
Efficient Permutation Protocol for MPC
in the Head

Peeter Laud(B)

Cybernetica AS, Tartu, Estonia
peeter.laud@cyber.ee

Abstract. The MPC-in-the-head construction (Ishai et al., STOC’07)
gives zero-knowledge proofs from secure multiparty computation (MPC)
protocols. This paper presents an efficient MPC protocol for permut-
ing a vector of values, making use of the relaxed communication model
that can be handled by the MPC-in-the-head transformation. Our con-
struction allows more efficient ZK proofs for relations expressed in the
Random Access Machine (RAM) model. We benchmark our construction
and compare it against other reasonable constructions of permutations
under the MPC-in-the-head transformation and conclude that it signifi-
cantly improves on efficiency and the range of applicability.

Keywords: Zero-knowledge proofs · MPC-in-the-head · Random
Access Machine

1 Introduction

Zero-knowledge proofs (ZKP) are cryptographic protocols that allow one party—
the Prover—to convince another party—the Verifier—in the correctness of a
statement, with the Verifier learning nothing besides the fact that the statement
holds. The language of statements and their truth values are given in terms of a
specified relation R ⊆ {0, 1}∗ × {0, 1}∗. A statement is some x ∈ {0, 1}∗, known
both to the Prover and the Verifier. The Prover attempts to convince the Verifier
that there exists some w (or: the Prover knows some w), such that (x,w) ∈ R.

There exist different techniques for turning the description of the relation
R into a ZKP, based on various kinds of interactive proofs, or different secure
multiparty computation techniques. They work best when R is represented as
an arithmetic circuit, or a boolean circuit. In practice, we express R in some
programming language; large parts of it may already be given to us in case we
want to present a proof that a certain computer program behaves in a certain
manner. Hence, we want to give zero-knowledge proofs for relations expressed in
the Random Access Machine (RAM) model.

Translating the description of R given in the RAM model into a ZKP is less
straightforward. Generic transformations from RAM to circuits incur at least
quadratic overheads [37]. For smaller overheads, one separately translates the
behaviour of the processing unit, and the behaviour of the memory. These two
c© Springer Nature Switzerland AG 2021
R. Roman and J. Zhou (Eds.): STM 2021, LNCS 13075, pp. 62–80, 2021.
https://doi.org/10.1007/978-3-030-91859-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91859-0_4&domain=pdf
http://orcid.org/0000-0002-9030-8142
https://doi.org/10.1007/978-3-030-91859-0_4

Efficient Permutation Protocol for MPC in the Head 63

behaviours have to be related to each other, and this requires showing that the
load- and store-operations read and write the same values at both sides. Showing
the equality of loaded and stored values requires us to sort these actions by
the memory addresses; in ZKP, this amounts to proving that two vectors are
permutations of each other, and to a sortedness check of one of the vectors.

A universal representation for permutations works by fixing a routing net-
work [4,42], and giving the bits that state how each switching element must
route its two incoming values. This representation is equally well usable with
any ZKP technique. If there have been m memory operations in the program,
then the size of the routing network is linearithmic—O(m log m). If m is close
to the total number of operations that the relation R (expressed as a program)
performs, then the size of the routing network may be the dominant component
in the translation of R into a ZKP.

MPC-in-the-head [25] is a ZKP technique that internally makes use of secure
multiparty computation protocols. In practical comparisons with other tech-
niques, it has good running time for the Prover, a decent running time for the
Verifier, but longer proofs. Nevertheless, there are a number of ZK proof sys-
tems built upon this technique [1,8,18]. The MPC-in-the-head technique is also
expected to compose well with other ZKP techniques.

In this paper, we propose a O(n)-complexity MPC-in-the-head based method
to verify the correctness of the application of a permutation to a vector of values.
Our method, which is basically a secure multiparty computation protocol for
a communication model that fits into the MPC-in-the-head technique, can be
composed with other protocols in the same communication model, hence bringing
down the complexity of ZKP protocols for relations represented in the RAM
model. We present our construction in Sect. 4, after discussing related work in
Sect. 2 and giving the preliminaries in Sect. 3.

To appreciate our result, its location deep down in the technology stack has
to be recognized. We give a MPC subroutine, which can be composed with other
MPC operations using the same data representations in order to build a MPC
protocol in a particular communication model, that evaluates the relation R in a
manner that small coalitions of parties do not learn anything about the witness
w. Onto this MPC protocol, one can apply the MPC-in-the-head transformation
of Ishai et al. [25] that turns it into a ZKP protocol for the relation R. Hence, our
subroutine is not a standalone protocol; in particular, it is not a mix-net. Also,
any complexity results of our subroutine have to be considered in the context of
the MPC-in-the-head transformation.

2 Related Work

Zero-knowledge proofs were first proposed in [22]. In this section, we cannot
hope to give an overview of all the advancements thereafter. Rather, we refer
to the course notes [40] discussing interactive proofs and their zero-knowledge
variants.

The MPC-in-the-head construction was proposed in [25,26]. A number of ZK
proof systems have been built on top of this construction. The ZKBoo [18] and

64 P. Laud

ZKB++ [8] constructions are generic transformations from MPC protocols to
ZKP protocols, carefully keeping track of bits that have to be included in the
proof vs. can be generated from seeds included in the proof. The construction
by Katz et al. [27] gives an improved transformation for MPC protocols that
have a separate preprocessing phase. The Ligero transformation [1] applies only
to MPC protocols of certain form, but gives proofs of size O(

√
n), where n is

the size of the circuit describing R.
Privacy-preserving computations in the RAM model have been studied in

the context of garbled RAM, which can be seen as RAM analogue for garbled
circuits. A heuristic construction was proposed in [34], and constructions based
on common hardness assumptions in [17]. Garg et al. [15] proposed a construc-
tion that made only black-box use of the underlying cryptographic primitives.
Private RAM computation protocols have also been built on top of oblivious
RAM [21], securely implementing the client’s operations either on top of garbled
circuits [33], or secret-sharing based MPC [28], or a combination of them [12,29].

For ZK proofs, practically most efficient constructions for relations expressed
in the RAM model are based on showing that two vectors are permutations
of each other. Permutations in ZK proofs and MPC protocols have received
their share of attention and so have the means of connecting the processing
unit and the memory unit in encoding RAM-based computations in both ZK
proofs and MPC protocols. Laur et al. [32] were among the first to propose a
composable MPC protocol for secret sharing based protocols; Laud [30] built
oblivious reading and writing operations on top of it. For garbled circuits, Zahur
and Evans [43] proposed similar constructions. For ZK proofs, Ben-Sasson et
al. [2] used routing networks to connect the processing unit and the memory unit
in a RAM-based computation. Bootle et al. [6] lifted a technique by Neff [35]
for verifying that two encrypted vectors are permutations of each other, into
the encodings of relations of ZK proofs; this technique is based on showing the
equality of polynomials that have the elements of one of the vectors as its roots.

Making proofs of permutations in private fashion has also been an impor-
tant component of electronic voting systems. In this context, the proofs—
cryptographic mix-nets are full-fledged protocols for stating that two sets of
ciphertexts encrypt the same bag of plaintexts. These proofs can use any ZKP
techniques, and be very short, even down to a constant [23]. An overview of
cryptographic mix-nets is given in [24]. There is no straightforward method for
composing these protocols with ZKP protocols for an arbitrary relation R.

Current state of the art of oblivious permutations in ZK proofs is definitely
not satisfactory. The approaches based on routing networks have linearithmic
complexity, if we consider the size of the indices and/or permuted elements to
be constant. The approaches based on comparing polynomials have linear com-
plexity, but work only over large fields and introduce extra rounds of interaction
into the proof. MPC-in-the-head techniques are more versatile with respect to
the algebraic structures they support, and many interesting relations are not best
expressed as computations over large fields. Hence we are looking for techniques
with the versatility of routing networks, but with linear complexity.

Efficient Permutation Protocol for MPC in the Head 65

3 Preliminaries

In this paper, [n] denotes the set {1, . . . , n}. We use bold font to denote vectors:
v = (v1, . . . , vn) is a vector of length n.

3.1 Secure Multiparty Computation

A secure multiparty computation (MPC) protocol allows n parties P1, . . . , Pn

to jointly evaluate a publicly-known function f : ({0, 1}m)n → {0, 1}�, where
the i-th party supplies the i-th argument of the function. All parties learn the
output. Passive security for MPC protocol sets is defined through the simula-
tion paradigm [19]. The view of a party in a protocol consists of the inputs of
this party, the randomness this party generates, and the messages this party
receives from other parties; these values allow one to perform all computations
of that party, in particular find the messages it sends to other parties, and the
values it outputs at the end of the protocol. The protocol Πf for n parties is
passively secure against the coalition Pi1 , . . . , Pik , if there exists an algorithm
S (the simulator), such that for any x1, . . . , xn, the joint view of Pi1 , . . . , Pik

in Πf , where the input of Pj is xj , is indistinguishable from the output of
S(xi1 , . . . , xik , f(x1, . . . , xn)).

Let A ⊆ {0, 1}∗ be a finite set. Let A⊥ = A ∪ {⊥}, where ⊥ denotes the
absence of a value. A (n, k)-secret sharing scheme for A consists of a randomized
algorithm Share : A → A

n and a deterministic algorithm Combine : A
n
⊥ →

A⊥, such that the output of Share, when restricted to at most k positions, is
independent from the input, and, for all x ∈ A, for all (x1, . . . , xn) that can be
output by Share(x), and for all (x′

1, . . . , x
′
n) ∈ A⊥, where x′

i ∈ {xi,⊥} and the
number of non-⊥ elements x′

i is at least (k+1), we have Combine(x′
1, . . . , x

′
n) = x.

A (n, k)-secret sharing scheme may be a significant component of n-party
MPC protocols secure against k parties. In this case, the private values are
held by secret-sharing them among the n parties. For operations with private
values, one needs cryptographic protocols that take the shares of the inputs of the
operation as the input, and return to the parties the shares of the output [16,20].
Typically, the function f is given by an arithmetic circuit that implements it.
The inputs and outputs of f , as well as the intermediate values computed in
the circuit are elements of A, which is required to be an algebraic structure,
typically a ring (or, more strongly, a field). The inputs of the circuit are shared
by the parties holding them. The operations in the circuit are addition and
multiplication in the ring A. The parties execute a protocol for each operation
in the circuit, eventually obtaining the shares of the output value, which they
all learn by running the Combine-algorithm.

Given a value v ∈ A that is held in secret-shared form as part of a MPC
protocol, we denote the sharing by [[v]], and the individual share of the i-th
party by [[v]]i. If J ⊆ [n], then we let [[v]]J denote the tuple ([[v]]i)i∈J . The
write-up [[v]] denotes a vector, each element of which is secret-shared. The write-
up [[w]] ← [[u]] + [[v]] denotes the execution of the protocol for addition by all the
parties, where the inputs are the shares of u and v, and the output shares define

66 P. Laud

the value of w. Similar write-up is used for other operations with secret-shared
data. Single-instruction-multiple-data operations are denoted by applying the
operations to vectors of values.

A secret sharing scheme over a ring A is linear if the Combine operation from
A

n to A is linear [9,39]. In this case, the protocol for [[u]]+[[v]] is just the addition
of the corresponding shares of u and v by each party. Similarly, the protocol for
c · [[u]], where c ∈ A is public, requires each party to multiply its share with c.
The protocol for [[u]] · [[v]] is more complex; its details depend on the details of
the secret sharing scheme, and it requires communication among participants.

3.2 Honest-Verifier Zero-Knowledge Proofs

Let R ⊆ {0, 1}∗ × {0, 1}∗, which we also consider as a function R : {0, 1}∗ ×
{0, 1}∗ → {0, 1}. Write LR = {x ∈ {0, 1}∗ | ∃w ∈ {0, 1}∗ : (x,w) ∈ R}. We
assume that R is a NP-relation, i.e. the function R is polynomial-time com-
putable, and there exists a polynomial p, such for all x ∈ LR, there exists
w ∈ {0, 1}∗, such that (x,w) ∈ R and |w| ≤ p(|x|).

A protocol ΠR is a Σ-protocol for a given NP-relation R, if it is a protocol
between two parties P and V with the following properties

– Structure: both P and V receive x ∈ {0, 1}∗ as input. P also receives w ∈
{0, 1}∗ as input. P sends the first message α to V . V generates a random
β (does not depend on x or α), and sends it to P as the second message.
P sends the third message γ to V . V runs a check on x, α, β, γ and either
accepts or rejects.

– Completeness: if (x,w) ∈ R, then V definitely accepts.
– Special soundness: there exists a number s, such that if the transcripts

(x, α, βi, γi) for i ∈ [s] with mutually different βi-s are all accepted by V ,
then a w satisfying (x,w) ∈ R can be efficiently found from these transcripts.

– Special honest-verifier zero-knowledge: there exists a simulator that on
input x ∈ LR and a random β, outputs α, γ, such that the distribution of
(x, α, β, γ) is indistinguishable from the transcripts of the real protocol.

A Σ-protocol is an instance of honest-verifier zero-knowledge (HVZK) proofs
of knowledge (PoK). It can be turned into a non-interactive ZK PoK using the
Fiat-Shamir heuristic [13], which is provably secure in the Random Oracle Model
(ROM) [38]. The same heuristic is usable if the protocol has more rounds, as
long as all challenges from the verifier are freshly generated random values. In
this paper, we only consider honest verifiers, as the heuristic is already usable
for them.

3.3 Commitments

A commitment scheme [7] allows one party to bind (commit) himself to a
chosen value, while keeping it hidden from others, and later reveal it, with-
out having the option to change it. The cryptographic primitive of commit-
ment consists of the description of a set M ⊆ {0, 1}∗, a randomized algo-
rithm Commit : M → {0, 1}∗ × {0, 1}∗, and a deterministic algorithm Open :

Efficient Permutation Protocol for MPC in the Head 67

M × {0, 1}∗ × {0, 1}∗ → {0, 1}. Here the argument of Commit is the message
m ∈ M to be commited; its outputs are the commitment c and the open-
ing information d. The algorithm Open takes the message m, commitment c,
and the opening information d, and either accepts or rejects. The commitment
scheme must be hiding—the commitment c hides the message m in a semanti-
cally secure manner—, and binding—it should be intractable to construct a tuple
(m1,m2, c, d1, d2), such that m1 �= m2, but Open(m1, c, d1) and Open(m2, c, d2)
both accept.

Commitments can be based on the assumption of hardness of finding discrete
logarithms [36]. In the random oracle model, one can commit to x ∈ {0, 1}∗ by
generating a sufficiently long random r ∈ {0, 1}∗, and setting c = H(x, r) and
d = r, where H is a random oracle. The Open algorithm verifies that c = H(x, r).

3.4 The IKOS and ZKBoo Constructions

Fix the numbers n and k ≥ 2, as well as a set A and a (n, k) secret-sharing
scheme for A. For a relation R ⊆ {0, 1}∗ × A, n ∈ N and x ∈ {0, 1}∗, define the
function fx

R : An → {0, 1} by fx
R(w1, . . . , wn) = R(x,Combine(w1, . . . , wn)). Let

Πfx
R

be a MPC protocol for fx
R, passively secure against k parties.

The IKOS construction [25] turns the family of protocols {Πfx
R
}x∈{0,1}∗

into a Σ-protocol for the relation R. Let the Prover and the Verifier have an
instance x ∈ {0, 1}∗, and the Prover also have w ∈ A, such that (x,w) ∈ R.
In the IKOS construction, the prover first constructs a secret sharing of w
by (w1, . . . , wn) ← Share(w). He then executes the protocol Πfx

R
with inputs

w1, . . . , wn “in his head”, i.e. he performs the computations of all n virtual par-
ties by himself. Through this computation, the Prover obtains the views of all
n virtual parties. The Prover commits to the views of each virtual party, and
sends the commitments to the Verifier. The latter randomly picks a set of indices
{i1, . . . , ik}. The Prover opens the views of the i1-th, i2-th, . . . , ik-th virtual
party to the Verifier, who checks that the obtained output is 1 for all virtual
parties whose views were opened, and that these views are consistent with each
other.

A MPC protocol consists of two kinds of steps. In the first kind, a party
performs local computations. The second kind of steps is the sending of a message
from one party to another, the latter receiving the same message. We can express
the message send and receive as a two-party functionality of the form (x,⊥) →
(⊥, x), stating how the inputs of the parties are transformed into outputs.

In the IKOS construction, the Verifier checks the correctness of both kinds of
steps for all virtual parties whose views have been opened. The steps of first kind
are checked by the Verifier repeating the computations of the virtual parties. The
steps of second kind can be checked only if both the sender and the receiver of
the message are among the virtual parties whose views have been opened. In
this case, the Verifier recomputes sender’s message and checks that it appears
in receiver’s view.

For verifying the steps of the second kind, the actual two-party function-
ality being executed makes no difference; it may be more complex than send-

68 P. Laud

ing and receiving a message. Indeed, for any two-party functionality (x, y) →
(g1(x, y), g2(x, y)), where g1 and g2 are deterministic functions, the Verifier can
recompute x in the first virtual party’s view, y in the second virtual party’s view,
and then check that g1(x, y) and g2(x, y) appear in their views. In the follow-
ing, we call MPC protocols, which additionally make use of such more general
two-party functionalities, MPC-in-the-head protocols.

A n-party MPC-in-the-head protocol for evaluating arithmetic circuits over a
finite ring A with passive security against (n−1) parties was introduced and used
in the ZKBoo [18] ZK proof system. The two-party functionality used by their
protocol is oblivious linear evaluation (OLE), where the first party (“sender”)
inputs a pair of values (x, r) ∈ A

2, the second party (“receiver”) inputs a value
y ∈ A, the sender obtains nothing, and the receiver obtains xy − r.

In the ZKBoo MPC-in-the-head protocol, private values are additively
shared, i.e. v ∈ A is represented as [[v]], where each [[v]]i is a random element
of A, subject to the condition

∑n
i=1 [[v]]i = v. Hence the algorithm Share(v)

generates random [[v]]1, . . . , [[v]]n−1 ← A, and computes [[v]]n = v − ∑n−1
i=1 [[v]]i.

The algorithm Combine([[v]]1, . . . , [[v]]n) adds up all its arguments, none of which
may be ⊥. In order to add two private values in the underlying MPC protocol,
or to multiply a private value with a constant, each party performs that same
operation with his shares. For multiplying private values [[u]] and [[v]], the parties
execute the protocol in Algorithm 1. We see that each pair of parties (Pi, Pj) runs
an instance of OLE in order to share between themselves the product [[u]]i · [[v]]j .

Data: private values [[u]], [[v]]
Data: private value [[w]], such that w = uv
foreach i, j ∈ [n], i �= j do

Pi picks a random r
(i)
ij

$← A

Pi and Pj run the following two-party functionality:

Pi inputs ([[u]]i, r
(i)
ij)

Pj inputs [[v]]j
Pi obtains nothing
Pj obtains r

(j)
ij ← [[u]]i · [[v]]j − r

(i)
ij

foreach i ∈ [n] do

Pi computes [[w]]i ← [[u]]i · [[v]]i +
∑

1≤j≤n
j �=i

(r
(i)
ij + r

(i)
ji)

Return [[w]]
Algorithm 1: Multiplying two private values in ZKBoo

In Algorithm 1, we have introduced the notation for two-party functionalities,
generalizing the notation “Pi → Pj : M” of one party sending a message to
another party. In our notation, we specify the inputs each party gives to the
functionality, and the outputs they get, together with the computations of the
outputs from the inputs. Note that the two-party functionality will add only the
output of each party to the view of that party, and nothing else.

Efficient Permutation Protocol for MPC in the Head 69

The protocol in Algorithm1, together with the protocols for adding private
values and multiplying them with public constants, as well as protocols for secret-
sharing an input value (the party doing the sharing generates a random element
of A as the share of each party, subject to their sum being equal to the value
to be shared), and recovering an output of the computation (all parties send
their shares to all other parties; each party adds up the shares), is a n-party
protocol passively secure against (n − 1) parties. Indeed, all messages a party
receives, either during the sharing an input value, or as the receiver in an OLE
functionality, or during the recovery of outputs, are uniformly random elements
of A (in case of output recovery, subject to their sum being equal to the actual
output, which is given to the simulator), hence can be simulated as such. These
values remain uniformly random if we combine the views of up to (n−1) parties.

The ZKBoo protocol considers the case n = 3 in particular, because this
leads to the shortest proofs, due to the MPC-in-the-head protocol being (2,3)-
decomposable. The latter condition basically means that the view of a virtual
party Pi must be constructible from the random seed of this party, from his shares
of private inputs, and from the view of P(i+1) mod 3. In particular, there can be
no information flow from P(i−1) mod 3 to Pi. In Algorithm 1, this necessitates the
reversal of the flow in the OLE, whenever i + 1 ≡ j (mod 3). Namely, instead
of Pi generating a random r

(i)
ij before the start of OLE, we let Pj randomly

generate r
(j)
ij instead. The parties will then execute OLE with reversed roles,

with Pi inputting only [[u]]i, Pj inputting both [[v]]j and r
(j)
ij , Pi learning r

(i)
ij =

[[u]]i · [[v]]j − r
(j)
ij , and Pj learning nothing.

3.5 Motivation: Simulating Computations

Existing MPC protocols, and ZK proof protocols built on top of them, are suit-
able if the computed function f or the relation R is represented as an arithmetic
circuit. In practice, such f and R are usually represented differently. They are
usually given in a format executable by a computer, i.e. as programs in an imper-
ative language, i.e. as programs for a Random Access Machine (RAM). These
programs can invoke storing and loading operations against memory, the cells of
which are addressable with the elements of A. These operations, and the memory
structure are not easily converted into an arithmetic circuit. Examples of such
R include the evaluation of a particular program, showing that certain inputs
lead to certain (faulty) outputs. Another example is showing the upper or lower
bounds of the length of a shortest path between two vertices in a graph, where
the structure of the graph and/or the lengths of edges must remain private.

For verifying that R(x,w) = 1, where R is given as a RAM program, one
commonly splits the execution of R on the RAM into two parts, proves the cor-
rectness of execution separately, and then shows that the two parts are connected
in the right manner [2]. The first part of execution is the processing unit ; the
proof shows that at each execution step, the instruction was decoded correctly,
and the result of the instruction was correctly computed from its inputs. The

70 P. Laud

second part of the execution is the memory ; the proof shows that for each mem-
ory cell, the value read from it is the same that was written to it previously. The
two parts have to be connected—the sequence of load- and store-operations has
to be the same at both sides. The ZK proof must check that the same sequence
appears at both parts.

At processor side, it is natural to order the sequence of load- and store-
operations by timestamps. When verifying the correctness of the steps made by
the processor, at each execution step we need to know what value was loaded
from the memory, or what value was stored there (if any). At memory side, it is
natural to order this sequence first by memory address, and then by timestamps.
In this manner, it is easy to verify that for each memory cell, the value loaded
from there was the same that was either stored there, or loaded from there
the previous time the same cell was accessed. Hence we need to show that two
sequences are permutations of each other. For added flexibility, we want to have
the permutation as a separate object, because we may need to show that several
sequences are related to each other through the same permutation.

4 Our Construction

4.1 The Protocol

We will now present our permutation protocol, which can be used for the permu-
tation functionality in a MPC-in-the-head protocol set that represents private
values through additive sharing. Let Sm denote the group of permutations of
m elements. Given a private representation of a permutation σ ∈ Sm, and a
vector of shared values [[v]] = ([[v1]], . . . , [[vm]]), where vi ∈ A, we want to have a
protocol for obtaining [[σ(v)]] = ([[vσ(1)]], . . . , [[vσ(m)]]). If the protocol is executed
by n ≥ 3 parties, then we want it to be passively secure against a coalition of
(n − 1) parties.

The permutation σ originates as a part of the witness, as we do not have
any operations implemented by the MPC protocol set that result in a private
permutation. In order to apply the IKOS construction to our permutation pro-
tocol, σ has to be secret-shared among the n parties using a (n, n − 1) secret-
sharing scheme. We use the following scheme: the private representation of σ is
[[[σ]]] = ([[[σ]]]1, . . . , [[[σ]]]n), where [[[σ]]]i ∈ Sm is a random permutation of m ele-
ments, subject to the constraint σ = [[[σ]]]n◦· · ·◦[[[σ]]]1. Hence the sharing algorithm
Share(σ) uniformly randomly picks the permutations [[[σ]]]1, . . . , [[[σ]]]n−1 ∈ Sm and
computes [[[σ]]]n = σ◦[[[σ]]]−1

1 ◦· · ·◦[[[σ]]]−1
n−1. The algorithm Combine([[[σ]]]1, . . . , [[[σ]]]n)

computes [[[σ]]]n ◦ · · · ◦ [[[σ]]]1, requiring that none of the arguments is ⊥. The i-th
computing party will hold [[[σ]]]i. We are not going to specify how [[[σ]]]i is repre-
sented as a bit-string. If the representation allows to express also values that are
not elements of Sm, then the i-th computing party must check that [[[σ]]]i ∈ Sm.
Note that through the IKOS construction, this checking requirement carries over
to the Verifier in the ZKP protocol, if he selects the view of the i-th computing
party for opening.

Efficient Permutation Protocol for MPC in the Head 71

The protocol for obtaining [[σ(v)]] from [[[σ]]] and [[v]] is given in Algorithm 2.
Its structure is rather similar to the multiplication protocol in Algorithm1. It
uses a two-party functionality that is similar to oblivious linear evaluation; this
similarity shows when thinking of the permutations as the action of the group
Sm on the Abelian group A

m. The algebraic identity—σ(u+v) = σ(u)+σ(v)—
is used in the design of the protocol. Compared to the multiplication in rings,
the group action lacks the other distributive law; hence there is less parallelism
in Algorithm 2 than in Algorithm 1. For n = 3, the protocol can be made (2,3)-
decomposable similarly to Algorithm 1, and it can be composed with the rest
of the ZKBoo protocol set in order to express computations that consist of
arithmetic operations and permutations.

Data: private vector [[v]], private permutation [[[σ]]]
Result: private vector [[w]], where wi = vσ(i)

[[w(0)]] ← [[v]]
for i = 1 to n do

foreach j ∈ [n]\{i} do
Pi generates random r

(i)
ij ∈ A

m

Parties Pi and Pj run the following two-party functionality:
Pi inputs [[[σ]]]i and r

(i)
ij

Pj inputs [[w(i−1)]]j
Pi obtains nothing
Pj obtains r

(j)
ij ← [[[σ]]]i([[w(i−1)]]j) − r

(i)
ij

/* Elementwise subtraction of vectors */

Pj defines [[w(i)]]j ← r
(j)
ij

Pi defines [[w(i)]]i ← [[[σ]]]i([[w(i−1)]]i) +
∑

1≤j≤n
j �=i

r
(i)
ij

Return [[w(n)]]
Algorithm 2: Private permutation PrivPerm

Theorem 1. Algorithm2 computes [[σ(v)]].

Proof. This is established by the following loop invariant:

w(i) = [[[σ]]]i([[[σ]]]i−1(· · · [[[σ]]]1(v) · · ·)) . (1)

Indeed, the vector w(0) is initialized as v. During the main loop, [[w(i)]] is con-
structed by permuting the additive shares of the private vector [[w(i−1)]] with
the permutation [[[σ]]]i. The permutation of the i-th share will be learned by the
i-th party, while the permutation of the j-th share (j �= i) will be additively
shared between the i-th and j-th parties. Due to the definition of [[[σ]]], we have
w(n) = σ(v). This vector is then returned in secret-shared manner. ��

4.2 Security

Theorem 2. Algorithm2 is secure against a passive adversary corrupting at
most (n − 1) parties.

72 P. Laud

Proof. Let J = {j1, . . . , jk} ⊂ [n], where k ≤ (n−1). Consider the joint view of a
set of parties Pj1 , . . . , Pjk . Their view at the start of the protocol consists of their
shares of [[v]] and [[[σ]]]. Consider the i-th iteration of the protocol. If i ∈ J , then no
new values are added to their joint view while Pi runs the two-party functionality
with all other parties; the only values added into the view are the random vectors
generated by Pi. If i �∈ J , then the vectors r(j1)ij1

, . . . , r
(jk)
ijk

are added to the joint
view. These are vectors of random values, perfectly masked with the random
vectors r

(i)
ij1

, . . . , r
(i)
ijk

. We see that for each vector [[w(i)]]j , where i ∈ [n] and
j ∈ J , there is at least one newly generated random vector contributing to its
value. We also see that newly generated random vectors mask the expressions
containing either [[[σ]]]j or [[w(i)]]j for j �∈ J .

Hence we can simulate the joint view of Pj1 , . . . , Pjk as shown in Algorithm 3.
The simulator first generates the shares of the vectors w(i), which are random,
as explained above. It will then fill out the values of the vectors r(i)ij and r

(j)
ij , iff

these vectors are visible to some of the parties Pj1 , . . . , Pjk . It is straightforward
to verify that all these vectors are random, subject only to the equalities between
them that are prescribed in Algorithm2.

4.3 Complexity

When discussing the complexity of MPC protocols, we typically care about three
quantities—the number of bits exchanged by the communication parties, the
number of necessary round-trips of communication, and the computational com-
plexity of the local computations. If the IKOS transformation is applied to the
protocol, then its round complexity becomes moot—the protocol will be exe-
cuted in the head of the Prover without any latency. In this transformation, the
Prover has to perform the computations of all parties, hence the complexity of
these is relevant. However, for information-theoretically secure MPC protocols,
which Algorithm 1 and Algorithm 2 are examples of, the computational complex-
ity tends to be small, consisting of simple arithmetic operations, and randomness
generation (which is usually implemented by calls to a pseudorandom function).
Hence the computation complexity is considered to be subsumed by the commu-
nication complexity, and has not received significant attention in the literature.

The same three complexity categories matter for ZKP protocols. There is
also the fourth category—the soundness error. This shows the probability of the
verifier accepting an invalid proof in a single session of the protocol; repetition
is used to lower it.

The round complexity of the IKOS transformation is small—the generic con-
struction is a Σ-protocol. The soundness error is 1/n, where n is the number
of the parties and the underlying MPC protocol must be secure against (n − 1)
parties. The soundness error cannot be influenced by the design of the MPC pro-
tocol. The computation complexity of the resulting ZKP protocol is similar to
the underlying MPC protocol. The communication complexity depends on that

Efficient Permutation Protocol for MPC in the Head 73

Data: Shares [[v]]J , [[[σ]]]J , [[w]]J
Result: Views of the parties {Pi}i∈J in Alg. 2
Let i∗ be an element of [n]\J
foreach j ∈ J do

[[w(0)]]j ← [[v]]j
[[w(n)]]j ← [[w]]j

foreach j ∈ J , i ∈ [n − 1] do

Randomly generate [[w(i)]]j ∈ A
m

foreach i ∈ [n] do
if i ∈ J then

foreach j ∈ J \{i} do

r
(j)
ij ← [[w(i)]]j

r
(i)
ij ← [[[σ]]]i([[w

(i−1)]]j) − r
(j)
ij

foreach j ∈ [n]\(J ∪ {i∗}) do

Randomly generate r
(i)
ij ∈ A

m

r
(i)
ii∗ ← [[w(i)]]i − [[[σ]]]i([[w

(i−1)]]i) − ∑
1≤j≤n
j �∈{i,i∗}

r
(i)
ij

else
foreach j ∈ J do

r
(j)
ij ← [[w(i)]]j

Return all values [[w(i)]]j , r
(i)
ij , r

(j)
ij

Algorithm 3: Simulator for the view of the set of parties {Pi}i∈J , where
|J | ≤ (n − 1)

of the MPC protocol, but the dependence is not very straightforward—while the
size of the views of virtual parties is basically the same as the communication
complexity of the MPC protocol, the verifier is able to regenerate some of it
based on the views of other parties that were opened to him. A rule of thumb
is, that when the general IKOS transformation is used, then the communication
complexity of the resulting ZKP protocol is similar to the amount of commu-
nication from parties with unopened view to parties with opened view [8,18].
If the views of all but one party are opened, then this amounts to the size of
communication originated from the last party. In case of more general two-party
functionalities, the “communication” are the outputs to parties.

We see that in Algorithm 2, the communication originating from each party is
(n−1)m elements of Am. This can be seen as the contribution of our permutation
protocol to the total communication complexity of the resulting ZKP protocol.
This amount of communication is equal to m invocations of the multiplication
protocol in Algorithm 1. The concrete communication complexity for circuits
containing addition and multiplication gates has been reported to be 274 log2 |A|
bits per multiplication gate in ZKBoo [18] for the soundness error 2−80; this
complexity is halved for ZKB++ [8]. The permutation operation will contribute
to the length of the proof in the same manner.

74 P. Laud

Benchmarking. We have implemented the prover and verifier for a ZK proof
system similar to ZKB++, making use of the MPC-in-the-head protocols for
addition and multiplication (Algorithm1) of both shared values and constants,
as well as the permutation protocol in Algorithm 2. The system uses n = 3 virtual
parties with (2,3)-decomposable protocols; it is made non-interactive using the
Fiat-Shamir transform. It is implemented in Haskell, using the HsOpenSSL bind-
ings for cryptographic operations—AES-128 in CBC mode is used for expanding
the random seed, and SHA-256 is used as the hash function. The system has not
been optimized for execution speed and memory usage, and the running times we
report are expected to be much improved; however, the length of the produced
proof is the same as would be produced by an optimized system.

We have benchmarked our implementation on a program that first inputs
m 32-bit values and a permutation for m elements as part of the witness, and
then applies the permutation to the values; we have varied m between 25 and
215. The fragment of inputting a permutation and applying it to a vector of
private values will appear in the encodings of relations R represented in the RAM
model—the private values are the memory addresses and values in the load- and
store-operations the program representing R has performed. The permutation
sorts this vector by the memory addresses. Hence it makes sense to benchmark
this fragment, as it precisely characterizes the cost of a crucial step of encoding
R as a ZKP.

The soundness error of a single run of ZKB++ is 2/3 [8]. In our benchmarks,
we have executed the protocol 218 times in parallel, bringing the soundness error
below 2−128. After generating the views of the virtual parties in all 218 runs,
we use the hash function according to the Fiat-Shamir transform to obtain the
challenges for all runs; the challenge determines, the views of which parties in
which runs have to be made available to the Verifier as the main part of the
proof. In Fig. 1 we show the running times of our prover and verifier, as well as
the length of the transmitted proof. We see the running times growing slightly
more than linearly, and the proof size is linear in the length of the vector.

5 Comparison Against Alternatives

Let us compare the efficiency of our protocol against possible alternative imple-
mentations of a permuting a private vector in an MPC protocol suitable for the
IKOS transformation, for n parties, with passive security against (n − 1) par-
ties, based on additive secret sharing, and with the values being elements of a
ring (secret sharing is over the same ring). Obviously, our greatest interest is
towards the case, where the values are N -bit integers for some value of N , i.e.
the underlying ring is Z2N . The following two implementation approaches are
natural.

Efficient Permutation Protocol for MPC in the Head 75

Fig. 1. Execution time and proof size for our permutation protocol, and protocol based
on Waksman networks, for various lengths m of the permuted vector

5.1 Using a Routing Network

We can use a routing network to permute a vector of length m; this network has
O(m log m) switches, each of which requires a single multiplication to process.
If m is a power of two, then the number of switches in Waksman’s network [42]
is exactly m log2 m − m + 1. For other values of m, the size is larger. Hence the
communication complexity of the permutation is at least (m log2 m−m+1)(n−1)
elements of A, which is greater than the complexity of Algorithm2, as soon as
m ≥ 4.

However, this is not yet the entire complexity of the protocol based on routing
networks. The control bits of the network, representing the permutation, are
part of the witness w, secret-shared among the virtual parties by the prover.
The protocol must make sure that these are indeed bits. The verification that
the value b, represented as [[b]], is a bit can happen by b being shared not over
Z2N , but over Z2. In the following, let R[[v]] denote that the value v is a private
value, represented by additively sharing it over the ring R.

When we have the representations of the bits Z2[[b]] used to control the rout-
ing network, we have to convert them to Z2N [[b]] in order to use them in the
multiplication protocol over Z2N . Converting between different rings in MPC
protocols over rings is a problem that has not received general attention. Bog-
danov et al. [5] propose a conversion method for Z2 to larger rings for three-party
computations with passive security, but this does not fit our use-case because it
is secure against a single party only.

76 P. Laud

Suppose now that the control bits have been shared over Z2N . In this case, the
MPC protocol must verify that they are indeed bits. If b is a bit then b(b−1) = 0.
Over a field, only bits satisfy this equality, which is in wide use in ZKP protocols
over fields. Over rings, the satisfaction of b(b− 1) = 0 is not always sufficient for
b to be bit. Fortunately, it is sufficient for the rings Z2N .

Hence the prover can input the control bits shared over Z2N , and the pro-
tocol can verify that they are indeed bits. The verification will require another
(m log2 m−m+1) multiplications, doubling the size of the proof. The verification
will also require the declassification of the results of the checks; we assume that
the amortized cost of these declassifications in addition to the making available
the output of R is close to zero.

Benchmarking. For practical comparison of our protocol against an existing
approach, we have also benchmarked our ZK proof system on a program that
first inputs m 32-bit integers as part of the witness, with m varying between 25

and 210. As next, it will input a number of bits (represented as 32-bit integers)
equal to the number of switches in a Waksman network for m inputs and outputs.
The program verifies that these bits are indeed bits, and then applies Waksman
network to the m integers, using the bits as the control bits of the switches. The
execution times and lengths of the proofs are shown in Fig. 1. We see that these
times and sizes are larger, and grow somewhat faster than for our protocol.

5.2 Verifying a Polynomial Equality

The second alternative is to use Neff’s technique [35]: if two vectors u,v of length
m are permutations of each other, then the polynomial Qu ,v (X) =

∏m
i=1(X −

ui)−∏m
i=1(X − vi) is the zero polynomial. If the polynomial is over a field, then

Qu ,v ≡ 0 is also sufficient for u to be a permutation of v. If the field is large,
then this condition can be verified (with a small soundness error, proportional
to the length m, and inversely proportional to the size of the field) by evaluating
Qu ,v at a random point, selected by the Verifier. The verification requires 2m−2
multiplications, which is greater than the complexity of Algorithm2, as soon as
m ≥ 3. We see that even when working over a field, our protocol outperforms
the alternatives in an IKOS-based ZKP protocol.

Moreover, Neff’s check cannot be used in the ring Z2N , because its structure
is very different from a field. We could use the protocol in Algorithm4 (taken
from [31]) to convert an additive sharing over Z2N to an additive sharing over
Z

N
2 , i.e. into a bitwise sharing. The latter can be thought of as a sharing over

the finite field GF (2N), as the additive operation in both structures is the same.
At this point, Neff’s check can be used.

We can estimate the communication cost of Algorithm 4. The sharing done by
Pi consists of Pi sending random values to every other party. These values could
be generated from pairwise shared random seeds, and no actual communication
would be necessary (Pi would select its own share so, that

⊕n
j=1 Z

N
2 [[ui]]j = ui).

The addition of two N -bit values requires (N − 1) AND-operations. There are

Efficient Permutation Protocol for MPC in the Head 77

Data: number of parties n, bit-length N , private value Z2N [[v]]
Result: private value Z

N
2 [[v]]

foreach i ∈ {1, . . . , n} do
Party Pi defines ui ← Z2N [[v]]i, shares Z

N
2 [[ui]]

Parties privately execute the summation circuit for n N -bit values, computing
Z
N
2 [[u]] ← ∑n

i=1 Z
N
2 [[ui]]

Return Z
N
2 [[u]]

Algorithm 4: Bit extraction

n values to be added, hence the addition has to be repeated (n − 1) times. This
has to be further multiplied by the length of the vector m. One addition requires
(n − 1) bits to be communicated, which is N times less than one multiplication
according to Algorithm 1. The total communication cost of converting m private
values from Z2N to GF (2N) is equivalent to the cost of (n − 1)m(N − 1)/N
multiplications.

6 Discussion

We have proposed a passively secure MPC-in-the-head protocol for permutation.
More efficient constructions of ZK proofs from MPC-in-the-head protocols are
known, if the underlying protocols with several parties are actively secure for
at least a constant fraction of the parties. Existing efficient linear secret shar-
ing based MPC protocols [3,11] make use of homomorphic MACs, which are
updated by each operation in the arithmetic circuit encoding the computation.
It is unclear, what would be a suitable MAC for permutation, as it would have
to have suitable homomorphic properties with respect to the application of that
permutation to a vector of values.

There exist methods to turn passively secure protocols into actively secure
protocols with the help of replication [10]. Most probably, these methods will not
help in increasing the efficiency of the resulting ZK proof, compared to the use
of the underlying passively secure protocol, because the IKOS technique would
dismantle the passive-to-active construction.

Still, our construction will be useful in encoding the relations represented
in the RAM model as ZK proofs built using the IKOS technique. Its efficiency
can perhaps be further improved by considering a separate preprocessing step as
in [27] and compressing the representations of random permutations and vectors
as much as possible (e.g. as in [14]).

Acknowledgements. This research has been funded by the Defense Advanced
Research Projects Agency (DARPA) under contract HR0011-20-C-0083. The views,
opinions, and/or findings expressed are those of the author and should not be inter-
preted as representing the official views or policies of the Department of Defense or the
U.S. Government. This research has also been supported by European Regional Devel-
opment Fund through the Estonian Centre of Excellence in ICT Research (EXCITE),
and Estonian Research Council through grant PRG920. We thank Said Daoudagh and
the PC members of STM 2021 for their valuable comments.

78 P. Laud

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, et al. [41], pp. 2087–
2104. https://doi.org/10.1145/3133956.3134104

2. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from rams
to delegatable succinct constraint satisfaction problems: extended abstract. In:
Kleinberg, R.D. (ed.) Innovations in Theoretical Computer Science, ITCS 2013,
Berkeley, CA, USA, 9–12 January 2013, pp. 401–414. ACM (2013). https://doi.
org/10.1145/2422436.2422481

3. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

4. Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic.
Academic Press, Cambridge (1965)

5. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418
(2012). https://doi.org/10.1007/s10207-012-0177-2

6. Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly linear-time
zero-knowledge proofs for correct program execution. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 595–626. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 20

7. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowl-
edge. J. Comput. Syst. Sci. 37(2), 156–189 (1988). https://doi.org/10.1016/0022-
0000(88)90005-0

8. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham, et al. [41], pp. 1825–1842. https://doi.org/10.
1145/3133956.3133997

9. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

10. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
efficient MPC over arbitrary rings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 799–829. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 27

11. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

12. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Thuraisingham,
et al. [41], pp. 523–535. https://doi.org/10.1145/3133956.3133967

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Fleischhacker, N., Simkin, M.: On publicly-accountable zero-knowledge and small
shuffle arguments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 618–648.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 22

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1016/0022-0000(88)90005-0
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-75248-4_22

Efficient Permutation Protocol for MPC in the Head 79

15. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami, V. (ed.)
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17–20 October 2015, pp. 210–229. IEEE Computer Society
(2015). https://doi.org/10.1109/FOCS.2015.22

16. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing, PODC 1998, Puerto Vallarta, Mexico, 28 June–2 July
1998, pp. 101–111. ACM (1998). https://doi.org/10.1145/277697.277716

17. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

18. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, 10–12 August 2016, pp. 1069–1083. USENIX Asso-
ciation (2016). https://www.usenix.org/conference/usenixsecurity16

19. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applica-
tions. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/
CBO9780511721656

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) 1987
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New
York, New York, USA, pp. 218–229. ACM (1987). https://doi.org/10.1145/28395.
28420

21. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996). https://doi.org/10.1145/233551.233553

22. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Sedgewick, R. (ed.) Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, USA,
6–8 May 1985, pp. 291–304. ACM (1985). https://doi.org/10.1145/22145.22178

23. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

24. Haines, T., Müller, J.: SoK: techniques for verifiable mix nets. In: 33rd IEEE
Computer Security Foundations Symposium, CSF 2020, Boston, MA, USA, 22–
26 June 2020, pp. 49–64. IEEE (2020). https://doi.org/10.1109/CSF49147.2020.
00012

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the
39th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, 11–13 June 2007, pp. 21–30. ACM (2007). https://doi.org/10.1145/1250790.
1250794

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009).
https://doi.org/10.1137/080725398

27. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October
2018, pp. 525–537. ACM (2018). https://doi.org/10.1145/3243734.3243805

https://doi.org/10.1109/FOCS.2015.22
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://www.usenix.org/conference/usenixsecurity16
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1109/CSF49147.2020.00012
https://doi.org/10.1109/CSF49147.2020.00012
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1137/080725398
https://doi.org/10.1145/3243734.3243805

80 P. Laud

28. Keller, M.: The oblivious machine. In: Lange, T., Dunkelman, O. (eds.) LATIN-
CRYPT 2017. LNCS, vol. 11368, pp. 271–288. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-25283-0 15

29. Keller, M., Yanai, A.: Efficient maliciously secure multiparty computation for
RAM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822,
pp. 91–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 4

30. Laud, P.: Parallel oblivious array access for secure multiparty computation and
privacy-preserving minimum spanning trees. Proc. Priv. Enhancing Technol.
2015(2), 188–205 (2015). https://doi.org/10.1515/popets-2015-0011

31. Laud, P., Randmets, J.: A domain-specific language for low-level secure multiparty
computation protocols. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Den-
ver, CO, USA, 12–16 October 2015, pp. 1492–1503. ACM (2015). https://doi.org/
10.1145/2810103.2813664

32. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 18

33. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming frame-
work for secure computation. In: 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 359–376. IEEE Computer
Society (2015). https://doi.org/10.1109/SP.2015.29

34. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 42

35. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter,
M.K., Samarati, P. (eds.) CCS 2001, Proceedings of the 8th ACM Conference on
Computer and Communications Security, Philadelphia, Pennsylvania, USA, 6–8
November 2001, pp. 116–125. ACM (2001). https://doi.org/10.1145/501983.502000

36. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

37. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM
26(2), 361–381 (1979). https://doi.org/10.1145/322123.322138

38. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

39. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176

40. Thaler, J.: Proofs, Arguments, and Zero-Knowledge (2021). Course notes. http://
people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

41. Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.): Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, 30 October–03 November 2017. ACM (2017). https://doi.
org/10.1145/3133956

42. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968). https://
doi.org/10.1145/321439.321449

43. Zahur, S., Evans, D.: Circuit structures for improving efficiency of security and pri-
vacy tools. In: 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley,
CA, USA, 19–22 May 2013, pp. 493–507. IEEE Computer Society (2013). https://
doi.org/10.1109/SP.2013.40

https://doi.org/10.1007/978-3-030-25283-0_15
https://doi.org/10.1007/978-3-030-25283-0_15
https://doi.org/10.1007/978-3-319-78372-7_4
https://doi.org/10.1515/popets-2015-0011
https://doi.org/10.1145/2810103.2813664
https://doi.org/10.1145/2810103.2813664
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1145/501983.502000
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/322123.322138
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://doi.org/10.1145/3133956
https://doi.org/10.1145/3133956
https://doi.org/10.1145/321439.321449
https://doi.org/10.1145/321439.321449
https://doi.org/10.1109/SP.2013.40
https://doi.org/10.1109/SP.2013.40

	Efficient Permutation Protocol for MPC in the Head
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Secure Multiparty Computation
	3.2 Honest-Verifier Zero-Knowledge Proofs
	3.3 Commitments
	3.4 The IKOS and ZKBoo Constructions
	3.5 Motivation: Simulating Computations

	4 Our Construction
	4.1 The Protocol
	4.2 Security
	4.3 Complexity

	5 Comparison Against Alternatives
	5.1 Using a Routing Network
	5.2 Verifying a Polynomial Equality

	6 Discussion
	References

