
23© Springer Nature Switzerland AG 2022 
A. Laganà (ed.), Computational Methods for Precision Oncology, Advances in Experimental 
Medicine and Biology 1361, https://doi.org/10.1007/978-3-030-91836-1_2

Software Workflows 
and Infrastructures for Precision 
Oncology

Waleed Osman and Alessandro Laganà

Abstract

Precision oncology mainly relies on genetic 
and molecular patient profiling from high- 
throughput sequencing data. The necessity to 
process and analyze large volumes of data has 
led to the development of robust computa-
tional tools and methods. The most challeng-
ing aspect in the implementation of a precision 
oncology workflow involves proper handling 
of large volume of data, while ensuring the 
results are reproducible and replicable. In this 
chapter, we provide a detailed description of 
the various tools available for the design and 
implementation of a precision oncology pipe-
line along with the technical considerations to 
make to utilize these tools effectively. We then 
provide a guide to the development of a preci-
sion oncology pipeline, with a specific empha-
sis on the software workflows and 
infrastructure needed.

 Introduction

Precision oncology is an innovative research 
area that has introduced a novel approach to can-
cer care, where diagnosis, prognosis, and ther-
apy are informed by genetic and molecular 
profiling of the individual patient, rather than 
being based on a one-size-fits-all approach [1–
4]. This landmark paradigm shift has been 
enabled in recent years by the reduced cost of 
next-generation sequencing (NGS) technologies 
and a myriad of ad hoc tools and software appli-
cations developed in order to analyze the data 
generated [5, 6]. The explosion of tools and 
methods as a response to the more widely avail-
able multi-omic data sets has created a challenge 
in terms of reproducibility, interoperability, and 
standardization. Tools created for the analysis of 
genomic, proteomic, transcriptomic, and other 
omic data are typically written in one or a com-
bination of three different styles: Command 
Line Interface (CLI), Application Programming 
Interface (API), or Graphical User Interface 
(GUI) [6]. Combining and ensuring reproduc-
ibility of these disparate application types has 
proven to be a major challenge for biologists as 
they often will require a deeper knowledge of 
software application development norms and 
techniques as well as greater computational 
capabilities. The absence of widely accepted 
best practices regarding software and database 
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utilization has contributed greatly to irreproduc-
ibility, resulting in many man hours and com-
pute cycles wasted in attempting to recreate past 
efforts [7].

As a remedy to this, a number of workflow 
management systems (WMS) and executors for 
running these workflow systems have been devel-
oped, such as Snakemake, Nextflow, the 
Workflow Description Language (WDL) (https://
openwdl.org/), and The Common Workflow 
Language (CWL) [8–10]. Infrastructure enabling 
the execution of these workflows have also been 
developed such as Arvados (stand-alone, deploy-
able, open-source), and Broad Institute’s Terra 
Bio Cloud Platform (web based) [11, 12].

These infrastructure and software solutions 
are able to organize and process large volumes of 
genomics data enabling scientists to discover 
ever deeper insight into biological data. Today, 
with the use of CWL, Arvados, and Cromwell 
(https://github.com/broadinstitute/cromwell), 
and facilitated by virtual servers on cloud infra-
structure, bioinformaticians and savvy data engi-
neers can write and implement a precision 
medicine pipeline while maintaining reproduc-
ibility and interoperability. In this chapter, we 
will introduce several bioinformatics workflow 
management systems and the infrastructures to 
execute them.

 Workflow Management Systems 
and Languages

Workflow management systems (WMS) are 
essential in the processing of large sets of 
patient’s genomic data. WMS are tools developed 
to facilitate the orchestration and execution of 
computational processes in an optimal and effi-
cient manner. In bioinformatics, these systems 
integrate various discrete command-line tools 
into one workflow for the rapid development of 
pipelines, which can be deployed across a variety 
of infrastructures and environments. Utilizing a 
WMS ensures ease of set-up and the ability to 
monitor performance of individual predefined 
tasks. These workflows are often linear but can 

also be dynamic or run in parallel. Table 2.1 pro-
vides a list with the most used WMS along with 
their URLs.

 CWL: Common Workflow Language

The first of several bioinformatic workflow man-
agement languages and systems discussed here is 
the Common Workflow Language (CWL; https://
github.com/common- workflow- language) [8]. 
CWL is an open standard for describing analysis 
workflows and tools in a way that makes them 
portable and scalable across a variety of software 
and hardware environments, from workstations 
to cluster, cloud, and high-performance comput-
ing (HPC) environments. It can be applied to a 
number of different scientific domains including 
Bioinformatics, Medical Imaging, Astronomy, 
High Energy Physics, and Machine Learning. 
CWL sets itself apart from most other workflow 
languages by attempting to adopt open-source 
principles and standards such as open- stand.org, 
which advocates for cooperation, adherence to 
principles, collective empowerment, availability, 
and voluntary adoption. CWL is not a software, 
but a specification which describes command 
line tools and allows them to be connected 
together to form a workflow. CWL’s commitment 
to creating a community which focuses on stan-
dardization and other open-source principles has 
led to its adoption by a number of workflow exe-
cution programs such as Toil, Arvados, Rabix, 
Cromwell, and Bcbio (See Tables 2.1 and 2.2). 
Rabix, for example, is a powerful open-source 
suite of tools for CWL, which include Rabix 
Composer, a graphical editor enabling visual pro-
gramming in CWL, Rabix Benten, a language 
server for CWL documents, and Rabix Executor, 
a workflow runner that can execute CWL pipe-
lines (https://rabix.io/). Figure  2.1 shows an 
example of graph generated with Rabix 
Composer.

The use of CWL to create tools and workflows 
facilitates the ease of future repeatability and 
reproducibility of results. This leads to greater 
cooperation between standard organizations, 
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building a foundation for collaboration. The 
development of CWL into a standard was made 
possible by adhering to five fundamental princi-
ples of standard development [13]. First, deci-
sions regarding the direction and development of 
the standard must be made with equity and fair-
ness, implementing a well-defined due process 
by which participating parties have the ability to 
appeal decisions made. Next, a broad consensus 
must be made in order to facilitate agreement 
across a range of interests. A general agreement, 
incorporating all views, is paramount to the 
establishment and persistence of an open stan-
dard. Third, activities and work being undertaken 
must be recorded for posterity with those records 
open and easily accessible to all. A consistent 
transparency must be maintained by giving 
advance notice of new proposals and activities. 
Fourth, a certain balance must be struck among 
all parties involved. No one entity involved in the 
development of the standard may have dispropor-
tionate influence on its direction or activities. 
Finally, the processes by which the standards are 
developed must be open to all. CWL stands out 
by encompassing all these principles and enabling 
cross-collaboration.

 WDL: Workflow Description 
Language

WDL (Workflow Description Language) is a 
community-driven open-development workflow 
language developed by the Broad Institute [14]. 
WDL specifies data processing workflows with a 
human-readable and writable syntax very simi-
larly to CWL. WDL was ostensibly developed to 
support Terra, a platform developed by the Broad 
Institute of MIT and Harvard in collaboration 

with Verily Life Sciences. Terra is not open- 
source platform and requires users to purchase 
credits for compute cycles. Similar to CWL, the 
WDL scripts are not executable and require an 
execution engine, such as Cromwell, MiniWDL 
or dxWDL, and an environment to be runnable.

 NextFlow

NextFlow is a popular workflow system devel-
oped by Seqera Labs in Barcelona, Spain, 
designed to address numerical instability, effi-
cient parallel execution, error tolerance, execu-
tion provenance, and traceability [9]. Similar to 
CWL, this domain-specific language (DSL) uti-
lizes software containers to create scalable and 
reproducible workflows, enabling rapid pipeline 
development through the adaptation of existing 
pipelines written in any scripting language. 
NextFlow also supports GitHub and BitBucket 
integration, which allows for the consistent track-
ing of software changes and versions. 
Containerization, enabled by utilizing container 
platforms such as Docker (https://www.docker.
com/) or Singularity (https://singularity.hpcng.
org/), ensures numerical stability [15, 16]. It can 
be executed on Sun Grid Engine (SGE) (http://
star.mit.edu/cluster/docs/0.93.3/guides/sge.
html), Load Sharing Facility (LSF) (https://www.
ibm.com/docs/en/spectrum- lsf/10.1.0), SLURM 
workload manager (https://slurm.schedmd.com/
overview.html), Portable Batch System (PBS) 
(https://www.nas.nasa.gov/hecc/support/kb/
portable- batch- system- (pbs)- overview_126.
html) and for Kubernetes (https://kubernetes.io/), 
Amazon Web Services (AWS) (https://aws.ama-
zon.com/), and Google Cloud platforms (https://
cloud.google.com/) for rapid computation and 

Table 2.1 Workflow management systems

Name Description Website
Nextflow Domain-specific language http://nextflow.io
Toil Pipeline management system https://toil.ucsc- cgl.org
Snakemake Domain-specific language https://snakemake.github.io
Bpipe Domain-specific language http://docs.bpipe.org
WDL Workflow specification language https://openwdl.org/
CWL Workflow specification language https://www.commonwl.org/
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the ability to scale up projects manyfold. 
NextFlow also takes advantage of the “dataflow 
programming paradigm,” where execution tasks 
are started automatically as soon as data is 
received through input channels. The Make-like 
approach adopted by tools such as CWL require 
pre-estimation of all computational dependencies 
as well as a directed acyclic graph (DAG). 
NextFlow, however, utilizes a top to bottom 
approach which mimics the natural flow of data.

 Data Processing Platforms

The main data processing platform we will be 
discussing in this section is Arvados, which has 
been deployed in our lab and has shown great 
utility for our genomic processing needs. 
Table 2.2 summarizes the main data processing 
platforms.

 Arvados

Arvados is a free and open-source platform for 
processing large volumes of genomic data [11]. 
This distributed computing platform for data 
analysis on massive data sets also enables users 
to share and manage their data with ease. It is 
licensed under the GNU Affero General Public 
License version 3. Two key features of Arvados 
are provenance and reproducibility. Arvados 

maintains integrity of data by recording its his-
tory and place of origin, which also reduces the 
incidence of replication of intermediate files. 
Arvados retains the history of jobs run in its 
infrastructure and recognizes when to re-use 
existing files, a cost-saving measure valuable to 
system administrators and informaticists alike. 
This is all enabled in-part by Arvados’s keep 
store, a content-addressable storage system 
designed to run on low-cost commodity hardware 
or cloud services.

 Other Platforms

While Arvados is free and open source, other 
platforms require a payment or subscription, 
where billing is incorporated directly into the 
application software.

DNAnexus (http://www.dnanexus.com/) and 
Terra.bio (http://terra.bio) both require the user to 
pay for storage and processing costs; the Galaxy 
project stands out with a strong, knowledgeable, 
and supportive online community [17] (https://
usegalaxy.org/); Bcbio-nextgen is focused mainly 
on RNA genomic data analysis and lacks the flex-
ibility of the other platforms mentioned in this 
paper [18] (https://github.com/bcbio/bcbio- 
nextgen); DolphinNext (https://dolphinnext.
umassmed.edu/) and Sequanix (https://github.
com/sequana/sequana/) are two GUIs developed 
specifically for Snakemake and Nextflow DSLs, 

Fig. 2.1 Example of graph generated with CWL Rabix Composer
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respectively [19, 20]. These platforms attempt to 
ease the process of generating workflows by pro-
viding users with a web interface, expanding 
access to users with limited bioinformatics 
experience.

 Implementation of a Precision 
Oncology Workflow

Designing and implementing a precision oncol-
ogy pipeline requires several of the abovemen-
tioned components and entails the coordination 
of many tools which are then combined to create 
explicit workflows, relaying and processing data 
until it is collected and presented in a final report 
form. Compute and data intensive processing 
steps often require infrastructure consisting of 
large compute clusters, multiple processors, and 
large amounts of disc space in order to ensure 
reliability, efficiency, availability, and scalability. 
A comprehensive description of a precision 
oncology pipeline is provided in Chap. 1. Here, 
we introduce the basic syntax of CWL scripts, 
describe the basic steps in the design of a preci-
sion medicine workflow for DNA variant calling, 
and provide an overview of the software infra-
structures necessary for the implementation of 
such workflows.

 Introduction to CWL Scripting

The first step in writing a precision medicine 
workflow is to select the command-line tools 
intended for integration. This usually comprises 
several steps including, but not limited to, a raw 
read QC step, alignment, variant calling, annota-
tion, and secondary analysis. We will use CWL 
as the specification for the workflow in a few 
examples. Figure 2.2 illustrates how inputs and 
outputs are isolated for reproducibility. This sim-
ple “hello world” program accepts one input 
parameter, writes a message to the terminal or job 
log, and subsequently will produce no permanent 
output. Several of these tools can then be written 
together in conjunction to form a “workflow.” 
Figure  2.3 shows a sample workflow which 
extracts a java source file from a tar file and then 
compiles it.

There are several key considerations to make 
when writing and executing a workflow. First, 
every step in a workflow will require its own 
CWL description. The final inputs and outputs of 
the workflow are listed in the inputs and outputs 
section. The steps are specified under steps. The 
order of execution is determined by the specified 
connections between steps.

After writing the workflows, one has to choose 
an appropriate method for running them. In the 
example shown in Fig.  2.4, we use the cwl- 
runner. Since CWL is highly portable, the com-
pute environment chosen to run the workflows 
will be up to user discretion.

Finally, Fig.  2.5 displays a more complex 
example of a script implementing the workflow 
shown in Fig.  2.1, with steps from a precision 
oncology pipeline which include the analysis of 
Copy Number Alterations (CNA) (tool: Facets 
[21]) and the reconstruction of tumor sub-clonal 
composition (tool: PhyloWGS [22]).

 The Typical Steps of a Precision 
Oncology Pipeline

Figure 2.6 shows a typical schema for a precision 
oncology pipeline. After sample collection, pro-
cessing and sequencing has occurred, the raw 
sequencing data in the form of Fastq files are 
used as inputs into the pipeline. Next, a series of 
quality control metrics are generated from the 
data to help determine in which areas there may 
be problems or poor-quality data. Metrics 
included in the evaluation of quality include raw 
sequencing data quality and depth, alignment 
quality, GC content, adapter contamination, and 
reads duplication rates [23, 24]. Evaluating these 
metrics allows for the identification and flagging 
of poor-quality data and to avoid potentially 
expensive and computationally intensive steps. 
Checking alignment quality can prevent potential 
false-positive single nucleotide polymorphism 
calls. Furthermore, it is important to verify that 
paired files generated from samples from the 
same individual, for example, normal and tumor 
WES samples, are indeed from the same individ-
ual, by using a tool like NGSCheckMate [25].

Next, reads are aligned to a common reference 
genome. Alignment algorithms such as the 

W. Osman and A. Laganà

https://doi.org/10.1007/978-3-030-91836-1_1


29

Burrows–Wheeler transform can be utilized to 
rearrange raw sequencing data and prepare it for 
downstream analysis and mutational calling [26]. 
The resulting file produced is typically a 
Sequence Alignment Map (SAM) or its binary 
version (Binary Alignment Map, BAM) file.

Following sequence alignment and the gener-
ation of a BAM/SAM file, a typical precision 
medicine pipeline would then perform variant 
calling by identifying where the aligned reads 
differ from the reference genome, producing a 
variant call file to be used in further downstream 
analysis [27] (see also Chaps. 1 and 3). After the 
variants have been annotated using various online 
databases, additional pertinent information is 
assigned to each variant call [28]. This informa-
tion may include the definition of a variant and its 
genotype, basic information regarding whether it 
lies in a coding region, its impact on the corre-
sponding protein (e.g., missense or synonymous 
mutation), or whether the variant is an insertion 
or a deletion. Those variants are then classified 
based on ACMG guidelines as pathogenic, likely 
pathogenic, uncertain significance, likely benign, 
or benign [29]. Additionally, structural variation 
analysis may be conducted to identify genomic 
alterations such as duplications, inversions, trans-
locations, and copy number variants (CNVs) 
(See also Chap. 4).

The variants are then collected and classified 
based on whether they are actionable or not, 
using different databases for clinical interpreta-
tion, then summarized into reports, often after 
being reviewed and further annotated by patholo-
gists [28].

In more advanced settings, the variants data 
can be inputted into a rule-based engine which 
will select and prioritize drugs matching the 
alterations. These “drug recommendation 
engines” are still in early-phase development and 
are typically ad hoc applications which draw on 
experts with domain-specific knowledge in order 
to auto-generate drugs with the expectation of 
affecting the deleterious variants in a positive 
manner [30–32]. Many iterations and versions of 
this ad hoc pipeline are being developed across 
academia and medical institutions for the treat-
ment of various cancers. Each pipeline with its 
own unique set of rules and considerations based 
on the model-disease specifications.

 Software Infrastructures for Precision 
Oncology Platforms

Here we provide some background on the soft-
ware infrastructure for a precision oncology 
pipeline. The diagram in Fig. 2.7 illustrates the 

Fig. 2.2 Example of simple CWL demonstrating input/output

2 Software Workflows and Infrastructures for Precision Oncology

https://doi.org/10.1007/978-3-030-91836-1_1
https://doi.org/10.1007/978-3-030-91836-1_3
https://doi.org/10.1007/978-3-030-91836-1_4


30

components which comprise the Arvados techni-
cal architecture. It can be deployed locally, or on 
a number of different cloud providers such as 
Amazon Web Services (AWS) (https://aws.ama-
zon.com/), the Google Cloud Platform (GCP) 
(https://cloud.google.com/), or on Microsoft 
Azure (https://azure.microsoft.com/). Several 
key components work together in harmony to 
create an elastic computing environment where 
the overall resource footprint available or con-
sumed by a specific job can grow or shrink on 
demand. The ability of Arvados to quickly expand 

or decrease computer processing, memory, and 
storage resources as well as manage data through 
a content-addressable distributed storage system 
sets it apart from its competitors. These compo-
nents are the container orchestration system 
called “Crunch,” the distributed storage system 
“Keep,” the REST API Server, the CLI, the GUI 
“Workbench,” native language SDKs, Data 
Manager, Node Manager, and Keep proxy.

The main two innovations of the Arvados plat-
form are “Crunch” and “Keep.” The Crunch con-
tainer orchestration management engine executes 

Fig. 2.3 Example of CWL workflow which extracts a java source file from a tar file and compiles it
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CWLs while maintaining provenance and repro-
ducibility. It accomplishes this by automatically 
tracking the origin of result data; therefore, it is 
able to compare workflows to one another, avoid-
ing the need to repeat previously performed data 
analysis. This saves on cost and time, two signifi-
cant considerations when executing a workflow 
or data analysis. Crunch also provides the ability 
to scale horizontally by provisioning compute 
nodes upon demand, delivering cost-effective 
performance. Finally, the Crunch engine isolates 
workloads by running jobs inside of Docker con-
tainers, a standard unit of software that packages 
up code and all its dependencies [15].

The Keep system efficiently handles data stor-
age and management using a content-addressable 
distributed storage system. It is able to handle 
petabyte-sized data sets, scaling accordingly by 
utilizing location-addressed storage. A  permanent 
universally unique identifier (UUID) is then 
given to each content address. This creates a 
highly scalable flat address space, virtualizing 
storage access. The benefits of the keep store sys-
tem include, elimination of duplication, canoni-
cal records, provenance, easy management of 
temporary data, flexible organization, high reli-
ability, security and access control, POSIX inter-
face, data sharing, and versioning.

Fig. 2.4 Example of cwl-runner execution

2 Software Workflows and Infrastructures for Precision Oncology
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The installation and deployment of such infra-
structures can be accomplished on GNU/Linux 
systems either bare metal, or on AWS, GCP, and 
Azure cloud services. The multi-host installation 
provides the highest throughput and can be 
accomplished using Salt, an automated infra-
structure management software [26]. The 
Arvados salt formula can be found at https://
github.com/saltstack- formulas/arvados- formula.
git, and the steps for deployment are as follows:

 1. Fork/copy the formula to your Salt master 
host.

 2. Edit the Arvados, nginx, postgres, locale, and 
docker pillars to match your desired 
configuration.

 3. Run a state.apply to get it deployed.

After this step, the cloud/software engineer 
will then need to set up the DNS in order to 
access the cluster’s nodes. Typical operations 
include running a workflow, uploading, and 
downloading data from keep. Periodically, 
Arvados releases new versions of the platform 
which will require a short maintenance window 
where data processing will need to be 
suspended.

Fig. 2.5 Example of a CWL script from a precision 
oncology pipeline. The script defines the step to run a 
CNV analysis using the tool Facets. The class field indi-

cates that this document describes a command line tool. 
The three main sections describe the inputs, steps, and 
outputs of the pipeline
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 Conclusion

Utilizing an appropriate domain-specific lan-
guage for workflow development and execution 
is a necessity. The adept bioinformatics engineer/
analyst will require the combination of many 
tools and that combination will need to be seam-
less. CWL, WDL, Snakemake, and NextFlow all 
provide the portability and flexibility needed for 
precision oncology workflows. When the requi-
site components for a robust pipeline are in place, 
the effort to scale up your workload will be 
minimal.

Although many workflow systems are avail-
able, we have found that the combination of 
CWL and Arvados serve for the most compre-
hensive platform for genomics data processing at 
large scale. CWL’s requirements for explicitness 
and isolation lead to more flexibility, portability, 
and scalability for your workloads. With a large 
user base, CWL is and will continue to be sup-
ported and updated on a regular basis. This will 
ensure the resilience and longevity of pipelines 
and precision medicine platforms.

Fig. 2.6 A typical schema of a precision oncology 
pipeline
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