
23© Springer Nature Switzerland AG 2022
A. Laganà (ed.), Computational Methods for Precision Oncology, Advances in Experimental
Medicine and Biology 1361, https://doi.org/10.1007/978-3-030-91836-1_2

Software Workflows
and Infrastructures for Precision
Oncology

Waleed Osman and Alessandro Laganà

Abstract

Precision oncology mainly relies on genetic
and molecular patient profiling from high-
throughput sequencing data. The necessity to
process and analyze large volumes of data has
led to the development of robust computa-
tional tools and methods. The most challeng-
ing aspect in the implementation of a precision
oncology workflow involves proper handling
of large volume of data, while ensuring the
results are reproducible and replicable. In this
chapter, we provide a detailed description of
the various tools available for the design and
implementation of a precision oncology pipe-
line along with the technical considerations to
make to utilize these tools effectively. We then
provide a guide to the development of a preci-
sion oncology pipeline, with a specific empha-
sis on the software workflows and
infrastructure needed.

 Introduction

Precision oncology is an innovative research
area that has introduced a novel approach to can-
cer care, where diagnosis, prognosis, and ther-
apy are informed by genetic and molecular
profiling of the individual patient, rather than
being based on a one-size-fits-all approach [1–
4]. This landmark paradigm shift has been
enabled in recent years by the reduced cost of
next-generation sequencing (NGS) technologies
and a myriad of ad hoc tools and software appli-
cations developed in order to analyze the data
generated [5, 6]. The explosion of tools and
methods as a response to the more widely avail-
able multi-omic data sets has created a challenge
in terms of reproducibility, interoperability, and
standardization. Tools created for the analysis of
genomic, proteomic, transcriptomic, and other
omic data are typically written in one or a com-
bination of three different styles: Command
Line Interface (CLI), Application Programming
Interface (API), or Graphical User Interface
(GUI) [6]. Combining and ensuring reproduc-
ibility of these disparate application types has
proven to be a major challenge for biologists as
they often will require a deeper knowledge of
software application development norms and
techniques as well as greater computational
capabilities. The absence of widely accepted
best practices regarding software and database

W. Osman
Department of Genetics and Genomic Sciences,
Icahn School of Medicine at Mount Sinai,
New York, NY, USA

A. Laganà (*)
Department of Genetics and Genomic Sciences,
Department of Oncological Sciences, Mount Sinai
Icahn School of Medicine, New York, NY, USA
e-mail: alessandro.lagana@mssm.edu

2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91836-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-91836-1_2#DOI
mailto:alessandro.lagana@mssm.edu

24

utilization has contributed greatly to irreproduc-
ibility, resulting in many man hours and com-
pute cycles wasted in attempting to recreate past
efforts [7].

As a remedy to this, a number of workflow
management systems (WMS) and executors for
running these workflow systems have been devel-
oped, such as Snakemake, Nextflow, the
Workflow Description Language (WDL) (https://
openwdl.org/), and The Common Workflow
Language (CWL) [8–10]. Infrastructure enabling
the execution of these workflows have also been
developed such as Arvados (stand-alone, deploy-
able, open-source), and Broad Institute’s Terra
Bio Cloud Platform (web based) [11, 12].

These infrastructure and software solutions
are able to organize and process large volumes of
genomics data enabling scientists to discover
ever deeper insight into biological data. Today,
with the use of CWL, Arvados, and Cromwell
(https://github.com/broadinstitute/cromwell),
and facilitated by virtual servers on cloud infra-
structure, bioinformaticians and savvy data engi-
neers can write and implement a precision
medicine pipeline while maintaining reproduc-
ibility and interoperability. In this chapter, we
will introduce several bioinformatics workflow
management systems and the infrastructures to
execute them.

 Workflow Management Systems
and Languages

Workflow management systems (WMS) are
essential in the processing of large sets of
patient’s genomic data. WMS are tools developed
to facilitate the orchestration and execution of
computational processes in an optimal and effi-
cient manner. In bioinformatics, these systems
integrate various discrete command-line tools
into one workflow for the rapid development of
pipelines, which can be deployed across a variety
of infrastructures and environments. Utilizing a
WMS ensures ease of set-up and the ability to
monitor performance of individual predefined
tasks. These workflows are often linear but can

also be dynamic or run in parallel. Table 2.1 pro-
vides a list with the most used WMS along with
their URLs.

 CWL: Common Workflow Language

The first of several bioinformatic workflow man-
agement languages and systems discussed here is
the Common Workflow Language (CWL; https://
github.com/common- workflow- language) [8].
CWL is an open standard for describing analysis
workflows and tools in a way that makes them
portable and scalable across a variety of software
and hardware environments, from workstations
to cluster, cloud, and high-performance comput-
ing (HPC) environments. It can be applied to a
number of different scientific domains including
Bioinformatics, Medical Imaging, Astronomy,
High Energy Physics, and Machine Learning.
CWL sets itself apart from most other workflow
languages by attempting to adopt open-source
principles and standards such as open- stand.org,
which advocates for cooperation, adherence to
principles, collective empowerment, availability,
and voluntary adoption. CWL is not a software,
but a specification which describes command
line tools and allows them to be connected
together to form a workflow. CWL’s commitment
to creating a community which focuses on stan-
dardization and other open-source principles has
led to its adoption by a number of workflow exe-
cution programs such as Toil, Arvados, Rabix,
Cromwell, and Bcbio (See Tables 2.1 and 2.2).
Rabix, for example, is a powerful open-source
suite of tools for CWL, which include Rabix
Composer, a graphical editor enabling visual pro-
gramming in CWL, Rabix Benten, a language
server for CWL documents, and Rabix Executor,
a workflow runner that can execute CWL pipe-
lines (https://rabix.io/). Figure 2.1 shows an
example of graph generated with Rabix
Composer.

The use of CWL to create tools and workflows
facilitates the ease of future repeatability and
reproducibility of results. This leads to greater
cooperation between standard organizations,

W. Osman and A. Laganà

https://openwdl.org/
https://openwdl.org/
https://github.com/broadinstitute/cromwell
https://github.com/common-workflow-language
https://github.com/common-workflow-language
http://open-stand.org
https://rabix.io/

25

building a foundation for collaboration. The
development of CWL into a standard was made
possible by adhering to five fundamental princi-
ples of standard development [13]. First, deci-
sions regarding the direction and development of
the standard must be made with equity and fair-
ness, implementing a well-defined due process
by which participating parties have the ability to
appeal decisions made. Next, a broad consensus
must be made in order to facilitate agreement
across a range of interests. A general agreement,
incorporating all views, is paramount to the
establishment and persistence of an open stan-
dard. Third, activities and work being undertaken
must be recorded for posterity with those records
open and easily accessible to all. A consistent
transparency must be maintained by giving
advance notice of new proposals and activities.
Fourth, a certain balance must be struck among
all parties involved. No one entity involved in the
development of the standard may have dispropor-
tionate influence on its direction or activities.
Finally, the processes by which the standards are
developed must be open to all. CWL stands out
by encompassing all these principles and enabling
cross-collaboration.

 WDL: Workflow Description
Language

WDL (Workflow Description Language) is a
community-driven open-development workflow
language developed by the Broad Institute [14].
WDL specifies data processing workflows with a
human-readable and writable syntax very simi-
larly to CWL. WDL was ostensibly developed to
support Terra, a platform developed by the Broad
Institute of MIT and Harvard in collaboration

with Verily Life Sciences. Terra is not open-
source platform and requires users to purchase
credits for compute cycles. Similar to CWL, the
WDL scripts are not executable and require an
execution engine, such as Cromwell, MiniWDL
or dxWDL, and an environment to be runnable.

 NextFlow

NextFlow is a popular workflow system devel-
oped by Seqera Labs in Barcelona, Spain,
designed to address numerical instability, effi-
cient parallel execution, error tolerance, execu-
tion provenance, and traceability [9]. Similar to
CWL, this domain-specific language (DSL) uti-
lizes software containers to create scalable and
reproducible workflows, enabling rapid pipeline
development through the adaptation of existing
pipelines written in any scripting language.
NextFlow also supports GitHub and BitBucket
integration, which allows for the consistent track-
ing of software changes and versions.
Containerization, enabled by utilizing container
platforms such as Docker (https://www.docker.
com/) or Singularity (https://singularity.hpcng.
org/), ensures numerical stability [15, 16]. It can
be executed on Sun Grid Engine (SGE) (http://
star.mit.edu/cluster/docs/0.93.3/guides/sge.
html), Load Sharing Facility (LSF) (https://www.
ibm.com/docs/en/spectrum- lsf/10.1.0), SLURM
workload manager (https://slurm.schedmd.com/
overview.html), Portable Batch System (PBS)
(https://www.nas.nasa.gov/hecc/support/kb/
portable- batch- system- (pbs)- overview_126.
html) and for Kubernetes (https://kubernetes.io/),
Amazon Web Services (AWS) (https://aws.ama-
zon.com/), and Google Cloud platforms (https://
cloud.google.com/) for rapid computation and

Table 2.1 Workflow management systems

Name Description Website
Nextflow Domain-specific language http://nextflow.io
Toil Pipeline management system https://toil.ucsc- cgl.org
Snakemake Domain-specific language https://snakemake.github.io
Bpipe Domain-specific language http://docs.bpipe.org
WDL Workflow specification language https://openwdl.org/
CWL Workflow specification language https://www.commonwl.org/

2 Software Workflows and Infrastructures for Precision Oncology

https://www.docker.com/
https://www.docker.com/
https://singularity.hpcng.org/
https://singularity.hpcng.org/
http://star.mit.edu/cluster/docs/0.93.3/guides/sge.html
http://star.mit.edu/cluster/docs/0.93.3/guides/sge.html
http://star.mit.edu/cluster/docs/0.93.3/guides/sge.html
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://www.nas.nasa.gov/hecc/support/kb/portable-batch-system-
https://www.nas.nasa.gov/hecc/support/kb/portable-batch-system-
https://www.nas.nasa.gov/hecc/support/kb/portable-batch-system-
https://kubernetes.io/
https://aws.amazon.com/
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
http://nextflow.io
https://toil.ucsc-cgl.org
https://snakemake.github.io
http://docs.bpipe.org
https://openwdl.org/
https://www.commonwl.org/

26

Ta
bl

e
2.

2
D

at
a

pr
oc

es
si

ng
 p

la
tf

or
m

s

Pl
at

fo
rm

D
es

cr
ip

tio
n

W
eb

si
te

A
rv

ad
os

O
pe

n-
so

ur
ce

 p
la

tf
or

m
 f

or
 m

an
ag

in
g,

 p
ro

ce
ss

in
g,

 a
nd

 s
ha

ri
ng

 g
en

om
ic

 a
nd

 o
th

er
 la

rg
e

sc
ie

nt
ifi

c
an

d
bi

om
ed

ic
al

 d
at

a
ht

tp
s:

//a
rv

ad
os

.o
rg

/

Te
rr

a
A

 s
ca

la
bl

e
pl

at
fo

rm
 f

or
 b

io
m

ed
ic

al
 r

es
ea

rc
h

w
hi

ch
 a

llo
w

s
da

ta
 a

cc
es

s,
 r

un
ni

ng

an
al

ys
is

 to
ol

s,
 a

nd
 c

ol
la

bo
ra

tio
n

ht
tp

s:
//t

er
ra

.b
io

/

G
al

ax
y

O
pe

n,
 w

eb
-b

as
ed

 p
la

tf
or

m
 f

or
 a

cc
es

si
bl

e,
 r

ep
ro

du
ci

bl
e,

 a
nd

 tr
an

sp
ar

en
t

co
m

pu
ta

tio
na

l b
io

m
ed

ic
al

 r
es

ea
rc

h.
ht

tp
s:

//g
ith

ub
.c

om
/g

al
ax

yp
ro

je
ct

/g
al

ax
y

bc
bi

o-
ne

xt
ge

n
V

al
id

at
ed

, s
ca

la
bl

e,
 c

om
m

un
ity

 d
ev

el
op

ed
 v

ar
ia

nt
 c

al
lin

g,
 R

N
A

-s
eq

, a
nd

 s
m

al
l R

N
A

an

al
ys

is
 p

la
tf

or
m

ht
tp

s:
//g

ith
ub

.c
om

/b
cb

io
/b

cb
io

- n
ex

tg
en

D
ol

ph
in

N
ex

t
A

 g
ra

ph
ic

al
 u

se
r

in
te

rf
ac

e
fo

r
di

st
ri

bu
te

d
da

ta
 p

ro
ce

ss
in

g
of

 h
ig

h-
th

ro
ug

hp
ut

ge

no
m

ic
s

ht
tp

s:
//g

ith
ub

.c
om

/U
M

M
S-

 B
io

co
re

/d
ol

ph
in

ne
xt

Se
qu

an
ix

G
U

I
fo

r
th

e
Sn

ak
em

ak
e

pi
pe

lin
e

ht
tp

s:
//g

ith
ub

.c
om

/s
eq

ua
na

/s
eq

ua
na

/
D

N
A

ne
xu

s
A

 c
lo

ud
-b

as
ed

 d
at

a
an

al
ys

is
 a

nd
 m

an
ag

em
en

t p
la

tf
or

m
 f

or
 D

N
A

 s
eq

ue
nc

e
da

ta
ht

tp
s:

//w
w

w
.d

na
ne

xu
s.

co
m

/

W. Osman and A. Laganà

https://arvados.org/
https://terra.bio/
https://github.com/galaxyproject/galaxy
https://github.com/bcbio/bcbio-nextgen
https://github.com/UMMS-Biocore/dolphinnext
https://github.com/sequana/sequana/
https://www.dnanexus.com/

27

the ability to scale up projects manyfold.
NextFlow also takes advantage of the “dataflow
programming paradigm,” where execution tasks
are started automatically as soon as data is
received through input channels. The Make-like
approach adopted by tools such as CWL require
pre-estimation of all computational dependencies
as well as a directed acyclic graph (DAG).
NextFlow, however, utilizes a top to bottom
approach which mimics the natural flow of data.

 Data Processing Platforms

The main data processing platform we will be
discussing in this section is Arvados, which has
been deployed in our lab and has shown great
utility for our genomic processing needs.
Table 2.2 summarizes the main data processing
platforms.

 Arvados

Arvados is a free and open-source platform for
processing large volumes of genomic data [11].
This distributed computing platform for data
analysis on massive data sets also enables users
to share and manage their data with ease. It is
licensed under the GNU Affero General Public
License version 3. Two key features of Arvados
are provenance and reproducibility. Arvados

maintains integrity of data by recording its his-
tory and place of origin, which also reduces the
incidence of replication of intermediate files.
Arvados retains the history of jobs run in its
infrastructure and recognizes when to re-use
existing files, a cost-saving measure valuable to
system administrators and informaticists alike.
This is all enabled in-part by Arvados’s keep
store, a content-addressable storage system
designed to run on low-cost commodity hardware
or cloud services.

 Other Platforms

While Arvados is free and open source, other
platforms require a payment or subscription,
where billing is incorporated directly into the
application software.

DNAnexus (http://www.dnanexus.com/) and
Terra.bio (http://terra.bio) both require the user to
pay for storage and processing costs; the Galaxy
project stands out with a strong, knowledgeable,
and supportive online community [17] (https://
usegalaxy.org/); Bcbio-nextgen is focused mainly
on RNA genomic data analysis and lacks the flex-
ibility of the other platforms mentioned in this
paper [18] (https://github.com/bcbio/bcbio-
nextgen); DolphinNext (https://dolphinnext.
umassmed.edu/) and Sequanix (https://github.
com/sequana/sequana/) are two GUIs developed
specifically for Snakemake and Nextflow DSLs,

Fig. 2.1 Example of graph generated with CWL Rabix Composer

2 Software Workflows and Infrastructures for Precision Oncology

http://www.dnanexus.com/
http://terra.bio
https://usegalaxy.org/
https://usegalaxy.org/
https://github.com/bcbio/bcbio-nextgen
https://github.com/bcbio/bcbio-nextgen
https://dolphinnext.umassmed.edu/
https://dolphinnext.umassmed.edu/
https://github.com/sequana/sequana/
https://github.com/sequana/sequana/

28

respectively [19, 20]. These platforms attempt to
ease the process of generating workflows by pro-
viding users with a web interface, expanding
access to users with limited bioinformatics
experience.

 Implementation of a Precision
Oncology Workflow

Designing and implementing a precision oncol-
ogy pipeline requires several of the abovemen-
tioned components and entails the coordination
of many tools which are then combined to create
explicit workflows, relaying and processing data
until it is collected and presented in a final report
form. Compute and data intensive processing
steps often require infrastructure consisting of
large compute clusters, multiple processors, and
large amounts of disc space in order to ensure
reliability, efficiency, availability, and scalability.
A comprehensive description of a precision
oncology pipeline is provided in Chap. 1. Here,
we introduce the basic syntax of CWL scripts,
describe the basic steps in the design of a preci-
sion medicine workflow for DNA variant calling,
and provide an overview of the software infra-
structures necessary for the implementation of
such workflows.

 Introduction to CWL Scripting

The first step in writing a precision medicine
workflow is to select the command-line tools
intended for integration. This usually comprises
several steps including, but not limited to, a raw
read QC step, alignment, variant calling, annota-
tion, and secondary analysis. We will use CWL
as the specification for the workflow in a few
examples. Figure 2.2 illustrates how inputs and
outputs are isolated for reproducibility. This sim-
ple “hello world” program accepts one input
parameter, writes a message to the terminal or job
log, and subsequently will produce no permanent
output. Several of these tools can then be written
together in conjunction to form a “workflow.”
Figure 2.3 shows a sample workflow which
extracts a java source file from a tar file and then
compiles it.

There are several key considerations to make
when writing and executing a workflow. First,
every step in a workflow will require its own
CWL description. The final inputs and outputs of
the workflow are listed in the inputs and outputs
section. The steps are specified under steps. The
order of execution is determined by the specified
connections between steps.

After writing the workflows, one has to choose
an appropriate method for running them. In the
example shown in Fig. 2.4, we use the cwl-
runner. Since CWL is highly portable, the com-
pute environment chosen to run the workflows
will be up to user discretion.

Finally, Fig. 2.5 displays a more complex
example of a script implementing the workflow
shown in Fig. 2.1, with steps from a precision
oncology pipeline which include the analysis of
Copy Number Alterations (CNA) (tool: Facets
[21]) and the reconstruction of tumor sub-clonal
composition (tool: PhyloWGS [22]).

 The Typical Steps of a Precision
Oncology Pipeline

Figure 2.6 shows a typical schema for a precision
oncology pipeline. After sample collection, pro-
cessing and sequencing has occurred, the raw
sequencing data in the form of Fastq files are
used as inputs into the pipeline. Next, a series of
quality control metrics are generated from the
data to help determine in which areas there may
be problems or poor-quality data. Metrics
included in the evaluation of quality include raw
sequencing data quality and depth, alignment
quality, GC content, adapter contamination, and
reads duplication rates [23, 24]. Evaluating these
metrics allows for the identification and flagging
of poor-quality data and to avoid potentially
expensive and computationally intensive steps.
Checking alignment quality can prevent potential
false-positive single nucleotide polymorphism
calls. Furthermore, it is important to verify that
paired files generated from samples from the
same individual, for example, normal and tumor
WES samples, are indeed from the same individ-
ual, by using a tool like NGSCheckMate [25].

Next, reads are aligned to a common reference
genome. Alignment algorithms such as the

W. Osman and A. Laganà

https://doi.org/10.1007/978-3-030-91836-1_1

29

Burrows–Wheeler transform can be utilized to
rearrange raw sequencing data and prepare it for
downstream analysis and mutational calling [26].
The resulting file produced is typically a
Sequence Alignment Map (SAM) or its binary
version (Binary Alignment Map, BAM) file.

Following sequence alignment and the gener-
ation of a BAM/SAM file, a typical precision
medicine pipeline would then perform variant
calling by identifying where the aligned reads
differ from the reference genome, producing a
variant call file to be used in further downstream
analysis [27] (see also Chaps. 1 and 3). After the
variants have been annotated using various online
databases, additional pertinent information is
assigned to each variant call [28]. This informa-
tion may include the definition of a variant and its
genotype, basic information regarding whether it
lies in a coding region, its impact on the corre-
sponding protein (e.g., missense or synonymous
mutation), or whether the variant is an insertion
or a deletion. Those variants are then classified
based on ACMG guidelines as pathogenic, likely
pathogenic, uncertain significance, likely benign,
or benign [29]. Additionally, structural variation
analysis may be conducted to identify genomic
alterations such as duplications, inversions, trans-
locations, and copy number variants (CNVs)
(See also Chap. 4).

The variants are then collected and classified
based on whether they are actionable or not,
using different databases for clinical interpreta-
tion, then summarized into reports, often after
being reviewed and further annotated by patholo-
gists [28].

In more advanced settings, the variants data
can be inputted into a rule-based engine which
will select and prioritize drugs matching the
alterations. These “drug recommendation
engines” are still in early-phase development and
are typically ad hoc applications which draw on
experts with domain-specific knowledge in order
to auto-generate drugs with the expectation of
affecting the deleterious variants in a positive
manner [30–32]. Many iterations and versions of
this ad hoc pipeline are being developed across
academia and medical institutions for the treat-
ment of various cancers. Each pipeline with its
own unique set of rules and considerations based
on the model-disease specifications.

 Software Infrastructures for Precision
Oncology Platforms

Here we provide some background on the soft-
ware infrastructure for a precision oncology
pipeline. The diagram in Fig. 2.7 illustrates the

Fig. 2.2 Example of simple CWL demonstrating input/output

2 Software Workflows and Infrastructures for Precision Oncology

https://doi.org/10.1007/978-3-030-91836-1_1
https://doi.org/10.1007/978-3-030-91836-1_3
https://doi.org/10.1007/978-3-030-91836-1_4

30

components which comprise the Arvados techni-
cal architecture. It can be deployed locally, or on
a number of different cloud providers such as
Amazon Web Services (AWS) (https://aws.ama-
zon.com/), the Google Cloud Platform (GCP)
(https://cloud.google.com/), or on Microsoft
Azure (https://azure.microsoft.com/). Several
key components work together in harmony to
create an elastic computing environment where
the overall resource footprint available or con-
sumed by a specific job can grow or shrink on
demand. The ability of Arvados to quickly expand

or decrease computer processing, memory, and
storage resources as well as manage data through
a content-addressable distributed storage system
sets it apart from its competitors. These compo-
nents are the container orchestration system
called “Crunch,” the distributed storage system
“Keep,” the REST API Server, the CLI, the GUI
“Workbench,” native language SDKs, Data
Manager, Node Manager, and Keep proxy.

The main two innovations of the Arvados plat-
form are “Crunch” and “Keep.” The Crunch con-
tainer orchestration management engine executes

Fig. 2.3 Example of CWL workflow which extracts a java source file from a tar file and compiles it

W. Osman and A. Laganà

https://aws.amazon.com/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/

31

CWLs while maintaining provenance and repro-
ducibility. It accomplishes this by automatically
tracking the origin of result data; therefore, it is
able to compare workflows to one another, avoid-
ing the need to repeat previously performed data
analysis. This saves on cost and time, two signifi-
cant considerations when executing a workflow
or data analysis. Crunch also provides the ability
to scale horizontally by provisioning compute
nodes upon demand, delivering cost-effective
performance. Finally, the Crunch engine isolates
workloads by running jobs inside of Docker con-
tainers, a standard unit of software that packages
up code and all its dependencies [15].

The Keep system efficiently handles data stor-
age and management using a content-addressable
distributed storage system. It is able to handle
petabyte-sized data sets, scaling accordingly by
utilizing location-addressed storage. A permanent
universally unique identifier (UUID) is then
given to each content address. This creates a
highly scalable flat address space, virtualizing
storage access. The benefits of the keep store sys-
tem include, elimination of duplication, canoni-
cal records, provenance, easy management of
temporary data, flexible organization, high reli-
ability, security and access control, POSIX inter-
face, data sharing, and versioning.

Fig. 2.4 Example of cwl-runner execution

2 Software Workflows and Infrastructures for Precision Oncology

32

The installation and deployment of such infra-
structures can be accomplished on GNU/Linux
systems either bare metal, or on AWS, GCP, and
Azure cloud services. The multi-host installation
provides the highest throughput and can be
accomplished using Salt, an automated infra-
structure management software [26]. The
Arvados salt formula can be found at https://
github.com/saltstack- formulas/arvados- formula.
git, and the steps for deployment are as follows:

 1. Fork/copy the formula to your Salt master
host.

 2. Edit the Arvados, nginx, postgres, locale, and
docker pillars to match your desired
configuration.

 3. Run a state.apply to get it deployed.

After this step, the cloud/software engineer
will then need to set up the DNS in order to
access the cluster’s nodes. Typical operations
include running a workflow, uploading, and
downloading data from keep. Periodically,
Arvados releases new versions of the platform
which will require a short maintenance window
where data processing will need to be
suspended.

Fig. 2.5 Example of a CWL script from a precision
oncology pipeline. The script defines the step to run a
CNV analysis using the tool Facets. The class field indi-

cates that this document describes a command line tool.
The three main sections describe the inputs, steps, and
outputs of the pipeline

W. Osman and A. Laganà

https://github.com/saltstack-formulas/arvados-formula.git
https://github.com/saltstack-formulas/arvados-formula.git
https://github.com/saltstack-formulas/arvados-formula.git

33

 Conclusion

Utilizing an appropriate domain-specific lan-
guage for workflow development and execution
is a necessity. The adept bioinformatics engineer/
analyst will require the combination of many
tools and that combination will need to be seam-
less. CWL, WDL, Snakemake, and NextFlow all
provide the portability and flexibility needed for
precision oncology workflows. When the requi-
site components for a robust pipeline are in place,
the effort to scale up your workload will be
minimal.

Although many workflow systems are avail-
able, we have found that the combination of
CWL and Arvados serve for the most compre-
hensive platform for genomics data processing at
large scale. CWL’s requirements for explicitness
and isolation lead to more flexibility, portability,
and scalability for your workloads. With a large
user base, CWL is and will continue to be sup-
ported and updated on a regular basis. This will
ensure the resilience and longevity of pipelines
and precision medicine platforms.

Fig. 2.6 A typical schema of a precision oncology
pipeline

2 Software Workflows and Infrastructures for Precision Oncology

34

References

 1. Laganà A, et al. Precision medicine for relapsed multi-
ple myeloma on the basis of an integrative multiomics
approach. JCO Precis Oncol. 2018;2018:1–17.

 2. Berger MF, Mardis ER. The emerging clinical rel-
evance of genomics in cancer medicine. Nat Rev Clin
Oncol. 2018;15:353–65.

 3. Johnson TM. Perspective on precision medicine in
oncology. Pharmacotherapy. 2017;37:988–9.

 4. Odle TG. Precision medicine in breast cancer. Radiol
Technol. 2017;88:401M–21M.

 5. Bødker JS, et al. Development of a precision medi-
cine workflow in hematological cancers, Aalborg
University Hospital, Denmark. Cancers (Basel).
2020;12:312.

 6. Jäger N. Bioinformatics workflows for clinical
applications in precision oncology. In: Seminars in
cancer biology. Academic Press; 2021. https://doi.
org/10.1016/j.semcancer.2020.12.020.

 7. Altintas I, et al. Understanding collaborative stud-
ies through interoperable workflow provenance. In:
Lecture notes in computer science. Berlin Heidelberg:
Springer; 2010. p. 42–58.

 8. Amstutz P, et al. Common workflow language, v1. 0.
2016.

 9. Di Tommaso P, et al. Nextflow enables reproduc-
ible computational workflows. Nat Biotechnol.
2017;35:316–9.

 10. Mölder F, et al. Sustainable data analysis with
Snakemake. F1000Res. 2021;10:33.

 11. Amstutz P. Portable, reproducible analysis with arva-
dos. F1000Res. 2015;4

 12. Terra. https://terra.bio/
 13. The Modern Standards Paradigm – 5 Key Principles.

https://open- stand.org/about- us/principles/
 14. Workflow Description Language (WDL). OpenWDL

https://openwdl.org/
 15. Boettiger C. An introduction to Docker for reproduc-

ible research. Oper Syst Rev. 2015;49:71–9.
 16. Kurtzer GM, Sochat V, Bauer MW. Singularity: sci-

entific containers for mobility of compute. PLoS One.
2017;12:e0177459.

 17. Blankenberg D, Hillman-Jackson J. Analysis of next-
generation sequencing data using Galaxy. Methods
Mol Biol. 2014;1150:21–43.

 18. Guimera RV. bcbio-nextgen: automated, distributed
next-gen sequencing pipeline. EMBnet J. 2012;17:30.

 19. Yukselen O, Turkyilmaz O, Ozturk AR, Garber M,
Kucukural A. DolphinNext: a distributed data pro-
cessing platform for high throughput genomics. BMC
Genomics. 2020;21:310.

keepproxy,
keep-web

arv-git-httpdarv-ws

keepstore

compute0...

Cloud or HPC
dispatcher

git repos

User

Storage accessExternal
facing

services

Internal
Services

(private network)

Publish
events

Storage metadata,
Compute jobs,
Permissions

Content-addressed object storage

Elastic compute nodes

An Arvados cluster
From 30000 feet

Postgres db

API

Web Workbench,
CLI client tools

Storage backend
(filesystem, S3)

Fig. 2.7 The Arvados technical architecture

W. Osman and A. Laganà

https://doi.org/10.1016/j.semcancer.2020.12.020
https://doi.org/10.1016/j.semcancer.2020.12.020
https://terra.bio/
https://open-stand.org/about-us/principles/
https://openwdl.org/

35

 20. Desvillechabrol D, et al. Sequanix: a dynamic
graphical interface for Snakemake workflows.
Bioinformatics. 2018;34:1934–6.

 21. Shen R, Seshan VE. FACETS: allele-specific copy
number and clonal heterogeneity analysis tool for
high-throughput DNA sequencing. Nucleic Acids
Res. 2016;44:e131.

 22. Deshwar AG, et al. PhyloWGS: reconstructing sub-
clonal composition and evolution from whole-genome
sequencing of tumors. Genome Biol. 2015;16:35.

 23. Andrews S, et al. FastQC: a quality control tool for
high throughput sequence data. 2010.

 24. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast
all-in-one FASTQ preprocessor. Bioinformatics.
2018;34:i884–90.

 25. Lee S, et al. NGSCheckMate: software for validating
sample identity in next-generation sequencing stud-
ies within and across data types. Nucleic Acids Res.
2017;45:e103.

 26. Li H, Durbin R. Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics.
2009;25:1754–60.

 27. Koboldt DC. Best practices for variant calling in clini-
cal sequencing. Genome Med. 2020;12:91.

 28. Li X, Warner JL. A review of precision oncology
knowledgebases for determining the clinical action-
ability of genetic variants. Front Cell Dev Biol.
2020;8:48.

 29. Li MM, et al. Standards and guidelines for the inter-
pretation and reporting of sequence variants in cancer:
a joint consensus recommendation of the Association
for Molecular Pathology, American Society of Clinical
Oncology, and College of American Pathologists. J
Mol Diagn. 2017;19:4–23.

 30. Piñeiro-Yáñez E, et al. PanDrugs: a novel method to
prioritize anticancer drug treatments according to indi-
vidual genomic data. Genome Med. 2018;10(1):1–11.

 31. Yu Y, et al. PreMedKB: an integrated precision medi-
cine knowledgebase for interpreting relationships
between diseases, genes, variants and drugs. Nucleic
Acids Res. 2019;47:D1090–101.

 32. Xu Q, et al. OncoPDSS: an evidence-based clinical
decision support system for oncology pharmacother-
apy at the individual level. BMC Cancer. 2020;20:740.

2 Software Workflows and Infrastructures for Precision Oncology

	2: Software Workflows and Infrastructures for Precision Oncology
	Introduction
	Workflow Management Systems and Languages
	CWL: Common Workflow Language
	WDL: Workflow Description Language
	NextFlow

	Data Processing Platforms
	Arvados
	Other Platforms

	Implementation of a Precision Oncology Workflow
	Introduction to CWL Scripting
	The Typical Steps of a Precision Oncology Pipeline
	Software Infrastructures for Precision Oncology Platforms

	Conclusion
	References

