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Abstract. Redundant manipulators have some advantages in comparison to stan-
dard ones, namely higher flexibility, obstacle, and joint limits avoidance capability,
andmuchmore solutions of inverse kinematics. This paper presents a combination
of Jacobian-based and analytical method for finding solution of inverse kinemat-
ics of a 7-DOF manipulator. In this way, the first four joint variables are deter-
mined with Jacobian-based method, and the last three ones based on an analytical
method. Some numerical simulations are carried out to verify the effectiveness of
the proposed approach.
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1 Introduction

In the past twenty years, collaborative robots, commonly known as cobots, are experi-
encing rapidmarket growth in the robotic industry. This type of robot is able to physically
interact with humans in a shared workspace thanks to sensors, intelligent controls, and
other design features such as lightweight materials and rounded edges.

To operate dexterously like a human arm, the cobot is designed with 7 degrees of
freedom (DOF) with a structure of anthropomorphic arm. As a redundant manipulator,
inverse kinematics of a 7-DOF arm has attracted many researchers. The solution of
this arm can be found in a closed form or a numerical one. An analytical solution can
be found in case of a non-offset arm [1, 2]. In this case, the shoulder and wrist are
considered as spherical joints. Hence, the elbow joint can freely rotate around an axis
passing through two spherical joints. Based on this feature, the analytical solution can be
found, depending on a freely chosen parameter – free internal motion of an elbow joint
around an axis through a shoulder and a wrist that is called swivel angle. In [2], authors
chose the swivel angle of the robot arm so that robot configuration is as same as a human
arm as possible. One drawback of this approach is the way to deal with singularity and
joint limit avoidance.

Another approach for inverse kinematics of a redundant robot is based on Jacobian
matrix, in which the inverse problem is solved at velocity, acceleration, or jerk level. A
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set of linear equations is dealed by pseudo-inverse of Jacobianmatrix. The joint variables
are then obtained by integrating joint velocities, acceleration, or jerks. In this approach,
the advantages of redundancy such as trajectory optimization, obstacle, joint mechanical
limits, and singularity avoidance are easily exploited by using null space of Jacobian
matrix [3, 5]. This method is simple, however, for 7-DOF anthropomorphic arm the
Jacobian matrix is rather large in size.

In this paper, themethodbased on Jacobianmatrix and the analyticalmethod are com-
bined to find the solution of inverse kinematics of a 7-DOFanthropomorphicmanipulator
without offsets. In this way, the first four joint variables are determined with a Jacobian-
based method, and the last three ones based on an analytical method. Some numerical
simulations are carried out to verify the effectiveness of the proposed approach.

2 Kinematic Analysis

2.1 Direct Kinematics

Let’s consider a 7-DOF manipulator as shown in Fig. 1. The direct kinematics can be
solved systematicly by using the Denavit-Hartenberg (DH) method. The link coordinate
systems established with the DH convention and the corresponding DH parameters table
are shown in Fig. 1 and Table 1, respectively. In which qi, i = 1, 2, ..., 7 represents the
joint variables.
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Fig. 1. 7-DOF manipulator and link-frames based on DH convention.
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Table 1. DH parameters

Link i θi(rad) di(m) ai(m) αi(rad)

1 q1 d1 = 0.28 0 π/2

2 q2 d2 = 0 0 π/2

3 q3 d3 = 0.33 0 −π/2

4 q4 d4 = 0 0 π/2

5 q5 d5 = 0.32 0 −π/2

6 q6 d6 = 0 0 π/2

7 q7 d7 = 0.10 0 0

The relative homogeneous transformation matrices Ai−1
i (qi) are calculated by

substituting the DH parameters in Table 1 into the matrix equation for each joint:

Ai−1
i (θi) =

⎡
⎢⎢⎣

cos θi − sin θi cosαi sin θi sin αi ai cos θi

sin θi cos θi cosαi − cos θi sin αi ai sin θi

0 sin αi cosαi di
0 0 0 1

⎤
⎥⎥⎦. (1)

The position and orientation of the kth link are given by:

T0
k(q) = A0

1(q1)A
1
2(q2) . . .Ak−1

k (qk) =
[
R0
k (q) r(0)

Ok (q)

0 1

]
, k = 1, 2, ..., 7 (2)

Some results of direct kinematic are given as follow:

r(0)
O1(q) = r(0)

O2(q) =
⎡
⎣

0
0
d1

⎤
⎦, r(0)

O3(q) = r(0)
O4(q) =

⎡
⎣
d3 sin q2 cos q1
d3 sin q2 sin q1
d1 − d3 cos q2

⎤
⎦ (3)

r(0)
O5(q) = r(0)

O6(q) =
⎡
⎣
d3cq1sq2 + d5[(cq1cq2cq3 + sq1sq3)sq4 + cq1sq2cq4]
d3sq1sq2 + d5[(sq1cq2cq3 − cq1sq3)sq4 + sq1sq2cq4]

d1 − d3cq2 + d5(sq2cq3sq4 − cq2cq4)

⎤
⎦ (4)

Remarks: We can see that the position ofO3 depends only on q1 and q2; the position
of O5 depends only on q1...q4 and not on q5.
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2.2 Singularity Analysis

For any robotic arm using rotational joints, there are always singular configurations in
workspace. The kinematic singularities are independent of the coordinate frame. The sin-
gularity can be found based on calculating the determinant of Jacobian matrix det(J(q))

= 0 or det(J(q)JT (q)) = 0 [5, 8]. However, with the structure of the manipulator as
shown in Fig. 1, geometrically, we can see the singularities in some cases as shown in
Fig. 2:

– When the origin O5,6 is on the z0 axis, the joint variable q1 can have any value. This
is called a shoulder singularity.

– When link 3 and 4 are stretched (q4 = 0) out or folded (q4 = π ), axes z2 and z4 are
collinear. The rotation of link 3 has no effect on the motion of the end-effector. This
is called an elbow singularity.

– Similarly, when links 5 and 6 are stretched (q6 = 0) out or folded (q6 = π ), axes
z4 and z6 are collinear. The rotation of link 6 has no effect on the motion of the
end-effector. This is called a wrist singularity.

– The other cases of singularities are the combination of the mentioned singularities.

z0

z1

z3
d3

q1

q2

q3

q5

O1,2

O5
d5

q3

q5

z3

z4

z5

q5

q6

q7

q4

O7

a) Shoulder singularity b) Elbow singularity c) Wrist singularity

Fig. 2. Singularities of 7-DOF anthropomorphic manipulator

2.3 Inverse Kinematics

Given a position and orientation of the end-effector r(0)
7 &R0

7, we need to find the joint
variables qk , k = 1, ..., 7.



Inverse Kinematics Analysis of 7-DOF Collaborative Robot 221

Because three axes z4, z5, z6 are concurrent at one point (O5 = O6), the Pieper’s
method (position and orientation decoupling) can be applied here for inverse kinematics
[4]. The position of the wrist is determined from a given position and an orientation of
the end-effector as:

r(0)
5 = r(0)

6 = r(0)
7 − d7R0

7k
(7)
7 = [

x5 y5 z6
]T

, k(7)
7 = [

0 0 1
]T

(5)

Analytical Solutions
Considering the triangle O2O3O5, we can find joint angle q4:

d2
3 − 2d3d5 cosβ + d2

5 = l22−5

⇒ cosβ = (d2
3 + d2

5 − l22−5)/(2d3d5), sin β =
√
1 − cos2 β

⇒ q4 = ±(π − β) = ±(π − atan2(sin β, cosβ)) (6)

where l22−5 = ‖r(0)
5 − r(0)

2 ‖ = (r(0)
5 − r(0)

2 )T (r(0)
5 − r(0)

2 ). In formula (6), we can take
a positive sign or a negative sign depending on the upper or the lower configuration.

The angle α = � (O5O2O3) is determined as:

cosα = l22−5 + d2
3 − d2

5

2d3l2−5
, ⇒ α = arccos

d2
3 + l22−5 − d2

5

2d3l2−5

From the structure of the manipulator, we can see that if the end-effector is fixed,
point O3,4 can move a along a circle with the radius of h and center C on the axis through
O2 and O5 (see Fig. 1).

Let R = rot�n(θ) be a rotation matrix about axis �n an angle θ :

R = E + sin θ ñ + (1 − cos θ)ññ.

Let Cn1n2n3 be the coordinate system as shown in Fig. 1, �n2 along the line O2O5,
�n1⊥�z0, �n1 = �n2 × �z0/‖�n2 × �z0‖ and �n3 = �n1 × �n2.

If we know center C and radius h, then the position of point O3,4 is determined as:

r(0)
3,4 = r(0)

C + R(�n, θ)hn1. (7)

Considering the right triangle O2CO3, we have:

O2C = d3 cosα, h = d3 sin α
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Unit vector of O2O5 is calculated as:

n2 = (r5 − r2)/l2−5

By freely choosing θ , we can find position of point O3 as follows

r3 = r2 + O2Cn2 + R(n2, θ)hn1 = [
x3 y3 z3

]T
(8)

Comparing (8) and (3) one yields

d3 sin q2 cos q1 = x3, d3 sin q2 sin q1 = y3, d1 − d3 cos q2 = z3 (9)

From (9), joint variable q2 can be found as:

d1 − d3 cos q2 = z3 ⇒ cos q2 = (d1 − z3)/d3, sin q2 = ±
√
1 − cos2 q2

⇒ q2 = atan2(sin q2, cos q2) (10)

Formula (10) gives out two solutions of q2 depending on sign of sin(q2). This sign
will also decide joint variable q1:

d3 sin q2 cos q1 = x3 ⇒ cos q1 = x3/(d3 sin q2)

d3 sin q2 sin q1 = y3 ⇒ sin q1 = y3/(d3 sin q2)

q1 = atan2(y3/ sin q2, x3/ sin q2) (11)

We can see that if sin q2 = 0 (it means q2 = 0 or q2 = ±π and axis z2 coincides
with axis z0), then we can not determine q1, even though q1 + q3 is known.

If �n2‖�z0 (it means O5,6 lies on axis z0), vector �n1 is unidentified. Therefore, we can
not find q1 from (11). That is a singular configuration of this robot arm.

Joint variable q3 is determined by comparing r(0)
5 − r(0)

4 = r(0)
5 − r(0)

3 . Knowing

positions r(0)
5 &r(0)

3 of O5 and O3, we can find q3 as follows:

r(0)
O5(q) − r(0)

O4(q) =
⎡
⎣
d5[(cq1cq2cq3 + sq1sq3)sq4 + cq1sq2cq4]
d5[(sq1cq2cq3 − cq1sq3)sq4 + sq1sq2cq4]

d5(sq2cq3sq4 − cq2cq4)

⎤
⎦ =

⎡
⎣
x5 − x3
y5 − y3
z5 − z3

⎤
⎦

(12)

Solving for sin q3 and cos q3, we get:

sin q3 = −cq1cq2z5 + cq1cq2z3 − d5cq1cq4 + x5sq2 − x3sq2
d5sq1sq2sq4

cos q3 = d5cq2cq4 + z5 − z3
d5sq2sq4

⇒ q3 = atan2(sq3, cq3) (13)
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So, the first four joint variables q1, ..., q4 are determined by (11), (10), (13) and
(6), respectively. Now, we determine three last joint variables: q5, q6, q7. The relative
orientation of end-effector respect to link 4 is determined by:

R0
7 = R0

4(q1, q2, q3, q4)R
4
7 ⇒ R4

7 = R0T
4 (q1, q2, q3, q4)R0

7

R4
5(q5)R

5
6(q6)R

6
7(q7) = R4

7

From direct kinematics we have:

R4
7 = R4

5(q5)R
5
6(q6)R

6
7(q7)

=
⎡
⎣
cq5cq6cq7 − sq5sq7 −cq5cq6sq7 − sq5cq7 cq5sq6
sq5cq6cq7 + cq5sq7 −sq5cq6sq7 + cq5cq7 sq5sq6

−sq6cq7 sq6sq7 cq6

⎤
⎦ =

⎡
⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦

Solving these equations, one gets q5, q6, q7.

Remarks: free parameter θ can be chosen based on additional criteria such as singularity,
obstacle, and joint limit avoidance.

Solution Based on Jacobian Matrix
Let ξT = [v(0)

E ,ω
(0)
7 ]T be the twist of the end-effector, we have:

ξ = J(q)q̇ ⇒ q̇ = J†(q)ξ, J†(q) = JT (q)
[
J(q)JT (q)

]−1
(14)

where J(q) and J†(q) are Jacobian matrix and its pseudo-inverse [6, 7].
In this paper, Eq. (14) is not used, since Jacobian of a 7-DOF anthropomorphic

manipulator is quite bulky. Based on the arm structure, we can see that the redundancy
is effective only on the position of O5, when the end-effector is fixed. Therefore, we
exploit the following relation instead of (14):

r5 = r5(qp) ⇒ ṙ5 = J5(qp)q̇p (15)

where qp = [q1, ..., q4]T .
Applying pseudo-inverse, the solution of (15) is given as:

q̇p = J†5ṙ5, J†5
(
qp

) = JT5
[
J5JT5

]−1
(16)

To avoid singularities, pseudo-inverse of J5(qp) is modified by damped least square
inverse as:

J†5
(
qp

) = JT5
[
J5JT5 + kIs

]−1
, k > 0 (17)

q̇p = JT5
(
J5JT5 + kI

)−1
(ṙ5 + Ke) +

(
I − J†5J5

)
z0 (18)
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whereK > 0 is a gain matrix and e = r5(t)−rd5 (t), the error between actual and desired
position of O5, z0 ∈ R

4 is an arbitrary vector. Vector z0 is normally chosen to exploit
the redundancy such as singular, joint limits or obstacle avoidance.

Parameter k depending on w(q) =
√
det(J(qp)JT (qp)), a manipulability measure,

is chosen as following:

k =
{ 1

2ε0(1 + cos(πw/w0)), w < w0

0, w ≥ w0
(19)

where ε0 and w0 are small positive numbers.
The block diagram for inverse kinematics based on a combination of Jacobianmatrix

and analytical solution is shown in Fig. 3.
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Fig. 3. Blockdiagram for inverse kinematics

3 Numerical Experiments

In order to confirm the validity of the algorithms proposed in this paper, some numerical
simulations are carried. Two trajectories including rectilinear and curvilinear one from
A to B are implemented by MATLAB:

rA = [0.5(d3 + d5 + d7), −0.4(d3 + d5), d1 + 0.0d3]T

rB = [0.5(d3 + d5 + d7), 0.4(d3 + d5), d1 + 0.6d3]T

The motion law along a trajectory is defined as following:

s(t) = si + sf − si
π

(
π t

tf
− 1

2
sin

2π t

tf

)
, 0 ≤ t ≤ tf (20)

Along a trajectory, the corresponding orientation is determined by the ZYZ Euler
angles with:

φi = [π
3

,
π

3
,
π

3
]T , φf = φi + �φ, �φ = [5π

18
,
10π

18
,
20π

18
]T
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Fig. 4. Tracking of the end-effector along a rectilinear trajectory

The simulation results of the two cases are shown in Fig. 4 and Fig. 5, respectively.
It can be seen from the simulation results that the pose of the manipulator changes
uniformly, and the actual trajectory is consistentwith the given trajectory, and the position
errors of x, y and z are all within 2.5 × 10–6 m. All the joint variables change smoothly,
and no sudden change appears. These results prove that the proposed inverse kinematics
method can be applied to the control of continuous trajectory of the 7-DOFmanipulator.
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Fig. 5. Tracking of the end-effector along a curvilinear trajectory

To verify the ability to avoid singularities, a trajectory is chosen such that the origin
O5 pass through axis z0. The simulation results in this case is shown in Fig. 6. It can
be seen that x5 = y5 = 0 at time t = 1.5 s, but time histories of all joint variables are
smooth, no sudden change of θ1 occurs at this singularity.
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4 Conclusion

This paper combined successfully Jacobian-based and analytical method for an inverse
kinematics of a redundant anthropomorphic manipulator. With the wrist equivalent to
a spherical joint, we can decouple the position and orientation of an end-effector. The
Jacobian-based method is applied for inverse kinematics of the position, that is a redun-
dant case. In the proposed approach, the bulkiness of Jacobian matrix J7 is replaced
by a simpler one J5. Therefore, the computational complexity is reduced. Additionally,
the advantages of the Jacobian method such as singularity avoidance is retained. The
numerical simulations verified the feasibility of the proposed approach.
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