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Abstract The COVID-19 spread all around the world, causing more than a million
deaths and reaching over 50 million confirmed cases. A forecast of these numbers is
vital for the adequate preparations of health care capacities and for the governments
to take the necessary decisions. In this study, it is aimed to predict the evolution
of COVID-19 figures, employing alternative statistical models such as the Holt-
Winters, ARIMA, and ARIMAX while using the time series corresponding to
different parameters of this disease such as daily cases, daily deaths, and the
stringency index. Considered are the John Hopkins University epidemiological
world data and the top ten countries with the highest cases, along with China.
The fitting of the time series and the upcoming 10 days projections resulted in a
high level of accuracy, presented with alternative error metrics and comparisons
between the situations of countries. Holt-Winters is the best performing model,
while ARIMAX gives the worst accuracy results. Moreover, it was found that the
use of coefficient determination and Bayesian information criterion alone are not
suitable, and scale independent metrics should be employed when the data ranges
differ. The results of this study would be useful to set up benchmark results for
other studies and the projections may be used for medical, economic, and social
precaution and preparation.
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e-mail: merol@gsu.edu.tr; mcedolin@gsu.edu.tr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. I. Topcu et al. (eds.), New Perspectives in Operations Research and Management
Science, International Series in Operations Research & Management Science 326,
https://doi.org/10.1007/978-3-030-91851-4_8

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91851-4_8&domain=pdf
mailto:merol@gsu.edu.tr
mailto:mcedolin@gsu.edu.tr
https://doi.org/10.1007/978-3-030-91851-4_8


208 M. Erol Genevois and M. Cedolin

1 Introduction

Since December 2019, the world is in combat with COVID-19, which started in
Wuhan, China and spread to more than a 100 countries. According to the data
collected by the World Health Organization (WHO)1 on February 14th, 2021,
there have been 108,153,741 confirmed cases of COVID-19, with 2,381,295 cases
resulting in deaths. While some countries are going through the second wave, some
states started the vaccination process, and governments responded to the global
pandemic with different measures.

Apart from the clinical researchers, academics approached the COVID-19
problem in different ways. While the pandemic spread and 1 year of living with
COVID-19 passed, the social impact and economic aspects of the virus have
become critical (Bruns et al., 2020). The diagnosis of the virus with the artificial
intelligence image processing techniques became important (Bhattacharya et al.,
2021). Similarities between the SARS and other epidemics were investigated (Peeri
et al., 2020). Some part of the studies concentrated on estimating the cases and
deaths per country, and a significant forecasting literature was formed.

Because there was no data available at the start of this epidemic, predicting
and projections were difficult. However, the spread of COVID-19 is highly dan-
gerous and necessitates strict plans and government policies. Therefore, forecasting
confirmed cases and deaths in the future days is crucial in order to manage
health resource capacities and put in place the necessary protection procedures.
Consequently, this study tries to apply alternative forecasting models for the daily
reported COVID-19 confirmed cases and deaths of the most affected 10 countries
and China. It employs, namely Holt-Winters, ARIMA, and ARIMAX models,
providing accuracy results in alternative error metrics.

The rest of the study is organized as follows: The second section consists
of literature review. The third section presents the employed methods with the
application, and the fourth section gives the concluding remarks and discussions.

2 COVID-19 Forecasting Literature Review

Forecasting the outcomes of a pandemic is important for governments in order
to take the necessary restriction measures while preparing the appropriate health
infrastructure (e.g. intensive care units for COVID-19 cases). The countries shared
their data despite their discordance, with the public and WHO. Many researchers
employed this data (worldwide or in specific countries) to forecast cases, deaths,
and recovery numbers. In the last year, a solid forecasting literature was built where
researchers alternated approaches such as machine learning approaches, statistical

1 https://COVID19.who.int/

https://covid19.who.int/
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and epidemiological models. These articles focused on a selected country or a group
of countries’ case and death data (daily or cumulative), while some articles aimed
to forecast the worldwide data generally in alternative forecasting horizons and
training scales were written.

Al-Qaness et al. (2020) proposed an Adaptive Neuro-Fuzzy Inference System
(ANFIS), which uses an enhanced flower pollination algorithm (FPA) with the help
of the Salp Swarm Algorithm (SSA) to forecast the confirmed cases in China for
the upcoming 10 days. Ankarali et al. (2020) employed ARIMA, Simple Expo-
nential Smoothing, Holt’s Two Parameter Model, and Brown’s Double Exponential
Smoothing Model to forecast 10 days of cumulative cases, cumulative deaths, daily
cases, daily deaths, cumulative recovered and active cases of 25 countries, which
exceed 1000 as cumulative cases in March 15. Ayinde et al. (2020) focused on
the Nigeria data set and tried to forecast 2 months of confirmed cases, discharged
cases, and death cases using classic, quadratic, cubic, and quartic versions of
linear regression, logarithmic regression, logistic regression, and exponential linear
regression. Ayyoubzadeh et al. (2020) predicted the COVID-19 cases in Iran using
the Google Trends data. They employed the linear regression model and long short-
term memory (LSTM) models and obtained a strong correlation for keywords like
“hand sanitizer,” “handwashing,” and “antiseptic.”

Benvenuto et al. (2020) employedARIMA to forecast the next 2 days of COVID-
19 confirmed cases and indicated that “if the virus does not develop new mutations,
the number of cases should reach a plateau.” Crokidakis (2020) employed a
susceptible–infectious–quarantined–recovered (SIQR) model to estimate confirmed
cases, ratio of infectious individuals, the reproduction number, and the epidemic
doubling time of Brazil. Dandekar and Barbastathis (2020) built a neural network
aided quarantine control model to test the impact of strict quarantine measures
on the reproduction number in Wuhan. Their simulation results showed that rigid
quarantinemeasures helped China on the new case numbers. Hernandez-Matamoros
et al. (2020) built ARIMA models to forecast total case numbers per million,
grouping countries according to their continents. Hu et al. (2020) used modified
autoencoders for modeling the number of the cumulative and newly confirmed
cases. They outlined the immense difference between the immediate and late
interventions on total active cases and suggested a case ending time of January
10, 2021 under immediate aggressive interaction. Ibrahim et al. (2021) employed
a variational Long Short-Term Memory (LSTM) autoencoder to forecast the spread
of the coronavirus across the globe for the next day and 10 days ahead that employs
historical data with the urban characteristics and stringency index measures. Ivorra
et al. (2020) developed a new θ-SEIHRD model containing the characteristics of
COVID-19, to identify the unknown parameters of the pandemics that fit the total
cases of China, to estimate the reproduction rate, and to find the maximum number
of hospitalized people.

Jia et al. (2020) employed a Logistic model, the Bertalanffy and the Gompertz
model to estimate the new cases and death toll of China. Among these mathematical
models, the logistic model is the best fitting-one. Kafieh et al. (2020) trained
alternative machine learning models as random forest, multi-layer perceptron,
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LSTM with regular and extended features, and multivariate LSTM to estimate
daily number of confirmed, death, and recovered COVID-19 cases. Kolozsvari et
al. (2020) used recurrent neural networks with LSTM units to create prediction
models of 17 countries’ daily infection numbers per 100,000 habitants, outlining
the effect of the repeated peaks of the epidemic. Kumar et al. (2020) employed
ARIMA and Richard’s model to estimate new cases, new deaths, and recovery rates
of India. Liu et al. (2020) used related internet search activity in their combined
mechanistic and machine learning model to estimate the real-time COVID-19 cases
of the Chinese provinces. Liu et al. (2021) modeled the coronavirus in China, South
Korea, Italy, Germany, and the UK, and under different scenarios, simulated their
new cases. Milhinhos and Costa (2020) employed nonlinear regression to estimate
the active cases and total deaths of Portugal and built a comparative model with
South Korea, outlining the similarities. Pandey et al. (2020) employed SEIR and a
regression model to predict the expected cases in India within 2 weeks.

Petropoulos and Makridakis (2020) employed exponential smoothing to forecast
global confirmed cases, deaths, and recoverieswith a forecasting horizon of 10 days.
Roosa et al. (2020) used the generalized logistic growth model (GLM) and the
Richards model to estimate 5-, 10-, and 15- days of cumulative cases of China.
Sameni (2020) employed SEIR and the compartmental model to estimate the prop-
agation. They simulated seven different scenarios and tried to find the reproduction
and fatality rates of COVID-19. Xu et al. (2020) used the SEIQRPD model which
divided the population into susceptible, exposed, infectious, quarantined, recovered,
insusceptible, and deceased individuals to estimate the USA COVID-19 cases.
Yang et al. (2020) used the SEIR model helped by a trained LSTM in SARS-
2003, to predict COVID-19 peaks and sizes in China. Yonar et al. (2020) employed
exponential smoothing and ARIMA to forecast the number of COVID-19 cases of
the G8 countries. Table 1 summarizes the existing literature per country (forecasting
target), the employed method, and the forecasting horizon.

As can be observed from Table 1, most of the studies focused on a single
country data, with a forecasting horizon ranging from 2 to 15 days, while there
are articles that aim only to fit the training data set. Along with the epidemiological
models, regression models are widely used in the literature. Literature outlines that
statistical models are simple but effective tools to forecast COVID-19 numbers
with the highest proportion. Machine learning models such as LSTM or ANFIS,
epidemiological models such as SEIR and combinations like SIR and SIQR are the
other common approaches.

In this study, double exponential smoothing (Holt-Winters), ARIMA, and exoge-
nous version ARIMAX models are employed to fit and forecast the daily case and
daily death numbers of the selected countries and global data.
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Table 1 COVID-19 forecasting literature

References Country Method Forecasting horizon

Al-Qaness et al.
(2020)

USA, China ANFIS, FPA,SSA 10 days

Ankarali et al. (2020) 25 countries ARIMA, exponential
smoothing

10 days

Ayinde et al. (2020) Nigeria Linear regression models
and versions

2 months (fitting)

Ayyoubzadeh et al.
(2020)

Iran LSTM, logistic
regression

35 days (fitting)

Benvenuto et al.
(2020)

World ARIMA 2 days

Crokidakis (2020) Brazil SIQR 1 month (fitting)
Dandekar and
Barbastathis (2020)

China NN aided SIR 40 days (fitting)

Hernandez-
Matamaros et
al.

145 countries ARIMA 15 days

Hu et al. (2020) World Modified auto-encoder 5 days
Ibrahim et al. (2021) World Variational-LSTM

autoencoder
1–10 days

Ivorra et al. (2020) China θ-SEIHRD 1.5 months (fitting)
Jia et al. (2020) China Logistic, Bertalanffy,

Gompertz models
2 months (fitting)

Kafieh et al. (2020) Iran RF, MLP, LSTM 10 days
Kolozsvari et al.
(2020)

17 countries RNN with LSTM 11–12 days

Kumar et al. (2020) India ARIMA, Richard’s
model

1 month

Liu et al. (2020) 7 countries SIRU 2 days
Milhinhos and Costa
(2020)

Portugal Nonlinear regression 140 days (fitting)

Pandey et al. (2020) India SEIR, regression 2 weeks
Petropoulos and
Makridakis (2020)

World Exponential smoothing 10 days

Roosa et al. (2020) China Logistic growth,
Richard’s sub-epidemic
wave models

5, 10, and 15 days

Sameni (2020) USA SIR –
Xu et al. (2020) USA SEIQRP 2 weeks
Yang et al. (2020) China SEIR, LSTM 3 months (fitting)
Yonar et al. (2020) G8 countries ARIMA, exponential

smoothing
10 days
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3 Methodology and Application

3.1 Data Characteristics

The data employed in this study is available at the Coronavirus Research Center at
the Johns Hopkins University website.2 A total of 192 countries deals with the virus;
however, in this study, only the first ten countries with the highest case numbers on
February 9th, 2021 and China are considered. The first case dates differ among
the countries, and the reporting process of these cases is somehow problematic.
Therefore, the first day of the training set is selected as the day when cumulative
cases reached “100” for each country, which is considered to be a more robust
option. The training set length differs for each country and ends on January 30th,
2021. The remaining days are separated for the forecasting part. Table 2 shows the
countries, with their cumulative case and death numbers, the initial date with data
length and the fatality rate.

As is observed in Table 2, the countries have combatted the virus since March
2020. The USA is the most effected country by case and death numbers. The
average fatality rate is 2.2%, while the maximum fatality rate is observed in China
and Italy, 4.8% and 3.5%, respectively. The minimum fatality rates are in India
and Turkey with 1.4% and 1.6%, which may be linked to the average population
age of these countries. China is the virus-source (the virus’ source) country. The
virus spread after approximately 1 month to Europe, starting with Italy, France, the
UK, Germany, and Spain. At last, it affected Russia and Turkey. The last affected
countries had more time to prepare, while countries like Italy, which was the first
effected, experienced more difficulties in the initial days of the spread of the virus.
The countries show some similarities; however, they all have different COVID-
19 waves lengths and population properties. In the appendix, charts belonging to
daily case vs daily death numbers of the countries can be referenced to investigate
these differences. To mathematically evaluate the resemblances between the case
and death time series, a correlation test between the countries’ data and world
data is done. However, due to the initial day differences, the test is applied for the
first 316 days of the pandemic. The outcomes for the new cases and new deaths
correlations are as follows.

Table 3 shows that for most of the countries, a correlation between the country
based new cases and worldwide new cases can be obtained; however, this hypothesis
is not true for the daily death numbers of the countries. China is acting as an outlier
in every aspect. The Spain data is corrupted since it contains negative values for
the new deaths and new cases along with zeroes. In terms of the case numbers USA,
UK, Germany, and Russia are highly correlatedwith theWorld. In terms of the death
numbers, there is no country that is linearly correlated with the worldwide death
numbers. To sum up, worldwide data is not an explanatory variable to yield better

2 https://coronavirus.jhu.edu/map.html

https://coronavirus.jhu.edu/map.html
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Table 2 COVID-19 details of the countries

Initial day Total case Total death Data length Fatality rate

World 28.01.2020 103, 554, 872 2, 268, 415 369 0.022
USA 7.03.2020 26, 558, 791 451, 416 330 0.017
India 18.03.2020 10, 790, 555 154, 701 319 0.014
Brazil 17.03.2020 9, 335, 247 227, 467 320 0.024
Russia 20.03.2020 3, 858, 234 73, 499 317 0.019
UK 4.03.2020 3, 844, 233 109, 308 333 0.028
France 3.03.2020 3, 307, 342 77, 628 334 0.023
Spain 5.03.2020 2, 871, 140 60, 161 332 0.021
Italy 25.02.2020 2, 586, 016 89, 768 341 0.035
Germany 4.03.2020 2, 253, 819 59, 642 333 0.026
Turkey 21.03.2020 1, 677, 723 26, 345 316 0.016
China 28.01.2020 98, 930 4783 369 0.048

Table 3 Correlation test results

USA India Brazil Russia UK France
New Case 0.917 0.203 0.693 0.811 0.836 0.517
New Death 0.494 0.232 0.636 0.742 0.179 −0.086

Spain Italy Germany Turkey China
New Case 0.696 0.663 0.832 0.547 −0.327
New Death −0.394 0.075 0.589 0.388 −0.395

results when it comes to individual country data. The time series of the countries
show obvious differences; therefore, they should be examined separately, and they
should have their own model configurations. The figures in this study show the
charts belonging to the worldwide data, and in the appendix the figures belonging
to the other countries may be found. Figure 1 shows the New Case vs Daily Death
numbers of the World and USA.
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3.2 Error Metrics

Alternative error metrics are employed in the COVID-19 forecasting literature.
All the statistical models based their study on R2 which is the coefficient of
determination that represents the proportion of the variance for dependent variable
by the regression variable. RMSE and bic are the other error metrics that are used
by Ankarali et al. (2020), Kumar et al. (2020), and Yonar et al. (2020). In this study,
the results are provided according to these metrics. However, these metrics are scale
dependent and are not suitable to compare the forecasting accuracies by countries.
Therefore, the results are also shown in SMAPE and MAPE. The formulae of the
employed metrics are provided next.

• Bayesian Information Criterion (bic)

The bic or Schwarz information criterion (SIC) is a criterion for model selection
based on the likelihood function like AIC (Schwarz, 1978). The general notation is
as

BIC = k ln(n) − 2 ln
(
L̂

)
(1)

• Root Mean Squared Error (RMSE)

RMSE or root mean-squared deviation (RMSD) is the square root of the averaged
squared errors. It is scale dependent and highly sensitive to the outliers. When there
is a set of time series, it is a difficult metric to interpret.

RMSE =
√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2
(2)

• Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE is an accuracy measure based on percentage errors where the absolute
difference between the At and Ft is divided by the half sum of absolute values of
the At and Ft. This value is summed for every t and divided by the number of fitted
points n.

SMAPE = 100%

n

∑n

t=1

∣∣∣∣
Ft − At

(|At | + |Ft |) /2

∣∣∣∣ (3)

The main advantage of the SMAPE is the interpretability (values range between 0
and 1) and the scale independency,which are necessities when dealing with multiple
time series. The drawbacks are that when the actual value is zero, this metric is
undefined because of the denominator.

• Mean Absolute Percentage Error (MAPE)
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MAPE or mean absolute percentage deviation (MAPD) is a prediction measure
where the difference between the actual value (At) and forecast value (Ft) is divided
by the actual value. The absolute value of division is summed for every t and divided
by the number of fitted points n. This value may be multiplied by 100% for a
percentage error.

M = 1

n

∑n

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣ (4)

• Coefficient of Determination (R2)

The coefficient of determination denoted as R2 is a widely used error metric in
regression statistics, based on the proportion of variance in the dependent variable
that may be justified by the independent variable. It is known also as the goodness
of fit and it is the square of the correlation coefficient.

3.3 Holt-Winters Model

Holt-Winters is a statistical model that employs exponential smoothing to encode
past values, used to predict the training data and forecasting. When the data is not
stationary, in other words when there is a trend factor in data, simple exponential
smoothing remains insufficient and the use of double exponential smoothing, or the
Holt-Winters model becomes necessary (Holt, 1957). The COVID-19 data does not
yet show any seasonality. Therefore, the seasonal parameter of the model is not
included. With this adjustment, the method comprises the forecast equation with
two smoothing equations for the level lt and for the trend bt, with corresponding
parameters α and β between 0 and 1. The component form of the Holt-Winters
model is

ŷt+hIt = lt + hbt (5)

lt = α (yt ) + (1 − α) (lt−1 + bt−1) (6)

bt = β (lt − lt−1) + (1 − β) bt−1 (7)

The equations are done in MS Excel with generalized reduced gradient nonlinear
solver method that looks at the slope of the objective function (decreasing selected
error metrics) as the input values change and determine the optimality when the
partial derivatives are zero (Abadie, 1978). Table 4 gives the results accuracy in R2,
RMSE, SMAPE, and MAPE.

As is observed from Table 4, for each time series, three alternative double
exponential smoothing models are solved to decrease the RMSE, SMAPE, and
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Table 4 Holt-Winters accuracy results and parameters

World
case

World
death

USA
case

USA
death

India
case

India
death

Brazil
case

Brazil
death

α 1.000 1.000 0.801 1.000 0.885 1.000 1.000 0.913

β 0.525 0.224 0.589 0.512 0.383 0.050 0.022 0.043

RMSE 4621.620 149.704 2613.511 46.550 633.241 22.953 1528.380 31.745

α 1.000 0.893 0.817 0.936 0.926 0.942 1.000 0.970

β 0.523 0.470 0.881 0.691 0.325 0.083 0.117 0.162

SMAPE 0.026 0.027 0.021 0.030 0.023 0.039 0.042 0.040

alpha 0.962 0.893 0.849 0.936 0.922 0.942 1.000 0.969

beta 0.597 0.470 0.821 0.691 0.310 0.083 0.102 0.152

MAPE 0.025 0.027 0.020 0.030 0.023 0.039 0.042 0.039

R2 0.9996 0.9983 0.9985 0.9970 0.9995 0.9958 0.9902 0.9897
Russia
case

Russia
death UK case

UK
death

France
case

France
death

Spain
case

Spain
death

α 0.951 1.000 1.000 0.796 1.000 1.000 0.624 1.000

β 0.719 0.304 0.594 0.411 0.000 0.000 0.364 0.155

RMSE 98.039 4.565 452.017 15.948 1882.908 28.010 693.694 29.679

α 0.816 0.742 1.000 0.995 1.000 1.000 0.922 1.000

beta 1.000 0.531 0.648 0.321 0.015 0.001 0.166 0.155

SMAPE 0.009 0.032 0.028 0.058 0.108 0.097 0.081 0.123

α 0.816 0.845 1.000 0.996 1.000 1.000 0.881 0.908

β 1.000 0.357 0.597 0.299 0.024 0.001 0.233 0.420

MAPE 0.009 0.030 0.028 0.055 0.113 0.097 0.084 0.744

R2 0.9999 0.9993 0.9991 0.9978 0.9739 0.9862 0.9928 0.9770
Italy
case

Italy
death

Germany
case

Germany
death

Turkey
case

Turkey
death

China
case

China
death

α 1.000 1.000 0.887 0.867 1.000 0.967 1.000 0.999

β 0.568 0.441 0.050 0.033 0.549 1.000 0.132 0.000

RMSE 230.277 9.850 716.699 20.551 598.717 0.914 164.609 14.012

α 0.981 1.000 0.955 0.932 1.000 1.000 0.945 0.895

beta 0.444 0.127 0.308 0.229 0.949 1.000 0.486 0.672

SMAPE 0.029 0.066 0.050 0.086 0.019 0.016 0.113 0.094

α 0.974 1.000 0.949 0.957 1.000 1.000 0.882 –

β 0.439 0.129 0.305 0.179 0.949 1.000 0.662 –

MAPE 0.029 0.070 0.049 0.084 0.018 0.016 0.102 –

R2 0.9995 0.9983 0.9908 0.9932 0.9943 0.9998 0.9526 0.8455

MAPE, respectively. The objective error metric highly effects the parameters α

and β and the accuracy of the model. RMSE is a scale dependent measure, thus
it is not suitable for comparison. When case predictions are observed, SMAPE
ranges between 0.9% (Russia) and 11.3% (France). For the death predictions, the
maximum SMAPE is 12.3% (Spain, corrupted data with negative values) and the
minimum SMAPE is 1.6% (Turkey). For the world data, SMAPE and MAPE values
are around 2.5%. For the all-time series, the R2 shows the power of the correlation
with 99.99%, with a poor discriminating power. SMAPE and MAPE values show
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Fig. 2 Fitting Curves for the World: left—New Case, right—New Death

the suitability of the model to the COVID-19 data set. The fitting charts for the
World are in Fig. 2.

The forecasting values by the parameters, optimized for SMAPE are in Tables 5
and 6 for daily cases and daily deaths, respectively.

3.4 ARIMA

The ARIMA model describes a univariate time series as a combination of autore-
gressive (AR) and moving average (MA) lags which capture the autocorrelation
within the time series. The order of integration denotes how many times the series
has been differenced to get a stationary series. An ARIMA(p,d,q) model where p is
the autoregressive lag, d is the degree of differencing, and q is the number of moving
average lags can be denoted as:

ΔDyt =
∑p

i=1
ϕiΔ

Dyt−i +
∑q

j=1
θj εt−j + εt , εt ∼ N

(
0, σ 2

)
(8)

The (p,d,q) parameters of the model are found by an iterative algorithm that
tries to minimize the Bayesian information criterion (bic) values, considering the
autocorrelation values. The sample and partial autocorrelation functions belonging
to the World are given in Fig. 3.

ARIMA configurations and results for the new cases and new deaths are given
in Tables 7 and 8, respectively. These and the following tables show the result by
five different error metrics. Bic values are the goodness of fit measure that evaluate
the performance of the selected model compared to other models. R2 represents
the proportion of the variance for a dependent variable that is explained by the
independent variable. RMSE is the square root of the mean of the squared errors.
The existing literature share their results with these three metrics; however, these
metrics are scale dependent, and they are not suitable to compare accuracy results
for different countries. Therefore, in this study, the scale independent error metric
MAPE is calculated. The “Inf” values on MAPE are based on the instability at near
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Fig. 3 ACF and PACF charts (World)

Table 7 ARIMA results for the new cases

New case Configuration bic R2 RMSE SMAPE MAPE

World (7,1,6) 7161.60 0.9997 4141.62 0.0398 0.0367
USA (7,1,6) 6000.20 0.9991 2390.19 0.0367 0.0587
India (7,0,7) 4887.30 0.9997 511.21 0.0619 0.0479
Brazil (7,1,7) 5471.40 0.9939 1297.05 0.0670 0.0836
Russia (7,2,7) 3660.60 0.9999 76.52 0.0079 0.0080
UK (7,2,7) 4873.20 0.9994 394.27 0.0401 0.0404
France (6,1,7) 5785.40 0.9873 2140.64 0.1909 0.1483
Spain (7,1,4) 5235.50 0.9944 649.56 0.1521 0.1370
Italy (7,2,7) 4573.00 0.9996 204.75 0.0322 0.0317
Turkey (6,0,7) 4741.40 0.9972 490.62 0.0259 0.0260
Germany (6,1,7) 5185.10 0.9950 627.06 0.0805 0.0797
China (7,1,7) 4574.80 0.9800 117.33 0.4119 0.6388

zero of the time series. To overcome this problem, the symmetric version SMAPE
is considered.

When the configurations of the models are investigated, most of the models
show a non-stationarity characteristic, which is supported also with the augmented
Dickey–Fuller test. For the new cases, the algorithm does not integrate the Turkey
and India data and for the daily deaths does not differ between the India and Spain
data. A second degree of differentiation is only required for the new cases for Russia,
the UK, and Italy, and new deaths for Spain. In general, a seven-lag order is selected
by the model for the autoregressive and moving average degrees. However, when
the data is decomposed, the seasonality is found to be approximately 0; therefore,
a SARIMA model is not necessary. China gives the maximum error values, and the
reliability of their values is often discussed in public, therefore in the comments,
China will be excluded due to data instability. Most of the countries fit the ARIMA
model quite well. The focus of the study is not decreasing the errors as much as
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Table 8 ARIMA results for the new deaths

New death Configuration bic R2 RMSE SMAPE MAPE

World (7,1,7) 4602.40 0.9989 122.43 0.0360 0.0348
USA (7,1,7) 3335.80 0.9980 37.42 0.0378 0.0321
India (7,0,7) 4887.30 0.9997 352.87 0.3741 4.2665
Brazil (7,1,7) 2987.40 0.9937 25.32 0.0371 0.0403
Russia (6,1,7) 1704.10 0.9996 3.49 0.0383 0.0336
UK (7,1,7) 2678.30 0.9985 13.28 0.1186 Inf
France (7,0,7) 2973.30 0.9932 20.40 0.1837 0.1675
Spain (6,2,7) 3148.90 0.9824 27.31 0.3677 Inf
Italy (7,1,7) 2428.30 0.9990 8.38 0.0638 0.0643
Turkey (7,1,7) 664.80 0.9999 0.71 0.0147 0.0150
Germany (7,1,7) 2708.80 0.9969 13.90 0.2560 Inf
China (7,1,7) 2769.90 0.9611 10.17 1.1200 Inf

possible but providing an easy and fast fitting and forecasting solution and offering
a comparative platform to the researchers and readers to discuss.

The R2 values greater than 99% show the robustness of the model to explain the
variance. The RMSE values may be used for each country to interpret fitting and
forecasting intervals. The model performances over countries are done by SMAPE
values. For the daily case numbers, the lowest SMAPE is for Russia with 0.79% and
Turkey with 2.59%. France and Spain are the worst fitting countries, with 19.09%
and 15.21%, respectively. Remaining countries and the world are within acceptable
limits, their SMAPE ranging between 1% and 7%. The fitting of the death numbers
is not as successful as the new cases fitting. In Table 6, the worst fitting countries
are India and Spain with 37.41% and 36.77%, respectively. Turkey (1.47%) and
Brazil (3.71%) are the best fitting countries using ARIMA. These countries may be
grouped in alternative ways. One way of it is considering the fitting error closeness
of the country with the world error term. The countries which have numerically
close SMAPEs can be considered as coherent countries.When SMAPEs are too low,
the countries may be grouped as negative coherent countries and when SMAPEs are
too high, they may be grouped as positive coherent countries, where the necessity of
building more sophisticated models arises. Table 9 gives this classification. Spain’s
data set is corrupted and contains negative values along zeroes, which reflects
directly the model results.

Table 9 Classification of the countries by coherence to the world

Coherent Positive coherent Negative coherent

New case USA, India, Brazil, UK,
Italy, Turkey, Germany

France, Spain, China Russia

New death USA, Brazil, Russia, UK,
Italy

India, France, Spain,
Germany, China

Turkey
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The ARIMA 10-days forecasting outcomes are in Tables 10 and 11 for daily
cases and daily deaths, respectively.

Tables 10 and 11 show that world daily case and death numbers of the virus
reached a steady plateau for the first days of the February 2021. USA and UK case
and death numbers are decreasing, while the situation is worsening for India and
Brazil. Turkey and Russia have a slightly negative slope, where the numbers seem
to decrease.

3.5 ARIMAX

ARIMAX is an extension of the ARIMA model where there are suitable explana-
tory variables that can be incorporated into fitting and forecasting problems. In
practice, these additional exogenous variables X create a multivariate time series
model instead of a univariate model and improve the prediction performance. An
ARIMAX(p,d,q) model for a time series yt with an exogenous series X can be
written as

ΔDyt = ∑p
i=1ϕiΔ

Dyt−i + ∑q
j=1θj εt−j + ∑M

m=1βmXm,t + εt , εt ∼ N
(
0, σ 2

)

(9)

New cases and new deaths are correlated time series and may be meaningful for
each other as an exogenous variable fit and forecast better. Another significant data is
the stringency index of the countries. The stringency index reflects the government
attitudes of the countries and is calculated as a function of school and workspace
closures, cancellation of public events, restrictions on public gatherings, closures
of public transport, stay at-home requirements, public information campaigns,
restriction on internal movements and international travel controls.3 To test the
effectiveness of using these exogenous variables, the Granger-causality test is
applied among the time series.

The Granger-causality test is a statistical hypothesis test to determine the
usefulness of a time series for forecasting another series (Granger, 1969). A
time series X is said to Granger-cause Y, when it provides statistically significant
information about the future of the Y The notation is.

p [Y (t + 1) ∈ A|I (t)] �= p [Y (t + 1) ∈ A|I−X(t)] (10)

where p is probability, A is an arbitrary non-empty set, and I(t) and I−X(t) denote
the information as of time t in the universe, and in the modified universe where X is
excluded. In this study this test is employed to detect in which series ARIMAX can
be employed. In total, six hypotheses are built. These hypotheses are, respectively,

3 https://ourworldindata.org/COVID-government-stringency-index

https://ourworldindata.org/COVID-government-stringency-index
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Table 12 The Granger-causality test results on case to death and vice versa

Case → Death h p-value Stat Death → Case h p-value Stat

World 1 0.001 10.657 World 1 1.12E−19 8.24E+01
USA 1 0.002 9.405 USA 0 2.68E−01 1.23E+00
India 1 0.000 19.041 India 0 5.90E−01 2.90E−01
Brazil 0 0.147 2.101 Brazil 0 6.60E−01 1.93E−01
Russia 1 0.000 36.213 Russia 1 3.62E−05 1.71E+01
UK 1 0.000 14.606 UK 0 6.78E−01 1.73E-01
France 1 0.000 98.141 France 1 2.00E−04 1.38E+01
Spain 0 0.090 2.883 Spain 1 1.85E−05 1.83E+01
Italy 1 0.000 27.930 Italy 1 1.18E−06 2.36E+01
Turkey 0 0.161 1.968 Turkey 0 4.37E−01 6.05E−01
Germany 0 0.869 0.027 Germany 1 1.96E−02 5.45E+00
China 0 0.585 0.299 China 1 9.10E−03 6.80E+00

Table 13 The Granger-causality test results on case to stringency and vice versa

Case → Stringency h p-value Stat Stringency → Case h p-value Stat

USA 0 0.759 0.094 USA 0 0.484 0.489
India 1 0.015 5.974 India 1 0.000 25.564
Brazil 0 0.184 1.762 Brazil 0 0.927 0.008
Russia 0 0.829 0.047 Russia 1 0.021 5.310
UK 0 0.217 1.522 UK 0 0.145 2.127
France 0 0.104 2.651 France 0 0.055 3.694
Spain 0 0.755 0.097 Spain 0 0.374 0.790
Italy 0 0.069 3.313 Italy 1 0.000 13.800
Turkey 0 0.890 0.019 Turkey 0 0.996 0.000
Germany 1 0.007 7.356 Germany 0 0.054 4.500
China 0 0.705 0.143 China 0 0.915 0.011

“case” Granger-causes “deaths” and vice versa, “case” Granger-causes “stringency
index” and vice versa, and “deaths” Granger-cause “stringency index” and vice
versa.

Tables 12, 13, and 14 show the results of these tests, where h value 1 indicates
the acceptance of the hypothesis, which does not neglect the Granger-cause effect
between the time series for a p-value lower than 0.05.

The first hypothesis is based on the strong correlation idea between the case and
death numbers. However, as can be observed from Table 13, only for seven countries
“case” has a Granger-cause on the “death” numbers. Similarly, only for seven
countries the “death” numbers can be employed to estimate the “case” numbers.
In addition, these countries are not the same, and this Granger-cause cannot be
generalized for countries; therefore, it will not be included in the ARIMAX model.

The second hypothesis is based on the effect of the government restrictions on the
case number and vice versa. Although this idea makes sense in theory, when the test
is applied, it is found that it does not make sense statistically. Only in two countries
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Table 14 The Granger-causality test results on death to stringency and vice versa

Death → Stringency h p-value Stat Stringency → Death h p-value Stat

USA 0 0.783 0.076 USA 1 7E−06 2E+01
India 0 0.098 2.746 India 1 3E−02 5E+00
Brazil 0 0.081 3.053 Brazil 1 1E−03 1E+01
Russia 0 0.965 0.002 Russia 1 6E−03 8E+00
UK 0 0.870 0.027 UK 1 3E−06 2E+01
France 0 0.331 0.945 France 1 5E−05 2E+01
Spain 0 0.227 1.459 Spain 1 4E−05 2E+01
Italy 0 0.337 0.921 Italy 1 9E−23 1E+02
Turkey 0 0.550 0.357 Turkey 1 2E−06 2E+01
Germany 0 0.645 0.212 Germany 1 4E−05 2E+01
China 0 0.991 0.000 China 0 7E−01 1E−01

Table 15 ARIMAX scores on new cases (stringency index as exogenous variable)

New case Configuration bic R2 RMSE SMAPE MAPE

India (7,0,7) 4509.09 0.9998 583.90 0.0243 0.0242
Russia (7,2,7) 3652.34 0.9996 77.64 0.0082 0.0084
Italy (7,2,7) 4552.71 0.9999 198.12 0.0348 0.035

“case” is the Granger-cause of the stringency index, and only in three states the
stringency has a significant effect on the “case” numbers estimation. These three
countries will be modeled with ARIMAX to measure the impact on the forecasting
accuracy.

As is clear from Table 14, death has no impact on the stringency index in each
country, however when the vice versa situation is considered, for all the countries
(except China), the stringency index is a Granger-cause of the death numbers,
therefore should be used in the ARIMAX as an exogenous variable to increase
the forecasting accuracy. Based on the Granger-causality test, the results of the
ARIMAX model are given in Table 15.

The SMAPE values of the ARIMA model belonging to India, Russia, and Italy
were 6.19%, 7.9%, and 3.22%, respectively. ARIMAX results shows that, the only
significant contribution of the stringency index on the estimation process, obtained
in India, by an added value of 3.76%. This can be considered as warning not to
employ complex models when the forecasting accuracy satisfactory.

The Granger-cause effect between the stringency index and new deaths is
common for countries. Table 16 shows the results of the ARIMAXmodel where the
stringency index is considered as an exogenous variable to predict the new deaths.

Spain gives the worst performance. When the data of Spain is investigated
the negative values of new deaths are observed. This corruption of the data set
is reflected directly on the solutions. Therefore, this country necessitates a data
cleaning process rather than a sophisticated model. MAPE does not perform well
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Table 16 ARIMAX scores on new deaths (stringency index as exogenous variable)

New death Configuration bic R2 RMSE SMAPE MAPE

USA (7,1,7) 3348.17 0.9980 37.62 0.0757 0.2032
India (7,0,7) 2766.18 0.9967 17.42 0.1312 0.6431
Brazil (7,1,7) 3008.07 0.9931 25.67 0.0798 1.1843
Russia (6,1,7) 1756.71 0.9996 3.55 0.0696 0.0633
UK (7,1,7) 2703.46 0.9982 13.32 0.7225 Inf
France (7,0,7) 2998.08 0.9938 20.38 0.2933 0.5039
Spain (6,2,7) 3161.37 0.9670 27.58 0.9295 Inf
Italy (7,1,7) 2464.41 0.9989 8.44 0.1269 0.1566
Germany (7,1,7) 2734.91 0.9968 13.98 0.3149 Inf
Turkey (7,1,7) 760.35 0.9999 0.71 0.0160 0.0161

Table 17 Daily death forecasting (ARIMAX)

USA India Brazil Russia UK France Spain Italy Germany Turkey

2021-01-31 3105 129 1089 520 1201 408 549 445 784 131
2021-02-01 3048 110 1106 521 1226 397 660 432 694 130
2021-02-02 2935 116 1087 520 1241 388 809 426 777 130
2021-02-03 2877 123 1093 517 1278 337 967 423 783 129
2021-02-04 2789 134 1104 519 1330 356 1165 414 682 129
2021-02-05 2701 127 1100 522 1381 272 1373 403 787 129
2021-02-06 2635 110 1071 526 1443 236 1636 394 746 129
2021-02-07 2562 106 1080 528 1509 200 1821 385 687 130
2021-02-08 2478 104 1074 530 1592 151 2012 372 788 131
2021-02-09 2381 103 1068 533 1676 100 2207 363 727 132

because of the near zero values. UK is not suitable to be fitted with ARIMAX with
a SMAPE of 72.25%, which is far greater than the simple ARIMA process (Table
17).

Tables 18 and 19 show the Holt-Winters outperforming performance for the new
case and new deaths except for Spain. For the new deaths ARIMAX is an overfitting
method and should not be used in the prediction of the COVID-19 numbers.

The ARIMA and Holt-Winter models may be used for fitting and forecasting
the cases and deaths, they can be employed as benchmark results for alternative
forecasting methods. Figures 4 and 5 draw the 10-days forecasting outcomes of the
employed models with the test data for World, USA, and UK.

4 Conclusion

The COVID-19 studies are an ongoing literature in alternative branches. This study
is among the first efforts that compiles forecasting research. COVID-19, having
completed its first year, employs a satisfactory large training data set and shows
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Table 18 Comparative results (new death)

SMAPE MAPE
New death Holt-Winters ARIMA ARIMAX Holt-Winters ARIMA ARIMAX

World 0.027 0.036 – 0.027 –
USA 0.03 0.0378 0.0757 0.03 0.0321 0.2032
India 0.039 0.3741 0.1312 0.039 4.2665 0.6431
Brazil 0.04 0.0371 0.0798 0.039 0.0403 1.1843
Russia 0.032 0.0383 0.0696 0.03 0.0336 0.0633
UK 0.058 0.1186 0.7225 0.055 Inf Inf
France 0.097 0.1837 0.2933 0.097 0.1675 0.5039
Spain 0.744 0.3677 0.9295 0.744 Inf Inf
Italy 0.066 0.0638 0.1269 0.07 0.0643 0.1566
Germany 0.086 0.256 0.3149 0.084 Inf Inf
Turkey 0.016 0.0147 0.016 0.016 0.015 0.0161
China 0.094 1.2 – – Inf –

Table 19 Comparative results (new case)

SMAPE MAPE
New case Holt-Winters ARIMA Holt-Winters ARIMA

World 0.026 0.0398 0.025 0.0367
USA 0.021 0.0367 0.02 0.0587
India 0.023 0.0619 0.023 0.0479
Brazil 0.042 0.067 0.042 0.0836
Russia 0.009 0.0079 0.009 0.008
UK 0.028 0.0401 0.028 0.0404
France 0.108 0.1909 0.113 0.1483
Spain 0.081 0.1521 0.084 0.137
Italy 0.029 0.0322 0.029 0.0317
Germany 0.05 0.0259 0.049 0.026
Turkey 0.019 0.0805 0.018 0.0797
China 0.113 0.4119 0.102 0.6388

Fig. 4 Forecasting world COVID-19 data: left—New case, right—New death
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Fig. 5 Forecasting daily deaths: left—USA, right—UK

the accuracy results of simple but successful statistical forecasting models on a total
of 24 time series (12 for new cases and 12 for new deaths). This paper employs
three differentmodels, those being the Holt-Winters, the ARIMA, and the ARIMAX
models, with five different error metrics, bic, R2, RMSE, SMAPE, and MAPE. All
the models provide satisfactory results where percentage errors are generally lower
than 10% and R2 is approximately 99.9% showing the power of regression-based
models. In general, the Holt-Winters (known as double exponential smoothing)
outperforms the ARIMA, and although an introduction of an exogenous variable in
the estimation process exists, ARIMAX is the lowest performing model, still with
the acceptable results for most of the countries (see Figs. 4 and 5).

The correlation of the most effected countries’ data is calculated with the world
data. The Granger-causality tests show the importance of the correct exogenous
variable selection. Statistically, the new cases and new deaths are dependent
variables; however, in the estimation process they cannot be used for each other as
auxiliary inputs. The stringency index consisting of government attitudes towards
combatting the virus, statistically does not affect the case numbers; however, it has
a Granger-cause effect in death numbers.

With the available data set and all the parameter details, this study provides repro-
ducible results, where outcomes may be used by other researchers as benchmark
results. Further researchers may classify the countries according to their response
to statistical models, and with a more focused attention, such as data cleaning or
machine learning approaches, they can improve the fitting and forecasting accuracy
performances. The finding of a meaningful exogenous variable in the estimation
would be beneficial to increase the ARIMAX performance.
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