extreme
temperatures, changing precipitation regimes, increases in pests and pathogens,
and anthropogenic habitat fragmentation. Nevertheless, the potential effects of the
abrupt climate change on medicinal plants have not been elucidated in-depth yet.
The current status of medicinal plants under climate change, emphasizing its conse-
quences, i.e., elevated [CO2], drought, and extreme temperatures, is discussed in this
chapter.

Keywords Biomass · Cold stress · Drought · Elevated [CO2] · Global warming ·
Heat stress · Secondary metabolites
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1.1 Introduction

Medicinal and aromatic plant usage have dramatically been increased in recent years
(Mishra 2016; Anand et al. 2019). The demand for medicinal plants has been
increasing worldwide as the natural products have fewer or perhaps no side effects,
and their accessibility and affordable costs might impact their demand for cultiva-
tion. Medicinal and aromatic plants are cultivated for their essential oils and cut
flower marketing. Pharmacy, cosmetology, perfumes, and the food industry utilize
their products. There are about half a million medicinal plant species worldwide with
a promising future since most of their pharmaceutical effects have not been discov-
ered yet and would be in demand of future studies.

Medicinal plants, particularly endemic medicinal plants, are precious for human
life (Dewick 2002). According to the World Health Organization (WHO), approx-
imately 21,000 plant species are being used for medicinal purposes (WHO 2013).
Around 80% of the developing countries’ population and 60% of the world’s
population depend on traditional medicines derived from plants (WHO 2013).
However, the worldwide anthropogenic climate changes have adversely influenced
medicinal plants. Further increases in the temperature from 1.4 to 5.8 �C are
expected by 2100. There would be extreme and unpredictable weather incidents
by 2033, for instance, warmer summers, stronger and more frequent storms, high
winds, and more frequent and heavier rainfall (Cleland et al. 2012; Field et al. 2014).

Climate change has various adverse effects to not only melting polar ices but also
changing in seasons and overall weather scenario, new plant disease occurrence, and
frequent occurrence of floods. Climate change adversely affects every day human
life, agriculture, forestry, biodiversity, and whole ecosystem functions (Lepetz et al.
2009). The increasing global human population, rapid industrialization, and vast
amounts of chemical fertilizers and pesticide utilization in the agricultural section are
some important factors causing climate change. Carbon dioxide (CO2), methane
(CH4), nitrous oxide (N2O), sulfur dioxide (SO2), nitrogen oxides (NOx), and
secondary pollutants like ozone (O3) are among the greenhouse gases leading to
the global warming. Simultaneously with the warming up of the climate, other
climatic and environmental factors, i.e., the temperatures, [CO2], drought, and
rainfall patterns, are also changing. Figure 1.1 summarizes some of the major
consequences of climate change.

Plant species are threatening by climate change. The endemic plant species are
considered more vulnerable to climate change and facing a high risk of extinction as
their narrow edaphic niches limit their possibilities to adapt through migration
(Panchen et al. 2012). As for other species, medicinal species are also threatened
by changing temperature and precipitation regimes, disruption of commensal rela-
tionships, pest and pathogen increases, and anthropogenic habitat fragmentation.
Additionally, medicinal species are often harvested unsustainably, and the combi-
nation of those pressures may push many plant species to extinction. Besides, some
species may respond to environmental stresses not only through a decline in biomass
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production but also with changes in biochemical content and composition, poten-
tially affecting the quality or even safety of medicinal products.

It is important to study the climate change effects on medicinal plants due to their
dual use as medicine and food. High temperatures have been reported to reducing the
oil content and unsaturated fatty acids of some oil-bearing crops, leading to declining
their nutritional quality and ability to ameliorate chronic diseases (Canvin 1965;
Mozaffarian et al. 2010; Dawczynski et al. 2015). Climatic changes are expected to
make plant species more sensitive to pests and pathogens such as mycotoxin-
producing fungi leading to reducing their quality and long-term food security
(Chakraborty and Newton 2011; Magan et al. 2011; Bebber et al. 2013; Van der
Fels-Klerx et al. 2016). Undoubtedly, anthropologically environmental changes will
affect medicinal plants like other plant species, especially in higher altitude ecosys-
tems, where endemic medicinal plants mainly grow (Applequist et al. 2020). Nev-
ertheless, studies to evaluate the effects of climate change and its consequences, i.e.,
elevated [CO2], higher or lower temperatures, and water stress, on medicinal plants
and their physiology, biochemistry, and SMs need to be conducted in-depth. Limited
and sporadic perceptions on the impacts of climate change and global warming on
plant growth and development, physiology, biochemistry, and primary and second-
ary metabolites exist. In the present chapter, the impacts of changing climatic

Fig. 1.1 Potential environmental stressors affecting the plant physiochemical and metabolic traits
under climate change
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conditions on medicinal plants, with an emphasis on the main consequences of
climate change, i.e., elevated [CO2], high and low temperatures, and drought, and
the current status of medicinal plants under a changing climate are discussed
(Fig. 1.2).

1.2 Medicinal Plants’ Availability and Population
Extinction Under a Changing Climate

It seems many plant species are expected to be locally or globally extinct in the near
future (Applequist et al. 2020). Almost 600 plant species have been extinct during
the last hundred years (Humphreys et al. 2019). Research indicated that the world

Fig. 1.2 An overview of medicinal plant status under climate change conditions
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species of wild plants is threatened mainly by human activities such as habitat
destruction (Skole and Tucker 1993; Riitters et al. 2002; Harper et al. 2007; Haddad
et al. 2015). On the other hand, unsustainable and uncontrolled medicinal plant
harvesting has made the situation even worse. The American ginseng (Panax
quinquefolius L.), an important nourishing herb, for instance, has been harvested
in large and uncontrolled quantities for commercial purposes, and illegal harvesting
due to the great demand has become a serious problem in which their distribution
and abundance have dramatically decreased (McGraw 2001; Case et al. 2007;
Souther and McGraw 2014; Applequist et al. 2020). Similar situations have also
been reported for the slow-growing medicinal herbs, goldenseal (Hydrastis
canadensis L.) and snow lotus (Saussurea laniceps Hand. -Mazz.) (Mulligan
2003; Zedan 2004; Law and Salick 2005). In worse cases, habitat destruction and
irregular and commercial harvesting may result in species distinction, as happened to
the North African herb, silphium Ferula sp., which was extinct a thousand years ago
(Parejko 2003; Kiehn 2007).

Even without climate changes, their isolated and small populations are endan-
gered locally. However, environmental conditions change due to climate change will
alter plant habitats, making them no longer survivable or optimum for plants. Due to
global warming and a rise in the air temperature, many plant distributions have
shifted toward higher latitudes, hence increasing competition between the species,
leading to vanishing some of the species (Applequist et al. 2020). Nevertheless,
some medicinal species, such as arnica (Arnica montana L.), chamomile (Matricaria
chamomilla L.), and bush tea (Athrixia phylicoides DC.), are more adaptable and
potent when grown at higher altitudes (Ganzera et al. 2008; Spitaler et al. 2008;
Turner et al. 2011; Nchabeleng et al. 2012). This habitat fragmentation and pheno-
logical changes may also lead to disruption in the plant-pollinator relationship.
Although human activities have reduced the pollinator populations, climate change
will worsen these situations (Applequist et al. 2020). Medicinal plants are not
exempted from these situations. Predictions showed that the ecological distribution
of some medicinal herbs, e.g., Rhodiola quadrifida, will become smaller; however, it
would be varied depending on the species (You et al. 2018).

1.3 Medicinal Plant Physiology, Biochemistry, and SMs
in a Changing Climate

In addition to affecting their distribution, climate change may influence, either
negatively or positively, the productivity and quality of medicinal plants and their
chemical compositions. The climate change consequences, i.e., weather extremes,
disturb the growth and development of unadapted plants to such conditions,
resulting in reduced sustainable harvest and productivity (IPCC 2014). Nevertheless,
the responses will be inconsistent within plant species and their metabolisms. Mild
drought stress often stimulates bioactive compound production by enhancing the

1 Current Status of Medicinal Plants in Perspective of Environmental. . . 5



actual metabolite production or decreasing plant biomass. The effects of climate
change factors, solely or in combination with other environmental stimuli, on the
morphology, physiology, and biochemistry of some medicinal plant species are
summarized in Table 1.1.

The SMs are the bioactive compounds producing autogenously or by endophytic
symbionts; however, SMs might be altered by environmental factors. Those alter-
ations may also impact human health since the medicinal plants are mainly con-
sumed to derive health benefits from their bioactivities. The changes in chemical
compositions of SMs might be unnoticed by the new-generation customers without
chemical testing, leading to the loss of the effectiveness of medicinal plants.
Although plant SMs are increased in some species to compensate for the biomass
reduction under stressful conditions, this is not always desired and safe. The locally
used medicinal plants may contain toxic levels of the compounds, which may be
used by susceptible individuals or harmful with excessive consumption. For exam-
ple, toxic metabolites such as pyrrolizidine alkaloids in Senecio species have been
reported to increase under drought stress (Briske and Camp 1982; Kirk et al. 2010).
Therefore, the geographical shifting and phenological changes due to climate change
force may result in undesired alteration in the quality and composition of the SMs,
leading to the medicinal plants’ toxicity or unusability as a medicine.

Al-Gabbiesh et al. (2015) and Selmar and Kleinwächter (2013) reported increases
in the bioactive compound concentrations, including essential oils, simple and
complex phenolics, alkaloids, terpenes, and glucosinolates, in a variety of species
exposed to drought stress. For instance, Vitellaria paradoxa Gaertn. active metab-
olites were increased under a drier region (Maranz and Wiesman 2004). Drought
stress, therefore, may increase the potency of some medicinal plants. A decrease in
plant biomass, however, due to severe drought stress (Ahmadi-Lahijani and Emam
2016) would outweigh any increases in the secondary metabolite concentrations. On
the other hand, although drought may enhance the SMs’ concentrations, higher
temperature due to stomatal closure and lower transpiration rate reduces the con-
centration of SMs, as it was observed in Rehmannia glutinosa (Chung et al. 2006).
Due to reduced biomass production, high temperatures like water stress could
enhance the concentration of SMs (Jochum et al. 2007). However, it should be
considered that lower biomass production would ultimately lead to enhanced harvest
level unsustainability and severe economic harm.

Water scarcity decreases the CO2 entrance into leaves by reducing the stomatal
aperture, which in turn lessen the energetic molecules, i.e., ATP and NADPH,
consumed by the Calvin cycle, resulting in more ATP and NADPH provided to
the production of SMs. Elevated levels of [CO2], despite a reduction in the stomatal
aperture due to a greater [CO2] availability to the plant (Ahmadi-Lahijani et al. 2018,
2021), reduce ATP and NADPH redirected toward the SMs’ production pathways
(Applequist et al. 2020). For instance, Nowak et al. (2010) found that the reduction
capacity arising from drought stress pushed metabolic activity toward the biosyn-
thesis of the SMs in sage (Salvia officinalis L.) monoterpenes here, but elevated
[CO2] decreased the monoterpene concentration. However, those observations were
not found in all tested species. The CO2 concentration and duration of exposure to

6 M. J. Ahmadi-Lahijani and S. Moori
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CO2 levels, which both either increased or decreased SMs’ production, have been
proposed depending on the species (Table 1.1). Many studies have also reported an
enhanced biosynthesis of the SMs under elevated levels of [CO2]. For instance,
elevated [CO2] levels increased the concentration of artemisinin in Sweet Annie
(Artemisia annua L.) and phenolic and flavonoid compounds in ginger (Zingiber
officinale Roscoe) rhizome under controlled conditions (Ghasemzadeh et al. 2010;
Zhu et al. 2015).

1.4 The Climate Change Consequences on Medicinal Plants

Abiotic stresses reduce crop performance and yield. However, mild stresses may
positively affect the quality of plant products, e.g., through the activation of the
phenylpropanoid pathway and the accumulation of bioactive compounds (Imai et al.
2006). These can improve postharvest performance and enhance the nutritional
quality of the products, which is particularly important for their consumers. Abiotic
stresses must be continuously studied with multidisciplinary approaches, from the
basic science to understand crop responses and their adaptation to the identification
of practical agronomic solutions for alleviating the stressful effects and preserving
crop productivity (Mariani and Ferrante 2017; Ferrante and Mariani 2018).

The interaction of plants with the biotic and abiotic environmental stimuli
influences metabolite biosynthesis (Akula and Ravishankar 2011). The synthesis
of metabolites is regulated by and restricted to specific vegetal tissues or develop-
ment stages in response to environmental stimulation (van der Plas et al. 1995;
Gargallo-Garriga et al. 2014). Plant SMs, besides participating in the pharmaceutical
industry, play a significant role in plant survival, and their synthesis is induced by the
plant-environment interaction (Radušienė et al. 2012). The plant primary and sec-
ondary metabolisms are closely related to each other (Kumar et al. 2017); the
primary metabolites are utilized as substrates to plant SMs’ biosynthesis. When a
plant is affected by adverse environmental conditions, e.g., climate change, plant
growth and the production of primary metabolites are influenced, which in turn
affect the SMs’ production (Table 1.1). As a survival strategy and to make diversity
at the organism level, plant species are variable in their potentials of synthesizing
SMs. There are even variations in the content of the chemical compounds within a
species. These characteristics are possibly associated with genetic variability and the
differences in the growth conditions (Radušienė et al. 2012; Mishra 2016).

Environmental parameters have direct effects on crop performance in different
seasons and nutrient availability. Cultivation of two cultivars lettuce (Lactuca sativa)
in different seasons with various nutrient availabilities showed that suboptimal
growing conditions limited nutrient utilization and had adverse effects on biomass
accumulation. Secondary metabolites involving the antioxidant capacity of lettuce
were affected by the seasons through effects on the compositions and total concen-
trations of different flavonoids (Toscano et al. 1982; Sublett et al. 2018). Under
stressful conditions, plants tend to come up with reactive oxygen species (ROS) like
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superoxide (O2
�), H2O2, and hydroxyl radical (OH•), which might promote cellular

damage by triggering off an oxidative chain reaction (Imlay 2003). Plants eliminate
the ROS by producing defense compounds through enzymatic and non-enzymatic
mechanisms, as some secondary metabolism compounds. For a balanced ROS level
and not being harmful to cells, the combination of enzymatic and non-enzymatic
mechanisms is fundamental (Shohael et al. 2006; Moori et al. 2012). Generally,
under stressful conditions, plants tend to increase their enzymatic activity and
synthesize secondary metabolite compounds. This accumulation is because of a
rise in the enzymes such as phenylalanine ammonia-lyase and chalcone synthase
activities (Heldt and Piechulla 2011), which are vital enzymes in the flavonoid
synthesis pathway and might be affected by environmental stresses. The phenylal-
anine ammonia-lyase, by producing phenols and lignin, is the main enzyme in plant
stress defense (Dixon et al. 1992). Medicinal plants may accumulate terpenes in the
type of essential oils under stressful conditions. Terpenoids are the main constituents
of the essential oils; however, phenylpropanoids would also contribute to the
essential oil composition (Sangwan et al. 2001; Jaafar et al. 2012).

Glucosinolate’s function may also be affected by climate change. Glucosinolates
are a class of SMs that their biological activity, mainly in preventing cancer, has
attracted attention (Schonhof et al. 2007). Studies have shown that the synthesis of
glucosinolate compounds in Brassicaceae beyond the biotic factors was influenced
by abiotic factors such as salinity, drought, extreme temperatures, nutrient defi-
ciency, and soil acidity (low pH) (Steinbrenner et al. 2012). Aromatic amino acids
are likely the main precursors of SMs contributing to plant stress defense. For
instance, tryptophan is the precursor of alkaloids, phytoalexins, and indole
glucosinolates. Phenylalanine is the main precursor of phenolic compounds such
as flavonoids, tannins, and phenylpropanoids, and tyrosine is the precursor of
isoquinoline alkaloids and quinones (Cheynier et al. 2013). The metabolic pathway
of synthesis for these compounds is performed in three phases, where the chain
elongation is affected by the stress (Ruelland et al. 2009; Holopainen and
Gershenzon 2010; Khan et al. 2011).

1.5 Effects of Elevated [CO2] on Medicinal Plants

The plant photosynthetic gas exchange is directly affected by elevated [CO2], where
it indirectly contributes to the global warming. The photosynthesis of many plant
species is not fully saturated under the present [CO2]; hence, its enrichment enhances
the photosynthetic rate and stimulates crop growth and productivity (Reddy et al.
2010; Fleisher et al. 2014; Ahmadi-Lahijani et al. 2021). Accordingly, a higher
photosynthetic rate was observed in the elevated [CO2] compared with an ambient
[CO2] (Ainsworth and Long 2005; Hao et al. 2013; Ahmadi-Lahijani et al. 2018).
Studies revealed that elevated [CO2] enhanced photosynthetic carbon assimilation
rates in some plant species (Ainsworth and Long 2005; Ahmadi-Lahijani et al. 2018,
2019, 2021). They also observed that the elevated [CO2] increased the above-ground
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biomass and dry matter partitioning to the underground parts of the plants. The
higher carboxylation rate and inhibition of the Rubisco oxygenation are responsible
for the improvement in photosynthesis at elevated [CO2], although its effects might
be varied depending on the plant species, [CO2], developmental stage, and environ-
mental conditions (Hao et al. 2013). Higher photosynthesis of plants at elevated
[CO2] could also be due to adjustment of the photosynthetic apparatus, such as
cellular fine structures, i.e., chloroplast and mitochondria number and size, to such
conditions (Ainsworth and Long 2005; Hao et al. 2013; Ahmadi-Lahijani et al.
2018).

Nevertheless, long-term exposure to elevated [CO2] might result in photosyn-
thetic acclimation and a decrease in photosynthesis (Lawson et al. 2001; Katny et al.
2005). For instance, some research found a photosynthetic acclimation at elevated
[CO2] (Huang et al. 2003; Aranjuelo et al. 2011; Hao et al. 2012). However, Hao
et al. (2013) did not observe a photosynthetic acclimation in Isatis indigotica, which
is used for the clinical treatment of virus infection, tumor, and inflammation in
Chinese traditional medicine, at elevated [CO2] due to developing new carbon sinks.
Elevated [CO2] increased net photosynthetic rate, water use efficiency, and maxi-
mum rate of electron transport (Jmax) of Isatis indigotica leaves, although stomatal
conductance, transpiration ratio, and maximum velocity of carboxylation (Vcmax)
were not altered. In addition, the efficiency (Fv’/Fm’) and quantum yield (ΦPSII) of
PSII were significantly increased at elevated [CO2], but leaf non-photochemical
quenching (NPQ) was decreased. While Isatis indigotica yield was higher due to
the improved photosynthesis at elevated [CO2], the content of adenosine was not
affected.

Medicinal plants are sources of SMs and show a wide range of plasticity to adapt
to changing environments. The SMs may affect other metabolites, which are usually
the basis for their medicinal properties (Stuhlfauth et al. 1987; Mishra 2016). It is
predicted that an increase in the [CO2] may increase plant carbon/nutrient ratio,
leading to produce non-structural carbohydrates (NSCs) that incorporate in C-based
SMs (Heyworth et al. 1998). For instance, elevated [CO2] increased digoxin, a
cardenolide glycoside that is used in heart diseases, by 3.5-fold in Digitalis lanata
plants (Rahimtoola 2004). Another experiment indicated that although digoxin was
enhanced under the elevated [CO2], digitoxin, digitoxigenin, and digoxin-mono-
digitoxoside were declined (Stuhlfauth et al. 1987; Stuhlfauth and Fock 1990). The
SMs may also be affected by the time of exposure to the elevated [CO2]. For
instance, the alkaloids (pancratistatin, 7-deoxynarciclasine, and 7-deoxy-trans-
dihydronarciclasin) of the medicinal plant Hymenocallis littoralis, whose bulbs are
used for their antineoplastic and antiviral effects, were increased by the first year
exposure to the elevated [CO2]; however, they were decreased in the subsequent year
(Idso et al. 2000). Similarly, elevated [CO2] and [O3] increased quercetin aglycon up
to 15% and decreased kaempferol aglycon by 10% in Ginkgo biloba, a traditional
Chinese medicinal plant used in Alzheimer’s disease (Huang et al. 2010; Weinmann
et al. 2010).

It has been shown that elevated [CO2] enhanced Hypericum perforatum phenolic
compounds, hypericin, pseudohypericin, and hyperforin (Zobayed and Saxena
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2004). Ezuruike and Prieto (2014) also reported increases in Catharanthus roseus
alkaloids, flavonoids, phenolics, and tannins when treated with elevated [CO2]
(Saravanan and Karthi 2014). Ziska et al. (2008) found that raising the [CO2] from
300 to 600 μmol/mol enhanced the alkaloid concentrations, i.e., morphine, codeine,
papaverine, and noscapine, in Papaver setigerum. It has been observed that elevated
[CO2] increased the tannins and phenolic content of Quercus ilicifolia (Saravanan
and Karthi 2014). A rise in phenols and flavonoids was also observed due to
increased primary metabolite phenylalanine, a precursor of various SMs (Ibrahim
and Jaafar 2012). The phenols, alkaloids, tannins, and flavonoids of Catharanthus
roseus, which are known for their antiviral, anticancer, and diuretic properties, were
increased by the elevated [CO2]. It has also been reported that the concentrations of
phenolic and flavonoid compounds in Zingiber officinale were enhanced with
increased [CO2] (Ghasemzadeh et al. 2010; Ezuruike and Prieto 2014; Saravanan
and Karthi 2014).

Further, working on Labisia pumila, Ibrahim et al. (2014) found that flavonoids
and phenolics were increased in response to increased atmospheric [CO2]. The
findings were more inclined toward the increase in the SMs’ concentrations as a
response to elevated [CO2] compared to the present ambient [CO2]. However, it was
observed that Pseudotsuga menziesii terpenes, specifically monoterpenes, signifi-
cantly decreased under elevated [CO2] (Snow et al. 2003). By reviewing the trend in
such findings, although the effects of stimuli such as temperature, nutrient availabil-
ity, seasonal variation, time duration, etc. were evaluated, it is essential to concen-
trate on the entire SMs of medicinal plants. Other parameters, solely or in
combination with other factors, may also alter the metabolic plasticity of medicinal
plants.

1.6 Medicinal Plants’ Growth in Drought Stress Conditions

Arid and semi-arid regions are more prone to drought stress, which negatively
impacts medicinal plants and is presently more prevalent due to global warming.
Drought stress induces species-dependent biochemical, physiological, and genetic
alterations (Eisvand et al. 2016; Zhou et al. 2017). The synthesis and accumulation
of the plant SMs are strongly influenced by environmental conditions, such as
temperature, light regimes, and water and nutrient supply (Siddiqui and Bansal
2017). It has been elucidated that drought stress consistently enhances the plant
SMs’ concentration (Kleinwächter and Selmar 2014; Nasrollahi et al. 2014; Selmar
et al. 2017), which could be a common feature and comprises all classes of natural
products. For instance, increases in either the simple or complex phenols and a
variety of terpenes were reported. Similarly, drought stress positively impacted
nitrogen-containing substances such as glucosinolates, alkaloids, and cyanogenic
glucosides (Petropoulos et al. 2008; Albert et al. 2009; Chen et al. 2011; Jaafar et al.
2012). A secondary metabolism called oxidative stress is also compelled by drought
stress, leading to reducing the photosynthetic rate and inducing phenolic compound
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production. These phenolic compounds contribute to the plant’s defense mechanism
against stressful conditions (Jaafar et al. 2012). Studies manifested higher SMs’
accumulation in drought-stressed plants than those in well-watered conditions.

Although drought adversely affects plant growth and development, the concen-
tration of natural products increases under stressful conditions. Theoretically, some
possibilities are proposed to clarify this enhancement. It may be the consequence of
reduced biomass in the stressed plants, while the rate of natural product biosynthesis
is not changed or slightly reduced; hence, their concentration on a dry or fresh
weight basis is increased (Kleinwächter and Selmar 2014). Therefore, the SMs’
content in drought-stressed and drought-unstressed plants is quite similar (Mishra
2016). Alternatively, drought stress enhances the actual rate of biosynthesis possibly
due to either a passive shift or a functional upregulation of the enzymes involved in
the natural product biosynthesis (Selmar et al. 2017).

The overall content of essential oils in Greek oregano (Origanum vulgare) plants
remained constant, although their concentrations were significantly increased
(Ninou et al. 2017). However, Nowak et al. (2010) found that the monoterpenes in
the drought-stressed sage (Salvia officinalis) were higher than the unstressed plants
and the SMs’ enhancement was over the corresponding biomass reduction. Conse-
quently, the actual biosynthesis of monoterpenes was increased in response to
drought stress. Phenolic compounds also follow the same trend. In Hypericum
brasiliense, the total phenols showed an increase under drought stress, and plants
grown under drought-stressed conditions were generally smaller than the unstressed
plants due to the massive increase in phenolic content (de Abreu and Mazzafera
2005). The concentration and overall production of total phenols and flavonoids
were also enhanced in Labisia pumila grown under water-deficient conditions
(Jaafar et al. 2012). However, it has been observed that the increase in the coptisine
concentration was compensated by a drastically reduced biomass in the drought-
stressed plants, which in turn reduced the overall alkaloid content of the stressed
plants (Kleinwächter and Selmar 2015).

Genotypes behave differently under drought stress conditions, in which the
essential oil content per plant in the Origanum vulgare (Greek oregano) subspecies
remained constant, while the metabolites’ concentrations were increased (Ninou
et al. 2017). It indicated that the essential oil content, compositions, and gene
expression patterns of the subspecies were different under drought stress conditions
(Morshedloo et al. 2017). It seems that the monoterpene synthesis rate remained
constant, while the same monoterpene content was obtained from less biomass.
Those results were used by Paulsen and Selmar (2016) to explain the increase in
thyme (Thymus vulgaris) plants’ monoterpene concentration. They observed no
changes in the total monoterpenes’ content, but in a dry weight basis, the rate of
monoterpene synthesis was found different in drought-stressed plants compared to
the drought-unstressed plants (Paulsen and Selmar 2016).
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1.7 Extreme Temperatures and Medicinal Plants

The high rate of greenhouse gas emission from different sources has gradually raised
the global ambient temperature, leading to the global warming phenomenon. Cli-
mate change is accompanied by extreme temperatures, which will expose the plants
to harsher and unpredictable weather conditions. Almost 23% of the earth’s surface
is subjected to an annual temperature of ~40 �C or higher. High-temperature stress
has become a concern for crop production since it truly influences the overall
growth, development, and productivity of plants. Therefore, the response of plants
and the mechanisms underlying their adaptation to elevated temperatures need to be
better understood for important medicinal plants. Furthermore, metabolic adjust-
ments to stressful conditions are vital for acquiring stress tolerance (Hasanuzzaman
et al. 2013). Plants exposed to extreme temperatures frequently show a typical
reaction as oxidative stress that damages lipids, proteins, and nucleic acids.
Although researchers have focused on the plant reactions to heat stress, to date, a
complete comprehension of the plant thermoresistance systems stays inconspicuous.

Increasing worldwide demand for food provoked plant breeders to introduce
high-yielding plants resistant to environmental stress. High-temperature stress
leads to physiological, biochemical, and molecular changes and damages the pro-
teins, lipids, and cell membrane integrity of plants, which instigates the biosynthesis
of SMs in plant tissues (Zobayed and Saxena 2004; Kumar et al. 2012). High
temperature, on the other hand, diminishes photosynthesis due to a reduction of
soluble and Rubisco binding proteins (Hasanuzzaman et al. 2013). Heat stress
negatively impacts leaf water potential and leaf area and accelerates premature leaf
senescence, adversely affecting the overall photosynthetic performance of plants.
The activity of the enzymes, ADP-glucose pyrophosphorylase, sucrose phosphate
synthase, and invertase, is reduced under high temperatures, which in turn affects the
synthesis of sucrose and starch (Rodríguez et al. 2005). Rubisco catalyzes the first
step in the net photosynthetic assimilation and photorespiratory carbon oxidation
pathways through the carboxylation and oxygenation of ribulose-1,5-bisphosphate
(RuBP). The carboxylation activity of the Rubisco enzyme is reduced in high
temperatures, due to competitive inhibition of the O2 to binding the RuBP. High
temperature, in addition, quickly shifts de novo protein synthesis from Rubisco’s
large and small subunits’ expression to the synthesizing heat shock proteins (HSP)
(Law et al. 2001).

The temperature has a great influence on the SMs’ production in plants (Akula
and Ravishankar 2011). One of the plant’s approaches to resist high temperatures is
the accumulation of osmolytes, the water-soluble metabolites with a low molecular
weight such as amino acids and sugars (Wani et al. 2017; Mohammadi et al. 2020).
Furthermore, an increase in the biosynthesis of compounds such as glutathione and
ascorbate has also been reported to improve plant cellular resistance (Hatami et al.
2017). The aromatic amino acid compounds such as tryptophan, triazine, and
phenylalanine, producing in the shikimic acid pathway, are responsible for produc-
ing secondary metabolism under temperature stress conditions (Suguiyama et al.
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2014). To confront heat stress, a part of plant tolerance mechanisms is the SMs’
production for cell homeostasis (Bokszczanin et al. 2013).

Studies have been carried out to investigate the effects of various temperature
regimes on medicinal plants. For instance, high temperatures enhanced the morphine
content of poppy (Papaver spp.) plants (McAlister et al. 2016) and increased SOD,
CAT, and POD enzyme activities to scavenge the reactive oxygen species (ROS)
(Ncube et al. 2012). Zobayed et al. (2005) found that St. John’s wort (Hypericum
perforatum) peroxidase and hypericin activities and pseudohypericin and hyperforin
contents were increased in high temperature (35 �C). The organic and volatile
compounds’ increases have also been observed in medicinal plants grown in high
temperatures (Wani et al. 2017; Mohammadi et al. 2020). A reduction in photosyn-
thesis and enhancement in ginsenoside were observed in Panax quinquefolius when
the temperature was raised to 5 �C (Jochum et al. 2007). While the pigment
production was optimal at 25 �C in suspension-cultured Perilla frutescens, a
remarkable reduction was observed in the anthocyanins at 28 �C (Zhong and
Yoshida 1993).

Low temperature is also one of the most harmful abiotic stresses for plants as it
impacts different plant developmental processes and influences the geographic
distribution and productivity of plants. Low temperatures, in addition, directly affect
plant growth and development processes at the physiological, metabolic, and genetic
levels and slow down plant metabolic reactions such as sucrose synthesis (Sage and
Kubien 2007; Ruelland et al. 2009; Mir et al. 2015). Furthermore, the contents of
cryoprotective proteins and metabolites like soluble solids and amino acids are
induced at low temperatures. Plants also develop cellular enzymatic and
non-enzymatic mechanisms to cope with cold stress and survive under low temper-
atures, which are mainly mediated by phytohormones (Rahman 2013). Some medic-
inal species, such as Thymus sibthorpii, Satureja thymbra, Cistus incanus, Phlomis
fruticosa, and Teucrium polium, show a seasonal dimorphism and develop mechan-
ical and chemical defensive compounds to cope with cold (Lianopoulou and
Bosabalidis 2014). Low temperatures also instigate the anatomical, morphological,
physiological, biochemical, and cytological changes, which may also be mediated
by phytohormones.

In Origanum (Origanum vulgare), structural and functional changes affect leaf
shape, size, and distribution pattern as an adaptation mechanism at low temperatures.
The medicinal herb Salvia sclarea, commonly known as clary sage, showed a
decrease in leaf area but increases in spikes’ length and number and inflorescence
length with higher essential oil content in low temperatures (Kaur et al. 2015).
Chilling stress structurally affected the mountain germander (Teucrium polium)
and Thymus sibthorpii and led to producing smaller and thicker leaves with greater
stomata and glandular hairs (Lianopoulou et al. 2014). Apart from structural
changes, it has been observed that low temperatures led to a subsequent accumula-
tion of antioxidant compounds contributing to their medical or nutritional values in
numerous medicinal and aromatic plants (Nourimand et al. 2012; Mir et al. 2015;
Saema et al. 2016). The biomass production and chlorophyll and b-carotene content
of fennel (Foeniculum vulgare) seedlings grown at 2 �C were impacted, whereas the
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total antioxidant activity was increased in response to such conditions (Nourimand
et al. 2012). Cold stress is responsible for increasing the cell wall-related and phenol
compounds to enhance cold tolerance (Christie et al. 1994). Plants grown under cold
stress showed an increase in anthocyanin biosynthesis, which was related to acquir-
ing cold tolerance (Christie et al. 1994; Pennycooke et al. 2005).

The biosynthesis and accumulation of withanolide compounds in Indian ginseng
or ashwagandha (Withania somnifera) synthesized in leaves and roots are directly
influenced by environmental factors. Seasonal low temperatures increase the
withanolides’ accumulation in Indian ginseng (Kumar et al. 2012). Withania
somnifera plants’ exposure to cold stress increased the leaves’ withanolide (steroidal
lactones) accumulation (Kumar et al. 2012), which was associated with an enhanced
plant recovery after the cold exposure (Saema et al. 2016). Low temperatures also
concomitantly enhanced the antioxidant enzymatic activities in Withania somnifera
and Thymus sibthorpii leaves (Wang et al. 2013; Lianopoulou et al. 2014), which is
often a protection mechanism against cold damages (Kaur et al. 2015).

1.8 Conclusion

Medicinal plant exposure to abiotic stress impacts their physiological, biochemical,
phytochemical, and molecular responses to cope with stressful conditions. They
need to fortify their defense system in response to extreme environmental conditions
resulting from climate change. The availability of water, nutrients, and overall
optimal growing conditions of plants are influenced by the changes in climatic
conditions, which directly impact the productivity of medicinal plants. Their sec-
ondary metabolites protect the plant from stressful conditions and consequently
provide a unique source of flavors and pharmaceutical properties for human health.
Various studies have revealed that environmental factors, like water scarcity, ele-
vated [CO2], and extreme temperatures altered the physiological and biochemical
mechanisms, quality and quantity of SMs, productivity, and the distribution of
medicinal plants. It seems there is a need to understand the response of medicinal
plants to climate change on a molecular level toward the improvement of their
growth and productivity.
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Chapter 2
Environmental Challenges for Himalayan
Medicinal Plants

Jitendra Pandey, Lav Singh, Gauri Saxena, and Hari Prasad Devkota

Abstract The Himalayan region is home to diverse ecological systems covering
many important flora and fauna that are indispensable for human livelihood. Hima-
layan medicinal plants have great value in the traditional systems of medicine such
as Ayurveda, Chinese traditional medicine, and Tibetan traditional medicine systems
and other indigenous medicine systems. Due to extreme environmental conditions,
climate change, and other anthropogenic factors, there is huge biodiversity loss, and
various medicinal plants are endangered. Similarly, these environmental challenges
also affect the content of bioactive chemical constituents in medicinal plants. This
chapter summarizes some of these aspects of Himalayan medicinal plants and their
conservation and environmental challenges with a focus on the bioactive chemical
constituents.

Keywords Himalaya · Medicinal plants · Environmental challenges · Bioactive
chemical constituents

2.1 Introduction

The majestic crescent-shaped mountain range of the Himalayas stretches over
2500 km from the Indus Valley’s south end, far beyond Nanga Parbat in the west,
to Namcha Barwa in the east. It fringes the entire length of the Indian subcontinent’s
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northern boundary. The Himalayas are home to the world’s most famous snow-
capped mountains, including 10 of the world’s 14 peaks over 8000 m including
Mt. Everest (Roy and Purohit 2018). These are one of the youngest fold mountain
systems running through India, Pakistan, Afghanistan, China, Bhutan, and Nepal.
The Himalayas comprise three parallel ranges, the Greater Himalayas, the Lesser
Himalayas, and the Outer Himalayas. The Himalayan region is home to diverse
ecological system covering many important flora and fauna that are indispensable for
human livelihood. A total of 10,503 plant species are reported from the Himalayan
region representing 240 families and 2322 genera with around 1206 alien species.
With 783 species (7.5 percent of all species), Orchidaceae is the most common
family. The Himalayan ranges in Bhutan and Sikkim are the richest and with the
highest number of species (6283) among the six sub-regions, followed by Nepal
(5516), Uttarakhand (4990), Arunachal Pradesh (4503), Himachal Pradesh (3324),
and Jammu and Kashmir (2118) (Rana and Rawat 2017).

Himalayan medicinal plants have great value in the traditional systems of med-
icines such as Ayurveda, Chinese traditional medicine, and Tibetan traditional
medicine systems and other indigenous medicine systems (Table 2.1). Various
phytochemicals obtained from these medicinal plants are also the sources for the
discovery and development of modern drugs (Atanasov et al. 2015). Many of these
medicinal plants are also used as food and spices (Khanal et al. 2021). Their
traditional harvesting practices have altered from time to time due to many reasons,
including advent of market forces that have resulted in the decline or even existence
of many plant populations. The evaluation of secondary metabolites obtained from
these plants with broad medicinal potential has sparked a sudden interest in learning
more about their chemistry, analytical techniques, biosynthetic pathways, and phar-
macological effects (Malhotra and Singh 2021).

The Himalayas may seem eternal, but they are among the most fragile ecosystems
on the planet earth. Steep slopes, heavy rainfall, and poor soil quality make it
vulnerable to erosion. Human presence and related activities, such as
agropastoralism and natural product extraction, have affected a major fraction of
high-altitude landscapes in the Himalayas over a long period of time. The grand
Himalayas are home to a plethora of medicinal plants with great ethnobotanical
significance. They are one of the most important sources of natural resources and
have long been exploited for both local and global trade. Despite the fact that
medicinal plants have thrived in highland areas with low human and animal
populations, two recent events have raised conservation and management concerns.
The first is a significant increase in livestock density; the second is significant growth
in medicinal plants’ demand in international trade (Ghimire et al. 2006). Himalayan
biodiversity and ecosystems face many challenges, especially that of injudicious use
of its natural resources. This may be due to the lack of understanding and sufficient
training and the method and time of collection being unscientific and unwise,
causing damage to medicinal plants as well as a reduction in material quality.
Lack of a grazing management system is another threat as animals are allowed to
graze to the point of over-grazing, causing serious damage to the flora. This calls for
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Table 2.1 Some of the important medicinal plants of the Himalayan region (Badola and Aitken
2011; Chhetri 2014)

Scientific name Family Common name

Aconitum ferox Ranunculaceae Vatsnabh

Aconitum palmatum Ranunculaceae Prativisa

Acorus calamus Araceae Sweet flag

Aloe vera Asphodelaceae Ghritkumari

Alstonia scholaris Apocynaceae Satvin

Arnebia benthamii Boraginaceae Himalayan arnebia

Aquilaria agallocha Thymelaeaceae Agar

Artemisia annua Asteraceae Sweet worm wood

Asparagus racemosus Asparagaceae Shatavari

Atropa belladonna Solanaceae Belladonna

Berberis aristata Berberidaceae Daruhaldi

Berberis asiatica Berberidaceae Tree turmeric

Centella asiatica Apiaceae Mandookparni

Cinchona officinalis Rubiaceae Cinchona

Cinnamomum tamala Lauraceae Indian bay leaf

Coleus barbatus Lamiaceae Patherchur

Convolvulus microphyllus Convolvulaceae Shankhpushpi

Crocus sativus Iridaceae Kesar

Dactylorhiza hatagirea Orchidaceae Hatta haddi

Digitalis purpurea Plantaginaceae Lady’s glove

Ephedra gerardiana Ephedraceae Soma

Ferula foetida Apiaceae Hing

Ginkgo biloba Ginkgoaceae Ginkgo

Gloriosa superba Liliaceae Flame lily

Gmelina arborea Lamiaceae Gambhari

Hedychium spicatum Zingiberaceae Kapurkachari

Holarrhena antidysenterica Apocynaceae Kurchi

Hyoscyamus niger Solanaceae Henbane

Inula racemosa Asteraceae Kasmira

Jurinea dolomiaea Asteraceae Dhoop lakkad

Mesua ferrea Calophyllaceae Nagakeshar

Orchis latifolia Orchidaceae Salam panja

Phyllanthus amarus Phyllanthaceae Bhumyamalaki

Picrorhiza kurroa Plantaginaceae Kutki

Plantago ovata Plantaginaceae Isabgol

Podophyllum hexandrum Berberidaceae May apple

Rauwolfia serpentina Apocynaceae Sarpagandha

Rheum australe Polygonaceae Himalayan rhubarb

Rhododendron campanulatum Ericaceae Pink brass

Selinum tenuifolium Apiaceae Wallich milk parsley

Solanum nigrum Solanaceae Makoy

Swertia chirata Gentianaceae Chirata

(continued)
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a comprehensive training of local residents and skill development for the collection,
preservation, and processing of medicinal and other economically important plants.

Various environmental challenges have affected the biodiversity of medicinal
plants in the Himalayan region. Climate change and associated risk factors affect not
only the biodiversity and availability of the medicinal plants but also the bioactive
chemical constituents present in them (Applequist et al. 2020; Karimi et al. 2021).
As the nature and content of bioactive chemical constituents are responsible for the
pharmacological activity of the plants used in traditional medicines (Devkota et al.
2017), these environmental challenges may also affect the desired pharmacological
activity and therapeutic efficacy.

2.2 Current Status of High-Altitude Medicinal Plants
of Himalaya and Their Conservation

Conservation of high-altitude medicinal plants in the Himalayan region is a major
challenge faced by traditional healthcare systems and plant-based pharma industries.
There have been various studies to understand the current status of distribution and
conservation of medicinal plants in Himalaya. For example, according to a study by
Islam et al. (2021), internationally documented nine threatened species were found
in the Palas Valley, Pakistan. Of these, Aconitum heterophyllum, Taxus wallichiana,
and Berberis pseudumbellata have been categorized as Endangered, while Ephedra
intermedia, Acer caesium, Punica granatum, Juniperus communis, Populus ciliata,
and Quercus alba as Least concern species. The major causes of species acquiring
threatened status were due to overexploitation, fragmentation, and habitat loss.

Tali et al. (2019) evaluated 881 medicinal plant species for priority conservation
in Jammu and Kashmir (J&K) region, a Himalayan biodiversity hotspot. Ten of
these species Arnebia benthamii (Critically Endangered), Angelica glauca (Endan-
gered), Dactylorhiza hatagirea (Endangered), Fritillaria roylei (Critically Endan-
gered), Meconopsis aculeata (Critically Endangered in the Himalayan ranges of
Pakistan and Kashmir), Picrorhiza kurroa (Endangered in the Indo-China Himala-
yan region), Podophyllum hexandrum (Endangered high-elevated), Saussurea
costus (Critically Endangered), and Thymus linearis (Least concern) have previously
been selected for conservation in Uttarakhand, a neighboring Indian Himalayan

Table 2.1 (continued)

Scientific name Family Common name

Taxus baccata Taxaceae English yew

Tinospora cordifolia Menispermaceae Giloe

Valeriana wallichii Caprifoliaceae Tagar-Ganthoda

Withania somnifera Solanaceae Ashwagandha
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state. On the other hand, Thymus linearis is distributed in Afghanistan, India, Iran,
Nepal, Pakistan, Tadzhikistan, West Himalaya, and Xinjiang.

Many medicinal plants which not only are important for medicinal value but also
provide economic support to the local inhabitants are also being threatened for their
natural habitats. For example, Aconitum heterophyllum (Ranunculaceae), commonly
known as “Atis,” is a biennial herb native to northwest and east Himalayan regions
of the Indian subcontinent. Its nontoxic tuberous roots are often used to treat
dyspepsia, stomach pain, diabetes, and diarrhea in the traditional Indian and Chinese
medicinal systems. The aconites, which include atisine, are important ingredients
and marker compound of A. heterophyllum. According to the IUCN Red List, this
plant species is categorized as an endangered medicinal plant because of habitat
destruction and extensive exploitation (Malhotra and Sharma 2021). Successful
cultivation and conservation of A. heterophyllum will require an improved agro-
technology and genotype strategies that will lead to higher crop yields (Beigh et al.
2008).

In the last few years, identification and management of medicinal plants with
special emphasis on protected area have become one of the top conservation
priorities. Several initiatives have been taken to implement in situ as well as ex
situ management strategies. However, it is important to understand that each species
requires a specific set of habitat for its survival; thus, emphasis has been given to the
protection of viable population along with management of its natural habitat.
Various forums have been created for the categorization as well as prioritization of
taxa based upon the degree of threat they are facing to strategize conservation
initiatives. However, desired success is yet to be achieved due to complex geological
composition and diverse local climatic conditions of the Himalayas (Badola and
Aitken 2011). Dhar (2002) recommended the necessity of attempting more studies
and assessments to prioritize the distribution and significance of the species impor-
tant for their medicinal values covering different agro-ecological as well as agro-
climatic zones in the Himalayan regions for the management and conservation of
such species.

These conservation statuses and the biodiversity of medicinal plants will be
greatly affected by the different environmental challenges such as climate change,
global warming, and other various anthropogenic factors. Better understanding of
the effects of these factors in relation to medicinal plants is necessary for the
conservation of biodiversity and sustainable utilization of these natural resources
in Himalaya. According to Hoffmann et al. (2007), it is a novel way to entice farmers
to participate in medicinal plant cultivation and long-term conservation of their
natural ecosystem. It is based on the understanding that local people and scientists
have distinct types of information and talents that may be best utilized by collabo-
rating farmers and other stakeholders for plant cultivation and conservation and their
long-term use.
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2.3 Effects of Environmental Challenges on Himalayan
Medicinal Plants and Their Bioactive Chemical
Constituents

Climate change, global warming, natural disasters, and various other factors are
greatly affecting medicinal plants’ biodiversity and habitat. Between 2018 and 2100,
an increase of 3.7 �C is expected in mean surface temperatures in the Himalayas
(relative to 1986–2005) which will greatly affect many areas of biodiversity and
water cycle (Karimi et al. 2021). Such environmental stress will also affect the
chemical constituents of the medicinal plants in the Himalayas and will possibly
affect their pharmacological activities. Some of these factors are explained in detail
in the following sections.

2.3.1 Climate Change

In the present scenario, unprecedented change in the weather condition of earth is
manifested clearly. Anthropogenic activities such as uncontrolled emission of green-
house gases (CO2, methane, CO, O3, and chlorofluorocarbon) on the atmospheric
surface are the major cause of dramatic climate changes. Major unfavorable alter-
nations in the environment, due to climate change, are most frequent and hotter
summer days, most often and heavier rainfall, infrequent and less dry season winter
rainfall, and heavy and more frequent storms with high wind. The temperature of the
earth is rising spontaneously by 5 �C or more, in a couple of decades, and these
adversarial shifts in climate have created environmental stress on the plants and
grievously affect plant yield and growth. The amount of secondary metabolites in
plants and their normal growth rate are varied by hike in atmospheric temperature, as
it can fluctuate metabolic pathway which governs plant physiology, signaling, and
defense mechanism. Apart from that, syntheses of primary metabolic products, such
as sugars, Krebs cycle’s products, and amino acids, are also influenced to a great
extent (Gupta et al. 2019; Mishra 2016). This situation is more ubiquitous in the
Himalayan range, which comprises diverse classes of ecosystem, broad altitudinal
area, assorted climatic expanse, slopes, soil nutrition accessibility, and various
habitat groups and is delineated to be warming at an uncommon rate. The Himalayan
region encompasses high floral heterogeneity (Pandey et al. 2019). Most Himalayan
plants possess valuable medicinal characteristics as they contain pharmacologically
active chemical constituents abundantly, which are the ingredients of various life-
protecting medicines. Nevertheless, the environmental stresses, created due to cli-
mate change, are exhausting their obtainability in the environment, altering their
utilization in modern and traditional medicine systems, and depleting the quality of
bioactive molecules. Major impacts of environmental stress on the plants are aber-
ration in physio-morphological, molecular, and biochemical traits, reduction on
gross plant yield, changing life cycle, impact on species ranges, and ecological
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balance and obtrude high threat on their biodiversity (Gairola et al. 2010; Mishra
2016). Overall, most noticeable adverse changes on Himalayan medicinal plants due
to unprecedented change of climate are discussed below, and some examples of
Himalayan medicinal plants and effect of the climatic changes on their secondary
metabolites are given in Table 2.2.

Climate change can induce the shifting of plants toward a new range for their
appropriate growth and development. Normally, these shifts are oriented toward
higher elevations and/or the poles. In this situation, loss of habitat and migratory
challenges correlated to climate change may cause the disappearance of various
indigenous species all over the world (Keutgen et al. 1997).

The seasonal cue is always a governing factor for plant life cycles and the world-
wide climate change is exerting influence on ecosystems and species. These phono-
logical changes have put numerous rare species of medicinal plant species at
remarkable risk of extinction. Prominent phenological incidents for medicinal plants
to be adapted toward climate alteration can be regarded as (i) unfolding of leaf and
bud burst, (ii) fruit setting and flowering, (iii) dry weather leaf fall or autumn, and
(iv) the associated phenomenon of winter hardening and breaking. When global
warming increases, it may alter the appearance of the spring season and the duration
of the plant developing season (Bidart-Bouzat and Imeh-Nathaniel 2008).

2.3.2 Elevated CO2 Effect

Scientifically, it is proven that in controlled environment, elevation of CO2 level
directly influences the quality and productivity of various plant products as well as
amount of bioactive constituents in medicinal plants. Experiments have proven that
increased concentration of CO2 (3000 μl CO2/l of air) proportionally increased leaf
and root numbers along with fresh weight in cultures of many medicinal herbs such
as oregano (Origanum vulgare L.), lemon basil (Ocimum basilicum L.), spearmint
(Mentha spicata L.), peppermint (Mentha piperita), and thyme (Thymus vulgaris L.)
in comparison to cultures cultivated on the same media under normal air condition
(Tisserat 2002). To give another clear example, concentration of digoxin (used to
treat cardiac failure) from Digitalis lanata is increased by 3.5-fold, when the plant is
grown at a high level of CO2, whereas the amount of other potent bioactive
glycosides, such as digitoxin, digoxin, and digoxin-mono-digitoxoside, was found
to be reduced remarkably. In fact, besides CO2 concentration, the extent of its
exposure also plays a key role to alter the secondary metabolite concentration in
medicinal plants. For example, in high level of CO2, the concentration of three
potent anti-viral and anti-neoplastic alkaloids, pancratistatin, 7-deoxynarciclasine,
and 7-deoxy-trans-dihydronarciclasin (present in the bulb of Hymenocallis
littoralis), was increased over the first year of investigation, but these compounds
were reported to be reduced on further exposure (Gupta et al. 2019).
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2.3.3 Effect of Elevated Ozone Levels

Reckless human activities on earth have dramatically resulted in an increased level
of greenhouse gas O3 in the lower atmospheric layer. Overproduction of O3 on the
tropospheric level of the earth is chiefly due to fossil fuel combustion. This com-
bustion generates different volatile organic molecules and nitrogen oxide that inter-
act with oxygen molecules to produce O3. In contrast to CO2, O3 induces oxidative
stress in plant cells and decreases the rate of plant respiration, photosynthesis, and
plant growth and also brings about an alteration in nutrient allocation and senes-
cence. Also, fluctuation in O3 concentration can produce alteration in the production
of secondary metabolites (Kanoun et al. 2001; Holton et al. 2003; Kopper and
Lindroth 2003). In some cases, physiological stress in the plant foisted by raised
O3 levels can trigger many metabolic pathways (e.g., jasmonic acid and salicylic
acid pathways) (Bidart-Bouzat and Imeh-Nathaniel 2008).

Many studies have suggested that susceptibility toward the O3 level varied among
different species. Relatively, gymnosperms have a diverse arrangement of defense
mechanisms against this stress, whereas angiosperms are more susceptible toward
increased O3 (Valkama et al. 2007). For instance, augmented atmospheric concen-
tration of O3 stimulates lignin and catechin biosynthesis in Picea abies, catechin
production in Pinus sylvestris, and phytoalexin synthesis in Pinus ponderosa
(Grimmig et al. 1997). According to a previous study, variation in phytochemicals’
biosynthesis in plants is directly influenced by acute and chronic stress of O3.
According to Kanoun et al. (2001), there was temporal variation in the amount
and constitution of phenolic compounds in Phaseolus vulgaris leaves which were
exposed to moderate O3 levels. Initially, the amount of hydroxycinnamic acid was
decreased followed by de novo synthesis of other diverse phenolic compounds
(isoflavonoids) after long-term enrichment of O3. Another investigation revealed
that the synthesis of three quercetin derivatives avicularin, isoquercitrin, and
quercitrin was particularly enhanced by elevated O3 concentration, whereas the
amount of other phenolic derivatives remained unchanged. Therefore, phenolic
compounds induced by ozone have been considered as significant bioindicators of
natural ecosystem pollution (Kanoun et al. 2001; Sager et al. 2005).

2.3.4 Enhanced Ultraviolet Radiation Effect

The supply of ultraviolet light is crucial for various biological phenomena and
chemical reactions. However, a high concentration of this radiation may produce
an unwanted effect on living organisms, especially for medicinal plants (Roberts and
Paul 2006). The UV radiation may result in cellular and molecular damage; for
instance, it can impair the integrity of DNA, proteins, hormones, RNA, and other
biomolecules (Stratmann 2003). Besides that, this radiation may significantly impair
the growth and development of plants and induce alteration in height, flowering
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time, leaf characteristics, and reproductive or vegetative biomass (Bornman and
Teramura 1993). Influence of UV light on plant-derived secondary metabolite
biosynthesis is usually associated with the alterations in the formation of
phenylpropanoid- or shikimic acid-derived phenolic compounds (Bassman 2004).
Apart from some deviations, most of the investigation have reported an elevation in
phenolic compounds’ synthesis (flavonol, isoflavonoids, anthocyanins,
flavoproteins, flavonol glycosides, coumarins, and phenolic acids) under augmented
concentration of UV radiation especially UV-B light (Bidart-Bouzat and Imeh-
Nathaniel 2008).

2.3.5 Effect of Drought Condition

According to several types of research and investigations, during drought or water
stress conditions, plants can store a higher amount of secondary metabolites, like
phenolic derivatives, terpenoids, glucosinolates, alkaloids, and cyanogenic gluco-
sides. But, on the other hand, the growth rate of plants is diminished. The main
reason for increased secondary metabolites’ production is due to retardation in plant
biomass formation. However, the rate of secondary metabolite synthesis is always
constant. Thus, the increased amount of metabolites is based on the total weight of
the dry or fresh plant (Selmar and Kleinwächter 2013). Another study reported that
the concentration of monoterpenes in Salvia officinalis and Petroselinum crispum
was extremely high in drought conditions. Also, the rate of biosynthesis was much
greater than biomass reduction in comparison to controls, which were cultivated on
an environment with sufficient availability of water (Petropoulos et al. 2008).
Similarly, in drought conditions, the total amount of essential oil per plant of
Origanum vulgare was constant, whereas the metabolite concentration was high. It
indicates that the extent of monoterpene production in plants remained unchanged.
However, the same quantity of monoterpene was obtained, even using a lesser
amount of plant biomass (Paulsen and Selmar 2016).

2.3.6 Effect of Cold Environment

Overall, the low temperature can result in severe stress on most plants. Mainly, it can
retard the whole development phenomenon, diversity, productivity, and distribution,
to a great extent (Chinnusamy et al. 2007). Low temperature has a direct effect on the
physiology of plants and can change the cell membrane fluidity by altering its
concentration (Ruelland et al. 2009; Sevillano et al. 2009; Upchurch 2008). To
cope with a cold environment, plants start to alter their surviving strategies. For
this, they can lower the growth rate and redistribute essential resources (Eremina
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et al. 2016). Due to low temperature, generation of stress-producing free oxygen
radicals increases, and plants have to scavenge these radicals by activating the
synthesis of antioxidants (Ruelland et al. 2009; Sevillano et al. 2009). Also, it is
crucial to raise the concentration of soluble solids, cryoprotective proteins, and
amino acids to keep up cellular solidarity. To survive in a harsh cold environment,
plant cells switch on numerous metabolic and enzymatic pathways (Ruelland et al.
2009; Eremina et al. 2016).

Several medicinal plants, like Cistus incanus, Thymus sibthorpii, Teucrium
polium, Satureja thymbra, and Phlomis fruticosa, exhibit seasonal dimorphism by
developing different defense mechanisms (Lianopoulou and Bosabalidis 2014).
Hormones play a vital role to activate their defense system. For example, Origanum
dictamnus develops various anatomical (rigid and thick cuticle, wax layer formation
over the epidermal surface of leaves, and development of dense non-glandular
trichomes) and structural variations (size, shape, and leaves distribution) to combat
against cold weather (Lianopoulou and Bosabalidis 2014).

Low-temperature stresses modify the structure and anatomy of the plants as well
as their results in the upraising of their antioxidant components, which ultimately
leads to an increase in their nutritional and medicinal significance (Khan et al. 2015;
Lianopoulou & Bosabalidis, 2014; Saema et al. 2016). In a previous investigation,
when ashwagandha (Withania somnifera) was grown at low temperature, it exhibited
deposition of bioactive compound “withanolide” inside leaves (Khan et al. 2015;
Kumar et al. 2012). Contradictorily, the amount of the same compound in root
tissues was found to be reduced at low-temperature stress (Khan et al. 2015),
suggesting that the effect of cold conditions is varied on different plant tissues and
organs.

2.3.7 Global Warming

Due to the incautious anthropogenic release of greenhouse gases into the atmo-
sphere, the mean temperature of the earth has been increased since the twentieth
century. Generally, the physiological processes of insects and plants are directly
connected with atmospheric temperature. Alteration or elevation of this parameter
may result in prominent effects for natural interaction between these two classes of
living organisms. For instance, a rise in global temperature may cause mismatches in
morphogenesis between insects and plants. Some investigations have suggested the
consequence of raised temperature on the biosynthesis of plant secondary metabo-
lites (Table 2.2); the result seems to be dependent on the nature of the chemicals and
type of the plant species (Mishra 2016). For example, many types of research have
studied the effect of elevated temperature on total phenolic content (Kuokkanen et al.
2001; Williams et al. 2003; Hansen et al. 2006), volatile organic compounds (VOCs)
like hexenal and terpenes (Sallas et al. 2003; Snow et al. 2003; Loreto et al. 2006),
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and glucosinolates (Matusheski et al. 2004; Valente Pereira et al. 2002; Velasco et al.
2007). High temperature can result in the release of VOCs and may cause pollution
on the tropospheric surface (Loreto et al. 2006). The high temperature leads to an
elevation in the amount of some hydrolyzed products of glucosinolates like
isothiocyanates. On the other hand, the number of nitrile products gets decreased.
Furthermore, alteration in secondary metabolites caused by high temperature can
have an inauspicious effect on the insect life cycle. In a study, Dury et al. (1998)
reported that increased content of condensed tannin (due to raised temperature) in
Quercus robur exerted a harmful effect on the development phase of larva and
fertility of phytophagous insects, whose life is linked with this plant species.

2.3.8 Anthropogenic Factors

In the present scenario, the vast majority of the medicinal plants, growing wildly, are
at the risk due to their irrational utilization and overexploitation. Therefore, these
precious medicinal species are declining abruptly. Expanding human population,
habitat fractionation, the elevated reliance of enormous inhabitants of the world
within restricted natural resources of the large population of the world on the limited
natural resources, and urbanization are driving factors for this detrimental situation.
Because of these incautious human activities, it is approximated that the rate of
medicinal plants’ annihilation has been seriously expedited. According to the data
given by IUCN 2018, out of 96,951 investigated plants, 26,840 species are at the risk
of extinction.

The Himalayan regions are a hotspot area for universal biodiversity, as these
lands nurture a prosperous repository of remedial flora. Also, it is a territory of large
numbers of endemic medicinal plants. Despite that, in the present situation, natural
floras of these medicinal plants are suffering through extreme risk from numerous
anthropogenic activities, like unrestrained deforestation, habitat destruction, illegal
trade of plant-derived medicinal product, over-grazing, chaotic tourism influx,
non-scientific development, broadening of road, shifting agriculture, harvesting
before the maturation of seed or flower of plant, unrestricted and non-selective
harvesting of target medicinal plant without leaving possible germinating parts
(like roots, rhizome), logging, over a collection of forest resources, industrialization,
overexploitation for local use, and outspread of intrusive alien plant species. Also,
these human activities can result in calamitous climatic changes, such as landslides,
avalanches, soil erosion, and forest fire, which have a direct effect on the availability
of medicinal plants (Ganie et al. 2019; Paul et al. 2015). Ganie et al. (2019)
conducted a research to investigate the overall threat impact on medicinal plants
native to Kashmir Himalaya. Some of the medicinal plants, which are on high threat
of extinction due to anthropogenic factors, are depicted on Table 2.3.
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2.4 Conclusions and Future Recommendations

Himalayan medicinal plants are an integral part of livelihood of the local commu-
nities living in rural area. They are not only used for the treatment of various diseases
as traditional medicines, but many are also used as food and spices and also
collected, processed, and sold in the market for generating economy. Various
environmental challenges such as climate change, global warming, and various
other factors are threatening their biodiversity and natural abundance along with
various changes in physiology and chemical constituents (Fig. 2.1).

Community awareness and involvement is necessary for protecting the threatened
medicinal plants species in Himalaya. Although there have been many studies
related to the effects of environmental challenges in biodiversity, relatively few
studies are carried out regarding the physiochemical changes in medicinal plants.
Detailed studies should be carried out to understand the effects of these environ-
mental factors on the chemical constituents and pharmacological activities in the
future.

Table 2.3 Medicinal plants that are on high threat of extinction due to anthropogenic factors

S. N. Plants Family Cause of threat Severity
Overall
threat impact

1 Achillea
millefolium

Compositae Overharvesting, construction
project on native place,
utilization for fodder

Modest Low

2 Aconitum
heterophyllum

Ranunculaceae Soil erosion/landslides,
overutilization for folk use,
illegal trade

Critical Very high

3 Adiantum
capillus-
veneris

Pteridaceae Overharvesting, construction
project on native place,
landslide

Moderate Low

4 Corydalis
cashmeriana

Papaveraceae Landslide, over-grazing by
cattles

Slight High

5 Corydalis
thyrsiflora

Papaveraceae Landslide, over-grazing by
cattle

Slight Low

6 Digitalis
lanata

Plantaginaceae Urbanization, transformation
of grassland and forest for
agriculture

Large High

7 Fritillaria
cirrhosa

Liliaceae Building construction,
unmanaged tourism,
overharvesting, over-grazing
by cattle, illegal trade

Moderate Very

8. Gentiana
carinata

Gentianaceae Overharvesting, over-grazing
by cattle, forest exploitation

Moderate Low

9 Hyoscyamus
niger

Solanaceae Over-grazing by cattle,
overharvesting, urbanization,
unmanaged tourism

Moderate Moderate

10. Lavatera
cachemiriana

Malvaceae Forest overexploitation,
over-grazing by cattle,
overharvesting, urbanization

Slight Medium
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Chapter 3
Wild-Growing Species in the Service
of Medicine: Environmental Challenges
and Sustainable Production

Jelena B. Popović-Djordjević, Milica Fotirić Akšić,
Jelena S. Katanić Stanković, Nebojša Đ. Pantelić, and Vladimir Mihailović

Abstract Wild fruits are underutilized plants that are well adapted to the local
climatic conditions. Extreme environmental conditions due to climate change or
variability are a threat to wild-growing species, crop production, productivity, and
livelihood. Wild fruit fields could be affected by not meeting winter chilling require-
ments, which is specific for every fruit species. On the other hand, the plants’
secondary metabolites and other bioactive compounds can be attributed to the
changing conditions as a response to various types of environmental stresses
which affect their production. Secondary metabolites refer to small molecules that
are non-essential for the growth and reproduction of plants, but have a wide range of
effects on the plant itself and other living organisms. Blackthorn (Prunus spinosa
L.), Cornelian cherry (Cornus mas L.), dog rose (Rosa canina L.), and hawthorn
(Crataegus monogyna Jacq.) are important wild plants with powerful health-
promoting properties. Due to their chemical composition and nutritive value, they
have a strong effect on regional food security and poverty alleviation. Positive health
effects, forceful impact on the quality of life, and market potential are additional
attributes of these plants, which may have significant economic impact.
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Abbreviations

GC Gas chromatography
GC-FID Gas chromatography with flame ionization detection
GC-MS Gas chromatography-mass spectrometry
HPLC High performance liquid chromatography
HPLC-DAD High performance liquid chromatography coupled

with diode-array detection
HPLC-DAD-ESI/MS High performance liquid chromatography coupled

with diode-array detection—electrospray ionization
mass spectrometry

HPLC-ESIQ-TOF-MS High performance liquid chromatography coupled to
electro spray ionisation and quadrupole time of flight
mass spectrometry

HPLC-MS High performance liquid chromatography with mass
spectrometry

HPLC-RI High performance liquid chromatography with
refractive index detectors

ICP-OES Inductively coupled plasma—optical emission
spectrometry

LC-DAD/ESI/MS Gas chromatography with diode-array detection—
electrospray ionization mass spectrometry

LC-MS/MS Liquid chromatography with tandem mass
spectrometry

UHPLC-DAD-ESI-MS/MS Ultrahigh performance liquid chromatography
coupled with diode-array detection—electrospray
ionization tandem mass spectrometry

UPLC-MS/MS Ultra-performance liquid chromatography-tandem
mass spectrometry

UPLC-MS2 Ultra-performance liquid chromatography-tandem
mass spectrometry

UV/Vis Ultraviolet-visible spectroscopy.

3.1 Wild Fruits and Environmental Challenges

Wild fruits are underutilized, less known, polycarpic plants that bear fruits and are
well adapted to the local climatic conditions. All these species have strong effect on
regional food security and poverty alleviation. Due to their positive health effects
and market potential, the gathering of these plants has a forceful impact on the
quality of life and economics. These species that today have fallen somewhat into
disuse were widely consumed in the past and especially in times of scarcity (Tardío
et al. 2006).
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The introduction of wild fruit species into the commercial fruit growing can be
useful for several reasons: diversification of agriculture throughout the region,
introduction of new raw materials into the food industry, as well as the preservation
of agro-biodiversity. A number of wild relatives of cultivated fruit trees could be
used in the future as rootstock in fruit production or for organized production, either
organic or conventional. In the intensive fruit production, there are more and more
problems with the susceptibility of cultivars to diseases and pests, which imposes
numerous and obligatory applications of protective chemicals, which in addition to
mineral fertilizers are reducing biological value of the cultivated fruits. Since wild
fruit genotypes carry resistance genes for the most economically important pests,
they can be used in breeding fruits and vines. Wild fruit species are also used as
planting material for afforestation and prevention of erosion, some in cosmetic
industry, and some as decorative forms in landscape architecture, while some species
are important bee pastures (Mratinić and Fotirić-Akšić 2014).

Wild fruits are crucial for poor rural inhabitants and unemployed youths by
giving them the possibility to make new varieties of edible products such as baking
products, jelly, jam, preserves, marmalade, chocolate candy, dry berries, pickled
(especially Cornelian cherry), pudding, butter, sauce, wine, juice, salad dressing, pie,
tart, syrup, sauce, sherbet, candy, wine, cider, blossom fritters (especially from
elderberry), and even beer. Wild fruits can be sold as potted trees; wood can be
used for making furniture, jewelry, and traditional musical instruments. A commu-
nity can be developed by starting small businesses. Wild fruit gathering can be
organized as a recreation and tourism activity, promoting native recipes, cooking
traditions, making festivals, and spreading local history.

In the last decade, wild fruits have received increasing interest due to their
medicinal properties and nutritional value (Mikulic-Petkovsek et al. 2015; Li et al.
2016). They are a rich source of various bioactive compounds such as carbohydrates,
organic acids, proteins, phenolic compounds, carotenoids, tocopherol, volatile oils,
pectins, tannins, fatty acids, oils, aromatic substances, enzymes, vitamins, minerals
(K, Ca, P, Fe, Mg, and Mn), dietary fibers, and others (Demir et al. 2014; Krstić et al.
2019, Popović-Djordjević et al. 2021).

All those phytochemicals together combat the oxidative stress which performs an
essential role in multiple chronic diseases. Bioactive compounds from wild fruits
have antioxidant, anti-inflammatory, antimicrobial, anti-ulcerogenic, antidiabetic,
anti-mutagenic, and anti-cancer activities, and they act against rheumatoid arthritis,
osteoporosis, hyperlipidemia, obesity, renal disturbances, skin disorders, and aging
(Mármol et al. 2017; Tumbas et al. 2012). Therefore, wild fruits have the potential to
become a functional food that will be used in preventing and treating chronic
diseases. New application of wild fruits includes using natural antioxidants to extend
the shelf life of food products and replace synthetic antioxidants, avoiding potential
health risks and toxicity (Lourenço et al. 2019).

The wild fruits are very healthy food of high nutritional and, above all, vitamin
value (Fernandez-Ruiz et al. 2017). The source of vitamin C among wild fruits is found
in rose hips (Rosa sp. – 130–6694 mg/100 g), young walnut husk (500–2459 mg/
100 g), and then currants, bilberry, and cranberry (Gergelezhiu 1937; Yoruk et al.
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2008; Milivojević et al. 2013). Rowan (Sorbus aucuparia), seaberry (Hippophae
rhamnoides), dog rose (Rosa sp.), and hawthorns (Crataegus sp.) are rich in carotenes.
Rose hips, wild strawberries, and bilberries contain a relatively large amount of niacin.
Vitamins B, K, and E are abundant in currants and gooseberries, dog rose, rowan, and
guelder-rose. Fresh wild fruit extracts are an excellent source of polyphenolic com-
pounds, acting as free radical scavengers, which can prevent neurodegenerative and
cardiovascular diseases and even cancer (Zafra-Stone et al. 2007; Jing et al. 2008).

Wild fruits usually have more moisture, energy value, and more complex phyto-
chemical composition than the cultivated varieties (Thole et al. 2006). Moreover,
their main advantage is that they grow in nature without human influence, which
means without watering, spraying with chemicals, or fertilization with synthetic
fertilizers, and they are richer in the quantity of bioactive compounds. On the other
hand, these fruits grow in optimal natural conditions, so they are more biologically
resistant and less endangered by pathogens and pests, and their fruits are more
abundant in bioactive substances. However, when collecting wild fruits, it should
always be kept in mind that the picking should be done rationally, and some plants
should leave in order to allow them to grow and reproduce.

Extreme environmental conditions due to climate change or variability are a
threat to wildlife, crop production, productivity, and livelihood. In most cases,
climate change is associated with elevated temperatures, solar radiation, drought,
strong winds, and hails. The prediction is that the temperature will be higher by
1–3 �C, so the rainfall, snowfall, UV radiation, and amount of ozone, aerosols, and
clouds in the atmosphere will be altered (Bais et al. 2014). According to Wessels
et al. (2021), under a low-warming scenario, 60% of wild food plant species will
experience an increase in the range extent, while 40% will experience a decrease,
whereas in a high-warming scenario, reduction of 66% in wild-harvested food plant
species will be observed. Therefore, according to Arslan et al. (2020), 170,596 km2

is currently a “highly suitable” area for Rosa canina L., but in a “milder” scenario,
the area will contract to 114,474 km2 by 2070, and in the “warmer” scenario, it will
be just 41,146 km2 by 2070.

Climate change will diminish wild fruit fields, first of all, by not meeting winter
chilling requirements, which is specific for every fruit species, delay of flowering
and/or fruiting, and higher fruit abscission. Also, it can happen that due to the
warming up, invasive species might divert pollinating insects away from the native
wild fruit-producing plants. If winter precipitation decreases and if summer temper-
atures substantially increase, changing locations for wild fruits will be observed,
which can be a problem for people who have developed traditional berry-gathering
sites (Kellogg et al. 2010). On the other hand, climate change can positively affect
the production of bioactive compounds, but in some cases, it would lead to deteri-
oration in quality parameters such as fruit weight (Romero-Román et al. 2021).
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3.2 Description of Selected Wild Fruit Plants

3.2.1 Blackthorn

Photo was taken by Nenad Mićanović, Serbia

Blackthorn or sloe (Prunus spinosa
L.) belongs to the Rosaceae family.
It occurs in most of South-Central
Europe and northward to the
southern part of the Scandinavian
Peninsula and eastward to the Asia
Minor, the Caucasus, and the
Caspian Sea. Southward, it can be
found in North Africa (in Tunisia
and Algeria). It is naturalized in
many other parts of the world
(North America and New Zealand).
The specific name “spinosa” comes
from a Latin term indicating thorn-
like spur shoots. The evidence of
the early use of sloes by man is
found in the famous case of a 5300-
year-old human mummy discov-
ered in 1991 in the Ötztal Alps
along the Austrian-Italian border.

It is a deciduous shrub or, very rarely, small tree growing to 5 m. Since it readily
produces suckers and 1-year branches have savage thorns, traditionally, it was used
in making a cattle-proof hedge. Flowers are small, pentapetalous, single or in pairs,
bisexual, and creamy-white. It blossoms very early (in March/April), much before
leafing. The fruits ripen in late August and are called “sloe.” It is a black drupe with a
purple-blue waxy bloom which gives the young fruit a matt appearance. It contains
one large and rough stone, either cling or noncling. It has a very strong astringent
flavor, but best for consumption is after the first frosts. Fruits can remain attached to
the plant for a prolonged period, even until the spring.

It is a heliophyte and xerothermophilic species which grows on glades, forest
borders, gullies, and river valleys, in meadows and pastures, and on mountain slopes.
It makes a dense belt of shrubs adjacent to the forest between woodland and
grassland communities where it is left untrimmed and ungrazed. Blackthorn prefers
deep and moist soils (except acid peats) regardless of geological basis. It is charac-
terized by broad adaptability and good viability so it can survive on dry and eroded
soils along the banks of gorges and on stony slopes (Dzhangaliev et al. 2003). It can
be found at altitudes of up to 1600 m, and it can sustain frosts up to�30 �C (Mratinic
and Fotiric-Akšic 2019). Crossing combination blackthorn � European plum

3 Wild-Growing Species in the Service of Medicine: Environmental Challenges. . . 53



(Prunus domestica) forms Prunus � fruticans hybrids. Since the plant is hard and
grows in a wide range of conditions, it is used as a rootstock for plum and apricot. It
is also an important plant for wildlife, its early spring flowers provide nectar for early
pollinators, and its branches create a spiny thicket, providing secure nesting for birds
and protection and food for small mammals (Popescu and Caudullo 2016). It is
suitable for stabilizing stony slopes of gorges and preventing landslides in the
mountains (Dzhangaliev et al. 2003).

The fruits are mostly used in jellies, syrups, vinegar, and conserves and for liquor
making (like gin, kvass, patxaran, flavored beers, vodka, “Porto” wine, “pacharán,”
“troussepinette,” “bargnolino,” “eau de vie de prunelle,” “vin d’épine”) or as
ingredients of various pastries (Yuksel 2015; Popescu and Caudullo 2016). Sloes
can also be made into jam and used in fruit pies, and if preserved in vinegar, they are
similar in taste to Japanese “umeboshi.” The flowers, petals, leaves, and dried fruits
are used as herbal tea (Alarcón et al. 2015). The juice of the fruit dyes linen a reddish
color that washes out to a durable pale blue. Blackthorn makes excellent firewood
that burns slowly with good heat and little smoke. The wood has light yellow
sapwood and brown heartwood. It is hard and tough and polishes up well. Tradi-
tionally, blackthorn wood is used for walking sticks and for the Irish shillelagh
(Knaggs and Xenopoulou 2004).

3.2.2 Cornelian Cherry

Photo was taken by Milica Fotirić-Akšić,
Serbia

Cornelian cherry or dogwood
(Cornus mas) belongs to the genus
Cornus (contains 45 species) and
family Cornaceae. This species
primarily grows in the temperate
zone of Eurasia, and it is highly
tolerant to diverse abiotic and biotic
conditions. It grows spontaneously
along oak forest edges and in
woodland clearings; it is a light-
loving plant and can live up to
300 years. In its distribution area,
most individuals occur spontane-
ously as a result of open pollina-
tion, which varies widely in terms
of productivity and fruit character-
istics (Murrell 1993).
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It is a deciduous shrub or a small tree 3–4 m high. The bark of older plants is gray,
thin, and with shallow cracks, and juvenile branches are gray, smooth, and shiny
(Mratinic and Fotiric-Akšic 2019). The flowers are small with four yellow petals,
arranged in umbel inflorescence. It blooms at the end of winter/beginning of spring
(February/March). The fruit is an oblong, olive-shaped, red drupe containing a single
seed. When ripe (mid- to late summer), fruits resemble coffee berries. Fruits are
edible but astringent. When ripe, the fruit is dark ruby red or a bright yellow.

This is a thermophyte and xerophilic species. It tolerates shade well, and it is very
adaptive. It can be found on altitudes of up to 1300 m, on hills and slopes, and in
forest clearings, as a companion tree in hornbeam, oak forests, and manna ash.
Cornus mas can grow in all kinds of soils, from light sandy to heavy clay, with a pH
ranging from slightly acid to very alkaline (Jaćimović et al. 2002; Bijelič et al. 2011).
It can survive up to �30 �C, while it is sensitive to salt and marine exposures. The
Cornelian cherry is free of disease and pest problems (Da Ronch et al. 2016).

Cornelian cherries can be consumed fresh or dried, but due to their acidic flavor,
they are mainly used for making jams, juices, sauces, and alcoholic drinks such as
vodka, brandy, and rakia (Bijelič et al. 2011). The oil-rich seeds of Cornelian cherry
can be roasted, ground, and used as a coffee substitute (Facciola 1990), or the oil can
be extracted and used in traditional medicine (Mamedov and Craker 2002). The
stones and seeds can be converted to oil that can serve as biofuel (Akalın et al. 2012).
The stones are sometimes made into beads (Smith and Branting 2014). The plant
also has ornamental usage and is considered as a nectariferous, hedge, and shade
plant (Mamedov and Craker 2002). Many European countries, such as Turkey,
Ukraine, the Czech Republic, and Serbia, have breeding programs and select
superior genotypes from natural populations (Mratinić et al. 2015).

Wood, leaves, fruits, and seeds have application in medical therapy
(Hosseinpour-Jaghdani et al. 2017) and traditional Chinese medicine. The wood of
C. mas is extremely dense and, unlike the wood of most other woody plant species,
sinks in water (Demir and Kalyoncu 2003). Some ethnographic sources from south-
east Europe describe Cornus tree as highly valued for its tough and durable wood
that was used in the manufacturing of weapons, tools, instruments, and wickerwork
(Filipović et al. 2020).

In the recent history of East European countries, Cornelian cherry tree had a
special place in the life of rural communities and played an important role in
celebrations and rituals. Some of the illustrative examples include the use of the
inflorescence to make wedding wreaths for groom and bride, while the young shoots
were eaten; the branches were placed on house roofs for protection against thunder,
and they were soaked in bathing water; small pieces of wood were kneaded into
Christmas bread; rods made from the branches were beating sticks for fighting off
werewolves and witches; child swings were hung from Cornelian cherry tree
(Čajkanović 1994).

3 Wild-Growing Species in the Service of Medicine: Environmental Challenges. . . 55



3.2.3 Dog Rose

Photo was taken by Milica Fotirić-Akšić,
Serbia

Dog rose (Rosa canina), which
belongs to the Rosaceae family, is a
climbing, wild rose species native
to the northern hemisphere
(Europe, Northwest Africa, and
West Asia). It is a deciduous
medium-developed shrub with a
height of up to 3 m. Its stems are
thin and covered with very strong,
uneven, hooked prickles. The
leaves are long, alternate- and
odd-pinnate, and composed of 7–9
leaflets. The leaflets are usually
elliptical, bare, and smooth on both
sides. The flowers are large, pale
pink, bisexual, and usually in large
corymb-like inflorescence of 3–7
blossoms. The corolla has five
white petals. The gynaeceum has
many free, fairly protruding styles.
A pseudo fruit is a red-orange
“hip,” which is an aggregate fruit
consisting of several achenes
(30–35% of fruit weight) enclosed
by an enlarged, red, fleshy floral
cup (hypanthium) (65–70% of fruit
weight) (Pećinar et al. 2021).

Rose hip achenes contain neurotoxic substances, and the hairs are extremely
irritable for the skin and mucous membranes (Ghrabi 2005). It blossoms in May and
June and ripens in September and October. Fruits persist on the plant for several
months and become black. Plants reproduce sexually by seed and vegetatively by
suckering and layering.

Rosa canina can be found in lowlands, hills, or mountain regions, in deciduous
and coniferous forests, along roadsides, in pastures, on forest clearings and edges,
and among bushes. It is very adaptive to different geological rocks (silicate and
limestone) and different soil types. It can grow in semi-shade or on direct sun. It can
tolerate strong winds but not maritime exposure. Birds and other wildlife consume
the hips of dog rose and spread the seed. In some areas, it is an invasive species
(Pavek 2012).
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The plant was described for the first time by Pliny the Elder (23–79 BC), who
attributed the plant’s name to a belief that the root could cure the bite of a mad dog
(Hass 1995). The plant had also been known by sailors as a means of protection
against scurvy, due to its high concentration of vitamin C (up to 1500 mg/100 g), and
thus it spread to several continents (Winther et al. 2016). Today, these deciduous
flowering shrubs are widely grown in gardens for their flowers and fruits (Ercisli
2005).

The fruit is used in the making of traditional probiotic drinks, beverages, soups,
and yogurts, herbal teas, pies, stews, and wine, whereas the flowers can be made into
syrup, eaten in salads, candied, or preserved in vinegar, honey, and brandy (Ahmad
et al. 2016; Chrubasik et al. 2008). Distilling 1 kilo of flowers gives 1 liter of pure
rose water (Ghrabi 2005). In traditional folk medicine, aqueous extracts of petals,
fruit, and leaves of Rosa canina plants are applied in the treatment of various
diseases such as nephritis, common cold, the flu, coughing, bronchitis, eczema,
itching, and biliary diseases (Kultur 2007). The substances within the dog rose
hips are endowed with vitaminisant, astringent, colagogue, choleretic, diuretic,
antidiarrhoea, antioxidant properties (Roman et al. 2013).

3.2.4 Hawthorn

Photo was taken by Milica Fotirić-Akšić,
Serbia

Common hawthorn or single-seed
white hawthorn (Crataegus
monogyna) is an endemic member
of the Rosaceae family (Chang
et al. 2002). The generic name
Crataegus stems from the Greek
“Kratos” meaning strength, and the
species’ name monogyna reveals
that this species contains one
(“mono”) seed (“gyna”). It is native
to Europe, Northwest Africa, and
West Asia, but has been introduced
in many other parts of the world.
The plant forms a bush or a small
tree, 3–10 m high. The crown is
round and dense. One-year-old
shoots, the leaves, stems, and
flowers are completely bare or
slightly ciliate on the receptacle and
the flower’s stem. The younger
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stems bear sharp thorns. The leaves
are obovate and lobed at a wide
angle. The flowers are bisexual,
white, or pink and organized in
corymbs with 4–33 blossoms
together. The fruits are tiny
(10 mm). Oval dark red haws, del-
icate in taste, contain only one seed
(Mratinic and Fotiric-Akšic 2019).

It blossoms from late April until mid-June, and it is a sign that spring is turning to
summer. The fruits ripen in the second half of September. The most widely known
hybrid is C. � media (C. monogyna � C. laevigata), from which “Paul’s Scarlet”
genotype (with dark pink double flowers) was derived. Seedling trees take from 5 to
8 years before they start bearing fruit. The plant may be invasive.

This plant is an extreme heliophyte and can be found at altitudes of up to 1600 m.
The tree is quite adaptive and can thrive in both carbonate and silicate soil. It appears
most frequently on the fringes of forests and on waysides and roadsides. The
hawthorn has developed resistance to drought, overly moist environments, wind,
and atmospheric pollution. Common hawthorn can live long. In Mayenne (France),
there is one hawthorn tree that is traced back to the third century.

Traditionally, C. monogyna has been used in folk medicine as a primary heart
tonic, to correctly balance high and low blood pressure. Hawthorn is mainly used for
hedging, especially in agriculture because it is stock- and human-proof. Being small
in size, the use of its timber covers wood engravers’ blocks, mallet heads, and tool
handles. Since it grows in twisted shape, it is an excellent wood for carving
ornaments. It is good firewood which burns with good heat and little smoke (Knaggs
and Xenopoulou 2004).

The fruits of C. monogyna are used for different culinary purposes, such as the
preparation of jellies, jams, syrups, candies, and pickles, and they are used to make
wine or to add flavor to brandy (Sallabanks 1992). The fruit can be dried, ground,
mixed with flour, and used for making bread and roasted seed for “coffee.” The
petals are also edible, as are the leaves, which if picked in spring when still young are
tender enough to be used in salads (Kunkel 1984).

In folk medicine, the hawthorn is the center of many folklore tales, legends, and
beliefs. It was primarily used to protect against all forms of evil spirits and demons.
To ward them off, hawthorn amulets were carved and hung above doors or worn for
protection. For example, in Serbian and Croatian folklore, hawthorn stakes were
used to slay vampires, while in Gaelic folklore, the hawthorn symbolized the
entrance into the other world and was strongly connected to fairies. Hawthorn
bears both Pagan and Christian symbolism since it is believed that the stems that
were used to make the crown of thorns given to Jesus before his crucifixion were
made of hawthorn (Eberly 1989).
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3.3 Chemical Composition of Selected Wild Plants

Compounds from different classes were found in fruits and other plants’ parts of
blackthorn, Cornelian cherry, dog rose, and hawthorn. These wild plants are good
source of sugars, organic acids, fatty acids, amino acids, essential elements, and
vitamins. The common sugars are fructose, glucose, sucrose, pectines, and cellulose.
Among organic acids, malic, citric, oxalic, tartaric, quinic, and succinic are most
represented in various parts of described plants (Barros et al. 2010; Babalau-Fuss
et al. 2018; Cunja et al. 2016; De Biaggi et al. 2018; Ilyasoğlu 2014; Kubczak et al.
2020; Milić et al. 2020; Nađpal et al. 2016; Özderin et al. 2016; Paunović et al. 2018;
Popović-Djordjević et al. 2021; Sikora et al. 2013; Vasić et al. 2020). Moreover, they
are rich in secondary metabolites especially polyphenolic compounds including
phenolic acids, flavonoids, anthocyanins, and tannins (Alirezalu et al. 2020; Baji-
ć-Ljubičić et al. 2018; Bekbolatova et al. 2018; Cunja et al. 2016; Garofulić et al.
2018; Gironés-Vilaplana et al. 2012; Guimaraes et al. 2013, 2014; Jiménez et al.
2017; Kerasioti et al. 2019; Kubczak et al. 2020; Liu et al. 2011; Medveckiene et al.
2020; Milenković-Andjelković et al. 2015; Moldovan et al. 2016; Nađpal et al.
2016; Okan et al. 2019; Ouerghemmi et al. 2016; Natić et al. 2019; Popović et al.
2020; Pozzo et al. 2020; Polumackanycz et al. 2020; Szumny et al. 2015; Veličković
et al. 2014; Zhang et al. 2020; Živković et al. 2015). These compounds contribute to
antioxidant activity and other health-beneficial properties of fruit extracts as well as
extracts obtained from flowers, leaves, twigs, and seeds. Other important secondary
metabolites found in selected wild plants are carotenoids, terpenes, terpenic acids,
and sterols (Cunja et al. 2016; De Biaggi et al. 2018; Kerasioti et al. 2019;
Medveckiene et al. 2020; Ouerghemmi et al. 2016).

Secondary metabolites are substances produced by plants in response to various
types of environmental stress and mediate interactions between organisms. Unlike
primary metabolites, secondary metabolites are associated with small molecules that
are non-essential for the growth and reproduction of the plants, but have a wide
range of effects on the plant itself and other living organisms. They cause flowering,
fruit set, and shedding; maintain perennial growth or signal deciduous behavior;
have a defensive function in protecting plants from pathogens, pests, and herbivores;
act as antimicrobial drugs; and act as attractants or as repellents. Over 50,000
secondary metabolites have been discovered in the plant world. The basis for the
positive health effects of medicinal plants and many modern medicines lay in
secondary herbal metabolites (Pang et al. 2021; Teoh 2016).

Chemical compositions of extracts of different parts of blackthorn, Cornelian
cherry, dog rose, and hawthorn plants obtained by various solvents (or solvent
mixtures) are presented in Tables 3.1, 3.2, 3.3, and 3.4, respectively.

Chemical structures of most prominent compounds (major compounds and sec-
ondary metabolites) isolated from described wild plants are given in Figs. 3.1, 3.2,
3.3, 3.4, 3.5, 3.6, 3.7, and 3.8.
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3.4 Biological Activity and Medicinal Application
of Selected Plants

Blackthorn (Prunus spinosa L.) is used in the traditional medicine of many
European countries, and it is native in West Asia and Northwest Africa as well
(Marchelak et al. 2017). In Europe and Near East countries, the blackthorn fruits
have been used since prehistoric times (Balta et al. 2020). Blackthorn fruits, despite
their pungent acid taste, were dominantly used as phytotherapeutics in the treatment
of diseases of the circulatory system, based on their anti-inflammatory, diuretic,
laxative, and astringent characteristics, but also for curing coughs (Marchelak et al.

Fig. 3.1 Chemical structures of organic acids isolated from selected wild plants
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2017; Sabatini et al. 2020). Fruits also possess heart-strengthening properties and are
used in the treatment of myocarditis, cardiac neurosis, and atherosclerosis (Jarić et al.
2015).

The other parts of the plant (e.g., roots, flowers, and laxative and bark) have
similar effects (laxative and diuretic) (Balta et al. 2020). Flowers showed many
beneficial properties, such as detoxifying, anti-inflammatory, vasoprotective, and

Fig. 3.2 Chemical structures of the most represented saturated and unsaturated fatty acids (FAs) of
selected wild plants
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spasmolytic actions, and may be used for various disorders of the respiratory tract
and intestinal problems, but also in the treatment of cardiovascular diseases (March-
elak et al. 2021).

Fig. 3.3 Chemical structures of carotenoids and triterpenoid acids (betulinic and ursolic) isolated
from selected wild plants
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Although the astringent P. spinosa fruits have many benefits for human health,
their consumption is limited to the prepared product such as teas, juices, wines,
liqueurs, jams, and compote, because heat treatment contributes to the richness of
taste (Balta et al. 2020; Sabatini et al. 2020).

Main compounds that are associated with blackthorn pharmacological potential
are several classes of polyphenols – anthocyanins, A-type proanthocyanidins, tan-
nins, flavonoids, and phenolic acids (Marchelak et al. 2017). All these phytochem-
icals are well-known for their significant activities in terms of antioxidant defense,
anti-inflammatory, and antimicrobial effects (Katanić et al. 2015a, 2016), and many
compounds, including anthocyanins, showed excellent cardioprotective properties
(Di Lorenzo et al. 2021; Najjar and Feresin 2021; Verediano et al. 2021). Various
biological activities of many plants from Rosaceae family containing anthocyanins,
hydroxycinnamic acids, flavonoids, and tannins are well-known, not just the species

Fig. 3.4 Chemical structures of phytosterols isolated from selected wild plants
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with edible fruits (Mihailović et al. 2018, 2019) but also the aerial parts, flowers, and
roots of herbaceous Rosaceae plants (Katanić et al. 2015a, b; Boroja et al. 2018).

The antioxidant activity of blackthorn fruits was assessed in vitro by many
research groups in the last decade, starting with Barros et al. (2010), who showed
significant amount of tocopherols and vitamin C in blackthorn fruit extract, but also
interesting free radical scavenging properties, especially in terms of lipid peroxida-
tion inhibition. This was also confirmed by Morales et al. (2013). The antioxidant
action of aqueous P. spinosa fruit extract toward DPPH radical was shown by Gegiu
et al. (2020) as well as by Sabatini et al. (2020) who demonstrated concentration-
dependent antioxidant potential as well as antimicrobial and anti-inflammatory

Fig. 3.5 Chemical structures of most represented phenolic acids in selected wild plants
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properties. The antimicrobial effects of P. spinosa fruit from Italy showed
antibacterial potential against both Gram+ and Gram� bacteria, e.g., E. coli,
S. typhimurium, E. aerogenes, E. faecalis, and S. aureus (Pozzo et al. 2020), along
with in vitro antioxidant properties and against in vivo streptozotocin-induced
oxidative stress in liver and brain tissues.

Many Serbian authors confirmed antioxidant properties of blackthorn fruit, pre-
dominantly used in Serbia as an infusion or alcoholic extract in the treatment of heart
problems and for reducing high blood cholesterol and triglyceride levels (Šavikin
et al. 2013). Mitic et al. (2014) reported high antioxidant potential of blackthorn
extract in FRAP, DPPH, and ABTS assays compared with blackberries, raspberries,
and cherries from southern Serbia, which correlated with the content of anthocya-
nins. Blackthorn fruits from the region of Southeast Serbia were also tested for
antioxidant activity as well as antimicrobial potential toward E. coli, P. aeruginosa,
S. aureus, and C. albicans (Veličković et al. 2014). Blackthorn fruits from Central
Serbia showed a high antioxidant potential in DPPH and nitric oxide scavenging
activity, ferro-chelating capacity, and ferric-reducing capacity assays (Natić et al.
2019). The study of ultrasonic blackthorn fruit extracts showed that 45% propylene
glycol extract had the highest antioxidant activity against DPPH radicals, nitric oxide
radical scavenging, and non-site-specific hydroxyl radical scavenging activity, along
with tyrosinase inhibitory potential (Stanković et al. 2019). P. spinosa fruit extracts

Fig. 3.6 Chemical structures of flavonoids (flavonols and flavones) isolated from selected wild
plants
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collected in north Serbia demonstrated FRAP and DPPH antioxidant potential
ranging from 7.06 to 25.27 mg ascorbic acid equivalents/g and IC50 values from
0.62 to 3.46 mg/mL, respectively, with significant positive correlation with total
phenolic content (Popović et al. 2020). The same extracts showed antidiabetic
potential toward inhibition of α-amylase and α-glucosidase enzymatic activity with
strong positive correlation with total content of phenolics and individual polyphe-
nols. The antiproliferative effects of tested fruit samples were demonstrated on HT29
cell line, with the most pronounced potential of samples from Beška (Popović et al.
2020).

Other parts of P. spinosa plant are also interesting given the biological activities
they exerted. It was reported that the extracts of P. spinosa branches showed high
DPPH scavenging capacity and that simulated in vitro digestion lead to the alteration

Fig. 3.7 Chemical structures of flavonoids (flavanones and flavans) isolated from selected wild
plants
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of phenolic compounds but with no significant changes in the total content of
polyphenolics (Pinacho et al. 2015). The flowers of P. spinosa demonstrated signif-
icant antioxidant potential, pro-inflammatory enzymes’ (lipoxygenase and hyaluron-
idase) inhibitory activity, with the protection of human plasma components against
peroxynitrite-induced damage (Marchelak et al. 2017). The flower extracts showed
scavenging effects toward harmful reactive oxygen species such as OH�, O2

–, H2O2,
NO•, ONOO–, and HOCl, along with their phenolic metabolites (Marchelak et al.
2019). Regarding the antioxidant mechanism of action of P. spinosa flower extracts
and phenolic metabolites, the same research group recently reported the amelioration

Fig. 3.8 Chemical structures of procyanidins (B1-B5) and anthocyanidins from wild plant extracts
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of fibrinogen changes under peroxynitrite-induced oxidative stress (Marchelak et al.
2021). They showed that low molecular weight blackthorn polyphenolic compounds
were the most responsible for the protection of fibrinogen and other plasma
components.

It was recently reported that P. spinosa leaf extracts (aqueous and ethanol)
showed prominent antioxidant, antimicrobial, and cytotoxic properties on malignant
cell lines: HeLa, K562, and MDA-MB-453 (Veličković et al. 2021). In addition to
this, they exerted significant inhibition of α-amylase and α-glucosidase enzymes
showing the potential antidiabetic activity. The cytotoxic effects of blackthorn
flower extract were proven by Murati et al. (2019) in non-neoplastic hepatocytes
and hepatoblastoma cells with cell death primarily through necrosis. The P. spinosa
drupes also showed cytotoxic activity against in vitro 3D and in vivo colon cancer
models. Flower extract also showed significant amelioration in oxidative status of
C57/BL6 mice in an in vivo experiment (Balta et al. 2020) affecting the levels of
internal antioxidants such as catalase, superoxide dismutase, reduced glutathione,
and levels of tissue lipid oxidation.

The biological benefits of blackthorn branch extract were applied in the gel
emulsion for the incorporation in beef patties (Alejandre et al. 2019). The extract
enhanced the antioxidant benefits, and it was able to inhibit lipid peroxidation in beef
patties. Moreover, Gironés-Vilaplana et al. (2012) tested adding lyophilized black-
thorn fruits to lemon juice toward DPPH, superoxide radical, hydroxyl radical, and
hypochlorous acid scavenging activity and additionally on AChE and BChE inhibi-
tion. It showed high activity considering a significant level of bioactive anthocyanins
as well as other important polyphenolics quantified in blackthorn fruits. Modern
aspects of application of P. spinosa fruits may be based on the use of biomimetic
nanoparticles loaded with the extract (Tiboni et al. 2021). Multiple benefits of
nanoparticle synthesis are reflected, not only in increased bioavailability and bio-
compatibility but also in the potential to be accumulated in specific tissue exerting
their biological activity. Tiboni et al. (2021) recently showed excellent properties of
P. spinosa fruit nanoparticles in wound-healing activity accompanied by increased
anti-inflammatory effects. Although there are numerous data regarding the positive
effects of blackthorn on human health, there is still enough space to evaluate its most
efficient form, to expand research in many directions, and especially to consider new
ways of application for better utilization and higher bioactivity. The overview of
major chemical constituents, secondary metabolites, and bioactivity of blackthorn is
presented in Fig. 3.9.

Cornelian cherry (Cornus mas L.) ethnomedicinal use has been well-known for
more than 1000 years in different regions of Europe and Asia. The most used
preparations in traditional medicine from C. mas are made from fruits, but there
are also some galenic formulations prepared from flowers, leaves, and fruit stones of
C. mas (Dinda et al. 2016; Przybylska et al. 2020). In ethnobotanical studies,
Cornelian cherry is reported as the most commonly used medicine for gastrointes-
tinal disorders in many countries. Especially the preparations made from Cornelian
cherry are reported to act against diarrhea and colitis (Dinda et al. 2016; Süntar et al.
2020). There are also some traditional medicines prepared from C. mas for
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inflammatory bowel disease, sore throats, wound healing, stomach ulcers, fever,
malaria, and kidney stones (Dinda et al. 2016). According to literature reports,
Cornelian cherry fruit has exhibited anti-inflammatory, antimicrobial, antioxidant,
antidiabetic, and nephron-, hepato-, cardio-, and neuroprotective activities in phar-
macological studies (Bayram and Arda Ozturkcan 2020; Süntar et al. 2020; Nowak
et al. 2021). Considering the wide range of traditional use and abundant evidence for
pharmacological effects of C. mas fruits, there are also researches based on their
application as ingredients of some functional foods (Szczepaniak et al. 2019). The
literature search about biological properties of C. mas showed a thorough evaluation
of different preparations (whole fruits, extracts, juice, or isolated compounds) from
C. mas in in vitro, in vivo, toxicological, and clinical studies, as well as nanotech-
nological application.

The most studied biological activity of C. mas is its antioxidant potential using
different in vitro methods including free radical scavenging activities, reducing
antioxidant capacity, β-carotene bleaching properties, and antioxidant activity in
the lipid system (Dinda et al. 2016; Szczepaniak et al. 2019; Tiptiri-Kourpeti et al.
2019; Bayram and Arda Ozturkcan 2020; Przybylska et al. 2020; Moussouni et al.
2020; Blagojević et al. 2021). The fruit extracts were the subject of the largest
number of studies dealing with antioxidant potential of C. mas and showed remark-
able antioxidant characteristics of this fruit from different areas of Europe and Asia.
Some fruit extracts of C. mas showed antioxidant activity comparable to activities of
synthetic standard antioxidants, butylated hydroxytoluene (BHT) and butylated
hydroxyanisole (BHA) (Szczepaniak et al. 2019; Bayram and Arda Ozturkcan
2020). This property of Cornelian cherry is related to high phenolic and vitamin C
content in the studied extracts (Dinda et al. 2016; Szczepaniak et al. 2019;
Blagojević et al. 2021; Mishra et al. 2017). In addition to the antioxidant activity

Fig. 3.9 Chemical composition and health-promoting properties of blackthorn
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of the fruit, it has also been found that C. mas leaves (Dinda et al. 2016; Szczepaniak
et al. 2019; Grygorieva et al. 2020; Efenberger-Szmechtyk et al. 2021a, b) and stones
(Przybylska et al. 2020) possess antioxidant properties.

Among in vitro studies conducted to determine the biological properties of
C. mas, some researches focused on its antimicrobial properties. The extracts from
fruit and leaves of C. mas showed the potential to inhibit the growth of different
pathogenic bacteria and fungi (Dinda et al. 2016; Szczepaniak et al. 2019; Bayram
and Arda Ozturkcan 2020; Efenberger-Szmechtyk et al. 2020a; Savaş et al. 2020;
Efenberger-Szmechtyk et al. 2021a, b). Recent study showed that C. mas leaf extract
possessed the most potent antimicrobial activities compared with Aronia
melanocarpa (black chokeberry) and Chaenomeles superba leaf extracts
(Efenberger-Szmechtyk et al. 2020a). The Cornelian cherry leaf extract also showed
potential for use as a natural preservative in pork meat products extending their shelf
life (Efenberger-Szmechtyk et al. 2021a, b).

The extracts of different parts of C. mas displayed cytotoxic activity toward some
cancer cell lines (Dinda et al. 2016; Tiptiri-Kourpeti et al. 2019; Bayram and Arda
Ozturkcan 2020). For example, C. mas leaf aqueous extract caused morphological
changes and DNA damage in the Caco-2 cells with an IC50 value of 0.6%
(Efenberger-Szmechtyk et al. 2020b). In another study, C. mas juice showed pro-
nounced antiproliferative activity against HepG2 human cancer cells (IC50 0.08%)
(Tiptiri-Kourpeti et al. 2019). The study conducted by Popović et al. (2021) showed
low cytotoxicity of 50% ethanol C. mas fruit extract. Cornelian cherry fruit extract
was successfully applied for green synthesis of gold nanoparticles with low cyto-
toxic activity against human skin (Perde-Schrepler et al. 2016), while biosynthesized
gold and silver nanoparticles using fruit extract showed non-cytotoxicity to normal
oral cells, but induced cell death of dysplastic cells (Baldea et al. 2019). Gold
nanoparticles synthesized using Cornelian cherry fruit extract and luteolin, in a
study published by Domsa et al. (2020), showed possibility to modulate oxidative
stress and inflammation process on Caco-2 cells treated with gliadin simulating
celiac disease. This use of C. mas in the preparation of nanomaterials also shows
the possibility of its application in an environmentally friendly synthesis and pro-
duction of nanoparticles with capping molecules that make them less toxic to normal
cells.

Cornelian cherry extracts were evaluated as potential inhibitors of some enzymes
in vitro. The fruit extract showed the ability to inhibit α-glucosidase suggesting its
potential application in the prevention and treatment of type 2 diabetes (Blagojević
et al. 2021; Szczepaniak et al. 2021a). Also, C. mas flower infusion possesses an
inhibitory effect of aldose reductase which reduces glucose to sorbitol under hyper-
glycemic conditions contributing to the development of chronic diabetic complica-
tions (Forman et al. 2020). Fruit extract was described as an arginase inhibitor which
has an important role in normal vascular function (Bujor et al. 2019). It has also been
proven that Cornelian cherry fruit extract may inhibit the TAS2R3 and TAS2R13
bitter taste receptors and can be effectively applied for masking the bitter taste of
probiotic dark chocolate (Szczepaniak et al. 2021b).
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Aside from in vitro studies, there are in vivo, clinical, and toxicological studies, as
well as studies about justification of ethnomedicinal uses of C. mas. The latest results
showed that various preparations from C. mas or its extracts may reduce oxidative
stress in mice with tumor developed by Ehrlich ascites tumor cell injection (Yilmaz
et al. 2020a, b) and in rats treated with a chemotherapeutic agent (Zarei and
Shahrooz 2019; Mesgari Abbasi et al. 2020). There is also evidence for Cornelian
cherry influence on tumor proliferation in mice (Yilmaz et al. 2020a, b). As in vitro
studies showed the potential of Cornelian cherry type 2 diabetes treatment, in vivo
studies demonstrated antidiabetic effects of Cornelian cherries’ extracts and
improvement of diabetes manifestations (Capcarova et al. 2019; Dzydzan et al.
2019, 2020; Omelka et al. 2020). A recent study justified the ethnomedical use of
Cornelian cherry for the treatment of ulcerative colitis (Süntar et al. 2020). C. mas
extracts were also reported to possess anti-inflammatory effects (Szczepaniak et al.
2019; Bayram and Arda Ozturkcan 2020), positive influence on hypercholesterol-
emia (Nowak et al. 2021), and atherosclerosis (Lietava et al. 2019) in some in vivo
studies.

Only a few clinical studies have included C. mas supplements. Human clinical
studies showed that consumption of Cornelian cherry fruits may prevent hyperlip-
idemia (Asgary et al. 2013) and hyperglycemia in humans (Soltani et al. 2015). A
randomized clinical trial that included effects of C. mas extract supplementation
(900 mg daily) in postmenopausal women showed that this extract may improve
some aspects of postmenopausal complications (bone resorption, osteoporosis, lipid
profile, and glycemic indices) (Gholamrezayi et al. 2019; Aryaeian et al. 2021).

According to all literature data about C. mas biological activities and potential
use, there is a need for further research for its application as a food supplement or
raw material for the pharmaceutical industry, especially clinical trials. Also, it seems
that more research should be directed toward the use of waste products which remain
after C. mas fruit exploitation. The overview of major chemical constituents, sec-
ondary metabolites, and bioactivity of Cornelian cherry is presented in Fig. 3.10.

Dog rose (Rosa canina L.) is a wild plant, well-known as a component of
traditional medicine in Europe, Asia, and North America. The pseudo fruits of
R. canina (the rose hips) are often used as food or medicine in many countries.
The health benefit of the rose hip is attributed to its high vitamin C and polyphenolic
content (Fan et al. 2014; Patel et al. 2017). Usually, decoctions of R. canina hips are
used as remedies for the treatment and prevention of cold and flu, as well as for
infectious diseases, inflammation, stomach disorders, arthritis, and rheumatoid dis-
orders in traditional folk medicine (Chrubasik et al. 2008; Patel 2013; Živković et al.
2020, 2021). R. canina hip seeds are a valuable source of oil popular in natural skin
care products. Rose hip seed oil is used in cosmetic preparation as a skin vitalizing
agent, usually for reducing scars, wrinkles, and pigmentation on the skin. There are
several commercial products based on dog rose hips on the market such as supple-
ments, rose hip tea bags, or cosmetic preparations (Patel 2013). The biological
activities of R. canina reported so far included antioxidant, antimicrobial, anti-
inflammatory, antidiabetic, and osteoarthritis treatments, as well as the use for
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immunomodulation, and in cosmetics (Chrubasik et al. 2008; Patel 2013, 2017;
Gruenwald et al. 2019).

R. canina hips displayed strong antioxidant activity in vitro in radical scavenging
methods similar to the antioxidant activity of well-known antioxidants, quercetin
and Trolox (Fetni et al. 2020a, b; Rovná et al. 2020). The dog rose hips in
comparative studies proved to be one of the most potent antioxidants among
different wild fruits and berries (Ungurianu et al. 2019; Hendrich et al. 2020;
Ouerghemmi et al. 2020; Smanalieva et al. 2020; Tabaszewska and Najgebauer-
Lejko 2020; Moldovan et al. 2021). The animal study also showed the antioxidant
potential of dog rose hips lowering oxidative manifestations on vancomycin-induced
nephrotoxicity in rats (Sadeghi et al. 2021). The antioxidant potential in vitro also
showed pasteurized dog rose nectar (Atalar et al. 2020) and flower extract (Demasi
et al. 2021), while R. canina distilled water improved antioxidant and biochemical
parameters in tamoxifen-treated male Wistar rats (Karimimojahed et al. 2020).
Interestingly, dog rose hip powder showed the possibility to improve oxidative
and microbiological stability of gingerbread (Ghendov-Mosanu et al. 2020).
R. canina hip extracts showed moderate antimicrobial properties in different studies
especially against E. coli growth (Hendrich et al. 2020; Rovná et al. 2020). The
extracts of dog rose hips showed no cytotoxicity to some carcinoma cells in
concentrations up to 400 μg/mL, as well as inhibition of NO production in mouse
macrophage-like cell line RAW 264.7 (Moldovan et al. 2021). Fetni et al. (2020a)
reported that methanolic extract of dog rose hips applied at a concentration of
250 μg/mL significantly reduced the growth of HepG2 and SH-SY5Y cancer cells.
The determination of biological activities of R. canina hips in vitro demonstrated
that hip extract possessed inhibitory activity of α-glucosidase (IC50 0.54 mg/mL)
(Moldovan et al. 2021) and lipoxygenase (Hendrich et al. 2020).

Fig. 3.10 Chemical composition and health-promoting properties of Cornelian cherry
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In recent studies, R. canina hip extracts were described as agents for the biosyn-
thesis of metal nanoparticles. Green synthesized nanoparticles obtained using
R. canina were utilized for different applications, e.g., palladium and copper oxide
nanoparticles were successfully applied as recyclable nano-catalysts in organic
synthesis reactions (Hekmati 2019; Hemmati et al. 2019), and silver and gold
nanoparticles showed antimicrobial activity (Gulbagca et al. 2019; Cardoso-Avila
et al. 2021), catalytic degradation potential (Cardoso-Avila et al. 2021), and antiox-
idant potential (Gulbagca et al. 2019).

One of the newest studies demonstrated that methanol extract of dog rose hips is
nontoxic in subchronic intraperitoneal toxicity examination on female Wistar albino
rats. The methanol extract possessed LD50 > 5000 mg/kg of body weight, and that
result classified this extract as nontoxic. Also, there were no statistically significant
differences in biochemical and hematological parameters between the groups treated
with different doses of this extract and the untreated group (Fetni et al. 2020a).

Several recent studies demonstrated the positive influence of dog rose hips on
diabetic management. Sajadimajd et al. (2020) proved that oligosaccharides from
R. canina hips improved streptozotocin (STZ)-induced diabetic condition with an
increase in the expression of autophagy markers in rat pancreatic Rin-5F cells
in vitro. Also, in vivo studies showed significant effects of oligosaccharides from
R. canina hips on lowering the glucose levels in SZT-induced diabetic rats (Bahrami
et al. 2020a, b; Rahimi et al. 2020). One of the most studied biological activities of
dog rose in in vivo and clinical studies is its use in osteoarthritis treatment. Several
clinical studies showed that dog rose hips (5 g of powder/day) successfully reduced
pain associated with osteoarthritis. This beneficial effect of dog rose on osteoarthritis
can be attributed to its powerful antioxidant and anti-inflammatory effects (Patel
2013; Cheng et al. 2016; Gruenwald et al. 2019). R. canina hip extract has potential
for application in cosmetics and dermatology. It has been demonstrated that dog rose
hip extract inhibited melanogenesis and reduced skin pigmentation (Patel 2013,
2017).

R. canina has great potential for the development of food supplements and
pharmaceutical products, but additional research is needed, especially in vivo studies
and randomized controlled clinical trials for more evidence about its biological
activities determined in in vitro and animal studies. The most important compounds
and bioactivity of rose dog are summarized in Fig. 3.11.

Hawthorn (Crataegus monogyna Jacq.) has been continuously used in tradi-
tional medicine for centuries. The first written mention of hawthorn was in
Dioscorides De Materia Medica in the first century where it was described to be
used against cardiac disorders (Nabavi et al. 2015). The beneficial effects of haw-
thorn leaves, flowers, and fruits in the prevention and treatment of heart diseases are
mainly due to their hypotensive, antispasmodic, cardiotonic, anti-hyperlipidemic,
and anti-atherosclerotic activities (Pawlaczyk-Graja 2018). It was used for relieving
symptoms of arrhythmia and hypertension; to treat chronic heart failure, angina
pectoris, and myocardial injuries; and to improve blood circulation (Abuashwashi
et al. 2016; Bardakci et al. 2019). Abuashwashi et al. (2016) reported that in recent

3 Wild-Growing Species in the Service of Medicine: Environmental Challenges. . . 87



years arose a novel use of hawthorn in the treatment of temporary nervous cardiac
complaint symptoms.

Besides hawthorn’s cardioprotective properties, it also finds a role in the treat-
ment of arthritis, insomnia, gall bladder disease, and diarrhea (Barros et al. 2011;
Pawlaczyk-Graja 2018). The hawthorn was traditionally used in the treatment of
respiratory tract disorders as well as for relieving the symptoms of menopause
(Barros et al. 2011).

The nutritious benefits of hawthorn fruits (berries) made its use as a source of
vitamins and minerals even more worthwhile for improving general health. In that
sense, the berries were and still are the constituents of numerous food products, such
as jams, jellies, different drinks, and wine, or in the form of canned fruit (Barros et al.
2011; Nabavi et al. 2015).

The fruits are also used in the treatment of gout, depression, kidney stones, and
intestinal problems, as a diuretic, and for the stimulation of digestion (Keating et al.
2014; Nabavi et al. 2015; Bardakci et al. 2019).

The exact active compounds in C. monogyna have not been elucidated with
certainty so far. Most likely it could be simultaneous beneficial effects on cardio-
vascular system of the mixture of many different phytochemicals, including poly-
phenolic compounds (flavonoids) and triterpenoids from hawthorn leaves and
flowers (Momekov and Benbassat 2013). The studies revealed that hawthorn pos-
sesses a positive inotropic effect, cardioprotective effects, and an antiarrhythmic
effect; it increases coronary blood flow, etc. Many of these pharmacologically
important activities are directly dependent on the action of flavonoids, particularly
the inhibition of Na+/K+ adenosine triphosphatase (Na+/K+ pump) that leads to the
positive inotropic effect (Momekov and Benbassat 2013). Moreover, the antioxidant

Fig. 3.11 Chemical composition and health-promoting properties of dog rose
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activity of hawthorn’s constituents can have profound impact on the body and vital
effect on the cardiovascular system.

Barros et al. (2011) explored the antioxidant properties of C. monogyna flower
buds, flowers, and fruits (unripe, ripened, and overripened) by radical scavenging
effects (DPPH), reducing power, and inhibition of lipid peroxidation assays. The
unripe fruits were the most active compared to other extracts, especially compared to
the overripened fruits with the lowest antioxidant potential. Generally, the higher
production of phenolic compounds in unripe fruits due to plant stress response can
be connected to the higher bioactivity of the fruit extract in this stage of fruit maturity
(Barros et al. 2011).

The methanolic extract of C. monogyna aerial parts and its fractions were tested in
DPPH, and β-carotene bleaching assay showed strong antioxidant activity (Coimbra
et al. 2020). The detection of quercetin and vitexin derivatives, along with phenolic
acids and procyanidin polymers with high antioxidant level in tested material,
contributed to overall bioactivity. Leaves of C. monogyna also showed significant
ORAC, TRAP, and HORAC antioxidant activity (1405 μmol TE/g, 1301 μmol
TE/g, and 882 μmol GAE/g, respectively), but lower compared to other Rosacea
plants tested in this study (Denev et al. 2014).

The C. monogyna fruit extracts showed the highest antioxidant activity (using
DPPH, FRAP, CUPRAC, and total antioxidant capacity tests) compared to four
other Crataegus species from Turkey (C. rhipidophylla, C. pontica, C. orientalis,
and C. turcicus) (Bardakci et al. 2019). Since the C. monogyna contained the highest
total proanthocyanidin, hyperoside, and chlorogenic acid content, all polyphenolic
compounds with various mechanisms of reaction with free radicals, no wonder it has
pronounced antioxidant potential. Abuashwashi et al. (2016) showed that samples of
C. monogyna from different geographical origins in Spain demonstrated significant
antioxidant activity in ORAC (1.32–2.76 μmol TE/mg) and DPPH (IC50 2.67–3.76
μg/mL) assays with positive correlation between antioxidant activity and phenolic
content. Flavonoids and phenolic acids detected in C. monogyna, like kaempferol,
quercitrin, rutin, hesperetin, arbutin gentisic acid, and chlorogenic acid, significantly
contributed to general antioxidant potential of C. monogyna aerial part extracts from
Spain (Abuashwashi et al. 2016). The extracts from buds and sprouts of
C. monogyna from various locations in Italy also exerted antioxidant activity in
ABTS radical cation assay with values ranging from 31.48 to 147.25 mg Trolox eq./
kg (Ferioli et al. 2020). The phenolic composition of those hawthorn bud and sprout
samples showed high content of phenolic acids, with prevalence of caffeic and
neochlorogenic acid, and flavonoids, of which dominant were vitexin and its deriv-
ative vitexin-200-O-(4000-O-acetyl)-rhamnoside, and lower amount of flavonols where
the most abundant were hyperoside and isoquercitrin (Ferioli et al. 2020); all of them
are scientifically proven antioxidants with various modes of action (Heim et al. 2002;
Taofiq et al. 2017).

In addition to the antioxidant activity of hawthorn, the effect of the digestive
process on its antioxidant capacity was also reported. Keating et al. (2014) evaluated
the influence of simulated digestion on the antioxidant activity of hawthorn prepa-
rations (infusion, decoction, berry tincture, and leaf and flower tincture) and phenolic
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standards commonly present in hawthorn. They showed that total phenolic content
after exposure to simulated gastrointestinal fluid decreased only in infusions, but
decoction showed the lowest antioxidant potential after digestion. In other prepara-
tions, activity decreased, but not significantly. On the other hand, based on the
previous reports that hawthorn had extract poor bioavailability after oral adminis-
tration regarding the low water solubility of flavonoids, Lucconi et al. (2014) had a
goal to prepare the microparticulate delivery system of hawthorn methanolic extracts
(fruits and flowering tops) with intestinal delivery for oral formations. The
microencapsulated and microparticulated systems obtained from hawthorn flowers
showed preservation of antioxidant activity during in vitro digestion and in intestinal
conditions.

Hendrich et al. (2020) recently reported a high antioxidant potential of hawthorn
fruit methanol and water extracts from Poland and showed their effectiveness in
Trolox equivalent antioxidant activity (TEAA), DPPH, and ABTS assays, but also
the inhibition of lipid peroxidation and lipoxygenase-1 (LOX-1) activity. The
capacity of hawthorn to inhibit the process of lipid oxidation was used to prevent
increasing of TBARS and volatile carbonyl concentration and odor in pork patties
(Akcan et al. 2017). Also, the hawthorn extracts were added to prevent lipid
oxidation and oxymyoglobin oxidation in bovine muscle homogenates (Shortle
et al. 2014). In both cases, hawthorn showed significant potential against lipid
oxidation in meat and proved its use as an antioxidant ingredient for the manufactur-
ing of high-quality meat products with prolonged shelf life.

Another possible benefit of hawthorn extracts is their antimicrobial potential.
Hawthorn leaves showed moderate antibacterial effects against Staphylococcus
aureus (Denev et al. 2014), Bacillus cereus, and Acinetobacter baumannii (Coimbra
et al. 2020), while it was much more efficient against different Candida spp.
(Coimbra et al. 2020). Nunes et al. (2017), besides antioxidant properties of haw-
thorn extracts, evaluated also their antimicrobial and cytotoxic properties. The
extracts were able to highly inhibit the growth of Listeria monocytogenes and in
moderate manner S. aureus. Nevertheless, C. monogyna extracts had protective
effect on normal fibroblasts, which can be associated with the high content of zinc
along with the presence of phenolic compounds, like chlorogenic and
neochlorogenic acids, quercetin, and vitexin. The effects of hawthorn flower buds
and fruit extracts (unripened, ripened, and overripened) were tested on human tumor
cell lines (MCF7, breast carcinoma; NCI-H460, non-small lung cancer; HeLa,
cervical carcinoma; HepG2, hepatocellular carcinoma) (Rodrigues et al. 2012). It
was shown that the most active extracts on all cell lines were those of flower buds
and unripened fruit of hawthorn, connecting their activity to the chemical composi-
tion. In flower buds, the most dominant were phenolic acids 3-O- and 5-O-
caffeoylquinic acids, derivatives of quercetin and apigenin, and (-)-epicatechin,
while in fruits, besides mentioned compounds, procyanidin polymers were the
most abundant. Sahin-Yaglıoglu et al. (2016) also confirmed the antiproliferative
effects of hawthorn flowers against rat brain tumor (C6) and human cervical cancer
(HeLa) cell lines. The silver and gold nanoparticles were synthesized with
C. monogyna leaf extract, and particularly AgNP showed significant antimicrobial
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activity against a panel of pathogenic microorganisms, e.g., E. faecalis,
A. baumannii, P. aeruginosa, P. mirabilis, S. aureus, E. coli, and K. pneumoniae
(Shirzadi-Ahodashti et al. 2020). Both AgNP and AuNP displayed cytotoxic prop-
erties against AGS and MCF-7 cells via apoptotic mechanism with increased ROS
production.

The anticoagulant activity of hawthorn flower and fruit extracts was analyzed
using activated partial thromboplastin time (aPTT) and prothrombin time
(PT) bioassays in vitro. The extracts showed quite high anticoagulant activity with
prolongation of the plasma coagulation process (Pawlaczyk-Graja 2018). Those
results were another proof that hawthorn can be recommended for the prevention
and treatment of cardiovascular diseases. The antithrombotic activity of hawthorn
ethanolic extract was demonstrated in vivo in carrageenan-induced tail thrombosis
model by Arslan et al. (2015). The activity was ascribed to the high content of
proanthocyanidins which exert antithrombotic effects and promote vascular func-
tion. Another in vivo experiment showed hyperglycemic activity of hawthorn fruit
extract with alleviation of oxidative stress and protection of pancreatic tissue in
streptozotocin-induced diabetic rats (Chahardahcharic and Setorki 2018). The
immunomodulatory effects of C. monogyna extract were also demonstrated
in vivo in BALB/c mice (Lis et al. 2020), whereby the authors came to a conclusion
that hawthorn modulates the lymphocyte subsets and stimulates the humoral
immune response so it can be used as an immunomodulator. The predominant
compounds and bioactivity of hawthorn are summarized in Fig. 3.12.

Wild fruits are part of both tradition and religion and are closely connected with
the customs of many people. Ever-increasing interest for high-quality food products
associated with health-beneficial effects highly encourages researchers to intensively
study natural products. Wild-growing fruit plants contain a wide assortment of

Fig. 3.12 Chemical composition and health-promoting properties of hawthorn
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nutritional and health-promoting compounds that are important in the pharmaceuti-
cal industry. Local, traditional, healthy, and functional foods are just some attributes
that attract consumers when purchasing food. Recently, originality and authenticity
of food products became highly important categories to consumers as well as pro-
ducers. In addition, the interest in collection of the fruits of wild plants is gaining
attention from the economic aspects.

3.5 Conclusion

Due to the powerful health-promoting properties of wild fruits, blackthorn, Corne-
lian cherry, dog rose, and hawthorn are well-known in traditional medicine of many
European and Asian countries. The plants are a good source of nutritionally valuable
and health-beneficial compounds. Among them, secondary metabolites, especially
polyphenolic compounds, mostly contribute to the bioactivity of fruits, leaves,
flowers, and twig extracts of these plants, which is reflected in the anti-inflammatory,
antimicrobial, antioxidant, antidiabetic, neuroprotective, and other activities. In
traditional folk medicine, these plants are used as remedies for the prevention of
colds and the flu, as well as for the treatment of various health disorders. But, in the
light of climate change, wild fruits will be endangered in the future, because, first of
all, their habitat will experience a decrease. Climate change can diminish wild fruit
fields or shift them to other locations which can influence local populations. Chang-
ing flora can lead to the appearance of invasive species which can influence the
pollination of the native wild fruit-producing plants.
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Chapter 4
Favorable Impacts of Drought Stress
on the Quality of Medicinal Plants:
Improvement of Composition and Content
of Their Natural Products

S. Abouzeid, L. Lewerenz, M. Yahyazadeh, A. Radwan, T. Hijazin,
M. Kleinwächter, and D. Selmar

Abstract This review deals with the well-known phenomenon that spice and
medicinal plants grown under semi-arid conditions generally reveal significantly
higher concentrations of relevant natural products than identical plants, grown and
cultivated in moderate climates. Basic biochemical reflections display that drought
stress and the related metabolic changes are responsible for the higher natural
product accumulation in plants grown in semi-arid regions (Selmar et al., Environ-
mental challenges and medicinal plants. Springer, New York, 2017). Related data
from the literature on the effect of drought on the concentration of natural products
are compiled, and the relevant aspects are also outlined.

A thorough reflection on this issue emphasizes the necessity to differentiate
decidedly between “concentration” and “content” of natural products (Paulsen and
Selmar, J Appl Bot Food Qual 89:287–289, 2016). Next, basic plant physiological
coherences expound that in principle there are three causes for the observed changes
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in the concentration of natural products (Yahyazadeh et al., Phytochemistry 152:
204–212, 2018).

• Changes in the reference values: Drought stress-induced enhancement of the
natural products’ concentration is due to a reduced production of biomass in the
stressed plants.

• Passive shift: Under drought stress, the stomata are closed. The shortage of CO2

evokes a strongly elevated level of NADPH+H+. Accordingly, all processes
consuming NADPH+H+ are boosted, although enzyme activities were not
changed.

• Active upregulation: The activity of enzymes responsible for the biosynthesis of
natural products is enhanced by increased gene expression.

Apart from these quantitative changes, in some cases, also the spectrum of
specialized metabolites is altered in response to the stress situation (Abouzeid
et al., J Nat Prod 80:2905–2909, 2017).

Based on these physiological considerations, practical aspects for the application
of drought stress to deliberately improve the quality of spice and medicinal plants are
displayed (Kleinwächter and Selmar, Physiological mechanisms and adaptation
strategies in plants under changing environment. Springer, New York, 2014;
Kleinwächter and Selmar, Agron Sustain Dev 35:121–131, 2015).

Keywords Drought stress · Specialized metabolites · Over-reduced state · Spice
plants · Medicinal plants · Phytomodificines

4.1 Introduction

The lack of irrigation water represents the most severe problem in agriculture. The
resulting water deficiency provokes aridity, which manifests various drought stress
symptoms, i.e., retardation of plant growth and a severe decrease in biomass
production. In consequence, the yield of crop plants is massively reduced (Jaleel
et al. 2009). However, in contrast to such adverse and unfavorable effects of water
shortage, in some cases, aridity might likewise be advantageous for the production of
some plant-derived commodities, i.e., the cultivation of spice and medicinal plants
(Kleinwächter et al. 2015). We all are aware that aromatic plants grown in semi-arid
areas such as the Mediterranean regions generally are much more aroma-intensive
than equivalent plants, which had been cultivated in moderate climates (e.g., Selmar
et al. 2017). Actually, in daily life, this well-known phenomenon is explained by the
simple but non-scientific statement: “In Southern Europe, the plants are exposed to
far more sunlight, resulting in increased rates of biosynthesis.” Although, at first
sight, this misinterpretation might appear to be consistent, plant biologists are aware
that even in Central Europe, for plants growing in open areas without any shade,
sunlight generally is not a limiting factor for their growth (Wilhelm and Selmar
2011). On the contrary, most plants absorb much more light energy by their leaves
than they require for their photosynthetic CO2 fixation (Wilhelm and Selmar 2011).
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In consequence, there must be another explanation for the phenomenon of enhanced
accumulation of natural products in plants growing in Southern Europe. In this
context, drought stress is of particular interest (Selmar and Kleinwächter 2013a).
This chapter outlines the various levels of pertinence and displays the basic scientific
background of the entire syndrome. Indeed, in the past, these coherences have not
been considered adequately, while related contemplations are well established (e.g.,
Kleinwächter and Selmar 2014, 2015).

4.2 Drought Stress Frequently Entails an Enhanced
Concentration of Natural Products

We all are aware that environmental conditions strongly influence the growth and
development of plants by affecting their metabolism and their metabolic capacity,
respectively (Bohnert et al. 1995). These coherences also apply to the biosynthesis
and accumulation of natural products. In this context, numerous studies on the
impact of various factors like temperature, light regime, nutrient supply, etc. on
secondary metabolism have been conducted (for review, see Gershenzon 1984; Falk
et al. 2007; Das and Bhattacharya 2016). Accordingly, there is no doubt that quite
severe environmental conditions, such as various stress situations, which strongly
impact the entire general metabolism (Sampaio et al. 2016; Bohnert et al. 1995), also
alter the secondary metabolism.

With respect to biological stress, lots of papers had been published which
describe the elicitation of natural products’ synthesis in response to pathogen or
herbivore attack (for review, see, e.g., Harborne 1988; Hahlbrock et al. 2003;
Hartmann 2007; Namdeo 2007; Wink 2010). In this context, many molecular
responses to these biotic stresses had been elucidated (e.g., Davies and Schwinn
2003; Zhao et al. 2005; Nascimento and Fett-Neto 2010; De Geyter et al. 2012). In
the same manner, the molecular background for the stress-induced impact on general
metabolism and, thus, on plant growth and development had been also studied
intensively (Zhu 2002; Shinozaki and Yamaguchi-Shinozaki 2007; Baldoni et al.
2015). Additionally, a tremendous lot of papers deal with the impact of abiotic
stresses on the secondary metabolism. However, the profound knowledge of the
corresponding biological background is still limited (for review, see, e.g., Rama-
krishna and Ravishankar 2011; Selmar and Kleinwächter 2013a, b; Kleinwächter
and Selmar 2014).

Up to now, a large number of studies revealed that plants exposed to drought
stress indeed accumulate higher concentrations of secondary metabolites than those
cultivated under well-watered conditions (Table 4.1). These data clearly expound
that the drought stress-related enhancement in the concentration of natural products
is a quite common feature. These coherences obviously account more or less for all
the different classes of natural products. In stressed plants, the enhanced concentra-
tion of simple as well as complex phenols is described. In the same manner, the
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Table 4.1 Enhanced concentrations of natural products in drought-stressed plants

Phenolic compounds
Helianthus annuus Chlorogenic acid Massive increase del Moral (1972)

Prunus persica Total phenols Higher contents Kubota et al. (1988)

Thymus capitatus Total phenols Higher contents Delitala et al. (1986)

Pisum sativum Flavonoids Strong increase Nogués et al. (1998)

Pisum sativum Anthocyanins Strong increase Nogués et al. (1998)

Echinacea
purpurea

Total phenols Strong increase Gray et al. (2003a)

Hypericum
perforatum

Total phenols Significant
increase

Gray et al. (2003b)

Hypericum
perforatum

Hyperoside Slight increase Gray et al. (2003b)

Hypericum
perforatum

Rutin Strong increase Gray et al. (2003b)

Crataegus spp. Chlorogenic acid Massive increase Kirakosyan et al. (2004)

Hypericum
brasiliense

Total phenols Strong increase de Abreu and Mazzafera
(2005)

Crataegus spp. Catechins/
epicatechins

Massive increase Kirakosyan et al. (2004)

Hypericum
brasiliense

Rutin, quercetin Massive increase de Abreu and Mazzafera
(2005)

Hypericum
brasiliense

Xanthones Strong increase de Abreu and Mazzafera
(2005)

Camellia sinensis Epicatechins Higher contents Hernández et al. (2006)

Salvia miltiorrhiza Furoquinones Significant
increase

Liu et al. (2011)

Prunella vulgaris Rosmarinic acid Slight increase Chen et al. (2011)

Trachyspermum
ammi

Total phenols Strong increase Azhar et al. (2011)

Labisia pumila Total phenols Significant
increase

Jaafar et al. (2012)

Labisia pumila Anthocyanin/
flavonoids

Significant
increase

Jaafar et al. (2012)

Triticum aestivum Total phenols Significant
increase

Ma et al. (2014)

Ocimum basilicum Methyleugenol Significant
increase

Abdollahi Mandoulakani
et al. (2017)

Ocimum basilicum Methylchavicol Significant
increase

Abdollahi Mandoulakani
et al. (2017)

Scutellaria
baicalensis

Baicalin Strong increase Cheng et al. (2018)

Achillea
pachycephala

Various phenols Significant
increase

Gharibi et al. (2019)

Carica papaya Various phenols Significant
increase

Espadas et al. (2019)

Melissa officinalis Total phenols Significant
increase

Ahmadi et al. (2020)

(continued)
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Table 4.1 (continued)

Olea europaea Various flavanoids Massive increase Mechri et al. (2020)

Ocimum basilicum Rosmarinic, caffeic
acid

Significant
increase

Zare et al. (2021)

Isoprenoids/essential oils
Mentha x piperita
ssp.

Essential oils Significant
increase

Charles et al. (1990)

Cymbopogon
pendulus

Geraniol, citral Strong increase Singh-Sangwan et al. (1994)

Pinus halepensis α-Pinene, carene Strong increase Llusià and Peňuelas (1998)

Cistus
monspeliensis

Caryophyllene Enormous
increase

Llusià and Peňuelas (1998)

Solanum tuberosum Steroid alkaloids Strong increase Bejarano et al. (2000)

Satureja hortensis Essential oils Increase Baher et al. (2002)

Picea abies Monoterpenes Strong increase Turtola et al. (2003)

Pinus sylvestris Monoterpenes Strong increase Turtola et al. (2003)

Hypericum
brasiliense

Betulinic acid Strong increase de Abreu and Mazzafera
(2005)

Petroselinum
crispum

Essential oils Strong increase Petropoulos et al. (2008)

Salvia officinalis Essential oils Massive increase Bettaieb et al. (2009)

Bupleurum
chinense

Saikosaponin Significant
increase

Zhu et al. (2009)

Salvia officinalis Monoterpenes Strong increase Nowak et al. (2010)

Scrophularia
ningpoensis

Iridoid glycosides Increase Wang et al. (2010)

Nepeta cataria Essential oils Significant
increase

Manukyan (2011)

Ocimum basilicum Essential oils Significant
increase

Forouzandeh et al. (2012)

Prunella vulgaris Triterpenes Slight increase Chen et al. (2011)

Glycyrrhiza glabra Glycyrrhizin Massive increase Nasrollahi et al. (2014)

Thymus vulgaris Monoterpenes Increase Kleinwächter et al. (2015)

Petroselinum
crispum

Essential oils Massive increase Kleinwächter et al. (2015)

Thymus citriodorus Geraniol Massive increase Tátrai et al. (2016)

Thymus citriodorus Thymol Massive increase Tátrai et al. (2016)

Thymus citriodorus Carvacrol Massive increase Tátrai et al. (2016)

Origanum vulgare Essential oils Increase Ninou et al. (2017)

Origanum vulgare

subsp. gracile Essential oils Significant
increase

Morshedloo et al. (2017)

subsp. virens Essential oils No significant
increase

Morshedloo et al. (2017)

Ocimum basilicum β-Myrcene Significant
increase

Abdollahi Mandoulakani
et al. (2017)

(continued)
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Table 4.1 (continued)

Ocimum basilicum α-Bergamotene Significant
increase

Abdollahi Mandoulakani
et al. (2017)

Salvia nemorosa L. Essential oils Significant
increase

Bidabadi et al. (2020)

Andrographis
paniculata

Andrographolides Significant
increase

Chen et al. (2020)

Bupleurum
chinense

Saikosaponin Significant
increase

Yang et al. (2020)

Alkaloids
Senecio longilobus Pyrrolizidine

alkaloids
Strong increase Briske and Camp (1982)

Lupinus
angustifolius

Quinolizidine
alkaloids

Strong increase Christiansen et al. (1997)

Solanum tuberosum Steroid alkaloids Strong increase Bejarano et al. (2000)

Glycine max Trigonelline Higher contents Cho et al. (2003)

Papaver
somniferum

Morphine alkaloids Strong increase Szabó et al. (2003)

Catharanthus
roseus

Indole alkaloids Strong increase Jaleel et al. (2007)

Phellodendron
amurense

Benzylisoquinolines Strong increase Xia et al. (2007)

Senecio jacobaea Pyrrolizidine
alkaloids

Massive increase Kirk et al. (2010)

Nicotiana tabacum Nicotiana alkaloids Strong increase Çakir and Çebi (2010)

Capsicum spp. Capsaicinoids Massive increase Phimchan et al. (2012)

Catharanthus
roseus

Total alkaloids Massive increase Amirjani (2013)

Catharanthus
roseus

Vincristine Massive increase Amirjani (2013)

Catharanthus
roseus

Vinblastine Massive increase Amirjani (2013)

Chelidonium majus Benzylisoquinolines Increase Kleinwächter et al. (2015)

Papaver
somniferum

Benzylisoquinolines Strong increase Behnam et al. (2017)

Papaver
bracteatum

Benzylisoquinolines Significant
increase

Behnam et al. (2017)

Papaver
armeniacum

Benzylisoquinolines Significant
increase

Behnam et al. (2017)

Papaver argemone Benzylisoquinolines Strong increase Behnam et al. (2017)

Chelidonium majus Coptisine Significant
increase

Yahyazadeh et al. (2018)

Lupinus
angustifolius

Quinolizidine
alkaloids

Massive increase Frick et al. (2018)

Lycoris aurea Galanthamine,
lycorine

Significant
increase

Xiang and Cao (2020)

Catharanthus
roseus

Total alkaloids Significant
increase

Yahyazadeh et al. (2021)

(continued)
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concentration of terpenes is also described to be higher in stressed plants than in the
controls (Table 4.1). Furthermore, the concentrations of nitrogen-containing sub-
stances, such as alkaloids, cyanogenic glucosides, and glucosinolates, are also
positively impacted by drought stress (Table 4.1). In consequence, there is no
doubt that drought stress consistently enhances the concentration of secondary
plant products (Selmar and Kleinwächter 2013a; Kleinwächter and Selmar 2014,
2015).

4.3 Why Is the Concentration of Natural Products
Enhanced in Drought-Stressed Plants?

When comparing the concentrations of natural products in stressed and control
plants, we always have to consider that drought severely reduces plant growth
(Jaleel et al. 2009). Accordingly, stressed plants reveal far lesser biomass than the
well-watered controls. Consequently, even when the rate of biosynthesis of natural
products would not be affected, i.e., it is the same in stressed and control plants, their
concentrations (on dry or fresh weight basis) indeed are elevated, just due to the
lesser biomass of the stressed plants (Paulsen and Selmar 2016; Yahyazadeh et al.
2018). Accordingly, even when no change in the rate of biosynthesis takes place, due
to the lower reference values, the concentration of natural products is enhanced. This
effect is classified as “indirect” (Fig. 4.1; Yahyazadeh et al. 2018). However, to
evaluate whether or not—in addition to this indirect effect—also the biosynthesis of

Table 4.1 (continued)

Various classes
Manihot esculenta Cyanogenic

glucosides
Strong increase de Bruijn (1973)

Triglochin maritima Cyanogenic
glucosides

Strong increase Majak et al. (1980)

Brassica napus Glucosinolates Massive increase Jensen et al. (1996)

Coffea arabica γ-Aminobutyric
acid

Massive increase Bytof et al. (2005)

Brassica oleracea Glucosinolates Significant
increase

Radovich et al. (2005)

Brassica carinata Glucosinolates Significant
increase

Schreiner et al. (2009)

Phaseolus lunatus Cyanogenic
glucosides

Higher content Ballhorn et al. (2011)

Tropaeolum majus Glucotropaeolin Higher content Bloem et al. (2014)

Brassica rapa Glucosinolates Significant
increase

Park et al. (2021)
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natural products is directly influenced by the stress situation, it becomes necessary to
determine the entire amount of a certain specialized metabolite per plant. Actually,
various analyses expounded that stress enhances indeed the rate of biosynthesis (see
next paragraph). In consequence, this “direct” impact is contraposed to the “indirect”
enhancement of the concentration due to the lower reference values (Fig. 4.1;
Yahyazadeh et al. 2018). Indeed, in all cases where the total amount of a certain
specialized metabolite (the product of biomass and concentration) is higher in the
stressed plants in comparison to that of the well-watered controls, such direct effect
(i.e., an enhanced rate of biosynthesis) can be verified easily. However, when the
duration of the stress is quite long and the massive growth reduction provoked a far
lesser biomass of the stressed plants, a solid evaluation of direct effect might
sometimes be quite problematic. In particular, the putative stress-related increase
in the rate biosynthesis does not inevitably always result in a higher amount of a
certain specialized metabolite, since it is over-compensated by the concurrently
growth reduction. In other words, the product of biomass and concentration is
lower in stressed plants although the concentration is enhanced (Paulsen and Selmar

Fig. 4.1 The stress-related increase of natural products’ concentration results from the interaction
of various processes and factors. When thoroughly investigating any stress-related increase of
natural product concentration, it is indispensable to differentiate decidedly between “concentration”
and “content” natural products (Paulsen and Selmar 2016). In principle, there are three reasons for
the observed phenomena: an indirect effect due to the reduced production of biomass in the stressed
plants (Yahyazadeh et al. 2018). In this case, the increased concentration results just from changes
in the reference values without any enhancements of the content of natural products. Alternatively,
the concentration increase could be due to a higher content of specialized metabolites, denoted as
direct effect (Yahyazadeh et al. 2018). In principle, there are two options for such direct enhance-
ment. It could be caused either by a passive shift, as a consequence of the strongly elevated
concentration of NADPH+H+, which boosts the biosynthesis of highly reduced specialized metab-
olites (Selmar and Kleinwächter 2013b), or by an active upregulation of the enzymes responsible
for the biosynthesis of natural products (Yahyazadeh et al. 2021)
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2016). Albeit, the situation becomes even more complex, when considering that the
newly synthesized natural products are produced in a far lesser quantum of biomass.
A detailed discourse on this set of problems is given by Paulsen and Selmar (2016)
and Yahyazadeh et al. (2021). Unfortunately, these coherences frequently are
ignored in the literature, and a stress-related increase in the concentration of natural
products is abundantly misinterpreted as sound verification of stress-induced
increase of biosynthesis. Notwithstanding, many examples clearly expound that
the overall content of natural products, i.e., the amount per entire plant, indeed is
higher in plants exposed to drought in comparison to non-stressed individuals (see
next chapter).

4.4 The Overall Content of Natural Products Is Increased
by Drought Stress

As outlined above, most studies on the stress-related impact on the accumulation of
natural products focus on the concentration of the active compounds and do not
consider the overall plant growth (Kleinwächter and Selmar 2015). Since, in most of
these studies, data on the overall biomass per plant are lacking, a reliable estimation
of the entire amount of natural products per plant is not possible (Kleinwächter and
Selmar 2014). The major reason for this deficit of information seems to be due to the
fact that mostly only one certain plant part or plant organ, respectively, was studied,
e.g., roots, leaves, flowers, or seeds. Nonetheless, in some papers, the total contents
of natural products per entire plants are outlined or could be calculated from the
published data, respectively (Kleinwächter and Selmar 2015).

In Hypericum brasiliense plants, both concentration and the total amount of
phenolic compounds are drastically enhanced when grown under drought stress
(de Abreu and Mazzafera 2005). Despite the fact that the stressed H. brasiliense
plants were quite smaller than the well-watered controls, their overall content
(product of biomass and concentration) was significantly enhanced, because of
their extremely higher concentration of phenolic compounds (de Abreu and
Mazzafera 2005). This clearly verifies that—apart from an indirect influence on
the concentration caused by a lesser biomass gain—the biosynthesis of phenolic
products was also directly increased by drought stress. A related situation was also
reported for drought-stressed pea plants (Pisum sativum): the overall content of
anthocyanins was about 25% higher in plants exposed to drought stress in compar-
ison to well-watered controls (Nogués et al. 1998). In the same manner, Jaafar et al.
(2012) showed that in Labisia pumila plants—in addition to the concentration—also
the overall content of total phenolics and flavonoids per plant was significantly
elevated when plants suffered drought stress.

As outlined for phenolic natural products, also the biosynthesis of various
terpenoids is enhanced in response to drought stress. Nowak et al. (2010) evinced
that in young sage plants (Salvia officinalis), the entire amount of monoterpenes per
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plant is significantly higher in the drought-stressed individuals than in the well-
watered controls. Accordingly, the lower biomass gain of the stressed sage plants is
over-compensated by a massive increase in biosynthesis.

Thus, both phenomena, i.e., indirect and direct stress-related enhancement
(Fig. 4.1), contribute to the marked stress-related increase in the concentration of
monoterpenes. However, the situation is not always that unambiguous. Although the
concentration of monoterpenes in parsley (Petroselinum crispum) is strongly
increased by drought stress, its overall contents are quite similar in stressed and in
well-watered plants (Petropoulos et al. 2008). Accordingly, the drought stress-
related concentration enhancement of monoterpenes in the leaves is more or less
completely compensated by the accompanying lesser biomass gain. Similar results
have been reported by Ninou et al. (2017): the overall content of essential oils per
plant is nearly the same in drought-stressed and well-watered oregano plants (Orig-
anum vulgare), although the concentrations of the essential oils were significantly
increased. At the first sight, these data seem to illustrate that drought does not impact
the rate of monoterpene biosynthesis at all. However, it has to be considered that in
these plants, an equal amount of monoterpenes is produced by a far lower biomass
(Paulsen and Selmar 2016). Thus, the biosynthetic activity per dry weight is strongly
enhanced (Paulsen and Selmar 2016). This vividly displays the problem of not
applying the appropriate reference value when comparing a stress-related increase
of natural product biosynthesis. These coherences are discussed explicitly in a
related case study by Paulsen and Selmar (2016) which outlined exemplarily the
various conjunctures for reliably calculating a putative increase of essential oils in
thyme plants exposed to drought stress. The authors expound that the impact of
drought stress on rate of biosynthesis based on dry weight may change in the course
of the treatment (Paulsen and Selmar 2016). In the first phase of the experiment, the
biosynthetic activity (on dry weight basis) was much higher in the stressed plants
than in the well-watered controls. However, when the stress persisted, the situation
was reversed (Paulsen and Selmar 2016). These coherences vividly outline the
complexity of the situation and the requirement to employ appropriate reference
values.

Nonetheless, although only a limited number of data are available, it could be
stated that drought stress indeed induces an increase in the biosynthesis of natural
products, verified either by an enhancement of their total content per plant or by an
augmentation of the biosynthetic activity on dry weight basis. In consequence, the
question arises how stress—on a metabolic level—impacts the biosynthesis of
natural products.

Since many specialized metabolites are not synthesized in the organ, in which
they are mainly accumulated (e.g., Hartmann et al. 1989; Kajikawa et al. 2011;
Nowak and Selmar 2016), the coherences related to the impact of drought stress on
concentration and content of specialized metabolites become even more complex,
i.e., transport processes have to be considered (Fig. 4.1; Kleinwächter and Selmar
2015). In this context, it has to be taken into account that the allocation of com-
pounds is also strongly influenced by the actual stress situation (e.g., Rötzer et al.
2012). Unfortunately, up to now, no information is available how stress-related
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changes in the source-sink character of the various organs alter the allocation of
specialized metabolites. Moreover, degradation processes have to be considered. It is
well known that the actual concentration of various alkaloids is altered because of
their degradation within the plants (Robinson 1974; Ashihara 2006), but up to now,
reliable investigations on this issue still are lacking.

4.5 Metabolic Background of Enhanced Natural Product
Biosynthesis

As outlined, two different stress-related effects influence the concentration of natural
products, i.e., the indirect impact due to a lesser biomass gain entailing lower
reference values and a direct effect caused by an enhanced biosynthesis. The latter
one, i.e., the stress-related increase of biosynthesis could be either “active” or
“passive” (Fig. 4.1; Selmar et al. 2017, Yahyazadeh et al. 2021). The underlying
metabolic background is described in this section.

Energy saving represents one of the most important issues in our subsistence
(Kleinwächter and Selmar 2014). This paradigm is omnipresent in our daily life—
and indeed, at first sight, it seems reasonable to transfer this assertion also into plant
biology (Kleinwächter and Selmar 2015). However, when thoroughly reflecting on
this issue and considering that plants are autotrophic organisms, it becomes obvious
that plants have no problem at all to cover their energy requirements. In contrast,
generally, plants absorb much more energy than being required for their photosyn-
thetic CO2 fixation (Wilhelm and Selmar 2011). This fundamental claim easily can
be verified by a conjuncture, with which we all are familiar: when the ambient CO2

concentration is elevated, the rate of photosynthesis increases drastically (Wilhelm
and Selmar 2011). Accordingly, under standard conditions, far more reduction
equivalents (NADPH + H+) are provided by the photosynthetic electron transport
chain than the plants expend for the actual CO2 fixation (Selmar et al. 2017). In other
words, in general, plants are subjected to a massive oversupply of energy. In order to
avoid an overflow of the electron transport chain, and thus the generation of oxygen
radicals (Reddy et al. 2004; Szabó et al. 2005), this surplus of energy has to be
dissipated efficiently, i.e., by non-photochemical quenching, photorespiration, or
xanthophyll cycle (Fig. 4.2a; Kleinwächter and Selmar 2015). Indeed, under regular
environmental conditions, this protective system operates properly. However, any
stress situation, in particular drought stress, causes major imbalances. In response to
water shortage, stomata are closed, and the CO2 influx into the leaves is massively
diminished (Fig. 4.2b, Selmar et al. 2017). As a consequence, the consumption of
NADPH + H+ in the Calvin cycle is strongly reduced. Although the various energy
dissipating mechanisms are upregulated, the reduction status of the chloroplasts
increases massively (Selmar and Kleinwächter 2013a, b; Kleinwächter and Selmar
2015). The surplus of electrons in the photosynthetic electron transport chain is
directly transferred to oxygen, generating a huge number of superoxide radicals,
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Fig. 4.2 Energy dissipation in plants according to Selmar and Kleinwächter (2013b). As the light
energy absorbed by the photosynthetic apparatus is much higher than the energy required for CO2

fixation, large amounts of energy are dissipated via non-photochemical quenching and effective
re-oxidation of NADPH +H+ by photorespiration and xanthophyll cycle. In consequence, the
surplus of reduction capacity does not result in the generation of oxygen radicals as a result of
electron transfer to molecular oxygen. In contrast to such well-watered conditions, energy fluxes in
stressed plants are markedly shifted. Due to an enhanced diffusion resistance of closed stomata, the
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which subsequently are detoxified by superoxide dismutase (SOD) and ascorbate
peroxidase (APX). In consequence of this over-reduced status in the chloroplasts, the
ratio of NADPH + H+ to NADP+ is strongly enhanced (Fig. 4.2b; Selmar et al.
2017), and, according to the law of mass action, all processes consuming NADPH +
H+ are increased (Kleinwächter and Selmar 2015). This decidedly also applies to the
related processes involved in the biosyntheses of highly reduced secondary plant
products, such as isoprenoids, phenols, or alkaloids (Selmar and Kleinwächter
2013b; Kleinwächter and Selmar 2015). When the biosynthesis of these compounds
is increased solely by the over-reduced status without changing any enzyme activity,
it is denoted as “passive shift” (Fig. 4.1; Selmar et al. 2017; Yahyazadeh et al. 2021).

In addition to the enhancement of natural product biosynthesis due to the passive
shift mentioned above (Fig. 4.1), the rate of biosynthesis could also be increased by a
stress-related upregulation of genes encoding the corresponding biosynthetic
enzymes (Selmar et al. 2017; Yahyazadeh et al. 2021). Yet, whereas a tremendous
lot of information is available on the impact of biological stresses, i.e., pathogen or
herbivore attack, related investigations with respect to drought stress on the expres-
sion of enzymes involved in secondary metabolism were deferred (Selmar et al.
2017). Apart from some exceptions (e.g., Dixon 1986; Kurusu et al. 2010), most of
the related studies have been performed within the last few years (Selmar et al.
2017).

In wheat leaves, the drought-induced accumulation of flavonoids is correlated
with an increase of the expression level of genes encoding various enzymes of
flavonoid biosynthesis (Ma et al. 2014). In the same manner, in Scutellaria
baicalensis, the enhanced accumulation of baicalin coincides with the increase of
the expression level and the activities of various enzymes of flavonoid biosynthesis,
i.e., the phenylalanine ammonia-lyase and the chalcone synthase (Cheng et al. 2018).
A similar correlation is reported for the drought-induced enhancement of flavonoid
biosynthesis in Bupleurum chinense (Yang et al. 2020). Furthermore, Abdollahi
Mandoulakani et al. (2017) reported a significant coincidence of the drought stress-
related increase in the concentration of the two phenylpropanoidal compounds
present in the essential oils of basil, i.e., methylchavicol and methyleugenol, with
an intensification of the expression of genes encoding the key enzymes involved in
the biosynthesis of phenylpropanoids. These coherences impressively outlined for
phenolic compounds seem to apply in equal measure for terpenoids, too. Radwan
et al. (2017) reported that in sage, the drought stress-related increase in the mono-
terpene content is correlated with an enhancement in the expression of several

⁄�

Fig. 4.2 (continued) internal CO2 concentration is strongly reduced in the stressed leaves. Accord-
ingly, much less NADPH + H+ is consumed within the Calvin cycle, and a much higher share of the
energy has to be dissipated. Although non-photochemical quenching and photorespiration are
enhanced, many electrons are transferred to molecular oxygen. The resulting superoxide radicals
are detoxified by the stress-related induction of superoxide dismutase (SOD) and ascorbate perox-
idase (APX). According to the law of mass action, the highly elevated reduction potential (ratio of
NADPH + H+ to NADP+) passively enhances the synthesis of highly reduced natural products.
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monoterpene synthases and concluded that in addition to a passive shift, the
observed stress-related rise in monoterpenes is—at least in part—also due to ele-
vated enzymatic activities. This is underlined by the finding of Palesh and Abdollahi
Mandoulakani (2020), who demonstrated that in basil (Ocimum basilicum), the
genes responsible for the monoterpene biosynthesis are upregulated under drought
conditions. Furthermore, corresponding data are also available for triterpenoids: in
Glycyrrhiza glabra, the drought-induced increase in the glycyrrhizin concentration
coincides with an upregulation of genes encoding major enzymes responsible for the
triterpenoid biosynthesis, i.e., the squalene synthase and the β-amyrin synthase
(Nasrollahi et al. 2014). Yet, in this context, it has to be noted that different
genotypes of a certain plant species might behave differently under drought stress.
This vividly was demonstrated by Morshedloo et al. (2017) who showed that the
drought stress-related impacts on essential oil content as well as on the related gene
expression of two native subspecies of Origanum vulgare (subsp. virens and subsp.
gracile) were quite significant.

Unfortunately, with respect to the impact of drought stress on the expression of
enzymes involved in alkaloid biosynthesis, much lesser information is available.
Yahyazadeh et al. (2018) showed that in Chelidonium majus, the drought stress-
related enhancement of the major isoquinoline alkaloid coptisine is correlated with a
corresponding increase in the expression of stylopine synthase, the key enzyme in
the biosynthesis of isoquinoline alkaloids. Many further investigations are required
to elucidate, whether or not these findings represent a quite general issue, and to
confirm that—in addition to the passive shift—a stress-related increase in the
contents of the natural products is, at least in part, also due to a stress-related
upregulation of related genes (Selmar et al. 2017). Nonetheless, in forthcoming
studies, the question on the biological significance of this effect will frequently
arise. Indeed, ecological biochemistry taught us that the relevance of natural prod-
ucts is based on their functions within the interactions of the plants with their
environment (Harborne 1988). Such specialized metabolites (traditionally called
“secondary metabolites”) repel herbivores, protect the plants against pathogens, or
attract pollinators (Wink 2010; Hartmann 2007). However, any contemplation of the
stress-related active upregulation of those substances, whose relevance is based on
the various interactions with living organisms, exhibits a serious problem in under-
standing the biological background: most of the interactions with pathogens or
herbivores are not positively affected by drought (Selmar et al. 2017). On the
contrary, drought will massively reduce pathogen attack due to low humidity.
However, the stress-related enhancement of natural product biosynthesis by the
upregulation of the related genes has been manifested in the course of evolution.
In consequence, apart from their protective role, there has to be a different and
additional advantage by the observed upregulation of phenols, terpenes, and alka-
loids (Kleinwächter and Selmar 2014; Selmar et al. 2017; Yahyazadeh et al. 2021).

Apart from the interactions with living organisms, various specialized metabolites
are also relevant with respect to fending various abiotic stresses, e.g., by protecting
the plants against UV light or too high light intensities, by reducing the transpiration,
or by acting as compatible solutes or radical scavengers (Wink 2010; Edreval et al.
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2008). Accordingly, upregulation of genes encoding enzymes responsible for the
synthesis of metabolites protecting the plants against abiotic stresses is beneficial.
However, most of the reported cases concern specialized metabolites relevant for the
plants’ interactions with other organisms and not for protecting them against abiotic
stresses (Kleinwächter and Selmar 2014). In consequence, a sound explanation for
most of the observed drought stress-related upregulation of specialized metabolism
is lacking. When seeking a clue for a related significance, the strong isoprene
emission of numerous plants (e.g., Fall 1999; Sharkey and Yeh 2001) is of special
interest. The authors showed that under standard conditions, the emission of iso-
prene is neglectable and the entire energy consumption for the biosynthesis of
isoprene accounts for less than 1% of the entire photosynthetic energy. By contrast,
when the plants suffer stress, isoprene synthesis and emission increase drastically.
Magel et al. (2006) displayed that at elevated temperatures, the amount of energy,
which is dissipated by the strongly enhanced isoprene emission, could account for
more than 25% of the energy used for net photosynthesis and deduced that the
massive re-oxidation of NADPH + H+ by the isoprene biosynthesis and the energy
requirement significantly contribute to the dissipation of the excess of photosynthetic
energy. In addition, the significance for dissipation of a surplus of energy, the
emission of isoprene, contributes to cool down the stressed leaves (Behnke et al.
2007). Apart from isoprene, various other volatile organic compounds (VOCs), e.g.,
terpenes, alkanes, and alkenes, are described to be emitted by stressed plants
(Kesselmeier and Staudt 1999).

We have to realize that—apart from all the well-established and relevant ecolog-
ical functions—the drought stress-related increase in the biosynthesis of highly
reduced natural products might also contribute to dissipate a surplus of energy
(Wilhelm and Selmar 2011; Kleinwächter and Selmar 2015; Yahyazadeh et al.
2021). In consequence, the stress-related increase of natural product biosynthesis
might exhibit an additional relevance by impairing the stress-related over-reduced
status and thereby reducing the generation of toxic oxygen radicals. In other words,
not only the accumulation of highly reduced natural compounds, which could act as
radical scavengers, protects the plant against stress-related damage (e.g., Grace and
Logan 2000) but also the related biosynthesis (Selmar et al. 2017; Yahyazadeh et al.
2021).

4.6 How to Induce Drought Stress

Based on the coherences outlined above, it seems obvious to exploit the stress-
induced increase in the biosynthesis of natural products to deliberately increase their
content in medicinal and spice plants, thereby increasing the product quality (e.g.,
Selmar and Kleinwächter 2013a; Kleinwächter and Selmar 2015; Selmar et al.
2017). Indeed, the simplest approach to create drought stress is altering the irrigation
regime (e.g., Radovich et al. 2005; Kleinwächter and Selmar 2015). Such a tech-
nique, however, is restricted to semi-arid regions, where supplemental watering is
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required, which could be reduced. In contrast, in moderate climates, the water supply
by rainfall cannot be influenced directly (Kleinwächter and Selmar 2014). Nonethe-
less, also in these areas, the moisture content of the soil can be altered. In this
context, the choice of the cultivation area can be advantageous, e.g., to choose fields
with slopes, which will retain water markedly less than flat plains (Kleinwächter and
Selmar 2014). However, even in plains, the drainage capability can also be enhanced
by the establishment of furrows or ridges, whose design and shaping directly impact
the drainage properties. Moreover, drainage alternatively could be also achieved by
increasing the proportion of sand in the soil. This however would irreversibly change
the character of the soil and should only be applied in exceptional cases
(Kleinwächter and Selmar 2014).

Instead of reducing soil moisture, stress can be induced by applying growth
regulators, which are involved in the relevant signal transduction chains. Jasmonic
acid is known as a potent regulator of genes involved in most biotic and abiotic stress
responses, including drought stress (Turner et al. 2002: Kazan and Manners 2008).
Methyl jasmonate (MeJA) is a volatile ester of jasmonic acid (JA), which first was
successfully employed in numerous tissue and cell culture systems to enhance the
concentration of secondary metabolites (for review, see Namdeo 2007). After its
uptake into the cells, MeJA is hydrolyzed, and the active growth regulator is
generated. However, it always has to be considered that higher concentrations of
JA are known to induce senescence, too (Cree and Mullet 1997). Thus, it is crucial to
apply MeJA in suitable concentrations, which do not yet promote senescence, but
which are sufficient to mimic drought stress. Up to now, various corresponding
approaches are reported which employed successfully MeJA to impact specialized
metabolism. In this context, the application of MeJA enhanced the concentration of
phenols and monoterpenes in Ocimum basilicum (Kim et al. 2006). In the same
manner, in Brassica rapa and in Tropaeolum majus, the concentrations of
glucosinolates increased after MeJA treatment (Loivamäki et al. 2004; Bloem
et al. 2014). Analogously, the concentration of flavones in parsley and of alkaloids
in Chelidonium majus was enhanced in response to MeJA treatments (Kleinwächter
et al. 2015). In contrast, no effect could be determined for the monoterpenes in
thyme, although classical drought stress indeed resulted in a significant enhanced
monoterpene concentration in comparison to the well-watered controls
(Kleinwächter et al. 2015). Apparently, the efficiency of MeJA treatments depends
on an appropriate concentration, which obviously is different for various plant
species. MeJA treatment of Catharanthus roseus not only does impact the alkaloid
content but also massively alters the composition of indole alkaloids (Aerts et al.
1994; Abouzeid et al. 2017). The specific background of this phenomenon is
presented in detail in the next section. In conclusion, these promising approaches
outline that the application of MeJA indeed is an alternative for a direct drought
treatment in order to improve the quality of medicinal and spice plants.

Apart fromMeJA, also salicylic acid (SA)—the key signal substance, responsible
for systemic resistance (for review, see Durrant and Dong 2004)—has been
employed to influence the synthesis and accumulation of secondary metabolites.
SA treatment resulted in a strong increase in the concentration of phenolic natural
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products in Echinacea purpurea leaves (Kuzel et al. 2009) as well as in an enhanced
accumulation of glucosinolates in oilseed rape (Kiddle et al. 1994). Unfortunately, as
already mentioned for JA, SA also impacts on primary metabolism and develop-
mental processes. In this context, the induction of senescence and retardation of
growth are of special concern, when these growth regulators are applied to increase
product quality (Kleinwächter and Selmar 2014). Accordingly, just in the same
manner as outlined for the deliberate induction of drought stress, also the application
of salicylic acid and methyl jasmonate requires a thorough balancing of pros and
cons (Kleinwächter and Selmar 2014). This, however, necessitates a sound and
comprehensive knowledge of the related scientific background, in particular, the
knowledge of the optimal concentration of the growth regulators and of the best time
for their application (Kleinwächter and Selmar 2014).

4.7 Stress-Induced Changes in the Spectrum of Specialized
Metabolites: Quantitative Changes

When Abouzeid et al. (2017) sprayed lesser periwinkle (Vinca minor) with MeJA to
deliberately enhance the contents of indole alkaloids, the outcome was really
surprising (Selmar et al. 2017). Indeed, the alkaloid spectrum of the control plants
was in accordance with the literature, and vincamine and vincadifformine represent
the major components (Proksa and Grossmann 1991; D’Amelio et al. 2012). How-
ever, the alkaloid composition of the MeJA-treated plants was drastically different.
In the stressed plants, only small amounts of vincamine and vincadifformine were
detectable. Obviously, in response to stress induction, the contents of these both
alkaloids were massively decreased. In contrast, the contents of minovincinine,
minovincine, and 9-methoxyvincamine drastically increased (Abouzeid et al.
2017, 2019). Based on the high structural similarities of vincamine and
9-methoxyvincamine and their inverse changes in concentrations, it was postulated
that—as a result of the stress induction—vincamine was converted to
9-methoxyvincamine (Fig. 4.3, Abouzeid et al. 2019). In the same manner, due to
the opposed changes in the concentrations of vincadifformine on the one side and of
minovincinine and minovincine on the other side, it is assumed that vincadifformine
was converted first to minovincinine and finally to minovincine (Abouzeid et al.
2019). Since the required hydroxylations are frequently catalyzed by cytochrome
P450 enzymes, which are reported to be induced by stress (e.g., Narusaka et al. 2004;
Pandian et al. 2020), it is very likely that the conversion of vincadifformine first to
minovincinine and finally to minovincine is also catalyzed by such stress-induced
cytochrome P450 enzymes (Abouzeid et al. 2019). Indeed, this conjecture was
verified by the application of naproxen, a well-known inhibitor for cytochrome
P450 enzymes (Abouzeid et al. 2019). In plants treated simultaneously with MeJA
and naproxen, the conversion of the major alkaloids present in V. minor plants
effectively was suppressed.
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The coherences outlined above verify that alkaloids genuinely accumulated in
V. minor plants are modified in response to the stress induction. This, however,
signifies that specialized metabolites—which constitutively are accumulated in a
plant and which accordingly are denoted as phytoanticipins—are modified in
response to a stress situation (Abouzeid et al. 2019). Indeed, the biosynthesis of
novel substances in response to stress is well known as a result of pathogen or
herbivore attack (Wink 2010). But in all these cases, the relevant specialized
metabolites, denoted as phytoalexins, are synthesized de novo from primary metab-
olites (Pedras et al. 2011). In consequence, in addition to phytoanticipins and
phytoalexins, a third category of specialized metabolites, i.e., phytomodificines,
had to be introduced. When substances are generated as a result of the stress-
induced modification of previously accumulated phytoanticipins, they are denoted
as phytomodificines (Abouzeid et al. 2019). This vividly outlines that stress not only
induces quantitative changes in natural product biosynthesis but also may alter the
composition of the relevant substances. Much more research is required to elucidate
the molecular coherences of this fascinating issue. Indeed, there is an enormous
potential to exploit the stress-related changes in the spectrum of specialized metab-
olites (Selmar et al. 2017). In particular, the emergence of new, hitherto unknown
compounds as well as the changes in the overall pharmacological activity of related

Fig. 4.3 Conversion of indole alkaloids in Vinca minor. According to Abouzeid et al. (2019), in
stressed Vinca plants, the typical phytoanticipins vincamine and vincadifformine are modified by
cytochrome P450 enzymes. The resulting derivatives represent a new category of specialized
metabolites, denoted as phytomodificines
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extracts impressively outlines the advantages of applying growth regulators to
medicinal plants.

4.8 Practical Deliberations

In general, drought is a negative factor for plant cultivation and is responsible for
severe yield losses in agriculture. However, with respect to spice and medicinal
plants, the situation is different (Kleinwächter and Selmar 2015). Since their content
of relevant natural products determines the quality of the related commodities, any
approaches to increase this quality could be favorable. Based on the insights
displayed in this review, we have to realize that the concentration of natural products
and, thus, the product quality of spice and medicinal plants can be deliberately
enhanced by applying moderate drought stress during their cultivation
(Kleinwächter and Selmar 2015). In the recent past, several successful approaches
were reported (Bloem et al. 2014; Kleinwächter et al. 2015). Nonetheless, we always
have to consider that drought stress also reduces the biomass production of spice and
medicinal plants (Jaleel et al. 2009). Accordingly, the interference of these two
stress-related effects, i.e., lesser biomass production and enhanced concentrations of
relevant compounds, has to be considered (Kleinwächter and Selmar 2015). Thus,
before any employment of moderate drought stress to deliberately modulate the
biosynthesis of natural products, the question has to be answered what is required, a
high concentration of relevant compounds or a large overall yield. When the quality
of the commodity is strongly determined by a high concentration of natural products,
putative wastages of biomass and thus of the overall amount of relevant compounds
are acceptable. On the other hand, when the total yield of a certain substance is in the
focus, detriments in biomass production should be minimized. These considerations
are valid for both alternatives, a classical induction of stress by reducing the watering
or by applying growth regulators such as MeJA.

Apart from the interaction of the stress-induced growth retardation and special-
ized metabolism, we have to consider that stress also influences the general meta-
bolic status of a plant and thereby alters the ratio between generative and vegetative
characteristics (e.g., Nederhoff and Houter 2009). Furthermore, drought stress may
change the source-sink properties of the entire plant and, thus, the allocation of
natural products from one organ into another. This aspect is of special interest when
the related plant-derived commodity comprises only one certain organ, e.g., roots,
leaves, seeds, or flowers.

A further promising aspect concerns the phytomodificines. In all cases, in which
the employment of stress results in the emergence of new hitherto unknown com-
pounds (or in massive changes of the spectrum of natural compounds), this approach
will facilitate the search for new, previously unknown bioactive natural products and
thereby accelerate the development of novel, highly needed drugs.

In addition to the well-known quality enhancement of medicinal plants grown
under semi-arid conditions, whose scientific background is outlined above, there are
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various further examples that illustrate the relevance of stress induction for the
quality of plant-derived commodities (Kleinwächter and Selmar 2015). However,
sometimes the opposite, i.e., the omission of stress, is required for an enhancement
of the quality of plant-derived commodities (Kleinwächter and Selmar 2015). These
coherences are valid for those products, whose higher quality is attributed to a lower
content of specialized compounds. To generate the highest quality of Japanese green
teas, which exhibit only low concentrations of unpreferred phenolic compounds, the
Camellia sinensis plants frequently are grown under artificial shading (Wang et al.
2012): plants grown under lower light intensities are subjected to far less oxidative
stress (Fig. 4.2) than plants, which are grown in full sunlight. In consequence, in the
shaded tea plants—as a result of a significantly decreased over-reduced status—the
synthesis of secondary plant products should be reduced (Kleinwächter and Selmar
2015). This assumption was verified by related analysis, which revealed that the
content of specialized metabolites, i.e., monoterpenes and coumarins, is significantly
lower in the shaded, non-stressed tea plants than in the related controls exposed to
full sunlight (Shimoda et al. 1995).

Further impressive examples for the impairment of specialized plant products by
reducing the stress level are the differences in the color of tobacco leaves
(Kleinwächter and Selmar 2015). Whereas the tobacco leaves from Nicotiana plants
grown in full sunlight in Southern and Middle America display the typical dark
colors of the so-called Brazil quality (Andersen et al. 1985), tobacco grown in
Sumatra exhibits much brighter hues. This is caused by the far lower solar irradiance
due to the foggy Sumatran climate. Corresponding phytochemical analysis indeed
revealed that the concentrations of total phenols and alkaloids are quite lower in the
tobacco leaves grown under low irradiance (Andersen et al. 1985). This context is
exploited by artificial shading of tobacco plants. In doing so, even when grown in
Brazil, the typical Sumatra qualities are generated. These coherences confirmed once
more the significant impact of stress on the synthesis of specialized plants’ products.

These reflections clearly display that the effects of drought stress on the accumu-
lation of natural products and thus on the quality of medicinal plants are multi-
layered and very complex. Its basic enhancing influence on the biosynthesis of
specialized metabolites could be compensated or even over-compensated by other
stress-induced processes. As a consequence, we always have to weigh up advantages
and drawbacks of a certain approach (Kleinwächter and Selmar 2014). To facilitate
corresponding assessments, Kleinwächter and Selmar proposed to answer some
ensuing questions (Selmar and Kleinwächter 2013a; Kleinwächter and Selmar
2014, 2015):

• What is required, a high concentration of natural products or a large bulk (total
amount versus high concentrations in the commodity)?

• What kind and which level of stress enhance the accumulation of the desired
compounds without causing too high losses in biomass?

• Can the accumulation of the required natural products be increased by the
application of signal transducers or growth regulators (e.g., MeJA, salicylic
acid)?
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• Are the substances synthesized and accumulated in source or in sink tissues?
• Are the substances synthesized and accumulated in generative or vegetative

organs?
• Should the stress be applied only within a certain phase of cultivation or while a

special developmental phase in order to obtain maximal quality?

4.9 Conclusion

Spice and medicinal plants grown under semi-arid conditions reveal significantly
higher concentrations of relevant natural products than identical plants, grown and
cultivated in moderate climates (Kleinwächter and Selmar 2015). Basic biochemical
reflections expound that three causes for the observed changes could be responsible
for the stress-related increase in the concentration of natural products (Selmar and
Kleinwächter 2013b). Since the biomass of the stressed plants is quite lower than
that of the well-watered controls, even without any difference in the extent of
biosynthesis, the concentration (on fresh or dry weight basis) on the stressed plants
is enhanced (Paulsen and Selmar 2016; Yahyazadeh et al. 2021). In contrast to this
indirect effect, indeed the entire amount of specialized metabolites could be higher.
This direct effect could be due to either an active upregulation of the biosynthetic
enzymes or to a passive shift, evoked by an elevated level of NADPH+H+, caused by
the shortage of CO2 as a result of stomata closing (Yahyazadeh et al. 2018). Apart
from these quantitative changes, also the spectrum of specialized metabolites could
be altered in response to the stress situation (Abouzeid et al. 2017). Based on these
physiological considerations, practical aspects for the application of drought stress to
deliberately improve the quality of spice and medicinal plants are outlined.
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Chapter 5
Adaptation Strategies of Medicinal Plants
in Response to Environmental Stresses

Muatasim Jan, Tawseef Ahmad Mir, Rakesh Kumar Khare, and Neha Saini

Abstract During the complete life phase, medicinal plant species encounter varied
environmental problems, which have adverse impacts on their growth, productivity,
reproductive ability, and survival. These plants develop effective strategies for
preventing or tolerating all of these stresses, which helps them to adjust to stressful
circumstances. Such types of strategies of adaptation are found at structural, ana-
tomical, hormonal, molecular, and biochemical stages. To adapt and protect them-
selves from the environment, these plants use different mechanisms including
epigenetic memory, molecular crosstalk, ROS (reactive oxygen species) signaling,
plant hormone accumulation (such as abscisic acid, jasmonates, ethylene, and
salicylic acid), redox status and inorganic ion flux changes, resistance of R-gene,
and systemic acquired resistance. A detailed understanding of various strategies used
by the plant species to the stress in the environment is needed to enhance the
production of crops in stress-like situations. Analyzing plant response to an envi-
ronmental stress exposes metabolism pathways and other cascades that are activated
following a stressful situation. Furthermore, understanding the anatomical and
molecular mechanisms of plant species stress response would provide new insights
toward the production of genetically engineered species that have high resistance to
various stresses.
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5.1 Introduction

In the survival of mankind and the health of natural ecosystems, biodiversity plays a
pivotal part. Medicinal plants, which are a component of this biodiversity, constitute
the backbone of the global healthcare system and economy. Medicinal plants are a
significant natural resource and an important aspect of the healthcare industry as well
as the environment (Mir et al. 2021a, b). However, the survival and the development
of medicinal herbs are hampered due to various environmental stresses (Osakabe
et al. 2012; Stella et al. 2013; Niinemets 2010). Medicinal plants which are open to
diverse stresses (biotic and abiotic) experience a disturbance and physiological
imbalance, resulting in decreased growth, development, and productivity (Atkinson
and Urwin 2012).

Drought, salt, severe temperature, insufficient or extreme conditions of light,
pollution, and radioactivity are all examples of abiotic factors that can cause
environmental stress. Some of the important abiotic stresses including drought,
cold, and salinity create substantial issues for medicinal herbs (Krasensky and
Jonak 2012), including insufficient availability of water and nutrients and harmful
salt ion concentration like the deficiency of Na, Cl, and Ca (Marschner 1995).
Environmental pollution results due to growing urbanization, industrialization, and
agricultural intensification, with some pollutants reaching lethal levels for plants.
Abiotic stresses could cause serious damage to the stems of plants. Strong winds
have the potential to snap twigs and cause flower buds to fall (Chelli-Chaabouni
2014). Intense sun radiations that occur over a lengthy period of time can burn the
epidermis of freshly produced shoots. Under the salt stress, the decreased differen-
tiation of xylem leads to decreased vessel lamina (Chelli-Chaabouni 2014;
Escalante-Pérez et al. 2009). This is due to low nutrition concentration to cambium
and reduced K+ concentration in salt-sensitive plant species. The biotic factors arise
due to the interaction of plants with fungi, virus, bacteria, insects, and competition
(Fig. 5.1). Besides their immediate impacts, the physiochemical features of the
environment pose an indirect effect on the proliferation and development of plant
parasites through their interaction with other organisms. The severity of the stresses
is evaluated by the interactions (interspecific and intraspecific) of these organisms
(Valdés-Gómez et al. 2011). The secretion of allelochemical substances by the plant
may pose a number of effects on individual surrounding plant species and, as a
result, on the distribution of organism ecosystems. Ultimately, these products show
their impact on growth, germination of seeds, plant physiology, cellular system,
metabolism, water and nutrient uptake, transport of mineral and food elements, and
hormones (Lodhi 1976; Blanco 2007). Long-term abiotic stress can damage plant
tissues and organs, making them more susceptible to disease (Chelli-Chaabouni
2014). Long-time biotic stresses due to insects and pathogens worsen the effects
of abiotic stresses including deficiency of water (Englishloeb 1990; Khan and Khan
1996). By the time medicinal plants have developed most effective mechanisms to
tolerate the number of environmental stresses in the nature (Table 5.1). Besides the
fact that medicinal plants vary in their response and susceptibility to stresses, they
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have evolved a variety of adaption strategies to translate cascade signaling and
networks of a gene transcription to get adapted and to survive in harsh environment
(Sanghera et al. 2011; Joshi et al. 2016). To adapt and protect themselves from the
environment, these plants use different mechanisms including epigenetic memory,
molecular crosstalk, ROS (reactive oxygen species) signaling, plant hormone accu-
mulation, inorganic ion flux changes and redox status, resistant R-gene, and (SAR)
systemic acquired resistance as well as other mechanisms (Kissoudis et al. 2014;
Wani and Kumar 2015). To check the identification and entrance of pathogens at the
earliest, the physical barriers including stomata, cuticle, and cell walls play a pivotal
role (Asselbergh et al. 2007). Stress-prompted biochemical responses result in the
accumulation of metabolites including quaternary amino acids, polyamines, proline,
and hydroxyl substances including polyols, oligosaccharides, and sucrose (McCue
and Hanson 1990).

5.2 Structural Adaptations of Medicinal Plants
to Environmental Stresses

Because of the negative effect of different stressors (biotic and abiotic), medicinal
plant productivity is decreasing. To preserve this production of plants from the
changing climate and an increasing global population, minimizing these losses is a
critical concern (Devi et al. 2017). The plant adapts its morphological structures in
response to the harsh climate conditions in order to survive in the current habitat
(Fig. 5.2). Drought, salinity, wounding, and disease attacks, as well as heavy metals
and high salinity, all adversely affect the plant growth and productivity (Wani et al.

BIOTIC STRESSES
Drought
Salt
Heat
Insufficient or excessive 
light
Ozone
Pollution 
Cold 
Radioactivity

ABIOTIC STRESSES
Fungi
Bacteria
Viruses 
Insects
Allelopathy 
Plant competition

Fig. 5.1 Types of stresses affecting the plant
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Table 5.1 Adaptation strategies of some medicinal plants in response to environmental stresses

Adaptation Stresses Plant species Citations

Thickening of the cuticle of leaf Droughts Olea europaea Bosabalidis and Kofidis
(2002)

Thickening of palisade layers of
the mesophyll

Salinity Olea europaea Devi et al. (2017)

Thickening of leaf epidermis Drought Ziziphus
mauritiana

Devi et al. (2017)

Lignification of cell wall Pathogens Ziziphus
mauritiana

Ninemets et al. (1999)

Anatomical plasticity of leaves Drought Quercus coccinea
Quercus rubra

Ashton and Berlyn
(1994)

Movement of chloroplast Restrictive
light
conditions

Tradescantia
albiflora

Park et al. (1996)

Presence of lenticels Flooding Acer campestre
Fraxinus excel-
sior
Alnus glutinosa

Chelli-Chaabouni
(2014)

Increase in the density of roots Salinity Callistemon
citrinus

Alvarez and Sanchez-
Blanco (2014)

Presence of adventurous roots Flooding Sapium sebiferum
Taxodium
distichum

Wang and Cao (2012)

Increase in root diameter Salinity Portulaca
oleracea
Pinus banksiana

Franco et al. (2011);
Croser et al. (2001)

Decrease of vessel lumina and
increase in IAA-amido conjugates
in xylem

Salinity Populus
euphratica

Junghans et al. (2006)

Reduction in stomatal size Pollution Sida acuta Ogunkunle et al. (2013)

Increase in endogenous level of
salicylic acid

Drought Phillyrea
angustifolia

Munne-Bosch and
Penuelas (2003)

Cuticular waxes and hairy texture Higher
levels of
light

Eucalyptus spp.
Prunus spp.

Cameron (1970);
Holmes and Keiller
(2002)

Accelerate fine root production Water
scarcity

Fagus spp. Leuschner et al. (2001)

Cell wall flexibility Water
scarcity

Vitis vinifera Patakas and Noitsakis
(1997)

Accumulation of phenolics Pollution Trifolium spp. Gostin (2009)

Increase in tissue flexibility and a
reduction in osmotic potential

Water
shortage

Persea
americana

Chartzoulakis et al.
(2002)

Accumulation of proline Salinity Salvia officinalis
Trachyspermum
ammi
Achillea
fragrantissima

Hendawy and Khalid
(2005); Ashraf and
Orooj (2006)
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2016; Hossain et al. 2016). The drought-related reductions in plant production may
be due to the closure of stomata in reaction to the reduced levels of water in the soil,
which lowered CO2 uptake and, hence, reduced the process of photosynthesis
(Cornic 2000; Flexas et al. 2004). Plants that grow in arid environments have
acquired xeromorphic characteristics such as leaf shedding and a reduction in size
and branching and number of leaves, which is an adaptation of plant toward the
drought conditions (Devi et al. 2017). Sclerophylly is the yet another adaptation
strategy of plants against the drought stresses, in which plant species grow leaves
that are stiff and are not permanently harmed by wilting process (Micco and Aronne
2002). Plants that exist in cold climates change the morphology to avoid the effects
of moving air by shrinking their body structure and by adopting the compressed
pattern of growth. Furthermore, several tropical alpine medicinal plant species have
been reported to engage in leaf super-cooling, which involves the retention of water
in a metastable gel form in freezing temperature (Devi et al. 2017). The tissues freeze
and perish as soon as the super-cooling capability is depleted, approximately 12 �C.
It has been observed that in cold climate plants, the water in the xylem is super-
cooled to 40 �C (Korner 2016).

The primary security of a plant against herbivores is the morphological structures
of the plant, which also acts as shield against insect resistance (Handley et al. 2005;
Chamarthi et al. 2010). Physical barriers are considered as an adaptation against
insect pests (He et al. 2011). Plants that are nutrient-deficient allot more photosyn-
thates to their root system (Kozlowski and Pallardy 2002). Tolerant plants employ a
variety of strategies to restore the function of root system and reimburse for damage

• Waxy cuticle
• Spines and Thorns
• Setae
• Trichomes

• Lenticels
• Adventitious roots

• Shirnnking size
• Compact growth
• Leaf super cooling

• Reduced leaf size, 
number and branching

• Leaf shedding
• Sclerophylly
• Reduced stomatal 

conductance

••••• WWaxaxyy
• SpSppiinneess
• Setae

• Leaf su

l 

Drought Cold

HerbivoryFlood

Fig. 5.2 Various morphological adaptations of medicinal plants to environmental stresses
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of roots and mortality. During the dry mid-summer period, when there is deficiency
of water, species of Fagus accelerate the production of fine roots to reimburse the
losses of root biomass (Leuschner et al. 2001). By the development of adventitious
roots, plants also save themselves from flood conditions.

In anaerobic environments, hypertrophied lenticels grow in plants which provide
a channel for diffusing oxygen through the live cells of bark and release the
hazardous chemicals associated with anaerobiosis (Glenz et al. 2006). Plants like
Acer campestre, Fraxinus excelsior, Salix alba, Alnus glutinosa, and Populus nigra
have been reported to have lenticels as a morphological adaptation to floods (Hook
1984; Siebel et al. 1998).

Plant species respond to biotic (herbivores, bacteria, virus, and fungi) and abiotic
(droughts, UV radiations, salinity, higher temperature, and heavy metals) distur-
bances by rolling their leaves (Bosabalidis and Kofidis 2002; Kadioglu et al. 2012).
In the plant species under osmotic tension, this physical movement, along with the
closure of stomata, serves a critical function in reducing water loss and maintaining
cell turgor. Stomata closure, on the other hand, reduces gaseous exchanges through
the leaves, as well as plant photosynthetic activity, because CO2 intake is reduced.
Plant species try to change their crown construction manner and the leaf angle
placement within the crown irradiance to maximize carbon absorption (Egea et al.
2012; Guàrdia et al. 2012). Photon flux density is regulated by the movement of
chloroplast at cellular level (Way and Pearcy 2012). The overall size and grana
stacking inside chloroplasts can fluctuate within 10 min in the exposure of heavy
light (Rozak et al. 2002).

5.3 Anatomical Adaptation of Medicinal Plants
to Environmental Stress

5.3.1 Water, Light, and Oxygen Stress

The water stress arises when there is a modest loss of water, which causes stomata to
close and gas exchange to be limited. Water stress tolerance is influenced by changes
at cellular level. It seems to be the result of a rapid osmotic stress-induced compatible
protein and solute accumulation (Shao et al. 2005). Water stress affects the most
important activities of a plant including cell division process, cell maturation, and
differentiation, which impact plant growth quantity and quality (Correia et al. 2001;
Cabuslay et al. 2002). Stiff, leathery leaves are a sought of adaptation strategy by
plant species in response to stress of water. The sclerophyllous leaves have
supporting tissues (like sclereids, epidermis of thick wall, etc.) that restricts the
collapse of plant systems in the scarcity of water, hence lowering the chances of
injuries to plant body (Correia et al. 2001). Due to the presence thick walled epider-
mis, sclerophyllous leaf loses its little volume during dry circumstances, while the
thin mesophylls cells shrivel severely, making large gaps between the cells. By this,
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the process of photosynthesis continues even when other leaf types wilt due to
extreme water stress (Shields 1950).

Stress tolerance of some plant species has been linked to variations in cell wall
flexibility under stressful situations. However, tissue elasticity has been postulated as
a mechanism of stress adaptation in positive as well as negative ways (Chartzoulakis
et al. 2002; Patakas and Noitsakis 1997). The cell wall flexibility of Vitis vinifera has
been recommended as a viable approach for overcoming water shortages (Patakas
and Noitsakis 1997) and severe ultraviolet radiations (Lesniewska et al. 2004). In
contrast, two most common mechanisms of adaptation of increase in tissue flexibil-
ity and decrease in the osmotic potential in Persea americana helps it to tolerate
the various environmental stresses (Chartzoulakis et al. 2002).

Aerenchyma tissues are considered an adaptation to anaerobiosis of plant species
which provide an enormous air gaps between the cells that allows oxygen to diffuse
in the roots (Wang and Cao 2012). The increased palisade parenchyma, the gaps
between cells, and a subsequent reduction in the spongy parenchyma are among the
anatomical changes in leaves that aid CO2 transport in the presence of small stomatal
openings (Acosta-Motos et al. 2017).

5.3.2 Heat Stress

Global climate change is currently raising temperatures, which is posing a significant
effect on medicinal plants. Plant species subjected to heat stress on a frequent basis
can inhibit survival and development, and by this, mortality is increased (Sayed
1996). Due to continuous increasing temperatures, the anatomical structures of the
plant including tissues, cells, and subcellular systems are affected. Development of
small cells, closure of stomatal guard cells, increased density of trichomes and
stomata, and development of larger xylem vessels in roots and the shoot are general
adaptations of plants in heat stress (Anon et al. 2004). Due to this, the severity of
damage in mesophyll cells is increased (Zhang et al. 2005). In order to respond to
higher temperatures, the plants use a number of mechanisms including the genera-
tion of polymorphic leaf so as to decrease the transpiration by the process of bimodal
stomata to reduce the process of photosynthesis (Sayed 1996). Chloroplasts in the
mesophyll cells and stroma lamellae in grape vine expand, and the compounds
present in the vacuoles aggregate together, whereas the mitochondria becomes
empty by the disruption of cristae (Zhang et al. 2005).

5.3.3 Salinity Stress

The most discussed and dangerous environmental stress which is involved in
limiting the growth and development mostly in arid and semi-arid climatic condi-
tions is none other than salinity (Wani and Gosal 2011; Wani and Hossain 2015).
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The soil is said to be saline when the electric conductivity of the soil solution exceeds
4dS ml (40 mM NaCl) and roughly 0.2 MPa of osmotic pressure is formed, thereby
severely lowering plant growth (Wani et al. 2010). Large amount of Na+ is accu-
mulated by plant species in saline environments, thereby inhibiting K+ ions from
being absorbed (Dang et al. 2010). In plants, chlorosis and necrosis are found due to
saline soil, mostly owing to Na+ buildup, which interrupts many of the important
functions of a plant (Munns 2002).

Plants that show resistance to NaCl adjust to saline environment by making some
key adaptations including chlorophyll increase and leaf structure changes, which
ultimately contribute to the prevention of leaf ion toxicity, limiting the loss of water
and protecting the process of photosynthesis (Acosta-Motos et al. 2017; Franco et al.
2011). It has been reported that Callistemon citrinus plant if irrigated with salt water
improves root breadth and density (Croser et al. 2001; Álvarez and Sánchez-Blanco
2014). The characteristics of cell wall alter under saline circumstances, and leaf
turgor and photosynthetic rates drop, resulting in a decrease of the total area of a leaf
(Rodríguez et al. 2005). To compensate the xylem hydraulic conductivity loss
caused by the stress of salt, several woody plants reduce vessel lumen and increase
wall strength in response to salinity. For example, the vessel lumen of Populus
euphratica, which is resistant to salt stress, decreased less than Populus canescens,
which is a salt stress sensitive plant (Junghans et al. 2006).

5.3.4 Heavy Metal Stress

Important transition elements (zinc, iron, copper, manganese, cobalt, molybdenum,
and nickel) as well as elements which are not essential (lead, cadmium, mercury, and
chromium) are included in heavy metals. These elements are dangerous for medic-
inal plants when their concentration is increased beyond the threshold level. Heavy
metals which have toxic properties are important factors that harm metabolic and
physiological processes of medicinal plants (Farid et al. 2013). In recent years, heavy
metal concentrations have reached to dangerously high levels (Sainger et al. 2011).
Heavy metals pose direct influence on the growth and development. Furthermore,
soil microbes and animals get affected as well which is harmful for the mineraliza-
tion of organic compounds; hence, nutrition hindrances are created in plants
(Fernández et al. 2013; Tyler 1984). Heavy metals have a phytotoxic impact on
plants causing a number of physiological, biochemical, and structural problems to
the plant (Sanitá di Troppi and Gabbrielli 1999; Marques et al. 2000).

Accumulation of heavy metals like lead, mercury, and cadmium in Bruguiera
sexangula made the vascular bundles deformed (Gupta and Chakrabarti 2013). Cd
treatment caused the distortion of xylem and phloem, which finally resulted in
apparent toxicity. The Cd-treated stem transverse section (TS) revealed the distribu-
tion of heavy metals even up to pith region (Zhao et al. 2000). Architectural
alterations in Arabidopsis thaliana roots which are induced by certain abiotic
stressors and Cu are thought to be due to metabolism of phytohormone and buildup
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of local auxin near the pericycle of root (Pasternak et al. 2005). In the root tissues of
Brachiaria decumbens, larger cell layers of endodermis and exodermis have been
discovered as well as thickness in xylem and cortical cell walls by the effect of heavy
metals. The thickness of leaf blades was decreased with the increase in heavy metal
contamination, resulting in a shift in the root development rate (Gomes et al. 2011).

5.3.5 Pollution Stress

Due to increasing urbanization, industrial growth, and agricultural intensification,
the environmental pollution has increased dramatically, leading certain toxins to
reach dangerous levels for plants. Because medicinal plants are so important,
researchers are increasingly interested in the impact of phytotoxic chemicals
on them.

A prevalent response of a plant to any stress is an increase in phenolics and lignin
accumulation (Wild and Schmitt 1995). The presence of phenolic chemicals in
Trifolium spp. reveals that the accumulation of these compounds occurs due to
long-term exposure of the plant to air pollution (Gostin 2009). Cement dust has
been found to affect epidermal structures such as trichomes in Cajanus cajan plants
(Baralabai and Vivekanandan 1996). Verma et al. (2006) discovered a substantial
drop in the density and index of stomata grown under varied levels of smoke of coal.
Nevertheless, no morphological changes in Pennisetum purpureum were found as a
result of cement factory pollution, which might imply that dosage response of plants
has not been achieved (Ogunkunle et al. 2013). Growing medicinal trees in cities
reduced the size and density of stomata and thinned the cuticle, but had no effect on
other morphological features, designating the plan trees can tolerate the traffic
conditions in megacities (Pourkhabbaz et al. 2010).

5.4 Hormonal and Enzymatic Adaptation Strategies

The hormonal physiology of the plants is affected by environmental stresses. The
tissue growth of vessels and secondary development in plants are regulated by
hormones (Osakabe et al. 2012). Auxins play a significant role in cell division,
expansion of cells, apical dominance, and growth and development of roots and
vessel tissues (Osakabe et al. 2012). Secondary development is also controlled by the
hormones (Nilsson et al. 2008). Salt-tolerant plants can utilize the conjugates of
auxin as auxin source to compensate the physiological imbalance of auxin caused
due to salt stress conditions.

Because of its involvement in the plant leaf abscission, abscisic acid (ABA) gets
its name. It is also known as a “stress hormone” because of its responsiveness and
particular function in plant adaptation to abiotic stressors. Endogenous ABA levels
rise fast in response to environmental stressors, activating particular signal pathways
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and expression levels of genes (O’Brien and Benkova 2013). According to
Nemhauser et al. (2006), 10% of protein-encoding genes are controlled transcrip-
tionally by ABA.

In plants, it also serves a function of internal signaling and allows them to survive
in harsh environments (Keskin et al. 2010). Abscisic acid in plants is used to convey
the message that the plant is having stress conditions near the roots when they are
water-stressed, which leads to behavior of water-saving anti-transpiration
(Wilkinson et al. 2012). Different abiotic conditions promote ABA accumulation
(Escandón et al. 2016; Pashkovskiy et al. 2019). ABA is believed to have a function
in controlling biomass of woody medicinal plant species, by influencing the area of
leaf in the trade-off biomass allocation under stressful conditions (Yu et al. 2019).

During the drought stress conditions of a plant, salicylic acid plays a pivotal part
(Miura et al. 2013). It also plays a vital role in chilling (Yang et al. 2012), salinity
(Fahad and Bano 2012), and heat stress conditions. In Phillyrea angustifolia,
salicylic acid was increased five times during drought conditions (Munne-Bosch
and Penuelas 2003). Water scarcity increased salicylic acid levels in Hordeum
vulgare roots by almost threefold (Bandurska and Stroinski 2005).

Defense reaction of a plant species to heat stress is likewise influenced by
ethylene (Larkindale et al. 2005). Environmental stress causes ethylene buildup,
which enhances the likelihood of plants surviving in these harsh conditions
(Gamalero and Glick 2012). In response to hypoxic conditions, ethylene accumula-
tion occurs in waterlogged soils. Ethylene serves as a regulator against anaerobiosis
in waterlogged conditions (Sairam et al. 2008).

Homeostasis at cellular level and antioxidant defense are two plant defense
systems against heavy metal toxicity. A number of enzymatic antioxidants, includ-
ing peroxidase, superoxide dismutase, glutathione S-transferase, and catalase, are
capable to change superoxides to hydrogen peroxide, which can be converted to
water and oxygen, whereas ROS are directly detoxified by proline, glutathione, and
ascorbic acid which are non-enzymatic antioxidants (Xu et al. 2009; Yadav et al.
2014; Singh et al. 2015). In the leaf portion of some medicinal plants like Salvia
officinalis, Trachyspermum ammi, and Achillea fragrantissima, proline is accumu-
lated in response to saline conditions (Hendawy and Khalid 2005; Ashraf and Orooj
2006).

5.5 Molecular and Biochemical Adaptation Strategies

Understanding the complicated nature of plant adaptation strategies would need a
thorough examination to understand the stress-response genes and their function
(Wani et al. 2012). Studies reveal that the genes involved in defense response get
active by various pathogenic actions and a number of abiotic stresses. Individual
genes of defense are activated in response to certain factors of environment, that is, a
complex signaling network is at work, which provides a plant defense against a
number of stresses such as viruses (Jaspers and Kangasjarvi 2010; Khan and Wani
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2014) The “basic leucine zipper (bZIP)” domain transcription factors regulate a
number of key activities of plant, including pathogen defense, regulation of osmosis,
sugar and hormone signaling, signaling of abiotic stresses, metabolism of energy,
and more (Perez-Clemente et al. 2013; dos Reis et al. 2016). ABA hypersensitivity,
reduction in transpiration, and increased tolerance to drought are caused by the
overexpression of AREB2/ABF4 or ABF3 genes in Arabidopsis (Fode et al.
2008a, b). In Oryza sativa, OsABF1 gene and S1AREB gene in Solanum
lycopersicum have been shown to improve salt tolerance and drought tolerance in
plants and might be used as possible agents for enhancing plant tolerance of salt
(Amir et al. 2010; Hsieh et al. 2010).

Oryza sativa, Arabidopsis, and Glycine max (Le et al. 2011) have all been shown
to contain plant-specific transcriptional factors of the NAC family (Hu et al. 2010).
Response to stresses such as cold, salt, drought, bacteria, fungus, and oxygen stress
is mediated by these transcription factors (Nuruzzaman et al. 2013).

To adapt to harsh environmental circumstances, the APETALA2 (AP2)/ethylene-
responsive element binding factor (ERF) proteins work as either activators or
repressors of gene transcription in response to both biotic and abiotic stressors
(Fujimoto et al. 2000). The AP2/ERF genes’ RNA levels are believed to be
influenced by stresses like cold conditions, droughts, pathogen infestations, salt,
injury, or the jasmonates and salicylic acid treatment (Onate-Sanchez and Singh
2002). In Nicotiana tabacum, the abovementioned genes led to increased resistance
to pathogen infestation (Park et al. 2001) and have been reported in Arabidopsis
(Kang et al. 2011) and Malus spp. (Zhao et al. 2012).

Proteins including MYB and MYC play a pivotal role toward adverse conditions
of environment. Against the pathogen infestation, AtMYB30 had a hypersensitive
cell death pathway (Raffaele et al. 2008). Seo and Park (2010) found that AtMYB96
regulates stress owing to water and resistance to disease via ABA signaling pathway
and that AtMYB15 improves stress owing to cold (Agarwal et al. 2006). The protein
family of MYC plays a pivotal part in the process of apoptosis and hypersensitive
cell death in reaction to infection by pathogens (Agarwal and Jha 2010).

In the low-lying areas, most severe abiotic stresses are submersion/waterlogging.
In deep water Oryza sativa cultivars, three QTLs are principally important for stem
elongation. SNORKEL1 and SNORKEL2 ethylene response factors help Oryza
sativa to adapt in profound waters (Hattori et al. 2009). SUB1A encoding for
ethylene response factors is believed to play a part in plant resistance in waterlogged
soils (Xu and Mackill 1996; Xu et al. 2006). Upon desubmergence, drought and
oxidative stress promote SUB1A expression responsible for controlling the expres-
sion of genes responsible for ABA-mediated adaptation in drought. Furthermore,
SUB1A stimulates the gene expression in the process of (ROS) detoxification and
lowers the accumulation of ROS when exposed to oxidative stress (Fukao et al.
2011).

Phosphate (Pi) is considered a common restrictive factor in the output of plant
despite being an important macronutrient for numerous metabolic activities. The
complex physiological, biochemical, and morphological adaptations are started by
Pi deficiency; this process is also called as Pi-starvation response (Plaxton 2004).
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Biochemical adaptations of Phosphate-starved plants include increased efficiency
of cellular phosphate uptake through high-affinity Pi transporters, induction of
Phosphate scavenging and recycling enzymes like acid phosphatase, secreted nucle-
ase and phosphodiesterase, replacement of membrane phospholipids with non-
phosphorus galacto- and sulfonyl-lipids, induction of metabolic phosphate recycling
enzymes, enhanced excretion of organic acids like malate and citrate due to
PEPCase induction, induction of alternative pathways of cytosolic glycolysis and
Respiratory Electron Transport and induction of tonoplast H+-Pumping
Pyrophosphatase (Plaxton and Carswell 1999).

5.5.1 Molecular Crosstalk and Epigenetic Memory for Stress
and Adaptation

The stress tolerance of medicinal plant species can be increased by examining
physiological and molecular crosstalk in more detail (Kissoudis et al. 2014).
According to whole genome expression meta-analysis investigations, a considerable
amount of gens are frequently controlled in biotic and abiotic stress conditions
(Shaik and Ramakrishna 2014).

Plants have evolved sophisticated mechanisms regulated by gene transcription
networks and signaling cascades responding to environmental stimuli in order to
withstand diverse biotic and abiotic challenges (Fu and Dong 2013; Yamaguchi-
Shinozaki and Shinozaki 2005). Since environmental disruptions occur regularly,
plants have been shown to remember previous stress circumstances and utilize these
memories to assist them act when the same pressures recure and to adapt to new
difficulties. The epigenetic mechanisms in the regulation of expression of genes via
short RNAs, changes in histone and methylation of DNA are the scenario behind
such memories. Stress memory and adaptability in medicinal plant species rely on
epigenetic processes like these (Kinoshita and Seki 2014).

One of the most well-known of these “memory” systems is the “defense priming”
system, which regulates the reaction to a virus or herbivore assault (Pastor et al.
2013a). In this system, the plant species responds to second attack by the disease or
herbivore with a faster and more powerful response than the first, increasing its
chances of survival. Medicinal plants have been found to employ a number of
priming techniques, including the deposition of intermediate molecules in cellular
compartments, the activation of mitogen-triggered kinases, and epigenetic processes
(Conrath 2011; Pastor et al. 2013b).

144 M. Jan et al.



5.6 Conclusion and Future Prospects

Medicinal plants face a varied number of environmental stresses during their lives,
which have an impact on productivity, survival, and species distribution. Plants
utilize a range of morphological, anatomical, biochemical, and molecular adaptation
strategies to cope with such stresses. It’s critical to have a full understanding of the
many processes by which plants adapt to environmental stresses, since this will aid
in the discovery and, perhaps, production of genotypes that are more resistant to
environmental stresses. With the fast advancement of genomic technology, wide-
spread studies are being conducted to better understand plant stress responses. There
are still numerous obstacles to overcome in order to find and comprehend the
intricacy of stress signal-transduction pathways. Furthermore, the influence of
expected climatic changes on plant stress sensitivity should be considered in order
to avoid widespread damage to medicinal plant diversity. Various contemporary
techniques (proteomics, genomics, and metabolomics) could help in the discovery of
the genetics that underpin responses to stress, allowing for direct and impartial
nursing factors that affect growth and productivity of the plant.
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Chapter 6
Physiological and Biochemical Responses
of Medicinal Plants to Salt Stress

Kazem Ghassemi-Golezani and Soheila Abdoli

Abstract Salt stress is a major detrimental factor that can reduce growth, but may
enhance the essential oil content of medicinal plants. Physiological performance of
medicinal plants may be changed by salinity, depending on species and stress level.
Extreme exposure of plants to salinity can enhance sodium accumulation in plant
cells that induces ionic and oxidative stresses. Notable changes in the generation of
reactive oxygen species and antioxidative defense system under salt stress have been
reported for several plants. High Na+ concentration of saline soils increases sodium
and decreases essential nutrient uptakes by plants, leading to nutrient imbalance, cell
membrane injury, and reduction in chlorophyll content and photosynthesis. This
stress can also limit water availability to the plants, which retards growth and
development. The stressed plants adjust the biosynthesis of osmolytes such as
proline and soluble sugars to cope with water limitation caused by salinity. Essential
oil, as the main secondary metabolite of most of the medicinal plants, is strongly
influenced by salinity. Salinity can change essential oil quantity and may also induce
synthesis of new constituents. This is also a way for improving antioxidant capacity
of plants. Several new techniques have been proposed to promote salt tolerance and
essential oil production of various medicinal plants under stress.

Keywords Essential oil · Medicinal plants · Salinity · Secondary metabolites

6.1 Introduction

The demands for producing perfumes, medicine, and natural cosmetics from medic-
inal and aromatic plants are increasing (Maisuthisakul et al. 2007; Baatour et al.
2010). The anti-inflammatory, antispasmodic, and anti-analgesic properties of
medicinal plants are attributed to their secondary metabolites such as tannins,
terpenoids, and saponins, with great medicinal value to combat and cure various
diseases (Balasundram et al. 2006). Due to the antioxidant capacity of essential oil
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for the preservation of human health (Giorgi et al. 2009), today, medicinal plants are
considered as popular cash crops. This popularity is increasing with the realization of
harms and toxicity associated with the use of synthetic drugs and antibiotics.
Production of these plants and essential oil could be influenced by various environ-
mental stresses such as salinity.

Salinity is one of the most significant environmental stresses limiting plant
production worldwide, through negative impacts on anatomical, physiological, and
enzymatic properties of plants. Saline soil can be defined as soil having an electrical
conductivity (EC) of the saturated paste extract of 4 dS m�1 (40 mM NaCl) or more
(Shrivastava and Kumar 2015). Salt stress may affect medicinal plants at various
developmental stages. The early events of seed germination could be inhibited by
salinity. This is supported by previous reports on the germination of Ocimum
basilicum (Miceli et al. 2003), Origanum majorana (Ali et al. 2007), Thymus
maroccanus (Belaqziz et al. 2009), Ochradenus baccatus (Hashem et al. 2014),
Cichorium intybus, and Foeniculum vulgare (Hokmalipour 2015) seeds under salt
stress. Seedling growth of Thymus maroccanus (Belaqziz et al. 2009), Ocimum
basilicum (Ramin 2006), Chamomilla recutita, and Origanum majorana (Ali et al.
2007) is also negatively affected by this stress. Retarding assimilate mobilization,
limiting cell division, and injuring hypocotyls have been noted as the main causes for
these effects (Said-Al Ahl and Omer 2011). Morphological traits related to leaf
growth and weight have been reduced due to salinity in several medicinal plants such
as Thymus vulgaris (Najafian et al. 2009), Salvia officinalis (Ben Taarit et al. 2009),
and Mentha pulegium (Oueslati et al. 2010). Under saline condition, all the major
processes such as photosynthesis, electron transport chain, and lipid and protein
metabolism are affected (Acosta-Motos et al. 2017; Ghassemi-Golezani et al. 2020;
Muhammad et al. 2021). To cope with salt stress, it is essential to enhance water
retention despite the strong outer osmotic pressure and to maintain photosynthetic
activity.

It is well established that accumulation of natural compounds in plants strongly
depends on environmental stresses (Rioba et al. 2015; Kahveci et al. 2021).
Although salt stress reduces plant growth and productivity, it may affect essential
oil production either positively or negatively. The essential oil content of some
medicinal plants such as mint (Aziz et al. 2008) and dill (Ghassemi-Golezani and
Nikpour-Rashidabad 2017) plants was decreased by salinity. However, salt stress
increased the essential oil of marjoram (Baghalian et al. 2008). It has been also
proved that salt stress can alter the percentage of some constitutes in the essential oil
of marigold (Khalid and da Silva 2010), sage (Ben Taarit et al. 2010), and rosemary
(Tounekti et al. 2015). This chapter not only broadens the understanding of the
physiological and biochemical mechanisms of medicinal plants in response to
salinity but will also provide concise knowledge about various techniques that can
enhance salt tolerance and productivity of these plants.
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6.2 Physiological Responses to Salt Stress

Plants grown under salinity are subjected to physiological changes which cause
stomatal closure and reduced photosynthetic rate, followed by lower plant growth
and development and notable yield losses (Gengmao et al. 2015; Sharifi and
Bidabadi 2020; Abdoli et al. 2020). Two main salt tolerance mechanisms are
(1) limiting salt ion influx into the plant and cytoplasm and (2) minimizing the
level of stress through physiological and molecular changes. Under salt stress, net
Na+ accumulation in plant cells is specified by the ion-exchange activity of Na+

influx and efflux. The Na+ influx occurs largely via ion channels such as the high-
affinity K+ transporter HKT and non-selective cation channels (NSCC), but the Na+

efflux is linked to SOS1, a Na+/H+ antiporter (Wu 2018). Limitation of Na+ entrance
into the roots may be related to the downregulation of genes encoding the Na+ influx
transporters or channels (Assaha et al. 2017). For example, downregulation of
CNGCs, which are penetrable to cations such as Na+, K+, and Ca2+ (Mian et al.
2011; Hanin et al. 2016), can prevent Na+ absorption. To survive under saline
condition, medicinal plants might employ various physiological responses toward
salinity tolerance. The common responses are disruption of oxidative redox in plant
cells, accumulation of osmolytes, and changes in nutrient homeostasis and photo-
synthetic pigments, which directly affect the growth and productivity of these plants.

6.2.1 Oxidative Responses

The usual consequence of salinity is excessive accumulation of reactive oxygen
species (ROS) in plant cells particularly in chloroplasts and mitochondria, which
results in lipid peroxidation, enzyme inactivation, protein and DNA damages, and
interaction with other vital constituents of plant cells. Salt stress can lead to stomatal
closure, which limits carbon dioxide availability in the leaves and prevents carbon
fixation, resulting in an excessive excitation energy in chloroplasts, which in turn
increases the generation of ROS such as superoxide (O2

•–), hydrogen peroxide
(H2O2), hydroxyl radical (HO

•), and singlet oxygen (1O2) (Parida and Das 2005;
Ahmad and Sharma 2008; Ahmad et al. 2010, 2011). The membranes of plant cells
are the primary sites of salt injury. Membrane destabilization is mostly associated
with lipid peroxidation, which can be initiated by ROS or by lipoxygenase activity.
Disruption of membrane structure and permeability, metabolic toxicity, and damage
to ultra-structures due to ROS are the factors that may eventually lead to cell death
(Petrov et al. 2015). In many studies, production of ROS is increased under saline
conditions. The ROS-mediated membrane damage has been shown to be a major
reason of the cellular toxicity by salinity in different medicinal plants such as
rosemary (Tounekti et al. 2011), ajowan (Abdoli et al. 2020), and thyme (Zrig
et al. 2021).
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Since the production of ROS and induction of oxidative stress by salinity are the
main causes of reduced plant growth and productivity, regulation of ROS is a crucial
process to avoid cellular cytotoxicity and oxidative damage. This can be achieved by
a balance between generation and scavenging of reactive oxygen species. To rectify
damaging effects of ROS, different defense mechanisms can be employed by plants
subjected to various levels of salt stress. In general, these defense systems might be
enzymatic or non-enzymatic. Increasing the activities of antioxidant enzymes such
as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX) and ascorbate
peroxidase (APX), glutathione peroxidases (GPX), and glutathione sulfotransferases
(GST) (Kusvuran 2015; Farhangi-Abriz and Ghassemi-Golezani 2018) under salt
stress can effectively remove ROS. The SOD converts superoxide radicals to H2O2,
while APX and CAT detoxify H2O2 (Apel and Hirt 2004) to H2O and O2. Apel and
Hirt (2004) reported that changes in the balance of scavenging enzymes stimulate
compensatory mechanisms in plants. For instance, decreasing CAT activity
upregulated the APX and GPX. Abdoli et al. (2020) stated that the activities of
antioxidant defense enzymes in Trachyspermum ammi L. plants changed in parallel
with the increased H2O2 and O2

•–. Enhancing antioxidant enzyme expression in
Catharanthus roseus in response to salt stress is an indication of altering antioxidant
enzyme activity and isoenzymes by salt stress (Elkahoui et al. 2005). Augmentation
in oxidative stress promoted the activities of superoxide dismutase, ascorbate per-
oxidase, glutathione peroxidase, and catalase in salt-stressed borage plants revealing
the high antioxidant potential of this medicinal plant (Afkari 2018). Increasing the
activities of SOD, CAT, GR, and APX due to salt stress has been also reported in
Sesbania sesban (Abd-Allah et al. 2015).

Furthermore, non-enzymatic antioxidants including proline, carotenoids, ascorbic
acid, α-tocopherols, phenolics, and flavonoids may also play a role in inducing salt
tolerance by protecting sensitive macromolecules against free radicals. There is a
strong relationship between salt tolerance and enhanced activity of antioxidant
enzymes and high level of proline and α-tocopherol (Naliwajski and Skłodowska
2021). Yan et al. (2017) found that salt stress reinforces the synthesis of phenolic
compounds in honeysuckle (Lonicera japonica Thunb.) leaves, leading to the
suppression of oxidative stress. Elevated antioxidant activity has also been reported
in Sesuvium portulacastrum (Slama et al. 2015) and Trigonella foenum-graecum
(Abdelhameed et al. 2021) under salinity. High phenolic content and valuable
essential oil constitutes of medicinal plants are the natural antioxidant sources for
scavenging ROS (Trouillas et al. 2003). The antioxidant capacity of essential oil is
strongly related to its components. Alteration in these components may enhance the
scavenging potential of essential oil in medicinal plants.

6.2.2 Osmotic Adjustment

A decline in osmotic potential of water containing high concentrations of dissolved
salt ions causes an increase in osmotic stress in plant cells. Excessive Na+ content in
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the root medium poses limitation in water accessibility for plants, leading to a
disruption of plant water status and many other processes (Ghassemi-Golezani
et al. 2021). One of the common metabolic consequences of osmotic stress is the
accumulation of low-molecular-weight organic compounds with protective function
called osmolytes, osmo-protectants, or compatible solutes, which are highly soluble
and do not interfere with normal metabolic reactions, because they are non-toxic
even at high cellular concentrations (Slama et al. 2015). These organic compounds
can be classified in four groups: N containing compounds such as glycine betaine
and proline; sugars such as raffinose and sucrose; polyols such as sorbitol and
mannitol; and cyclic polyols such as pinitol (Rhodes et al. 2002; Gupta and Huang
2014). The production of proper organic osmolytes is metabolically and energeti-
cally expensive and potentially restricts plant growth by consuming considerable
quantities of carbon that could otherwise be used for plant growth and productivity.
In salt-subjected plants, changes in metabolism of several osmolytes, namely,
sugars, proline, and glycine betaine, have been confirmed. Enhancing proline pro-
duction in plants can limit the disintegration of plasmalemma under water deficit,
thereby maintaining membrane integrity. Proline accumulation in plant tissues could
be occurred in response to water and salt stresses (Mattioli et al. 2009). The lower
level of proline in the stress-acclimated plants may be from the result of its possible
conversion to proline betaine and hydroxyproline betaine, with higher osmo-
protectant potential than proline. Glycine betaine is another major non-toxic
osmolyte that enhances the osmolarity of the cells in salt-stressed plants, which
has an important role in stress mitigation through osmotic adjustment (Gadallah
1999), protein stabilization (Mäkelä et al. 2000), and protection of the photosyn-
thetic pigments from oxidative damage (Ashraf and Foolad 2007; Chaum and
Kirdmanee 2010; Saxena et al. 2013). Salt stress also increases starch and soluble
sugars such as glucose, fructose, fructans, and trehalose (Parida et al. 2004). These
are also involved in osmo-protection, carbon storage, and ROS scavenging. Sugar
alcohols are a class of polyols known as compatible solutes with low-molecular-
weight chaperones and antioxidative properties (Ashraf and Foolad 2007). These
compatible solutes protect enzymes and membrane structures that are sensitive to
stress (Gupta and Huang 2014).

An increase in salt concentration induced the accumulation of soluble carbohy-
drates, total amino acids, and proline in Trigonella foenum-graecum plants
(Abdelhameed et al. 2021). Increasing salt stress significantly enhanced soluble
carbohydrates in Salvia officinalis (Hendawy and Khalid 2005) and Satureja
hortensis (Najafi and Khavari-Nejad 2010). Similar results were obtained on
Rosmarinus officinalis (Chetouani et al. 2019), which shows that salt stress signif-
icantly increases proline and carbohydrate contents of leaves. Increased proline
content under salt stress may be caused by the upregulation of proline biosynthesis
through the stimulation of pyrroline-5-carboxylate reductase (Farhadi and
Ghassemi-Golezani 2020). However, some investigations revealed that reduced
activity of enzymes in proline oxidation pathway such as proline dehydrogenase
under salinity may lead to the accumulation of proline (Szabados and Savouré 2010).
It has been reported that deduction of leaf water potential in salt-stressed ajowan
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plants is directly related to the osmotic and ionic stresses (Abdoli et al. 2020). In an
experiment, Kotagiri and Kolluru (2017) investigated five different Coleus species
including C. aromaticus, C. amboinicus, C. forskohlii, C. barbatus, and
C. zeylanicus under saline condition. They found that Coleus aromaticus and Coleus
amboinicus were more tolerant to salinity than the other species. This tolerance was
achieved through high accumulation of carbohydrates, maintaining water potential
and reducing electrolyte leakage.

6.2.3 Nutrient Status

The excessive soluble salts in the soil compete with the uptake and metabolism of
nutrients that are vital for growth and development. Increasing salt uptake induces
specific ion toxicities such as Na+ and Cl�, which can decrease the uptake of
essential nutrients like potassium (K+), calcium (Ca2+), magnesium (Mg2+), iron
(Fe2+), manganese (Mn2+), zinc (Zn2+), phosphorus (P), and nitrogen (N), leading to
nutritional imbalance (Ghassemi-Golezani and Abdoli 2021). At high salinity, the
toxic level of Na+ and Cl� can disrupt membrane and cause nutrient deficiency
(Qureshi et al. 2007). In addition, the availability of micronutrients in saline soils is
dependent on the solubility of micronutrients, soil pH, soil redox potential, and the
nature of binding sites on the surfaces of organic and inorganic particle (McCauley
et al. 2009). The suitable ion ratio affects physiological processes related to plant
growth and development. Ashraf and Orooj (2006) in a study on ajowan
(Trachyspermum ammi L.) at different levels of salinities (0, 40, 80, and
120 mmol L�1 NaCl) found that the Na+ and Cl� in both shoots and roots were
increased, whereas K+ and Ca2+ were decreased consistently with the progressive
increment in salt level of the growth medium. The authors reported that T. ammi
plants maintained higher K+/Na+ and Ca2+/Na+ ratios in the shoots than in the roots
and the former ratio was greater than 1 even at severe salinity (120 mmol L�1).
However, some other medicinal plants such as Peucedanum japonicum are able to
regulate nutrient uptakes. Reduction in Na+ and Cl� and increment of K+ and Ca2+

contents in leaves of Peucedanum japonicum were an indication of high salt
tolerance of this plant (Liu et al. 2020).

Selective ion uptake, ion efflux, and accumulation of Na+ in vacuoles can reduce
salt toxicity in plants (Assaha et al. 2017). These processes are controlled by some
especial genes and antiporters. Three major genes involved in salt stress responses
are SOS1, SOS2, and SOS3 (Martínez-Atienza et al. 2007). The first gene that is
stimulated by the entry of Na+ into plant cells is SOS3, which in turn activates SOS2
and SOS1. The roles of these genes are well known under salt stress, particularly in
activating antiporters in plasma membrane. The SOS1 encodes for a plasma mem-
brane Na+/H+ antiporter, responsible for the efflux of sodium to the apoplast (Shi
et al. 2000). The SOS2 gene encodes a serine/threonine-type protein kinase, which
activates SOS1 (Liu et al. 2000). The SOS3 gene encodes an EF-hand-type calcium-
binding protein (Mahajan et al. 2008). The SOS2 physically interacts with and is
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activated by SOS3 (Halfter et al. 2000). Therefore, SOS2 and SOS3 define a
regulatory pathway for Na+ and K+ homeostasis and salt tolerance in plants. Besides
being regulated by SOS2, SOS1 activity may also be regulated by SOS4. The SOS4
catalyzes the formation of pyridoxal-5-phosphate, a cofactor that may serve as a
ligand for SOS1, because the latter contains a putative binding sequence for this
cofactor (Quintero et al. 2002). The SOS1 (located in plasma membrane) and NHX1
(located in vacuolar membranes) are two Na+/H+ antiporters involved in the exclu-
sion of Na+ from cytosol and/or accumulation of Na+ in vacuoles to prevent Na+

toxicity in salt-tolerant plants. At the plasma membrane, H+-ATPase serves as the
primary pump that generates a proton motive force that takes Na+ out of cytosol
(Janicka-Russak and Kabała 2015). The proton motive force created by vacuolar H+-
ATPases and H+-PPase (Bassil and Blumwald 2014) has an important role in
transporting Na+ into vacuoles, which ultimately enhances salt tolerance of plants.
The translational activation of H+-ATPase in plasma membrane of Jatropha curcas
roots helped to maintain potassium, calcium, nitrogen, and phosphorus absorptions
by roots (Chen et al. 2012). Low salinity (4 dS m�1) enhanced vacuolar H+-ATPase
and H+-PPase pump activities, while further increase in salt stress reduced the
activity of these pumps, resulting in an increased sodium uptake and accumulation
that reduced plant growth in Trachyspermum ammi (Ghassemi-Golezani and Abdoli
2021).

6.2.4 Photosynthesis

Photosynthesis is the most important biochemical pathway that converts solar
energy to chemical products in plants. These products are essential for plant growth
and development. Decrement of chlorophyll content under salt stress is a commonly
confirmed phenomenon. In several studies, the content of this photosynthetic pig-
ment has been introduced as a sensitive index of the cellular metabolic state
(Chutipaijit et al. 2011). Photosynthetic machinery and its efficiency are mainly
affected by negative impacts of salinity on pigments, stomata functioning and gas
exchange, thylakoid membrane structure, electron transport, and maximum effi-
ciency of photosystem II (Fv/Fm), leading to reduced plant growth and yield
(Wu et al. 2010; Khoshbakht and Asgharei 2015; Ghassemi-Golezani et al. 2020).
Reduction in photosynthetic rates in medicinal plants like other crops under salt
stress is greatly related to decrement of water potential and induced ionic and
oxidative stresses. Overproduction of ROS results in pigment loss, reduction in
CO2 assimilation, and protein synthesis (Mittler 2002; Shahzad et al. 2019).
Photo-oxidation of photosynthetic pigments and degradation of chlorophyll are
common consequences of oxidative stress. The carotenoids, as biological antioxi-
dants, play a critical role in protecting plant tissues from oxidative damages (Pérez-
Gálvez et al. 2020). Decrement of carotenoids may lead to intense photo-oxidation in
the plant tissues. According to Afkari (2018), the chlorophylls a and b and caroten-
oids of salt-subjected borage (Borago officinalis L.) plants were remarkably
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decreased with rising salinity. The highest levels of chlorophyll a, chlorophyll b, and
carotenoids were obtained from plants grown under non-saline condition, and the
lowest contents of photosynthetic pigments were recorded for plants grown under
severe salinity (12 ds m�1 NaCl). Similarly, negative impacts of salt stress on
photosynthetic machinery have been also noticed on red sage (Gengmao et al.
2014), pennyroyal (Ghassemi-Golezani and Farhadi 2021), and mint (Hosseini
et al. 2021) medicinal plants. Farahbakhsh et al. (2017) found that salt stress
remarkably reduced photosynthetic pigments and quantum yield and enhanced F0
and Fm of henna (Lawsonia inermis L.) leaves. A significant reduction in maximum
efficiency of photosystem II occurred under salinity levels of 0.6% to 1.0% NaCl
(Zhao et al. 2019).

6.3 Biochemical Responses to Salt Stress

6.3.1 Secondary Metabolites

The antioxidant potential of medicinal and aromatic plants is mainly associated with
their main secondary metabolites such as phenolic compounds, flavonoids, and
mainly essential oils (Wannes et al. 2010). One of the most important industrial
purposes in medicinal plants is promoting the synthesis of bioactive compounds and
secondary metabolites. The synthesis of major classes of secondary metabolites is
occurred through shikimic or mevalonate pathways. These pathways can be con-
trolled by genetic and environmental stresses (Valifard et al. 2014). The distribution
of carbon can be modified under salt stress, resulting in changes in the biosynthesis
of main secondary metabolites such as phenolics, flavonoids, or terpenes in stressed
plants (Vafadar Shoshtari et al. 2017). The phenolics, flavonoids, tannins, saponins,
alkaloids, and terpenes are the main secondary metabolites of medicinal plants with
substantial medical values to cure various diseases (Nobori et al. 1994; Hodek et al.
2002; Balasundram et al. 2006).

Several investigations have revealed that salinity may affect the quantity and
quality of phytochemicals in medicinal plants. Increment of saponin and decrement
of alkaloids, flavonoids, and tannins in Acalypha wilkesiana plants under salinity
have been reported by Odjegba and Alokolaro (2013). Similarly, salinity caused
considerable decrease in total phenolic, flavonoid, caffeic acid, chicoric acid, and
rosmarinic acid contents in Ocimum basilicum plants (Kahveci et al. 2021). How-
ever, alkaloid content of Catharanthus roseus was increased by salinity (Jaleel et al.
2008). Decrement of total alkaloids, flavonoids, and tannins was observed in plants
grown under salinity, which could be due to ROS impacts on enzymes involved in
the biosynthesis of these metabolites (Sharma et al. 2012). Elevating phenolic and
flavonoid components in myrtle (Myrtus communis L.) leaves might be interpreted
as an adapting mechanism of plants to environmental condition (Vafadar Shoshtari
et al. 2017), due to phenolic acids’ roles in lignin biosynthesis (Cheynier et al. 2013).
Similar results were also found in Anethum graveolens (Mehr et al. 2012), Olea
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europaea (Petridis et al. 2012), Lactuca sativa (Ouhibi et al. 2014), Lonicera
japonica (Yan et al. 2017), and Mentha pulegium (Farhadi and Ghassemi-Golezani
2020), suggesting that salinity plays an important role in the induction of phenolic
biosynthesis and consequently improving the antioxidant capacity of plants.

According to Duc et al. (2021), salinity significantly altered the polyphenol
profiles of Eclipta prostrata plants. Exposure to salinity for 8 weeks was led to a
notable decline in the content of total polyphenols and some of the major phenolics,
particularly under high saline condition. However, synthesis of another two identi-
fied flavonoids including luteolin and luteolin-glucoside was elevated by salt stress.
High valerenic acid accumulation has been shown in Valeriana officinalis plants
under moderate (5 dS m�1) salinity by Amanifar and Toghranegar (2020). Salt
stress, especially 150 mM NaCl, improved the leaf medicinal quality of honeysuckle
plants by inducing the synthesis of phenolics, flavonoids, chlorogenic acid, and
luteolosid through the stimulation of gene transcription and activity of phenylalanine
ammonia-lyase. The chlorogenic acid and luteolosid contents were elevated by
67.43% and 54.26% after 15 days of exposure to 150 mM NaCl, respectively
(Yan et al. 2017). Ben Taarit et al. (2010) reported that salinity (25 to 75 mM
NaCl) can decrease the polyunsaturated fatty acids while increasing the monounsat-
urated acids through enhancing gadoleic acid in salt-stressed sage (Salvia officinalis
L.) plants. The authors also concluded that reduction in plant growth and total fatty
acid contents and increasing the essential oil content in this medicinal plant by salt
stress may be the result of altering assimilate partitioning patterns in favor of
biosynthesis and accumulation of terpenes. The interaction of salt stress and growth
stage can also provide interesting results in phenolic and flavonoid compounds of
myrtle (Myrtus communis L.) plants. The highest content of linalool was reported at
spring and summer for plants grown under non-saline condition and at fall for plants
grown under 4 dS m�1 NaCl. Furthermore, harvesting in fall was resulted in the
reduction of the major essential oil constitutes and enhancement of phenolic acids
(Vafadar Shoshtari et al. 2017).

6.3.2 Essential Oil Quantity and Quality

The major secondary metabolite in most of medicinal plants is essential oil. The
effect of salt stress on essential oil and antioxidant activity has been reported in many
medicinal plant species such as Matricaria chamomilla (Razmjoo et al. 2008),
Salvia mirzayanii (Valifard et al. 2014), and Anethum graveolens (Ghassemi-
Golezani and Nikpour-Rashidabad 2017). The negative effect of salt stress in
essential oil yield was reported for various medicinal plants like Mentha piperita
(Tabatabaie and Nazari 2007), Thymus maroccanus (Belaqziz et al. 2009), Ocimum
basilicum (Said-Al Ahl and Mahmoud 2010), and Rosmarinus officinalis (Sarmoum
et al. 2019). The essential oil content was strongly reduced in salt-stressed
Matricaria chamomilla (Razmjoo et al. 2008), Mentha canadensis (Yu et al.
2015), and Anethum graveolens (Ghassemi-Golezani and Nikpour-Rashidabad
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2017) plants. Contrariwise, it has been demonstrated that salt stress may positively
affect the essential oil content in some medicinal plants. The essential oil content of
Calendula officinalis (Khalid and da Silva 2010), Thymus vulgaris (Cordovilla et al.
2014), Rosmarinus officinalis (Dehghani Bidgoli et al. 2019), and Trachyspermum
ammi (Ghassemi-Golezani and Abdoli 2021) was significantly enhanced by salt
stress.

Essential oil constituents may vary, depending on plant phenological growth
stage, plant organs, and environmental conditions (Singh and Guleria 2013;
Sarmoum et al. 2019). Previous studies have shown that salinity has also perceptible
effects on essential oil constitutes (Neffati and Marzouk 2008; Ben Taarit et al. 2012;
Tounekti et al. 2011). These effects depend on the severity of salt stress and plant
species. Moreover, the synthesis of some constitutes was only induced by environ-
mental stresses. Sarmoum et al. (2019) in a study on rosemary (Rosmarinus
officinalis L.) revealed that based on GC/MS analysis, 10 and 11 volatile compounds
were identified in essential oil of unstressed and salt-stressed rosemary plants,
respectively. However, 13 volatile compounds were identified in essential oil of
water-stressed plants. According to the finding of this research, the essential oil of
rosemary plants subjected to saline water was differentiated from other irrigational
treatments by the synthesis of hydrocarbon sesquiterpenes and oxygenated sesqui-
terpenes including dodecane and caryophyllene. Furthermore, the synthesis of
cemirene in the essential oil of Aloysia citrodora was only induced by 5.6 dS m�1

NaCl (Tabatabaie and Nazari 2007). In another study on Rosmarinus officinalis by
Dehghani Bidgoli et al. (2019), increasing salinity up to 10 gL�1 NaCl was led to an
enhancement in phellandrene content of essential oil. Khalid and da Silva (2010)
have found that irrigation of marigold (Calendula officinalis) plants with saline
water enhanced essential oil yield and the main volatile constitutes such as
α-cadinol and γ-cadinene. The low (25 mM NaCl) and moderate (75 mM NaCl)
salinities promoted the essential oil production and the major oxygenated mono-
terpenes such as 1,8-cineole and α-thujone in sage plants. Nevertheless, high salinity
(100 mM NaCl) may significantly reduce the essential oil content of plants (Ben
Taarit et al. 2009). Abd El-Wahab (2006) observed that anethole percentage in
fennel was diminished under salinity. The 1,8-cineole content of Rosmarinus
officinalis essential oil was also considerably decreased with rising salt stress
(Tounekti et al. 2015). Ben Taarit et al. (2010) in a study on Salvia officinalis
found that viridiflorol was the main essential oil compound in control and 25 mM
NaCl, but 1,8-cineole was the predominant compound under 50 and 75 mM salin-
ities, and manool prevailed under 100 mM salinity. Yu et al. (2015) indicated that
salinity had no effect on the content of oxygenated monoterpenes, increased the
menthone and pulegone contents, while decreased menthol under saline condition.
These variations could be due to the induction of the specific enzymes involved in
the biosynthesis of these compounds by salinity (Karray-Bouraoui et al. 2009).

The antioxidant capacity of essential oil is mainly associated with essential oil
constitutes. Salt stress may influence the antioxidant activity through the alteration of
major components. Earlier studies (Du et al. 2008; Ramak et al. 2013) revealed that
carvacrol-rich essential oils have a significant antioxidant property. Terenina et al.
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(2011) concluded that the phenolic monoterpenes, carvacrol and thymol, are the
main antioxidants and most biologically effective compounds in oregano essential
oil. The antioxidant potential of Origanum vulgare essential oil was also related to
phenolic monoterpenoid carvacrol (Morshedloo et al. 2017). According to Andreani
et al. (2013), the essential oils rich and poor in p-cymene were found in plants grown
under high and low salinities, respectively. This result reveals that oxygenated
constitutes mainly have antioxidant and scavenging capacity in Limbarda
crithmoides essential oil. The highest antioxidant activity of myrtle essential oil
was found in plants grown under 6 dS m�1 salinity, based on DPPH radical
scavenging activity, reducing power (FTC) and β-carotene/linoleic acid model
systems (Vafadar Shoshtari et al. 2017).

6.4 Treatments to Improve Plant Productivity Under Salt
Stress

Salinity is one of the main threats to sustainable agriculture that globally decreases
plant production by impairing major plant processes. However, several novel
approaches have been used to alleviate the effects of salinity on plant growth and
productivity through stimulating various physiological, biochemical, and molecular
processes. Some of these beneficial techniques are related to plant growth medium,
rhizosphere, and seeds. Improving soil physical properties and its nutrient status by
addition of bio-stimulants including plant growth-promoting rhizobacteria (PGPRs)
and arbuscular mycorrhizal fungi (AMF) can help plants to cope with salt stress
(Mesquita et al. 2014; Barnawal et al. 2016; Amanifar et al. 2019; Dastogeer et al.
2020). On the other hand, using foliar treatments including hormonal and nutritional
treatments might be effective in mitigating salt toxicity on medicinal plants
(Chrysargyris et al. 2019; Farhadi and Ghassemi-Golezani 2020). Some of the
valuable methods to ameliorate detrimental impacts of salinity on various medicinal
plants are summarized in Table 6.1.

6.4.1 Hormonal Treatments

Phytohormones, also known as plant growth regulators, are usually involved in
physiological and molecular responses of many stressed plants. These responses
include activation of the plant defense system, accumulation of osmo-protectants
(Abdoli et al. 2020), regulation of stomatal opening and closing (Acharya and
Assmann 2009), expression of defense-related genes (Hu et al. 2017), and interac-
tions with other plant hormones (Ku et al. 2018; Wang et al. 2020). It is indicated
that plant growth regulators such as salicylic acid, indole acetic acid, gibberellins,
and jasmonates play critical roles in plant salt tolerance (Egamberdieva and
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Table 6.1 The useful treatments for reducing salt damages on medicinal plants

Class of
treatment Treatment Plant species Effects References

Foliar
treatments

Fe2O3-NPs Trachyspermum
ammi L.

Improvement of water and
nutrient status, photosyn-
thetic pigments, and solu-
ble protein content and
stimulation of ATPase and
PPase activities

Abdoli et al.
(2020)

Fe2O3-NPs Mentha piperita
L.

Increasing plant growth
through enhancing nutrient
uptakes and decreasing
lipid peroxidation and
proline contents and anti-
oxidant potential

Askary et al.
(2017)

ZnO-NPs,
Fe3O4-NPs

Moringa
peregrina

Reducing salt toxicity and
enhancing photosynthetic
pigments and proline,
sugar, and antioxidant
capacity, resulting in
improving plant growth

Soliman et al.
(2015)

K, Zn, Si Lavandula
angustifolia Mill.

Enhancing antioxidant
capacity and essential oil
yield and inducing bio-
synthesis of major volatile
oil constituents

Chrysargyris
et al. (2018)

Si Glycyrrhiza
uralensis

Regulating the endoge-
nous hormones including
indole-3-acetic acid,
gibberellic acid, and
abscisic acid and improv-
ing plant growth

Lang et al.
(2019)

Si Capsicum
annuum

Upregulating the synthesis
of proteins involved in
several metabolic pro-
cesses and preventing oxi-
dative damage by
increasing the activities of
antioxidant enzymes

Manivannan
et al. (2016)

Se Coriandrum
sativum

Supplementation of
50 mM Se mitigated salt
toxicity via reducing Na+/
K+ ratio in plant tissues

Ghazi (2018)

Salicylic acid Mentha pulegium Enhanced proline content
via increasing pyrroline-5-
carboxylate reductase
activity and decreasing
proline oxidase activity
and stimulated antioxidant
potential

Farhadi and
Ghassemi-
Golezani
(2020)

(continued)
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Table 6.1 (continued)

Class of
treatment Treatment Plant species Effects References

Salicylic acid Achillea
millefolium L

Enhancing primary and
secondary metabolisms
and improving essential oil
quantity and quality

Gorni et al.
(2020)

Salicylic acid Salvia coccinea Increment of chlorophyll,
carotenoids, and polyphe-
nols and antioxidant
potential

Grzeszczuk
et al. (2018)

Salicylic acid Rosmarinus
officinalis L.

Decreasing sodium and
chloride uptakes; increas-
ing phenolic, chlorophyll,
carbohydrate, and proline
contents; and stimulating
antioxidant enzyme activi-
ties and gene expression

El-Esawi
et al. (2017)

Salicylic acid Catharanthus
roseus

Improving total alkaloids,
vincristine and vinblastine

Idrees et al.
(2011)

Methyl
jasmonate

Carthamus
tinctorius

Promotion of plant growth
through increment of pro-
line, sugar, and photosyn-
thetic pigments

Chavoushi
et al. (2019)

Gibberellic acid Nigella sativa L. Improving water status,
proline content, and CAT
and POX activities

Rashed et al.
(2017)

γ-Amino butyric
acid, salicylic
acid, and
vermicompost
extract

Saffron Minimizing the detrimen-
tal effects of salinity by
improving nutrient con-
tents and triggering anti-
oxidant defense system

Feizi et al.
(2021)

Soil
treatments

PGPRs Coriandrum
sativum L.

Augmenting chlorophyll a
and b contents and CAT
activity and reducing Na+

absorption, thereby
improving plant
productivity

Rabiei et al.
(2020)

PGPRs Chlorophytum
borivilianum

Amelioration of negative
effects of salinity on plants
through alteration of hor-
mones including reduced
ethylene and abscisic acid
contents and enhanced
indole acetic acid in inoc-
ulated plants

Barnawal
et al. (2016)

Mycorrhizal
fungi

Valeriana
officinalis L.

Promoting proline, soluble
sugars, and total phenolic
contents and augmenting
secondary metabolite
synthesis

Amanifar and
Toghranegar
(2020)

(continued)
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Table 6.1 (continued)

Class of
treatment Treatment Plant species Effects References

Mycorrhizal
fungi

Osmium
basilicum

Improving gas exchange,
photosynthetic pigments,
proline accumulation, and
nutritional balance

Elhindi et al.
(2017b)

Mycorrhizal
fungi

Glycyrrhiza
glabra

Increasing K+ and P con-
tents and proline accumu-
lation and stimulating the
expression of major genes
participating in secondary
metabolites

Amanifar
et al. (2019)

Gibberellic acid Hibiscus
sabdariffa L.

Increasing photosynthetic
pigments and leaf water
content and inducing the
activity of carbonic
anhydrase

Ali et al.
(2012)

Zeolite Rosmarinus
officinalis L.

Decrement of sodium and
chloride uptakes and
increment of photosyn-
thetic pigments and essen-
tial nutrient contents

Helaly et al.
(2018)

Vermicompost Borago
officinalis

Promoting antioxidant
enzymes and photosyn-
thetic pigments

Afkari (2018)

Seed
treatments

Salicylic acid,
tryptophan, and
β-carotene

Ocimum
basilicum L.

Enhancing growth and
yield through relieving the
adverse impacts of salinity
by enhancing phenolic and
linalool and eugenol con-
tents and decreasing
methyl eugenol percentage

Kahveci et al.
(2021)

Salicylic acid
and gibberellic
acid

Anethum
graveolens

Accumulating osmolytes
such as proline, glycine
betaine, and soluble
sugars, enhancing antioxi-
dant enzyme activities and
essence production of dill
organs

Ghassemi-
Golezani and
Nikpour-
Rashidabad
(2017)

Salicylic acid
and indole acetic
acid

Abelmoschus
esculentus

Enhancing plant defense
potential through stimulat-
ing antioxidant activities
and DPPH radical scav-
enging capacity

Esan et al.
(2017)

Aminolevulinic
acid

Cassia
obtusifolia L.

Enhancing chlorophyll,
soluble sugar, soluble pro-
tein, and proline contents
and photochemical effi-
ciency of photosystem II

Zhang et al.
(2013)

NPs nanoparticles; PGPRs plant growth-promoting rhizobacteria
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Jabborova 2015; Esan et al. 2017; Ghassemi-Golezani and Farhangi-Abriz 2018;
Chavoushi et al. 2019; Delgado et al. 2021). Salicylic acid (SA) as a phenolic
phytohormone is recognized to mitigate the harmful effects of salt stress through
improving water and nutrient status and photosynthetic pigments (Abdoli et al.
2020), modulating leaf gas exchange (Miura and Tada 2014; Sah et al. 2016), and
inhibiting ethylene synthesis (Khan et al. 2014). The positive effects of SA in
mitigating salt stress on various medicinal plants have been well documented
(Elhindi et al. 2017a; Gorni et al. 2020). Improving physiological attributes such
as starch, sugar, protein and proline contents, essential oil production, and defense
system (catalase, peroxidase, and ascorbic peroxidase activities) by SA can help
to ameliorate salt toxicity in feverfew (Tanacetum parthenium) plants (Mallahi et al.
2018). Exogenous SA promoted several metabolites in Egletes viscosa plants which
may contribute to the distributing of Na+ and K+ among roots and shoots, thereby
overcoming salt stress-induced photosynthesis disruption (Batista et al. 2019).
Treating salt-stressed henna (Lawsonia inermis L.) plants with SA increased photo-
synthetic pigments, protein content, CAT activity, leaf water content, and photo-
chemical efficiency of photosystem II while decreasing electrolyte leakage, F0 and
Fm. The positive effects of SA on promoting plant growth were documented by
Farahbakhsh et al. (2017). Foliar application of SA alleviated the adverse effects of
100 mM NaCl on Salvia coccinea, through increasing chlorophyll, carotenoids, and
polyphenols and antioxidant potential (Grzeszczuk et al. 2018). The SA can enhance
total soluble phenolics and lignin contents via significant stimulation of phenylala-
nine ammonia-lyase (PAL) activity (Neelam et al. 2014). The bioactive compounds
and antioxidant potential of salt-stressed Achillea millefolium were stimulated by SA
treatment (Gorni et al. 2019).

Jasmonic acid (JA) as an endogenous plant growth regulator is also identified as a
stress-related hormone in plants (Wang et al. 2020). Environmental stresses have
been observed to enhance JA biosynthesis-related genes and endogenous jasmonic
acid (JA) in plant tissues (Tani et al. 2008; Du et al. 2013). Similar to SA,
applications of jasmonates have been reported to promote salt tolerance in plants.
Using methyl jasmonate slightly improved Carthamus tinctorius plant growth via
enhancing proline, sugar, and particularly photosynthetic pigments (Chavoushi et al.
2019). Niazian et al. (2021) found that SA was more effective than methyl jasmonate
for the synthesis of essential oil constituents including γ-terpinene, p-cymene, and
thymol in stressed ajowan plants. According to Ali et al. (2012), application of
gibberellic acid to the saline soil reduced the harmful effects of salinity on plant
photosynthetic pigments and growth via enhancing the activity of carbonic
anhydrase. The harmful impacts of salinity on Nigella sativa plants were reversed
by gibberellic acid through the stimulation of the defense system by increased
proline accumulation and antioxidant enzymes (Rashed et al. 2017). The beneficial
impacts of foliar spray of SA and GA3 in Mentha piperita plants were associated
with improved physiological and biochemical processes and enhanced essential oil
yield and menthol content (Khanam and Mohammad 2018). Pre-treatment of okra
seeds with salicylic acid and indole acetic acid was resulted in higher antioxidant
activities and DPPH radical scavenging capacity in okra (Abelmoschus esculentus),
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indicating the ameliorative potential of these hormones in mitigating the destructive
effects of reactive oxygen species under salinity (Esan et al. 2017).

6.4.2 Nutritional Treatments

One of the most important damages of salt stress in plants is ionic restriction and its
negative effects on growth through disruption of major physiological and biochem-
ical processes. Improving nutrient status of plants may be considered as a method of
alleviating salinity stress. Nutrients can be applied as either soil fertilizer or foliar
spray to induce major salt stress tolerance mechanisms in medicinal plants (Abdoli
et al. 2020; Amiripour et al. 2021). According to Chrysargyris et al. (2019), foliar
application of K, Zn, and Si was proved as a useful technique to alleviate the stress
effects caused by high salinity in spearmint (Mentha spicata L.) plants. This
alleviation was achieved via increased antioxidant activity and detoxified oxidative
stress products. According to Chrysargyris et al. (2018), the growth, antioxidant
capacity, and essential oil yield of medicinal lavender (Lavandula angustifoliaMill.)
plants exposed to salt stress were improved by K and Zn supplementation. These
authors showed that K foliar spray changed the primary metabolite pathways in
favor of biosynthesis of major volatile oil constituents under moderate salinity,
revealing the potential of lavender plant for cultivation under prevalent semi-saline
conditions. Exogenously applied Si, particularly at 1.5 mM concentration, resulted
in an improvement in physiological parameters, thereby alleviating the negative
effects of salt treatment on the anatomical attributes such as thickness of leaf blade
and thickness of palisade parenchyma cells in borage (Borago officinalis L.) plants
under saline condition (Torabi et al. 2015). The amelioration of salt toxicity effects
by Si nutrition has been also attributed to enhanced chlorophyll and relative water
content (Amiripour et al. 2021) and decreased oxidative damage (Farshidi et al.
2012). In salt-stressed Glycyrrhiza uralensis plants, Si treatment noticeably
increased K+/Na+ ratio in plant tissues and SOD and POD activities and reduced
MDA concentration, resulting in greater detoxification of reactive oxygen species
and lower lipid peroxidation (Li et al. 2016). Some investigations have identified the
Si-mediated selective ion uptake and regulating Na+/K+ ion channels (Liu et al.
2019).

Exogenous application of Ca can alleviate salt stresses by the regulation of
antioxidant activities and plant defense mechanisms. Calcium is a second messen-
ger that induces the growth and differentiation of cells and tissues in plants.
Moreover, Ca is highly required by medicinal legumes for nitrogen fixation pro-
cesses. Other targets of Ca effects on mitigating salt stress are related to intracellular
processes. The SOS pathway can regulate plant ion homeostasis under salinity by
Ca2+ signals. The SOS3, a Ca2+ sensor, interacts with SOS2 protein kinase to
transduce the signal downstream. The Na+/H+ antiporter of SOS1 is activated by
SOS3/SOS2 complex, which reestablishes cellular ion homeostasis. The stimulation
of the SOS3/SOS2 pathway by calcium also induces vacuolar Na+ accumulation by
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the vacuolar Na+/H+ antiporters (Naeem et al. 2013). In addition, the ameliorative
effects of some other elements in the form of nanoparticles (NPs) have been
investigated on various medicinal plants under salinity (Ghazi 2018; Abdoli et al.
2020). Application of 50 mg L�1 cerium oxide NPs (CeO2 NPs) as the best
concentration was resulted in boosting the growth of Moldavian balm
(Dracocephalum moldavica L.) plants exposed to salinity, via improving agronomic
traits, proline, photosynthetic pigments, and antioxidant enzymes. This higher anti-
oxidant enzymatic activity caused a decline in MDA and H2O2 contents and
electrolyte leakage (Hasan Zadeh Mohammadi et al. 2021). Using Ce-NPs has
been proved to maintain cell structure due to Ce role in chlorophyll synthesis,
ROS detoxifying, and maintaining chloroplast structure and cell wall (Jahani et al.
2019; Jurkow et al. 2020). Further information about the positive effects of nutrients
on the mitigation of salt toxicity are provided in Table 6.1.

6.4.3 Bio-stimulants

Most plants can form symbiotic associations with the soil microorganisms that have
the remarkable potential to improve the rhizospheric soil characteristics and avail-
ability of nutrients for plant growth (Navarro et al. 2013; Ahanger et al. 2014). Plants
are colonized by various useful microorganisms, including endophytes, nitrogen-
fixing bacteria, and mycorrhizal fungi, which closely collaborate with each other and
can mediate important physiological processes, especially nutrient attainment and
plant tolerance to abiotic stresses (Abd-Allah et al. 2015). Utilizing the potentially
useful plant growth-promoting rhizobacteria (PGPRs) and mycorrhizal fungi (MF) is
identified as an effective method for mitigating the toxic effects of salinity and
improving the growth of plants (Bhat et al. 2020; Dastogeer et al. 2020; Kumar
Arora et al. 2020; Moncada et al. 2020; Gupta et al. 2021). Moreover, various
metabolic and genetic strategies used by these rhizosphere microorganisms can
reduce the impact of salt stress on plants (Gopalakrishnan et al. 2015; Singh
2014). These microorganisms not only react to signal molecules secreted by plant
roots but also release varied signaling molecules affecting plants, leading to
increased stress resistance as well as root and shoot growth (Zhang et al. 2017). It
has been also demonstrated that the tripartite plant-bacterial-fungal relationship
could be a promising approach to alleviate the detrimental impacts of salt stress on
the productivity of medicinal plants, through enhancing the activities of enzymatic
and non-enzymatic antioxidants (Arora et al. 2020). In this section, the mechanisms
of improving salt tolerance in PGPR- and MF-treated plants will be discussed.

PGPRs are involved in mitigating salt toxicity in plants by changes in the
expression of defense-related genes, exopolysaccharide synthesis, osmolyte accu-
mulation, reducing Na+ absorption, and improving phytohormones and nutrient
status in salt-stressed plants (Kumar Arora et al. 2020). Solubilizing inorganic
phosphate, deaminizing ACC, and producing indole acetic acid and hydrocyanic
acid under salt stress by plant growth-promoting bacteria have been well published.
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Enhanced ammonia and α-ketobutyric acid contents as a result of PGPR inoculation
are an indication of ACC reduction under salinity (Djebaili et al. 2021). Inoculation
of coriander seeds with Azospirillum brasilense and Azotobacter chroococcum was
resulted in improving chlorophyll a and b contents and CAT activity and reducing
Na+ uptake, leading to enhanced seed yield under salinity (Rabiei et al. 2020). The
positive impacts of bio-stimulants in salt-stressed Plectranthus amboinicus are
associated with the improved nutrient status of the plants (da Silva Mesquita et al.
2014). Using salt-tolerant PGPRs can be an effective strategy in elevating biomass
and bacoside-A contents (a saponin) in Brahmi (Bacopa monnieri) plants under
saline condition (Pankaj et al. 2020). According to Barnawal et al. (2016), ACC
deaminase-producing Brachybacterium paraconglomeratum strain SMR20 signifi-
cantly protected Chlorophytum borivilianum from salt stress-induced biomass
losses. This protection was attributed to hormonal and biochemical changes due to
B. paraconglomeratum. The SMR20 inoculation potentially reduced ethylene
through deamination of ACC (precursor for ethylene synthesis). In addition, abscisic
acid content and lipid peroxidation were decreased, and chlorophyll and indole-3-
acetic acid were increased by SMR20 under saline condition. Using Pseudomonas
stutzeri, Pseudomonas putida, and Stenotrophomonas maltophilia enhanced internal
IAA, cytokinin, and gibberellic acid in Coleus plants (Patel and Saraf 2017).

In a mycorrhizal association, the fungus either colonizes the root tissues of the
host, intracellularly as in arbuscular mycorrhizal fungi, or forms extracellular
exchange mechanisms outside of the root cells, as ectomycorrhizal fungi. Mycor-
rhizal fungi can noticeably enhance the rhizospheric soil characteristics, thereby
altering plant growth (Navarro et al. 2013; Ahanger et al. 2014). Using arbuscular
mycorrhizal fungi improves soil structure and promotes plant growth under optimal
and stressful conditions (Rabie and Almadini 2005; Cho et al. 2006). The mycor-
rhizal fungi enhance plant growth and mitigate the adverse effects of environmental
stresses by regulating morpho-physiological properties and nutrient status. In addi-
tion to influencing the plant physiological processes, MF can also promote root
elongation, which increases water and nutrient absorptions (Aroca et al. 2013;
Ahanger et al. 2014). Arbuscular mycorrhizal fungi play a critical role in alleviating
salt toxicity by normalizing the uptake of essential nutrients and recovering the water
relations (Carretero et al. 2008; Porcel et al. 2012). The advantageous effects of
mycorrhizal fungi on morphological and physiological attributes have been well
understood in various crops and medicinal plants (Asghari et al. 2005; Ahanger et al.
2014; Gheisari Zardak et al. 2018). Mycorrhizal fungi have been demonstrated to
increase the growth of Sesbania sesban under salinity through enhancing antioxidant
capacity and photosynthetic pigments and altering hormonal status. Increasing
endogenous indole-3-acetic acid, indole butyric acid, and gibberellic acid and
decreasing abscisic acid caused the amelioration of salt toxicity in plants
(Abd-Allah et al. 2015). The nutritional homeostasis and K+/Na+ and Ca2+/Na+

ratios were improved in basil (Osmium basilicum) by mycorrhiza. The potential
role of mycorrhiza inoculation as a bio-stimulant in enhancing salt tolerance of basil
plants was also attributed to improving gas exchange, proline accumulation, water
use efficiency, and photosynthetic pigments (Elhindi et al. 2017b). Inoculation with
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Rhizophagus intraradices and Funneliformis mosseae induced an increase in
growth, nutrient acquisition, and the ratios of K+/Na+, Ca2+/Na+, Mg2+/Na+, and
total chlorophyll/carotenoids in salt-subjected Valeriana officinalis plants. The
superiority of F. mosseae in the mitigation of salt toxicity was more than
R. intraradices (Amanifar and Toghranegar 2020). Moreover, there are evidences
of biochemical and molecular alterations caused by mycorrhizal fungi in medicinal
plants. Various biochemical compounds may be accumulated in mycorrhizal-treated
plants under salinity (Rivero et al. 2018). Differences in phenolic accumulation of
untreated and MF-treated Eclipta prostrata plants under saline condition may be
resulted from the differences in the biochemical and physiological status in the plants
due to these bio-stimulants (Duc et al. 2021). Colonization of liquorice (Glycyrrhiza
glabra) by arbuscular mycorrhizal fungus Funneliformis mosseae under salinity not
only increased essential nutrients of K+ and P and proline accumulation, which
resulted in stimulating the expression of major genes participating in the glycyrrhizin
biosynthesis including beta-amyrin synthase (bAS), squalene synthase1 (SQS1), and
P450 (Amanifar et al. 2019). Based on the notions presented in this section, the
development of novel bio-stimulants for saline soils could be a sustainable approach
for improving growth and productivity of salt-stressed medicinal plants.

6.5 Concluding Remarks and Future Prospects

Salt stress can change physiological and metabolic activities of medicinal plants. The
main physiological processes influenced by this stress are ionic toxicity and nutrient
imbalance. The high absorption of toxic sodium also results in oxidative stress, lipid
peroxidation, and photosynthetic damages, which impair the growth and develop-
ment of plants. Moreover, biochemical products and particularly secondary metab-
olites of medicinal plants can be strongly influenced by this environmental
constraint. The essential oil synthesis and its major constitutes with considerable
medicinal values might be enhanced or inhibited by salinity, depending on plant
species and stress level. These variations in essence constitutes due to salt stress can
be used in enhancing antioxidant potential of plants. Future research works may
focus on physiological and molecular aspects of plant responses to salinity in
varying temperatures due to climate change, in order to identify more superior
methods for overcoming the harmful impacts of this stress on medicinal plants.
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Chapter 7
Horizontal Natural Product Transfer:
A Phenomenon Which Is Responsible
for the Widespread Alkaloidal
Contaminations of Herbal Products

T. Hijazin, L. Lewerenz, M. Yahyazadeh, and D. Selmar

Abstract Induced by numerous alarming reports of the European Food Safety
Authority on widespread contaminations of plant-derived commodities by poison-
ous alkaloids (nicotine, pyrrolizidine alkaloids), the origin of these alkaloidal con-
taminations had been investigated. These studies unveiled that alkaloids, which have
been leached out from decomposing alkaloidal donor plants, are taken up by the
roots of acceptor plants growing in the vicinity. These insights had been the basis for
establishing the so-called horizontal natural product transfer. Meanwhile, it is
verified that many other natural products, such as coumarins or stilbenes, are also
taken up from the soil by plant roots and then are allocated into the leaves. Recent
research revealed that alkaloids are also transferred from living and vital donor
plants into plants growing in their vicinity. Moreover, it became evident that in a
number of acceptor plants, the imported natural products are modified, whereas in
others, they are just accumulated. These modifications comprise hydroxylation,
methylation and glucosylation processes analogous to the modifications described
for xenobiotics. In the past, it was presumed that these reactions are part of a
deliberate detoxification mechanism, denoted as “green liver concept”. But, since
the mode and extent of these modifications strongly vary between different plant
species, a general and universal mechanism such as the “green liver concept” can be
excluded.
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Apart from the high relevance for preventing contaminations of plant-derived
commodities, the novel insights in the “horizontal natural product transfer” will also
impact our understanding of plant-plant interactions.

Keywords Horizontal transfer · Specialized metabolites, natural products ·
Pyrrolizidine alkaloids · Alkaloids · Coumarins · Allelopathy · Xenobiotics

7.1 Introduction

In the last decade, numerous alarming reports of the European Food Safety Authority
unveiled widespread contaminations of plant-derived commodities by nicotine
(EFSA 2011a), pyrrolizidine alkaloids (EFSA 2011b, 2016, 2017) and tropane
alkaloids (EFSA 2018). The first time these problems arose was when nicotine
was determined in many plant-derived products. It turned out that more than 70%
of the tested herbal tea and spice samples contained nicotine significantly above the
limit of quantification (EFSA 2011b). In the same manner, a comprehensive evalu-
ation by Mulder et al. (2015) revealed that pyrrolizidine alkaloids (PAs) are present
in more than 90% of all herbal tea samples tested. Due to their high toxicity for
livestock, wildlife and humans (Fu et al. 2004; Wiedenfeld and Edgar 2011), PAs are
of special interest when present in plant-derived commodities (Selmar et al. 2019a).
Indeed, the genuine PAs are not poisonous, but in the liver of vertebrates, they are
oxidized to yield the unstable highly toxic dehydropyrrolizidine alkaloids, also
denoted as PA pyrroles (Mattocks 1986).

With respect to the widespread contaminations by PAs, it was rapidly argued that
the contaminations are due to accidental co-harvest of alkaloid-containing weeds
(Stegelmeier et al. 1999; Van Wyk et al. 2017; Selmar et al. 2019a). However,
because of the rare and very restricted occurrence of nicotine-containing weeds, a
corresponding path of contaminations for nicotine contaminations could be
excluded. Thus, there must have been another cause for widespread alkaloidal
contaminations of plant-derived commodities. Already more than half a century
ago, it was demonstrated that alkaloids could be taken up from the soil (Winter et al.
1959c; Franz 1962). Accordingly, it seemed to be likely that the alkaloidal contam-
inations of the related staple plants could be due to an uptake from the soil.
Meanwhile, it was verified that the alkaloids present in the corresponding staple
plants are—at least in part—taken up from the soil, in which they had been leached
out from rotting plant material or exuded from alkaloid-containing weeds grown in
the vicinity (Selmar et al. 2019a; Table 7.1). In addition, it was demonstrated that a
wide range of alkaloids is taken up by plant roots (Yahyazadeh et al. 2017; Lewerenz
et al. 2020). These coherences had been the basis for the discovery and formulation
of the so-called horizontal natural product transfer (Selmar et al. 2015a, 2019a, 2020;
Nowak et al. 2017). In this treatise, the scientific background of this widespread
phenomenon and its relevance for contaminations of plant-derived commodities are
outlined.
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7.2 Plants Take Up Solutes from the Soil

In addition to various inorganic nutrients, such as cations and anions derived from
minerals, plants take also up a wide variety of numerous organic substances from the
soil. In contrast to the import of most ionic substances like nitrate, sulphate or metal
ions, which requires specific transporters (e.g. Kobayashi and Nishizawa 2012),
most of the organic compounds diffuse passively into the root cells. However,
preconditions for such simple diffusion through the plasmalemma of the root cells
are applicable physico-chemical properties, i.e. the substances have to be soluble in
aqueous as well as in organic solvents. It is well established that the ability for such
passive membrane transfer can roughly be estimated from the so-called KOW value.

Table 7.1 Documented transfer of natural products between plants of different species

Compounds Donor plant Acceptor plant Authors

Arbutina Arctostaphylos uva-ursi Triticum aestivum Winter et al. (1960)

Aesculin/aesculetina Aesculus
hippocastanum

Triticum aestivum Winter et al. (1960)

Aristolochic acids Aristolochia clematitis Zea mays Pavlović et al.
(2013)

Aristolochic acids Aristolochia clematitis Cucumis sativus Pavlović et al.
(2013)

Atropine Solanaceae Triticum aestivum Jandrić et al. (2013)

Benzoxazinoids Secale cereale Vicia villosa Hazrati et al. (2020)

Coumarin Melilotus albus Triticum aestivum Winter et al. (1960)

Nicotine Nicotiana tabacum Mentha� piperita Selmar et al. (2015b)

Nicotine Nicotiana tabacum Coriandrum sativum Selmar et al. 2018)

Nicotine Nicotiana tabacum Mentha x piperita Selmar et al. (2018)

Nicotine Nicotiana tabacum Ocimum basilicum Selmar et al. (2018)

Nicotine Nicotiana tabacum Petroselinum crispum Selmar et al. (2018)

Pyrrolizidine
alkaloids

Senecio jacobaea Matricaria
chamomilla

Nowak et al. (2016)

Pyrrolizidine
alkaloids

Senecio jacobaea Melissa officinalis Nowak et al. (2016)

Pyrrolizidine
alkaloids

Senecio jacobaea Mentha x piperita Nowak et al. (2016)

Pyrrolizidine
alkaloids

Senecio jacobaea Petroselinum crispum Nowak et al. (2016)

Pyrrolizidine
alkaloids

Senecio jacobaea Melissa officinalis Selmar et al. (2019b)

Pyrrolizidine
alkaloids

Senecio jacobaea Petroselinum crispum Selmar et al. (2019b)

Pyrrolizidine
alkaloids

Chromolaena odorata Zea mays Letsyo et al. (2021)

aIn case of glucosides, it has to be considered that the substances leached out from the donor plants
are hydrolysed in the soil (Winter and Brüsewitz 1960) into their corresponding aglycones, which—
subsequently to their import into the acceptor plants—are re-glucosylated (Hijazin et al. 2019)
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This parameter represents the distribution coefficient of a certain substance between
octanol and water. In the related literature, generally its decadal logarithm,
i.e. pKOW, is displayed (Trapp 2004), which is frequently also denoted simply as
logP (Cronin and Livingstone 2004). Substances exhibiting logP values between�1
and 3 (at times up to 4) are generally reported to diffuse easily through
biomembranes (Trapp 2000; Limmer and Burken 2014). Indeed, most of these
coherences had been elaborated for the uptake of xenobiotics, but they consistently
also apply for all organic products. This was confirmed by Hurtado et al. (2016), who
outlined that many so-called emerging organic contaminants (EOCs) are taken up by
plants.

With regard to chemical ecology—up to recently—only the uptake of so-called
allelochemicals had been in the center of focus. It is well established that these
substances which affect germination or growth of putative competitors are fre-
quently exuded from donor plants and exhibit their effects on plants growing in
the vicinity (Wink 1983; Bertin et al. 2003; Kalinova et al. 2007). Yet, a requirement
for a related growth inhibition is an uptake of the allelochemicals into the acceptor
plants. A corresponding import is well documented in particular for xenobiotics,
such as systemic herbicides or fungicides (Trapp and Legind 2011; Pullagurala et al.
2018). After their uptake by the roots, these compounds are generally translocated
into the shoots (Trapp 2000; Collins et al. 2011; Eggen et al. 2013; Selmar et al.
2019a). Although an import of xenobiotics and allelochemicals was well established,
a corresponding uptake of typical plant-derived natural products—nowadays
denoted as specialized metabolites—was not taken into consideration, although it
was well-known that such compounds are leached out from rotting plant materials
(Rasmussen et al. 2003; Hoerger et al. 2011; Hama and Strobel 2019). However, the
situation fundamentally changed when the origin of the widespread contaminations
of plant-derived commodities was investigated (Selmar et al. 2019a).

7.3 Horizontal Natural Product Transfer

In order to identify the potential sources of the widespread alkaloidal contamina-
tions, several research projects had been launched. In a first approach, in pot
experiments dried tobacco leaf material was applied to the test plants. It turned out
that high amounts of nicotine, which were leached out from the rotting tobacco
material, were accumulated in the acceptor plants (Selmar et al. 2015b, 2019a). This
transfer was strikingly confirmed by related field experiments, in which cigarette
butts were discarded on the acreage (Selmar et al. 2018): only one cigarette butt per
square meter was sufficient to cause nicotine concentrations in the crop plants that
exceed the limit value set by the EU by the factor ten (Selmar et al. 2018). In
analogy, pyrrolizidine alkaloids (PAs), which had been leached out from rotting
PA-containing weeds (Senecio jacobaea), are also taken up and accumulated in the
acceptor plants (Nowak et al. 2016; Selmar et al. 2019b; Letsyo et al. 2021). These
results outlined that the uptake of alkaloids from the soil is—at least in part—
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responsible for the numerous and widespread alkaloidal contaminations of plant-
derived commodities (Selmar et al. 2019a). In the meantime, the uptake of many
other alkaloids by plant roots has been manifested (Yahyazadeh et al. 2017;
Lewerenz et al. 2020). In addition, various reports outline that apart from alkaloids,
also other specialized metabolites, i.e. simple phenols (Winter and Schönbeck
1959; Winter et al. 1959a, b), coumarins (Hijazin et al. 2019), stilbenes (Abouzeid
et al. 2019), aristolochic acids (Pavlović et al. 2013; Li et al. 2016) or betalains
(Nowak et al. 2017), are imported by plant roots. These insights and coherences had
been the basis to establish the concept of the “horizontal natural product transfer”
(Selmar et al. 2015a, 2019a; Nowak et al. 2017): from decomposing plant parts—
denoted as donor plants—natural products are leached out into the soil. From here,
these compounds are taken up passively by the roots of other plants growing in the
vicinity (Fig. 7.1).

As the underlying mechanisms are due to a quite general phenomenon, a
corresponding import concerns all plants, which accordingly all act as acceptor
plants. After their uptake by the roots, the substances are translocated via the
xylem into the leaves (Trapp 2000; Limmer and Burken 2014). However, a precon-
dition for such transfer is the ability of the substances to pass the plasmalemma of
root cells. As outlined above, all substances exhibiting a logP value between minus
one and roundabout three are able to diffuse across membranes (Trapp 2000;
Limmer and Burken 2014). Accordingly, in contrast to the import of most ionic
nutrients like nitrate, sulphate or metal ions (Kobayashi and Nishizawa 2012), no

Fig. 7.1 Horizontal natural product transfer. The scheme displayed by Selmar et al. (2019a) is
supplemented with the impacts of transpiration and rhizosphere
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specific transporters are required. In consequence, the uptake of these natural
products from the soil does not depend on the plant species, but only on the
physico-chemical properties of the compound. And indeed, all substances reported
to be taken up (Table 7.1; Yahyazadeh et al. 2017; Lewerenz et al. 2020) reveal
appropriate logP values (Table 7.2). However, when dealing with alkaloids, in
addition to the logP value, another factor, i.e. the pH, has to be considered (Hijazin
et al. 2020). In case of their protonation, alkaloids exhibit a positive charge, and,
consequently, they are not able any more to cross passively the biomembranes
(Nowak and Selmar 2016). Moreover, the high percentage of protonation massively
reduces the actual concentration of the unprotonated alkaloids and thereby is

Table 7.2 LogP values of various alkaloids imported by plant roots

Berberine �1.0 Isoquinoline alkaloid Winter et al. (1959c); Franz (1962)

Monocrotaline �0.8 Pyrrolizidine alkaloid Hijazin et al. (2020)

Theobromine �0.7 Purine alkaloid Winter et al. (1959c); Franz (1962);
Yahyazadeh et al. (2017)

Caffeine �0.1 Purine alkaloid Winter et al. (1959c); Franz (1962);
Yahyazadeh et al. (2017)

Theophylline �0.04 Purine alkaloid Yahyazadeh et al. (2017)

Jacobine 0.2 Pyrrolizidine alkaloid Nowak et al. (2016)

Morphine 0.9 Isoquinoline alkaloid Winter et al. (1959c)

Scopolamine 0.9 Tropane alkaloid Winter et al. (1959c); Franz (1962)

Cytisine 1.0 Quinolizidine alkaloid Franz (1962)

Seneciphylline 1.0 Pyrrolizidine alkaloid Nowak et al. (2016)

Nicotine 1.1 Pyridine alkaloids Winter et al. (1959c); Franz (1962); Weidner
et al. (2005); Selmar et al. (2015b)

Anabasine 1.1 Pyridine alkaloids Franz (1962)

Pilocarpine 1.1 Imidazole alkaloids Franz (1962)

Codeine 1,3 Isoquinoline alkaloid Winter et al. (1959c); Franz (1962)

Strychnine 1.5 Indole alkaloid Franz (1962); Yahyazadeh et al. (2017)

Colchicine 1.5 Colchicine alkaloids Franz (1962)

Atropine 1.6 Tropane alkaloid Winter et al. (1959c); Franz (1962);
Yahyazadeh et al. (2017)

Hyoscyamine 1.8 Tropane alkaloid Winter et al. (1959c); Franz (1962)

Thebaine 1,9 Isoquinoline alkaloid Franz (1962)

Cinchonine 2.2 Quinoline alkaloids Franz (1962); Selmar et al. (2015b)

Narcotine 2,3 Isoquinoline alkaloid Franz (1962)

Sparteine 2.5 Quinolizidine alkaloid Franz (1962); Hijazin et al. (2020)

Noscapine 2.5 Isoquinoline alkaloid Yahyazadeh et al. (2017)

Harmaline 2.7 Indole alkaloid Hijazin et al. (2020)

Quinidine 2.7 Quinoline alkaloids Winter et al. (1959c); Franz (1962)

Harmine 2.8 Indole alkaloid Hijazin et al. (2020)

Papaverine 3.5 Isoquinoline alkaloid Winter et al. (1959c); Franz (1962)

The data of logP were compiled and averaged from the databases “BioLoom”, “ChemSpider”,
“chemicalize.org” and “ToxNet” as outlined in the mentioned literature
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diminishing the concentration gradient between the rhizosphere and root cells, which
determines the rate of influx into the root cells. Thus, apart from the logP, also the
pKa values of the alkaloids have to be taken into account when evaluating the
probability for their uptake (Hijazin et al. 2020).

In addition to the physico-chemical properties of the alkaloid and the pH of the
soil, various other factors impact the actual concentration gradient between outside
and inside, i.e. between the rhizosphere and the plasma of the roots cells, respec-
tively. In this context, the properties of the soil have to be considered, since various
soils exhibit quite different abilities to adsorb the alkaloids on the soil particles
(Bolan et al. 1999). Furthermore, the concentration gradient massively could be
influenced by microbial degradation of the alkaloids. It is well established that many
microorganisms are able to efficiently degrade specialized metabolites including
alkaloids and to use them as carbon sources. More than 60 years ago, Winter and
Brüsewitz (1960) demonstrated that aesculin, which was applied to soils, is cleaved
by microorganisms. Bartholomew et al. (1993) reported that Pseudomonas degrades
atropine, and Mazzafera et al. (1996) outlined that Serratia marcescens is able to
metabolize caffeine and related methylxanthines. Moreover, nicotine is degraded by
various Pseudomonas species (Wang et al. 2013), and pyrrolizidine alkaloids are
metabolized by a wide variety of different microorganisms (Joosten and van Veen
2011). Accordingly, when evaluating the uptake of natural products from the soil,
microbial degradation has to be considered appropriately.

An additional feature that influences the concentration gradient between “inside
and outside” is the fate of the imported alkaloid. In this context, the translocation of
the alkaloids from the roots into the shoots is in particular of special concern. With
respect to xenobiotics, it is well known that this transfer is accomplished via the
xylem (Hsu et al. 1990; Trapp 2000), and also for alkaloids taken up from the soil, a
xylem-based translocation is verified (Nowak and Selmar 2016). Accordingly, the
extent of alkaloid uptake strongly depends also on the allocation velocity, which in
turn is mainly determined by the rate of transpiration (Riedell and Schumacher
2009). As this property varies greatly among plant species, the extent of uptake
indeed depends also on the plant species (Fig. 7.1), although the principle mecha-
nism, i.e. the passive diffusion of alkaloids across the plasmalemma, is identical in
all plants. Apart from the allocation, the actual concentration of imported substances
can significantly be influenced by their biotransformation. Yet, the ability to modify
or metabolize the imported compounds may vary between plant species and thereby
could be responsible for differences in the velocity of uptake. The first report on such
modifications of imported compounds was published by Winter et al. (1959b), who
outlined that hydroquinone and phloroglucinol, which had been taken up by wheat
plants, are subsequently glucosylated to yield arbutin and phlorin, respectively.
Within the last decades, in particular the modification of imported xenobiotics had
been in the center of focus. Accordingly numerous related information on the
modification of xenobiotics in acceptor plants are available (Hatzios 1997; Burken
2003; Van Aken and Doty 2009). In analogy, also imported plant specialized
metabolites are reported to be modified in the acceptor plants (Hijazin et al. 2019;
Lewerenz et al. 2020). Further details of this interesting issue are outlined in the
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corresponding chapter below. However, one of the most astonishing results is the
strong heterogeneity of the modifications, e.g. in barley seedlings, the imported
umbelliferone is methoxylated to yield scopoletin, whereas it is converted to aesculin
in garden cress. In contrast, in flax, pea or radish, no modification was observed at all
(Hijazin et al. 2019). These data clearly show that—in addition to the differences in
the translocation velocity via xylem—also the variations in the extent of modifica-
tion strongly depend on the plant species. Consequently, the actual concentration of
a substance in the root cells—and thus the extent and velocity of its uptake from the
soil—could differ massively between plant species. This however means that—
although the basic mechanism, i.e. the diffusion across the plasmalemma of the
root cells, is identical for all the different plant species—various acceptor plants
exhibit quite different behaviours in uptake and accumulation (Fig. 7.1). These
coherences had been vividly confirmed by the variations in uptake and accumulation
of pyrrolizidine alkaloids in different acceptor plants, i.e. parsley, melissa, chamo-
mile, peppermint and nasturtium (Selmar et al. 2019b).

7.4 Transfer from Living Donor Plants

According to our insights in allelopathy, active compounds which inhibit germina-
tion or growth of potential competitors are released from various plants (Blum 2011;
Seigler 2006). In principle, there are several options how these allelochemicals are
released into the environment. The active compounds can be leached out from
decomposing plant residues (Belz et al. 2007), or the substances are exuded from
living plants, either by their roots (Bertin et al. 2003; Kalinova et al. 2007) or by their
leaves (Tukey 1970; Nakano et al. 2003). When addressing the phenomenon of
horizontal natural product transfer, it has to be taken into consideration that—in
analogy to allelochemicals—also specialized metabolites might be released from
living donor plants, too. This, in particular, seems to be consistent when considering
the fact that numerous of these natural products are able to diffuse—at least to a
certain extent—through biomembranes. In order to verify a putative transfer of
specialized metabolites between neighbouring plants, co-culture experiments had
been conducted: Senecio jacobaea plants, which contain high concentrations of
pyrrolizidine alkaloids (PAs), were co-cultivated together with various acceptor
plants in the same pot (Nowak et al. 2017). It turned out that after some weeks,
the Senecio PAs were also present in the non-alkaloidal acceptor plants. The
corresponding parsley leaves exhibited an average concentration of more than
200 μg PAs/kg d.w. (Selmar et al. 2019b). Since in pot experiments, due to an
intimate contact between the roots of donor and acceptor plants, a direct transfer via
root grafts (Basnet 1993) could not be excluded, appropriate co-culture experiments
had been conducted under field conditions. For this, plants of various species had
been cultivated in different spatial distances to the PA-containing Senecio plants
(Selmar et al. 2019b). After several weeks of co-cultivation, the Senecio PAs could
be detected in every plant, which genuinely did not contain these alkaloids.
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However, the PA concentrations varied markedly between the different acceptor
plants (Selmar et al. 2019b). These results vividly expound that the PAs, which
originally had been synthesized and accumulated in the Senecio donor plants, were
indeed transferred into the various acceptor plants.

As outlined for allelochemicals, in principle there are several options for the
presence of the classical secondary metabolites in the soil, too. In the first instance, it
could be assumed that the observed PA transfer between living plants is due to the
shedding of Senecio leaves, from which the PAs might have been leached out.
However, since it was reported that in the course of the related pot experiments
hardly any abscission of leaves occurred (Selmar et al. 2019b), this possibility can
highly be excluded in these experiments. Nonetheless this process certainly will be
relevant when considering an entire vegetation period, especially when the
senescence-induced shedding of leaves takes place. Alternatively, the PAs could
have been bled out from minor leaf injuries, e.g. those caused by pathogens or
herbivores. Yet, since the plants used in these experiments were described to be
healthy and no herbivory had been observed, a corresponding bleeding of PAs from
minor injuries of the leaves seems to be unlikely. This deduction is supported by the
finding that the PA spectra of donor and acceptor plants were quite different. In case
of an injury-induced release, all different PAs should have been leached out and
subsequently been taken up by the acceptor plants to the same extent. Accordingly, it
has to be assumed that the Senecio donor plants release PAs into the soil. Again,
there are two options, i.e. a passive diffusion and an active exudation. Indeed, both
possibilities might occur. In this context, it is relevant to mention that ptaquiloside, a
carcinogenic phytotoxin produced by Pteridium aquilinum, indeed is passively
leached out of the leaves of this fern (García-Jorgensen et al. 2020). Due to the
analogous ability to diffuse through biomembranes, alkaloids (and other specialized
metabolites exhibiting appropriate logP values) should also be either passively
leached out from the leaves or released by the roots into the soil. However, efficient
trapping mechanisms, i.e. the high acidity of the vacuole, prevent the diffusion
across membranes: within the vacuole the alkaloids are protonated, and as conse-
quence, they are unable to pass the tonoplast. But this “ion trap mechanism”, which
was first described by Matile 1976), is only valid for alkaloids exhibiting high pKa
values, which ensures ample protonation in the physiological pH range. In case of
very low pKa values, e.g. of caffeine (pKa ¼ 0.7), this trapping mechanism will not
work. Alternatively, caffeine is trapped in the vacuole by complex formation with
chlorogenic acids (Waldhauser and Baumann 1996).

When evaluating the literature describing the release of alkaloids, it turns out that
the related statements are mainly based on organ or cell culture experiments. In this
context, Bais et al. (2003) reported the exudation of harmine and harmaline from root
cultures of Oxalis tuberose, and Ruiz-May et al. (2009) outlined that the indole
alkaloid ajmalicine is secreted from hairy roots cultures of Catharanthus roseus. In
the same manner, nicotine was found in the medium of root culture from Nicotiana
tabacum (Zhao et al. 2013). Indeed, due to the coherences mentioned above, these
data do not represent an unequivocal proof that the alkaloids are actively exuded into
the medium. However, this option is supported by the findings of Toppel et al.
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(1987) who showed that in Senecio root cultures, the spectrum of PAs present within
the cells is quite different compared to that of the culture medium, i.e. in contrast to
the wide variety of PAs within the cultured cells, in the medium nearly exclusively
senkirkine could be detected. Accordingly, it can be assumed that the root cells
indeed actively and specifically exude this PA into the culture medium. In this
context it has to be mentioned that a related active transfer requires specific trans-
porters, which enables the transfer of the protonated alkaloids out of the vacuole; and
indeed numerous transporters for alkaloids are described (e.g. Shitan et al. 2003;
Otani et al. 2005; Morita et al. 2009; for review see Yazaki et al. 2008). Unfortu-
nately, in most of the reports dealing with membrane transfer of alkaloids, their
ability to easily cross biomembranes is ignored. In contrast, the requirement for
transporters, which allow the membrane transfer of the protonated alkaloids, is not
considered appropriately.

Apart from the excretion of alkaloids from organ and cell cultures, only a few data
are available which verify alkaloids are released from genuine plants into the soil. In
this context, it has to be mentioned that the roots of Agropyron repens exude
dihydroxybenzoxazinone into the soil (Schulz et al. 1994). In the same manner,
the roots from Oxalis tuberosa are reported to release the carboline alkaloids
harmine and harmaline (Bais et al. 2002), and caffeine is exuded by the roots of
coffee seedlings (Baumann and Gabriel 1984). These findings are confirmed by the
occurrence of quinolizidine alkaloids (lupine alkaloids) in soils, in which narrow-
leaf and yellow lupines are growing (Hama and Strobel 2020). In the same manner,
PAs, putatively derived from ragwort plants, could be detected in soils, in which the
related Senecio plants were growing (Hama and Strobel 2021). Indeed, with respect
to the exact origin of these alkaloids, the same questions as outlined above have to be
quoted, i.e. did these alkaloids result from the leaching of shed or injured leaves, or
are they released from vital tissues. Moreover, it has to be asked: is such release a
result of an active exudation or of a passive diffusion? Nonetheless, although the
actual path of the PA transfer from living donor plants into acceptor plants growing
in the vicinity is still unknown, the co-culture experiments unequivocally verify that
specialized metabolites, such as alkaloids, indeed are transferred from vital donor
plants to acceptor plants growing in the vicinity. Accordingly, the concept of
horizontal natural product transfer had to be broadened by including the transfer
from vital plants (Selmar 2019b; Fig. 7.1). Yet, much more research is necessary to
elucidate the exact path of release into the soil.

7.5 Modification of the Imported Substances

It is well established that xenobiotics, which are taken up from the soil, could be
modified within the acceptor plants—in particular by oxidation, hydroxylation and
conjugation (Burken 2003; Komives and Gullner 2005). These reactions are
discussed to be part of the so-called green liver concept, which postulates a delib-
erate detoxification system for xenobiotics (Sandermann 1994). Accordingly, it
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seemed to be obvious that also the natural compounds, which had been taken up by
the roots, could be modified within the acceptor plants, too. The first clue for
corresponding processes is given by the finding that the concentration of alkaloids
in acceptor plants strongly decreased over time (Selmar et al. 2015b; Nowak et al.
2016). Since in the related studies the quantification of PAs was based on the
standard HPLC-determinations by summing up the contents of all genuine alkaloids,
putative derivatives were not detected and quantified. Accordingly, in continuative
studies (Selmar et al. 2019a), the quantification of PAs present in the acceptor plants
was additionally performed by the so-called sum-parameter method (Cramer et al.
2013). Since this approach is based on a HPLC-ESI-MS/MS determination of the
necine base, all PA-related structures, and thus also putative modification products
of the genuine PAs, will be determined. As expected, in contrast to the previous
investigations, the overall content of PAs and PA-related structures in the acceptor
plants did not decrease over time. A modest comparison of this content with the PA
amount calculated by summing up all genuine PAs (standard approach) revealed that
2 weeks after the mulching, more than two-thirds of the imported PAs had been
modified to so far unknown derivatives (Selmar et al. 2019a). Unfortunately, up to
now, any clues to the related modification products are lacking. Moreover, no
information on the potential toxicity of these unknown derivatives is available.

Much more research is required to evaluate reliably the risk of the related PA
contaminations. Nonetheless, these studies clearly outlined that—as known for
xenobiotics—also PAs imported into the acceptor plants are modified to a large
extent (Selmar et al. 2019b). Up to now, all attempts to elucidate the structure of the
related PA derivatives failed, since it turned out that their identification in HPLC
analyses is very difficult because of the weak UV absorbance and ambiguous
fragmentation pattern in corresponding MS analyses. Indeed, an alternative strategy
would be the employment of isotope-labelled compounds. But, such an approach is
very time-consuming and cost-intensive. Accordingly, it seemed to be far more
promising to study the putative modifications of imported natural compounds,
when such substances are applied, whose derivatives are more feasible to detect.
In this context, coumarins are quite auspicious, since the genuine substances as well
as most of their derivatives could easily be detected due to their fluorescence (Jones
and Rahman 1994). Hijazin et al. (2019) employed umbelliferone (logP ¼ 1.5) to
exemplarily study the uptake of a typical specialized metabolite and its subsequent
modification in various acceptor plants. As predicted, all the different acceptor plants
employed took up umbelliferone by their roots and translocated it into the leaves.
However, only in the seedlings of barley and garden cress that the imported
coumarin was modified effectively. In garden cress, it was hydroxylated and
glucosylated to yield aesculin (Fig. 7.2), whereas in barley seedlings, the imported
umbelliferone was converted by methoxylation to scopoletin (Hijazin et al. 2019).
As outlined above, corresponding reactions are known to be involved in the mod-
ification of imported xenobiotics (Burken 2003; Komives and Gullner 2005). Fre-
quently, these reactions are catalyzed by cytochrome P450 enzymes (Yun et al.
2005; Siminszky 2006). To verify that the conversion of umbelliferone in barley and
garden cress indeed is catalyzed by P450 enzymes, an additional approach was
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conducted: naproxen, a well-known inhibitor of P450 enzymes (Miners et al. 1996),
was applied together with umbelliferone. This concomitant application of
umbelliferone and inhibitor resulted in a strong reduction in the conversion of
umbelliferone to both derivatives, to scopoletin in barley and to aesculin in garden
cress (Hijazin et al. 2019). These findings demonstrate that imported natural prod-
ucts could also—analogue to the modification of xenobiotics—be modified in
the acceptor plants by the means of cytochrome P450 enzymes. In consequence,
the concept of horizontal natural product transfer had to be broadened by including
the modifications of imported substances as outlined in Fig. 7.1 (Selmar et al.
2019a).

In summary, it has to be stated that the kind and extent of the modifications of the
imported umbelliferone strongly depend on the plant species; it is either just
accumulated in the acceptor plants (pea, flax, radish), or it is converted to aesculin
or scopoletin in garden cress or barley, respectively. Corresponding species-related
differences in such modifications are also described for typical allelochemicals. In
this sense, biochanin A is converted differentially to various derivatives in different

Fig. 7.2 Modification of
imported umbelliferone in
barley and garden cress
seedlings according to
Hijazin et al. (2019)
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weed species (Shajib et al. 2012). In the same manner, the ability to hydroxylate and
to glucosylate benzoxazolinone (BOA) is reported to vary markedly among various
plant species (Schulz and Wieland 1999). The cognition that the fate of imported
natural products is quite different in the various plant species indicates that the
observed modifications are not part of a general and deliberate detoxification system
as proposed by the “green liver concept” (Sandermann 1994; Burken 2003). By
contrast, these modifications appear to be due to random “accidental” activities of
enzymes, which generally are involved in the biosynthesis of specialized metabo-
lites, which genuinely are present in the acceptor plants. In consequence, the issue of
enzyme promiscuity (Kreis and Munkert 2019), which actually is getting more and
more attraction, seems to be responsible for the differential modification of natural
products as well as xenobiotics in the acceptor plants. There is a tremendous demand
for further research to elucidate whether the modifications of imported substances
are due to a particular “detoxification system” or to “side activities” of promiscuous
enzymes involved in plant specialized metabolism (Selmar et al. 2019a).

7.6 Implications for Biochemical Ecology

The insights outlined above unveil that the “horizontal natural product transfer”
represents a prevailing phenomenon in nature that is quite more spread than origi-
nally assumed (Selmar et al. 2019a). Accordingly, when studying plant-plant inter-
actions, we always have to consider that specialized metabolites synthesized and
accumulated in one plant species might also be present in the soil, from which they
can be taken up randomly by other plants growing in the vicinity (Selmar et al.
2019a). Yet, as precondition for such exchange, the substances must exhibit appro-
priate physico-chemical properties, i.e. a logP value between�1 and about 3. Due to
the unlimited number of permutations of donor and acceptor plants, the variation in
the exchange of specialized metabolites is nearly infinite (Selmar et al. 2019a).
Accordingly, for most of these cases, a certain or specific ecological effect of
this phenomenon can be ruled out. This however, does not apply to the so-called
typical allelochemicals. Due to their inhibiting impact on the acceptor plants,
allelochemicals reveal a high relevance for the donor plant by suppressing potential
competitors. It seems to be very likely that the evolution of allelochemicals indeed
could have their inception in the random release of specialized metabolites. Accord-
ingly, these novel insights will strongly influence our comprehension of chemical
ecology, especially with respect to their evolution (Selmar et al. 2020).

A further cause for thought derived from our knowledge on the “horizontal
natural product transfer” is related to the definition of xenobiotics. Up to now,
xenobiotics are generally defined as non-natural substances, which are “foreign to
life” (Godheja et al. 2016). Nonetheless, the authors already included in their
definition “naturally occurring poisons”. In the last century, the natural substances
taken up by the acceptor plants had been denoted as “allochthonous substances”
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(Winter et al. 1960). The knowledge that the random uptake of specialized metab-
olites and their subsequent modification in the acceptor plants directly correspond to
the equal processes known for xenobiotics requires either a thorough re-evaluation
of the classical definition of xenobiotics or a sound differentiation between “non-
natural” and “naturally derived compounds” (Selmar et al. 2020). In the first case,
specialized metabolites which are taken up by acceptor plants should be included in
the denomination of xenobiotics. In other words, xenobiotic would comprise all
metabolites, which are “foreign to the acceptor plants”. In the second case, in
contrast, the term xenobiotics would just comprise “non-natural compounds” and
would be contraposed to all substances generated by organisms, i.e. allochthonous
substances, which accordingly could be denoted as “allochtonics”.

In addition to these reflections related to basic science, the novel insights also
reveal relevance for applied plant biology and agriculture. The transfer of natural
products from living donor plants might actually be the basis for increasing our
understanding of various hitherto unexplained processes (Selmar et al. 2019a). In
this context, the release of specialized metabolites by donor plants into the soil—
either by active or passive exudation or by leaching from decomposing plant parts—
and the subsequent uptake by plants growing in the vicinity should have a special
relevance for new approaches to explain the beneficial effects of crop rotations or of
co-cultivation of certain vegetables.

7.7 Conclusion

As outlined in the introduction, numerous alarming reports of the European Food
Safety Authority unveiled that many plant-derived commodities are contaminated by
various alkaloids. Meanwhile, as expounded in this treatise, it is well documented
that these contaminations—at least in part—are due to the horizontal natural product
transfer. Accordingly, in the future, a marked transfer of poisonous substances into
crop plants has to be avoided. Indeed, when considering PA contaminations, the
accidental co-harvest of PA-containing weeds is a major source of related contam-
inations. Thus, the farmers have to remove the PA-containing weeds efficiently from
the fields. However, a simple chopping of the weeds is not appropriate. It is essential
that the plants are removed from the field in order to prevent the leaching of PA from
the rotting shoots. In addition, also the roots of the PA-containing weeds have to be
extracted; otherwise, PAs will be further on released into the soil. Accordingly, the
PA-containing weeds should not be chopped off, but the entire plants must be
extracted completely and removed from the field.

In principle, these coherences apply for all other cases. Contaminations by
specialized metabolites derived from collateral weeds could be prevented by remov-
ing the entire weed plants from the field.
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Chapter 8
Effect of Abiotic Stresses and Adaptation
Strategies of Medicinal Plants

Sibgha Noreen, Muhammad Aasim, Umme Ummara,
Muhammad Salim Akhter, Nawishta Saleem, Seema Mahmood,
and Kausar Hussain Shah

Abstract The significance of medicinal plants for humans have been established
since ancient times for curing diseases and ailments of themselves and domesticated
animals based on their traditional knowledge. In recent years, the demand for
medicinal plants has been increased and resulted in their enhanced cultivation.
However, the production of medicinal plants is generally affected by biotic and
abiotic stresses. Abiotic stresses like salinity, drought, cold, heavy metals etc. are the
major constraints which affect the plant biomass production and subsequently their
significant metabolite production. Under stress conditions, medicinal plants adapt
and exhibit different physiological and molecular responses to cope with these
stresses, and it is direly needed to understand these responses to overcome the
issue. This study presents the information about some important medicinal plants
and their uses and responses under variable stress conditions. Furthermore, different
long-term and short-term strategies like plant breeding, genetic engineering and
application of different chemicals and hormones have been summarized to overcome
the issue of abiotic stress.

Keywords Abiotic stress · Medicinal plants · Secondary metabolites · Physiological
responses · Molecular responses

8.1 Introduction

Medicinal plants play an important role in human life being a major source of
valuable chemicals and direct source of food and medicines. Medicinal plants are
used in the healthcare system since time immemorial. They play an important role in
disease prevention and are rich resource of ingredients used in the synthesis of drugs
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(Sandberg and Corrigan 2001). A major portion of developed countries depends on
traditional medicine (Abdalla and Laatsch 2012). It has been estimated that about
80% of global population depends on traditional medicines derived from medicinal
plants. A list of some commonly used medicinal plants for curing common diseases
is given in Table 8.1.

The use of traditional medicinal practices is common in India, China, Pakistan,
Japan, Sri Lanka and Thailand. The plant extract and active compounds found in
these plants are used in therapies against most diseases (Michel et al. 2020). The
plants synthesize secondary metabolites using the primary metabolites, i.e. lipid,
carbohydrate and amino acid (Hatami et al. 2016). Almost 100,000 secondary
metabolites are known, having molecular weight < 150 KDa and constituting
<1% of plant dry weight (Oksman-Caldentey et al. 2004). These metabolites besides
being a unique source of food also produce plant-specific natural colours, taste,
odour and toxins (Lajayer et al. 2017). Today there are at least 120 important drugs
which are derived from medicinal plants are based on drugs are alkaloids
(nitrogen-containing molecules), terpenoids (carbon- and hydrogen-containing
units), flavonoids (phenol-containing compounds), glycosides (contain sugar mole-
cules), tannins (polymeric astringent phenolic compounds), caffeine, aspirin,
cocaine, morphine, digitalis etc. (Wink 2012; Salmerón-Manzano et al. 2020).
There is a direct role of secondary metabolites in metabolic functions of plants like
photosynthesis, pollination and fertilization. These metabolites also play an impor-
tant role in plant’s defence against system environmental adversities (Akula and
Ravishankar 2011).

8.2 Influence of Abiotic Stresses on Medicinal Plants

Continuous changes in the environment make plants prone to abiotic stresses like
drought, chilling, salinity, high temperature, heavy metal, high and low light inten-
sity, UV-B, nutrient deficiency, ozone etc. (Mishra and Tanna 2017). The growth
and the quality of aromatic compounds in these plants have been reported to be
influenced by these environmental constraints (Table 8.2). The accumulation of salts
in the rhizosphere causes specific ion toxicity, osmotic stress and ionic imbalances
that lead to plant death or yield loss both in the medicinal plants and other crop
plants. It directly affects the vegetative growth, ionic constituents, yield attributes
and composition of essential oil of different medicinal plants. Furthermore salinity
reduces biomass production of citronella (Cymbopogon nardus), lemongrass
(Cymbopogon flexuosus) and vetiver (Vetiveria zizanioides). Water deficit condi-
tions are life-threatening issue to plants. Drought stress adversely affects the medic-
inal value of many important medicinal plants including thyme (Thymus vulgaris),
yarrow (Achillea millefolium), mint (Mentha arvensis), chicory (Cichorium intybus),
balm (Melissa officinalis), calendula (Calendula officinalis) etc. It is also reported
that drought stress drastically reduced the vegetative growth, water content and the
percentage of essential oil content of lemongrasses (Cymbopogon nardus). These
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Table 8.1 Commonly used medicinal plants and their usage under specific diseases

Plant name Used in disease

Abutilon indicum Leaves are used in boils and ulcer
Seeds are laxative and used in piles

Acacia catechu Bark is cure of chronic diarrhoea

Acacia nilotica Twigs are used as toothbrush
Bark extract is used as tonic.

Adhatoda vasica Leaf liquor cures asthma and bronchial disorders

Aloe vera Leaf peelings used in skin burn
Gel cures ulcers
Fleshy part of leaf is used in face mask

Andrographis
paniculata

Used in malarial fever and tonic to liver

Anisomeles indica Leaves cure cough and cold

Anogeissus
latifolia

Gum is used as tonic, while leaves are used in diarrhoea

Ammi majus Leaf extract used for many skin diseases

Argemone
mexicana

Extract cures skin diseases
Latex is applied to the eyes in conjunctivitis

Azadirachta indica Bark cures malarial fever; twigs are used as toothbrush; and oil of seeds
cures skin diseases and lice

Boerhavia diffusa Plant material used in urinary troubles, jaundice and skin diseases

Cassia angustifolia Plants materials are used as a laxative

Catharanthus
roseus

Flowers and leaves reduce sugar level

Chlorophytum spp. Roots are used in general weakness as tonic

Curculigo
orchioides

Roots are used as tonic and aphrodisiac; in leucorrhoea and menstrual
irregularities

Curcuma caesia Rhizomes cure sprains, internal injuries and bruises

Cyperus scariosus Tubers are used in heart and urinary diseases

Datura metal Smoke from seeds cures bronchial troubles

Gymnema sylvestre Leaves are used in diabetics

Jatropha curcas The fruit is used for treating dysentery and diarrhoea, latex contains an
alkaloid known as “jatrophine” having anticancer properties

Momordica
charantia

The fruit has hypoglycaemic effect and hence can be used for diabetes
patients

Ocimum sanctum Leaves are used in cough and cold and also in boils and ulcers

Phyllanthus
amarus

Commonly used to treat jaundice

Salvia officinalis Plant is commonly used to treat upper respiratory and gastrointestinal tract
infections

Solanum nigrum Leaves cure jaundice and skin diseases

Syzygium cumini Seed powder helps to cure dysentery, diarrhoea and diabetes

Trachyspermum
ammi

Pods and leaves are edible and it is used as an antiflatulent

Tylophora indica Leaves are used in asthma

Urginea indica Bulb juice is given in respiratory disorders

(continued)
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abiotic stresses in plants showed significant increase in production of reactive
oxygen species (ROS), superoxide, hydrogen peroxide and hydroxyl radicals
(Fig. 8.1). Detoxification system (enzymatic and non-enzymatic antioxidant enzy-
matic system) of plants is activated in response to ROS. These systems include
increased production of the antioxidant enzymes SOD, CAT, APX and GPx
(Hasanuzzaman et al. 2013). Reactive oxygen species act as signaling molecules
in processes involved in combating stress. Increase in the production of ROS in
response to abiotic stresses can lead to significant oxidative damage and also death of
the plant (Sharma et al. 2012).

8.2.1 Salinity Stress

Salinity stress is shown to have a directly damaging effect on the medicinal prop-
erties of plants. Plant responses to different types of stresses vary, e.g. manifold
induced water stress in plants is shown to reduce growth, causing high root-to-shoot
ratio. When NaCl is applied to water-stressed plants, it improves the response to
mannitol-induced water stress. Relative water content and growth of seedlings
(reduced by water stress) are enhanced by NaCl application. Salt stress is observed
to cause significant reduction in gas exchange, plant growth, photochemical
quenching and shoot and root potassium ion content. Salinity is also associated
with increase in leaf glycine betaine, free proline and sodium ion content (Shahbaz
et al. 2013; Noreen et al. 2019a). In Bacopa monnierimild and moderate salt stresses
result in a 36% and 76% increase in secondary metabolite content, respectively.
Bacoside A (a saponin) is an important secondary metabolite of Bacopa monnieri,
having many medicinal properties. It can be concluded that treatment with salt
results in enhancement of biomass yield and saponin content in B. monnieri (Bharti
et al. 2013). Subjection of plants to environmental constraints results in
overexpression of endogenous melatonin. Melatonin is observed to have a key
role in plant to tolerate stress (Zhang et al. 2015).

8.2.2 Drought Stress

Severe drought conditions in medicinal plants are associated with high phenolic
contents and elevated antioxidant enzymes (Saeidnejad et al. 2013). The plants of

Table 8.1 (continued)

Plant name Used in disease

Vitex negundo Leaf extract is used in body pain and in skin diseases

Withania
somnifera

Plant parts are used to treat asthma, diabetes, hypertension, stress, arthritic
diseases and cancer
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Table 8.2 Effect of abiotic stresses in medicinal plants

Medicinal Plant stress Effect Reference

Ocimum
tenuiflorum L.

Cold
stress

Reduction in eugenol and methyleugenol con-
centration. No subsequent alteration
caryophyllene concentration

(Rastogi et al.
2019)

Ocimum
basilicum L.

Cold
stress

Reduction linalool, α-pinene and camphene
production. Enhanced α-bergamotene, cineole,
γ-cadinene, geraniol and germacrene D
production

(Senji and
Mandoulakani
2018)

Fagopyrum
tataricum Gaertn.

Cold
stress

Enhanced flavonoid production and antioxi-
dant activity

(Jeon et al.
2018)

Artemisia annua
L.

Cold
stress

Enhanced artemisinin production associated
secondary metabolites which include
artemisinic acid, artemisinin B and
dihydroartemisinic

(Liu et al.
2017)

Ajuga bracteosa
Wall. ex. Benth.

Cold
stress

Flavonoids, quercitol, caffeic acid, cinnamic
acid, total phenolic production enhanced

(Rani et al.
2017)

Withania
somnifera (L.)
Dunal

Cold
stress

Enhanced withanolide contents (Mir et al.
2015)

Vitis vinifera L. Cold
stress

Mitigation in ferulic acid, caffeic acid and
ρ-coumaric acid and reduced scavenging of
radicals

(Król et al.
2015)

Cucumis sativus
L.

Cold
stress

Enhanced flavonoids, cinnamic acid,
ρ-coumaric acid, caffeic acid, ferulic acid, lig-
nin, phenol production

(Chen et al.
2013)

Camellia sinensis
L.

Cold
stress

Phenolic compound production increased (Upadhyaya
2012)

Eleutherococcus
senticosus

Cold
stress

Reduction in eleutheroside, eleutheroside E,
flavonoids and total phenolic production

(Shohael et al.
2006)

Hypericum
perforatum L.

Cold
stress

Reduction in hypericin content, hyperforin
content, pseudohypersin content

(Zobayed et al.
2005)

Hypericum
brasiliense
Choisy

Cold
stress

Reduction in accumulation of total phenolic
compounds and betulinic

(de Abreu and
Mazzafera
2005)

Crataegus
laevigata and
C. monogyna

Cold
stress

Upregulation of acetylvitexin-20 0-O-
rhamnoside, hyperoside, quercetin, vitexin-
20 0-O-rhamnoside

(Kirakosyan
et al. 2004)

Artemisia annua
L.

Cold
stress

Boast upregulation of artemisinin (Wallaart et al.
2000)

Catharanthus
roseus

Salinity Production of secondary products (vinblastine) (Jaleel et al.
2008c)

Orthosiphon
stamineus

Salinity Production of specialized metabolite
(polyphenols)

(Ting et al.
2009)

Jatropha curcas Salinity Enhanced curcin contents (Gao et al.
2008)

Thymus
maroccanus Ball.

Salinity Enhanced thymol contents (Belaqziz et al.
2009)

(continued)
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Hypericum brasiliense grown under drought stress produced 10% high total pheno-
lic contents were produced in stresses plants as compared to control ones (de Abreu
and Mazzafera 2005). The flavonoids were nearly the same, while the content of
furoquinones was slightly low, in drought and control red sage plants (Salvia
miltiorrhiza) (Liu et al. 2011).

8.2.3 Heavy Metal Stress

In medicinal plants the toxicity due to heavy metals results in decreased plant growth
and chlorophyll concentration in leaves. Higher concentrations of cadmium are

Table 8.2 (continued)

Medicinal Plant stress Effect Reference

Olea europaea L. Salinity Enhanced oleoside contents (Rejšková
et al. 2007)

Senecio jacobaea Drought Enhanced pyrrolizidine alkaloid production (Kirk et al.
2010)

Phellodendron
amurense

Drought Increased benzylisoquinoline production (Xia et al.
2007)

Catharanthus
roseus

Drought Enhanced indole alkaloid production (Jaleel et al.
2007a)

Ocimum sp. Drought High eugenol contents (Khalid 2006)

Fig. 8.1 Various responses of medicinal plants against abiotic stress condition
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associated with total damage of leaf structure and fusion of cell membrane and cell
wall (Fu and Cui 2013). It was observed inMentha pulegium that heavy metal stress
induces the synthesis of secondary products stimulating plant body defence system
to combat stressful conditions. A significant increase in secondary metabolites has
been observed under heavy metal stress in some medicinal plants (Hussein and
El-Anssary 2019; Li et al. 2020).

8.3 Abiotic Stresses and Medicinal Plants

8.3.1 Ammi Majus

Ammi majus is a traditional medicinal plant commonly called bishop’s flower or
bishop’s weed. This plant belongs to the Apiaceae family. 46-day-old A. majus
plants exposed to NaCl stress showed a significant reduction in biological yield of
both root and shoot organs and a 50% reduction in seed yield at 104 mM salinity
treatment. A. majus is a glycophyte, and experiments have shown that as the
concentration of NaCl ions increases in shoots, the concentration of potassium and
calcium ions decreases. These plants can therefore be seen as moderately salt tolerant
(Ashraf et al. 2004).

8.3.2 Bupleurum Chinense

Bupleurum chinense is a part of the Apiaceae family of medicinal plants. It is
commonly known as Chinese thorowax roots, and the root is used for its medicinal
properties. Under drought stress, B. chinense roots are observed to be highly
resistant. Increase in drought treatment results in a significant increase in
saikosaponin a (SSa) and saikosaponin d (SSd). Moderate drought stress results in
increased SSa concentration up to 83% and SSd concentration up to 22%. However,
increased levels of SSa and SSd are associated with enhanced oxygen ion content
and activity of SOD, CAT and APX. B. chinense roots are observed to possess
effective mechanisms that protect them from antioxidants which confer resistance to
drought stress (Zhu et al. 2009).

8.3.3 Cassia Angustifolia

Cassia angustifolia is also known as Indian senna and belongs to the Fabaceae
family. In one experiment, 45-day-old plants were subjected to lead stress. Signif-
icant changes in the levels of ascorbate, glutathione, proline and sennosides were
observed. As compared to control plants, experimental plants showed an increase in
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the content of thiobarbituric acid-reactive substances and dehydroascorbate. Proline
content is also observed to increase significantly at 60 days after sowing, and after
that it decreases (Qureshi et al. 2007).

Salt stress applied to C. angustifolia plants showed that NaCl stress alters
physiological mechanisms, which changes the rate of germination, seedling growth
and biomass production (Shitole and Dhumal 2012). Drought-stressed
C. angustifolia plants demonstrate increased proline levels and glutathione reductase
activity but decreased seed yield. Superoxide dismutase, catalase and glutathione
peroxidase activities are also observed to change drastically in these plants. How-
ever, the application of nitrogen fertilizer to C. angustifolia plants results in
enhanced proline content, antioxidant enzyme activity and yield (Khammari et al.
2012).

8.3.4 Catharanthus Roseus

Catharanthus roseus is commonly known as Madagascar periwinkle or simply
periwinkle. It belongs to the Apocynaceae family. The plant is effective against
diabetes, malaria, leukaemia and Hodgkin’s lymphoma (Marcone et al. 1997).
C. roseus plants subjected to water deficit stress showed a change in abscisic acid
level, DNA content, RNA content and activities of ATPase and protease. Exposure
to drought stress doubles the abscisic acid concentrations in all parts of the plant. It
also causes a decrease in DNA and RNA content in experimental plants in compar-
ison with control plants. The activities of ATPases and proteases are also enhanced
with increase in water deficit stress (Jaleel et al. 2008a).

It is observed that C. roseus plants subjected to NaCl stress show a reduction in
overall growth, chlorophyll content, proteins and antioxidant enzymes. Secretion of
the medicinally important alkaloid ajmalicine increases as a response to NaCl stress.
It increases biological yield, green pigments, soluble proteins and the activities of
antioxidant enzymes. Increase in the rate of ajmalicine production after triadimefon
treatment on salt-stressed plants is observed (Jaleel et al. 2008b).

8.3.5 Jatropha Curcas

Jatropha curcas is a flowering plant belonging to the Euphorbiaceae family. It is
known to be hepatoprotective. J. curcas is a stress-resistant plant which grows
perennially on marginal soils. Jatropha curcas plants subjected to water deficit
stress show that as the stress increases, carbon dioxide assimilation, transpiration
and stomatal conductance decrease. Stressed plants and control plants do not differ
in relative water content and succulence. Plants with more severe water deficit are
observed to possess the highest levels of total soluble sugars. Amino acids and
glycine betaines are involved in the management of osmotic potential (Silva et al.
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2010). With chromium stress, increasing chromium concentration results in
increased response of catalase, ascorbate peroxidase and glutathione-S transferase,
illustrate that antioxidant enzymes have a key role in protecting plants from chro-
mium toxicity. J. curcas plants are somehow tolerant to chromium and can grow in
chromium-affected environments (Yadav et al. 2010).

Effects of salt stress are more deleterious compared to heat stress, but the effects
of both stresses increase when they are combined. Heat favourably stimulates the
accumulation of amino acids, i.e. glycine betaine and chlorophyll molecules, in salt-
stressed leaves. Antioxidant enzymatic defence is initiated as a result of combined
heat and salt stress (Silva et al. 2013). Exposure to chill hardening stress also results
in increased activation of antioxidant enzymes which leads to enhancement of
chilling tolerance (Ao et al. 2013).

8.3.6 Momordica Charantia

Momordica charantia is commonly known as bitter melon or bitter gourd. It is a
common garden vegetable and has many medicinal uses. The plant belongs to one of
the leading medicinal plant families, the Cucurbitaceae. M. charantia showed an
increase in activity of SOD, CAT, PPO, GR and APX on treatment with salt stress.
Protein concentration of plants under salt stress decreases in all stages except
pre-flowering (Agarwal and Shaheen 2007). Bitter gourd plants treated with NaCl
show a significant decrease in germination rate and vitality index. These symptoms
were significantly enhanced when the salt-stressed plants were treated with silicon.
Malondialdehyde concentrations in leaves notably decrease as silicon treatment is
initiated. Activities of superoxide dismutase, peroxidase and catalase are drastically
increased on application of silicon treatment to salt-stressed plants (Wang et al.
2010).

8.3.7 Phyllanthus Amarus

Phyllanthus amarus is a small herb belonging to the Euphorbiaceae family. It is
known for its medicinal properties. Effects of different cadmium concentrations
were observed on P. amarus plants. Cadmium causes a significant decrease in
fresh and dry biomass, length of root and shoot organs, protein, chlorophyll,
carotenoids and various sugars (Rai et al. 2005). After 90 days of salt stress, the
plants show an increase in lipid peroxidation, hydrogen peroxide, glycine betaine
and proline content. An increase in NaCl concentration decreases the proline oxidase
activity in experimental plants (Jaleel et al. 2007a).
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8.3.8 Salvia Officinalis

Common or garden sage is also known as Salvia officinalis and is a perennial shrub
belonging to the Lamiaceae family. Salvia officinalis plants subjected to salt stress
show a 61% decrease in growth. Application of 100 mM NaCl stress reduces total
fatty acid content by up to 32%. Polyunsaturated fatty acids decrease with increase in
NaCl (NaCl) content, whereas content of monounsaturated fatty acids increases with
progression in salt stress (Taarit et al. 2009). Sage plants grown under drought stress
have significantly high concentration of total monoterpenes compared to well-
watered plants (Kleinwächter and Selmar 2014).

Sage exposed to water deficit shows leaf senescence at a high rate. Initiation of
leaf senescence increases salicylic acid accumulation and decreases jasmonic acid
levels. This is further associated with degradation of chlorophyll contents and
increase in deepoxidation (Abreu and Munné-Bosch 2008). Similarly, applying
water deficit stress on sage results in a 73% decrease in dry weight, reduces essential
oil production by 69% and increases nitrogen content by 15%. Decrease in water
supply results in 21% decrease in phosphorus levels, 25% decrease in potassium
levels and 10% decrease in magnesium levels (Corell et al. 2012).

8.3.9 Withania Somnifera

Withania somnifera, belonging to family Solanaceae, is a medicinally important
Indian plant. Exposure of W. somnifera to drought stress leads to decrease in leaf
area, photosynthetic pigment, root length, shoot length and photosynthetic activity.
Withaferin A contents were increased by 5% under drought stress (Kannan and Kul
2011). The salt-stressed W. somnifera showed decreased germination percentage,
seedling vigour and chlorophyll content. It also affects antioxidants like AsA and
results in decreased glutathione and α-tocopherol contents. However, the activities
of CAT, SOD, POD and PPO were also significantly affected as a result of salt stress
(Jaleel et al. 2007b).

8.3.10 Trachyspermum Ammi

Ajwain is a common name for the traditional medicinal plant scientifically known as
Trachyspermum ammi, which belongs to the Apiaceae family. In one experiment,
67-day-old ajwain plants were potted in saline soil. Increase in salt levels leads to the
reduction in biological yield of leaves and roots and reduces seed yield. A 50%
reduction in seed yield is observed at 120 mmol/L of NaCl (Ashraf and Orooj 2006).
Seed germination and seedling growth are significantly retarded in the presence of
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NaCl stress. Reduced sugars, proline, glycine betaine and total sugars are observed
to accumulate in plants with increasing salinity (Yogita et al. 2014).

Drought stress significantly alters plant mechanisms. Transpiration rate and
stomatal conductance decrease drastically with progressive increase in stress levels,
and carbon dioxide concentration is also increased. Plant height and fresh and dry
weights are reduced due to drought stress. The total phenolic and chlorophyll content
is increased with increased exposure to drought stress. Secondary metabolite pro-
duction is also enhanced significantly under stress (Azhar et al. 2011).

8.3.11 Carthamus Tinctorius

Carthamus tinctorius (safflower) is an aromatic oilseed crop (Kumar and Kumari
2005). The flowers of safflower are used to cure several chronic diseases and are
extensively used in Chinese herbal medicines (Li and Mündel 1996; Hussain et al.
2016). Different environmental stresses affect safflower growth and productivity. It
has been reported that due to salt stress, safflower loses fresh weights and relative
water contents, thus hampering its growth even in moderately salt-tolerant American
safflower (Hussain et al. 2016). Under drought stress the contents of flavonoids are
significantly increased, and the synthesis of carbohydrates is diverted to secondary
metabolites as reported by Salem et al. (2014) in safflower.

8.3.12 Coleus

Coleus has important medicinal values having several therapeutic properties.
Kotagiri and Kolluru (2017) reported that salinity stress has considerably decreased
growth attributes including leaf water potential and relative water content in Coleus
species.

8.4 Adaptation Strategies to Tolerate Abiotic Stresses
in Medicinal Plants

Medicinal plants consist of a large number of plant species with diversified biolog-
ical particularities and attributes that are cultivated on a small area as compared to
other cultivated plant groups (Pank 2006). The anthropogenic effects on the bio-
sphere, the obstacle of the biosafety rules for the commercial medicinal plants and
enhancing climate change challenges are severe intimidations for biorepository
(Kurnaz and Kurnaz 2021).
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Therefore, to increase the cultivation of medicinal plants, many long-term
(screening and selection, plant breeding and genetic engineering) and short-term
strategies (exogenous application of potential osmoprotectants, hormones, amino
acids and minerals) are adapted under various biotic and abiotic stresses for improv-
ing their growth as well as cultivation techniques (Fan et al. 2019; Ghassemi et al.
2020; Rana et al. 2020).

8.4.1 Long-Term Strategy

In order to cultivate medicinal plants to achieve sustainable production on a large
scale, it is imperative to use modern breeding techniques. More sophisticated
selection criteria through appropriate breeding strategy can help to achieve realistic
targets (Wang et al. 2020).

8.4.1.1 Plant Breeding

Plant breeding portrays the importance of specific medicinal plant species to a
required demand with high quality which leads to a sustainable plant production.
While genetic engineering techniques are very expensive and precise procedures,
classical breeding methods are more preferable for cultivation of medicinal plants
(Pank 2006; Xiao et al. 2016). However, successful breeding techniques lead to the
availability of particular characteristics of the desired new varieties; according to
these approaches, breeders initiate breeding programs by screening the accessible
germplasm of different plant populations. It is also a fact that it relies on the
availability of a variety of germplasm with genes of desired characteristics; the
larger the variety of plant species, the larger the chance to recognize an appropriate
donor accession (Pank 2007; Ozaki and Shibano 2014; Xiao et al. 2016; Wang et al.
2020).

The most essential requirement of successful breeding program is genetic varia-
tion of initial population. Prior, the breeder deals with available natural population,
this leads to the development of a new variables (Wang et al. 2020). Once a
population with a suitable variable is accessible, the breeder starts to choose geno-
types with desired gene expression. Successful breeding strategies led to the devel-
opment of precise breeding procedures. The classical breeding methods are less
expensive as compared to advanced biotechnological techniques (Pank 2007). These
methods include

• Exploitation of available natural population
• Generation of new genetic variable
• Utilization of crossing procedures for new combination
• Using hybrid technique for breeding
• Synthetic cultivars
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• Induced mutation
• Somaclonal variation
• Fusion of protoplasm (somatic hybridization)
• Molecular gene transfer by using somatic hybridization
• Selection

The are several limitations of breeding techniques: less results of breeding pro-
grams are available, medicinal plants consist of greater population, expensive
analysis of important constituent, limited dimension for breeding research and
breeding methods are used for minor cultivars and very low seed turnover because
of limited available cultivation area (Pank 2007; Wang et al. 2020). So, preferably
advanced biological techniques such as genetic engineering approaches are used to
meet the need of medicinal plant production.

8.4.1.2 Genetic Engineering

Genetic engineering techniques in advanced crop production methods exhibit excep-
tional brilliant performance to meet food scarcity. Conventional medicinal plant
production also deals with several challenges which include resource shortage,
environmental destruction, decline in germplasm availability and number of com-
plications (Teng and Shen 2015). It is regarded as a tool to enhance medicinal plants’
yield and resistance against diseases, insects and herbicides and enhance the level of
active ingredients in targeted medicinal plant species (Wang et al. 2008). Thus,
potential approaches of genetic engineering are a vital player in the protection and
huge area cultivation of medicinal plants. However, in the process of developing
transgenic medicinal plant, the safety protocol regarding medicinal plant is of great
significance. And it depends on the targeted transgenic medicinal plant (Teng and
Shen 2015).

Secondary metabolites are extensively found in medicinal plants and are of great
importance exhibiting different biological activities used in various applications
(Kliebenstein and Osbourn 2012). Genetic engineering facilitates to mitigate the
difficulties in getting secondary metabolites through medicinal plant cultivation. For
the production of target compounds from valuable medicinal and aromatic plants
(Artemisia annua L., Atropa belladonna L., Papaver somniferum L., Dioscorea sp.
and Panax ginseng L.), various genetic transformation procedures have been
standardized (Bindu et al. 2018). The various strategies such as decreasing catabo-
lism, reducing flux through competitive pathways, overwhelming rate-limiting
stages and regulatory gene overexpression are used to enhance the production of
secondary metabolites (Li et al. 2020). The advanced biotechnological tools includ-
ing metabolic engineering and RNAi technology open an avenue for targeted
metabolite production for commercial applications as given in Fig. 8.2.
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8.4.2 Short-Term Strategy

8.4.2.1 Application for Osmoprotectants

Osmoprotectants assist the plant to conquer variable stressful environment.
Osmolyte accumulation having low molecular weight and water-soluble character
in the plant cells is common under stress conditions (Janmohammadi 2012; Noreen
et al. 2019a). However, plant’s physiological, biochemical and molecular functions
differ widely in response to various biotic and abiotic stresses (Ghassemi et al.
2020). These stresses respond via changes in morphological, growth and gene
expression modulation (Arbona et al. 2017). In this environment plants adapt
embolic changes for the production of various osmolytes such as proline and glycine
betaine. They play an important part in the structure of cell and stabilization of
proteins, in addition to mediating osmotic adjustment and redox metabolic activities
to manage turgid pressure (Janská et al. 2010). While in cellular respiration and
signaling processes, total soluble carbohydrates (osmolyte) act as substrates
(Janmohammadi 2012; Noreen et al. 2020).

The cell membrane proves to be a more sensitive plant organ in chilling stress
(Levitt 1980). The saturated and unsaturated fatty acids are the components of
membranes, and ratios of fatty acid may alter when exposed to cold environment.
This variation is an index of plant tolerance to cold stress (Karabudak et al. 2014).
Therefore, osmolytes can enhance resistance to cold stress by representing “over-all”
mechanism of resistance. Primary metabolites produced in plants are involved in
mineral nutrition and necessary biochemical function of the cell, whereas secondary
metabolites mediate defensive mechanism, such as biotic and abiotic environmental
stress conditions (Croteau et al. 2000; Berli et al. 2011; Gil et al. 2012; Escoriaza
et al. 2013).

8.4.2.2 Salicylic Acid

Most groups of plant phenolics include salicylic acid (SA) that regulates the germi-
nation of seeds, opening and closing activity of stomata, accumulation of photosyn-
thetic pigments and function, activities of enzymes, production of heat, biosynthesis
of ethylene, uptake of minerals, sprouting of flower, functions of membranes and
developmental process of medicinal plants (Ali 2020) as well as in crop plants like
wheat (Noreen et al. 2019b), sunflower (Noreen et al. 2009, 2012), canola (Rehman
and Khalil 2018) and maize (Fahad and Bano 2012) . The hormonal activity
exhibited by SA has been applied to various medicinal plant species in vivo and
vitro conditions to highlight its significant role in the synthesis and accumulation of
secondary metabolites (Ali 2020). The environmental stress conditions like cold
stress enhanced the effective level of SA in medicinal plants which includes Cap-
sicum annuum L. (Fung et al. 2004), Phaseolus vulgaris L. (Gharib and Hegazi
2010), Musa acuminate L. (Mirdehghan and Ghotbi 2014), Citrus limon L. (Soufi
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et al. 2015) and Stevia rebaudiana L. (Rajashekar et al. 1999). Exogenous applica-
tion of SA enhanced subsequently the primary and volatile metabolites in medicinal
plant, i.e. Egletes viscosa L., under saline stress condition (Batista et al. 2019).

8.4.2.3 Ascorbic Acid

Ascorbic acid (AsA) plays an important role in the mediation of defensive mecha-
nisms of medicinal plants under stressful environmental (Ghassemi et al. 2020;
Noreen et al. 2021). AsA was used to increase the solubility of alginate-chitosan
in medicinal herbs such as Urtica dioica, Crataegus laevigata, Rubus idaeus, Olea
europaea, Achillea millefolium and Glechoma hederacea. AsA enhanced the anti-
oxidant activity of encapsulated herbal-phenolic extracts (Belščak-Cvitanović et al.
2011). AsA takes part in the acclimation of medicinal plants (Chen and Paul 2002).
The decreased level of AsA was observed in pear fruit due to the development of
brown core (Veltman et al. 1999). The content of ascorbic acid enhanced during the
development of fruit in tomato and pepper (Yahia et al. 2001) and also in muskmelon
(Al-Madhoun et al. 2003) occurs in the apoplast of the cell. The content of AsA was
regulated by the synthesis, transportation and breakdown of apoplastic ascorbate
oxidase (Pignocchi and Foyer 2003).

8.4.2.4 Jasmonic Acid

Jasmonic acid (JA) is a phytohormone which regulates important functions in
medicinal plants which includes retardation of plant root and inhibition of male
fertility process and biotic and abiotic stresses (Ghassemi et al. 2020). JA level in
medicinal plant enhanced under cold stress modulated by LOX genes (Kosová et al.
2012) and the biosynthetic pathway of JA regulated by four genes (AOC, JAR1,
LOX1, LOX2) in response to cold stress (Liu et al. 2017). The regulation of JA
through the cascade series of pathways is controlled by various ICE-CDF-indepen-
dent and ICE-CBF-dependent transcriptional factor. The ICE binding to cis-element
enhances COR gene expression resulting in enhanced resistance to stress condition
in medicinal plants (Zhao et al. 2016). The environmental stress conditions enhanced
the effective level of JA in medicinal plants which includes Caragana jubata
(Bhardwaj et al. 2011), Eriobotrya japonica (Cao et al. 2011), Musa acuminate
(Zhao et al. 2013), Punica granatum (Mirdehghan and Ghotbi 2014) and Solanum
lycopersicum (Wang et al. 2016).

8.4.2.5 Abscisic Acid

Abscisic acid (ABA) is a phytohormone which mediates growth and developmental
processes and enhances antioxidant activity in medicinal plant under stress condition
(Ghassemi et al. 2020). The exogenous application of ABA is a technique used for
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the phenolic compound production in different medicinal herbs by adapting spraying
strategy on the aerial plant parts (Marcińska et al. 2013). The ABA production inside
the plant is involved in photosynthetic and gas exchange attributes, closing of
stomata, seed dormancy, overcoming different environmental stress; exogenously
applied ABA is involved in enzyme synthesis that changes subsequently the pro-
duction of primary and secondary metabolites and may directly enhance phenolic
compound synthesis (Murcia et al. 2017; Shamsi et al. 2019). The level of ABA is
enhanced in Fragaria x ananassa to alleviate the harsh effect under cold stress
condition (Rajashekar et al. 1999). Physalis angulata is a medicinal herb that cures
various diseases because of its production of secondary metabolites (phenolic
compounds). Exogenous application of ABA enhanced the production of phenolic
compounds in Physalis angulate (Moreira et al. 2020). The exogenous application
of ABA was used for the production of secondary metabolites in grapevine (Fanzone
et al. 2012; Gonzalez et al. 2015; Murcia et al. 2017).

8.4.2.6 Gibberellic Acid

Gibberellic acid (GA) is a phytohormone which controls many important processes
in medicinal plants and is also known as growth regulators. The downregulation of
GA genes was observed in medicinal herbs under environmental stress conditions
(Ghassemi et al. 2020). GA played a very important role in plant developmental
stages; due to that reason, it is very significant to highlight these respective genes to
enhance abiotic plant tolerance in stressful environment. GA2 gene is involved in the
biosynthetic pathway of GA (Murcia et al. 2017). GA used for the priming of seed
cloves (Allium sativa) enhanced the growth and developmental processes of plant,
especially regulating axillary bud outgrowth; however, GA endogenously enhanced
the content of sugar (fructose and sucrose) in the stem and leaf of Allium sativum to
govern growth processes (Liu et al. 2020).

8.4.2.7 Plant Growth-Promoting Rhizobacteria (PGPRs)

The close vicinity of the plant root in which complicated association between plant
root, soil microbes and soil defines as “rhizosphere”. The diversity of microbial
population in the plant rhizosphere than in the bulk soil because physiochemical and
biological characteristics of plant-microbes interactions (Glick 2012, 2015; Compant
et al. 2019). Rhizosphere microbes are beneficial for the plant growth and establish
sustainable agriculture practices (Mukasheva et al. 2016; Afzal et al. 2019; Ummara
et al. 2020). The PGPRs found in the root surrounding of medicinal plants like Aloe
vera, Catharanthus roseus, Coleus forskohlii andOcimum sanctum are isolated from
bioinoculants and play an important role in enhancing the growth and yield of
medicinal plant (Attia and Saad 2001; Karthikeyan et al. 2008). The microbial
inoculants include Azotobacter chroococcum, Azospirillum lipoferum, Bacillus
megaterium and Pseudomonas fluorescens used for the better growth of medicinal
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plants and subsequently increased rate of germination, seed vigour index and
photosynthetic pigment of medicinal herb Catharanthus roseus (Lenin and Jayanthi
2012).

The isolated bioinoculants exhibit a potential to establish in the microenviron-
ment of the root and soil of medicinal plants even under abiotic stress by optimizing
stressed condition of plants and mitigating drastic effects of plant disease. The role of
PGPR in abiotic stress reduction (Dimkpa et al. 2009) includes alleviation of drought
stress (Alvarez et al. 1996), lessening oxidative stress (Štajner et al. 1997) and
mitigation of saline stress (Weyens et al. 2009; Yang et al. 2009). The yield of the
Bacopa monnieri is improved by applied salt-tolerant inoculant (Exiguobacterium
oxidotolerans) (Bharti et al. 2013). The microbial inoculum improved the growth of
pepper and tomato under drought stress (Aroca and Ruiz-Lozano 2009). “Induced
systemic tolerance” of plant is defined as tolerance against abiotic stress because of
physiochemical alteration caused by PGPB (Sandhya et al. 2010). Endemic micro-
bial populations especially rhizosphere bacteria under water-deficient condition such
as in arid areas are most effective in increasing tolerance against drought stress
(Marulanda-Aguirre et al. 2008; Ilyas and Bano 2010).

8.5 Conclusion and Future Prospects

Pharmaceutical importance and a variety of chemical and biological diverse func-
tions are characteristics of plant secondary metabolites that constitute a significant
and interesting research (Ghassemi et al. 2020). Biotechnological strategies and
metabolic engineering facilitate the production of secondary metabolites on com-
mercial level. These techniques are of great importance and have not been fully
understood in medicinal plants as in other crops. RNAi opens an avenue for genomic
understanding. The greater emphasis on time-specified and inducible promoters
functional in the target tissues and the development of additional RNAi procedures
for genomics screening may assist in successful plant secondary metabolite produc-
tion (Bindu et al. 2018). However limitations include gene silencing, erratic results
due to complicated gene networking, constant and desirable amount of secondary
metabolite production and biosafety rule regarding transgenic medicinal plants
required to be enforced in the future. There is a need of more work to recognize
targeted genes and enzymes that regulate the synthesis of secondary metabolites
using genomics, proteomics and metabolomics strategies (Kumar et al. 2016).
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Chapter 9
Impact of Various Environmental Factors
on the Biosynthesis of Alkaloids
in Medicinal Plants

Arian Amirifar, Arash Hemati, Behnam Asgari Lajayer, Janhvi Pandey,
and Tess Astatkie

Abstract Alkaloids are a group of nitrogenous heterocyclic compounds derived
from amino acids, and plants can synthesize them as secondary metabolites. Such
compounds play a key role in the life of organisms. Alkaloids can be easily available
in our daily food items and act as a consequential element in various pharmaceutical
products. Moreover, they have a significant role in the defense mechanism of plants
during stress conditions. In this review, we discuss the impact of various stress
factors like abiotic stress; potentially toxic element (PTE)-induced stress (cadmium,
lead, zinc, chromium); stress caused by salinity, heat, drought, reactive oxygen
species, and free radicals; and nutrient scarcity on the synthesis and production of
valuable alkaloids in several medicinal plants.
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9.1 Introduction

Many secondary metabolites can be derived from plants. Several types of secondary
metabolites exist in plants to protect and regulate functions under various stress
conditions. Based on biosynthetic pathways and chemical nature, plant secondary
metabolites are categorized into three main groups: (1) phenolic (phenolic acids,
lignin, coumarins, stilbenes, lignans, flavonoids, and tannins), (2) terpenes (carot-
enoids, plant volatiles, sterols, and glycosides), and (3) nitrogen-containing com-
pounds (glucosinolates and alkaloids) (Fig. 9.1) (Asgari Lajayer et al. 2017).

The most important group of secondary metabolites is alkaloids, due to their
numerous physiological and pharmacological impacts and utilizations. Since there is
no clear boundary between naturally occurring alkaloids and complex amines, the
exact definition of the word “alkaloid” is somewhat difficult to elaborate. From
chemists’ point of view, these are a group of heterocyclic compounds comprising
nitrogen in their structure, with strong physiological activity, which are often toxic
and have alkaline chemical properties. According to biologists, alkaloids are nitrog-
enous heterocyclic chemical compounds, which have ecological and pharmacolog-
ical applications. Plants produce alkaloids and other secondary metabolites for
specific purposes, which are often important for the survival of organisms. One of
the functions of alkaloids in plants is chemical defense against herbivory attributing
to their toxicity and bitter taste. For example, it has been reported that glycoalkaloids
emanated from potato leaves exhibit negative effects on the contractile activity of
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three species of beetles Zophobas atratus, Tenebrio molitor, and Leptinotarsa
decemlineata (Marciniak et al. 2010). Antifungal effects of alkaloids have also
been suggested for several plant-related fungi via bioassay experiments (Wippich
and Wink 1985). Studies conducted by the World Health Organization revealed that
the application of herbal medicines has recently increased dramatically worldwide.
With the enhancement in the popularity of medicinal plants, health, safety, and
quality of raw materials of medicinal herbs and their processed outcomes have
become a major concern of global organizations. Environmental pollution extremely
influences the quality of medicinal herbs and their processed products. In this
review, we will examine the effect of biological and non-biological stresses on the
production and quality of alkaloids in medicinal plants.

9.2 Impact of Potentially Toxic Elements
on the Biosynthesis of Alkaloids in Medicinal Plants

Several studies have manifested that the accumulation of potentially toxic elements
(PTEs) in medicinal plants rely on their cultivation environment, type of plant
species, drying conditions, storing, transportation, and processing. Contamination
of the growing environment of medicinal plants with PTEs can cause substantial
alterations in the quality and amount of these metabolites by affecting the biological
pathway of their production. At present, one of the alarming environmental issues is
soil contamination with PTEs. PTEs can be described as elements with atomic
number greater than 20 and densities >5 grams per cubic meter (Alloway 2010).
Some of these elements are crucial for oxidation and reduction reactions, normal
growth, electron transfer, and many metabolic activities, but their excess concentra-
tion in the soil gives rise to metabolic disorders and growth retardation in various
plants. Others, such as cadmium, lead, mercury, and chromium, are rather not
required and are toxic to plants even in low concentrations (Asgari Lajayer et al.
2017). Soil contamination by PTEs occurs either by human or some natural activities
such as weathering of rocks in the soil (Moattar et al. 2010). In fact, human activities
such as metal smelting, industrial expansion, mining, and the use of chemical
fertilizers that have PTEs in them may lead to their further accumulation in the
soil (Megateli et al. 2009). Ions of PTEs can get absorbed by plant roots and then
transported to the aerial parts, disrupting plant metabolism leading to reduced growth
(Li et al. 2010). Several cases of PTE contamination in the medicinal herbs and their
high translocation potential to usable plant parts have been reported by various
researchers (Zheljazkov et al. 2006; Baye and Hymete 2010), although contamina-
tion is most likely to happen in medicinal plants and their end products during the
process of cultivation, processing, etc. (Denholm 2010).

In recent years, a significant positive trend in the application of traditional
medicine, especially herbal medicine, worldwide has been noted, which might be
attributed to advertising, organic nature, and their low side effects. Unfortunately,
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along with the popularity of traditional and herbal medicines, reports on the negative
impacts of excessive usage of herbal medicine without proper consultation have also
increased, which has paved the way for the entry of low quality of herbal raw
materials in the industry. Until now, little attention was given to the quality standards
of medicinal plants’ raw material, but recent enhancement in the popularity and
trading, the quality of medicinal plants, and especially their environmental quality
has become a major concern of global organizations (WHO 1998; Dietrich’s et al.
2006). However, due to the lack of global standards and laws, there is a huge
difference between countries in terms of obligation to quality and safety of these
kinds of products (Dietrich’s et al. 2006). Until 1998, there were only 14 members of
the World Health Organization that had ordained some regulations over the utiliza-
tion of medicinal plants, but till 2003 the number of members increased to 53, among
which 49% of the countries reported that they are looking forward to approving these
laws in the benefit of mankind. Countries such as Canada, China, Malaysia, Singa-
pore, and Thailand have developed their own guidelines to guarantee the minimum
possible concentration of PTEs in medicinal plant precursors and their products
(WHO 1998; Kosalec et al. 2009). In 1998 and 2005, the WHO declared the
maximum permissible levels of cadmium, arsenic, and lead for medicinal plants at
0.3, 1, and 10 mg/kg, respectively. Provisional tolerable intake (PTI) is another
index to determine and explain the maximum permissible amount of PTEs that can
be present in the medicinal plants, values of which are determined by the World
Health Organization or the FAO. The two organizations have suggested the permis-
sible concentration of PTEs that is rather safe for provisional tolerable weekly intake
(PTWI). According to these organizations, the word “weekly” is used to emphasize
the importance of limiting the consumption period for such substances.

PTWI for mercury, arsenic, lead, and cadmium is 5, 15, 25, and 7 micrograms per
kilogram of body weight, respectively. Also, the minimum and maximum concen-
tration required in the daily diet is 0.05–0.5 for copper and 0.3–1 mg/kg for zinc
body weight (Kosalec et al. 2009). Studies exhibited that under stress conditions
generated by some PTEs, certain secondary metabolites are significantly enhanced in
the plant parts (Rai et al. 2005). It has been reported that PTE contamination in the
air and soil at 400 meters distance from the source of the pollution caused the
essential oil yield of peppermint (Mentha piperita L.) and wild mint (Mentha
arvensis L.) to be reduced by more than 14%, but on the other hand, no functional
reduction in the amount of essential oil and quality in lavender plants was recorded at
the same distance from the source of contamination (Zheljazkov and Nielsen 1996).
Research findings on the impact of PTEs on various plant alkaloids are summarized
in Table 9.1.
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9.3 Salinity Stress Impacts on Alkaloid Content
in Medicinal Plants

Salinity plays a major role in the survival of plants and viability of the soil (Hilal
et al. 1998). Salinity stress is likely to come along with osmotic stress and ion
toxification that deteriorate plant growth by reducing or misbalancing plant’s avail-
able water and nutrition. Also, high levels of salinity reduce biomass of root and
leaves as well as plant’s photosynthesis rate in addition to root’s length (Seiler and
Raul 2005). Putrescine (diamine), spermidine (triamine), and spermine (tetraamine)
are important polyamines that exist in all living organisms and are part of a larger
group called polycations compounds that are usually found comprising two or more
amino groups. The most important aspect of these compounds is their polycationic
feature at physiological pH. Polyamines are essential for plant development; they
stimulate cell division, synthesize DNA and proteins, control rooting and germina-
tion, and respond to environmental stresses (Tang and Newton 2005). They also

Table 9.1 Findings of studies on the impact of PTEs on various plant alkaloids

PTEs Main findings Reference

Cd Catharanthus roseus plants treated by CdCl2 exhibited a signif-
icant reduction in alkaloid levels

Pandey et al. (2007)

Cd CdCl2 treatment displayed the same impact on the concentration
of alkaloids in the roots of Catharanthus roseus. Due to stimu-
lating effects of Cd on transcription of tryptophan decarboxylase
(TDC), it caused an increase in ajmalicine concentration in the
culture medium by increasing cell tryptamine and ajmalicine
excretion

Zheng and Wu
(2004)

Pb PbCl2-treated Catharanthus roseus exhibited a drastic reduction
in the yield of alkaloids

Pandey et al. (2007)

Pb Although Pb treatment enhances alkaloid concentration in the
roots, it has a completely opposite effect on leaves leading to the
reduction of vindoline concentration. Moreover, Pb treatment
does not seem to have any noticeable effect on ajmalicine content
in roots, but the total content was increased

Srivastava and
Srivastava (2010)

Zn Usually, stimulants increase secondary metabolite content via
promoting the transcription and translation of genes that are
involved in the synthesis of secondary metabolites. ZnO is one of
the stimulants that increases hyoscyamine and scopolamine
concentration by overexpressing their relative genes called h6h
genes. Studies have shown a greater association between sco-
polamine content and ZnO, which enhanced the transcription of
h6h genes. The accumulation of both targeted secondary metab-
olites, hyoscyamine and scopolamine, exhibited a 5% increase

Asl et al. (2019)

Cr In both varieties of C. roseus (Rosea and Alba) treated with
chromium, the accumulation of vincristine content increased to
100 M Cr and 50 M Cr in the roots and shoots, respectively. In
the presence of chromium, vinblastine content increased by 2.29
times

Rai et al. (2014)
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participate in plant’s stress responses depending on the type of plant species and
stress (Abdel Rahman et al. 2013). Reports suggest that the utilization of exogenous
polyamines reduces stress influence on plant growth. For example, during salinity
stress these compounds can prevent the accumulation of Cl� and Na+ in plant tissues
(Del Duca et al. 1994). Due to these impacts, a positive interrelationship might be
considered between polyamines and plant secondary metabolites. Among all the
mentioned polyamines, putrescine seems to be a pioneer in alkaloid production
(Foster and Walters 1991). Hyoscyamine is one of the alkaloids found in Datura
stramonium plants belonging to family Solanaceae and has several medicinal appli-
cations. Although it is used externally, this plant has analgesic properties that make it
applicable during surgeries or childbirth. Moreover, it can be used as an analgesic,
disinfectant, narcotic, anti-asthma, and anti-seizure, when used internally. But on the
other hand, its overapplication has some side effects and might cause cancerous
wounds, burns, rheumatoid arthritis, eye or scalp pain, superficial nerve pain (e.g.,
facial pain), etc. Also, it can help to reduce liver pain and menstrual cramps and
relieve gout and cough. Studies have shown that the amount of soluble carbohy-
drates and alkaloids in Datura stramonium under potting conditions scales with the
level of salinity.

It has been reported that the amount of wet and dry weight of soluble and
insoluble sugars and alkaloid compounds enhances in Datura stramonium fruits as
soil salinity increases (Ali 2000). Salinity treatment has also been utilized to enhance
the concentration of scopolamine and atropine in callus of two cultivars of Datura
stramonium (Ahmed and Leete 1970). Research indicates that compounds and active
ingredients of medicinal plants, including alkaloids and secondary metabolites,
increase in reaction to environmental stresses. And it is important to mention that
in the biosynthetic pathway of tropane alkaloids, a polyamine called putrescine acts
as precursor in the process (Flores and Galston 2011). A study indicated the presence
of an association between the salinity and the alkaloid content in Hyoscyamus
muticus and Datura stramonium, as both species responded positively to increasing
levels of salinity by enhancing their alkaloid content (Ali 1991). It was reported that
the concentration of alkaloids in Datura stramonium plants increased by up to
3000 mg/L with increasing salinity, but further enhancement reduced the content.
Ornithine, proline, and glutamic acid are the three common precursors for alkaloids.
For example, ornithine and proline are precursor for tropane alkaloids. Salinity can
cause acid buildup by suppressing transaminase reactions. Glutamic acid, with the
help of some other substances, can make some nitrogenous compounds such as
ornithine, and then ornithine can be turned into tropane alkaloids (Ahmed et al.
1988). Research has shown that treating Datura stramonium plant that has been
under medium salinity stress (40 mM salt), along with putrescine at a concentration
of 0.05 mM, drastically increases the concentration of alkaloids in roots and shoots.
Polyamines are essential for tropane production in Datura plant (Abdel Rahman
et al. 2013). But in Atropa belladonna seeds, the presence of putrescine (1.00 mM)
reduces alkaloid content and prevents growth and germination (Alet et al. 2011). In
Catharanthus plants, increased sodium-to-potassium uptake ratio and being under
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seawater stress have exhibited an accumulating effect on vinblastine, vincristine, and
catharanthine alkaloids (Jing-Yan and Zhao-Pu 2010).

Trigonelline is one of the alkaloids, which is vastly present in many plant species
including fenugreek (Trigonella foenum-graecum), sea urchins, and starfish and in
mammalian’s urine after using nicotinic acid (Yuyama and Suzuki 1991). Constit-
uents of trigonelline include nicotine (derived from pyridine nucleotide) during
pyridine nucleotide biosynthesis cycle; and it is also produced by niacin because
5% of consumed niacin is converted into trigonelline (Yuyama and Suzuki 1991). In
response to salinity stress, many plants utilize osmotic regulators such as glycine
betaine, proline, and trigonelline to minimize wastage of water (Tramontano and
Jouve 1997). Research conducted by Tramontano and Jouve (1997) suggested that
alfalfa plants that were put under salinity stress had a two- to five-fold increase in the
concentration of proline and trigonelline. Also, an enhancement in the amount of
specific nuclear molecules in the G2 phase was reported by treating chickpea root
meristems with concentrations of 10�7

–10�4 mol/L trigonelline. In comparison,
proline was ineffective, and glycine betaine had a negligible effect on improving
the accumulation of these substances in G2 phase. All these results emphasize the
importance of trigonelline for cell cycle and osmotic regulatory role in plants under
salinity stress.

In most soybean plants that have been under salinity or dehydration stress and
even those that have acclimatized to these conditions, the content of trigonelline
noticeably increased in the younger leaves, but with the growth of pods and seed
ripening in reproductive stages, the content of trigonelline diminished (Minorsky
2002). Under moisture stress conditions, growth in plants is crucial for node
production efficiency and nitrogen stabilization. Node production and nitrogen
stabilization are far more influenced by drought stress during growth stage in
comparison with the reproductive stage. There are few plants that are not capable
of providing their own nitrogen and are dependent on the soil nitrogen. Developing
adaptation for dry conditions is crucial for their future growth. Trigonelline is one of
the dry stress-associated alkaloids that function as a defense system for plants that
leads to decrement in the number of nodes. Application of Rhizobium can help the
plants to prevent this phenomenon leading to yield enhancement, especially under
adequate irrigation. It has been reported that in Arachis hypogea plants under low
irrigation, the trigonelline content increases in comparison with complete irrigation
(Cho et al. 2011). In Rauvolfia tetraphylla, reserpine alkaloid content was reported to
increase under salinity stress (Anitha and Kumari 2006). According to a research
conducted by Jaleel et al. (2007a), accumulation of indole alkaloids was observed
after the application of 80 mM NaCl in C. roseus plants. Another research exhibited
a significant accumulation in the amount of vincristine by treating shoots of
C. roseus with 150 mM NaCl for 2 months (Osman et al. 2007). During salinity
stress, the content of some alkaloids such as 6-dihydronicotine, portulacaxanthin II,
papaveroxin, and secoberbin in S. brachiata leaves was reported to enhance, while
the amount of some alkaloids like harmol and ricinine diminished. Application of
200 mM NaCl on Sesuvium portulacastrum leaves led to the enhancement of some
alkaloids such as cyclo-dopa, N-formyldemecolcin, 5-O-glucoside, and colchicine
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along with reduction in the content of some alkaloids such as cyclo-acetoacetyl-L-
tryptophan, castanospermine, and chelirubin (Benjamin et al. 2019). The content of
chelirubin, 2-descarboxy-betanidine, deoxypumiloside, and noscapine was reported
to diminish in S. maritime plants that have been under influence of salinity stress.

Research indicated that treating plants with salicylic acid (SA) can reverse the
effects of salt stress, leading to alkaloid buildup in stressed Catharanthus roseus
plants. Salicylic acid has the property that increases alkaloid biosynthesis in
unstressed Catharanthus roseus plants (Idrees et al. 2011) and has promotional
effects on genes that are decisive in the production of some groups of secondary
metabolites that have antioxidant properties in stressed plants (Malarz et al. 2007).
Even the content of some compounds that are in different structural groups such as
phenolics, terpenoids, alkaloids, and others can be enhanced by SA application. In
addition to that, it can increase the amount of hyoscyamine 6b-hydroxylase and
putrescine N-methyltransferase in the roots of Scopolia parviflora. These com-
pounds act as enzymes in the bioproduction of tropane alkaloids (Kang et al.
2004). Compounds such as vincristine and paclitaxel are two examples of anticancer
drugs that, like many other active compounds, are extracted from plants due to their
medicinal properties (Verpoorte et al. 2002). Many studies have been conducted to
investigate the influence of environmental factors on the biosynthesis of these
compounds in medicinal and aromatic plants to screen out high-efficiency geno-
types; and salinity stress is one of the factors that stands out (Said-Al Ahl and Omer
2011). Salinity stress can influence plants in many stages, especially during seed
germination phase that can be drastically restricted by salinity stress (Sosa et al.
2005). Salinity and drought stress can both cause further accumulation of secondary
metabolites in medicinal plants compared to control groups of test plants (Selmar
2008). The increased accumulation of tropane alkaloids in Datura inoxia plants
under salt stress is one example.

9.4 Heat Stress Impacts on Alkaloid Biosynthesis
in Medicinal Plants

With the rapid increase in the population of the world, food demand is rising steadily
due to which there are rising concerns about the sustainability of the global envi-
ronment. Agricultural productivity is highly affected by several factors including
water availability, air pollution, and soil fertility. Although medicinal plants can
acclimatize to a wide range of conditions, there is still a concern that their production
efficiency is influenced by extreme environmental stresses. There is a variety of
abiotic stresses that can impact plant’s growth and production such as temperature,
salinity, drought, and anaerobic and flood conditions (Lawlor and Cornic 2002).
These abiotic stresses are some of the most important impacts caused by global
climate change (Wani et al. 2008). Due to greenhouse effect and increased total
temperature of Earth, heat stress has become one of the major abiotic stresses
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particularly in dry and semi-dry areas. Extreme temperatures can profoundly affect
plant’s biological and chemical processes and result in deteriorated production
(Wahid et al. 2007; Ghasemi et al. 2016).

Temperature is a detrimental factor for the development and growth of plants, and
each species has its own optimal growth temperature. Recurrent enormous heat
waves have been predicted (Bhatla and Tripathi 2014); and a vast majority of
biological processes and metabolites are negatively influenced by such extreme
conditions. Some examples are signal transduction processes, physiological adjust-
ments, and defensive reactions. Even some primary metabolites such as amino acids
and sugars are affected by these factors. Also, because heat stress can induce the
biosynthesis of some secondary metabolites that act as cross-protective mechanism
against biotic threats, it can be a link between biotic and abiotic stresses (Arbona
et al. 2013). Among all types of adaptation to climatic changes, genotypic changes
are the best and the most effective (Springate and Kover 2014). Different tempera-
tures are highly effective over metabolic processes and ontogeny. For example, high
temperature can accelerate leaves’ senescence along with its effect on secondary
metabolites (Morison and Lawlor 1999). Effects of temperatures and phenological
phases on secondary metabolite accumulation in Rhodiola rosea clones are other
examples of temperature’s impact on plants (Thomsen et al. 2012). In Helicteres
isora callus cultures, secondary metabolite content exhibited a positive correlation
with light and temperature (Joshi 2015). Accumulation of polyamines followed by
production of phenylamides was observed in bean and tobacco plants under water
stress and temperature shocks alongside with phenylamide ascribed ROS-limiting
activity through the stress (Edreva et al. 1995, 1998, 2008).

Heat stress can be used as a way of extraction in P. brachyceras plants. In two
experiments that investigated the impact of temperature on leaf disks of
P. brachyceras, the content of brachycerine almost doubled. In both experiments
the temperature increased from 25 �C to 40 �C, but in the first one temperature
increased suddenly and stayed at 40 �C for 3 days, while in the other one, temper-
ature increase was slow and steady, and it increased by 5 �C per day during 1 week.
The expression of tryptophan decarboxylase was reduced in leaf disks that were
under severe temperature changes (at 12 h and 24 h), which suggests that adjustment
of brachycerine accumulation by heat is mainly posttranscriptional. This idea was
supported by a study where heat-treated leaf disks showed a higher amount of
tryptamine and TDC activity (Magedans et al. 2017). Studies on Datura stramonium
plants under heat stress indicated that alkaloid accumulation occurred both under
warm and cold conditions (Shriya et al. 2019).
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9.5 Impacts of Drought Stress on Alkaloid Biosynthesis
in Medicinal Plants

Drought crisis in agriculture is associated with the reduction of water sources and
day by day increasing need for food due to fast population growth (O’Connell 2017).
Because of uneven and unreliable rainfall distribution, evapotranspiration, and
water-holding capacity around the rhizosphere, it is hard to predict drought
(Passioura and Angus 2010). Other than this, in some circumstances, plants may
experience lack of water even if there is enough water available (Daryanto et al.
2020). Lack of water can significantly reduce plant’s production and quality of crops
(Battaglia et al. 2018). Growth stages, age, plant species, and drought severity and
duration are the most important factors that can affect plants’ growth and develop-
ment (Gray and Brady 2016). Depending on the plant species, there are a variety of
different mechanisms that plants utilize to overcome drought stress. They can reduce
and adjust their metabolism, resource usage, and growth in order to resist inadequate
situations such as drought (Osakabe et al. 2014; Bielach et al. 2017). To improve
their response, plants utilize many other mechanisms such as molecular-level net-
works that participate in the signal transduction (Zandalinas et al. 2020; Kaur and
Asthir 2017).

Jasmonic acid is a compound that has growth regulatory role and participates in
developing responses to environmental stresses (Avanci et al. 2010). In fact, there
are some other hormones like auxin and cytokinin that regulate plant growth, but
jasmonic acid is unique due to its regulatory role on both growth and defense against
various stresses. It is important to mention that jasmonates work as messengers in the
process of accumulation of plant secondary metabolites (Yu et al. 2006). They
accelerate the activity of a group of enzymes that take part in processes that result
in the formation of secondary metabolites (Montiel et al. 2011). Periwinkles are a
group of plants that are known to be one of the most resistant ones towards stresses
like heat, salinity, and drought. They are capable of thriving under some extreme
conditions where not many plants survive. To maintain this ability, they tend to
reduce their need of water and nutrition (Pandey 2017). Research has revealed that
under drought stress, butterfly plants are able to produce and accumulate antioxi-
dants in all their parts. This feature makes them a putative candidate to be cultivated
in places under frequent drought stress (Jaleel et al. 2007b). Findings of a study on
the impacts of growth regulatory compounds on the biosynthesis of indole terpenoid
alkaloids in the short term during the flowering period suggest the utilization of a
combination of treatments in order to increase the content of alkaloids rather than
using one plant growth regulatory treatment alone (El-Sayed and Verpoorte 2004).
In conclusion, it is possible to take advantage of water shortage in some areas by
using this feature in plants like butterfly plant, to effectively increase the alkaloid
production (Jaleel et al. 2008).

Another study implies that the impact of drought on secondary metabolites
production is highly dependent on two aspects: the species itself and the intensity
of water stress (Azhar et al. 2011). Lack of water up to some extent has some positive
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implications in plants such as biosynthesis of secondary metabolites, enzymatic
activities, and soluble substances accumulation. Drought stress can profoundly
change the amount and structure of aromatic compounds and secondary metabolites
in aromatic and medicinal plants as well as their yield (Bettaieb et al. 2009).
Secondary metabolites are meant to function as a defense mechanism to overcome
environmental stresses; hence, it is clear that these stresses can cause the accumu-
lation of secondary metabolites (Ezz et al. 2009). Increased concentration of vin-
blastine and vincristine was observed in the aerial sections of periwinkle under
drought stress. This indicates that the alkaloids are produced and can be increased
in response to drought stress (Amirjani 2013). Oxidative stress caused by water
shortage can noticeably increase the amount of alkaloids in the roots and aerial
organs in some plants (Karadge and Gaikwad 2003). During drought stress, plants
tend to assign more carbon on the production of secondary metabolites than on their
growth, which implies that there is a balance between growth and defense (Bettaieb
et al. 2009). In the presence of salicylic acid and under the effect of different drought
stress levels, it has been reported that the medicinal and economic value of periwin-
kle is refined due to the enhancement in plant biomass and alkaloid yield. Salicylic
acid is also effective in improving the content of bioactive compounds via stimulat-
ing the expression of genes that code some enzymes that participate in secondary
metabolic pathways (Ali et al. 2006). One of the most important sources of analge-
sics is the opium poppy (Papaver somniferum L), which provides codeine, mor-
phine, and semi-synthetic analogues like hydrocodone, oxycodone, buprenorphine,
and naltrexone (Ali and Abbas 2003). Based on the experiments conducted to
investigate the effects of drought stress on alkaloid content in P. somniferum,
drought stress drastically increases the amount of morphine, codeine, and narcotine
in opium poppy (Szabo et al. 2003).

9.6 Impact of Free Radicals and ROS on Alkaloids
in Medicinal Plants

Free radical is referred to as any molecular species that possess an unpaired electron
in an atomic orbital and can independently exist. The common features shared by all
free radicals are due to these unpaired electrons. Most of the free radicals are
unstable and highly reactive. Free radicals are capable of either donating an electron
or accepting one from other compounds; because of this feature, they can act as
oxidants or reductants (Cheeseman and Slater 1993). The most important free
radicals that contain oxygen are hydroxyl radicals, superoxide anion radicals, hydro-
gen peroxides, oxygen singlets, hypochlorites, nitric oxide radicals, and
peroxynitrite. These highly reactive species have the potential to cause damage to
some biologically important molecules such as DNA, proteins, carbohydrates, and
lipids in nucleus and membranes (Young and Woodside 2001). Reactive oxygen
species also known as ROS are a group of oxygen species that are naturally
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non-reactive but can produce free radicals. These free radicals can come to existence
in different ways; for example, they may emerge from the environment, physiolog-
ical processes, or endogenous sources (Sultan 2014). Many physiological processes
can lead to the generation of free radicals. These free radicals tend to react with other
molecules to become stable.

1. Superoxides are basically oxygen molecules with an extra electron. There are
many biological reactions that can lead to the creation of these types of free
radicals (Halliwell and Gutteridge 1992).

2. Another type of free radical is hydrogen peroxide. These molecules are generated
in the biological systems by spontaneous dismutation reaction of superoxides. In
addition to that, there are several enzymatic reactions that lead to the creation of
these molecules such as reactions catalyzed by D-amino acid and glycolate
oxidases (Chance et al. 1979). Hydrogen peroxide is not a free radical itself. It
is a ROS and can turn into other free radicals like hydroxyl. Most of the negative
effects that are assigned to H2O2 are actually because of this hydroxyl form
(Halliwell and Gutteridge 1995).

3. Hydroxyl radical is the most important and most reactive free radical among
others as it is capable of reacting with many types of biomolecules such as amino
acids, sugars, lipids, and nucleotides. It is also the common product of ROS
reactions and is the reason for most of the free radical tissue damages (Lloyd et al.
1997).

Continuous occurrence of ROS reactions and accumulation of free radicals from
inner and outer sources can cause oxidative damage to cellular components and is
capable of impairing many cellular functions (Comporti 1989). The production
pathway of some secondary metabolites can be enhanced by oxidative stresses.
Such impacts of oxidative stresses have been proven in both field conditions and
controlled bioreactor environments. The introduction of air and stimulation in bio-
reactors in plant cell and organ cultures can eventually increase oxidative stress and
influence both growth and secondary metabolism via providing proper accessibility
and distribution to nutrients, metabolites, and other biologically important molecules
as well as homogeneity of mass and heat transfer (Georgiev et al. 2009). It was found
that oxygen deficiency in the cell cultures can also increase oxidative stress (Nisi
et al. 2010). The level of phytoalexin-like compounds has been reported to increase
under some specific stress conditions, but phytoanticipin-like compounds are con-
tinuously present regardless of the circumstances. A majority of metabolites seem to
exhibit an accumulation profile somewhere in between these extremes. These com-
pounds contribute to overall plant resilience. Their contribution may be direct like
bitterness, toxicity, repellent properties, and proteinase inhibitors or indirect such as
intra- and inter-specific signaling and internal signaling, antioxidant compounds.
Antioxidants are important for alleviating or spatially restricting oxidative reactions.
This way they participate in helping the plants to overcome harsh situations
(Matsuura and Fett-Neto 2013).

A noticeable number of plant antioxidants are part of secondary metabolites.
These antioxidants greatly participate in developing adaptability towards biotic and
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abiotic stresses and creating mechanisms that defend plants against reactive oxygen
species that are capable of damaging membranes, organelles, and macromolecules.
The role of natural products in developing adaptation to the environment and the
initiation of plant responses depending on the situation is the reason of the great
variety and complexity of these compounds. They are also the source for the
formation of new drugs (Matsuura et al. 2013). Alkaloids can be called as the
most important secondary metabolites. Redox imbalances can stimulate few signal
transmission pathways that ultimately leads to alkaloid accumulation. Some studies
showed a connection between oxidative stress and monoterpene indole alkaloid
production. Alterations in ROS-related metabolism were observed in Catharanthus
roseus plants that were under osmotic stress. These changes are mostly in lipid
peroxidation, H2O2 content, and free-radical removal mechanisms, including both
enzymatic and non-enzymatic antioxidants, and can result in higher ajmalicine
content (Zhou et al. 2009).

9.7 The Effect of Nutrients

Nutrients are other factors that can influence plant’s growth and productivity. For
several reasons, studying the impact of nutrients on the formation of secondary
metabolites in the Senecio plant family, specifically pyrrolizidine alkaloids (PA), is
interesting. There are some invasive weeds that are included in the Senecio family
(Radford and Cousens 2000). Not only that these invasive weeds are problematic for
native species, but they are also toxic for livestock (Mattocks 1986). Pyrrolizidine
alkaloids can also impact the growth of insects and microorganisms (Hol and van
Veen 2002). Nutrients can be used as ways of manipulating Senecio family mem-
ber’s growth because the amount of nutrients in soil is a major determining factor
that determines plant’s responses towards competition. For example, high levels of
potassium in soil help Chenopodium album plants to succeed in their competition
with weed Senecio vulgaris (Qasem and Hill 1995). There are other advantages of
studying the relationship between Senecio family and soil nutrients. Knowing the
impact of nutrients on pyrrolizidine alkaloid concentrations in Senecio plants renders
us the ability to predict the vegetation toxicity of these plants in cattle feeding
(Brown and Molyneux 1996). Also, this allows the prediction of results of plant-
herbivore interactions under different levels of nutrient availability.

In managing Senecio plants in natural areas, manipulation of nutrients can be
helpful except when the invasive species are adapted to a spectrum of nutrient
deficiency situations such as Senecio inaequidens (Lopez-Garcia and Maillet
2005). There are contrasting predictions of the effects that nutrients have on
pyrrolizidine alkaloids concentrations. There are two main predictions:
(1) pyrrolizidine alkaloid accumulation is predicted when excess amount of nutrients
is available, which leads to the rest of the nitrogen to be spent on nitrogen-containing
secondary metabolites such as alkaloids. Hence, Senecio plants would develop better
protection against herbivores in nutrient-rich soils compared to the situations where
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the amount of nutrients is insufficient (van der Meijden et al. 1984). (2) It is predicted
that when secondary metabolite’s biosynthesis cannot keep up with the increased
biomass, the pyrrolizidine alkaloid concentrations diminish (Koricheva 1999).
Pyrrolizidine alkaloids are synthesized in the roots, and because of that the total
amount of pyrrolizidine alkaloids is highly dependent on the root’s biomass (Hol
et al. 2003). Anything that influences the shoot-to-root ratio can alter the content of
pyrrolizidine alkaloids. It is important to mention that nutrients mostly increase the
shoot biomass rather than the root biomass (Poorter and Nagel 2000).

Naturally, soils are different in their nutrient type. For example, sandy soils are
poor in terms of nutrients, but in contrast clay soils are rich. Except for mineral
nitrogen, availability of other nutrients in those soils is unknown (Frischknecht et al.
2001). It was reported that the species S. jacobaea and S. vulgaris responded almost
similarly to fertilization as both had equal or reduced pyrrolizidine alkaloid concen-
trations. Joosten et al. (2009) studied the effects of soil-borne microorganisms and
soil type on PAs in roots and shoots of Jacobaea vulgaris. Soil-borne microorgan-
isms and soil type affected the composition of PAs. By changing the composition
rather than the total concentration below and above ground, plants have a more
complex defense strategy than formerly thought. Interestingly, a stronger negative
effect on plant growth was observed in sterilized soils inoculated with their “own”
microbial community suggesting that pathogenic and/or other plant inhibiting micro-
organisms were adapted to their “own” soil conditions. An experiment suggested
that except under very wet conditions, adding nutrient to the soil of S. jacobaea
plants decreased pyrrolizidine alkaloid content in both shoots and roots. Another
study also reported that the concentration of pyrrolizidine alkaloids in the shoot and
in the roots of S. jacobaea was reduced by adding nutrients (Kirk et al. 2009).
However, it is not yet proven that Senecio plants prefer to concentrate more PAs in
the roots when nutrients are inducing lower PA levels (Hol et al. 2003).

In addition to pyrrolizidine alkaloid concentration, nutrients can also affect the
composition of pyrrolizidine alkaloids within a plant. It might be because of the
impact of the nutrient addition on flowering plants (Prins et al. 1990). This can be
related to PA specification (Hartmann and Zimmer 1986). Plants that were in
vegetative stages had differences in the accumulation of individual PAs in response
to nutrients. Macel and Klinkhamer (2010) reported a decrease in erucifoline levels
in plants grown in nutrient-rich soil, while the concentrations of jacobine were barely
influenced in S. jacobaea plants. Also, it was observed that in comparison to other
pyrrolizidine alkaloids, jacobine concentration in S. jacobaea plants was hardly
influenced by alternation in the nutrients’ level (Hol et al. 2003). It was revealed
that PA composition in S. jacobaea is highly related to the soil-type, but the total
concentration of pyrrolizidine alkaloids was unaltered. In S. vulgaris plants, no
association was found between habitats differing in fertility and alkaloid pattern
(Frischknecht et al. 2001).
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9.8 Conclusion

Alkaloids are precious compounds, and their importance in our daily life cannot be
ignored. Various types of stresses and harsh conditions can modify secondary
metabolite and alkaloid levels in plants. By altering these compounds’ concentra-
tion, plants somewhat assure their well-being in such harsh conditions. In this
chapter, the impact of various stresses such as PTEs, heat, salinity, oxidative stress,
and nutrient scarcity effects on concentration of different alkaloids have been
reviewed. Moreover, we can utilize different stresses in various plants in order to
elevate their secondary alkaloid production.
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Abstract Secondary metabolites are synthesized by plants when they are develop-
ing or responding to biotic and abiotic environmental stimuli, such as pathogen
attack, light, stress, etc., that are used for pharmaceutical production or as nutritional
ingredients. Research on secondary metabolites has received particular attention due
to their benefits to health and in other industries. The study on plant genetics
revealed transcription factors as important molecular tools for increasing the pro-
duction of useful compounds by the metabolic engineering. In response to internal or
external signals, transcription factors bind to the specific gene promoters, activating
or suppressing the enzyme coding gene expression, and often form complexes that
include others. By modifying genes that encode biochemical enzymes or regulatory
proteins, different pathways could be altered. In addition to reducing the time-
consuming process of investigating all the enzymatic steps of a poorly understood
biosynthetic pathway, specific transcription factors would also reduce the costs of
product development. This review includes regulation of the biosynthetic pathways
of some important secondary metabolite classes with the knowledge of specific
genes, transcription factors, and their modifications in different model plant species
for the enhancement of the secondary metabolite contents.

Keywords Transcription factors · Secondary metabolites · Metabolic engineering ·
Biosynthetic pathway · MYB · bLWL · Jasmonic acid

10.1 Introduction

Plants synthesize a huge array of phytochemicals which are generally divided into
two major classes: primary and secondary metabolites. Primary metabolites are very
essential for the growth and the development of the plant, whereas secondary
metabolites are used as defense molecules to protect themselves from various
adverse conditions and were once thought to be non-essential for plant growth and
development (Patra et al. 2013). These secondary metabolites play multiple func-
tions throughout the plant’s life cycle as mediators in the plant–environment inter-
actions, such as plant–plant interactions, plant–microorganism and plant–insect
interaction, etc. (Harborne 2001; Dixon 2001). For maintaining the defense system,
plants constitutively produce antifeedants and phytoanticipins, and toxins like phy-
toalexins which guard the plant body against pathogens and herbivores, and also
protect plants from abiotic stresses such as ultraviolet (UV) light (Vogt 2010;
Vranová et al. 2012). Furthermore, humans have been widely utilizing secondary
metabolites as a source of natural fragrances and pharmaceutical medicines (He and
Giusti 2010; Kroymann 2011; Duan et al. 2012). Secondary metabolites also play a
key role in pollination by attracting pollinators with showy flower, particularly with
the help of the pigment anthocyanin and essential oils like terpenoid, and play a role
in other advantageous interactions with other organisms (Gantet and Memelink
2002).

Structurally secondary metabolites are highly diverse from each other, but bio-
synthetically secondary metabolites are common in their basic pathways. Most
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secondary metabolites start from glycolysis or shikimic acid pathways and subse-
quently diversify to different types of phytochemicals (Patra et al. 2013). The
diversification largely depends on cell types, developmental stage, and environmen-
tal cues. On the basis of their chemical structure and biosynthetic pathways, sec-
ondary metabolites are mainly classified into three major groups: phenolics,
terpenoids, and nitrogen-containing compounds (Yang et al. 2012). Phenolic com-
pounds are very diverse, such as flavonoids, coumarins, phenylpropanoids, and
stilbenes. Phenylpropanoids are synthesized via alone the shikimate pathway or in
combination with the mevalonate pathway. Terpenoids are synthesized via cytosolic
mevalonate pathway or the plastidial methylerythritol phosphate pathway and con-
tain one or more C5 units. The nitrogen-containing compounds include alkaloids,
non-protein amino acids, and amines (Yang et al. 2012).

The protective properties of secondary metabolites are generally induced by
external stress signals, though tissue-specific expressions are noticed in other sec-
ondary metabolites, such as flower pigments. Transcription factors (TFs) are
sequence-specific DNA-binding proteins which regulate this coordination via inter-
action with the cis-acting promoter regions of target genes and modulation of the
initiation rate of mRNA synthesis by RNA polymerase II. TFs control the coordi-
nated expression of genes necessary for normal development and functional phys-
iology and involved in the regulation of metabolism (Gantet and Memelink 2002).
These proteins regulate gene transcription depending on tissue type and/or in
response to internal signals, such as plant hormones, and to external signals like
microbial elicitors or UV light. External signals may induce the internal signal
production (Memelink et al. 2001a). TFs control the rate of recruitment of the
preinitiation complex components, thus modifying the rate of transcription and
also the rate of transition of the preinitiation complex from the closed to the open
configuration, or via other mechanisms (Nikolov and Burley 1997). Genetic engi-
neering is used to modulate the TFs of a secondary metabolic pathway that either
increase or decrease the quantity of a certain compound or group of compounds in
the normal producing plant species under normal or stress conditions (Verpoorte and
Alfermann 2000; Verpoorte et al. 2000; Dixon and Steele 1999; DellaPenna 2001).
Also, there is interest in the production of novel compounds not yet produced in
nature by plants (Verpoorte and Memelink 2002). To decrease the production of a
certain unwanted (group of) compound(s), one or few enzymatic steps in the
pathway can be knocked out, for example, the level of the corresponding mRNA
via antisense, co-suppression, or RNA interference technologies can be reduced, or
an antibody against the enzyme can be overexpressed. The antisense gene approach
has been successfully used for changing flower colors (Mol et al. 1990). These
processes can change the expression of one or a few genes that can overcome
specific rate-limiting steps in the pathway, can shut down competitive pathways,
and can decrease catabolism of the product of interest. Researchers have also taken
attempt to change the expression of regulatory genes that control multiple biosyn-
thesis genes (Verpoorte andMemelink 2002). This book chapter summarizes various
secondary metabolite classes, their importance, and biosynthetic pathway regula-
tions at different stages; important transcription factors; and genes encoding catalytic
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enzymes, their modification by molecular engineering, and the outcomes in second-
ary metabolite contents after modifications.

10.2 Regulation of Phenolic Compounds

The important and major group of secondary metabolites is the phenolic compounds
having a phenyl ring with one or more acidic hydroxyl groups attached to it
(Achakzai et al. 2009). More than 1000 soluble and non-soluble compounds belong
to this heterogeneous group which relies on the two biosynthetic pathways, the
shikimic acid pathway and the malonic acid pathway (Taiz and Zeiger 2006). The
phenolic compounds are divided into different groups like lignans, lignins, couma-
rins, tannins, stilbenes, flavonoids, styrylpyrones, and arylpyrones (Fang et al.
2011). Simple phenolic compounds are known as phenylpropanoids such as trans-
cinnamic acid and p-coumaric acid and its derivatives. Lignin and cellulose are very
complex phenolic compounds having highly branched polymers of phenylpropanoid
groups which are very much abundant in plants (Taiz and Zeiger 2006). The amino
acid phenylalanine is the key compound for the synthesis of phenylpropanoids
which are derived from the phenylpropanoid pathway. Different branches of the
pathway produce different compounds such as lignans, lignins, stilbenes, and flavo-
noids such as anthocyanins, proanthocyanidins (condensed tannins), flavonols, and
isoflavonoids (Davies 2000; Winkel-Shirley 2001). The flavonoid branch of the
phenylpropanoid pathway is responsible for the production of anthocyanin pig-
ments, UV-absorbing flavones and flavonols, and antimicrobial phytoalexins,
while the other branches produce lignin precursors and soluble phenolics such as
the signaling compound salicylic acid (Holton and Cornish 1995).

10.3 Flavonoids (Regulation of Anthocyanin
and Proanthocyanidin)

Flavonoids belong to the phenylpropanoid group, which possess antioxidant, anti-
allergenic, anti-inflammatory, hepatoprotective, anticarcinogenic, antiviral, and anti-
thrombotic activities. Inhibitory effects of several flavonoids were studied on the
replication of HIV and tumor cell proliferation (Middleton et al. 2000). Flavonoids
are naturally present in various fruits, vegetables, and grains, and also in tea and red
wine, and have pleiotropic health-promoting and disease-preventing activities
(Nijveldt et al. 2001). The biosynthesis of flavonoids starts with the amino acid
phenylalanine, and the end products are anthocyanins, flavones or isoflavones, and
condensed tannins (proanthocyanidins, PAs). Initial step of the phenylpropanoid
pathway is the conversion of phenylalanine to hydroxycinnamic acids by phenylal-
anine ammonia lyase (PAL). Cinnamate 4-hydroxylase converts cinnamate to
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4-coumarate which is then transformed to coumaroyl-CoA by 4-coumarate: CoA
ligase. Coumaroyl-CoA with three malonyl-CoA molecules forms naringenin
chalcone which is catalyzed with the help of chalcone synthase (CHS). Chalcone
isomerase (CHI) helps chalcone to form flavanone. Flavanones are converted to
dihydroflavonols by flavanone 3-hydroxylase (F3H). Dihydroflavonol reductase
(DFR) catalyzes the reduction of dihydroflavonols to flavan-3,4-diols
(leucoanthocyanins), which are then converted to anthocyanins through a series of
enzymatic steps (Patra et al. 2013; Davies and Schwinn 2003).

10.4 Regulatory Genes

Flavonoid and anthocyanin biosynthesis was the first target for genetic engineering
because the biosynthetic pathways are well known and the changes in flower color
are easier to observe (Dixon and Steele 1999; Davies 2000). The structural flavonoid
genes depending on the cell type and environmental conditions are regulated within
a single plant (Memelink et al. 2001a). Tissue-specific expression of the flavonoid
structural genes is controlled by a distinct transcription factor encoded by two
families of regulatory genes, R/B and C1/Pl with WD repeats. The C1/Pl family is
similar to the protein encoded by the vertebrate proto-oncogene c-Myb and the R/B
family similar to vertebrate helix–loop–helix (bHLH) protein encoded by the proto-
oncogene c-Myc (Grotewold et al. 2000; Ramsay and Glover 2005; Hichri et al.
2011). These transcription factors bind to specific sequences in the promoters of the
target genes. The specificity of binding of plant MYB proteins with DNA varies
considerably (Martin and Paz-Ares 1997). The bHLH proteins recognize the G-box
(CACGTG) and interact with it (de Pater et al. 1997; Martı  nez-Garcı a et al. 2000).

10.5 Genetic Regulation in Maize

In maize, the anthocyanin biosynthesis pathway is regulated coordinately by the
R2R3 MYB factors, C1/PL with R/B (bHLH) and PAC1 (WD40) in the aleurone
(epidermal layer of the kernel endosperm), and by homologous genes in other plant
parts (Mol et al. 1990). In in vitro maize cell cultures that are normally unpigmented,
the biosynthesis and accumulation of anthocyanins are observed when R and C1 are
expressed ectopically because most of the structural genes are expressed coordi-
nately (Grotewold et al. 1998; Bruce et al. 2000). A MYB-type transcriptional
regulator, P, is required in maize for the production of 3-deoxy flavonoids, which
acts independently of R and C1 and has been associated with insecticidal or
antifungal activity. When P is expressed ectopically in maize cells, a subset of
biosynthesis genes for the accumulation of flavonoids is induced coordinately, but
these genes are different from those regulated by C1/R (Grotewold et al. 1998; Bruce
et al. 2000). The overexpression of the R and C1 transcription factors in
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undifferentiated in vitro maize cells cultured is able to achieve the induction of the
complete flavonoid pathway (Grotewold et al. 1998). Viviparous 1 (Vp1) is the best
characterized TF gene for an upstream regulation of the anthocyanin. A unique type
of TF that was identified in maize is encoded by Vp1, along with ABA-regulated
TFs, and is required for seed maturation (McCarty et al. 1991; Hattori et al. 1992).

10.6 Gene Regulation in Arabidopsis

Three functionally redundant R2R3 MYB TFs in Arabidopsis, viz., MYB11,
MYB12, and MYB111, are involved in the regulation of the early biosynthetic
pathway genes, such as CHS, CHI, and F3H respectively. A complex MBW
(MYB/bHLH/WD) composed of four R2R3 MYBs (PAP1/MYB75, PAP2/
MYB90, MYB113, MYB114 or GL1/MYB0), bHLH factors (glabrous3 [GL3])/
enhancer of glabrous3 [EGL3]/transparent testa8 [TT8]), and the WDR protein
(transparent testa glabra1 [TTG1]) are associated in the regulation of the late
pathway genes, viz., dihydroflavonol 4-reductase (DFR), anthocyanidin synthase
(ANS), and UDP-glu:flavonoid 3-O-glucosyltransferase(UFGT), including
NADPH-dependent dihydroflavonol reductase (DFR) (Borevitz et al. 2000; Stracke
et al. 2001, 2007; Tohge et al. 2005; Gonzalez et al. 2008). The late anthocyanin
biosynthesis genes are mainly activated by RGL3, while partial redundant roles in
controlling of the anthocyanin pathway are played by bHLH TFs, GL3, EGL3, and
TT8 (Gonzalez et al. 2008). When MYB transcription factor PAP1 (production of
anthocyanin pigment 1) is expressed ectopically in Arabidopsis, it was found that the
expression of flavonoid biosynthesis genes is strongly enhanced, which are respon-
sible for the purple pigmentation of most plant organs (Borevitz et al. 2000). PAP1
and a related gene, PAP2, have sequence similarity with C1, and those may be C1
orthologs from Arabidopsis. Proanthocyanidins are controlled by TT2 by regulating
BANYULS (BAN) expression in the seed coat, which encodes nicotinamide adenine
dinucleotide phosphate-dependent leucoanthocyanidin reductase (Nesi et al. 2001).
The key regulatory role in anthocyanin accumulation induction at high light and
sucrose conditions is played byMYBL2. It induces the PAP1 and TT8 expression by
forming an active MBW complex for the upregulation of the anthocyanin biosyn-
thesis pathway genes. Under low-light or stress-free conditions, the pathway gene
expression and subsequent anthocyanin accumulation are suppressed by the induc-
tion of MYBL2 that interacts with bHLH factors (GL3/EGL3/TT8) and forms an
inactive complex (Dubos et al. 2008; Matsui et al. 2008). Transparent testa gla-
brous1 (TTG1) is responsible for both anthocyanin biosynthesis and trichome
development. The ttg1 mutant Arabidopsis is formed as glabrous that lose the ability
to produce pigments (Walker et al. 1999). Other factors, viz., bHLH factors,
GL3/EGL3, and the R3MYB CPC, are also involved in both processes (Ramsay
and Glover 2005). In Arabidopsis, HY5, a bZIP protein, is also involved in
phenylpropanoid pathway that interacts with ACE-containing light-responsive pro-
moters (Chattopadhyay et al. 1998; Ma et al. 2002). The ANL2 (anthocyaninless2)
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gene that encodes the HD-GLABRA2 homeobox protein in Arabidopsis is required
for anthocyanin production in the subepidermal cells, and the anl2 mutant affects
anthocyanin production in the seedling and other vegetative tissues (Kubo et al.
1999).

10.7 Gene Regulation in Petunia

Involvements of several genes have been identified to be associated with the
anthocyanin biosynthesis in Petunia floral tissue in many experiments. In Petunia
also, four TFs—AN2 (ANTHOCYANIN2) or AN4 (R2R3MYB), AN1 (bHLH),
and AN11 (WDR)—form the MBW complex which regulates the late anthocyanin
biosynthesis genes (Spelt et al. 2000, 2002; Quattrocchio et al. 1999; de Vetten et al.
1997). In the petal limb of Petunia, the color is expressed by AN2, whereas AN4
develops the petal tube and the anther’s color (Spelt et al. 2000). Another bHLH TF
(JAF13) is also involved in flower color development in Petunia (Quattrocchio et al.
1998). JAF13 and AN1 are different in their amino acid sequence, and they are not
functionally redundant in the regulatory cascade. An1 gene expression is dependent
on the activity of An2, but not on the activity of Jaf13 (Spelt et al. 2000). In
transgenic Petunia, the AN1–glucocorticoid receptor is found to have a direct
activity in the late biosynthesis genes activation, and it also activates a myb gene
(Pmyb27) (Spelt et al. 2000). The DEEP PURPLE (DPL) and PURPLE HAZE
(PHZ) are the R2R3 MYB factors that coordinately work with AN1 and AN11 and
regulate anthocyanin biosynthesis in vegetative and floral tissues, isolated from leaf
tissues (Albert et al. 2011). DPL regulates the vein-associated pigmentation of the
flower tube in Petunia, whereas PHZ exhibits its role in exposed petal surface as it is
associated with light-induced anthocyanin accumulation (Albert et al. 2011).
PhMYB27, a R2R3 MYB transcription factor having an EAR-type repression
motif at the carboxy terminus, can bind to the bHLH factor AN1 and exhibit negative
regulatory role in anthocyanin biosynthesis (Albert et al. 2011; Aharoni et al. 2001).
PhMYB27 is highly expressed in shade-grown leaves and is repressed by high-light
expressions of PHZ, DPL, and AN1 resulting in higher anthocyanin accumulation in
vegetative tissues (Albert et al. 2011). The PhMYBx in Petunia also a R3-MYB TF
was found to have negative regulatory role in the anthocyanin accumulation (Albert
et al. 2011).

10.8 Gene Regulation in Nicotiana

In tobacco also, there are some important transcription factors such as bHLH and
R2R3 MYB TFs, NtAN1 and NtAN2, that are involved in the accumulation of
anthocyanin in flowers. The late pathway genes are strongly activated by NtAN1–
NtAN2 complex, while moderate activation activity is shown on the early pathway
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genes. When NtAN2 is overexpressed in tobacco, anthocyanin accumulation is
increased in floral and vegetative tissues, while NtAN1 overexpression increases
the pigment accumulation only in the flowers (Bai et al. 2011; Pattanaik et al. 2010).
The MYBJS1 transcription factor is identified in tobacco which was also found to be
involved in phenylpropanoid regulation (Gális et al. 2006). Some MYB proteins
were also found to have light-responsive repressors activity on the early
phenylpropanoid biosynthesis. When AmMYB308 or AmMYB330 are
overexpressed in tobacco, dramatic reductions were observed in the levels of lignin
and HCA derivatives in transgenic tobacco (Tamagnone et al. 1998). The
AmMYB305 gene and the equivalent protein from tobacco have been shown to
enhance the expression of genes in phenylpropanoid pathway by binding and
activating the P-box MRE that is expressed in petal (Sablowski et al. 1994).

10.9 Gene Regulation in Antirrhinum

In Antirrhinum, the two important genes that encode the bHLH factors are Delila
(Goodrich et al. 1992) and Mutabilis (Martin et al. 2001). Rosea1, Rosea2, and
Venosa are the members in the MYB gene family which are associated in anthocy-
anin biosynthesis (Martin et al. 2001). These genes act coordinately by forming a
complex that control spatial and temporal production of anthocyanins in the petals.
Delila is active in both petal lobes and tube, while Mutabilis is active only in the
lobes. All these genes control the intensity of pigments and are specific for different
parts of the flower. Rosea1 and Rosea2 exhibit two different actions; they are
respectively associated in strong pigment and weaker pigment production. Venosa
produces striking venation pattern by producing pigment only in epidermal cells
overlying the veins (Martin et al. 2001).

10.10 Gene Regulation in Other Fruits

Anthocyanin and anthocyanidin glycosides are the main reason of the colors of
different fruit skin and pulp which are very beneficial for human health. Various
fruits like apple, peach, plum, pear, strawberry, grapes, etc. were studied extensively
to identify the transcription factors involved in the biosynthesis of anthocyanin and
were found to have TFs that are orthologous to the MBW complex of Arabidopsis
which are responsible for the fruit skin and flesh color. It was found that MdMYB1,
MdMYB10, and MdMYBA, when co-expressed with bHLH factors MdbHLH3 and
MdbHLH33, activate the anthocyanin synthesis in the skin and flesh of apple (Takos
et al. 2006; Espley et al. 2007; Ban et al. 2007). Recently, MdMYB9 and
MdMYB11 were also reported in apple (Malus � domestica Borkh.) that form a
MBW complex by interacting with MdbHLH3 and MdTTG1 which binds to the
promoters of structural genes and regulates the JA-mediated anthocyanin and
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proanthocyanidin accumulation (An et al. 2015). In grapes also a MBW complex
made of R2R3 MYBs (VvMYBA1/2/5a/5b), bHLH (VvMYC1, VvMYCA1), and
WD40 (VvWDR1 and VvWDR2) proteins was found to be involved in anthocyanin
biosynthesis. The UDP-glu:flavonoid 3-O-glucosyltransferase (UFGT) regulation is
the key step for triggering anthocyanin production in Vitis vinifera (grape) berries
during berry ripening (Boss et al. 1996; Kobayashi et al. 2002). In strawberry, the
ripening and color change of fruit by the accumulation of anthocyanin are associated
with the intensity of the expression of two R2R3 MYBs TFs, FaMYB10 and
FaMYB1. FaMYB10 and FaMYB1 show completely different activity: FaMYB10
induces anthocyanin biosynthesis, while FaMYB1 represses (Aharoni et al. 2001).

10.11 Regulation of Terpenoid Indole Alkaloid Biosynthesis

Plants have been proposed to produce alkaloids as part of their defense mechanisms
against herbivores and pathogens. They are small, heterocyclic nitrogen-containing
molecules (Gantet and Memelink 2002). Pharmacological properties of several
alkaloids have been exploited for years. Alternatively, alkaloids can also be derived
from their natural precursors chemically or biochemically. Numerous attempts have
been made to manipulate the terpenoid indole alkaloid pathway because about
15 terpenoid indole alkaloids are industrially important, including vinblastine,
vincristine, and camptothecin, and pharmaceutically, these anticancer medications
including Taxol, colchicine is a gout suppressant, tubocurarine is a muscle relaxant,
sanguinarine is an antibiotic, and scopolamine is a sedative (Facchini 2001;
Memelink et al. 2001a, b).

A few plant species belonging to the plant families Nyssaceae, Rubiaceae,
Loganiaceae, and Apocynaceae are known to produce terpenoid indole alkaloids
(TIAs). In recent years, the Madagascar periwinkle or Catharanthus roseus of the
Acaciaceae family now serves as a model for understanding the biosynthesis of TIA
and regulation of its different steps (Facchini 2001; Memelink et al. 2001a, b). There
are two separate pathways involved in generating the tryptophan and terpene pre-
cursors that produce terpenoid indole alkaloids (TIAs) (Roberts and Strack 1999).
There are common pathways for the development of these alkaloids, but once they
reach the intermediate strictosidine, they diverge in the production of alkaloids in the
various plant species (Verpoorte et al. 1998). Researchers have focused many efforts
on identifying the initial phase of the pathway and on overexpression of early genes
to boost the metabolic flux into alkaloid pathway compounds. There are currently
only a few structural genes isolated from tropanes and benzylisoquinoline alkaloid
pathways, both of which are often more complex than flavone biosynthesis pathways
(Facchini 2001; Memelink et al. 2001b). It is believed that some steps are located in
the plastid, while others occur in the endoplasmic reticulum or within the vacuole,
and that there also obvious signs for transport of intermediate compounds between
types of specialized cells. Thus, regulation of the pathway is likely to be complex
(Memelink et al. 2001a, b).
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Vinblastine and vincristine are major bioactive TIAs that are made of geraniol
and tryptophan, respectively, by more than 20 biosynthetic steps. There are two
components, ajmalicine and serpentine, used pharmaceutically for the treatment of
hypertension and are present in some varieties of Indian serpentwood (Rauwolfia
serpentina). TIA is produced when jasmonates [jasmonic acid and methyl jasmonate
(MeJA), the volatile derivative] are present; fungi also elicit TIA production (Rob-
erts and Strack 1999; Memelink et al. 2001a, b). Promoter analysis of strictosidine
synthase (STR) and tryptophan decarboxylase (TDC) genes reveals that both encode
proteins regulated by stress signals such as UV light or fungal elicitors. In the
promoter region of the strictosidine synthase (STR) gene, a promoter element was
identified that may be involved in both the jasmonate and the elicitor response
(JERE, jasmonate and elicitor responsive element), close to the TATA box, and
may have functions in both the jasmonate and elicitor response, consisting a GC core
of 24 bp (Menke et al. 1999; Memelink et al. 2000). Additionally, the sequence
contains a G-box (CACCGG) found in a number of genes induced by abiotic and
biotic stress and upstream “BA” region containing quantitative enhancers
(Memelink et al. 2000). With JERE as bait, a cDNA that encodes ORCA2
(octadecanoid-responsive Catharanthus AP2-domain protein 2) was isolated from
yeast one-hybrid screening. The transcription factor ORCA2 belongs to the plant-
specific AP2/ERF (APETALA2/ethylene-responsive factor) family and that is char-
acterized by the presence of an AP2/ERF DNA-binding domain. Only OCRA 2 is
activated by the MeJA transcription factors and elicitors and, through interaction
with JERE, stimulates STR expression (Menke et al. 1999). T-DNA tagging was
used to isolate ORCA3 as the third member of the family (van der Fits and Memelink
2000). Upon binding to the promoter region of Str and other TIA biosynthetic genes,
ORCA3 promoted their transcription, in both transient assays, and stably
transformed cell cultures. As a result of yeast one-hybrid screenings, a MYB-like
protein (CrBPF-1) was also identified that interacts with the BA-region and whose
transcription is influenced by fungal elicitors (van der Fits and Memelink 2000). It
was recently found that CrMYC2, the bHLH family protein, binds to the
JA-responsive element in ORCA3 promoter and activates gene expression and
regulates alkaloid biosynthesis (Zhang et al. 2011a). Due to the lack of control of
cytochrome P450 enzyme G10H which are involved in secologanin biosynthesis,
overexpression of ORCA3 didn’t increase alkaloid production. By feeding
secologanin precursor loganin to cells, alkaloids were produced threefold more
than control cells. Aside from TIA precursors, ORCA3 regulates two other genes,
α-subunit of anthranilate synthase and D-1-deoxyxylulose 5-phosphate synthase,
respectively involved in primary metabolism indicating that ORCA3 is a central
regulator of TIA biosynthesis that acts pleiotropically on other steps of the TIA
pathway (van der Fits and Memelink 2000). Using the G-box as bait, a yeast
one-hybrid screen isolated G-box-binding factors (CrGBFs) from the basic leucine
zipper family and MYC-type bHLH transcription factors (CrMYCs) (Pré et al.
2000). It has been shown that CrGBF1 and CrGBF2 repress STR expression by
binding to a G-box-like element in the TDC promoter in vitro, suggesting that
CrGBFs are consciously controlling many TIA biosynthesis genes (Sibéril et al.
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2001). Yeast one-hybrid screening isolated three zinc finger proteins, ZCT1, ZCT2,
and ZCT3, which are members of the Cys2/His2 type (transcription factor IIIA-
type), bind at the TDC and STR promoters, and repress activity of ORCAs (Pauw
et al. 2004). CrWRKY1, a phytohormone-responsive WRKY TF, bind to the W-box
in the TDC promoter, regulated by several other TFs, including Box P-binding factor
1 (BPF-1) and G-box-binding factors (GBF1 and GBF2). When CrWRKY1 was
overexpressed in C. roseus hairy roots, TIA pathway genes and ZCT1, ZCT2, and
ZCT3 were upregulated, but ORCA2, ORCA3, and CrMYC2 were repressed. Thus,
serpentine accumulation increased by threefold, but catharanthine and tabersonine
were decreased suggesting a key role of CrWRKY1 in determining the root-specific
accumulation of serpentine in C. roseus plants (Suttipanta et al. 2011). In a yeast
one-hybrid assay, it was discovered that BPF-1, a MYB-like protein, is highly
homologous to the P-binding factor involved in JA-independent elicitor-dependent
signaling pathways in Catharanthus. Vindoline, a precursor to vinblastine and
vincristine, is produced by the help of deacetylvindoline-4-O-acetyltransferase
(DAT) which is regulated by JA and light. In a recent study, Wang et al. identified
three TGACG motifs and an inverted motif (CGTCA) within the DAT promoter that
are involved in MeJA-mediated transcription (Aerts and De Luca 1992; Wang et al.
2010). Figure 10.1 presents the schematic representation of terpenoid indole alkaloid
biosynthesis producing anticancer biomolecules vinblastine and vincristine with
catalytic enzymes at different steps.

10.12 Regulation of Tropane Alkaloid

Genetic engineering of tropane alkaloid compounds with pharmaceutical value has
already been studied a fair amount (Oksman-Caldentey and Arroo 2000). Basically,
the goal of these studies is to convert hyoscyamine into scopolamine, which has
significantly of more value, catalyzed by hyoscyamine-6β-hydroxylase (H6H). A
hundredfold increase in scopolamine levels can be attained in Hyoscyamus muticus
hairy root cultures when the scopolamine gene is overexpressed in comparison with
controls that produce hyoscyamine as chief alkaloid (Jouhikainen et al. 1999).
Transgenic and control cells showed the same level of hyoscyamine (about tenfold
higher than scopolamine in the transgenic roots). Increased flux has been sought
through the biosynthetic pathways in recent years (Sato et al. 2001). Atropa bella-
donna and Nicotiana sylvestris were enhanced by overexpressing the putrescine
N-methyltransferase (PMT) gene in order to increase tropane alkaloids and
pyrrolidine alkaloids, respectively. During the synthesis of both the alkaloids,
methylputrescine is initially formed by taking putrescine from the pool of biosyn-
thetic metabolites. Transgenic belladonna plants also exhibited a modest increase in
PMT levels of up to 3.3-fold, but only the amount of methylputrescine was
increased, and all alkaloids level remained unchanged. Plants expressing PMT
were found to be four- to eightfold more active in some transgenic N. sylvestris
producing 40% more nicotine, while other plants exhibited a co-suppression and
produced 2% nicotine (Verpoorte and Memelink 2002).
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10.13 Regulation of Isoquinoline Alkaloids

Isoquinoline alkaloids, including morphine and codeine, comprise another group of
secondary metabolites that have therapeutic value in plants. Recently, metabolic
engineering has been made possible for a number of these alkaloids by elucidating
the pathways they follow (Verpoorte and Memelink 2002). A branchpoint in a
pathway affected by overexpression of an enzyme should have an increased flux.
The enzyme (S)-scoulerine 9-O-methyltransferase (SMT) might play a role in

Fig. 10.1 The schematic representation of terpenoid indole alkaloid biosynthesis producing vin-
blastine and vincristine
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controlling the ratio of coptisine/berberine along with columbamine in Coptis
japonica in berberine biosynthesis pathway (Sato et al. 2001; Yamada et al. 2011).
A 20% increase in enzyme activity was observed in transgenic cells by
overexpressing this gene that regulates the enzyme, and berberine and columbamine
went from 79% to 91% of the total alkaloid content in content relative to wild-type
cells. The plant Eschscholzia californica, lacking SMT enzyme, when
overexpressed with the C. japonica SMT gene produces columbamine, which is
not present in this species naturally. As a result of the new pathway being created, the
flow away from the sanguinarine branch was much lower. Creating heterodimeric
enzymes by recombining subunits of Thalictrum tuberosum, O-methyltransferase
was proposed as a way of generating new alkaloids (Frick et al. 2001). In Coptis
japonica, CjbHLH1, the bHLH TF was reported that is important in the regulation of
isoquinoline alkaloid which is induced by MeJA. When the expression of the
CjbHLH1 gene was suppressed by RNAi, the expression of berberine biosynthesis
genes significantly decreased. The regulation of CjbHLH1 is JAZ-independent and
depends on the stimulatory activity of Jas; thus, there is an interaction between
CjbHLH1 and CjJAZ (Yamada et al. 2011).

10.14 Regulation of Nicotine Alkaloid

Nicotiana tabacum or tobacco is the primary source of nicotine, which is an insect
antifeedant compound. Nicotine is synthesized in tobacco roots and transported to
leaf tissue upon mechanical or herbivore wounding. Nicotine levels are influenced
by two unrelated loci, NIC1 and NIC2 (Hibi et al. 1994). Seven AP2-ERF TFs
located in the tobacco NIC2 locus influence the expression of all nicotine biosyn-
thesis genes which are induced by JA. Two AP2/ERF-domain proteins known as
NtORC1/ERF221 and NtJAP1/ERF10 are required to activate the putrescine
N-methyltransferase (PMT) gene in nicotine biosynthesis from JA-treated cultured
tobacco Bright Yellow-2 (BY-2) cells (Goossens et al. 2003; De Sutter et al. 2005).
When tobacco cells overexpress NtORC1/ERF221 without MeJA, they produce
more nicotine, and other pyridine alkaloids prove its key role in nicotine alkaloid
biosynthesis (De Boer et al. 2011). Based on microarray analysis, nic1 nic2 double
mutant showed the most repressed gene to be NtERF189 (Shoji et al. 2010). In the
modulation of nicotine biosynthesis genes, ERF221 (ORC1) and ERF189 work in a
nonredundant, but overlapping, manner. GCC-box in the PMT promoter (putrescine
n-methyltransferase) is recognized by ERF221. Without JAs treatment, NtERF189
overexpression activated PMT and QPT expression in tobacco roots, resulting in
higher nicotine production. When NtERF179 was overexpressed, PMT and QPT
promoters were transactivated, and alkaloids were produced more abundantly (Shoji
et al. 2010). Nicotine biosynthesis within MeJA-responsive loci depends also on
NtERF1 and NtERF121, which do not belong to the NIC2 gene family. Three of
these transcription factors bind specifically to the GCC-box-like element required for
the transactivation of NtPMT1a induced by MeJA (Sears et al. 2014). In addition to
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regulating specific nicotine biosynthesis genes directly, the bHLH transcription
factor, NtMYC2, also regulates nicotine synthesis via transcription factors NIC2
AP2-ERF. Numerous bHLH TFs associated with nicotine alkaloid biosynthesis in
N. tabacum and N. benthamiana are JAs-responsive (Todd et al. 2010; Shoji and
Hashimoto 2011; Zhang et al. 2012). A study using virus-induced gene silencing
(VIGS), which was conducted on N. benthamiana roots treated with MeJA, identi-
fied NbbHLH1 and NbbHLH2 as functional regulators of nicotine biosynthesis
(Todd et al. 2010). Using NbbHLH1, the MYC2 homolog of N. benthamiana
binds to both the PMT1 and quinolinate phosphoribosyltransferase (QPRT2) pro-
moters at G- and GCC-boxes and activates them. NIC2-locus AP2/ERF genes and
MeJA-responsive nicotine biosynthesis genes, including PMT and MPO, were
reduced by suppression of NtMYC2a and NtMYC2b (Shoji and Hashimoto 2011;
Zhang et al. 2012). The roles of other five NIC2locus ERFs in nicotine biosynthesis
regulation needed further investigations.

10.15 Regulation of Cyanogenic Glucosides

Cyanogenic glucosides are another group of nitrogen-containing alkaloids present in
various forage plant species including Sorghum spp, Lotus spp, Trifolium spp,
Medicago, and Melilotus albus (Aikman et al. 1996). In Arabidopsis, cyanogenic
glucoside biosynthesis genes from sorghum bicolor are expressed, demonstrating the
expression of a complete secondary metabolite biosynthesis pathway. Dhurrin, a
cyanogenic glucoside synthesized by sorghum, is obtained from tyrosine, and the
synthesis of dhurrin involves the action of two multifunctional cytochrome P450
enzymes (CYPs) and a specific UDPG-glucosyltransferase. In Arabidopsis,
CYP79A1, CYP79E1, and UGT85B1, three genes essential for synthesis of dhurrin
in sorghum, were overexpressed, and consequently, dhurrin is accumulated, making
it resistant to Phyllotreta nemorum, the flea beetle (Tattersall et al. 2001; Kristensen
et al. 2005). Dhurrin accumulation was observed in hairy roots overexpressing three
enzyme genes, but no defense against insects was observed (Franks et al. 2006). In
homozygous mutations in CYP79A1, phenotypically normal sorghum was pro-
duced, except that seedlings grew slightly more slowly at the beginning of the
season (Blomstedt et al. 2012). Tcd2 mutant plants with homozygous mutations in
the UGT85B1 gene, on the other hand, were devoid of dhurrin and exhibited reduced
stature and vigor (Blomstedt et al. 2016).

10.16 Regulation of Benzylisoquinoline

Benzylisoquinolines are other alkaloids generally synthesized in opium poppy
(Papaver somniferum) and goldthread (Coptis japonica), but their transcriptional
regulators are even poorly defined (Kato et al. 2007). CjWRKY1 is a gene from
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C. japonica that positively regulates all biosynthetic steps apart from the final one
and controls the activation of the benzylisoquinoline alkaloid berberine. In addition,
CjbHLH1, a member of the bHLH family from C. japonica, regulates all genes
relevant to berberine biosynthesis except the last gene (Yamada et al. 2011). The
expressions of heterologous transcription factors from Arabidopsis, maize (Zea mays
ssp mays), and soybean (Glycine max) are being studied to identify genes related to
alkaloid biosynthesis from opium poppy and California poppy (Eschscholzia
californica). In both opium and California poppies, AtWRKY1 was identified as a
gene that regulates multiple alkaloid biosynthesis genes (Apuya et al. 2008).

10.17 Tryptophan Regulation

An additional important pathway involves the biosynthesis of tryptophan, which
provides a variety of secondary metabolites derived from indole as well as high
levels of anthranilate, indolic phytoalexins, and glucosinolates (Radwanski and Last
1995). The ASA1 gene encodes the α-subunit of the enzyme anthranilate synthase
which is the first and main active enzyme of the biosynthetic pathway in
Arabidopsis, induced by several environmental factors including infection by path-
ogens and amino acid deficiency. The β-subunit of the enzyme is encoded by the
ASB gene, which also plays a role in the upregulation of the ASA1 gene, and
controlled by the environmental signals. A mutant Arabidopsis plant with altered
tryptophan regulation (atr) can provide insight into how transcription is regulated in
tryptophan metabolism. The ASA1 transcript abundance is increased by the atr1D
mutation in transgenic Arabidopsis by the overexpression of ATR1 (MYB gene
allele), while atr2D gene overexpression has indirect regulation of tryptophan
biosynthesis genes by ATR2 (bHLH gene allele) which is evident from its pleiotro-
pic phenotypes, such as dark pigmentation and sterility (Smolen et al. 2002). Based
on the effects of double mutant atr1D atr2D on yeast two-hybrid assays, it appears
that MYB and bHLH function independently (Smolen et al. 2002).

10.18 Glucosinolate Regulation

Glucosinolate biosynthesis is regulated in aerial tissues by the two AtMYB29 and
At-MYB76 genes, which are involved in the aliphatic glucosinolate biosynthesis
(Gigolashvili et al. 2008). As well as regulating the metabolizing P450 genes
CYP79B2, CYP79B3, and CYP83B1 in roots and late-stage leaves, AtMYB34,
AtMYB51, and AtMYB122 contribute to indolic glucosinolate synthesis from
tryptophan where, indole-3-acetaldoxime (IAOx) acts as the precursor (Glawischnig
et al. 2004; Celenza et al. 2005; Gigolashvili et al. 2007; Dubos et al. 2010). When
OBP2 a DNA-binding-with-one-finger (DOF) transcription factor is overexpressed,
an increase in CYP83B1 expression is observed, and the opposite—decreased
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expression—is observed when OBP2 is silent, suggesting that OBP2 may be part of
a regulatory network that regulates the synthesis of glucosinolates in Arabidopsis
(Skirycz et al. 2006). There are three AtMYCs (AtMYC2, AtMYC3, and AtMYC4)
that are positively regulated in indolic glucosinolate biosynthesis. Met-derived GSLs
(aliphatics) are biosynthesized by specific genes activated by MYB28, MYB29, and
MYB76 (Hirai et al. 2007; Sønderby et al. 2010; Gigolashvili et al. 2008). Triple
mutants of myc2/myc3/myc3 had significantly reduced levels of glucosinolate, as
well as reduced expression of glucosinolate biosynthesis genes, including BCAT4
(branched chain aminotransferases) and CYP79B3 (Schweizer et al. 2013;
Frerigmann and Gigolashvili 2014). Glucosinolate production in Arabidopsis is
regulated by ATR1 (AtMYB34), a MYB transcription factor which was identified
in an analysis for altered metabolism of tryptophan metabolism. There was an
increase observed in indolyl glucosinolates and IAA accumulation but not aliphatic
glucosinolates, after overexpression of ATR1. Those with the recessive atr1–2
mutation had reduced expression of genes, and less indolyl glucosinolates had
been accumulated (Celenza et al. 2005).

10.19 Camalexin Regulation

Camalexin is a sulfur-containing molecule also synthesized from tryptophan which
acts as a defense molecule in response to a variety of pathogen- and reactive oxygen
species-induced stresses and is one of the most influential phytoalexins in
Arabidopsis (Glawischnig 2007). Gene expression in the camalexin biosynthetic
pathway is controlled by MYB, bHLH, NAC, DOF, and WRKY TFs (Celenza et al.
2005; Skirycz et al. 2006; Dombrecht et al. 2007; Qiu et al. 2008). IAOx is produced
from tryptophan and with the help of CYP71A13 and CYP71A12 converted to
indole-3-acetonitrile (IAN) and then by glutathione S-transferases conjugated to
glutathione and subsequently converted to camalexin via dihydrocamalexic acid
by hydroxylation are catalyzed by P450 CYP71B15/PAD3 (Nafisi et al. 2007;
Böttcher et al. 2009; Millet et al. 2010; Chen et al. 2012a, b). WRKY33, a WRKY
transcription factor after infection with Pseudomonas syringae pv. tomato and
flagellin, a bacterial elicitor, interacts with a kinase cascade, phosphorylates MKS1
(MAP kinase substrate 1), and binds to the promoters of CYP71B15/PAD3 (phyto-
alexin deficient 3) (Qiu et al. 2008). A wrky33 mutant was found to be prone to
infection by B. cinerea and A. brassicicola, and when overexpressed, the infection
resistance increased (Zheng et al. 2006). WRKY33 is regulated by mitogen-activated
protein (MAP) kinase and in response to P. syringae infection; MPK4 phosphory-
lates MKS1 and releases WRKY33 from the MKS1/WRKY33 complex, which
stimulates the production of camalexin via the CYP71B15 promoter (Andreasson
et al. 2005; Qiu et al. 2008). In addition, in response to B. cinerea infection, MPK3/
MPK6 phosphorylates WRKY33 (Raina et al. 2012; Mao et al. 2011). Diverse
pathogen-induced pathways are likely to trigger respective MAP cascades and result
in WRKY33 activation, promoting camalexin synthesis. In recent years, researchers
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found that ANAC042 is a NAC transcription factor that regulates the biosynthesis of
camalexin in Arabidopsis. Plants expressing the anac042 mutant exhibited reduced
expression of CYP71A12, CYP71A13, and CYP71B15/PAD3 and failed to accu-
mulate camalexin at a much lower level than in wild type and were much more
susceptible to infection with A. brassicicola. Analyses with kinase inhibitors and
mutants suggested that ANAC042 may work independently of WRKY33-mediated
signalling and also showed that infection with pathogens can induce ANAC042
expression (Saga et al. 2012).

10.20 Regulation of Terpenes

By far the most abundant class of plant secondary metabolites, terpenoids contain
more than 50,000 chemicals. A number of genes of the MEP (2-C-methyl-D-
erythritol-4-phospate) pathway have been cloned and have been implicated in the
biosynthesis of plastidial terpenoids, such as carotenoids, monoterpenes, and
diterpenes (Broun and Somerville 2001; Mahmoud and Croteau 2001; Lange and
Croteau 1999; Lange et al. 2000). The discovery of a number of transcription factors
that cause sweet wormwood (Artemisia annua) to biosynthesize artemisinin, a
sesquiterpene lactone employed to treat malaria, is revealing. ADS (amorpha-4,11-
diene synthase) and CYP71AV1 (sesquiterpene oxidase) are modulated by the
transcription factors AaERF1 and AaERF2 that respond to jasmonate and are
members of the B3 subfamily of AP2-ERF TFs (Yu et al. 2012). 3-Hydroxy-3-
methylglutaryl-CoA reductase (HMGR) and artemisinic aldehyde δ11(13) reductase
(DBR2) are gelulated by WRKY TF member, AaWRKY1. AaORA1, an AP2/ERF
TF, was recently found to control the accumulation of artemisinin and plays a critical
role in the defense of A. annua against Botrytis cinerea, which is a necrotrophic plant
pathogen (Lu et al. 2013). All the early steps of artemisinin biosynthesis take place
under the control of AaERF1, AaERF2, AaORA1, and AaWRKY1. It occurs before
branching into either dihydroartemisinic acid and artemisinin or artemisinic acid and
arteannuin B. AaORA1 and AaWRKY1 function as transcriptional regulators of
DBR2, which converts artemisinic aldehyde into dihydroartemisinic acid that leads
to the formation of artemisinin (Roth and Acton 1989). A transgene for S-linalool
synthase was overexpressed in tomato plants, which produced many times as much
monoterpenoids as control plants, but did not differ in the amounts of other terpe-
noids (Wang et al. 2001). DBAT (10-deacetylbaccatin III-10 β-O-acetyltransferase)
is an enzyme essential for limiting the rate of synthesis of paclitaxel in Taxus and
increasing paclitaxel accumulation in cell suspension when it is overexpressed
(Walker and Croteau 2000). TaWRKY1, a WRKY TF, is also identified in Taxus
chinensis cells, which regulates DBAT expression (Li et al. 2013). GaWRKY1
regulates the expression of CAD1 {(+)-δ-cadinene synthase} in a temporal and
spatial manner, which forms gossypol during sesquiterpene synthesis in Gossypium
arboreum (cotton) and, additionally, in cell suspension cultures in response to fungi
and jasmonates (Xu et al. 2004). In Hevea brasiliensis (rubber tree), the latex
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production is regulated by HbEREBP1 and HbWRKY1. HbWRKY1 is induced by
ethylene, abscisic acid, jasmonate, Oidium heveae infection, wounding, and osmotic
stress, while HbEREBP1 acts as a negative regulator of early induction by jasmonate
and wounding (Zhang et al. 2011b; Chen et al. 2012a, b). Mint plants overexpressing
the gene encoding deoxyxylulose phosphate reductoisomerase (DXR) had a four- to
sixfold increase in the activity of the enzyme (Mahmoud and Croteau 2001).

10.21 Carotenoid Regulation

Plant carotenoid pigments inhibit the oxidation of the chloroplast during photosyn-
thesis, and they also provide flowers and fruits with bright colors. It is surprising that
there hasn’t been any report of transcription factors involved in carotenoid biosyn-
thesis so far (White 2002). However, Rin (ripening inhibitor) is a genetic locus
identified in Lycopersicon esculentum (tomato) which encodes the MADS-box
protein LeMADS-RIN essential for the development of carotenoid pigments in
fruit (Vrebalov et al. 2002). This is therefore an important step forward in introduc-
ing β-carotene biosynthesis by overexpression of phytoene synthase, lycopene
β-cyclase, and phytoene desaturase into rice (Ye et al. 2000). Overexpressing a
phytoene desaturase in tomato plastids resulted in the increase in β-carotene content
by over threefold (Römer et al. 2000). A specific promoter was used to increase the
amount of β-carotene sevenfold after overexpression of the lycopene β-cyclase gene
(βLcy) in tomato (Rosati et al. 2000). Using a gene encoding the algal enzyme
β-carotene ketolases, it has been possible to produce astaxanthin, mainly in the
nectaries and within tobacco chromoplasts, and the total carotenoid content was
increased (Mann et al. 2000).

10.22 Regulation of Benzoic Acid Derivatives

A signal molecule in plants that plays a crucial role in the acquisition of systemic
resistance when plants are challenged with plant pathogens is salicylic acid
(SA) which is formed through the conversion of chorismate to isochorismate,
catalyzed by isochorismate synthase (ICS) in response to pathogen infection
(Wildermuth et al. 2001). In the bacteria, SA is made from chorismate, which is
converted to isochorismate by isochorismate pyruvate lyase (IPL) (Verberne et al.
2000). A rate-limiting step in the formation of SA is the IPL. Arabidopsis has been
introduced with a protein constructed from two bacterial enzymes, and the plant
exhibited a 2–3-fold increase in SA levels and a 20-fold increase in plastid (Mauch
et al. 2001). To avoid negatively affecting the availability of precursors for other
pathways, the activity of overexpressed enzymes in a pathway must be adjusted
correctly by engineering two or more enzymes (Nugroho et al. 2001; Wildermuth
et al. 2001). The ubiC gene encodes chorismate pyruvate lyase, which usually is
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produced by the phenylalanine pathway in Lithospermum erythrorhizon hairy root
cultures which normally produce the naphthoquinone shikonin. As a result of
chorismate production, the hairy roots produced 20% of the total
4-hydroxybenzoic acid (4HB) salicylic acid (Sommer et al. 1999). Table 10.1 pre-
sents the transcriptions factors regulating the secondary metabolite biosynthesis in
different plants.

10.23 Conclusion

Studies of secondary metabolic pathways have found transcriptional regulation to be
the most significant control point. Recent studies have shown that several genes
involved in secondary metabolism are overexpressed in the original plant or other
plant species. Overexpression in some cases led to an improvement in production,
whereas in others it has led only to an enhanced amount of the overexpressed
enzyme’s direct product. It is not only gene expression levels that determine
metabolite content through biosynthetic pathways but also posttranslationally regu-
lated enzyme activity and compartmentalization and transport of enzymes and
metabolites. Improvement in yields in metabolites is possible by using more diverse
TFs. A diverse array of transcription factors positively and negatively regulates the
expression of multiple DNA sequences encoding key enzymes, thus controlling the
metabolic flow along the biosynthetic pathway. AP2/ERF, bHLH, MYB, and
WRKY are all known to be factors the plant uses to produce a variety of secondary
metabolites, including phenol, flavonoids, terpenoids, etc. In this article we looked at
some examples of how such regulators’ activity can be controlled.

The most studied pathway is the phenylpropanoid pathway which is responsible
for the production of flavonoids including anthocyanin and proanthocyanidin. Sev-
eral information about the transcription factors involved in many steps of the
pathway and their regulation mechanisms are reported. The promoter genes of the
pathway lack codons that are conserved or canonically binding to TFs that regulate
their activity, so specific cis-elements that participate in responses to environmental
factors and developmental factors were identified. Several tissue-specific transcrip-
tion factors are involved in the modification of the phenylpropanoid pathway, and
MYB and bHLH and their homologs and orthologs were used to modify the
pathway. Transcription factors can be engineered to produce flavonoids by
overexpressing genes encoding MYB and bHLH proteins. It is also possible to
engineer plants to produce anthocyanin through ectopic expression of C1 and
R. Currently, the majority of knowledge revolves around light-induced anthocyanin
production in leaves and floral tissues and proanthocyanidin production in seeds.
Catharanthus has only been studied extensively in terms of regulation of two TIA
pathway genes, TDC and STR. A jasmonate-responsive transcription factor with an
AP2/ERF-domain was used to modulate the TIA biosynthesis pathway. A major
bottleneck in finding potential regulators of the alkaloid biosynthesis pathway is the
lack of genetic tools that will allow us to identify the potential regulators involved,
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Table 10.1 Transcription factors regulating the secondary metabolite biosynthesis in different
plants

Metabolite Protein Type Plant species Reference

Anthocyanin AtMYB113 MYB Arabidopsis thaliana Gonzalez et al. (2008)

AtMYB114 MYB A. thaliana Gonzalez et al. (2008)

PAP1
(AtMYB75)

MYB A. thaliana Borevitz et al. (2000)

PAP2
(AtMYB90)

MYB A. thaliana Borevitz et al. (2000)

TT2 MYB A. thaliana Nesi et al. (2001)

TT8 bHLH A. thaliana Nesi et al. (2001)

TTG1 WD40 A. thaliana Walker et al. (1999)

GL3 bHLH A. thaliana Gonzalez et al. (2008)

eGL3 bHLH A. thaliana Gonzalez et al. (2008)

HY5 bZIP A. thaliana Ma et al. (2002)

ANL2 HD ZIP A. thaliana Kubo et al. (1999)

C1/PL MYB Zea maize Mol et al. (1990)

R/B bHLH Z. maize Mol et al. (1990)

PAC1 WD40 Z. maize Mol et al. (1990)

VP-1 ABI3 Z. maize McCarty et al. (1991)

AN2 MYB Petunia Spelt et al. (2000,
2002); Quattrocchio
et al. (1999)

AN4 MYB Petunia Spelt et al. (2000,
2002); Quattrocchio
et al. (1999)

AN1 bHLH Petunia Spelt et al. (2000,
2002); Quattrocchio
et al. (1999)

AN11 WDR Petunia Spelt et al. (2000,
2002); Quattrocchio
et al. (1999)

JAF13 bHLH Petunia Quattrocchio et al.
(1998)

DPL MYB Petunia Albert et al. (2011)

PHZ MYB Petunia Albert et al. (2011)

PMYB27 MYB Petunia Spelt et al. (2000)

NtAN1 bHLH Nicotiana Bai et al. (2011)

NtAN2 MYB Nicotiana Bai et al. (2011)

MYBJS1 MYB Nicotiana Gális et al. (2006)

AmMYB308 MYB Nicotiana Tamagnone et al.
(1998)

AmMYB330 MYB Nicotiana Tamagnone et al.
(1998)

ROSEA1 MYB Antirrhinum majus Martin et al. (2001)

ROSEA2 MYB A. majus Martin et al. (2001)

VENOSA MYB A. majus Martin et al. (2001)

(continued)
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Table 10.1 (continued)

Metabolite Protein Type Plant species Reference

DELILA bHLH A. majus Goodrich et al. (1992)

MUTABILIS bHLH A. majus Martin et al. (2001)

MYB10 MYB Malus � domestica Takos et al. (2006)

MYB1/
MYBA

MYB M. � domestica Takos et al. (2006)

MdbHLH3 bHLH M. � domestica Takos et al. (2006)

MdbHLH33 bHLH M. � domestica Takos et al. (2006)

MdMYB9 MYB M. � domestica An et al. (2015)

MdMYB11 MYB M. � domestica An et al. (2015)

MdbHLH3 bHLH M. � domestica An et al. (2015)

MdTTG1 WD40 M. � domestica An et al. (2015)

VvMYC1,
VvMYCA1

bHLH Vitis vinifera Kobayashi et al.
(2002)

VvMYBA1/
2/5a/5b

MYB V. vinifera Kobayashi et al.
(2002)

VvWDR1,
VvWDR2

WD40 V. vinifera Kobayashi et al.
(2002)

FaMYB10 MYB Fragaria � ananassa Aharoni et al. (2001)

FaMYB1 MYB Fragaria � ananassa Aharoni et al. (2001)

Indole alkaloid CrMYC2 bHLH Catharanthus roseus Zhang et al.
(2011a, b)

ORCA2 AP2/
ERF

C. roseus Menke et al. (1999)

ORCA3 AP2/
ERF

C. roseus van der Fits and
Memelink et al.
(2000)

CrGBF1 bZIP C. roseus Suttipanta et al.
(2011)

CrGBF2 bZIP C. roseus Suttipanta et al.
(2011)

CrWRKY1 WRKY C. roseus Suttipanta et al.
(2011)

Tropane alkaloid CjbHLH1 bHLH Coptis japonica Yamada et al. (2011)

Nicotine NtORC1/
ERF221

AP2-
ERF

Nicotiana tabacum De Boer et al. (2011)

NtJAP1/
ERF10

AP2-
ERF

N. tabacum De Boer et al. (2011)

ERF221 ERF N. tabacum Shoji et al. (2010)

NtERF1 ERF N. tabacum Sears et al. (2014)

NtERF121 ERF N. tabacum Sears et al. (2014)

NtMYC2 bHLH N. tabacum Todd et al. (2010)

NbbHLH1 bHLH N. benthamiana Todd et al. (2010)

NbbHLH1 bHLH N. benthamiana Todd et al. (2010)

(continued)
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Table 10.1 (continued)

Metabolite Protein Type Plant species Reference

Cyanogenic
glucosides

CYP79A1 CYP A. thaliana Kristensen et al.
(2005)

CYP79E1 CYP A. thaliana Kristensen et al.
(2005)

UGT85B1 A. thaliana Kristensen et al.
(2005)

Benzylisoquinolines CjWRKY1 WRKY Coptis japonica Yamada et al. (2011)

CjbHLH1 bHLH C. japonica Yamada et al. (2011)

AtWRKY1 WRKY Eschscholzia
californica and
Papaver somniferum

Apuya et al. (2008)

Tryptophan ATR1 MYB A. thaliana Smolen et al. (2002)

ATR1 bHLH A. thaliana Smolen et al. (2002)

Glucosinolate AtMYB29 MYB A. thaliana Gigolashvili et al.
(2008)

AtMYB34 MYB A. thaliana Celenza et al. (2005)

AtMYB51 MYB A. thaliana Gigolashvili et al.
(2007)

AtMYB122 MYB A. thaliana Gigolashvili et al.
(2007)

CYP79B2 P450 A. thaliana Celenza et al. (2005);
Gigolashvili et al.
(2007)

CYP79B3 P450 A. thaliana Celenza et al. (2005);
Gigolashvili et al.
(2007)

CYP83B1 P450 A. thaliana Celenza et al. (2005);
Gigolashvili et al.
(2007)

AtMYB76 MYB A. thaliana Gigolashvili et al.
(2008)

AtMYB28 MYB A. thaliana Gigolashvili et al.
(2008)

AtMYC2 bHLH A. thaliana Gigolashvili et al.
(2008)

AtMYC3 bHLH A. thaliana Gigolashvili et al.
(2008)

AtMYC4 bHLH A. thaliana Gigolashvili et al.
(2008)

(continued)
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making it challenging to understand the regulation of the pathway. When ORCA3
was overexpressed in response to jasmonate, tryptophan and tryptamine levels were
elevated, as well as certain TIA levels, upon intake of a terpenoid precursor. As of
today, genes encoding direct regulators of biosynthesis pathways for tryptophan and
TIA have been cloned, but none are known for major pathways such as those for
glucosinolates, terpenoids, and carotenoids. Figure 10.2 presents the schematic
representation of phenylpropanoid pathway producing anthocyanin and
proanthocyanidin with the catalyzing enzyme and regulation transcription factors
for each step.

Currently, there are only a few genes identified that encode the pathways that
produce secondary metabolites in plants, which is a major constraint in engineering
secondary metabolite production. On the other hand, a few plant species are studied
for their genome and can be used as model plants, and cloning the secondary
metabolite pathway genes from the plants is of limited value. We urgently need to
uncover more data on posttranscriptional gene regulation, their modification,
enzyme regulation, and compartmentalization and subcellular trafficking in the
coming years. The combination of proteomics and metabolomics with genetic
information of the plant metabolite pathway and in-depth analysis of the enzymes
will allow us to achieve successful strategies for altering the accumulation of certain
compounds in order to map the pathway and better understanding that metabolic
network.

Table 10.1 (continued)

Metabolite Protein Type Plant species Reference

Camalexin CYP71A13 P450 A. thaliana Nafisi et al. (2007)

CYP71A12 P450 A. thaliana Nafisi et al. (2007)

CYP71B15 P450 A. thaliana Nafisi et al. (2007)

WRKY33 WRKY A. thaliana Qiu et al. (2008)

ANAC042 NAC A. thaliana Saga et al. (2012)

Terpene AaERF1 AP2-
ERF

Artemisia annua Yu et al. (2012)

AaERF2 AP2-
ERF

A. annua Yu et al. (2012)

AaORA1 AP2-
ERF

A. annua Lu et al. (2013)

TaWRKY1 WRKY Taxus chinensis Li et al. (2013)

GaWRKY1 WRKY Gossypium arboreum Xu et al. (2004)

HbEREBP1 EREBP Hevea brasiliensis Zhang et al.
(2011a, b)

HbWRKY1 WRKY Hevea brasiliensis Zhang et al.
(2011a, b)

LeMADS-
RIN

MADS-
box

Lycopersicon
esculentum

Vrebalov et al. (2002)
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Chapter 11
Sustainable Use Practices of Medicinal
Plants and Environmental Challenges:
A Case Study in Pakistan

Hassan Sher and Haidar Ali

Abstract Environmental challenges in various forms are posing a great threat not
only to humans but also to the entire biodiversity. These environmental challenges
are directly affecting the wild habitats. On the other hand, unsustainable use prac-
tices, overexploitation etc. are threatening the medicinal and aromatic plants (MAPs)
in particular and biodiversity in general. The current study attempted to increase
livelihood opportunities for plant collectors through sustainable production of MAPs
and also to adopt new strategies for climate change mitigation. Methodology of the
study was based on a series of consultative meetings with key resource persons and
stakeholders of MAPs. It covered series of interventions including awareness-raising
campaigns, capacity-building trainings on sustainable collection, control of post-
harvest losses, marketing, introduction of standardized in situ and ex situ production
techniques, fixing of harvest quotas for high-value MAPs. The authors generally
observed climate base shifting of MAPs from low altitude towards alpine and
subalpine regions. It was observed that sustainable production of MAPs will not
only enhance local income generation opportunities for communities living in fragile
ecosystems of Pakistan but will also act as an engine of economic development for
the country’s economy and will also be used as a tool in the development of climate
smart agriculture to address the global issues of climate change and food security.
This study proved that sustainable MAP production is an appropriate approach for
addressing the issues of climate change and dimensions of food security. It is
recommended that with the active involvement of local community a species-
specific conservation strategy be devised based on allocation of collection quota
for further enforcement and proper management. Further study is required to eval-
uate the level of climate change effect on MAPs production based on supply and
demand and according to the agro-ecological conditions of the country.
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11.1 Introduction

It is widely accepted that our environment is in continuous state of change. This
change in environment has been badly affected by various anthropogenic activities.
The most important among these is the climate change. Climate change has been
causing a number of detrimental effects, and it is not restricted to melting of polar ice
caps, but is also accompanied by spread of new diseases, periodic floods (Figs. 11.1
and 11.2) and variations in the whole weather conditions (Demeritt 2001).

Global warming is considered as the main cause of climate change, which in turn
is considered as mainly caused by the burning of fossil fuels and the increase in the
temperature of the atmosphere due to the emission of hazardous gases by industries
(Kazemi and Ghorbanpour 2017). Global warming may be defined as the change in
global air temperature, which is believed to have been caused by increasing envi-
ronmental concentration of carbon dioxide, produced as a result of industrial revo-
lution, in the eighteenth, nineteenth and twentieth centuries.

In 1765, the concentration of carbon dioxide in the atmosphere was c. 280 ppmv,
in 2000 it was c. 364 (ppmv), whereas it was c. 410 ppmv in 2019 (46% increase)
(Bereiter et al. 2015). Almost all of this increase is due to human activities (USGCRP
2017).

At the end of the eighteenth century, unprecedented increase in the use of fossil
fuels as a source of energy has been observed, which ultimately increased the
concentration of carbon dioxide in the atmosphere.

Fig. 11.1 Human settlement is affected by the devastating effects of flood on 3 April 2016 in
Mingora City
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It is widely accepted that during the past one and a half century, the global
temperature has risen from 0.31 to 0.61 �C (Hansen et al. 2002). As a result of these
complex and multidimensional phenomena, distribution, abundance and occurrence
of plants along the altitudinal gradient are badly affected (Suggitt et al. 2019).

According to Kelly and Goulden (2008), c. 65 m shift from the lower altitude to
the upper altitude was recorded in the dominant plant species between the surveys
carried out for plant cover in 1977 and 2006–2007 along a 2314 m elevation gradient
in Southern California’s Santa Rosa Mountains.

Rise in atmospheric temperature and carbon dioxide not only affects various
physiological activities inside the plant but also affects productivity, flowering,
fruiting and abundance (Tisserat 2002). Medicinal plants in this connection are
with no exceptions. Since human populations especially in the rural areas depend
on medicinal plants for the treatment of various ailments and use plants both directly
and indirectly, therefore, these medicinal plants are directly affected.

According to Humphreys et al. (2019), c. 600 plant taxa have become extinct
during the last 250 years. Beside climate change, quite few of the anthropogenic
activities are also responsible for this species extirpation, especially habitat destruc-
tion and fragmentation (Skole and Tucker 1993; Haddad et al. 2015).

According to Ali et al. (2012), annual production of medicinal plants in Swat
District and its share to the trade were 8.056 and 6.644 million kg in the years
2004–2005 (Rs.4475 million) and 2005–2006 (Rs.5084.70 million). As a result of
the unsustainable collection in the wild, the quantity traded reduced, while the
amount circulated grew due to an increase in per kg price of individual species,
which in turn is considered to be due to the increased demand from local/national

Fig. 11.2 Roads and highways are destroyed as a result of floods
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and worldwide markets. The study also indicated that the abundance of medicinal
plants has been decreasing day by day for the past two decades (Ali et al. 2012).

According to the discussions with local elderly people, most of the plants
described as having therapeutic properties were plentiful in the area c. 20 years
ago. However, due to overexploitation, expansion of agricultural fields, rising
market demand, lack of alternative income options in the area and unsustainable
harvesting practices, their number has significantly decreased. All of these problems
had a very bad impact on the wild medicinal plant populations.

The current studies were therefore conducted to document the current situation of
sustainable utilization of medicinal plants and to promote optimal benefits to col-
lectors and other stakeholders and to adapt strategies contributing to prevent the
depletion of medicinal plants in the study area. According to the medicinal plant
market surveys conducted by SDC (2000), some MAPs are of higher market value,
beside certain species which were imported in the national market from other
countries and were available in the selected districts.

The market channels of some high-value and potential MAPs in selected Union
Councils were studied for planning their sustainable harvest and production from
their natural habitats. Most of MAPs are over harvested because of which some of
these plants have become rare and sparse in the wild habitats. It has become an
urgent need for the local people to think and make decisions about the sustainable
harvesting of the precious MAPs; otherwise, these precious resources will be
depleted from wild habitats.

To put any species to a sustainable use, it is necessary to quantify the current
growing stock and carrying capacity within its natural habitat as compared to its
harvesting quantity. It has been generally observed that on certain sites, the plants in
demand are collected beyond their harvest limits and regeneration rates, but on
certain other sites, these are underutilized (Sher et al. 2010d).

Every plant species has its specific time of collection, which is based on their
phenological status, maturity of fruits/seeds, root-shoot growth ratio etc. For the
collection of roots, corms, rhizomes or bulbs, the collectors should wait for the plants
to become dormant, whereas in some cases until the onset of winter season.
Similarly, leaves and barks may be collected during the summer, flowers may be
collected at the peak of its bloom time and seeds should be collected when properly
mature (Ali et al. 2011). However, a majority of the local collectors are uneducated
and are therefore unaware of these phenomena; therefore, they violate these simple
rules. Since, in most of the cases, the plants have not yet completed their biological
life cycle, therefore, they do not give sustainable and desired production (Sher and
Al-Yemeni 2011).

There is a need to know the current growing stock based on the calculation of
carrying capacity and the rate of their natural regeneration of selected potential
MAPs in the field in order to maintain the population size over the long term. The
available stock of a species in the field is based on the time required for reproducing
the required part by the plant after the harvest; it is important to determine the harvest
limits for its sustainable production. A study was undertaken to prepare resource
inventory of MAPs and to assess the growing stock of selected market-oriented
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medicinal plant species and to recommend the harvest limits from the respective
sites.

11.2 Approach and Methodology

Field studies were arranged during summer, 2020, for data collection regarding
MAP inventory preparation and sustainable utilization in three districts, viz. Swat,
Shangla and Upper Dir. Methods such as rapid rural appraisal (RRA) and participa-
tory rural appraisal (PRA), focus group discussion (FGD), consultative meetings
with the primary stakeholders of MAPs and interviews with key informants were
employed. For obtaining data from local residents, forest owners, MAP collectors,
local traders and sale agents, PRA and semi-structured interviews were adapted. The
purpose of all these meetings and discussions was to understand the existing
resource and also to document the opinion of various interest groups and stake-
holders for information collection and, additionally, to obtain feedback and infor-
mation about the particular site and compartment to be surveyed.

Whenever possible, the FGD was conducted separately in a local Hujra in each
union council of the three districts. It was emphasized that a maximum number of
stakeholders should participate in the FGDs such as MAP collectors, local traders,
village elders, representatives from forest department and Directorate of NTFPs.
These types of interactive meetings are considered as very important, because during
these types of meetings, experts and stakeholders sit together and share their
experiences and find out solutions for their common problems.

About 600 farmers and forest owners from ten union councils have shown interest
to play their role in preventing the depletion of medicinal plants wealth.

A survey of the 17 selected medicinal plants was carried out twice in a year
i.e. before harvesting and after harvesting in 3 districts, i.e. Swat, Shangla and Upper
Dir. Data was collected in consultation with community members of each Union
Council, associated with MAPs collection. The local field assistants had the knowl-
edge and experience with the plants and the sites of their occurrence and also had
some literacy for recording data. These local field assistants were initially trained on
the procedure of field data collection, format and on the use of field equipment. In
each focus group discussion (FGD), information was obtained about the sites with
reasonable occurrence and seasonality of any of the concerned species. Since the
sites are located in very rugged topography with high altitudinal gradient, and
consist of insignificant area on a map, therefore, a crude method, but understandable
by the community and field workers, was adopted for calculation of the area of the
sites in the field. However, for the current studies, area of the sites was calculated
through a map (Fig. 11.3).
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11.3 Interpretation of Results

11.3.1 Harvesting of Selected MAPS

The harvest quantity at which MAPs may be harvested is determined by the plant’s
biological response. When the corm or rhizome of a plant is collected, then the whole
plant is lost. For example, corms or rhizomes of Podophyllum emodi, Dioscorea
deltoidea, Bistorta amplexicaulis, Valeriana jatamansi and many other rhizomatous
plants in the field have all died as a result of harvesting of rhizomes and corms
(underground stems).

Harvesting will have no effect on above-ground vegetative parts, such as leaves
and flowers in case of Viola canescens and fruits in case of Trachyspermum ammi,
and their rejuvenation will be determined by the rate of recovery and harvesting
technique. Plants usually recover very quickly from the tissue damage caused by
harvesting of leaves and flowers, when proper harvesting techniques and precise
time of collection are followed. This can result in a net increase in biomass
production when compared to an undisturbed plant. Based on their phenological
status, the best moment to collect the plant parts is mentioned in Table 11.1.

The catastrophic effects of current environmental degradation have badly affected
not only the human settlement but the biodiversity as well (Yousaf et al. 2014).

Fig. 11.3 Location map of three districts, i.e. Swat, Shangla and Upper Dir
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11.3.2 Sustainable Collection of Medicinal Plants

MAPs used as per traditional medicine system are usually in crude form and are
collected in the wild, mostly in forests and rangeland regions. These plants can be

Table 11.1 Harvesting information for selected MAPs

S. No. Botanical name

Plant
part
collected

Flowering
period

Required
seed
germination
period

Mature
during
the
months

Recommended
harvest gap

1. Aconitum
heterophyllum

Rhizome May–June 2 years Aug–
Sept

3 years

2. Berberis lycium Root
bark

May–June 1 year Aug–
Sept

2 years

3. Bistorta
amplexicaulis
(Fig. 11.4)

Rhizome May–June 1 year Aug–
Sept

1 year

4. Corydalis
govaniana
(Fig. 11.5)

Rhizome May–June 1 year July–
Aug

2 years

5. Dioscorea
deltoidea

Rhizome May–June 2 years Aug–
Sept

3 years

6. Geranium
wallichianum

Rhizome April–
May

1 years June–
July

2 years

7. Hypericum
perforatum

Flower April–
May

6 months July–
Aug

1 year

8. Jurinea
himalaica

Rhizome April–
May

1 year July–
Aug

2 years

9. Paeonia emodi
(Fig. 11.6)

Rhizome May–June 1 year July–
Aug

2 years

10. Podophyllum
emodi
(Fig. 11.7)

Rhizome May–June 1 year July–
Aug

2 years

11. Polygonatum
multiflorum

Rhizome May–June 1 year Aug–
Sept

2 years

12. Primula
denticulata

Leaves April–
May

1 year July–
Aug

2 years

13. Thymus
serpyllum

Leaves May–June 6 months Aug–
Sept

1 year

14. Trachyspermum
ammi

Seed May–June 6 months Aug–
Sept

1 year

15. Trillium
govanianum

Rhizome March–
April

1 year July–
Aug

2 years

16. Valeriana
jatamansi

Rhizome April–
May

1 year July–
Aug

2 years

17. Viola canescens
(Fig. 11.8)

Flowers/
leaves

March–
May

6 months July–
Aug

1 year
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found in a variety of habitats, including subalpine, temperate and sub-tropical
mountainous locations, as well as deserts in the plains. A majority of the MAPs
are collected from their natural habitats by labourers hired from the local community,
most among which are paid on a daily basis. Small and marginal farmers make up a
large number of rural households and professional collectors of MAPs (Sher et al.
2010a). These labours are not properly trained for MAP collection, and they are not
being supervised by any technical person. Very few among these are sometimes
aware of the identification of few plant species, which is being inherited from their
forefathers. Collection of MAPs from the wild habitats, in most cases, surpasses the
permissible quantity (sustainable quantity) extractable from natural habitats, putting
plant species at risk. To ensure the survival of species in nature for future genera-
tions, nearly all developing countries have enacted rules governing and monitoring
the production of MAPs. As a result of the haphazard collection, lack of proper
grading system and inadequate drying and storage, many MAPs have become rare
and highly threatened. Adulteration with apparently alike, but unwanted, plants is
sometimes done for the sake of greater profits and financial benefits (Sher et al.
2010b).

Fig. 11.4 Bistorta
amplexicaulis
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11.3.3 Regenerative Capacity of MAPs as a Result
of Overgrazing

It is widely accepted that there is a correlation between plant growth and the effect of
overgrazing. Despite the fact that most MAPs are unpalatable even then mature
plants are grazed and browsed over a specific period of time, however their regen-
eration response is very poor. This way the individual plants never reach to maturity
to complete their life cycle. Overgrazing contributes to the degradation of existing
vegetation by limiting the expansion of species not only through direct use but also
by drastically altering their habitats. To establish such a relationship in multiple sites
with varied intensities of grazing on various plant species, a rigorous study is
required. Soil compaction, mechanical damage to seedlings and occurrence of soil
organisms are all indirect impacts of overgrazing. These methods make the soil more
susceptible to erosion and loss of fertility. Fungus infestation is possible in the
grazed section of the plant. As a result, most of the plants are now considered rare
in most grazing areas (Sher et al. 2010c).

Fig. 11.5 Habit of
Corydalis govaniana
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The biological response of MAPs to different levels of collection, during different
time periods, greatly varies from species to species. During summer, the locals
harvest the rhizomes of selected rhizomatous plants, and at this time, these plants
use the chemistry and nutrients of the roots to build aerial portions, particularly to
produce stronger reproductive growth (i.e. to give fruits and seeds). The locals
collect the entire plant of Viola canescens (as much as they can find) during its
blooming condition. The rhizomes and the flowers are both considered as essential
components of the plant for regeneration and long-term viability in the plant
community (Sher and Yousaf 2014).

11.3.4 Socio-economic Factors

The targeted MAPs (Table 11.1) are found in wild habitats located at faraway places
from the human settlements. These localities are not accessible by vehicle; therefore,
the collectors have to walk for many hours along the rugged mountainous terrains, in
selected union councils of the three districts, for collection of MAPs.

Most of the MAPs collectors are farmers with low land holdings. Sometimes,
children and women also collect MAPs in their leisure time. Since, shepherds are
directly involved in these habitats, therefore, they collect MAPs, whenever found, on
their way through pastures. Collectors mostly take digging tools, pruners, large

Fig. 11.6 Paeonia emodi: A flower; B close-up of fruit
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shopping bags, extra clothes and food items whenever they go for collection
of MAPs.

They return with a bundle of expensive MAPs after a successful harvest. One
complete load (c. 40 kg) per collector takes at least 2 to 5 days of extensive field
excursion in the wild habitat. Therefore, the collection of MAPs is considered as
really a hard job. Despite these difficulties, the money earned by the collection of
MAPs is greater than the daily wage of a labour. Wholesalers or local shopkeepers
will sometimes pay collectors in advance.

The profits from the sale of MAPs are used to buy clothing and food and fulfil
other needs of life. Farmers, on the other hand, are not interested in growing MAPs
on their land. This might be because of their limited knowledge regarding the
agronomic techniques of MAP cultivation.

11.3.5 Government Policy on Collection, Processing
and Trade of MAPs

As per the forest law, for gathering of rhizomatous plants or roots from natural
forests, a collection permit must be obtained in advance, from the local District
Forest Offices (DFO). It is prerequisite for the collector to mention quantity and
species of the plant which has to be collected.

Fig. 11.7 Podophyllum emodi: A habit; B close-up of fruit
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However, in general, the MAPs collectors never obtain a collecting permit before
beginning to collect. Traders must release the permits they have obtained after
paying a royalty at the rate of 20 Pakistani rupees per kilogram to the DFO. Nobody
is allowed to transport the roots of plants like Valeriana jatamansi and Podophyllum
emodi from the area of its collection, unless the permissions are released. It is worth
mentioning that no such policy exists for the collection of leaves, flowers and seeds;
secondly, transportation permit is also not required for the transportation of MAP
leaves and flowers. For example, Viola canescens and Hypericum perforatum are
free from such duty (Sher et al. 2013).

After paying a fee to the DFO, traders are legally allowed to take rhizomatous
plants like Trillium govanianum and Valeriana jatamansi outside from their respec-
tive districts of collection during 15–20 days. If dealers are unable to organize
transportation by air or any other mode of conveyance during this time, they must
request and receive approval from the concerned DFO to extend the validity of
permit. Therefore, a majority of the dealers are against this policy. Nevertheless, no
vibrant policy is available about the export of MAPs.

Fig. 11.8 Viola canescens: A habitat; B close-up of flower
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11.3.6 Opportunities and Threats

Non-timber forest products such as MAPs are quite valuable. By engaging local
people in the production through cultivation, processing and trading of some valu-
able MAPs, there is a greater chance of improving their economic conditions.

The production of MAPs would be among the most viable strategies to generate
money for local people of the study area. The market price fluctuates from year to
year. The involvement of middlemen has an impact on the selling price of MAPs in
crude form at the collection locality. In addition, there is a greater risk of adultera-
tion, beside the issue of market price variation. The roots of Cymbopogon
schoenanthus and Selinum tenuifolium, for example, are detected as adulterants in
rhizomes of Valeriana jatamansi (Sher et al. 2011).

11.3.7 Management System

The selected MAPs are mostly found in the natural coniferous forests of the studied
sites in the three districts. There is a scarcity of data about the current stock levels/
volume of selected MAPs in the whole Pakistan in general and Khyber Pakhtunkhwa
in particular.

As a result, comprehensive studies regarding these MAPs are urgently needed in
order to create a management plan based on sustainability principles. Prior to
harvesting, a resource inventory of high-value MAPs should be required in order
to create site-specific information that may be used to establish the optimal harvest
level.

11.3.7.1 Harvesting Techniques

Depending on phenology of the plant, there is an appropriate time to collect it. Part
of the plant being collected has a direct relationship with appropriate time of
collection. Active chemical ingredients present in plants vary in quantity and nature
throughout the year and, during their life cycle, have a definite association with
harvesting time which affects plant propagation. Each portion of a plant has distinct
chemical components; collecting the wrong part for a certain purpose will result in
an erroneous result.

The local collectors collect well-developed fruits of Trachyspermum ammi, the
leaves and flowers of Viola serpens and the leaves or young shoots of Thymus
serpyllum, when they are morphologically mature, i.e. in late summer. Inappropriate
collection procedures will threaten these MAPs by inflicting excessive loss.

Uprooting a plant for utilization of its aerial parts only can result in the severe
depletion of its population. Similarly, collecting excessive amounts of a tree’s bark
may result in its death.
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11.3.8 Processing Techniques

Once collected, drying is the next technical step in the practical process. The loss of
vital constituents can occur if the drying process is not carried out correctly. Drying
properly aids in preserving and fixing the essential components. Currently, residents
of the study area dry all plant material in the direct sun. The plants are placed on the
open floor, which is contaminated by dust particles and harmful agents, because the
community lacks an appropriate drying facility. The loss of vital chemical contents
occurs as a result of the unhealthy drying of plant material. The chemical constitu-
ents of some plants are not affected by direct sunlight, e.g. Colchicum luteum can be
sundried as a general rule (Evans 2009).

Plants with volatile components and oil, such as Valeriana jatamansi, Viola
serpens and Trachyspermum ammi, should be dried in the shade, as should all
other target species. Plants that have been dried in the sun or in the shade must be
suspended in wooden trays to allow air to circulate freely. It is also necessary to turn
over the leaves 3–4 times every day. It’s imperative to ensure that the true value of
herbal material is found in its scientific processing (extraction, standardization,
quality control and correct packaging) and not merely in its gathering and growing
(Jan et al. 2020).

It is, therefore, critical to build centrally controlled processing facilities in places
where wild MAPs are prevalent. These may consist of:

• Units for cleaning, drying, grading and packing
• Technical facility for marketing and transportation
• Units for the preparing of “mother tinctures” and “standardized extract of herbal

medicines”
• Units for the extraction of essential oil (aromatic compounds) from fresh plants

11.3.9 Demonstration

In order to monitor sustainable level of harvesting in the study area, some research
plots may be established, and different levels of utilization (harvesting) practices
may be employed by using both scientific and local indicators based on perception of
plant life cycles and plant population dynamics. Wild plant population may be
monitored for few years over a range of harvesting intensities. This study will assist
the semi-technical and technical workers engaged in the field (Sher and Barkworth
2015).
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11.3.10 MAP Trade and Its Linkages with Conservation

There are c. 0.422 million plant taxa in the world, among which 12.5 per cent are
being designated as MAPs (Shinwari 1996). Pakistan has ratified the UN’s CBD, the
FAO’s 2002 resolution and the CITIES, as well as other multilateral agreements
(Khan 2012). As a result, Pakistan has made attempts to conserve its biological
diversity, including MAPs. The Biodiversity Action Plan (BAP) was prepared by the
Ministry of Environment in coordination with all partners. The BAP has
recommended in situ and ex situ biodiversity conservation strategies, particularly
MAPs. The Ministry of Environment has provided a list of endangered and vulner-
able MAPs in Pakistan in the goals and objectives section of its strategic plan, as well
as provisional list of indicator species for monitoring progress of MAP conservation
(Sher et al. 2014).

MAPs’ genetic diversity has been under constant threat of extinction owing to
environmentally unsustainable collection methods. The value of MAPs for their
environmental function and the value of products developed from these must be
viewed in balance. Furthermore, this sector needs focus as it is facing problems of
diversified nature. The majority of MAPs are collected from the wild habitats, which
makes maintaining a supply difficult. The international demand and supply for
MAPs has become market-driven, and the number of wild collectors is
outnumbering natural populations. As a result, this trade must be established on a
scientific and long-term basis. Since, the MAPs are more vulnerable to
overexploitation and extinction, therefore, these issues must be addressed in a
practical way.

No doubt that the policy of Pakistan on Conservation of Biodiversity of MAPs is
concentrated on in situ and ex situ conservation. Although the country’s conserva-
tion policy is focused on in situ and ex situ conservation measures, it still has a long
way to go in terms of enacting laws and policies to protect all of its genetic diversity.
This can be accomplished through bilateral and multilateral plant germplasm
exchange, collaborative research among breeders and farmers, community rights
protection and the formulation of a complete action plan to fulfil the goals of trade
sustainability and conservation. Growth, exploitation and environmentally
unfriendly harvesting processes, non-equitable distribution of profits emerging
from the collection and trading of MAPs, loss of MAP growth habitats and
unmonitored trade of MAPs are all contributing to the extinction of genetic diversity
in MAPs.
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11.3.11 Challenges in MAP Management in Khyber
Pakhtunkhwa, Pakistan

According to the present field studies and literature review, there are potential
impediments and problems in the long-term management and development of
MAPs in Khyber Pakhtunkhwa. These are grouped into the following categories.

11.3.12 Medicinal Plants at the Policy Level

MAPs play a vital role in the region’s rural livelihoods by supplying essential
subsistence products and monetary revenue, which is especially crucial to the
community and, in particular, the poorest households. Medicinal plants, though a
key component of rural livelihood strategies, have seldom gained the much-needed
practical attention by the policymakers and are often a low priority at the policy level
(Sher et al. 2012).

• The related policies are either weak, or medicinal plants are tucked in with timber
management without a policy of its own. This way they lose importance and are
mostly left out unmanaged.

• There is lack of policy direction. Whatever paper policy directions are available
lack adequate implementation.

• Conventional forest management by the relevant government departments mainly
focuses on trees and wood production rather than other goods and services of the
forests. There is inadequate of understanding of medicinal plants’ ecology, which
contributes to loss of the much-needed focus at the policy level.

• The importance of handling medicinal plants, as a subsector, is not understood at
the policy level.

11.3.13 Silviculture and Governance-Related Shortfalls
in Management

There is limited silviculture management of medicinal plants for a variety of reasons.

• The medicinal plants are normally found in far-flung inaccessible areas and do not
receive proper silviculture management in natural occurrence.

• The constant unregulated unsustainable harvesting is resulting in degradation of
ecosystem, escalating people vulnerability to poverty, especially in cases where
livelihood of local people depends on these MAPs.

• Local/indigenous knowledge is orally transmitted, mostly remains undocumented
and is seldom disseminated.
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• Formal research is confined to academic institutions, and the mechanism to share
the results with collectors, regulating bodies and traders is not practised.

• Sufficient and authentic data on the regenerative capacity of the medicinal plants
are lacking.

• Rehabilitation of medicinal plant resources has not been practised.
• There is insufficient capacity building on the management of medicinal plants.
• There is a lack of understanding of medicinal plants’ ecology which makes it

difficult to take management decision regarding what, when and how much to
harvest.

• In most cases the much-needed scientific research-based knowledge at the eco-
system level about the proper stage of the physiological growth in natural habitats
is very limited.

11.3.14 Governance

Medicinal plant reserves have seldom received the much-needed attention of sus-
tainable management for affording enhanced opportunities for sustainable liveli-
hoods and healthy ecosystems. Some salient elements that contribute to the weak
governance in the medicinal plants subsector are as follows:

• The regulatory focus of management is on royalty generation and not on what is
best for medicinal plants reserves.

• Quota allocations for MAP collection are not based on sound scientific grounds.
• Weak capacities of the management authorities to apply and implement regula-

tions framed on the basis of relevant international conventions.
• The requisite capacity building initiatives by the government for sustainable

management of MAPs are generally absent.
• The officials, traders and processors do not understand the importance of man-

agement of MAPs as a safety net and livelihood strategy for the associated rural
communities.

11.3.15 Trade, Tenure, Equity and the Missing Link
of Knowledge Sharing

Having significant economic and commercial value, MAPs are threatened due to
unsustainable collection practices by the communities, and they themselves are
weakening their own resource base. The significant contributing factors being:

• Absence of the knowledge about the regenerative capacities of the resource base.
• The gap between production and supply is widening exerting additional pressure

on the resource extraction to meet the market demand.
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• The resource ownership is not clear, and, in most cases, medicinal plants are
considered as an open-access resource. Mostly the poor collect them from the
natural occurrence to a degree that certain biomes are unable to meet the demand
and face increasing and non-sustainable harvest pressure.

• The medicinal plants are found in areas where the land tenure is not clear and, in
many instances, makes the ownership contentious that leads to accelerating
resource depletion.

• Very little has been done to pass on scientific knowledge in simple language to
the communities; therefore, they lack awareness regarding sustainable use of
medicinal plants.

• The harvest is unmanaged and uncoordinated from the natural occurrence to a
degree that certain biomes are unable to meet the demand and face increasing and
non-sustainable harvest pressure.

• The tenure system of non-timber forest products is unclear. It gives rise to rights
and equity issues and becomes one of the main limiting factors in the manage-
ment of medicinal plants. The moment a common natural resource starts yielding
a high value return, the more powerful tend to step in to reap the benefits and limit
the access of the weaker ones to the resource. This in turn tends to further
marginalize the already marginalized sections of the population.

• The illegal trans-border trade is lucrative. For want of a little additional cash, the
poor collectors are tempted to unsustainably harvest medicinal plants.

11.3.15.1 Market Information and Local-Level Business Service
Providers

The harvest and trade of medicinal plants involves a complex group of stakeholders.
Most of the officials and traders lack the understanding regarding the perspectives of
the highly vulnerable rural communities and the various coping strategies adopted
by them. The distribution of benefits in the medicinal plant trade is inequitable. The
trade of medicinal plants is informal, uncoordinated and mostly unregulated.

• The secretive nature of the MAP traders blocks the flow of market information to
the collectors. There is lack of market intelligence that makes the distribution of
benefits unfair.

• The local MAP collectors lack the capacity to sustainably manage the resource
base and negotiate with market to derive optimum benefits.

• The absence of business service providers at the local level who have the capacity
to help the rural population in disposal of the collected produce at remunerative
prices and derive optimum benefits.

• The lack of post-harvest handling capacities and facilities compel collectors to
hand over the harvest to local-level vendor.

• Lack of sharing of knowledge with collectors by research institutions gained
through research and the absence of its felt need.
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11.3.15.2 Law Enforcement and Regulatory Frameworks

Most of the medicinal plants are traded within the countries or across the borders
both legally and illegally. Though the laws that govern the trade of medicinal plants
do exist, they are seldom enforced, or the law enforcement is weak. This is because:

• Real value of medicinal plants is not understood by managers, private sector,
communities and law-enforcing agencies.

• The communities either do not understand their rights and duties or do not
consider it their obligation to report any violation.

• There hardly exists any baseline that provides information on laws and regula-
tions that govern the management and trading of medicinal plants.

• The regulatory frameworks in different countries are highly variant which pro-
vide ample ways to the traders to get away for any offence that might have been
committed.

• The organizations involved have weak capacities to observe, identify, measure
and control the trade in medicinal plant throughout the region.

11.3.16 Changing Land Use Preferences

With growing population rapid changes in land use are occurring. More natural
habitats are being converted into agricultural land and habitations. The rapid change
of land use is directly resulting in the altering ecosystems and habitats that support
medicinal plants. Many medicinal plants are on the verge of possible extinction at
the local, regional or global level and directly affect the livelihood of local commu-
nities which are dependent on these plants.

11.3.16.1 Reinvestment in Management of Medicinal Plants

The private sector is involved in reaping the benefits through processing and
marketing bulk of the raw material obtained from the wild resource pool. However,
the government and the private sector lack the focus to reinvesting in the manage-
ment of natural resource base.

11.3.17 Armed Conflicts, Natural Disasters
and Rehabilitation Processes

Armed conflicts and natural disasters adversely affect the social and ecological
environment and have caused serious destruction of ecosystems and habitats.
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Furthermore the post-conflict and post-disaster rehabilitation processes normally do
not take stock of the capacity of natural resource pools to endure the pressures as:

1. The impacts of armed conflicts and natural disasters on ecosystems have not been
appropriately studied.

2. The impacts of post-conflict and post-disaster rehabilitation process on natural
resources are seldom documented.

3. The potential of medicinal plants as an alternate livelihood strategy in post-
conflict and post-disaster rehabilitation process has not been appropriately
estimated.

11.3.18 Climate Change

The already stressed ecosystems are now faced with the need to adapt to new
regimes of temperature, precipitation and other climatic extremes. The mean global
surface temperature has increased by about 0.3–0.6 �C since the late nineteenth
century and by c. 0.2–0.3 �C over the last 40 years. Precipitation averaged over the
Earth’s land surface increased from the start of the century up to about 1960, but has
decreased since 1980. These changes will potentially have wide-ranging effects on
the natural environment as well as on human societies and economies. Climate
change contributes to the vulnerability of the ecosystems (Nawab et al. 2016b).
This in turn would affect the poor who have a high dependency on natural resources
for their livelihoods averse to risks and shocks. To manage the ecosystems that are
habitats to medicinal plants, in a manner that they adapt to the changing climatic
conditions especially at high altitudes and keep on sustainably supporting liveli-
hoods, there is:

• Lack of knowledge on adaptability of species and habitats
• Insufficient scientific data on the response of ecosystem in terms of composition

and physiological growth to diurnal variations and growing season

Several initiatives have been undertaken, which yielded good results. However,
most of the initiatives were either site or species specific. It is beyond doubt that
positive results could be achieved to halt the depletion of the ecosystems that support
medicinal plants and livelihood of the highly vulnerable sections of the society
(Nawab et al. 2016a).

11.3.19 Conclusion and Recommendations

The current chapter is produced as a result of field studies, meetings with local
communities in three districts of Khyber Pakhtunkhwa, Pakistan. It will also con-
tribute to the development of sustainable use management plan for selected MAPs
with the potential to contribute to reduce poverty and its continuing practicability in
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the study area. The key challenges and opportunities were identified, and broader
governance issues were outlined. Seventeen MAPs were identified: these are most
commonly collected and tradedMAPs in the country. In this report, a comprehensive
description of biology, management problems, availability, distribution and socio-
economic importance are deliberated for each species. The current volume/stock of
these species in the wild was determined, and sustainable harvest quotas for each
species were given.

It also highlights certain areas, particularly those related to the establishment,
operation and long-term viability of chosen MAP-based businesses, which need
more research and development funding, not only as a source of income but also as a
means of saving in community funds. Part-time and full-time work in company
management, raw material collecting, processing and marketing has been achieved
by men and women in the community.
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Chapter 12
Profiling of Trace Elements and Regulatory
Landscape of Dietary Herbal Supplements

Satheesh Kumar Nanjappan, David Paul, Roja Ramani,
Somasundaram Arumugam, and Dinesh Kumar Chellappan

Abstract Elevated growth in the therapeutic market of phytopharmaceuticals and
herbal supplements was observed in the last few years. The rise in the herbal market
has also attracted researchers, pharmaceutical companies, and regulatory bodies to
focus on TEA. It influences all body functions in minute amounts for proper
physiological function and development. Excess and deficiency of the essential
trace elements (TE) resulted in several nutritional disorders and diseases. The
development of cutting-edge technologies with potential advantages like high-
throughput measurement, minimum test sample, and easier operational steps boosted
and solved several analytical challenges of the essential TE. This book chapter listed
out analytical approaches of TE with their regulatory landscape.

Keywords Essential trace elements (TE) · Phytopharmaceuticals · Herbal
supplements
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FAAS Flame atomic absorption spectrometry
GFAAS Graphite furnace atomic absorption spectroscopy
HGAAS Hydride generation atomic absorption spectroscopy
HGAFS Hydride generation atomic fluorescence spectroscopy
HP Herbal plants
ICP-AES Inductively coupled plasma atomic emission spectroscopy
ICP-MS Inductively coupled plasma mass spectrometry
ICP-OES Inductively coupled plasma optical spectroscopy
ID-ICP-MS Isotope dilution inductively coupled plasma mass spectrometry
INAA Instrumental neutron activation analysis
LA-ICP-MS Laser Ablation inductively coupled plasma mass spectrometry
LALI-TOF-MS Laser ablation laser ionization time-of-flight mass spectrometer
PIXE Particle-induced X-ray emission
ppm Part per million
ppt Part per trillion
TE Trace elements
TEA Trace elemental analysis

12.1 Introduction

An escalated growth in the global herbal drug market has occurred over the past
15 years. The European and US markets alone reached $7 billion and $5 billion per
year, respectively (Calixto 2000; Smith et al. 2020). The American Botanical
Council reports that in the USA, herbal supplement sales increased by 8.6% in
2019, and record-breaking sales are predicted for 2020. Highlights of this prediction
were found to be a steep increase in the sales of herbal supplements during the
COVID-19 pandemic (American Botanical Council 2020).

Essential TE are dietary elements that the body requires in tiny fractions which
influence all body functions. Around 98% of the body mass of a human being is
made up of 9 nonmetallic elements, and a human adult is made up of 11 typical TE
(TE 2021). Most TE mediate vital biochemical reactions. As catalysts of enzymes
and hormones, TE are essential for the proper functioning of metabolic, hormonal,
and immune systems in the body. The deficiency and excess levels of essential TE
may cause diseases and disorders. TE underlie the etiopathogenesis of many nutri-
tional disorders (National Research Council (US) Committee on Diet and Health
1989, Prashanth et al. 2015, TE 2021). Various classifications of TE as per Prashanth
et al. (2015) are given in Table 12.1.

Therapeutic herbal plants (HP) are known to the world as an option for the
treatment of several disease conditions from the ancient period. It has played a
prime role in the uncovering of present-day therapeutic interventions. The success of
herbal medications for healing purposes is often credited for their organic
bioconstituents. Prolonged intake of phytotherapeutics may lead to their
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accumulation and toxicity (Benzie and Wachtel-Galor 2011; Ekor 2014). Essential
metals will also produce few toxic effects when they’re taken in excess amount, and
nonessential metals are toxic even at minimal levels in human beings.

Osamu, W.A.D.A. published a detailed review on TE functions and deficiencies.
A summary of TE with their functions and toxicity (National Research Council
(US) Committee on Diet and Health 1989, Osamu 2004) is tabulated in Table 12.2.
These TE show several symptoms depending upon the deficiency and excess states.
The article also incorporated in-depth clinical aspects of TE with surveys and
studies.

The latest technologies provide potential advantages over the conventional ele-
mental profiling techniques with the advantages like high-throughput measurement,
less sample, and less tedious operational steps with limitations. It incorporates
unbiased findings suitable for trace element-based biomarkers for herbal supple-
ments and products (Sium et al. 2016).

This chapter is a summary of the role of the essential TE from herbal supplements
and their profiling approaches. This chapter also appraises the selected works on the
profiling of TE from dietary herbal supplements and their regulatory landscape.

12.2 Analytical Approaches for Profiling of TE

The estimation and characterization of known or unknown trace metals with sophis-
ticated approaches are highly sensitive and complex methodologies. So it is there-
fore essential to have a proper sample preparation process. An overview of the
workflow on trace metal analysis is provided in a pictorial format in Fig. 12.1. The
sample processing will vary according to the specific trace element under study.
Most of the trace elemental analytical procedures require the sample to undergo
sample treatment or digestion depending on the complexity of the sample preferably

Table 12.1 Various classifications of TE

Essential elements for the human body
• Four organic basic elements: H, C, N, O
• Quantity elements: Na, Mg, K, Ca, P, S, Cl
• Essential TE: Mn, Fe, Co, Ni, Cu, Zn, Mo,
Se, I
• No specific identified biochemical func-
tions: Li, V, Cr, B, F, Si, As

Biological classification of TE
• Essential TE: B, Co, Cu, I, Fe, Mn, Mo, Zn
• Probable essential TE: Cr, F, Ni, Se, V
• Physically promotive TE: Br, Li, Si, Sn, Ti

Categorical classification of TE
• Group I: C, H, O, N
• Group II: Na, K, P, Ca, Mg, Na, K, P, Cl, S
• Group III: Cu, Fe, Zn, Cr, Co, I, , Mo, Se
• Group IV: Cd, Ni, Si, Sn, V, Al
• Group V: Au, Hg, CN, Pb

Essential TE
• Macroelements: Ca, Mg, Na, K, P, Cl, S
• Trace or microelements: Fe, Zn, Mn, Cu, I, Co,
Ni, F, V, Cr, Mo, Se, Sn, Si
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in liquid form. The most important decision criteria regarding the analytical meth-
odology are the detection limit of the application, the objective of the application,
and the complexity of the samples to be analyzed. Digestion by the microwave

Table 12.2 Summary of TE with their functions and toxicity (NIH fact sheets combined 2021)

Essential
elements Functions Toxicity

Iron Growth and development, production
of red blood cells

Gastric upset, constipation, nausea,
abdominal pain, severe cases: com-
mitting fitness, convulsions,
multisystem organ failure, coma and
even death, hemochromatosis

Zinc Maintain the integrity of the skin and
mucosal membranes, develop and acti-
vate T-lymphocytes

Acute nausea, vomiting, cramps, diar-
rhea
and headache, altered iron function,
reduced immune function and reduced
levels of high-density lipoproteins

Manganese Increase bone mineral density, bone
formation, glucose, carbohydrate, and
lipid metabolism

Tremors, muscle spasms, tinnitus,
hearing loss, mania, insomnia, depres-
sion, delusions, anorexia

Copper Hemopoiesis, bone metabolism, con-
nective tissue metabolism

Liver damage, diarrhea, nausea,
vomiting, cramps, abdominal pain;
people with Wilson’s disease have a
high risk of copper toxicity

Iodine Fetal and infant development, fibro-
cystic breast disease, thyroid hormone
production

Goitre, elevated TSH levels, and
hypothyroidism
Burning of the mouth, throat, and
stomach; fever; abdominal pain; nau-
sea; vomiting; diarrhea; weak pulse;
and coma

Cobalt Production of red blood cells,
metabolism of fats and carbohydrates,
synthesis of proteins in the nervous
system prevents demyelination

Cardiomyopathy, goitre, reduced
activity of the thyroid, increased blood
sugar levels

Fluorine Dental caries and bone fractures Nausea, vomiting, abdominal pain,
diarrhea, periostitis, and even death in
rare cases

Chromium Impaired glucose tolerance and diabe-
tes, metabolic syndrome, polycystic
ovary syndrome dyslipidemia, and
weight and lean body mass.

Weight loss, anemia, thrombocytope-
nia, liver dysfunction, renal failure,
rhabdomyolysis, dermatitis, and
hypoglycemia

Molybdenum Amino acid metabolism, uric acid
metabolism

Achy joints, gout-like symptoms, and
abnormally high blood levels of uric
acid

Selenium Cancer, cardiovascular disease, cogni-
tive decline, and thyroid disease

Gastrointestinal and neurological
symptoms, acute respiratory distress
syndrome, myocardial infarction, hair
loss, muscle tenderness, tremors, facial
flushing, kidney failure, cardiac fail-
ure, and death in rare cases
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method and acid digestion are widely used to ensure TE are completely dissolved
before jumping to the profiling techniques or instrumental approaches (Mettler
Toledo 2021; Yang et al. 2020) (Table 12.3).

12.2.1 Flame Atomic Absorption Spectrometry (FAAS)

FAAS is based on element-specific wavelength light absorption by ground state
atoms in the flame for rapid analysis of TE. AAS is a reasonably priced TE analytical
technique and provides a better degree of accuracy and precision for the estimation at
ppm level (Podraza and Jellison 2017; Helaluddin et al. 2016). Subramanian et al.
performed the quantification of some minerals and TE in selected tropical medicinal
plants (Subramanian et al. 2012). Shirin et al. studied and determined the major and
trace elements (Fe, Cu, Ni, Mn, and Zn) in Withania somnifera using FAAS (Shirin
et al. 2010).

Hydride generation atomic absorption/fluorescence spectroscopy (HGAAS/
HGAFS) is available via an add-on option for the recent models of AAS/AFS
instruments and requires only the hydride generation h. The atomization efficiency
is multiplied with a parallel decrease in sensitivity (Li and Guo 2005). Liu et al.
estimated the total selenium in Chinese medicinal herbs by HGAFS approach
(Liu et al. 2005).

12.2.2 Graphite Furnace Atomic Absorption Spectroscopy
(GFAAS)

In GFAAS, chemical interference is comparatively minimal with the usage of
chemical modifiers, which makes the matrix volatile and results in sensitive analysis

I
• Calibra on Standard Prepara on

II
• Sample Prepara on

III
• Sample Analysis Using the Selected Analy cal Method

IV
• Data Analysis and Calcula ons

V
• Results and Report

Fig. 12.1 General workflow of trace metal analysis
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Table 12.3 Recent research works on TE with their methodology

Methodology Elements identified/estimated Reference

ICP-OES and
ICP-MS

K, Ca, Rb85, Sr87 Zn64

Cu63, Ni60, Cr52/Cr53, and Co59
Khan et al. (2021)

ED-XRF and
PIXE

P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb, Sr,
Ti, and V

Jyothsna et al. (2021a)

INAA Ca, Mg, Cl, K, Al, Na, and Fe Melkegna and Jonah (2021)

ICP-MS Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd,
and Pb

Taşkin et al. (2021)

ED-XRF P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb,
and Sr

Jyothsna et al. (2021b)

X-ray fluores-
cence
spectrometry

Br, Cr, Cu, Fe, K, Mn, P, Rb, Sr, Yb, and Zn Nedjimi (2021)

ICP-MS Cu, K, Ca, Mg, Fe, Mn, Zn, Ni, Pb, Cr,
Co, As, and Cd

Parvathy et al. (2021)

CF-LIBS and
ICP OES

Ca, K, Mg, S, Si, Al, Fe, P, Na, Ba, Ti, Mn, B,
Se, Cu, Cd, Pb, and Zn

Aldakheel et al. (2021)

ICP-OES Zn, Cu, Ni, Co, Fe, Mn, Cr, Pb, and Cd Fagbohun et al. (2020)

ICP-OES Ca, K, Mg, Si, Al, Fe, P, Na, Ni, Mn, Se, Cu,
Zn, and Sr

Durante et al. (2021)

PIXE K, Ca, Mn, Fe, Cu, Zn, As, Se, and Pb Swain and Rautray (2021)

PIXE P, S, Cl, K, Ca, Sc, Ti, Mn, Fe, Cu, Zn, Rb, Br,
and Sr

Singh et al. (2020)

EDXRF Fe, Cr, Mn, Co, Ni, Cu, Zn, As, and Pb Kulal et al. (2021)

ICP-OES Cd, Pb, Zn, Cu, Ni, Cr, Fe, and Mn Georgieva et al. (2020)

INAA Al, Ca, Cl, K, Mg, Mn, and Na Soliman et al. (2020)

FAAS V, Zn, Cr, Cu, Fe, K, Na, and Ni Gholamhoseinian et al. (2020)

EXDRF P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb,
and Sr

Jyothsna et al. (2020)

ENAA K, Ca, Mg, Fe, Mn, Cu, Zn, Co, Mo, Cr, Al,
Ba, V, Se, Ni, Sr, and Cd

Tkachenko et al. (2020)

LIBS Na, Mg, Ca, K, Ti, Fe, Li, Al, Ba, and Si Shahida et al. (2020)

INAA Al, As, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe,
Hf, K, La, Mg, Mo, Mn, Na, Rb, Sb, Sc, Sr,
Sm, Th, U, and Zn

Zinicovscaia et al. (2020)

LIBS and
ICP-OES

Al, Ba, Cu, Cr, Ca, Fe, K, Mn, Mg, Mo, Ni,
Si, Zn, Sr, and Na

Sharma et al. (2020)

FAAS
ICP-OES

Fe, Mn, Zn, Cu, Pb, Cd, and Cr Konieczynski et al. (2020)

ED-XRF Pb, K, S, Ca, Fe, Zn, Cu, Co, Ni, Mn, and Se Agbo et al. (2020)

AAS Na, K, Ca, Mg, Cu, Mn, Fe, and Zn Ceccanti et al. (2020)

ICP-AES Al, As, B, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na,
Ni, P, Si, Ti, and Zn

Du et al. (2020)

PIXE Al, Si, P, S, Cl, K, Ca, Ti, Mn, Mn, Zn, Cu,
Fe, and Sr

Elayaperumal et al. (2020)

ICP-MS V, Cr, Mn, Co, Ni, Cu, and Zn Suleiman and Brima (2020)

(continued)
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(Holcombe and Borges 2017). It has enhanced detection limits with minimal sample
volume. This analytical technology works with restricted working range, slow
analysis, and high cost (GFAAS 2021). Jasha et al. determined 10 TE (Mg, Ca, V,
Cr, Mn, Fe, Cu, Zn, Mo, and Cd) using GFAAS from selected medicinal plants
(Anal and Chase 2016).

12.2.3 Inductively Coupled Plasma Optical/Atomic Emission
Spectroscopy (ICP-OES/AES)

ICP spectroscopy is a technique used for elemental analysis and trace analysis. The
main advantage of the ICP-OES technique is lower detection limits from parts per
million (ppm) to parts per billion (ppb). Pytlakowska et al. in 2012 explored
12 minerals and TE (Al, B, Ba, Fe, Zn, Mn, Mg, K, Na, P, Cu, Sr, and Ca) from
herbs and infusions using ICP-OES (Pytlakowska et al. 2012). Niu et al. used
ICP-AES for mineral estimation of nutrients in G. macrophylla (Niu et al. 2014).
Yan et al. established ICP-AES-based methodology for the simultaneous determi-
nation of major and trace elements like Na, K, Cu, Fe, Zn, Mn, Ca, Mg, Cr, Ni, Pb,
Se, As, and Cd from six herbal drugs (Qing-hua et al. 2012; YAN et al. 2011).

12.2.4 Inductively Coupled Plasma Mass Spectrometry
(ICP-MS)

ICP-MS is also a powerful analytical method for TEA, but at this point, it is much
expensive when compared with AAS or HGAAS with the ability to detect individual
elemental isotopes. An ICP-MS instrument is hyphenated with a high-temperature
ICP source with a mass spectrometer which is relatively sensitive and free from
interferences (Helaluddin et al. 2016, (Wilschefski and Baxter 2019). Serife et al.
performed the estimations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, and Pb elements in
30 herbal medicines using ICP-MS approach (Tokalıoğlu 2012). James et al.

Table 12.3 (continued)

Methodology Elements identified/estimated Reference

ICP-MS Ca, Mn, P, Ti, Mg, Pb, Na, Cr, K, Sr, Fe, Cu,
Al, Ni, B. Ba, Zn, Mo, Co, As, Se, Cd, and Sn

Yabalak et al. (2020)

ICP-MS K, Ca, Mg and Ni, Na, Se, Cd, Hg, Pb, and
Mn

Potortì et al. (2020)

ED-XRF Mg, K, Ca, Al, Si, P, S, Ti, Sr, V, Cr, Mn, Na,
Fe, Cu, Zn, As, Rb, and Pb

Aksoy et al. (2020)

INAA Ba, Br, Ca, Co, Cr, Fe, K, La, Na, Rb, Sc, Sm,
and Zn

Datta et al. (2020)

12 Profiling of Trace Elements and Regulatory Landscape of Dietary Herbal. . . 309



performed the estimation of Pb in Chinese herbs using isotope dilution inductively
coupled plasma mass spectrometry (ID-ICP-MS) methodology. The strategies
involved include the addition of enriched isotopic solutions to the herbal samples
while flowing towards the plasma (Lam et al. 2010).

12.2.5 Instrumental Neutron Activation Analysis (INAA)

In INAA technique, the sample is exposed to a neutron flow after which radioactive
isotopes decay to a lower energy state and emit delayed gamma rays with charac-
teristic energies for each element proportional to the amount of the element in the
sample. It has the capability to estimate several elements simultaneously without
destroying the sample and offers high sensitivity for different TE (Hamidatou et al.
2013; Helaluddin et al. 2016; INAA 2007, 2019). Oladipoa et al. utilized INAA for
the multi-trace elemental determination of 6 medicinal plants, and they estimated
21 TE similar to the herbs under study (Oladipo et al. 2012). Bouzid et al. carried out
an investigation in A. herba-alba, and Ca, K, Fe, Zn, and Cr were detected by using
INAA (Nedjimi and Beladel 2015).

12.2.6 Energy Dispersive X-Ray Fluorescence (ED-XRF)

ED-XRF has a small, compact instrument design with one of the two general types
of X-ray fluorescence techniques. In ED-XRF spectrometers, all of the elements in
the sample are excited simultaneously, and a multi-channel analyzer is used to
simultaneously collect the fluorescence radiation emitted from the sample. The
different energies of the characteristic radiation from each sample elements are
then separated. Resolution of ED-XRF systems is dependent upon the detector,
and it is a minimal maintenance instrument. The ED-XRF systems offer simplicity,
fast operation, non-movable parts and high source efficiency. The ED-XRF will be
helpful in small feature analysis and enhanced performance for the measurement of
TE micro ED-XRF applications (Markowicz 2011; Yao et al. 2015).

Beheraa et al. carried out the multi-elemental estimation in vitro-proliferated root
tissues of Andrographis paniculata and of the naturally grown in vivo plants. TE,
namely, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, and Pb, in addition to two macro-
elements K and Ca were identified and estimated using the ED-XRF technique
(Behera et al. 2010).

12.2.7 Particle-Induced X-Ray Emission (PIXE)

PIXE involves the measurement of X-rays emitted from a sample due to high-energy
ion bombardment. PIXE analysis is a nondestructive applicable technique for multi-
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TE analysis and is now widely engaged in many fields where the detection and
estimation of TE are required. It also offers better signal-to-background ratios for TE
analysis (Ishii 2019; PIXE 2021).

Raju et al. performed the TEA of some anti-diabetic HP (Raju et al. 2006).
Bhanisana et al. utilized this methodology for the estimation of major and trace
elements from ten medicinal plants (Devi and Sarma 2013).

12.2.8 Calibration-Free Laser-Induced Breakdown
Spectroscopy (CF-LIBS)

CF-LIBS is an in situ quantitative method for the direct measurement of line
intensities and plasma properties without sample preparation. It utilizes highly
energetic laser pulses to induce optical sample excitation. The full exploitation of
the CF-LIBS techniques is not carried out due to the lacunae in its experimental
constraints (Anabitarte et al. 2012; Dong et al. 2015; Tognoni et al. 2010; Yang et al.
2018). Quantitative TEA results are reported in the literature in a wide range of
experimental conditions (Rai et al. 2013). In 2012, Santos et al. conducted a detailed
review of the LIBS approach for the estimation from plant materials (Santos Jr et al.
2012). Recently in 2020, Legnaioli also reviewed the industrial applications of LIBS
(Legnaioli et al. 2020). Sanja et al. performed the estimation of Mn and Ba in
peppermint tea using CF-LIBS (Zivkovic et al. 2018).

12.3 NOVEL Techniques in Trace Element Analysis

12.3.1 LA-ICP-MS (Laser Ablation Inductively Coupled
Plasma Mass Spectrometry)

LA-ICP-MS is a microanalytical technology that enables a highly sensitive elemen-
tal and isotopic direct analysis of solid samples. LA-ICP-MS begins with a laser
beam focused on the sample surface to generate fine particles by a process known as
laser ablation. The ablated particles are then carried to the secondary excitation
source of the ICP-MS instrument to be digested and ionized in the plasma torch and
then subsequently introduced to a MS detector for both elemental and isotopic
analysis (Applied Spectra 2021). This technique was applied to take the images to
study the specific elemental distribution of the biological sample brain. The estima-
tion of copper, zinc, and other minor elements were found in thin slices of human
brain samples (Becker et al. 2007).
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12.3.1.1 Laser Ablation Laser Ionization Time-of-Flight Mass
Spectrometer (LALI-TOF-MS)

LALI-TOF-MS is a novel development that can be utilized for the simultaneous
assessment of the entire periodic table of elements which requires a direct analysis of
solid samples at its MS detection limits. LALI avoids conventional sample digestion
approaches and bypasses the limitations like matrix suppression effects, polyatomic
spectral interferences, and signal instability exhibited in other approaches (Putman
and Williams 2020).

12.4 Regulatory Aspects of Essential TE in Herbal
Supplements and Phytopharmaceuticals

The majority of the phytochemical research targets the role of TE metabolic function
and their toxicity. Recent regulatory platforms thrust on the need to analyze these
herbal supplements to detect their components including TE which are essential for
the normal healthy functioning of the human body (Bhattacharya et al. 2016). The
WHO has set guidelines, which are the golden standard for the assessment of herbal
medicines with regard to contaminants and residues. It recommends about TE
mineral intake of 1.5 grams for normal healthy people (WHO 2007).

Each country has its regulations for herbal medicines, and its chronology varies
across jurisdictions of individual countries. Mostly developed countries have started
the regulatory platform for herbal products and supplements that have been in
existence for a long time, whereas some countries recently started to strictly enforce
the rules and regulations for the same. The rise in the herbal market had resulted in
the marketing of these products with claims and without proper education, and it
may be potentially dangerous to the consumer (Thakkar et al. 2020). The USFDA
had recommended a series of tests and controls to ensure the quality and therapeutic
standards of the botanical products (USFDA 2016) in botanical products.

12.5 Conclusion

The knowledge on the traditional medicine practices had resulted in increased
development of dietary supplements and herbal medicine. Many of the products
contain ingredients marketed under the claim of several health benefits. The number
of humanoids having the intake of these products has increased in recent years.
Although having some TE is essential for our well-being, many of it can be toxic and
result in negative impacts. Trace metal analysis of herbal supplements is used to
ensure compliance with regulatory requirements and quality standards. The rapid
advancements and emerging technologies will play a vital role in the research and
quality element together involving in its regulatory functions.
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Chapter 13
Sustainable Economic Systems Against
Biotic and Abiotic Stress in Medicinal
Plants: Aeroponics, Hydroponics,
and Organoponics

Luis Germán López-Valdez, Braulio Edgar Herrera-Cabrera,
Irma Vásquez-García, Jesús Antonio Salazar-Magallón,
Rafael Salgado-Garciglia, Jorge Montiel-Montoya,
Leticia Mónica Sánchez-Herrera, Victor Manuel Ocaño-Higuera,
and Hebert Jair Barrales-Cureño

Abstract Plants are sessile organisms and the constant monitoring of environmen-
tal changes is needed for them to modify, adjust, and adapt their development and
metabolism accordingly. The response to these environmental stimuli requires a
multi-integral mechanism where internal and external signals are detected and cause
an appropriate reaction in the plant. According to the medium in which the roots
develop, soilless cultivation systems are classified into three groups: cultivation in
(1) substrate, (2) water (hydroponics), and (3) air (aeroponics). In particular,
aeroponics is the most modern hydroponic system. The main advantage that
aeroponics offers is the excellent aeration it provides to roots. Aeroponics has
been used with great success in plant propagation and, more specifically, in the
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propagation of cuttings of herbaceous or woody species that are difficult to root. This
is an agricultural production technique in which plants are grown without the use of
soil and nutrients are delivered through a liquid solution. In soilless cultivation, soil
is replaced by an inert substrate, and the nutrients needed by the plant to grow are
delivered via irrigation. Organoponics is a form of urban agricultural production
with one of the greatest impacts in terms of production volume per farm area. The
variety of fresh vegetables and condiments at lower prices marketed based on supply
and demand, together with the jobs generated and the productive use of otherwise
wasted space, are key advantages that the use of this technique provides. On the
other hand, this technology represents a form of intensive production based on the
extensive use of organic fertilizers, which are applied in areas with infertile soils or
with serious limitations for their exploitation, and even on artificial surfaces created
specifically for this activity. Therefore, this chapter aims to (a) describe the back-
ground of aeroponics, hydroponics, and organoponics, (b) indicate the main medic-
inal plants that have been identified as candidates for biotic and abiotic stress
tolerance, and (c) understand how the incursion of sustainable economic systems
are efficient and effective methods to counteract the effects of biotic and abiotic
stress in medicinal plants.

Keywords Aeroponics · Climate change · Hydroponics · Phloem transport ·
Organoponics

13.1 Introduction

Aeroponic, hydroponic, and organoponic cultures are techniques that allow the
sustainable production of medicinal plants and food. In these circumstances, fertile
soil is not indispensable, and any space, inside or outside the garden, becomes a
favorable place for the cultivation of plants. Because they are intensive systems, it is
possible to grow medicinal plants and food in acceptable quantity and quality, since
by having greater control of environmental conditions, pests, and nutritional require-
ments, the option of producing medicinal plants is greater than in an open field. To
obtain satisfactory results in all three systems, it is advisable to grow short-cycle
medicinal plants to harvest them as soon as possible. Among these plants are some
fruit species, medicinal plants, and vegetables. The Earth temperature will increase
between 3 and 5 �C in the next 60–100 years. The increase in temperature and the
irregularity of precipitation cause changes in droughts and floods to occur. Salt stress
is caused by the exploitation of metal resources, inadequate irrigation, and excess
fertilizers derived from anthropogenic activities. Plants face these forms of biotic and
abiotic stresses with great frequency. Food and farmers’ security must be ensured
through the development of stress-tolerant crops. Also, molecular work should be
carried out at the genetic level for the development of mechanisms in plants to
prevent them from different types of biotic and abiotic stresses.

Plants produce primary metabolites (carbohydrates, proteins, and fatty acids) and
secondary metabolites, which are biosynthesized directly from primary metabolites
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and certain secondary metabolites, produced only in specific species or genera.
Currently, approximately 200,000 secondary metabolites have been isolated
(Schwab 2003) and classified into three major groups: phenylpropanoids,
isoprenoids, and alkaloids (Frey et al. 1999). Secondary metabolites are involved
in defense against biotic and abiotic stresses as well as in adaptation but are not
directly involved in plant development and growth (Jaillais and Chory 2010).
Secondary metabolites accumulate in specific anatomical structures of the plant,
such as laticiferous cells, canals, ducts, or glandular trichomes, or in large amounts in
vacuoles in glycosidic form (Santner et al. 2009). Secondary metabolites serve as
antioxidants compounds and protective compounds in unfavorable environments
such as drought. Jenks and Hasegawa (2007) mention that in tobacco and bean a
high concentration of phenylamides and polyamines accumulate under abiotic stress
conditions. Drought as an abiotic stress generates a higher accumulation of flavo-
noids (Alpert 2005) and phenolic acids (Hirt and Shinozaki 2004), anthocyanins, and
polyamines (Alpert 2006; Pathak et al. 2014). Therefore, this chapter aims to
(a) describe the background of aeroponics, hydroponics, and organoponics,
(b) indicate the main medicinal plants that have been identified as candidates for
biotic and abiotic stress tolerance, and (c) understand how the incursion of sustain-
able economic systems are efficient and effective methods to counteract the effects
of biotic and abiotic stress in medicinal plants.

13.2 Organoponics System

The organoponics system is an open-space cultivation technique, established on
substrates prepared by mixing organic materials with plant layers, which are
co-located in containers or beds and installed in empty spaces in densely populated
areas, where the soil is unproductive for various reasons (Vega-Ronquillo et al.
2006).

Organoponics is an ancient technique derived from hydroponics, also known as
semi-hydroponics or geoponics. This method consists of placing solid substrates that
cover the nutritional requirements necessary for plant development. It is practiced
with great success in different regions of the world, and nowadays, with the use of
worm humus, the technique has been improved. Organoponics can be practiced at all
levels, being able to be established at home in gardens, plots, rooftops, and anywhere
where there is a small suitable space that can be used, to larger spaces, such as a plot
or a farm. This method can also be used to grow medicinal plants and some fruit
species, as well as ornamental plants. Unlike hydroponics, this technique is less
intensive, which means that it can be slower to obtain the products. However, it is
feasible to develop it in small-scale farms at low cost and without the dependence on
expensive agrochemicals that are difficult to acquire. The word organoponics refers
not only to the use of organic substrates but also to the use of practices compatible
with organic or natural agriculture.
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The production of organoponic cultivation or cultivation on organic substrates
must be adapted to the conditions of each locality, although its principles and
cultural practices have general features that make it a form of cultivation practicable
in the most diverse conditions of climate and soil. In this sense, this technique is
gaining ground and followers at present, for the following reasons: it prevents
erosion, improves drainage, and facilitates irrigation and pest and disease control,
obtaining products free of toxins (Gómez 2019).

Regarding the specific technique of organoponics, this is selected as the most
favorable alternative to the physical conditions and for its ease in the management of
substrates, among others. OAS (2012) suggests the idea of favoring agriculture in
reduced spaces and using natural substrates.

13.3 Hydroponic System

Hydroponic agriculture consists of growing plants using mineral solutions that are
dissolved in water with essential elements or nutrients, either directly in water with
mineral elements or in inert agricultural substrates such as washed sand, perlite,
vermiculite, sawdust, coconut fiber, and rock wool among many other substrates, in
which the roots receive a balanced nutrient solution (Zacchini et al. 2009). Hydro-
ponic system can also be performed in a closed and fully controlled environment.
Nowadays, hydroponics is becoming very popular in different countries around the
world, where conditions for agriculture are adverse, combining hydroponics with a
good greenhouse management and obtaining yields much higher than those obtained
in open-air crops, which is why it is so important to opt for this technique.

Hydroponic system allows meeting food needs without thinking about large
enterprises, since we can achieve hydroponic crops at home, in the garden or on
the rooftop, whether vegetables, flowers, and even shrubs and medicinal plants,
allowing to obtain products for a healthy diet and with a good form of therapy as it
helps to lower the high levels of stress. In this sense, it is good to remember that a
stress situation (lack of irrigation) in a hydroponic crop can have more serious
consequences than in a soil crop, due to the different inertias of the cultivation
systems. Hence, a good water and nutritional status of the plant would minimize
these carbon losses. On the other hand, the reduction of stress factors, caused by
inadequate thermal levels, pests, diseases, or weeds, would minimize the alteration
of plant structures that will later demand carbon expenditures in maintenance
respiration to replace them. Another strategy is the selection of genotypes with
low maintenance respiration costs (due to an increase in the efficiency of
photoassimilate transport and in the half-life of their proteins). Genotypes with an
inverse relationship between growth and respiration have also been detected, i.e.,
genotypes with a faster growth rate have lower maintenance respiration rates, so
most of the energy produced by respiration is used for active growth.
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13.4 Aeroponic System

The term aeroponics is derived from the Greek terms aero and ponos, which,
respectively, mean air and work, this being a process for growing plants in an aerial
or water mist environment without using the soil. Aeroponics is a modern, advanced,
and high-tech type of agriculture, in which plants grow suspended in the air, using
the recycling of nutrients from the mist that sprays them, through the irrigation
system, which is supplied periodically in the form of mist or spray, thus allowing
greater growth and development of crops. The basic principle of aeroponics is that it
is a safe and ecological method for the production of healthy plants and crops, which
allows greater access to oxygen, and in making plants grow in a closed, semi-closed,
or uncovered environment, irrigated with a nutrient-rich solution to the roots that are
suspended in the air, which are supported by various conduction or support
structures.

13.5 Advantages of Aeroponic System

By using aeroponic systems, the presence of fungal diseases is reduced, which
allows crop plants to maintain constant growth and development, with more vigor-
ous and fast-growing roots. On the other hand, crops in the air allow optimizing the
benefits unlike traditional horticultural crops on soil or substrates, which can damage
production with poor soil quality, inadequate texture, lack of nutrients, or presence
of pests and diseases. Another advantage of opting for the aeroponic technique is the
supply of water and fertilizers that are generally found in the nutrient solutions of
salts and minerals, and also if a plant becomes diseased, it can be removed quickly
and easily from its support structure without destabilizing the rest of the plants.

13.6 Current State of Knowledge in Aeroponic System

The aeroponic system is one of the techniques which currently has become very
popular in protected agriculture and is implemented very easily according to the
large and multiple benefits it brings; one of the benefits is that it achieves higher
growth than any other systems on the market, because the air is the best medium that
is of greater use, which offers an adequate and balanced nutrient solution that is
oxygenated to the roots of the plants and allows them to grow much faster and
stronger, more resistant, and of better quality (Sivakumar et al. 2010). As a result of
the above, aeroponics is implemented for gardening, vegetables, forage crops,
grasses, fruit trees, and medicinal and aromatic plants, resulting in feasibility and
profitability for most producers. Due to the rapid growth that this technique provides,
the plants manage to reach their optimum size, bloom, and bear fruit before time
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unlike other methods of cultivation; therefore, with this method it is possible to
obtain better clones and yields in the same system instead of the typical transplant.
Aeroponics is ideal for advanced studies on plant water stress, because it allows
supplying the amount of water and moisture levels at the root. It is considered a good
tool to further study root morphology, inhibiting any kind of damage that may be
caused, and therefore it is the best system that produces more adequate and normal
roots than any other (Weathers et al. 2004).

Plasticulture system with aeroponic techniques in protected agriculture is nowa-
days of great importance for small and large producers in several countries, because
they allow an adequate use and management of natural and environmental resources,
as well as fertilizers. This leads to produce in a small environment with large
productions if the corresponding and adequate management use, resulting econom-
ical for the farmer. To carry out this system, the grower needs to obtain the seedlings
in vitro to guarantee the production, yield, and maximum quality of the crop, as well
as the necessary use of nutrient solutions, which will be supplied by the appropriate
person who frequently monitors the greenhouse.

13.7 Economic Importance of Aeroponic System

This novel form of cultivation of numerous plant species turns out to be very
important from a strategic and economic point of view since it allows a considerable
reduction in the amount of water and fertilizers required for plant production. These
factors turn out to be of utmost importance, since, in large semi-desert areas of the
world, surface water reserves reduce and subway aquifers deplete, providing fossil
water that has been stored in the aquifers for thousands of years.

In addition, because aeroponics makes it possible to precisely provide the amount
of nutrients needed by the plant at each stage of its development, it is possible to
achieve a more sustainable production from an environmental and economic point of
view. At the present time, there has been a significant increase in the price of
essential raw materials in the production of fertilizers, especially natural gas, potash,
sulfur, etc. For example, gas tariffs paid by Spanish industry have increased by
almost 50% since 2005. On the other hand, phosphate rock, which is mainly
purchased from North Africa, costs today 90% above the figure paid for the same
rock in 2009. Potash prices on the international market are also rising sharply. It
should be borne in mind that both natural gas and rock phosphate account for more
than 60% of the manufacturing costs of nitrogen and phosphate fertilizers, respec-
tively. Due to the above, an agricultural production method such as aeroponics
becomes more relevant since it allows significant savings in the consumption of
synthetic fertilizers of high economic value.
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13.8 Aquaponics

Plants in aquaponics are subject to many of the same pests and diseases that affect
field crops, although they appear to be less susceptible to attack by soil pests and
diseases. Instead, non-chemical methods were used, i.e., biological control, resistant
crops, predators, antagonistic organisms, barriers, traps, environmental manipula-
tion, etc. It also appears that plants in aquaponic systems may be more resistant to
diseases that affect those in hydroponic systems. This resistance may be due to the
presence of organic matter in the water, creating a stable, ecologically balanced
growth environment with a high diversity of microorganisms, some of which are
antagonistic to pathogens affecting plant roots. Common plants that do well in
aquaponic systems include any lettuce, spinach, arugula, basil, mint, watercress,
chives, and the most common houseplants, among others.

13.9 Sustainable Economic Systems Against Biotic
and Abiotic Stress in Medicinal Plants

Currently, there are different ways of growing medicinal and/or aromatic plants
under greenhouse conditions to preserve the freshness and culinary fragrance they
possess. To validate this, a research was carried out at the Humboldt University of
Berlin, in which several authors worked with four species of the Lamiaceae family:
Thai basil (Ocimum basilicum), holy basil (Ocimum sanctum), perilla (Perilla
frutescens), and Vietnamese balsam (Elsholtzia ciliata). These species are grown
in hydroponics as substrate and aeroponic cultures, comparing the quality of each of
them. However, the use of the aeroponic system showed the best results, because it
guarantees a quick reaction to changes in nutrient solution, high cleanliness, and
comfortable handling of the plants. On the other hand, when establishing an
aeroponic culture system based on calcined clay, a substrate that allows the feeding
of herbivorous insects on Arabidopsis thaliana roots, it was found that when infested
with Bradysia larvae, the growth and yield of that plant were positively affected.

13.10 Tolerance Mechanisms

Tolerance to abiotic and biotic stress is a multigene trait and highly regulated by the
effects of loci effects of hundreds of genes that control physiological and morpho-
logical responses of plants (Hu and Xion 2013) (Fig. 13.1).

Plants possess different mechanisms to survive under high temperatures, includ-
ing short- and long-term adaptations, phenological or morphological adaptations,
and adjustment mechanisms such as changes in leaf orientation (paraheliotropism),
allowing leaf lamina temperature to be maintained closer to the thermal optimum for
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photosynthesis on hot days, as occurs in beans (Fu and Ehleringer 1989). Other
tolerance mechanisms include modifications in membrane lipid composition (Wahid
et al. 2007), production of antioxidants, accumulation of compatible osmolytes and
pigments, and synthesis of heat shock proteins (HSPs) (Iba 2002; Wang et al. 2004;
Almeselmani et al. 2006; Lincoln and Zeiger 2006).

An ideotype of an annual crop tolerant to high temperatures and multiple asso-
ciated stresses, such as drought, high radiation, and nutritional disorders, must bring
together a combination of morphophysiological characters involving canopy,
growth habit, phenology, and root-stem ratio, through a flexible and plastic root
system that can vary from dimorphic with deep and shallow components (Kell 2011)
to specializations for diverse situations such as soilless agriculture and hydroponics.

It has also been observed that one of the main adaptations that allow crops to
tolerate high temperatures is the ability to produce and maintain a greater amount of
viable pollen. This was demonstrated in tolerant genotypes of tomato and bean, able
to maintain anther dehiscence, higher pollen viability, and lower floral abortion,
resulting in higher yields in high temperature environments (Porch and Jahn 2001;
Firon et al. 2012).

One of the primary effects of temperature stress is an increase in plasma mem-
brane fluidity and electrolyte loss (Wahid et al. 2007; Porch and Hall 2013), so to
maintain the integrity of cell membranes, plants must repair and remodel them
(Upchurch 2008), through adjustments to the degree of lipid saturation to increase
their thermostability (Falcone et al. 2004; Larkindale and Huang 2004; Upchurch
2008; Benning 2009; Su et al. 2009).

Acquired thermotolerance is another mechanism of tolerance to high temperature stress and
refers to the ability of plants and other organisms to acquire tolerance rapidly, within hours
even, and survive otherwise lethal temperatures. The acquisition of thermotolerance is a cell-
autonomous phenomenon, usually resulting from prior exposure to high but sub-lethal
temperatures, which prepare plants to withstand subsequent periods of high temperature
stress of a lethal nature (Vierling 1991). Acquired thermotolerance in plants coordinates
through signaling by substances such as abscisic acid (ABA), ROS, ethylene, and the
expression of HSPs. This process occurs when there is an increase of 5–10 �C above the
optimum temperature or above normal temperature conditions for crop growth (Iba 2002;
Firon et al. 2012).

Medicinal plants are exposed to various extreme and adverse environmental
conditions in the forms of biotic and abiotic stresses. Biotic stress is caused by
bacteria, fungi, and viruses. Abiotic stress is a condition associated with various
atmospheric changes, such as droughts, frosts, extreme temperatures, increased
ultraviolet radiation, and high energy blue light. Recordings of higher ozone levels,
the application of fertilizers, as well as the increase of soil and water salinity,
together with mineral deficiency (a condition referred to as oxidative stress or
heavy metal stress), have led to the study and analysis of other conjunctural aspects
(Fig. 13.2).

Negative impacts have been seen on the physiology, biochemistry, morphology,
growth, development, and survival of large areas of land around the world. The
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Fig. 13.2 Mechanisms of plant response to initial stress signals

328 L. G. López-Valdez et al.



damage caused by these two types of stresses represents a material concern for
producers, consumers, and governments.

13.11 Oxidative Stress in Medicinal Plants

Rodriguez et al. evaluated the antioxidant enzyme activity of five edible aromatic
medicinal plants: peppermint (Mentha sativa), mint (Mentha piperita), parsley
(Petroselinum crispum), basil (O. basilicum), and French oregano (Plectranthus
amboinicus L.).

In common basil, the highest anti-radical activity was found, while common basil
showed the highest reducing power, that is, the highest total antioxidant capacity,
while oregano had the lowest antioxidant enzyme activity. Based on the values
obtained by the ferric reducing antioxidant power (FRAP) method, basil stood out
compared to the rest of the plants studied with more than double the antioxidant
activity.

Tarchoune et al. (2012) studied the effect of different sodium salts on physiolog-
ical parameters and antioxidant response in basil (O. basilicum) cultivar “Fine” after
15 days of treatment with equimolar concentrations of 25 mM Na2SO4 and 50 mM
NaCl; no changes were observed in dry biomass, leaf area, and number of leaves.

However, at 30 days of treatment dry matter and leaf area decreased similarly
under both treatments compared to the control, while no effect observed by exposure
to these salts on leaf number (Tarchoune et al. 2013). Hydrogen peroxide levels
under NaCl treatment increased in plants after 15 and 30 days (Tarchoune
et al. 2012).

In plants treated with Na2SO4, they remained unchanged compared to the control
(Tarchoune et al. 2012). These results suggest that under NaCl exposure, antioxidant
defenses against H2O2 are lower than the production of this ROS (Tarchoune et al.
2012). H2O2 produced by apoplastic polyamine oxidase influences salt stress sig-
naling in tobacco (Nicotiana tabacum) and plays a role in the balance of tolerant
stress response and cell death (Moschou et al. 2008).

The activity of the antioxidant enzyme ascorbate peroxidase (APX) remains
constant after 15 days of exposure to Na2SO4, while under NaCl exposure it
increases twofold. After 30 days, APX activity increases in plants treated with
25 mM Na2SO4 and decreases in plants treated with 50 mM NaCl compared to the
control (Tarchoune et al. 2013). The rate of CO2 assimilation in basil (O. basilicum)
leaves exposed to NaCl decreases, possibly due to a decrease in stomatal conduc-
tance constant after 15 days of Na2SO4 exposure, while under NaCl exposure it
increases twofold. After 30 days, APX activity increases in plants treated with
25 mM Na2SO4 and decreases in plants treated with 50 mM NaCl compared to the
control (Tarchoune et al. 2013). The rate of CO2 assimilation in basil (O. basilicum)
leaves exposed to NaCl decreases, possibly due to a decrease in stomatal conduc-
tance (Tarchoune et al. 2013).
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Benzarti et al. (2012) evaluated photosynthetic activity and antioxidant response
in salt plants (Atriplex portulacoides) under extreme salinity. No changes were
observed in catalase (CAT) enzyme activity in leaves at 400 mM NaCl concentra-
tions, but it decreases at salinities 800–1000 mM. Superoxide dismutase (SOD)
activity increased significantly in response to both treatments, being proportional to
the salt concentration (Benzarti et al. 2012). The activity of APX in leaves was
higher at 400 mM NaCl than under control conditions (Benzarti et al. 2012). SOD
and CAT enzymes are involved in the detoxification of (O2) and (H2O2) and thus
prevent the formation of (-OH) (Benzarti et al. 2012). Elouaer and Cherif (2013)
conducted a study on the emergence and growth of coriander (C. sativa) seedlings
under salinity; the results indicate that increasing salinity decreased fresh and dry
weight and mineral content.

Mehr and Bahabadi (2013) analyzed the physiological and antioxidant response
of coriander (C. sativum) under salinity at different levels (0.25 mM, 50 mM,
75 mM, and 100 mM NaCl) (Mehr and Bahabadi 2013). The results suggest that
CAT activity in treated plants increases with NaCl concentration compared to the
control. The highest CAT activity is observed at 75 and 100 mM NaCl.

13.12 Plant Species Sensitive to Salt Stress

Plant growth can vary within a wide range, depending on the genetic capacity of the
species, phenological stage, environmental interactions, and type of ion (Ashraf and
Foolad 2007).

For example, among cereals, rice (O. sativa) is the most sensitive and barley
(Hordeum vulgare) is more tolerant (Munns and Tester 2008).

The effect of salinity on growth attributed to the combined effects of water stress,
ionic toxicity, disturbance of mineral nutrition, and oxidative stress (Hasegawa et al.
2000; Zhu 2002).

Plants are classified into two groups: halophytes if they can grow in NaCl (3.5 M)
soils and in most cases grow satisfactorily in NaCl (0.3 and 1 M). Hydroponic
complexes combined with desalination units are developed to use seawater as a
source of irrigation water; mainly tomato (L. esculentum) is grown, due to its high
productive potential (Resh 1992).

The nutrient solution, the mutual relationship between anions and cations, the
concentration of nutrients expressed as electrical conductivity, pH, the NO3-NH4

ratio, and temperature are a fundamental part of hydroponics; the magnitude and
quality of production depend on it (Herrera 1999). These anion and cation ratios
should be regulated according to plant demand at the phenological stage of the crop
(Herrera 1999). Herb production in hydroponic production models can be an alter-
native under greenhouse conditions (Herrera 1999). Mexico is the main supplier of
green basil (O. basilicum), cilantro (Coriandrum sativum), and parsley
(Petroselinum sativum) to the US market (Minero 2004).
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13.13 Water Deficit

Water deficit is a limiting factor for plant growth, triggering the accumulation of
secondary metabolites. Marchese et al. (2010) evaluated the content of artemisinin
(antiparasitic drug) in Artemisia annua L., under the effects of biotic and abiotic
stress. A. annua grown in growth chambers subjected to five water deficit treatments
(irrigated, 14, 38, 62, and 86 h without irrigation). Water deficits of 38 and 62 h
(Ψw¼�1.39 and�2.51 MPa, respectively) increased artemisinin content in leaves,
but only 38 h significantly increased the concentration of the secondary metabolite
artemisinin in leaves as well as in the plant (29%), without damage to biomass
production. These results indicate that artemisinin is part of the chemical defense
system of A. annua against water deficit.

Barba de la Rosa et al. evaluated the incidence of biotic and abiotic stress on the
accumulation of phenolic acids and flavonoids in the leaves of two cultivars of
Amaranthus hypochondriacus differentiated by leaf color (red and green).

Phenolic compounds were isolated by accelerated solvent extraction (ESA) and
analyzed by LC-MS. Rutin was the main flavonoid in amaranth leaves; the highest
concentrations were found in the green-leaved species when plants were subjected to
stress (9715 μg g�1). Ferulic-type phenolic acid was the minority compound, which
was found in red leaves (0.5 μg g�1) and p-coumaric acid only in green leaves
(0.7 μg g�1).

Singh et al. (2021) evaluated the effect of various abiotic factors and seasons on
Bacopa monnieri growth, bacoside A production, and antioxidant and acetylcholin-
esterase inhibitory activities of the plant extract.

Under different abiotic stresses, bacoside A content in the methanol extracts of
the dried aerial parts was determined by a densitometric thin-layer chromatography
(TLC) method. The in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and
Ellman’s method were used, to evaluate the antioxidant and acetylcholinesterase
inhibitory activities of the different extracts, respectively. Plants grown in season
2 (sandy loam soil) had significantly higher bacoside A content and higher antiox-
idant activity and acetylcholinesterase inhibitory activities than plants grown in
season 1 (clay loam soil). Therefore, these authors recommend that the plant should
grow from February to May under water stress to improve the production of the
marker compound and to obtain significant bioactivities.

13.14 Silicon

Although silicon was not recognized as an essential chemical element in plant
growth, it has been observed that several plants accumulate it under different biotic
and abiotic stress conditions, and a high accumulation of silica has been found on the
surface of the tissues. Silica is effective in the control of several diseases caused by
fungi and bacteria in different plants and exerts mitigating effects on various abiotic
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stresses, such as salt stress, metal toxicity, drought stress, radiation damage, nutrient
imbalance, high temperatures, and frost. To obtain plants resistant to multiple
stresses, genetic modification of the root capacity to absorb silicon has been
proposed.

13.15 Drought

Water availability affects plant growth. The commercial medicinal values of an
aromatic medicinal plant are a function of the concentration of secondary metabo-
lites that could be affected by water depletion.

Tatrai et al. (2016) evaluated 2-year-old medicinal thyme (Thymus citriodorus)
plants, which were subjected to different concentrations of polyethylene glycol
(PEG-6000) under greenhouse conditions (0, 2% and 4%) for 15 days. The thyme
plants reflected a morphological process of drought avoidance, the fresh weight of
shoot radicles reduced, and there was a high water absorption capacity of the roots.
Stressed thyme maintained water use efficiency and root-shoot ratio. Tissue dehy-
dration was reduced by stomatal closure and improved root water uptake. The
concentration of the volatile secondary metabolite’s thyme oil, diisobutyl phthalate,
and geraniol increased by drought stress, and pseudothymol was decreased. Thymol
increased with drought stress to the extent of 4.4%, while carvacrol accumulated
significantly under drought stress (+31.7%) compared to control plants. Soil and
water salinity cause reduced plant growth and production (Yamaguchi and
Blumwald 2005).

Drought and herbivory are two major types of stresses in terrestrial ecosystems
that cause changes in biochemistry, physiology, and whole-plant growth.

Recent studies of plant under water stress (Mundim and Pringle 2018) reported
that primary metabolites and secondary metabolites would give insight into the
complex metabolic and structural demands necessary for plants to acclimate and
maintain function when faced with multiple stresses.

13.16 Salinity

Salinity is a very important factor in soil degradation; it was estimated that, world-
wide, about 800 million hectares are under irrigation and 200 million are subject to
salt stress.

Salinity in plants directly affects the photosynthesis process due to stomatal
closure and carbon dioxide (CO2) assimilation, which decreases water absorption
by roots and sap formation. Toxicity due to sodium (Na+) accumulation in plant
tissues constitutes an additional stress (Munns 2002). Drought and salinity effects
often occur simultaneously, which is very common in arid and semi-arid areas
(Morales et al. 2004).
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Gengmao et al. (2014) evaluated biochemical and physiological responses under
five salinity treatments (0, 25, 50, 50, 75, and 100 mM NaCl) in the medicinal plant
Salvia miltiorrhiza. Salinity treatments<100 mMNaCl did not affect S. miltiorrhiza
growth in a morphological sense but significantly inhibited dry matter accumulation.
Salt stress significantly decreased leaf superoxide dismutase (SOD) activity com-
pared to that of the control. Catalase (CAT) activity in leaves increased with
increasing salinity of the hydroponic solution. Protein and soluble sugar contents
increased with increasing salinity of hydroponic solution. The results reflected that
osmolytes and antioxidant enzymes were involved in the adaptive response to salt
stress, thus maintaining better plant growth under saline conditions. Aromatic
grasses like palmarosa (C. martinii) and lemongrass (C. flexuosus) are reported to
withstand salinity (Naeem et al. 2013).

13.17 Herbivory

Recent studies on plant-herbivore interactions have shown that shoot metabolic
profiles were altered by root herbivory (Erb et al. 2009; Kaplan et al. 2008;
Wondafrash et al. 2013), but it remains surprisingly rare to examine whole-plant
responses to herbivory under concurrent abiotic stresses. The allocation of metabolic
pathways for tolerance and protection of tissues from damage under stress affects
plant fitness and competitive ability, as well as plant mediation of multispecific
trophic interactions.

13.18 Extreme Temperatures

Global warming influences rising temperatures by reducing precipitation at most
sites. The intermittent and simultaneous occurrence of water deficiency and temper-
ature extremes causes heat stress damage to plants. Alhaithloul et al. (2020) evalu-
ated metabolomic, physiological, and biochemical variations inMentha piperita and
Catharanthus roseus as a function of heat and drought stress (alone and combined).
Plants were exposed to drought and/or heat stress (35 �C) for 7 and 14 days. Plant
height and fresh and dry weights significantly decreased by the stress. Drought
and/or heat stress triggered the accumulation of osmolytes (sugar alcohols, including
inositol and mannitol, glycine, betaine, sugars, and proline), with maximum accu-
mulation in response to the combined stress.

Total contents of saponins, phenols, and flavonoids reduced in response to
drought and/or heat stress at seven and fourteen days; however, alkaloids, tannins,
and terpenoids increased under stress in both plants, with maximum accumulation
under combined heat and drought stress.

Mala et al. (2021) evaluated the transcriptome of the endangered medicinal plant
Rheum australe that has anticancer properties. The species thrives in extreme
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environmental conditions in habitat. The transcriptome of plants growing in their
natural habitat and those growing in growth chambers maintained at 4 �C and 25 �C
were studied to understand the genes associated with different temperatures. A total
of 39,136 transcripts were obtained. Transcriptome analysis showed 22.4% of genes
differentially up-expressed and 22.5% down-expressed in species growing in natural
habitat and at 4 �C compared to those at 25 �C. These adaptive advantage genes
belong to secondary metabolites, phytohormones, signaling pathways, and trans-
porters and were associated with cell protection.

13.19 Polyamines

Polyamines are nitrogen-containing metabolites; the maximum representatives are
spermidine, spermine, and putrescine (Alcázar et al. 2010). Pathak et al. (2014)
mention that polyamines contain low molecular weight and act in stabilizing the
structure of lipids, membrane proteins, and macromolecules such as DNA and RNA
(Liu et al. 2007; Takahashi and Kakehi 2010; Hussain et al. 2011). Polyamines
behave as regulatory elements in biochemical, physiological processes and plant
development, as well as responses to biotic and abiotic stresses. Liu et al. (2007)
mentioned that the increase in polyamine concentration during drought stress is due
to de novo biosynthesis or reduced degradation. The alteration of polyamines under
stress conditions could be affected by the type of sensitive/tolerant plant, duration,
and intensity of stress and developmental stage of tissues. Liu et al. (2004), Dhruve
and Vakharia (2013), and Cruz-Ortega et al. (1998) mention that there is an increase
in spermine and spermidine concentration for the tolerant cultivar compared to the
sensitive cultivars of wheat, groundnut, and tomato, respectively. In these experi-
ments, the sensitive cultivars showed an elevation of putrescine level under stress
conditions. Consequently, transgenic plants with increased accumulation of putres-
cine, spermidine, and spermine enhanced drought stress tolerance (Capell et al.
2004; Bassie et al. 2008).

13.20 Jasmonates

Jasmonates (jasmonic acid and methyl jasmonate) correlate with the accumulation of
defense systems, expressing phenolic phytoalexins, alkaloids, coumarins, and ter-
penoids (van der Fits and Memelink 2000). Saponin (Chan et al. 2010), melatonin
(Tan et al. 2007), and serotonin (Anjum et al. 2008) function as secondary metab-
olites in abiotic stress tolerance through their role as antioxidant compounds. Pathak
et al. (2014) mention the key role of abscisic acid, salicylic acid, jasmonic acid, and
polyamines in biotic and abiotic responses.
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13.21 Conclusions

Understanding the biotic and abiotic factors and their subsequent modification
during cultivation/growth of medicinal plants will help to increase the production
of valuable secondary metabolites. The increased accumulation of secondary metab-
olites observed in response to drought and/or heat stress suggests that imposition of
abiotic stress may be a strategy to increase the content of therapeutic secondary
metabolites associated with these plants. The production of medicinal plants under
the organoponic, hydroponic, and aeroponic systems offers a solution to the food
problem of people with limited economic resources in rural areas, as they can grow
their food under this technique, even when there are problems of drought, flooding,
salinity, acidity, or erosion.
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Chapter 14
Influence of Salinity on the Growth,
Development, and Primary Metabolism
of Medicinal Plants

Tawseef Ahmad Mir, Muatasim Jan, Rakesh Kumar Khare,
Sandeep Dhyani, and Neha Saini

Abstract The cultivation of medicinal plants has proven to be financially useful to
the pharmaceutical and medical industries. These plants are rich in active ingredients
that can be turned into a wide range of medicines, some of which are life-saving.
These plant products have high curing values and can naturally flourish in a variety
of environments. This property can be used to make them more widely cultivated in
less-than-ideal environments. However, since most cultivable lands are mostly used
for the production of important food crops, it is difficult to begin large-scale
cultivation of these plants. Such non-cultivable lands are often subjected to a variety
of abiotic stresses, the most common of which is salinity. This chapter examines how
various medicinal plants react to salinity stress in terms of growth and physiology.
We emphasize medicinal plants’ physiological cycles, as well as their primary and
secondary metabolism, during salt stress, in order to facilitate a global cultivation
map for medicinal plants in such difficult or aggressive environments.

Keywords Stress · Medicinal plants · Salinity · Growth · Physiology

14.1 Introduction

Salinity stress has long been viewed as a major limiting factor in agricultural
productivity across the world. Approximately 20% of the world’s irrigated soil has
a high salt level, making it harmful to agriculture (Flowers and Yeo 1995). Salinity
has a deleterious impact on plant growth by lowering leaf water potential, causing
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morphological and physiological alterations, producing reactive oxygen species
(ROS), increasing osmotic stress, modifying metabolic processes, and increasing
ion toxicity (Khan et al. 2014) (Table 14.1). Plants develop salt stress tolerance as a
result of multilayer changes in molecular responses, as well as modifications in the
transcriptome, metabolome, and proteome. Since ancient times, India has been
renowned as a repository of traditional medical knowledge. The ancient literature
of Ayurveda is entirely based on herbal treatment, which is useful in curing
complicated problems that current medicine cannot always heal. Plant medications
account for up to 25% of total medications in industrialized nations like the United
States but up to 80% in developing nations like China and India (Jan et al. 2021a, b).
Medicinal plant production and upkeep is thus a lucrative sector that must be
safeguarded all around the world. Cultivating these plants in salt-contaminated
soils, on the other hand, has resulted in serious anomalies in their general develop-
ment and physiology (Thornber et al. 1977). In dry and semi-arid regions, where

Table 14.1 Effect of salinity on the various aspects of different medicinal plant species

Plant species Salinity effect References

Ocimum basilicum Germination delayed Miceli et al. (2003)

Thymus maroccanus Germination delayed Ramin (2005)

Thymus maroccanus Decrease in seedling
development

Said-Al Ahl and Omer (2011)

Matricaria chamomilla Cell division stops Said-Al Ahl and Omer (2011)

Citronella java Reduced number of tillers Chauhan and Kumar (2014)

Cuminum cyminum Vegetative phase stops Hassanzadehdelouei et al.
(2013)

Majorana hortensis Plant growth inhibition Aziz et al. (2008)

Thymus vulgaris Plant growth inhibition Said-Al Ahl and Omer (2011)

Mentha piperita var.
officinalis

Reduced leaves Tabatabaie and Nazari (2007)

Lippia citriodora Reduced leaves Tabatabaie and Nazari (2007)

Withania somnifera Reduced overall growth Jaleel et al. (2008a)

Salvia officinalis Reduced overall growth Ben Taarit et al. (2009)

Ammi majus Fruit yield reduced Nabizadeh (2002)

Trachyspermum ammi Reduced overall yield Ghavami and Ramin (2008)

Simmondsia chinensis Ca2+ level decreased Ali and Hassan (2013)

Teucrium polium Chlorophyll content decreased Said-Al Ahl and Omer (2011)

Catharanthus roseus Reduced protein content Osman et al. (2007)

Satureja hortensis Reduction in proline oxidase
activity

Muthukumarasamy et al.
(2000)

Ricinus communis Oil output decreased Banerjee and Roychoudhury
(2014)

Foeniculum vulgare Alteration in carbohydrate
balance

Abd El-Wahab (2006)

Mentha pulegium Phenolic accumulation occurs Queslati et al. (2010)

Mentha suaveolens Decrease in essential oils Aziz et al. (2008)

340 T. A. Mir et al.



25 percent of agricultural areas are affected, the impacts of salt stress are particularly
noticeable. Shoot ion-independent and ion-dependent responses are the two primary
stages of salinity stress-induced plant responses. The first phase, driven by sodium
ions, occurs within minutes or days, resulting in the closing of stomata and the
inhibition of leaf growth. Salinity has an impact on the plant-water relationship
during this period. In the second phase, harmful ions accumulate, especially in older
leaves, causing premature senescence, reduced output, and plant mortality. Plants
have developed a variety of strategies to cope with the negative consequences of salt
stress (Munns 2002). Plants have demonstrated tolerance mechanisms such as tissue
tolerance, shoot ion-independent tolerance, and ion exclusion to resist salt stress.
One of the most significant physiological processes of salt stress resistance in plants
is osmotic adjustment. Water intake, cell turgor, and other physiological activities
including cell expansion, photosynthesis, and stomatal opening are all well con-
trolled by osmotic adjustment in salt-resistant plants’ leaves and roots (Serraj and
Sinclair 2002). Although the link between salt tolerance and osmoregulation is
unclear, there is evidence that a small number of plant genotypes demonstrate salt
tolerance as osmotic adjustment increases (Chaves et al. 2009). Plants that are
resistant to salt stress will thrive by increasing the synthesis of secondary metabolites
and avoiding the ion’s damaging effects (Chen et al. 2009). Other physiological
characteristics that affect salinity tolerance include transpiration use efficiency,
transpiration, antioxidant generation, seed germination, harvest index, early seedling
development, leaf area, and water status maintenance (Negrao et al. 2017). As a
result, understanding the relationship between medicinal plants and salt stress in
terms of productivity and sustainability is important.

14.2 Causes of Salinity

14.2.1 Primary Cause

The majority of saline soils form as a result of natural geological, hydrological, and
pedological processes. Igneous rocks, volcanic rocks, sandstones, alluvial deposits,
and lagoonal deposits are among these soils. Evapotranspiration is particularly
significant in the pedogenesis of saline soils in arid and semi-arid environments.
Other forms of salinity can be found in tide-prone coastal locations, and the major
source of salinity is saline water incursion into rivers (Omami et al. 2006).

14.2.2 Secondary Cause

Secondary salt-affected soils are those that have been salinized by humans, mostly as
a result of incorrect irrigation practices and poor irrigation water quality. Water
logging caused by inappropriate irrigation causes anthropic salinization in arid and
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semi-arid environments (Ponnamperuma 1984). Human activities other than irriga-
tion can also generate secondary salt-affected soils, for example:

(i) As a result of the consequences of salt movement in both the higher and lower
layers, deforestation has been identified as a primary source of soil salinization and
alkalization.

(ii) Wastewater, airborne salts from industrial pollutants or waterborne salts
accumulate in soils.

(iii) Chemical pollution has resulted in salinization. Modern intensive agricultural
systems, particularly greenhouses and intensive farming systems, are especially
prone to salinization.

(iv) Overgrazing occurs mostly in arid and semi-arid climates, where natural soil
cover is sparse and cannot provide the food needs of significant animal husbandry
(Omami et al. 2006).

14.3 The Relationship Between Salt Stress and Medicinal
Plant Developmental Morphology

14.3.1 Germination

Salt stress inhibits germination by either killing the embryo or significantly lowering
the soil potential, causing water intake to be impeded. When Ocimum basilicum,
Eruca sativa, Petroselinum hortense, chamomile, sweet marjoram, and Thymus
maroccanus seeds were placed in salt polluted soil, germination was delayed (Miceli
et al. 2003; Ramin 2005; Ali et al. 2007; Belaqziz et al. 2009). Salinity has two
effects on seed germination: (i) there may be enough salt in the medium to reduce the
osmotic potential to the point where the intake of water required for nutrient
mobilization is slowed or prevented, and (ii) the salt components or ions may be
poisonous to the embryo (Jamil et al. 2006). Figure 14.1 shows the germination of
plant under different concentrations of salinity treatment.

14.3.2 Seedling Growth

The seedling stage of the plant’s life cycle has long been thought to be the most
susceptible. Salinity was found to block reserve food mobilization, stop cell division,
and enlarge and injure hypocotyls, resulting in a substantial of Thymus maroccanus.
Basil, chamomile, and marjoram all have similar reports (Said-Al Ahl and Omer
2011). In Aloe vera plants exposed to 2, 4, 6, and 8 ds m1 salt, the quantity of
foliages, root development, and dry matter reduced. These limits were mostly caused
by lower amounts of total soluble solids (TSS). In addition, the salt-stressed plants
produced 30 percent fewer sprouts than the control plants (Moghbeli et al. 2012).
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High saline levels dramatically reduced the number of tillers in Citronella java
plants, according to Chauhan and Kumar (2014). Cumin’s vegetative and reproduc-
tive phases were discovered to be the most vulnerable to 5 ds m1 salt stress
(Hassanzadehdelouei et al. 2013).

14.3.3 Survival and Developmental Characteristics

In medicinal plants such as Majorana hortensis, peppermint, pennyroyal, apple
mint, Aloe vera, Matricaria recutita, Thymus maroccanus, geranium, Thymus
vulgaris, sweet fennel, sage, andMentha pulegium, salinity stress has been identified
as a key inhibitor of plant growth (Said-Al Ahl and Omer 2011; Aziz et al. 2008).
Mentha piperita var. officinalis and Lippia citriodora var. verbena subjected to salt
stress had considerably less leaves, leaf area, and leaf biomass (Tabatabaie and
Nazari 2007). In milk thistle, salt stress of higher than 9 ds m1 decreased plant
height, number of leaves per plant, number of capitula per plant, and diameter of the
main stem capitulum. Under salt stress, growth metrics of Withania somnifera,
Catharanthus roseus, Achillea fragrantissima, Salvia officinalis, thyme, Nigella
sativa, Chamomilla recutita, and basil were shown to be suppressed (Jaleel et al.
2008a, b; Abd EL-Azim and Ahmed 2009; Ben Taarit et al. 2009; Hussain et al.
2009; Ghanavati and Sengul 2010).

14.3.4 Productivity

Salinity has a significant negative influence on plant production. As previously
indicated, the negative impacts of excessive salinity on plants can be seen at the
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whole-plant level as plant mortality and/or reduced yield (Parida and Das 2005).
Increasing salt concentrations reduced the number of umbels, fruit yield/plant, and
weight of 1000 seeds in fennel, cumin, and Ammi majus (Nabizadeh 2002; Ashraf
et al. 2004; Abd El-Wahab 2006). Milk thistle and Trachyspermum ammi both
showed similar decreases in seed output and yield components per plant (Ashraf
and Orooj 2006; Ghavami and Ramin 2008).

14.3.5 Nutrient Uptake

By disturbing the plant system’s nutrient absorption balance, salinity directly affects
plant development. The availability of nutrients, partitioning, and transportation are
all affected. This is due to Na+ and Cl� ions competing with nutritional ions such as
K+, Ca2+, and NO3�. The biophysical and/or metabolic components of the plant
system are directly affected by ionic imbalances generated by an excess of Na+ and
Cl� ions (Banerjee and Roychoudhury 2016). In fennel, Trachyspermum ammi,
peppermint, lemon verbena, Matricaria recutita, and Achillea fragrantissima,
increased levels of Na+ and Cl� under salt stress resulted in lower levels of N, P,
K+, Ca2+, and Mg2+ (Abd El-Wahab 2006; Queslati et al. 2010; Abd EL-Azim and
Ahmed 2009). Different salt concentrations altered the percentages of N, P, and K+
in the leaves of Simmondsia chinensis, according to Ali and Hassan (2013). The
three elements were significantly reduced when the salt concentration exceeded
17.2 mM. The Ca2+ level in the salt-stressed leaves decreased at a similar rate.

14.4 The Relationship Between Salt Stress and Medicinal
Plant Photosynthesis

The photosynthetic mechanism of plants is the principal target of any abiotic stress.
The most significant and fundamental physiological mechanism for plant develop-
ment and survival is photosynthesis. To maintain this mechanism a significant
amount of energy is required and is thus prone to stress, which disrupts the metabolic
balance within the cell (Roychoudhury et al. 2007; Banerjee and Roychoudhury
2017). In centaury, Teucrium polium, Thymus vulgaris, Zataria multiflora,
Ziziphora clinopodioides, and Satureja hortensis, both chlorophyll a and b, as well
as total chlorophyll content, were decreased (Said-Al Ahl and Omer 2011). The
reduction in chlorophyll concentration is mostly due to chlorophyll production
inhibition along with increased chlorophyll breakdown. Because of the imbalance
in chlorophyll metabolism, photosynthesis is hindered, and the plant eventually dies
due to a lack of energy equivalents. Salt stress disrupts ion absorption, which has a
deleterious impact on the growth of chloroplasts and the protein translation
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machinery within plastids. In fennel, this is occasionally accompanied with plastid
deterioration (Abd EL-Wahab 2006).

14.5 The Relationship Between Salt Stress and Primary
Metabolites in Medicinal Plants

14.5.1 Proteins

Degradation of intact proteins has also been used to explain an increase in free amino
acid content in plants exposed to salt stress (Roychoudhury et al. 2011).
Catharanthus roseus showed a reduction in protein concentration when exposed
to salt (Osman et al. 2007). In salt-stressed chamomile and sweet marjoram, soluble
protein levels dropped. This suggests that salt stress causes protein aggregation
within cells, resulting in a decrease in the soluble protein fraction (Ali et al. 2007).
In Achillea fragrantissima subjected to a salt concentration of 4000 ppm, there was a
reduction in crude protein synthesis (Abd EL-Azim and Ahmed 2009). Protein
synthesis stimulation has also been linked to the degree of salinization in other
studies. This increase in protein accumulation might be to give nitrogen in a form
that can be reused by plants during their post-stress recovery period (Roychoudhury
and Chakraborty 2013).

14.5.2 Amino Acids

Salt-stressed plants may have higher amounts of some chemicals. Plants exposed to
salt stress have been found to accumulate amino acids (alanine, arginine, glycine,
serine, leucine, and valine, as well as the amino acid proline and the non-protein
amino acids citrulline and ornithine) and amides (such as glutamine and asparagines)
(Mansour 2000). Plants treated to salt stress have greater total free amino acids,
according to Catharanthus roseus and Matricaria chamomilla (Osman et al. 2007;
Cik et al. 2009). Proline is found in abundance in higher plants, and it accumulates in
greater quantities than other amino acids (Abraham et al. 2003). Proline accumulates
in the leaves of Salvia officinalis, Trachyspermum ammi, spearmint, chamomile,
sweet marjoram, Catharanthus roseus, Achillea fragrantissima, Matricaria
chamomilla, sweet fennel, and Satureja hortensis as a reaction to salt stress,
according to the literature (Hendawy and Khalid 2005; Ashraf and Orooj 2006;
Ali et al. 2007; Osman et al. 2007; Al-Amier and Craker 2007; Zaki et al. 2009; Abd
EL-Azim and Ahmed 2009; Cik et al. 2009; Najafi et al. 2010). In saline circum-
stances, the rise in proline content might be attributed to a reduction in proline
oxidase activity (Muthukumarasamy et al. 2000).
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14.5.3 Lipids

The amount of fatty acids in a plant’s cells is a good predictor of its vulnerability to
salt stress. Abiotic stressors have an impact on plant oil and fatty acid production
(Banerjee and Roychoudhury 2014). The oil output of Ricinus communis roots
subjected to salt stress was observed to be decreased. The oil content of the plant
shoots, on the other hand, rose (Ali et al. 2008). Salt stress considerably decreased
the total fatty acid content of Coriandrum sativum leaves. Increased NaCl concen-
trations also resulted in reduced a-linolenic and linoleic acid levels (Neffati and
Marzouk 2008).

14.5.4 Carbohydrates

Nutritional imbalances, hyper-osmotic stress, and impaired photosynthesis are all
caused by salinity stress. As noted in fennel, this alters the overall carbohydrate
balance (Abd El-Wahab 2006). With increasing concentrations of salt stress, how-
ever, a paradoxical rise in carbohydrates was reported in Salvia officinalis and
Satureja hortensis (Hendawy and Khalid 2005; Najafi et al. 2010).

14.6 The Relationship Between Salt Stress and Secondary
Metabolites in Medicinal Plants

14.6.1 Stress and Phenolic Compounds

Phenolics have been used as a salt stress sensor. Some phenolic compounds can
scavenge the reactive oxygen species (ROS) created by abiotic stressors, and this
category comprises of around 9000 chemicals with varied biological activities in
plants. Salt stress decreases electron flow in the photosynthetic electron transport
system and causes oxidative stress through the generation of reactive oxygen species
(ROS) (Das and Roychoudhury 2014). To scavenge the toxic ROS, higher plants
create phenolic acids, flavonoids, and proanthocyanidins. Several studies in medic-
inal plants have revealed that phenolics accumulate during salt stress (Waskiewicz
et al. 2012). Salt-stressed spearmint and Achillea fragrantissima plants produced
more phenolic acid and tannin (Abd EL-Azim and Ahmed 2009). Procatechuic,
chlorogenic, and caffeic acids all rose dramatically inMatricaria chamomilla plants
exposed to salt stress (Cik et al. 2009). In Nigella sativa and Mentha pulegium,
phenolic accumulation was also seen when salt content increased (Bourgou et al.
2010; Queslati et al. 2010). Other phenolic substances including quercetin, apigenin,
and trans-cinnamic acid production were apparently boosted in Nigella cultivated in
high-salinity soil (Bourgou et al. 2010)
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14.6.2 Study of Alkaloids Through Proteomic and Other
Approaches

Technological advancements in the field of proteomics have opened up new avenues
for ethnobotanical and phytomedical study. The control of secondary metabolism at
the protein level is critical for medicinal plant development. In most medicinal
plants, the natural production of secondary compounds is minimal. The secondary
metabolite, on the other hand, is what defines the plant’s medical and commercial
value. The complex metabolic architecture of these metabolites has made it difficult
to research their characteristics further. Overexpression of rate-limiting enzymes
involved in the manufacture of these secondary metabolites has been proposed using
cell suspension cultures and metabolic engineering approaches. As a result, a
proteomic technique was used to identify the proteins involved in secondary metab-
olite production (Banerjee et al. 2016). Catharanthus roseus is a model system for
secondary metabolites in medicinal plants (Verpoorte et al. 1997). Vinblastine and
vincristine, two anti-cancer alkaloid medicines, have been claimed to be produced by
the plant. The effects of zeatin and 2,4-dichlorophenoxyacetic acid (2,4-D) on
protein patterns and alkaloid synthesis in C. roseus were investigated using
two-dimensional gel electrophoresis. It was discovered that proteins that were
lowered by 2,4-D but enhanced by zeatin exposure may play a role in alkaloid
biosynthesis control (Jacobs et al. 2000). Differential expression of 88 protein
locations was discovered in another proteome investigation of C. roseus.
Strictosidine synthase, tryptophan synthase, and 12-oxophytodienoate reductase all
have two isoforms, according to mass spectrometric analysis. In alkaloid biosynthe-
sis, strictosidine synthase catalyzes the creation of strictosidine (Jacobs et al. 2005).
Tryptophan synthase is required for the production of tryptamine, an alkaloid
precursor, and 12-oxophytodienoate reductase catalyzes the last step in the synthesis
of jasmonic acid, a nontraditional plant growth regulator (JA). JA has long been
thought to be a key signaling molecule that controls plant defense during biotic stress
reactions and promotes alkaloid accumulation. During salt stress, the content of
reserpine in Rauvolfia tetraphylla rose. In the roots of salt-stressed Ricinus
communis, however, the ricinine alkaloids were decreased. Solanum nigrum
(solasodine) and Achillea fragrantissima plants growing in high saline soils showed
a significant rise in alkaloid levels (Aghaei and Komatsu 2013). Hung et al. (2010)
looked into the impact of Salvia miltiorrhiza secondary metabolites on atheroscle-
rotic lesions and cancer. Ginsenosides are significant alkaloids found in Panax
ginseng roots. To identify the proteins involved in the formation of ginsenoids,
researchers looked at the root proteome from a culture of P. ginseng hairy roots. The
root proteome research revealed the possible activities of 91 of the 159 proteins
discovered. During stress reactions, around 20% of the proteins (with specified
activities) were identified to control energy metabolism. Enolase, glyceraldehyde-
3-phosphate dehydrogenase, and aldolase have all been identified as isotypes. Their
relationship with secondary metabolism, however, has remained a mystery (Nam
et al. 2005). Chelidonium majus milky sap was subjected to two-dimensional gel
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electrophoresis, which revealed 21 proteins involved in plant defense, nucleic acid
binding, and stress signaling (Nawrot et al. 2007). Using two-dimensional electro-
phoresis of poppy latex, Decker et al. (2000) aimed to discover proteins involved in
morphine biosynthesis in the opium poppy (Papaver somniferum). The most signif-
icant protein found was codeinone reductase, which may play a key role in morphine
production during times of stress.

14.6.3 Essential Oils and Salt Stress

The commercial and industrial value of essential oils is enormous. Peppermint
(Mentha piperita), pennyroyal (Mentha pulegium), and apple mint (Mentha
suaveolens) are the most common mint species that contain them. Salt stress reduced
the essential oils of all mint species, according to Aziz et al. (2008). In comparison to
the control, the salt-induced drop in essential oil concentration was greater in
peppermint and apple mint than in pennyroyal. Monoterpenes are the main compo-
nent of essential oils found in mint species. With a rise in salt concentration, the
proportion of menthone (another ingredient of essential oils) increased. Other
compounds, on the other hand, reduced when the plant was subjected to the
maximum level of salt stress. In comparison to peppermint and apple mint, the
authors discovered that changes in the amounts of components in pennyroyal were
far milder under salt stress. Trachyspermum ammi, Thymus maroccanus, basil, and
fennel all had lower essential oil yields when exposed to salt (Ashraf and Orooj
2006). Salinity stress reduced the anethole concentration in fennel, according to Abd
El-Wahab (2006). Salt stress had a varied effect on the levels of the major compo-
nents in marjoram essential oils (Baatour et al. 2010). However, during salt stress,
various essential oil molecules such as a-bisabolol oxide B, a-bisabolonoxide A,
chamazulene, a-bisabolol oxide A, a-bisabolol, and trans-b-farnesene were observed
to be enhanced (Baghalian et al. 2008). In Origanum vulgare subjected to salt stress,
Said-Al Ahl and Hussein (2010) found significant reductions in essential oil com-
ponents such as carvacrol, p-cymene, and c-terpinene. Lemon balm, Majorana
hortensis, Matricaria chamomile, Salvia officinalis, and basil all had significant
salt-induced inhibitory effects (Said-Al Ahl and Omer 2011). During mild salt stress,
essential oil compounds such as (E)-2-decenal, (E)-2-dodecenal, and dodecanal
initially rose in coriander. The oil level, however, reduced dramatically at greater
concentrations (Neffati and Marzouk 2008). Under regulated settings, the major
components of essential oils in Ocimum basilicum were eugenol and linalool. The
level of eugenol was reduced by salt stress, whereas the content of linalool was
increased (Said-Al Ahl et al. 2010). Under control circumstances and 25 mM NaCl,
the predominant essential oil molecule in Salvia officinalis was viridiflorol, but
1,8-cineole increased under 50 and 75 mM NaCl stress. Manool became the dom-
inating component when the plants were subjected to 100 m NaCl stress (Ben Taarit
et al. 2010). Satureja hortensis sage, thyme, and basil cultivated in salt-contaminated
soils showed an increase in the proportion of essential oils (Baher et al. 2002;
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Hendawy and Khalid 2005; Ezz El-Din et al. 2009). With increasing stress, essential
oil elements such as carvacrol increased and c-terpene reduced dramatically in
coriander roots (Neffati and Marzouk 2008). Under salt stress, the proportion of
essential oils and oil output (ml per plant) in curly leafed parsley increased. Under
stress, foliar scent components such as b-phellandrene, myristicin, b-myrcene, and
apiole were also altered (Said-Al Ahl et al. 2016). So far, the differing impacts of salt
stress on essential oil synthesis have been studied based on data for several medic-
inally significant plant species. Increased oil gland density, along with a larger
absolute number of gland productions during stress, has been hypothesized as a
possible cause of essential oil buildup in several plant species. Net assimilation or the
partitioning of assimilates across growth and differentiation processes might be other
considerations. Plants’ main metabolism may slow down during times of stress,
resulting in the buildup of intermediate products that are channeled into secondary
metabolites like essential oil. The decreasing of essential oil levels in stressed plants
might be related to the general anabolism being impeded by exposure to salty
environments (Said-Al Ahl et al. 2016).

14.6.4 Steroid (Cardenolide) Metabolism and Salt Stress

Cardenolide is a steroid derivative found inDigitalis purpurea and other plants. This
plant’s extracts are used to treat heart failure. They are mostly found in the form of
glycosides, which are sugar-derived structural groups. Morales et al. (1993) found
that in moderate salinity conditions, the cardenolide level in D. purpurea leaves and
roots was raised. WhenD. purpurea plants were exposed to 100 mM salt stress, their
cardenolide level was greater than when they were exposed to 200 mM salt stress or
when they were cultivated under control circumstances.

14.7 Conclusion and Future Prospects

Medicinal plants are grown for various plant parts, and their active ingredients are
employed in a variety of applications, including pharmaceuticals. They have been
regarded promising plants for marginal areas, freshly reclaimed soils, and semi-arid
regions due to its high curative value and natural occurrence in varied habitats.
Because a large number of literatures report on the sensitivity of medicinal and
aromatic plants to salt stress, the high-yielding genotypes of these plants are highly
encouraging. On medicinal plants, there is a scarcity of information. The overall goal
of future research is to get a better knowledge of medicinal plants’ responses to salt
stress by evaluating the relative tolerance of different medicinal and aromatic plants,
as well as their sensitivity at various plant stages; how varied environmental vari-
ables impact salt-stressed medicinal and aromatic plants; how salt-stressed medicinal
and aromatic plants are affected by a variety of environmental factors; and the effects
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of feeding and other therapies on salt-stressed plants’ growth, mineral absorption,
photosynthesis, and active components. Medicinal plants’ salt resistance systems
should be alleviated.

Saline lands can be converted to more productive plant lands by a number of farm
management practices:

• Drip or micro-jet irrigation: growth of deep-rooted perennial plants or trees are
examples of better farm methods.

• Amelioration through fertilization: salinity causes nutritional imbalances in
plants, mostly by lowering macro-element concentrations (N, P, K, and Ca). As
a result, increasing nutrient concentrations in the root zone with larger fertilizer
doses is the most straightforward strategy to restore normal nutrient concentra-
tions inside the plant.

• Leaching: the most successful way for reclaiming saline soils is to leach them to
remove soluble salts.

• Usage of salt stress tolerant plants: plant-breeding procedures incorporating the
introgression of the genetic background from salt-tolerant wild species into
cultivated plants are being used to develop salt-tolerant plant genotypes.
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Chapter 15
Role of Nano-Biotechnology in Medicinal
Plant Production

Deepu Pandita

Abstract Nanotechnology tool has the capability and unprecedented boom to
provide society with great benefits and manifold applications. Nanoparticulated
systems are used as nano-fertilizers, nano-pesticides, nano-herbicides, biosensors,
and quality stimulants, substantially contribute to superior plant yield, and produce
greater concentrations of treasured secondary metabolites and nutritive significance
of crops. Nanoparticles (NPs) on the basis of precise size, composition, concentra-
tion, and mode of delivery increased plant growth photosynthesis, biochemical
characteristics, and overall plant performance in a range of medicinal plants. Medic-
inal plants possess healing properties and phytotherapeutic effects due to the pres-
ence of specific biologically active secondary metabolites and have been used by
mankind since prehistoric times. Secondary metabolites act as principal compounds
for designing effective modern-day drugs. NPs act as novel and effective elicitors
and induce oxidative stress for enhancing secondary metabolite production in
medicinal plants. Nanoparticles can alleviate both the biotic and abiotic stresses
and improve morphological, physiological, and other biological parameters in
medicinal plants and their production.

Keywords Nano-biotechnology · Medicinal plants · Secondary metabolites ·
Nanoparticles · Elicitors

15.1 Introduction of Nano-Biotechnology

Nanotechnology discipline deals with atoms or molecules (nanoparticles) in the size
range of nanometer scale (1–100 nm) in a single dimension (Yu et al. 2020).
Nanoparticles have uniqueness in terms of chemical composition, physical structure,
interactions, and magnetic and optical effects. Size provides nanomaterial their
unique property. Reduced size of nanomaterial has larger surface area. This leads
to high chemical reactivity of nanoparticles (NPs). Nanostructures are more
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promising tools due to astounding catalytic reactivity, optical absorption, electrical
conductivity, and mechanical characteristics (Pattan and Kaul 2014; Ali et al. 2021).
According to the US National Nanotechnology Initiative (https://www.nano.gov),
nanotechnology is “the understanding and control of matter at dimensions of roughly
1 to 100 nanometers, where unique phenomena enable novel applications.” The
European Commission defined nanotechnology as the “Key Enabling Technology”
front-runners for sustainable competitively and development in quite a lot of indus-
trial sectors (ec.europa.eu). Biotechnology is based on use of various technological
tools and applications for the comprehensive understanding and development of
biological molecules and organisms. The interdisciplinary approach of nano-
biotechnology belongs to nanotechnology and uses techniques of both nanotechnol-
ogy and biotechnology (i.e., nano-biotechnology). The NPs find use in the natural
biological systems for the benefit of mankind. NPs offer an efficient mode to
accomplish high yield of plant by mitigating the adverse effects of biotic and abiotic
stresses (Jampilek and Kralova 2019, 2021). Nanoparticles evade undiscriminating
and excessive usage of conservative pesticides and fertilizers in the plants. The
majestic scenario of the nano-enabled agriculture which can withstand “farm to fork”
chain can be viewed in a chapter written by Pandita (2020). The current chapter has
highlighted the advancements in Nano-biotechnology and its applications towards
medicinal plant production and applications.

15.2 Nanomaterials

Nanomaterials have dimensions ranging between 1 nm and 100 nm in one of the
dimensions (Thakkar et al. 2010; Jeevanandam et al. 2018). NPs have varied
characteristics (optical, electronic, and chemical), because of a large surface area
besides quantum properties that are accessible on these scales (Khan et al. 2019).
These novel characteristics have permitted us to find distinctive uses of NPs.
Nanomaterials can be categorized on the basis of number of their dimensions in
macro-scale: 0D consists of NPs with all dimensions on nano-scale, 1D includes
nano-fibers and nano-wires with only one dimension in macro-scale, 2D includes
nano-sheets and thin films, and 3D signifies materials in bulk (Singh 2016).
Nanomaterials are categorized into carbon, polymeric, ceramic, and metal com-
pounds on the basis of their chemical nature as well (Khan et al. 2019; Paramo
et al. 2020). The nanomaterials of carbon nature comprise structures, for instance,
fullerenes, grapheme, and CNTs, i.e., carbon nanotubes (Ealias and Saravanakumar
2017). Ceramics are inorganic solids comprised of ceramic compounds, for instance,
titanium dioxide (TiO2), iron dioxide (FeO2), and zinc oxide (ZnO) (Thomas et al.
2015; Paramo et al. 2020); and metals contain nanomaterials of gold (Au), copper
(Cu), silver (Ag), and nickel (Ni). Organic nanomaterials contain dendrimers
obtained from organic nanoparticles symmetrical to the nucleus (Ealias and
Saravanakumar 2017; Paramo et al. 2020).
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15.3 Interaction of Plants with NPs

Plants can be exposed to the NPs through different methods, for example, direct
injection of NPs into plant cells, spraying of NPs on plant leaves or any other plant
part, contamination of soil with nanoparticles or irrigation of plants with nanopar-
ticle suspensions, and infection of cellular pollen grains or seeds (Zhu et al. 2008;
Corredor et al. 2009; Yin et al. 2012; Tarafdar et al. 2012; Poborilova et al. 2013;
Speranza et al. 2013; Paramo et al. 2020). NPs invade naturally into plants through
roots or aboveground plant parts. Cellulosic cell wall permits entry of small particles
in a moderately easy mode and limits larger NPs. NPs of only 5 and 20 nm
dimensions can pass the cell wall (Dietz and Herth 2011). Few NPs induce larger
pore formation in cell wall facilitating access to large NPs (Navarro et al. 2008;
Kurepa et al. 2010). Higher NP concentrations cause mutilation of the plant cell wall
(first barrier) and plasma/cell membrane of plants. This facilitates penetration of NPs
inside the cell which then interacts with various cellular processes (Mazumdar and
Ahmed 2011; Mirzajani et al. 2013). Once inside the cell wall, NPs transport by
process of endocytosis (Etxeberria et al. 2006). In different plant tissues, NPs show
symplastic transport (Ma et al. 2010). Inside the cell, NPs affect electron transport
chain (ETC) of powerhouse mitochondria and photosynthetic chloroplasts resulting
in oxidative burst and increased ROS accumulation which in turn may induce
apoptosis or necrosis and cell death (Dimkpa et al. 2013; Faisal et al. 2013; Jiang
et al. 2013; Pakrashi et al. 2014; Cvjetko et al. 2017). In contrast, ROS positively has
signaling function in a range of cellular processes as well as ecological stress
tolerance (Sharma et al. 2012). To fight against stress, plants increase the concen-
tration of antioxidants under the influence of nanoparticles (Rastogi and Pospíšil
2010; Sharma et al. 2012; Faisal et al. 2013; Jiang et al. 2013; Costa and Sharma
2016). This proves antioxidant system regulation in reaction to interaction of NPs
with the plant. A range of hormonal pathways show up regulation or downregulation
against various types of stresses influencing plant metabolism (O’Brien and
Benková 2013). NPs affect concentration of the photosynthetic pigments as well
as their activity in plants (Perreault et al. 2014; Tripathi et al. 2017).

15.4 Applications of Nano-Biotechnology

Nanometer-size enables easy penetration of NPs in cell walls, plasma membranes,
cytoplasm, and cell organelles of plants and affects the plant metabolism efficiently
(Nair et al. 2010). Nanotechnology through NPs has various benefits for plants, e.g.,
nano-pesticides for crop protection, nano-herbicides, nano-fungicides, nanoparticle-
based gene target delivery for crop improvement, nano-fertilizers for crop improve-
ment, and computerized control of nano-sensors for precision farming. Positive
interactions of NPs at the cellular levels in plants may result into enhanced photo-
synthesis, nutrition and stress tolerance and soil nutrition, and seed nano-priming
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(Iavicoli et al. 2017). Manifold characteristics of crop yield have been embarked by
nanotechnology. The designed nanomaterials improve quality of soil (e.g., nano-
fertilizers), increase plant growth (e.g., growth promoters, seed primers, photosyn-
thetic enhancers), and provide protection to plants against disease-causing pathogens
(e.g., nano-pesticides), among other applications (Fraceto et al. 2016). Nano-
fertilizers stimulate development of crops through absorption of micronutrients for
appropriate development of plant. Nano-fertilizers can be synthesized by zinc (Zn),
silica (SiO2), titanium dioxide (TiO2), copper (Cu) nanoparticles (NPs), and poly-
meric nanoparticles (NPs) as dendrimers which act as nano-carriers ((López-Valdez
et al. 2018; Kah et al. 2018; Vandevoort and Arai 2018). Nano-pesticides protect
against abiotic stresses; pesticide encapsulation for controlled discharge improves
selectivity and stability of pesticides. This reduces cost of pesticides and increases
era of active chemical compounds (Pascoli et al. 2018). Nanomaterials can help in
the remediation of contaminated environments (Yarima et al. 2020). These improve-
ments may overcome forthcoming agricultural demands, snowballing quality and
quantity (yield) of crops, reducing chemical pollution, or even defending crops
against various ecological stresses (Liu and Lal 2015).

15.5 Role of Nano-Biotechnology in Medicinal Plant
Production

Nano-biotechnology plays dynamic roles in the improvement of production of
secondary metabolites due to their novel and exceptional characteristics (Giraldo
et al. 2014). Plants produce different secondary metabolites after exposure to diverse
inducer molecules or stress-inducing agents known as the elicitors (Zhao et al.
2005a, b). The elicitors can be categorized as biotic and abiotic elicitors. Several
nanoparticles act as elicitors and defend the plant against them, and consequently,
the plants produce stress-induced metabolites (Davey 2016). The elicitation in
in vitro conditions induces stress to plants and activates plant defense system
which then accumulates secondary metabolites in huge amounts. NPs are competent
and novel elicitors used in biotechnology of plants for the enhancement of produc-
tion of secondary metabolites (Fakruddin et al. 2012). Nanoparticles act as potential,
novel, and effective nano-elicitors in a number of medicinal plants. Momordica
charantia on elicitation with AgNPs at 5 mg/L concentration showed enhancement
in the concentration of phenolics and flavonoids (Grover and Yadav 2004; Chung
et al. 2018a). Ocimum basilicum showed elevated regeneration capacity through
somatic embryogenesis by use of CuNPs (Ibrahim et al. 2019). Copper sulfate NPs
(CuSO4NPs) increased flavonoid content in it (Genady et al. 2017). CuONP elicita-
tion in Gymnema sylvestre, Stevia rebaudiana, Withania somnifera, and Cichorium
intybus increased TPC and TFC (Chung et al. 2019a; Laishram et al. 2018; Kurek
and Krejpcio 2019). Nano-sized ZnO particles enhanced anthocyanin secondary
metabolite in Glycyrrhiza glabra (Oloumi et al. 2015). Fe3O4NPs enhanced
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flavonoid content in Dracocephalum kotschyi which contains rosmarinic acid and
methoxylated hydroxyflavones (Moradi et al. 2020; Nourozi et al. 2019). Chitosan-
NPs increased phenolics and flavonoids in Camellia sinensis (Chandra et al. 2015).
Nanoparticles show activity against various plant pathogens. TiO2 shows antifungal
activity against wheat rust (Irshad et al. 2020), CuO acts as a biosensor for the
detection of Aspergillus niger (Etefagh et al. 2013), ZnO holds fungicidal activity
against Botryosphaeria dothidea, Alternaria mali, and Diplodia seriata in apple
orchards (Ahmad et al. 2020), CuO has also antifungal activity against
Colletotrichum gloeosporioides (Oussou-Azo et al. 2020), Zn and Cu increase
quantity and quality in the basil plant (Abbasifar et al. 2020), and graphene oxide-
Fe3O4 is antifungal against Plasmopara viticola (Wang et al. 2017). Medicinal
plants can also be used as sources of NPs. Ag-NPs (9–35 size) synthesized from
leaf extract of basil andMangifera indica improved fresh and dry weight and amount
of photosynthetic green chlorophyll pigment and stimulated content of carbohy-
drates and proteins in wheat seedling at concentrations of 20 and 40 μg mL�1 (Latif
et al. 2017). The use of AgNPs produced from extracts ofMoringa oleifera enhanced
shoot and root lengths and leaves at trifoliate stage in wheat plant at a concentration
of 100 μg mL�1 (Iqbal et al. 2019). Various medicinal plant-based NPs and their
applications are given in Table 15.1.

Spray application of nano-silver at a concentration of 20, 40, and 60 ppm on seeds
ofOcimum basilicum enhanced height and dry weight of plant and improved yield of
seeds (Nejatzadeh-Barandozi et al. 2014). Application of silver nanoparticles at
concentrations of 100, 200, 500, 1000, 2000, and 4000 mg L�1 after soaking of
Ricinus communis seeds improved enzymatic activity and quantity of parahydroxy
benzoic acid (Hojjat and Hojjat 2015). Silver nanoparticles at a concentration of
500, 1000, 1500, 2000, 2500, and 3000 ppm increased plant height, number, length,
and weight of fruits in Cucumis sativus (Yin et al. 2011) and in Foeniculum vulgare
at 0, 30, 60, 90, 120, 150, and 180 mmol L�1 increased percentage of seed
germination and improved fresh weight and length of roots (Thangavelu et al.
2018). Nano-silver at 0, 10, 20, 30, and 40 g ml L�1 concentrations in Trigonella
foenum-graecum enhanced germination of seeds, length of roots, and fresh and dry
weight of plant roots (Lee et al. 2012) and in Thymus kotschyanus (0, 20, 40, 60,
80, and 100 ppm) improved diameter of canopy area, essential oil, yield, and
α-terpinyl acetate amount and declined flowering time (Sharma et al. 2012). Silver
NPs (20, 40, 60 ppm) increased number of seeds and inflorescences in Carthamus
tinctorius (Zari et al. 2015) and root numbers, root lengths, and dry weight of leaves
in Crocus sativus (0, 40, 80 or 120 ppm) (Mukhopadhyay 2014). CNTs, MWCNTs,
and fullerols Ag NPs affected seed yield in Ocimum basilicum, growth and yield in
wheat, and yield of fruits in bitter melon (Nejatzadeh-Barandozi et al. 2014; Kole
et al. 2013; Razzaq et al. 2016). Au NPs at 10 ppm affected growth and seed yield in
Indian mustard (Arora et al. 2012). Au NPs exhibited positive influence on germi-
nation of seeds (39.67%), biomass (by 2.40-fold), and fresh weight (by 5.18-fold) in
Gloriosa superba (Gopinath et al. 2014). Cerium oxide nanoparticles (CeO2 NPs) at
125 mg/kg concentration revealed significant rise in length of plant roots and shoots,
biomass, and activities of shoot catalase and root ascorbate peroxidase in
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Coriandrum sativum (Morales et al. 2013). Fullerol [C60 (OH) 20] upsurged levels
of cucurbitacin-B (74%) and lycopene (82%) and antidiabetic compounds, including
charantin (20%) and insulin (91%) in Momordica charantia (Kole et al. 2013).
Nano-silver particles (Ag NPs) act as prospective elicitors and increased content of
sesquiterpene lactone known as artemisinin in hairy root cultures of Artemisia annua
(Zhang et al. 2013). Aloe vera nano-Ag and nano-TiO2 effectively enhanced aloin
production at 48 hours in cell suspension cultures of Aloe vera plant (Raei et al.
2014). Ag NPs increase overall phenols in Bacopa monnieri (Krishnaraj et al. 2012).
An application of Fe and Zn nano-oxides induces production of hypericin and
hyperforin in Hypericum perforatum (Sharafi et al. 2013). Table 15.2 shows numer-
ous research investigations on the applications of NPs in medicinal plant production.
NPs can have some negative effects as well in plants. TiO2 increased root growth in
Arabidopsis thaliana but declined total biomass and chlorophyll content at higher
concentrations. Higher concentrations also cause lipid peroxidation, reduced growth,
damage in germination of seeds, uptake of the minerals, ultrastructure of the cellular
and subcellular organelles, oxidative stress and antioxidant response, and photosyn-
thesis inhibition, hinder photosynthetic pathways by blockage of electron transport
chain (ETC) and DNA damage, and change biosynthetic genes causing change in
content of vitamin E (Szymańska et al. 2016; Kataria et al. 2019; Rajput et al. 2020;
Paramo et al. 2020). The positive and negative consequences of NPs on the various
medicinal plants are summarized in Fig. 15.1.

15.6 Conclusion

Nano-biotechnology plays a dynamic role to boost the production of secondary
metabolites owing to their novel and exceptional characteristics. Plants produce
secondary metabolites on exposure to diverse inducer molecules or elicitors. NPs
trigger interference to electron transport chain (ETC) of chloroplasts and mitochon-
dria inside the cell and generate ROS which will trigger apoptosis or necrosis and
cell death. The complex networks of phytohormones up- or downregulate during
stress. The medicinal plant-derived nanoparticles (NPs) possess various biological
applications such as antimicrobial, antibacterial, cytotoxic, wound-healing potential,
etc. NPs can give a new face to medicinal plant production in both positive and
negative ways such as reactive oxygen species (ROS) production, damage to
micronuclei and DNA with an upsurge in concentration, plant growth, enhancement
in chlorophyll content and leaf area, upregulation of phenylalanine, metabolomics
pathways related to defense and secondary metabolism, etc.
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Table 15.2 NPs and their applications in medicinal plant production

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

Allium cepa L. Root hairs of Allium cepa
show interaction with Au
NPs of various sizes
(15 nm, 30 nm, and
40 nm)

Reactive oxygen species
(ROS) production which
enhances lipid peroxidation
and chromosomal
aberrations

Rajeshwari et al.
(2016)

Aluminum oxide Increased concentration
causes damage to DNA and
micronuclei

De et al. (2016)

Ag and Au (at 5.4 ppm) Au improves seed germi-
nation, height of plant,
length and diameter of
leaves; Ag improved seed
germination

Acharya et al.
(2019)

MWCNTs (0 mg�L�1 and
500 mg�L�1)

Enhanced height of plant,
chlorophyll rate, and sur-
face area of leaves

Abdul-Ameer
and Almousawy
(2019)

ZnO/MWCNTs Enhanced seedling growth Kumar et al.
(2018)

Arabidopsis
thaliana (L.)
Heynh.

TiO2 (100–1000 mg�L�1) Chlorophyll amount
reduces modifications in
biomass and antioxidant
enzymes of plant

Szymańska et al.
(2016)

Carbon nano-horns
(0, 0.01, 0.05, 0.1, 0.3,
0.5, 1, 5, 10, 50, and
100 mg�L�1)

Changed content of sugars
and amino acids at
0.1 mg�L�1. Increase in
nicotinamide, flavones, and
purines

Sun et al. (2020)
and Paramo et al.
(2020)

Artemisia annua
L.

Cobalt NPs of 10 nm
diameter (5 mg�L�1)

Enhances content of
artemisinin (medicinal
compound)

Ghassemi et al.
(2015)

Ag–SiO2 Increase in content of
artemisinin and catalase
(CAT) enzyme activity

Zhang et al.
(2013)

Beta vulgaris
subsp. vulgaris

TiO2, ZnO � 40 nm size
(0.25 ml�L�1,
0.50 ml�L�1)

NPs increased chlorophyll
amount, growth of beetroot
plant, and terpene content

Siddiqui et al.
(2019)

Brassica juncea
(L.) Czern

Au Increase in height of Bras-
sica plant, diameter of
stem, and yield and
decrease in sugar content
after foliar spray

Arora et al.
(2012)

Brassica
oleracea,
Solanum
lycopersicum L.,
Lactuca sativa
L., Amaranthus
dubius Mart.
Ex. Thell

Graphene (500 mg L�1
–

2000 mg L�1)
Inhibition of growth and
biomass of plants, dose-
dependent decrease in leaf
number. Increase in reac-
tive oxygen species and
damage of cell; no notable
toxicity in lettuce

Begum et al.
(2011)

(continued)
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

Brassica rapa L. CuO Decrease in content of
chlorophyll, carotenoid,
and sugars; increase in
content of proline and
anthocyanin by CuO, pro-
duction of ROS,
malondialdehyde (MDA),
glucosinolate, phenolic and
flavonoid, and hydrogen
peroxide

Chung et al.
(2018b, 2019b)
and Paramo et al.
(2020)

Brassica rapa
spp. pekinensis

CuO Increase in glucosinolates
and phenolic compounds

Chung et al.
(2018b)

Calendula
officinalis L.

AgNPs in blend with
methyl jasmonate

Saponin content increased
by 177%

Ghanati and
Bakhtiarian
(2014)

Capsicum
annuum L.

ZnO Increased germination of
seeds, seed vigor up to
123.50%, 129.40%, and
94.17% (at 100 ppm,
200 ppm, and 500 ppm),
phenolics and antioxidant
activity

Garciá-López
et al. (2018)

Capsicum
annuum L.,
Solanum
melongena L.

Graphene nanosheets
(0.1 g�L�1, 0.2 g�L�1, and
0.3 g�L�1)

Increased yield and growth,
sugars, and H2O2. Cell
membrane not damaged;
nanosheets located in
chloroplast

Younes et al.
(2019)

Catharanthus
roseus (L.)
G. Don

MWCNTs (0 mg�L�1,
50 mg�L�1, 100 mg�L�1,
and 150 mg�L�1)

Increased growth, plant
biomass, length of roots,
chlorophyll, carotenoids,
proteins, CAT, and POX
enzymes

Ghasempour
et al. (2019)

Chrysanthemum
L,
Gerbera L.,
Streptocarpus
Lindl.

Ag and Au Ag prevents rhizogenesis in
Chrysanthemum and Ger-
bera. Gold NPs increased
regeneration of roots in
Gerbera. Ag and Au
increased micro-
propagation in cape
primrose

Tymoszuk and
Miler (2019) and
Paramo et al.
(2020)

Cicer arietinum
L.

Molybdenum from small
to huge concentrations
(1 � 10�5 � 2 mg�L�1)

Declined plant growth at
high concentrations. Iron
(Fe) deficiency in young
plant leaves. Declined
number of leaves, flowers,
and pods

Nautiyal and
Chatterjee (2004)

Water-soluble carbon
nanotubes (wsCNTs)

Enhances growth rate of
roots, shoots and
branching.

Tripathi et al.
(2011)

(continued)
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

TiO2 NPs at concentra-
tions 0.5, 1.5, 3, 4, and
5 mg�L�1

Increases contents of the
phenolics and flavonoids

Mohammed
AL-oubaidi and
Kasid (2015)

Citrullus lanatus
(Thunb.)
Matsum. &
Nakai

CuO (500 mg�L�1
–

1000 mg�L�1)
Increase in biomass and
fruit production

Elmer et al.
(2018)

Citrus
maxima Merr.

α-Fe2O3 α-Fe2O3 accumulates in
roots. Decreased chloro-
phyll content

Hu et al. (2017)

Coriandrum
sativum L.

Ni Decreased water content,
photosynthetic pigments,
elongation of roots and
shoots, antioxidant activity

Miri et al. (2017)
and Paramo et al.
(2020)

Cucumis melo L. γ-Fe3O3; Fe3O4 Increased chlorophyll con-
tent and fruit weight at
200 mg�L�1 concentrations

Wang et al.
(2019b)

Cucumis sativus
L.

Foliar application of Ag of
20 nm size (4 and 40 mg/
plant)

Antioxidant defense sys-
tem activation,
upregulation of phenolics,
and changed membrane
characteristics

Zhang et al.
(2018) and
Paramo et al.
(2020)

Cucurbita max-
ima L.

Fe3O4 (100 mg L�1) Presence in phloem sap
revealed NP translocation;
reduced levels of oil-related
metabolites, such as
4-tetradecyl ester eicosane,
methoxyacetic acid, and
heneicosane

Tombuloglu et al.
(2020) and
Paramo et al.
(2020)

Cucurbita pepo
L.

MWCNTs Reduced percentage of
germination of seeds, shoot
length, and biomass.
Increase in oxidative
damage

Hatami (2017)

Daucus carota
L.

Ag Reduced percentage of
seed germination, growth,
and protein content of
seeds. Increased chloro-
phyll and H2O2 content

Park and Ahn
(2016)

Multi-walled CNTs No alteration in germina-
tion. Seed protein and
H2O2 content decreased,
whereas chlorophyll con-
tent increased

Park et al. (2016)

Dracocephalum
L.

TiO2 Improved shoot length and
quantity of essential oils

Mohammadi
et al. (2016)
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

Duckweed CuO Altered rate of plant growth
and photosynthetic amount

Lalau et al.
(2014)

Glycine max L. Fe2O3, fulvic acid-coated
FeeO3, Fe-EDTA

Stress-related and plant
growth disorders absent,
improved content of chlo-
rophyll, plant biomass, and
development of roots

Yang et al.
(2020a)

Hordeum
vulgare L.

Cadmium oxide (CdO)
(7–60 nm)

Altered primary metabolite
content, saccharides, and
amino acids (tryptophan
and phenylalanine)

Večeřová et al.
(2016)

Hyoscyamus
niger L.

Bulk and nano-TiO2 Increased superoxide
dismutase (SOD) by both
increased hyoscyamine and
scopolamine amount in
nano-TiO2.

Ghorbanpour
et al. (2015) and
Paramo et al.
(2020)

Hyoscyamus
reticulatus L.

Fe3O4 (0 mg�L�1,
450 mg�L�1, 900 mg�L�1,
1800 mg�L�1,
3600 mg�L�1)

Increased antioxidant
enzymatic activities, hyo-
scyamine and scopolamine

Moharrami et al.
(2017) and
Paramo et al.
(2020)

Hypericum
perforatum L.

ZnO, Fe3O4 (0 ppb,
50 ppb, 100 ppb, 150 ppb)

Higher hypericin and
hyperforin production

Sharafi et al.
(2013)

Ipomoea batatas
L.

ZnO, CuO, and CeO2 Yield of plants influenced
at higher ZnO, CuO, and
CeO2 concentrations

Bradfield et al.
(2017) and
Paramo et al.
(2020)

Lactuca sativa
L.

Ag No phytotoxic effect on
foliar applications

Larue et al.
(2014)

Carbon dots Increased yield and growth
rate and decreased nitrate
content

Zheng et al.
(2017)

CuO Germination of seeds and
root radicle growth
stopped; S-nitrosothiols
levels in radicles exhibited
direct dose-dependent
response

Pelegrino et al.
(2020) and
Paramo et al.
(2020)

Al2O3 (0.4, 1, and
2 mg�L�1)

Root absorption increased
acquisition of macronutri-
ents. Adsorption and
aggregation of Al2O3

restricted translocation to
roots

Hayes et al.
(2020) and
Paramo et al.
(2020)

Graphene oxide Improved length, number
of hair roots. Foliar appli-
cation increased superiority
of proteins, lettuce, sugars,
and vitamin C
(at 30 mg�L�1)

Gao et al. (2020)
and Paramo et al.
(2020)
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

Lactuca sativa
L. var. longifolia

CeO2 (1000 and
2000 mg�kg�1)

Lesser content of photo-
synthetic chlorophyll and
biomass

Zhang et al.
(2017)

Lepidium draba
L.

Fe3O4, CuO Higher CAT and POD
enzyme activities and con-
centration of sulforaphane

Riahi-Madvar
et al. (2016)

Malus domestica
Borkh.

GO Inhibition of lateral roots,
increased activity of CAT,
POD, and SOD enzymes,
auxin efflux carrier and
auxin influx gene tran-
scription at 0.1 mg�L�1

Li et al. (2018a)
and Paramo et al.
(2020)

Medicago sativa
L.,
Lactuca sativa
L.

Cu O (5, 10, and
20 mg�L�1)

Decline in length of roots
and shoots, change in
enzyme activity

Hong et al.
(2015) and
Paramo et al.
(2020)

Mentha piperita
L.

TiO2 (150 mg�L�1) Menthol contents increased
by 105.1%

Ahmad et al.
(2018)

Momordica
charantia L.

Fullerol C60 (OH) 20 Increased biomass of plant
and yield of fruits and con-
tent of charantin and
insulin

Kole et al. (2013)

Nigella arvensis
L.

Al2O4, NiO Biomass of plant enhanced
at 50 mg�L�1 and
100 mg�L�1 of Al2O3 and
50 mg L�1 of NiO. Bio-
mass reduced at high NP
concentration; increased
antioxidant capacity, total
saponins and total pheno-
lics at 100–2500 mg�L�1 of
Al2O3

Chahardoli et al.
(2020) and
Paramo et al.
(2020)

Ocimum
basilicum L.

Multi-walled CNTs Induction of plant growth
and content of the essential
oil increased. Higher dos-
age (100 mg�L�1) causes
toxic effects in plant

Gohari et al.
(2020) and
Paramo et al.
(2020)

Oryza sativa L. Zinc (1.5–8.5 mM) Inhibits uptake of Fe, Cu,
Mn, Ca, Mg

Shri and Pillay
(2017)

Ag Increase in quantity of
green photosynthetic chlo-
rophyll a and carotenoids,
activities of CAT, APX,
and GR enzymes

Gupta et al.
(2018) and
Paramo et al.
(2020)

GO Upregulation of phenylala-
nine, secondary metabolic
pathways, and aquaporin
inhibition

Zhou and Hu
(2017) and
Paramo et al.
(2020)
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

Mesoporous carbon Decrease in length of roots
and shoots and increased
phytohormones

Hao et al. (2019)

CuO Suppression in growth rate
of seedlings; decreased
quantity of green chloro-
phyll and carotenoid in
plant leaves

Yang et al.
(2020b)

TiO2 Improved biomass
(>30%). Decreased rates of
photosynthesis at
10 mg�L�1.
Downregulation of energy
consumption in
metabolism

Zhang et al.
(2020) and
Paramo et al.
(2020)

Manganese (3 and 6 mM) Growth inhibition,
increased superoxide anion
leads to oxidative stress

Srivastava and
Dubey (2011)

Oryza sativa L.,
Lolium L.,
Raphanus
raphanistrum
subsp. sativus,
Cucurbita L.

Au Positively charged Au is
absorbed by roots, whereas
negatively charged Au is
translocated into shoots

Zhu et al. (2012)

Phaseolus
radiatus
Triticum
aestivum L.

CuNPs Reduced growth rate in
both species

Lee et al. (2008)

Phaseolus
radiatus
Sorghum bicolor
L.

Ag Seedling growth affected,
growth rate not affected in
soil media

Lee et al. (2012)

Phaseolus
vulgaris L.

CeO2 (500 mg�L�1) Root exposure with NP
suspensions increased sol-
uble protein content by
204%

Majumdar et al.
(2014)

CeO2 (25, 50, and
100 mg�L�1)

Accumulation into roots
and translocation to above-
ground plant parts, tissue-
specific metabolic
reprogramming

Salehi et al.
(2020)

Pisum sativum
L.

Cd, Co, and Pb at high
concentrations

Catastrophe of germination
and growth of seedlings

Majeed et al.
(2019)

Raphanus
sativus L.

TiO2 (10 to 1500 mg�L�1) Increased photosynthesis
and phenols. Higher TiO2

concentrations subscribe to
rapid water-use efficiency

Tighe-Neira et al.
(2020)

(continued)

368 D. Pandita

https://en.wikipedia.org/wiki/Raphanus_raphanistrum
https://en.wikipedia.org/wiki/Raphanus_raphanistrum
https://en.wikipedia.org/wiki/Cucurbita_pepo


Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

Salvia officinalis
L.

Titanium dioxide TiO2 Content of phenolics and
flavonoids was highest at
200 mg�L�1 and
100 mg�L�1

Ghorbanpour
(2015) and
Paramo et al.
(2020)

TiO2 Improved antioxidant
activity. Maximum con-
centrations of phenols and
flavonoids achieved at
200 and 100 mg�L�1

Ghorbanpour
(2015) and
Paramo et al.
(2020)

Salvia
verticillata L.

Multi-walled CNTs Increased oxidative stress
in leaves and rosmarinic
acid. Decreased photosyn-
thetic pigments

Rahmani et al.
(2020)

Satureja
khuzestanica

MWCNTs Increased flavonoid and
phenols in callus culture

Ghorbanpour
and Hadian
(2015) and
Paramo et al.
(2020)

Silybum
marianum
L. Gaertn.

Monometallic and metal-
lic alloys (Ag, Au, Cu,
Au-Cu, Ag-Cu, and
Ag-Au)

Increased frequency of
seed germination, develop-
ment of the shoots and
roots. Ag-Cu and Ag-Au
alloys increased phenolics.
Others increased flavonoid
content as well

Salman Khan
et al. (2016) and
Paramo et al.
(2020)

Sinapis alba L. CNTs Seed germination energy
and seed viability repressed
at all concentrations but not
at 0.01 g�t�1

Polischchuk et al.
(2020) and
Paramo et al.
(2020)

Solanum
lycopersicum L.

CeO2 (250–500 mg�kg�1) Increased length of shoots
and green chlorophyll
amount

Barrios et al.
(2016) and
Paramo et al.
(2020)

CoFe2O4 No effect on seed germina-
tion but length of roots
increased

López-Moreno
et al. (2016)

Multi-walled
CNT-carboxylic acid
functionalized single-wall
CNTs (SWNT)

CNTs showed no response
on growth and height of
plant. SWNT increased
content of salicylic acid

Jordan et al.
(2020) and
Paramo et al.
(2020)

Uncoated cerium oxide
NPs and citric acid-coated
cerium oxide NPs
(500 mg�kg�1)

Increased length of shoots Barrios et al.
(2016) and
Paramo et al.
(2020)

Spinacia
oleracea L.

CeO2 Chlorophyll content, bio-
mass, peroxidation of
lipids, and plant biomass
were unaffected.
Downregulation of amino

Zhang et al.
(2019)
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

acids and decrease in zinc
and Ca in plant leaves

Stevia
rebaudiana
(Bertoni) Bertoni

CuO Oxidative stress triggers
antioxidative molecule
(phenols, flavonoids) pro-
duction, increased produc-
tion of rebaudioside A and
stevioside

Javed et al.
(2017a)

ZnO-PEG, ZnO-PVP,
CuO-PEG, CuO-PVP,
CuO, ZnO.

Nanoparticles made of
metal oxide capped with
polymers increased content
of steviol glycosides, phe-
nolics, and flavonoids than
uncapped metal oxide NPs

Javed et al.
(2017b) and
Paramo et al.
(2020)

ZnO NPs Increased phenolics and
flavonoids and antioxidant
responses. ZnO NPs
(1 mg�L�1) increased
nearly two times content of
steviol glycosides

Javed et al.
(2018), Kumar
et al. (2018) and
Paramo et al.
(2020)

CuO and ZnO Act as abiotic elicitors to
generate plants with ele-
vated antioxidant levels

Javed et al.
(2018)

Tanacetum
parthenium L.

C60 and salicylic acid Enhanced growth of plant
at more concentrations.
Extreme enhancement in
flowers (1000 mg�L�1),
increased chlorophyll
amount at lower C60 levels

Ahmadi et al.
(2020)

Thymus
daenensis

MWCNTs Increase in biomass and
height of Thymus seedling,
highest content of total
phenolics, flavonoids, and
antioxidant activity at
250 μg�mL�1

Samadi et al.
(2020)

Trigonella
foenum-graecum
L.

Ag produced by silver
nitrate reduction

Enhanced shoot length,
number of the leaves, chlo-
rophyll, carotenoids, phe-
nolics, flavonoids, and
tannins

Sadak (2019)

Triticum
aestivum L.

TiO2 Early growth parameters
badly influenced

Zahra et al.
(2019)

NiO2 Decreased growth of plant,
increased antioxidant
quantity and inhibition of
photosynthesis

Saleh et al.
(2019) and
Paramo et al.
(2020)

ZnO Increased length of plant
roots and shoots

Singh et al.
(2019) and
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

Paramo et al.
(2020)

Fe2O3 (500 mg�kg�1) Improved length of roots,
height, biomass, green
chlorophyll amount. NPs
translocate into leaves and
cause damage to root tip

Al-Amri et al.
(2020)

GO, GO quantum dots,
and reduced GO

Decrease in mineral ele-
ments, upregulation of
amount of sugars. rGO
downregulates proteins and
decreases amylopectin,
prolamin, amylose, and
globulin.

Li et al. (2018b)
and Paramo et al.
(2020)

TiO2 Enhanced length of the
roots and shoots, nutrient
quantity in shoots, and
crude protein quantity at
50 mg�L�1

Ullah et al.
(2020) and
Paramo et al.
(2020)

TiO2, Fe2O3, CuO (50 and
500 mg�kg�1)

CuO application decreased
contents of Zn, Fe, and
essential amino acids. TiO2

improved accumulation of
amino acids. Fe2O3

increased contents of cys-
teine and threonine

Wang et al.
(2019a) and
Paramo et al.
(2020)

TiO2 Roots upregulated mono-
saccharides and azelaic
acid, triggering of tyrosine
metabolism; leaves
upregulated reserve sugars
and pathways of tocoph-
erol, tryptophan,
phenylalanine

Silva et al. (2020)
and Paramo et al.
(2020)

ZnO NPs size of 35 nm
(15, 62, 125, 250, and
500 mg�L�1)

Length of roots and shoots
increased. ZnO provides
Zn micronutrient for devel-
opment of the plant

Singh et al.
(2019)

Fe2O3 and ZnO Enhanced height, area of
leaves and shoot dry weight
of plant. Zn and Fe
increased in leaves

Fathi et al. (2017)

Triticum vulgare
L.

Fe, Cu, Ni Fe stimulates growth. Ni
and Cu produced toxicity
on growth as metal content
increased. Ni and Cu at low

Mikhailovna
Korotkova et al.
(2017)
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Table 15.2 (continued)

Medicinal plant
species Nanoparticles (NPs)

Effects produced in
medicinal plants Reference(s)

concentrations reduced
growth of roots

Vicia faba L. Single-bilayer GO Decreased growth, activity
of catalase and ascorbate
peroxidase, increased leak-
age of electrolytes

Anjum et al.
(2014)

Vigna radiata L. TiO2 Alterations in length of
shoots and roots, quantity
of chlorophyll, and total
soluble leaf proteins

Raliya et al.
(2015)

Zea mays L. Phytochemical capped Au
NPs

Increased germination of
aged seeds

Mahakham et al.
(2016)

Fe2O3 (50 and
100 mg L�1)

Decrease in root length Li et al. (2016)

Al2O3 (2000 mg�L�1) Somewhat poisonous to
elongation of roots

Yang et al.
(2015)

Y2O3 (10, 30, 50, 100, and
500 mg�L�1)

Rates of germination of
seeds was unaffected;
increased peroxidase, cata-
lase, polar metabolites
exhibited dose-dependent
rise in NPs

Gong et al.
(2019)

Fe3O4 No effect on biomass of
plant and photosynthetic
process. Fe accretion
increased in underground
roots. Metabolomic path-
ways connected to defense
machinery were inactivated

Yan et al. (2020)

TiO2, SiO2 (1000 mg L�1) SiO2 decreased length and
fresh weight of shoots;
TiO2 reduced chlorophyll
content

Ghoto et al.
(2020)

Zea mays L.
Oryza sativa L.

γ-Fe2O3 γ-Fe2O3 increased percent-
age of germination of seeds
and seedling vigor index at
500 ppm in both plants

Kasivelu et al.
(2020) and
Paramo et al.
(2020)

ZnO (2000 mg�L�1) Decrease in elongation of
roots

Yang et al.
(2015) and
Paramo et al.
(2020)

Zea mays L.
Glycine max (L.)
Merr.

MWCNTs MWCNTs accumulated in
vascular tissues. Growth
stimulation in Zea mays
and growth inhibition in
Glycine max. Dry biomass
of Zea mays increased

Zhai et al. (2015)
and Paramo et al.
(2020)
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Chapter 16
An Insight into Plant Nanobionics and Its
Application to Overcome the Impact
of Environmental Stress on Medicinal
and Aromatic Plants

Arian Amirifar, Arash Hemati, Behnam Asgari Lajayer, Janhvi Pandey,
and Tess Astatkie

Abstract Nanomaterials can significantly boost plant growth and crop yield. They
exhibit exceptional traits compared to other materials such as high surface area,
tunability, adjustable pore size, and prominent reactivity. They can be utilized in the
production of various herbicides, pesticides, fertilizers, etc. Recent developments in
the nanomaterial’s framework and their application have improved photosynthetic
properties of various plant species and reduced destructive impacts of reactive
oxygen species (ROS) and oxidative stress. Utilization of medicinal plants has
been embedded in different cultures since ancient times all around the world, mainly
due to numerous benefits and applications of secondary metabolites extracted from
them. It has been suggested that nanomaterial application can enhance the secondary
metabolite production of medicinal plants. Several utilizations and benefits of
various nanoparticles of silver, copper, carbon, titanium, silicon, zinc, magnesium,
and molybdenum are discussed in this chapter. Nanotechnology is a science that is
performed at the nanometer measures, which ranges from 1 to 100 nanometers.
“Plant nanobionics” can be characterized as a new area of research incorporated
between nanotechnology and botanic biology. Thus, it is a field in plant science
correlating with the utilization of nanoparticles and their cooperation with the plants
that arises with an innovative function.
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16.1 Introduction

The word “nanobionics” is made up of two words: nano and bionics. Both words
have Greek origins. “Nano” is derived from Greek word νᾶνoς meaning dwarf, and
“bionics” originates from the Greek word bios meaning life; also bionics is a
portmanteau word consisting of biology and electronics. Nanomaterials are catego-
rized and recognized by their nanoscale size, in at least one of the three dimensions.
Nanomaterials have various utilizations, and recently their use in agricultural sector
is being broadly researched as a propitious approach to enhance the development of
plant species and their productivity (Gogos et al. 2012; Giraldo et al. 2019).
Significant progress in the field of nanotechnology amalgamated with biotechnology
has elevated the applicability and relevance of nanotechnology in various research
fields (Ashkavand et al. 2015). The exceptional characteristics of nanomaterials
provide them with several properties such as catalytic, magnetic, thermal, electrical,
and fluorescence that are required for medical, electronics, energy, and environmen-
tal remediation applications (Sharma and Madou 2012; Prasad et al. 2014).
Nanomaterials have various herbicidal, pesticidal, bactericidal, and fertilizing traits
that target specific plant parts (Prasad et al. 2014). There are several types of
nanomaterials including fullerene (C60), graphene, carbon dots, polymeric
nanoparticles, and metal-based nanoparticles such as iron, aluminum, copper, silica,
zinc, gold, and silver. Some other oxidized nanoparticles like zinc oxide, titanium
dioxide, and cerium oxide have been synthesized for various applications like
bioremediation, energy storage, catalytic reactions, photocatalytic utilizations, fuel
cells, sensors, agriculture and biomedical operations involving nanomedicine, drug
transport/delivery, and wound-healing properties (Joshi et al. 2018). Recently,
nanomaterials are being extensively used in agricultural fields to enhance the
productivity of crops and their resilience to pathogen infection (Chen et al. 2015;
Ismail et al. 2017; Gupta et al. 2018). Nano-enabled agriculture can promote more
efficient plant protection and growth, as well as introduces new functions to modify
plants through specific interactions shown in Fig. 16.1.

Diminished size of arable land, water resources scarcity, ramifications of global
warming, and low effectiveness of the commonly used chemicals aggravate the
abiotic and biotic stress among species and subsequently lower the yield potential.
For example, salinity and drought stress provoke enormous financial crux due to
crop losses each year. Efficient utilization of nanoparticles can help the germination
of seeds and their treatment, species development, pathogen identification and
analysis, and detection of harmful chemicals present in the agricultural products
(Nuruzzaman et al. 2016). Consequently, plant nano-biotechnology might stimulate
viable agricultural production through mechanisms distinct from those of chemical
and genetic engineering (Kah et al. 2019; Giraldo et al. 2019; White and Gardea-
Torresdey 2018).
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16.2 Nanobionics for the Improvement of Photosynthetic
System

Team Strano at Massachusetts Institute of Technology did a novel research using
nanobionics in which they extracted the chloroplasts of Arabidopsis thaliana, put
them into a buffer solution, and then added polymer-coated nanoparticles containing
cerium oxide (ceria). Ceria nanoparticles reduce the destructive effects of reactive
oxygen species (ROS), such as hydrogen peroxide and super oxides. Radicals can
have an adverse effect on the molecules involved in photosynthesis, consequently
detaining its ability to function. Nano-cerium oxide particles were labeled with
fluorescent dyes and monitored with confocal fluorescence as well as transmission
electron microscopes. It was observed that cerium oxide nanoparticles spontane-
ously penetrate the chloroplast’s outer envelope and accumulate there, which
exhibits sudden significant drop in the ROS levels in the chloroplasts. Nanoparticles
enhance light energy conversion into electron flow. Subsequently, carbon nanotubes
are introduced into the chloroplasts, and their uptake is monitored via near-infrared

Fig. 16.1 Benefits of nano-enabled agriculture: (a) Promotes more efficient plant protection and
growth, as well as introduces new functions to modify plants through specific interactions, (b)
adhesion and uptake of particles is tethered to the particulate properties (size, chemistry, geometry,
etc.), (c) impacts heavily the translocation and accumulation of particulate inside plants, (d) targets
smart delivery systems that can be designed to respond to specific stimuli, such as pH, light,
enzymes, ionic strength, and temperature, and (e) modifies plants toward several end-goals to
achieve through targeting particles designed to accumulate at specific sites of plant tissues
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fluorescence microscope. Spontaneous movement of carbon nanotubes inside chlo-
roplasts is captured at the single particle level suggesting that the nanoparticles
enhance the conversion of light energy into electron flow (Kah et al. 2019). Once
infiltrated by carbon nanotubes, they are tested as chemical sensors. By adding nitric
oxide on the leaf surface, the fluorescence level inside leaves decreases drastically.
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes
(MWCNTs) are the two major types of nanotubes. Tensile strength of these
nanotubes is about 200 Gigapascals; hence, they are ideal for reinforcing various
composites and for applications in nanoelectromechanical complexes. Furthermore,
their semiconducting and metallic traits offer astonishing opportunities to fabricate
electronic circuits or even fully functional nanodevices. Nanotube systems involve
graphite layers wrapped into cylindrical forms. Lately, fluorescent nanoparticles and
quantum dots have been advanced for labeling and detecting plant proteins
(Pyrzynska 2011).

The mechanical, electronic, and thermal properties and relevancy of carbon
nanotubes are evaluated through their geometrical dimensions, specifically thick-
ness. Taking advantage of these properties of nanotubes, new possibilities arise for
producing various types of nanodevices that confer specific conductive, optical, and
thermal properties for sustainable agriculture (Raliya and Tarafdar 2013). It has been
reported that carbon nanotube-based delivery system can be used to mark chemical
agricultural compounds that reduce tissue damage and control chemical release to
the environment (Raliya and Tarafdar 2013; Hajirostamlo et al. 2015).

Numerous organelles that accumulate and utilize nanomaterials have been rec-
ognized. Vacuolar uptake of SWCNTs has been reported by Serag et al. (2015) by
labeling the same with fluorescein isothiocyanate. In their experiment, the levels of
fluorescence signals were monitored in the cell vacuoles after subsequent incubation
of plant tissues with fluorescein isothiocyanate tagged SWCNTs. Vacuolar accumu-
lation was maintained by diffusion coefficient (Deff) measurement, which was
quantified utilizing fluorescence recovery in a photobleached area (FRAP). FRAP
assisted the study of molecules that are capable of recovering in the photobleached
area fraction and consequently approved the aggregation of SW-F in the vacuoles
(Serag et al. 2015).

Crop yield can be boosted by bioengineering plants for tolerating various harsh
stress conditions and enhancing yield quality, particularly the efficiency of photo-
synthesis. Recently, nanomaterials with unique functional characteristics like
enhanced solar energy harvest have been developed. Such nanomaterials and
nanobionic plants were developed by confining the nanomaterials within organelles
with photosynthetic activity. Inclusion of nanomaterials or nanotubes enhanced the
capability of chloroplasts to capture carbon.

Furthermore, nanotubes like polyacrylic acid-nanoceria (PAA-NC) and single-
walled nanotube-nanoceria (SWNT-NC) diminish the proportion of ROS inside
chloroplasts and impact sensing process in plants, which is crucial for a broad
range of physiological procedures (Giraldo et al. 2014).

Enzyme-imitating nanoparticles (Ceria, C60) have been validated to increase and
boost the development of various plant species and alleviate their tolerance under
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extreme conditions by methods that are different from ROS scavenging. For exam-
ple, Borišev et al. (2016) demonstrated that fullerol nanoparticles reduce the stress
incited by oxidative damage in beet during dry and arid conditions by acting as an
additional intracellular source of water (Rossi et al. 2016). It has also been reported
that under salt stress conditions, nanoparticles boost the amount of biomass, chlo-
rophyll content, and photosynthetic efficacy of the plants. Later, Rossi et al. (2017)
demonstrated that ceria nanoparticles reduce the amount of apoplastic root barriers,
consequently raising Na+ movement to shoots and less convergence in roots of
Brassica plants. Additional research is required to investigate the intracellular
transportation of Na+ from root to aerial parts, because overaccumulation of the
same can lead to photosynthetic reduction in the leaves of plants.

Photosynthesis is a process that utilizes light energy to transform atmospheric
carbon dioxide to chemical energy source such as glucose. As the organelle behind
photosynthesis, the highest glucose concentration in plants belongs to chloroplasts.
Nonetheless, because of their micron-sized dimensionality, direct glucose gathering
from chloroplasts will need standalone machines that can operate inside a single
plant cell or an organelle. So far, the possibility of chloroplast to take advantage of
the energy harvesting can be estimated from a biofuel study that was based on
confined chloroplasts. Boghossian et al. (2013) measured 40 and 110 μW cm2 with
and without 14 W m2 illumination when isolated chloroplasts were placed between
two electrodes with glucose oxidase and catalase on the cathode and laccase on the
anode. Several nanoparticle antioxidants were studied as possible ROS confiner to
conserve the activity of chloroplasts. The chloroplasts inserted with dextran-
wrapped nanoceria exhibited maximum capability of light harvesting.

ROS scavenging is mainly performed by antioxidant enzymes, for instance,
superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, gluta-
thione peroxidase, and peroxidase, as well as by some non-enzymatic metabolites
with a relatively low molecular mass (ascorbic acid, alpha tocopherol, polyphenols).
In extreme circumstances, metabolic pathways that are related to scavenging of ROS
will also get activated, for instance, synthesis of shikimate-phenylpropanoid,
ascorbic acid, and aldaric acid metabolism (Zhang et al. 2018). Abiotic stresses,
even if they are presented in a form of drought, extreme radiation and heat, high
salinity, frigid temperatures, scarcity of vital nutrients, toxic chemicals like heavy
metals, or stress induced by oxidation, are the prime reasons for crop damage and
loss around the globe (Atkinson and Urwin 2012) and lead to a decline in the
production of major crop plants by more than 50%. Abiotic stress gives rise to
many morphological, physiological, biochemical, and molecular variations in plants
that have a negative impact on their development, progress, yield, and productivity
(Atkinson and Urwin 2012). Fundamental approaches used by plants to overcome
stress involves upregulation of protectants, like antioxidants and osmolytes (Wang
et al. 2003). Studies have shown that ROS are produced organically by plant species
as a consequence of biochemical interactions (Tripathy and Oelmüller 2012) in
chloroplasts, mitochondria, peroxisomes, and other organelles via metabolic pro-
cesses like photosynthesis and respiration (Tripathy and Oelmüller 2012). In small
amounts, ROS operate as signaling molecules involved in the development and
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defense; on the other hand, convergence of the same in plants during stress condi-
tions is followed by the damage to the cell membranes, DNA, proteins, enzymes, and
other cell components leading to the suppression of plant development (Tripathy and
Oelmüller 2012).

16.3 Non-nanoenzymes (Fe, TiO2, SiO2, ZnO)

Some nanoparticles without enzyme-imitating properties enhance the tolerance of
plants under stress conditions. Kim et al. (2015) discovered that nano-zerovalent iron
activates high H+-ATPase activities which diminishes apoplastic pH and increases
the size of leaves and the width of stomatal aperture. However, the drought sensi-
tivity of species treated with nano-zerovalent iron did not exhibit a noticeable change
compared to the control displaying rise in the rate of CO2 absorption and assimila-
tion. At present, fundamental methods that enhance tolerance in plants against
abiotic stress via iron-based nanoparticles are unclear. Nanoparticles that do not
sweep ROS at first hand but instead increase the encoding of genes engaged in
antioxidant defense mechanism and boost stress resistance have been demonstrated.
For example, Abdel Latef et al. (2018) reported better stress resistance in plants
treated with 0.01% titanium oxide nanoparticles due to enhancements in chlorophyll
amount and biomass.

Shallan et al. (2016) suggested that the spray of titanium oxide nanoparticles or
silica nanoparticles boosts the tolerance of cotton toward drought stress. The benefits
of silicon nanoparticles for plants include an improved flexibility to various envi-
ronmental stresses. Siddiqui and Al-Whaibi (2014) reported that silica nanoparticles
(ranging from 1.5 to 7.5 grams per liter) enhanced the expression of catalase,
peroxidase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase
genes and raised chlorophyll amount as well as enhanced both the efficiency of
photosynthesis and biomass in tomato (Lycopersicum esculentum) plants Mill.).

Alharby et al. (2016) reported that salt stress reduced the expression of superox-
ide dismutase and glutathione peroxidase genes in tomato (Solanum lycopersicum).
The impact was inverted by introducing zinc oxide nanoparticles in plants,
representing a positive feedback of metabolism to zinc oxide nanoparticles in salt-
induced stress. The procedure for zinc oxide nanoparticles that raise salt stress
tolerance depends on proteins or enzymes that are linked with resistance regulation.
Comparable results were reported by Haripriya et al. (2018), suggesting that a foliar
spray of zinc oxide nanoparticles lessened salt-induced stress in finger millet
(Eleusine coracana).
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16.4 Medicinal Plants’ Responses to Synthetic
Nanoparticles

The utilization of medicinal plants has been the part and parcel of human civiliza-
tions since time immemorial. It is mainly because of their therapeutic properties
imparted to them due to the presence of specific secondary metabolites and alkaloids.
Their identification acted as a backbone for the advancement of novel potent
synthetic medications. One of the recent ways to boost the yield of secondary
metabolites is to utilize nanoparticles that have characteristics of an elicitor. None-
theless, depending on the particle size, arrangement, concentration, and utilization
paths, nanoparticles might impart some beneficial traits to medicinal plant species
(for instance, plant development and overall growth enhancement and boost in the
photosynthetic rate). But the utilization of nanoparticles must be done wisely as it
has been reported that their high concentrations might damage plants mechanically,
negatively affect biochemical and morphological characteristics of plants, and
exhibit cytotoxic and genotoxic results.

Basically, there are two approaches for the development of nanoparticles: Phys-
ical (top to bottom) and chemical (bottom to top). Physical method mainly consti-
tutes of grinding and crushing using stabilizing agents and was the initial approach
for nanoparticle production (Masarovicova et al. 2014). By using this method,
nanoparticles with size greater than 10 nm are produced, which have rather large
size variation that makes them less efficient. The second approach, i.e., chemical
method, is much unique, and, nowadays, it is considered as a more feasible and
efficient way to produce nanoparticles, which is a better way to control the grain size
of the nanoparticles (Jampilek and Kralova 2019, 2020). A broad variety of various
stabilizers such as donor ligands, polymers, and detergents are used to control the
size of nanoparticle grains and to inhibit their coalesce and convergence. Electro-
chemical reduction of metal salts and organized breakdown of organometallic
compounds is done to produce metal nanoparticles.

In the nucleation’s initial state, the metal salt is reduced to atoms which coalesces
with various ions or clusters and forms a permanent nucleus (Ma et al. 2020; Singh
et al. 2019). The diameter of the core is usually lower than 1 nm that relies upon the
strength of the bonds, metal salt’s redox potential, and reducing agents that are
utilized in the process (Linh et al. 2020, Adrees et al. 2020).

Numerous plants or microbial derivatives are associated with the green synthesis
of nanoparticles that involve several active biological complexes for the reduction of
metal ions and stabilization (Oliveira et al. 2015; Abbasi Khalaki et al. 2021).
Biologically active compounds that are adsorbed on the nanoparticles considerably
boost the interaction speed of nanoparticles with cells and improve their effective-
ness within the organisms (Makhlouf and Barhoum 2018).

Different nanoparticles affect plant species distinctively, and this impact relies
upon the chemical structure and concentration of nanoparticles along with environ-
mental factors like pH (Jampilek and Kralova 2019; Kralova et al. 2019).
Nanoparticles applied as “enrichers” induce plant development and productivity as
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well as impart beneficial impact on the crop’s nutritional value (Jampilek and
Kralova 2017, 2019; Masarovicova et al. 2014), while nano-sized herbicides inhibit
the growth of undesirable weeds (Jampilek and Kralova 2015, 2017, 2018;
Masarovicova et al. 2014; Oliveira et al. 2015). It has been reported that the
introduction of certain nanoparticles in plants imparts their better development and
repels pathogens and insects (Jampilek and Kralova 2015, 2017, 2018, 2019, 2020).

It has also been reported that in various plants, introduction of nanoparticles
induces oxidative stress, which further enhances the alkaloid and metabolite pro-
duction (Jampilek and Kralova 2021; Patel et al. 2020; Ma et al. 2020; Singh et al.
2019; Kralova et al. 2021; Moharrami et al. 2017; Anjum et al. 2019). Thus, the
utilization of nanoparticles has been suggested to reduce the negative impacts of
abiotic stress on plants, which ultimately enhances crop yield (Jampilek and Kralova
2019, 2021; Linh et al. 2020; Adrees et al. 2020; Morales-Espinoza et al. 2019; Xiao
et al. 2019).

16.5 Nanoparticle Functionality Against Biotic Stresses
(Nanopesticides)

“Nanopesticides can be explained as any pesticide formulation or product consisting
of engineered nanomaterials as active ingredient and including biocidal traits, as a
section of the engineered structure” (Adisa et al. 2019). Several nanoparticles, such
as silver copper and aluminum nanoparticles, display antibacterial and pest control
properties (Gogos et al. 2012). Some nanoparticles with pesticidal characteristics are
discussed below (Table 16.1).

Table 16.1 Research on nanoparticles with pesticidal characteristics

Nanoparticle Major finding Reference

Silver Silver nanoparticles in the range of 30 to 150 mg killed 99% of
the nematodes

Cromwell et al.
(2014)

Copper Copper nanoparticles possess microbicidal property against the
pathogens Escherichia coli and Bacillus subtilis

Yoon et al.
(2007)

Titanium Titanium dioxide nanoparticles have photochemical
antibacterial property

Paret et al.
(2013)

Cerium 250 mg per liter cerium oxide nanoparticles reduce the
progression of fungal disease by 53%

Adisa et al.
(2018)

Magnesium Magnesium hydroxide nanoparticles inhibited the growth of
Pseudomonas syringae and E. coli within 4 hours

Huang et al.
(2018)

Silicon Silicon nanoparticles initiated the phenolic compound
production, delivering better tolerability to plants against
Aspergillus spp.

Suriyaprabha
et al. (2012)
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16.5.1 Silver-Based Nanoparticles

The expanding population of harmful fungi and pests that are resistant to routine
chemical pesticides has stirred the need to develop new ways or products that help in
sustenance of plants. Owing to their broad range of antibacterial properties, silver
nanoparticles are considered as a potent nanopesticide in agriculture. Ocsoy et al.
(2013) synthesized DNA-directed silver nanoparticles on graphene oxide and
reported that these composites at 16 mg/L concentration significantly reduced the
activity of cultured Xanthomonas perforans (pathogen causing bacterial leaf spot in
tomato and pepper worldwide). This pathogenic bacterium infection in tomato leads
to 10–50% reduction in yields. Similar results were reported in a glasshouse
experiment using Ag@dsDNA@GO (DNA-directed silver Ag nanoparticles devel-
oped on graphene oxide [GO]) at 100 milligrams per liter. Additionally, silver
nanoparticles have exhibited their potential against nematodes, a common soil-
borne organism (Vicente et al. 2006). Cromwell et al. (2014) reported that silver
nanoparticles in the concentration range of 30–150 milligrams per milliliter can
eradicate 99% of the population of nematodes (Meloidogyne spp.) within 6 days of
application. In another field experiment, silver nanoparticles in the range of 150 mil-
ligrams per milliliter reduced the number of nematodes by 82% and 92% at day
2 and day 4, respectively.

Compared to chemical pesticides, synthesized green silver nanoparticles are
environmentally safe to produce. Reducing agents derived from plant and bacterial
extracts play a role in the fabrication of silver nanoparticles. Mishra et al. (2014)
utilized Serratia sp., a plant growth-promoting rhizobacterium (PGPR), to synthe-
size silver nanoparticles biologically. It has been reported that bio-synthesized silver
nanoparticles exhibit powerful antifungal characteristics against Bipolaris
sorokiniana, which causes spot blotch and root rot disease of wheat, in greenhouse
conditions. Utilizing leaf extract of turnip, Narayanan and Park (2014) synthesized
green silver nanoparticles, approximately 16 nm in size, and demonstrated their
broad spectrum antifungal activity against wood debasing fungi, e.g., Gloeophyllum
abietinum, G. trabeum, Chaetomium globosum, and Phanerochaete sordida. Ali
et al. (2015) utilized an extract derived from Artemisia absinthium for green-
synthesizing silver nanoparticles, which subdued Phytophthora contagion on plant
species and improved plant overall health when applied at a concentration of 10 mg/
ml. Despite these positive results in the horticultural utilization of silver
nanoparticles, their potency to induce toxicity in plants when used in larger concen-
tration has increased concern. Zhang et al. (2018) investigated the toxicity of
commercially available silver nanoparticles at the molecular levels and discovered
that the utilization of silver nanoparticles (0.4 milligrams/plant) on leaves incited
oxidative stress in cucumber leaves. More studies on the response of plants to silver
nanoparticles dosage and the effect of such particles are required to permit their
environmentally safe usage. Also, green synthesis procedure of nanoparticles which
is quickly evolving in nanotechnology must be promoted so that it can take over the
utilization of toxic chemicals and time expenditure.
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16.5.2 Copper-Based Nanoparticles

The bactericidal and fungicidal impacts of copper ions are already evident. Copper
hydroxide nanoparticles are the active compounds in the commercially available
pesticide called “Kocide 3000.” Copper nanoparticles possess microbicidal proper-
ties against pathogens Escherichia coli and Bacillus subtilis (Yoon et al. 2007)
together with the plant fungal pathogens F. oxysporum, C. lunata, A. alternate,
and P. destructiva (Kanhed et al. 2014). A research comparing the antibacterial
effectiveness of copper nanoparticles against the Bavistin fungicide (Devistin and
carbendazim 50% WP) demonstrated better performance of copper nanoparticles.
More recently, Borgatta et al. (2018) compared the ability of copper oxide
nanoparticles and Cu3(PO4)2�3H2O nanosheets to treat ailment incited by Fusarium
oxysporum f. sp. niveum in watermelon (Citrullus lanatus). In a glasshouse field
study, Cu3 (PO4)2�3H2O nanosheets (10 milligrams per liter) significantly reduced
fungal infection by 58% and enhanced crop yield. The functionality of Cu3(PO4)2.
3H2O nanosheets was better than copper oxide nanoparticles that had significant
impacts on disease only at extreme doses (1000 milligrams per liter). The researchers
accredited the dissimilar performance of nanoparticles to traits of the nanoparticle’s
dissolution. The potential toxicity incited by the massive levels (1000 milligrams per
liter) requires examination. Lately, Cumplido-Najera et al. (2019) demonstrated the
effects of copper nanoparticles and K2SiO3 nanoparticles on tomatoes cultivated in
hydroponic culture and infected with Clavibacter michiganensis pathogen. It was
reported that the copper nanoparticles reduced the C. michiganensis infection in
tomato plants. The researchers deduced that the combined application of both
particles enhanced the levels of both enzymatic and non-enzymatic metabolites
essential for protection of plants and increased their tolerability against
C. michiganensis infection accordingly. The pesticidal actions of copper
nanoparticles are evident. Le Van et al. (2016) analyzed the impacts of copper
oxide nanoparticles on Bt-transgenic cotton. Nanoparticles boosted the exogenous
genes expression encoding Bt toxin in cotton plant at a dose of 10 mg/liter,
consequently raising their resistance. Ayoub et al. (2018) synthesized copper oxide
and calcium oxide nanoparticles and reported their entomotoxic effects against
S. littoralis, recommending the application of these nanoparticles as advantageous
pesticides. Copper nanoparticles exhibited more immediate entomotoxic impacts
compared with calcium oxide nanoparticles, with a lethal dose of 232 milligram per
liter after 3 days, whereas for calcium oxide nanoparticles, the lethal dose of
129 milligram per liter was attained after 11 days, posttreatment.

Native medicinal plant of Ethiopia was utilized for the first time to scrutinize the
synergistic impact of phyto-constituents in green nanoparticles of copper (g-Cu
nanoparticles) regarding the improvement of antimicrobial activities of
nanoparticles. Murthy et al. (2020) reported the green synthesis of Cu nanoparticles
utilizing Hagenia abyssinica (Brace) JF. Gmel. leaf extract.

Wang et al. (2014) examined the fungicidal characteristics of six carbon-based
materials, namely, SWCNTs, multi-walled carbon nanotubes, graphene oxide,
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reduced graphene oxide, fullerene, and activated carbon (at 500 mg/liter concentra-
tion each), against Fusarium graminearum and Fusarium poae. These nanomaterials
were incubated along with F. graminearum and F. poae for 5 and 12 hours in the
dark. SWCNTs exhibited maximum fungicidal activity, followed by MWCNTs,
graphene oxide, and reduced graphene oxide (500 milligrams per liter), contemplat-
ing that the activated carbon at these concentrations exhibited no fungicidal impacts.
At a concentration of 500 milligrams per liter, fullerene suppressed the initiation of
F. graminearum spore’s germination but wasn’t able to suppress the F. poae spore
germination. Researchers suggest that the side effects of these nanomaterials’ appli-
cation include inhibition of water uptake and plasmolysis.

16.5.3 Titanium-Based Nanoparticles

Titanium dioxide and zinc oxide are photo-chemically operative. When exposed to
light and in the presence of oxygen, excited electrons are generated resulting in the
superoxide radical’s synthesis by direct electron transfer. Photo-chemically func-
tional titanium dioxide nanoparticles possess bactericidal effects, hence can be used
as nanopesticides. Paret et al. (2013) suggested the high photo-catalytic activity and
antibacterial potency of titanium dioxide nanoparticles against X. perforans, the
pathogen that causes spot disease in tomatoes. In glasshouse surroundings, titanium
dioxide and zinc nanoparticles, at 500 to 800 milligrams per liter, significantly
diminished severity of bacterial spots compared to both untreated and copper-treated
controls.

16.5.4 Cerium-Based Nanoparticles

How cerium-based nanoparticles boost plant protection is still unclear. Recently,
Adisa et al. (2018) set up a greenhouse trial to test the activity of cerium oxide
nanoparticle against Fusarium wilt infection in tomatoes. Cerium oxide
nanoparticles (50 and 250 milligrams per liter) were introduced in a 3-week-old
tomato (Solanum lycopersicum) seedlings grown in soil media through root and
shoot pathways. Results indicated that 250 milligrams per liter of cerium oxide
nanoparticles applied to the soil and foliage notably reduced disease progression by
53 and 57%, respectively. The science behind fungicidal properties of cerium oxide
nanoparticles is still not very clear, and more research is required in this area.
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16.5.5 Magnesium-Based Nanoparticles

Imada et al. (2016) examined the effects of magnesium oxide nanoparticles on
tolerability of tomatoes cultivated in 50% vermiculite and 50% perlite against
Ralstonia solanacearum pathogen. The pretreatment of roots with magnesium
oxide nanoparticle suspension noticeably suppressed the infection. This method
involves the improvement of jasmonic acid inducible LoxA, salicylic acid inducible
PR1, and expression of GluA genes, which are related to resistance and defense and
are ethylene inducible. Cai et al. (2018) reported that magnesium oxide nanoparticles
at 200 or 250 milligrams per liter efficiently inhibit R. solanacearum infection
responsible for the wilt of Nicotiana tabacum plants. Suggested method involves
damaging of cell membranes and ROS convergence in different parts. In an addi-
tional research conducted by Huang et al. (2018), antibacterial activities of magne-
sium hydroxide nanoparticles were compared with the properties of Kocide 3000 in
which copper hydroxide is the active compound. Magnesium hydroxide
nanoparticles inhibited the growth of Pseudomonas syringae and E. coli within
4 hours. Pesticidal activities of magnesium hydroxide nanoparticles were same as
Kocide 3000 activity, additionally suggesting their potency as a copper alternate.

16.5.6 Silicon-Based Nanoparticles

Suriyaprabha et al. (2012) examined the resistance of maize plants treated with
silicon nanoparticles (20 to 40 nanometer in size, 15 kg/ha) compared to plants
treated with bulk silicon, against pathogens. Silicon nanoparticles initiated
the production of phenolic compounds in plants, resulting in better tolerability of
the plants against Aspergillus spp. More recently, Buchman et al. (2019) determined
the ability of mesoporous silica nanoparticles (36 nm in size, 500 milligrams per
liter) with chitosan coating to suppress wilt caused by Fusarium in watermelons
cultivated in soil. Both mesoporous silica nanoparticles and chitosan-coated
mesoporous silica nanoparticles diminished disease infection, by 40 and 27%,
respectively. Hence, silicon nanoparticles could be utilized as a possible alternate
fungicidal agent in agriculture.

16.6 Utilization of Nanoparticles as Nanofertilizers

Micronutrients play an important role in plants’ defense system against several
disease and pathogen infections (Servin et al. 2015). To make plants disease
resistant, a recent approach is to enhance the nutritional status of plants by nanopar-
ticle introduction in the same. For instance, Elmer and White (2016) fabricated
sprays with micronutrients consisting of metallic oxide nanoparticles (alumina,
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copper oxide, ferric oxide, manganese oxide, nickel oxide, and zinc oxide) then
applied them on pathogen-infected tomato and eggplants in a field experiment. They
reported that the nanoparticles containing copper oxide, manganese oxide, and zinc
oxide suppressed the Fusariumwilt infection in both plants and enhanced their yield.
It has been reported that such nanoparticles can perform as fertilizers and pesticides.
Furthermore, Kah et al. (2019) revealed that the average improvement in effective-
ness of nanofertilizers corresponding to commercial produces is about 20–30%.

In subsequent sections, recent studies conducted on the utilization of
nanoparticles involving nutrients for amplifying development and productivity are
reviewed. Some nanoparticles have been reported to be functional in promoting
plant growth under normal circumstances and improving stress resistance in plant
species.

16.6.1 Iron-Based Nanoparticles

Iron has a vital role in numerous physiological procedures in plant cells, as well as
photosynthetic pigment biosynthesis, photosynthesis, and respiration (Clarkson
and Marschner 1996). Various researches have demonstrated that iron-based
nanoparticles boost plant growth under standard surroundings. In a research done
by Liu et al. (2016), lettuce (Lactuca sativa) seedlings grown in aquatic media were
spiked with various levels of FeOX nanoparticles. At a concentration of 5 to 20 milli-
grams per liter, FeOX nanoparticles remarkably improved the size of lettuce shoot,
by 12–26%. Ghafariyan et al. (2013) also reported that iron (III) oxide nanoparticles
at 30 to 60 milligrams per liter remarkably enhanced the chlorophyll content of
soybean (Glycine max L., Oxley), grown in hydroponic culture. Growth rate and root
length of maize seedlings cultivated in hydroponic culture containing 20 milligrams
per liter γ-Iron (III) oxide was significantly increased by 27.2 and 11.5%, respec-
tively (Li et al. 2016). Application of iron oxide nanoparticles in small doses
encourages better plant development. Palchoudhury et al. (2018) conducted a
study on the impact of α-Iron (III) oxide nanoparticle application on the growth of
legume roots and uncovered that soaking the plants with nanoparticles at a minimum
dose of 5.54� 10�3 milligrams per liter notably boosted root length, by 88 to 366%.
Rui et al. (2016) also reported the efficacy of iron (III) oxide nanoparticles as an
alternate of iron-based fertilizers. Alidoust and Isoda (2013) assessed the effective-
ness of nano-iron (III) oxide on seedlings of soy at two exposure areas (root and
leaf). They reported that a spray of vitamin C-coated nano-iron (III) oxide applied on
the leaves notably boosted root length and photosynthesis rate. In another experi-
ment, peanut plants (Arachis hypogaea) were spiked with various levels of γ-Iron
(III) of 20 nm size, for more than a month. Plants that were exposed to 2 mg/kg of
γ-Iron (III) oxide exhibited significant boost in their photosynthetic rate and biomass
yield. It has been reported that γ-Iron (III) oxide nanoparticles fight with oxidative
stress in Brassica napus cultivated under drought conditions in soil by lowering the
levels of hydrogen peroxide (by applying 2 milligrams per liter γ-Iron (III) oxide)
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and malondialdehyde (by applying 1 milligram per liter γ-Iron (III) oxide)
(Palmqvist et al. 2017).

Likewise, chitosan-coated ferrosoferric oxide nanoparticles with diameters rang-
ing from 3 to 22 nm applied at dosages around 200 and 400 milligrams per kilogram
exhibited significant effects on seed germination and development of Capsicum
annuum seedlings (Bahrami et al. 2018). In another experiment, the yield of chilies
and marigold plants almost doubled when their 28-day-old saplings were dipped in
iron sulfide nanoparticle solution (100 micro-grams per milliliter concentration) for
3 hours just before transplantation (Jangir et al. 2019).

16.6.2 Zinc-Based Nanoparticles

Zinc has a regulatory effect on the processes, organization, and activity of various
enzymes (Brown et al. 1993). There are significant evidences that ZnO nanoparticles
improve development and boosts biomass yield in certain plants. For example,
Dhoke et al. (2013) examined the impact of zinc oxide nanoparticles on the devel-
opment of mung bean (Vigna radiata) seedlings cultivated in hydroponic culture.
Application of nanoparticles on the shoots boosted the biomass yield of root and
aerial parts of the seedlings. Dimkpa et al. (2017) examined the impact of application
of zinc oxide nanoparticles or zinc salt on the growth of sorghum plants. The potency
of vulnerability paths (soil of shoot application) was examined with respect to the
yield, efficiency of macronutrients, and enrichment of grain by zinc. Application of
both zinc oxide and zinc salt to the shoots considerably increased the yield of
sorghum plants and nutrient quality of grain under low and high NPK input. The
researchers recommended an approach on the nanoscale for increasing crop produc-
tivity, nutrition rate of grains, and efficiency of nitrogen assimilation. Maize devel-
opment can also be fortified by the application of zinc oxide nanoparticles (Subbaiah
et al., 2016). In the experiment, maize plants were subjected to zinc oxide
nanoparticles (25 nm size) of 50–2000 ppm concentrations. At 1500 ppm, zinc
oxide nanoparticles notably raised the percentage of germination by 80% and
improved the seedling overall health, whereas at 2000 ppm, zinc oxide nanoparticles
did not suppress seed germination; likewise the same dosage of zinc sulfate leads to
inadequate inhibition of plant growth. Maximum grain yield (3298 kg/ha) was
attained with 400 ppm application of zinc oxide. Aside from its advantageous role
in species growth under normal circumstances, it has been reported that zinc oxide
nanoparticles additionally enhance performance of plants facing salinity stress
(Alharby et al. 2016), drought stress (Dimkpa et al. 2019), and stress incited by
cadmium (Rizwan et al. 2019). Zinc nanoparticles can also be synthesized using
plant leaves as reported in a recent research done by Naseer et al. (2020). In the
experiment, zinc oxide nanoparticles were synthesized utilizing leaf extracts of
Cassia fistula and Melia azedarach medicinal plants. For it, 0.01M zinc acetate
dihydrate solution was applied as a precursor in extracts of respective plant leaves
for nanoparticle synthesis.
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16.6.3 Copper- and Magnesium-Based Nanoparticles

Copper, manganese, and zinc improve disease defiance by triggering the defense
enzymes of plant species like phenylalanine ammonia-lyase and polyphenol oxi-
dases (Servin et al. 2015). Saharan et al. (2016) conducted a study on the impact of
copper chitosan nanoparticles on the growth and development of maize seedlings,
particularly on physiological and biochemical alterations. Copper chitosan boosted
the development of maize seedlings by encouraging α-amylase activity and starch
content.

Magnesium is a micronutrient that is necessary for the development of plant
species and is involved in many major physiological processes (Li et al. 2001). It is
constantly engaged in photosynthetic processes and is an essential component of
chlorophyll (Kashem and Kawai 2007). Delfani et al. (2014) treated black-eyed pea
with magnesium nanoparticles by spraying it to the leaves and suggested that 0.5
gram per liter of these nanoparticles remarkably boosts the photosynthetic rate and
the amount of biomass. Likewise, Rathore and Tarafdar (2015) reported that the
spray of bio-synthesized magnesium nanoparticles (<5.9 nm, 20 mg/L) to the leaves
of wheat enhanced length, number of newly developed tips, and biomass of roots.
Moreover, magnesium oxide nanoparticles (50, 150, 250 milligrams per liter)
enhanced superoxide dismutase and peroxidase activity in tobacco plants grown in
matrix medium (Cai et al. 2018). Magnesium is a crucial micronutrient and has the
ability to improve activities of antioxidant enzymes. Magnesium nanoparticles can
be applied to plants suffering from magnesium inadequacy symptoms and can
enhance plant stress tolerability. For instance, compared to bulk magnesium oxide,
usage of magnesium oxide nanoparticles (150 and 250 mg/L) notably suppressed
Ralstonia solanacearum infection in Nicotiana tabacum plants (Cai et al. 2018).

16.6.4 Manganese-Based Nanoparticles

Manganese acts as a cofactor for various redox enzymatic reactions and is engaged
in many metabolic processes (Najeeb et al. 2009). Superoxide dismutase is a key
factor of antioxidant defense system in plants (Wang et al. 2005). In a research that
analyzed the action of nanoparticles on plant species at cellular and vegetative
growth levels, Pradhan et al. (2013) examined the impacts of application of manga-
nese nanoparticles at a concentration of 0.05 milligrams per liter compared with
manganese sulfate (a widely available salt of manganese) on the growth of mung
bean plants. Hoagland’s nutrient solution with manganese nanoparticles and MnSO4

was utilized to cultivate mung bean plants for 15 days. The plants receiving Mn
nanoparticles (0.05 mg/liter) exhibited enhancement in their biomass within the
range of 39–53.6%. The researchers additionally isolated chloroplasts from healthy
leaves and investigated the impact of manganese nanoparticles and manganese
sulfate on the photosynthetic activities of chloroplasts. The researchers reported
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more significant photophosphorylation and evolution of oxygen in chloroplasts of
plants treated with manganese nanoparticles than those in the plants treated with
manganese sulfate and control. Hence it is suggested that manganese nanoparticles
might act as a unique nano-modulator with photochemical characteristics and can be
utilized in agricultural fields for enhancing crop production. Scrutinizing the impact
of nanoparticles on the chloroplasts will enhance our insight into the system of
improved photosynthesis rate at the entire-plant level. Same research group addi-
tionally scrutinized the impact of manganese nanoparticles and manganese sulfate
salt on the uptake of nitrate, assimilation, and metabolism in mung bean plants. They
further reported that manganese nanoparticles activate the assimilatory characteris-
tics in plants without nodules by boosting the net flux of nitrogen assimilation via
various pathways (Pradhan et al., 2014). Furthermore, the application of manganese
oxide nanoparticles (40 nm in size, 1 milligram per liter concentration) lowered
disease severity by 28% in Solanum lycopersicum plants infected with Fusarium
oxysporum f. sp. lycopersici, as compared to untreated control groups (Elmer and
White 2016). Additionally, it has been suggested that trimanganese tetraoxide
nanoparticles that act as nanoenzyme can effectively scavenge ROS in various
plant species (Yao et al. 2018).

16.6.5 Molybdenum-Based Nanoparticles

Molybdenum is a cofactor of nitrate reductase and nitrogenase enzymes that are
essential in fixation of nitrogen, reduction of nitrate, and nitrogen translocation in
plants (Alam et al. 2015). Molybdenum disulfide nanoparticles are utilized as
semiconducting material with extraordinary electronic, catalytic, and optical traits
(Parzinger et al. 2015). Li et al. (2018) conducted an experiment to investigate the
impact of application of molybdenum disulfide nanoparticles (1.5 micrometer in
size, application on shoot, 32–500 micro-grams per milliliter concentration) on the
development, amount of chlorophyll, peroxidation of lipids, and activity of antiox-
idant enzymes in rice plants. Molybdenum disulfide nanoparticle (125 mg/L)
exposure did not have any significant impact on the rate of seed germination,
malonaldehyde content, or activity of antioxidant enzymes but significantly boosted
the biomass and chlorophyll levels. Nanoparticles also enhanced the expression of
aquaporin gene in rice. Recently, Chen et al. (2018) synthesized MoS2 nanoparticles
that imitate the activity of superoxide dismutase, catalase, and peroxidase and can be
recommended for boosting the stress tolerance of various species.

Nanotechnology is a rapidly evolving field; and molybdenum-based
nanoparticles are being used extensively in different places, but their uncontrolled
usage and their consequential effects on the environment have been a serious
concern. In a study on nano-toxic impacts and methods of nano-molybdenum
treatment on the soybean-rhizobia symbiotic association in decontaminated blend
of sand and vermiculite growing medium, it was reported that exposure to various
concentrations and types of molybdenum-based nanomaterials causes physiological
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and biochemical toxicity to soybean plants. The application of nano-molybdenum in
the sand-vermiculite media also enhanced the concentration of molybdenum in plant
tissues. The molybdenum-based nanoparticles introduced in the plant tissues were
reported to alter not only the development of plants but also the structure of the roots
and the action of rhizobium in the symbiotic association diminishing the nitrogen
fixation capability (Yang et al. 2020).

16.6.6 Silicon-Based Nanoparticles

The beneficial impacts of silicon are well understood; nevertheless, the benefits of
silicon nanoparticles over its bulk matter are areas that were not studied enough.
Nanoparticles of silicon have noticeable physiological traits that let their entry into
the plants’ systems and affect their metabolic activities. Mesoporous characteristics
of silicon nanoparticles make them better nominees for suitable nano-carriers of
various molecules that aid in agriculture. Various studies have demonstrated the
significance of silicon nanomaterials in agriculture (Rastogi et al. 2019).

Silicon improves plants’ resistance to both abiotic and biotic stresses, but until
now, not much research has been conducted to understand the mechanism. Guntzer
et al. (2012) analyzed the impact of silica nanoparticle application (12 nm in size,
8 grams per liter) on the germination of Solanum lycopersicum seeds (L. esculentum
Mill. cv. B strain). Silica nanoparticles notably improved seed germination, mean
germination time, index of seed germination, and fresh weight of the seedlings. In a
different research, Sun et al. (2016) scrutinized the results of mesoporous silica
nanoparticle application (0 to 2000 milligrams per liter) on wheat and lupine plants’
development, grown in nutrient solution. They reported that the mesoporous silica
nanoparticles absorbed by the roots were relocated to chloroplasts, and they sub-
stantially raised photosynthetic activity. Mesoporous silica nanoparticles at dosages
of 500 and 100 milligrams per liter also boosted germination of seeds and enhanced
total biomass, content of total protein, and the chlorophyll amount.

16.6.7 Impact of Other Nanoparticles on Plant Species

In crop plants, biotic and abiotic stresses diminish photosynthetic rate in leaves and
subsequently the crop yield. Nanoparticles on their own will not aid the nutrients that
are essential and crucial for development of plant species; they can enhance rate of
photosynthesis.

In the research conducted by Giraldo et al. (2014), application of single-walled
carbon nanotubes (5 milligrams per liter) boosted photosynthesis rate in spinach
leaves by 31%, which might be attributed to the improvement in the transfer rate of
electrons. Chandra et al. (2014) reported that carbon quantum dots in concentrations
of 50, 54.2, and 75 milligrams per liter enhanced non-cyclic photo-phosphorylation,
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synthesis of ATP, and release of oxygen in isolated chloroplasts of mung bean
plants. This result might be attributed to a raised transfer rate of electrons in
thylakoid membranes. Moreover, nanoparticles boost photosynthetic rate by light
harvesting, transfer of electrons, and ROS scavenging, as reported by Swift et al.
(2019) and Liu et al. (2019). Their research enhanced the knowledge in the utiliza-
tion of nanofertilizers with agricultural applications to boost plant development and
yield.

16.7 Conclusion

Plant nanobionics is a rapidly evolving research area, due to its tremendous amount
of applications in different fields. It involves the utilization of special nanoparticles
to augment different processes like photosynthesis and yield production. Several
nanopesticidal and nanofertilizer applications of various nanoparticles such as silver,
copper, carbon, titanium, cerium, magnesium, iron, zinc, manganese, molybdenum,
and silicon have been discussed in this chapter. Nanobionics can boost plants’
endurance and reduce stress effects under harsh environments and, thus, boost
their yields. It is a newly developed field, and therefore, more detailed and extensive
research is needed to obtain greater benefits for society.
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Chapter 17
Phytoremediation Capacity of Medicinal
Plants in Soils Contaminated with Heavy
Metals

Braulio Edgar Herrera-Cabrera, Luis Germán López-Valdez,
Víctor Manuel Cetina Alcalá, Jorge Montiel-Montoya,
Leticia Mónica Sánchez-Herrera, Víctor Manuel Ocaño Higuera,
Candelaria Raqueline de la Rosa-Montoya,
and Hebert Jair Barrales-Cureño

Abstract Phytoremediation is a set of technologies that reduce, in situ or ex situ, the
concentration of various compounds through biochemical processes carried out by
plants. Phytoremediation uses plants to remove, reduce, transform, mineralize,
degrade, volatilize, or stabilize contaminants present in soil, water, and air. Plants
to be used for phytoremediation are selected primarily for their physiological
characteristics, such as presence of specific enzymes, tolerance and assimilation of
toxic substances, plant growth rates, root depth, and ability to bioaccumulate and/or
degrade contaminants. A wide diversity of species has been utilized in
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phytoremediation. Some of these are known as hyperaccumulators, due to their high
capacity to accumulate heavy metals. Phytoremediation offers several advantages,
among which are the following: (i) it constitutes a sustainable technology, (ii) it is
carried out without the need to transport the contaminated substrate (thus decreasing
the dissemination of contaminants through air or water), (iii) it is a set of technol-
ogies that are efficiently applied to both organic and inorganic contaminants, and
(iv) its cost-effectiveness is driven by conventional agronomic practices, i.e., spe-
cialized personnel and energy are not required. The benefits of the practice are also
associated with the following: (v) it is minimally harmful to the environment, (vi) it
improves the physical and chemical properties of the soil due to the formation of
vegetation cover, (vii) it has a high probability of being accepted by the public as the
plants involved are often pleasing to the eye, (viii) it does not involve excavation
work and heavy traffic, and (ix) it can be employed in water, soil, air, and sediments
and allows for the recycling of resources (e.g., water, biomass, metals). Therefore,
this chapter aims to (a) select the main medicinal plants with the potential to
phytoremediate soils contaminated by heavy metals (e.g., uranium, copper, nickel,
cobalt, mercury, cadmium, lead, chromium, zinc, selenium, aluminum, iron, and
manganese), (b) report on the tolerance mechanisms of phytoremediation, and
(c) indicate the concentration and accumulation levels of toxic heavy metals in
medicinal plants.

Keywords Bioconcentration · Heavy metals · Hyperaccumulator plants ·
Phytoremediation · Phytotechnologies

17.1 Introduction

Phytoremediation is the process that seeks to decontaminate different environments
using plants, extracting contaminants from the environment. Depending on the
species, these plants have the capacity to remove different contaminants such as
pesticides and heavy metals, thus preventing their spread through the soil and surface
and groundwater (United States Environmental Protection Agency-A 2001). The use
of plants to remove pollutants from the environment is based on taking advantage of
their natural processes. These processes include absorption by roots, transpiration by
leaves, and enzymatic activity, which in some cases have the capacity to transform
contaminants into useful elements for the plant, thus removing them from the
environment (Pilon-Smits 2005). Heavy metals in the environment originate due
to naturally occurring geological processes and human activities (Bradl 2005). Their
high toxicity and the constant increase of these activities have raised great concern
for assessing and remediating the environmental contamination generated by these
elements. Phytoremediation has been widely accepted as an emerging technology,
thanks to its qualities that characterize it as an environmentally sustainable technol-
ogy. In addition, its low implementation cost makes it cost-effective in the long term
(Gerth et al. 2000). Even so, there are many questions about how phytoremediation
works. Research and study of this technology still have a long way to go to
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accurately understand all the processes involved in phytoremediation. Important
tools in the investigation of phytoremediation processes are genetics and molecular
biology, which can be key in taking advantage of all the potential that this technol-
ogy has to offer (Pilon-Smits 2005). Even so, phytoremediation has limitations such
as the lack of knowledge of all the physiology involved in the phytoremediation
process or the identification of the appropriate plants to use depending on the
contaminated medium or contaminant. Therefore, this chapter aims to (a) select
the main medicinal plants with the potential to phytoremediate soils contaminated by
heavy metals (e.g., uranium, copper, nickel, cobalt, mercury, cadmium, lead, chro-
mium, zinc, selenium, aluminum, iron, and manganese), (b) report on the tolerance
mechanisms of phytoremediation, and (c) indicate the concentration and accumula-
tion levels of toxic heavy metals in medicinal plants.

17.2 Advantages of Phytoremediation

Phytoremediation offers several advantages. Its main attraction lies in the fact that
decontamination processes are carried out with a relatively low investment. Like-
wise, its implementation improves the environmental quality of the area where it is
used, reducing the erosion caused to the soil by the effect of water and wind,
preventing pollutants from dispersing, and improving soil quality at the same time.
This same effect is generated when applied in water bodies, making technology
generate additional processes of improvement of the environmental characteristics,
proving to be a process that can be implemented in a sustainable development
framework (Pilon-Smits 2005). Another characteristic that makes this technology
so attractive is its cost-effectiveness. Conventional processes such as the use of
activated carbon, physicochemical separation of contaminants, filtration, soil wash-
ing, or aerobic and/or anaerobic processes represent a high cost and even more when
implemented in large areas (Susarla et al. 2002).

Energy requirements are the main aspect that raises the costs of a decontamina-
tion process, and this is where phytoremediation presents a great advantage. The fact
that plant activity is based on the use of sunlight means that operating costs can be up
to 80% less than conventional processes (Moriwaka and Erkin 2003). This charac-
teristic makes phytoremediation a technology with a great future in developing
countries such as ours. Considering that the application of phytoremediation pro-
cesses can be carried out in situ, it usually improves the environmental conditions of
the area to be decontaminated, and added to the fact that phytoremediation processes
are carried out naturally, this technology does not require a large investment. In fact,
the simplest phytoremediation mechanism does not require human interference, only
monitoring. This process, called natural attenuation, generates a lower level of
decontamination than one where there is constant intervention, but it is nevertheless
considerable (Pilon-Smits 2005). Around the world, phytoremediation has been
widely accepted because it has been called a “green” technology. It is considered
environmentally sustainable, mainly because it does not generate greenhouse gases
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and helps to conserve natural resources, so much that the European Union and the
United States allocate considerable resources for research in this area (Lasat 2000;
Barceló and Poschenrieder 2003).

17.3 Important Factors in Phytoremediation Processes

In recent years, soil and water contamination has taken on great relevance in our
society. The emergence of new technologies of high efficiency and low cost gener-
ates viable alternatives for the management of environmental contamination, partic-
ularly in developing countries. Phytoremediation is one of these alternatives. There
are several characteristics that the plants of a phytoremediation system must have to
achieve good performance (Godwin and Thorpe 2000) (Pulford and Watson 2003).

Some of these characteristics are listed below:

1. Tolerance to the contaminant: it is of utmost importance that the plant can tolerate
the contaminant and carry out its development in its presence.

2. Remediation capacity: remediation must be carried out since this is the funda-
mental objective of the implementation of phytoremediation.

3. Reproduction and growth: the plant must have a rapid growth that allows good
pollutant removal rates and optimizes the phytoremediation processes. It is also
important that they maintain their reproductive capacity in the presence of
disturbances through succession.

4. Biomass production: with a greater biomass, the plant can carry out a greater
removal of pollutants.

5. Resistance to stress: it is important that the plant can resist stress situations
generated by chemical, physical, biological, or climatic conditions.

6. Native plants: if possible, it is advisable to use native plants to alter the local
ecosystem as little as possible.

17.4 Plant Strategies

Plants present different strategies to adapt to the presence of pollutants in the
environment where they develop.

17.4.1 Accumulator Plants

These plants have the capacity to accumulate pollutants in their tissues. These are
found in much higher concentrations than those present in the environment (Ghosh
and Singh 2005). Table 17.1 shows the main metal hyperaccumulator plants.
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17.4.2 Indicator Plants

These plants also accumulate contaminants; however, their concentrations are usu-
ally a reflection of the concentration present in the medium, increasing or decreasing
as the medium fluctuates (Ghosh and Singh 2005).

17.4.3 Exclusionary Plants

These plants prevent the entry of contaminants into their aerial tissues. They usually
retain them in their roots, immobilizing them and preventing them from being
transported in the medium (Ghosh and Singh 2005). In this way, they do not allow
pollutants to be leached.

Table 17.1 Main families and genera of metal-hyperaccumulating species

Element Number of taxes Main families Main genus

Ni 317 Violaceae Hybanthus

Flacourtiaceae Homalium

Euphorbiaceae Phynthus

Brassicaceae Alyssum L.

Zn 18 Brassicaceae Thlaspi and Cardaminopsis

Pb 14 Poaceae Arrhenatherum

Brassicaceae Thlaspi, Brassica

Fabaceae Sesbania

Apocynaceae Hemidesmus

Plantaginaceae Plantago

Cu 37 Lamiaceae Aeollanthus

Scrophulariaceae

Convolvulaceae Ipomoea

Crassulaceae Crassula

Commelinaceae Commelina

Co 28 Lamiaceae Haumaniastrum

Scrophulariaceae Crotalaria

Asteraceae

Fabaceae

Mn 9 Myrtaceae Austromyrtus and Gossia

Phytolaccaceae Phytolacca

Proteaceae Virotia

Celastraceae Maytenus

cd 4 Brassicaceae Thlaspi and Arabidopsis

Asteraceae Bidens
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17.5 Bioavailability Associated with pH

For the phytoremediation process to take place, it is necessary that contaminants are
available for the removal processes carried out by plants. The conditions of the
medium can determine how efficient the process can be. In the case of heavy metals,
plants generally need to find the chemical elements in their soluble-water form to
incorporate them into their metabolic processes. In this aspect, the pH plays a
fundamental role because it is usually found in an acidic environment form. As pH
increases, the availability of heavy metals in their dilute form decreases, and they
tend to form other compounds that the plant can use (Sandrin and Hoffman 2007). It
is important to consider the valence of the metal, which will define whether it will be
bioavailable or not under the present conditions.

Plants possess highly specialized mechanisms to stimulate the availability of
metals in the rhizosphere and thus increase the ability of roots to remove metals
from the medium. It has been found that some plants can exude mugineic and avenic
acid and can even release H+ ions directly from the roots, acidifying the medium to
increase the availability of metals in diluted form (Lasat 2002).

17.6 Phytoremediation Processes

Plants tend to take up pollutants from the medium in which they are found, whether
in soil or water (Lasat 2002). For example, some metals are essential nutrients such
as copper, zinc, and nickel, while others do not appear to have any physiological
activity such as mercury and cadmium (Lasat 2002). Adequate levels of required
micronutrients in plant tissue are diverse, for example, the concentration in weights
for zinc is 20 ppm, for copper 6 ppm, and for nickel 0.1 ppm (Taiz and Zeiger 2006).

Although plants can accumulate different metals, they can become toxic in high
concentrations. However, there are plants that have the capacity to accumulate these
metals in high concentrations without being affected in their growth or physiological
activities. These plants are called hyperaccumulators (Salt et al. 1998). There are
different ranges of heavy metal concentrations and their phytotoxicity in tolerant
plants, for example, for cadmium (normal, 0.05–2 mg/kg; toxic, 5–700 mg/kg), for
copper (normal, 3.5–30 mg/kg; toxic, 20–100 mg/kg), for lead (normal: 0.5–10 mg/
kg), and for zinc (normal, 10–150 mg/kg; toxic, (100 mg/kg) (Padmavathiamma and
Li 2007). Examples of hyperaccumulator plant species are as follows: Thlaspi
calaminare accumulates 3960 ppm zinc, Aeollanthus biformifolius accumulates
1370 ppm copper, Phyllanthus serpentinus accumulates 3810 ppm nickel, and
Thlaspi caerulescens accumulates 1800 ppm cadmium (Bradl 2005).

Phytoremediation can be applied under three models. The first is in situ
phytoremediation. This method consists of the implementation of
phytoremediation plants in the area where the contaminated soil or water is
located. It is important to consider that the plant can have access to the
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contaminants in order to carry out an efficient decontamination (Susarla et al.
2002). The second model is ex situ phytoremediation, which occurs when the plant
does not have access to the pollutants being phytoremediated. Generally, treatment
areas are designated where the contaminants are moved for the plants to carry out
the phytoremediation process. Once the contaminants are removed from the
environment, the remediated soil or water is returned to the area from which it
was extracted. Moving the contaminants generates a higher cost than the in situ
method (Susarla et al. 2002).

Finally, there is in vitro phytoremediation. In this method the phytoremediation
process is achieved not directly with the plant but by isolating and using the elements
that the plant uses to carry out phytoremediation, such as its enzymes. For example,
these components can be used by adding plant extracts to the contaminated water
volume. This method also requires the designation of a treatment area. If to this we
add the need of understanding the behavior of each enzyme, we can conclude that
this is the most expensive method (Susarla et al. 2002). There are several
phytoremediation processes, depending on the systems and strategies that the plant
uses to carry out the decontamination. In some cases, more than one may be present
in the process of contaminant removal.

17.7 Phytoextraction or Phytoaccumulation

Also called phytoaccumulation, phytoextraction consists of the capture and transport
of pollutants present in the environment, which are then transferred and stored in
different plant tissues. In these tissues, contaminants are accumulated in very high
concentrations. Phytoextraction consists in the absorption of contaminants by roots;
it is the capacity of some plants to accumulate contaminants in their roots, stems, or
foliage. This mechanism has been extensively studied in plants that accumulate
metals and recently radioactive materials.

This process is commonly known as phytomining. It has the advantage that after
harvesting the plant material and depending on the type of treatment for its disposal,
the contaminants can be recycled. In the case of soil application, the material for
disposal is almost 10% of what it would be to directly dispose contaminated soil
(Moriwaka and Erkin 2003; Brooks et al. 1998).

17.8 Phytovolatilization

This process consists in the capture of contaminants by the plant roots and then,
through enzymatic reactions, converted into volatile compounds and released into
the atmosphere through the stomata in the leaves. This occurs as growing plants
absorb water along with soluble organic contaminants. Some of the contaminants
may reach the leaves and evaporate or volatilize into the atmosphere. (Núñez et al.
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2004). This type of process works for highly volatile metals such as mercury and
arsenic. This process is influenced by environmental conditions such as humidity,
temperature, and wind speed (Moriwaka and Erkin 2003).

17.9 Phytodegradation

Also known as phytotransformation, phytodegradation consists in the transformation
of organic pollutants into simpler molecules. In some cases, the degradation products
are used by the plant to accelerate its growth, and in other cases the pollutants are
biotransformed; this is a process where the plant takes contaminants from the
environment and through physiological processes, including enzymes and their
cofactors, degraded to be incorporated into plant tissues and used as nutrients.
Generally, the final compounds are less toxic (Gerth et al. 2000; Susarla et al. 2002).

17.10 Rhizodegradation

In this process, pollutants are degraded in the rhizosphere. These processes are
mainly carried out by microbial activity associated with the rhizosphere. Also,
some exudates produced by the plant can induce bacterial enzymes or serve as
food for microorganisms and help enhance the degradation of pollutants, and the
plant can maintain optimal conditions for microorganisms, for example, by releasing
oxygen to promote aerobic conditions.

17.11 Filtration and Rhizofiltration

It is defined as the use of plants with the capacity to absorb, concentrate, and, in some
cases, precipitate contaminants present in aqueous solutions such as lead, cadmium,
copper, chromium, zinc, and nickel. For their efficiency, it’s essential that plants
have roots with a large surface area. Very fibrous roots have a high removal capacity
(Subroto et al. 2007). This type of process is particularly used to treat industrial
discharges and runoff from agricultural areas. It can be implemented both ex situ and
in situ. Once the plants reach a saturation level, they are harvested and transported
for disposal. The combination of rhizofiltration and harvesting activity generates a
process equivalent to phytoextraction. Similarly, the hydraulic force generated by
the absorption of water from the trees prevents the leaching of pollutants (Pilon-
Smits 2005). This process is based on the utilization of plants grown in hydroponic
cultures; roots of terrestrial plants with high growth rate and surface area are
preferred to absorb, concentrate, and precipitate contaminants.
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17.12 Phytostimulation or Rhizodegradation

Plants generate root exudates that stimulate the growth of native microorganisms
capable of degrading xenobiotic organic compounds.

17.13 Phytostabilization

A mechanism that uses the plant to develop a dense root system that allows it to
reduce the unavailability and mobility of pollutants by preventing their transport to
underground layers or to the atmosphere.

17.14 Biological Models of Phytoremediation

Calow (1993) points out the potential of using onion (Allium cepa L., Liliaceae), beet
(Beta vulgaris L., Chenopodiaceae), rice (Oryza sativa L., Poaceae), and radish
(Raphanus sativus L., Brassicaceae) to assess the toxicity and risk of hazardous
chemicals in the environment. However, the effect of heavy metals on vascular
plants is not well known (De Jong and De Haes 2001). Other metals, such as
cadmium (Cd) and zinc (Zn), can be absorbed to a greater extent in plants such as
radishes and carrots. Radish leaves accumulate a higher content of the metal, causing
wilting and a decrease in root length and biomass, while carrots report the same
degree of root shortening and a greater accumulation of the metal (Intawongse and
Dean 2006).

Manganese (Mn) available in some soils can substitute essential elements for
plants such as calcium (Ca) and magnesium (Mg) (Kabata-Pendias 2000). In studies
conducted on radish and spinach plants, it was observed that Mn tends to accumulate
in radish leaves and a high content in spinach leaves and lower concentrations in
roots of both plants (Intawongse and Dean 2006). As can be seen, the tendency of
this metal, although it may be a metal absorbed by soils to a lesser degree, is more
easily absorbed by plants and has greater mobility to reach the different parts or
organs of the plant, causing damage to them. Metal-producing plants: both on land
and in water, some species that you may be familiar with have a great potential to
accumulate heavy metals – A. sunflower (Helianthus annuus L.), B. red mangrove
(Rhizophora mangle L.), C. mustard (Sinapis alba L.), D. castor bean (Ricinus
communis L.), E. duckweed (Lemna minor L.), F. water lily (Eichhornia crassipes
(Mart.) Solms.), G. salvinia (Salvinia natans L.), and H. white water lily (Nymphaea
ampla L.).

Actually, the use of medicinal plants has increased worldwide. However, to
guarantee the safe use of medicinal plants, it is necessary to quantify their heavy
metal content. Recently, Carranza-Álvarez et al. (2016) quantified the concentration
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of two toxic elements, cadmium and lead (Cd and Pb), and of a micronutrient, iron
(Fe), in three medicinal plants (Justicia spicigera, Arnica Montana, and Hamelia
patens) collected from three different sites in two municipalities of the Huasteca
Potosina, Mexico. Cd and Pb are two toxic elements with no known biological
function, which can cause severe damage when introduced into the food chain, while
iron is an essential element. However, iron is a major element that can form oxides
and trap trace elements such as Pb and Cd and favor bioaccumulation of these
elements in plants. It is important to mention that in Huasteca Potosina the three
plants mentioned above are used for empirically treatment of iron deficiency.
Therefore, it was important to study the concentration of the three elements in
both medicinal plants. The results of this analysis showed that the medicinal plant
preparations contain higher values than those considered safe for Cd and Pb,
respectively. Furthermore, it is confirmed that these three medicinal plants could
be an important source of Fe. This suggests that the collection of medicinal plants
should be carried out in sites free of potentially hazardous toxic elements.

Some phytoremediating species of lead (Pb) are Melastoma malabathricum
(Selamat et al. 2014), Cynodon dactylon L. (Prabha and Li 2007), Adiantum
capillus-veneris L. (Yanqun et al. 2005), Helianthus annuus (Arias et al. 2015),
Paspalum notatum (Yoon et al. 2006), Bidens alba, Cyperus esculentus, Rubus
fruticosus, and Plantago major L. Some phytoremediating species of lead
(Pb) and cadmium (Cd) are Amaranthus hybridus (Ortiz-Cano et al. 2009;
Boonyapookana et al. 2005), Catharanthus roseus (Subhashini and Swamy 2017),
Matricaria chamomilla (Voyslavov et al. 2013), Artemisia princeps (Morishita and
Boratynski 1992), Artemisia vulgaris (Jara-Peña et al. 2014), Solanum nitidum,
Brassica rapa, Fuertesimalva echinata, Urtica urens L, and Lupinus ballianus.
Some lead (Pb), cadmium (Cd), and mercury (Hg) phytoremediation species are
Lupinus albus (Fumagalli et al. 2014), Artemisia absinthium (Zornoza et al. 2010),
and Artemisia campestris (Radanović and Antić-Mladenović 2012). The species
Lupinus uncinatus is a cadmium (Cd) phytoremediation plant (Ehsan et al. 2009).

17.15 Contaminants

Phytoremediation is a technology applicable to the remediation of several organic
and inorganic pollutants; however, the characteristics of each pollutant determine the
type of phytoremediation process to be carried out as well as the type of plant to be
used. Organic pollutants originate mainly from anthropogenic activities such as the
use of herbicides and pesticides in agriculture and the use of solvents, fuels, or
industrial wastes. For the phytoremediation of these pollutants, their bioavailability,
mobility, solubility, and the presence of other compounds must be considered.

Likewise, the time it takes to implement phytoremediation for their treatment
must be considered, since the longer the delay in its application, the lower the
remediation efficiency (Cunningham and Ow 1996). Inorganic contaminants, such
as heavy metals, can be found naturally. They become toxic in high concentrations,
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and their presence is mainly altered by anthropogenic activities such as agriculture,
mining, and industrial activities. The removal of these pollutants is influenced in the
same way by the previously mentioned aspects (Bradl 2005).

17.16 Origin and Effects

There are several natural sources of heavy metals, including igneous or magmatic
rocks as well as sedimentary rocks. The composition and content of metals vary
according to the type of rock (Bradl 2005). Some rocks of this type are biotite,
apatite, albite, muscovite, and magnetite (Mitchell 1964). Hydrothermal sources
contribute important quantities of metals, as well as volcanic activity that brings
material to the surface of the earth’s crust. Even winds can play an important role by
transporting ash and dust and depositing it over long distances. High weathering of
minerals and metal ions in rocks, as well as erosion, play an important role in the
dynamics and mobility of metals (Bradl 2005). There are also many anthropogenic
sources. Agricultural activities generate a considerable number of heavy metals,
mainly associated with agrochemicals. The use of phosphorus-based fertilizers
contains significant amounts of zinc and cadmium. Similarly, the pesticides used
generate a considerable amount of arsenic, lead, and mercury (Bradl 2005). In
addition, untreated industrial sewage sludge contains considerable loads of cad-
mium, zinc, copper, lead, selenium, molybdenum, chromium, arsenic, and nickel
(Adriano 1992). Mining generates an important contribution due to the oxidizing
environment that acts on the extracted rocks, generating acidic conditions that drain
the material, mobilizing metals such as cadmium, arsenic, copper, mercury, and lead
(Bradl 2005). Emissions from fuel burning contribute significantly to atmospheric
levels.

17.17 Heavy Metals

The term heavy metal is defined as metallic elements that have a relatively high
density and is toxic or poisonous at even very low concentrations. Examples of
heavy metals, or some metalloids, include mercury (Hg), cadmium (Cd), arsenic
(As), chromium (Cr), thallium (Tl), and lead (Pb), among others (Lucho et al. 2005).

Heavy metals are generally found as natural components of the earth’s crust, in
the form of minerals, salts, or other compounds. They cannot be easily degraded or
destroyed naturally or biologically because they do not have specific metabolic
functions for living organisms (Abollino et al. 2002).

Heavy metals are hazardous because they tend to bioaccumulate in different
crops. Bioaccumulation means an increase in the concentration of a chemical in a
living organism over a certain period compared to the concentration of that chemical
in the environment (Angelova et al. 2004). The uptake of heavy metals by plants is
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generally the first step for their entry into the food chain. Uptake and subsequent
accumulation depend primarily on the movement (species mobility) of metals from
solution in the soil to the plant root. In plants, the concept of bioaccumulation refers
to the aggregation of contaminants; some of them are susceptible of being more
phytoavailable than others (Kabata-Pendias 2000).

17.18 Phytoremediation Mechanism for Heavy Metals

The first pollutants subject to phytoremediation processes were heavy metals due to
the identification of several hyperaccumulator plant species. Likewise, the wide use
of heavy metals in industry and everyday items, such as batteries, generated a
particular interest in their removal from the environment. The fact that traditional
removal methods were so expensive somehow promoted the use of
phytoremediation as an efficient and economical method for their removal (Lasat
2000; United States Department of Agriculture 2000). A particular characteristic of
plants is that they tend to absorb metals that are used in various metabolic processes
such as copper, nickel, and zinc. On the other hand, other metals have no function in
the plant but are important pollutants such as cadmium, mercury, or lead. Several of
these metals are toxic to different organisms, including humans, affecting
populations present in contaminated sites (Pilon-Smits 2005; Li et al. 2000).

Virtually all phytoremediation processes can be carried out in the removal of
heavy metals. In the case of rhizofiltration, it uses plants with high tolerance to these
pollutants by immobilizing them in the rhizosphere. Here, metals are accumulated or
precipitated avoiding their integration into the trophic chain. In this process, the
implementation of water cress (Eichhornia crassipes) and some grasses such as
Festuca rubra and Agrostis capillaris for the phytoremediation of zinc, nickel,
arsenic, chromium, and lead has been successful (Ingole and Bhole 2003; United
States Department of Agriculture 2000; Li et al. 2000; Wing et al.2003).

Eichhornia crassipes has been reported as a plant with a high potential to
accumulate metal ions (Larcher 2003). This capacity varies depending on the type
of metal present in the water, as well as the environmental conditions. Eichhornia
crassipes works very efficiently for low concentrations of heavy metals, between
5 and 10 mg/L (Skinner et al. 2007; Hu et al. 2007); in some cases removal can reach
94% for zinc and 84% for chromium (Tripathi and Mishra 2009). At higher
concentrations, a reduction in the removal efficiency of arsenic, chromium, mercury,
and lead has been noted, where the process is maintained, but the higher concentra-
tion in the plant seems to reach a limit of accumulation eventually preventing the
macrophyte from removing more metals from the water, although this effect is not as
marked for nickel and zinc (Ingole and Bhole 2003).

In the case of chromium, the association of the cudweed with chromium-reducing
bacteria improves the removal of chromium from the water body. This microbial
activity concentrated in the rhizosphere reduces chromium from Cr (VI) to Cr (III),
which is less toxic. Although the removal by the crawfish decreases, the total
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removal increases (Faisal and Hasnain 2005). When using chromium-tolerant bac-
teria, the highest concentration of this metal is found in the roots, probably associ-
ated with the high activity in the rhizosphere (Abou-Shanab et al. 2007). For
cadmium, the cudweed has been reported as a plant with high removal capacity,
with high transfer from the root to other parts of the plant. In this case, in addition to
immobilization in cell walls, phenomena such as adsorption and chelation may be of
relative importance (Toppi et al. 2007). Another process used for metal removal is
phytovolatilization. This has been carried out using plants such as Arabidopsis
thaliana or commercial plants such as broccoli. In the first case, it has the capacity
to reduce the mercuric ion Hg2+ to Hg0 which is phytovolatilized by the stomata of
the plant. Broccoli, on the other hand, performs a similar process by volatilizing
selenium (Rugh et al. 1996; Zayed and Terry 1994).

The most used process in phytoremediation of heavy metals is phytoextraction.
Hyperaccumulator plants which can accumulate heavy metals in concentrations of
up to 1000 mg/kg dry weight in their aerial tissues are used. It is also believed that
such concentrations serve as a defense against pathogens and predators such as fungi
and insects. This phytoextraction is most efficient when copper, nickel, or zinc is
involved since they are elements that are incorporated into metabolic pathways. An
example of this is the removal of zinc by Thlaspi caerulescens where it has been
found to be able to accumulate up to 26,000 ppm of zinc without any apparent
damage. This is not the case for some metals such as lead (Pulford and Watson 2003;
Lasat 2002; United States Department of Agriculture 2000; Li et al. 2000). For
phytoremediation processes of heavy metals to be efficient, several aspects must be
considered. In the first place is the degree of tolerance of the plant to the metal since
this will define its accumulation capacity. Likewise, optimum plant growth must be
guaranteed. The use of plant hormones such as cytokinins has been considered to
increase growth and biomass (Salt and Kramer 2000; Khan 2005). The bioavailabil-
ity of the metal is another fundamental factor since only the available fraction can be
removed by the plant. The use of chelating agents can increase the metal removal
capacity by increasing metal availability. Metal uptake depends on the ability to pass
through the root cell walls either passively or actively. Finally, root transport to aerial
tissues is very important for good accumulation (Salt and Kramer 2000). It is of
utmost importance to know the life cycle of the plant in the different environments
where it is found. Once the plant completes its cycle, its decomposition can lead to
the release of heavy metals previously removed from the environment. This type of
information is important to develop a biomass removal or harvesting plan that
ensures the highest possible removal efficiency.

In the case of arsenic, it was found that Eichhornia crassipes presented removal
processes of about 21 days (Alvarado et al. 2008). Heavy metals are more dangerous
because they are neither chemically nor biologically degradable. Once released, they
can remain in the environment for hundreds of years. Moreover, their concentration
in living beings increases as they are ingested by others, so the ingestion of
contaminated plants or animals can cause poisoning symptoms.
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17.19 Presence of Heavy Metals in Soil

Heavy metals are present in soils as natural soil components or as a consequence of
anthropogenic activities. Different metals can be found in soils, forming part of their
own minerals, such as silicon (Si), aluminum (Al), iron (Fe), calcium (Ca), sodium
(Na), potassium (K), and magnesium (Mg). Manganese (Mn) can also be found,
which is generally present in the soil as an oxide and/or hydroxide, forming
concretions together with other metallic elements. Some of these metals are essential
in plant nutrition, so some of them are required, such as Mn, essential in the
photosystem and activation of some enzymes for plant metabolism (Mahler 2003).
Figure 17.1 shows responses of tolerant plants to the presence of heavy metals in
soil.

Heavy metals include elements such as lead, cadmium, chromium, mercury, zinc,
copper, and silver, among others, which constitute a group of great importance, since
some of them are essential for cells, but in high concentrations they can be toxic for
living beings, soil organisms, plants, and animals (Spain 2003), including humans.
In the Earth’s crust, there is a similarity of distribution between nickel (Ni), cobalt
(Co), and iron (Fe). In the surface soil horizons (arable layer), Ni is bound to organic

Fig. 17.1 Responses of tolerant plants to the presence of heavy metals in soil
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forms (Corinne et al. 2006), part of which can be found as easily soluble chelates.
Nickel (Ni) is also an essential element for plant metabolism, even though plants
require less than 0.001 mg kg�1 dry weight (Mahler 2003). Zinc (Zn) can also be
found naturally in soils and is a nutrient required by plants for their development
(Mahler 2003).

Natural geological activities, such as the erosion of hills and volcanoes, are an
important source of heavy metal inputs into the soil. Anthropogenic activities such as
the mining industry, which is listed as one of the industrial activities that generates
most of the heavy metals, are also a source of heavy metals. In the soil, heavy metals
can be present as free or available ions, compounds of soluble metal salts, or
insoluble or partially soluble compounds such as oxides, carbonates, and hydroxides
(Pineda 2004).

The relative mobility of trace elements in soils is of utmost importance in terms of
their availability and their potential to leach from soil profiles into groundwater and
differs depending on whether their origin is natural or anthropogenic and, within the
latter, on the type of anthropogenic source (Burt et al. 2003).

Among the heavy metals are the so-called trace elements, which can serve as
micronutrients for crops, since they are required in small quantities and are necessary
for organisms to complete their life cycle. After a certain threshold, they become
toxic, such as B, Co, Cr, Cu, Mo, Mn, Ni, Fe, Se, and Zn and the metalloid As. There
are also heavy metals with no known biological function, whose presence in certain
quantities in living beings leads to dysfunctions in the functioning of their organ-
isms. They are highly toxic and have the property of accumulating in living
organisms, elements such as Cd, Hg, Pb, Sb, Bi, Sn, and Tl (García and Dorronsoro
2005). When the content of heavy metals in the soil reaches levels that exceed the
maximum permissible limits, they cause immediate effects such as inhibition of
normal plant growth and development and a functional disturbance in other compo-
nents of the environment as well as a decrease in soil microbial populations; the term
used or employed is soil pollution (Martin 2000).

In the soil, heavy metals as free ions can have a direct action on living beings
through the blocking of biological activities, i.e., enzymatic inactivation by the
formation of bonds between the metal and the -SH (sulfhydryl) groups of proteins,
causing irreversible damage to the different organisms. Soil contamination by heavy
metals occurs when soils are irrigated with water from mine wastes, contaminated
wastewater from industrial and municipal parks, and seepage from tailings dams
(Wang and Chao 1992). Once in the soil, heavy metals can be retained in the soil, but
they can also be mobilized into the soil solution by different biological and chemical
mechanisms (Pagnanelli et al. 2004).

Heavy metals added to soils are slowly redistributed and distributed among the
components of the soil solid phase. Such redistribution is characterized by rapid
initial retention and subsequent slow reactions, depending on the metal species, soil
properties, level of introduction, and time (Han et al. 2003).

The factors that influence the mobilization of heavy metals in soil are soil
characteristics: pH, redox potential, ionic composition of the soil solution, exchange
capacity (cationic and/or anionic), presence of carbonates, organic matter, and
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texture, among others. The nature of the contamination and the origin of the metals
and forms of deposition and environmental conditions produce acidification and
changes in redox conditions, temperature, and humidity variations in soils (Sauquillo
et al. 2003).

In general, heavy metals incorporated into the soil can follow four different
pathways: first, they are retained in the soil, either dissolved in the soil aqueous
phase or occupying exchange sites; second, they are specifically absorbed on
inorganic soil constituents; third, they are associated with soil organic matter; and
fourth, they are precipitated as pure or mixed solids. On the other hand, they can be
absorbed by plants and thus incorporated into trophic chains; they can pass into the
atmosphere by volatilization and can be mobilized to surface or groundwater (García
and Dorronsoro 2005).

To elucidate the behavior of heavy metals in soils and prevent potential toxic risks
requires the evaluation of their availability and mobility (Banat et al. 2005). Metal
toxicity depends not only on their concentration but also on their mobility and
reactivity with other components of the ecosystem (Abollino et al. 2002).

Heavy metals contribute strongly to environmental pollution; the number of
metals available in the soil is a function of pH, clay content, organic matter content,
cation exchange capacity, and other properties that make them unique in terms of
pollution management (Sauve et al. 2000).

Lead (Pb), for example, is a highly toxic environmental contaminant; its presence
in the environment is mainly due to anthropogenic activities such as industry,
mining, and smelting. In soils contaminated with lead (Pb), cadmium (Cd), and
zinc (Zn) (Hettiarchchi and Pierzynski 2002) are also often found (Hettiarchchi and
Pierzynski 2002) due to the analogy between their metallic properties and charac-
teristics, something similar to what occurs for the Fe-Ni-Co triad.

In these cases, the soil-plant barrier limits the translocation of Pb into the food
chain, either by chemical immobilization processes in the soil as reported by
Laperche et al. (1997) or by limiting plant growth before the absorbed Pb reaches
values that can be harmful to humans. Pb present in contaminated soils can be
inhibited by the application of phosphorus and magnesium oxides; however, these
treatments can affect the bioavailability of other essential metals such as Zn
(Hettiarchchi and Pierzynski 2002).

On the other hand, in places where wastewater has been used for agricultural
irrigation, an increasing trend in the concentrations of metals in soils has been
reported, because of the time (years) of use of this water, where the quantities of
metals extracted and measured in these soils have been positively associated with the
time of use of wastewater; Ni and Pb show a higher annual accumulation rate. In
soils studied with different pH and contents of clay and organic matter, and where
concentrations of Pb and Zn have been intentionally added, the capacity of absorp-
tion of these metals in each type of soil has been determined. Lettuce was planted,
and after harvesting, the soils were re-evaluated, and it was observed that the
concentration of these metals in the soils decreased (Stevens et al. 2003), which
shows that these contaminated soils are a health risk because plants can absorb these
metals.
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Also, in studies conducted on European soils, which varied in their physicochem-
ical characteristics and with the objective of quantifying copper (Cu) uptake in
plants, they were amended using CuCl2 to obtain a range of seven concentrations
including an unamended control. For these studies, barley and tomatoes were
planted in these soils, and root elongation (for barley) and overall growth (for
tomato) were evaluated in the plants. The Cu concentrations caused inhibition of
root elongation and overall growth of the tomato plant; on the other hand, the most
calcareous soils showed the highest Cu retention, which demonstrates once again
that soil characteristics have a direct and determining influence on the concentrations
of metals in the soil and on the levels of availability to plants (Rooney et al. 2006;
Zhao et al. 2006).

Phytoremediation is not a simple remedy or recipe that is applicable to all
contaminated soils; before this technology can become technically efficient and
economically viable, there are some limitations that need to be overcome. For
example, their molecular, biochemical, and physiological mechanisms are poorly
known and insufficiently understood; however, despite this, a large number of plants
defined as hyperaccumulators can still be made known and identified (Freitas et al.
2004). Phytoremediation of contaminated soils is a technique with great potential.
The use of plant species tolerant to high levels of metals in soils and water allows
restoration activities with less environmental impact on the land than other tradi-
tional techniques, which are more invasive and have adverse side effects (Robinson
et al. 1997). Organic amendments can also be used for the remediation of contam-
inated soils. The bonding between organic matter and metals (formation of complex
molecules of high stability) can decrease the phytoextraction capacity, thus decreas-
ing phytotoxicity and allowing the reestablishment of vegetation on contaminated
sites (Robinson et al. 1997).

Since 1991, the Chinese government has developed and reported guidelines for
monitoring and evaluating heavy metal levels in contaminated sites (Chen et al.
1996; Wang et al. 1994). These guidelines are mainly based on soil properties and
the effect of heavy metals on water quality, on the activity of microorganisms in
soils, on human health, and on crop yields and quality. Three values have been
formulated to assess soil quality: the A Values (defined as the upper limit of frequent
concentration of heavy metals found in soils), B Values (defined as the acceptable
level of heavy metals in soils), and C Values (excessive levels in very high
concentrations of metals that indicate the need for intervention for solutions, i.e.,
pollution control becomes necessary and mandatory).

17.20 Bioaccumulation

Of all the traced elements present in the soil, there are 17 that are considered to be
both highly toxic and readily available in concentrations that exceed toxicity levels.
These are Ag, As, Bi, Cd, Co, Cu, Hg, Ni, Pd, Pt, Sb, Sn, Te, Tl, and Zn; of these, ten
are easily mobilized by human activity in proportions far exceeding that of
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geological processes (Novotny 1995). What makes heavy metals toxic is not gener-
ally their essential characteristics but the concentrations at which they can occur, as
they tend to bioaccumulate.

Bioaccumulation is defined as an increase in the concentration of a chemical in all
living organism over time, compared to the concentration of the chemical in the
environment, and almost more importantly, the type of species they form in a given
environment.

17.21 Soil Contamination

The way to remediate soil contamination has been sought and solutions have been
found, but they are costly and limiting. In the last decades of the twentieth century,
technologies based on the use of living organisms emerged to decontaminate
contaminated soils or sites and recover the affected ecosystems. When these tech-
nologies are based on the use of plants, they are globally known as phytoremediation
(phytorecuperation, phytocorrection, phytorestoration). It is defined as the use of
green plants to eliminate pollutants from the environment or to reduce their hazard-
ousness (Salt et al. 1998). Phytoremediation mechanisms include the following.

17.22 Mechanisms of Phytoremediation

The absorption of pollutants takes place through the roots and leaves by means of the
stomata and the cuticle of the epidermis. This absorption occurs in the rhizodermis of
young roots, which absorb compounds by osmosis depending on external factors
such as soil temperature and pH. Other important factors that influence contaminant
penetration are their molecular weight and hydrophobicity, which determine that
these molecules cross the plant cell membranes. After crossing the membrane,
contaminants are distributed throughout the plant (Harvey et al. 2002). Contami-
nants that are taken up by the roots are excreted via the leaves (phytovolatilization).
When contaminant concentrations are high, only small fractions (less than 5%) are
excreted without changes in their chemical structure. Detoxification of organic
compounds takes place via mineralization to carbon dioxide.

17.23 Conclusion

Phytoremediation is an emerging technology based on higher plants and microor-
ganisms associated with the rhizosphere, which constitutes an option for in situ or ex
situ removal of pollutants. In natural ecosystems, plants act as filters to remove,
reduce, transform, mineralize, degrade, volatilize, concentrate, or stabilize pollutants
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(organic and inorganic) in soil, sludge, water, and sediments. The implementation of
phytoremediation techniques is advisable because it generally does not alter ecosys-
tems; it is carried out without harming them; it is a passive, friendly technique; and it
is not harmful to the environment.
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Chapter 18
Stress-Tolerant Species of Medicinal Plants
and Phytoremediation Potential
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and Pei Zhou

Abstract Presently, there seems to be an increase in interest in cultivating medicinal
plants across the globe. Medicinal plants offer huge potential to be grown on
contaminated sites to recover soil health, in addition to oil production and
eco-tourism, to address the rising demand for pharmaceuticals, essential oils, and
bioenergy. In the present chapter, efforts have been made to collect and analyze
available information regarding stress tolerance capabilities and the
phytoremediation potential of medicinal plants, which will provide valuable insight
into understanding the putative mechanisms involved in stress tolerance and pollu-
tion alleviation. The medicinal plants that can withstand stress and be used for the
phytoremediation of environmental contaminants have also been explored.
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18.1 Introduction

Humans have a strong bond with mother nature, which commenced with their birth
on the earth. Humans do not live devoid of nature. Humans used to collect their food
from nature and gradually learned the pharmacological value of the plants. Since the
dawn of human civilization, medicinal plants have been the primary source for
curing, healing, and alleviating a wide range of illnesses. These epiphanies resulted
in the emergence of folk medicinal practices. Folk medicinal practices can be split
into preventive (traditional foods, clothing, and hygiene systems) and therapeutic
medicine (curative for common ailments). Despite the advancements of the contem-
porary medical and pharmaceutical industries, medicinal plants have become a vital
component of daily life throughout the years. They are increasingly being utilized in
cosmetology, the food industry, herbal tea, and alternative remedies (Rasool Hassan
2012). For a variety of factors, demand for medicinal plants is growing in both
developed and developing countries. The rising interest in medicinal plants and their
capacity to remediate environmental pollutants provide dual economic benefits as
part of the greener economic growth and bioenergy production movement. Enriched
(contaminated) biomass for bioenergy is an old technique that provides a low-cost
alternative and renewable energy source (McKendry 2002).

Medicinal plants, as compared to conventional hyperaccumulator plants and
crops, may be used to remediate contaminated sites due to their ease of provision,
low cost, higher economic threshold level, and low chance of metal transfer from soil
to essential oil, as well as alterations in its composition (Zheljazkov et al. 2006),
which is predominantly due to the process (such as steam distillation) used for oil
extraction (Bernstein et al. 2009; Pandey and Singh 2015; Scora and Chang 1997),
thereby have limited or no risk of tropic chain contamination. Medicinal plants have
a promising future as there are approximately 500,000 plants globally. The majority
of their pharmacological, stress tolerance and phytoremediation potential has yet to
be explored, necessitating existing and future studies. In the present chapter, efforts
have been made to collect and analyze available information regarding stress
tolerance capabilities and the phytoremediation potential of medicinal plants,
which will provide valuable insight into understanding the putative mechanisms
involved in stress tolerance and pollution alleviation. The medicinal plants that can
withstand stress and be used for the phytoremediation of environmental contami-
nants have also been explored.

18.2 Multi-aspects of Medicinal Plants

Cultivation of medicinal plants for direct (i.e., therapeutic) as well as indirect
(mitigation of environmental issues) purposes is an ancient practice (Gupta et al.
2013; Tamari et al. 2014). There are several medicinal plants worldwide with
multipurpose benefits that protect animals, humans, and the environment
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(Fig. 18.1). Additionally, numerous medicinal plants exhibit biotic and abiotic stress
tolerance and play a vital role in the accumulation/phytoextraction of environmental
contaminants (both organic and inorganic) from polluted sites (Gupta et al. 2013).

18.3 Stress Tolerance Capability of Medicinal Plants

Stress tolerance refers to a plant’s (particularly tolerant) capacity to withstand stress
(both biotic and abiotic) episodes traumatic enough to cause severe physiological
and cellular anomalies in susceptible plants. Abiotic stresses such as drought (water-
deficit condition), salinity, temperature, light, and heavy metals impede plant sur-
vival and inhibit their growth, development, and production globally. Rapid urban-
ization puts extra burden on arable land and agricultural sustainability. Furthermore,
the scarcity of freshwater resources, climate change, and overexploitation of agro-
chemicals (insecticides and pesticides) exacerbate these stressors, negatively
influencing crop growth and production (Suzuki et al. 2014; Zhao et al. 2020). As
earlier stated, each of the stressors has a negative influence on the physiology,
morphology, and metabolism of the plant. Plants are prone to oxidative stress as a
result of increased production of reactive oxygen species (ROS), including the
superoxide anion (O2

�), singlet oxygen (1O2), hydrogen peroxide (H2O2), and
hydroxyl radical (OH) (Lajayer et al. 2017). These ROS are highly toxic and can
cause macromolecule damage, eventually leading to programmed cell death. Plants
develop a plethora of resistance mechanisms to cope with the detrimental effect of
adverse environmental conditions. The main tolerance mechanisms are modifica-
tions in membrane structure, escape from unfavorable conditions, modulation of the
antioxidant defense system, production of compatible solutes (proline, soluble

Fig. 18.1 Multipurpose uses of medicinal plants
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protein, soluble sugar) for cell osmotic adjustment, and alterations in biochemical
and molecular attributes. Various plants utilize different coping strategies based on
the degree/severity of stress, the plant species, and the growth stage (Mohammadi
et al. 2020). When subjected to a specific stress, the tolerant plant led to stress
adaptation in a time-dependent manner (Verma et al. 2013). To combat adverse
biotic and abiotic stressors, medicinal plants employ a variety of phytochemicals
(such as tannins, glycosides, and flavonoids). Secondary metabolites are responsible
for plant adaptation to harsh environmental conditions (Maplestone et al. 1992).
Furthermore, at molecular and physiological levels, plants trigger diverse metabolic
processes or biosynthetic pathways in response to environmental stimuli (drought,
salinity, light, temperature, and heavy metal stress) (Dangl and Jones 2001;
Holopainen and Gershenzon 2010; Loreto and Schnitzler 2010).

Drought, a major environmental stressor, limits plant growth and productivity
around the globe (Seleiman et al. 2021). Around 70% of global water is often used in
the agricultural sector, and this figure is expected to increase to 83% by 2050 to meet
the growing population’s food demand (Facts 2012). Crop losses cost billions of
dollars owing to drought and salinity stresses (Shabala et al. 2014). According to
Selmar et al. (2017), water scarcity promotes the biosynthesis of key metabolites in
spice and medicinal plants. Medicinal plants respond to drought stress by enhancing
inherent bioactive components (Khan et al. 2011). Drought stress causes oxidative
stress in plants, which reduces the photosynthetic rate and produces phenols. These
phenolic compounds assist plants’ defensive mechanisms (Jaafar et al. 2012).
Enzymatic activity of phenylalanine ammonia-lyase (PAL) and chalcone synthase
(CHS) has been proven to affect polyphenols inOriganum vulgare L (Lattanzio et al.
2009). The performance of plant’s active and herbal constituents is altered by
drought stress. Alavi-Samani et al. (2015) stated that different irrigation levels
significantly influence the essential oil contents of Thymus vulgaris and Thymus
daenesis such as carvacrol, γ-terpinene, and p-cymene in drought-stressed treated
plants as compared to untreated plants. Mahdavi et al. (2020) concluded that the
determinant compounds in drought stress adaptation were α-phellandrene,
O-cymene, γ-terpinene, and β-caryophyllene in their study of T. vulgaris var.
Wagner and T. vulgaris var. Varico3. Nowak et al. (2010) reported that drought
stress substantially improved the content of terpenes in Salvia officinalis. García-
Calderón et al. (2015) reported that drought stress caused an increase in kaempferol
and quercetin contents in N. tabacum. Jujube (Ziziphus jujuba Mill.), a well-known
plant for stress tolerance, has a dual capacity of stress avoidance and tolerance under
drought stress conditions (Maraghni et al. 2014). Temperature is a major determinant
in influencing the rate of plant growth and development, and each plant species has a
varying temperature range. In recent years, the recurrence of heat waves or extreme
temperature events has become predictable (Bhatla and Tripathi 2014).
S. rebaudiana (Bertoni) is a species exhibiting natural sweeteners with zero calories.
It has antibacterial, antifungal, anti-inflammatory, antimicrobial, cardiotonic,
diuretic, hypoglycemia, diabetic benefit, hypotensive tonic, and vasodilator proper-
ties. Due to their remarkable medicinal properties, S. rebaudiana was subjected to
water stress conditions, and their morpho-physiological and biochemical
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characteristics were evaluated (Kanta et al. 2016). Medicinal plants have evolved
biochemical mechanisms to protect themselves from the impacts of light-induced
damages (Ghassemi et al. 2021). These mechanisms provide an effective means of
safely absorbing light (Ghassemi et al. 2021). Cold stress is one of the detrimental
abiotic stressors which limits the geographical distribution as well as production of
medicinal plants. Cold acclimation is a process that causes medicinal plants to
develop resistance against cold stress (Ghassemi et al. 2021).

Salinity is a global agricultural problem that reduces plant growth and crop
production in saline parts of the globe (Gull et al. 2019). It is widely acknowledged
as a serious issue affecting medicinal plant growth and herbal yield (Mondal and
Kaur 2017). Anthropogenic activities, salt composition, and land topography are all
factors that contribute to soil salinity (Kotagiri and Kolluru 2017). Previous studies
demonstrated that salinity induces water loss and ion toxicity, resulting in nutritional
deficiency, reduced growth, and ultimately plant death, particularly in salt-sensitive
genotypes (Mohammadi et al. 2020). Salt stress lowers chlorophyll levels,
preventing chlorophyll production and triggering chlorophyll degradation. These
physiochemical alterations in plants cause an imbalance in chlorophyll metabolism,
impaired photosynthetic activity, and, in severe cases, necrosis. Plants have devel-
oped a unique system to combat salt stress, which regulates salt levels in various
tissues. This coping mechanism controls the distribution of toxic ions (Na+ and Cl�)
across the cells, tissues, and organs; besides, osmolytes are also involved in
maintaining the photosynthetic process. Nonetheless, tolerant genotypes have a
better coping mechanism than susceptible genotypes.

Previous studies also reported that salt stress reduced essential oil levels in mint
and Trachyspermum ammi (Ashraf and Orooj 2006; Aziz et al. 2008), whereas
Baghalian et al. (2008) reported a spike in the amount of essential oil in Matricaria
recutita under salinity stress. Furthermore, they stated thatMatricaria recutita could
be the ideal choice to be grown in saline areas in order to boost agronomic yields
with adequate therapeutic value where other crops cannot thrive. Several researchers
have discovered that saline conditions improve the percentage of essential oil in
different plants (Satureja hortensis, Salvia officinalis, Thymus vulgaris) under saline
conditions (Baher et al. 2002; El-Din et al. 2009; Hendawy and Khalid 2005).
According to Neffati and Marzouk (2008), salinity stress augmented carvacrol in
the root but inhibited the amount of γ-trepine in the shoot. Kotagiri and Kolluru
(2017) studied five distinct Coleus species under salinity stress. Of them, two
species, Coleus aromaticus and Coleus amboinicus, showed better performance by
exhibiting increased carbohydrate contents and water absorption potential. They
further concluded that increased carbohydrate content under salinity indicates a
metabolic substrate or osmolytes, conferring salt tolerance.
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18.4 Phytoremediation Potential of Medicinal Plants

Various metal species have been used in wide-ranging industrial products; however,
the unauthorized disposal of metal-enriched waste has contaminated soil, sediments,
and groundwaters. Phytoremediation is the use of plants and plant products to
remediate contaminants from the environment (Hayat et al. 2020; Menhas et al.
2021). Since this phytotechnology first evolved, considerable focus has been placed
on identifying plants that accumulate contaminants, including hazardous metals.
Recently, the use of plant-mediated phytoremediation approaches (notably the
phytoextraction technique) to clean up polluted areas or water bodies has been
regarded as a viable and ecologically sustainable strategy (Augustynowicz et al.
2014; Malar et al. 2014; Sasmaz et al. 2015; Syukor et al. 2016). So far, several plant
species have been investigated as phytoremediators, including medicinal plants.
However, several of them were classified as hyperaccumulators (plants that can
accumulate higher levels of metals in roots and readily transfer them into above-
ground parts, i.e., stems and leaves). Hyperaccumulators, on the other hand, are
generally confined to metal-enriched soils, such as those occurring on serpentine
outcrops and metalliferous rocks (Reeves 2006). The selection of plants for pollutant
removal is an important step in phytoremediation. Meanwhile, researchers seek
plants that could accumulate contaminants while simultaneously provide certain
value-added products (at the same time or the postharvest stage of the crop). It is
worth noting that in resource-constrained nations, the complications in reclaiming
contaminated arable lands arise from governments’ inability to give incentives to
farmers or through the area being constantly under cultivation (Jisha et al. 2017;
Zheljazkov et al. 2008). Thus, employing high biomass plant species such as maize,
oats, and rapeseed (edible plants); tree and shrub species; and medicinal and
aromatic plants is indeed an alternative option (Szczygłowska et al. 2011); however,
utilizing primary food crops increases the risk of adding heavy metals into the food
chain. Therefore, medicinal plants come into the picture; nevertheless, medicinal
plants used for the phytoremediation process may not be particularly herbaceous and
must have a high growth rate or phytoremediation capability compared to crop plants
(Brown et al. 1995; Cosio et al. 2004; Lone et al. 2008). Recently, several medicinal
plants have been found to be resilient to biotic and abiotic stressors that might lead
contaminants to accumulate, suggesting that they could be utilized as
phytoremediator plants (Mafakheri and Kordrostami 2021). Senecio coronatus
(Thunb.) Harv. (Asteraceae), a medicinal plant, is one of the nine nickel
(Ni) hyperaccumulating plants in Africa (Przybyłowicz et al. 1995). Similarly, two
medicinally important African Datura species (Solanaceae), Datura metal L. and
Datura sativa L., are termed as metallophytes (i.e., a cobalt and nickel accumulator),
while also been regarded as phytomonitors (Bhattacharjee et al. 2004), whereas
Datura innoxia has been regarded as a metal-tolerant species (Kelly et al. 2002).
Likewise, Helichrysum candolleanum (Asteraceae) and Blepharis diversispina
(Acanthaceae) exhibit high metal tolerance capabilities (Nkoane et al. 2005).
Chrysopogon zizanioides, often known as vetiver grass, has been reported to be
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effective in removing both organic (e.g., 2,4,6-trinitrotoluene, phenol, and petroleum
hydrocarbon) and inorganic (particularly hazardous metals such as lead, cadmium,
copper, zinc, and arsenic) pollutants (Balasankar et al. 2013; Brandt et al. 2006;
Chen et al. 2004; Datta et al. 2011; Ho et al. 2013; Makris et al. 2007; Singh et al.
2008; Singhakant et al. 2009). In a study done by Datta et al. (2011), vetiver grass
was found to be a promising phytoremediator of As when grown in various soil
types. When cultivated in 45 mg As kg�1 soil, the plant has been shown to possess a
remarkable As removal efficiency of 10.6%. Hamzah et al. (2016) investigated the
cadmium accumulation efficiency of various indigenous plants. They revealed that
Euphorbia hirta, an industrially important plant (especially in the healthcare and
petrochemical industries), had a high Cd bioaccumulation efficacy. Euphorbia hirta
has also been proven useful for decontaminating radioactive waste (Hu et al. 2014).
Hypericum perforatum L. is a valuable medicinal plant that could accumulate a
considerable amount of Cd and is often used as an antidepressant (Kim et al. 1999;
Malko 2002; Müller 1999; Schneider and Marquard 1995; Verotta 2003).
Researchers indicated that Hypericum sp. may accumulate a high Cd concentration
in their aerial parts without noticeably affecting growth or dry biomass. When grown
on a Cr-contaminated substrate, hypericin, a key essential oil component, was not
affected (Tirillini et al. 2006). Ricinus communis, also known as castor, has been
used as a medicinal plant since very ancient times for anti-implantation activity, anti-
inflammatory activity, antitumor activity, anti-asthmatic activity, and so on and has
recently gained popularity as a potent phytoremediator for the cleanup of numerous
pollutants, both organic and inorganic (Abreu et al. 2012; Adhikari and Kumar 2012;
Bauddh et al. 2016a, 2015, 2016b; Bauddh and Singh 2012a,b, 2015a,b). Castor
extracts have acaricidal and insecticidal properties (Zahir et al. 2010). The plant may
readily grow up to 150 mg/kg Cd and accumulate a significant amount of the metal in
its roots and shoots (Bauddh and Singh 2012a). The plant has a high level of
tolerance to both biotic and abiotic stressors. Furthermore, R. communis is an annual
plant that produces high biomass, which may be an alternative source of bioenergy.
For instance, it has a high concentration of nutrients, while the husk and cake
obtained after oil extraction can also be used as manure (Zahir et al. 2010). Heavy
metals such as Cd, Ni, Pb, Cu, As, Cr, Zn, Ba, and others have been shown to
accumulate at higher concentrations in the plant (Abreu et al. 2012; Adhikari and
Kumar 2012; Bauddh et al. 2015, 2016a, b; Bauddh and Singh 2012a,b, 2015a,b;
Mahmud et al. 2008; Romeiro et al. 2006). When grown on wasteland areas,
R. communis planting has also enhanced soil physicochemical characteristics
(Wu et al. 2012). Hypericum perforatum L., a medicinally important plant used to
treat depression (Verotta 2003), is effective for soil Cd removal (Malko 2002;
Schneider and Marquard 1995). The plant showed no visible phytotoxic effects on
growth or dry biomass production. Bishehkolaei et al. (2011) uncovered that
Ocimum basilicum L. accumulates chromium (Cr) effectively in its tissues. By
limiting the metal in its roots, the plant evolved a defensive mechanism. In a recent
study, Ocimum basilicum demonstrated its potential for phytoremediation of
Cd-contaminated soil, which was enhanced when the plants were treated with
various fertilizers (Zahedifar et al. 2016). According to Rai et al. (2004), Ocimum

18 Stress-Tolerant Species of Medicinal Plants and Phytoremediation Potential 439



tenuiflorum L. could tolerate Cr phytotoxicity by altering several metabolic path-
ways. MM et al. (2013) evaluated the phytoremediation capability of six wild plants,
namely, Citrullus colocynthis, Datura stramonium, Lycium shawii, Malva
parviflora, Phragmites australis, and Rhazya stricta, for Cd, Zn, Cu, Ni, and
Pb. Of these, Datura stramonium is a medicinal plant that can be used to
phytostabilize soil polluted with Ni and Cu. Lal et al. (2008) assessed the
phytoremediation potential of Cymbopogon martinii, Cymbopogon flexuosus, and
Vetiveria zizanioides for Cd 2008. Cd tolerance was also identified in Vetiveria
zizanioides. Many publications have reported the metal (e.g., Ni, Cr, Cd, Al, etc.)
tolerance and bioaccumulation potential of several Mentha species (Manikandan
et al. 2015; Zurayk et al. 2001, 2002). Zurayk et al. (2001) cultivated 12 different
hydrophyte species as well as 4 Mentha species: Mentha longifolia, Mentha
aquatica, Mentha pulegium, and Mentha sylvestris, in 1.0 ppm Cr, Ni, and Cd
contamination. They discovered that all Mentha sp. accumulated a significant
amount of all metals tested. M. longifolia accumulated Cr (1076.8 g Cr plant�1),
whereas M. sylvestris accumulated Ni (1822 g Cr plant�1), the greatest amount of
metal accumulation among all (12) plants studied. Mentha aquatica L. and Mentha
sylvestris L. were grown for 14 days in solutions containing 1.0, 2.0, 4.0, and 8.0 mg
Ni L�1 (Zurayk et al. 2002). M. aquatica and M. sylvestris both collected a
significant quantity of Ni in their roots (8327 mg Ni kg�1 dry weight inM. aquatica
and 6762 mg kg�1 dry weight in M. sylvestris), indicating that this plant is an
efficient phytoremediator. Two medicinally important plants (Centella asiatica and
Orthosiphon stamineus) were analyzed for the phytoremediation potential of differ-
ent heavy metals (Abd Manan et al. 2015; Arifin et al. 2011; Mohd Salim et al.
2013). Abd Manan et al. (2015) compared the Zn, Cu, and Pb accumulation and
translocation of two medicinal plants (C. asiatica and O. stamineus). They con-
cluded that C. asiatica had more than one translocation factor for all studied metals
(Zn ¼ 1.34, Cu ¼ 2.77, and Pb ¼ 1.42). A translocation factor greater than one
implies that C. asiatica has the potential to be utilized in phytoextraction. However,
O. stamineus has less than one translocation factor and may be ideal for
phytostabilization. Allium sativum (garlic) was reported to have a high cadmium
accumulation capacity in its roots, 1826 times more than the control (Jiang et al.
2001). The plant had adequate tolerance to Cd and did not exhibit toxic effects at
lower doses. Cannabis sativa var. sativa L. (hemp) is an industrial (for fiber) and
important medicinal plant grown in Ni-, Pb-, and Cd-contaminated soil to assess its
phytoremediation capacity and the impact of these metals on fiber quality (Linger
et al. 2002). They advocated that the plant’s leaves exhibited the highest concentra-
tion of all tested metals. Furthermore, they prophesied that none of the studied metals
have an impact on fiber quality. Citterio et al. (2003) cultivated Cannabis sativa in
Cd-, Ni-, and Cr-contaminated soil and discovered no significant differences in plant
development (morphology) after 2 months of seed sowing under contaminated
conditions. Metals stimulated the synthesis of phytochelatins in C. sativa, indicating
a robust coping mechanism against metal toxicity. Cymbopogon martinii, also
known as palmarosa, was discovered to be a viable candidate for metal
phytostabilization when grown in tannery sludge mixed soil (Pandey et al. 2015).
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Acalypha indica is a Pb accumulator plant, and antioxidants might play a key role in
detoxifying Pb-induced negative impacts. Various plant species, including A. indica
L., have recently been demonstrated to accumulate heavy metal ions such as Cd, Pb,
Ni, Cr, Zn, Fe, and Cu from contaminated environments (Olowu et al. 2015). This
plant has numerous medicinal properties and therapeutic applications, including
antibacterial, anti-inflammatory, antifungal, and wound-healing activities, cardiac
disorders, biliousness, rheumatism, hemorrhages, ulcers, amenorrhea, and treatment
of various skin diseases (Jagatheeswari et al. 2013). The Cd/Pb combination had
negligible phytotoxic effects on Ligusticum chuanxiong Hort. which were associated
with enhanced photosynthetic processes, subcellular distribution, the chemical forms
of Cd and Pb, and secondary metabolite production (Zeng et al. 2020). These
findings have implications for plant production strategies in heavy metal-
contaminated soils. Artemisia annua (Asteraceae) is a dicotyledonous medicinal
plant native to China, which is also extensively distributed in temperate and sub-
tropical zones, particularly in Asia. A. annua has key features such as a fast growth
rate and high biomass production, ease of culture, and a peculiar weedy habit, all of
which are crucial for plants used for phytoextraction of metals and metalloids from
contaminated soils (Rai et al. 2014). A study found that Centella asiatica was
resistant to zinc, copper, and lead based on bioaccumulation, translocation, and
enrichment factors, making it appropriate for phytoextraction. Orthosiphon
stamineus, on the other hand, was a moderate metal accumulator (Abd Manan
et al. 2015) (Table 18.1).

Table 18.1 Phytoremediation potential of medicinal plants

S. No Medicinal plants
Heavy
metals Major findings References

1. Centella asiatica
and Orthosiphon
stamineus

Zn,
Cu,
and Pb

Centella asiatica is a tolerant species and
suitable for zinc, copper, and lead
phytoextraction. By contrast,
Orthosiphon stamineus is a moderate
accumulator of the tested metal elements

Abd Manan
et al. (2015)

2. Cunila galioides
Benth.

Al The André da Rocha population is the
most tolerant to aluminum, while Bom
Jardim da Serra is the most sensitive.
Higher flavonoid concentrations in toler-
ant counterparts

Mossi et al.
(2011)

3. Pfaffia glomerata
(Spreng.)

Pb Higher SOD and CAT antioxidant activ-
ity in the root and shoot

Gupta et al.
(2011)

4. Mentha piperita As,
Cd, Ni,
Pb

Higher concentrations of Cd, Ni, and Pb
were accumulated in different parts of the
plant, except for As. Mentha piperita is
suitable for metal phytostabilization

Dinu et al.
(2021)

5. Salvia sclarea L. Zn S. sclarea is an economically attractive
plant for the phytoextraction and/or
phytostabilization of Zn-contaminated
soils

Dobrikova
et al. (2021)
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18.5 The Fate of Enriched Plant Biomass

In general, steam distillation is employed to extract essential oils from medicinal
plants since it has the slightest possibility of allowing pollutants to transfer into the
oil. After collecting the oil, the remaining biomass of medicinal plants can be used as
a renewable bioenergy resource. This bioenergy can be generated either by direct
burning of biomass or by producing biogas through biomass gasification. The use of
plant biomass for bioenergy is an old technique that provides a low-cost, renewable
energy source. This integrated strategy will decrease the cost of petroleum oil while
also contributing to the development of a sustainable model that will mitigate
multiple environmental issues such as the reduction of greenhouse gases and the
alleviation of pollution (Fig. 18.2).

18.6 Conclusions and Future Prospects

Since ancient times, medicinal plants have been used for wide-ranging medicinal
and therapeutic purposes. Medicinal plants offer exceptional stress tolerance and
phytoremediation capabilities, in addition to numerous medicinal and pharmacolog-
ical characteristics. As a result, it is seen as a viable alternative for the restoration of
contaminated areas that would not involve the contamination of essential oils.
Further research is needed to understand stress tolerance responses in medicinal

Fig. 18.2 Employing medicinal plants for decontamination/phytoremediation of polluted
environments
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plants since chemical compounds play an important role in defensive mechanisms
and concomitant phytoremediation processes.
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Chapter 19
Breeding Advancements in Fenugreek
for Environmental Stresses

Muhammad Azhar Nadeem, Muhammad Tanveer Altaf,
Muhammad Abu Bakar Zia, Tolga Karaköy, Faheem Shehzad Baloch,
and Muhammad Aasim

Abstract The world is witnessing a simultaneous problem of climate change and
rapid increase in population. Climate change is becoming a big threat to agriculture
production system, and it is believed that it will become more and more adverse in
coming years. Under these circumstances, plants are combating various environ-
mental stresses they never faced before. Plants are developing various mechanisms
in order to deal with these stresses. Human being is directly dependent on the plants
to fulfil its basic needs like food, shelter, and medicine. Medicinal plants are
important resource for the human being in order to treat various diseases and
remained a significant part of civilizations and cultures. Among these, fenugreek is
one of the most important medicinal plants belonging to Leguminosae family. It is
much known to the world for its aromatic, condimental, and medicinal properties. Its
seeds are utilized as dietary proteins having antipyretic, antidiabetic, digestive,
lactogogue, hypolipidemic, and cholesterol-reducing properties. Most of the cited
literature provided deep insight about its medicinal properties. However, there is less
available information that documented how fenugreek responds to various environ-
mental stresses like drought, salt, and cold stress. This book chapter is aimed to
provide information how plants especially fenugreek respond to environmental
stress and how these stress influence the growth and development of this plant.
We believe that provided information will motivate the scientific community to
conduct more studies in order to develop climate-resilient fenugreek cultivars.
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19.1 Introduction

There is no uncertainty that food security and agricultural sustainability are threat-
ened by environmental changes. Plants have evolved a variety of methods to deal
with environmental stresses. The steady variation in the environment can lead to
plant adaptability, whereas short variation in the environment can cause a cumulative
reaction. The reaction of individuals to environmental stresses depends on the
various factors, for instance, plant species and type and, duration of stress. Plants
are exposed to harsh climatic circumstances like intense heat or cold, UV and water
scarcity, heavy metals, nutrient insufficiency, light stress, salt stress, and air pollu-
tion; as a result, reactive oxygen species and the hydroxyl radical, hydrogen perox-
ide, and superoxide are produced (Bahuguna and Jagadish 2015). Plants have
evolved a variety of survival ways to deal with harsh environmental conditions
(Fig. 19.1). Plants that survive in severe conditions cause incredible changes at the
molecular and cellular levels. Temperature and water are two of the most important
environmental factors that influence consequently agricultural sustainability and
plant distribution in various parts of the globe (Chinnusamy et al. 2007). Plants
reacted to unfavorable ecological stresses (i.e., drought, flooding, heat, salinity,
heavy metal, and UV) by numerous physiological, molecular, and biochemical
variations. As an example, various kinds of phytochemical compounds are utilized
to control biotic and abiotic stresses. Nonetheless, secondary metabolites play a vital
role in plant’s adaptation into their habitat. Plants displayed several biochemical
responses to salt, heavy metals, temperature, drought, and light stress (Holopainen
and Gershenzon 2010). These responses take place at physiological and molecular
levels that eventually affect phytochemical compounds (Loreto and Schnitzler

Fig. 19.1 Plant response to abiotic stress
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2010). To survive under severe conditions, medicinal plants limit secondary metab-
olite synthesis to a particular metabolite. The current findings revealed that plants
utilize varied ways to deal with stressful circumstances that depend on plant species,
stressors, and time of occurrence. Additionally, findings revealed that the biochem-
ical, molecular, and physiological changes in relations occur during environmental
stresses.

Throughout life, humans have relied on nature to fulfil their basic needs such as
scents, tastes, shelters, food, medicines, modes of transportation, clothing, and
fertilizers (Srivastava et al. 2020). Medicinal plants have long been playing an
important part in the growth of human society (Aasim et al. 2018; Nadeem et al.
2018). These plants have always been at the forefront of practically all cultures of
civilizations as a source of medicine. Medicinal plants are considered abundant
sources of traditional medicines, and many modern medicines are produced from
them (Dar et al., 2017). Medicinal plants have been used to treat illnesses, flavor and
preserve food, and stop disease epidemics for thousands of years (Sofowora et al.,
2013). In 2008, the World Health Organization (WHO) published a report
confirming the importance of these plants in daily life and reported that 80 percent
of the world’s population relied on them as traditional medicine, either directly or
indirectly. Europe uses around 1300 medicinal herbs, 90 percent of which are
obtained from the wild and natural resources. One hundred eighteen of the
150 most often used medicines are based on natural resources (Balunas and
Kinghorn, 2005). According to a survey by the International Union for Conservation
of Nature and the Globe Wildlife Fund, the world uses between 50,000 and 80,000
flowering plant species for medical purposes (Chen et al., 2016). Natural products
and medicines derived from those products treat 87 percent of all human diseases,
including cancer, bacterial infection, and immunological problems (Cragg and
Newman 2013).

Around the globe, there is a large genetic diversity of medicinal plants, and this
pool of genetic variants serves as the base for both selection and plant
improvement (Karık et al. 2019). Hence, characterization, documentation, and
identification of the gene pool of medicinal plants are necessary for this goal
(Gantait et al., 2014). The sequences of the genome contain crucial details about
the origin of plants, epigenomic regulation, inheritable traits, development, evolu-
tion, and physiology, all of which are necessary for deciphering genome diversity
and chemo diversity at a molecular basis (Hao and Xiao, 2015). High-throughput
sequencing of traditional medicinal plants could help with molecular breeding of
high-yielding medicinal cultivars as well as shed light on the biosynthesis paths of
medicinal compounds, particularly secondary metabolites, and their regulatory
mechanisms (Boutanaev et al., 2015; Hao and Xiao, 2015).

Fenugreek (Trigonella foenum-graecum L.) is an ancient medicinal plant with an
extraordinarily therapeutic and nutritional profile (Flammang et al. 2004; Aasim
et al. 2018). Fenugreek belongs to the family Fabaceae that originated in central
Asia approximately 4000 BC (Altuntaş et al. 2005). Fenugreek is being commer-
cially farmed in Pakistan, Turkey, Iran, Spain, India, Nepal, North Africa Egypt,

19 Breeding Advancements in Fenugreek for Environmental Stresses 451



Morocco, France, Middle East, Argentina, and Afghanistan (Flammang et al. 2004;
Altuntaş et al. 2005).

19.2 Drought Stress

Increasing austerity and occurrence of drought conditions due to abnormality in
fluctuating rainfall designs are predicted as climatic altering situations (Klein et al.,
2014). As compared to the current yield, water scarcity is expected to decrease the
world’s crop production by 30% by the year 2025 (Grafton et al., 2015). There is a
vast range of phenotypic variability and stress injuries in response to water scarcity,
allowing for a wide range of drought-resistant varieties not only within species but
also within genotypes of the same species (Grafton et al., 2015; Jaleel et al., 2009).
These kinds of variations are mandatory constituents for the breeding program of
drought resistance (Ashraf, 2010). These variations can help to improve the under-
standings of the exact mechanism and their responses for recovery. Furthermore,
effective and consistent biochemical as well as physiological indicators are the basic
requirements for selecting landraces that are drought tolerant. Many studies in
direction, however, have extensively focused on drought tolerance, and conse-
quently, recovery phase studies have been abandoned by the scientists. Drought
stress tolerance is typical of simple as well as compound traits being controlled by
numerous hereditary, biochemical, and physiological methods (Vassileva et al.,
2011). Plant response to drought stress is elaborated in Fig. 19.2. Due to an
imbalance between excitation of electrons and application during photosynthesis,
water stress causes cellular accumulation of reactive oxygen species (ROS).

Fig. 19.2 Plant response to drought stress
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Oxidative stress caused by ROS consequence can lead to harmful effects on
proteins, cellular molecules, nucleic acids, pigments, cell membranes, and other
critical procedures (Saed-Moucheshi et al., 2014). When the cell membrane integrity
is damaged, a series of cellular and biochemical events will occur, which can be
measured through the intercellular concentration of malondialdehyde (MDA)
(Hasanuzzaman et al. 2012). In water scarcity conditions, the plant implements
several internal mechanisms to combat oxidative harm. The antioxidant defense
system, which includes both antioxidants (non-enzymatic and enzymatic antioxi-
dants) is a stress-protective mechanism for reducing and controlling the harmful
repercussions of oxidative injuries (Abid et al., 2018; Hasanuzzaman et al. 2012).
For example, enzymatic antioxidants (i.e., ascorbate peroxidase (APX), glutathione
reductase (GR), superoxide dismutase (SOD), catalase (CAT), and others) play an
important character to maintain cellular redox and in the ascorbate-glutathione route
(Hasanuzzaman et al., 2019). By scavenging free radicals, phenolic chemicals serve
a substantial protective role in the non-enzymatic antioxidant protection mechanism
(Aziz et al. 2019). The carotenoids are non-enzymatic antioxidants that dissipate
surplus energy and scavenge reactive oxygen species (ROS). Havaux (1998) and
Pompelli et al. (2010) stated that carotenoids provide and maintain photosynthetic
membrane and decrease SOD activity. Varying water associations by producing and
accruing well-matched solutes like carbohydrates and free amino acids that are
water-soluble is another way for maintaining plant cellular utilities suffering under
water deficiency circumstances (Abid et al., 2018; Mafakheri et al., 2011). It’s worth
noting that osmotic adjustment would be the retrieval of metabolic events after
rewatering (Abid et al., 2018). Fenugreek is a medicinal annual plant which is
from the family Fabaceae, used in different ways like vegetables, medicinal plants,
as well as spices. Fenugreek use includes an extended range of health profit cases, as
well as antidiabetic, anticancer, antipyretic, anti-inflammatory, antitumor, and anti-
oxidant effects encouraging things like rising breast milk and minimizing blood
pressure and cholesterol (Amiriyan et al., 2019). For the cause of the fenugreek’s
great adaptableness to diverse environments, it is extensively grown all over the
world (Talib et al., 2014). Amiriyan et al. (2019) revealed that fenugreek has a lot of
genetic variation in Iran. Furthermore, just a few studies on fenugreek’s drought
tolerance have been carried out (Saxena et al., 2017; Sharghi et al., 2018; Zamani
et al. 2020).

Maleki et al. (2021) conducted a study in which 16 different landraces of
fenugreek were collected all over Iran and 2 varieties from India and Egypt were
also involved. They concluded that increased sensitivity toward water scarcity does
not essentially result in low retrieval capacity in landraces. Moreover, immense
genotypic diversity in physiological and biochemical characters among the varieties
specifies the significance of such traits in picking for drought stress tolerance,
particularly in the environments like arid and semi-arid. Varietal’s comparisons
were undertaken by various authors: Acharya et al. (2008) and Chhibba et al.
(2000). Choosing the varieties that are tolerant or improving tolerance deliberated
the improved methods to effective farming of crops in arid and semi-arid regions
(Painawadee et al., 2009; Basu et al., 2009). The practice of using drought-resistant
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cultivars is a significant approach to contest the drought-related problem. Such
cultivars should be able to deliver greater yield under water scarcity. Genetic
diversity for drought resistance has also been stated in peanuts (Painawadee et al.,
2009).

19.3 Salt Stress

Since many of the herbal plants have no side effects, therefore, the attention in
consuming herbs to treat different diseases has significantly amplified around the
world. Figure 19.3 explains how plant responds to salinity stress. Valdiani et al.
(2012) revealed that medicinal plants are one of the most significant crop groups that
have traditionally been utilized for illness inhibition and treatment. In areas like arid
and semi-arid, salinity is one of the main aspects restricting the growth and devel-
opment of plants and seed germination, additionally affecting the quality and
quantity of plants. The sprouting of many species is restricted and hindered with
the rise of salinity level, and responses of the plant may differ significantly liable on
species (Läuchli and Grattan, 2007). According to estimation around 50% of agri-
culture and 20% of arable land on the planet are salt-affected (Shrivastava and
Kumar 2015).

Surface soils have a higher salt concentration than subsoil soils; therefore seeds
may experience a harsher environment than mature plants (Läuchli and Grattan,
2007). Khan and Ungar (1997) revealed that one of the key causes for the sprouting
stage’s vulnerability to salinity is the high salt buildup rate caused by rapid cell

Fig. 19.3 Plant response to salt stress as a function of the interactions between stress and plant
characteristics
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development. Consequently, propagation and seedling formation are the important
phases in plants’ life span (Fenner and Thompson 2005). Munns and Tester (2008)
and Bueno et al. (2017) stated that the method through which a plant bears salinity is
complicated and species to species fluctuate. Salt has an osmotic influence on seed
sprouting (Khan and Ungar 1997), toxicity’s ion, or with the mixture of both of these
(Khan and Ungar 1997; Munns and Tester, 2008). The osmotic pressure can prevent
water intake, which is crucial for activation of enzyme, breakdown, and seed
reserves translocation (Ashraf and Foolad, 2007; Munns and Tester, 2008). More-
over, the ionic imbalance can disrupt critical metabolic processes such as cell
dividing and expand, and it can be poisonous in large amounts (Munns and Tester,
2008). Surpluses of sodium (Na+) and chlorine (Cl�) can impact physiological
processes in plant cells (Munns and Tester, 2008; Morais et al., 2012). The propor-
tion of salt tolerance fluctuates between plant species and even between stages of
development within a species (Ahmad et al., 2013; Bueno et al., 2017). Salt-tolerant
plants, also known as halophytes, have adapted to flourish in high-salinity environ-
ments due to the presence of several mechanisms in them for salinity tolerance.
Ahmad et al. (2013) defined that salt-tolerant plants, also known as halophytes, have
modified to flourish in high-salinity environments due to the existence of several
systems in them for salinity tolerance. However, the vast range of plant species
(glycophytes) that grow in non-saline conditions is salt-tolerant. Munns and Tester
(2008) stated that the resistance of halophytic and glycophytic species to salt stress
varies substantially.

Ratnakar and Raib (2013) and Zehtab-Salmasi (2008) stated that different medic-
inal plant species have varying salinity resistance levels. Ehtesham-Neya (2007)
investigated the influence of various salt phases (i.e., 0, 2, 4, 6, and 8 bar) on
medicinal plant growth, including bitter apple (Citrullus colocynthis), basil (Ocimum
basilicum), flax (Linum usitatissimum), milk thistles (Silybum marianum), fennel
(Foeniculum vulgare), black cumin (Nigella sativa), and safflower (Carthamus
tinctorius). During the germination stage, as compared to other species, they dis-
covered that milk thistles and safflower showed strong resilience to salinity. Fenu-
greek and dill seed germination were unaffected through 40 mM concentrations of
NaCl (Ratnakar and Rai 2013; Zehtab-Salmasi, 2008). The species of plants used in
recent research are famous due to medicinal characteristics, which include immu-
nomodulatory (dragonhead and fenugreek), antipyretic (fenugreek), anti-ulcerogenic
(fenugreek), antidiabetic (fenugreek), anti-inflammatory (dragonhead, savory, fenu-
greek, and dill), antihypertensive (dill, dragonhead), antifungal and antibacterial
(dill, fenugreek, and savory), anticancer (fenugreek, savory, and dill), hypo-
cholesterolemic (dill, fenugreek), antineuralgic (dragonhead), and antinociceptive
(savory, dragonhead) effects (Satheeshkumar et al. 2010; Valady et al. 2010; Rafii
and Shahverdi 2007; Haouala et al. 2008; Amanlou et al. 2005; Güllüce et al. 2003).
These plants have long been utilized in traditional medicine and are commonly
grown in semiarid and arid areas where salt is an issue (Sukhdev et al. 2006). Plants
that can resist salt offer an alternative, highly profitable income crop that can be
grown in dry and subtropical environments where salt-sensitive varieties are
prohibited. Evidence regarding the extent of salinity assist plant is required as a
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support for choosing species most probably to prosper agriculture in salt-contrived
regions.

19.4 Cold Stress

Plant growth is a complex physiological process that is influenced by external
elements such as light, temperature, and water. These elements influence the germi-
nation individually or combined (Shaban, 2013). Appropriate temperature is crucial
for the start of enzyme activation and, as a result, for quick imbibition and sprouting
(Baskin and Baskin 1998). The seed’s membrane permeability and cytosolic acid
production are affected by temperature (Biligetu et al., 2011). The rate of germina-
tion increases as the temperature rises until it reaches the optimum temperature. For
cool-season species, the optimal temperature for germination varies between 10 and
20 degree Celsius (Baskin and Baskin, 1998). The germination rate is greatest in this
range of temperature; however most cool-season species can start germination at
lower temperatures. However, under drought conditions, low temperatures can
stimulate seed sprouting in the same plant species (Shaban, 2013).

The most basic prerequisite for germination is water. The further stages of
germination occur after the activation of the imbibition enzyme (Fenner and Thomp-
son 2005). Temperature interaction, which occurs regularly throughout germination
processes, determines germination and the speed of enzyme activity (Fenner and
Thompson 2005). Physiological activities occur in seeds after water content spread
crucial levels during imbibition. This period’s duration fluctuates between 0 and 50 h
that depends on seed size, plant species, and temperature (Fenner and Thompson
2005).

The majority of species are planted in the springtime in cold places where the
continental climate is predominant. In this situation, fenugreek is a normal spring-
sown plant. Due to snow melting and heavy precipitation at the end of the winter,
sowing in early spring encountered low temperatures and excess water. It is critical
to understand how fenugreek seed germination responds to lower temperatures and
more water to produce a good stand. The goal of this research was to look at several
germination features of fenugreek seeds at various temperatures and water levels
(Fig. 19.4).

The optimum temperature is very important for the proper germination of fenu-
greek. There is scarcity of information about how fenugreek respond to cold or low
temperature stress. Gullap et al. (2018) aimed to explore the response of excess water
and low temperature applications on germination and seedling properties of fenu-
greek. They concluded that seed germination and seedling properties were increased
with the increase in temperature. They concluded that low temperature has negative
effect on the germination and seedling properties of fenugreek.
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19.5 Future Recommendations

Fenugreek is one of the most important multipurpose medicinal plants. However,
very less number of studies has been documented aiming to explore its response to
various biotic stresses. Keeping in view the following suggestions are proposed:

1. Collection of fenugreek germplasm and its characterization at both phenotypic
and molecular levels in aiming to identify novel variations that can be helpful for
fenugreek breeding.

2. Multi-year/location experimentation of fenugreek germplasm aiming to under-
stand genotype by environment interaction at performance of fenugreek
germplasm.

3. Identification of genomic regions associated with environmental stress through
genome-wide association studies.

4. Validation of identified markers and development of KASP markers for the speed
breeding in fenugreek.

5. As genome editing is gaining focus of scientific community, it is highly
recommended to conduct genome editing studies in fenugreek keeping in view
the effect of environmental stresses on fenugreek.
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Chapter 20
Conservation Strategies for Medicinal
Plants in the Face of Environmental
Challenges

Navneet Kaur, Navdeep Kaur, and M. I. S. Saggoo

Abstract Medicinal plants are regarded as “chemical goldmines” as they are the
source of valuable secondary metabolites and hence exploited at an alarming rate by
herbalists and pharmacists worldwide. This overharvesting has led to terrible
destruction of habitat and genetic diversity at a fast pace. Hence, sustainable
management and conservation of medicinal plant species has become extremely
crucial. The chapter discusses various strategies, viz., in situ methods, ex situ
methods, biotechnological approaches, and role of government agencies and legal
framework worldwide for intensive management and conservation of medicinal
plants. Additionally, methods have been discussed for resource management and
cultivation practices for improving yield of medicinal plants.

Keywords Medicinal plants · Conservation strategies · Sustainable use · Legal
policies · Biotechnological approaches

20.1 Introduction

Medicinal plants are the plants containing bioactive constituents in concentration
that exerts healing effect on an organism (Shahidullah and Haque 2015; Kaur and
Ahmed 2021). With the advent of novel technologies, characterization and identifi-
cation of these bioactive constituents in plants exerting beneficial effect have
become less cumbersome, which has led more consumer inclination towards herbal
and safe products in both developed and developing economies (Kaur and Ahmed
2021). In developed nations like Europe, nearly about 1300 plants with therapeutic
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significance are used, of which approximately 90 percent are obtained from wild
reserves. Similarly, in the USA, out of topmost 150 drug prescriptions by medical
practitioners, 118 are obtained from natural resources (Chen et al. 2016). However,
in developing countries, rural communities solely rely on plant-based medicines as
traditional healers are main health practitioners due to easy availability additionally
herbal medicines are analogs to costly synthetic drugs (Kaur and Ahmed 2021). But
this preference of consumers towards plant-based remedies over synthetic drugs has
rapidly surged their global demand by 15–20% per annum which has further led to
an alarming situation with hundred to thousand times increase in their extinction
rate, with the world suffering the loss of minimum one prospective drug every
2 years (Shahidullah and Haque 2015; Chen et al. 2016).

The use of these healing plants is not limited to drugs only but they are also
employed by other industries such as food, agriculture, perfumery, and cosmetics.
Thus, they offer opportunities for employment, income, and foreign exchange in
developing countries also. However, most of the species of medicinal plants used at
commercial level and for trade purposes ranging from local to international scale are
harvested from the wild and only few are cultivated and that too only on small scale.
Their wide usage in various sectors has led to reckless collection and overharvesting
of these plants from their native natural habitats which has resulted in their disap-
pearance at a much faster pace than expected with strong bearing on biodiversity
(Hamilton 2004; Shafi et al. 2021).

In third world countries herb-gatherers or poor people also collect curative and
aromatic plants in their neighborhood forests to earn some money for sustaining their
livelihoods. However, harvesting of plants with medicinal importance by such
untrained gatherers not only leads to unsustainable harvesting and adulteration of
plant material but also ultimately results in extinction of these plants at local or
regional level (Hawkins 2008).

Thus, the escalating demand of medicinal plants has caused their “slaughter
harvesting” and put them into endangered and vulnerable categories. As per data
given by IUCN (International Union for Conservation of Nature) nearly about
50,000 to 80,000 Angiosperms are utilized for curative purposes only, on global
level. Habitat destruction and overharvesting have brought nearly 15,000 of these
species on the verge of extinction (Shafi et al. 2021). Thus, it has become paramount
to hit equilibrium between protection and exploitation of these medicinal plants. The
chapter is written with a motive to discuss mainly the strategies available for
conserving these restorative plants along with policies and regulations set by gov-
ernment for their protection.

20.2 Need for Conservation of Medicinal Plants

The astounding variety of organisms forms an entangled and noteworthy part of our
planet. Wide range of living entities surrounding us make world a pretty nice place to
reside and share the resources. Biodiversity amplifies the productivity of ecosystem
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where each species, no matter how minute, has a crucial role. Homeostasis in the
environment is directly influenced by the species abundance of an area. When we
look at this biodiversity from the perspective of medicinal use, the IUCN and WWF
(World Wildlife Fund) notice the significant number of angiosperms used for
remedial purposes at world level. Medicinal herbs have a crucial part in supporting
healthcare system, viz., Ayurveda, Homeopathy, Siddha, Unani, and even in
Allopathy system of medicines. In Europe, 90% of the medicinally used plants
come from wild while of the major 150 drugs prescribed by practitioners in the
USA, 118 are obtained from plants (Balunas and Kinghorn 2005). Primary
healthcare of 80% of the population of developing countries is based on herbal
drugs. In developed countries of the total prescribed drugs, over 25% are from wild
species. The contribution of medicinal plants to Western medicine can’t be
overlooked. They have either provided components for pharmaceutical drugs or
have a pivotal role in drug discovery. They are the source of many novel
bio-molecules (Kumar et al. 2011). Some presently used drugs of botanical origin
are either directly obtained from plants or are modified version of these biochemicals
drugs. Even those that are synthesized from inorganic materials have their origins in
research into the bioactive constituents of plants. Herbal drugs are being prescribed
in the conventional system of medicine though its rate of recommendation varies
from one country to another. The extant of prescription of these plant-based drugs is
much lower in UK or the USA as compared to Germany (Hamilton 2004). Further,
the distribution of these plants is also not evenly distributed across the globe and
various families of plant kingdom (Rafieian-Kopaei 2013). Some plant families
include much more number of medicinal plants than the other families. The propor-
tion of threatened species in these is also higher (Huang 2011). The demand for
herbal products and secondary metabolites obtained from medicinal plants has
increased tremendously in recent years at global level that is further oppressing
our resources (Cole et al. 2007; Nalawade et al. 2003).

Loss of biodiversity brings about major disturbance in the ecosystems at global
level in the form of loss of species or reduction in the number of species in natural
habitat. Loss, particularly of plants with therapeutic use has serious social and
economic costs besides the profound ethical and aesthetic implications. Many
medicinal plants have now been included in Red Data Book of threatened species.
It should be our top priority to take necessary measures for conserving the natural
dwelling places of these immensely important medicinal plants. The United Nations
Conference on Environment and Development (UNCED) held at Rio de Janeiro in
1992 helped in harnessing world’s considerable attention towards this loss in
biodiversity. Biodiversity loss has been recognized as one of the major problems
of this century. The threat to survival or loss of a plant species may occur in
different ways:

1. Direct ways that include overexploitation, deforestation, diseases and pests,
commercial exploitation.
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2. Indirect ways which include any type of modification of the natural habitats,
habitat destruction by forest fires, urbanization and industrialization, draining and
filling of wetlands, pollution and introduction of exotic species, etc.

3. Natural causes that are the product of climate change.

These changes disrupt the interactions among the species, either by killing or
forcing out many species from the area. Overexploitation has led to reduction in the
population size of the species hence propelling it towards extinction. The current rate
of loss of plant species as estimated is much higher (between 100 and 1000 times)
than the expected natural extinction rate (Pimm et al. 1995). Loss of medicinal
species that are precious sources of new drugs is a cause of serious concern for
human continuance (Chen et al. 2010, 2016; Chacko et al. 2010; Nalawade et al.
2003). Collections from wild and destruction of the natural habitat have resulted in
pushing nearly 15,000 therapeutic plants species out of the total known on the verge
of extinction (Bentley 2010). Increase in human population as well as surge in plant
consumption has eroded 20% of the wild resources (Ross 2005). Only a small
proportion of these plants that suffer from resource destruction and genetic erosion
has been listed as threatened (Schippmann et al. 2005; Deeb et al. 2013). There is no
authenticated source that can give exact number of threatened medicinal plants but
according to Pimm and co-workers (1995), at current times, it is estimated that earth
is facing the loss of at least one plant that has the capability to be used as major drug
every 2 years. Species loss leads to loss of germplasm that influences stability of the
plant populations by decreasing the variability in plants. Reduced variability
increases the susceptibility of plants to diseases, pest, and natural disaster, hence
further making it more prone to extinction. Once a species becomes extinct, the
genetic resource of the species is lost forever; therefore, it becomes imperative to
conserve these plants in the forest area (Biswas et al. 2017).

Prior to launch of any type of conservation technique it is important to identify
species that are at high risk of elimination. The criteria of rare existence of the
species and its difference from others are used to evaluate the extinction risk of
medicinal plants (Figueiredo and Grelle 2009). Harvesting pressure does not affect
all plants in a similar way (Andel and Havinga 2008; Wagh and Jain 2013). Though
species rarity is affected by uncontrolled deforestation, indiscriminate collection,
habitat destruction, and overexploitation, they are not enough indicators to measure
species vulnerability to harvest pressure. Many biological features like population
size, reproductive system, species diversity, distribution range, habitat specificity,
and growth rate show correlation with extinction risk. Hence conservation of
medicinal plant biodiversity is vital for economic growth and poverty reduction. It
secures our future and is like an insurance policy that will sustain continuity of food
chains along with tenable utilization of life support systems on earth. Besides this,
the rural people in developing countries can engage in the sale of wild-collected
herbs from wild resources and use them as a notable source of income. Although
everyone benefits from medicinal plants, it is the economically weaker section of the
society that are more closely associated with medicinal plants for their income,
medicines, or culture (Hamilton 2004). Sustainable utilization of medicinal plants
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and their conservation has been the topic of research in many studies (Uprety et al.
2012; Larsen and Olsen 2007). Many suggestions regarding the conservation of
these plants have been put together that includes preparing species inventory,
monitoring the status, and the development of coordinated in situ and ex situ
strategies of conservation (Hamilton 2004). Sustainable use of natural sources will
be a more effective conservation alternative for the restorative plants that have
limited supplies.

20.3 Conservation Strategies

Conservation may be defined as preservation of diverse organisms, their habitation,
and the interdependence between them and their environment (Maxted 2001).
Conservation of medicinal plants is quite tough as different plant species prefer
variable habitat, growth, and geographical conditions. Even threats to their conser-
vation and end use are diverse as their consumption is not only limited to local
community but also includes urban populations of different countries. However, the
objective of conservation of curative plants can be achieved by integrated approach
involving traditional methods, scientific techniques (i.e., in situ and ex situ methods),
cultivation practices, biotechnology methods, and policies and legislative framework
set by government and world agencies (Hawkins 2008). The geographic distribution
of medicinal plants along with their biological characteristics should be studied to
guide conservation strategies, e.g. to judge if the species is to be protected in its
natural surroundings or in a nursery. The prime objective of conservation is to focus
on sustainable development. It can be ensured by using biological resources in ways
that do not knock down principal ecosystems and habitats or shrink the world’s
diversity of species and genes. The details of the various approaches are discussed
below.

20.4 Traditional Approaches

Medicinal plants can metaphorically be very significant in lives of many people such
as they may hold a special position in their religious, cultural, and opinionated
beliefs. This respect and value can be very beneficial for conservation practices as
long as local communities are the stakeholders in it (Hamilton 2004). The role of
these traditional beliefs and religious practices in conservation is quite evident in
countries like India, Pakistan, Africa, and those falling in Southeast Asia.

In India, cultural and religious sentiments and practices have a crucial role in
conservation of many plant species of medicinal importance. The idea behind sacred
groves, sacred species, and sacred landscapes has been evolved to protect and
safeguard the key biological assets including medicinal plants by traditional
approach. The vegetation in sacred groves such as Devbhumi, Uttrakhand; Oran,

20 Conservation Strategies for Medicinal Plants in the Face of Environmental. . . 465



Rajasthan; Kovilkadu, Tamil Nadu; Deovan, Himachal Pradesh; and Devarakadu,
Karnataka, inhabits many plant species of medicinal value (Kala 2009; Akshay et al.
2014). India has a total of 13,720 sacred groves spread in its various states (Akshay
et al. 2014). A survey was conducted on 79 sacred groves in India and it was
identified that these groves constitute around 131 families, 340 genera, and 514 spe-
cies. About 1.3% of out of the total area under these groves was undisturbed forest
land, 42.1% was inhabited by dense forest, 26.3% had only limited canopy cover
while 30.3% was open forest land. Precisely, the genetic diversity was quite signif-
icant in sacred groves than that of undisturbed forests (Rim-Rukeh et al. 2013). Thus,
establishing these sites is one way to conserve species and genetic diversity of
medicinal plants within their own natural habitats and environmental conditions
(Kala 2009; Akshay et al. 2014).

Many medicinal plants are also epitomized as sacred and these sacred species not
only hold religious importance but also exhibit numerous medicinal properties. This
medico-religious thinking has made people worship these plants as gods or god-
desses such as Ocimum sanctum L. is worshipped in India as local deity, Saussurea
obvallata as lord Brahma, Ficus religiosa L. as lord Vishnu, Ficus benghalensis
L. as lord Shiva, and Sesamum orientale L. as lord Saturn (Kala 2009).

Similarly in Africa, particularly Nigeria, people believe that gods and goddesses
reside in nature on rocks, rivers, ponds, trees, plants, land, etc. as they aspire to live
in community. These beliefs are further supported by rules and organizations strong
enough that they are dutifully embraced by people. In Ethiopia, Nigeria, Okpagha
and Ogriki trees are given very high regard as they are believed to belong to Aziza
spirit, thought as deity of woods by the local people. The spirit is assumed to protect
the fields, animals, and even people from their enemies. As sacred trees, plants
growing in the vicinity of these trees are not allowed to cut and hence vegetation
surrounding these trees is rare. The bark and wood of trees is only used for medicinal
and religious purposes only and even the medicinal properties of trees and vegetation
are kept as secret to prevent their overexploitation by outsiders. Local communities
are not allowed to settle in these forest areas thus protecting the forest from
deforestation and farming practices. Though the area inhabited by forest is quite
small, the species diversity is fairly high (Rim-Rukeh et al. 2013).

In India, written ancient records in the form of “Vrikshayurveda” are present
which not only highlight importance of plants but also include methods for conser-
vation and protection of plants from diseases and external factors along with
methods to improve yield. A chapter, “Bijoptivithi” deals with preservation practices
followed for seeds. Another chapter, “Drumaraksha” accentuates details about
protection of plants from external factors such as wind and storm (Shubhashree
et al. 2018).

Thus, traditional beliefs, approaches, and methods have a critical role in conser-
vation and preservation of herbal plants when coupled with modern technology.
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20.5 Scientific Approaches

The two scientific fundamental strategies for safeguarding remedial plants are—in
situ and ex situ conservation. These strategies further involve various techniques for
maintaining species diversity under natural habitats and for sustainable
development.

20.5.1 In Situ Techniques

In situ technique is the way of conserving the species in its natural surroundings by
establishing protected areas that include forest parks, nature reserves, geological
parks, scenic spots, wetland parks, marine special reserves, and marine parks (Wang
et al. 2020). Protected areas play a key role in the maintenance of ecological security
of the nation that forms the baseline of the in situ conservation system (Ma et al.
2012). Majority of the medicinal plants are endemic species, i.e. they are found
growing in restricted areas that are mostly geographical and biologically isolated.
Their medicinal properties are mainly attributed to their secondary metabolites that
show best response to stimuli in wilds, and that may not be expressed to their full
potential under culture conditions (Figueiredo and Grelle 2009; Coley et al. 2003).
As many species of plants have curative properties so conservation of medicinal
plant in a way is microcosm of floral conservation in totality (Hamilton 2004). Many
medicinal plants have been recommended whose collection from the natural sources
have been prohibited like Aconitum sp., Aristolochia bracteolata, Acorus spp.,
Atropa acuminata, Berberis aristata, Chlorophytum spp., Commiphora wightii,
Curculigo orchioides, Colchicum luteum, Concinum fariestatum, Dorsera sp.,
Didymocarpus pedicellata, Ephedra gerardiana, Gloriosa superba, Gentiana
kurroa, Anchusa strigosa, etc. (Lakshman 2016).

Conservation strategies that focus on in situ conservation serve dual purpose of
saving the natural habitat of the species besides protecting the species. It is a
convenient method of providing safety to large number of population. As the species
are conserved in their home environment, the method is convenient and cost
effective. The species is also saved from adjustment to new habitat. The in situ
conservation attempts of the entire world targets at ecosystem-oriented setting up of
protected areas rather than being focused on individual species (Ma et al. 2012).
Rules, regulations, and potential compliance of therapeutic plants within natural
habitats greatly influence the success of in situ conservation (Soule et al. 2005; Volis
and Blecher 2010).

Various types of protected areas like biosphere reserves, wild nurseries, national
parks, sacred groves, wetlands, and natural parks have been recognized. There have
been other nation specific forms of in situ conservation measures like in China, they
have Ecological Conservation Red Line (ECRL), the Non-Commercial Forest
(NCF), Mini Natural Reserves (MNRs), and the Civil Protected Areas (CPAs)
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(Gao 2019; Wang et al. 2020). In India, National Medicinal Plants Board has
established Medicinal Plants Conservation and Development Areas to support in
situ conservation of herbal plants (Biswas et al. 2017).

20.5.1.1 Biosphere Reserves

The primary reasons for loss of medicinal plants are degradation, fragmentation, and
destruction of habitats (Camm et al. 2002). The secured localities of predominant
wild resources designed to restore and save biodiversity are called natural reserves
(Rodriguez et al. 2007; Chiarucci et al. 2001). Biosphere reserves are the categories
of protected areas which may be land or coastal environment having people as an
intrinsic component. UNESCO’s MAB (Man and Biosphere) program started in
1975 gave the notion of Biosphere reserves as a part of the project that was
concerned with conservation of ecosystems and genetic resources. The main target
of these reserves is to bring about consolidated management of water (marine and
freshwater) and land, along with living resources. This could be achieved by
amalgamation of conservation and development by setting in place bioregional
planning schemes that results in appropriate demarcation of core, buffer, and tran-
sition zones (Reyers 2013). At present, there are 714 biosphere reserves recognized
at world level. They are spread in 129 countries that include 21 trans-boundary sites.
These biosphere reserves merge three main “functions”:

• Conserving diversity of living organisms and culture.
• Socio-culturally and environmentally supportable economic development.
• Providing logistic support and foster development through education, research,

training, and monitoring.

The three well-separated zones, i.e. core area, buffer zone, and transition zone of
biosphere reserve help in pursuing these functions (Fig. 20.1).

1. Core Areas: the innermost region of the natural reserve forms the core area. It
constitutes a strictly guarded zone that contributes to the protection of genetic
variation, landscapes, ecosystems, and species.

2. Buffer Zones: It skirts or adjoins the central core area, and is used for practices
congenial with healthy ecological activities that can fortify scientific research,
training, monitoring, and education.

3. Transition Area: It forms the outermost region of the biosphere reserve. Com-
munities promote socio-culturally and ecologically viable economic and human
activities in this area.

Protecting the habitat of the flora and fauna by establishing biosphere reserves
forms an important strategy in conservation of wild resources. They include regions
with representative geological conditions and dwelling places of some endangered
flora and fauna. Careful planning is required for the efficient establishment of these
reserves. It involves the genuine selection of sites from larger areas of potential sites
with an aim of covering as many species as possible in the conserved area. The area
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covered under the natural reserve should contain sufficient habitats supporting viable
population of each species at the specific place. There are more than 12,700
protected areas at global level. They cover 8.81% of the Earth’s land surface,
i.e.13.2 million square kilometer (Huang et al. 2002). Protecting therapeutic plants
by securing vital wild habitats requires evaluating the ecosystem functions and
contributions of discrete habitats (Liu et al. 2001). The primary target of biosphere
reserves is safeguarding diversity of biological forms, but they are different from
strictly protected areas as they allow human settlement as a part of the protected
landscape. Natural resource harvesters and local communities play the major partic-
ipatory role in these reserves hence forms the social, as well as spatial components of
these reserves. Biosphere reserve’s design and management may be outlaid with the
involvement of major beneficiaries affected by the reserve. These natural reserves
have helped in safeguarding the biodiversity in more scientific and systematic
pattern that is economically and socially more admissible to mankind. At present,
the major challenge that is faced by the world community is to add new sites for

Fig. 20.1 Zones of biosphere reserve
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uplifting global coverage under biosphere reserves and ensuring that these reserves
attain their assigned functions (Nations 2001).

20.5.1.2 National Parks

These are the conserved areas, whether within a sanctuary or not, on the basis of its
ecological, floral, faunal, geo-morphological, or zoological association and rele-
vance, needed for the purpose of safeguarding, multiplying, or evolving wildlife
there in and its surroundings. The landscapes of these national parks together with
their constituting animals and plants are kept in their natural form. Except for some
of the activities for which the Chief Wildlife Warden of the state gives permission
under the specific conditions no other human activity is permitted inside the national
park. It is an area kept aside for the conservation of the natural environment by a
national government and comprises sites that have ecosystems that are characteristic
to an area. At global level, there are more than 12,700 established protected regions
(Huang et al. 2002; Kadam and Pawar 2020). National Parks have a crucial role in
safeguarding herbal plants (Lakshman 2016). Each country has its own norms for
providing protection via establishing national parks. Canada and the USA target on
protecting land and wildlife, Africa lays emphasis on conservation of animals while
the United Kingdom aims primarily on the land via setting up national parks. Several
other countries also have large areas reserved as national parks like Brazil, India,
Japan, and Australia (Britannica 2021). The notion of national park, under state
ownership was conceptualized in the USA in the year 1870 and Yellowstone
National Park established in Wyoming was the world’s first such park. However,
some naturalists and others view Bogd Khan Mountain National Park in Mongolia
that dates from as early as 1778 as the pioneer in the field. India alone has
101 national parks covering 1.23% of the total geographical area (40,564.00 km2)
of the country (National Wildlife Database, December, 2019). The importance of
national parks in conserving medicinal plants could be well understood from the case
study of Khadimnagar National Park, a protected area in northeastern Bangladesh
(Rahman et al. 2011), case study of Ba Vi National Park, and case study of Ben En
National park of Vietnam (On et al. 2001; Hoang et al. 2008).

20.5.1.3 Wildlife Sanctuary

A wildlife sanctuary is an area where animals and birds can live protected in their
natural habitats, away from poaching or trafficking. These protected areas save the
endangered species and protect them from humans and predator. Though they are
mainly focusing on protection of animals, they also conserve wild plants as animals
are to be inhabited in their natural habitat. Several species of medicinal plants with
considerable value have been reported and provided protection in these reserved
areas (Rana Man and Samant 2011; Kumar et al. 2015; Chen et al. 2016; Srivastava
and Shukla 2018; Radha et al. 2020; Koti and Kotresha 2021). Barnawapara Wildlife
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Sanctuary, India provides protection to 21 trees species, 11 herbs, 7 climbers, and
3 shrubs having remedial properties (Raj et al. 2016). Similarly Kedarnath Wildlife
Sanctuary (KWLS), India conserves 152 medicinally significant plant species that
represented 123 genera belonging to 61 families and comprises 103 herbs, 32 shrubs,
and 17 tree species. These also include 18 species that belonged to the endangered
(critically endangered), vulnerable, and rare categories of threatened plants (Bhat
et al. 2013).

20.5.1.4 Wild Nurseries

The medicinal plants populations are under tremendous pressure due to the threat
posed by invasive species, overexploitation, and habitat degradation. Wild nurseries
are the effective and most effective practical approach for in situ protection of
curative plants that are endemic and threatened but their demand in market is very
in high. A wild nursery is an area established in a natural habitat, or a well-protected
place nearby the locality having natural growth of the plants. These focus on species-
intended domestication and cultivation of endangered therapeutic species (Chen
et al. 2016; Kadam and Pawar 2020). As it is not feasible to designate every wild
dwelling area of plant as a conserved area, setting up of wild life nurseries is more
favorable and constructive.

20.5.1.5 Gene Sanctuary

A gene sanctuary is an area or a field where plants are conserved. Land, labor, and
finances are required for germplasm conservation of annual or perennial replanting
of forest trees as well as plants propagated by vegetative means in these life field
gene banks (Lakshman 2016).

20.5.1.6 Wetlands

Wetland (such as marshes, swamps, and bogs) maintenance is focused on sustaining
and preserving localities where water is present at or close by the Earth’s surface.
These wetlands are key ecosystem serving as important source of livelihoods for the
people living within or around these sites. They are the source of many economically
important plants including plants with medicinal value like Colocasia esculenta,
Desmodium triflorum, Eclipta prostrata, Heliotropium indicum, Hygrophila schulli,
etc. (Leaman 2016; Athira 2019). There is a need to compile a comprehensive world
list of the distribution of herbal plants in various habitats. Without this knowledge, it
is not possible to assess the relative significance of wetlands as a source of remedial
plants. The present assessment of wetlands as source of therapeutically valuable
plants banks upon well-known taxa only (Horwitz et al. 2012). Regional surveys of
biological diversity conducted can provide thorough insights into the significance of
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wetlands as sources of therapeutic plants. They can also highlight their role in
livelihood and health benefits along with the challenges faced in their conservation
challenges (Leaman 2016).

20.5.1.7 Sacred Sites/Sacred Grove and Sacred Mountains

Care and regard for nature has been influenced by aboriginal belief and religious
practices in India, as well as in parts of Asia and Africa. Sacred groves form the small
or large specks of vegetation safeguarded mainly by tribal or local people based on
their religious beliefs. They are conserved following ethnic and customary practices
of the local people. These tribal areas are untouched and well protected by the locals
because of their conventional and religious closeness with the area and their faith in
the local deities (Behera et al. 2015; Mohanty et al. 2016; Singh et al. 2017). IUCN
has contemplated these areas of rich floral diversity as “Sacred Natural Sites” and is a
way of worshiping nature (Mohanty et al. 2016). These areas are rich repository of
diverse flora with the medicinal plants and have lavish growth coverings of rare and
endemic species (Chanda and Ramachandra 2019). Sacred groves as a rule are
treated piously (Kandari et al. 2014). The livelihood of the tribal folks in the area
is entirely dependent on forest resources. Their traditional practices help in conserv-
ing rich floral diversity that forms an important resource for food, shelter, fiber, or
medicine. Sacred groves act as a repository and nursery for variety of folklore, tribal,
and ayurvedic medicines (Bhakat and Pandit 2003). There are a total of 13,720
documented sacred groves reported in India (Lakshman 2016). These groves have an
indispensable role in judicial use and protection of herbal plants. Involvement of the
local people in the conservation and management of the traditionally known medic-
inal wealth of the sacred areas offers several advantages (Behera et al. 2015).

20.5.1.8 On-Farm Conservation

This is the method to provide protection to the medicinal plants within conventional
agricultural system. The farmers cultivate land races of the crop plants developed by
them for sowing on their lands. These plants are well acclimatized to the local
environment of the area so doesn’t cause any type of problem during their cultiva-
tion. Long-established crop cultivars (land races) or farming systems followed by
agriculturist are safeguarded by carrying out conservation practices on the farm-
lands. (Lakshman 2016).

20.5.1.9 Home Gardens

Home gardens unintentionally serve as means of conservation of many plants or
their races of therapeutic importance. Kitchen gardens are the way to provide
on-farm conservation at much smaller scale. In urban or rural situations, these tend
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to accommodate a wide range of plant species such as vegetables, fruits, spices, and
medicinal plants.

20.5.2 Ex Situ Techniques

Ex situ conservation can be defined as maintenance of biological diversity away
from its original habitat (Murray 2017). Though, in situ conservation is regarded as
the most suitable option for protection as it leads to random mating through genetic
exchange and recombination, aggregation, and transfer of beneficial mutations
among populations and allows for better adaptation along with greater genetic
diversity through competition (Khan et al. 2012). Ex situ conservation may be
used in case of critically over-exploited and endangered medicinal plant species
which generally grow slow, are less abundant, and particularly vulnerable to
replanting disease (Chen et al. 2016). The main goal of this type of conservation is
to grow and nurture threatened or endangered species for their sustained persistence
besides making plant material available to be used in large quantities for drug
manufacture and medicinal purposes. This is achieved via sampling populations of
species, cultivars, breeds, or varieties followed by their transfer and storage in the
form of living collections in botanical gardens, field gene banks and arboreta or
under special artificial conditions as samples of tissue explants, seeds, tubers,
pollens, or DNA (Murray 2017).

20.5.2.1 Botanical Gardens

The concept of botanic gardens is quite ancient with countries and civilizations like
China, Egypt, India, Mexico, Mesopotamia, and Rome involved in cultivation of
plants with medicinal value, exotic trees, and spices in royal palaces and religious
places. However, the modern “Physic Gardens” came into being in the 1500s in
Italy, Europe with the building of Padua Botanic garden in 1545. At that time these
gardens were purely built for academicians to study medicinal plants. But today, the
definition of botanic gardens has changed tremendously as they have been found to
cultivate more than six million plants which represent approximately 80,000 taxa of
the world, which includes around 40% of endangered species along with those that
are extinct in wild, thus playing crucial role in the study of world plant diversity and
their ex situ conservation (Chen and Sun 2018; Westwood et al. 2020).

As per definition given by Botanic Garden Conservation International (BGCI),
Botanic gardens may be defined as “Institutions possessing written records in the
form of documents for living plants intended for use in scientific research, conser-
vation purposes, display and education.” In present times, botanic gardens harbor
world-class facilities like seed banks, green houses, herb gardens, nurseries, and
even research laboratories. Living plant facilities in these gardens are not only
utilized for taxonomical or teaching purposes but also for scientific and conservation

20 Conservation Strategies for Medicinal Plants in the Face of Environmental. . . 473



objectives (Westwood et al. 2020). The best example of conservation in botanical
garden is provided by Botanic garden of Chinese Academy of Sciences as they
successfully conserved 20,000 vascular plant species. It is 60% of Chinese native
flora and represents about 90% of all the species present in all the botanical gardens
of China (Chen and Sun 2018).

Though botanic gardens appear as convenient way of conserving sustainable
genetic diversity, they are not free of challenges, as number of species conserved
in botanical garden will always be scanty due to lack of space. Secondly, smaller
population size restricts genetic swapping and stochastic processes which make them
prone to deleterious genetic outcomes (Maxted 2001). The list of botanic gardens by
country can be retrieved from the website, http://www.bgci.org.uk/ of Botanic
Garden Conservation International.

20.5.2.2 Seed Banks

Seed banks offer an alternative ex situ strategy to conserve genetic diversity where
botanic gardens fail to do so (Chen et al. 2016). Currently, 1750 seed banks operate
worldwide which harbor around six million accessions. Out of the total
50,000–60,000 taxa present in germplasm banks, an estimated 45,000–50,000 are
stored in conservation gene banks. One of the worth mentioning facilities for seed
storage is Millennium Seed Bank consisting of thousands of seed samples from wild
species (Hay and Probert 2013).

Seeds being complete organisms are highly adaptive towards harsh conditions
which offer a convenient way to maintain and sustain plant germplasm (Walters and
Pence 2020) except for certain plant species which either do not produce seeds and
grow by vegetative propagation or in few plants the seeds produced has short life,
they are referred to as “recalcitrant.” Recalcitrant seeds cannot resist drying above a
certain threshold value without losing viability. However, seeds that can fairly be
dehydrated to low moisture content, i.e., � 3–7% are termed “orthodox seeds.”
There are certain intermediate seed varieties (7–12% moisture content) also which
can be dried to the level of orthodox seeds but are generally susceptible to low
temperature storage used for orthodox seeds (Chen et al. 2016). For non-orthodox
seeds, cryopreservation, i.e., storage below�196 �C is used (Hay and Probert 2013).
Hence, the life span of seeds during storage depends upon conditions of relative
humidity and temperature. Freeze storage is mainly used as an international standard
for preserving seeds in seed banks. Orthodox seeds stored under proper conditions
can remain viable up to 100–200 years under freeze storage.

Though seed banks appear cost-effective alternatives of conservation, the major
issue they are facing is reintroduction and restoration of wild species in their natural
habitats (Chen et al. 2016).
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20.5.3 Biotechnology-based Approaches

Advancements in plant biotechnology have led to improved and powerful methods
for the protection and maintenance of species diversity such as in-vitro techniques
involving plant tissue culture and molecular biology approaches. Nowadays, bio-
technological methods are more preferred over conventional methods for conserva-
tion as they allow rapid production of disease-free elite plants with high genetic
diversity. In vitro methods for regeneration of clean disease-free plants are used in
various sectors such as agriculture, floriculture, and pharmaceutical (Cruz-Cruz et al.
2013). These techniques are quite efficient in producing medicinal plants also as
most of the herbal plant species are non-seed producing or their seeds are too small to
germinate and hence are propagated vegetatively. Moreover, recalcitrant seeds of
some medicinal plants cannot be dehydrated without losing viability. Some of the
plants produce heterozygous seeds and hence, not suitable for conservation (Sharma
et al. 2010).

20.5.3.1 Plant Tissue Culture

Plant tissue culture offers rapid, systematic, and season independent way of artifi-
cially propagating plants under sterile conditions. It’s an effective method to regen-
erate disease-free elite plants (Pathak and Abido 2014). It is based on the fact that
any plant part such as cell, tissue, organ, or even a cut out differentiated piece termed
as explants has cellular totipotency to differentiate and form into whole plant. Plant
tissue culture techniques offer various methods for rapid (e.g., micropropagation,
somatic embryogenesis, or organogenesis), medium (e.g., restricted or slow growth),
and long-term (e.g., cryopreservation) conservation process. The methods lead to
unlimited plant multiplication, synthesis of secondary metabolites, and storage of
plant material for longer period of time (Pant 2014).

Micropropagation/Clonal Propagation

Micropropagation or cloning or clonal propagation may be defined as the technique
in which plants are propagated in vitro by vegetative means to produce genetically
identical copies of cultivars. The technique is much preferred over traditional
methods of propagation as it leads to mass production at fast multiplication rate,
requires limited space, and is season independent (Pathak and Abido 2014; Pant
2014). Successful micropropagation involves various steps like selection and prep-
aration of donor plant, establishment of aseptic cultures, multiplication, and devel-
opment of roots in in vitro shoots and lastly, the transplantation of small plantlets in
soil followed by acclimatization (El-Esavi 2016). Though the technique offers
several advantages, it doesn’t guarantee pathogen-free plants as viruses may hiber-
nate in tissues without showing any symptoms and can proliferate during
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multiplication stage. To overcome such difficulties shoot tip or meristem cultures are
employed as being young and having rapid division these tissues have viruses spread
unevenly (Cruz-Cruz et al. 2013).

Micropropagation has been employed to regenerate many medicinal plant species
such as Allium chinense, Aloe vera, Artemisia annua-aremisin, Asparagus
adsendens, Catharanthus roseus, Camellia sinensis, Phyllanthus amarus, Elettaria
cardamomum, Stevia rebaudiana, etc. (Pathak and Abido 2014; Pant 2014).

Somatic Embryogenesis/Organogenesis

Somatic embryogenesis may be defined as formation of embryo-like structures from
somatic cells which are developed under special in-vitro conditions into whole plant.
In this process, embryos are either produced directly from cell or group of cells such
as pollen, style, etc. without formation of callus or from an explant, callus is formed
from which embryo is generated using callus tissue or cell suspension culture. In
either process, the composition of culture medium is very critical. Somatic embryo-
genesis offers several benefits over traditional micropropagation technique such as
production of large number of somatic embryos, simultaneous development of root
and shoots, easy scale-up, low labor cost, and long-term storage via somatic embryo
dormancy. The only limitation of this method is induction of somaclonal variations
which can lead to genetic changes, reduced plant viability, and regeneration capacity
on long-term storage (Bhatia and Bera 2015).

Organogenesis, on the other hand, may be defined as formation of organs, i.e.,
roots, shoots, buds, etc. from cultured tissues. De novo organogenesis is mainly
based on ratio of phytohormones (auxin and cytokinin), high cytokinin to auxin ratio
results in induction of in-vitro shoots while high auxin to cytokinin ratio promotes
in-vitro root development. Organogenesis mainly occurs in three stages, in the first
stage explants respond to phytohormones provided, followed by the second stage in
which dormant cells again enter cell cycle and fate of cells is decided. The final stage
involves morphogenesis of in-vitro organs (Bhatia and Bera 2015).

Somatic embryogenesis and organogenesis have been successfully employed to
regenerate endangered medicinal plants such as Artesemia vulgaris, Baliospermum
montanum, Calligonum comosum, Eleutherococcus senticosus, Hedychium
coronarium, Heliotropium kotschyi, Lilium ledebourii, Psoralea corylifolia,
Rauvolfia serpentine, Turbinicarpus pseudomacrochele, and Woodfordia fruticosa
(Pathak and Abido 2014).

Restricted Growth

Restricted or slow growth storage is a method used for mid-term protection of plant
species. In this method the metabolic activity of in-vitro cultures is reduced leading
to slow growth rate on either modified growth medium or in modified growth
conditions. The aim of this method is to increase the time span between two
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in-vitro subcultures without affecting their re-growth potential, which is generally
achieved via two main ways, one by altering the components of growth medium
used and other by changing the culture conditions. The most accepted and widely
recognized method is lowering the temperature in conjunction with reduced light
intensity or by keeping culture under complete darkness. Though this method is
extensively followed, for tropical plants mostly high temperature around 15–20� C is
used as they are sensitive to cold conditions. These in-vitro cultures are maintained
by periodic sub-culturing under standard conditions. This also avoids chances of
contamination or deterioration of cultures. The altered growth media is achieved by
changing concentration of minerals, sugars, plant growth regulators, plant growth
inhibitors, osmotically active compounds, etc. which are either enhanced or reduced
to minimize growth rate. Other parameters which influence the efficiency of proce-
dure include type of explants, type of culture vessel, culture medium, and physical
and chemical state of explant during storage (Chauhan et al. 2019).

Several medicinal plants are being conserved using this method such as Elettaria
cardamomum, Allium sativum, Garcinia indica, Colocasia esculenta, Mentha spp.,
Musa spp., Saccharum spp., etc. Hence the method is widely used due to several
advantages offered like it requires minimum space and reduced labor cost than other
methods like cryopreservation. Thus, it allows clonal plant conservation for mid to
long term, utilizing few sub-culturings (Chauhan et al. 2019).

20.5.3.2 Artificial Seeds

Artificial seeds are also known by different names like synthetic seeds, syn seeds,
seed analog, or manufactured seeds. They usually enclose somatic embryos in a
protective coating and can be sown in a similar way as natural seeds. In the past, only
somatic embryos were utilized for development of synthetic seeds but today other
tissues like shoot bud tips, embryonic masses (organogenetic or embryogenetic
calli), protocorns or protocorn like bodies, etc. can be used (Pond and Cameron
2017).

Naked somatic embryos can also be used as synthetic seeds but they are quite
prone to drying and attack by pathogens and micro-organisms under natural envi-
ronmental conditions. Hence for large-scale plantation and to successfully enhance
their germination in green houses or fields coating is preferred. Sodium alginate is
mainly utilized as coating agent as it offers several benefits like ease of capsulation
and being less toxic to embryos. Nutrition to embryo is provided by addition of
growth regulators and nutrients in the encapsulation mixture. Further, to protect
damage to embryos from environmental factors such as desiccation, contamination
by microbes and pathogens or physical injury, various adjuvants are also added to
coating material, viz. pesticides, fungicides, insecticides, charcoal, etc. Charcoal
improves respiratory properties of embryos (Chauhan et al. 2019).

Hence, artificial seeds produced are used for both germplasm storage in case of
recalcitrant seeds and also for the production of elite varieties with elite character-
istics (Chauhan et al. 2019).
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20.6 Cultivation Practices

Though medicinal plant population collected from wild resources is generally
considered more effective in combating disease than cultivated varieties, still domes-
tic cultivation is a widely accepted practice. The cultivation of medicinal plants
under optimized conditions of nutrients, water, supplements, and environmental
factors such as temperature, light, humidity, etc. offers numerous advantages over
wild harvest, viz. stability in production and improved yield of bioactive com-
pounds. In addition, it leads to conservation of wild medicinal plants by decreasing
their harvest volume from wild reserves and availability of these plants in market at
affordable prices (Chen et al. 2016).

20.6.1 Good Agriculture Practices (GAPs)

They have been designed keeping in mind the production, quality, and standardiza-
tion of herbal drugs obtained from medicinal plants. These guidelines certify supe-
rior, secure, and pollution-free (free from chemical pesticides, insecticides, etc.)
herbal drugs. As an approach GAPs include several elements like ecological sur-
roundings of sites of production, detection of quality facet, authentication of plants at
both macroscopic and microscopic levels, correct identification of bioactive constit-
uents, and inspection and authentication protocol for final plant material. Several
countries like China vigorously encourage execution of GAPs (Chen et al. 2016).

One of the methods of GAP is organic farming. It aims to produce medicinal
plants having high quality and productivity along with the aim of conservation and
sustainable use. It doesn’t support use of chemical fertilizers, pesticides, herbicides
as per organic certification levels in North America and Europe. On the other hand, it
promotes use of organic manure and fertilizers which not only improve soil quality
and stability but also drastically improve growth of therapeutic flora and production
of bioactive compounds (Chen et al. 2016).

20.6.2 Good Harvesting Practices (GHPs)

GHPs must be formulated for conservation and tenable use of restorative plants. The
wild collection of medicinal plant material is only possible if its collection per year
doesn’t exceed its annual natural increase in species population at particular location.
However, if the collection rate increases than production rate, the probability of
species becoming threatened increases proportionally. Healing plants with low
abundance and slow growth can even become extinct through limitless harvesting
practices that can lead to exhaustion at resource site. To prevent this, harvesting of
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leaves, shoots, flowers, and buds should be promoted in place of roots or whole plant
wherever possible (Chen et al. 2016).

20.7 Policies and Regulatory Framework

As discussed earlier also in the chapter, medicinal plants are of immense importance
as they play a significant part in the cultural, livelihood, or economic aspects of
people’s lives. Today, many medicinally important plants face severe genetic loss or
are at the verge of extinction but the comprehensive facts are missing. Traditional
communities, whose very existence is also under threat, have most of the informa-
tion on the use of curative plants. Only fragment of the knowledge regarding these
endangered medicinal plant species held by the tribal people has been recorded in a
systematic manner. For majority of the countries of the world, there is not even a
complete inventory of therapeutic plants and even for those that are known, in most
cases, no conservation action has been taken at all (WHO, IUCN and WWF 1993;
Lakshman 2016).

A set of suggestions have been compiled for safeguarding the curative plants by
various associations, such as those associated with international conferences at
Chiang Mai (Thailand) in 1988, Bangalore (India) in 1998 and the Forty-first
World Health Assembly, 1988. The Chiang Mai Statement—“Saving Lives by
Saving Plants” affirmed the significance of therapeutic plants. It emphasized inclu-
sion of international organizations such as United Nations, its agencies and Member
States, to take initiatives for the protection of herbal plants. The guidelines of World
Health Organization (WHO) prepared by collaboration of IUCN (International
Union for Conservation of Nature and Natural Resources), UNEP (United Nations
Environment Progamme), WRI (World Resources Institute), and WWF (World
Wide Fund for Nature) in 1993 gives an outline for the protection of remedial plants
and their sustainable use in medicine. WWF in association with the Ministry of
Indigenous Medicine in Sri Lanka is engaged in conservation of plants with medic-
inal significance through a joint project. Botanic Gardens Conservation International
setup by IUCN is also encouraging botanic gardens to safeguard medicinal plants by
using various techniques, particularly ex situ methods. UNESCO (United Nations
Educational, Scientific and Cultural Organization) is also putting its efforts in
conservation of medicinal plants through its Man and the Biosphere Programme. It
utilizes its broad network of biosphere reserves for safeguarding herbal plants. FAO
(Food and Agriculture Organization) is participating in its own way by being one of
the three sponsors of a Newsletter that covers Medicinal and Aromatic Plants. The
UN Industrial Development Organization (UNIDO) assists in transfer of technology
for the genetic improvement of plants that hence contributing in conservation of
healing plants. Majority of the countries of the world have listed their threatened
flora in the form of “Red Data Books” and have used the criterion of the IUCN
categories of threat. The countries are encouraged to prepare the list of RET (Rare,
Endangered and threatened) and CITE (Convention on International Trade in
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Endangered Species of Wild Fauna and Flora) plants that will help in managing and
keeping track of the trade in these plants at international level. This will also help in
checking any type of threat to the survival of these herbal populations in the wild.

Various guidelines and suggestions for conservation of therapeutic plants at
international and national level have been given by WHO; (Hamilton 2004; Kathe
2006) like:

• Defining objectives.
• Collection of more information on the medicinal plant trade.
• Holding a regional and/or national workshop.
• Botanical institutions assigned the work of cataloguing all the plants used as

medicine in the country along with their use, distribution as well as their
population size.

• Recognition of threatened medicinal plants in the wild.
• Promoting research, identification, and distribution of medicinal plants.
• Establishment of national herbarium with a botanical library.
• Different subject experts to be brought together in order to assess the state of

affair.
• To establish a system for preparing species inventory and monitoring status.
• Development of policies and programs by incorporation of viewpoint of com-

munity and gender.
• Setting priorities for conservation.
• Draw up a plan of action.
• Promoting the exchange of information, expertise. and technology within and

between countries.
• Responsible business practices and sustainable production.
• Coordinated strategies for in situ and ex situ conservation.
• Broadening the scope of international organizations that deals with conservation

of herbal plants.
• Development of common design of databases on the protection and sustainable

use of curative plants.
• Promoting cultivation of the herbal plants as the source of supply.
• Emphasizing sustainable collection from wild.
• Conservation of wild flora and the Law (IUCN Environmental Policy and Law

Paper no. 24, IUCN, 1990) critically assess all the laws that safeguard plants and
supply comprehensive suggestions to law-makers to draft new laws for plant
conservation.

In India as well as in many other countries, there are no distinct policies or laws
for saving wild herbal plants. They are conserved according to the existing laws
pertaining to forestry. The laws for conservation of forests formulated by Indian
government directly or indirectly protect the natural flora of medicinal importance.
These include Forest Act, 1927, Wildlife (Protection) Act, 1972; Environment
Protection Act, 1986; Forest (Conservation) Act, 1980; National Forest Policy,
1988; National Biodiversity Act, 2002; Wildlife (Protection) Amendment Act
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1991, and the Scheduled Tribes and Other Traditional Forest Dwellers Act, 2006 etc.
(Lakshman 2016).

20.8 Conclusion

The overwhelming interest in use of medicinal plants and their ever-growing
demand in various industries like cosmetic, food, pharmaceutical, and perfumery
has led enormous pressure on their natural wild population. Uncontrolled destructive
harvesting of plants from wild and the loss of their habitat are the major factors
behind medicinal plant conservation and sustainable use. It has become paramount
to integrate various conservation strategies and techniques and also different poten-
tial agencies and legal systems to put combine efforts for sustainable conservation of
medicinal plants. It is of immense importance to encourage the techniques for large-
scale cultivation of herbal plants. The laws and rules should be strictly implemented
to prevent the loss of the medicinal plants from the environment. Hence, there is an
urgent need for conservation of herbal plant wealth for the present and future
generations, by adopting the acceptable strategy with most suitable method of
protection.
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Chapter 21
Integration of Medicinal Plants into
Comprehensive Supply Chains: The
Threats and Opportunities
of Environmental Devastation

Jameel R. Al-Obaidi, Shakinaz Desa, Khalid H. Alobaidi, A. B. Adibah,
J. Azi Azeyanty, Syazwan Saidin, M. N. Nor Nafizah, and E. I. Ahmad Kamil

Abstract Herbs with medical value are of great importance as it is widely used in
complementary and alternative healthcare and medical practices due to its alleged
health benefits, easy availability, perceived effectiveness, and safety. It is a source of
natural products with health value which claimed to treat various illness from minor
cuts and general infections to post-partum care. Herbs are also consumed as a
functional food and have high market values in both pharmaceutical and nutraceu-
tical industries. Their pronounced efficacy has been attributed to their phytochemical
constituents especially the bioactive compounds. Bioactive compounds from medic-
inal herbs found to be effective as anti-bacterial, anti-oxidants, anti-tumour, anti-
cancer, anti-inflammatory, and numerous more. Therefore, plant-derived substances
have recently become a subject of interest and very demanding as people are now in
a trend going back to nature. However, they are affected by different environmental
changes. The quality of alternative medicine usually depends on the secondary
metabolites produced and usually, these metabolites are influenced by an environ-
mental factor. Despite the complex nature of the biosynthesis of different plant
secondary metabolites, research indications highlighted that their biosynthesis and
accumulation remain under the control of the environment. Changes from environ-
mental influence have been reported at genetic or protein level which caused
profound alteration of the metabolite pool of the affected medicinal plants. This
chapter aims to discuss the progress and scenarios of different strategies used by
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researchers worldwide to preserve the herbs under various adverse conditions that
encompassing sustainable development approaches as well as how different envi-
ronmental factors influence qualitatively and quantitatively the production of sec-
ondary metabolites of medicinal benefits which can be developed as detection tools
to ensure medicinal quality in phytomedicines.

Keywords Environmental devastation · Medicinal plants · Bioactive compounds ·
Secondary metabolites

21.1 Towards a Sustainable Integration of Medicinal Plant
into the Comprehensive Supply Chain

The current movement and practices towards sustainable development are
displaying a positive sign of awareness. The implementation of the green economy
has raised a significant understanding of the importance of a quality environment
(Bedenik and Zidak 2019; Chen et al. 2020; Nwozor et al. 2021; Zazykina and
Bukova 2021). Agricultural activities are also heading in the right direction in
protecting the environment (Saitone and Sexton 2017; Chamberlain et al. 2019;
Chudinov 2021; Kuzmich 2021; Panchenko et al. 2021). Education has been
actively promoting the concept of sustainability in various subjects, for instance in
vocational education (Dalyanto et al. 2021), music education (Varkøy and Rinholm
2020), physical education (Baena-Morales et al. 2021), inclusive education
(Bucknor 2018), and science education (Sonetti et al. 2020). Moreover, many fields
were seen to accept sustainable development as common practice. Among them are
tourism (Ulfa et al. 2021; Zakharchenko et al. 2021), logistic (Filippova and
Voronina 2021), minerals activities (Hushko et al. 2021), gender issues (Dewi
2021; Husein et al. 2021), and other social-related issues (Judiasih et al. 2020;
Panchenko et al. 2021). Though witnessing the many efforts towards a sustainable
world, we should not relax by those noble efforts, yet.

Economic growth and sustainability issues have been a long discussion in
ensuring the balance of profit-making and minimizing the depletion of natural
resources. Natural resources capital will always become the core to provide food,
energy, water, and health. Many agree that the management principles should value
conservation more than profit-making. Medicinal plants are an essential and valuable
resource in health care in many countries, and this drives the “gold rush” for trading
and business profit in the global market. Hence, exploitation becomes inevitable and
deviates from sustainable development principles.

Indicators for green economy dimensions include ecosystem resilience, resource
productivity, and social equity, which were developed to measure its implementation
and also to support the decision in the natural biomass-rich environment (Timonen
et al. 2021). They discovered that indicators must be context-dependent, which will
contribute to the international and national level indicators. This indicates that the
integration of sustainable concepts into the medicinal plant supply chain entails local
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sustainability indicators. The indicators must be able to inform and provide feedback
to the governing bodies. This will enable them to make and control decisions in
medicinal plant businesses. Hence, by understanding the why and how problems and
performance may be assessed effectively.

A model on the green economy was introduced along with the discussion on
sustainable development (Szetey et al. 2021). The concept of a green economy is to
generate income for investors, promote positive social changes, and decrease the
negative impact on the natural environment, ethically. This concept is intended to
provide clear guidelines on how to manage the economy when dealing with natural
resources. The Global Green Economy Index (GGEI) is another indicator that
measures the green economy performance via four scopes: climate change manage-
ment, efficiency sectors, marketplaces and investment, and the environment
(Georgeson et al. 2017). The index offers information on benchmark performance,
areas that need improvement, and how stakeholders can promote progress. It facil-
itates policymakers and private sectors to making decisions on policies and their
investments to a greener economy. However, all countries don’t need to involve,
although at the moment 130 countries take part. Thus, having an index, be it locally
or internationally must become an important component in a framework for the
sustainable integration of medicinal plants into the global market.

Agriculture practices in sustainable development are another crucial component
in planning a framework. The technologies of investment with social responsibility
can be applied in agriculture but were hindered due to low awareness in the
agribusiness community (Chudinov 2021). Therefore, to change the management
philosophy of agricultural businesses, regulation and education will take the core
centre in searching for meaningful and systematic agribusiness management, hence
appreciating the importance of sustainable development for medicinal plants.

Without a doubt, rich natural resources offer medicinal plants that may promote
good health and well-being, encourage research and development for drug discov-
ery, and provide alternative healthcare. Traditional medicines are highly valued in
some countries as their basic healthcare needs (Van Wyk and Prinsloo 2018; Ambu
et al. 2020; Jalali et al. 2020; Mustofa et al. 2020; Papageorgiou et al. 2020; Petelka
et al. 2020; Xiong et al. 2020). When the demand increases, it would change the
perspective from medicinal values to profit values. Research discovery on medicinal
plants’ prospects is expanding very fast around the globe. We have been observing
promising data that provide solutions to various health problems, thus, the value of
medicinal plants gets its impacts. The market value is skyrocketed, in which the
demand rate moves in the same direction (Ahmad et al. 2021; Al-Obaidi et al. 2021;
Gong et al. 2021; Hashemi et al. 2021; Hossain et al. 2021; Lim et al. 2021; Shikov
et al. 2021; Tang et al. 2021). The demand provides a positive profit signal to the
business. Therefore, medicinal plants require higher resources and rigorous efforts to
supply the demand. As a consequence, governing bodies need to set the correct
purpose between competitive trade business, healthcare, conserving the natural
environment, and ensuring legislative compliance.

Sustainable management of natural resources has emerged through many inno-
vations. However, the ecological risks are still happening. The increase of

21 Integration of Medicinal Plants into Comprehensive Supply Chains: The. . . 489



uncontrolled purchasing and demand by global consumers resulted in
overexploitation. The exploitation of medicinal plants resulted from the loss of
trust and legitimacy and the failure of compliance and enforcement. Both of these
factors are seen as derived from the controlling power, which is owned by an
institutional of a country. There were linkages and integration found between the
medicinal value chain and various factors. Among the factors were knowledge and
ecological degradations. They concluded that the integrations require plans of action
that should be made up of several separate approaches from several points of
direction. Therefore, to supply a reasonable volume of medicinal plants into the
global chain sustainably, we need to strike the right balance. At this point, what is
reasonable? The potential solutions should be based on better collaboration and
cooperation in addressing these global issues by sharing a common vision. Sustain-
able integration entails multi initiatives to cater to crucial factors. A deeper under-
standing of matching the initiative to the correct factor is compulsory. A conceptual
framework was described to show the interaction of various contributing factors to
the ecosystem and livelihood outcomes (Volenzo and Odiyo 2020). The framework
summarizes the starter as knowledge, power, and agency, which initiate a one-way
flow. The concept depicts the vulnerability of the environment when the process
flow experiences incompetency and lack of knowledge. However, the concept did
not indicate feedbacks, reversible actions, or loop actions to represent the interac-
tions between factors or actions.

Medicinal plants will always be at the core of meeting healthcare needs. The
limitation of plant materials due to over-harvesting, incompetency of regulation
monitoring, lack of indicators to control medical plant’s global supply chain, and
imbalance of business behaviour and sustainable development require a comprehen-
sive concept for global practices. Examples of common business models are global
herbalism, small-medium enterprise, traditional herbalism, and hybrid innovative
practitioners (Bejarano et al. 2020). These models’ practitioners have a different
perception of the challenges of the medicinal plant industry. Among significant
perceptions are the vulnerability of the environment when dealing with mass pro-
duction and the sustainability assessment for the business. In some countries,
medicinal plant businesses are having challenges in searching for alternatives to
products and processes. The intention is to enable enough harvest to sustain and
maintain the business. Hence, sustainable production strategies should also be a
crucial part of the sustainability framework throughout the value chain. The mission
to conserve resources and lowering waste and emissions must be put forth as
compulsory rules.

In pharmaceutical supply chain industries, similar issues were described (Settanni
et al. 2017). Models lack in conceptualizing a structure and behaviour of a supply
chain. Indicators for a given problem are not well developed, thus creating fewer
options, inefficient decisions, lack of alternatives on products and processes. It
seems all supply chain industries are having similar and unseen challenges. Eco-
nomic evaluation should include a systematic approach that integrates sustainability
practices.
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The framework is a concept to guide practitioners in managing medicinal plants
into the global supply chain. To develop a conceptual framework, first, the frame-
work itself must be sustainable. Sustainable in this sense is being able to communi-
cate and signal the regulation of a process. This is to eliminate and avoid unwanted
and inappropriate activities that may lead to waste and inefficient work. All elements
must be interconnected and interacting. The key elements in the framework should
be guided by four components: pre-input, input, process, output, and post-output.
The component must be represented by at least one key element. This element is then
further incorporated into the framework (Fig. 21.1).

Pre-input is the activities before deciding on preparing raw materials. Medicinal
plant material should be prepared not solely on business demand, but to review the
impact of over-harvesting and the risk of inadequate supply to the healthcare
consumers. Input, on the other hand, is defined as activities such as decisions on
regulations, policies, business models, and indicators. Process for sustainable inte-
gration is activities of educating, monitoring, assessment, evaluation, and providing
feedback. Output is controlling the decision based on assessment, data sharing, and
deep learning, local indicators, and regulation of the process. Post-output is
reviewing and revising health and well-being, to determine other alternatives for
medicinal plants. The post-output should be able to supply crucial decisions for the
pre-input activities.

Second, each of the elements in the framework must include its own indicator,
especially related to the local context. These indicators supply information for
assessment and evaluation, provide feedbacks for regulation. Indicators must be
able to supply information and signal Go or No-Go to all processes. Thus, the
application of deep learning in this regulation of medicinal plants into the global
supply chain is recommended. Third, as the world is at a constant change, pre-
dictions can be made. Future studies on the relationship between healthcare research
findings and medicinal plant business should be done and reported. To see the
connection and the balance between human health and human wealth, we should
not compromise with environmental resources. Here, we suggest an outline to model
the key elements into a sustainable framework (Fig. 21.2).

Pre-Input
Impact and Risk

Post-output
Reviewing and revising

Input
Designing and
implementation of
decision

Key element
Guide

Output

01 02

04 03
Controlling decision

Fig. 21.1 In a framework, all four components should be represented by the key element
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21.2 Sustainability of Global Medicinal Plant Sources
Through Conservation Strategies

In parallel with various other typical economic transactions, as well as the interac-
tions between different sources of power, be it in the government or corporate
agency, the medicinal plant had evolved to become a multi-million-dollar industry
with a worldwide distribution and consumption (McLeod 1999). This advancement
had triggered the United States Congress to reclassify the herbs and medicinal plants
as a dietary supplement in 1994, thus making it easier for companies to produce and
trade medicinal plant products by minimizing the monitoring barriers (Robbins
1999).

Over the last few years there has been a huge increase in the global use of herbal
medicines and, due to its alleged health benefits such as ready availability, efficacy,
and safety, it is widely used in supplementary and alternative health care and medical
practice and is seen as an integral part of the community culture (Razmovski-
Naumovski et al. 2010). Herbal medicines are mostly being applied in developing
countries as certain aspects of primary health care (WHO 2013) and more than two
billion people are suspected of being highly dependent on herbal plants (Ganie et al.
2015). Governance systems have taken advantage of the hype and popularity of
medicinal plants because most companies recognize the natural advantages and
environmental merits of plant-based products and innovations and rely heavily on
the purchasing power of healthy users (Robbins 1999). As the global market
estimates reach USD 107 billion, international trading in herbal products is becom-
ing a lucrative industry (Posadzki et al. 2013). This resulted in the production of a
large amount of medicinal plant raw material mainly through the industrial wild flora
(Nimachow et al. 2011; Goraya and Ved 2017; Seethapathy et al. 2019).

Assessment and Evaluation
Methods, Monitoring and

Feedback

Health and Well-being
Alternatives treatments

Research and Innovation
Data sharing

Deep learning integration
Indicators

Environment and Agriculture
Sustainable management
and practices

Culture and Practices
Local context and global
collaboration

Green economy
Global and all business
levels and chains

Interaction
for

Sustainable
integration

Governance0108

02

03

0405

06

07

Local and Global
Regulations

Sustainable
education

At all business levels and
chains

Fig. 21.2 Towards the integration of sustainable development into medicinal plants business, all
components must be interconnected and possess their indicators
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As a result of this fact, conservationists have been debating the ecological
implications of increasing medicinal plant consumption for decades (Robbins
1999). By referring to the world’s two largest medicinal plant providers, China
and India, both countries have taken steps to reduce their reliance on raw medicinal
plant sources while also conserving the products by promoting conservation through
cultivation and regulation. The importance of plants in traditional medicines, partic-
ularly in developing countries, has been extensively documented; however, much
remains unknown about the conservation needs of species exploited, leading to the
extinction of some local medicinal plant species and the endangered status of others
(McLeod 1999).

The aim of preserving global medicinal plant sources can contribute to the
preservation of stable ecosystems for high-value medicinal products. Preserving
these sources through the appraisal and use of medicine can help reduce global
poverty and prevent local public health efforts in developing countries in particular.
But demand for herbal medicines always goes hand in hand with the over-harvesting
of medicinal plants, habitat loss, and farming invasion. Two types of biodiversity
conservation strategies, in-situ and ex-situ technologies, are widely used to prevent
such losses.

21.2.1 In-Situ Conservation of Global Medicinal Plant
Sources

In-situ conservation of medicinal plant biodiversity refers to the conservation or
recovery in the natural habitats of viable species where their unique characteristics
have been established. Policy on land usage that enables such spots either to be
found in protected zones or agricultural landscapes should be combined with in-situ
conservation to ensure the preservation of medicinal plant biodiversity. A successful
in-situ gene conservation programme must fulfil the three basic requirements as
displayed in Fig. 21.3 below:

The survival of herbal medicinal species in situ must define its environment by
various types of management and monitoring. Protection of such species requires the
removal or at most containment of threats for endangered species. In-situ protection
of target organisms should include interconnected practices, see Fig. 21.4:

21.2.2 Ex-Situ Conservation of Global Medicinal Plant
Sources

Ex-situ conservation methods can include the cultivation of entire plants or seed
storage in field gene banks for the conservation of diversity. Appropriate seed
storage technologies must be developed for various species while ensuring that the
plants produce comparable quality with the original stock.
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One of the strategies that can be used is through propagation by vegetative means
or by tissue culture, which is becoming increasingly popular with many species,
particularly those propagated vegetatively and designated as endangered. Propaga-
tion techniques like tissue culture can usually be used in cases where the seed can be
maintained and produced under dry and cool conditions. In addition, a reintroduction
approach may also be used to identify extinct/endangered species in an area and the
habitat in which they have been eliminated. The reintroduction of plants becomes
more and more popular with several species and has proven successful in plant
conservation and protected area management. The reintroduction, however, usually
takes the form of an experiment. As a consequence, more plants may need to be
planted in more than one location to achieve ecological restoration.

Cryopreservation is a useful method to be considered for germplasm preservation
that involves storing plant material at ultra-low temperatures in liquid nitrogen
usually at 196 �C. This is the only method available for the conservation of
vegetative plants and those with recalcitrant seeds. This method is available for a
long time. In recent years the number of plant species increased considerably, with
the introduction of new cryogenic procedures such as cryopreserved plants and
encapsulation dehydration. Several clonally propagated species/genotypes,

Fig. 21.3 Requirements for gene conservation program
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however, produce large seeds or otherwise require the involvement of in vitro
methods for efficient cryopreservation.

21.3 Future Sustainable Strategy

Collectors of medicinal plants are untrained, and nearly half of the material collected
by untrained labour is wasted. Consequently, methods for collecting medicinal
plants from the wild must be developed sustainably. This includes teaching local
collectors proper collection techniques, teaching people how to grow medicinal

Fig. 21.4 Practices for in-situ protection

21 Integration of Medicinal Plants into Comprehensive Supply Chains: The. . . 495



plants, and eliminating some of the middlemen in the trading chain. The fact that
most people live below the poverty line and harvest natural resources mindlessly to
supplement their meagre incomes is a major cause of medicinal biodiversity loss.

The medicinal plants and associated indigenous knowledge of a country require
an aggressive ethnobotany study (Otimenyin 2021). As most medicinal plants are
wild and harvested in preparation for remedies from their roots, the healers should
not completely kill the medicinal plant species in consultation with governmental
officials. These plants should be replaced by establishing nurseries for common
medicinal plants to ensure sustainability, to reduce deforestation and its related
consequences, such as erosion and soil fertility loss. Although there is still insuffi-
cient local effort to conserve medicinal plants, the traditional beliefs about folk
medicine of long-standing populations are unintentionally important in conserva-
tion, management, and sustainable use. A major part of the conservation of medic-
inal plants shall be the active participation of local communities and stakeholders in
the efficient monitoring of local community resources (Banerjee et al. 2021). Col-
laborative research projects involving local indigenous people and national and
international partners and associated experts enable the improvement of the over-
harvested population of natural medicinal plants.

A long-term, integrated, scientifically oriented action plan is required for the
conservation and sustainable use of medicinal plants (Shafi et al. 2021). It is worth
noting that biotechnology is opening up new avenues for the conservation of
medicinal plants, enabling the speedy propagation and re-entry of endangered
species into the environment, biodiversity evaluation and monitoring as a source
of new conservation instruments and identifying potential new gene product uses.
Medicinal plants are likely to become a natural resource for renewable energy. This
would lead to a better utilization for the human well-being of those vital resources by
preserving medicinal plant genetic resources.

21.4 Challenges and Potential Solutions in the Medicinal
Plant Value Chain

21.4.1 Marketing Challenges in the Supply Chain
for Medicinal Plants

To effectively commercialize medicinal products, an exhaustive understanding of
demand and production processes and their value chain are needed (Volenzo and
Odiyo 2020). In the last fifteen years, value chain analysis has been used in the
production of medicinal plants as well as a variety of consumer products. By
investigating the medicinal plant value chain, it is possible to obtain a better
understanding of the role of various inputs in the chain, as well as their influence
on chain management (Booker et al. 2012). Any action necessary to supply a product
from the source to the end-user in a way that responds to their needs, tastes, and
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preferences is a value chain. This medicinal plant value chain includes several
important aspects such as research, production, distribution, processing, and trading
activities with everything designed to meet consumer requirements and preferences
(Fig. 21.5) (Volenzo and Odiyo 2020).

Understanding the process is essential before proposing any meaningful improve-
ment strategies; as a result, value chain analysis is one of the most valuable tools for
understanding how markets for a specific good, such as plant-derived pharmaceuti-
cals, work (Booker et al. 2012; Volenzo and Odiyo 2020). The medicinal plant value
chain influences authority and governance among producers, retailers, and mid-
dlemen, and thus plays an important role in the long-term commercialization and
amalgamation of medicinal plants (Giuliani et al. 2005; Volenzo and Odiyo 2020).
The marketing system is largely ad hoc and undemocratic, with the majority of
medicinal plant cultivators typically being low income. A middlemen-dominated
medicinal plant value chain is typically lengthy and unfettered, magnifying discrim-
ination and incompetence, as well as significantly decrease the margins to farmers
and harvesters (Kala et al. 2006).

Those problems have increased the risk of piracy within the medicinal plant value
chain and increased the problem of selling plant-based pharmaceuticals of native
plant species without recognising and reimbursing countries or communities of
traditional medicinal plant source knowledge (Volenzo and Odiyo 2020). The
traditional knowledge retained by native communities serves as the foundation for
the production of useful products, which can be passed down orally or through
proper documentation; thus, a cultural custom is important in the conservation and
sustainability management of biodiversity (Hill et al. 2020).

Management systems in most developing countries lack intellectual property
rights and thus strengthen the susceptibility to piracy of genetic resources (Volenzo
and Odiyo 2020). The emerging loss of genetic diversity due to unsustainable
manipulation and habitat loss is one of the most serious threats to medicinal plants.

Fig. 21.5 Main steps for
medicinal plants value chain
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As the demand for medicinal plants has been expanding, a large number of econom-
ically important species have been depleted from the wild (Alam and Belt 2009). It
was reported that approximately more than 4000 medicinal plant species are threat-
ened globally, with a large percentage of over-harvesting to meet demand from drug
manufacturers (Schippmann et al. 2002; Alam and Belt 2009). This number is
increasing each year and species extinction has become a worldwide concern,
which in turn can lead to serious negative significances for human livings as well
as wildlife, economies, and health (Hamilton 2004; Alam and Belt 2009).

There is a thin line between medicinal plant species conservation and commer-
cialization. Several developing countries have taken into their initiative to introduce
medicinal plant cultivation through agricultural diversification (Piters et al. 2006).
The initiative is being implemented through several government agencies as well as
several research institutes. The initiative of domesticating medicinal plants, how-
ever, has constraints. This restriction includes, apart from the above mentioned,
unlawful harvesting, prolonged maturity, unacceptable authorization, isolated pro-
ducers, and non-existent links among producers, retailers, and intermediaries, as well
as poor quality planting materials and unprocessed farming plots (Kala et al. 2006;
Alam and Belt 2009; Volenzo and Odiyo 2020).

21.4.2 Possibilities for Increasing the Value of Medicinal
Plants in the Value Chain

Even though medicinal plant products are very popular in the market, very few
studies have looked at their value chain. There are only several published reports on
the value chains of herbal medicinal plant products (Stewart 2003; Winkler 2008) in
comparison with an abundance of reports on research and production of the plant
products. Generally, three criteria have been discussed in previous research
(Bryceson 2008; Menon 2008) on the strategy to increase the value of medicinal
plants in the value chain which consists of demand in the market, quality of the
product, and financial advantages (Fig. 21.6).

The challenges that might be of concern generally include growing, improving
the value chain, quality assurance, and improving networking. The raw materials
supply and agricultural practice inextricably linked to methods of post-harvest,
appropriate market canals and supply chain. In the medicinal plant sector, improved
qualities and market access from wild crops to end-users are challenging (Pauls and
Franz 2013; Länger et al. 2018). For any herbal medicinal product to enter the global
market, it must adhere to three sets of quality standards (WHO 2003; Leaman 2008;
Robinson and Zhang 2011): the International Standard for Sustainable Wild Collec-
tion of Medicinal and Aromatic Plants (ISSC-MAP), Good Agricultural Practices
(GAP), and Good Manufacturing Practices (GMP). It is unclear, however, the
linkage between these international standards with local practices. The most difficult
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part is when intermediaries tend to dominate the local chain (Sher et al. 2014). This
dominance leads to price inflation and inequality of margins.

Furthermore, there are still limited prices research and most studies show that
prices depend on the market and quality of the product. A market that is considered
to be sufficient to ensure stable supply on the market needs to be well defined. There
are still considerable weaknesses in today’s literature. Therefore, Schreckenberg and
Belcher (2007) suggest several factors to be considered to plan the marketing of
herbal medicines such as:

1. the product features,
2. market trends,
3. demand factor,
4. market risks,
5. integrated value chain,
6. national government policy,
7. sustainable, and
8. quality and quantity improvement.

This list will improve understanding of the value chain and can help develop
future intervention scenarios (Cunningham et al. 2018). In addition, the analysis of
the value chain for medicinal plant research should be thoroughly investigated.
Although the global focus of medicinal plant products continues to be strong,
particularly about its multiple roles in alleviating poverty and supporting health
services, the potential of the various medicinal plant production systems and
methods of use, marketing and contribution to livelihoods remain scarce. These
problems have, without doubt, current and future implications for the harvest,
growth, use, and marketing of medicines.

Fig. 21.6 Medicinal plant
value chain
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21.5 Community as an Institution in Medicinal Plant
Management

Huge demand for medicinal plant as medicinal resources is increasing very fast due
to the acceptance of traditional medicine as an alternative in the treatment of various
illnesses around the world. The WHO estimates that 70–80% of the population of
many developed countries has used some form of alternative or complementary
medicine (WHO 2013) This contributes to putting the high commercial value of
medicinal plants as a commodity in the global value chain. The global market for
herbal products is estimated to grow 7% per annum and reaching USD 5 trillion by
the year 2050 (Ahmad and Othman 2013). Even though medicinal plants around the
world are receiving continuous attention nationally and internationally, the main
concern is the management of the medicinal and potentially medicinal plants, which
is still fragmented (Astutik et al. 2019). Management of medicinal plants includes
commercialization, the production system, and conservation of the plants.
Overexploited and unsustainably managed medicinal species especially those threat-
ened and endemic will lead to disappearing and over time towards extinction and
finally diversity loss.

The commercialization of traditionally inherited medicinal plants into the global
value chain has both advantages and disadvantages. It could negatively impact the
plant genetic resources and ecology at large, as the environment and ecosystem
vulnerability are influenced by the ability to access and supply the resources. The
lesson should be learnt by examples, biodiversity loss of threatening, and endemic
medicinal plants, Prunus africanus in Africa, and seriously threaten species of
Picrorhiza kurroa Royle ex Benth. and Swertia chirayta in India (Uniyal et al.
2011). This is due to the plants being poorly managed. Therefore, conservation of
plant resources especially those medicinal and highly demanded in global chain
production needs critical attention ensuring the supply is not broken and at the same
time benefiting the population without exhausting the natural plant resources.

Community-based conservation approaches to medicinal plant management need
to be given great attention. This approach is found to be successful in many countries
around the world especially the developing countries like India (Shukla and Gardner
2006), Africa (Lanata et al. 2013), Uganda (Acema et al. 2021) where it involves
social interaction between the local communities and government bodies to hand in
hand achieving the same goal. The approaches also attract the attention of the
government, non-government organization, and also funding agencies around the
globe (Shukla and Gardner 2006; Acema et al. 2021).

21.5.1 Community as Institution

An institution in a wider sense referring to families, households, villagers, formal
and non-formal organizations, and associations. Institutions are the rules that
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assemble human interaction, including their enforcement features and sanctioning
mechanisms and include any form of shared restriction that human beings devise to
shape their daily interactions and transactions (Negi 2010). Such institutions are
decentralized and managed by a community itself, where no external authority
interference guarantee that social actors will abide by rules and procedures.

Formal institution constitutes written regulation and law practices that guide the
organization and are highly associated with the structural complexity. Informal
institutions include sanctions, taboo, custom, tradition, and code of conduct. Various
institutions constitute a governance system that determines to various degree, the
access to, the control, allocation and distribution of natural component and anthro-
pogenic assets and the benefits. These entitlements define ownership, privilege,
limitation in use of resources which collectively referred to as property rights,
shape the usage pattern and motivation for sustainable strategies as well as sharing
the benefits (Volenzo and Odiyo 2020).

In these recent decades, there are quite a several successful community-based
organizations taking roles in natural resources management (Thakadu 2005; Conrad
and Hilchey 2011; Musavengane and Kloppers 2020). Community-based organiza-
tions or associations are those run by the local community and their members are the
community itself. Participation of the local community at any level from the smallest
unit to well-structured organizations in medicinal plant management is important to
ensure the market need is met and the resources are managed sustainably, where it
also benefited the future generation. In other words, meeting the current generation
necessary without compromising the need of the future generation. Interaction
between the authorized government and the community is also crucial, the commu-
nity has the right to voice out their necessity towards medicinal plants and the
government can take into account, their view and voices in policymaking, execution,
implementation, and enforcement. The demand for the medicinal plant in commu-
nities is undoubtedly essential since, before civilization, the community rely on
plants as a source of food and medicine. The market demand arises also because
of community needs for healthy and better living and ends up creating the supply and
demand to continuously climbing not only locally but also internationally.

Countries around the globe practice community engagement as key to good
governance including managing plant recourses sustainably. Sustainability is the
best approach to manage medicinal plants as it gives less impact on the environment.
This approach requires two-way interactions between the authority and community
and must be clearly understood their roles in addressing sustainability in the medic-
inal plant’s market. The interaction involves community’s behaviour, motivation,
and perception (through their action, reaction and responses) to be taken into
consideration by the authority in making planning, implementation, enforcement,
and policymaking and reviewing related to medicinal plant’s market (Foo et al.
2016).
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21.5.2 How Community Can Contribute to the Management
of Medicinal Plants?

The smallest unit to well-structured community-based organizations has its role and
responsibilities towards natural resources management. Community contribution
includes the knowledge towards the medicinal plants that were kept for generations
by the rural and indigenous community and is known as traditional medicinal
knowledge. Traditional medicinal knowledge is practised in Asia since immemorial
time, long in history, for example, Ayurveda, Jammu (Indonesia), Traditional
Chinese Medicine, Sowa Rigpa (Bhutan), Kampo (Japan), Thai medicine, and
Herbal Medicine (Bangladesh) (Astutik et al. 2019) and Unani or Islamic medicine
(Shrivastava 2011). Their traditional management practices should be fortified and
endorsed since they serve dual significant responsibility in conservation and primary
health care component (Msuya and Kideghesho 2009). Europe, mid of the world
population is depending on traditional and folk medicines in their healthcare (WHO
2003). This is due to easy access, availabilities, and low cost compared to modern
medicine. The uncontrolled utilization of direct use of these medicinal plants has
drawbacks where they are not being scientifically and clinically tested. Traditional
and folk medicine rely on these plants natural compounds for the modern drugs
development. In the last 20 years research on medicinal plant shows rapid progress
and reaches its peak in 2010 then progresses instability. Most medicinal plants
collaboratively research between the first world countries scientifically tested to
confirm their effectiveness and safety of use. Most researched medicinal plants
came from Asia and Africa which confirm the richness of medicinal plants in
these areas (Salmerón-Manzano et al. 2020).

Inventory of medicinal plants has been carried out through literature to fulfil
several contexts and conducted continuously from ancient time to the present. This
helps to understand the medicinal importance and values towards local communities
and the country as a whole. Therefore, researchers around the globe are continuously
working on documentation medicinal plant within their smaller groups of local or
indigenous communities (Msuya and Kideghesho 2009; Ripen and Noweg 2016).
Bible and Quran mentioned over 240 species of pharmaceutical and nutraceuticals
potentials (Hossain et al. 2016; Astutik et al. 2019). All plants used in traditional and
folk medicinal documented or are considered crucial in biodiversity and need to be
conserved to confirm the secured supply chain locally and globally are secured.

There are many innovative ways that allow the communities to contribute to
medicinal plant biodiversity sustainibility and the fullfilment of the supply chain.
Home garden is one of the good initiatives for a smaller unit of communities.
Selected diversity of species are grown and domesticated, they considered to be
important to subsistence and livelihoods and mostly focusing on the households’
consumptions in everyday life. Collection of plants by different individuals, families
or farmers and also depending on socio-cultural and economic values (Díaz-
Reviriego et al. 2016; Whitney et al. 2018). The indigenous community can greatly
contribute as most of the knowledge on the medicinal plant in most countries around
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the world come from them. Therefore, ethnobotanical research on indigenous people
is encouraged rightfully between the research community and local indigenous to
ensure their rights and benefit from the research and development are shared in an
equitable way (Jamie and Vemulpad 2015).

Community-based and community-government botanical gardens are more effec-
tive in sustaining medicinal plant richness. Community-based organizations are
driven by local needs but the recent trend shows some of these community-based
organizations are evolving and responding to global and international global eco-
nomic opportunity and challenges. Some successful community-based organizations
around the world are now enterprises, for example: Thailand (CODI Community
Organization Development Institute), Namibia CBNRM (Community-based Natural
Resources Management) (Seixas and Berkes 2009), India RCMPCC Rural Com-
munes Medicinal Plant Conservation Centre (Shukla and Gardner 2006).

CBNRM in Namibia participates in many program and conservation activities
and has wide networking and partnership. CBNRM evolves from one simple
community organization to a national NGO-government and currently receiving
support and attention from multiple parties including international donors, higher
institutions, and the related ministry. Ten community-based successful projects
around the world were discussed by Seixas and Berkes (2009). These ten
community-based organizations which initially driven by the local needs have
shifted to higher performance in managing their local natural flora and fauna
resources and receiving attention from national to global economic opportunities.

There are established and successful garden and park around the globe which
greatly contribute to conserving and preserving the plant resources including those
medicinal and other economic and ecological values. Botanic gardens and parks
greatly involved in ex-situ and in-situ conservations. Ex-situ and in-situ conserva-
tions are complementing each other in sustaining the biodiversity of natural
resources especially those overexploited and endangered medicinal plants (Chen
et al. 2016). The main aim of ex-situ conservation is to cultivate and naturalize
threatened species of threatening species to ensure their survival especially those
overexploited or highly demanded in the market for the production of medicinal
preparation or drugs (Wangkheirakpam 2018). The process involves the relocation
of the mentioned species from their natural habitat to a protected area. Botanic
gardens are major players in this role (Lanata et al. 2013) and can be expanded to
undertaking programs of domestication and variety breeding and propagation (Chen
et al. 2016).

On the other hand, national parks can play a big role in the plant diversity richness
especially those endangered, threaten or endemic at their natural habitats. National
parks around the world play a huge role as in-situ conservation in their respective
countries (Amjad et al. 2015; Menale et al. 2016; Suba et al. 2019). Traditional
management practices by rural and indigenous communities outside government
gazette areas such as burial sites, farm, sacred forest, cultural forest, taboo are
considered ideal places for in-situ conservation of plant biodiversity especially
those medicinal (Msuya and Kideghesho 2009).
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Integration of roles between the government, agencies, funders, and research
institutions is crucial in granting success of the park and garden in their conservation
agenda. Some conceptual frameworks need to be considered after understanding the
contributions of the community from smaller entity to larger institutions in the
management of medicinal plants, therefore the integration of community role can
be clearly defined through the delocalization process of medicinal plants integration
into commercialization and global value chain (Volenzo and Odiyo 2020).

21.6 The Knowledge, Power, and Subjectivity in Medicinal
Plant Management

Due to the catastrophic climate change effect, plants are changing their ranges of
distribution over new habitats, and to support the natural adaptation (evolutionary
and ecological) of medicinal plants in the changing environment, the conservation of
plant genetic resources in situ is very important (Wallingford et al. 2020). To apply
different conservation measures to populations of medicinal plants at genetic reserve
sites, a methodology was developed to ensure their long-term sustainability. This
methodology was developed using an analysis of pertinent legal documents, literary
sources, and databases, as well as the authors’ personal experience and historical
land use in the study area. It systematically outlines measures for the management
and conservation of genetic reserve locations, to ensure the long-term viability of
medicinal plant populations. It uses a scientific approach to the management and
control parameters by gathering them into factor-specific and habitat-specific ones
and follows the specific principles of biodiversity maintenance, like the notion of
priority of in situ maintenance, regional approach, wariness and validity of decision-
making, and ecosystem (Labokas and Karpavičienė 2021).

The strategy of the World Health Organization (WHO), 2014–2023, targeted to
enhance the traditional medicine role, confirming the significance of promoting and
including the exploitation of medicinal plants in the health care systems of its
member countries (WHO 2013). A valid therapeutic benefit uses of medicinal plants
has been revealed. However, the excessive uses of self-medication may increase the
issue of lack of drug interactions and/or adverse reaction registration. Consumption
of medicinal plants is a case to be taken into consideration in the control of
pharmacological patients treatments. This will ensure quality, efficiency, and safety
in the use of medicinal plants, thus constituting an integrated health care system
(Sánchez et al. 2020).

The role played by indigenous knowledge on the conservation of medicinal plants
is extensively acknowledged (Nimachow et al. 2011). According to a recent study,
communities that rely heavily on traditional medicine and medicinal plants had a
wealth of indigenous knowledge about medicinal plant conservation, as they could
mention many conservation strategies. The conservation practices seemed to be
fundamental in the conservation of medicinal plant species (Kibonde 2020).
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The scientific approach to genetic reserve site conservation contributes to the
design and implementation of involvement parameters in genetic reserve sites by the
best understanding of the entire process concentrated on conservation goal
(populations of target species) and factors (anthropogenic biotic and abiotic) affect-
ing it. However, the recommended parameters must be considered in a flexible,
active manner, taking into account potential impacts on the environment, different
target species requirements, and local conditions by making ready individual site-
specific arrangement plans. The individual plans, on the other hand, should be
checked up and updated according to the results of periodic inventories and con-
trolled according to information from the genetic resource users and protected area
managers (Wallingford et al. 2020).

Local communities consider medicinal plants wild, lack knowledge, and have
unattractive economical values. Therefore these local communities pay less attention
to the management of medicinal plants. The mismanagement altogether with damage
of habitat showed that traditional medicinal plant species used by traditional thera-
pists are under critical intimidation which indicates the need for instant awareness
towards their sustainable utilization, maintenance, and documentation (Birhane et al.
2011). Natural resource management is thus a complex socio-political system
concerning how local and non-local actors engage to pursue their values around
environmental systems, negotiate rights, and arrive at a workable model of collective
action across scale (Ojha et al. 2016). Significant linkages have been identified
between ecological degradation risks in the global supply, knowledge, power,
agency, property rights, and medicinal value chains and demand of medicinal plants.
A community is conceptualized as an entity that is concurrently entrenched in local,
regional, and global networking on the delocalized community model scale (Ojha
et al. 2016). Even though global value chains are important drivers in delocalization
processes, scholarly opinions on the impact of delocalization on natural resource
management outcomes are divided. Delocalization of community-based resource
management systems, such as medicinal plants, may provide chances for income and
employment, but it is biased in favour of dominant value chain actors that use
Intellectual Property Rights (IPRs) governance systems to further their strategic
goals. Because medicinal plant commercialization undermines locally established
values and norms that restrict access to and control of Common Property Resources
(CPRs), it encourages widespread incentives that exacerbate medicinal plant spe-
cies’ vulnerability to overexploitation and extinction. Furthermore, indigenous
knowledge is generally seen as inferior to IPR in most judicial precedents, particu-
larly where the legal and policy foundations are inadequate. IPRs, which are a typical
characteristic of biotechnological advancements in the isolation, processing, and
patenting of active compounds from medicinal plants, are expected to have
far-reaching consequences for CPRs (Volenzo and Odiyo 2020).

Younger generations appear to have lost knowledge, as they cultivated fewer
species and knew less about medicinal plant properties. Even though men cultivate
more diverse gardens, women appear to play a critical role in the conservation of
agrobiodiversity in home gardens, as they are identified as the primary source of
traditional medicinal plant knowledge transmission. Our research emphasizes the
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necessity of integrated land use management that takes into account several social
factors (such as culture, gender, health, and well-being) that are linked to biodiver-
sity conservation and traditional knowledge in agroecosystems. Home gardens
should be seen as major reservoirs of biological and cultural variety by
policymakers. Traditional knowledge preservation necessitates a complete approach,
which entails learning through emulation and context rather than formal instruction
(Caballero-Serrano et al. 2019).

As pharmacopoeial requirements evolve and instrumental technology improves,
we will be able to delve deeper into the chemical makeup of medicinal plants and
create more advanced procedures for detecting and quantifying adulterants and
contaminants. However, while technology advancements offer us this option, the
conventional organoleptic analysis also provides us with important sensory infor-
mation about medicinal plant quality. Many studies have documented the emergence
and historical significance of complicated analytical techniques employed in medic-
inal plant analysis. Any analytical technique, on the other hand, can only provide a
partial picture of complex multi-component preparations. As a result, future
advancements in this field may not rely just on the development of ever more
complicated analytical tools, but rather on the implementation of best practices at
all phases of the manufacture and distribution of herbal medicines (Fitzgerald et al.
2020).

Environmental education should aim to critically examine and bring to light the
interplay of power/knowledge connections, as well as its consequences in how
knowledge is represented from knowledge-generating processes involving the inter-
action of modern institutions and local communities. This critical approach chal-
lenges the institutionalized knowledge-generating processes that appropriate local
knowledge and incorporate them into Western science discourses. This opens up
opportunities for indigenous views to be heard and represented in the academy, as
well as in community development (Shava 2011).
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