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Abstract Freight transportation is vital to a nation’s long-term development and
its performance needs to be carefully evaluated to ensure the efficiency of haulage
infrastructure decisions. Frequently, real-world physical barriers pose transporta-
tion constraints that are impossible to be completely overpassed or ignored.
Previous studies on benchmarking Green Transport Corridors (GTCs) through
routes efficiency have not considered the possibility of partially non-discretionary
(pND) measures (only a certain percentage of the measure is controllable). The
present paper creates a long-distance cargo haulage performance index that will
be deemed as Logistic Composite Index (LCI) integrating pND measures using a
Data Envelopment Analysis (DEA) methodology. Since infrastructure aspects can
be assumed to be a Variable Returns to Scale (VRS), huge investments may be
necessary for the possibility of just partially reducing the length of a route in a
certain percentage by private and public investment strategies. This characteristic
was incorporated, for the first time, with pND measures in a Double-Frontier of a
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Slack-Based Measure (SBM), and under VRS assumptions (pND-DF-SBM-VRS).
Therefore, the present chapter integrates a novelty in DEA literature with practical
implications for public investments. The method is applied to the context of soybean
transportation, one of the relevant Brazilian exporting products, during the harvest of
2018/2019, from the main mid-sized producing regions to the key exporting ports.
The proposed approach and findings provide insights into the public and private
long-term investment strategies and infrastructure policies, especially in Brazil and
developing countries.

Keywords Data envelopment analysis (DEA) · Partially non-discretionary
slack-based measure (pND-SBM) · Construction of composite index · Freight
transportation · Brazilian soybean

1 Introduction

In 2007, the European Commission’s Freight Transport Logistics Action Plan intro-
duced the concept of Green Transport Corridors (GTC) for freight transportation
between major hubs as integrated multimodal used to reduce environmental impact
via road, rail, waterways, and intelligent technologies (European Commission,
2007).

Green Transport Corridors (GTCs) promote environmental-friendly freight trans-
portation through the efficient management of investments, operations, integration
of transportation routes, and transportation modes (land, water, and air) (Panagakos,
2015). For achieving and managing the maximum efficiency, it is necessary
to measure the GTCs performance, through Logistics Performance Index (LPI),
especially considering economically relevant hubs and long-distance routes (Pana-
gakos, 2015). It is important to note that the LPI from the World Bank (2018)
was developed using Principal Component Analysis (PCA). Also, the LPI is
applied at a country-level, without considering regional specifications or in-country
transportation routes. Hence, the LPI from the World Bank (2018) differs from
the LPIs developed using Data Envelopment Analysis (DEA) to evaluate routes
and corridors. Though, in practical terms, the proposal of a wide accepted LPI-
development methodology faced different obstacles, depending on if the LPI is
supposed to be applied at a country level or at a regional level (Alves Junior et
al., 2021; Melo et al., 2018, 2020; Rentizelas et al., 2019).

Specifically, previously proposed LPIs which rely on DEA models to assess and
compare regions have faced the common challenge of factoring “route length” into
their models. Firstly, some papers (Alves Junior et al., 2021; Rentizelas et al., 2019)
excluded the transported length of the model, considering only the indirect variables
(dependent on the length) such as transportation costs, fuel consumption, emissions,
etc. This approach has the back draw of ignoring one of the most affecting logistic
characteristics.

For example, a DEA Slack-Based Measure (SBM) model, with variable returns
to scale (VRS), was applied for choosing alternatives in the international biomass



Partially Non-discretionary Measures for Green Transportation Corridors. . . 91

supply chain (Rentizelas et al., 2019). Three variables were considered: costs and
energy input (as inputs) and emissions (as undesirable output). It can be stated that
the number of chosen variables (three) is very limited to incorporate the complexity
of the system. Alves Junior et al. (2021) proposed a single multi-criteria Logistics
Composite Index (LCI) for GTCs. The authors applied it to Brazilian agricultural
bulk transport export corridors, considering the existing and planned infrastructure
in the harvest year of 2018/2019. They used seven variables (classified as desired
and undesired inputs as well as desired and undesired outputs) but did not use the
length in the DEA model.

Secondly, on the other hand, it is also possible to consider the length as
a totally non-discretionary (tND) measure, assuming, i.e., decision- and policy-
makers cannot change the length of the route, independently of their amount of
investments or efforts. This was proposed by Melo et al. (2018) for investigating
102 soybean haulage routes in Brazil and the USA. The authors considered nine
variables, classified them into inputs, outputs, undesirable outputs, and length as a
tND measure.

Thirdly, it is also possible to consider the length as a DEA input, i.e., a measure,
which the minimization is aimed (Cook et al., 2014). The classification of the length
as an input implies the assumption that the transported length is fully under the
control of decision- and policy-makers, depending exclusively on interests and effort
focus.

We argue that, in real-world applications, decision- and policy-makers can
change the transported length. Though they are usually limited by external con-
straints at a certain level. Hence, we investigate the possibility of integrating the
length to the model as a partially Non-Discretionary (pND) measure, i.e., a measure
that can be reduced until a certain percentage.

Along these lines, we aim to propose a long-distance cargo haulage performance
index (LPI) methodology, integrating pND measures. For the first time in an LPI
application, the pND characteristic was incorporated in a Double-Frontier of a
Slack-Based Measure (SBM) under Variable Return to Scale (VRS) assumptions.
The application is in 12 GTCs (encompassing 254 routes), considering the soybean
transportation in Brazil, during the harvest of 2018/2019.

Hence, the LCI proposed here, incorporating pND measures and applying a
Double-Frontier Data Envelopment Analysis (DEA), Slack-Based Measure (SBM)
under Variable Return to Scale (VRS) assumption (pND-DF-SBM-VRS) to evaluate
GTCs and their multimodal routes is a novelty, resulting in innovative methodology
with practical implications for public investments.

Subsequently, the results of the proposed methodology were compared to the
results considering the length as a tND measure and as an input. The pND efficiency
results were similar to the efficiency results considering the length as an input.
Though the pND assumption proved to be useful for constructing efficiency-
improvement goals. Goals constructed based on the input assumption can be
physically unachievable (such as proposing 18% of the length reduction for reaching
efficiency, passing through a natural reserve area).
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The long-distance cargo haulage performance index integrating pND measures
may be used to guide future investments in infrastructure. And the methodology can
be a useful tool in different contexts of application (such as other countries and other
transported cargos).

2 Literature Review

Based on the multi-attribute utility theory (MAUT) and the decision theory,
Dyckhoff and Souren (2020) proposed the multi-criteria production theory (MCPT)
for applying methods to multi-criteria decision making (MCDM) problems—such
as Data Envelopment Analysis (DEA) for decision-making in production systems.
Many previous authors tried to formulate special DEA-MCDM models (Belton
& Vickers, 1993; Doyle & Green, 1993; Joro et al., 1998) with some specific
characteristics from Multi-Objective Linear Programming (MOLP). However, in
general, DEA is a method to measure the efficiency of DMUs (Charnes et al.,
1978), but its concept also relies on decision theory, even though this aspect has
been ignored by part of the DEA literature, as well as it relies on the production
theory (Charnes et al., 1985).

For example, Li and Reeves (1999) presented a Multiple Criteria DEA which
can be used to improve discrimination power. Sarkis (1997) and Dvorakova and
Klicnarova (2017) also applied DEA as an MCDM tool. Besides, it is argued
that assigning arbitrary weights lead to the subjectivity problems in some MCDM
approaches, as this limitation can be seen in AHP, TOPSIS, VIKOR, etc. (Hu et
al., 2017; Noryani et al., 2018; Shen et al., 2018) because it requires subjective
assessments of the decision-maker to prioritize performance attributes (Alinezhad
et al., 2011). According to Jahedi and Méndez (2014), although subjectivity can
be useful in some situation, for example, mainly when objective data is difficult
to obtain, subjectivity suffer from systematic biases, it can be uncorrelated or
negatively correlated to the objective data or it can be difficult to interpret. DEA
is less subjective, because it does not rely on the decision-makers’ preference, so it
is more suitable in the present context (Greco et al., 2018).

Among DEA models, Dyckhoff and Souren (2020) highlighted the adequacy and
relevance of non-oriented additive DEA models for MCDM, especially, the slack-
based measure (SBM), created by Tone (2001). These models take all slacks into
account for efficiency measurement. Consequently, they directly identify strongly
efficient solutions without the additional calculations necessary in radial models. In
addition, as it is often hard to justify an orientation of a DEA model, the absent
orientation of SBM represents yet another advantage.

One of the seminal assumptions of DEA is the homogeneity among DMUs. The
acceptable limits of heterogeneity remain under discussion. Li et al. (2016) proposed
the adoption of a non-homogeneous DEA model for solving non-homogeneity
problems. Among DEA pitfalls, Cook et al. (2014) pointed out the misjudgment
of efficiency when inputs and outputs simultaneously deal with ratio and raw data.
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However, under certain circumstances, the authorsstated that i the dealing with
different types of data in the same DEA model is acceptable. The present paper
did not assume the restriction of data type as a condition for this index construction.

The discrimination power in DEA is affected by the ratio between the number of
DMUs and variables. Banker et al. (1989) stated that the DMUs may be, at least,
three times more than variables. Notwithstanding, it is not an imperative rule, just
accepted by convenience (Cook et al., 2014). It was assumed as a desirable target
here.

Besides outputs and inputs, DEA also may have variables classified as unde-
sirable outputs, e.g., pollutions. An interested reader about this variable type may
consult (Hua & Bian, 2007; Liu et al., 2010; Seiford & Zhu, 2002). Among the
possible treatments, this paper chose to insert inverted emissions as inputs (for
minimization), based on the judgment of specialists.

There are also variables (inputs and outputs) classified as partially non-
discretionary (pND). Melo et al. (2018) incorporated the concepts of non-discretion
of Saen (2005) to the SBM, assuming no control of the variable (i.e., totally non-
discretionary, tND). This paper goes a step further, incorporating a pND (e.g.,
assuming up to 5% of control of the variable) under VRS in a Double-Frontier-
SBM applied to the context of Green Transport Corridors. This incorporation came
from the assumption of the possibility of reducing the length of the route in a certain
percentage by public investment strategies. The value of 5% was assumed because
the percentage of yearly changes in the road (from 2001 to 2017) was up to 4.21%
(DNIT, 2020).

3 Methods

The current investigation involved: (1) defining DMUs (routes from GTCs) and
collecting data, (2) analyzing available variables and classifying them into DEA
measures, (3) applying the pND-SBM model, and, finally, (4) applying the tiebreak-
ing tool.

3.1 DMUs Definition and Data Collection

We considered a total of 245 DMUs (routes from 12 GTCs) during the harvest year
of 2018/2019. Since Alves Junior et al. (2021) have already studied several routes
and Green Transport Corridors in Brazil, we are using the same databases described
in their paper, so the results of the present chapter can be compared to the literature.
We considered only the currently existing infrastructure and not the planned projects
with estimated values. The DMUs originated from producing mid-sized regions
in all Brazilian macro-sized regions (IBGE, 2019) and are destined for the 12
main exporting ports. Figure 1 shows the ports and multimodal infrastructure and
transport network in the main soybean export corridors (Ministry of Infrastructure,
2021).
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Fig. 1 Ports and multimodal infrastructure and transport network in the main soybean export
corridors. Source: Ministry of Infrastructure (2021)

3.2 Variable Classification and Analysis

In DEA literature, the most usual variable classification is formulated considering
desirable outputs (O) (measures to be maximized), and desirable inputs (I) (mea-
sures to be minimized) (Cook et al., 2014). Though, in real-life problems, there
are also undesirable outputs (UO) (to be minimized) and undesirable inputs (UI)
(to be maximized) (Liu et al., 2015). Finally, some variables can be classified as a
partially non-discretionary (pND) measure, i.e., including a quasi-fixed factor that is
almost not under control (Saen, 2005). The criterion for choosing a variable was the
systematic judgment of specialists about the relevance of a variable for the model
(Golany & Roll, 1989), considering the whole scenario, previous papers (Alves
Junior et al., 2021; Melo et al., 2018), and the objective of the index. Table 1 shows
the classification and the descriptive statistics of the eight used variables.

As can be noted in Table 1, EXPORTS (O) is the only measure that presents a
greater standard deviation of the observed values than the mean. This is caused by
the difference between productivity capacity in Brazil that lead to using the same
ports for exporting (for example, the following ports: Santos, Santarém, Paranaguá,
and Rio Grande). Similarly, PAVED (UI) is the measure with the smallest standard
deviation in comparison to the mean. The unique pND measure (LENGTH) presents
a standard deviation related to the mean of 68.42%, similarly what happens to the
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Table 1 Classification and descriptive statistics of selected variables

Variable Class. Obs. Mean Std. Dev. Min. Max.

EXPORT (103 tonne) O 245 435.846 982.697 0.053 9577.108
DEPTH (meters) UI 245 15.669 7.141 8.000 45.000
STORAGE (103 tonnes) UI 245 1033.745 718.880 3.200 2296.945
PAVED (100 km/km2) UI 245 1.162 0.699 0.218 3.517
LENGTH (km) pND 245 655.666 448.628 53.215 2250.136
COST ($/tonne) I 245 102.854 39.667 38.311 236.730
CO2 (kg/tonnes) UO 245 19.733 10.925 1.964 58.935
ACCIDENTS (per 100 km) UO 245 33.120 26.865 0.533 68.800

STORAGE (69.54%). But the fact that LENGTH is established as a pND measure
may restrict more the impact of the dispersion of the observed values on the final
DEA rank results. In other words, the dispersion of STORAGE is expected to have
more impact on results. Further in the Findings.

Similarly to Alves Junior et al. (2021), because we are using the same databases
(available through the same GitHub link informed in their paper, please see the data
for DEA application to evaluate Brazilian GTCs at GITHUB (2021)), EXPORTS is
the amount of exported soybeans and corn by each port (103 tons) and is classified as
an Output (O). DEPTH is the highest draft depth of each port (meters), STORAGE is
the grain storage capacity in the catchment area (103 ton), and PAVED is the paved
road density (102 km of road/km2 of the area). DEPTH, STORAGE, and PAVED
are classified as Undesirable Inputs (UI). COST is the weighted average freight cost
of the flows arriving in each export port (BRL/ton) and is classified as an Input
(I). CO2 is the weighted average CO2 emission (kg of CO2/ton) and ACCIDENT
is the number of accidents per kilometer estimated in the transportation corridor
(accidents/km). CO2 and ACCIDENT are classified as undesirable outputs (UO).

LENGTH is the length of the route from the origin to the final destination (km).
Here we propose to classify LENGTH as a non-discretionary measure (pND). In
most cases, we assumed that it is not physically possible to meaningly shorten the
transportation distance, by moving the position of the most productive areas, the
position of the main infrastructure poles and destinations (ports), planting in similar
areas with shorter length of the routes or investing in the construction of a straighter
route.

3.3 Slack-Based Measure Model with Partially
Non-discretionary Measures (pND–SMB)

The equating of the SBM model (Tone, 2001) with incorporated non-discretionary
measures (Saen, 2005) follows the objective function in Eq. (1), and it is constrained
by Eqs. (2)–(4), and (7) (SBM constraints), and Eqs. (5) and (6) (non-discretionary
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constraints) (Saen, 2005):

Minimize τ = t −
(

1
/

m

) m∑
i=1

S−
i
/

xi0
(1)

Subject to:

t +
(

1
/

s

) s∑
r=1

S+
r
/

yr0
= 1 (2)

z∑
k=1

Λkxik + S−
i − txi0 = 0 i = 1, 2, . . . , m (3)

z∑
k=1

Λkyrk − S+
r − tyr0 = 0 r = 1, 2, . . . , s (4)

S−
i ≤ βixi0 i = 1, 2, . . . , m (5)

S+
r ≤ γryr0 r = 1, 2, . . . , s (6)

Λk ≥ 0, S−
i ≥ 0, S+

r ≥ 0 and t > 0 (7)

where τ is the efficiency, t is the model linearization variable, S−
i is the slack of the

ith input, S+
r is the slack of the rth output, Λk is the contribution of the kth DMU

to the analyzed DMU, xi0 is the ith input of the DMU under analysis, yr0 is the rth
output of the DMU under analysis, xik is the ith input of the kth DMU, yrk is the
rth output of the kth DMU, m is the number of inputs, s is the number of outputs, z
is the number of DMUs, and βi and γ r are constants of discretion, respectively, for
inputs and outputs (when assuming a value equal to 0, they represent a tND measure
and infinite or excluding the constraint represents a totally discretionary input, i.e.,
a standard SBM model).

As explained in the Literature Review, it was assumed that the length of the route
could be 5% controllable due to slight changes on the routes. For example, even
in a microregion, there are differences in the length of the route depending on how
distant from the center of the origin it is or it can be changed by public investments in
transportation infrastructure and land use (DNIT, 2020). In other words, we assumed
βi = 0.05 in Eq. (5).

According to Cook et al. (2014), mixing raw data with ratios is permissible in
DEA, but the Variable Return to Scale (VRS) assumption is preferable, mainly
if the ratio data is in percentages because considering Constant Return to Scale
(CRS) assumption not always maintain the projection between 0% and 100%. As
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the present application requires the VRS assumption, it was necessary to add a
constraint, according to Eq. (8).

z∑
k=1

Λk = t (8)

The optimum solution (τ∗, t∗,�∗
k , S

−∗
i , S+∗

r

)
is described by the conditions in

Eq. (9):

τoptimal = τ∗,λ∗
k = Λ∗

k
/

t∗ , s−∗
i = S−∗

i
/

t∗ , s+∗
r = S+∗

r
/

t∗ (9)

In this model, a DMU will be considered efficient when τ ∗ = 1. Where λ∗
k ,

S−∗
i , and S+∗

r are the original optimal variables (before linearizing) solutions. In
the model, we treated UO as a negative factor and UI as a positive factor. In other
words, UO is mathematically treated as the opposite of an output, i.e., as an input,
so, in a post-efficiency analysis, the goal is to decrease the UO. Similarly, UI is
mathematically treated as the opposite of an input, i.e., as an output, so, in a post-
efficiency analysis, the goal is to increase the UI. This approach was already adopted
and discussed by previous papers (Alves Junior et al., 2021; Melo et al., 2018).

3.4 Tiebreaking Method: Double-Frontier Logistic Composite
Index (LCI)

The tiebreaking method of the composite index (Leta et al., 2005), also named
as Double-Frontier method, was applied, according to Eq. (10). It represents an
arithmetic average between standard and inverted efficiencies standardized by the
maximum composite index of the analyzed population.

LCI =
[
Estandard

k + (
1 − Einverted

k

)]
/2

/
max

{[
Estandard

k + (
1 − Einverted

k

)]
/2

] }
k = 1, 2, . . . , z

(10)

where Estandard
k is the standard efficiency resulted from the application of the DEA

model for the kth DMU, Einverted
k is the inverted efficiency of the kth DMU, i.e.,

the resulted efficiency when inputs are inserted in the SBM model as outputs and
vice versa.
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4 Findings

Table 6 in the Appendix presents the resulting LCI when considering LENGTH
as pND, for each DMU, as well as the Rank position based on the LCI. For
demonstrating and discussing the proposed approach, Table 6 also presents LCI
and Rank results, when considering LENGTH as a Controllable measure (input) as
well as considering LENGTH as a totally non-discretionary (tND) measure.

Observing the results (Table 6, in Appendix) and the data descriptive statistics
(Table 1), it is possible to see that the five routes with the best performance in
all configurations were not those with great EXPORTS. The routes with greatest
STORAGE were related to Belém (PA), Itacoatiara (AM), Santarém (PA), Santos
(SP), and São Luis (MA). As can be seen in Table 6, when LENGTH is treated as
a controllable measure, the most efficient routes are those with the shortest length.
When LENGTH is treated as tND, there is a relative performance improvement
of those routes with other desired measures (for example, those with the greatest
STORAGE). Finally, when LENGTH is treated as pND, there is a balance between
routes with short LENGTH and other desired measures.

For a faster and easier visualization, Table 2 presents the same results of Table 6,
but aggregated by GTC, through the arithmetic average of the results of the DMUs
in the same GTC.

It is possible to observe in Table 2 that the main differences in the aggregate
results regarding the models with pND, tND, and controllable measures are between
the GTC from Santarém (PA) and Itacoatiara (AM). Santarém (PA) is in the second
and Itacoatiara (AM) is in the fourth position in controllable and pND ranks, while
Santarém (PA) is in the fourth and Itacoatiara (AM) is in the second position in the

Table 2 Aggregated GTC’s LCI results considering LENGTH as a Controllable (control)
measure (input), a totally non-discretionary (tND) measure, and a partially non-discretionary
(pND) measure, followed by their respective rank positions

Average LCI Rank
GTCs Control tND pND Control tND pND

Rio Grande (RS) 0.714 0.728 0.704 1 1 1
Santarém (PA) 0.630 0.485 0.601 2 4 2
Paranaguá (PR) 0.548 0.495 0.515 3 3 3
Itacoatiara (AM) 0.403 0.517 0.41 4 2 4
São Luís (MA) 0.384 0.324 0.332 6 5 5
São Francisco do Sul (SC) 0.397 0.273 0.301 5 6 6
Vitória (ES) 0.261 0.27 0.274 8 7 7
Santos (SP) 0.285 0.188 0.225 7 8 8
Belém (PA) 0.218 0.124 0.156 9 9 9
Ilhéus (BA) 0.121 0.094 0.122 10 10 10
Salvador (BA) 0.022 0.028 0.025 11 11 11
Fortaleza (CE) 0.001 0.001 0.001 12 12 12
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tND rank. Despite a measure being not controllable, it happens, because the tND
neutralize a measure in terms of source of inefficiency, and the average length from
Santarém (PA) is 1360.98 km while the ones from Itacoatiara (AM) is 1880.92 km,
so that huge difference in distance is totally ignored in a model with tND, but
the model with pND allows it being almost no controllable and be a source of
inefficiency yet.

On the other hand, São Luís (MA) was the fifth GTC under controllable
assumptions and São Francisco do Sul (SC) was the sixth. Under both tND and pND
assumptions, they inverted positions. In other words, São Luís (MA) is sixth and São
Francisco do Sul (SC) fifth in both assumptions. The rank change from controllable
(discritionary) assumption to a partially Non-Discretionary (pND) and a totally
Non-Discretionary (tND) assumptions. This is explained by the fact that São Luís
(MA) corridor presents desired observed values for other target measures (e.g.,
DEPTH of the port, multimodal infrastructure, and very low ACCIDENTS). Once
São Luís (MA) and São Francisco do Sul (SC) present similar LENGHT of roads,
but São Luís (MA) has more multimodal infrastructure, when it is constrained, its
better-observed values in these three aspects improve its relative position. However,
the aggregation through arithmetic average presents limitations. One of them is the
dependency on the number of routes in a GTC. Although the aggregated values are
useful for fast visualization and understanding, it is recommended to investigate
routes’ (DMUs’) results (Table 6) for taking decisions and making policies. Also,
other types of aggregations and models can be explored, as the network ones.

Even though with these results, someone could argue about the lack of big
differences between the models with controllable and pND measures, but a deep
investigation in the percentage of variation to achieve the goals to be in the efficient
frontier, computed as a post-efficiency analysis and shown in Table 3.

As it can be seen in Table 3, the model with the LEGTH as a controllable measure
shows changes (reductions) up to 18.74% in the length of the routes in a GTC.
Considering long-distance haulage, it could be enough to move to another state, so

Table 3 GTCs’ % of variation to achieve the goal to be in the frontier

GTCs LENGTH (control) LENGTH (tND) LENGTH (pND)

Paranaguá (PR) −18.74% 0.00% −3.21%
São Francisco do Sul (SC) −10.38% 0.00% −0.81%
Vitória (ES) −8.14% 0.00% −1.73%
Santos (SP) −7.56% 0.00% −1.84%
Rio Grande (RS) −6.19% 0.00% −2.16%
Salvador (BA) −3.13% 0.00% −1.70%
São Luís (MA) −2.56% 0.00% −2.21%
Ilhéus (BA) −2.49% 0.00% −1.13%
Belém (PA) −2.35% 0.00% −1.98%
Itacoatiara (AM) −1.28% 0.00% −0.63%
Santarém (PA) −0.50% 0.00% −0.50%
Fortaleza (CE) 0.00% 0.00% 0.00%
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sometimes it is not a viable outcome to be implementable in practice. While the
model with the LENGTH as a pND measure shows similar final average ranks for
the GTCs, but with changes in (reductions) up to 18.74% in the length of the routes
in a GTC. It is a more viable outcome. And about the model with the LENGTH as
a tND measure, it does not even allow changes in it, what sometimes it is not in
accordance with the practice (e.g., when the farmer is far away from the center of
an origin region).

5 Discussion

As stated in the Findings, the five routes with the best performance in all config-
urations were not those with great EXPORTS. Such as Alves Junior et al. (2021),
the model configuration proposed here dealt well in avoiding bias due to productive
inequalities. This represents one step further in methodological evolution, one it
was not achieved by Melo et al. (2018, 2020), which presented, among the admitted
limitations of the results, the greater producers also as part of the most efficient
routes. The current paper, as well as Alves Junior et al. (2021), is focused on the
destination (origin) instead of the origin (production).

The aggregated results in Table 2 shows the GTC of Rio Grande in the top
position independently of the LENGTH treatment. Also, Paranaguá maintained the
third position in the three treatments. Besides, the worst performers Belém, Ilhéus,
Salvador, and Fortaleza did not change rank positions. These relative positions
agree with the previous literature, which demonstrated that, in general, routes and
corridors in the Southern of Brazil are more efficient than those from Northern and
North-eastern (Alves Junior et al., 2021; Garcia et al., 2019; Branco et al., 2020;
Melo et al., 2018, 2019; Rentizelas et al., 2019).

It is possible to observe in Table 2 that the last four corridors (average of routes)
are from the North and Northeast regions from Brazil. With this in mind and
comparing with Alves Junior et al. (2021), Branco et al. (2020), and the Brazilian
Planning and Logistics Company (2021), it is possible to suggest public policies to
improve the performance of the corridors from the North and Northeast regions. For
example, investing in new railways. Also, investing in new waterways, multimodal
routes, and GTCs enable connecting these regions to other productive areas. In this
regard, the synergy of integration supports the mitigation of CO2 emissions. It is
possible to highlight the prioritization of four railways: Ferrograo (connecting the
Center-West productive region to the PA state, and providing alternative access
to the Port of Santarém (PA) using the Tapajós waterway). Ferrovia Norte-Sul
(connecting the North and Northeast regions to the Southeast one). Ferrovia de
Integração Oeste-Leste [connecting the west of BA state to the Port of Ilhéus (BA)].
Ferrovia Nova Transnordestina (connecting the North to the Northeast region).

Another point to discuss is related to the aggregated values that are useful for fast
visualization and understanding, it is recommended to investigate routes’ (DMUs’)
results (Table 6). These detailed results permit the decision-makers to understand
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where in the GTC (and how) is required to guide more efforts to improve local and
aggregated performance.

For example, the GTC of Itacoatiara has 12 routes (DMUs 18–29) (Table 4).
One of them is the fourth best ranked, considering the 245 DMUs under analysis
(DMU24). Though other DMUs are among the worst-ranked (18, 20, 23, 26, and
27). Efforts directed to improve the efficiency of the worst-ranked routes will result
in a GTC better performance as well as promote regional development.

In parallel, the GTC of Santarém has eight routes (DMUs 88–95) (Table 5).
Following the proposed methodology, efforts should be guided to worst-ranked
DMUs. The aggregation through the arithmetic average may have benefited the
GTCs with fewer routes. In practical terms, it may be not possible to build more
routes due to natural barriers such as mountains and forests. In this case, the DMUs’
results point which existing route should be the focus of efforts. For example, in the
case of Santarem (in Amazon Forest), they are DMUs 88, 93, and 92. Though,
in cases where it is possible to build more routes, planned routes can also be
incorporated into the analysis and their expected performance can be investigated.

Table 4 DMUs’ results of the GTC of Itacoatiara (MA)

LCI Rank
DMU Destination Control tND pND Control tND pND

24 Itacoatiara (AM) 0.937 0.949 0.947 6 7 4
25 Itacoatiara (AM) 0.654 0.868 0.662 37 13 32
21 Itacoatiara (AM) 0.610 0.618 0.617 44 39 39
19 Itacoatiara (AM) 0.515 0.522 0.521 69 60 63
22 Itacoatiara (AM) 0.515 0.522 0.521 70 61 64
29 Itacoatiara (AM) 0.423 0.522 0.457 100 64 80
28 Itacoatiara (AM) 0.451 0.522 0.456 90 63 81
27 Itacoatiara (AM) 0.323 0.348 0.326 142 104 113
20 Itacoatiara (AM) 0.290 0.696 0.293 153 30 122
18 Itacoatiara (AM) 0.110 0.111 0.111 209 164 197
26 Itacoatiara (AM) 0.007 0.522 0.007 226 68 226
23 Itacoatiara (AM) 0.007 0.011 0.007 225 206 227

Table 5 DMUs’ results of the GTC of Santarém (PA)

LCI Rank
DMU Destination Control tND pND Control tND pND

89 Santarém (PA) 0.888 0.522 0.886 11 57 8
91 Santarém (PA) 0.851 0.522 0.837 15 58 13
90 Santarém (PA) 0.817 0.776 0.808 19 23 17
95 Santarém (PA) 0.741 0.726 0.738 24 25 22
94 Santarém (PA) 0.731 0.716 0.725 27 27 23
92 Santarém (PA) 0.522 0.228 0.348 67 130 106
93 Santarém (PA) 0.285 0.282 0.286 157 120 127
88 Santarém (PA) 0.208 0.107 0.178 181 168 150
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6 Conclusions

We presented a methodology for building a long-distance cargo-haulage perfor-
mance index, named Logistic Composite Index (LCI). In this context, the LCI
brings the novelty of incorporating partially Non-Discretionary (pND) measures in
Double-Frontier Data Envelopment Analysis (DEA), Slack-Based Measure (SBM)
under Variable Return to Scale (VRS) assumption to study Green Transport
Corridors and its routes.

For deepening the discussion about the impact of the partial non-discretionarily
treatment, we also ran the model considering two other possibilities: (1) route
transport distances as controllable measures (inputs), i.e., assuming decision-makers
and policy-makers have the possibility of shortening the physical transport distance
between producers and exporting ports, without any external constraints (this was
the most adopted assumption in previous studies); (2) route transport distances as
totally non-discretionary (tND), i.e., assuming decision-makers and policy-makers
have no possibility of shortening the physical transport distance between producers
and exporting ports. They are completely limited by external constraints.

The three results were aligned to the previous literature, pointing routes and
corridors in Southern Brazil more efficient than those in the Northern and North-
eastern. But treating the length of the route as a partially Non-Discretionary (pND)
measure proved to be more accurate, mainly when calculating the percentages of
variation to achieve the goals to be in the frontier. Once the top-ranked DMUs
under the pND assumption also presented better-ranked positions under control-
lable assumptions. They these DMUs presented worse-ranked positions under the
tND-distance assumption. Also, both assumptions (tND and controllable) are not
achievable in real life for the studied context.

For creating a Green Transport Corridor’s (GTC) index and avoiding the lower
number of GTCs, we considered the routes as DMUs, computed the LCIs, and
aggregated the routes’ LCIs of each GTC, through an arithmetic average. Although
the GTC values are useful for fast visualization and understanding, DMU’s results
should be considered when planning efforts for improving GTC’s efficiency as well
as promoting regional development.

For future investigations, in terms of application, we recommend studies focused
on the logistic operators, such as related to the availability of return freight. We also
recommend the use of big data and real-time logistic data, when they are available.
This application can improve the model developed through the incorporation of
other techniques, such as hierarchical network models and deep learning. For
example, we recommend the development of a model where the discretionary
level of measure could be customized for each DMU. This way, the same model
could assume (for the same measure) a higher discretionary level for those DMUs
where the measure is less externally constrained. Once the data is available,
the discretionary level of each DMU could be calculated through deep learning
and other techniques. Similarly, it is also possible to improve the aggregation
method from routes to corridors, such as proposing (dynamic) network-DEA and
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hierarchical-DEA models. Finally, we suggest for future studies to investigate
the impact of the dispersion of the data (standard-deviation) on the efficiency
results, and other aggregation methods or Network models applied to evaluate the
GTCs.

Appendix

Table 6 DMU’s (Route’s) LCI results considering DISTANCE as a Controllable measure
(input), a totally non-discretionary (tND) measure, and a partially non-discretionary (pND)
measure, followed by their respective rank positions

LCI Rank
DMU Destination Control tND pND Control tND pND

79 Rio Grande (RS) 0.99 1 1 2 1 1
82 Rio Grande (RS) 0.99 1 1 3 2 2
83 Rio Grande (RS) 0.983 0.991 0.991 4 5 3
24 Itacoatiara (AM) 0.937 0.949 0.947 6 7 4

237 São Luís (MA) 0.933 0.945 0.943 7 8 5
231 São Luís (MA) 0.908 0.92 0.918 10 9 6
64 Rio Grande (RS) 1 0.899 0.906 1 12 7
89 Santarém (PA) 0.888 0.522 0.886 11 57 8
70 Rio Grande (RS) 0.923 0.841 0.843 9 15 9

235 São Luís (MA) 0.832 0.843 0.842 16 14 10
75 Rio Grande (RS) 0.673 0.906 0.838 35 10 11

175 Santos (SP) 0.829 0.84 0.838 17 16 12
91 Santarém (PA) 0.851 0.522 0.837 15 58 13

176 Santos (SP) 0.823 0.834 0.832 18 17 14
192 São Francisco do Sul (SC) 0.873 0.777 0.813 13 22 15
55 Paranaguá (PR) 0.803 0.812 0.811 21 19 16
90 Santarém (PA) 0.817 0.776 0.808 19 23 17
61 Rio Grande (RS) 0.877 0.777 0.792 12 21 18

183 Santos (SP) 0.778 0.788 0.786 22 20 19
73 Rio Grande (RS) 0.587 0.905 0.779 47 11 20
76 Rio Grande (RS) 0.809 0.745 0.75 20 24 21
95 Santarém (PA) 0.741 0.726 0.738 24 25 22
94 Santarém (PA) 0.731 0.716 0.725 27 27 23
54 Paranaguá (PR) 0.704 0.997 0.723 31 4 24

238 São Luís (MA) 0.694 0.722 0.701 33 26 25
62 Rio Grande (RS) 0.749 0.694 0.697 23 31 26

189 Santos (SP) 0.695 0.702 0.694 32 29 27
78 Rio Grande (RS) 0.735 0.691 0.694 25 32 28
67 Rio Grande (RS) 0.549 0.826 0.682 56 18 29
74 Rio Grande (RS) 0.718 0.645 0.667 29 35 30

(continued)
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Table 6 (continued)

LCI Rank
DMU Destination Control tND pND Control tND pND

66 Rio Grande (RS) 0.725 0.28 0.667 28 121 31
25 Itacoatiara (AM) 0.654 0.868 0.662 37 13 32

205 São Francisco do Sul (SC) 0.872 0.652 0.662 14 34 33
49 Paranaguá (PR) 0.732 0.643 0.644 26 36 34
68 Rio Grande (RS) 0.649 0.685 0.634 39 33 35
57 Paranaguá (PR) 0.628 0.642 0.634 43 37 36
77 Rio Grande (RS) 0.554 0.711 0.632 54 28 37
33 Paranaguá (PR) 0.704 0.303 0.624 30 113 38
21 Itacoatiara (AM) 0.61 0.618 0.617 44 39 39
63 Rio Grande (RS) 0.685 0.601 0.61 34 42 40

169 Santos (SP) 0.567 0.618 0.606 50 40 41
52 Paranaguá (PR) 0.591 0.6 0.595 46 43 42

180 Santos (SP) 0.566 0.639 0.592 52 38 43
45 Paranaguá (PR) 0.654 0.582 0.585 38 44 44

214 São Luís (MA) 0.959 0.522 0.584 5 55 45
51 Paranaguá (PR) 0.552 0.61 0.582 55 41 46
36 Paranaguá (PR) 0.628 0.569 0.572 42 46 47

172 Santos (SP) 0.476 0.576 0.56 81 45 48
50 Paranaguá (PR) 0.54 0.566 0.558 58 47 49
39 Paranaguá (PR) 0.647 0.541 0.548 40 54 50
60 Paranaguá (PR) 0.543 0.56 0.546 57 48 51
41 Paranaguá (PR) 0.538 0.554 0.545 60 50 52

186 Santos (SP) 0.476 0.56 0.543 82 49 53
200 São Francisco do Sul (SC) 0.927 0.522 0.541 8 56 54
32 Paranaguá (PR) 0.531 0.549 0.54 62 52 55

174 Santos (SP) 0.489 0.552 0.534 75 51 56
69 Rio Grande (RS) 0.61 0.519 0.533 45 69 57
80 Rio Grande (RS) 0.525 0.99 0.531 65 6 58
46 Paranaguá (PR) 0.661 0.513 0.531 36 70 59
81 Rio Grande (RS) 0.522 1 0.528 66 3 60

171 Santos (SP) 0.479 0.548 0.526 78 53 61
9 Belém (PA) 0.515 0.522 0.521 68 59 62

19 Itacoatiara (AM) 0.515 0.522 0.521 69 60 63
22 Itacoatiara (AM) 0.515 0.522 0.521 70 61 64

166 Santos (SP) 0.515 0.522 0.521 71 62 65
71 Rio Grande (RS) 0.563 0.513 0.516 53 71 66
43 Paranaguá (PR) 0.566 0.509 0.514 51 72 67
42 Paranaguá (PR) 0.539 0.471 0.502 59 77 68
56 Paranaguá (PR) 0.443 0.502 0.487 93 73 69
53 Paranaguá (PR) 0.483 0.492 0.487 77 74 70
31 Paranaguá (PR) 0.526 0.46 0.478 64 83 71

(continued)
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Table 6 (continued)

LCI Rank
DMU Destination Control tND pND Control tND pND

170 Santos (SP) 0.475 0.491 0.477 83 75 72
44 Paranaguá (PR) 0.532 0.469 0.476 61 78 73

206 São Francisco do Sul (SC) 0.488 0.46 0.468 76 84 74
48 Paranaguá (PR) 0.455 0.156 0.468 87 144 75
72 Rio Grande (RS) 0.528 0.079 0.466 63 177 76

167 Santos (SP) 0.311 0.522 0.465 146 65 77
207 São Francisco do Sul (SC) 0.475 0.464 0.462 84 81 78
242 Vitória (ES) 0.455 0.482 0.46 88 76 79
29 Itacoatiara (AM) 0.423 0.522 0.457 100 64 80
28 Itacoatiara (AM) 0.451 0.522 0.456 90 63 81
34 Paranaguá (PR) 0.575 0.437 0.455 49 87 82
59 Paranaguá (PR) 0.444 0.462 0.453 92 82 83
65 Rio Grande (RS) 0.465 0.442 0.446 86 86 84

179 Santos (SP) 0.41 0.469 0.443 106 79 85
40 Paranaguá (PR) 0.489 0.437 0.443 74 88 86

185 Santos (SP) 0.43 0.447 0.435 98 85 87
208 São Francisco do Sul (SC) 0.637 0.423 0.433 41 89 88
35 Paranaguá (PR) 0.489 0.408 0.432 73 92 89

245 Vitória (ES) 0.347 0.465 0.428 130 80 90
215 São Luís (MA) 0.493 0.413 0.421 72 91 91
168 Santos (SP) 0.407 0.423 0.411 108 90 92
30 Paranaguá (PR) 0.451 0.402 0.408 91 95 93
58 Paranaguá (PR) 0.389 0.404 0.396 111 94 94

182 Santos (SP) 0.388 0.401 0.393 112 96 95
188 Santos (SP) 0.354 0.408 0.388 126 93 96
196 São Francisco do Sul (SC) 0.469 0.377 0.384 85 98 97
38 Paranaguá (PR) 0.438 0.372 0.379 96 99 98

216 São Luís (MA) 0.412 0.371 0.377 105 100 99
195 São Francisco do Sul (SC) 0.453 0.362 0.374 89 101 100
165 Santos (SP) 0.362 0.382 0.366 121 97 101
241 Vitória (ES) 0.355 0.354 0.358 125 103 102
221 São Luís (MA) 0.376 0.34 0.357 116 105 103
224 São Luís (MA) 0.363 0.356 0.354 120 102 104
213 São Luís (MA) 0.358 0.058 0.352 123 187 105
92 Santarém (PA) 0.522 0.228 0.348 67 130 106
47 Paranaguá (PR) 0.34 0.335 0.342 133 107 107

219 São Luís (MA) 0.375 0.316 0.342 118 111 108
193 São Francisco do Sul (SC) 0.394 0.329 0.341 109 108 109
164 Santos (SP) 0.334 0.338 0.338 136 106 110
209 São Francisco do Sul (SC) 0.435 0.194 0.335 97 135 111
211 São Luís (MA) 0.351 0.318 0.327 129 110 112

(continued)
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Table 6 (continued)

LCI Rank
DMU Destination Control tND pND Control tND pND

27 Itacoatiara (AM) 0.323 0.348 0.326 142 104 113
227 São Luís (MA) 0.441 0.239 0.326 95 127 114
222 São Luís (MA) 0.333 0.182 0.326 138 137 115
244 Vitória (ES) 0.319 0.325 0.323 143 109 116
218 São Luís (MA) 0.324 0.297 0.322 141 116 117

2 Belém (PA) 0.584 0.19 0.32 48 136 118
223 São Luís (MA) 0.479 0.043 0.319 79 190 119
191 São Francisco do Sul (SC) 0.357 0.297 0.317 124 115 120

1 Belém (PA) 0.338 0.301 0.311 134 114 121
20 Itacoatiara (AM) 0.29 0.696 0.293 153 30 122

126 Santos (SP) 0.407 0.288 0.293 107 118 123
14 Ilhéus (BA) 0.284 0.284 0.292 159 119 124

230 São Luís (MA) 0.287 0.313 0.29 156 112 125
229 São Luís (MA) 0.376 0.254 0.288 117 124 126
93 Santarém (PA) 0.285 0.282 0.286 157 120 127

181 Santos (SP) 0.233 0.165 0.284 172 142 128
112 Santos (SP) 0.414 0.247 0.273 101 126 129
217 São Luís (MA) 0.414 0.263 0.27 103 123 130
226 São Luís (MA) 0.303 0.073 0.27 148 180 131
190 Santos (SP) 0.265 0.29 0.268 163 117 132
243 Vitória (ES) 0.263 0.266 0.266 164 122 133
156 Santos (SP) 0.441 0.122 0.263 94 163 134
111 Santos (SP) 0.298 0.251 0.259 149 125 135
151 Santos (SP) 0.333 0.233 0.245 137 129 136
139 Santos (SP) 0.308 0.227 0.24 147 131 137
173 Santos (SP) 0.235 0.239 0.237 171 128 138
125 Santos (SP) 0.425 0.094 0.236 99 173 139
124 Santos (SP) 0.352 0.213 0.234 128 132 140
37 Paranaguá (PR) 0.38 0 0.219 114 236 141

202 São Francisco do Sul (SC) 0.338 0.076 0.218 135 179 142
159 Santos (SP) 0.414 0.195 0.208 102 134 143

5 Belém (PA) 0.413 0.063 0.206 104 183 144
160 Santos (SP) 0.296 0.182 0.205 151 138 145
141 Santos (SP) 0.245 0.06 0.202 168 185 146

7 Belém (PA) 0.189 0.207 0.194 187 133 147
148 Santos (SP) 0.222 0.179 0.191 177 139 148
96 Santos (SP) 0.261 0.132 0.183 166 159 149
88 Santarém (PA) 0.208 0.107 0.178 181 168 150

199 São Francisco do Sul (SC) 0.387 0.166 0.177 113 141 151
105 Santos (SP) 0.207 0.162 0.177 182 143 152
127 Santos (SP) 0.241 0.033 0.175 170 195 153

(continued)
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Table 6 (continued)

LCI Rank
DMU Destination Control tND pND Control tND pND

148 Santos (SP) 0.222 0.179 0.191 177 139 148
96 Santos (SP) 0.261 0.132 0.183 166 159 149
88 Santarém (PA) 0.208 0.107 0.178 181 168 150

199 São Francisco do Sul (SC) 0.387 0.166 0.177 113 141 151
105 Santos (SP) 0.207 0.162 0.177 182 143 152
127 Santos (SP) 0.241 0.033 0.175 170 195 153
194 São Francisco do Sul (SC) 0.173 0.169 0.172 190 140 154
100 Santos (SP) 0.297 0.155 0.168 150 145 155
113 Santos (SP) 0.318 0.154 0.166 144 146 156
97 Santos (SP) 0.209 0.141 0.166 180 152 157

128 Santos (SP) 0.262 0.15 0.165 165 148 158
136 Santos (SP) 0.182 0.024 0.165 189 199 159
143 Santos (SP) 0.324 0.151 0.163 140 147 160
129 Santos (SP) 0.281 0.039 0.161 161 191 161
133 Santos (SP) 0.29 0.019 0.161 154 201 162
121 Santos (SP) 0.156 0.021 0.158 196 200 163
101 Santos (SP) 0.342 0.144 0.157 132 150 164
162 Santos (SP) 0.164 0.142 0.156 194 151 165
134 Santos (SP) 0.202 0.067 0.156 184 181 166
16 Ilhéus (BA) 0.16 0.025 0.154 195 198 167

153 Santos (SP) 0.259 0.018 0.154 167 202 168
115 Santos (SP) 0.228 0.017 0.154 174 203 169
103 Santos (SP) 0.214 0.013 0.154 179 205 170
131 Santos (SP) 0.28 0.14 0.152 162 153 171
146 Santos (SP) 0.379 0.137 0.151 115 155 172
17 Ilhéus (BA) 0.148 0.148 0.15 198 149 173

104 Santos (SP) 0.242 0.033 0.15 169 194 174
155 Santos (SP) 0.291 0.01 0.15 152 208 175
154 Santos (SP) 0.223 0.01 0.15 176 209 176
144 Santos (SP) 0.196 0.136 0.149 185 157 177
149 Santos (SP) 0.153 0.127 0.148 197 162 178
99 Santos (SP) 0.168 0.044 0.147 192 189 179

117 Santos (SP) 0.289 0.133 0.146 155 158 180
157 Santos (SP) 0.192 0.132 0.146 186 160 181
107 Santos (SP) 0.285 0.131 0.143 158 161 182
137 Santos (SP) 0.331 0.102 0.137 139 170 183
119 Santos (SP) 0.145 0.097 0.137 199 171 184
150 Santos (SP) 0.216 0.003 0.134 178 218 185
120 Santos (SP) 0.132 0.003 0.134 204 219 186
163 Santos (SP) 0.131 0.137 0.133 205 156 187
102 Santos (SP) 0.132 0.027 0.133 203 196 188

(continued)
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Table 6 (continued)

LCI Rank
DMU Destination Control tND pND Control tND pND

110 Santos (SP) 0.13 0.107 0.132 206 169 189
132 Santos (SP) 0.189 0.088 0.129 188 174 190
122 Santos (SP) 0.14 0.085 0.129 202 176 191
138 Santos (SP) 0.167 0.002 0.129 193 222 192
232 São Luís (MA) 0.126 0.139 0.128 207 154 193
118 Santos (SP) 0.358 0.107 0.125 122 167 194
198 São Francisco do Sul (SC) 0.118 0.006 0.117 208 213 195
161 Santos (SP) 0.144 0.001 0.117 201 229 196
18 Itacoatiara (AM) 0.11 0.111 0.111 209 164 197

142 Santos (SP) 0.318 0.003 0.109 145 217 198
204 São Francisco do Sul (SC) 0.172 0.095 0.108 191 172 199
158 Santos (SP) 0.353 0.079 0.108 127 178 200
225 São Luís (MA) 0.478 0.066 0.103 80 182 201
108 Santos (SP) 0.367 0.006 0.099 119 212 202
87 Salvador (BA) 0.085 0.109 0.097 212 165 203

109 Santos (SP) 0.207 0.002 0.094 183 221 204
145 Santos (SP) 0.091 0.001 0.092 210 230 205
11 Belém (PA) 0.229 0.004 0.087 173 216 206

197 São Francisco do Sul (SC) 0.085 0.086 0.086 213 175 207
239 Vitória (ES) 0.085 0.001 0.086 214 231 208
140 Santos (SP) 0.144 0.001 0.084 200 228 209
184 Santos (SP) 0.065 0.108 0.066 215 166 210
236 São Luís (MA) 0.06 0.522 0.063 216 66 211
187 Santos (SP) 0.051 0.063 0.052 217 184 212
106 Santos (SP) 0.39 0.01 0.048 110 207 213
234 São Luís (MA) 0.041 0.522 0.044 219 67 214
177 Santos (SP) 0.044 0.06 0.044 218 186 215

4 Belém (PA) 0.089 0.026 0.042 211 197 216
178 Santos (SP) 0.03 0.05 0.031 220 188 217
123 Santos (SP) 0.344 0.002 0.028 131 220 218
233 São Luís (MA) 0.025 0.037 0.026 221 192 219
10 Belém (PA) 0.021 0.037 0.024 222 193 220

147 Santos (SP) 0.227 0.001 0.022 175 227 221
201 São Francisco do Sul (SC) 0.284 0 0.015 160 237 222
13 Ilhéus (BA) 0.012 0.014 0.013 223 204 223

3 Belém (PA) 0.01 0.01 0.01 224 210 224
135 Santos (SP) 0.007 0.008 0.008 227 211 225
26 Itacoatiara (AM) 0.007 0.522 0.007 226 68 226
23 Itacoatiara (AM) 0.007 0.011 0.007 225 206 227

8 Belém (PA) 0.006 0.006 0.006 228 214 228
98 Santos (SP) 0.006 0.006 0.006 229 215 229

(continued)
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Table 6 (continued)

LCI Rank
DMU Destination Control tND pND Control tND pND

86 Salvador (BA) 0.002 0.002 0.002 230 223 230
210 São Francisco do Sul (SC) 0.002 0.002 0.002 231 224 231
212 São Luís (MA) 0.002 0.002 0.002 232 225 232
228 São Luís (MA) 0.002 0.002 0.002 233 226 233

6 Belém (PA) 0.001 0.001 0.001 234 232 234
12 Fortaleza (CE) 0.001 0.001 0.001 235 233 235

114 Santos (SP) 0.001 0.001 0.001 236 234 236
220 São Luís (MA) 0.001 0.001 0.001 237 235 237
15 Ilhéus (BA) 0 0 0 238 238 238
84 Salvador (BA) 0 0 0 239 239 239
85 Salvador (BA) 0 0 0 240 240 240

116 Santos (SP) 0 0 0 241 241 241
130 Santos (SP) 0 0 0 242 242 242
152 Santos (SP) 0 0 0 243 243 243
203 São Francisco do Sul (SC) 0 0 0 244 244 244
240 Vitória (ES) 0 0 0 245 245 245
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