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Abstract. A lot of realistic systems are better described by piecewise-linear mod-
els than by continuous models, including systems with dry friction or impact as
well as some controlled systems. Such models are usually strongly nonlinear and
do not have general exact analytical solutions. This paper analyzes a harmonically
excited 1-DOF piecewise-linear vibratory system that has a damped domain and
an undamped domain. The purposes are to find some exact analytical solutions
of the system and find the connection between the analytical solutions and the
numerical ones. Though the system is linear and can be analytically analyzed
in each domain, no general closed-form solution for its motion has been found
because the switching times between the two domains are solutions of transcen-
dental equations. To solve the problem, a special method is proposed: the initial
conditions and the parameters are adjusted so that the homogeneous solution in the
damped domain is cancelled, and the excitation is subharmonic in the undamped
domain. As a result, the transcendental equations are simplified and exact analyti-
cal expressions for periodic motions are found for special cases of the parameters.
The obtained motions are single-penetration multi-periodic, which is a typical
behavior of the considered bilinear system as seen in the bifurcation diagram.
Thus, the proposed method may be used to investigate dynamic behaviors of more
complicated piecewise-linear systems.
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1 Introduction

Piecewise ordinary differential equations (ODEs) are found useful to model real systems
where non-smooth phenomena, e.g., dry friction and impact, may occur [1–3]. With the
development of controlmethods [4–6], the controllers can also produce non-smoothness.
The solutions of piecewiseODEs,which reflex the dynamics of themodelled systems, are
the topic of a lot of studies, and they do show abundant of phenomena including periodic
and chaotic vibrations [7–10]. Some solutions may coexist, leading to difficulties of
global dynamics analysis. For instance, examining the same piecewise-linear system
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with asymmetric piecewise stiffness and damping, two coexisting periodic solutions are
reported in [9] while it is shown later that there are more coexisting solutions including
a chaotic solution [10], and there is still no guarantee that all solutions have been found.
Furthermore, the non-smooth nature of the system may make common methods for
smooth system become less effective. Thus, specialized numerical algorithms [7–10]
and semi-analytical method [2] have been developed to study this type of systems.

Even in the case of piecewise-linear, i.e., the ODEs are linear in each domain, it is
well-known that there is usually no analytical solution if harmonic excitation presents
[2]. It is because the difficulties in determining the switching times between the domains
require solutions using numericalmethods. This approach is adopted by all thementioned
studies on the topic.

A curios question arises as to find piecewise-linear ODEs that have exact analytical
periodic solutions, and if they exist, the next question would be to find the connection
between the obtained results and the solutions of the non-analytical-solution cases. To
answer the former question, this paper presents an original method: simplifying the
equations for switching times by adjusting the system parameters.

This paper focuses on a harmonically excited 1-DOF system with a gap-activate
gap-deactivate (GAGD) linear viscous-elastic support and a GAGD spring. Firstly, the
model and its equations are presented. Secondly, analytical analysis is performed where
possible. Then, the parameters are adjusted to get special cases that have exact analytical
solutions. Lastly, numerical analysis is performed to investigate the global dynamics of
the system.

2 The Model Problem

The system depicted in Fig. 1 has two different domains of motion caused by the GAGD
supports [10]: the first is the damped domain in which the displacement of the body is
positive (Fig. 1a); the second is the undamped domain in which the displacement of the
body is negative, and no damping is active (Fig. 1b). The governing equations are{

mü + du̇ + k1u = F cos(�t) if u ≥ 0

mü + k2u = F cos(�t) if u < 0
(1)

The parameters m, d, k1, k2, and � are positive.

a) Movement in damped domain

Fcos(Ωt)
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b) Movement in undamped domain
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Fig. 1. A half-undamped 1-DOF piecewise-linear vibratory system.
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The dimensionless forms read{
ẍ + 2γ ẋ + ω2

1x = cos τ if x ≥ 0

ẍ + ω2
2x = cos τ if x < 0

(2)

in which τ = �t, x = m�2

F u, ω1 = 1
�

√
k1
m , ω2 = 1

�

√
k2
m , γ = d

2m�
, and the over dot

now denotes d
dτ for the sake of simplicity. Consider the initial conditions

{
x(τ0) = 0

ẋ(τ0) = v0 > 0
(3)

in which 0 ≤ τ 0 < 2π. The body initially moves in the damped domain and until a time
point τ 1 that {

x(τ1) = 0

ẋ(τ1) = v1 < 0
, (4)

the body moves into the undamped domain until a time point τ 2 that the displacement
reaches zero and the velocity is positive, and so on. One can write the body’s motion
from τ 0 and τ 2 as follows{

xI (τ ) = xIh(τ ) + xIp(τ ) τ0 ≤ τ ≤ τ1

xII (τ ) = xIIh(τ ) + xIIp(τ ) τ1 ≤ τ ≤ τ2
, (5)

Where the subscription I is for the damped domain and II for the undamped domain.

3 Analytical Analysis

3.1 Damped Domain

The particular solution is

xIp(τ ) = AI cos τ + BI sin τ (6)

with the coefficients

AI = ω2
1 − 1

(ω2
1 − 1)2 + 4γ 2

, BI = 2γ

(ω2
1 − 1)2 + 4γ 2

(7)

The homogeneous solution in the damped domain is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xIh(τ ) = e−γ (τ−τ0)
(
CI cos

(√
ω2
1 − γ 2(τ − τ0)

)
+ DI sin

(√
ω2
1 − γ 2(τ − τ0)

))
if γ < ω1

xIh(τ ) = CI e
−γ (τ−τ0) + DI (τ − τ0)e

−γ (τ−τ0) if γ = ω1

xIh(τ ) = CI e
−(γ+

√
γ 2−ω2

1)(τ−τ0) + DI e
−(γ−

√
γ 2−ω2

1)(τ−τ0) if γ > ω1

(8)



786 M.-T. Nguyen-Thai

The constants of integral CI and DI are obtained from the initial conditions (3): in
underdamped case⎧⎪⎪⎨

⎪⎪⎩
CI = −AI cos τ0 − BI sin τ0

DI = v0 + AI sin τ0 − BI cos τ0 − γ (AI cos τ0 + BI sin τ0)√
ω2
1 − γ 2

, (9)

in critical damped case{
CI = −AI cos τ0 − BI sin τ0

DI = v0 + AI sin τ0 − BI cos τ0 − γ (AI cos τ0 + BI sin τ0)
, (10)

and in overdamped case⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CI =
−v0 − AI sin τ0 + BI cos τ0 + (γ −

√
γ 2 − ω2

1)(AI cos τ0 + BI sin τ0)

2
√

γ 2 − ω2
1

DI =
v0 + AI sin τ0 − BI cos τ0 − (γ +

√
γ 2 − ω2

1)(AI cos τ0 + BI sin τ0)

2
√

γ 2 − ω2
1

. (11)

3.2 Undamped Domain

In the non-resonant case ω2 �= 1, the particular solution is

xIIp(τ ) = AII cos τ + BII sin τ (12)

with the coefficients.

AII = 1

ω2
2 − 1

, BII = 0 (13)

In the resonant case ω2 = 1, the particular solution is

xIIp(τ ) = AII τ cos τ + BII τ sin τ (14)

with the coefficients

AII = 0, BII = 1

2
(15)

The homogeneous solution in the undamped domain is

xIIh(τ ) = CII cos(ω2(τ − τ1)) + DII sin(ω2(τ − τ1)). (16)
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The constants of integral are⎧⎨
⎩
CII = −AII cos τ1 − BII sin τ1

DII = v1 + AII sin τ1 − BII cos τ1

ω2

if ω2 �= 1, (17)

⎧⎨
⎩
CII = −AII τ1 cos τ1 − BII τ1 sin τ1

DII = v1 + AIIτ1 sin τ1 − AII cos τ1 − BII τ1 cos τ1 − BII sin τ1

ω2

if ω2 = 1 (18)

Since the body is back to the first domain at τ 2, and generally at τ 2k for any non-
negative integer k, its motion in the time interval [τ 2k , τ 2k+2] can be obtained in a similar
way. The equations in this section, however, do not give the analytical solution for the
initial problem because the switching times τ i (i = 1, 2, …) is not known yet. Generally,
each of them is a solution of one of the transcendental equations

A cos x + B sin x + C cos(ωx) + D sin(ωx) = 0, (19)

Ax cos x + Bx sin x + C cos x + D sin x = 0, (20)

A cos x + B sin x + e−βx(C cos(ωx) + D sin(ωx)) = 0, (21)

A cos x + B sin x + e−βx(C + xD) = 0, (22)

A cos x + B sin x + Ce−αx + De−βx = 0, (23)

where A, B, C and D are real constants, and α, β and ω are positive constants.
Such transcendental equations do not have general closed-form solutions. Thus, the

switching times and the solutions of theODEs do not have general analytical expressions.

4 Special Cases with Analytical Periodic Solutions

On the one hand, the transcendental equations to solve for switching times depend on
five parameters: ω1, ω2, γ , τ 0 and v0. On the other hand, if{

τ2 − τ0 = 2nπ

v2 = v0
n = 1, 2, ... (24)

a period-n motion will be found. The critical idea is to make the transcendental equa-
tions simpler. In the damped domain, simplification can be done by eliminating the
homogeneous solution, which means

CI = DI = 0, (25)

The following initial conditions and terminal conditions must hold
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xI (τ0) = ω2
1 − 1

(ω2
1 − 1)2 + 4γ 2

cos τ0 + 2γ

(ω2
1 − 1)2 + 4γ 2

sin τ0 = 0

v0 = ẋI (τ0) = − ω2
1 − 1

(ω2
1 − 1)2 + 4γ 2

sin τ0 + 2γ

(ω2
1 − 1)2 + 4γ 2

cos τ0 > 0

xI (τ1) = ω2
1 − 1

(ω2
1 − 1)2 + 4γ 2

cos τ1 + 2γ

(ω2
1 − 1)2 + 4γ 2

sin τ1 = 0

v1 = ẋI (τ1) = − ω2
1 − 1

(ω2
1 − 1)2 + 4γ 2

sin τ1 + 2γ

(ω2
1 − 1)2 + 4γ 2

cos τ1 > 0

0 ≤ τ0 < 2π.

(26)

The solution for the first two lines of (26) are

τ0 = atan2(1 − ω2
1, 2γ ), v0 = 1√

(ω2
1 − 1)2 + 4γ 2

(27)

The motion of the body in the damped domain is harmonic, so the displacement
reaches zero after a half period; hence

τ0 = τ1 + π, v1 = −v0. (28)

The motion of the body in the undamped domain (non-resonant) is deduced from
Subsect. 3.2

xII (τ ) = 1

ω2
2 − 1

cos τ − 1

ω2
2 − 1

cos τ1 cos(ω2(τ − τ1)) +
−v0 + 1

ω2
2−1

sin τ1

ω2
sin(ω2(τ − τ1)). (29)

Equation (29) already satisfies initial conditions for the motion in the undamped
domain. It is desired to also satisfy the terminal conditions according to (24):{

xII (τ1 + (2n − 1)π) = 0

ẋII (τ1 + (2n − 1)π) = v0
n = 1, 2, ... (30)

It is easily proved that if

ω2 = 1

2n − 1
n = 2, 3, ... , (31)
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Equation (30) is satisfied. The case n = 1 is excluded since it leads to resonance and
invalidates (29).

The motion of the body in the time interval from τ 0 to τ 2 is then expected to be
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(τ ) = ω2
1 − 1

(ω2
1 − 1)2 + 4γ 2

cos τ + 2γ

(ω2
1 − 1)2 + 4γ 2

sin τ τ0 = atan2(1 − ω2
1, 2γ ) ≤ τ < τ0 + π

x(τ ) = − (2n − 1)2

4n(n − 1)
cos τ − (2n − 1)2

4n(n − 1)
cos τ0 cos

(
τ − τ0 − π

2n − 1

)

−
⎛
⎝ 2n − 1√

(ω2
1 − 1)2 + 4γ 2

− (2n − 1)3

4n(n − 1)
sin τ0

⎞
⎠ sin

(
τ − τ0 − π

2n − 1

)
τ0 + π ≤ τ ≤ τ0 + 2nπ

(32)

It should be noted that (32) only becomes a valid solution of the original system if

x(τ ) ≤ 0 τ0 + π ≤ τ < τ0 + 2nπ (33)

Inequality (33) is transcendental, so it is not easy to solve. However, its exact solution
is not necessary here.

To conclude, the following system⎧⎨
⎩
ẍ + 2γ ẋ + ω2

1x = cos τ if x ≥ 0

ẍ + 1

(2n − 1)2
x = cos τ n = 2, 3, ... if x < 0

(34)

has a period-n solution of the form (32) if (33) is satisfied.
A question arises, as to whether there exists a valid solution for any value of n. It has

not been strictly proved, but it can be illustrated by considering an even more specific
case of ω1 = 1 {

ẍ + 2γ ẋ + x = cos τ if x ≥ 0
ẍ + 1

(2n−1)2
x = cos τn = 2, 3, ... if x < 0.

(35)

In this case, (32) becomes
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x(τ ) = 1

2γ
sin τ 0 ≤ τ < π

x(τ ) = − (2n − 1)2

4n(n − 1)
cos τ − (2n − 1)2

4n(n − 1)
cos

(
τ − π

2n − 1

)
− 2n − 1

2γ
sin

(
τ − π

2n − 1

)
π ≤ τ ≤ 2nπ

(36)

In the second line of (36), only the last term can be varied by changing positive
parameter γ . This term is negative in the open interval (π, 2nπ) and gets smaller as γ

is reduced. In other words, one may probably reduce γ to a sufficiently small value so
that (33) is satisfied.

For illustration, the parameters are chosen as follows:

γ = 0.5, ω1 = 1, ω2 = 1/(2n − 1), (37)

where n is the control parameter that is not restricted to be integer.
Some periodic solutions obtained with the exact analytical expressions are shown in

Fig. 2.
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Fig. 2. Phase portraits and Poincaré points of periodic motions with analytical expressions.

5 Numerical Results and Discussion

Simulation where exact analytical expressions are not applicable is done by a specialized
method for piecewise-linear systems based on matrix exponential [10]. The bifurcation
diagram (Fig. 3) is obtained by integrating with initial conditions (x(0), ẋ(0)) = (0,1)
and ignoring the first 6000 periods. It bridges the gaps between the exact analytical
solutions. Chaos may occur between two consecutive integer values of n as the lower
order solution bifurcates while the higher order does not exist yet.

1 2 3 4 5 6 7

0

x(
2k
π)

, k
= 

60
01

,6
00

2,
…

,6
30

0

–5

–10

–15 n

Fig. 3. Bifurcation diagram obtained by integrating with initial conditions (x(0), ẋ(0)) = (0,1).

It should be noted that the bifurcation diagram obtained by integrating with fixed
initial conditions does not show coexisting solutions. Hence, interpolated cell-mapping
method is used to plot the basins of attraction [11]. Figure 4 shows that at n = 6.5, there
are two coexisting stable periodic motions with fractal basins of attraction. At n = 3, a
chaotic motion coexists with a stable periodic motion that has exact analytic expressions
(Fig. 5).

Though the exact analytical periodic solutions are only valid for very specific param-
eters and do not fully characterize the global dynamics, they describe a type of single-
penetration multi-periodic motion that is typical for the bilinear system as seen in the
bifurcation diagram. The exact analytical solutions can be used as a tool to validate
numerical methods.
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Fig. 4. Global dynamics at n = 6.5.

a) Basins of attraction
Red: Chaotic, White: Period-3
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b) Period-3 motion: phase portrait
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x
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c) Chaotic motion: phase portrait

Fig. 5. Global dynamics at n = 3.

6 Conclusions and Outlook

A 1-DOF piecewise-linear system that has a damped domain and an undamped domain
excited by a harmonic force is investigated. The analytical analysis has been performed
for each domain; however, the piecewise motion does not have a general closed-form
solution because the switching times between domains are solutions of transcendental
equations.

The exact analytical periodic motions are found for special cases of parameters:
the frequency of the homogenous solution of the undamped domain is a whole number
n (higher than one) multiple of the frequency of the excitation, and parameters in the
damped domain are suitable, e.g., natural frequency equal to excitation frequency and
low damping. Each of the motion has a period of n times the period of excitation but only
moves from undamped domain to damped domain one time during its period. Thus, the
obtained motions are single-penetration multi-periodic.

The exact analytical solutions can be used to partly predict the dynamics of the
system. It can also be used as an effective tool to validate numerical methods.

Future work will apply the presented method to investigate more complicated
systems, e.g., multi-DOF systems.
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