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Abstract. Industrial robot manipulators are widely used for repetitive
applications that require high precision, like pick-and-place. In many
cases, the movements of industrial robot manipulators are hard-coded or
manually defined, and need to be adjusted if the objects being manipu-
lated change position. To increase flexibility, an industrial robot should
be able to adjust its configuration in order to grasp objects in vari-
able/unknown positions. This can be achieved by off-the-shelf vision-
based solutions, but most require prior knowledge about each object to
be manipulated. To address this issue, this work presents a ROS-based
deep reinforcement learning solution to robotic grasping for a Collab-
orative Robot (Cobot) using a depth camera. The solution uses deep
Q-learning to process the color and depth images and generate a ε-
greedy policy used to define the robot action. The Q-values are esti-
mated using Convolutional Neural Network (CNN) based on pre-trained
models for feature extraction. Experiments were carried out in a sim-
ulated environment to compare the performance of four different pre-
trained CNN models (RexNext, MobileNet, MNASNet and DenseNet).
Results show that the best performance in our application was reached by
MobileNet, with an average of 84 % accuracy after training in simulated
environment.

Keywords: Cobots · Reinforcement learning · Computer vision ·
Pick-and-place · Grasping

1 Introduction

The usage of robots has been increasing in the industry for the past 50 years
[1], specially in repetitive tasks. Recently, industrial robots are being deployed
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in applications in which they share (part of) their working environment with
people. Those type of robots are often referred to as Cobots, and are equipped
with safety systems according to ISO/TS 15066:2016 [2]. Although Cobots are
easy to setup and program, their programs are usually written manually. If
there is a change in the position of objects in their workspace, which is common
when humans also interact with the scene, their program needs to be adjusted.
Therefore, to increase flexibility and to facilitate the implementation of robotic
automation, the robot should be able to adjust its configuration in order to
interact with objects in variable positions.

A Robot manipulator consists of a series of joints and links forming the arm,
at the far end are placed the end-effectors. The purpose of an end-effector is to
act on the environment, for example by manipulating objects in the scene. The
most common end-effector for grasping is the simple parallel gripper, consisting
of two-jaw design.

Grasping is a difficult task when different objects are not always in the same
position. To obtain a grasping position of the object, several techniques have
been applied. In [3] a vision technique is used to define candidate points in the
object and then triangulate one point where the object can be grasped.

With the evolution of the processing power, Computer Vision (CV) has also
played an important role in industrial automation for the last 30 years, including
depth images processing [4]. CV has been applied from food inspection [5,6] to
smartphone parts inspection [7]. Red Green Blue Depth (RGBD) cameras are
composed of a sensor capable of acquiring color and depth information and have
been used in robotics to increase the flexibility and bring new possibilities. There
are several models available e.g. Asus Xtion, Stereolabs ZED, Intel RealSense
and the well-known Microsoft Kinect. One approach to grasping different types
of objects using RBGD cameras is to create 3D templates of the objects and a
database of possible grasping positions. The authors in [8] used dual Machine
Learning (ML) approach, one to identify familiar objects with spin-image and the
second to recognize an appropriate grasping pose. This work also used interactive
object labelling and kinesthetic grasp teaching. The success rate varies according
to the number of known objects and goes from 45% up to 79% [8].

Deep Convolutional Neural Networks (DCNNs) have been used to identify
robotic grasp positions in [9]. It uses RGBD image as input and gives a five-
dimensional grasp representation, with position (x, y), a grasp rectangle (h,w)
and orientation θ of the grasp rectangle with respect to horizontal axis. Two
DCNNs Residual Neural Networks (ResNets) with 50 layers each are used to
analyse the image and generate the features to be used on a shallow CNN to
estimate the grasp position. The networks are trained against a large dataset of
known objects and their grasp position.

Generative Grasping Convolutional Neural Network (GG-CNN) is proposed
in [10], a solution fast to compute, capable of running real-50 Hz. It uses DCNN
with just 10 to 20 layers to analyse the images and depth information to control the
robot in real time to grasp objects, even when they change position on the scene.

In this paper we investigate the use of Reinforcement Learning (RL) to train
an Artificial Intelligence (AI) agent to control a Cobot to perform a given pick-
and-place task, estimating the grasping position without previous knowledge
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about the objects. To enable the agent to execute the task, an RGBD camera
is used to generate the inputs for the system. An adaptive learning system was
implemented to adapt to new situations such as new configurations of robot
manipulators and unexpected changes in the environment.

2 Theoretical Background

In this section we present a summary of relevant concepts used in the develop-
ment of our system.

2.1 Convolutional Neural Networks

CNN is a class of algorithms which use the Artificial Neural Network in com-
bination with convolutional kernels to extract information from a dataset. The
convolutional kernel scans the feature space and the result is stored in an array
to be used in the next step of the CNN.

CNN have been applied in different solutions in machine learning, such as
object detection algorithms, natural language processing, anomaly detection,
deep reinforcement learning among others. The majority of the CNN applica-
tion is in the computer vision field with a highlight to object detection and
classification algorithms. The next section explores some of these algorithms.

2.2 Object Detection and Classification Algorithms

In the field of artificial intelligence, image processing for object detection and
recognition is highly advanced. The increase of Central Processing Unit (CPU)
processing power and the increased use of Graphics Processing Unit (GPU) have
an important role in the progress of image processing [11].

The problems of object detection are to detect if there are objects in the
image, to estimate the position of the object in the image and predict the class
of the object. In robotics the orientation of the object can also be very important
to determine the correct grasp position. A set of object detection and recognition
algorithms are investigated in this section.

Several features arrays are extracted from the image and form the base for
the next layer of convolution and so on to refine and reduce dimensionality of
the features, the last step is a classification Artificial Neural Network (ANN)
which is giving the output in a form of certainty to a number of classes. See
Fig. 1 where a complete CNN is shown.

The learning process of a CNN is to determine the value of the kernels to
be used during the multiple convolution steps. The learning process can take
up to hours of processing a labeled data set to estimate the best weights for the
specific object. The advantage is once the model weights have been determined
they can be stored for future applications.

In [13] a Regions with Convolutional Neural Networks (R-CNN) algorithm
is proposed to solve the problem of object detection. The principle is to propose
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Fig. 1. CNN complete process, several convolutional layers alternate with pooling and
in the final classification step a fully connected ANN [12].

around 2000 areas on the image with possible objects and for each one of these
extract features and analyze with a CNN in order to classify the objects in the
image.

The problem of R-CNN is the high processing power needed to perform
this task. A modern laptop is able to analyze a high definition image using this
technique in about 40 s, making it impossible to execute real time video analysis.
But still capable of being used in some applications where time is not important
or where it is possible to use multiple processors to perform the task, since each
processor can analyze one proposed region.

An alternative to R-CNN is called Fast R-CNN [14] where the features are
extracted before the region proposition is done, so it saves processing time but
loses some abilities to parallel processing. The main difference to R-CNN is the
unique convolutional feature map from the image.

The Fast R-CNN is capable of near real time video analysis in a modern
laptop. For real time application there is a variation of this algorithm proposed
in [15] called Faster R-CNN. It uses the synergy of between steps to reduce the
number of proposed objects, resulting in an algorithm capable of analyzing an
image in 198 ms, sufficient for video analysis. Faster R-CNN has an average
result of over 70% of correct identifications.

Extending Faster R-CNN the Mask R-CNN [16,17] creates a pixel segmen-
tation around the object, giving more information about the orientation of the
object, and in the case of robotics a first hint to where to pick the object.

There are efforts to use depth images with object detection and recognition
algorithms as shown in [18], where the positioning accuracy of the object is
higher than RGB images.

2.3 Deep Reinforcement Learning

Together with Supervised Learning and Unsupervised Learning, RL forms the
base of ML algorithms. RL is the area of ML based on rewards and the learning
process occurs via interaction with the environment. The basic setup includes
the agent being trained, the environment, the possible actions the agent can take
and the reward the agent receives [19]. The reward can be associated with the
action taken or with the new state.
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Some problems in RL can be too large to have exact solutions and demand
approximate solutions. The use of deep learning to tackle this problem in com-
bination with RL is called Deep Reinforcement Learning (deep RL). Some
problems can require more memory than available, i.e., a Q-table to store all
possible solutions for an input color image of 250 × 250 pixels would require
250 × 250 × 255 × 255 × 255 = 1.036.335.937.500 bytes, or 1TB. For such large
problems the complete solution can be prohibitive by the required memory and
processing time.

2.4 Deep Q Learning

For large problems, the Q-table can be approximated using ANN and CNN
to estimate the Q values. Deep Q Learning Network (DQN) was proposed by
[20] to play Atari games on a high level, later this technique was also used in
robotics [21,22]. A self balanced robot was controlled using DQN in a simulated
environment with performance better than Linear–quadratic regulator (LQR)
and Fuzzy controllers [23]. Several DQNs have been tested for ultrasound-guided
robotic navigation in the human spine to locate the sacrum with [24].

3 Proposed System

The proposed system consists of a collaborative robot equipped with a two-
finger gripper and a fixed RGBD camera pointing to the working area. The
control architecture was designed considering the use of DQN to estimate the
Q-values in the Q-Estimator. RL demands multiple episodes to obtain the neces-
sary experience. Acquiring experience can be accelerated in a simulated environ-
ment, which can also be enriched with data not available in the real world. The
proposed architecture shown in Fig. 2 was designed to work in both simulated
and real environments to allow experimentation on a real robot in the future.

The proposed architecture uses Robot Operating System (ROS) topics and
services to transmit data between the learning side and the execution side. The
boxes shown in blue in Fig. 2 are the ROS drivers, necessary to bring the func-
tionalities of the hardware to the ROS environment. The execution side can be
simulated, to easily collect data, or real hardware for fine tuning and evalua-
tion. As in [22], the action space is defined as motor control and the Q-values
correspond to probability of grasp success.

The chosen policy for the RL algorithm is a ε-greedy, i.e., pursue the maxi-
mum reward with ε probability to take a random action. R-Estimator estimates
the reward based on the success of the grasp and the distance reached to the
objects, following Eq. 1.

Rt =

{
1

dt+1 , if 0 ≤ dt ≤ 0.02
0, otherwise

(1)

where dt is in meters.
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Fig. 2. Proposed architecture for grasp learning, divided in execution side (left) and
learning sides (right). The modules in blue are ROS Drivers and the modules in yellow
are Python scripts.

3.1 Action Space

The RL gives freedom to choose the possible actions the agent can choose, in
this work actions are defined as the possible positions to attempt to grasp an
object inside the work area, defined as:

Sa = {v, w}, (2)

where {v} is the proportional position inside the working area in the x axis and
{w} is the proportional position inside the working area in the y axis. The values
are discretized by the output of the CNN.

3.2 Convolutional Neural Network

To estimate the Q-values a CNN is used. For the action space Sa the network
consists of two blocks to extract features from the images, a concatenation of
the features and another CNN to reach the Q-values. The feature extraction
blocks are pre-trained Pytorch models where the final classification network is
removed. The layer to be removed is different for each model and, in general, the
fully connected layers are removed. Four models were selected to compose the
network, DenseNet, MobileNet, ResNext and MNASNet. The criteria considered
the feature space and the performance of the models.

The use of pre-trained PyTorch models reduces the overall training time.
However it brings limitations to the system, the size of the input image must
be 224 by 224 pixels and the image must be normalized following the original



Deep RL Applied to a Robotic Pick-and-Place Application 257

22
4x
22
4

conv

11
2x
11
2

conv

56
x5
6

conv

28
x2
8

conv

14
x1
4

conv

1024 7x
7

conv

22
4x
22
4

conv

11
2x
11
2

conv

56
x5
6

conv

28
x2
8

conv

14
x1
4

conv

1024 7x
7

conv

2048 7x
7

concat+norm+relu

64 7x
7

norm+conv+relu

n 7x
7

norm+conv

n
11
2x
11
2

upsample

Fig. 3. The CNN architecture for the action space Sa, the two main blocks are a
simplified representation of pre-trained Densenet model [25], only the feature size is
represented. The features from the Densenet model are concatenated and used to feed
the next CNN, the result is an array with Q-values used to determine the action.

dataset mean and standard deviation [26]. In general this limits the working area
of the algorithm to an approximately square area (Fig. 3).

3.3 Simulation Environment

The simulation environment was built on Webots, an open-source robotics sim-
ulator [27]. The choice has been made considering the usability of the software
and use of computational resources [28]. To enclose the simulation in the ROS
environment some modules were implemented: Gripper Control, Camera Con-
trol and a Supervisor to control the simulation. The simulated UR3e robot is
connected to ROS using the ROS driver provided by the manufacturer and con-
trolled with the Kinematics module. Figure 4 shows the simulation environment,
in which the camera is located in front of the robot, pointing to the working
area. A feature of the simulated environment is to have control over all objects
positions and colors. The positions were used as information for the reward and
the color of the table was changed randomly at each episode to increase robust-
ness during training. For each attempt the table color, the number of objects
and the position of the objects were randomly changed.

Webots Gripper Control. The Gripper Control is responsible to read and
control the position of the joints of the simulated gripper. It controls all joints,
motors and sensors of the simulated gripper. Touch sensors were also added at
the tip of the finger to emulate the feedback signal when an object is grasped.



258 N. M. Gomes et al.

Fig. 4. The virtual environment built on Webots: it consists of a table, a UR3e collab-
orative robot, a camera and the objects used in the training.

The Robotiq 2F-85 is the gripper we are going to use in future experiments
with the real robot. It consists of 6 rotational joints intertwined to form the 2
fingers. During tests, the simulation of the closed kinematic chain of this gripper
in Webots was not stable. To regain stability in simulation we used a gripper
with simpler mechanical structure but with similar dimensions of the Robotiq
2F-85. The gripper used in simulation is shown in detail in Fig. 5.

Fig. 5. Detail of the gripper used in the simulation: its appearance is based on the
Kuka Youbot gripper and its bounding objects are simplified to blocks.

Webots Supervisor. The Supervisor is responsible for resetting the simu-
lation, preparing the position of the objects at the beginning of the episode,
changing color of the table and publishing the position of objects to the reward
estimator. To estimate the distance between the center of the end-effector and
the objects, a GPS position sensor is placed in the gripper’s center to inform
its position to the supervisor. The position of the objects is used to shape the
reward proportional to the distance between the end-effector and the object.
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Although this information is not available in the real world they are used to
speed up the simulation training sessions.

Webots Camera. The camera simulated in Webots has the same resolution
of the Intel RealSense camera. To avoid the need of calibration of the depth
camera, both RGB and depth cameras had coincident position and field of view
in simulation. The field of view is the same as the Intel RealSense RGB camera:
69.4◦ or 1.21 rad.

3.4 Integrator

The Integrator is responsible for connecting all modules, simulated or real. It
controls the Webots simulation using the Supervisor API and feed the RGBD
images to the neural network.

Kinematics Module. The kinematics module controls the UR3e robot, simu-
lated or real. It contains several methods to execute the calculations needed for
the movement of the Cobot.

Although RL has been used to solve the kinematics in other works [22,29],
this is not the case in our system. Instead, we make use of analytical solution of
the forward and inverse kinematics of the UR3e [30]. The Denavit–Hartenberg
parameters are used to calculate forward and inverse kinematics of the robot
[31]. Considering the UR3e has 6 joints, the combination of 3 of these can give
23 = 8 different configurations which can give the same pose of the end-effector
(elbow up and down, wrist up and down, shoulder forward and back). On top
of that, the movement of the UR3e joints have a range from −2π to +2π rad,
increasing the possible solution space to 26 = 64 different configurations to the
same pose of the end-effector. To reduce the problem, the range of the joints is
limited via software to −π to +π rad, but still giving 8 possible solutions from
where the nearest solution to the current position is selected.

The kinematics module is capable of moving the robot to any position in the
work space avoiding unreachable positions. To increase the usability of the mod-
ule functions with the same behavior of the original Universal Robots “MOVEL”
and “MOVEJ” have been implemented.

To estimate the cobot joints angles in order to position the end-effector in
space the Tool Center Point (TCP) must be considered in the model. TCP is
the position of the end-effector in relation to the robot flange. The real robot
that will be used for future experiments has a Robotiq wrist camera and a 2F-85
gripper, which means that the TCP is 175.5 mm from the robot flange in the z
axis [32].

4 Results and Discussion

This section shows the results and discussion of two training sections with dif-
ferent methods. The tests were performed on a laptop with a i7-9750H CPU,
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32 GB RAM and a GTX 1650 4 GB GPU, running Ubuntu 18.04. Although the
GPU was not used in the CNN training, the simulation environment made use
of it.

4.1 Modules

All modules were tested individually to ensure proper functioning. The ROS
communication was tested using the builtin tool rqt , to check the connection
between nodes via topics or services. The UR3e joints positions are always pub-
lished in a topic and controlled via action client. In the simulation environment,
the camera images, the gripper control and the supervisor commands are made
available via ROS services. Differently from ROS topics, ROS services only trans-
mit data when queried, decreasing the processing demanded by Webots. Figure 6
shows the nodes via topics in the simulated environment, services are not rep-
resented in this diagram. The diagram was created with rqt .

Fig. 6. Diagram of the nodes running during the testing phase. In the simulated envi-
ronment most of the data is transmitted via ROS services. In the picture, the topics
/follow joint trajectory and /gripper status are responsible for the robot movement
and griper status information exchange, respectively.

CNN. From the four models tested, DenseNet and ResNext demanded more
memory than the available GPU while MobileNet and MNASNet were capable
of running on the GPU. To keep the fairness of the evaluation all timing tests
were performed on the CPU.

4.2 Training

For training the CNN it was used a Huber loss error function [33] and an Adam
optimizer [34] with weight decay regularization [35], the hyperparameters used
for RL and CNN training are shown in the Table 1.
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Table 1. Hyperparameters used in training.

Parameter name Symbol Value

Learning rate for CNN αCNN 1 × 10−3

Weight decay for CNN λw 8 × 10−4

Learning rate for RL αRL 0.7

Discount factor γ 0.90

Initial exploration factor ε0 0.90

Final exploration factor εf 5 × 10−2

Exploration factor decay λε 200

To avoid color bias of the algorithm the color of the simulated table was
changed for every episode.

Each training section was divided in four parts: collecting data, deciding the
action to take based on the estimated Q-values, taking the action receiving a
reward and training the CNN. Several sections of training were performed and
the experience of the previous rounds were used to improve the training process.

The training cycle times are shown in Table 2. Forward is the process follow-
ing the direction from input to output of the CNN, backward is the process to
evaluate the gradient from the difference in the output back to the input. In the
backward process the weights of the network are updated with the learning rate
αCNN .

Table 2. Mean time and standard deviation of forward and backward time during
training.

Base model name Forward time (s) Backward time (s)

DenseNet 0.408 ± 0.113 0.676 ± 0.193

ResNext 0.366 ± 0.097 0.760 ± 0.173

MobileNet 0.141 ± 0.036 0.217 ± 0.053

MNASNet 0.156 ± 0.044 0.257 ± 0.074

First Training Section. In the first training round no previous experience is
used and the algorithm learns from scratch. The main target is to get information
of the training process about cycle time and acquire experience to be used in
future training sections. The algorithm was training according to the most recent
experience with batch size of 1.

In the training sections the accuracy was estimated based on 10 attempts
every 10 epochs to verify how good the algorithm was performing at the time.
The results are shown in Fig. 7. The training section took from 1:43 to 2:05 h to
complete.
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In Fig. 7 is observed a training problem where the loss reaches zero and there
is no gradient for learning. The algorithm cannot learn and the accuracy shows
the q-values estimated are poor. There are several causes that can explain this
case including the weights of the CNN are too small and the experience accumu-
lated has most errors. The solutions for this are complex including fine-tuning
hyperparameters and selecting best experiences for the algorithm as shown in
[36]. Another solution is to use demonstration through shaping [37], where the
reward function is used to generate training data based on demonstrations of the
correct action to take. The training data for the second section was generated
using the reward function to map all possible rewards of the input.

Fig. 7. The loss and accuracy of 1000 epochs training section, loss data were smoothed
using a third order filter, raw data is shown in light colors.

Fig. 8. The loss and accuracy during 250 epochs training section, data were smoothed
using a third order filter, raw data is shown in light colors.

Second Training Section. The second training section used the demonstra-
tion through shaping. It was possible because in the simulation environment
the information of the position of the objects is available. The training process
received experiences generated from the simulation, these experiences have the
best action possible for each episode.
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The batch size used on this training section was 10. The increase of batch size
combined with the new experience replay caused a larger loss at the beginning
of the training section as seen on the Fig. 8. The training section took from 3:43
to 4:18 h to complete. The accuracy as estimated for every epoch based on 10
attempts.

5 Conclusion

This paper presented the use of RL to train an AI agent to control a Collaborative
Robot to perform a pick-and-place task while estimating the grasping position
without previous knowledge about the object. It was used an RGBD camera
to generate the inputs for the system. An adaptive learning system was imple-
mented to adapt to new situations such as new configurations of robot manipu-
lators and unexpected changes in the environment. The results implemented on
simulation validated the proposed approach. As future work, an implementation
with a real manipulator will be addressed.
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