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Abstract. We show how to automate fragments of the logical frame-
work (α, β)-privacy which provides an alternative to bisimilarity-based
and trace-based definitions of privacy goals for security protocols. We
consider the so-called message-analysis problem, which is at the core of
(α, β)-privacy: given a set of concrete messages and their structure, which
models can the intruder rule out? While in general this problem is unde-
cidable, we give a decision procedure for a standard class of algebraic
theories.
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1 Introduction

The problem of privacy in security protocols is relevant in many fields, such as
electronic voting, digital health information, mobile payments and distributed
systems in general. Privacy is a security goal of its own, it cannot be described as
regular secrecy. For example, in voting it is not the values of the votes that are
secret, since there is a public tally, but rather the relation between a voter and
a vote. It is best if privacy is taken into account during the design of commu-
nication protocols. But even then, it is difficult to get enough guarantees about
privacy goals. Formal methods are a successful way of addressing the issue. By
studying a protocol at an abstract level, they can be used to check digital appli-
cations against possible misuse.

The symbolic modeling of protocols allows one to define various privacy goals.
The standard approach uses the notion of observational equivalence [8,9]: it is
common to consider privacy as a bisimilarity between processes in the applied π-
calculus. For instance, for electronic voting protocols, a privacy goal could be that
two processes differing only by a swap of votes are indistinguishable [5,10,16].
There are many examples of communication protocols that are not secure with
regards to privacy. This is the case also for protocols which have been designed to
provide some privacy goals. Indeed, recent papers show privacy issues in voting
protocols (Helios [5,10]) as well as contact-tracing applications (GAEN API [7],
SwissCovid [14,17]). While tools exist to provide automated verification [4,6], it
can be hard to formalize a privacy goal as a bisimilarity property, so automated
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verification is actually challenging. In such cases, it is hard to specify all desir-
able privacy goals using the notion of observational equivalence. Additionally,
the standard approach cannot guarantee that the privacy goals verified cover
all possibilities of misuse. These limits are the motivation for studying a new
approach that is declarative and more intuitive.

(α, β)-privacy [13,15] is an approach based on first-order logic with Herbrand
universes, which allows for a novel way of specifying privacy goals. Instead of
specifying pairs of things that should be indistinguishable to the intruder, one
instead positively specifies what relations about the private data the intruder is
allowed to learn and it is then considered a violation if the intruder is actually
able to find out more.

The authors of [15] mainly argue that (α, β)-privacy is a more declarative way
to specify goals without emphasis on questions of automation. For instance, they
describe the goal of a voting protocol as releasing to the intruder the number of
votes for each candidate or option and that this can actually justify the more
technical “encoding” into bisimilarity-based approaches with the vote-swap idea
mentioned before.

We now argue that actually the direct automation of (α, β)-privacy fragments
can have advantages over bisimilarity approaches. The reason is that (α, β)-
privacy is a reachability problem [12]: there is a state-transition system where
every state is characterized by two Herbrand formulae α and β, namely what
payload information α is currently published as well as the technical information
β like exchanged messages between honest agents and intruder and what the
intruder knows about the structure of these messages. The privacy question is
now whether in any reachable state, β allows to rule out a model of α.

Thus, the main challenge lies in checking the (α, β)-privacy property for a
given state, while in bisimilarity approaches, the main challenge lies in checking
for every state S that is reachable in one process if there exists a reachable
state S′ in the other process so that S and S′ are in a certain relation. This
includes that the intruder knowledge in these states is statically equivalent, i.e.,
the intruder cannot tell S and S′ apart. Bisimilarity thus means a challenge on
top of static equivalence that is hard to handle in automated methods, while in
(α, β)-privacy, reachability is trivial, but verifying privacy in the reached states
is in general undecidable.

In this paper we show that for the fragment of message-analysis problems
identified in [15] (and a suitable intruder theory), the check for (α, β)-privacy in
each state is akin—and typically not more complex—than a static equivalence
problem of the same size. For this fragment, (α, β)-privacy thus allows us to
get rid of all the troubles of bisimilarity and reduce everything to a static-
equivalence-style problem.

We present our first contributions in Sect. 3 by introducing the notions of
destructor theories and frames with shorthands. In Sect. 4, we present our main
contribution under the form of several algorithms constituting a decision proce-
dure. Proofs for our results are presented in Appendix A.
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2 Preliminaries

2.1 Herbrand Logic

Much of the preliminaries are adapted from [15]. The approach of (α, β)-privacy
is based on Herbrand logic [11], which is First-Order Logic (FOL) with Herbrand
universes. A reachable state of a protocol will later be characterized by two
formulae α and β in Herbrand logic.

In Herbrand logic, an alphabet Σ = Σf � Σi � Σr consists of Σf the set
of free function symbols, Σi the set of interpreted function symbols and Σr the
set of relation symbols. The main difference to standard FOL (that has no free
function symbols Σf ) is that the universe is fixed by the set of terms that can
be built using Σf . More precisely, let V be a countable set of variable symbols,
disjoint from Σ. We denote with TΣ(V) the set of all terms that can be built
from the function symbols in Σ and the variables in V, i.e., a term is either a
variable x or a function applied to subterms f(t1, . . . , tn). We simply write TΣ

when V = ∅, and call its elements ground terms (over signature Σ). Let ≈ be a
congruence relation on TΣf

.
The Herbrand universe U (over Σ and V) is defined in the quotient algebra

A≈ = TΣf /≈, i.e., U = {[[t]]≈ | t ∈ TΣf
}, where [[t]]≈ = {t′ ∈ TΣf

| t ≈ t′}. The
algebra interprets every n-ary function symbol f ∈ Σf as a function fA : Un �→ U
such that fA([[t1]]≈, . . . , [[tn]]≈) = [[f(t1, . . . , tn)]]≈.

A (Σ,V)-interpretation I maps every interpreted function symbol f ∈ Σi to
a function I(f) : Un �→ U , every relation symbol r ∈ Σr to a relation I(r) ⊆ Un,
and every variable x ∈ V to an element I(x) ∈ U . We extend I to a function on
TΣ(V) as expected:

I(f(t1, . . . , tn)) = fA(I(t1), . . . , I(tn)) for f ∈ Σf

I(f [t1, . . . , tn]) = I(f)(I(t1), . . . , I(tn)) for f ∈ Σi

Note that we write f [t1, . . . , tn] for f ∈ Σi with square parentheses to visually
distinguish interpreted functions from free functions. The rest of the syntax and
semantics is like in standard FOL. We write I |= φ when a formula φ over Σ
and V is true in a (Σ,V)-interpretation I, and we then call I a (Σ,V)-model.
We may just say interpretation and model when Σ and V are clear from the
context. We also say φ entails ψ and write φ |= ψ, if all φ-models are ψ-models.

We employ the standard syntactic sugar and write, for example, ∀x.φ for
¬∃x.¬φ and x ∈ {t1, . . . , tn} for x = t1 ∨ · · · ∨ x = tn. Slightly abusing notation,
we will also consider a substitution [x1 �→ t1, . . . , xn �→ tn] as a formula x1 =
t1 ∧ · · · ∧ xn = tn. This allows us to write θ |= φ for a substitution θ and a
formula φ that has no symbols to interpret other than variables in the domain
of θ. In particular, we can write σ′ |= σ when the substitution σ′ is an instance
of σ. We denote with ε the identity substitution.

2.2 Frames

We use frames to represent the knowledge of the intruder. The idea is that the
intruder has recorded a number of messages and can refer to them using labels.
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We identify a subset Σop ⊆ Σf of free functions, that we call cryptographic
operators. They are used to represent a black-box model of cryptography, which
is defined with a set of algebraic equations.

Definition 1 (Frame). A frame is written as � = {| l1 �→ t1, . . . , lk �→ tk |},
where the li are distinguished constants and the ti are terms that do not contain
any li. We call {l1, . . . , lk} and {t1, . . . , tk} the domain and the image of the
frame, respectively. The set R� = TΣop

({l1, . . . , lk}) is the set of recipes, i.e.,
the least set that contains l1, . . . , lk and that is closed under all the cryptographic
operators of Σop. We will simply write R when � is clear from the context. �

A frame � can be regarded as a substitution that replaces every li of its
domain with the corresponding ti. For a recipe r, we thus write �{| r |} for the
term obtained by applying this substitution to r. A generable term is any term t
for which there is a recipe r with t ≈ �{| r |}. Note that by default, the intruder
does not know all constants but they can be explicitly included in the frame if
needed.

Two frames �1 and �2 with the same domain are statically equivalent, writ-
ten �1 ∼ �2, if the intruder cannot distinguish them, i.e., when for all pairs of
recipes r1 and r2 it holds that �1{| r1 |} ≈ �1{| r2 |} ⇐⇒ �2{| r1 |} ≈ �2{| r2 |}.
It is possible to axiomatize in Herbrand logic the notions of frames, recipes,
generable terms, and static equivalence of frames [15].

2.3 (α, β)-Privacy

The idea of (α, β)-privacy is to declare a payload-level formula α over an alpha-
bet Σ0 ⊂ Σ at the abstract level, defining intentionally released information (for
instance the number of votes cast in an election), and a technical-level formula
β over the full Σ, including all information visible to the intruder (e.g., cryp-
tographic messages of a voting system and information about their structure).
Intuitively, we want that the intruder does not learn from β anything on the
payload-level that does not already follow from α, i.e., every model of α can be
extended to a model of β:

Definition 2 (Model-theoretical (α, β)-privacy). Let Σ be a countable sig-
nature, Σ0 ⊂ Σ a payload alphabet, α a formula over Σ0 and β a formula over
Σ such that fv(α) = fv(β), both α and β are consistent and β |= α. We say
that (α, β)-privacy holds iff for every (Σ0, fv(α))-model I |= α there exists a
(Σ, fv(β))-model I ′ |= β, such that I and I ′ agree on the interpretation of all
interpreted function and relation symbols of Σ0 and all free variables of α. �

3 The Fragment

In the (α, β)-privacy framework, we have a state transition system where every
state contains at least a pair of formulae α and β, as well as other information to
represent the current state of some honest agents. Privacy is then a reachability
problem [12], i.e., whether we can reach a state where β allows the intruder to
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exclude at least one model of α. We focus in this paper only on the problem for
a single state, i.e., deciding (α, β)-privacy for a given pair (α, β).

Even this is undecidable due to the expressiveness of Herbrand logic. We
therefore restrict ourselves in this paper to (α, β)-pairs of a particular form that
is called message-analysis problem in [15], which consists of two restrictions.
The first restriction here is that the payload alphabet Σ0 is a finite set of free
constants that are part of Σop . We say in this case that α is combinatoric. Thus
the Herbrand universe U of Σ0 is also finite, and every model of α is just a
mapping from fv(α) to U . We will write θ for such a mapping in the following.
For example if α ≡ x ∈ {a, b, c} ∧ y ∈ {a, b} ∧ x �= y, then θ = [x �→ a, y �→ b] is
a model of α. We also call fv(α) the privacy variables, and say the domain of a
privacy variable x are those values from Σ0 that x can have in any model of α.
We denote with Θ the set of all models of α. The second restriction is that in
every reachable state of the system, the intruder knowledge can be characterized
by a frame struct where the messages can contain variables from α, and a frame
concr = θ(struct), where θ is a model of α representing the true values of the
privacy variables in this state, and thus concr are the concrete messages that
the intruder observes. The formula β then consists of α, the definition of struct
and concr , and stipulates that struct ∼ concr .

Example 1. Consider a structural frame

struct = {| l1 �→ scrypt(k, x), l2 �→ scrypt(k, y), l3 �→ scrypt(k, z) |}

and the model θ = [x �→ 0, y �→ 1, z �→ 0], where the variables x, y, z in struct rep-
resent some votes that have been symmetrically encrypted (scrypt) by a trusted
authority with a key k. (We formally introduce this algebraic theory in Exam-
ple 3.) Let the payload formula be α ≡ x, y, z ∈ {0, 1}. The intruder is not able to
learn the values of the votes without the key. However, they1 can observe that
concr{| l1 |} ≈ concr{| l3 |}. Using static equivalence between struct and concr ,
the intruder deduces that struct{| l1 |} ≈ struct{| l3 |}. The only way to unify the
equation, with respect to ≈, is with x = z. This constitutes a breach of privacy,
as it does not follow from α (some models have been excluded). There are also
other relations that can be derived at this point: x �= y and y �= z.

The problem we solve in this paper is thus: given an (α, β)-pair that is a
message-analysis problem, check whether (α, β)-privacy holds. Note here a fun-
damental difference with respect to approaches based on static equivalence of
frames where privacy means that the intruder cannot distinguish two frames that
represent different possibilities. In (α, β)-privacy, in contrast, we have a symbolic
frame struct and an instance concr , and the intruder knows that concr is the
instance of struct that represents what really happened. Thus the intruder can
exclude every model of α under which struct and concr would be distinguishable.

Interestingly, the problem of (α, β)-privacy in a message-analysis problem is
related to static equivalence of frames. As [15] observes, in theory one could com-
pute all models of the given α (there are finitely many since α is combinatoric)
1 We use the pronoun “they” for gender-neutral expression.
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and compute concr i = θi(struct) for every model θi; then (α, β)-privacy holds
iff the concr i are all statically equivalent. This is practically not feasible, since
the number of models is in general in the order of |Σ0||fv(α)|. The algorithms
we present here will typically not be more complex than standard static equiv-
alence algorithms (in the same algebraic theory). However, in corner cases our
current implementation can produce in general an exponential set of recipes. It is
part of the future work to investigate whether this can be avoided with another
representation that avoids the enumeration of combinations.

Reachable States. Before we go into detail about the algorithm itself, we
want to briefly sketch what kinds of protocol descriptions can be considered, so
that in every reachable state we have a message-analysis problem. This is only
a sketch because we lack the space to make a fully-fledged definition. What we
can support with message-analysis problems is basically what one would have in
strand spaces: protocols where every role can be described as a linear sequence
of message exchanges. This corresponds in the applied π-calculus to processes
for roles that do not contain any repetition, parallelism, or branching. That
is, when checking incoming messages with an if or let statement, the else
branch has to be empty (i.e., when the conditions are not satisfied, the protocol
aborts). In this case, the intruder always learns the outcome of the check, and
for privacy it is sometimes interesting to consider protocols that can hide this,
e.g., sending in the negative case a decoy-answer [2]. This is a generalization
of the message-analysis problem, i.e., the intruder in general does no longer
know the structure of a message for sure, but only that it is one of several
possibilities, say struct1, . . . , structn, and figuring out which struct i it is may
allow for breaking the privacy. This requires an extension to our algorithms that
is not overly difficult, but we lack the space to present it here. However, with
message-analysis problems we cover the realm of standard security protocols
that could be written in Alice-and-Bob notation.

In addition to normal variables for received messages, we have the mentioned
privacy variables (recall they are non-deterministically chosen from a given sub-
set of Σ0). The formalism for describing the state transition system should thus
include a mechanism to specify the choice of such variables, and what infor-
mation about them is released by augmenting α upon state transitions. Note
that the intruder is active and can send a message determined by a recipe over
the domain of struct in that state. Since struct contains privacy variables, the
intruder can “experiment” by sending a message with a privacy variable to an
honest agent, and thus observe if there is an answer (i.e., passing checks that
the agent makes) and learn the message structure of the answer.

Example 2. Consider a door with a tag reader. Agents a, b, c can use a personal
tag to open the door; their tags each have a symmetric key k(a), k(b) and k(c),
respectively (where k is a private free function). The toy protocol is that the
reader sends a nonce and the tag replies with the encrypted nonce. For instance
the following state is reachable in two protocol executions: the structural knowl-
edge is struct = {| l1 �→ n, l2 �→ scrypt(k(x1), n), l3 �→ n′, l4 �→ scrypt(k(x2), n′) |},
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where n, n′ represent nonces and x1, x2 are variables for agent names, and the
concrete instantiation is θ = [x1 �→ a, x2 �→ a], i.e., both interactions were with
the same agent x1 = x2 = a. The privacy goal of unlinkability can be expressed
by a payload formula that every agent variable can be any of the agents, i.e.,
in the example state we have α ≡ x1, x2 ∈ {a, b, c}. Thus, the intruder should
not be able to tell whether replies come from the same agent. If the intruder
is just passively listening (as in the example state above), unlinkability indeed
holds (since the nonces n and n′ are different). However, if the intruder imper-
sonates a reader and replays a nonce n to a tag, we would get to the state
struct = {| l1 �→ n, l2 �→ scrypt(k(x1), n), l3 �→ n, l4 �→ scrypt(k(x2), n) |}. Here,
they can deduce that scrypt(k(x1), n) ≈ scrypt(k(x2), n) and thus x1 = x2. This
could be fixed by including also a nonce from the tag in the message, but note
this is only a toy protocol, and one would need to also solve distance bounding.

3.1 Destructor Theories

Even with the restriction to message-analysis problems, (α, β)-privacy is still
undecidable, since the word problem (whether s ≈ t, given s and t) in algebraic
theories is. We restrict ourselves here to theories we call destructor theories, a
concept similar to subterm-convergent theories. The main difference is that we
like to distinguish constructors like encryption and destructors like decryption
and be able to verify if the application of a destructor was successful.

This verification is motivated by the fact that most modern crypto-
graphic primitives allow one to check whether a decryption is successful or
not, e.g., by including MACs or specific padding. In some protocol veri-
fication approaches, this is modeled by applying encryption again to the
result of the decryption and comparing with the original term, i.e., checking
crypt(pub(k), dcrypt(priv(k), c)) ≈ c. This seems a bit absurd and would not work
with randomized encryption in general. We therefore model destructors to yield
an error value if it is applied to terms for which it does not work. Given that
this error message does not normally occur in protocols, we can regard this as
destructors having the return type Maybe Msg in Haskell notation, i.e., returning
Just r if successful or Nothing in case of an error. This allows us to discard all
“garbage terms” and makes reasoning a bit simpler.

Definition 3 (Destructor theory). A destructor theory consists of

– a set Σpub ⊆ Σf of public functions that the intruder is able to apply; it
is further partitioned into constructors and destructors. Let in the following
constr and destr range over constructors and destructors, respectively.

– a set E of algebraic equations of the form destr(k, constr(t1, . . . , tn)) = ti,
where i ∈ {1, . . . , n}, fv(k) ⊆ fv(t1, . . . , tn) and the symbols of E are disjoint
from Σ0. The first argument of a destructor is called a key.2

2 For some destructors, e.g., opening a pair, one does not need a key; for uniformity
one could use here a fixed public constant as a dummy value, but slightly abusing
notation, we just omit the key argument in such a case.
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We also require that for any two equations destr(k, constr(t1, . . . , tn)) = ti and
destr′(k′, constr′(t′1, . . . , t

′
m)) = t′j of E, it must be the case that either

• constr �= constr′ or
• k = k′, n = m, and t1 = t′1, . . . , tm = t′m.

i.e., when we deal with the same constructor, the respective subterms and keys
must be the same (but the extracted ti and t′j may be different).
Finally, every destructor occurs in only one equation.

Let ≈0 be the least congruence relation on ground terms induced by E. We define
the congruence ≈ of the destructor theory as the least congruence relation over
ground terms that subsumes ≈0 and such that for all ground terms k and m
destr(k,m) ≈ error whenever destr(k,m) �≈0 m′ for all destructor-free m′. Here
error is a distinguished constant in Σ \ Σ0.

Finally, we require that in all given frames, the image contains no destructors
(and the algorithms will preserve this property). �
Note that the error behavior cannot directly be represented by algebraic equa-
tions because of the negative side-condition. However, observe that the under-
lying theory E gives rise to a term rewriting system (replacing = with →) that
is convergent: termination is obvious and for confluence observe that there are
no critical pairs (see, e.g., [3]). This gives immediately a decision procedure for
the word problem in ≈0 (normalize and compare syntactically) and in ≈ (build
the ≈0-normal forms, replace all remaining destructor-subterms by error; again
compare syntactically).

3.2 Unification and All that

In general, we will deal with terms that contain variables, albeit only privacy
variables, i.e., ranging over constants of Σ0. Thus destructor-free symbolic terms
cannot give rise to a redex and we can use the standard syntactic unification
algorithm on destructor-free terms—with one exception. We need to adapt the
unification of variables slightly: the unification of x with t is only possible if
either t is a constant in the domain of x, or another variable y such that their
domains have a non-empty intersection; their domains are then restricted to
this intersection. Since a substitution [x1 �→ t1, . . . , xn �→ tn] can be expressed
as a set of equations {x1 = t1, . . . , xn = tn}, we allow to use the notation
unify(σ1, . . . , σn) for a most general unifier (MGU) of all equations from the σi.

3.3 The ana Function

Finally, we can repackage the destructor equations into a function ana that,
given a term with a constructor, yields which destructors may be applicable:

Definition 4

ana(constr(t1, . . . , tn)) = (k, {(destr, ti) | destr(k, constr(t1, . . . , tn)) = ti ∈ E})

Intuitively, given a term that can be decrypted, ana returns the key required for
decryption and all derivable terms according to the algebraic equations. �
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Example 3. The theory we use in examples throughout this paper is as follows
(adapted from [15]). Let Σ = Σf �Σi�Σr be an alphabet and V a set of variables.
We consider the cryptographic operators defined in Table 1 and Σpub = Σop .

– pub(s) and priv(s) represent an asymmetric key pair from a secret seed (where
the lack of destructors reflects that it is hard to find the seed from the keys);

– crypt(p, r, t) and dcrypt(p′, t) formalize asymmetric encryption with random-
ness;

– sign(p′, t) and retrieve(p′, t) formalize digital signatures;
– scrypt(k, t) and dscrypt(k, t) formalize symmetric cryptography;
– pair, proj1 and proj2 formalize serialization;
– h is a cryptographic hash function (where the lack of destructors reflects that

it is hard to find a pre-image).

Table 1. Example set Σop

Constructors Destructors Properties

pub, priv

crypt dcrypt dcrypt(priv(s), crypt(pub(s), r, t)) = t

sign retrieve retrieve(pub(s), sign(priv(s), t)) = t

scrypt dscrypt dscrypt(k, scrypt(k, t)) = t

pair proj1, proj2 proj1(pair(t1, t2)) = t1

proj2(pair(t1, t2)) = t2

h

In case there is no key required, the argument is omitted as written in the
equations in Table 1. We introduce a “dummy” key k0 known by the intruder
covering this case for the return value of ana.

ana(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(priv(s), {(dcrypt, t′)}) if t = crypt(pub(s), r, t′)
(k, {(dscrypt, t′)}) if t = scrypt(k, t′)
(pub(s), {(retrieve, t′)}) if t = sign(priv(s), t′)
(k0, {(proj1, t1), (proj2, t2)}) if t = pair(t1, t2)
(k0, {}) otherwise

3.4 Frames with Shorthands

We define an extension of the concept of frames to easily handle decryption of
terms. A frame with shorthands consists in a frame with additional labels, which
are actually recipes over the initial labels.
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Definition 5 (Frame with shorthands). A frame with shorthands is written
as �

′ = {| l1 �→ t1, . . . , lk �→ tk,m1 �→ s1, . . . ,mn �→ sn |}, where � = {| l1 �→
t1, . . . , lk �→ tk |} is a frame, the mj are recipes over the li and �{|mj |} ≈ sj. We
call the mappings m1 �→ s1, . . . ,mn �→ sn shorthands. The domain of a frame
with shorthands is defined to be the domain of the underlying frame. �

We will treat these mj like the labels li. As a consequence, the set R�′ is now
TΣop

({l1, . . . , lk,m1, . . . ,mn}), i.e., all the shorthands can be used. This gives
the same recipes as R�, but the shorthands make a difference when we restrict
ourselves to constructive recipes, i.e., recipes without destructors which we define
as Rc

� = TΣc
op

({l1, . . . , lk}) and Rc
�′ = TΣc

op
({l1, . . . , lk,m1, . . . ,mn}) where Σc

op

are the constructors. Thus Rc
�′ can use destructors from the shorthands, but

otherwise only constructors, and thus in general Rc
�′ � Rc

�. Similarly, we say
that a term t is constructive if it does not contain any destructor.

Recall that initially all terms in a frame’s image are constructive. Our algo-
rithms will ensure that all sj added through shorthands are also constructive.

Example 4. Let k ∈ TΣ(V) and x ∈ V. Consider the frames

� = {| l1 �→ scrypt(k, x), l2 �→ k |}
�

′ = {| l1 �→ scrypt(k, x), l2 �→ k,m1 �→ x |}

where m1 = dscrypt(l2, l1). Here �
′ is the frame � with the shorthand m1 �→ x.

Indeed, we have that �{| dscrypt(l2, l1) |} = dscrypt(k, scrypt(k, x)) ≈ x.

4 Decision Procedure

We now give a decision procedure for the fragment of (α, β)-privacy that we
have defined in the previous section: a message-analysis problem with respect to
a destructor theory. We are thus given a triple (α, struct , θ) where α expresses
the privacy goal at this state and the models of α can be characterized by substi-
tutions from the free variables of α to constants of Σ0. The substitution θ is one
of the models, namely what is the reality, i.e., the true value of the free variables
of α. Finally, struct is a frame with privacy variables representing all the mes-
sages that the intruder received in the exchange with honest agents up to this
state. This means that the intruder knows the structure of each message, because
the protocol description is public and there is no branching; what the intruder
might not know is the value θ of the privacy variables (as well as constants repre-
senting strong keys and nonces). The intruder also knows the concrete messages
concr = θ(struct). The question our algorithm will answer is what models of α
the intruder can exclude from this, i.e., the θ′ |= α such that concr �∼ θ′(struct).
To avoid enumerating all models (there are exponentially many in general) and
to be able to easily integrate our algorithm with reasoning about other con-
straints, the algorithm returns a set of equations and inequations that can be
derived by the intruder.
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4.1 Composition

Composition in a Structural Frame. This first piece of the procedure is
concerned with the intruder composing messages, i.e., using only constructive
recipes. Note that the intruder can also use shorthands that represent the result
of previous decryption operations. This composition task is similar in many
intruder algorithms: either the goal term t is directly in the knowledge or it is of
the form f(t1, . . . , tn) where f is a public constructor and the ti can be composed
recursively. The novelty of our algorithm here is that both the terms in struct
and t may contain privacy variables, and composition may reveal information
about these variables to the intruder. For a variable x ∈ V, the intruder knows all
values in the domain of x. Thus, if the variable occurs in a term to compose with
only public constructors, they can compare all possibilities and see which one is
correct, i.e., to what constant the variable x is mapped. Much of this evaluation
must be postponed to a later stage of the algorithm. For now the composition
algorithm just computes under which values of the variables the goal term t can
be produced, i.e., it returns a set of pairs (r, σ) of a recipe r and a substitution
σ where σ is an MGU under which r produces the goal t.

Example 5. As in Example 1, struct = {| l1 �→ scrypt(k, x), l2 �→ scrypt(k, y), l3 �→
scrypt(k, z) |} and θ = [x �→ 0, y �→ 1, z �→ 0]. The intruder has several ways to
compose the term scrypt(k, x), depending on which model of α is true:

composeUnder(θ, struct , scrypt(k, x)) = {(l1, ε), (l2, [x �→ y]), (l3, [x �→ z])}

The other algorithms will actually rule out [x �→ y] since θ �|= x = y.

Algorithm 1: Composition in a structural frame
1 composeUnder(θ, struct , t) =
2 let RU = {(l, σ) | l �→ t′ ∈ struct , σ = unify(t = t′)} in
3 if t ∈ V then
4 RU ∪ {(θ(t), [t �→ θ(t)])}
5 else if t = f(t1, . . . , tn) and f ∈ Σpub then
6 RU ∪ {(f(r1, . . . , rn), σ) | (r1, σ1) ∈ composeUnder(θ, struct , t1),
7 . . . ,
8 (rn, σn) ∈ composeUnder(θ, struct , tn),
9 σ = unify(σ1, . . . , σn)}

10 else
11 RU

We argue that the algorithm is correct, in the sense that the pairs found
by this algorithm really allow to compose the term in the given frame, under a
unifier; the algorithm finds all constructive recipes together with an MGU.



Deciding a Fragment of (α, β)-Privacy 133

Theorem 1 (Correctness of composeUnder). Let θ be a substitution, struct
be a frame and t ∈ TΣ(V). Then

1. ∀(r, σ) ∈ composeUnder(θ, struct , t), σ(struct{| r |}) = σ(t).
2. ∀r ∈ Rc,∃τ, τ(struct{| r |}) = τ(t) =⇒

(∃σ, (r, σ) ∈ composeUnder(θ, struct , t) and τ |= σ).

Composition in a Ground Frame. At the concrete level, the terms in the
frame are all ground, i.e., they do not contain variables. The intruder does not
have to reason about possible variable instantiations but only cares about the
recipes they can use. This can be seen as a special case of the previous algorithm.
We will use the function compose which does the same as composeUnder but
drops the unifiers attached to the recipes (they are always the identity, for a
ground frame and a ground term).

4.2 Analysis

The next step in our procedure is to augment the frame with shorthands as far
as possible with messages the intruder can decrypt. This follows again common
lines of intruder deduction reasoning, namely performing a saturation [1], but
there are several crucial differences here. While the standard approach in static
equivalence of frames just looks at each frame in isolation and computes a set of
subterms that are derivable, we need to look at both concr and struct side by
side here, because some analysis steps may only be possible for some instances
of struct . Roughly speaking, if a decryption step is possible in concr but not
in all instances of struct , we can exclude those instances, and vice-versa, if a
decryption step is possible in some instances of struct , but not in concr , we can
exclude those.

The intruder analyzes struct and adds shorthands for terms that can be
decrypted. This will make all derivable subterms available with only composition
(constructive recipes).

Example 6. Let k1, k2, a ∈ Σ0 and x, y, z ∈ V. Consider the substitution θ =
[x �→ k1, y �→ a, z �→ k1] and the frame struct = {| l1 �→ scrypt(x, y), l2 �→ z |}.
Then the analysis extends the frame by adding a shorthand like so: structana =
{| l1 �→ scrypt(z, y), l2 �→ z, dscrypt(l2, l1) �→ y |}. Since the decryption is successful
in concr = θ(struct), the intruder is able to compose the key in struct with the
same recipe l2. This also enables the intruder to learn that x = z. Note that x
is changed to z in the frame because concr{| dscrypt(l2, l1) |} �≈ error, so we can
rule out all instances of x and z so that struct{| dscrypt(l2, l1) |} ≈ error. However,
there are more relations that could be deduced. For instance, the intruder is now
able to check the pair of recipes (l2, dscrypt(l2, l1)) with composition only (using
the shorthand). The intruder can therefore learn that also x �= y, but this is
handled by the final algorithm findRelations below.

Consider the same struct but with θ = [x �→ k1, y �→ a, z �→ k2], so that
the above analysis step is not possible. When trying to compose the key x, the
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algorithm composeUnder returns (l2, [x �→ z]) as a possibility. This does not
work in concr , so the intruder cannot actually obtain a new term, but conclude
that x �= z.

We define a recursive function analyzeRec that will apply one analysis step
from calling ana, add terms if the decryption was successful, and call itself to
perform the other analysis steps. To tackle the problem, we first consider that the
intruder knowledge has been split into three frames. That way, we can make the
distinction between the terms that have to be analyzed in the future, the terms
that might be decrypted later, and the terms that have already been completely
analyzed. Note that we do need to consider the terms “on hold”, i.e., that might
be decrypted later, because the intruder might learn at a later point how to
compose the required key.

The wrapper function analyze simply calls analyzeRec with the arguments
properly initialized. All terms are initially considered “new” because they have
to be analyzed. There are, at the start, no elements “on hold” or “done”. The
intruder does not know any equations between the variables at the beginning,
so we indicate the identity substitution ε as the initial value. Moreover, we also
indicate an empty set as the initial value of the set Ex of substitutions excluding
some models of the variables (“exceptions”).

The result of applying ana gives the key required to decrypt the term, and
a set FT of pairs (function, term) of derivable terms. If the decryption fails in
concr , i.e., the key cannot be composed at the concrete level, then it also fails in
struct and no new terms can be added. However, since composition of the key
at the structural level might be possible even in this case, the unifiers allowing
to compose the key in struct exclude some models. We add such substitutions
to the set Ex . Note that in the algorithms we write l as a label even though it
can actually be a recipe, because we treat the recipes from shorthands as regular
labels.

If the decryption is successful in concr , then it is also successful in struct and
we can define recipes for the new terms. The shorthands added at this point use
the destructors paired with the new terms, and some recipe found for composing
the key in concr . The choice of this recipe is irrelevant: we also add a shorthand
in D for the key, if there is not one already in the frame, so that we can later
check the different ways to compose it. The keyword “pick” in the definition
below refers to this choice, it means “take any one element from the set”.

We put the new mappings in a frame LTnew and add this to the new terms to
analyze. We do not need to add terms for which the intruder already has a label
or shorthand. All terms that were on hold also need to be analyzed again, as the
intruder might be able to successfully decrypt them with the new knowledge.
We apply the substitution σnew , required to compose the key with the different
recipes the intruder found in concr for the corresponding ground key, to all terms
in the split frame so that the shorthands are correct. We update the equations
that the intruder found by unifying with the previous substitution σ.

The analysis adds shorthands for any successful decryption of terms. The
function analyze also preserves the property of static equivalence between struct
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Algorithm 2: Analysis of a structural frame
1 analyze(θ, struct) =
2 analyzeRec(θ, struct , {| |}, {| |}, ε, {})

3 analyzeRec(θ, N, H, D, σ,Ex ) =
4 if N = {| |} then
5 (H ∪ D, σ,Ex )

6 else
7 let {| l �→ t |} ∪ LT = N
8 (k,FT ) = ana(t)
9 struct = N ∪ H ∪ D

10 concr = θ(struct)
11 SR = composeUnder(θ, struct , k)
12 GR = compose(concr , θ(k))
13 σnew = unify({σ | (r, σ) ∈ SR, r ∈ GR})
14 Exnew = {σ | (r, σ) ∈ SR, r �∈ GR} in
15 if GR = {} then
16 analyzeRec(θ,LT , {| l �→ t |} ∪ H, D, σ,Ex ∪ Exnew )

17 else
18 pick r ∈ GR
19 let LTnew = {| f(r, l) �→ t′ | (f, t′) ∈ FT ,
20 ∀r′, r′ �→ t′ /∈ struct |} in
21 analyzeRec(θ,
22 σnew (LTnew ∪ LT ∪ H),
23 {| |},
24 σnew ({| l �→ t |} ∪ {| r �→ k | ∀r′, r′ �→ k /∈ struct |} ∪ D),
25 unify(σ, σnew ),
26 Ex ∪ Exnew )

and concr . Recall that Θ denotes the set of models of α. Our results are expressed
over Θ so that they can be used to check whether some models can be excluded.
The algorithm presented here does not simply return the analyzed frame, but also
a unifier σ and a set of substitutions Ex . The intruder knows that the concrete
instantiation of variables is an instance of σ and can exclude all substitutions in
Ex . These properties are formally expressed in Theorem 2.

Theorem 2 (Correctness of analyze). Let θ be a substitution, struct be a
frame and (structana , σ,Ex ) = analyze(θ, struct). Then

1. ∀r ∈ R, structana{| r |} ≈ σ(struct{| r |}).
2. ∀r ∈ R,∃r′ ∈ Rc

structana , structana{| r′ |} ≈ σ(struct{| r |}).
3. ∀θ′ ∈ Θ, θ′(struct) ∼ θ(struct) =⇒ θ′ |= σ ∧

∧
σ′∈Ex ¬σ′.

4. ∀θ′ ∈ Θ, θ′ |= σ =⇒ (θ′(struct) ∼ θ(struct) ⇐⇒ θ′(structana) ∼
θ(structana))

Theorem 3 (Termination of analyze). Let θ be a substitution and struct be
a frame. Then the call analyze(θ, struct) terminates.
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4.3 Intruder Findings

The final algorithm we present generates a formula φ, which contains all equa-
tions and inequations between variables that the intruder is able to derive from
their knowledge. We argue that, after analysis, all checks that the intruder can
do to compare struct and concr are covered by only composing the terms in
the frames. We show that this procedure allows automated verification of (α, β)-
privacy goals.

We specify a function findRelations that starts by analyzing the frame before
trying to find more relations. The analysis of struct includes the analyzed frame
structana as well as a unifier and a set of substitutions, excluding some models
of the variables. These relations have to be included in the formula φ, since it
already constitutes some deduction that the intruder was able to make.

First, the intruder tries to compose the terms inside concr in different ways. If
the intruder has several ways to compose a term, i.e., the composition algorithm
returned several recipes, then pairs of recipes from these possibilities must also
produce the same corresponding term in struct . This gives a number of equations.

Second, the intruder tries to compose the terms inside struct in different
ways, under some unifiers. If they are able to compose a term in several ways,
then we check whether the pairs of recipes produce the same corresponding term
in concr . If it is the case, then there is nothing to deduce, as this follows from
static equivalence. However, if a pair of recipes distinguishes the frames, i.e., we
have found (l, r) such that concr{| l |} �≈ concr{| r |}, then the intruder knows that
the unifier attached to r can be excluded. They can deduce the negation of the
unifier, i.e., a disjunction of inequations.

Pairs from Equivalence Classes. When we want to compare all elements of
a set R = {r1, . . . , rn} for equality, it is obviously sufficient to pick one element,
say r1, and compare the pairs (r1, r2), . . . , (r1, rn). The function pairsEcs does
just that, i.e., given R returns such a set of pairs.

Algorithm 3: Relations between variables
1 findRelations(θ, struct) =
2 let (structana , σ,Ex ) = analyze(θ, struct)
3 concrana = θ(structana)
4 pairs =

⋃
l�→t∈concrana

pairsEcs(compose(concrana , t))

5 eqs = {structana{| r1 |} = structana{| r2 |} | (r1, r2) ∈ pairs}
6 ineqs = Ex ∪ {σ′ | l �→ t ∈ structana ,
7 (r, σ′) ∈ composeUnder(θ, structana , t),
8 concrana{| l |} �≈ concrana{| r |}} in
9 unify(σ, eqs) ∧ ∧

σ′∈ineqs ¬σ′

We formalize the correctness of the decision procedure that has been
described. We argue that the algorithm findRelations is sound and complete,
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i.e., the formula φ can be used to automatically verify privacy for a message-
analysis problem by applying our algorithms. Note that the step of verifying
whether φ actually excludes models of α can be performed with existing SAT
solvers.

Theorem 4 (Correctness of findRelations). Let (α, β) be a message-analysis
problem, where struct = {| l1 �→ t1, . . . , lk �→ tk |} for some t1, . . . , tk ∈ TΣ(fv(α))
and concr = θ(struct) for some θ ∈ Θ. Let φ ≡ findRelations(θ, struct). Then

(α, β)-privacy holds ⇐⇒ ∀θ′ ∈ Θ, θ′ |= φ

5 Conclusions

We have designed a decision procedure for message-analysis problems in (α, β)-
privacy with destructor theories. This procedure is not all that different from
algorithms for static equivalence of frames [1]: we split in composition and
decryption, have a saturation procedure for decryption, and finally check if we
can compose a term in one saturated frame in a different way while the other
frame gives a different result. However, we do not decide static equivalence,
rather, one frame, struct , has privacy variables, the other, concr , is a ground
instance of struct , and the question is if the intruder can learn something about
this instantiation. In particular whatever works in concr , must work in struct ;
thus if it works only under some unifier σ, then we rule out all models that are
not instances of σ, and vice-versa, if something works in struct under σ but not
in concr , then we rule out all instances of σ.

The fact that the algorithm just returns a substitution that must be the
case and a set of substitutions that we can rule out allows for a flexible integra-
tion into more complex scenarios. First, we can allow for further variables over
finite domains, but that are not part of α. This can be for instance when there
are choices that are not themselves relevant for the privacy goals like a session
identifier: if the intruder finds them out during analysis, this is not directly a
violation of privacy, but if that allows for ruling out some model of α, then it is.

Second, when an agent process can branch on a condition (see for instance
the discussion of the AF-protocols in [15]), then the reachable states in general
have a form that generalizes message-analysis problems, namely there are several
possible frames struct i and associated conditions φi, and the intruder knows that

((φ1 ∧ struct1 = struct) ∨ . . . ∨ (φn ∧ structn = struct)) ∧ struct ∼ concr .

Here, we can apply almost the same algorithms for each struct i with concr ,
except that here we may rule out all models of α ∧ φi, meaning we know ¬φi.

For future work, we plan to obtain a fully-fledged analysis tool, i.e., explor-
ing the entire set of reachable states, and consider here in particular symbolic
representations to avoid exponential blow-ups.

Further, we want to relax the constraints about the algebraic equations.
Instead of using only destructor theories, we want to allow for a larger class of
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protocols to be machine-checked with the framework described, in particular the
properties of exponentiation needed for Diffie-Hellman.

Acknowledgments. Thanks to Luca Viganò and Sébastien Gondron for useful com-
ments. This work has been supported by the EU H2020-SU-ICT-03-2018 Project No.
830929 CyberSec4Europe (cybersec4europe.eu).

A Proofs

Theorem 1 (Correctness of composeUnder). Let θ be a substitution, struct
be a frame and t ∈ TΣ(V). Then

1. ∀(r, σ) ∈ composeUnder(θ, struct , t), σ(struct{| r |}) = σ(t).
2. ∀r ∈ Rc,∃τ, τ(struct{| r |}) = τ(t) =⇒

(∃σ, (r, σ) ∈ composeUnder(θ, struct , t) and τ |= σ).

Proof (Sketch).

1. The idea is to proceed by induction on the structure of t. For the pairs found
by comparing with labels or composing a variable, the property holds trivially.
For the additional pairs found with terms f(t1, . . . , tn) composed with a public
function, the point is that the pairs returned for the arguments are correct by
induction. The property is then verified for composing t because it reduces
to mapping the unifiers returned to all arguments.

2. The idea is to proceed by induction on the structure of r ∈ Rc. For a label,
there is a pair (r, ε) returned so the property holds. For a recipe that is a
composition, i.e., r = f(r1, . . . , rn) for some f and some r1, . . . , rn ∈ Rc, the
point is that the recipes are paired with MGUs by induction. The property
is then verified for r because a substitution τ such that τ(struct{| r |}) = τ(t)
also unifies the arguments inside the function application, so the algorithm
can compute an MGU from the results of the recursive calls. �

Theorem 2 (Correctness of analyze). Let θ be a substitution, struct be a
frame and (structana , σ,Ex ) = analyze(θ, struct). Then

1. ∀r ∈ R, structana{| r |} ≈ σ(struct{| r |}).
2. ∀r ∈ R,∃r′ ∈ Rc

structana , structana{| r′ |} ≈ σ(struct{| r |}).
3. ∀θ′ ∈ Θ, θ′(struct) ∼ θ(struct) =⇒ θ′ |= σ ∧

∧
σ′∈Ex ¬σ′.

4. ∀θ′ ∈ Θ, θ′ |= σ =⇒
(θ′(struct) ∼ θ(struct) ⇐⇒ θ′(structana) ∼ θ(structana))

Proof. 1. When analyzing l �→ constr(t1, . . . , tn), the frame is augmented with
mappings of the form destr(r, l) �→ ti following the destructor theory. Thus,
the “labels” added are recipes over the domain of struct . These shorthands are
correct when applying σ, which is required to compose the keys for decryption
steps. The frame structana is the frame σ(struct) with shorthands.

https://www.cybersec4europe.eu
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2. We proceed by induction on the structure of r. We consider the occurrence of
a destructor destr such that no subrecipe for the arguments of destr contains
destructors.

– If the destructor is applied to a label and the decryption is successful,
then a shorthand m = destr(rk, l) �→ t′ has been added in the frame,
i.e., σ(struct{|m |}) ≈ t′, where rk is some recipe for the key k such that
destr(k, t) = t′ ∈ E.

– If the destructor is applied to a constructor, i.e., for some rk, r1, . . . , rn,
r = destr(rk, constr(r1, . . . , rn)), and the decryption is successful, then the
recipe can be simplified to one of the ri yielding the same term.

– If the decryption is not successful, then we can replace the application of
destr by the constant error, which represents failed decryption

We have covered all cases since the subrecipes do not contain destructors. By
induction, we can replace all occurrences of destructors in the recipe, i.e., we
can define a constructive recipe r′ which is the same as r but all occurrences
of destructors and have been replaced by the methods listed above.

3. We first show that the intruder can exclude all models that are not instances
of σ. The substitution σ has been built from unification of some σi in suc-
cessful analysis steps, i.e., where (ri, σi) ∈ composeUnder(θ, struct , k) was a
possibility to compose a decryption key k, and ri ∈ compose(θ(struct), θ(k))
is also a recipe for the corresponding key θ(k) in θ(struct). It suffices to show
that θ′ |= σi for all σi. From Theorem 1 follows that σi is the MGU under
which k can be derived in θ, i.e., θ′(struct{| ri |}) �≈ θ′(k) for any θ′ that is
not an instance of σi. Since the intruder can see that ri produces the correct
decryption key in θ(struct), all models that are not consistent with σi can be
excluded.
We next show that all models that are instances of a substitution σ′ ∈ Ex
can be excluded by the intruder as well. The substitution σ′ has been found
during analysis of some mapping l �→ t where the key k can be composed in the
current struct under some unifier but θ(k) cannot be composed in θ(struct).
There exists (rk, σ′) ∈ composeUnder(θ, struct , k) for some recipe rk. There is
a destructor destr for the decryption under consideration. We define the recipe
r = destr(rk, l) for this decryption step. The decryption fails in θ(struct),
so θ(struct{| r |}) ≈ θ(struct{| error |}). Since θ′(struct) ∼ θ(struct), we also
have that θ′(struct{| r |}) ≈ θ′(struct{| error |}). However, the decryption is
successful in struct , so σ′(struct{| r |}) �≈ σ′(struct{| error |}). Therefore, θ′ is
not an instance of σ′, because if it were there would be a pair of recipes,
namely (r, error), to distinguish the frames.

4. Let θ′ ∈ Θ such that θ′ |= σ. Using property 1. and the fact that θ′ |= σ,
we have that for any recipe r, θ′(structana{| r |}) ≈ θ′(struct{| r |}). This
also holds in particular for θ. Therefore, θ′(struct) ∼ θ(struct) if and only
if θ′(structana) ∼ θ(structana) because any pair of recipes distinguishing
θ′(struct) and θ(struct) would also distinguish the analyzed frames, and vice-
versa. �

Theorem 3 (Termination of analyze). Let θ be a substitution and struct be
a frame. Then the call analyze(θ, struct) terminates.
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Proof. By definition, analyze calls analyzeRec, so what we really want to show
is that the call to analyzeRec terminates. We now consider that the frame struct
has been split into three frames N,H,D and denote with σ and Ex the unifier
and the set of substitutions passed as arguments to analyzeRec, respectively. The
size of a term t ∈ TΣ(V) is defined as 1 for a variable and size(f(t1, . . . , tn)) =
1 +

∑n
i=1 size(ti) for a function application. We abuse the notation and write

size(N ∪ H) to mean the sum of the size of all terms in N ∪ H. We consider the
tuple (size(N ∪ H),#N). When analyzing the mapping l �→ t ∈ N :

– If the decryption of t fails, l �→ t is removed from N and put in H. Then
size(N ∪ H) stays the same but #N has decreased by 1.

– If the decryption of t succeeds, l �→ t is removed from N and put in D. The
new terms from the analysis and the terms that were on hold are put in N .
Then size(N ∪ H) has decreased by at least 1 (t is not present anymore but
some of its subterms might be).

The lexicographic order on (N,≤)×(N,≤) forms a well-order and the sequence of
tuples for the recursive calls is a strictly decreasing sequence bounded by (0, 0),
so such a sequence is finite and the call terminates. �

Theorem 4 (Correctness of findRelations). Let (α, β) be a message-analysis
problem, where struct = {| l1 �→ t1, . . . , lk �→ tk |} for some t1, . . . , tk ∈ TΣ(fv(α))
and concr = θ(struct) for some θ ∈ Θ. Let φ ≡ findRelations(θ, struct). Then

(α, β)-privacy holds ⇐⇒ ∀θ′ ∈ Θ, θ′ |= φ

Proof. Let (structana , σ,Ex ) = analyze(θ, struct). First, recall that we have
(α, β)-privacy holds ⇐⇒ ∀θ′ ∈ Θ, θ′(struct) ∼ θ(struct). We show that
∀θ′ ∈ Θ, θ′(struct) ∼ θ(struct) ⇐⇒ θ′ |= φ. The models that are not instances
of σ can already be excluded and violate the privacy of α because φ |= σ. We
now consider θ′ ∈ Θ such that θ′ |= σ.

– If θ′(struct) �∼ θ(struct): then θ′(structana) �∼ θ(structana) from Theorem 2,
so there exists a pair of recipes (r1, r2) that distinguishes the frames. From
Theorem 2, we can assume without loss of generality that r1, r2 are construc-
tive. Moreover, either one the recipes is a label (or from a shorthand) or both
recipes have the same constructor at the top-level and one pair of the recipes
for the arguments distinguishes the frames. So we can further assume that r1
is a label (or from a shorthand). This justifies the fact that findRelations will
perform a check for this pair of recipes.

• If θ′(structana{| r1 |}) �≈ θ′(structana{| r2 |}) and for the concrete observa-
tion θ(structana{| r1 |}) ≈ θ(structana{| r2 |}): then θ′ cannot be an instance
of the substitution σ unifying, among others, the following equation:
structana{| r1 |} = structana{| r2 |}. The algorithm returns φ such that
φ |= σ, so θ′ �|= φ.

• If θ′(structana{| r1 |}) ≈ θ′(structana{| r2 |}) and for the concrete observa-
tion θ(structana{| r1 |}) �≈ θ(structana{| r2 |}): then θ′ is an instance of some
substitution σ′ found when checking inequations. The algorithm returns
φ such that φ |= ¬σ′, so θ′ �|= φ.



Deciding a Fragment of (α, β)-Privacy 141

– If θ′(struct) ∼ θ(struct): then θ′(structana) ∼ θ(structana) from Theorem 2.
For every t ∈ TΣ and (r1, r2) ∈ pairsEcs(compose(θ(structana), t)), we have
by definition of compose that θ(structana{| r1 |}) ≈ θ(structana{| r2 |}). Since
θ′(structana) ∼ θ(structana), then θ′(structana{| r1 |}) ≈ θ′(structana{| r2 |}).
Therefore, θ′ |= σ, where σ unifies all equations found from calling compose
on terms in θ(structana).
Let ineqs be the set of substitutions Ex found during analysis union with
the substitutions found by the findRelations algorithm. If θ′ were an instance
of some σ′ ∈ ineqs, then θ′(structana) �∼ θ(structana) and thus θ′(struct) �∼
θ(struct) following Theorem 2. This would contradict the assumption, so θ′ |=
¬σ′. Therefore, θ′ |= σ ∧

∧
σ′∈ineqs ¬σ′ which is exactly θ′ |= φ. �
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