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Abstract. The kinematics of the beam having only two variables are increased in
a hybrid form under polynomial, and trigonometric series in thickness and axial
directions, respectively. Lagrange’s equations are then used to derive characteristic
equations of the beams. Numerical results for laminated composite beams are
equalled with previous studies and are used to investigate the effects of length-
to-depth ratio, fibre angles and material anisotropy on the vibration of laminated
composite beams.
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1 Introduction

Laminated composite materials are created by assembling multiple layers of fibrous
materials to achieve the superior engineering properties such as bending stiffness,
strength to weight ratio and thermal performance.

As a result, laminate composite has been widely applied in aerospace engineering,
mechanical engineering as well as construction technology. In order to maximise the
potential advantage of this multilayered material, numerous studies and computation
modelling have been conducted to fine-tune the static and dynamic behaviours of lami-
nated composite beams. Various beam theories have been developed in order to predict
accurately their structural responses and capture anisotropy of laminated composite
materials.

Classical beam theory (CBT) is the simplest one in analysing responses of lami-
nated composite beams. Nonetheless, this theory underestimates deflections and over-
estimates natural frequencies of the beams due to neglecting effects of transverse shear
deformation.

In order to account for this effect, thanks to its simplicity in formulation and pro-
gramming, the first-order shear deformation beam theory (FSBT) is commonly used by
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researchers and commercial soft wares for the analysis of laminated composite beams
[1, 2]. However, in this theory, the inadequate distribution of transverse shear stress in
the beam thickness requires a shear correction factor to calculate the shear force.

This adverse in practice could be overcome by using higher-order deformation
beam theory (HSBT) [2, 3] or Quasi-3D beam theory (Quasi-3D) [4, 5] owing to the
higher-order variation of axial displacement or both axial and transverse displacements,
respectively. In such an approach, stresses of the beam can be directly computed from
constitutive equations without shear coefficient requirement.

Many higher-order shear deformation theories have been developed with different
approaches in which its kinematics could be expressed in terms of polynomial [6, 7],
trigonometric [8, 9], exponential ones [10], hyperbolic [11, 12] and hybrid higher-order
shear functions [13].

A literature review shows that a vast number of researches on developmentHSBTand
Quasi-3D have been developed, however the accuracy of these theories strictly depends
on the choice of shear functions and number of variables defining the problem. The
development of new beam theories as well as suitable solution methods is a complicated
problem and needs to be studied further.

The purpose of this paper is to develop a two-directional elasticity solution for vibra-
tion analysis of laminated composite beams. Based on the elasticity equations, the pro-
posed theoryonly requires twounknowns inwhich the axial and transverse displacements
are approximated in series terms in its two in-plane directions for different boundary
conditions and Lagrange’s equations are used to derive characteristic equations.

Numerical results are presented to investigate the effects of length-to-depth ratio,
material anisotropy, Poisson’s ratio and fiber angles of laminated composite beams.

2 Theoretical Formulation

Considering a laminated composite beam with rectangular section b x h and length L as
shown in Fig. 1, the beam is composed of n layers of orthotropic materials.

Fig. 1. Geometry of laminated composite beams.

2.1 Kinematic, Strain and Stress Relations

Denoting u and w are axial and transverse displacements at location (x, z) of the beam.
The linear displacement-strain relations of the beam are given by:

εx = u,x (1)



Vibration Analysis of Laminated Composite Beams 795

εz = w,z (2)

γxz = u,z + w,x (3)

where the comma indicates partial differentiationwith respect to the coordinate subscript
that follows. Based on an assumption of the plan stress in the plane (x, z) of the beam,
i.e. σy = σyz = σxy = 0, the elastic constitutive equation in the global coordinate system
is expressed by:
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where C11, C13 and C55 are the reduced in-plane and out of plane elastic stiffness
coefficients of the laminated composite beam in the global coordinates (see [5] for more
details).

2.2 Variational Formulation

Lagrangian function is used to derive the equations of motion:

� = U − K (5)

where U , and K denote the strain energy, and kinetic energy, respectively.
The strain energy U of a system is given by:

U = 1

2

∫

V
(σxεx + σzεz + σxzγxz)dV

= 1

2

∫

V

[
C11u

2
,x + 2C13u,xw,z + C33w

2
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(
u2,z + 2u,zw,x + w2

,x

)]
dV

(6)

The kinetic energy K is obtained as:

K=1

2

∫

V
ρ
(
u̇2 + ẇ2

)
dV (7)

where the differentiation with respect to the time t is denoted by dot-superscript
convention; ρ(z) is the mass density of each layer.

By substituting Eq. (6) and (7) into Eq. (5), Lagrangian function is explicitly
expressed as:
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2.3 Two-Directional Ritz Solution

Based on the Ritz method, the axial and transverse displacements at location (x, z) of
the beam can be generally approximated in the following forms:

u(x, z, t) =
R∑

r=1

S∑

s=1

ψrs(x, z)urs (9)

w(x, z, t) =
R∑

r=1

S∑

s=1

ϕrs(x, z)wrs (10)

where urs,wrs are unknown displacement values to be determined; ψrs(x, z), ϕrs(x, z)
are the two-directional shape functions which are composed of admissible hybrid
exponential-trigonometric function in the x-axis and polynomial function in the z-axis
are given in Table 1.

Table 1. Shape functions and essentials BCs Beams.

BCs ψrs(x, z) ϕrs(x, z) x = 0 x = L

S-S cos
(
πx
L

)
e−rx/Lzs−1 sin

(
πx
L

)
e−rx/Lzs−1 w = 0 w = 0

C-F sin
(
πx
2L

)
e−rx/Lzs−1 (

1 − cos
(
πx
2L

))
e−rx/Lzs−1

u = 0,

w = 0,

w,x = 0

C-C sin
(
πx
L

)
e−rx/Lzs−1 sin2

(
πx
L

)
e−rx/Lzs−1

u = 0,

w = 0,

w,x = 0

u = 0,

w = 0,

w,x = 0

The governing equations of motion can be obtained by substituting Eq. (9), (10) into
Eq. (8) and using Lagrange’s equations:

∂�

∂qrs
− d

dt

∂�

∂ q̇rs
= 0 (11)

with qrs representing the values of (urs, wrs), that leads to:
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where the components of the stiffness matrix K and the mass matrix M are given by:

K11
rspq =

∫ L

0

∫ h/2

−h/2
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∫ L

0

∫ h/2
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22
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(13)

Finally, the vibration responses of the laminated composite beams can be determined
by solving Eq. (12). It should be noted that the Eq. (12) does not consider damping
materials, the investigation of vibration frequencies of damping materials [14] is also a
very interesting problem and will be the future development of this paper.

3 Numerical Results

In this section, convergence and verification studies are carried out to demonstrate the
accuracy of the present study. For vibration analysis, laminates are assumed to be equal
thicknesses and made of the same orthotropic materials whose properties are given in
Table 2. For convenience, the following non-dimensional terms are used:

ω = ωL2

h

√
ρ

E2
for Material I (MAT I) and ω = ωL2

h

√
ρ

E1
for MAT II (14)

Table 2. Material properties of composite beams.

Material properties MAT I
[15]

MAT II
[16]

E1 (GPa) E1/E2 = open 144.8

E2 = E3(GPa) - 9.65

G12= G13 (GPa) 0.6E2 4.14

G23 (GPa) 0.5E2 3.45

ν12= ν13= ν23 0.25 0.3

ρ (kg/m3) - -

L (m) L/h = open L/h = 15

h (m) - -

b (m) - -
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The composite beams (MAT I, 00/900/00,L/h= 5,E1/E2 = 40)with differentBCs are
considered to evaluate the convergence. The non-dimensional fundamental frequencies
with respect to the number of series in x − direction (R) and z − direction are given in
Table 3. It can be seen that the responses converge quickly in x-direction and number
of series in this direction R = 10 can be the point of convergence of the fundamental
frequencies for the boundary conditions, whereas the frequency of vibration tends to
decrease with increasing number of series in z-direction, and the beam tends to become
softer. As an example for further verification, R = 10 and S = 4 will be chosen in the
following examples.

Table 3. Convergence studies for normalized fundamental frequencies of 00/900/00 laminated
composite beams (MAT I, L/h = 5, E1/E2 = 40).

BC Number of series (S) Number of series (R)

2 4 6 8 10 12

S-S 1 11.8886 11.8251 11.8245 11.8245 11.8245 11.8245

2 9.9289 9.8192 9.8178 9.8178 9.8178 9.8178

3 9.9258 9.8160 9.8146 9.8146 9.8146 9.8146

4 9.3105 9.2046 9.2033 9.2033 9.2033 9.2033

5 9.3095 9.2036 9.2023 9.2022 9.2022 9.2022

6 9.3088 9.2032 9.2019 9.2019 9.2019 9.2019

7 9.3088 9.2032 9.2019 9.2019 9.2019 9.2019

C-F 1 6.2477 6.0473 5.9839 5.9562 5.9420 5.9355

2 4.5409 4.4005 4.3737 4.3638 4.3589 4.3572

3 4.5401 4.3993 4.3723 4.3624 4.3572 4.3547

4 4.3294 4.2047 4.1808 4.1719 4.1676 4.1656

5 4.3292 4.2045 4.1804 4.1716 4.1672 4.1655

6 4.3273 4.2011 4.1770 4.1681 4.1636 4.1625

7 4.3273 4.2011 4.1770 4.1682 4.1639 4.1612

C-C 1 13.8049 12.6527 12.2761 12.1087 12.0330 12.0311

2 13.2193 12.0773 11.7457 11.5999 11.5358 11.5326

3 13.2185 12.0765 11.7449 11.5990 11.5338 11.5287

4 12.5178 11.4420 11.1473 11.0216 10.9655 10.9639

5 12.5168 11.4406 11.1455 11.0195 10.9625 10.9604

6 12.4768 11.4031 11.1073 10.9811 10.9258 10.9243

7 12.4767 11.4030 11.1072 10.9809 10.9252 10.9243

Vibration behaviors of cross-ply laminated composite beams are investigated inTable
4which presents changes of the non-dimensional fundamental frequencies with S-S, C-F
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and C-C boundary conditions, span-to-thickness ratio L/h = 5, 10, 50 of the 0°/90°/0°
and 0°/90° laminated composite beams. The solutions are computed with MAT I and
E1/E2 = 40. The accuracy of the solutions is tested by verification with those derived
from HSBTs (Nguyen et al. [3], Nguyen et al. [5], Khdeir et al. [17], Vo, T.P et al. [18],
Murthy et al. [19]) and Quasi-3Ds (Nguyen et al. [5], Mantari et al. [20], Matsunaga
[21]). It can be seen that the present solutions comply with those from the Quasi-3Ds,
however there are slight deviations between them for the thick beams (L/h = 5) and for
C-F and C-C boundary conditions. The softer characteristic of the present beam model
is again found for all solutions in comparison with the HSBTs and Quasi-3Ds.

Table 4. Non-dimensional fundamental frequencies of 00/900/00 and 00/900 laminated compos-
ite beams (MAT I,E1/E2 = 40).

BCs Theory 00/900/00 00/900

L/h = 5 10 50 L/h = 5 10 50

S-S HSBT [5] 9.206 13.607 17.449 6.125 6.940 7.297

HSBT [3] 9.208 13.614 17.462 6.128 6.945 7.302

HSBT [17] 9.208 13.614 - 6.128 6.945 -

HSBT [18] 9.206 13.607 17.449 6.058 6.909 7.296

HSBT [19] 9.207 13.611 - 6.045 6.908 -

Quasi-3D [5] 9.208 13.610 17.449 6.140 6.948 7.297

Quasi-3D [20] 9.208 13.610 - 6.109 6.913 -

Quasi-3D [21] 9.200 13.608 - 5.662 6.756 -

Present 9.203 13.610 17.449 5.831 6.833 7.292

C-F HSBT [5] 4.230 5.490 6.262 2.381 2.541 2.603

HSBT [3] 4.234 5.498 6.267 2.383 2.543 2.605

HSBT [17] 4.234 5.495 - 2.386 2.544 -

HSBT [19] 4.230 5.491 - 2.378 2.541 -

Quasi-3D [5] 4.223 5.491 6.262 2.382 2.543 2.604

Quasi-3D [20] 4.221 5.490 - 2.375 2.532 -

Present 4.168 5.478 6.262 2.314 2.522 2.603

C-C HSBT [5] 11.601 19.707 37.629 10.019 13.653 16.414

HSBT [3] 11.607 19.728 37.679 10.027 13.670 16.429

HSBT [17] 11.603 19.712 - 10.026 13.660 -

HSBT [19] 11.602 19.719 - 10.011 13.657 -

Quasi-3D [5] 11.499 19.672 37.633 9.944 13.664 16.432

Quasi-3D [20] 11.486 19.652 - 9.974 13.628 -

Present 10.966 19.454 37.652 8.8361 12.913 16.388
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In order to verify the vibration behaviors of present theory further, TableS 5 and
Table 6 report non-dimensional fundamental frequencies with respect to the fiber angle.
The results are obtained with three boundary conditions, two lay-ups 0°/θo/0° and 0°/θo,
material MAT I, E1/E2 = 40 and L/h = 5. It is worth noticing that the solutions are
compared with those of Nguyen et al. [5] based on a Quasi-3D theory. It is observed
that there are significant differences between two models for C-C boundary conditions,
whereas the solution field of the theories is in agreement for S-S and C-F boundary
conditions.

The unsymmetrical (450/-450/450/-450) and (300/-500/500/-300) composite beams
(MAT II) with various BCs are considered. The results of fundamental frequencies are
given in Fig. 2 and Fig. 3. A good agreement between the present solutions and previous
studies (Nguyen et al. [5], Chen et al. [22], Chandrashekhara et al. [23]) is again found.

Table 5. Non-dimensional fundamental frequencies of 00/θ /00 and 00/θ laminated composite
beams (MAT I, E1/E2 = 40, L/h = 5).

Lay-up BCs Theory Fiber angle (θ )

00 150 300 450 600 750 900

00/θ /00 S-S HSBT
[5]

9.5498 9.5165 9.4487 9.3630 9.2831 9.2279 9.2083

Present 9.5360 9.5008 9.4354 9.3531 9.2759 9.2223 9.2033

C-F HSBT
[5]

4.3628 4.3307 4.3047 4.2754 4.2484 4.2297 4.2231

Present 4.2988 4.2707 4.2464 4.2182 4.1919 4.1740 4.1676

C-C HSBT
[5]

12.0240 11.9365 11.8341 11.7130 11.6020 11.5260 11.4992

Present 11.3751 11.3341 11.2621 11.1521 11.0571 10.9886 10.9655

00/θ S-S HSBT
[5]

9.5498 7.9829 6.8336 6.3948 6.2215 6.1561 6.1400

Present 9.5360 7.8827 6.6059 6.1104 5.9178 5.8478 5.8314

C-F HSBT
[5]

4.3628 3.3266 2.7077 2.4964 2.4173 2.3887 2.3819

Present 4.2987 3.2836 2.6501 2.4314 2.3498 2.3208 2.3140

C-C HSBT
[5]

12.0240 11.0882 10.4823 10.1844 10.0347 9.9640 9.9435

Present 11.3769 10.5547 9.6617 9.1718 8.9404 8.8557 8.8300

Finally, the symmetric (θ/ − θ)s composite beams (MAT II) are considered. The
effects of the fiber angle on the natural frequencies is illustrated in Table 7. It can be
seen that the present natural frequencies are closer to those of HSBT (Nguyen et al. [5]
and Aydogdu [24]) smaller than those of HSBT (Nguyen et al. [3]), which neglected the
Poisson’s effect, especially for 100 ≤ θ ≤ 600. This phenomenon can be explained by
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Table 6. Non-dimensional fundamental frequencies of 00/θ /00 and 00/θ laminated composite
beams (MAT I, E1/E2 = 40, L/h = 10).

Lay-up BCs Theory Fiber angle (θ )

00 150 300 450 600 750 900

00/θ /00 S-S HSBT
[5]

13.9976 13.8822 13.8130 13.7400 13.6729 13.6264 13.6099

Present 13.9968 13.8802 13.8118 13.7395 13.6728 13.6264 13.6098

C-F HSBT
[5]

5.6259 5.5622 5.5403 5.5220 5.5059 5.4948 5.4909

Present 5.6111 5.5484 5.5268 5.5087 5.4927 5.4816 5.4776

C-C HSBT
[5]

20.4355 20.3428 20.1923 20.0062 19.8335 19.7144 19.6723

Present 20.1538 20.0769 19.9452 19.7694 19.6065 19.4931 19.4541

00/θ S-S HSBT
[5]

13.9976 10.0656 7.9772 7.3028 7.0561 6.9682 6.9475

Present 13.9968 10.0200 7.8862 7.1945 6.9425 6.8536 6.8330

C-F HSBT
[5]

5.6259 3.7996 2.9428 2.6785 2.5837 2.5505 2.5428

Present 5.6110 3.7877 2.9253 2.6588 2.5633 2.5300 2.5224

C-C HSBT
[5]

20.4355 17.3592 15.0934 14.2004 13.8389 13.6989 13.6637

Present 20.1626 17.0377 14.5214 13.4923 13.0949 12.9442 12.9133
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Fig. 2. Non-dimensional fundamental frequencies of 450/-450/450/-450 laminated composite
beams (MAT II).
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Fig. 3. Non-dimensional fundamental frequencies of 300/-500/500/-300 laminated composite
beams (MAT II).

Table 7. Non-dimensional fundamental frequencies of (θ/ − θ)s laminated composite beams
(MAT II).

BCs Theory Fiber angle (θ )

00 150 300 450 600 750 900

S-S HSBT [5] 2.649 1.579 0.999 0.796 0.731 0.725 0.729

HSBT [24] 2.651 1.896 1.141 0.804 0.736 0.725 0.729

HSBT [3] 2.656 2.511 2.103 1.537 1.012 0.761 0.732

Quasi-3D [5] 2.650 1.580 0.999 0.796 0.731 0.725 0.730

Present 2.650 1.580 0.999 0.796 0.731 0.725 0.730

C-F HSBT [5] 0.980 0.570 0.358 0.285 0.261 0.259 0.261

HSBT [24] 0.981 0.676 0.414 0.288 0.262 0.258 0.260

HSBT [3] 0.983 0.926 0.768 0.555 0.363 0.272 0.262

Quasi-3D [5] 0.980 0.571 0.358 0.285 0.262 0.260 0.262

Present 0.980 0.571 0.358 0.285 0.262 0.260 0.262

C-C HSBT [5] 4.897 3.288 2.180 1.759 1.620 1.605 1.615

HSBT [24] 4.973 4.294 2.195 1.929 1.669 1.612 1.619

HSBT [3] 4.912 4.717 4.131 3.197 2.202 1.683 1.621

Quasi-3D [5] 4.901 3.290 2.183 1.762 1.626 1.614 1.625

Present 4.898 3.295 2.186 1.765 1.630 1.619 1.631
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the fact that Poisson’s effect is incorporated in the constitutive equations by assuming
σy = σxy = σyz = 0. It means that the strains

(
εy, γyz, γxy

)
are nonzero and this causes

the beams more flexible. This indicated that the Poisson’s effect is quite significant to
composite beams with arbitrary lay-ups, and neglecting this effect is only suitable for
cross-ply composite beams.

4 Conclusions

The authors proposed a new two-unknown model for vibration analysis of laminated
composite beams. The axial and transverse displacements of the beam are expanded
in a hybrid form under polynomial, and trigonometric series. Lagrange’s equations are
used to derive characteristic equations of the beams. Numerical results for laminated
composite beamswith different boundary conditions are compared with previous studies
and investigate effects of length-to-depth ratio, material anisotropy, Poisson’s ratio and
fiber angles on the natural frequencies of laminated composite beams. The obtained
results show that the normal strain effects are significant for un-symmetric and thick
beams. The Poisson’s effect is also important for composite beams with arbitrary lay-
ups, and thus omitting this effects is only suitable for the cross-ply ones. The present
model is found to be appropriate for vibration analyses of laminated composite beams.
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10. Aydoğdu, M.: A new shear deformation theory for laminated composite plates. Compos.
Struct. 89, 94–101 (2009)



804 Q.-C. Le et al.

11. El Meiche, N., et al.: A new hyperbolic shear deformation theory for buckling and vibration
of functionally graded sandwich plate. Int. J. Mech. Sci. 53(4), 237–247 (2011)

12. Akavci, S., Tanrikulu, A.: Buckling and free vibration analyses of laminated composite plates
by using two new hyperbolic shear-deformation theories. Mech. Compos. Mater. 44(2), 145
(2008)

13. Mantari, J., Oktem, A., Soares, C.G.: A new higher order shear deformation theory for
sandwich and composite laminated plates. Compos. B Eng. 43(3), 1489–1499 (2012)

14. Mohammadian, M.: Nonlinear free vibration of damped and undamped bi-directional func-
tionally graded beams using a cubic-quintic nonlinear model. Compos. Struct. 255, 112866
(2021). https://doi.org/10.1016/j.compstruct.2020.112866

15. Aydogdu, M.: Vibration analysis of cross-ply laminated beams with general boundary
conditions by Ritz method. Int. J. Mech. Sci. 47(11), 1740–1755 (2005)

16. Chandrashekhara, K., Krishnamurthy, K., Roy, S.: Free vibration of composite beams
including rotary inertia and shear deformation. Compos. Struct. 14(4), 269–279 (1990)

17. Khdeir, A., Reddy, J.: Free vibration of cross-ply laminated beams with arbitrary boundary
conditions. Int. J. Eng. Sci. 32(12), 1971–1980 (1994)

18. Vo, T.P., Thai, H.-T.: Vibration and buckling of composite beams using refined shear
deformation theory. Int. J. Mech. Sci. 62(1), 67–76 (2012)

19. Murthy, M., et al.: A refined higher order finite element for asymmetric composite beams.
Compos. Struct. 67(1), 27–35 (2005)

20. Mantari, J., Canales, F.: Free vibration and buckling of laminated beams via hybrid Ritz
solution for various penalized boundary conditions. Compos. Struct. 152, 306–315 (2016)

21. Matsunaga, H.: Vibration and buckling of multilayered composite beams according to higher
order deformation theories. J. Sound Vib. 246(1), 47–62 (2001)

22. Chen, W., Lv, C., Bian, Z.: Free vibration analysis of generally laminated beams via state-
space-based differential quadrature. Compos. Struct. 63(3–4), 417–425 (2004)

23. Chandrashekhara, K., Bangera, K.M.: Free vibration of composite beams using a refined shear
flexible beam element. Comput. Struct. 43(4), 719–727 (1992)

24. Aydogdu, M.: Free vibration analysis of angle-ply laminated beams with general boundary
conditions. J. Reinf. Plast. Compos. 25(15), 1571–1583 (2006)

https://doi.org/10.1016/j.compstruct.2020.112866

	Vibration Analysis of Laminated Composite Beams Using a Novel Two-Variable Model with Various Boundary Conditions
	1 Introduction
	2 Theoretical Formulation
	2.1 Kinematic, Strain and Stress Relations
	2.2 Variational Formulation
	2.3 Two-Directional Ritz Solution

	3 Numerical Results
	4 Conclusions
	References




