
Towards Decentralized and Provably
Secure Cross-Domain Solutions

Joud Khoury(B) , Zachary Ratliff, and Michael Atighetchi

Raytheon BBN, Cambridge, MA 02138, USA
{joud.khoury,zachary.ratliff,michael.atighetchi}@raytheon.com

Abstract. Cross-Domain Solutions (CDS) are widely deployed today
for secure and timely sharing of information across security domains.
Content filters are a key function of the CDS used to mitigate data
threats. CDS’s today are centralized and trusted and their deployments
are being increasingly consolidated at the enterprise. This centraliza-
tion and reliance on always-on connectivity to the enterprise introduces
risk to timely and secure information sharing at the tactical edge. In this
work, we take a step towards decentralizing the CDS functionality by dis-
tributing its security relevant components across untrusted tactical edge
devices while still providing guarantees on the integrity of the end-to-end
filtering pipeline. We instantiate a proof-of-concept decentralized CDS
for bitmap image filtering and we demonstrate two alternative designs
with similar trust assumptions but different performance tradeoffs. Both
designs are based on verifiable computation. Our most performant system
is able to filter a 250 × 250 pixel image in 15 s, 20× faster than a strong
baseline, and is able to scale to much larger images (13× larger scale
than baseline within the available memory budget). We discuss ongoing
and future work enhancing the expressiveness, performance, and security
of the design.

1 Introduction

Cross-Domain Solutions (CDS) are widely deployed by the Department of
Defense (DoD) for secure and timely sharing of information across security
domains to support joint, interagency, and multinational mission operations.
A transfer CDS filters and passes information flows between different security
domains to protect against a wide range of data threats. Filters are a critical
component of a CDS, performing a variety of functions such as data verifica-
tion, inspection, sanitization, cleansing, and transformation to mitigate threats.
Examples of such filtering include removing potential malware from the data via

Approved for public release (PA); distribution unlimited. PA Case No: AFRL-2021-
1484
This material is based upon work supported by the United States Air Force under
Contract No. FA8750-20-C-0200. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Air Force.

c© Springer Nature Switzerland AG 2021
R. Roman and J. Zhou (Eds.): STM 2021, LNCS 13075, pp. 185–203, 2021.
https://doi.org/10.1007/978-3-030-91859-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91859-0_10&domain=pdf
http://orcid.org/0000-0002-9030-5208
https://doi.org/10.1007/978-3-030-91859-0_10

186 J. Khoury et al.

Fig. 1. A decentralized CDS distributes security relevant components over low assur-
ance devices while providing end-to-end provable guarantees of the integrity of the
filtering pipeline. This enables secure cross-domain information sharing at the tactical
edge where access to a centralized enterprise or tactical CDS may not be available.

normalization, removing particular parts of the data via redaction, or transform-
ing the data to new forms (e.g., reducing precision of coordinates or imagery or
converting between protocols). The CDS ensures that the filtered data complies
with the security policy. CDSs are widely deployed across the DoD, and are
starting to be deployed for securing commercial operational networks [2,19].

Given that software-based CDSs are too complex to be able to prove their
security mathematically, significant engineering thought has gone into success-
fully building CDSs that are secure by design, as defined for example by
the National Security Agency’s (NSA) Raise The Bar (RTB) strategy [17].
The pillars of the RTB strategy are the least privilege and least knowledge,
and the Redundant, Always Invoked, Independent Implementations, and Non-
Bypassable (RAIN) principles. Briefly, these principles ensure that failure of a
single security-relevant component (e.g., a filter or a domain separation compo-
nent) results in contained damage and does not compromise the whole CDS.

As a result, CDS platforms used by the DoD today are trusted. Their central-
ized and protected implementations (software and configurations) contribute to
the high level of trust placed in them. Additionally, the community has started
to consolidate CDS deployments on the enterprise, to gain a better picture of all
existing network cross-connects. We argue that such centralization of the CDS
and reliance on always-on connectivity to the enterprise introduce risk to mis-
sion success especially in Disconnected, Intermittent, Limited bandwidth (DIL)
tactical environments where connectivity is intermittent.

In this work, we describe how to decentralize the CDS by distributing its
security relevant components across existing low-assurance tactical edge devices
while still providing the desired high-assurance guarantees required of CDSs
(Fig. 1). A decentralized CDS capability complements today’s enterprise and
tactical CDSs enabling secure cross-domain information sharing when access to
the enterprise or single-device tactical CDSs is not available. Decentralization
additionally protects against the centralized CDS becoming a single point of
failure or compromise. The resulting Decentralized CDS (DCDS) can initially
support a limited and well-defined subset of information flows that are necessary
for effective operations in disconnected tactical environments.

Towards Decentralized and Provably Secure Cross-Domain Solutions 187

sensor

F0 F1 F2

boundary

(I0, h0, σh)

(I1, π1, h0, σh) (I2, π2, h0, σh)

(I3, π3, h0, σh)

Trusted
Untrusted

sensor

F0 F1 F2

boundary

I0

(h0, σh)

I1 I2

(h1, π1) (h2, π2) (I3, π3)

(a) Proof-Carrying Data (PCD) (b) Trusted Proof Aggregation (TPA)

Fig. 2. Two instantiations of a decentralized CDS filtering pipeline with three filters
F0, F1, F2. Sensor produces and signs images that get filtered on the way to a domain
boundary (the verifier). Each filter acts as a prover generating a proof of the integrity
of its local computation. The domain boundary accepts and passes the filtered images
if and only if the cryptographic proof(s) πi associated with the filtered content is/are
valid; (a) proofs are recursively composed using proof carrying data and the domain
boundary only needs the last proof π3, or (b) all intermediate proofs are aggregated at
the domain boundary.

A key technical challenge with decentralization is ensuring end-to-end cor-
rectness and security of the CDS filtering pipeline despite individual components
of the pipeline being untrusted. Today’s enterprise and tactical CDSs employ
trusted operating systems and/or trusted hardware, ensuring system integrity
using mechanisms such as Trusted Platform Module based trusted boot, Manda-
tory Access Control, Discretionary Access Control, and OS-level integrity mon-
itoring. The strategic combination of these security mechanisms provides the
basis for building the trusted filtering pipelines adhering to the RAIN princi-
ples. When decentralizing the CDS such that its components run on different
edge platforms, we can no longer assume the platforms are trusted yet we must
still ensure the integrity of the end-to-end filtering pipeline.

With the help of advanced cryptography and specifically verifiable compu-
tation, we instantiate a proof-of-concept filtering pipeline where different filters
reside on different untrusted edge platforms, and the end-to-end integrity of the
pipeline is provably guaranteed. Specifically, in our DCDS setting, a sensor pro-
duces and signs content (imagery in this case). The content is passed through
a pipeline of compute nodes each of which performs permissible filtering on the
content before forwarding it to the next node in the pipeline. The filtered content
arrives at a trusted domain boundary (the verifier), which verifies the authen-
ticity and integrity of the final result, i.e., it verifies that the final transformed
content is a compliant transformation of the original content and is authentic,
before passing the content across the domain boundary.

As shown in Fig. 2, we describe two alternative decentralized CDS archi-
tectures with similar trust assumptions but different performance tradeoffs. A
key theme in our design is that every (untrusted) filtering node must furnish
a cryptographic proof of correctness of its local filtering computation. The first
architecture (Fig. 2(a)) is implemented as an application of Proof-Carrying Data

188 J. Khoury et al.

(PCD) [9,10], whereby the intermediate proofs are recursively composed in order
to attest to the integrity of the end-to-end filtering pipeline. PCD is a cryp-
tographic scheme that allows recursive composition of cryptographic proofs of
computational integrity. Each party involved in the computation, receives one or
more inputs Ii where each input is associated with a short cryptographic proof
πi. The party performs a local computation on the received inputs and on its
local inputs and produces an output Ii+1 along with a short cryptographic proof
πi+1. Given a cryptographic proof πi, any party can verify the integrity of the
full computation history up to step i−1. Verification is public and is very fast, on
the order of milliseconds, and proofs are very short on the order of hundreds of
bytes. In this PCD setting, the trusted domain boundary receives a single proof
that attests to the authenticity and integrity of the entire end-to-end distributed
filtering computation.

The second architecture (Fig. 2(b)) is implemented using a Trusted Proof
Aggregator (TPA). Each filtering node at step i performs a local computation
on the input Ii and forwards the output Ii+1 to the next node in the pipeline
for additional filtering. Additionally, node i produces a tuple (hi+1, πi+1) corre-
sponding to a hash and a cryptographic proof, that it forwards to the domain
boundary. The domain boundary node aggregates and checks each of the indi-
vidual proofs to verify the integrity of the end-to-end filtering computation. Our
TPA architecture exploits the fact that the boundary node must be trusted
regardless of whether we use PCD or other designs, since the boundary node
ultimately makes the decision on whether to pass content across the boundary
or not. This insight allows us to aggregate the proof verification at the trusted
boundary node using simple proof chaining. Proof chaining is simpler and admits
a set of optimization that enhance its performance relative to the recursive proof
composition design. Proof verification is a lightweight operation that can be effi-
ciently lowered to hardware on the boundary node (such as an FPGA) and
placed along with other hardware-based functions such as the diode responsible
for one way transfers.

We use filtering of bitmap images as the example data type in this paper
since most bitmap image formats such as JPEG, PNG, GIF, and TIFF can be
converted into raw bitmaps without losing information, and in fact this is a
common normalization step used by CDSs today for filtering images [17]. We
implement bitmap filtering adhering to NSA’s Inspection and Sanitization guide
for Bitmaps [11], filtering both header and pixel data. Our most performant
implementation takes around 15 s to filter a 250 × 250 pixel image for a single
step of the pipeline. This is 20× faster than the baseline PCD system. Our
optimizations reduce the total number of constraints by 30× allowing scaling
to 13× larger images than baseline within the same memory budget. Finally,
we significantly reduce the end-to-end latency of the pipeline by having the
filtering nodes prove in parallel. This means our speedups relative to baseline
increase with the depth of the pipeline. Our predicates can be used to filter text
documents, not just images, by treating characters as pixels.

Towards Decentralized and Provably Secure Cross-Domain Solutions 189

Our work makes the following novel contributions:

– Design, implementation, and performance evaluation of two alternative archi-
tectures for decentralizing the CDS that achieve provable end-to-end authen-
ticity and integrity guarantees with different performance tradeoffs; to our
knowledge, this is the first application of verifiable computation to decentral-
izing cross domain solutions.

– Implementation and optimization of compliance predicates for bitmap filter-
ing. Our optimizations collectively deliver 20× speedups over prior work for
image authentication from PCD [18] at the 250 × 250 image size, and 13×
image scaling. In addition, the end-to-end latency of our filtering pipeline is
very weakly dependent on the pipeline’s depth.

The rest of the paper is organized as follows. Relevant background on cryp-
tographic protocols is presented in Sect. 2. We present the two DCDS designs in
Sect. 3, followed by the implementation details in Sect. 4, and the optimizations
in Sect. 5. We evaluate the performance of the design in Sect. 6. Finally, related
and future work is presented in Sect. 7 before concluding.

2 Background

We review the definitions of arithmetic circuits, preprocessing zk-SNARKs, and
proof carrying data, and we refer the reader to [6] for details.

2.1 Arithmetic Circuit Satisfiability in Field F

An F-arithmetic circuit C : F
n × F

h → F
l is defined by the relation RC =

{(x, a) : C(x, a) = 0}. Here a is called the witness (auxilliary input) and x
is the public input and the output is 0. The language of the circuit is defined
by LC = {x : ∃a,C(x, a) = 0}. Here x ∈ F

n (i.e., x is represented as n field
elements), a ∈ F

h, and the output in F
l. A hashing circuit for example takes the

(private) input/witness a and its hash x, and asserts that H(a) = x.

2.2 Preprocessing zk-SNARK

A preprocessing zero-knowledge succinct non-interactive argument of knowledge
(pp-zk-SNARK or simply zk-SNARK) for F-arithmetic circuit satisfiability com-
prises three algorithms (G,P, V), corresponding to the Generator, the Prover,
and the Verifier.

G(λ,C) → (pk, vk) Given a security parameter λ and the F-arithmetic circuit C,
sample a keypair comprising a public proving key pk and a public verification
key vk.

P (pk, x, a) → (π) Given the public prover key pk and any (x, a) ∈ RC , generate
a succinct proof π attesting that x ∈ LC

V (vk, x, π) → b ∈ {0, 1} checks that π is a valid proof for x ∈ LC .

190 J. Khoury et al.

The zk-SNARK is the basic cryptographic building block we use to instantiate
both CDS architectures.

2.3 Proof Carrying Data (PCD)

Proof carrying data allows distributed computation among mutually-untrusted
parties [6,9]. Each party receives s input messages each of size n from other
parties zin ∈ F

s.n, adds its local input zloc ∈ F
nl of size nl to it, and produces

an output z ∈ F
n along with a succinct proof which is sent to downstream parties

in the computation graph. Here s is referred to as the arity.
A compliance predicate

∏
defines the valid local computation performed at

each party. Given a message z and a proof, the goal of PCD is to ensure
∏

-
compliance i.e., that every local party’s computation along the sequence of com-
putations that produced z satisfies

∏
. The predicate

∏
is represented as an F-

arithmetic circuit with inputs (z,zin , zloc, bbase) where bbase ∈ F denotes whether
the local party is the base party i.e., has no predecessors in the computation
graph.

A PCD system comprises algorithms (Generator,Prover,Verifier), corre-
sponding to the generator, prover, and verifier.

Generator(λ,
∏

) → (pk, vk) Given a security parameter λ and the compliance
predicate

∏
expressed as a F-arithmetic circuit, sample a keypair comprising

a public proving key pk and a public verification key vk.
Generator(pk,zin ,πin , zloc, z) → (z, πout) Given the public prover key pk, a

set of input messages zin with corresponding compliance proofs πin , local
input zloc, and output z, generate a succinct proof πout attesting that z is∏

-compliant.
Verifier(vk, z, π) → b ∈ {0, 1} checks that z is

∏
-compliant.

Appendix A reviews an instantiation of PCD from zk-SNARK and elaborates
on the performance of such system in terms of circuit size and prover algorithm
space and time complexity.

3 Decentralized CDS Designs

We present two designs for a DCDS filtering pipeline. The first is a direct appli-
cation of PCD whereby integrity proofs are recursively composed as content
gets transformed along the filtering pipeline, while the second design relies on
a trusted aggregator to perform the proof composition. In our simplified trans-
fer CDS scenario, the domain boundary node must be trusted as it ultimately
has to make the decision on whether to pass filtered content across the domain
boundary. This is true regardless of the design, whether centralized or decentral-
ized. We leverage this inherent trust assumption in order to design the trusted

Towards Decentralized and Provably Secure Cross-Domain Solutions 191

aggregator, which significantly enhances the efficiency of the filtering pipeline
while providing similar assurances.

3.1 DCDS from Recursive Proof Composition

Our PCD design is inspired by [18], where the authors implement a compliance
predicate for image authentication under a set of permissible transformations.
Figure 2(a) presents a high level overview of the approach. Consider an existen-
tially unforgeable signature scheme S = (GS , SS , VS) with private signing key vs

and public verification key ps (e.g., ECDSA), and let H be a collision-resistant
hash function. The sensor produces an image I0, hashes it to h0 = H(I0), signs
the hash using its private signing key vs to produce σh, and sends the tuple
(I0, h0, σh) to a successor filtering node F0. Filter F0 performs a permissible fil-
tering computation on the input image I0 (e.g., redaction, cropping, rotation,
scaling, and so on) as defined by the compliance predicate

∏
, generates the

filtered output image I1 along with cryptographic proof π1, and forwards the
tuple (I1, π1, h0, σh) to the next filter in the pipeline, and so on. Finally, the
domain boundary node checks the authenticity of the image and the integrity of
the end-to-end filtering pipeline simply by checking the last proof π3. Verifying
π3 ensures that the filtered image I3 has a permissible provenance i.e., I3 is the
output of a set of

∏
-compliant computations on an original input image whose

hash is h0, and that σh is a valid signature of h0 under vs.
The compliance predicate

∏
(zin, zloc, zout, bbase) for image authentication,

i.e., the local computation that each node must perform, is shown in Algorithm 1.
The base filtering node (which has no inputs, and has the original signed image
from the sensor, and has bbase = 1) verifies in the PCD that hin = H(Iin) is
a valid hash of the original image Iin = I0. The base node, and every suc-
cessor filtering node along the way, verify that hin == hout, i.e., the hash is
passed through the computation unchanged, and verify that the output image
Iout == F (Iin, γ) is a valid filtering transformation of the input image Iin accord-
ing to zloc = (F, γ) where F is the filtering transformation identifier and γ is
metadata for the transformation such as size for cropping or scaling factor.

The domain boundary verifies that,

– the PCD proof is valid, i.e., Verifier(vk, zin, πin) == 0 which ensures that Iin

is a permissible provenance and it is authentic, and
– the signature σh is a valid signature of hin under ps where ps is the public

verification key, and this step as in [18] is performed outside-the-PCD for
efficiency reasons as this avoids having to implement signature verification in
the PCD. More formally, it checks VS(ps, hin, σh) == 0

With this scheme, only the base node runs the hashing functionality in the
PCD. An efficient hashing circuit from [18] from subset-sum exists already (it is
required for the PCD system itself). A hash fits in one element, and the ECDA
384-bit signature fits in two elements (recall each element is 298 bits). The secu-
rity of this design follows directly from [18]. We describe the implementation of

192 J. Khoury et al.

the bitmap filtering transformation F in more detail in Sect. 4, and the perfor-
mance optimizations in Sect. 5.

Algorithm 1. Compliance Predicate
∏

(zin = (Iin, hin, σin), zloc = (F, γ), zout =
(Iout, hout, σout), bbase)
1: if bbase then � i.e., base case
2: return F ∈ F and F (Iin, γ)==Iout and hin==H(Iin)
3: else
4: return F ∈ F and F (Iin, γ)==Iout and hout==hin

5: end if

3.2 DCDS from Proof Aggregation

Our proof aggregation DCDS design is shown in Fig. 2(b) and provides similar
assurances. Our instantiation of the proof aggregation is however more efficient
primarily because of using a more efficient hashing circuit and parallelization as
we shall describe in Sect. 5.4 and Sect. 5.5. As with the PCD design, the sensor
produces an image I0, hashes it to h0 = H(I0), signs the hash using its private
signing key vs to produce σh. It sends the tuple (h0, σh) directly to the boundary
node (the verifier), and it sends the image I0 to the successor filtering node F0.
Each filtering node i in the pipeline uses pp-zk-SNARK prover algorithm to
generate a proof πi+1 attesting to the following statements:

1. hi == H(Ii)
2. Ii+1 == Fi(Ii)
3. hi+1 == H(Ii+1)

Formally, node i computes P (pk, (hi, hi+1), (Ii, Ii+1)) → (πi+1), where the
hashes are the public input and the images are the private witness. Node i
directly sends the tuple (πi+1, hi+1) to the domain boundary. Notice that both
the proof and the hash are very small on the order of hundreds of bytes, incur-
ring little extra communication cost. The last filtering node in the pipeline (node
2 in Fig. 2(b)) additionally sends its output filtered image (I3) to the domain
boundary.

Given the final transformed image In (for an n step pipeline) and all the inter-
mediate hashes and proofs ((hn, πn), . . . , (h1, π1), h0, σh), the boundary node
verifies the following conditions:

– hn == H(In), this is performed outside the SNARK
– V (vk, (hi, hi+1), πi+1) == 0, ∀i ∈ [0, n − 1]
– VS(ps, h0, σh) == 0, i.e., σh is a valid signature of h0 under the public verifi-

cation key ps; this is also performed outside the SNARK

Towards Decentralized and Provably Secure Cross-Domain Solutions 193

The boundary node passes the filtered image across the boundary if and only if
all these conditions are met.

The security of this scheme follows from the following facts. If H(In) == hn

and V (vk, (hn−1, hn), πn) == 0, then In must equal Fn(In−1) for some In−1.
Similarly, recursively verifying each of the proofs proves there is some original
image I0 from which In is derived according to a sequence of valid filters Fi. If
in addition σh is a valid signature on h0, the domain boundary can prove that
I0 is authentic (produced by the sensor with possession of the signing key).

4 Implementation

We implement, optimize, and evaluate bitmap (BMP) image filtering for both the
recursive proof composition and proof aggregation DCDS designs. We evaluate
the implemented compliance predicate in terms of the total number of image
pixels N = w × h, where w and h are the width and height of the image. Our
C++ implementation is built on top of libsnark [3].

In general, a BMP file consists of five main parts; a file header, image header,
color table, pixel array, and an International Color Consortium (ICC) color pro-
file. The image header is the most complex from a compatibility standpoint due
to the varying versions. However, the BITMAPINFOHEADER format intro-
duced in Windows 3.0 is the most commonly used format for compatibility rea-
sons and is the focus of this work. We disregard bitmaps with the optional ICC
color profile since these are less common and are only supported under version
5 image headers. And we only consider uncompressed bitmaps with 24 bit color
depths, as these are most common in practice.

Bitmap Inspection and Sanitization. We implement a compliance predicate∏
adhering to the National Security Agency’s Inspection and Sanitization guide

(ISG) for Bitmaps [11]. The ISG provides an analysis on various elements that
are contained within the BMP file structure and how they can be a cause for
concern for either hiding sensitive data or attempts to exploit a system. We
implement a majority of the recommendations for mitigating these threats.

File Header Compliance The file header is a 14-byte structure that stores
general information about the BMP. It begins with the magic bytes 0x424D,
and then defines the file size, reserved bytes, and offset address of the pixel
data.

Image Header Compliance The BMP Info Header image header type is 40
bytes and contains general information about the size, compression type,
number of planes, resolution, and bit count of the BMP. The ISG outlines
data attack and data hiding concerns with BMP image headers. Most attacks
are prevented though the zeroing out of unused fields, or ensuring that default
values are used. Our compliance predicate ensures the size of the image header
is 40 bytes, the colors used value equals 0 (no color table present), the col-
ors important value equals 0 (default value indicating that all colors are
required), compression value equals 0 (compression not used), number of

194 J. Khoury et al.

planes equals 1 (only supported value for BMP files), and that the width and
height fields correspond to the size of the image.

Color Table The Microsoft Developer Network (MSDN) states that the color
table is optional in Bitmaps with ≥ 8 bit color depths. Additionally, the
NSA’s inspection and sanitization guide for BMP files recommends removing
the color table in BMP files with 24 bit color depths. For this reason, we only
consider BMP files without a color table present.

Bitmap Pixel Filtering In addition to filtering the headers of the BMP file,
our compliance predicate filters the BMP pixels. We implement a simple
compliance predicate (filter) for redaction which performs any of the fol-
lowing: identity transformation, blacking out of image pixel regions, and/or
cropping the images in a single compliance predicate.1 The transformation
is defined by a w × h redaction matrix R of boolean values. The constraints
over R require that Ri,j × Ii,j = Oi,j where I is the input pixel matrix, and
O is the output pixel matrix. The booleanity of R is enforced by requiring
Ri,j × (1 − Ri,j) = 0. This simple compliance predicate can simultaneously
do cropping, black-out boxes, and identity transformations using only 2N
multiplication gates.

5 Baseline and Optimizations

We implement several optimizations and evaluate their performance against a
strong baseline. We show a 20× speedup in prover time over the state-of-the-
art [18], allowing us to filter over large 900×900 images. We describe the baseline
and each of the optimizations next.

5.1 PCD Baseline

The baseline is based on the state-of-the-art image authentication from PCD [18].
Given that the source code of [18] is not publicly available, we implemented our
BMP filtering predicate within libsnark’s [3] PCD implementation which uses
BCTV14 [6] pp-zk-SNARK for recursive proof composition over the MNT4 and
MNT6 cycles of elliptic curves. Following [18], we also use the subset-sum hash
function for hashing field elements, and we implement digital signatures outside
the PCD. We verified that the number of constraints in our baseline circuit
closely match those reported in [18].

5.2 Switching to Groth16

We switch to the Groth16 proving system [16] from BCTV14 [6], and implement
the Groth16 verifier circuit in the PCD. The Groth16 proving system has faster
verification and size-optimal proofs for pairing-based arguments. Faster verifica-
tion and smaller proofs naturally imply less computation in the proof verification
1 We also added other useful transforms (e.g., downscaling the image by a some factor)

which we do not describe here for simplicity but they are part of the codebase.

Towards Decentralized and Provably Secure Cross-Domain Solutions 195

portion of the prover’s circuit as there are fewer input wires and fewer gates. As
a concrete comparison, Groth16 proofs consist of only 2 G1 elements and 1 G2

element compared to BCTV’s proofs of 7 G1 elements and 1 G2 element. The
smaller Groth16 proofs result in a verification savings of 9 fewer pairings and 4
fewer pairing-product equations used for verifying proofs.

More importantly, the Groth16 prover requires fewer multi-exponentiations
compared to BCTV14. Groth16 uses 5m − 2n less exponentiations in G1 and
m − n less exponentiations in G2, where m ≥ n represent the number of wires
and n the number of multiplication gates respectively. We also use the asym-
metric bilinear map construction for efficiency. Asymmetric elliptic curves are
more practically and efficiently realizable for higher security levels [12]. Note
that the savings in exponentiations mainly apply to dense R1CS statements. In
other words, if the majority of R1CS constraints involve wires that carry a 1 or a
0, then the multi-exponentiations become cheap, in which case Groth16 doesn’t
help reduce the prover cost.2 This is indeed the case for our prover’s circuit
since the majority of the constraints are due to booleanity, the unpacking of field
elements to bits for hashing. However, when combined with our second opti-
mization (next section) which significantly reduces the booleanity constraints,
the savings become more noticeable.

5.3 Reducing Booleanity Constraints

The PCD hashing circuit hashes the bit representation of the string vk||z where
vk is the verification key and z is the input message which includes the image in
our application. Unpacking of these field elements to bits in order to hash them
is very expensive. The overall size of the main PCD circuit Cpcd is |∏ | + s ·
89412 + (1 + s) · N · 298 + 11925 gates, where s is the arity (number of incoming
messages to each node) and N is the input size (see Appendix A and [6] § 5 for
details). The term 11920+(1+ s) ·N ·298 costs around 10 million gates for even
a small 128 × 128 image where N = 16384 pixels or field elements each is 298
bits (the arity s = 1).

The binary representation of the verification key is 11920 bits (gates). On
the other hand, the binary representation of the inputs z costs (1 + s) · N · 298
gates since each element of the input is represented with �log r4� = 298 bits
(gates). However, since we know that each element of the input message (a raw
pixel) is represented with fewer than 32 bits, we can truncate the input before
hashing it. We unpack each pixel f to its binary representation and enforce
f =

∑32
i=1 bi · 2i−1 for each bit bi of f . Implicit in this constraint is that the 266

most significant bits of f must equal 0 if it holds, thereby avoiding the booleanity
checks on those values. This optimization reduces the booleanity gates by a factor
of 298/32 = 9.3×. For a 128×128 image, the resulting circuit is reduced from 10
million to about 1 million gates. It also reduces the number of variables (wires
in the circuit) and accordingly the proving key size by about 6×.

2 In this case FFTs dominate the prover’s cost, and the cost of FFTs in both BCTV14
and Groth16 are the same.

196 J. Khoury et al.

Table 1(b) shows the significant improvements resulting from these first two
optimizations. Specifically, at the 250×250 image size, we see around 9× reduc-
tion in number of constraints in the circuit (from 37.8M to 4.3M), 5× reduction
in prover time, and 6.6× reduction in peak memory utilization at the prover.

5.4 Algebraic Hash Functions

In both the PCD and proof aggregation settings, the vast majority of the compli-
ance predicate’s constraints are due to the hashing of input and output images.
Even with the booleanity optimization, the booleanity constraints continue to
dominate the cost of our circuit. Traditional hashing algorithms such as SHA
are complex and not well-suited for SNARK applications since they require con-
verting Fp elements to bits, incurring a non-trivial �log(p)� multiplication gates
per field element cost. This roughly amounts to 1 constraint per bit per field
element and dominates our circuit’s overall cost. For this reason, recent work
has proposed algebraic hash functions whose domain is Fp [15].

We instantiate the Poseidon hash function [15] over Fp and analyze the per-
formance benefits. First, we observe that Poseidon achieves on the order of 0.3
constraints per bit, compared to the subset-sum’s cost of 1 constraint per bit (due
to the unpacking of bits from F

m
p). However, our booleanity optimization from

earlier reduced the cost from 1 constraint per bit to around 0.1 constraints per
bit. We observe that rather than truncating the field elements for the algebraic
hashing gagdet, we can instead pack multiple pixels into a single field element.
For the BN254 curve, we are able to squeeze 7 pixels into a single 254 bit field
element. We use a pixel packing gadget that ensures for a field element X ∈ Fp

and a set of pixel values f ,
∑6

i=0 232i · f [i] == X.
We implement the Poseidon hashing for the proof aggregation setting only,

since integrating it into PCD is non trivial and beyond the scope of this paper.
The results are shown in Table 1(c), showing an additional 3× reduction in num-
ber of constraints in the circuit translating to 5× speedups in prover time at the
250×250 image size. Note that the difference in performance between Table 1(c)
and Table 1(b) is primarily because of the Poseidon hashing, i.e., we expect the
two sets of results to be close once Poseidon is integrated into PCD. This is
because the number of constraints for PCD’s unique verification circuit (the V
component of Cpcd) are very small relative to the number of constraints due to
the compliance predicate (the

∏
component of Cpcd).

5.5 Reducing Pipeline Latency

The end-to-end latency of the DCDS filtering pipeline is defined as the time from
image publication at the sensor until the filtered content crosses the boundary
(or fails). As shown in Fig. 2, this latency depends on the depth of the pipeline,
the number of filtering steps in our example. In a naive instantiation of the
DCDS pipelines of Fig. 2 whereby each filter generates the proof and forwards
the output(s) to the next filter in the pipeline, the end-to-end latency tk for a

Towards Decentralized and Provably Secure Cross-Domain Solutions 197

pipeline of depth k is O(ktprover), where tprover is the prover time (the time
each filter needs in order to produce a proof over its computation). For example,
Table 1(b) (Table 1(c)) show the prover time to be 62 s (15 s) for a 250 × 250
image. Multiplying these numbers by the depth of the pipeline can get expensive.

We make tk independent of k in the proof aggregation setting of Fig. 2(b)
i.e., tk ≈ O(tprover). When a filter node Fi receives its input image Ii, it natively
executes the equivalent traditional filtering software to produce the filtered out-
put image Ii+1. Let tFi

denote this native execution latency, and note that this
tFi

is orders of magnitude faster than tprover. Node Fi forwards Ii+1 to the next
filtering node in the pipeline. In parallel to the native execution, Node Fi runs
the expensive prover algorithm on the input image and forwards (hi+1, πi+1)
to the boundary node as described in Sect. 3.2. As soon as Fi+1 receives Ii+1

from Fi, it can immediately begin performing its local computation, rather than
waiting on Fi to produce (hi, πi). For a pipeline of depth k, it can be shown
that the end-to-end latency tk is reduced from k(tprover + tcomm + tverifier) to
(
∑k−1

i=0 tFi
) + tprover + k(tcomm + tverifier), where tcomm is the one-hop commu-

nication latency.
A similar approach can be used to reduce the latency of the PCD setting

(Fig. 2(a)). At first glance, it appears that one cannot parallelize the distributed
computation since each sequential hop requires a proof of correctness from the
previous DCDS node. However, we observe that the majority of the prover’s
computation is independent of the previous proof, and can accordingly start in
parallel. For example, a monolithic prover can split the circuit into two sections
(a) and (b) such that (a) corresponds to wire values independent of the previous
proof πi−1 and (b) corresponds to wire values dependent on πi−1. The prover
then applies techniques from [20] to compute a proof πi by first computing the
values associated with (a), and later computing the values associated with (b)
when πi−1 arrives. It can be shown that the majority of the prover’s computa-
tion involves wire values independent of the previous proof πi−1, and therefore
the majority of the distributed PCD computation can be performed in parallel
by forwarding native execution output. We leave this PCD Implementation for
future work.

6 Performance Evaluation

We evaluate the performance (compute and memory costs) of the designs for a
single hop of the filtering pipeline in terms of the prover time (time for each filter
Fi to produce a proof on its local computation) and peak memory, and verifier
time (time for the boundary node to verify a single proof πi+1), for different
image sizes. The prover’s memory footprint includes loading the proving key

∏

corresponding to the compliance predicate pk, where the size of the proving key
in MB is denoted by |pk|, and |∏ | is the size of the compliance predicate in terms
of number of R1CS constraints. Table 1 shows the performance results of three

198 J. Khoury et al.

Fig. 3. Comparison of baseline, optimized PCD, and aggregation designs in terms of
prover’s time (seconds) for different image sizes. The x-axis is quadratic.

different systems on an AWS c5.18xlarge instance with 72 cores and 144 GB
RAM. Table 1(a) shows the results for the baseline PCD system of Sect. 5.1. The
baseline prover algorithm runs out of memory for images larger than 250 × 250
pixels. At the 250 × 250 image size, the filtering predicate has more than 37M
constraints and takes the prover more than 5 min and around 100 GB of memory
to generate a proof! The proof size |π| is 2988 bits.

Table 1(b) shows enhanced performance of the baseline PCD system when
incorporating the Groth16 and Booleanity optimizations described in Sect. 5.
The optimizations result in 5× speedup in prover time at the 250 × 250 image
size, and the reduction in prover memory allow increasing the image size by 9×
before running out of memory. The proof size is reduced to 1493 bits.

Table 1(c) shows the performance of the proof aggregation system with com-
parable assurances, including Groth16 and algebraic hash optimizations from
Sect. 5. At the 250 × 250 image size, the optimized proof aggregation system
delivers 20× speedups in prover time. Additionally, proof verification time is
constant (independent of the input image size) since constant-size hashes make
up the public input of the circuit. In this proof aggregation design however, the
aggregator must verify k proofs for a depth k pipeline each on the order of 5
ms as shown in Table 1(c). The 30× reduction in number of R1CS constraints
further enables scaling to large 900 × 900 image sizes, a 13× larger scale than
baseline. The proof size is 1019 bits.

Finally, Fig. 3 compares the three proof systems in terms of prover time
showing the relative speedups attained and the resulting increase in image scale.
Note that the x-axis in the figure is quadratic, and the scaling is linear in pixels.

Towards Decentralized and Provably Secure Cross-Domain Solutions 199

Table 1. Performance of the DCDS proof system for a single hop computation on
an AWS c5.18xlarge instance with 72 cores and 144 GB RAM. | ∏ | is the number of
R1CS constraints in the DCDS circuit which contains the predicate. Generator, prover,
verifier times are in seconds. |π| is the proof size in bits, and Mem is prover’s memory
in GB. The table compares three systems: (a) unoptimized PCD based proof system,
(b) Optimized PCD based proof system, and (c) optimized proof aggregation based
proof system. The 250 × 250 image size results are highlighted for comparison.

(a) PCD Baseline

Image Size |∏ | |pk| (MB) Generator Prover Verifier Mem |π| (bits)
64×64 2,780,396 750.0 80.32 27.67 0.062 12.37 2988

128×128 10,153,196 2,740.8 281.21 90.18 0.096 30.79 2988

250×250 37,822,796 10,351.6 686.77 316.70 0.220 99.48 2988

(b) PCD w/ Groth16 + Booleanity optimizations

64×64 353,783 82.7 11.35 5.73 0.025 6.11 1493

128×128 1,189,367 289.7 37.28 17.12 0.043 8.24 1493

250×250 4,325,255 1,073.6 119.01 62.72 0.107 15.66 1493

400×400 10,928,055 2,782.4 246.59 154.66 0.246 31.88 1493

500×500 17,109,255 4,274.8 379.63 246.81 0.377 46.56 1493

750×750 38,325,255 9,698.1 706.07 524.71 0.822 98.74 1493

(c) Proof Aggregation w/ Groth16 + Algebraic hash optimizations

64×64 85,227 14.4 2.29 1.41 0.005 5.78 1019

128×128 338,655 57.3 7.98 4.75 0.005 7.41 1019

250×250 1,289,571 212.5 18.96 15.98 0.005 14.02 1019

400×400 3,301,043 569.5 50.40 36.63 0.005 26.87 1019

500×500 5,157,987 850.0 69.23 63.45 0.005 39.17 1019

750×750 11,604,043 1,936.3 182.29 147.78 0.005 81.59 1019

900×900 16,709,987 2,747.6 248.07 165.70 0.005 114.89 1019

7 Related and Future Work

To our knowledge, this is the first design and implementation of a CDS filtering
pipeline based on verifiable computation. Furthermore, we are not aware of any
work on decentralizing the CDS architecture across several potentially untrusted
devices. Our work is inspired by PhotoProof [18], which describes an image
authentication proof-of-concept library using the proof-carrying data scheme
of [6]. PhotoProof demonstrated the feasibility of distributed image filtering,
however, PhotoProof’s ability to scale to larger images was largely limited due
to the unavailability of modern algebraic hashing techniques [1,15] and optimized
proof systems [16].

In terms of future work, we identify the following three thrusts:

Expressiveness, Performance, and Security. The ability to efficiently filter
more complex data types is critical for CDS adoption and for mission enable-
ment. In addition to bitmap filtering, we implemented filters for redacting

200 J. Khoury et al.

text documents that use the same principles as the BMP filters discussed
here (treating characters in the document like pixels), and we plan to con-
tinue enhancing the expressiveness and efficiency of these predicates. Addi-
tionally, we plan to experiment with newer constructions of PCD based on
accumulation schemes [8], which realize recursive proof composition without
the sublinear-time verification requirement. These constructions may permit
higher levels of security avoiding for example the limitations inherent to PCD
constructions from cycles of elliptic curves [6], while additionally providing
post-quantum security properties.

Confidentiality Protection The present DCDS design is primarily concerned
with protecting the integrity of the filtering pipeline even when computed
on low assurance devices. A filtering node in the current design sees the
plaintext input images as well as the witness, both of which may need to
be confidential. We plan to extend the design such that the filtering nodes
are able to perform a verifiable computation over encrypted data keeping
both the input and the witness private from the filtering node. This problem
is akin to verifiable and private delegation of computation [13]. However,
these protocols require ideas from fully-homomorphic encryption (FHE) and
verifiable computations simultaneously and are currently expensive. We are
experimenting with simpler partially homomorphic schemes that are efficient
and suffice for some of the desired computations.

Hardware Acceleration To support filtering of information flows that require
low latency, the prover time must be further reduced. Consider for example
the pp-zk-SNARK prover’s optimized algorithm is defined [5] (see § 4.3 and
Fig. 10-b in [5]). There are two main operations the prover runs: computing
the coefficients h of a polynomial H(z), and computing the proof π using 8
large multi-scalar multiplications of the form α1P1 + . . . + αnPn where Pi

are elements of group G1 (or G2) and αi are scalars. Both of these sets of
operations can directly benefit from hardware acceleration. We will investi-
gate using GPU or FPGA implementations of FFTs over big integers and
multi-scalar multiplications. We expect this may lead to up to two orders of
magnitude speedups for large circuits.

8 Conclusion

This paper presents a first step towards building decentralized and provably
secure cross domain solutions, allowing secure composition of CDS components
(such as content filters) running on untrusted edge devices. A decentralized
CDS capability complements today’s enterprise and tactical CDS enabling secure
cross-domain information sharing when access to the enterprise or single-device
tactical CDSs is not available, such as with the disconnected, intermittent, and
limited tactical edge. We show that instantiating such a decentralized capability
can be made practical, for the simple image filtering predicates considered in
this paper. We expect the active research efforts for enhancing the practicality
of verifiable computations will render this paradigm increasingly more practical
in the future.

Towards Decentralized and Provably Secure Cross-Domain Solutions 201

A From zk-SNARK to PCD

A PCD system (Generator,Prover,Verifier) is constructed in [7] using recursive
composition of pp-zk-SNARK (G,P, V) proofs. The main idea behind recursive
proof composition is that the new proof system has to prove two things now at
each node: (1) the proof of the previous computation step is valid and (2) the
node performed a valid local computation. In other words, the pp-zk-SNARK is
used to prove that the input proof πin attests to the compliance of zin , and
the output z is

∏
-compliant given (zin , zloc). This effectively allows recursion so

that the history can now be discarded at each step, and hence enables compliance
predicate verification only by looking at the proof and data from the last step.

More concretely, in order to construct the recursive PCD proof system, the
PCD circuit Cpcd must encode the pp-zk-SNARK verification algorithm V in
addition to the local computation corresponding to the compliance predicate

∏

i.e., one must construct the F-arithmetic circuit CV corresponding to V as a
sub-circuit of Cpcd.

A known efficient pp-zk-SNARK verification function uses pairings on elliptic
curves [6]. Since, the verification function, the circuit CV , operates over the
base field Fq of the curve rather than over Fr over which the NP statement is
defined,3 realizing Cpcd in practice is challenging (see [6] for details). For the
sake of this discussion, we just mention that Cpcd involves a lot more than the
local computation. There are two separate PCD circuits, each one on a different
elliptic curve, such that the two curves are on a cycle. The main PCD circuit
Cpcd does three things:

1. implements a collision-free hash function that verifies the output hash of vk, z
is valid, which involves circuits for bit conversion because the hash function
operates over bit strings (this step is required in order to bypass the circular
dependency between the two proof systems generated from the two curves on
a cycle)

2. verifies the local predicate
∏

(z,zin , zloc, bbase)
3. recursively verifies CV (vk,zin ,πin) for each pair which also involves circuits

for bit conversion

Circuit Size. The overall size of the main PCD circuit Cpcd is |∏ |+s ·89412+
(1+ s) ·n · 298+11925 gates, where s is the arity (number of incoming messages
to each node) and n is the input size (see [6] §5 for details; there is also an
auxiliary PCD circuit we don’t show here as it has constant cost.). This shows
the (additive) dependence of the prover cost on |∏ |. Besides the predicate, a
main contributor to cost is the booleanity checks which requires expanding into
their bit representations each of the input and output messages ((1 + s) · n · 298
gates), where Fr is a prime field of 298 bits. For a large input such as a 128×128
image i.e., n = 16384 field elements each 298 bits, this term can be large requiring

3 Here q is the size of the base field over which the curve is defined, and r is the order
of the group (number of points on the curve).

202 J. Khoury et al.

around 10 million gates even for s = 1, far exceeding the cost of the predicate∏
. This �log rα� = 298 blow up factor seems to be inherent to the construction

because the collision-resistant hash function operates on binary string inputs
(see [6] §4.1), and expanding a field element x to its bit representation requires
�log rα� constraints to verify

∑
i bi2i = x, where bi is the bit at index i in x’s

binary representation.

Prover Key Size and Memory. The prover key is made of a large set of group
elements. Here, we relate the number of group elements in the proving key to
the input and circuit dimensions to understand the effect of circuit complexity
on performance. The number of elements in the key depends on the Quadratic
Arithmetic Program (QAP) instance [14], which is derived from the Rank-1
Constraint System (R1CS) through an efficient reduction (see [4] Appendix E).
Briefly, a R1CS constraint system is expressed as A · s

⊙
B · s = C · s, where

s is a vector of m + 1 variables (input, intermediate, and output variables)
corresponding to the m wires in the arithmetic circuit (an additional special
variable, one, is used resulting in m+1 variables). And A, B, and C are matrices
of dimension l × m + 1 for a system with l constraints corresponding to the l
gates of the circuit (each row corresponds to a constraint).

A R1CS constraint system is reduced to a QAP instance with the same
number of m + 1 variables and whose degree is d(l), where d(l) is some value
larger than l selected for an evaluation domain to optimize computations of
Lagrange polynomials and FFT/iFFT. The QAP instance is similarly repre-
sented with three sets of polynomials A′, B′, and C ′ each containing m + 1
polynomials each of which is degree d(l). In summary, the resulting proving key
contains at most 6m + d(l) + 13 elements from group G1 and m + 4 elements
from group G2. Reducing m, the number of wires in the circuit, significantly
affects performance (key size, memory, generator time, and prover time). The
proof always has 7 G1 elements and 1 G2 element [5].

References

1. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020, 1–45 (2020)

2. Australian Cyber Security Centre: Fundamentals of cross domain solu-
tions, June 2020. https://www.cyber.gov.au/acsc/view-all-content/publications/
fundamentals-cross-domain-solutions, Accessed 10 Apr 2020

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Kfir, S., Tromer, E., Virza, M.: libsnark,
2014. https://github.com/scipr-lab/libsnark

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security 2014, pp. 781–
796 (2014)

https://www.cyber.gov.au/acsc/view-all-content/publications/fundamentals-cross-domain-solutions
https://www.cyber.gov.au/acsc/view-all-content/publications/fundamentals-cross-domain-solutions
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-40084-1_6

Towards Decentralized and Provably Secure Cross-Domain Solutions 203

6. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. Algorithmica 79(4), 1102–1160 (2017)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for snarks and proof-carrying data. In: Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing, pp. 111–120 (2013)

8. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumu-
lation schemes. IACR Cryptol. ePrint Arch. 2020, 499 (2020)

9. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: ICS, vol. 10, pp. 310–331 (2010)

10. Chiesa, A., Tromer, E.: Proof-carrying data: secure computation on untrusted
platforms (high-level description). Next Wave Natl. Secur. Agency Rev. Emerg-
ing Technol. 19(2), 40–46 (2012)

11. Cross Domain Products and Technology Branch of the Information Assurance
Directorate: Inspection and Sanitization Guidance for Bitmap File Format. Tech-
nical report, Version 1.0, National Security Agency, January 2012

12. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165 (2006). https://eprint.iacr.org/

13. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

14. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

15. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. In: Proceedings of the 30th
USENIX Security Symposium. USENIX Association (2020)

16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

17. National Cross Domain Strategy and Management Office: Cross Domain Solu-
tion (CDS) Design and Implementation Requirements: 2020 Raise the Bar (RTB)
Baseline Release. Technical report, NCDSMO-R-00008-003 00, National Security
Agency, December 2020

18. Naveh, A., Tromer, E.: Photoproof: cryptographic image authentication for any set
of permissible transformations. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 255–271. IEEE (2016)

19. Smith, S.: Shedding light on cross domain solutions (2015). https://www.sans.org/
white-papers/36492/. Accessed 10 Apr 2020

20. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero
knowledge proof system. In: USENIX Security 2018, pp. 675–692 (2018)

https://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-49896-5_11
https://www.sans.org/white-papers/36492/
https://www.sans.org/white-papers/36492/

	Towards Decentralized and Provably Secure Cross-Domain Solutions
	1 Introduction
	2 Background
	2.1 Arithmetic Circuit Satisfiability in Field F
	2.2 Preprocessing zk-SNARK
	2.3 Proof Carrying Data (PCD)

	3 Decentralized CDS Designs
	3.1 DCDS from Recursive Proof Composition
	3.2 DCDS from Proof Aggregation

	4 Implementation
	5 Baseline and Optimizations
	5.1 PCD Baseline
	5.2 Switching to Groth16
	5.3 Reducing Booleanity Constraints
	5.4 Algebraic Hash Functions
	5.5 Reducing Pipeline Latency

	6 Performance Evaluation
	7 Related and Future Work
	8 Conclusion
	A From zk-SNARK to PCD
	References

