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Abstract. Pollen in honey reflects its botanical origin and melissopa-
lynology is used to identify origin, type and quantities of pollen grains
of the botanical species visited by bees. Automatic pollen counting and
classification can alleviate the problems of manual categorisation such as
subjectivity and time constraints. Despite the efforts made during the
last decades, the manual classification process is still predominant. One of
the reasons for that is the small number of types usually used in previous
studies. In this paper, we present a large study to automatically identify
pollen grains using nine state-of-the-art CNN techniques applied to the
recently published POLEN73S image dataset. We observe that existing
published approaches used original images without study the possible
biased recognition due to pollen’s background colour or using prepro-
cessing techniques. Our proposal manages to classify up to 97.4% of the
samples from the dataset with 73 different types of pollen. This result,
which surpasses previous attempts in number and difficulty of pollen
types under consideration, is an important step towards fully automatic
pollen recognition, even with a large number of pollen grain types.

Keywords: Pollen recognition · Convolutional neural network · Deep
learning · Image segmentation

1 Introduction

Food fraud has devastating consequences, particularly in the field of honey pro-
duction, which the U.S. Pharmacopeia Fraud Database1 has classified as the
third largest area of adulteration, only behind milk and olive oil. Our aim is to
find solutions to help solving this problem and prevent its recurrence. The deter-
mination of the botanical origin can be used to label honey and the knowledge
of the geographic origin is a factor that influences considerably the commercial
value of the product and can be used for quality control and to avoid fraud [6].

Although demanding, pollen grain identification and certification are crucial
tasks, accounting for a variety of questions like pollination or palaeobotany, but

1 https://decernis.com/solutions/food-fraud-database/.
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also for other fields of research, including crime scene investigation [13], aller-
gology studies [7] as well as the botanical and geographical studies concerning
origins of honey to prevent honey labelling fraud [15]. However, most of the
pollen classification is a time consuming, laborious and a highly skilled work,
visually done by human operators using microscopes, trying to identify differ-
ences and similarities between pollen grains. These differences are, frequently,
imperceptible among pollen grains and may lead to identification errors.

Despite the efforts to develop approaches that allow the automatic iden-
tification of pollen grains [11,22], the discrimination of features performed by
qualified experts is still predominant [4]. Many industries, including medical,
pharmaceutical and honey marketing, depend on the accuracy of this manual
classification process, which is reported to be around 67% [19]. A notorious
paper [22] from 1996 published a brief summary of the state of the art until then
and, more importantly, the demands and needs of palynology to elevate the field
to a higher level, thus making it a more powerful and useful tool.

Pattern recognition from images has a long and successful history. In recent
years, deep learning, and in particular Convolutional Neural Networks (CNNs),
has become the dominant machine learning approach in the computer vision
field, specifically, in image classification and recognition tasks. Since the number
of annotated pollen images in the publicly available datasets is too small to train
a CNN from scratch, transfer learning can be employed. In this paper we pro-
pose an automatic pollen recognition approach divided into three steps: initially,
the regions which contain pollen are segmented from the background; then, the
colour is preprocessed; finally, the pollen is recognized using deep learning.

Most object recognition algorithms focus on recognizing the visual patterns
in the foreground region of the images. Some studies indicate that convolutional
neural networks (CNN) are biased towards textures [3], whereas another set of
studies suggests shape bias for a classification task [2]. However, little atten-
tion has been given to analyze how the recognition process is influenced by the
background information in the training process.

Considering that there are certain similarities between the layers of a trained
artificial network and the recognition task in the human visual cortex, in this
study, we hypothesize that if the collected images of a pollen have a unique
background colour, different from all the other pollens, it may biases the recog-
nition task, since the recognition could be based only in the background colour.
In order to study such influence we trained the CNN with several datasets:
one composed with original images, another composed with segmented images
(where the background colour was eliminated), and with preprocessed images
with histogram equalization and contrast limit adaptive histogram equalization
(CLAHE) techniques.

The acquisition of images usually has some different sources resulting in
images with different background, as shown in Fig. 1 from the POLEN73S2

dataset [1] used in this study. Deep learning based pollen recognition meth-
ods focus on learning visual features to distinguish different pollen grains. We

2 https://doi.org/10.6084/m9.figshare.12536573.v1.

https://doi.org/10.6084/m9.figshare.12536573.v1
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observed that existing published approaches used the entire image with the orig-
inal background, in the training process. Background and foreground pixels in
each image contribute with the same influence into the learning algorithms. As
each pollen type has a different background from other types, when those trained
networks are used to classify the pollens they may be biased by capture relevance
from pollen’s background which may result in biased recognition.

Fig. 1. Pollen dataset samples acquired with different background colours.

In this paper, we investigate the background and colour preprocessing influ-
ence by training nine state-of-the-art deep learning convolutional neural net-
works for pollen recognition. We used a recently published POLEN73S image
dataset that includes more than three times as many pollen types and images as
the POLEN23E dataset used in recent studies. Our approach manages to classify
up to 97.4% of the samples from the dataset with 73 different types of pollen.

The remainder of this paper is organized as follows: Previous related works
are presented and reviewed in Sect. 2. In Sect. 3, we describe the used materials
and the proposed method. Section 4 presents the results and the discussion of
the findings. Finally, some conclusions are drawn in Sect. 5.

2 Related Works

Automatic and semi-automatic systems for pollen recognition based on image
features, in particular neural networks and support vector machines, have been
proposed for a long time [9,11,17,21]. In general terms, those approaches extract
some feature characteristics to identify each pollen type.

Although the classification remains based on a combination of image features,
the deep learning CNN approach builds a model determining and extracting
the features itself, in alternative of being predefined by human experts. Several



384 F. C. Monteiro et al.

CNN learning techniques have been developed for classifying pollen grain images
[1,8,18,19]. In [8], Daood et al. present an approach that learns from the image
features and defines the model classifier from a deep learning neural network.
This method achieved a 94% classification rate on a dataset of 30 pollen types.
Sevillano and Aznarte in [18] and [19] proposed a pollen classification method
that applied transfer learning on the POLEN23E dataset and to a 46 different
pollen types dataset, achieving accuracies of over 95% and 98%, respectively. In
[1], Astolfi et al. presented the POLEN73S dataset and made an extensive study
with several CNNs, achieving an accuracy of 95.8%. Despite the importance of
their study, we identify two drawbacks in their approach, that influenced the
performance: they used different number of samples for each pollen type, and
used, for each pollen, an image background that is different from the image
background of other pollen types.

3 Experimental Setup

3.1 Pollen Dataset

The automation of pollen grain recognition depends on large image datasets with
many samples categorized by palynologists. The results obtained depend on the
number of pollen types and the number of samples used. Few samples may result
in poor learning models, that are not sufficient to train conveniently the CNN;
on the other hand, a small number of pollen types simplifies the identification
process making it impractical to be used for recognizing large numbers of pollens
usually found in a honey sample.

While a number of earlier datasets have been used for pollen grain classifi-
cation, such as the POLEN23E3 dataset [9] or the Pollen Grain Classification
Challenge dataset4, which contain 805 (23 pollinic types) and 11.279 (4 pollinic
types) pollen images, respectively, in this paper we use POLLEN73S, which is
one of the largest publicly available datasets in terms of pollen types number.

POLLEN73S is an annotated public image dataset, for the Brazilian Savan-
nah pollen types. According to its description in [1] the dataset includes pollen
grain images taken with a digital microscope at different angles and manually
classified in 73 pollen types, containing 35 sample images for each pollen type,
except gomphrena sp, trema micrantha and zea mays, with 10, 34 and 29 sam-
ples, respectively. From the results presented in [1], we observed that these small
number of samples biased the results. Since CNNs were trained with a smaller
number of samples for those types of pollens, this resulted in the worst classifica-
tion scores relative to the other pollens. To overcome this problem, in our study,
several images were generated through rotating and scaling the original images
of these pollen types, ensuring the same number of samples for each pollen type,
which gives a total of 2555 pollen images. Although the images in the dataset

3 https://academictorrents.com/details/ee51ec7708b35b023caba4230c871ae1fa25
4ab3.

4 https://iplab.dmi.unict.it/pollenclassificationchallenge/.

https://academictorrents.com/details/ee51ec7708b35b023caba4230c871ae1fa254ab3
https://academictorrents.com/details/ee51ec7708b35b023caba4230c871ae1fa254ab3
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have different width and height, they were resized accordingly with the image
size of each CNN architecture input.

More datasets were constructed by removing the pollen’s background colour
(see Fig. 2). Since the images background has medium contrast with the pollen
grains, the segmentation process uses just automatic thresholding and morpho-
logical operations. We also applied histogram equalization and contrast limit
adaptive histogram equalization (CLAHE) to those segmented images. These
new datasets allow the independence of training and testing processes from the
background colour among the pollen types.

Fig. 2. First column: original images; second column: segmented images with back-
ground colour removed; third column: segmented equalized images; fourth column:
segmented CLAHE images.

3.2 Convolutional Neural Networks Architectures

CNN is a type of deep learning model for processing images that is inspired by
the organization of the human visual cortex and is designed to automatically
create and learn feature hierarchies through back-propagation by using multiple
layer blocks, such as convolution layers, pooling layers, and fully connected layers
from low to high level patterns [2]. This technology is especially suited for image
processing, as it makes use of hidden layers to convolve the features with the
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input data. The automatic extraction of the most discriminant features from a
set of training images, suppressing the need for preliminary feature extraction,
became the main strength of CNN approaches.

In this section, we present an overview of the main characteristics of the
CNNs used in this study for the recognition of pollen grains types. We choose
nine popular CNN architectures due to their performance on previous classifica-
tion tasks. Table 1 contains a list (chronological sorted) of state-of-the-art CNN
architectures, along with a high-level description of how the building blocks can
be combined and how the information moves throughout the architecture.

3.3 Transfer Learning

Constraints of practical nature, such as the limited size of training data, degrade
the performance of CNNs trained from scratch [18]. Since there is so much work
that has already been done on image recognition and classification [10,12,20], in
this study we used transfer learning to solve our problem. With transfer learning,
instead of starting the learning process from scratch, with a large number of
samples, we can use previous patterns that have been learned when solving a
similar classification problem.

Transfer learning is a technique whereby a CNN model is first trained on
a large image dataset with a similar goal to the problem that is being solved.
Several layers from the trained model, usually the lower layers, are then used in
a new CNN, trained with sampled images from the current task. This way, the
learned features in re-used layers are the starting points for the training process
and adapted to classify new types of objects. Transfer learning has the benefit of
reducing the training time for a CNN model and can overcome the generalization
error due to the small number of images used in the training process when using
a network from scratch.

The previous obtained weights, in each layer, may be used as the starting
values for the next layers and adapted in response to the new problem. This
usage treats transfer learning as a type of weight initialization scheme. This may
be useful when the first related problem has a lot more labelled data than the
problem of interest and the similarity in the structure of the problem may be
useful in both contexts.

3.4 Training Process

In the training process, the CNNs use the fine-tuning strategy, as well as the
stochastic gradient descent with momentum optimizer (SGDM) at their default
values, dropout rate set at 0.5 and early-stopping to prevent over-fitting, and
the learning rate at 0.0001. SGDM is used to accelerate gradients vectors in
the correct directions, as we do not need to check all the training examples
to have knowledge of the direction of decreasing slope, thus leading to faster
converging. Additionally, to consume less memory and train the CNNs faster,
we used the CNNs batch size at 12 to update the network weights more often,
and trained them in 30 epochs. All images go through a heavy data augmentation
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Table 1. Chronological list and descriptions of CNN architectures used in this paper.

VGG 16/19 [20] Introduced the idea of using smaller filter kernels allowing
for deeper networks, and training these networks using pre-
training outputs of superficial layers. They have five convolu-
tional blocks where the first two have convolution layers and
one max-pooling layer in each block. The remaining three
blocks have three fully-connected layers equipped with the
rectification non-linearity (ReLU) and the final softmax layer

ResNet 50/101 [10] Shares some design similarities with the VGG architectures.
The batch normalization is used after each convolution layer
and before activation. These architectures introduce the
residual block that aims to solve the degradation problem
observed during network training. In the residual block, the
identity mapping is performed, creating the input for the next
non-linear layer, from the output of the previous layer

Inception-V3 [24] This network has three inception modules where the resulting
output of each module is the concatenation of the outputs
of three convolutional filters with different sizes. The goal
of these modules is to capture different visual patterns of
different sizes and approximate the optimal sparse structure.
Finally, before the final softmax layer, an auxiliary classifier
acts as a regularization layer

Inception-ResNet [23] Uses the combination of residual connections and the Incep-
tion architecture. In Inception networks the gradient is back-
propagated to earlier layers, and repeated multiplication may
make the gradient indefinitely small, so they replaced filter
concatenation stage with residual connections as in ResNet

Xception [5] The architecture is composed of three blocks, in a sequence,
where convolution, batch normalization, ReLU, and max
pooling operations are made. Besides, the residual connec-
tions between layers are made as in Resnet architecture

DenseNet201 [12] Is based on the ideas of ResNet, but built from dense blocks
and pooling operations, where each dense block is an iterative
concatenation from all previous layers. In the main blocks,
the layers are densely connected to each other. Massive reuse
of residual information allows for deep supervision as each
layer receives more information from the previous layer and
therefore the loss function will react accordingly, which makes
it a more powerful network

DarkNet53 [16] It has 53 layers deep and acts as a backbone for the YOLOv3
object detection approach. This network uses successive con-
volutional layers with some shortcut connections (introduced
by ResNet to help the activations propagate through deeper
layers without gradient vanishing) to improve the learning
ability. Batch Normalization is used to stabilize training,
speed up convergence, and regularize the model batch
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which includes horizontal and vertical flipping, 360o random rotation, rescaling
factor between 70% and 130%, and horizontal and vertical translations between
−20 and +20 pixels. The CNNs were trained using the Matconvnet package for
Matlab R© on a node of the CeDRI cluster with two NVIDIA RTX 2080 Ti GPUs.

As in [1], we used 5-Set Cross-Validation, where in each set the images were
split on two subsets, 70% (1825 images) for training and 30% (730 images) for
testing, allowing the CNN networks to be independently trained and tested on
different sets. Since each testing set is build with images not seen by the training
model, this allows us to anticipate the CNN behaviour against new images. The
four datasets (original, segmented, segmented with equalization and segmented
with CLAHE) were trained and tested in an independent way.

4 Results and Discussion

Other works use different evaluation metrics like Precision, Recall, F1-score [1]
or correct classification rate (CCR) [18]. However, those metrics use the concept
of true negative and false negative. As in this type of experiments we only obtain
true positives or false positives, we evaluate the results with Accuracy (Precision
gives the same score), which relates true positive with all possible results.

The evaluation results for the nine CNN architectures considered, with dif-
ferent colour pre-processing techniques, are presented in Table 2. The numbers
exhibited in bold indicate the best Accuracy result obtained for each network.

Table 2. Classification results (in percentage) on the test set for the different CNNs
and preprocessing techniques considered.

CNN Original Segmented Seg. Equal. Seg. CLAHE

VGG16 94.2 94.3 88.7 92.6

VGG19 91.9 92.4 92.1 92.1

ResNet50 95.1 95.2 93.2 94.8

ResNet101 94.5 94.6 93.0 95.2

Inception V3 92.3 92.8 94.0 90.8

Inception-ResNet 92.3 89.9 92.4 90.3

Xception 89.7 87.8 87.5 88.1

DenseNet201 96.7 97.4 96.6 95.9

DarkNet53 95.8 95.9 95.1 94.9

Based on the results of Table 2, we can conclude that segmenting pollen
grains images improves the classification performance for the majority of CNN
models allowing the DenseNet201 to achieve an accuracy of 97.4%. Only the
Xception network produces better results for the original images. The Inception
architectures achieve the best performance with segmented histogram equalized
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images. The remain architectures achieved the highest performance when using
segmented images without any colour processing.

The DenseNet201 classified correctly all the images for 65 pollen grain types
out the 73 types of the dataset. For the other 9 types, it misclassified up to
two images, with a total of eleven false positives in the 730 tested images. The
lowest accuracy result of the DenseNet201 was achieved with the pollen types
dipteryx alata and myrcia guianensis. These pollen types have predominantly
rounded shapes and high texture, that are normally learned in the first CNN
layers. Since the transfer learning process changes only a set of the last CNN
layers it does not change those learned features during the training process with
our images, producing some misclassified results.

The accuracy rates achieved by the DenseNet201 network are relevant due to
the amount of pollen types in the POLEN73S dataset, since Sevillano et al. [19]
obtained a higher accuracy in a dataset containing only 46 pollen types. That
shows that DenseNet201 presented an important performance on POLEN73S.

The network trained and tested using the segmented images produced false
positives results that are misclassified as pollens that have high similarity with
the tested ones. Figure 3 shows some of those false positive examples.

Fig. 3. First row: segmented tested pollens (magnolia champaca, myrcia guianen-
sis, dipteryx alata, arachis sp); second row: misclassified pollens (ricinus communis,
schizolobium parahyba, zea mays, myracroduon urundeuva).

In networks trained and tested with segmented images the background colour
bias information was removed, and so the pollen is classified using only the grain
pollen information, correcting some of the false positives of the network trained
with original images, where the background colour was used as a feature in the
classification process.

The high values for the evaluation metric in all CNNs show that the number
of correctly identified pollens is high when compared to the number of tested
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Table 3. Comparison with previous attempts at pollen classification of more than 20
pollen types using a CNN classifier, with number of types and the highest reported
accuracy.

Authors #Types Accuracy

Sevillano et al. [18] 23 97.2

Menad et al. [14] 23 95.0

Daood et al. [8] 30 94.0

Sevillano et al. [19] 46 97.8

Astolfi et al. [1] 73 95.8

Our approach 73 97.4

images. We believe that an accuracy over 97% is enough to build an automatic
classification system of pollen grains, since the visual classification performed by
human operators is a hard and time consuming task with a lower performance.

4.1 Comparison with Other Studies

We compared our results with other automatic approaches, from the current
literature, that used a CNN classifier. Previous deep learning approaches have
shown similar or higher accuracy rates to ours, but these studies were conducted
with a small number of pollen types. Table 3 provides a summary table of previ-
ous studies, including class sizes and accuracy/success rates against our result.
All the literature reviewed, except [1], used a significantly smaller image dataset,
in terms of pollen types, than the one used in this paper.

Although the work of Sevillano et al. [19], with forty six types of pollen,
achieved a slightly higher performance than our study, as the number of pollen
types is directly related to the classification performance of the CNNs, the results
must be evaluated taking into account this difference in the number of pollen
types between the work presented in [19] and ours.

In short, it can thus be concluded that training a network with the atten-
tion focused on the object itself by removing the background dissimilarities can
improve the performance of CNN model in pollen classification problem.

5 Conclusion

The usual method for pollen grains identification is a qualitative approach, based
on the discrimination of pollen grain characteristics by an human operator. Even
though this manual method is quite effective, the all process is time consuming,
laborious and sometimes subjective. Creating an automatic approach to identify
the grains, in a precise way, thus represents a task of utmost interest.

In this study, an automated pollen grain recognition approach is proposed.
We investigate the influence of background colours and colour pre-processing in
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the recognition task using nine state-of-the-art CNN topologies. Using a combi-
nation of an image-processing workflow and a sufficiently trained deep learning
model, we were able to recognize pollen grains from seventy three pollen types,
one of the largest number of pollen types studied until now, achieving an accu-
racy of 97.4% that represents one of the best success rate so far (when weighted
for the number of pollen types used in this work).

This study proves that using deep learning CNN architectures for the pollen
grain recognition task allows good classification results when using a transfer
learning approach. In the future, we plan to combine the features from several
CNNs enhancing the effectiveness of deep learning approaches in pollen grain
recognition.
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