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Abstract In mathematical optimization, the Lagrangian approach is a general
method to find an optimal solution of a finite (infinite) dimensional constrained
continuous optimization problem. This method has been introduced by the Italian
mathematician Joseph-Louis Lagrange in 1755 in a series of letters to Euler. This
approach became known under the name The Principle of Lagrange and was also
applied much later to integer optimization problems. The basic idea behind this
method is to replace a constrained optimization problem by a sequence of easier
solvable optimization problems having fewer constraints and penalizing the deletion
of some of the original constraints by replacing the original objective function.
To select the best penalization, the so-called Lagrangian dual function needs to be
optimized and a possible algorithm to do so is given by the so-called subgradient
method. This method is discussed in detail at the end of this chapter. The Lagrangian
approach led to the introduction of dual optimization problems and penalization
methods in nonlinear programming and recently to the development of interior
point methods and the identification of polynomial solvable classes of continuous
optimization problems. Also it had its impact on how to construct algorithms to
generate approximate solutions of integer optimization problems. In this chapter,
we discuss in the first part the main ideas behind this approach for any type of finite
dimensional optimization problem. In the remaining parts of this chapter we focus in
more detail on how this approach is used in continuous optimization problems and
show its full impact on the so-called K-convex continuous optimization problems.
Also we consider its application within linear integer programming problems and
show how it is used to solve these type of problems. To illustrate its application
to the well-known integer programming problems, we consider in the final section
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its application to some classical vehicle routing and location models. As such this
chapter should be regarded as an introduction to duality theory and the Lagrangian
approach for less mathematically oriented readers proving at the same time most of
the results using the simplest possible proofs.

Keywords Constrained optimization problems · Lagrangian relaxation
technique · Dual problems · Transportation and location problems

1 Introduction

In this chapter we give a unified overview of the Lagrangian relaxation technique
used in finite dimensional optimization problems with either continuous and/or
discrete decision variables and show as an example of how to apply these techniques
by solving some classical transportation and location models. The main purpose
and goal of this chapter is to give an introduction to Lagrangian duality accessible
for less mathematically oriented readers and explain its main ideas. At the same
time we try to be rigorous proving the most well-known results about strong
duality for the class of K-convex optimization problems by means of the simplest
possible proofs. All the proofs related to strong duality will be given with one
exception. We will only mention the most basic separation result in convex analysis
separating a nonempty convex set from a point outside this set. In general, contrary
to continuous K-convex optimization problems, no strong duality holds for integer
linear programming problems. By means of elementary proofs, we show how to
apply the Lagrangian relaxation technique to these problems. Another more abstract
approach to Lagrangian duality given by the perturbation function approach (Frenk
and Kassay, 2005; Rockafellar, 1970) requires the knowledge of conjugate and
biconjugate functions well-known in convex analysis.

To show strong duality results for K-convex optimization problems, one uses
in this approach the Fenchel–Moreau theorem. This theorem states that under
some mild topological conditions a convex function equals its biconjugate function.
Although this approach is more general and has the advantage of shortening proofs,
applying directly the Fenchel–Moreau theorem the perturbation function approach
hides the intuitive ideas that are shown more clearly in the Lagrangian relaxation
approach. For this reason, we have chosen this approach to explain the main results
in duality theory. This approach is closely related to the minmax approach used in a
two-person noncooperative game with the decision maker playing against nature. In
this framework strong duality is equivalent to the existence of a Nash equilibrium
point (Frenk and Kassay, 2006, 2008).

In the first section we introduce the Lagrangian relaxation approach and its
application to finite dimensional optimization problems. In the second section we
apply this approach to (integer) linear programming problems and discuss the main
relations between such an integer linear program and some of the most well-known
relaxations used within this field. In the third section we consider the subgradient
method to find the optimal Lagrangian multiplier in a Lagrangian dual problem.
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Finally in the last section we consider some classical location and transportation
models and show how the Lagrangian relaxation technique results in heuristics by
solving these problems.

Although no new results are discussed, this chapter introduces the reader to
the main ideas of the Lagrangian relaxation technique originally introduced by
Joseph-Louis Lagrange in his treatise “Leçons sur le calcul des functions” (nouvelle
edition) published in 1806 (Lagrange, 1806) and revealed in a series of letters to
Euler between 1754 and 1756. Joseph-Louis Lagrange applied his approach to
infinite dimensional optimization problems, and his approach eventually lead to
the development of optimal control theory. To prove the claims of Lagrange, the
theory of convex sets and functions was later developed. Without any difficulty, one
can also extend the finite dimensional approach discussed in this chapter to infinite
dimensional optimization problems using the well-known Hahn–Banach theorem in
functional analysis (Choquet, 1976) or the related minmax approach (Frenk Kas and
Kassay, 2007).

This chapter also tries to be complete in discussing in a hopefully transparent
way some of the mathematical technicalities found in the books on convex analysis.
As such the rationale behind the Lagrangian relaxation approach can be seen as
one of the main ideas in optimization theory. It relates a difficult constrained
optimization problem to an easier solvable constrained optimization problem with
fewer constraints and another objective function. In this newly selected objective
function the deleted constraints of the original problem are penalized using a linear
penalty function.

Developments occurring 150 years later within the field of nonlinear and linear
programming like the primal–dual relations in linear programming and the well-
known Karush–Kuhn–Tucker conditions in nonlinear programming are special
instances of this Lagrangian relaxation approach. Also the developments of penalty-
based optimization methods in nonlinear programming (Fiacco and McCormick,
1969) can be seen as an easy extension of the ideas behind this relaxation
approach. These penalty methods eventually led to the development of interior
point polynomial algorithms in convex programming (see page 2 of Nesterov and
Nemirovski (2001)). By these observations, it seems clear that the ideas of Lagrange
play a fundamental role in the development of the theory of optimization known
nowadays.

2 On the Principle of Lagrange

Before discussing the principle of Lagrange for general optimization problems with
continuous and/or discrete decision variables, we first introduce some definitions.
If the sets A,B ⊆ R

n are nonempty sets, then for every α, β ∈ R we define the
so-called Minkowski sum:

αA + βB := {αx + βy : x ∈ A, y ∈ B}. (1)
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Also we denote by Z
n+ (Rn+) the set of nonnegative integer valued (real valued)

n-dimensional vectors and by Zn− := −Z
n+ and Rn− := −R

n+.

Definition 2.1 A nonempty set L ⊆ R
n is called a linear space if αL+βL ⊆ L for

every α, β ∈ R. A nonempty set M ⊆ R
n is called affine if αM + (1 − α)M ⊆ M

for every α ∈ R. A nonempty set C ⊆ R
n is called convex if αC + (1 − α)C ⊆ C

for every 0 < α < 1. A nonempty set K ⊆ R
n is called a cone if αK ⊆ K for every

α > 0 and it is called a pointed cone if K is a cone satisfying K ∩ (−K) = {0}. A
nonempty set A ⊆ R

n is called proper if the set A is strictly contained in Rn.

It is easy to verify that a pointed cone is proper and a cone K is convex if and only
if K + K ⊆ K . To represent feasible sets within optimization theory, we need to
introduce an ordering on a set.

Definition 2.2 A binary relation � on a nonempty set A is called a transitive
ordering on the set A if for every xi ∈ A, i = 1, 2, 3 satisfying x1 � x2 and x2 � x3
it follows that x1 � x3. A binary relation � on a nonempty set A is called a partial
ordering on the set A if it is a transitive ordering and for every x ∈ A it satisfies
x � x (reflexive property ) and for every xi ∈ A,i = 1, 2, satisfying x1 � x2 and
x2 � x1 it holds that x1 = x2 (antisymmetry property)

For any convex cone K ⊆ R
n, we introduce the transitive ordering �K on the set

R
n (Boyd and Vandenberghe , 2004; Frenk and Kassay, 1999) given by

y �K x ⇔ x − y ∈ K. (2)

It follows that the transitive ordering �K on R
n for any convex pointed cone K is

a partial ordering on R
n. In most cases, unless otherwise specified, we will only

consider orderings �K on R
n with K a convex pointed cone. Consider now a

nonempty set X ⊆ R
n and K ⊆ R

m a nonempty proper convex cone. Moreover, let
f : Rn → R be some finite valued function and g : Rn → R

m a finite valued vector
function given by g(x) := (g1(x), . . . , gm(x)) with gi : Rn → R and introduce the
minimization problem:

υ(P ) := inf{f (x) : x ∈ F} (P )

with

F := {x ∈ X : g(x) �K 0} (3)

the so-called feasible region. The optimization problem (P ) is called a primal
problem, and using the ordering �K with K a proper convex cone yields the
possibility to model a lot of different optimization problems. The value υ(P ) is by
definition equal to ∞ if the feasible regionF of optimization problem (P ) is empty.
In this case optimization problem (P ) is called infeasible. If the feasible regionF is
nonempty, then optimization problem (P ) is called feasible and −∞ ≤ υ(P ) < ∞.
It is not assumed that an optimal feasible solution exists and so we cannot replace
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inf by min. Since

− sup{−f (x) : x ∈ F} = inf{f (x) : x ∈F},

we also cover in this framework maximization problems. Important instances
of optimization problem (P ) are given by nonlinear optimization problems with
feasible regionF consisting of p inequality andm−p equality constraints (Bazaraa,
Sherali and Shetty, 1993; Nocedal and Wright, 2006). If this holds, the convex cone
K is given by K = R

p
+ × {0}, 0 ∈ R

m−p, 0 ≤ p ≤ m. For p = 0, this reduces to a
feasible region F only consisting of m equality constraints and we obtain K = {0}.
Special cases are linear programming problems (Bazaraa, Jarvis, and Sherali, 1990;
Chvatal, 1983) and for X a mixed discrete–continuous set mixed integer linear
programming problems (Nemhauser and Wolsey, 1988; Wolsey, 1998). Finally we
also mention conic convex programming problems (Ben-Tal and Nemirovski, 2001)
given by

inf{c
x : x − b ∈ L, x ∈ K} (4)

with K a proper convex cone and L a linear space. In most cases it is difficult to find
a feasible solution of optimization problem (P ) and even more difficult (if it exists!)
to find an optimal solution. A possible way to overcome this problem is to replace
optimization problem (P ) by an easier optimization problem selected in such a way
that it resembles the original problem. Having this idea in mind we introduce the
next definition.

Definition 2.3 An optimization problem given by

υ(R) := inf{fR(x) : x ∈ FR} (R)

is called a relaxation of the primal problem (P ) if the feasible region FR satisfies
F ⊆ FR and fR(x) ≤ f (x) for every x belonging to F .

An immediate consequence of the definition of a relaxation is given by

− ∞ ≤ υ(R) ≤ υ(P ) ≤ ∞. (5)

An easy way to obtain a relaxation is to delete some of the difficult constraints
within the feasible set F given by relation (3). However, to achieve that the new
constructed optimization problem resembles the original problem (P ) it is in general
not sufficient to delete constraints. A more refined way to achieve this goal is to
delete constraints and at the same time incorporate within the objective function
some penalty cost to compensate for the loss of these constraints and/or give some
reward for still satisfying feasibility. To formalize this idea, we first introduce the
standard inner product on Rn given by

xᵀy : =
∑n

i=1
xiyi. (6)
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The most simplest way to achieve penalization of the loss of constraints is to
consider a linear penalty function and introduce for some penalty parameter λ ∈ R

m

the problem

inf{f (x) + λᵀg(x) : x ∈ X}. (7)

Clearly it follows that F ⊆ X and to guarantee that

f (x) + λᵀg(x) ≤ f (x) (8)

for every x belonging to F it is sufficient and necessary to assume that λᵀg(x) ≤ 0
for every x belonging to F . Since we are dealing with minimization problems, a
reward means that λᵀg(x) ≤ 0 for every feasible x. Due to g(x) �K 0 for every
x ∈ F and introducing the so-called dual cone K∗ of a set K ⊆ R

m given by

K∗ := {y ∈ R
m : yᵀx ≥ 0 for every x ∈ K}, (9)

this inequality certainly holds for every λ belonging to K∗. Also by the definition of
a dual cone, the set K∗ is a nonempty closed convex cone. A similar operation for
the special case of a linear space L ⊆ R

m is to introduce its orthogonal complement
L⊥ = {y ∈ R

m : yᵀx = 0 for every x ∈ L}. It is easy to show for a linear space L

that

L∗ = L⊥. (10)

At the moment, except for finiteness of the functions f and g on their domain we
do not impose any other conditions on these functions and formally introduce the
minimization problem:

θ(λ) := inf{L(x,λ) : x ∈ X} (D(λ))

with the functionL : X×K∗ → [−∞,∞) the so-called Lagrangian function given
by

L(x,λ) := f (x) + λᵀg(x). (11)

Since the set X is nonempty, it follows that −∞ ≤ θ(λ) < ∞. The objective
function θ : K∗ → [−∞,∞) is called the Lagrangian dual function and the vector
λ the vector of Lagrangian multipliers or dual variables. To extend the definition of
the function θ to R

m, we set θ(λ) = −∞ for every λ not belonging to K∗. By the
construction of the Lagrangian dual function, the following result is easy to verify.
Implicitly it is always assumed that solving optimization problem (D(λ)) is much
more easier for any λ than solving the original problem (P).
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Lemma 2.1 The function θ : Rm → [−∞,∞) is concave satisfying θ(λ) ≤ υ(P )

for every λ ∈ R
m.

However, even for a primal problem having an optimal solution it might happen that
the optimization problem (D(λ)) does not have an optimal solution for any λ ∈ K∗
and so θ(λ) = −∞ for every λ ∈ R

m. This is shown by the following example.
If this happens, the convex set dom(θ) = {λ ∈ R

m : θ(λ) > −∞} is an empty
set and solving optimization problem (D(λ)) for some given λ does not give any
information about the value υ(P ).

Example 2.1 Consider the function f : R → R given by f (x) = −x2 if x < 0 and
f (x) = x if x ≥ 0 and consider the optimization problem:

inf{f (x) : 0 ≤ x < ∞} = inf{f (x) : x �K 0}

with K = R− and X = R. This problem has optimal solution x = 0, and the
dual cone K∗ is given by K∗ = R−. Constructing now the Lagrangian function, we
obtain for λ ≤ 0 the Lagrangian dual function:

θ(λ) = inf{f (x) + λx : x ∈ R}.

Since limx↓−∞ f (x) + λx = −∞ for every λ ≤ 0, it follows that θ(λ) = −∞ for
every λ ≤ 0.

We now discuss how much the Lagrangian relaxation optimization problem (D(λ))

resembles the original problem (P ). A similar result for an optimization problem
consisting only of equality constraints or equivalently K = {0} is discussed by
Everett (1963).

Lemma 2.2 If xopt(λ) is an optimal solution of optimization problem:

θ(λ) = inf{f (x) + λᵀg(x) : x ∈ X}

for some λ ∈ K∗ with K a convex pointed cone, then xopt(λ) is an optimal solution
of the perturbed primal problem:

inf{f (x) : g(x) �K g(xopt(λ)), x ∈ X}.

Proof Let xopt(λ) be an optimal solution of inf{f (x) + λᵀg(x) : x ∈ X} for some
λ ∈ K∗ and consider an arbitrary x ∈ X satisfying g(x) �K g(xopt(λ)). We show
that xopt(λ) is feasible for the perturbed primal problem and f (xopt(λ)) ≤ f (x).
Since the cone is pointed and hence 0 ∈ K , the feasibility is obvious. To show
f (xopt (λ)) ≤ f (x) for every x ∈ X and g(x) �K g(xopt(λ)), we observe for
λ ∈ K∗ that λᵀ(g(xopt(λ) − g(x)) ≥ 0. This yields for λ ∈ K∗ and xopt(λ) an
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optimal solution of the minimization problem (D(λ)) that

f (xopt (λ)) = L(xopt (λ),λ) − λᵀg(xopt(λ)) ≤ L(x,λ) − λᵀg(xopt(λ))

= f (x) + λᵀ(g(x) − g(xopt(λ)) ≤ f (x)

and we have verified the result.

To approximate the objective value υ(P ) of a primal problem (P ) as good as
possible by means of the relaxation approach, it is therefore by Lemma 2.1
necessary (maybe not sufficient!) to maximize the dual function θ(λ) over the set
K∗. This motivates the following definition.

Definition 2.4 For a primal problem (P ), the optimization problem (D) given by

υ(D) = sup{θ(λ) : λ ∈ K∗} (D)

is called the Lagrangian dual of the primal problem (P ).

An immediate consequence of Lemma 2.1 is given by the next result and this
result is known as weak duality.

Lemma 2.3 It follows that −∞ ≤ υ(D) ≤ υ(P ) ≤ ∞.

In the next example we will use the principle of Lagrange to construct the
Lagrangian dual problem of a canonical linear programming problem as proposed
on page 237 in Bazaraa, Sherali and Shetty (1993). In different books canonical
linear programming problems are defined differently, and one can derive similar
results for these linear programs.

Example 2.2 Consider the canonical linear programming problem (Bazaraa, Sherali
and Shetty, 1993):

υ(P ) := inf{cᵀx : Ax ≥ b, x ≥ 0}

with A some m × n matrix, c ∈ R
n, and b ∈ R

m. It follows that

υ(P ) = inf{cᵀx : g(x) �K 0, x ≥ 0}

with g(x) = b − Ax and K = R
m+. Hence by penalizing the constraints b − Ax,

we obtain for every λ ∈ K∗ = R
m+ that the Lagrangian dual function θ : Rm+ →

[−∞,∞) equals

θ(λ) = λᵀb+ inf{(c−Aᵀλ)ᵀx : x ≥ 0} =
{

λᵀb if c−Aᵀλ ≥ 0
−∞ otherwise
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This yields that the Lagrangian dual problem (D) is given by

sup{θ(λ) : λ ∈ R
m} = sup{λᵀb : Aᵀλ ≤ c,λ ≥ 0},

and this coincides with the so-called dual linear programming of the above
canonical linear programming problem mostly introduced without any explanation.
To generalize this construction to conic convex problems, we first observe that for
X = K

inf{(c − λ)
x : x ∈ X} =
{
0 if c − λ ∈ K∗
−∞ otherwise

(12)

Introducing the vector function g(x) = b − x and using that any linear space is a
convex cone and L∗ = L
, it follows that

inf{c
x : x − b ∈ L, x ∈ K} = inf{c
x : g(x) �L 0, x ∈ K}.

By a similar reasoning as in the first part of this example, using relation (12) we
obtain that the Lagrangian dual of the above conic convex programming problem is
given by sup{λ
b : c − λ ∈ K∗,λ ∈ L⊥}.
In Example 2.2 it is shown that the well-known LP-dual of a linear programming
problem (Bazaraa, Sherali and Shetty, 1993) mostly introduced without any expla-
nation can be constructed using the principle of Lagrange. A direct consequence of
Lemma 2.3 for standard linear programming problems is given by the observation
that υ(P ) = −∞ implies that the dual problem is infeasible. If in Lemma 2.3
we have υ(D) < υ(P ), a so-called duality gap exists. As shown by the following
example, such a duality gap can even occur for linear programming problems (see
also page 60 of Chvatal (1983)).

Example 2.3 Consider the linear programming problem:

inf{−x1 − x2 : x1 − x2 ≥ 1,−x1 + x2 ≥ 1, x ∈ R
2+}.

Clearly this optimization problem is infeasible and so υ(P ) = ∞. Penalizing the
constraints x1 −x2−1 ≥ 0 and −x1+x2−1 ≥ 0 using the nonpositive Lagrangian
multipliers λ1 and λ2, we obtain that the Lagrangian dual function θ : R2− →
[−∞,∞) is given by

θ(λ) = inf{x1(λ1 − λ2 − 1) + x2(λ2 − λ1 − 1) : x ∈ R
2+}.

Observe now for every λ ∈ R
2− that λ1 − λ2 − 1 ≥ 0 ⇒ λ2 − λ1 ≤ −1 and

λ2−λ1−1 ≥ 0 ⇒ λ1−λ2 ≤ −1 and by this observation it follows that θ(λ) = −∞
for every λ ∈ R

2− or equivalently υ(D) = −∞.
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By Example 2.3, it is clear that one should be careful in applying the principle
of Lagrange to a primal problem with an empty feasible region. Fortunately in a
lot of practical problems one can decide beforehand that the feasible region F is
nonempty and so we only consider primal problems satisfying −∞ ≤ υ(P ) < ∞.
By Lemma 2.3, we obtain that

υ(P ) = −∞ ⇒ υ(P ) = υ(D) (13)

and so in this case no duality gap exists and every λ ∈ K∗ is an optimal dual
solution. By relation (13) and Example 2.3, we therefore only need to check
for υ(P ) finite whether a duality gap exists. For the class of feasible primal problems
satisfying υ(P ) > −∞, it is now important to decide under which conditions

υ(D) = υ(P ). (14)

An important issue in optimization theory is to determine the largest possible class
satisfying the above equality. By identifying such a class, we are able in theory to
solve an optimization problem belonging to this class using the dual approach or
a combination of the dual and primal approach. The most well-known example of
such an approach is the primal dual simplex method in linear programming (Chvatal,
1983). We return to this identification problem in the next section. Remember in
Example 2.1 we constructed a primal optimization problem not having the property
listed in relation (14). In this example an optimal solution of the primal optimization
problem exists and υ(P ) > υ(D) = −∞ and the Lagrangian dual problem does
not have any optimal solution. As shown in the next section, this never happens
for linear programming problems or K-convex optimization problems satisfying a
so-called regularity condition.

Despite the negative result as shown by Example 2.1, the Lagrangian relaxation
approach is often used. This applies in particular to discrete optimization problems
since for these problems mostly no strong duality holds. During the search for
an upper bound on the objective value υ(P ), a number of times the optimization
problem (D(λ)) for different values λi ∈ K∗, i = 1, . . . , k is solved and we
obtain the dual feasible optimal solutions xopt (λi ), 1 ≤ i ≤ k. Sometimes the
dual feasible optimal solution xopt(λi ) might also be primal feasible or equivalently
g(xopt(λi )) �K 0. However, in most cases this does not happen and so xopt(λi )

is not primal feasible. If xopt(λi ) is not primal feasible, it is sometimes possible to
construct using the primal nonfeasible xopt (λi ), i = 1 . . . , k a primal feasible xi and
we obtain a feasible candidate of our primal problem. The heuristic procedure that
converts a primal nonfeasible xopt(λ) into a primal feasible x is called a Lagrangian
heuristic. On the other hand, it is also possible to generate for most problems a
feasible solution by means of a so-called primal heuristic. Such a primal heuristic
is mostly an ad hoc procedure particularly suited for the specific problem and it
does not use dual information as done by a Lagrangian heuristic. We consider some
examples of this approach in location and transportation problems. One might now
wonder whether it is possible to say something about the quality of the generated
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primal feasible solution by this Lagrangian heuristic with respect to the optimal
objective value of the primal problem. This motivates the next definition.

Definition 2.5 For any ε > 0, a vector x ∈ R
n is called an ε-optimal solution of

the optimization problem υ(P ) = inf{f (x) : x ∈ F} if f (x) ≤ υ(P )+ε and x ∈F .

The next result discusses the quality of a primal feasible ε-optimal solution of the
optimization problem (D(λ)). The assumption of the next lemma automatically
implies that υ(P ) is finite.

Lemma 2.4 If for some λ ∈ K∗ there exists a primal feasible x0 with x0 an ε-
optimal solution of optimization problem:

θ(λ) = inf{f (x) + λᵀg(x) : x ∈ X},

then

υ(P ) ≤ f (x0) ≤ υ(P ) + ε − λᵀg(x0) < ∞.

Proof Since x0 is primal feasible, we obtain by the weak duality result given by
Lemma 2.3 that

υ(P ) ≤ f (x0) = L(x0,λ) − λᵀg(x0)
≤ θ(λ) + ε − λᵀg(x0) ≤ υ(D) + ε − λᵀg(x0)
≤ υ(P ) + ε − λᵀg(x0)

and this shows the result.

The next result is partly an easy implication of Lemma 2.4.

Lemma 2.5 The following conditions are equivalent:

1. The vector x0 is primal feasible (g(x0) �K 0), λ0 is dual feasible (λ0 ∈ K∗), and
f (x0) = θ(λ0).

2. The vector x0 is an optimal solution of optimization problem (P ), the Lagrangian
multiplier λ0 ∈ K∗ is an optimal solution of the Lagrangian dual problem (D),
and v(P ) = v(D).

3. The primal feasible solution x0 is an optimal solution of (D(λ0)) with λ0 ∈ K∗
and θ(λ0) finite and λ

ᵀ
0 g(x0) = 0.

Proof To prove the implication 1 → 3, we observe

f (x0) = θ(λ0) ≤ f (x0) + λ
ᵀ
0 g(x0) (15)

and this shows λ
ᵀ
0g(x0) ≥ 0. Since g(x0) �K 0 and λ0 ∈ K∗, this yields λ

ᵀ
0 g(x0) =

0. By relation (15), we obtain f (x0) + λ
ᵀ
0 g(x0) = θ(λ0) and so x0 is an optimal

solution of θ(λ0) showing part 3. The implication 3 → 2 is a direct consequence of
Lemma 2.4, while the implication 2 → 1 is trivial.
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The condition λ
ᵀ
0 g(x0) = 0 mentioned in part 3 of Lemma 2.5 is called the

complementary slackness condition. Observe if K = {0} this complementary
slackness condition is automatically satisfies for x0 primal feasible. Unfortunately
in most integer linear programming problems, there exists a duality gap unless the
matrix describing the feasible region has a special structure like total unimodularity
(Nemhauser and Wolsey, 1988) and so in general condition 3 in Lemma 2.5 does
not hold. Observe that we are interested in condition 3 since our procedure is to
solve optimization problems (D(λ)) for different values of λ ∈ K∗. If during this
procedure we find a vector x0 satisfying condition 3 of Lemma 2.5, then this vector
x0 is an optimal solution of our problem (P ). In Lemma 2.5 we assume that no
duality gap exists and so it is important to know for which optimization problems
such a result holds. This is discussed in the next section.

2.1 K-Convex Minimization Problems and Strong Duality

In this section we consider a class of optimization problems (P ) for which under a
so-called regularity condition on the feasible region no duality gap exists. To identify
these classes of optimization problems, we introduce the following class of vector
valued functions (Giannessi , 1984; Wolkowicz, 1981). Observe in this definition
we do not assume that K is a convex pointed cone.

Definition 2.6 Let X ⊆ R
n be a nonempty convex set and K ⊆ R

m is a nonempty
convex cone. The vector valued function g : X → R

m is called K-convex if and
only if

g(αx1 + (1 − α)x2) �K αg(x1) + (1 − α)g(x2) (16)

for every 0 < α < 1, x1, x2 ∈ X and �K the transitive ordering introduced in
relation (2).

If K = R
m+ (and so a convex pointed cone), then K-convexity reduces to the

classical definition of convexity. Also it is easy to check that any affine function
g(x) = Ax+b is K-convex for any nonempty convex pointed cone K. To relate the
above definition of a K-convex function for K ⊆ R

m a convex pointed cone to the
modern definition of a convex function (Rockafellar, 1970), we introduce for any
convex pointed cone K ⊆ R

m and any vector function g : Rn → (R ∪ {∞})m the
so-called epigraph epiK(g) given by

epiK(g) := {(x, r) : g(x) �K r} ⊆ R
n+m.

Since K is a convex pointed cone, we know that the ordering �K is a partial
ordering. It is shown in (Frenk and Kassay, 2007) for K a convex pointed cone
and h : X → R

m some given vector function on a nonempty domain X ⊆ R
n that
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the set epiK(h) is a convex set if and only if X is a convex set and h : X → R
m

is K-convex and so for K a convex pointed cone the old definition of convexity
coincides with the modern definition of convexity.

Definition 2.7 The optimization problem inf{f (x) : g(x) �K 0, x ∈ X} with
K a proper convex cone and nonempty feasible region F is called a K-convex
minimization problem if the set X ⊆ R

n is convex, the function f : X → R is
convex, and the function g : X → R

m is K-convex.

In the above definition we could also have assumed that K is a convex cone.
However, using this alternative definition we only added the case K = R

n,
and since in this case K∗ = {0}, the Lagrangian dual function reduces to the
original problem. At the same time, we could have imposed that the cone K is
pointed (mostly assumed for K-convex optimization problems) but this condition
only implies that the ordering �K is a partial ordering and this property is not
necessary for achieving strong duality for K-convex optimization problems. Since
by relation (16) the function x �→ λ
g(x) is convex for λ ∈ K∗ and any K-convex
function g : X → R

m, it follows for any K-convex minimization problem that the
optimization problem (D(λ)) is a convex minimization problem for every λ ∈ K∗.
To show that for the class of K-convex minimization problems satisfying some
additional constraint qualification the strong duality property holds, we need the
following definition.

Definition 2.8

1. If S ⊆ R
n is nonempty, then the set aff(S) is the smallest affine set containing S.

This set is called the affine hull of S.

2. If S ⊆ R
n and y ∈ S, then the point y is called a relative interior point of the

set S if there exists some ε > 0 such that the intersection of aff(S) and the set
y + εB with B the closed Euclidean ball given by

B := {x ∈ R
n :‖ x ‖ ≤ 1}

and ‖ . ‖ the Euclidean norm is contained in S.
3. The relative interior ri(S) of a set S ⊆ Rn is the collection of all relative interior

points of the set S.

By the generalization of inequalities to cones, we needed the concept of K-
convex functions. However, as for classical convex programming problems with
equalities the property of K-convexity is stronger than is needed for the proof of
the no-duality gap for K-convex optimization problems. What we need for this
proof is the following implication of K-convex functions, which is weaker than
K-convexity.

Lemma 2.6 If K ⊆ R
m is a nonempty convex cone and the function g : X → Rm

is K-convex, then the set g(X) + ri(K) is nonempty and convex.

Proof Since the set K ⊆ R
m is a nonempty convex cone, it is well-known (Frenk

and Kassay, 2005; Rockafellar, 1970) that ri(K) is also a nonempty convex cone
and so the set g(X) + ri(K) is nonempty. To check that the set g(X) + ri(K) is
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convex, we need to verify for any x1, x2 belonging to X and 0 < α < 1 that

α(g(x1) + ri(K)) + (1 − α)(g(x2) + ri(K)) ⊆ g(X) + ri(K).

By the convexity of the set ri(K), it follows that αri(K) + (1 − a)ri(K) ⊆ ri(K)

and this implies that

α(g(x1) + ri(K)) + (1 − α)(g(x2) + ri(K)) ⊆ αg(x1) + (1 − α)g(x2) + ri(K).

By the K-convexity of the function g and relation (2), we know that

αg(x1) + (1 − α)g(x2) ∈ g(αx1 + (1 − α)x2) + K. (17)

Since it is well-known that K + ri(K) ⊆ ri(K) (Frenk and Kassay, 2005;
Rockafellar, 1970) and the set X is convex, we obtain by relation (17) that

α(g(x1) + ri(K)) + (1 − α)(g(x2) + ri(K)) ⊆ g(X) + K + ri(K)

⊆ g(X) + ri(K)

and we have verified the desired result.

We now need a separation result to prove that under some regularity condition no
duality gap exists for the class of K-convex minimization problems. However, we
did not discuss what we mean by separation and so we list the following definition
(Frenk and Kassay, 2005; Rockafellar, 1970).

Definition 2.9 If C ⊆ R
n is a nonempty set and 0 ∈ Rn does not belong to C, then

the sets C and {0} are said to be properly separated if there exists some vector σ

belonging to Rn satisfying

inf{σᵀx : x ∈ C} ≥ 0

and for some x belonging to C it follows that σᵀx > 0. The vector σ is called the
normal vector of the separating hyperplane between the sets C and {0}.
By Definition 2.9, it follows that σ is not equal to the zero vector. The next theorem
mentions an important separation result for an arbitrary proper convex set (Frenk
and Kassay, 2005; Hiriart-Urruty and Lemaréchal, 2013; Rockafellar, 1970).

Theorem 2.1 If C ⊆ R
n is a nonempty convex set and 0 ∈ R

n does not belong to
C, then the sets C and {0} can be properly separated. Moreover, the normal vector
σ of the separating hyperplane can be chosen to belong to the affine hull aff (C) of
the set C.

By the above separation result, it is possible to show that any K-convex minimiza-
tion problem satisfying an additional constraint qualification has no duality gap.
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Theorem 2.2 If the K-convex minimization problem satisfies −∞ < υ(P) < ∞
and the vector 0 belongs to ri(g(X) + K), then the Lagrangian dual (D) of the K-
convex optimization problem given by sup{θ(λ) : λ ∈ K∗} has an optimal solution
and the duality gap equals zero.

Proof Without loss of generality, we may assume that υ(P ) = 0. Since optimiza-
tion problem (P ) is a K-convex optimization problem, we obtain that the function
h : X → Rm+1 given by

h(x) = (f (x), g(x))

is Ke-convex with Ke = [0,∞) × K . This implies by Lemma 2.6 that the set
h(X) + ri(Ke) is convex. If 0 belongs to the convex set h(X) + ri(Ke), then there
exists some x0 ∈ X satisfying h(x0) ∈ −ri(Ke). Since ri(Ke) = (0,∞) × ri(K),
we obtain f (x0) < 0 and g(x0) �K 0. This contradicts our assumption υ(P ) = 0
and so 0 /∈ h(X) + ri(Ke). Applying now Theorem 2.1, there exists some nonzero
vector σ = (μ,λ0) satisfying for every x ∈ X and ke = (r,k) with r > 0 and
k ∈ ri(K)

σ
(h(x) + ke) = μ(f (x) + r) + λ
ᵀ
0 (g(x) + k) ≥ 0 (18)

with a strict inequality for at least one x0 ∈ X, r0 > 0 and k0 ∈ ri(K). Also by
Theorem 2.1, the componentλ0 of this vector belongs to the set aff (g(X)+K).We
now show that μ > 0. Since ri(Ke) is a convex cone, this implies for every α > 0
and ke = (r,k) ∈ ri(Ke) that αke ∈ ri(Ke) and so we obtain by relation (18) for
x ∈ X

σ
(h(x) + αke) ≥ 0. (19)

This shows by contradiction for x ∈ X fixed and letting α tend to infinity in
relation (19) that σ
ke ≥ 0 for every ke ∈ ri(Ke) and so σ belongs to (ri(Ke))

∗ =
K∗

e = [0,∞) × K∗. Hence it follows that μ ≥ 0 and if we assume that μ = 0 or
σ = (0,λ0) it follows again by relation (18) that

λ
ᵀ
0 (g(x) + k) ≥ 0 (20)

for every x ∈ X and k ∈ ri(K). Since by assumption 0 belongs to ri(g(X) + K)

and λ0 ∈ aff (g(X) + K), one can find some ε > 0 such that −εᵀλ0 ∈ g(X) + K

and this implies by relation (20) that

−ελ
ᵀ
0λ0 = −ε ‖ λ0 ‖2≥ 0
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or equivalently λ0 = 0. Hence the normal vector σ equals the null vector and this
contradicts Theorem 2.1. Therefore μ > 0 and applying now relation (19), we
obtain for any α > 0, r ∈ ri(K), x ∈ X and k ∈ K that

(f (x) + αr) + μ−1λ
ᵀ
0 (g(x) + k) ≥ 0. (21)

Since for k ∈ K it follows that αk ∈ K for any α > 0, we can replace k in
relation (21) by αk and letting α tend to zero we conclude from the same relation
that for every x ∈ X

f (x) + μ−1λ
ᵀ
0 g(x) ≥ 0

with μ−1λ0 ∈ K∗. This shows θ(μ−1λ0) ≥ 0 and applying the weak duality result
yields 0 = υ(D) and μ−1λ0 is an optimal dual solution.

The additional constraint qualification in Theorem 2.2 is called a Slater-type
condition and as shown in the proof of Theorem 2.2 this condition is sufficient
to guarantee that an optimal solution of the Lagrangian dual problem (D) of
a general K-convex minimization problem exists. The constraint qualification is
slightly stronger than the feasibility condition since

F = {x ∈ X : g(x) �K 0} nonempty ⇔ 0 ∈ g(X) + K.

and it means that the feasible region has a nonempty relative interior. At the same
time, it might happen that the primal problem does not have an optimal solution.
Actually the Slater-type condition is a sufficient condition to guarantee the existence
of an optimal solution of the dual problem and this condition guarantees that an
optimal solution of the dual problem is contained in a compact subset of K∗. Due to
the convexity-type assumptions on the bifunction L : X × K∗ given by L(x,λ) =
f (x) + λᵀg(x) as listed in relation (11), the strong duality follows immediately
as a corollary of Sion’s minmax theorem already proven in 1928 by Neumann
(1928) using Brouwer’s fixed point theorem. This result was later rediscovered
by Sion (1958) and proved using the Knaster–Kuratowski–Mazurkiewicz (KKM)
lemma (George Xian-Zhi Yuan, 1999). This lemma is equivalent to Brouwer’s fixed
point theorem. This means that the Lagrangian relaxation approach can be seen as a
particular instance of a noncooperative two-person game in which nature plays again
the decision maker. The action set of nature is given by K∗, and the action set of the
decision maker is given by X ⊆ R

n. The strong duality result states now that the
value of this particular two-person game exists, and Sion’s minmax theorem shows
under which sufficient conditions on the bifunction L this game has a value. In fact
the strong duality result is an immediate consequence of the property that a convex
set is connected and so it is a topological result. For more details on how to prove
a generalization of Sion’s minmax theorem using a more elementary approach by
contradiction and Joos method and the obvious fact that a convex set is connected,
the reader should consult (Frenk and Kassay, 2006). Connectedness of a set means
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that any two points in such a set can be connected by a continuous curve contained
within this set.

For linear programming problems given by inf{c
x :Ax ≤ b, x ∈ Rn}, one can
verify by inspection of the last lemma in the simplex method (Chvatal, 1983; Saigal,
1997) used to solve the above linear programming problem that the Lagrangian
dual of this linear programming problem has an optimal solution and no duality gap
exists. This means for linear programming problems that we only need to assume υ

(P ) is finite and so no Slater-type condition is needed. Next to linear programming
another class of important optimization problems is represented by the function
dcl(K) : Rn → R with

dcl(K)(x) := inf{ 12‖x − y‖2 : y ∈ cl(K)}
= inf{ 12‖x − y‖2 : −y �cl(K)0}

and K ⊆ R
n a nonempty proper convex cone, ‖.‖ denoting the Euclidean norm,

and cl(K) the closure of this convex cone. This optimization problem denotes the
orthogonal projection of a vector on a given convex cone, and such a problem shows
up in the subgradient method. It is easy to see that

dcl(K)(x) = 0 ⇔ x ∈ cl(K) (22)

and for any fixed x the above optimization problem is clearly a K-convex program-
ming problem (even convex!) with f (y) = 1

2‖x− y‖2 and g(y) = −y and X = R
n.

It follows trivially that g(Rn) = R
n and so the Slater-type condition reduces to

0 ∈ ri(Rn + cl(K)) = ri(Rn) = R
n, which is automatically satisfied. Since

(cl(K))∗ = K∗ and applying Theorem 2.2we obtain that

dcl(K)(x) = sup{θ(λ) : λ ∈ K∗}

with

θ(λ) = inf

{
1

2
‖x − y‖2 − λ
y : y ∈ R

n

}
.

Since the function y → 1
2‖x−y‖2−λ
y is strictly convex and differentiable onRn,

an optimal solution for the optimization problem (D(λ) is obtained by solving the
necessary and sufficient first-order conditions. This implies with yopt(λ) denoting
the optimal feasible solution of the optimization problem (D(λ)) that

−(x − yopt (λ)) − λ = 0 ⇔ yopt(λ) = x + λ
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and so θ(λ) = 1
2‖λ‖2 − λ
(x + λ) = − 1

2‖λ‖2 − λ
x. This finally shows

dcl(K)(x) = max

{
−1

2
‖λ‖2 − λ
x : λ ∈ K∗

}
. (23)

and using relation (23) the next so-called important bipolar theorem can be verified.

Theorem 2.3 If K ⊆ R
n is a nonempty convex cone, then it follows that cl(K) =

K∗∗ with K∗∗ := (K∗)∗.

Proof If x belongs to K , then by the definition of K∗ it follows for every λ ∈ K∗
that λᵀx ≥ 0 and this shows that x belongs to K∗∗. Hence K ⊆ K∗∗ and since K∗∗
is closed we obtain cl(K) ⊆ K∗∗. To prove the reverse inclusion, let x belong to
K∗∗. By the definition of K∗∗, it follows that x
λ ≥ 0 for every λ ∈ K∗ and this
shows − 1

2‖λ‖2 − λ
x ≤ − 1
2‖λ‖2 for every λ ∈ K∗. Since 0 belongs to K∗, this

implies by relation (23) that

0 ≤ dcl(K)(x) ≤ max

{
−1

2
‖λ‖2 : λ ∈ K∗

}
= 0

and hence by relation (22) we obtain x ∈ cl(K).

A very special case of the bipolar theorem is the so-called lemma of Farkas known
in linear programming, and this result can be used to show (Saigal, 1997) that any
linear programming problem with a finite optimal objective function value satisfies
the strong duality property. By the above bipolar theorem, it is easy to give a
univariate characterization ofK-convex functions in caseK is a closed convex cone.

Lemma 2.7 For a closed convex cone K , it follows that the function x → λᵀh(x)
is convex on the convex set X for every λ ∈ K∗ if and only if h is K-convex.

An important implication of Theorem 2.2 and Lemma 2.7 is given by the following
result. Observe a strictly convex function is a convex function with the inequalities
in the definition replaced by strict inequalities for any strict convex combination of
any two vectors.

Lemma 2.8 If the objective function f in the K-convex optimization problem

inf{f (x) : g(x) �K 0, x ∈ X}

is strictly convex and 0 ∈ ri(g(X) + K) and this optimization problem has an
optimal solution, then the Lagrangian dual problem has an optimal solution λopt

and the optimal solution xopt(λopt ) of the optimization problem D(λopt ) exists and
is unique and coincides with the unique optimal solution of the primal problem.

Proof Since it is assumed that the primal K-convex optimization problem (P ) has
an optimal solution and the objective function f is strictly convex, the optimal
solution of the problem (P ) denoted by xopt is unique. By Theorem 2.2, we know
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that an optimal solution λopt ∈ K∗ of the Lagrangian dual problem exists and it
satisfies

f (xopt ) = υ(P ) = υ(D) = θ(λopt ).

This shows that condition 1 of Lemma 2.5 is satisfied and again by Lemma 2.5 the
primal feasible solution xopt is an optimal solution of D(λ0). Since by Lemma 2.7
we obtain that the function x → λ

ᵀ
optg(x) is convex on X and hence the function

x → f (x) + λᵀg(x) is strictly convex, the optimization problem D(λopt) has a
unique optimal solution and since xopt is such an optimal solution we obtain the
desired result.

From a computational point of view, the following theorem for K-convex opti-
mization problems is important and is a direct consequence of Lemma 2.5 and
Theorem 2.2.

Theorem 2.4 If the optimization problem (P ) is a K-convex minimization problem
and 0 belongs to ri(g(X) + K), then the vector x0 is an optimal solution of (P ) if
and only if for some optimal dual variable λ0 ∈ K∗ it follows that

x0 = argmin{f (x) + λ
ᵀ
0 g(x) : x ∈ X},λᵀ

0 g(x0) = 0 and − g(x0) ∈ K.

Proof Since (P ) is a K-convex optimization problem and 0 ∈ ri(g(X) + K), it
follows by Theorem 2.2 that there exists an optimal dual solution λ0 and υ(P ) =
υ(D). Hence condition 2 of Lemma 2.5 is satisfied and this yields by 2 → 3 of
Lemma 2.5 that x0 satisfies the above system of equations. The reverse implication
is also a direct consequence of Lemma 2.5.

In the next result the so-called Karush–Kuhn–Tucker conditions for K-convex
programs with differentiable functions are given and this result is an immediate
consequence of Theorem 2.4. It also shows that the Karush–Kuhn–Tucker vector is
an optimal solution of the Lagrangian dual problem.

Theorem 2.5 If the optimization problem (P ) is a K-convex optimization problem
consisting of differentiable functions and the convex set X equalsRn, then under the
regularity condition 0 ∈ ri(g(X) + K) the vector x0 is an optimal solution of (P ) if
and only if for some optimal dual variable λ ∈ K∗ it follows that

∇f (x0) +
∑n

i=1
λi∇gi(x0) = 0,λᵀg(x0) = 0 and − g(x0) ∈ K.

Proof By Theorem 2.4, the vector x0 is an optimal solution of (P ) if and only if for
some optimal dual variable λ ∈ K∗ we obtain

x0 = argmin{f (x) + λᵀg(x) : x ∈ R
n},λᵀg(x0) = 0,−g(x0) ∈ K.
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Since the optimization problem (P ) is a differentiable K-convex optimization
problem, it follows that the function x → f (x)+λᵀg(x) is convex and differentiable
on Rn and so the result follows by the sufficient and necessary first-order conditions
for an unconstrained convex optimization problem.

If we consider a K-convex optimization problem satisfying Slater’s constraint
qualification and having an optimal solution and we identified an optimal dual
solution, then by a similar proof as in the first part of Lemma 2.8 we can only
show that the optimal solution set

argmin{f (x) + λᵀg(x) : x ∈ X}

contains a primal feasible optimal solution satisfying the complementary slackness
condition. However, the optimal solution set of the optimization problem (D(λ))

can contain more than one element and so it might be computationally difficult
to identify this primal feasible element satisfying the complementary slackness
condition. The implication of Theorem 2.5 is that for differentiable K-convex min-
imization problems satisfying the Slater-type condition the Karush–Kuhn–Tucker
vector λ completely coincide with the optimal dual variables and so the Karush–
Kuhn–Tucker conditions for K-convex programs are actually duality results. These
conditions are also known in linear programming as primal–dual relations. We
show in the next section the relation between Lagrangian relaxation and linear
programming relaxation applied to an integer linear programming problem.

2.2 On Integer Linear Programming and Lagrangian and LP
Relaxations

In this section we consider for D some p × n matrix and A some m × n matrix the
integer linear programming problem:

inf{c
x : x ∈ FINT } (INT )

with

FINT := {x ∈ Z
n+ : Dx ≤ d, Ax = b}

a nonempty feasible region and apply the Lagrangian relaxation approach to this
problem. In the above representation it is assumed that the optimization problem
inf{h
x : Ax = b, x ∈ Z

n+} is relatively easy to solve for any h ∈ R
n by

means of a polynomially bounded algorithm, while the original problem (INT )
is extremely difficult to solve. Due to this assumption, we penalize in optimization
problem (INT ) the constraint Dx − d ≤ 0 and so the Lagrangian dual problem
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(sometimes called the partial dual problem) is given by

sup{θ(λ) : λ ≥ 0} (D)

with

θ(λ) = −λ
d + inf{(c + D
λ)
x : Ax = b, x ∈ Z
n+}. (24)

Also, a relaxation of optimization problem (INT ) is given by the optimization
problem:

inf{c
x :Dx ≤ d, x ∈ conv(X)} (LPR)

with conv(X) denoting the smallest convex set containing X = {x ∈ Z
n+ :

Ax = b}. The set conv(X) (also called the convex hull of the set X) can be
completely characterized by linear inequalities and so the optimization problem
(LPR) is actually a linear programming problem. Unfortunately it is not possible
to generate the linear inequality description of the set conv(X) and so optimization
problem (LPR) cannot be solved by a linear programming solver. Remember we
only used a relaxation of the original problem if this relaxation can be easily solved
and for problem (LPR) this is certainly not true. A relaxation of problem (INT )
that can be solved by a linear programming solver is given by the standard LP
relaxation:

inf{c
x :Dx ≤ d, Ax = b, x ≥ 0} (SLPR)

of optimization problem (INT ). In the next result we relate the optimal objective
function values of the above optimization problems.

Lemma 2.9 If FINT is nonempty, then

υ(SLPR) ≤ υ(D) = υ(LPR) ≤ υ(INT ).

Proof The inequalities υ(SLPR) ≤ υ(LPR) ≤ υ(INT ) are obvious and so
we only need to verify that υ(D) = υ(LPR). As observed, the optimization
problem (LPR) is a linear programming problem and if υ(LPR) is finite, we
obtain by strong duality and the observation after Theorem 2.2 that υ(LPR) =
supλ≥0{θ(λ)} with

θ(λ) = −λᵀd + inf{(c+D
λ)
x : x ∈ conv(X)}.
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Since the function x → (c + D
λ)
x is linear on conv(X), it follows that

infx∈conv(X){(c + Dᵀλ)ᵀx} = infx∈X{(c + Dᵀλ)ᵀx}
= inf{(c + Dᵀλ)ᵀx :Ax = b, x ∈ Z

n+}

and this shows by relation (24) the desired result.

In Lemma 2.9 it might happen that the optimal objective function value υ(D) is
strictly above υ(SLPR) and in this case we obtain a stronger lower bound on
υ(INT ). Hence it might be computationally more efficient to compute υ(D) and
use this approach in a branch and bound procedure. In general it is computationally
easier to compute υ(SLPR) instead of υ(D) but due to the lower bound difference
computing υ(D) might be more efficient in branching in a classical branch and
bound procedure. However, under some conditions the values υ(SLPR) and υ(D)

are equal, and this happens if the optimization problem satisfies the so-called
integrability property. Observe in this case all the lower bounds discussed in
Lemma 2.9 are the same.

Definition 2.10 The optimization problem υ(R) = inf{h
x :Ax = b, x ∈ Z
n+}

satisfies the so-called integrability property if υ(R) = inf{h
x :Ax = b, x ≥ 0} for
every vector h.

A sufficient condition for the integrability property is that the matrix A is
totally unimodular (Schrijver (1998)), and these matrices are extremely important
in polyhedral combinatorics. For sufficient conditions to check whether a matrix is
totally unimodular, consult Schrijver (1998)). These matrices appear a lot in network
flow problems. By a similar argument as used in Lemma 2.9, one can now show the
following result.

Lemma 2.10 If FINT is nonempty and the optimization problem inf{h
x :Ax =
b, x ∈ Z

n+} satisfies the integrability property, then υ(SLPR) = υ(D) = υ(LPR).

Proof By penalizing the constraints Dx ≤ d in problem (SLPR) and using the
integrability property, we obtain by the strong duality result that υ(SLPR) =
supλ≥0{θ(λ)} with

θ(λ) = −λ
d + inf{(c + D
λ)
x : Ax = b, x ≥ 0}
= −λ
d + inf{(c + D
λ)
x : Ax = b, x ∈ Z

n+}

and the desired result follows.

By the above observation, it follows that the Lagrangian dual has the same
optimal objective function value as the standard linear programming relaxation
of (INT ) and so it seems useless to solve the Lagrangian dual. However, from a
computational point of view it is sometimes more efficient to solve the Lagrangian
dual than to use a standard linear programming package to solve the standard
linear programming relaxation of (INT ). Hence to solve the Lagrangian dual
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or the standard linear programming relaxation depends on the problem under
consideration. This concludes our discussion of the principle of Lagrange for finite
dimensional optimization problems. Until now we only dealt in general with the
principle of Lagrange and we did not discuss how to optimize the Lagrangian dual
function. This is the topic of the next section.

2.3 On Subgradient Optimization and the Dual Problem

Until now we only dealt with the general structure of a Lagrangian dual problem
and we did not discuss how to solve the Lagrangian dual problem sup{θ(λ) : λ ∈
K∗} with K∗ a closed convex cone and the Lagrangian dual function θ : K∗ →
[−∞,∞) given by

θ(λ) = inf{f (x) + λᵀg(x) : x ∈ X}. (25)

Since the set X ⊆ Rn is nonempty, it follows −∞ ≤ θ(λ) < ∞. Moreover, by
Lemma 2.1 the function −θ is convex and

− sup{θ(λ) : λ ∈ K∗} = inf{−θ(λ) : λ ∈ K∗}. (−D)

The optimization problem (−D) has the same optimal solution as optimization
problem (D) if an optimal solution exists and without loss of generality we always
assume that the set dom(−θ) := {θ ∈ K∗ : θ(λ) > −∞} is nonempty. In most
practical cases the nonemptyness of the set dom(−θ) can be easily verified (look at
location problems!). It is now easy to check that

−∞ ≤ υ(−D) < ∞ ⇔ dom(−θ) is nonempty.

Observe that the function −θ : K∗ → (−∞,∞] is in general not differentiable.
This can be easily checked by means of a picture if we assume for simplicity that
the set X consists of two elements. Also the optimization problem (−D) is an
unconstrained convex programming problem in case K = {0} and a constrained
convex programming problem otherwise. Hence in principle we can apply to this
problem the subgradient optimization procedure (Hiriart-Urruty and Lemaréchal,
2013) if it is possible to compute a ε-subgradient with ε ≥ 0 of the function
−θ : K∗ → (−∞,∞] at every point λ ∈ K∗.Observe that the set of ε-subgradients
of the function −θ at the point λ ∈ K0 is called the ε-subgradient set and this
set is denoted by ∂ε(−θ)(λ). In case ε equals 0 a 0-subgradient can be seen as a
generalization of a gradient for a differentiable function.
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Definition 2.11 A vector λ∗
0 ∈ R

n is called a ε-subgradient for some ε ≥ 0 of the
function f : K∗ → (−∞,∞] at the point λ0 ∈ K∗ if for every λ ∈ K∗ it follows
that

f (λ) ≥ f (λ0) + (λ − λ0)
ᵀλ∗

0 − ε.

It is called a subgradient if ε = 0.

In general it is difficult to compute a ε-subgradient for an arbitrary finite valued
convex function. However, for the function −θ a ε-subgradient for this function at
a given point λ ∈ K∗ is easy to compute by solving optimization problem (D(λ)).
This is shown in the next lemma and can be easily proved.

Lemma 2.11 If for some λ0 ∈ K∗ the optimization problem:

θ(λ0) := inf{f (x) + λ
ᵀ
0 g(x) : x ∈ X}

has an optimal solution xopt(λ0), then it follows that −g(xopt(λ0)) is a subgradient
of the function −θ at λ0. Moreover, if the feasible solution xε(λ0) is an ε-optimal
solution of the optimization problem (D(λ0)), then the vector −g(xε(λ0)) is a ε-
subgradient of the function −θ at λ0.

Observe that we introduce ε-subgradients since in general one cannot perform exact
calculations on a computer and so in most cases we actually are calculating a
ε-optimal solution. Solving the optimization problem (D(λ)) with λ = λ0 and
obtaining the optimal solution x(λ0) yield both the value −θ(λ0) and the affine
function λ → θ(λ0) − (λ − λ0)

ᵀg(xopt(λ0)). By Lemma 2.11, the above affine
function serves as a lower bound on the convex function −θ on K∗.

We now discuss in detail the subgradient method applied to the optimization
problem:

inf{f (λ) : λ ∈ D} (C)

with D ⊆ R
n a closed convex set and f : Rn → (−∞,∞] with f (λ) < ∞ for

some λ ∈ D. By our assumption, it follows that −∞ ≤ υ(C) < ∞. Moreover,
for this problem we assume that for every λ ∈ D a ε-subgradient of f at λ can be
computed and by Lemma 2.11 this condition is clearly satisfied by our optimization
problem inf{−θ(λ) : λ ∈ K∗} selecting an optimal Lagrangian multiplier. To
introduce the subgradient method, we observe the following. If λopt is the unknown
optimal solution of optimization problem (C) and we apply an algorithm to find this
optimal solution, this algorithm generates a sequence {λn : n ∈ N} ⊆ D. It is
desirable that at each next step of this algorithm the newly generated point λn+1 is
closer to λopt , then the presently generated point λn. This means that the inequality:

‖ λn+1 − λopt ‖2<‖ λn − λopt ‖2 (26)
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with

‖ λ ‖2:=
∑n

i=1
λ2i

the squared Euclidean norm should hold for our algorithm. To achieve this, suppose
that we are after n steps of our iteration procedure at the vector λn and some oracle
supplies us with a search direction dn. If the new point λn+1 is given by

λn+1 := λn − tndn

for some tn > 0, then it follows that

‖ λn+1 − λopt ‖2=‖ λn − λopt ‖2 +t2n ‖ λopt ‖2 +2tndᵀn (λopt − λn). (27)

To guarantee that relation (26) holds, it is necessary (maybe not sufficient!) to
choose the direction dn in such a way that

dᵀn (λopt − λn) ≤ 0. (28)

If dn is an ε-subgradient of the function f at λn for some ε ≥ 0 (remember for
ε = 0 the ε-subgradient is actually a subgradient!), this implies

dᵀn (λopt − λn) ≤ f (λopt ) − f (λn) + ε ≤ ε (29)

and since it is necessary that relation (28) holds it follows by relation (29) that a
hopefully good choice of the direction dn is selecting a ε-subgradient of f at λn.

By this observation, we obtain the usual subgradient iteration scheme given by the
following algorithm.

Algorithm 2.1 Subgradient optimization scheme:

λn+1 := λn − tnλ
∗
n ,tn > 0 and λ∗

n a ε-subgradient of f at λn .

However, using the above formula might create problems for constrained optimiza-
tion problems. It can happen that the point λn belongs to D and λn+1 does not
belong to D and so the point λn+1 becomes infeasible. A way to solve this is to use
the orthogonal projection of λn+1 onto the closed convex set D. This means that the
modified subgradient iteration scheme has the form:

Algorithm 2.2 Modified subgradient iteration scheme:

λn+1 = PD(λn − tnλ
∗
n), tn > 0 and λ∗

n a ε-subgradient of f at λn (30)
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with

PD(x0) := argmin{‖ x0 − λ ‖2: λ ∈ D}, x0 fixed vector

and argmin{Q} denoting the optimal solution of optimization problem (Q).

Since the function λ → ‖x0 − λ ‖2 for x0 fixed is strictly convex and D is a
closed nonempty convex set, there exists a unique optimal solution and so the vector
PD(x0) is well-defined or equivalently x → PD(x) represents a function.Moreover,
we mention without proof (check first-order conditions of the above constrained
optimization problem!) that the function x → PD(x) is a so-called contraction and
this means that

‖ PD(x0) − PD(x1) ‖≤‖ x0 − x1 ‖ (31)

for every x0 and x1 belonging to Rn. For our primal optimization problem, it almost
always follows that K = R

m+ × R
n−mand so K∗ = R

m+ × {0}. This means that we
can solve the projection by hand (make a picture!). It is now possible to show the
following fundamental inequality (Correa and Lemaréchal , 1993).

Lemma 2.12 If λ ∈ D and λ∗
n is an εn-subgradient of the function f at the present

iteration point λn for some εn ≥ 0 and λn+1 = PD(λn − tnλ
∗
n), then it follows that

‖ λn+1 − λ ‖2≤‖ λn − λ ‖2 +t2n ‖ λ∗
n ‖2 +2tn(f (λ) − f (λn) + εn).

Proof Since obviously PD(λ) = λ for λ ∈ D, it follows by relation (30) that

‖ λn+1 − λ ‖2=‖ PD(λn − tnλ
∗
n) − PD(λ) ‖2

and this implies by relation (31) that

‖ λn+1 − λ ‖2≤ ‖λn − λ ‖2 +t2n ‖ λ∗
n ‖2 +2tn(λ − λn)

ᵀλ∗
n. (32)

Since λ∗
n is an εn-subgradient of the function f at λn, we obtain that f (λ)−f (λn) ≥

(λ − λn)
ᵀλ∗

n − εn and this implies by relation (32) that

‖ λn+1 − λ ‖2≤‖ λn − λ ‖2 +t2n ‖ λ∗
n ‖2 +2tn(f (λ) − f (λn) + εn)

showing the desired inequality.

By the above inequality, the convergence of our subgradient optimization scheme is
easily proved and this is shown by the following result.

Theorem 2.6 If limn↑∞ εn = 0 and the positive sequence {tn : n ∈ N} satisfies
∑∞

n=1
tn = ∞ and limn↑∞ tn ‖ λ∗

n ‖2= 0,
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then it follows that

limn↑∞ mn = υ(C) ≥ −∞

with

mn := min{f (λk) : k ≤ n}.

Proof Clearly the sequence mn, n ∈ N is decreasing and so it has a limit c. If the
limit c equals −∞, the result is proved and so we assume that the limit c is finite.
If c > υ(C), one can find by the definition of an infimum some δ > 0 and λe ∈ D

satisfying

v(C) ≤ f (λe) ≤ c − δ ≤ f (λn) − δ (33)

for every n ∈ N. Hence by Lemma 2.12 with λ = λe, we obtain that

‖ λn+1 − λe ‖2≤‖ λn − λe ‖2 +t2n ‖ λ∗
n ‖2 +2tn(f (λe) − f (λn) + εn).

This implies by relation (33) that

‖ λn+1 − λe ‖2≤‖ λn − λe ‖2 +tn(tn ‖ λ∗
n ‖2 +2(εn − δ)).

Since we assume that

limn↑∞ tn ‖ λ∗
n ‖2= 0 and limn↑∞ εn = 0,

one can find some n0 ∈ N such that for every n ≥ n0 it follows that

tn ‖ λ∗
n ‖2 +2(εn − δ) ≤ −δ

and this yields for every n ≥ n0 that

‖ λn+1 − λe ‖2≤‖ λn − λe ‖2 −δtn. (34)

Hence we obtain by relation (34) that

0 ≤‖ λm − λe ‖2≤‖ λn0 − λe ‖2 −δ
∑m−1

k=n0
tk

for every m ≥ n0 and this implies by the assumption
∑∞

k=n0
tk = ∞ that

0 ≤ lim
m↑∞ ‖ λm − λe ‖2= −∞.

Hence we obtain a contradiction and so it must follow that c = υ(C).
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Since it can happen that an optimal solution of optimization problem (C) does not
exist, we cannot show that the sequence λn generated by the subgradient method
converges to the optimal solution of (C). In general it also does not hold that
the sequence f (λn) is decreasing. Although we have shown under fairly general
conditions that the sequence mn converges to v(C), it is very difficult to give
a proper stopping rule for the subgradient method. Also in case we apply the
subgradient method to optimization problem (−D), the selection of the step sizes
tn, n ∈ N is a matter of trial and error (Nemhauser and Wolsey, 1988) and so
devising a proper scheme is an art in itself. For more details on these practical issues,
the reader is referred to Beasley et al. (1993). We finally consider one theoretical
case in which one knows in advance that the current iteration point is indeed optimal.
This result is presented in the next lemma.

Lemma 2.13 If at the (n + 1)th step it follows that

λn+1 := PD(λn − tnλ
∗
n)

equals λn with λ∗
n a εn-subgradient of the function f at λn, then the vector λn is an

εn-optimal solution of optimization problem (C).

Proof We only give a proof of this result in case λn − tnλ
∗
n belongs to D. If this

holds, it follows since tn > 0 that

λn+1 := PD(λn − tnλ
∗
n) = λn − tnλ

∗
n

and so λ∗
n = 0. Since λ∗

n is an εn-subgradient, this implies that

f (λ) ≥ f (λn) − εn

for every λ ∈ D and the desired result follows.

For more theoretical results regarding the subgradient method, the reader is referred
to Shor (2012) and Correa and Lemaréchal (1993). In the next section we apply
the above results to derive Lagrangian heuristics for location and transportation
problems.

3 Application of the Principle of Lagrange to Problems
in Transportation and Location Theory

In this section we consider two classical problems in location and transportation
theory and apply to these problems the Lagrangian relaxation approach. In the
first subsection we discuss the well-known set covering problem and in the second
subsection several versions of the capacitated facility location problem.
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3.1 The Set Covering Problem

In this subsection we formulate the set covering problem. Observe that this problem
shows up in a lot of different applications within computer andmanagement science.
To give a particular example in transportation, consider a company that needs to
serve every day m different customers given by the set M = {1, . . . ,m}. To serve
these customers, the company selects from a given set N = {1, . . . , n} of known
routes a subset of these routes covering all present day customers. Each route j ∈
N , has a known cost cj > 0 and so the company wants to select the subset that
serves all customers on a given day and has minimal cost. Selecting a route j ∈ N
for today is a yes\no decision and so we introduce for each route j ∈ N the decision
variable

xj =
{
1 if route j is selected
0 otherwise

.

To model that every customer who needs to be served today is at least covered by
one selected route, we construct the m × n matrix A = (aij ), given by

aij =
{
1 if customer i is on route j

0 otherwise
.

Clearly the value
∑

j∈N aij xj , i ∈ M yields the number of times customer i ∈ M
is on the subset of selected routes and we need to solve the optimization problem:

inf
{∑

j∈N cjxj :
∑

j∈N aij xj ≥ 1, i ∈ M, xj ∈ B, j ∈ N
}

(SP)

with B = {0, 1}. Hence the set covering problem (SP) is given by

inf{
∑

j∈N cjxj : g(x) �K 0, x ∈ B
n}

with g(x) = (g1(x), . . . , gm(x)), gi(x) = 1 − ∑
j∈N aij xj and K = R

m+. The
feasible set contains only a finite number of elements bounded above by 2n and
so the set covering problem has an optimal solution. It is well-known that the set
covering problem is NP-hard (Garey and Johnson, 1979) and so by present day
belief it seems very unlikely that there exists a polynomially bounded algorithm to
solve this problem. To analyze this problem by means of the Lagrangian relaxation
approach, we penalize the constraints

∑
j∈N aij xj ≥ 1, i ∈ M and construct the

Lagrangian dual function θ : Rm+ → R given by

θ(λ) = min
{∑

j∈N cjxj +
∑

i∈M λi(1 −
∑

j∈N aij xj ) : x ∈ B
n
}

.



60 J. B. G. Frenk and S. Javadi

After some easy calculations, it follows that

θ(λ) =
∑

i∈M λi +
∑

j∈N min
{
cj −

∑
i∈M aijλi, 0

}
(35)

and the optimal solution x(λ) = (x1(λ), . . . , xn(λ)) is given by

xj (λ) = 1Sj (λ) (36)

with Sj = {λ ∈ R
m+ : cj ≤ ∑

i∈M aijλi}, j ∈ N . We now apply the subgradient
method to solve the Lagrangian dual problem

υ(D) = minλ≥0

{∑
i∈M λi +

∑
j∈N min{cj −

∑
i∈M aij λi, 0}

}

and obtain as an optimal dual solution a vector λopt and construct the solution
x(λopt) given in relation (36). By Lemma 2.9, this dual problem satisfies

υ(D) = min
{∑

j∈N cjxj :
∑

j∈N aij xj ≥ 1, i ∈ M, 0 ≤ xj ≤ 1, j ∈ N
}

.

If the solution x(λopt ) is primal feasible and it satisfies the complementary slackness
conditions

λi(1 −
∑

j∈N aij xj (λopt )) = 0, i ∈ M,

then it follows by Lemma 2.5 that this solution is an optimal primal solution. If the
solution x(λopt ) is only primal feasible, we have found a feasible solution for our
problem and so θ(λopt ) ≤ υ(SP) ≤ ∑

j∈N cj xj (λopt). If the solution is not primal
feasible, then we use the following Lagrangian heuristic to convert the solution
x(λopt) into a primal feasible solution. Consider the set of routes selected by our
solution x(λopt ) given by

R(λopt ) = {1 ≤ j ≤ n : xj (λopt) = 1}.

Starting with the initial set R(λopt), we check for each customer i ∈ M whether
this customer is visited by one of the routes in the presently selected set. If not,
we select the cheapest possible route covering this customer and add this route to
this presently selected set of routes. After evaluating all the customers, we have
constructed a set of routes that covers all customers. Some customers might be
assigned to different routes and we delete them from all the routes except one.
Observe that this heuristic is applied in a branch and bound procedure and at each
branch we solve a special case of the set covering problem with some routes already
selected. This concludes our discussion of the set covering problem. In the next
section we consider the (un)capacitated facility location problem.
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3.2 Fixed Charged Location Models on Discrete Spaces

To introduce the so-called fixed charged location problems in discrete location, we
denote as before the set of customers by M = {1, . . . ,m} and the set of possible
sites of facilities by N = {1, . . . , n}. We denote by fj , j ∈ N the fixed setup
cost of site j , while cij denotes the transportation costs of supplying the demand
of customer i ∈ M by site j ∈ N . The uncapacitated facility location problem
tries to determine a subset of the set N of possible sites in such a way that the total
transportation and setup costs are minimized. In this problem the demand of all
customers should be satisfied. Moreover, each open facility has unlimited capacity.
A more difficult and related problem is given by the capacitated version of this
problem. In this problem each site j has a fixed capacity qj . For the capacitated
facility location problem, there actually exist two versions. In the first version the
total demand of each customer can only be supplied by one facility and this problem
is called the single source capacitated facility location problem, while in the other
version the total demand of each customer can be supplied by more than one facility.
This problem is called themultiple source capacitated facility location problem. To
formulate an optimization problem for the uncapacitated version, we introduce the
binary decision vector y = (yj )j∈N given by

yj = 1 ⇔ facility j is opened at site j.

Since in the uncapacitated facility location problem the capacity of each facility is
unlimited, we assign each customer to the “cheapest ” open facility and this implies
that the model can be represented by the optimization problem:

inf
{∑

i∈Mmin{cij : yj = 1} +
∑

j∈N fjyj : y ∈ B
n
}

..

However, in this optimization problem the objective function is not linear and to lin-
earize the objective function we introduce the decision variables x = (xij )i∈M,j∈N
given by

xij = fraction of demand of customer i ∈ M supplied by site j ∈ N .

Using these decision variables, the objective function is given by

∑
i∈M

∑
j∈N cij xij +

∑
j∈N fj yj .
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Since all demand should be delivered, it is clear that these decision variables need
to satisfy the so-called assignment constraints

∑
j∈N xij = 1 for every i ∈ M and

so the feasible region FUFL of the uncapacitated facility location problem is given
by

FUFL = {(x, y) : 0 ≤ xij ≤ yj ,
∑

j∈N xij = 1, yj ∈ B, i ∈ M, j ∈ N }.
(37)

Hence the optimization problem for the uncapacitated facility location problem is
given by

inf
{∑

i∈M
∑

j∈N cij xij +
∑

j∈N fjyj : (x, y) ∈ FUFL

}
. (UFL)

If we consider the multiple-source capacitated facility location problem, we need to
add the capacity constraints

∑
i∈M dixij ≤ qjyj for every j ∈ N with di denoting

the total demand of customer i ∈ M. Hence the feasible region FMSCFL of the
multiple-source capacitated facility location problem is given by

FMSCFL = FUFL ∩
{
(x, y) :

∑
i∈M dixij ≤ qjyj , j ∈ N

}

and we need to solve the optimization problem:

inf
{∑

i∈M
∑

j∈N cij xij +
∑

j∈N fj yj : (x, y) ∈ FMSCFL

}
. (MSCFL)

If we consider the single source capacitated facility location problem, each customer
can only be supplied by exactly one open facility and this implies that the decision
variables xij ∈ B. Hence the feasible region FSSCFL is given by

FSSCFL = FUFL ∩
{
(x, y) :

∑
i∈M dixij ≤ qjyj , xij ∈ B, i ∈ N , j ∈ M

}

and the optimization problem is given by

inf
{∑

i∈M
∑

j∈N cij xij +
∑

j∈N fjyj : (x, y) ∈ FSSCFL

}
. (SSCFL)

For an extensive overview of transportation-location models on discrete spaces, the
reader should consult Daskin (2011) or Francis, McGinnis and White (1992). It is
well-known that the uncapacitated facility location problem (UFL) is NP-hard
(Garey and Johnson, 1979) and as already observed represented by

inf
{∑

i∈M
∑

j∈N cij xij +
∑

j∈N fj yj : g(x) �K 0,0 ≤ xij ≤ yj ,

i ∈ N , j ∈ M, y ∈ B
n
}
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with

g(x) = (g1(x), . . . , gm(x)), gi(x) =
∑

j∈N xij − 1

and K = {0} ⊂ R
m. To construct the Lagrangian dual function of the uncapacitated

facility location model, we first observe for fj = 0 that we always open a facility
at site j and so without loss of generality we may assume that fj > 0. In
the uncapacitated facility location model we penalize the assignment constraints∑

j∈N xij − 1 = 0 for every i ∈ M. Since K∗ = {0}∗ = R
m, the Lagrangian dual

function θ : Rm → [−∞,∞) is defined on Rm and it is given by

θ(λ) = −
∑

i∈M λi +
∑

j∈N inf
{∑

i∈M(cij + λi)xij + fj yj : (x, y) ∈ Xj

}

(38)

with Xj := {(x, y) : 0 ≤ xij ≤ yj , i ∈ M, yj ∈ B}, j ∈ N . To solve the
minimization problem:

inf
{∑

i∈M(cij + λi)xij + fjyj : (x, y) ∈ Xj

}
(Hj )

for a given j ∈ N , we take xij as large (small) as possible in case cij +λi is negative
(positive). This implies that an optimal solution (x(λ), y(λ)) of optimization
problem (Hj ) is given by

xij (λ) =
{

yj (λ) if cij + λi < 0
0 if cij + λi ≥ 0

. (39)

By relation (39), it follows that the decision variables xij , i ∈ M, j ∈ N can be
eliminated and we obtain

inf
{∑

i∈M(cij + λi)xij + fj yj : (x, y) ∈ Xj

}
= inf{(fj + bj (λ))yj : yj ∈ B}

(40)

with bj : Rm → (−∞,∞) given by

bj (λ) :=
∑

i∈Mmin{cij + λi, 0}. (41)

To determine the optimal objective value of problem (Hj ), we finally observe that

inf{(fj + bj (λ))yj : yj ∈ B} = min{fj + bj (λ), 0} (42)
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with optimal solution y(λ) = (yj (λ))j∈N given by

yj (λ) =
{
1 if fj + bj (λ) ≤ 0
0 if fj + bj (λ) > 0

. (43)

Hence the Lagrangian dual function θ : R
m → R of the uncapacitated facility

location problem is given by

θ(λ) = −
∑

i∈N λi +
∑

j∈Mmin{fj + bj (λ), 0}

and its Lagrangian dual by

sup{θ(λ) : λ ∈ R
n}.

Applying the subgradientmethod to inf{−θ(λ) : λ ∈ R
m}, we determine the optimal

Lagrangian multiplier λopt . In case the optimal solution (x(λopt ), y(λopt)) given
by relations (39) and (43) is also primal feasible, we obtain since K = {0} that
the complementary slackness conditions are automatically satisfied. This implies
by Lemma 2.5 that this solution is an optimal solution of the uncapacitated facility
location problem.However, in most cases this solution is not primal feasible and this
means that either no facilities are opened or there exists a customer whose demand
is not satisfied. The following Lagrangian heuristic now transforms the solution
(x(λopt), y(λopt )) into a primal feasible solution.

Algorithm 3.1 Lagrangian heuristic:

1. Consider the possibly empty set S1(λopt) of open facilities given by

S1(λopt ) := {j ∈ N : yj (λopt) = 1}

and go to step 2.
2. If this set is empty, open a facility and assign all customers to this facility.

If this set is nonempty, consider all customers “overassigned” or not assigned
and make them nonassigned. Assign now these nonassigned customers to the
cheapest facility belonging to the set S1(λopt ).

As for the set covering problem, we need to solve in a branch and bound procedure
at each branch a special instance of the uncapacitated facility location problem
with some facilities already opened and or some customers already assigned to
some open facilities. A more efficient and special purpose procedure to solve the
uncapacitated facility location problem starts with the observation that for positive
setup costs we may replace the decision variables yj ∈ B in problem (UFL) by
yj ∈ Z+ without changing the set of optimal solutions and the optimal objective
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value. This means that we replace the feasible regionFUFL by the bigger setFRUFL

given by

FRUFL := {(x, y) : 0 ≤ xij ≤ yj ,
∑

j∈N xij = 1, yj ∈ Z+},

and so we obtain the relaxation:

inf
{∑

i∈M
∑

j∈N cij xij +
∑

j∈M fjyj : (x, y) ∈ FRUFL

}
. (RUFL)

As already observed, it follows that υ(UFL) = υ(RUFL) and the optimal solu-
tions of both optimization are the same. Penalizing now the assignment constraints
in the above optimization problem (RUFL), it follows by the same procedure
as used for the uncapacitated facility location problem that the Lagrangian dual
problem is given by

υ(D) = sup
{
−

∑
i∈M λi : fj + bj (λ) ≥ 0, j ∈ M,λ ∈ R

m
}

.

This Lagrangian dual problem is also called the condensed dual. There exists
now a special purpose heuristic called DUALOC (Erlenkotter, 1978) to solve
the above dual problem and this is surprisingly effective. Finally we look at the
multisource capacitated version of the facility location problem. Again penalizing
the assignment constraints, we obtain by the same approach as for the uncapacitated
version that the Lagrangian dual function θ : Rm → R is given by

θ(λ) = −
∑

i∈N λi +
∑

j∈Mmin{0, fj + hj (λ)}

with

hj (λ) = inf
{∑

i∈M(cij + λj )xij : 0 ≤ xij ≤ 1,
∑

i∈M dixij ≤ qj , j ∈ N }

= − sup{∑i∈M(−cij − λj )xij : 0 ≤ xij ≤ 1,
∑

i∈M dixij ≤ qj , j ∈ N }.

The last problem is a LP-relaxation of the knapsack problem. Without loss of
generality, we may now assume that −cij − λj > 0 for every i ∈ M (if not set
xij = 0 and reduce problem!). To solve this problem, it is well-known that we need

to order the ratios
−cij −λj

di
in decreasing order given by

−cπ(1)j − λj

dπ(1)
≥ −cπ(2)j − λj

dπ(2)
≥ . . . . ≥ −cπ(m)j − λj

dπ(m)

for some permutation π and start assigning the demand of customers
π(1), π(2), . . . , π(n) to location j until the capacity of this location is satisfied.
The last customer assigned might only get a part of his demand delivered from
that facility j . Again we can easily construct as for the uncapacitated version a
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Lagrangian heuristic to convert the optimal solution of θ(λ) to a primal feasible
solution. Observe that for the single source capacitated facility location problem we
obtain the classical knapsack problem. Although this problem is NP-hard, there
are fast heuristics solving this problem approximately (Martello, 1990). This ends
our discussion of fixed charged location problems on discrete spaces.

4 Conclusion

In this study, the Lagrangian relaxation approach and the main ideas behind this
approach are discussed in detail for finite dimensional optimization problems with
continuous and/or discrete decision variables. Contrary to many courses taught in
graduate programs distinguishing between continuous and discrete optimization
problems, we start in this chapter with a generic description of an optimization
problem incorporating both type of problems and apply to that optimization problem
the Lagrangian relaxation approach. By introducing the main ideas behind this
approach, we identify the so-called Lagrangian dual problem and a class of con-
tinuous optimization problems for which the optimal objective value of the primal
problem equals the optimal objective value of the Lagrangian dual problem. At the
same time, we show that many important results much later developed in the field of
Operational Research are special instances of the Lagrangian relaxation approach.
The most important ones are the primal–dual relations in linear programming
and the dual linear program and the Karush–Kuhn–Tucker conditions in nonlinear
programming. As such this chapter does not contain any new results but tries
to give an easy introduction to duality theory and its use in finite dimensional
optimization problems for less mathematically oriented readers using the simplest
possible proofs. Since many models in Operational Research can be formulated
as optimization problems and the Lagrangian relaxation technique tries to find
solutions of these models, a basic understanding of this technique is of importance to
more application oriented researchers in this field. Also it is important to understand
that seemingly different algorithms for solving certain problems are actually based
on the same ideas. As an example (although not discussed in this chapter), we
mention the Dantzig–Wolfe decomposition technique in linear programming and
the dual version of it called Benders method. To illustrate its use to some specific
examples, we showed in the last part of this chapter how these techniques can be
applied in generating approximative solutions for the classical set covering and fixed
charged facility location models.
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