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Cancer encompasses a large number of complex malignancies characterized 
by extensive clonal heterogeneity and variations in the microenvironment 
that influence response to treatment. Recent advances in sequencing tech-
nologies have enabled the generation of large amount of data, which, in turn, 
has prompted the development of multi-omics integrative computational 
tools aimed at dissecting the biology of individual tumors. This has given rise 
to the new field of precision oncology, a fast-evolving multidisciplinary 
research field whose goal is to leverage the genomic and molecular features 
of the individual patient’s cancer cells and microenvironment to efficiently 
inform therapy selection. The key idea underpinning precision oncology’s 
paradigm is that treatment may be given based on the specific alterations 
observed in the patient, rather than on the tumor histology or tissue type. 
Recent studies and clinical trials have shown that genomic profiling benefits 
patients whose cancer is driven by specific targetable alterations. However, 
the widespread heterogeneity of cancer genomes and drug responses still 
poses a significant challenge in the design of effective personalized treat-
ments. Responses to therapies are often short-lived, and many patients lack 
well-defined genetic aberrations targetable by currently available drugs. The 
goal of precision oncology is to integrate different low- and high-throughput 
technologies and data modalities to capture the genetic, molecular, and cel-
lular complexity of the patient’s tumor and microenvironment, identify dys-
regulated mechanisms and potential vulnerabilities, and design and prioritize 
treatments accordingly.

This volume provides a comprehensive state-of-the-art overview of the 
computational approaches, methodologies, and tools that enable precision 
oncology, as well as the most promising and exciting innovations that are 
advancing the field and are likely to be incorporated into clinical practice 
soon.

The first two chapters cover the basic concepts in computational precision 
oncology, providing a comprehensive overview of the architecture and com-
ponents of a precision oncology platform, the data analyzed, and the insights 
that can be gained from data analysis. In particular, Chap. 1 introduces the 
fundamental concepts in multi-omics data analysis for precision oncology 
and illustrates the typical architecture of a precision oncology platform, 
including both basic and advanced components, while Chap. 2 focuses on the 
more technical aspects of software infrastructure and workflow 
implementation.
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Chapters 3, 4, 5, 6, 7, 8, 9, and 10 dive into each component of a precision 
oncology workflow and describe them in terms of their objectives, the related 
biological background, and the most efficient solutions, along with their 
strengths and weaknesses. Chapters 3 and 4 present current workflows and 
algorithms for calling single-nucleotide variations (SNV) and copy number 
alterations (CNA), respectively, from next-generation sequencing (NGS) 
data, and discuss their merits and limitations. Chapter 5 introduces the prob-
lem of assessing microsatellite instability (MSI), its relevance to precision 
oncology applications, and the methods and tools available for determining 
MSI status from NGS data in cancer. Chapter 6 introduces the challenge of 
dissecting intra-tumor heterogeneity in cancer samples and provides a state- 
of- the-art review of the statistical and computational approaches and tools for 
the analysis of NGS data to infer the clonal landscape of a tumor and its 
temporal and spatial evolution, in the context of precision oncology applica-
tions. Chapter 7 covers data resources and computational tools for drug 
repurposing, which consists in finding novel uses for existing drugs. The 
chapter presents and discusses several categories of methods, including 
target- based, knowledge-based, signature-based, and pathway-based meth-
ods, as well as the data resources specialized in gene expression changes 
induced by drugs in cell lines and that are used in drug repurposing applica-
tions. Chapter 8 focuses on the analysis of pathways for precision oncology 
applications. It provides a comprehensive description of cancer omics proj-
ects and data sources, a survey of the main biological pathway databases, and 
a detailed review of the most used pathway analysis tools, discussed in the 
context of their potential applications in precision oncology. Chapter 9 intro-
duces gene fusions, which are a hallmark of several cancer types, and dis-
cusses the strategies for their identification from patient’s RNA-Seq data, 
along with the tools for their annotation and visualization. Chapter 10 pro-
vides a detailed overview of knowledge bases and tools for the prioritization 
and interpretation of variants in cancer, which are essential tasks in a preci-
sion oncology platform.

Chapters 11, 12, 13, 14, 15, and 16 present advanced cutting-edge research 
topics that represent promising future directions in the field of precision 
oncology. Chapter 11 provides an introduction to network-based approaches 
used to integrate multi-modal data sources for patient stratification and clas-
sification, and discusses challenges and opportunities for the application of 
these approaches in precision oncology. Chapter 12 describes patient-derived 
models of cancer, such as organoids, chorioallontoic membranes, tumor slice 
cultures, microfluidic platforms, and xenograft models, and discusses their 
potential implementation in clinical settings to inform novel therapeutic 
options. Chapter 13 covers liquid biopsies, an advanced testing technology 
allowing non-invasive detection of biomarkers for cancer screening and real- 
time monitoring of disease progression. The chapter provides a comprehen-
sive overview of the methods to perform molecular profiling of circulating 
tumor cells, cell-free DNA, and extra-cellular vesicles, reviews the ongoing 
clinical trials for liquid biopsies, and discusses the future directions for their 
full clinical implementation. Chapter 14 surveys data resources and several 
applications of artificial intelligence (AI) in cancer research and precision 
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oncology, from cancer subtype identification to drug prioritization and image 
analysis, and introduces the first diagnostic FDA-approved AI-powered tools. 
Chapter 15 reviews the state-of-the-art of single-cell DNA and RNA sequenc-
ing technologies and analysis tools, and discusses their potential uses in pre-
cision oncology, including the dissection of intra-tumor heterogeneity, 
multi-omics data integration for the full characterization of a tumor, and the 
implementation of targeted drug repurposing approaches. Finally, Chap. 16 
discusses the importance of profiling the tumor immune microenvironment. 
While current precision oncology applications focus on the dissection of 
tumor genomics and transcriptomics to identify actionable alterations, 
research has shown that investigating the immune microenvironment is fun-
damental to understand cancer initiation, progression, and response to ther-
apy. Chapter 16 summarizes the technologies and computational 
methodologies available to study the microenvironment and discusses the 
implications for the identification of effective treatments for patients.

Assembling and curating this volume has been an inspiring and stimulat-
ing experience that has allowed me to connect and collaborate with valuable 
colleagues, and to widen my knowledge and perspectives in this exciting 
field. I am thankful for having been given this unique opportunity and hopeful 
that this volume will be of help to many researchers who are approaching 
precision oncology and its related areas.

I would like to express my gratitude to all the authors for the effort they 
put in this project during this challenging and uncertain time of global pan-
demic, and for the valuable content they contributed. My sincere gratitude 
also goes to the Springer team, particularly to Associate Editor Larissa 
Albright and Project Coordinator Shabib Shaikh for their guidance and sup-
port throughout the development of this book.

New York, NY, USA Alessandro Laganà
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The front matter illustration was drawn by Dr. Francesco Russo, from the 
Section for Clinical Mass Spectrometry, Danish Center for Neonatal 
Screening, Department of Congenital Disorders at Statens Serum Institut in 
Copenhagen, Denmark. The figure represents the data integration process to 
obtain a better understanding of diseases and find personalized treatments.
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The Architecture of a Precision 
Oncology Platform

Alessandro Laganà

Abstract

Precision oncology is a novel research field 
and approach to cancer care which leverages 
high-throughput sequencing technologies and 
bioinformatics pipelines to determine diagno-
sis, prognosis, and treatment of patients in a 
personalized manner. This chapter provides an 
overview of a typical precision oncology soft-
ware platform, from raw data to patient 
reports. Standard and advanced analytical 
components are described and discussed, 
along with their strengths and limitations, in 
general and in the context of a precision oncol-
ogy application for advanced cancer patients.

 Introduction

Precision oncology is a novel area of biomedi-
cine, a specialization of precision medicine 
aimed at determining diagnosis, prognosis, and 
therapy in cancer patients in a highly personal-
ized manner, based on the specific characteristics 
of the individual tumor rather than on the cancer 
type. A key feature of precision oncology is the 

actionable alteration, that is, a genetic or molecu-
lar alteration that can be directly targeted by a 
drug or a biomarker that indicates sensitivity to a 
specific drug.

The development of highly accurate and 
affordable high-throughput sequencing technolo-
gies in the past decade has fueled significant 
progress in precision oncology, which is now 
gaining momentum and increasingly being incor-
porated into mainstream clinical practices.

The two main elements enabling precision 
oncology are the technologies to produce the data 
and the computational pipelines to analyze the 
data. DNA and RNA sequencing allow to detect 
pathological variations in the genome and the 
transcriptome of cancer cells, which are then 
used to determine the cancer subtype, assess risk, 
and design a specific therapy. Naturally, our 
knowledge of the mechanisms driving cancer 
progression is still incomplete, and only a frac-
tion of patients benefits from this approach today. 
Nevertheless, the translation of research findings 
into actionable strategies is now faster than ever, 
thus promoting unprecedented progress in the 
development of novel therapies and their person-
alized applications.

This chapter focuses on the software architec-
ture of a precision oncology platform, from 
patient data to reports. Figure 1.1 illustrates the 
general schema of a precision oncology pipeline, 
including both standard and advanced compo-
nents. The implementation of such pipelines is 
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facilitated by special data management platforms, 
like Arvados and Terra.bio, and workflows man-
agement systems, like CWL and Nextflow [1, 2], 
which provide high-level systems and tools for 

defining and running standard and custom bioin-
formatics analyses. These pipelines start with 
raw sequencing data, usually from matched 
tumor and normal samples, which are then pro-

Fig. 1.1 Schema of a precision oncology platform. A 
typical precision oncology platform is composed of three 
macro-components: primary analysis, secondary analysis, 
and annotation/prioritization. After matched normal and 
tumor samples from a patient have been subjected to DNA 
and RNA sequencing, DNA primary analysis extracts pri-
mary data, that is, germline and somatic mutations 
(SNVs), copy number alterations (CNAs), and genomic 
metrics such as microsatellite instability (MSI) and muta-
tional burden, through alignment and variant calling. 
Similarly, RNA primary analysis performs alignment and 
extracts primary data such as gene expression profile and 
gene fusions. Primary data is then assessed for quality and 
filtered, for example, variants are filtered based on their 

allele frequency (VAF), or gene expression is filtered to 
remove lowly expressed genes. Secondary alignment con-
sists of several independent tasks to extract a second layer 
of more abstract/complex information from primary data, 
such as subclonal landscape/intratumor heterogeneity 
(ITH), risk scores and biomarkers, pathway activity mea-
sures, and drug associations based on reversal of gene 
expression profiles (drug repurposing). Finally, all the 
produced data are annotated with external databases to 
assess their pathogenicity and actionability, then the 
potential associated therapeutic options are prioritized 
based on the level of clinical evidence, cancer type, and 
other metrics. A summary report of the main alterations 
and drug recommendation is then produced for the physi-
cian and the patient

A. Laganà
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cessed to identify genetic alterations like somatic 
mutations and copy number variations, quantify 
gene transcripts and pathway activity, and assess 
genomic instability and intratumor heterogeneity. 
All the findings are then annotated and evaluated 
for pathogenicity and actionability, and reports 
with a summary of the findings along with pos-
sible drug recommendation are generated for the 
physicians and the patients.

The next sections of this chapter will describe 
these steps and components and provide general 
guidance for their implementation and interpreta-
tion. An example of a precision oncology plat-
form is then given, along with the results obtained 
in a pilot clinical trial with relapsed/refractory 
cancer patients.

 Data Sources and Assays

Precision oncology platforms are typically based 
on high-throughput targeted sequencing, whole- 
genome sequencing (WGS) or whole-exome 
sequencing (WES) data, which is often comple-
mented with transcriptomic data from RNA-Seq 
as well as clinical data [3–5]. DNA sequencing is 
usually performed on matched tumor and normal 
tissue (e.g., saliva or peripheral blood) and allows 
to identify somatic single nucleotide variations 
(SNVs) and short indels as well as larger struc-
tural changes including broad and focal amplifi-
cations, deletions, and chromosomal 
rearrangements. When normal tissue is not pres-
ent, the data from the tumor is compared to the 
reference genome. This, however, can lead to 
inaccuracies as it is not possible to discriminate 
between truly somatic alterations and germline 
single nucleotide polymorphisms (SNPs), 
although databases with known SNPs may be 
used to mitigate this problem [6, 7].

Several variables should be considered when 
choosing the most appropriate assay for a preci-
sion oncology platform, such as turn-around 
time, cost, sequencing depth, coverage, and clini-
cal questions. Sequencing depth is the average 
number of reads covering each DNA base, while 
coverage refers to the width of the genome area 
sequenced. Targeted panels are the most popular 

and widely used assays in oncological applica-
tions, because of fast turn-around time, which is 
typically less than a week, and high depth, usu-
ally greater than 500×. The latter, particularly, 
increases confidence in the discovered variants, 
especially when they are present in a small frac-
tion of tumor cells. This variable is called variant 
allele frequency (VAF) and is defined as the num-
ber of tumor reads carrying a specific variant 
(alternate allele) divided by the total number of 
reads covering the locus. Targeted panels usually 
cover a few hundred loci including mutational 
hotspots, drivers, and genes that are frequently 
altered in cancer and carry prognostic impact 
and/or therapeutic actionability. Popular options 
are the Foundation Medicine panels and MSKCC- 
Impact, among others [8, 9]. It is also possible to 
develop custom panels targeting specific cancer 
types and genes of interests.

In recent years, the use of WES for clinical 
applications has also gained popularity [5]. WES 
covers the coding regions of the genome, the 
exome, which is where the majority of known 
deleterious and actionable variations occur, and 
constitutes ~2% of the human genome. Such 
regions are captured through hybridization of 
genomic DNA to biotinylated oligonucleotide 
probes (baits) complementary to targeted exons 
[10]. Sequencing depth of WES typically ranges 
between 100× and 150× for the tumor, which 
allows discovery of most variants with VAF of 
10% and above, while normal samples are typi-
cally sequenced at lower depth [11]. One impor-
tant reason to prefer WES over targeted panels is 
the extended coverage to most coding regions, 
which allows the discovery of variants of likely 
pathogenic significance beyond the genes 
included in the panels. This may be especially 
important in applications that couple clinical care 
with research [12].

WGS provides the widest coverage of the 
genome, albeit at higher cost and lower depth, 
which is typically in the range of 30× to 50×, 
depending on the application [13–15]. WGS is 
mostly used in research, since it allows to explore 
variations in the non-coding portion of the 
genome, which may help elucidate mechanisms 
of cancer pathogenesis and progression, for 

1 The Architecture of a Precision Oncology Platform
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example, in the promoters. However, there are 
clinical applications that may benefit from WGS 
as it allows the identification of large structural 
variations, such as chromosomal translocations, 
and a better characterization of copy number 
alterations than WES [16, 17]. Previous studies 
have suggested that WGS-based translocation 
calls may be more accurate than FISH/
Cytogenetics assays [18, 19]; thus, it is reasonable 
to expect WGS to gain more popularity in the near 
future, especially considering the potential thera-
peutic actionability of structural alterations which 
cannot be confidently discovered with WES.

While DNA sequencing is essential for the 
discovery of actionable variations in the genome, 
RNA sequencing (RNA-Seq) is fundamental to 
study the variations in the transcriptome and 
quantify gene expression. The analysis of gene 
expression has been the focus of thousands of 
studies in the past 20 years and has been enabled 
by microarrays before RNA-Seq. Most gene 
expression studies in oncology have allowed the 
discovery of biomarker of sensitivity and resis-
tance to specific drugs, to elucidate the mecha-
nisms of action of drugs and their effect on 
signaling and metabolic pathways, to investigate 
the cellular response to different conditions (e.g., 
hypoxia), and to dissect the role of oncogenes 
and tumor suppressors and their genetic varia-
tions [20–22]. RNA-Seq is not yet widely used in 
precision oncology, but some platforms use it to 
identify chimeric transcript that results from gene 
fusions, which is currently the most common 
application of this technology in precision oncol-
ogy [23]. However, recent studies suggest that 
there are other advantages to incorporating 
 RNA- Seq in clinical care applications [24]. A 
pilot study that we have conducted at Mount 
Sinai, NY, in 2017, has demonstrated that RNA-
Seq can help identify viable therapeutic options 
beyond what can be detected through DNA 
sequencing [25]. More specifically, RNA-Seq 
can identify actionable altered pathways and 
measure biomarkers of drug sensitivity.

The next sections of this chapter will provide 
an overview of the different standard and 
advanced components of a precision oncology 

platform, from DNA and RNA sequencing analy-
sis workflows and methods to prioritization of 
findings and generation of clinical reports.

 Analysis of DNA Sequencing Data

This section provides an overview of the steps 
and methods involved in processing DNA 
sequencing data, from raw reads to variants. 
These steps generally work for both targeted and 
WGS/WES data, but a distinction will be made 
where necessary. Most of the pipelines discussed 
here refer to the Broad Institute Best Practices 
Workflows (BroadBPW), which provide useful 
step-by-step recommendations for performing 
variant discovery analysis in high-throughput 
sequencing (HTS) data [26, 27] (https://gatk.
b r o a d i n s t i t u t e . o r g / h c / e n -  u s /
sect ions/360007226651-  Best-  Pract ices- 
Workflows). However, when designing a preci-
sion oncology platform, it is always important to 
consider the specific technologies used for data 
generation along with the goals of downstream 
analysis.

 Pre-processing of Sequencing Data

The output of sequencers consists of raw reads 
organized in text files in the FASTQ format, 
where each read is annotated with its quality 
score. It is always advisable to perform quality 
check (QC) on these files, to ensure that the 
downstream analysis produces reliable data and 
high-confidence calls [28]. Library preparation 
and sequencing can, indeed, introduce biases, 
errors, and contamination, which, in turn, can 
affect variant identification and lead to inaccurate 
results. Several tools for quality check and data 
pre-processing have been developed in the past 
years, aimed at providing comprehensive quality 
profiles including basic statistics such as total 
number of reads and their length, GC content, 
per-base and per-sequence quality scores, as well 
as more sophisticated metrics such as sequence 
duplication levels, overrepresented sequences, 
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and k-mer content. FastQC is a popular and 
widely used QC option [29]. In some cases, reads 
need to be trimmed to remove adapter sequences 
and low-quality bases. These tasks can be per-
formed using tools such as Cutadapt and 
Trimmomatic [30, 31]. The more recent Fastp 
conveniently incorporates both QC and reads 
trimming as well as advanced filtering features, 
including base correction in the overlapping frag-
ments of paired reads, and provides before- and 
after-processing reports [32]. Other tools can 
additionally be used to estimate tumor purity, 
which is the proportion of cancer cells in the 
sample and, therefore, provides an estimate of 
possible contamination with normal cells [33]. 
Several tools for the analysis of copy number 
alterations, which are introduced in section 
“Copy Number Alteration Calling”, provide esti-
mates of tumor purity. Finally, another crucial 
aspect in data pre-processing is to make sure that 
the matched tumor and normal samples analyzed 
are indeed from the same individual. Sample 
mismatches, in fact, can happen at different steps 
of the experimental and data analysis pipeline, 
and tools such as NGS Checkmate can help vali-
dating sample identity and detect such mis-
matches [34].

Data QC and pre-processing are crucial steps 
and can help identify and mitigate problems in 
downstream analyses. Problematic samples can 
be flagged as such, so that the results of the anal-
ysis are interpreted with caution, or discarded 
altogether, when not of sufficient quality for reli-
able conclusions to be drawn.

 Reads Mapping

The steps in this and next sections can be applied 
to any type of DNA sequencing data, whether it is 
WGS, WES, or targeted. Once QC has been per-
formed and the reads have been pre-processed 
and filtered, the next step is to map each individ-
ual read or read pair to the reference genome 
(e.g., human GRCh38/hg38), which is a repre-
sentative common genome sequence of the ana-
lyzed species in string format, to correctly 

identify their origins [35, 36]. This process, 
which is referred to as alignment, is carried out 
by specific tools such as Bowtie, BWA, and 
GMAP/GSNAP, which implement efficient 
methods to index the reference genome and deal 
with mapping ambiguities and handling mis-
matches and indels [37–39]. BWA consists of 
three methods based on the Burrows-Wheeler 
Transform (BWT) algorithm, which enables 
counting the number of exact hits of a string in 
the genome independently of the size of the 
genome. While BWA-backtrack is specifically 
designed for Illumina sequence reads up to 
100 bp, BWA-MEM and BWA-SW support long 
reads and split alignment. BWA-MEM is the 
most efficient and accurate option and is recom-
mended in several workflows, including 
BroadBPW.  GSNAP is another suitable option, 
albeit slower than BWA, which organizes the out-
put in different files that include uniquely mapped 
reads, multiply mapped reads, and unmapped 
reads. All read aligners use multi-threading to 
independently process multiple reads simultane-
ously and, therefore, significantly reduce com-
puting time. Alignments are usually outputted in 
the text-based SAM format (Sequence Alignment 
Map) or its compressed version called BAM 
(Binary Alignment Map).

 Post-processing of Read Alignments

Read alignments are further processed to miti-
gate biases introduced by library preparation 
steps, such as PCR amplification, and recalibrate 
the base quality score. This step involves tools 
such as Picard, the Genome Analysis ToolKit 
(GATK), and Samtools [26, 40]. Here is an exam-
ple of a typical post-processing protocol based on 
BroadBPW: (1) ensure that all mate-pair infor-
mation is consistent between each read and its 
mate pair (tool: Picard-FixMateInformation), (2) 
match the contig ordering in the reference 
genome file (tool: Picard-ReorderSam), (3) soft- 
clip beyond-end-of-reference alignments (tool: 
Picard-CleanSam), (4) identify and tag duplicate 
reads, that is, reads originating from a single 
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fragment of DNA (tool: Picard-MarkDuplicates), 
(5) build the index of the alignment files (tool: 
Picard-BuildBamIndex, (6) perform local 
realignment in order to minimize the mismatches 
introduce by indels (tools: GATK- 
RealignerTargetCreator and 
GATK:IndelRealigner), (7) adjust base quality 
scores (tools: GATK-BaseRecalibrator and 
GATK-PrintReads). The output of this workflow 
produces alignment files in the BAM format that 
are ready to be analyzed for variant discovery.

 Somatic Single Nucleotide Variants 
(SNVs) and Short Indels Calling

This task can be performed on either targeted 
sequencing, WES, or WGS data. However, the 
typical read depth provided by WGS may not be 
sufficient to enable the discovery of low fre-
quency variants. Once the BAM files have been 
filtered and cleaned up, they are ready to be pro-
cessed for variant discovery [41]. This is the fun-
damental step where reads from a tumor and a 
matched normal sample from the same individual 
are compared to the reference genome to identify 
somatic single nucleotide variations (SNVs) and 
short indels, that is, short insertion or deletion of 
bases, which are then typically outputted in VCF 
(Variant Call Format) text files. Somatic variants 
are found in the tumor but neither in the normal 
control nor in the reference genomes. Thus, they 
are more likely to have an impact in the onco-
genic process. Several tools have been developed 
in the past decade to address this task. MuTect2, 
Strelka2, VarDict, and Lancet are among the 
most popular and widely used options [42–45]. 
Providing sequencing data from both the tumor 
and normal cells is crucial to ensure the discov-
ery of true somatic variants. While some tools 
(e.g., MuTect2) are designed to identify variants 
in tumors even when a matched normal sample is 
not available, they may produce false positives at 
higher rates; thus, the results should be inter-
preted with caution [46]. MuTect2 has a tumor- 
only mode which compares a tumor sample with 

an unmatched panel of normals (PoN) [42, 47]. 
This modality relies on multiple samples from 
healthy tissues, for example, obtained from pub-
lic databases such as the 1000 Genomes Project, 
which should be processed as similarly as possi-
ble to the tumor, for example, in terms of library 
preparation method and sequencing technology, 
in order to minimize artifacts and technical noise. 
Although there is no definitive rule for how many 
samples should be used to create a PoN, Broad 
Institute guidelines suggest using at least 40 sam-
ples (https://gatk.broadinstitute.org/hc/en- us/
articles/360035890631- Panel- of- Normals- 
PON- ). A study evaluating several tools for vari-
ant discovery in non-matched sequencing 
samples using real and simulated data has shown 
that no tool was able to call all the mutations, 
indicating that further improvements are neces-
sary to ensure reliable calls [48].

Because of the different algorithms, statistical 
models, and filtering strategies that each tool for 
variant calling implements, the identified variants 
may be significantly different. Studies comparing 
different callers using both real and synthetic 
data have shown various degrees of agreement 
between them, where many calls were reported 
only by one or two tools [49, 50]. Since there is 
no definitive answer to which caller is the most 
accurate and reliable in all cases, a good rule of 
thumb is to employ a consensus calling strategy, 
where several tools are interrogated and the union 
or (weighted) overlap of their calls considered for 
downstream analysis [51]. For example, our 
approach to somatic variant calling in multiple 
myeloma uses MuTect2, Strelka2, and Lancet 
and considers as true somatic calls those pro-
duced by at least two of the three tools. This miti-
gates both the false negative problem, where a 
true variant may be missed by a tool, and the false 
positive problem, where a false variant may be 
called by a single tool. It is worth pointing out 
that false negatives may be the greatest challenge, 
as false positives may still be discovered and fil-
tered out in downstream analyses. Somatic vari-
ant calling is covered in greater details in Chap. 3 
of this volume.
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 Copy Number Alteration Calling

Somatic copy number alterations (CNAs) are 
changes in the structure of somatic cells that 
result in the gain or loss in copies of chromosome 
segments and are a common feature of cancer 
genomes [6, 7]. Some events may involve a whole 
chromosome or one of its arms and are termed 
broad CNAs, others are restricted to smaller frag-
ments and are termed focal CNAs. It is common 
to refer to single-copy alterations as gain and 
loss, while amplification and deletion are used 
for multi-copy gain and loss of both copies 
(homozygous) of a chromosome fragment. CNAs 
can play a critical role in cancer pathogenesis and 
progression as they may activate oncogenes and 
inactivate tumor suppressors [52]. The most 
obvious outcome of a change in the number of 
copies of a gene is a corresponding change in 
gene expression. Several studies have demon-
strated that variations in copy numbers signifi-
cantly correlate with differential gene expression 
[53], which may help to distinguish between 
driver and passenger CNAs. While SNV/indel 
calling is most accurate when performed on WES 
and targeted data, CNA calling is typically per-
formed on WGS data, as such alterations are 
often broad and span both coding and non-coding 
areas. Tools such as Battenberg have been 
designed for this specific task [54]. However, it is 
still possible to perform CNA calling on WES 
data and special targeted panels designed to cover 
common chromosome breakpoints. Facets is one 
such tool designed to identify CNAs in WES data 
[55]. Chapter 4 provides an in-depth review of 
the methods and tools available for the identifica-
tion of CNA in sequencing data.

 Microsatellite and Genomic 
Instability

Microsatellite instability (MSI) is a genetic con-
dition where microsatellites, which are short 
regions of repeated DNA interspersed throughout 
the genome, accumulate mutations as a result of 
a deficiency in the DNA mismatch repair (MMR) 
system. MMR corrects errors that may spontane-

ously occur during DNA replication, and its 
impairment may lead to widespread mutagenesis 
and neoplastic development [56]. In recent years, 
MSI has been shown to be a major predictor of 
response to immune blockade therapy, and the 
Food and Drug Administration (FDA) has 
approved immune checkpoint inhibitors for the 
treatment of solid tumors with high MSI, such as 
pembrolizumab, regardless of their type [57]. 
Thus, MSI is now included in precision oncology 
platforms as it may help the oncologist to identify 
patients that may benefit from immune check-
point inhibitors. Several computational methods, 
such as MSIsensor and MSI-seq, have been 
developed to detect MSI from WGS and WES 
data [58, 59]. Some tools are based on mutation 
burden as a measure of MSI status, while others 
compare the percentage of unstable microsatel-
lites in a tumor compared to a matched normal 
sample. As for variant calling, the input of these 
tools are post-processed BAM files. The output is 
usually a score that indicates if the tumor is MSI- 
high or MSI-low (or stable). For example, a pan- 
cancer study on >15,000 solid cancers reliably 
inferred MSI status using the tool MSIsensor and 
found that MSI-high was predictive of Lynch 
syndrome-associated cancer predisposition [60]. 
More details on MSI and computational 
approaches for its assessment in sequencing data 
are given in Chap. 5.

 Germline Variant Calling in Precision 
Oncology

Germline variants are changes that occur in 
reproductive cells (i.e., egg or sperm) and, there-
fore, can be passed from parent to offspring, 
where it is incorporated into the DNA of every 
cell of the body. Some germline mutations may 
cause hereditary cancer syndromes, which pre-
dispose the carriers to certain types of cancers. 
For example, mutations in the BRCA1 or BRCA2 
genes are often associated with hereditary breast 
and ovarian cancer, while mutations affecting the 
DNA mismatch repair mechanism may cause 
Lynch syndrome, which increases the risk of 
developing colorectal cancer. It is estimated that 

1 The Architecture of a Precision Oncology Platform



8

between 5% and 10% of all cancers are heredi-
tary. While precision oncology platforms are 
mostly focused on somatic variants, which are 
the driver alterations in most cancers, they can 
also incorporate the analysis of control samples 
to identify variants associated with cancer predis-
position. Like for the detection of somatic muta-
tions, there is a BroadBPW for the discovery of 
germline short variants [27]. The processing 
pipeline includes the same steps described in sec-
tions “Pre-processing of Sequencing Data” and 
“Post-processing of Read Alignments” for 
somatic variant calling, such as reads mapping, 
duplicate marking, and base quality score recali-
bration. Then, GATK HaplotypeCaller is used to 
identify variants in the sample, which are output-
ted in a GVCF (Genomic VCF) file. Multiple 
GVCFs from different patients can then be con-
solidated and processed by GenotypeGVCFs, 
which performs cohort joint variant calling. This 
step is highly recommended because it improves 
the accuracy and sensitivity of variant detection, 
particularly at low-coverage or low-quality sites, 
by leveraging population-level information. The 
resulting raw VCF file is then filtered using dif-
ferent tools in GATK, such as VariantRecalibrator, 
to remove variants that are likely to be false posi-
tive. These tools make use of machine learning 
algorithms that are trained on large high-quality 
datasets of known variants and then applied to 
identify variants that are likely to be real in the 
target sample. The filtered VCF is then ready for 
annotation, evaluation, and downstream analy-
ses. Other popular tools for germline variant dis-
covery are Freebayes, VarScan, and DeepVariant 
[61–63].

 Intratumor Heterogeneity

Inter-tumor heterogeneity, that is the genetic and 
phenotypic variations observed in different 
patients affected by the same cancer, is a well- 
established factor which constitutes the basis for 
tumor subtyping and patient classification [64–
66]. For example, there are four main subtypes of 
breast cancer, each characterized by specific 
molecular alterations and level of aggressiveness: 

luminal A, luminal B, triple-negative/basal-like, 
and HER2-enriched. This explains how different 
tumors respond to therapy and poses a significant 
challenge for the discovery of reliable prognostic 
and therapeutic biomarkers as well as the design 
of clinical trials. However, another level of het-
erogeneity, observed within the individual tumor 
and, therefore, called intratumor heterogeneity 
(ITH), is a consequence of tumor evolution and 
introduces further challenges related to resistance 
to therapy [67]. Each tumor, indeed, consists of 
heterogeneous cell populations resulting from 
selection and expansion of clones and subclones 
carrying specific mutations, which confer them 
selective growth advantage, often following 
exposure to drugs [68]. Subclonal cell popula-
tions may develop from a primary tumor clone 
either in a linear or branching fashion, that is, by 
acquiring additional alterations sequentially or in 
parallel. Thus, they can be represented in a phy-
logenetic tree which describes their relationships 
in the context of tumor evolution. Several compu-
tational tools to define the tumor clonal landscape 
and evolution using WES data have been devel-
oped, based on the observation that the SNVs 
affecting a tumor clone and its descendants, have 
correlated variant allele frequency (VAF), which 
can then be used to define the clones through 
clustering techniques and probabilistic modeling 
[69–71]. It has been reported that the clonal land-
scape of a tumor may change dramatically fol-
lowing therapy, where different subclonal 
populations resistant to the specific therapy 
expand and cause relapse and disease progres-
sion. Therefore, assessing clonality before and 
after a treatment may help to identify better drug 
options based on the alterations driving each sub-
clonal population. This is a challenging task, 
since it is not always easy to identify drivers of 
clonal and subclonal expansion and there may 
not be drugs which are known to be active against 
specific driver lesions. Nevertheless, characteriz-
ing the clonal landscape of a tumor can provide 
meaningful information that can inform progno-
sis and therapy design. Tools such as PyClone, 
SciClone, and PhyloWGS employ probabilistic 
modeling to infer the clonal landscape that best 
explains the observed mutations [72–74]. While 
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some tools additionally overlay CNAs on copy 
number neutral SNVs (e.g., SciClone), others 
integrate them in the inference process, as their 
presence can alter the VAF of mutations and, 
therefore, needs to be considered for accurate 
subclonal reconstruction (e.g., PhyloWGS and 
QuantumClone) [75]. Moreover, several tools are 
designed to utilize multiple samples from the 
same patient, separated either temporally (e.g., 
different time points during treatment) or spa-
tially (e.g., primary tumor and metastasis), which 
can improve the accuracy of subclonal recon-
struction and provide important information 
about tumor evolution [76–79]. The typical out-
put of an ITH analysis tool consists of a list of 
SNVs and/or CNAs in the samples of interest 
annotated with the subclones they belong to. In 
addition, they can provide useful plots to visual-
ize the different clonal and subclonal cell popula-
tions and the tumor phylogenetic tree. The 
problem of dissecting ITH from bulk sequencing 
samples and the methods and tools available to 
solve it are described in greater detail in Chap. 6.

 Analysis of RNA Sequencing Data

Precision oncology has mostly focused so far on 
the identification of actionable genetic altera-
tions, thus relying on DNA sequencing analysis. 
Recently, RNA-Seq has emerged as a promising 
complementary tool for clinical decision- 
making, as proven in several studies. One typical 
application of RNA-Seq analysis in precision 
oncology is the identification of chimeric tran-
scripts arising from gene fusions, hybrid genes 
created from the fusion of two separate genes 
formed as a product of chromosomal rearrange-
ments. Gene fusions can be functional and 
encode chimeric proteins with oncogenic poten-
tial [80]. For example, BCR-ABL, a gene fusion 
found in most patients with chronic myeloge-
nous leukemia (CML), is created from the trans-
location between the long arms of chromosomes 
9 and 22 t(9; 22) (known as the Philadelphia 
chromosome) which merges the 5’ part of the 
BCR gene, normally located on chromosome 22, 
with the 3’ part of the ABL1 gene, located on 

chromosome 9, and is translated into a hybrid 
protein with constitutive kinase and oncogenic 
activity. The BCR-ABL chimeric protein is also 
a prime example of actionable alteration, since it 
is the target of the tyrosine kinase inhibitors ima-
tinib and nilotinib [81]. Other emerging applica-
tions of RNA-Seq in precision oncology include 
the identification of specific prognostic and ther-
apeutic gene expression biomarkers and the cal-
culation of pathway activity. This section will 
provide an overview of the steps and methods 
involved in processing RNA-Seq data. Since 
many steps are virtually the same as for DNA 
analysis, only the RNA-specific steps will be 
discussed, while the previous sections will be 
referenced for the common steps.

 Pre-processing, Mapping, 
and Filtering of RNA-Seq Data

RNA-Seq raw data is organized in text files in the 
FASTQ format, exactly like DNA sequencing 
data. The steps for QC, trimming, and filtering 
described in section “Pre-processing of 
Sequencing Data” are applicable to RNA-Seq as 
well. While the goal of RNA reads alignment is 
to identify the genomic location where these 
reads originated from, like in the case of DNA 
data, this task is performed using tools specifi-
cally designed to handle RNA-Seq data, as it is 
complicated by the non-contiguous nature of 
RNA transcripts resulting from splicing. A fast an 
accurate tool widely used for the alignment of 
RNA-Seq data is STAR [82]. STAR uses gene 
structure annotations provided in the gene trans-
fer format (GTF) to extract known splice junc-
tions and build spliced sequences by deleting 
intron sequences. This significantly improves the 
mapping of canonical spliced reads. However, 
STAR is also capable of discovering non- 
canonical splices and chimeric transcripts. STAR 
has several basic and advanced parameters that 
can be fine-tuned to optimize its speed and accu-
racy [83]. Like in the case of DNA mapping, 
RNA-Seq alignments are outputted as BAM files, 
which are usually sorted and indexed using tools 
such as Samtools [40].
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 Quantification and Normalization 
of Gene Expression

Once reads have been aligned, the next step in the 
analysis of RNA-Seq data is to quantify gene 
expression. The raw counts are obtained by 
assigning the reads originating from a specific 
genomic location to the overlapping gene, pro-
viding an estimate of the transcript abundance for 
each gene. Tools such as featureCounts and 
HT-Seq perform this task [84, 85]. Since genes 
may be expressed as different isoforms due to 
alternative splicing events, it is also possible to 
use this information to quantify the abundance of 
specific transcripts, rather than assigning all the 
overlapping reads to a unique gene entity. While 
featureCounts and HT-Seq return transcript abun-
dance as the raw number of reads, that is, counts, 
which is a format accepted by many tools for 
RNA-Seq analysis such as DESeq2 for differen-
tial expression [86], it is also common to perform 
a within-sample normalization and use units such 
as Reads Per Kilobase per Million 
(RPKM)/Fragments per Kilobase per Million 
(FPKM) and Transcripts Per Million (TPM). 
These three units are similar to one another and 
account for both gene/transcript length and 
sequencing depth, allowing to compare features 
of different length.

It has been shown that different alignment and 
quantification strategies may result in inaccurate 
gene expression estimates, where the expression 
of a gene may be over- or underestimated, for 
example, in the case of reads overlapping multi-
ple genes or when features share high sequence 
similarity [87]. If a read is mapped to more than 
one gene, tools such as HT-Seq and  featureCounts 
will discard it. However, alternative approaches 
that virtually use all the sequenced reads have 
been proposed, such as mmquant, which assigns 
multi-mapping reads to groups of genes instead 
[88].

Finally, alignment-free approaches for accu-
rate and fast transcript quantification, such as 
pseudoalignment and quasi-mapping, could be 
used when the objective is to quantify transcript 
abundance. Pseudoalignment, for example, 
which is implemented in the tool Kallisto, con-

sists in matching the reads to the transcriptome, 
rather than the entire genome, and using specific 
data structures (e.g., a De Bruijn graph) to opti-
mize the search for the set of transcripts compat-
ible with a given read [89]. Other tools 
implementing rapid quantification approaches 
include Sailfish and Salmon [90, 91].

 Gene Fusion Identification

The identification of gene fusions resulting from 
chromosomal translocations such as the 
Philadelphia chromosome can be effectively per-
formed by the analysis of the transcriptome, 
which reflects these genetic abnormalities. The 
chimeric transcripts originating from gene 
fusions can be detected by either mapping the 
reads to the genome capturing discordant read 
pairs and chimeric alignments or by performing 
de novo RNA-seq assembly of the transcripts and 
then identifying the chimeric alignments. 
Numerous tools have been developed implement-
ing these approaches, many of which are 
described by Haas and colleagues in a compre-
hensive review and benchmarking study [92]. 
This study showed that read mapping-based 
approaches, and particularly the tools STAR- 
Fusion, Arriba, and STAR-SEQR, had the best 
performances overall in terms of both accuracy 
and speed, while de novo assembly-based tools 
were unable to achieve the same sensitivity in 
discovering fusions in cancer transcriptomes and 
were more successful in other applications 
instead, such as reconstruction of tumor viruses 
[93–95]. A comprehensive review of tools for 
gene fusion detection in RNA-Seq data is also 
given in Chap. 9 of this volume.

 Gene Expression Analysis 
and Biomarker Identification

One of the most common applications of gene 
expression analysis, whether based on microar-
ray or RNA-Seq, is the identification of prognos-
tic and therapeutic biomarkers. Thousands of 
scientific articles have been published in the past 
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two decades reporting gene expression signatures 
and machine learning models discriminating 
between responders and non-responders to spe-
cific therapies and stratifying patients into prog-
nostic classes [96–101]. Such signatures and 
models can be easily incorporated into a preci-
sion oncology platform for risk assessment and 
predict response to drugs. Naturally, this process 
depends on the specific signatures and whether 
they are transferable to the case in analysis. Gene 
expression signatures are typically determined 
through differential expression and Cox regres-
sion analyses. Such signatures may discriminate 
between cancer and normal tissues, identify 
patients in specific disease stages, or identify 
responders to a specific therapy [98, 102]. 
Specific diagnostic, prognostic, and response 
scores can then be derived from these signatures 
and implemented in precision oncology 
applications.

 Single-Sample Approaches to Gene 
Expression Analysis and N-of-1 
Studies

While the traditional gene expression analysis 
performed on groups of tumor and control sam-
ples can inform precision oncology applications 
by enabling the discovery of prognostic and ther-
apeutic biomarkers and general mechanisms of 
dysregulation, the individual nature of a preci-
sion oncology analysis require single-sample and 
N-of-1 based approaches [103]. In fact, although 
cohort-level analyses benefit from statistical 
assessment of the observed changes, thus 
 reducing the chances of false positives and arti-
facts, their findings are not always generalizable 
and genes that are perturbed on average in spe-
cific conditions may not be perturbed at all in the 
individual patients. To overcome such limitations 
and enable gene expression studies at the indi-
vidual level, novel approaches have been recently 
developed, which mitigate lack of statistical 
power and exploit the variation observed within a 
sample or in multiple samples from the same 
patient. One obvious approach would be to obtain 
at least three replicates from the same individual 

for each of the conditions tested, that is, tumor 
and normal tissue. This would allow to employ 
statistical tests to assess significance of the dif-
ferentially expressed genes. However, such 
approach may not be feasible, due to limited tis-
sue availability, or cost-effective. One alternative 
approach for individual-level analysis of gene 
expression relies on the relative ranking of gene 
expression within a sample, which has been 
shown to be robust to batch effect and normaliza-
tion. The tool RankComp, and the more recent 
method PenDA (Personalized Differential 
Analysis), are based on the observation that the 
relative ordering of gene expression across nor-
mal tissue samples is much more stable than in 
diseased tissue [104, 105]. RankComp uses accu-
mulated gene expression data from normal sam-
ples, which may be obtained from different 
sources, to identify statistically stable gene pairs, 
that is, genes which have the same order relation-
ship (g1<g2 or g1>g2), in terms of expression, in 
most of the samples. Next, reversal gene pairs are 
identified in the individual tumor sample, that is, 
genes whose ranking within the sample is 
reversed compared to the cohort of normal sam-
ples. A statistical test is then employed to deter-
mine if a given gene g is significantly up- or 
downregulated in the tumor sample based on the 
number of genes whose expression is lower or 
higher than g in the normal and tumor samples. A 
more recent method called iDEG (individualized 
Differentially Expressed Genes) bypasses the 
individual-sample limitation by modeling read 
counts for each gene in the normal and tumor 
samples based on other genes with similar base-
line expression and applying a localized version 
of the variance-stabilizing transformation used in 
cohort-based gene expression analysis in differ-
ent windows of genes with similar expression at 
the baseline [106]. A different approach was 
implemented in the tool PePPeR (PErsonliazed 
Perturbation ProfilER), which constructs person-
alized perturbation profiles that reflect expression 
changes within a single subject [107]. Genes 
whose expression level in an individual sample is 
far from the range of values observed in a panel 
of control samples are defined as perturbed in the 
individual.
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 Reversal of Gene Expression Profiles

In the past decade, a novel drug repurposing 
paradigm based on the analysis of the transcrip-
tome has been proposed and demonstrated 
effective in several studies. This approach 
leverages libraries of drug-induced gene expres-
sion profiles in cell lines to identify those drugs 
whose profile is the inverse of that of an indi-
vidual patient. More specifically, given a set of 
up- and downregulated genes identified in a 
specific patient’s tumor, this methodology 
search for drugs inducing gene expression 
changes that are opposite to those observed in 
the patient, that is, genes that are upregulated 
by the drug are downregulated in the patient 
and vice versa [108]. The assumption behind 
this approach is that such drugs may reverse the 
gene expression changes induced by the disease 
state. Several studies have applied this approach 
to determine novel drug candidates for various 
cancers, including lung, renal, and colorectal 
cancer. The Connectivity Map (CMap) project 
and its next generation called L1000 estab-
lished “a comprehensive catalog of cellular sig-
natures representing systematic perturbation 
with genetic and pharmacologic perturbagens,” 
which can then be leveraged to perform gene 
expression reversal drug repurposing using the 
Reverse Gene Expression Score (RGES), which 
is a measure of potency to reverse disease gene 
expression [109, 110]. A recent study found 
that the RGES positively correlates with the 
half- maximal inhibitory concentration (IC50), 
which is a measure used to estimate drug effi-
cacy in vitro [108]. The study determined four 
compounds with the potential of reversing gene 
expression in liver cancer and validated them in 
cell lines. They further validated one of the 
drugs, pyrvinium pamoate, in  vivo in a xeno-
graft model. We recently incorporated this 
approach to drug repurposing in our pipeline 
for precision medicine of multiple myeloma, 
where potential drug candidates were identified 
using the tool L1000CDS [2], a fast L1000 
search engine based on characteristic direction 
method [25, 111].

 Pathway Analysis

Turning lists of mutated or differentially 
expressed genes into meaningful biological 
insights can be a complex task, which computa-
tional functional analysis seeks to address using a 
variety of algorithms and statistical approaches. 
The aim of such analysis is to leverage knowl-
edge bases of curated gene-set collections to 
assess the impact of the observed genetic altera-
tions and/or gene expression changes on the 
activity of molecular and cellular pathways and 
understand the functional, clinical, and therapeu-
tic implications of such events [112]. For exam-
ple, the dysregulation of cell cycle is a hallmark 
of cancer cells and can be effectively assessed by 
evaluating the changes in the expression of cell 
cycle regulator genes, which are described and 
summarized in curated gene sets. Such gene sets 
may also include the prognostic and drug 
response-related signatures discussed in sections 
“Gene Expression Analysis and Biomarker 
Identification” and “Reversal of Gene Expression 
Profiles”. Numerous computational tools have 
been developed to perform functional analysis of 
gene sets, the majority of which have been 
designed specifically for gene expression studies. 
However, several tools have also been recently 
proposed which focus on genomic rather than 
gene expression changes or which combine both 
types of measurements. Over-representation 
analysis (ORA) and functional class scoring 
(FCS) are the most popular classes of tools for 
functional analysis [113, 114]. The ORA 
approach aims at assessing the over- representation 
of a list of genes, for example, genes differen-
tially expressed in a group of patients, in a list of 
gene sets, for example, genes involved in specific 
pathways. ORA tools typically implement the 
hypergeometric and Fisher’s exact tests. FCS 
methods represent an improvement on ORA, as 
they consider the full gene expression profiles 
rather than a list of DE genes previously identi-
fied. This allows to identify sets of functionally 
related genes whose expression may not change 
significantly individually but whose coordinated 
variation has significant impact on a specific 
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pathway. Both ORA and FCS approaches have 
been developed for patient cohort analysis, 
although in principle pure ORA tools can be 
applied to DE genes from an individual patient. A 
further refinement of functional enrichment tools 
has been specifically developed to perform 
single- sample analysis. Given a gene expression 
matrix from multiple samples, these tools calcu-
late an enrichment score for each patient and 
gene-set pair, thus allowing to perform down-
stream analysis such as unsupervised clustering, 
comparing a tumor with a normal sample or mul-
tiple tumor samples with one another at the gene- 
set or pathway level, rather than at the individual 
gene level. In this sense, this approach may also 
be thought of as a dimensional reduction tech-
nique, where a large gene expression matrix is 
replaced by a smaller one focused on gene sets. 
Several tools have been developed implementing 
different solutions for this task. Single-sample 
GSEA (ssGSEA) and Gene Set Variation Analysis 
(GSVA) perform a relative enrichment of path-
ways across the sample space by evaluating 
whether each gene is highly or lowly expressed in 
each sample in the context of the sample popula-
tion distribution [115, 116]. Other more recent 
tools, such as Singscore and MixEnrich, imple-
ment true single-sample methods, where the 
enrichment scores calculated for each tumor 
sample do not depend on the other samples ana-
lyzed. Singscore is a rank-based method which 
calculates a score corresponding to the relative 
mean percentile rank of the analyzed gene sets 
within each sample [117, 118]. The ideal applica-
tion of Singscore is to assess the enrichment in a 
single sample for curated gene signatures of up- 
and downregulated genes. Thus, if the goal of the 
analysis is to determine the activation of a spe-
cific pathway, it is important to first determine the 
list of dysregulated genes, along with their direc-
tions, which are expected to be observed when 
the pathway is activated. MixEnrich implements 
a mixture model clustering of transcripts, that is, 
a mixture of the distributions of dysregulated vs. 
unaltered mRNAs, followed by an enrichment 
analysis [119]. While MixEnrich is robust against 
bidirectional dysregulation, since genes within a 
pathway that are dysregulated in both directions 

contribute additively to the over-representation of 
such genes, it can only identify significantly dys-
regulated pathways, where the direction of the 
dysregulation, that is, activation or inhibition, is 
not given. To truly quantify and characterize the 
impact of dysregulated genes on relevant path-
ways, topology-based (TB) methods have been 
developed, which take into account not only the 
list of genes in a pathway but the structure of the 
pathway as well, including the type of interac-
tions and dependencies between the genes in the 
pathway [120, 121]. Most TB tools available so 
far are cohort-based and calculate activation and 
inhibition of pathways in each provided sample 
based on the gene expression distribution in the 
patient population, for example, from the lists of 
DE genes between tumors and normal controls. 
They can be a suitable choice when both tumor 
and normal samples for multiple patient samples 
are available. Recently, a single-sample TB tool 
for pathway enrichment has been developed spe-
cifically for precision medicine applications. 
PerPAS quantifies pathway activity at the indi-
vidual sample level by quantifying gene contri-
bution to a pathway and calculating a personalized 
pathway activity score [122]. However, to calcu-
late this score, PerPAS standardizes gene expres-
sion of a tumor sample to the mean and standard 
deviation of a group of control samples, if avail-
able, or to a cohort of tumor samples, basically 
measuring gene expression difference between 
the tumor and the mean of all the other tumor 
samples in the cohort. For each pathway, gene 
contribution is quantified based on topology 
measures, such as betweenness centrality and 
hubness. For example, genes with high between-
ness centrality, that is, bottleneck genes, are con-
sidered to have high contribution to a pathway. 
The personalized pathway activity score for a 
given sample s and pathway p is then calculated 
by summing the contribution of each gene in the 
sample to the pathway by considering its stan-
dardized expression in the sample.

Finally, PROGENy is a recent tool which 
leverages a large database of publicly available 
perturbation experiments to define a core of path-
way responsive genes [123]. The authors of 
PROGENy have collected gene expression data 
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from perturbation experiments related to 10 path-
ways that are relevant to cancer, such as MAPK, 
Hypoxia, and JAK-STAT, and extracted signa-
tures corresponding to the activated state of these 
pathways. Thus, rather than measuring the genes 
that define each pathway, PROGENy calculates a 
sample-specific enrichment for downstream sig-
natures of pathway activation. The authors have 
shown that PROGENy can accurately infer path-
way activity based on gene expression and effec-
tively recover the effect of known driver 
mutations on pathway activation. The current 
limitation of PROGENy is the small number of 
pathways available, which may not be sufficient 
depending on the cancer analyzed.

 Annotation, Interpretation, 
and Prioritization of Actionable 
Findings

 Variant Annotation

Once DNA variants, for example, SNVs and 
CNAs, have been identified, the next step is to 
annotate them with information on their potential 
oncogenic impact. This is a complex task that 
leverages data from multiple sources such as 
databases of variations observed in cancer and 
other diseases (e.g., COSMIC, ClinVar), in the 
general population (e.g., gnomAD) and in GWAS 
studies [124–127]. This helps to determine which 
mutations are likely pathogenic, for example, 
recurring in the same or other cancers, or likely 
benign, for example, observed frequently in 
healthy individuals. Additionally, several tools 
have been developed to predict the impact of a 
mutation based on the specific amino acid substi-
tution and whether it is likely to affect the func-
tion of the protein. SIFT, PolyPhen, 
MutationAssessor, CADD, and FATHMM are 
popular tools for this task [128–133]. In general, 
variants that change the coding sequence of a 
gene and the corresponding amino acid sequence 
(e.g., missense mutations) are the most obvious 
oncogenic candidates. Other relevant variants 
include nonsense mutations, which result in a 
premature stop codon and in a truncated, likely 

non-functional, protein, and splice site muta-
tions, which may alter the coding sequence by 
extending or reducing exons. Other genetic vari-
ants may also have deleterious effects on the cor-
responding proteins. For example, mutations in 
the 3’ untranslated region (UTR) may affect post- 
transcriptional regulation by microRNAs (miR-
NAs) and RNA-binding proteins (RBPs), but the 
functional implications of such events are not 
easy to determine; therefore, they are not typi-
cally flagged as deleterious. Naturally, such deci-
sions depend on the task at hand. While 
investigating the impact of non-coding or passen-
ger mutations and their role in the oncogenic pro-
cess can yield significant novel insights into the 
pathogenesis of cancer and advance the field, the 
goal of a precision oncology platform is to sup-
port clinical decision-making. Therefore, it is 
essential to remove as much noise as possible and 
focus on what is most likely deleterious and 
actionable, that is, supported by convincing evi-
dence. The annotation task is facilitated by tools 
like Annovar, ClassifyCNV, Oncotator, and 
Funcotator, which conveniently include several 
data sources and impact-assessment tools [134–
136]. Tools for assessing and annotating variants 
are described in greater detail in Chap. 10 of this 
volume.

 Variant Interpretation

The crucial task at the end of a precision oncol-
ogy workflow is to connect the annotated variants 
with actionable clinical data retrieved from the 
literature and clinical trials. Actionable variants 
are those associated with sensitivity to one or 
more drugs in one or more cancer types. For 
example, a phase 3 randomized clinical trial in 
patients with metastatic melanoma showed that 
the V600E variant in the gene BRAF predicts 
sensitivity to the BRAF inhibitor vemurafenib 
[137]. This type of information is essential to 
provide a clinically meaningful interpretation of 
all the alterations detected in a patient and repre-
sents the ultimate output of a precision oncology 
pipeline, which guides the physician’s decision 
on what potential therapeutic options might ben-
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efit the patient. Actionable clinical data is avail-
able from several public sources as manually 
curated and scored variant-drug associations 
based on their level of evidence. Recently, the 
Variant Interpretation for Cancer Consortium 
(VICC), a project of the Global Alliance for 
Genomics and Health, has developed a harmo-
nized meta-knowledgebase (VICC KB) of clini-
cal interpretation of somatic genomic variants in 
cancer [138]. The VICC KB is curated from six 
different independent data sources of clinically 
relevant evidence associated with genomic varia-
tion in cancers: Clinical Interpretation of Variants 
in Cancer (CIViC), the Jackson Laboratory 
Clinical Knowledgebase (JAX CKB), 
MolecularMatch, the Memorial Sloan-Kettering 
OncoKB, the Weill-Cornell Precision Medicine 
Knowledgebase (PMKB), and the Cancer 
Genome Interpreter (CGI) [139–143]. The initial 
release of VICC KB v.0.10 contained 12,856 
aggregate interpretations supported by 4354 
unique publications, for a total of 3439 variants. 
Surprisingly, over 70% of variants were described 
by only one of the six KBs, with less than 10% 
described in at least three. The authors reported 
that this lack of overlap was in part due to the dif-
ferent forms used to identify the same alterations 
and that their harmonization method improved 
consensus across the different sources and 
increased findings of clinical significance. Each 
entry in the VICC KB corresponds to a specific 
interpretation. For example, at the time of this 
writing a search for the BRAF V600E mutation 
returned 682 different entries. Each one of these 
entries correspond to a record from one of the six 
data original sources, providing details on the 
associated drug, the type of association, that is, 
sensitivity or resistance, the level of evidence, the 
cancer type and a list with the relevant publica-
tions supporting the association, along with a 
summary extracted from these publications. The 
type of alterations documented includes SNVs, 
CNAs, and differentially expressed genes. In the 
case of BRAF V600E, for example, the first hit is 
an entry from the JAX CKB describing a level A 
association supporting sensitivity to the MEK 
inhibitor Trametinib in patients with melanoma, 
based on a publication by Flaherty et  al. from 

2012 [144]. Another entry from JAX CKB, 
instead, describes a level A association support-
ing resistance to the EGFR inhibitor cetuximab 
in patients with colon carcinoma, based on guide-
lines from the National Comprehensive Cancer 
Network (NCCN). Entries are annotated using 
four different levels of evidence, A to D. Level A 
is the strongest and indicates “evidence from pro-
fessional guidelines or FDA-approved therapies 
relating to a biomarker and disease.” Level B 
indicates “evidence from clinical trials or other 
well-powered studies in clinical populations, 
with expert consensus.” Level C, instead, corre-
sponds to “Evidence for therapeutic predictive 
markers from case studies, or other biomarkers 
from several small studies” as well as “evidence 
for biomarker therapeutic predictions for estab-
lished drugs for different indications.” Finally, 
level D indicates “preclinical findings or case 
studies of prognostic or diagnostic biomarkers,” 
including indirect and inferential findings as 
well. The VICC KB is accessible via an API and 
can thus be easily incorporated programmatically 
into any precision oncology pipeline. Chap. 10 of 
this volume provides a detailed overview of 
methods and databases for clinical interpretation 
of variants.

 Precision Oncology Reports

Reports are a key component and the main output 
and of a precision oncology platform which sum-
marize clinically relevant findings and present 
them to the referring physicians and the patients. 
When compiling a report, one should aim for 
completeness, clarity, and brevity: all the mean-
ingful data that can inform patient stratification, 
prognosis, and therapy should be included, orga-
nized coherently in tables, lists, and plots, and 
annotated with essential information from the 
literature and other relevant sources.

Prioritizing the findings is crucial to generate 
effective reports. In this chapter, the typical stan-
dard components of a precision oncology plat-
form were introduced, as well as other potential 
sources of clinically relevant information that 
may not yet be mature for a clinical decision- 
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making system but could be in the (near) future. 
Clinically actionable data, associating the vari-
ants detected in a patient with specific treatments 
and clinical trials, such as level A and B evidence 
from the VICC KB, represent the essential infor-
mation to include in a report and should be fur-
ther prioritized by cancer type. An actionable 
mutation is particularly relevant when identified 
in the same type of cancer affecting the patient, 
while may not be as relevant when discovered in 
a distant type, for example, solid vs. liquid 
tumors. Nevertheless, one of the key concepts of 
precision medicine is that patients may be 
matched with treatments on the basis of specific 
genomic alterations rather than on the tumor his-
tology or tissue type; therefore, it is always rec-
ommendable to include all the data supported by 
strong evidence. If available, information on 
clinical trials for which the patient is eligible 
should also be provided. While data on SNV, 
CNA, gene fusions, and specific gene expression 
biomarkers included in the VICC KB and similar 
sources is annotated with evidence level and, 
therefore, relatively easy to prioritize, the results 
of the optional components discussed in this 
chapter, such as pathway analysis and intratumor 
heterogeneity, may not be interpreted and incor-
porated as easily and should be provided, if 
available, as additional information. For exam-
ple, while a specific level A SNV, like BRAF 
V600E, can be immediately actionable and tar-
geted with a specific drug, the knowledge that 
the patient’s gene expression profile indicates 
activation of the MAPK pathway can increase 
confidence in the recommendation when associ-
ated with the mutation, but can be less specific 
on its own. Similarly, the additional information 
provided by the assessment of the clonal land-
scape as estimated indirectly based on SNV and 
CNA, may not represent a strong actionable 
finding. However, knowing that the patient has a 
tumor subclone harboring a mutation that con-
fers resistance to a specific drug which is other-
wise recommended, may help the physician to 
consider alternative treatments or a combination 
therapy additionally targeting the problematic 
subclone, if available.

 An Example: A Precision Oncology 
Platform for Multiple Myeloma

In 2018, we published the results obtained in a 
pilot precision medicine clinical trial with 
relapsed and refractory multiple myeloma (MM) 
patients at the Mount Sinai Hospital, NY [25]. 
This trial leveraged our novel precision oncology 
platform which integrated WES and targeted 
DNA panels and RNA-Seq to generate drug rec-
ommendation for patients with advanced disease. 
MM is a cancer of antibody-secreting plasma 
cells in the bone marrow, and, although generally 
manageable in the early stages, it becomes 
increasingly difficult to treat as patients progress 
and become refractory to therapy. The patients 
that were treated following the recommendations 
of our platform had already received 7 lines of 
therapy, on average, and were mostly refractory 
to standard of care and other approved options 
for myeloma.

The platform consisted of several components 
for the analysis of DNA sequencing data, whether 
produced by WES or targeted panels, and RNA- 
Seq data. Tumor plasma cells from the bone mar-
row (CD138+ cells) were subjected to DNA 
sequencing (WES or targeted sequencing) and 
RNA-Seq. Granulocytes from peripheral blood 
were also sequenced (WES) as a control for DNA 
analysis, which consisted of mapping of raw 
sequencing data using BWA, data post- processing 
using Samtools and GATK/Picard, SNV calling 
using MuTect, and CNA calling using Battenberg 
[26, 38, 40, 47, 54].

The RNA pipeline consisted of raw data map-
ping with STAR and gene quantification with 
featureCounts [82, 84]. Raw counts were normal-
ized using the TMM function from the R package 
edgeR and voom from the R package limma 
[145, 146]. Since there was no normal control 
available for RNA-Seq data, DE genes were 
identified in each sample as the genes that were 
over- or underexpressed compared to the other 
samples in the cohort, as determined by z-scores. 
Pathway activity was calculated by applying sin-
gle sample variation analysis (GSVA) on a set of 
pathways of interest [116]. Finally, the tool 
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L1000CDS [2] was used to perform reverse- 
matching of patient samples with gene expres-
sion profiles induced by drugs on cell lines 
retrieved from the L1000 project [110, 111]. The 
methods are described in greater detail in the 
article [25].

DNA and RNA actionable findings (SNV, 
CNA, and DE genes) were identified and priori-
tized using the knowledge base CIViC, which 
provided association with drugs, along with the 
L1000 analysis on gene expression profiles [142]. 
Additional RNA findings from pathway analysis 
were annotated based on a curated set of drugs 
targeting dysregulated pathways.

The platform generated recommendations for 
63 of the 64 patients whose sequencing data was 
analyzed, and 21 of these received at least one of 
the recommendations and were evaluable for 
response. The clinical benefit rate, that is, mini-
mal response or greater, was 76%. Successful 
drug options included the MEK inhibitor 
Trametinib, recommended because of SNVs in 
NRAS or KRAS, Panobinostat, recommended 
based on activation of the HDAC pathway, and 
the BCL2 inhibitor Venetoclax, recommended 
based on the upregulation of BCL2.

The results of this study demonstrated that a 
comprehensive precision medicine approach 
based on DNA and RNA sequencing in advanced 
myeloma is feasible and can identify valuable 
therapeutic options beyond standard of care. 
Furthermore, the study provided proof of princi-
ple that the analysis of RNA can successfully 
complement the standard DNA-based approach, 
providing additional actionable evidence not cap-
tured by genomic assays.

 Conclusion

Precision oncology is a fast-evolving field which 
enables rapid translation of biomedical research 
discoveries into clinical cancer care. This chapter 
has provided an overview of the architecture of a 
precision oncology software platform, describing 
both standard components currently implemented 
in commercial and research settings, and more 
advanced components that are not yet mature for 

full clinical application. While the use of action-
able DNA mutations to determine prognosis and 
therapy has now become a component of many 
clinical trials and of routine clinical decision- 
making, the use of other data modalities, such as 
RNA biomarkers, and advanced secondary infor-
mation, like intratumor heterogeneity and path-
way activity, is still being investigated for its 
accuracy and clinical potential. The TRACERx 
clinical trials in lung and renal cell cancers, for 
example, are evaluating the impact of intratumor 
heterogeneity in cancer progression and treat-
ment resistance to determine novel actionable 
markers of drug response [147–150]. Therefore, 
it is reasonable to expect that these and other 
studies will enable the incorporation of additional 
data layers into precision oncology platforms for 
improved dissection of the disease and design of 
therapy.

It is also reasonable to expect future expan-
sions of precision oncology systems to include 
other sequencing technologies, such as single- 
cell DNA and RNA sequencing, which could 
help to better dissect the complexity of intratu-
mor heterogeneity and of the tumor microenvi-
ronment, and other types of omics, such as 
radiomics, which allows to extract quantitative 
features from medical images and is already 
showing great performance in diagnosis and dis-
ease staging [151–155]. Finally, the integration 
of more sophisticated artificial intelligence and 
machine learning tools into clinical decision- 
making platforms will further accelerate progress 
in cancer treatment and assist physicians to pro-
vide better and focused care [156–160].
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Abstract

Precision oncology mainly relies on genetic 
and molecular patient profiling from high- 
throughput sequencing data. The necessity to 
process and analyze large volumes of data has 
led to the development of robust computa-
tional tools and methods. The most challeng-
ing aspect in the implementation of a precision 
oncology workflow involves proper handling 
of large volume of data, while ensuring the 
results are reproducible and replicable. In this 
chapter, we provide a detailed description of 
the various tools available for the design and 
implementation of a precision oncology pipe-
line along with the technical considerations to 
make to utilize these tools effectively. We then 
provide a guide to the development of a preci-
sion oncology pipeline, with a specific empha-
sis on the software workflows and 
infrastructure needed.

 Introduction

Precision oncology is an innovative research 
area that has introduced a novel approach to can-
cer care, where diagnosis, prognosis, and ther-
apy are informed by genetic and molecular 
profiling of the individual patient, rather than 
being based on a one-size-fits-all approach [1–
4]. This landmark paradigm shift has been 
enabled in recent years by the reduced cost of 
next-generation sequencing (NGS) technologies 
and a myriad of ad hoc tools and software appli-
cations developed in order to analyze the data 
generated [5, 6]. The explosion of tools and 
methods as a response to the more widely avail-
able multi-omic data sets has created a challenge 
in terms of reproducibility, interoperability, and 
standardization. Tools created for the analysis of 
genomic, proteomic, transcriptomic, and other 
omic data are typically written in one or a com-
bination of three different styles: Command 
Line Interface (CLI), Application Programming 
Interface (API), or Graphical User Interface 
(GUI) [6]. Combining and ensuring reproduc-
ibility of these disparate application types has 
proven to be a major challenge for biologists as 
they often will require a deeper knowledge of 
software application development norms and 
techniques as well as greater computational 
capabilities. The absence of widely accepted 
best practices regarding software and database 
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utilization has contributed greatly to irreproduc-
ibility, resulting in many man hours and com-
pute cycles wasted in attempting to recreate past 
efforts [7].

As a remedy to this, a number of workflow 
management systems (WMS) and executors for 
running these workflow systems have been devel-
oped, such as Snakemake, Nextflow, the 
Workflow Description Language (WDL) (https://
openwdl.org/), and The Common Workflow 
Language (CWL) [8–10]. Infrastructure enabling 
the execution of these workflows have also been 
developed such as Arvados (stand-alone, deploy-
able, open-source), and Broad Institute’s Terra 
Bio Cloud Platform (web based) [11, 12].

These infrastructure and software solutions 
are able to organize and process large volumes of 
genomics data enabling scientists to discover 
ever deeper insight into biological data. Today, 
with the use of CWL, Arvados, and Cromwell 
(https://github.com/broadinstitute/cromwell), 
and facilitated by virtual servers on cloud infra-
structure, bioinformaticians and savvy data engi-
neers can write and implement a precision 
medicine pipeline while maintaining reproduc-
ibility and interoperability. In this chapter, we 
will introduce several bioinformatics workflow 
management systems and the infrastructures to 
execute them.

 Workflow Management Systems 
and Languages

Workflow management systems (WMS) are 
essential in the processing of large sets of 
patient’s genomic data. WMS are tools developed 
to facilitate the orchestration and execution of 
computational processes in an optimal and effi-
cient manner. In bioinformatics, these systems 
integrate various discrete command-line tools 
into one workflow for the rapid development of 
pipelines, which can be deployed across a variety 
of infrastructures and environments. Utilizing a 
WMS ensures ease of set-up and the ability to 
monitor performance of individual predefined 
tasks. These workflows are often linear but can 

also be dynamic or run in parallel. Table 2.1 pro-
vides a list with the most used WMS along with 
their URLs.

 CWL: Common Workflow Language

The first of several bioinformatic workflow man-
agement languages and systems discussed here is 
the Common Workflow Language (CWL; https://
github.com/common- workflow- language) [8]. 
CWL is an open standard for describing analysis 
workflows and tools in a way that makes them 
portable and scalable across a variety of software 
and hardware environments, from workstations 
to cluster, cloud, and high-performance comput-
ing (HPC) environments. It can be applied to a 
number of different scientific domains including 
Bioinformatics, Medical Imaging, Astronomy, 
High Energy Physics, and Machine Learning. 
CWL sets itself apart from most other workflow 
languages by attempting to adopt open-source 
principles and standards such as open- stand.org, 
which advocates for cooperation, adherence to 
principles, collective empowerment, availability, 
and voluntary adoption. CWL is not a software, 
but a specification which describes command 
line tools and allows them to be connected 
together to form a workflow. CWL’s commitment 
to creating a community which focuses on stan-
dardization and other open-source principles has 
led to its adoption by a number of workflow exe-
cution programs such as Toil, Arvados, Rabix, 
Cromwell, and Bcbio (See Tables 2.1 and 2.2). 
Rabix, for example, is a powerful open-source 
suite of tools for CWL, which include Rabix 
Composer, a graphical editor enabling visual pro-
gramming in CWL, Rabix Benten, a language 
server for CWL documents, and Rabix Executor, 
a workflow runner that can execute CWL pipe-
lines (https://rabix.io/). Figure  2.1 shows an 
example of graph generated with Rabix 
Composer.

The use of CWL to create tools and workflows 
facilitates the ease of future repeatability and 
reproducibility of results. This leads to greater 
cooperation between standard organizations, 
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building a foundation for collaboration. The 
development of CWL into a standard was made 
possible by adhering to five fundamental princi-
ples of standard development [13]. First, deci-
sions regarding the direction and development of 
the standard must be made with equity and fair-
ness, implementing a well-defined due process 
by which participating parties have the ability to 
appeal decisions made. Next, a broad consensus 
must be made in order to facilitate agreement 
across a range of interests. A general agreement, 
incorporating all views, is paramount to the 
establishment and persistence of an open stan-
dard. Third, activities and work being undertaken 
must be recorded for posterity with those records 
open and easily accessible to all. A consistent 
transparency must be maintained by giving 
advance notice of new proposals and activities. 
Fourth, a certain balance must be struck among 
all parties involved. No one entity involved in the 
development of the standard may have dispropor-
tionate influence on its direction or activities. 
Finally, the processes by which the standards are 
developed must be open to all. CWL stands out 
by encompassing all these principles and enabling 
cross-collaboration.

 WDL: Workflow Description 
Language

WDL (Workflow Description Language) is a 
community-driven open-development workflow 
language developed by the Broad Institute [14]. 
WDL specifies data processing workflows with a 
human-readable and writable syntax very simi-
larly to CWL. WDL was ostensibly developed to 
support Terra, a platform developed by the Broad 
Institute of MIT and Harvard in collaboration 

with Verily Life Sciences. Terra is not open- 
source platform and requires users to purchase 
credits for compute cycles. Similar to CWL, the 
WDL scripts are not executable and require an 
execution engine, such as Cromwell, MiniWDL 
or dxWDL, and an environment to be runnable.

 NextFlow

NextFlow is a popular workflow system devel-
oped by Seqera Labs in Barcelona, Spain, 
designed to address numerical instability, effi-
cient parallel execution, error tolerance, execu-
tion provenance, and traceability [9]. Similar to 
CWL, this domain-specific language (DSL) uti-
lizes software containers to create scalable and 
reproducible workflows, enabling rapid pipeline 
development through the adaptation of existing 
pipelines written in any scripting language. 
NextFlow also supports GitHub and BitBucket 
integration, which allows for the consistent track-
ing of software changes and versions. 
Containerization, enabled by utilizing container 
platforms such as Docker (https://www.docker.
com/) or Singularity (https://singularity.hpcng.
org/), ensures numerical stability [15, 16]. It can 
be executed on Sun Grid Engine (SGE) (http://
star.mit.edu/cluster/docs/0.93.3/guides/sge.
html), Load Sharing Facility (LSF) (https://www.
ibm.com/docs/en/spectrum- lsf/10.1.0), SLURM 
workload manager (https://slurm.schedmd.com/
overview.html), Portable Batch System (PBS) 
(https://www.nas.nasa.gov/hecc/support/kb/
portable- batch- system- (pbs)- overview_126.
html) and for Kubernetes (https://kubernetes.io/), 
Amazon Web Services (AWS) (https://aws.ama-
zon.com/), and Google Cloud platforms (https://
cloud.google.com/) for rapid computation and 

Table 2.1 Workflow management systems

Name Description Website
Nextflow Domain-specific language http://nextflow.io
Toil Pipeline management system https://toil.ucsc- cgl.org
Snakemake Domain-specific language https://snakemake.github.io
Bpipe Domain-specific language http://docs.bpipe.org
WDL Workflow specification language https://openwdl.org/
CWL Workflow specification language https://www.commonwl.org/
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the ability to scale up projects manyfold. 
NextFlow also takes advantage of the “dataflow 
programming paradigm,” where execution tasks 
are started automatically as soon as data is 
received through input channels. The Make-like 
approach adopted by tools such as CWL require 
pre-estimation of all computational dependencies 
as well as a directed acyclic graph (DAG). 
NextFlow, however, utilizes a top to bottom 
approach which mimics the natural flow of data.

 Data Processing Platforms

The main data processing platform we will be 
discussing in this section is Arvados, which has 
been deployed in our lab and has shown great 
utility for our genomic processing needs. 
Table 2.2 summarizes the main data processing 
platforms.

 Arvados

Arvados is a free and open-source platform for 
processing large volumes of genomic data [11]. 
This distributed computing platform for data 
analysis on massive data sets also enables users 
to share and manage their data with ease. It is 
licensed under the GNU Affero General Public 
License version 3. Two key features of Arvados 
are provenance and reproducibility. Arvados 

maintains integrity of data by recording its his-
tory and place of origin, which also reduces the 
incidence of replication of intermediate files. 
Arvados retains the history of jobs run in its 
infrastructure and recognizes when to re-use 
existing files, a cost-saving measure valuable to 
system administrators and informaticists alike. 
This is all enabled in-part by Arvados’s keep 
store, a content-addressable storage system 
designed to run on low-cost commodity hardware 
or cloud services.

 Other Platforms

While Arvados is free and open source, other 
platforms require a payment or subscription, 
where billing is incorporated directly into the 
application software.

DNAnexus (http://www.dnanexus.com/) and 
Terra.bio (http://terra.bio) both require the user to 
pay for storage and processing costs; the Galaxy 
project stands out with a strong, knowledgeable, 
and supportive online community [17] (https://
usegalaxy.org/); Bcbio-nextgen is focused mainly 
on RNA genomic data analysis and lacks the flex-
ibility of the other platforms mentioned in this 
paper [18] (https://github.com/bcbio/bcbio- 
nextgen); DolphinNext (https://dolphinnext.
umassmed.edu/) and Sequanix (https://github.
com/sequana/sequana/) are two GUIs developed 
specifically for Snakemake and Nextflow DSLs, 

Fig. 2.1 Example of graph generated with CWL Rabix Composer
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respectively [19, 20]. These platforms attempt to 
ease the process of generating workflows by pro-
viding users with a web interface, expanding 
access to users with limited bioinformatics 
experience.

 Implementation of a Precision 
Oncology Workflow

Designing and implementing a precision oncol-
ogy pipeline requires several of the abovemen-
tioned components and entails the coordination 
of many tools which are then combined to create 
explicit workflows, relaying and processing data 
until it is collected and presented in a final report 
form. Compute and data intensive processing 
steps often require infrastructure consisting of 
large compute clusters, multiple processors, and 
large amounts of disc space in order to ensure 
reliability, efficiency, availability, and scalability. 
A comprehensive description of a precision 
oncology pipeline is provided in Chap. 1. Here, 
we introduce the basic syntax of CWL scripts, 
describe the basic steps in the design of a preci-
sion medicine workflow for DNA variant calling, 
and provide an overview of the software infra-
structures necessary for the implementation of 
such workflows.

 Introduction to CWL Scripting

The first step in writing a precision medicine 
workflow is to select the command-line tools 
intended for integration. This usually comprises 
several steps including, but not limited to, a raw 
read QC step, alignment, variant calling, annota-
tion, and secondary analysis. We will use CWL 
as the specification for the workflow in a few 
examples. Figure 2.2 illustrates how inputs and 
outputs are isolated for reproducibility. This sim-
ple “hello world” program accepts one input 
parameter, writes a message to the terminal or job 
log, and subsequently will produce no permanent 
output. Several of these tools can then be written 
together in conjunction to form a “workflow.” 
Figure  2.3 shows a sample workflow which 
extracts a java source file from a tar file and then 
compiles it.

There are several key considerations to make 
when writing and executing a workflow. First, 
every step in a workflow will require its own 
CWL description. The final inputs and outputs of 
the workflow are listed in the inputs and outputs 
section. The steps are specified under steps. The 
order of execution is determined by the specified 
connections between steps.

After writing the workflows, one has to choose 
an appropriate method for running them. In the 
example shown in Fig.  2.4, we use the cwl- 
runner. Since CWL is highly portable, the com-
pute environment chosen to run the workflows 
will be up to user discretion.

Finally, Fig.  2.5 displays a more complex 
example of a script implementing the workflow 
shown in Fig.  2.1, with steps from a precision 
oncology pipeline which include the analysis of 
Copy Number Alterations (CNA) (tool: Facets 
[21]) and the reconstruction of tumor sub-clonal 
composition (tool: PhyloWGS [22]).

 The Typical Steps of a Precision 
Oncology Pipeline

Figure 2.6 shows a typical schema for a precision 
oncology pipeline. After sample collection, pro-
cessing and sequencing has occurred, the raw 
sequencing data in the form of Fastq files are 
used as inputs into the pipeline. Next, a series of 
quality control metrics are generated from the 
data to help determine in which areas there may 
be problems or poor-quality data. Metrics 
included in the evaluation of quality include raw 
sequencing data quality and depth, alignment 
quality, GC content, adapter contamination, and 
reads duplication rates [23, 24]. Evaluating these 
metrics allows for the identification and flagging 
of poor-quality data and to avoid potentially 
expensive and computationally intensive steps. 
Checking alignment quality can prevent potential 
false-positive single nucleotide polymorphism 
calls. Furthermore, it is important to verify that 
paired files generated from samples from the 
same individual, for example, normal and tumor 
WES samples, are indeed from the same individ-
ual, by using a tool like NGSCheckMate [25].

Next, reads are aligned to a common reference 
genome. Alignment algorithms such as the 
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Burrows–Wheeler transform can be utilized to 
rearrange raw sequencing data and prepare it for 
downstream analysis and mutational calling [26]. 
The resulting file produced is typically a 
Sequence Alignment Map (SAM) or its binary 
version (Binary Alignment Map, BAM) file.

Following sequence alignment and the gener-
ation of a BAM/SAM file, a typical precision 
medicine pipeline would then perform variant 
calling by identifying where the aligned reads 
differ from the reference genome, producing a 
variant call file to be used in further downstream 
analysis [27] (see also Chaps. 1 and 3). After the 
variants have been annotated using various online 
databases, additional pertinent information is 
assigned to each variant call [28]. This informa-
tion may include the definition of a variant and its 
genotype, basic information regarding whether it 
lies in a coding region, its impact on the corre-
sponding protein (e.g., missense or synonymous 
mutation), or whether the variant is an insertion 
or a deletion. Those variants are then classified 
based on ACMG guidelines as pathogenic, likely 
pathogenic, uncertain significance, likely benign, 
or benign [29]. Additionally, structural variation 
analysis may be conducted to identify genomic 
alterations such as duplications, inversions, trans-
locations, and copy number variants (CNVs) 
(See also Chap. 4).

The variants are then collected and classified 
based on whether they are actionable or not, 
using different databases for clinical interpreta-
tion, then summarized into reports, often after 
being reviewed and further annotated by patholo-
gists [28].

In more advanced settings, the variants data 
can be inputted into a rule-based engine which 
will select and prioritize drugs matching the 
alterations. These “drug recommendation 
engines” are still in early-phase development and 
are typically ad hoc applications which draw on 
experts with domain-specific knowledge in order 
to auto-generate drugs with the expectation of 
affecting the deleterious variants in a positive 
manner [30–32]. Many iterations and versions of 
this ad hoc pipeline are being developed across 
academia and medical institutions for the treat-
ment of various cancers. Each pipeline with its 
own unique set of rules and considerations based 
on the model-disease specifications.

 Software Infrastructures for Precision 
Oncology Platforms

Here we provide some background on the soft-
ware infrastructure for a precision oncology 
pipeline. The diagram in Fig. 2.7 illustrates the 

Fig. 2.2 Example of simple CWL demonstrating input/output
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components which comprise the Arvados techni-
cal architecture. It can be deployed locally, or on 
a number of different cloud providers such as 
Amazon Web Services (AWS) (https://aws.ama-
zon.com/), the Google Cloud Platform (GCP) 
(https://cloud.google.com/), or on Microsoft 
Azure (https://azure.microsoft.com/). Several 
key components work together in harmony to 
create an elastic computing environment where 
the overall resource footprint available or con-
sumed by a specific job can grow or shrink on 
demand. The ability of Arvados to quickly expand 

or decrease computer processing, memory, and 
storage resources as well as manage data through 
a content-addressable distributed storage system 
sets it apart from its competitors. These compo-
nents are the container orchestration system 
called “Crunch,” the distributed storage system 
“Keep,” the REST API Server, the CLI, the GUI 
“Workbench,” native language SDKs, Data 
Manager, Node Manager, and Keep proxy.

The main two innovations of the Arvados plat-
form are “Crunch” and “Keep.” The Crunch con-
tainer orchestration management engine executes 

Fig. 2.3 Example of CWL workflow which extracts a java source file from a tar file and compiles it

W. Osman and A. Laganà
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CWLs while maintaining provenance and repro-
ducibility. It accomplishes this by automatically 
tracking the origin of result data; therefore, it is 
able to compare workflows to one another, avoid-
ing the need to repeat previously performed data 
analysis. This saves on cost and time, two signifi-
cant considerations when executing a workflow 
or data analysis. Crunch also provides the ability 
to scale horizontally by provisioning compute 
nodes upon demand, delivering cost-effective 
performance. Finally, the Crunch engine isolates 
workloads by running jobs inside of Docker con-
tainers, a standard unit of software that packages 
up code and all its dependencies [15].

The Keep system efficiently handles data stor-
age and management using a content-addressable 
distributed storage system. It is able to handle 
petabyte-sized data sets, scaling accordingly by 
utilizing location-addressed storage. A  permanent 
universally unique identifier (UUID) is then 
given to each content address. This creates a 
highly scalable flat address space, virtualizing 
storage access. The benefits of the keep store sys-
tem include, elimination of duplication, canoni-
cal records, provenance, easy management of 
temporary data, flexible organization, high reli-
ability, security and access control, POSIX inter-
face, data sharing, and versioning.

Fig. 2.4 Example of cwl-runner execution
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The installation and deployment of such infra-
structures can be accomplished on GNU/Linux 
systems either bare metal, or on AWS, GCP, and 
Azure cloud services. The multi-host installation 
provides the highest throughput and can be 
accomplished using Salt, an automated infra-
structure management software [26]. The 
Arvados salt formula can be found at https://
github.com/saltstack- formulas/arvados- formula.
git, and the steps for deployment are as follows:

 1. Fork/copy the formula to your Salt master 
host.

 2. Edit the Arvados, nginx, postgres, locale, and 
docker pillars to match your desired 
configuration.

 3. Run a state.apply to get it deployed.

After this step, the cloud/software engineer 
will then need to set up the DNS in order to 
access the cluster’s nodes. Typical operations 
include running a workflow, uploading, and 
downloading data from keep. Periodically, 
Arvados releases new versions of the platform 
which will require a short maintenance window 
where data processing will need to be 
suspended.

Fig. 2.5 Example of a CWL script from a precision 
oncology pipeline. The script defines the step to run a 
CNV analysis using the tool Facets. The class field indi-

cates that this document describes a command line tool. 
The three main sections describe the inputs, steps, and 
outputs of the pipeline

W. Osman and A. Laganà
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 Conclusion

Utilizing an appropriate domain-specific lan-
guage for workflow development and execution 
is a necessity. The adept bioinformatics engineer/
analyst will require the combination of many 
tools and that combination will need to be seam-
less. CWL, WDL, Snakemake, and NextFlow all 
provide the portability and flexibility needed for 
precision oncology workflows. When the requi-
site components for a robust pipeline are in place, 
the effort to scale up your workload will be 
minimal.

Although many workflow systems are avail-
able, we have found that the combination of 
CWL and Arvados serve for the most compre-
hensive platform for genomics data processing at 
large scale. CWL’s requirements for explicitness 
and isolation lead to more flexibility, portability, 
and scalability for your workloads. With a large 
user base, CWL is and will continue to be sup-
ported and updated on a regular basis. This will 
ensure the resilience and longevity of pipelines 
and precision medicine platforms.

Fig. 2.6 A typical schema of a precision oncology 
pipeline

2 Software Workflows and Infrastructures for Precision Oncology
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Somatic and Germline Variant 
Calling from Next-Generation 
Sequencing Data

Ti-Cheng Chang, Ke Xu, Zhongshan Cheng, 
and Gang Wu

Abstract

Re-sequencing of the human genome by next- 
generation sequencing (NGS) has been widely 
applied to discover pathogenic genetic vari-
ants and/or causative genes accounting for 
various types of diseases including cancers. 
The advances in NGS have allowed the 
sequencing of the entire genome of patients 
and identification of disease-associated vari-
ants in a reasonable timeframe and cost. The 
core of the variant identification relies on 
accurate variant calling and annotation. 
Numerous algorithms have been developed to 
elucidate the repertoire of somatic and germ-
line variants. Each algorithm has its own dis-
tinct strengths, weaknesses, and limitations 
due to the difference in the statistical model-
ing approach adopted and read information 
utilized. Accurate variant calling remains 
challenging due to the presence of sequencing 
artifacts and read misalignments. All of these 
can lead to the discordance of the variant call-
ing results and even misinterpretation of the 

discovery. For somatic variant detection, mul-
tiple factors including chromosomal abnor-
malities, tumor heterogeneity, tumor-normal 
cross contaminations, unbalanced tumor/nor-
mal sample coverage, and variants with low 
allele frequencies add even more layers of 
complexity to accurate variant identification. 
Given the discordances and difficulties, 
ensemble approaches have emerged by har-
monizing information from different algo-
rithms to improve variant calling performance. 
In this chapter, we first introduce the general 
scheme of variant calling algorithms and 
potential challenges at distinct stages. We next 
review the existing workflows of variant call-
ing and annotation, and finally explore the 
strategies deployed by different callers as well 
as their strengths and caveats. Overall, NGS- 
based variant identification with careful con-
sideration allows reliable detection of 
pathogenic variant and candidate variant 
selection for precision medicine.

 Introduction

Germline variants are nucleotide changes in a 
germ or egg cells and can be passed to a child 
from parents during conception. Since the vari-
ants are in reproductive cells, they are hereditary 
mutations and can be passed to future genera-
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tions. Germline mutations account for ~5–10% 
of cancers [1]. Somatic variants are variants that 
arose in any cells except germline cells, i.e., 
sperm and egg, and cannot be transmitted to 
progeny. Somatic variants include mosaicisms in 
different subsets of somatic cells including clonal 
hematopoiesis of indeterminant potential (CHIP). 
Somatic variants are of particular interests 
because they are associated with various human 
diseases, including cancers.

Traditional germline/somatic genetic testing 
relied on a “panel” of gene testing with a focus 
on hotspot variants in a number of well- 
characterized driver genes, such as BRCA1 and 
BRCA2 [2]. With the advances and reduced cost 
of the next- generation sequencing (NGS) tech-
nology, whole exome/genome sequencing 
(WES/WGS) and targeted sequencing have 
become an option for detecting variants on a 
much larger scale and higher definition. A major 
challenge of WGS/WES analysis is the accuracy 
of mutation calling analyses on single nucleo-
tide variants (SNVs) and small insertions and 
deletions (indels).

 Development of SNV/Indel Variant 
Calling in the Past Years

NGS workflow usually starts with the fragmen-
tation of the genome or targeted regions of 
genomes into small fragments, followed by 
alignments to reference genomes or genome re-
assembly. The aligned/piled-up segments are 
used subsequently for variant detection. In early 
studies, the variant calling was performed by 
counting alleles at each site with simple cutoff 
rules to determine a variant call, which often-
times lacks sensitivity to detect heterozygous 
alleles and does not provide confidence level of 
the genotype calls [3].

Uncertainties of variant calls arise when a 
sample’s coverage is shallow, sequencing read 
quality is poor, or a variant site has low allele 
count support [4]. After variant calling, layers of 
filters are therefore suggested to be applied to fil-
ter the variant calls to reduce the likelihood of 
sequencing artifacts in the call sets and increase 
the confidence of variant calls. An in-depth over-

view of filters that can be considered is described 
in section “Contributing Factors for Bogus 
Somatic Variant Calling” of this chapter.

Germline and somatic variant calling algo-
rithms differ in the assumption of expected allele 
frequency. Germline variants are expected to 
have 50% or 100% allele frequencies to differen-
tiate three basic genotypes harbor at each variant 
site, e.g., homozygous allele A (AA), heterozy-
gous (AB), or homozygous allele B (BB). On the 
contrary, for somatic variant calling, the allele 
frequency displays a larger spectrum of varia-
tions symbolizing distinct stages of cell develop-
ment. An increasing number of algorithms have 
been developed in the past decades to enhance 
the calling accuracy by incorporating error rate 
estimation and probability frameworks to model 
the genotyping and phasing likelihoods. Given 
the complexity of genomes, local re-assembly 
was also placed into the calling scheme to 
increase the confidence of variant calling. 
Table 3.1 provides a summary of available tools 
for somatic and/or germline variant calling to 
date. In the following section, we will introduce 
the algorithms implemented in a few popular 
variant callers.

 Algorithm Basis of Germline SNV/
Indel Variant Calling

Samtools mpileup [5] deployed the approach of 
read coverage depth counting to identify cover-
age characteristics of potential SNVs/indel sites. 
The coverage information was then fed into 
BCFtools [6] for variant calling based on general 
Bayesian likelihood. This approach is usually 
used for germline variant calling.

GATK HaplotypeCaller [7] is a widely used 
germline variant caller. An advantage of GATK is 
that the algorithm can be applied for the joint 
calling of a group of samples at the same time to 
control the false discovery rate and increase the 
sensitivity of low-frequency variant detection. In 
addition, GATK allows the re-assembly of reads 
to re-construct the real allelic segment or haplo-
type, which will be realigned to the reference 
genome to identify the variant sites. GATK 
HaplotypeCaller begins with defining active 
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regions where abundant evidence has shown the 
presence of variants. Only the active region is 
used for variant calling to reduce the time on the 
assembly. With the assembly step, the variant 
calling is not only dependent on the read align-
ment against the reference genome but also the 
reconstructed haplotype. The overall GATK 
algorithm takes a divide-and-conquer concept by 
shredding the sequencing data into small chunks 
for parallel processing; however, its efficiency is 
still a concern when processing a large collection 
of samples for joint calling. Approaches have 
been proposed to address the performance issue 
when dealing with a large number of samples [8].

FreeBayes [9] applied a Bayesian framework 
to relate the likelihood of sequencing errors of 
the reads and the prior likelihood of a particular 
genotype. Also, the phase of haplotypes was 
inferred from the reads, and the non-uniform 
copy number of samples was taken into consider-
ation. FreeBayes is usually used for germline 
variant calling, while it has been expanded for 
somatic calling [10]. FreeBayes shows good per-
formance across sequencing platforms for SNV 
calling, but it tends to have a higher false-positive 
rate for indel sites [11].

DeepVariant [12] performs variant detection 
using a convolutional neural network (CNN) 
learning model implemented via the python 
TensorFlow library. DeepVariant identifies vari-
ants through learning the features in images of 
pileup reads surrounding putative variants and 
true genotypes. A version of DeepVariant for 
somatic calling is still under development.

 Algorithm Basis of Somatic SNV/Indel 
Variant Calling

Mutect2 [13] as a part of the GATK toolkit shares 
a similar process of variant calling with GATK 
and is mainly used for somatic calling with 
matched, paired tumor-normal samples. Mutect2 
also allows tumor only calling (see section “SNV/
Indel Variant Calling”). Mutect2 calls SNVs and 
indels simultaneously via the local de novo 
assembly of haplotypes in an active region as 
described previously. Mutect2 reassembles the 

reads present in the active regions to candidate 
variant haplotypes. Each read is then aligned to 
each haplotype via the Pair-HMM algorithm to 
obtain a matrix of likelihoods. Finally, log odds 
were derived to distinguish somatic variants from 
sequencing errors by a Bayesian somatic likeli-
hood model.

SomaticSniper [14] is another somatic variant 
caller. SomaticSniper determines the somatic sta-
tus of a variant site by comparing the site’s geno-
typing likelihood between normal and tumor 
derived from the MAQ tool [15] using a Bayesian 
approach. SomaticSniper implemented internal 
filters to exclude the sites with poor read/base 
quality or with low read support to reduce calling 
artifacts.

VarScan2 [16] relies on the results from 
SAMtools pileup or mpileup for somatic variant 
calling. At each variant site, VarScan2 compares 
the genotypes and supporting read counts 
between tumor and normal to determine the 
somatic status, and the call-set is refined with 
post-calling filters including the variant position 
in a read, strand bias, read coverage depth, vari-
ant frequency, homopolymer, mapping quality, 
and so on [16]. Of note, VarScan2 also allows the 
germline variant calling and detection of somatic 
copy number abnormality (SCNA).

MuSE [17] somatic calling starts with matched 
tumor-normal alignment BAM files. The align-
ment is first filtered for sequencing artifacts. The 
evolutionary F81 Markov substitution model of 
DNA is applied to describe the changes from ref-
erence to tumor allele compositions with esti-
mates of equilibrium frequencies for all alleles 
and evolutionary distance. With the frequencies, 
MuSE derived a sample-specific error model and 
five-tier-based cutoffs to address the variations 
present in the frequency distribution in tumor and 
normal samples. The tier-based approach allows 
the MuSE to retain variants with low variant 
allele frequency to achieve a higher sensitivity.

Strelka2 [18] is an open-source somatic/germ-
line variant caller developed by Illumina®. The 
somatic calling algorithm of Strelka2 is enhanced 
based on the original Strelka [19] method to 
account for tumor-in-normal contamination that 
is essential for liquid tumor variant analyses. 

3 Somatic and Germline Variant Calling from Next-Generation Sequencing Data
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Strelka first identifies indel regions and performs 
realignment. After realignments, Strelka derives 
a somatic variant probability using the tumor and 
normal samples and deduces the somatic status 
of a site after accounting for the status of loss of 
heterozygosity (LOH) or copy number change 
regions. Strelka applied a two-tier-based filtering 
strategy with distinct filters and sensitivity. 
Similar to other tools, post-filtering is applied by 
Strelka2 to handle different types of potential 
calling errors.

The variant calling is usually computationally 
intensive, particularly when the sample number 
is large. To improve efficiency, Illumina® has 
released a Dynamic Read Analysis for GENomics 
(DRAGEN) platform using a highly configurable 
field-programmable gate arrays (FPGAs) hard-
ware to accelerate the analysis processes [20]. 
DRAGEN first identifies callable regions and 
assembles the haplotypes using De Bruijn graph 
method. The reassembly is aligned to the refer-
ence genome to identify the variants. The proba-
bility of all read alignments to the haplotype is 
calculated via the pair hidden Markov model that 
is speeded up using the FPGA and summed up 
for each read. In the end, the diploid genotype is 
calculated to determine the variant calls.

In the past few years, GPU-based read align-
ment and variant calling solutions have also been 
developed to reduce the WGS data processing 
time to a couple of hours. For example, NVIDIA 
Clara Parabricks pipelines include a somatic 
variant calling workflow that integrates GPU-
based alignments by BWA-MEM and down-
stream somatic variant calling by Mutect2 [13] 
or DeepVariant [12]. Parabrick also allows 
germline calling using GATK HaplotypeCaller 
[7]. The pipeline reduces the time taken for a 
typical 30× WGS data by over an order of 
magnitude.

 SNV/Indel Variant Calling 
Workflows

Variant calling workflow can be compartmental-
ized into four steps: data preprocessing, variant 
calling, variant filtering, and variant annotation. 

Each step has its challenges and strategies. We 
detail these steps as follows.

 Data Preprocessing

The raw read quality can be examined using 
FastQC [21]. FastQC identifies the potential read 
issues before mapping. A good WGS/WES read 
library usually has an average read base quality 
>20 and a low level of duplicated or overrepre-
sented sequences.

Selection of the reference genome is the first 
step for correct variant calling. The latest version 
of the human reference genome GRCh38 (Hg38) 
with improved resolution [22] is suggested for 
human variant analyses. Also, the reference is 
recommended to include decoy genome 
sequences for the alignment purpose to reduce 
misalignments, as well as virus sequences that 
are known in human to attract the viral reads. In 
addition, the alternative contigs from highly 
complex loci, such as the human HLA allele 
region, should be included to reduce SNV/indel 
calling artifacts. For read alignments, frequently 
used aligners are BWA [5], Bowtie2 [23], and 
Novoalign (http://www.novocraft.com/products/
novoalign/). Benchmarks of short-read aligners 
indicated that the MEM algorithm implemented 
in BWA achieved a better balance between speci-
ficity and sensitivity [24, 25]. BWA-MEM is sug-
gested to use when read length is greater than 70, 
while BWA-ALN for shorter reads [26].

Following alignments, duplicate reads gener-
ated from PCR artifacts are flagged using tools 
such as GATK MarkDuplicates to prevent down-
stream variant calling errors. Incorrect read 
alignment surrounding the indel regions fre-
quently causes inaccurate substitution calls. 
These alignment artifacts can be reduced through 
indel realignments by GATK IndelRealigner or 
similar tools. Furthermore, the base quality pro-
duced by different library preparation protocols 
and sequencing instruments would have differ-
ent  levels of technical or chemistry errors. GATK 
toolkits comprised two tools, BaseRecalibrator 
and ApplyBQSR, to facilitate the correction of 
these systematic errors. These tools implemented 
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machine learning approaches to model errors 
and adjust base qualities to obtain a more accu-
rate overall base quality profile. Figure  3.1a 
shows a general workflow for the data 
preprocessing.

 SNV/Indel Variant Calling

The next step is to choose appropriate variant 
callers. The GATK tool suite is well performed 
for the germline SNV/indel calling. A number of 
best practices for variant callings have been pro-
vided by GATK (https://gatk.broadinstitute.org/
hc/en- us/sections/360007226651- Best- Practices- 
Workflows). For somatic variant calling, accurate 
identification of a somatic variant is still not triv-
ial due to varied caller performance and tumor 
heterogeneity. Below we describe three common 
scenarios in somatic and germline variant calling 
as well as variant prioritization in cancer 
genomics.

 Somatic Mutation Calling on Matched 
Tumor-Normal Pairs
Variant calling with matched tumor-normal sam-
ple pairs is the most common scenario for the 
identification of somatic variants (Fig.  3.1b). 
Most of the callers use the aligned BAM files of 
paired tumor and normal samples as the standard 
inputs. To identify low-frequency variants, a 
caller that can model the allele frequency is sug-
gested, such as Mutect2, MuSE, and Strelka2 as 
detailed in the Introduction. Due to the differ-
ences of underlying algorithms and statistic mod-
eling, the somatic variant callers differ in 
sensitivity and specificity when detecting vari-
ants at different levels of variant allele frequen-
cies (VAF) [27]. Compared with Strelka and 
Mutect, SomaticSniper has a lower sensitivity 
and specificity when calling the variants with 
VAF <8%. However, the performance of 
SomaticSniper is comparable with Strelka and 
Mutect for variants with VAF >18%. The sensi-
tivity of VarScan2 was increased with lower min-
imum allele fraction thresholds, which was 
however compromised with reduced specificity 
[28]. Therefore, a careful setting of thresholds to 

Fig. 3.1 The workflow of the somatic variant calling of 
paired tumor-normal samples. (a) Data preprocessing 
steps from sample preparation to short reads mapping and 
calibration into binary version of Sequence Alignment/

Map (BAM) files for paired tumor and normal samples. 
(b) Variant calling and annotation steps from paired 
tumor-normal BAM files to annotated somatic variants in 
VCF format
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achieve a balance between sensitivity and speci-
ficity for each caller and a well-considered post- 
calling filtering strategy play important roles to 
assure the validity of final call sets.

Given the complex heterogeneity and struc-
tural rearrangements of tumor tissue, finding an 
appropriate somatic variant caller along with 
parameter fine-tuning and development of a solid 
calling strategy remain a major challenge for can-
cer genomics. To tackle this complexity and 
exploit each caller’s strength, a consensus voting 
to determine a valid variant call by multiple call-
ers has gradually become a prevalent strategy in 
studies [29–33]. In addition to a simple voting 
strategy, machine learning has been incorporated 
into the consensus calling steps to improve call-
ing performance. MutationSeq incorporated mul-
tiple sequence quality features derived from 
normal data based on Samtools and GATK, along 
with several sequence artifacts and low-frequency 
variant features to build classifiers to determine 
the somatic variants [33]. SomaticSeq [34] inte-
grated five somatic callers from which feature 
sets were identified for each candidate variant 
position to build a classifier using a stochastic 
boosting machine-learning algorithm. Cerebro 
[35] applied a random forest classification model 
to generate a confidence score for each candidate 
variant derived from whole-exome sequencing 
data, which is limited to the coding region with 
>150× coverage. These approaches generally 
lack portability, i.e., users are required to obtain 
appropriate training data and have knowledge 
about the machine learning to re-train the mod-
els. In light of these issues, SMuRF [31] was 
developed and generalized for either WGS or 
WES data. SMuRF implemented a supervised 
machine learning using features derived from 
four variant callers along with mapping auxiliary 
features. NeoMutate [29], as another machine 
learning  based caller, profiled a collection of 
seven distinct classifiers based on a training data-
set of >3000 cancer variants from the Catalogue 
of Somatic Mutations in Cancer (COSMIC) data-
base [36].

Machine learning–based callers determine the 
somatic status of a variant through different fea-
tures of a variant harbors and therefore offer a 

higher level of flexibility than rule-based filtering 
strategy, especially for the tumor samples with 
intra-heterogeneity and normal tissue admix-
tures. However, a detailed curation of a set of 
ground-truth training data including both true- 
positive and true-negative variants is the key to 
optimize and refine the training models.

 Mutation Calling and Prioritization 
on Tumor Sample Without Matched 
Normal Sample
In large-scale cancer genomic projects, it is com-
mon to have tumor samples without matched nor-
mal samples or with tumor-contaminated 
adjacent normal samples, due to the difficulties to 
collect patients’ blood samples. In these cases, 
the somatic variant calling oftentimes has a high 
rate of false positives, because it is almost impos-
sible to confidently determine whether a called 
variant is of germline origin or somatically 
acquired. Mutect2 can call somatic mutations in 
tumor-only mode; however, the calling results 
require careful filtering for false positives due to 
the deficiency of corresponding germline infor-
mation. Common germline SNPs can be elimi-
nated by filtering against appropriate human 
genome variation databases such as Genome 
Aggregation Database (gnomAD). To date, lim-
ited number of studies have compared the perfor-
mance of Mutect2 tumor-only and tumor/normal 
calling modes when both tumor/normal WGS/
WES data are available. A tool designed specifi-
cally for somatic mutation calling on tumor-only 
WES  samples is ISOWN [37], which utilizes a 
family of supervised learning classifications to 
distinguish somatic SNVs in NGS data from 
SNPs in the absence of normal samples. In terms 
of performance, the F1-measure of ISOWN is 
between 75.9% and 98.6% across different can-
cer types, cell lines, fresh frozen tissues, and 
formalin-fixed paraffin-embedded tissues. 
Calling somatic variants in tumor only WGS/
WES data still warrants further improvement.

Due to these challenges, one can consider 
focusing on identifying putatively pathogenic 
variants in a set of genes of interest to specific 
tumors, irrespective of their germline or somatic 
origin (Fig. 3.2). Specifically, after basic variant 
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quality filtering such as keeping variants with 
higher alternative allele count (>5) and VAF 
(>20%), and excluding those located in regions 
of low complexity or regions with extreme GC 
content, additional filters can be applied for the 
variant class and population frequency filter, i.e., 
only keeping protein-altering variants with minor 
allele frequency <0.01  in population frequency 
databases such as 1000 Genomes [38] and gno-
mAD [39]. In addition, optional filters can be 
added to increase the calling confidence such as 
keeping any variants that are available in the 
COSMIC catalog of somatic mutations or mis-
sense variants with a REVEL score >0.5 [36, 40].

 Germline Mutation Calling 
and Prioritization
Identifying germline mutations in cancer predis-
position genes has important implications in 
understanding tumorigenesis and guiding clinical 
practice. A common germline mutation calling 
workflow is illustrated in Fig. 3.3a. The recom-
mended germline variant calling follows the 
GATK best practices including read mapping, 
alignment sorting, duplicated reads marking, and 
variant calling by GATK HaplotypeCaller [7]. 
Also, joint variant calling in multiple germline 
samples is recommended whenever possible 
because the genotype information at the popula-
tion level can be leveraged to rescue the variant at 
a site with low coverage or with lower quality in 
a sample. The efficiency of GATK calling can be 
enhanced by a divide-and-conquer strategy, i.e., 

splitting the genomes into multiple small chunks 
for parallel variant calling followed by merging 
the output variant files (VCFs). After variant call-
ing, the GATK Variant Quality Score 
Recalibration (VQSR) method is the suggested 
approach to filter the germline variants. VQSR 
relies on a deep learning method and therefore 
requires a sufficient amount of the variant sites to 
establish a reliable training model. The variant 
number for a single-sample WGS is usually suf-
ficient for VQSR; however, for WES data, at least 
30 samples are required to perform VQSR. When 
the sample size is limited, the variant call set can 
be filtered by the GATK VariantFiltration tool.

To narrow down from the vast amount of 
germline variants reported by germline variant 
caller, usually only rare, non-silent coding vari-
ants in cancer-related genes, such as autosomal 
dominant or autosomal recessive cancer- 
predisposition genes, or genes that are recur-
rently mutated in tumors, are considered. For 
example, Zhang et al. evaluated germline muta-
tions in a cohort of pediatric cancers in a curated 
list of 565 cancer-related genes based on expert 
reviews of the genes from American College of 
Medical Genetics and Genomics (ACMG) and 
genes from related literatures [41]. Specifically, 
after germline variant calling, QC-passed vari-
ants are shortlisted based on their frequencies in 
human populations such that only novel variants 
or the variants with minor allele frequency 
<0.001  in NHLBI Exome Sequencing Project 
(ESP) are kept [42]. These shortlisted variants 

Fig. 3.2 The workflow of the variant calling of tumor sample without a matched normal sample. The workflow focuses 
on reporting potentially pathogenic variants regardless of their tumor or germline origin
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can be then ranked based on (1) mutational class 
such as nonsense SNVs, missense SNVs, splice 
site SNVs, frameshift indels, or in-frame indels; 
(2) functional annotation databases such as 
PolyPhen2 and MutationAssessor [43, 44], (3) 
matches to curated variant pathogenicity data-
bases such as NCBI ClinVar (https://www.ncbi.
nlm.nih.gov/clinvar/), locus-specific databases 
such as IARC TP53 (https://p53.iarc.fr/) and 
BRCA Exchange (https://brcaexchange.org/); 
and (4) second hit on the intact copy in the 
tumor genome due to one copy loss or promoter 
methylation of the intact copy. Other popular 
databases for germline variant classification and 
prioritization include pLI and LOFTEE scores 
for loss-of-function variant prioritization [39, 
45]; REVEL and CADD scores for missense 
variant prioritization [40, 46]; and dbscSNV 
scores for splice variant prioritization [47]. In 
addition, InterVar, an automatic interpretation 
of variants based on dozens of criteria laid out 
by ACMG and Association for Molecular 
Pathology (AMP), can be included to aid man-
ual review of clinical significance [48]. 
Figure  3.3b summarizes the filtering steps to 
prioritize germline variants to be reported. The 
final ranked list of putatively pathogenic germ-

line variants will then need to be manually 
reviewed and validated based on phenotype 
data, RNA-seq, and literature review. The whole 
prioritization process before manual reviews 
can be automated. For example, St. Jude 
Pediatric Cancer Variant Pathogenicity 
Information Exchange (PeCan PIE, https://
pecan.stjude.cloud/pie), a free cloud service for 
non-commercial use, offer variant annotation 
and ranking service based on MedalCeremony 
pipeline to triage the germline variants into 
three categories, including Gold, Silver, and 
Bronze [41, 49].

 Variant Annotation

To understand the context of the germline vari-
ants and somatic mutations, several tools are 
available to perform variant annotation on the 
called variants. Typically, the genomic locations 
of the variants are compared against a gene-
based annotation database such as a GENCODE 
release (https://www.gencodegenes.org/pages/
data_access.html) to determine if a variant is 
exonic, intronic, or intergenic [50]. Variants in 
exonic regions are further classified as missense 

Fig. 3.3 The workflow of germline variant calling and 
prioritization. (a) Steps of the joint calling of germline 
variants from pooled germline BAM files. (b) Steps of fil-

tering and prioritizing potentially pathogenic germline 
variants or variants of unknown significance
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variants, nonsense variants, silent variants, splice 
acceptor variants, splice donor variants, splice 
region variants, in-frame indels, and frameshift 
indels. Some annotation tools such as ANNOVAR 
[51], VEP [52], and SnpEff [53] also add popula-
tion allele frequency from 1000 Genomes Project 
[38], NHLBI ESP [42], Exome Aggregation 
Consortium (ExAC) [45], and gnomAD [39]; 
and provide comparative genomics-based scores 
such as GERP++ [54], SIFT [55], PolyPhen2 
[43]; and include machine learning–based patho-
genicity scores such as CADD [46, 56] and 
REVEL [40].

ANNOVAR [51] is an annotation pipeline to 
functionally annotate variants. The workflow 
can be performed for either gene-based coding 
change annotations or region-based non-genic 
genomic element annotations. Moreover, 
ANNOVAR has extended functionality to iden-
tify and filter variants documented in specific 
databases, which can be used for enriching 
causal variants in diseases. ANNOVAR allows 
the annotation of SNVs and structural variants 
from a standard VCF. A web interface is avail-
able via wANNOVAR (http://wannovar.wglab.
org/).

VEP [52] is another popular toolkit for variant 
annotation. Compared to ANNOVAR, VEP pro-
vides cell-line-based annotation. VEP generates 
transcript-level annotations, while ANNOVAR 
gives gene-level annotations. LOFTEE (Loss-Of- 
Function Transcript Effect Estimator, https://
github.com/konradjk/loftee) is a very useful VEP 
plugin to evaluate the loss of function of splice 
variant [39]. VEP also allows the variant annota-
tion of species other than human and mouse. In 
addition to local installation, users can perform 
annotations through the VWP web interface 
(https://uswest.ensembl.org/info/docs/tools/vep/
online/index.html) or cloud virtual machine.

SnpEff [53] implements an interval forest 
algorithm to efficiently query, annotate, and pre-
dict the effect of the variants. SnpEff can run 
locally or via a Galaxy instance. Similar to VEP, 
SnpEff also provides a cloud VM for users. 
SnpEff allows the assessment of nonsense medi-
ated decay (NMD), a functionality absent from 
ANNOVAR and VEP.

 Contributing Factors for Bogus 
Somatic Variant Calling

Somatic variants generated from the variant call-
ers oftentimes include false positives due to vari-
ous types of contributing factors. Below we 
describe four common scenarios that cause bogus 
somatic variants calling and need to be consid-
ered in postprocessing.

 Strand Bias
Strand bias is observed when reads are favorably 
sequenced for one strand over the other; only one 
strand of the DNA has reads covered in extreme 
cases. The sources of this type of artifact remain 
elusive but may be relevant to library preparation 
of analytic procedures [57]. This bias raises the 
concerns of variant call accuracy. GATK and 
Samtools both implement functionality to calcu-
late strand bias scores.

 Repetitive DNA Sequences
Repetitive DNA sequences are sequences that are 
identical or similar across the genome. They vary 
in sizes and frequencies and cause mapping 
ambiguities. RepeatMasker [58] can be used to 
mark or mask the repetitive sequences in the 
genome to reduce such ambiguities. The error 
rate of short reads sequencing has been shown to 
increase in genomic regions with high- and low-
 GC content or with long homopolymer runs [59]. 
Also, the GC-rich regions frequently suffered 
from low coverage issues. Segmental duplication 
can also cause some reads mapped to multiple 
places in the genome and give rise to unusual 
coverage. A BLAT (BLAST-like alignment tool, 
available at http://genome.ucsc.edu/cgi- bin/hgB-
lat) search can be used to determine if the flank-
ing sequence of a variant with high coverage is 
uniquely mapped to a locus or multiple different 
loci. Those that can be mapped to multiple loci in 
the genome are recommended to be reviewed 
manually.

Variants in simple repeats or homopolymer 
regions, such as CCCCCCCC or 
ACGACGACGACG ([ACG]n), often lead to 
false-positive variant calls due to sequencing 
errors and following read misalignments. Indels 
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in repetitive regions coupled with low alternative 
reads count support are usually filtered out. 
However, frameshift indels in disease-causing 
genes (e.g., ATRX, PMS2) require careful visual 
inspection and perhaps validation with an orthog-
onal sequencing approach to avoid missing 
important findings.

 Low-Frequency Variants
VAF is the number of reads supporting the alter-
native allele divided by the total number of 
reads covering the genomic location. For germ-
line samples, a heterozygous germline variant 
would have an approximately 50% 
VAF.  Germline variants with significantly low 
VAF and a low number of alternative reads 
count could be due to sequencing errors. 
Germline variants with sufficient alternative 
read count and total read count but with low 
VAF may indicate mutation mosaicism [60]. If a 
large number of germline variants have low 
VAFs, it may suggest that the normal sample is 
contaminated by the tumor sample, which some-
times happens when the normal sample is col-
lected as tissue adjacent to the tumor or blood 
after treatment. Paralogous mapping can also 
lead to VAF ranging from 10% to 25%.

Somatic mutations, on the other hand, exhibit 
a broader range of VAFs. A heterozygous somatic 
mutation in a copy-intact region would have an 
approximately 50% VAF. However, since tumor 
genomes are frequently subject to copy number 
alteration, the VAF of a somatic mutation could 
be around 33% or 67% due to one copy gain and 
could be close to 100% because of LOH. In addi-
tion, since patient tumor samples are rarely 100% 
pure, low tumor purity may further contribute to 
the global dilution of VAFs of somatic mutations 
in a tumor genome. Mutations with significantly 
lower VAFs than the truncal mutations in a tumor 
genome but with sufficient mutant read counts 
may suggest that they are subclonal. Somatic 
mutations with significantly low VAF and few 
alternative allele read counts could be due to 
sequencing error/artifacts and are recommended 
to be filtered out.

 Germline Variant Contamination
A few somatic SNV callers, e.g., Mutect, have 
implemented specific filters to eliminate the 
potential germline variant contamination in 
somatic variants calling. Mutect allows the inclu-
sion of a panel of normal samples (PON) and 
dbSNP database to exclude germline variants. 
The germline variant contamination can also be 
reduced by checking minor allele frequencies of 
mutations across different population frequency 
databases such as gnomAD and the 1000 Genome 
Project database. A recent study [61] reported 
that there would be one germline SNP among a 
median somatic SNVs prediction set containing 
4325 somatic SNVs; the study also reported a 
negative correlation between germline SNP con-
tamination and tumor purity.

 Concluding Notes

Somatic variant calling from WGS/WES is criti-
cal for cancer genomics as it not only depicts the 
mutational landscape for a tumor sample but also 
serves as input data for downstream analyses 
such as mutational signature and clonal evolu-
tion. Consequently, there has been great interest 
in developing fast, accurate, and scalable meth-
odologies and tools for variant calling across aca-
demia and industry. In addition to the tools 
mentioned above, there are also other variant 
calling tools acting on different data types and 
different platforms as described below.

 Mitochondria Mutation Calling

Variants present in the mitochondria genome 
(mtDNA) is implicated in a wide spectrum of 
human disorders and diseases with highly diver-
gent phenotypes and penetrance. The challenges 
of mtDNA variant calling arise from the circular 
topology of mtDNA as well as the homology 
between mtDNA and a part of the nuclear genome 
with mitochondrial origin (nuMTs). The mtDNA 
mutation load also varies greatly among tissues 
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and organs from heteroplasmy (<100%) to homo-
plasmy (100%). The Human Mitochondrial 
Genome Database, Mitomap [62], provides a 
repertoire of reported mtDNA variants. Nuclear 
genome variant callers such as VarScan and 
LoFreq have been used for identifying the 
somatic mtDNA variants [63, 64]. MitoCaller 
[65] of the MitoAnalyzer toolkit was designed 
specifically to infer the mutation status of each 
position of the mitochondria genome using 
likelihood- based models and adapted an iterative 
alignment strategy to account for the circularity 
of the mtDNA genome. Importantly, discrepan-
cies of mtDNA variant calling have been reported 
when using different reference genome and 
enrichment strategies [64], which should be taken 
into consideration when performing mtDNA 
variant calling and interpretation.

 Long-Read Variant Calling

While short reads from paired-end sequencing 
were used by most state-of-the-art SNV callers to 
accurately detect variations in diploid genomes, 
they provide limited haplotype information that 
is required by some SNV callers, such as GATK 
HaplotyperCaller and FreeBayes. In addition, the 
accurate calling of SNVs in repetitive regions of 
the human genome is another challenge. Third- 
generation sequencing (TGS) technologies, 
including Pacific Biosciences and Oxford 
Nanopore (ONT), have the potential to overcome 
the limitations of short-read sequencing. 
Nevertheless, compared to short-read sequenc-
ing, long-read sequencing usually costs more and 
generates less-accurate long reads (e.g., sporadic 
indels in ONT data), posing challenges for accu-
rate variant detection [66]. Current SNV callers 
using TGS data are mostly designed for germline 
variants calling and usually optimized based on 
the publicly available data from the Genome in a 
Bottle (GIAB) Consortium. Somatic SNV calling 
based on long reads technology is still 
underdeveloped.

NGS-based mapping tool such as BWA-mem 
is not suitable for long reads mapping. Instead, 
new mapping tools such as Minimap2 [67] and 

NGMLR [68] have been developed specifically 
for long reads mapping. Similarly, NGS-based 
SNV calling tools such as GATK HaplotyperCaller 
and FreeBayes are not recommended for variant 
calling on long-reads sequencing data. Instead, 
several variant callers have been developed spe-
cifically for long-reads data to leverage haplotype 
information available in long reads to improve 
the accuracy to call and phase SNVs in diploid 
genomes, as well as mapping variants in dupli-
cated regions of the genome that are not possibly 
mapped using short reads. For example, Longshot 
[66] takes advantage of the haplotype informa-
tion present in PacBio long reads to improve the 
SNV calling accuracy [69]. WhatsApp [69] intro-
duces a novel statistical framework for the joint 
inference of haplotypes and genotypes from 
noisy long reads, which takes full advantage of 
linkage information provided by PacBio long 
reads. Clairvoyante [70] uses a multi-task five- 
layer convolutional neural network model to pre-
dict variants. Other tools include DeepVariant for 
variant calling on PacBio data [12] and 
MarginPhase (https://github.com/benedictpaten/
marginPhase) for simultaneous haplotyping and 
genotyping on Oxford Nanopore data.

Different tools differ in their precision and 
recall rate. In a benchmark study using PacBio 
data from GIAB, three callers, including 
Longshot, WhatsApp, and Clairvoyante, demon-
strating very similar performance [66]. Compared 
to the previous three tools, MarginPhase per-
formed moderately when focused on GIAB high 
confidence regions [69]. Another software, 
HELLO [71], has been created to integrate the 
short read and long read data to improve the 
robustness of SNV calling by leveraging the 
Mixture of Experts paradigm that uses an ensem-
ble of deep neural networks (DNNs).

 Variant Calling in Single-Cell Data

Single-cell sequencing has been the hotspot of 
functional genomics to elucidate the heterogene-
ity of cell compositions. Variant calling of single- 
cell data can aid the inference of the lineage 
relationship of cells. Although challenges remain 
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for large-scale single-cell WGS/WES in terms of 
experimental design complexity and sequencing 
cost currently, single-cell RNA sequencing 
(scRNA) has been applied broadly to examine 
cell population dynamics and track the develop-
ment of cell lineages. The preprocessing steps for 
scRNA data are relatively similar to the usual 
practice of WGS/WES calling. However, 
splicing- aware aligners, e.g., STAR [72] or 
GSNAP [73], are suggested for the read align-
ment. There are still not many callers designed 
specifically for single-cell data [74]. Trinity 
Cancer Transcriptome Analysis Toolkit (CTAT) 
is one caller with extended functionality for 
scRNA-seq SNV detection. SCIΦ is another tool 
that can perform jointly calling of mutations in 
individual cells followed by an estimation of the 
tumor phylogeny [75]. SSrGE [76] is an integra-
tive workflow to connect genotype and pheno-
type in single-cell data which implemented 
GATK best practice and FreeBayes for variant 
inference. A few other studies used SAMtools 
mpileup approach for variant identification [77, 
78]. Solid variant calling strategies in single-cell 
data will be of great needs in the following years.
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Abstract

Copy number variation (CNV), which is dele-
tion and multiplication of segments of a 
genome, is an important genomic alteration 
that has been associated with many diseases 
including cancer. In cancer, CNVs are mostly 
somatic aberrations that occur during cancer 
evolution. Advances in sequencing technolo-
gies and arrival of next-generation sequencing 
data (whole-genome sequencing and whole- 
exome sequencing or targeted sequencing) 
have opened up an opportunity to detect CNVs 
with higher accuracy and resolution. Many 
computational methods have been developed 
for somatic CNV detection, which is a chal-
lenging task due to complexity of cancer 
sequencing data, high level of noise and biases 
in the sequencing process, and big data nature 
of sequencing data. Nevertheless, computa-
tional detection of CNV in sequencing data 
has resulted in the discovery of actionable 
cancer-specific CNVs to be used to guide can-
cer therapeutics, contributing to significant 
progress in precision oncology. In this chap-
ter, we start by introducing CNVs. Then, we 

discuss the main approaches and methods 
developed for detecting somatic CNV for 
next-generation sequencing data, along with 
its challenges. Finally, we describe the overall 
workflow for CNV detection and introduce 
the most common publicly available software 
tools developed for somatic CNV detection 
and analysis.

 Introduction

Recently, copy number variation (CNV) has 
drawn much attention in biomedical fields. Copy 
number variation is a form of structural variation 
of a DNA sequence that includes amplification 
and deletion of a particular segment of DNA 
(shown in Fig. 4.1). It features a higher mutation 
rate than single-nucleotide polymorphisms 
(SNPs) and affects a larger fragment of genomes. 
There is no precise definition for the minimum 
length of CNVs in research, although a minimum 
length of 1  kb is commonly used for clinical 
applications.

Researchers have considered the impact of 
genomic variations on human diseases as it pro-
vides valuable insight into functional elements 
and disease-causing regulatory variants [1–11]. 
Previously, SNPs were considered as the pre-
dominant form of genomic variation associated 
with phenotypes [12, 13]. However, more recent 
studies show the widespread existence of CNV in 
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individuals and their association with complex 
diseases. These studies have shown that there is a 
close correlation between CNV and gene expres-
sion and the copy number has influence on gene 
expression for the majority of genes [10].

The interest in and importance of CNVs has 
risen in a wide collection of diseases including 
Parkinson [14], Hirschsprung [15], diabetes mel-
litus [16], autism [17–19], Alzheimer [20], and 
schizophrenia [21]. Specifically, significant effort 
has found associations between CNVs and can-
cers [22–27]. The importance of CNV can be 
seen by the trend in the number of scientific arti-
cles about CNV stored in PubMed per year, 
which has significantly increased from a few tens 
in 1990 to more than 800 in 2018 [28].

Copy number variations usually are men-
tioned in two contexts: germline CNVs, refer to 
inherited variants, many of which are  polymorphic 
at the population level, and somatic CNVs, refer 
to changes resulting from somatic mutations, 
such as those commonly observed in cancer. 
Somatic CNVs are also called copy number aber-
rations or CNAs. In this chapter, for simplicity, 
we call somatic CNVs or CNAs just CNVs. 
Cancer is well known as a disease of genome, 
and genomic variations in cancer are mostly 
somatic variations, since tumors arise from nor-
mal cells with acquired aberrations in their 

genomic materials [25, 29]. Copy number varia-
tion is one of the most important genomic varia-
tions in cancer [22, 27, 29–31], since oncogene 
activation is often attributed to chromosomal 
copy number amplification, and tumor suppres-
sor gene inactivation is often caused by either 
heterozygous deletion associated with mutation 
or by homozygous deletion. Studies show that 
CNVs significantly contribute to cancer cell 
growth, drug sensitivity, and resistance. Thus, 
identification of somatic CNVs can have an 
important role in cancer prognosis and treatment 
improvement [32].

Over the years, several methods have been 
used to detect CNVs including cytogenetics, flu-
orescence in situ hybridization (FISH), poly-
merase chain reaction (PCR), comparative 
genomic hybridization (CGH), and microarrays 
or SNP arrays. Some of these methods such as 
PCR and FISH are fast, but they are not readily 
scalable to many genomic targets. Array-based 
technologies have been used widely since late 
1990s for more than a decade as an affordable 
and relatively high-resolution assay for CNV 
detection targeting a large scale of genomic 
regions [33]. In standard practice, chromosomal 
microarray has been the main clinical test for 
CNV detection. However, array-based technolo-
gies have limitations associated with hybridiza-
tion, which results in poor sensitivity and 
precision, and with resolution, related to the cov-
erage and density of the arrays’ probes.

With the arrival of next-generation sequencing 
(NGS) technologies [34], sequence-based CNV 
detection has rapidly emerged as a viable option 
to identify CNVs with higher resolution and 
accuracy [23, 35, 36]. As a result, recently whole- 
genome sequencing (WGS), whole-exome 
sequencing (WES), and targeted sequencing have 
emerged as primary strategies for NGS technolo-
gies in CNV detection and for studying human 
diseases. Using sequencing data, it is currently 
feasible to not only detect a rapidly growing set 
of known clinically relevant mutations but also 
identify novel or unexpected important 
variations.

Whole-genome sequencing offers an unbiased 
genome-wide approach to detect CNVs, while 

Fig. 4.1 Amplification and deletion of a segment of a 
genome
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WES and targeted sequencing allow the identifi-
cation of genomic variants in protein coding 
regions (less than 2% of the genome) that can 
provide direct functional interpretation. Whole- 
genome sequencing is the most comprehensive 
platform for cancer genome profiling, and in 
many studies, CNVs are identified from WGS 
data. However, WGS is considered too expensive 
for research involving large cohort and WES or 
targeted sequencing is becoming an alternative, 
cost-effective strategy [37]. In clinical practice, 
WGS has been employed in pilot studies involv-
ing a few cases [38] and WES has been used in 
large cohort in clinical studies of genetic disor-
ders [39]. Large research studies such as The 
Cancer Genome Atlas (TCGA) and Stand Up To 
Cancer (SU2C) have employed WES. Even 
though WES is widely used in clinical genetics 
[40], it has recently emerged as one of the most 
popular techniques for identifying clinically rel-
evant genomic variations in cancer [41]. Studies 
have shown the feasibility of using WES into 
clinical practice for precision cancer care [42, 
43]. Exome represents a highly function-enriched 
subset of the human genome, and CNVs in exome 
are more likely to be disease-causing variations 
than those in nongenic regions [44, 45]. WES can 
offer lower cost, higher coverage, and less com-
plex data analysis, which are appealing for clini-
cal applications when there are several samples 
available. However, WES impose new challenges 
to CNV detection analysis compared to WGS and 
has several technical issues [46]. Methods devel-
oped for CNV detection for WGS data might not 
be proper for WES data, since their main assump-
tions on read distributions and continuity of data 
do not hold for WES data. In addition, WES data 
introduce biases due to hybridization. As a result, 
different methodologies need to be employed for 
CNV detection using WES/targeted and WGS 
data.

In general, many tools (>150) have been 
developed for CNV detection using WGS and 
WES/targeted data. However, not all of them are 
appropriate for detecting somatic mutations in 
cancer. Germline and somatic CNVs are very dif-
ferent in their overall coverage of the genome and 
their frequency across population. The character-

istics of somatic CNVs need special consider-
ation in algorithms and strategies in which 
germline CNV detection methods are usually not 
suited for. In general, germline CNVs cover small 
portion of a genome (about 4%) [47], they are 
more often deletion, and they are common among 
different people. However somatic CNVs can 
cover a majority part of a genome, can be focal, 
and are unique for each tumor. As a result, CNV 
detection methods that are developed for identi-
fying population CNVs or germline CNVs are 
not suitable for identifying somatic variations. 
Also, identifying somatic CNVs in cancer is very 
challenging because of the tumor heterogeneity 
and complexity: tumor samples are contaminated 
by normal tissue, the ploidy of tumors is 
unknown, and there are multiple clones in tumor 
samples. On top of the tumor samples’ complex-
ity there are experimental, technical, and 
sequencing noise and biases which make somatic 
CNV detection very challenging.

In this chapter, we first briefly discuss the 
important role of CNVs in precision oncology. 
We then introduce CNV detection methods and 
challenges and describe the most commonly used 
CNV detection tools for WES/targeted and WGS 
data.

 CNV and Precision Oncology

The introduction of NGS technologies and the 
increasing number of large-scale tumor molecu-
lar profiling studies have revolutionized the field 
of precision oncology. According to the European 
Society for Medical Oncology (ESMO), cancer 
precision medicine or precision oncology is 
defined as “the use of therapeutics that are 
expected to confer benefit to a subset of patients 
whose cancer displays specific molecular or cel-
lular features (most commonly genomic changes 
and changes in gene or protein expression pat-
terns)” [48]. Precision oncology involves the 
detection of tumor-specific somatic genomic 
variations, followed by treatment with therapeu-
tics that specifically target identified actionable 
variations. CNVs as major genomic variations 
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and proven actionable biomarkers play an impor-
tant role in precision oncology.

With emerging NGS technologies and the 
decreasing cost of generating NGS data, compre-
hensive genomic analyses have become increas-
ingly available due to advances in development 
of accessible and applicable bioinformatics tools 
for detecting genomic and molecular variants 
from NGS data. This availability is not just lim-
ited to research settings, as we observe increasing 
availability of comprehensive genomic analyses 
in clinical settings as well. As a result, the num-
ber of identified actionable and druggable tumor- 
specific genomic variations has grown 
substantially in the past decade and we expect 
rapid emergence of additional biomarkers as 
well. Studies show that many tumor-specific 
molecular variations in cancer driver genes 
(including SNPs, CNVs, translocations, and gene 
fusions) are well-proven predictive biomarkers of 
response to selective targeted therapies.

Precision oncology has transformed cancer 
care, which is moving from standard treatments 
based on cancer types and increasing focus on 
personalizing treatments based on genomic vari-
ants. Genomic variants can now be targeted by 
specific therapies to improve clinical outcomes in 
patients. Several studies show that a significant 
survival benefit has been obtained from bio-
marker matching therapies compared with stan-
dard therapies in several cancer types [49–52]. It 
is also shown that employing NGS data and bio-
informatics tools for medical diagnostics has no 
significant impact on the costs of cancer care by 
[49]. These studies found that patients who 
received therapy on the basis of specific molecu-
lar variations, independent of tumor type, experi-
enced improved survival. It is also shown that 
molecularly guided therapies improve survival in 
patients with advanced refractory cancer [49]. 
CNVs as major genomic variations have been 
used as important actionable biomarkers to 
advance precision oncology. Many studies 
reported actionable CNVs that have been used to 
select effective molecularly guided therapies. For 
example, in [49], EGFR3 amplification in blad-
der cancer, FGFR1 amplification in colon cancer 
and lung cancer, FGF4 amplification in gastric 

cancer, and PDGFRA amplification in lung can-
cer are treated with Pazopanib; PIK3CA amplifi-
cation in breast cancer and head/neck cancers, 
MTOR amplification in lung cancer, and PIK3R2 
deletion in ovary cancer are treated with 
Everolimus; HRAS amplification in colon cancer 
is treated with Trametinib; and ERBB2 amplifi-
cation in colon cancer is treated with Ado- 
trastuzumab, in advanced refractory cancer 
patients. In this study, all the patients received the 
genomic variant-guided therapies show improved 
survival compared to whom treated with standard 
medications.

To facilitate annotating genomic variations to 
actionable variants and translating results to clin-
ical actions, many publicly accessible data 
resources have been developed. Most of these 
databases include CNVs. These databases com-
pile evidence and associations with a specific his-
tology or disease, as well as their prognostic and/
or predictive value of response to specific thera-
pies to aid clinical decision-making [53]. 
Example of such databases are Precision 
Oncology Knowledge Base (OncoKB) (http://
oncokb.org/#/) and Personalized Cancer Therapy 
Knowledge Base for Precision Oncology (PCT) 
(from MD Anderson Cancer Centre (https://pct.
mdanderson.org/#/). These databases integrate 
variant-specific recommendations from clinical 
practice guidelines in their annotation and rank 
relevant matched therapies by evidence of clini-
cal benefit. There are also other databases for 
cancer somatic variants such as the Catalogue of 
Somatic Mutations in Cancer (COSMIC) [54] 
database. COSMIC is the largest and most com-
prehensive resource for exploring the impact of 
somatic variations (including CNVs) in human 
cancer. However, it does not rank relevant 
matched therapies.

To enable precision oncology, few NGS diag-
nostics assays (or gene panels) for targeted deep 
sequencing of key cancer genes have been devel-
oped. These assays are designed for calling 
actionable genomic variations in cancer, includ-
ing CNVs [55]. Two of such panels that are also 
approved by the Food and Drug Administration 
(FDA) in 2017 are Integrated Mutation Profiling 
of Actionable Cancer Targets (MSK-IMPACT) 
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[56] developed at the Memorial Sloan Kettering 
Cancer Center (MSKCC) that leverages 486 can-
cer genes, and FoundationOne CDx (F1CDx) 
developed at the Foundation Medicine Inc. that 
includes 324 cancer genes. These assays are 
increasingly used in clinical settings for person-
alizing cancer treatment in a precision oncology 
fashion.

 CNV Detection

 CNV Detection Methods

In general, there are four main approaches to 
identify CNV from next-generation sequencing 
data: (1) read depth (RD), (2) paired-end (PE), 
(3) split read (SR), and (4) assembly [57] as 
shown in Fig. 4.2.

In read depth (RD) approaches, mostly a non-
overlapping sliding window is used to count the 
number of short reads that are mapped to a 
genomic region overlapped with the window. 
Then, these read count values are used to identify 
CNV regions. RD methods are based on the 
hypothesis that there is a correlation between 

depth of coverage of a genomic region and the 
copy number of the region [58]. In most RD-based 
approaches, a statistical method is used to merge 
neighboring genomic regions with similar read 
counts and to identify genomic regions where 
read counts are significantly different from their 
adjacent regions. The overall pipeline for detect-
ing CNVs using the RD-based approach is shown 
in Fig. 4.3.

Paired-end (PE) approaches, which are 
applied to paired-end NGS data, identify genom-
ics aberration based on the distances between the 
pairs of reads. In PE sequencing data, reads from 
the two ends of the genomics segments are avail-
able. The distance between a pair of paired-end 
reads is used as an indicator of a genomic aberra-
tion including CNV.  A genomic aberration is 
detected when the distance is significantly differ-
ent from the predetermined average insert size, 
where a larger distance indicates amplification, 
and a shorter distance indicates deletion. This 
approach is mostly used for identifying other 
types of structural variation (SV), beyond CNVs, 
such as inversion and translocation.

Split read (SR) methods also applied to paired- 
end NGS data and use pairs of reads where only 

Fig. 4.2 CNV detection methods for NGS data. (a) In 
paired-end mapping methods the distance between a pair 
of paired-end reads indicates CNVs. (b) In split read 
methods the locations of mapped split reads indicate 
breakpoints of genomic structural variations. (c) In 

Assembly-based methods the comparison between gener-
ated contigs with the reference genome indicates struc-
tural variations (d) in read depth methods the coverages of 
genomic regions indicate CNVs
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one read of a pair is mapped and the other one 
either completely or partially fails to map to the 
genome [59]. The unmapped reads are split, and 
fractions are mapped to the genome. The loca-
tions of mapped split reads indicate breakpoints 
of SVs. Split-read-based methods have limited 
ability to identify large-scale SVs. They can 
detect, at least in theory, deletions without size 
limitation, while they cannot detect insertions 
larger than the read length, because the insertion 
cannot be contained in a single read. Split-read- 
based methods are more effective for detecting 
indels (small insertion and deletion) and 
breakpoints.

Compared to PE and SR methods, RD-based 
methods can detect the exact number of CNVs, as 
PE, and SR can only report the position of poten-
tial CNVs and not the counts. In addition, 
RD-based methods can work better on large size 
CNVs, which are hard to detect with PE and SR 
methods [60].

In assembly approaches, short reads are used 
to assemble the genomics regions by connecting 
overlapping short reads (contigs). Assembly- 
based methods first generate a contig/scaffold, 
then compare the contig with the reference 
genome to detect SVs [61]. Assembly-based 

methods are computationally very expensive. 
Moreover, eukaryotic genomes are very complex 
and contain a significant fraction of repeats and 
segmental duplications and assembly-based 
methods perform poorly in these complex 
regions. Another issue with the assembly-based 
methods is that they are unable to handle haplo-
type sequences and therefore only homozygous 
structural variations can be detected [62]. Due to 
the above limitations, assembly-based methods 
are less used in CNV detection for eukaryotic 
genomes.

Because each of these approaches has limita-
tions, several methods have been developed that 
combine multiple aforementioned approaches to 
detect CNVs for WGS data [63].

Due to the availability of high coverage 
sequencing data and the limitation of PE, SR, and 
assembly-based CNV detection methods, 
RD-based methods have recently become a major 
approach to identify CNVs, especially in cancer 
studies, where the number of copies is important. 
However, PE, SR, and assembly methods cannot 
distinguish somatic and germline structural vari-
ations, and do not provide copy numbers. In 
RD-based methods, the absolute number of DNA 
copy of any genomic region can be inferred by 

Fig. 4.3 Overall pipeline for detecting CNVs using read count data
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counting the number of reads/bases aligned to 
that particular region. As a result, RD-based 
methods are mostly used in cancer research 
employing both WGS and WES/targeted data, 
and especially for WES/targeted data. In WES, 
targeted regions are exonic regions that are very 
short and discontinuous across the genome. As a 
result, the PE, SP, and assembly approaches for 
identifying CNVs are not proper for WES data. 
Also, high coverage of WES data makes the RD 
approach more practical. Therefore, all CNV 
detection tools for WES are based on the RD 
approach.

Read depth–based CNV detection methods 
can be categorized into three classes: single sam-
ple, paired case/control samples, and population 
samples. In the single sample category, as there is 
no other subject available, the absolute copy 
number will be reported. In the paired case/con-
trol samples category, the relative copies com-
pared to the control will be reported. And, in 
population samples category, the RD data across 
all the samples will be considered to report CNVs 
[57]. In cancer studies, the paired case/control 
samples category of CNV detection methods that 
specially use match tumor-normal paired sam-
ples are more proper for detecting somatic CNVs. 
This is because germline CNVs are excluded 
from consideration and biases such as GC con-
tent and mappability are reduced due to the com-
parison of read counts from the same genomic 
regions. Generally, these methods use the ratio of 
normalized read counts between tumor and nor-
mal samples in a given genomic window. In the-
ory, assuming a diploid genome, the ratio of 1 (or 
log2 ratio of 0) represents no copy-number 
change; the ratio of 2 (log2 ratio of 1) represents 
a two-copy gain; the ratio of 1.5 (log2 ratio of 
0.58) represents a one-copy gain, and the ratio of 
0.5 (log2 ratio of −1) represents a one-copy loss. 
However, because most tumor samples are mix-
tures of normal and cancer cells and there are 
tumor subclones, the read ratios tend to deviate 
from the expected values. This problem is more 
challenging for loss or gain of one copy, which 
can be deviated from normal easily (from 0.5 or 
1.5 toward 1). Thus, a threshold is used to call 
amplification and deletion. Also, tumor sample 

complexity affects the performance of CNV 
detection. Therefore, taking into account sample 
purity and ploidy is important for accurate detec-
tion of somatic CNVs.

 Challenges in Developing 
Computational Methods 
for Detecting Somatic CNVs in Cancer

Despite improvements in sequencing technolo-
gies and CNV detection methods, identifying 
CNV is still a challenging task, and even more in 
cancer samples because of the complexity of 
tumors and heterogeneity in CNV characteristics 
[57, 64]. In this section, we briefly explain the 
challenges that somatic CNV identification is 
faced with in cancer when using sequencing data. 
We divide these challenges into five classes: (1) 
noisy sequencing data, (2) sequencing technical 
problems, (3) tumor complexity, (4) lack of 
ground truth, and (5) CNV heterogeneity.

Noisy Sequencing Data
The main assumption of the RD-based CNV 
detection algorithms is that the read counts and 
CNV for a particular region are correlated. 
However, there are biases and noise that distort 
the relationship between the read count and copy 
number. These biases and noise include GC bias, 
mappability bias, experimental noise, and techni-
cal (sequencing) noise. GC content varies signifi-
cantly along the genome and has been found to 
influence read coverage on most sequencing plat-
forms [58, 65]. In the alignment step, a huge 
number of reads are mapped to multiple positions 
due to the short read length and the presence of 
repetitive regions in the reference genome [58, 
66]. These ambiguities in alignment can produce 
unavoidable biases and errors in RD-based CNV 
detection methods [58].

Sequencing Technical Problems
In the process of generating sequencing reads 
from samples, sample preparation, library prepa-
ration, and sequencing process introduce experi-
mental and systematic noise that can hinder CNV 
detection [58, 67].
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One of the major causes of sequencing noise 
is PCR hybridization, which is commonly used in 
WES. Hybridization causes generation of many 
reads for a specific region (not because of ampli-
fication) and, as a result there are less reads avail-
able to ensure evenly distribution of reads to 
other regions. It is very common that in some 
genomic regions the read count is very low, and 
this problem is more severe in WES data. The 
exome capture procedure in the library prepara-
tion process for WES introduces more biases and 
noise [68], causing not even distribution of reads 
in the exonic regions. These biases affect the sta-
tistical analysis for calling CNVs and distort the 
relation between read counts and CNVs; as a 
result, they present noise to CNV detection algo-
rithms. Moreover, in many cases, samples are 
extracted from formalin-fixed (FFPE) tissues, 
from which only a small amount of poor quality 
RNA is usually extracted.

Tumor Complexity
The complexity of cancer tumors also distorts the 
relationship between read count and CNV and, as 
a result, it affects the performance of CNV detec-
tion methods. The tumor complexity includes 
tumor purity, tumor ploidy, and tumor subclonal 
heterogeneity.

Therefore, reads mapped to a particular region 
do not all belong to tumor cells. As a result, read 
count values do not completely reflect copy num-
ber of tumor cells, and the tumor normal copy 
number ratio is less than the real value. This 
introduces difficulties in calling copy number 
segments. A threshold for calling CNV will 
depend on tumor purity, which is usually 
unknown. Few tools are available to estimate 
tumor purity such as Absolute [69], which are 
designed for array-based data, THetA2 [70], 
Accurity [71], BubbleTree [72], AbsCN-seq [73], 
and MixClone [74], which are designed for 
sequencing data.

Aneuploidy of the tumor genome is observed 
in almost all cancer tumors [75], which creates 
difficulties in determining the copy number val-
ues. The tumor-normal read count ratio corre-
sponds to the average ploidy, which is usually 
unknown in the tumor sample. So far, few tools, 

such as Patchwork [76], AbsCN-seq [73], 
Absolute [69], and Sequenza [77], have been 
developed to identify tumor ploidy. They mostly 
incorporate the fraction of nonreference allele (B 
allele frequency or BAF) to identify the tumor 
ploidy, since different tumor ploidy exhibits dis-
tinct BAF signatures.

It is also observed that multiple clonal sub-
populations of cells are present in tumors [78]. 
Due to their low percentage in a sample, it is hard 
to determine the subclones. This intra-tumor het-
erogeneity or multiple clonality distorts the esti-
mate of copy number values and makes calling 
CNV segments complicated.

Lack of Gold Standard
Benchmark analyses are necessary to evaluate 
the performance of CNV detection methods. 
However, there is no gold standard WES or WGS 
data with a validated CNV list that can be used 
for benchmarking the developed CNV detection 
methods. Comparative studies of CNV detection 
tools have shown that while they can detect 
CNVs, the concordance of the results is quite low 
[57, 64, 79, 80].

To evaluate the performance of CNV detec-
tion methods, simulated WGS and WES data, 
and/or data from other CNV profiling platforms, 
such as array-based CNV from the same samples, 
are used. Large data repositories such as TCGA 
or the1000 Genome Project contain genomic data 
from array-based and sequencing technologies 
that can be used for benchmarking.

A few simulators have been developed to gen-
erate synthesized genomes harboring CNVs. For 
example, RSVSim [81] and SVsim [82] simulate 
genome with SV including CNVs (deletions, 
insertions, inversions, tandem duplications and 
translocations), and SCNVSim [83] simulates 
genomes with CNVs. Since these tools only gen-
erate genomes, short read simulators need to be 
used to generate simulated sequencing data. A 
few tools have been developed for synthesizing 
WGS data from a genome with SV (Pysim-sv 
[84]) and with CNVs (SinC [85]); and for synthe-
sizing WES data from a genome with CNV 
(CNV-Sim [86] and SECNVs [87]).
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Using different assays or simulated sequenc-
ing data can be very useful for benchmarking 
CNV detection methods. However, it is unclear 
how well the CNV results from different assays, 
such as array-based technology, with lower reso-
lution and precision, and simulated CNVs can 
capture the complexity of real tumor samples.

Heterogeneity of CNV Profiles
CNVs are very prevalent in cancer, can cover 
most of a genome, and have very heterogeneous 
profiles. While CNVs affecting large genomic 
segments are often frequent in cancer genomes, 
unlike in normal genomes, focal or small CNVs 
are also observed frequently. CNV detection 
methods are designed based on some assumption 
about characteristics of CNVs and the read count 
distributions. It has been shown that consistency 
among the CNV detection methods in calling 
CNVs is not high. This is mainly because CNV 
profile for a cancer sample is very heterogenous 
and complex, and each method is strong in cap-
turing some characteristics of CNVs but not all. 
For example, a method that can detect large CNV 
segments cannot capture focal CNV segments 
precisely. The heterogeneity in the CNV profile 
of a genome adds challenges in developing an 
effective CNV detection method. To address this 
challenge, some studies suggest using multiple 
CNV detection methods that are designed based 
on different characteristics of CNVs and consoli-
date their results. A few ensemble approaches 
have been proposed (such as CN_Learn [88] and 
Anaconda [89]) that combine the results of sev-
eral tools instead of using a single tool.

 CNV Detection Algorithms 
and Tools

So far, more than 150 software tools have been 
developed to analyze CNVs [28] using next- 
generation sequencing data or microarray data. 
Among them about 60 tools have been developed 
for analyzing and detecting CNVs in cancer data, 
or have been used in cancer studies, using WGS, 
WES, and targeted sequencing data, as shown in 
Tables 4.1, 4.2, and 4.3. Several review papers 

have been published discussing and comparing 
CNV detection tools and methods including [57, 
63, 79, 80, 90], which we point interested readers 
to for more information.

As mentioned in the previous section, the 
most appropriate approach to detect somatic 
CNVs and to provide absolute copy numbers is 
the read depth–based approach, which is used by 
almost all of the available CNV detection meth-
ods for cancer. In general, an RD approach con-
sists of three major steps: (1) preprocessing, (2) 
segmentation, and (3) CNV calling, as shown in 
Fig. 4.4.

The input data are usually aligned short reads 
in the BAM, SAM, or Pileup formats from tumor 
and matched normal. A few tools such as 
VCF2CNA [91], sCNAphase [92], and SAAS- 
CNV [93] also use VCF format for input data. As 
mentioned in the previous section, using match 
normal samples is very important to reduce 
sequencing biases and to eliminate germline 
CNVs. However matched normal samples may 
not always be available and, as a result, some 
tools have been developed which rely on a group 
of normal samples instead of a matched normal, 
such as AluScanCNV2 [94] and RefCNV [95], or 
on a “synthetic-normal” such as SynthEx [96]. 
Moreover, since generating sequencing data from 
normal samples increases the sequencing cost, 
some tools offer to detect somatic CNVs without 
using normal samples, as indicated in Tables 4.1, 
4.2, and 4.3. In addition to aligned sequencing 
data as input, some tools take BAF information 
as well to estimate tumor ploidy and adjusting 
copy numbers for more accurate CNV detection.

In the preprocessing step, outlier reads (such 
as low-quality reads, repeated reads, unmapped 
reads) are filtered out, read depth data are gener-
ated by using a sliding window, and sequencing 
data’s biases and noise are reduced. Normalization 
and de-noising algorithms are important in this 
step. A typical strategy to reduce biases in cancer 
read count data for CNV studies is to use sequenc-
ing data from the matched normal tissue or germ-
line of the same patient generated under the 
identical experimental conditions. Using matched 
normal samples helps to identify heterozygous 
SNPs for calculating BAF and to filter out germ-
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line CNVs in patients. While the inclusion of a 
matched normal sample is a powerful strategy for 
somatic CNV detection and to reduce some 
biases, it cannot remove all the biases. The main 
sources of bias are mappability and GC content. 
GC content varies significantly along the genome 
and has been found to influence read coverage on 
most sequencing platforms [65, 97, 98]. 
Sequencing technologies behave differently on 
sequences with different GC content due to bio-
chemical differences in the sequenced DNA [99]. 
It has been observed that regions with low or high 
GC content have low read counts compared to 
other regions. In fact, there is a unimodal rela-
tionship between read counts and G and C bases 
in a genome [100–102]. The GC content bias is 
neither linear nor consistent among different 

samples. Although the global structure of the dis-
tribution of read counts with respect to the GC 
content (GC bias curve) is consistent, the exact 
shape varies considerably across samples. 
Furthermore, a huge number of sequencing reads 
cannot be clearly mapped to the reference 
genome due to short length of reads and the pres-
ence of repetitive regions within the reference 
genome. Especially in WES data, some regions 
of the genome have low or no coverage. Mutations 
and sequencing errors can lead to incorrectly 
mapped reads as well. These errors introduce a 
challenge to the alignment process resulting in a 
mappability bias [58].

To compensate for GC and mappability biases, 
several RD-based methods [103–106], use the 
ratio of tumor to normal read counts. Many stud-

Fig. 4.4 Overall workflow for detecting CNVs that consists of three main parts: preprocessing, segmentation, and 
CNV Calling

4 Identification of Copy Number Alterations from Next-Generation Sequencing Data
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ies have been conducted on addressing GC and 
mappability biases by employing smoothing 
techniques. Several methods have been proposed, 
of which the most popular is the Loess (locally 
estimated scatterplot smoothing) regression 
method [102, 106–108]. Loess regression is a 
nonparametric technique that uses local weighted 
regression to fit a smooth curve through data 
points. Other methods such as moving average, 
discrete Wavelet transform, and Total Variation 
methods have also been used for smoothing read 
count data. Preprocessing and normalization 
have a big impact on the total performance of 
CNV detection tools and need to be considered 
when choosing a tool for CNV analysis or devel-
oping a new CNV detection method.

In the segmentation step, a common strategy 
is to make an assumption about the distribution 
of read count data and to apply a statistical 
approach to merge the neighboring regions (adja-
cent exonic regions in WES data) with similar 
read counts to estimate a CNV segment. Most of 
the tools assume that the read count distribution 
is Gaussian, whereas a few assume a negative 
binomial distribution or a Poisson distribution. 
Different tools are designed for different charac-
teristics of read count data, for example some 
tools are designed for detecting small CNVs such 
as CNV-RF [109], and some tools are designed 
for low coverage data such as ACE [110]. As 
shown in Tables 4.1, 4.2, and 4.3, variants of few 
statistical approaches, such as circular binary 
segmentation (CBS), hidden Markov model 
(HMM), change-point detection, Gaussian mix-
ture model, regression, Bayesian analysis, and 
Random Forest, have been used for calling 
CNVs. Some heuristic statistical analyses have 
been also used in a few tools.

The most commonly used statistical methods 
for segmentation are CBS, HMM, change-point 
analysis, and the Gaussian mixture model. In 
CBS, the algorithm recursively localizes the 
breakpoints by changing genomic positions until 
the chromosomes are divided into segments with 
equal copy numbers that are significantly differ-
ent from the copy numbers of their adjacent 
genomic regions. CBS can also be seen as a 
change-point detection method. In HMM, the 

read count data points are sequentially binned 
along the chromosome according to whether they 
are likely to measure an amplification, a deletion, 
or a region in which no copy number change 
occurred. In change-point analysis, genomic 
locations at which the probability distribution of 
the sequence of read counts changes are identi-
fied. These change points are marked as CNV 
breakpoints and the means or medians of read 
count values between the breakpoints are com-
puted as CNV values. This approach can also 
offer significance values (p-values) for the 
detected breakpoints. In the Gaussian mixture 
approach, it is assumed that all the read counts 
are generated from a mixture of a finite number 
of Gaussian distributions and a Bayesian 
approach is used to assign read counts to CNV 
levels.

Finally, in the CNV calling step, statistical 
significance of detected segments and their copy 
numbers are evaluated for calling segments as 
amplified, deleted (with their copy number), or 
normal. In this step, mostly a user-defined thresh-
old is used to filter out nonsignificant CNV 
segments.

While these steps are used in CNV detection 
methods for both WES and WGS data, CNV 
detection methods developed for WGS data are 
not suitable to WES data. This is because the 
main assumptions on read distributions and con-
tinuity of read count data points do not hold in 
WES. In addition, WES data introduce biases due 
to hybridization, which do not exist in WGS data 
and are not considered in the CNV detection 
methods for WGS data. Some CNV detection 
methods for WES data provide copy numbers 
only for exonic regions, while some merge adja-
cent exonic regions to provide genomic regions 
with CNVs.

In addition to CNV detection, visualization 
and analyzing CNV profiles of cohorts of patients 
are important. Few tools have been developed for 
analyzing CNV results such as GISTIC2 [111] 
and CNspector [112]. GISTIC is a commonly 
used method for identifying and visualizing 
regions of the genome that are significantly 
amplified or deleted across a set of samples. 
CNspector is a more recent tool which is a web- 
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based browser to visualize CNV calls. A few 
tools such as RUbioSeq+ [113] have also been 
developed that use other CNV detection meth-
ods, for example, Contra [114], and provide a 
user friendly pipeline for visualization and ana-
lyzing sequencing data. Some tools have also 
gone further providing cancer susceptibility risk 
using CNV profiles (such as AluScanCNV2 
[94]).

 Conclusion

Next-generation sequencing technologies have a 
great potential to change cancer research and 
clinical practice toward precision oncology. NGS 
offers cheap, fast, and accurate results, and gen-
erates huge amounts of data. This has now shifted 
the challenge from generating data to analyzing 
them. Consequently, many software tools have 
been developed for analyzing sequencing data, 
providing a robust means to make important 
genomic discoveries and to identify novel 
genomic biomarkers, which could have not been 
possible without them.

The emerging cancer care approach is moving 
from standard treatments based on cancer types, 
to focus on molecularly guided therapies based 
on each individual patient’s genomic variants. 
CNVs, which are deletion or multiplication of 
segments of genomes, are major genomic vari-
ants and have been associated with cancer prog-
nosis. Many studies have identified actionable 
and druggable CNVs and have reported survival 
improvements in patients who received CNV 
guided (variant matching) therapies. CNV 
 detection algorithms have had a significant 
impact on advancing precision oncology by facil-
itating identification of actionable CNVs accu-
rately and precisely.

As explained in this chapter, CNV detection is 
complex and faces computational and analytical 
challenges. Many tools and pipelines have been 
developed for CNV detection that have contrib-
uted significantly to advancing cancer studies 
and cancer care. Even though CNV detection has 
made significant progress and many tools are 
available, computational pipelines for detecting 

CNVs are not well standardized and vary signifi-
cantly from study to study and even from sample 
to sample. Also, consistency among methods in 
calling CNVs is not high. As a result, precise and 
accurate CNV detection needs extra care and 
consideration. However, even though there are 
some limitations in CNV detection, the crucial 
role of these tools in discovering actionable 
genomic biomarkers and in advancing the field of 
cancer genomics and precision oncology cannot 
be overlooked. With the emergence of new statis-
tical and computational methods, such as machine 
learning approaches especially now that increas-
ing amount of cancer sequencing data are avail-
able, and with the development of new sequencing 
technologies, such as single-cell sequencing, 
long-read sequencing, and linked-read sequenc-
ing, we expect to see more improvement in CNV 
detection. Therefore, we expect to achieve 
improved identification of more actionable CNVs 
and significant progress in cancer treatment and 
precision oncology.
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Abstract

Microsatellite instability (MSI) is a genetic 
alteration due to a deficiency of the DNA mis-
match repair system, where microsatellites 
accumulate insertions/deletions. This pheno-
type has been extensively characterized in 
colorectal cancer and is also sought in the con-
text of Lynch syndrome diagnosis. It has 
recently been described in dozens of cancer 
types from whole genome/exome sequencing 
data, bearing some prognostic information. 
Moreover, MSI has also proven to be a major 
predicator of the response to immune check-
point blockade therapy in solid cancer patients. 
Among the different methods developed for 
MSI detection in cancer, next-generation 
sequencing (NGS) is a promising and versatile 
technology offering many possibilities and 
advantages in diverse clinical applications 
compared to the gold standard PCR and capil-
lary electrophoresis approach. NGS could 
notably increase the number of analyzed mic-
rosatellites and potentially be used to analyze 
other genetic alterations required for precision 

oncology. However, it requires the development 
of robust new computational algorithms for 
the analysis of NGS microsatellite data. In this 
chapter, we describe the different approaches 
developed for the assessment of MSI from 
NGS data in cancer, including the different 
microsatellite panels and computational algo-
rithms proposed, highlighting their advan-
tages and drawbacks, and their evaluation in 
different clinical applications.

 Introduction

Microsatellites are short tandem repeats of 1–6 
nucleotides ubiquitously present throughout the 
genome, and whose polymorphism is based on 
the number of repetitions of the repeat motif [22]. 
These highly polymorphic sequences have been 
used since the 1990s for cancer diagnosis to 
detect microsatellite instability (MSI/MSI-H) 
[11]. MSI is a widespread genomic alteration 
caused by a deficiency of the DNA mismatch 
repair system (dMMR) that normally allows the 
repair and correction of DNA strands in the pres-
ence of DNA mismatches introduced during 
DNA replication due to polymerase slippage [11, 
22]. Thus, the MSI phenotype is characterized by 
the accumulation of microsatellite mutations cor-
responding to insertions or deletions of several 
nucleotides that are multiples of the repeated unit 
[11, 18, 38]. MSI has been extensively studied in 
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colorectal cancer (CRC), where 15–20% of 
tumors present this phenotype associated with 
better patient survival in stage II and III CRCs 
[11]. MSI CRC can have a sporadic origin or 
arise in the context of Lynch syndrome and more 
rarely CMMRD syndrome that are caused by 
mono- and bi-allelic germline mutations of one 
of the four MMR genes (MLH1, MSH2, MSH6, 
or PMS2), respectively [11, 93]. The presence of 
MSI was also well known for a long time in other 
cancer types including gastric [81] and endome-
trial [98] cancers, but it was the recent compre-
hensive pan-cancer analyses of whole genomes/
exomes data of The Genome Cancer Atlas pro-
gram (TGCA) that showed the genome-wide 
occurrence of MSI in several other cancer types 
[13, 18, 38]. Moreover, it has been shown that 
MSI also bears some prognostic information and 
is also a predicator of the efficacy of immune 
checkpoint blockade therapy in solid tumors, 
which presents a great clinical interest for cancer 
patients and might help clinicians for therapeutic 
decision making [38, 59, 60].

The gold standard approach for MSI detection 
in cancer relies on PCR followed by capillary 
electrophoresis fragment analysis (MSI-PCR) 
using different panels of microsatellites aiming 
to provide the highest degree of sensitivity and 
specificity [6, 55, 86]. Other methods relying on 
the modification of standard procedures have also 
been developed to improve the limit of detection 
(LOD) of MSI, as required for some applications 
(e.g., to detect MSI in blood and in tumors with a 
high level of normal cell contamination or in pre-
cancerous lesions) [7, 19, 43, 45, 54]. Recently, 
next-generation sequencing (NGS) has also been 
used for the detection of MSI in cancer, which 
required the development of new computational 
algorithms allowing the analysis of sequencing 
data from a far greater number of microsatellites 
(from less than ten to tens of thousands) [6]. 
These bioinformatic methods allowed the detec-
tion of MSI using different approaches either 
based on (i) the average mutational burdens, (ii) 
the percentage of unstable loci determined by 
comparison with non-tumoral samples, or (iii) 
more complex machine learning classifiers. The 
three approaches have been applied to different 

types of clinical samples [6]. These NGS-based 
MSI detection methods showed comparable or 
sometimes better sensitivity for MSI detection 
compared to the gold standard approach and have 
been evaluated in different types of cancers and 
for diverse clinical applications. In this chapter, 
we describe the different panels of microsatellites 
and computational approaches developed to date 
for the detection of MSI in cancer from NGS 
experiments. We highlight and compare the 
advantages and drawbacks of these methods 
and demonstrate their potential applications in 
routine clinical testing.

 The Need of Sensitive and Specific 
Microsatellite Panels for MSI 
Assessment from NGS Data

 Sensitive Microsatellite Markers Used 
for MSI Detection in Cancer 
with the Gold Standard Method

MSI was initially described in 1993  in which 
deletions in several microsatellites were found in 
CRC samples [1, 46, 84]. Some studies also 
showed that the percentage of tumors with MSI 
could greatly vary depending on the microsatel-
lites used for MSI detection, suggesting that they 
presented different stabilities for MMR defi-
ciency [1, 9, 17, 20, 85]. Thus, the first parameter 
influencing the sensitivity and specificity of MSI 
detection in cancer is the microsatellite markers 
used whatever the analytical method chosen, 
including NGS. A combination of the most sensi-
tive and specific microsatellites whose instability 
reflects the MMR deficiency should therefore be 
used for MSI detection in cancer.

A first standardized panel of microsatellites, 
known as the Bethesda/NCI panel, to be used 
with PCR and capillary electrophoresis was pro-
posed at the National Cancer Institute (NCI) 
workshop held in Bethesda (Maryland, USA). 
The panel was composed of two mono- nucleotide 
(BAT-25 and BAT-26) and three di-nucleotide 
(D2S123, D5S346, and D17S250) repeat micro-
satellites [12]. CRC samples presenting two or 
more unstable markers should be defined as MSI/
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MSI-H, while the others should be classified as 
MSS (microsatellite stable) or MSI-L (MSI-low) 
if no markers or only one marker was unstable, 
respectively [12]. Though still under debate, 
MSS and MSI-L tumors are generally considered 
and treated clinically as a single group, while 
some studies showed that most MSS tumors 
could be classified as MSI-L tumors if a suffi-
cient number of microsatellite markers are tested 
[34, 52, 55, 57, 76].

Although the Bethesda/NCI panel is still the 
current gold standard used in several laboratories 
for MSI detection, several concerns have arisen 
regarding this panel including notably the pres-
ence of di-nucleotide microsatellites that are less 
sensitive and less specific compared to mono- 
nucleotide microsatellites [37, 56, 74]. The use of 
mono-nucleotide repeat microsatellites have 
been recommended as they are more sensitive 
and less polymorphic [16, 37, 42, 56, 74]. The 
use of individual mono-nucleotide microsatellite 
markers such as CAT25 and HT17 or inclusion 
into new panels such as the gold standard penta-
plex panel (NR-21, NR-24, BAT-25, BAT-26, and 
NR-27/MONO-27) have been proposed due to 
showing higher sensitivities compared to the 
Bethesda/NCI panel [4, 8, 15, 16, 21, 25, 33, 67].

 Pan-Cancer Microsatellite Instability 
Analysis at a Genome-Wide Scale 
Using NGS: Some Basic Insights

Since the advent of NGS, almost all microsatel-
lites in the genome can now be analyzed and used 
to assess MSI in cancer compared to the gold 
standard approach, which should further improve 
the sensitivity of MSI detection. The number of 
microsatellites that can be simultaneously 
detected and analyzed is dependent on the proto-
col used for library preparation, ranging from 
less than ten to several hundred thousand [18, 30, 
79]. Recently, two genome-wide studies based on 
whole genome sequencing (WGS) and whole 
exome sequencing (WES) data from TCGA 
assessing MSI in several types of cancers devel-
oped their own MSI classifier and presented a 
comprehensive landscape of microsatellite insta-

bility across cancer [18, 38]. These studies 
showed that most microsatellites in the genome 
are stable and therefore would not be informative 
in the case of MMR deficiency [18, 38]. 
Moreover, most tumors presented some unstable 
microsatellites, whose overall burden could dis-
tinguish MSI/MSI-H from MSS and MSI-L 
tumors but not MSI-L from MSS tumors, thereby 
confirming that MSI-L and MSS tumors could be 
considered as a same phenotype [18, 38]. The 
studies also showed that some microsatellites 
could be unstable in both MSS and MSI tumors 
indicating that they could not be used for MSI/
MSI-H assessment. Moreover, MSI preferen-
tially affected di-nucleotide repeat microsatel-
lites in frequency and mono-nucleotide repeat 
microsatellites in quantity as well as microsatel-
lites located in intergenic, intronic, and 5’ and 
3’UTR regions [18, 38]. Finally, both studies 
showed that some unstable microsatellites were 
inter- and/or intra-tumor-type specific and identi-
fied lists of microsatellites that were the most fre-
quently and specifically unstable in MSI-H 
cancers, which could potentially be used to define 
new pan-cancer panels with improved sensitivity 
and specificity for MSI detection [18, 38]. As the 
microsatellites of the Bethesda/NCI and penta-
plex panels were principally developed and rec-
ommended for CRC and have shown poor 
performances in other cancer types [24, 35, 73], 
there was a need to develop new microsatellite 
panels for NGS with improved sensitivity and 
specificity that could be used in several types of 
malignancies.

 Refined Microsatellite Panels for MSI 
Detection in Cancer Using NGS: 
Toward Precision Oncology

To date, most studies based on NGS experiments 
evaluating MSI in cancer used microsatellite 
sequencing data available from WGS, WES, or 
targeted gene sequencing (TGS) of panels of 
genes implicated in cancer that were not initially 
designed for MSI detection, either in several 
types of microsatellites (mono- to penta- 
nucleotide repeat) or refining their analysis to 
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mono-nucleotide repeat microsatellites [13, 18, 
38, 50, 52, 79]. Although genome-wide analyses 
of MSI in all microsatellites contained in WGS 
and WES data present a great interest for basic 
research and the general comprehension of MSI 
mechanism in tumorigenesis, they are less 
adapted for translational and clinical applications 
in oncology due to their costs and low coverage 
(30 X for WGS and 100 X for WES in average). 
Thus, these applications require small panels of 
microsatellites with high clinical sensitivity and 
specificity for MSI detection that could be appli-
cable to high throughput and to degraded samples 
such as FFPE or cell-free circulating DNA sam-
ples for a reduced cost. Another parameter to 
consider is the coverage used for the NGS experi-
ments, which was shown to negatively influence 
the detection of MSI events from 30 X or lower in 
high purity tumor samples [18]. The coverage 
should therefore be greatly increased to ensure a 
sufficient LOD of MSI in clinical samples [75], 
notably those with a high level of normal DNA 
contamination in heterogeneous tumors with 
minor clones bearing the mutations, tumors with 
a high level of stromal cell contamination, pre-
cancerous lesions, and blood or plasma samples.

In a proof-of-concept study, ultra-deep ampli-
con sequencing (5000–8000 X) of 2 or 5 micro-
satellites, which included some of the Bethesda/
NCI and pentaplex panels microsatellites, has 
been performed on FFPE tumor samples for MSI 
detection [30]. Results from NGS experiments 
presented 100% concordance with the gold stan-
dard MSI-PCR method using the NCI and penta-
plex panel (Table 5.1), thereby demonstrating the 
applicability of NGS for MSI testing [30]. Other 
studies have used sets of microsatellites identi-
fied from cancer gene panels initially developed 
for the detection of single nucleotide variations, 
fusions, and copy number alterations in the con-
text of precision oncology to guide the therapeu-
tic decision-making. Among them, we can site 
ColoSeq, UW-OncoPlex, BROCA, MSK- 
IMPACT, and Caris MI TumorSeek 592-Gene 
NGS panels capturing 50, 194, 53, 341–468, and 
592 genes implicated in cancer where 146, 15, 
146, and more than 7000 microsatellites have 
been used to detect MSI on tumor samples, 

respectively (Table  5.1), with almost or 100% 
agreement with the gold standard MSI-PCR 
using the pentaplex panel [59, 66, 77, 79, 87].

Other microsatellite panels have also been 
specifically designed and recently published for 
MSI detection in cancer (Table  5.1). Thus, the 
ColonCore panel was principally proposed for 
CRC and allowed the simultaneous detection of 
MSI and mutations in 36 CRC-related genes and 
presented high concordance with MSI-PCR and 
immunohistochemical (IHC) analysis (Table 5.1) 
[97]. A similar group proposed two panels for 
MSI detection: the MSIplus panel [40] and a pan- 
cancer panel of 111 microsatellites [88]. The first 
panel evaluated MSI in 17 microsatellites and 
mutations in 3 oncogenes (KRAS, BRAF, and 
NRAS) and presented slightly improved perfor-
mances compared to MSI-PCR [40], while the 
latter panel showed performances comparable to 
and better than the pentaplex MSI-PCR in 
colorectal and non-colorectal tumor samples, 
respectively [88]. Another group also proposed 
MSI detection by two panels of 17 and 6 micro-
satellites optimized from two larger panels of 120 
and 24 microsatellites, respectively (Table  5.1). 
They presented 97–100% concordance with the 
pentaplex MSI-PCR in CRC samples [29, 78]. 
Recently, three panels of a small number of 
selected microsatellites (5, 24, and 90) have also 
been used to detect MSI in samples with very 
little tumor DNA content. These samples included 
blood and plasma samples (Table 5.1) and also 
required the use of unique molecular identifiers 
(UMI) in the library preparation to sufficiently 
improve the LOD of MSI [28, 31, 91].

In summary, the choice of microsatellites 
greatly impacts the sensitivity and specificity of 
the detection of MSI and should be performed 
carefully. Although easily feasible with NGS 
technologies, there is sometimes no need to dras-
tically increase the number of microsatellite loci 
used for precision oncology purposes. To demon-
strate this point, panels with as few as 6 microsat-
ellites allowed highly sensitive MSI detection in 
clinical samples [29, 39]. Moreover, due to the 
tumor-type specificity of some unstable micro-
satellites, the microsatellites used for MSI detec-
tion should be selected according to the studied 
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tumor type or be simply part of a pan-cancer 
panel [88]. The detection of MSI by NGS has 
required the development of specific algorithms 
and computational methods whose choice also 
affects the sensitivity of MSI detection despite 
the use of the same microsatellite panel [48, 50].

 Computational Approaches for MSI 
Assessment in Cancer 
from NGS Data

 Challenges and Difficulties 
of Microsatellite Next-Generation 
Sequencing Data Analysis

Compared to the gold standard capillary electro-
phoresis procedures, NGS experiments are much 
more expensive to perform and the NGS-based 
computational approaches developed for the 
detection of MSI require more time to generate 
results due to the more complex analyses 
required. Thus, the different methods developed 
to date needed to take into account several intrin-
sic parameters and characteristics for the analysis 
of microsatellite data generated from NGS 
(WGS, WES, and TGS) experiments. These 
methods had to manage the formation of stutter 
artifacts introduced during the PCR amplification 
steps included in NGS experiments, the 
homopolymer- induced sequencing errors and the 
subsequent difficulties for accurate indel calling, 
the shortcomings of short read sequencing limit-
ing the length of the microsatellites analyzed as 
well as the high level of microsatellite 
 polymorphism across individuals [23, 47, 83, 
95]. The assessment of MSI status using NGS 
data (mostly WES and WGS) thereby requires 
calibration and false-positive filtering steps, 
where local or global realignment may improve 
MSI calling.

To deal with the difficulties previously men-
tioned, each computational approach developed 
their own specificities for microsatellite data 
analysis and MSI detection. In general, the use of 
a high number of microsatellite loci for MSI 
detection by NGS in most approaches could be 
particularly useful as it bases MSI detection on a 

high number of MSI events rather than a small 
number, thus limiting the effect of some false- 
positive calls that might arise at certain microsat-
ellite loci. This is particularly true for the methods 
based on mutation burden for the detection of 
MSI, where specific loci are not considered as the 
MSI status depends on an average burden of 
mutation in the samples. Moreover, in most 
approaches, the exclusion of microsatellite loci 
with insufficient coverage might also improve the 
MSI calling accuracy.

The polymerase slippage may create artificial 
instability (stutter artifact) in microsatellite 
sequences introducing noise in length distribu-
tions mostly on long microsatellites (15 and more 
repetitions) where numerous alleles are present at 
different frequencies for a same microsatellite. 
Several methods, including mSINGs [79] and 
MSIsensor [69], thereby compared the differ-
ences between the microsatellite allele distribu-
tions based on the read counts of tumoral and 
normal samples that include the stutter artifact 
and the genuine microsatellite allele using differ-
ent statistical tests to detect unstable microsatel-
lites. The presence of these stutter artifacts could 
also hide some small microsatellite instabilities 
(−1 or −2 deletions) that are present at low fre-
quency in some samples with a high level of nor-
mal DNA such as in plasma or blood samples of 
cancer patients. To address this difficulty and 
improve the limit of detection of MSI, the use of 
molecular barcodes (UMI) in NGS experiments 
has been developed for microsatellites and 
allowed after a bioinformatics correction to iden-
tify true MSI events present at low frequency [28, 
31, 88].

In addition, some microsatellites present a 
naturally high level of polymorphism, notably in 
black African populations, and this naturally high 
polymorphism could sometimes be confused 
with MSI and result in false positives [53, 55]. 
This bias can notably be reduced by the compari-
son of normal and tumoral samples of a same 
individual as performed by MSIsensor [69] and 
MANTIS [50], which will thereby filter out the 
natural polymorphism and possibly reduce reads 
errors due to the polymerase slippage. When 
matched normal samples were not available, 
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some approaches such as mSINGS [79] and 
MSI- ColonCore [97] allowed the calibration of 
instability baseline across a set of samples 
sequenced using the same NGS protocol.

The following parts are a catalog of the differ-
ent NGS-based computational approaches devel-
oped to date for the detection of MSI in cancer 
that are also summarized in Table 5.2. Although 
they all presented good performances, a system-
atic evaluation will be required to delineate their 
platform or software dependencies. The avail-
ability and requirements of each method are also 
indicated in Table 5.3.

 Methods Using the Percentage 
of Unstable Microsatellite Loci 
Compared to Normal Samples

These methods rely on the comparison of the per-
centage of microsatellite instability of a defined 
set of microsatellites (mainly mono-nucleotide 
repeat microsatellites, Table  5.1) between a 
tumoral sample and a paired normal sample or a 
set of normal samples, using the same NGS pro-
tocol. They all require BAM alignment files as 
the main input and the corresponding genome 
reference sequence. To determine the MSI status 
of each microsatellite locus of a tumor sample, its 
length distribution giving the frequency (read 
count) of each possible allele is compared to that 
of its paired normal or normal baseline/reference 
samples using different statistical tests that dis-
tinguish the different methods (Table  5.2). An 
empiric threshold of microsatellite instability is 
then used to classify the samples into MSI or 
MSS tumor samples. A first study on endometrial 
and colorectal cancer proposed a bioinformatics 
approach for MSI detection using WGS and WES 
data from TCGA, where unstable mono- to tetra- 
nucleotide repeat microsatellites were detected in 
tumor samples by comparison of their allele 
length distribution to those of matched normal 
samples using the Kolmogorov–Smirnov statisti-
cal test [52]. However, the authors did not pro-
pose a classifier for the MSI/MSS status in this 
study.

MSIsensor
MSIsensor is the first publicly available tool per-
forming this kind of analysis on paired tumoral 
and non-tumoral samples. The first step is to scan 
the reference genome to find all the microsatel-
lites, by default mono- to penta-nucleotide repeat 
microsatellite of at least five repetitions. 
MSIsensor gives a per microsatellite MSI status 
based on the chi square statistic, resulting in a 
MSI score where a threshold over 3.5% indicates 
the presence of MSI phenotype [69]. MSIsensor 
can be run on WES and WGS data and is thus a 
very powerful tool for discovery studies as it 
gives a complete landscape of microsatellite 
instability across genome or exome [3, 49, 64].

mSINGS
mSINGS first creates a baseline reference panel 
of mono-nucleotide repeat microsatellites 
describing basic instability from a set of normal 
samples [79]. Then, tumoral samples can be indi-
vidually compared to this reference in order to 
determine their MSI status using a Z-score 
approach and a threshold of 20% of unstable 
markers to define MSI in tumors. This software is 
intended to be run on targeted sequencing assays, 
but it is also compatible with WES data [79]. It 
has been used for MSI detection in many studies 
using different panels of microsatellites includ-
ing pan-cancer panels. mSING has also been 
integrated into another MSI/MSS tumor classifier 
called MOSAIC [38] and in MSIplus [40].

MANTIS
In MANTIS, Kautto et al. use a set of mono- to 
penta-nucleotide repeat microsatellites from 
WES data to detect MSI [50]. Their approach 
individually computes and aggregates the differ-
ences between the allele length distribution of 
every locus of matched normal and tumor sam-
ples to obtain an average distance score varying 
from 0 (fully stable) to 2 (fully unstable). A score 
threshold of 0.4 is recommended by the authors 
to consider that the sample presents the MSI phe-
notype. In MANTIS, smaller custom panels can 
also be designed that could be particularly useful 
for rapid diagnosis purposes. When compared to 
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MSIsensor and mSINGs, MANTIS generally 
showed a higher overall sensitivity and specificity 
[50]. However, Kautto et al. also showed that the 
number of microsatellite loci used for MSI detec-
tion (from 10 to more than 2000) differentially 
influenced the accuracy of MSI detection depend-
ing on the method (mSINGs, MSIsenor, or 
MANTIS) used [50], thereby demonstrating the 
extreme importance of the panel of microsatellites 
selected. MANTIS has been used for the detec-
tion of MSI in 39 cancer types from TCGA [13].

MSI-ColonCore
MSI-ColonCore was developed as a rapid MSI 
diagnosis tool for routine clinical testing using a 
read-count–distribution-based method based on 
22 mono-nucleotide repeat microsatellites of the 
MSI-ColonCore panel. The allele length distribu-
tion of the microsatellites from tumor samples 
are compared to a baseline composed of normal 
MSS reference samples predicting the MSI status 
of each microsatellite using a Z-score approach 
where a microsatellite locus was considered as 
unstable with a coverage ratio (ratio of the read 
count of the reference length over all other pos-
sible lengths for a microsatellite) lower than 
threshold (mean minus 3 standard deviation) of 
the baseline reference ratio [97]. MSI-ColonCore 
could thus classify each tumor sample into three 
possible phenotypes: MSI/MSI-H, MSI-L, and 
MSS if more than 40%, between 15% and 40% 
and less than 15% of the microsatellites were 
unstable, respectively [97]. The authors found 
that MSI-ColonCore presented an overall better 
accuracy than MSIsensor and mSINGs for MSI 
detection [97].

MSIsensor-pro
MSIsensor-pro is an updated version of 
MSIsensor, using a multinomial distribution 
model to quantify polymerase slippages for each 
tumor sample and a discriminative site selection 
method to enable MSI detection without matched 
normal samples [48]. MSIsensor-pro first scans 
the genome to identify all the microsatellites, 
then models an event at each base of a repeat 
sequence using a multinoulli distribution with 3 
states: a deletion with a probability p, an inser-
tion with a probability q, and the normal state 

with probability 1-p-q [48]. Using 1532 TCGA 
samples, the parameters p and q are calculated 
for each microsatellite, and all the microsatellites 
can subsequently be sorted according to their 
respective AUC.  MSIsensor-pro then selects a 
panel composed of the most discriminative mic-
rosatellites thus removing the need for a matched 
normal sample. MSIsensor-pro finally defines the 
percentage of unstable microsatellites among the 
covered microsatellites within the panel as the 
score which can then be used to discriminate 
MSI-H from MSS samples. The authors com-
pared their method on the same TCGA samples 
with Mantis, MSIsensor, and mSINGS and found 
MSIsensor-pro outperformed these methods in 
terms of AUC and used computing resources 
(peak RAM and run time) while requiring only 
the tumor sample [48].

MSIcall
MSIcall is based on a targeted sequencing panel of 
76 mono- to tri-nucleotide repeat microsatellites 
used to calculate a MSI score corresponding to the 
weighted normalized sum of the marker scores [41]. 
The marker score is based on the comparison of the 
distances of the mean homopolymer signal of a 
tumor sample with a control sample (a CEPH DNA 
in the original study). MSIcall does not require 
paired normal and tumoral samples and predicted 
the MSI status in 25 cancer types with an overall 
accuracy higher than 98% when using a MSI score 
threshold of 40 [41].

 Methods Directly Based on Mutation 
Burden

These methods incorporated classifiers that can 
determine the MSI status of a tumor sample 
directly from the mutation burden observed in all 
sequences and/or the burden of indels in micro-
satellites from TGS, WES, or RNAseq data.

MSI-seq Index
MSI-seq Index is an approach for MSI detection 
that is based on RNA sequencing data. It uses the 
ratio of two measures called PI and PD, corre-
sponding to the proportion of insertions and 
deletions in mono- to hexa-nucleotide repeat 
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microsatellites among all insertions and deletions 
found in RefSeq RNA transcripts, respectively 
[62]. The authors proposed a PI/PD ratio thresh-
old of 0.9 to distinguish between MSS and MSI 
tumor samples without the use of matched nor-
mal samples [62].

Nowak Method
Nowak et  al. developed an approach for MSI 
tumor classification based on targeted sequenc-
ing data from 275 genes implicated in cancer. 
They proposed a total mutation burden threshold 
of 40 per Mb and a threshold of indels in mono- 
nucleotide microsatellites of 5 per Mb from 
which a tumor sample could be considered as 
MSI-H, with 100% concordance with MSI-PCR 
[70]. They also showed that their approach pre-
sented some false-positive MSI-H tumor calls for 
MSI-H tumors, which were attributed to POLE 
mutated tumors [70].

Fujimoto Method
Fujimoto et  al. estimated microsatellite error 
rates for the various microsatellite patterns on 
chromosome X only as it is hemizygotic in males 
using WGS data [27]. They considered, at each 
nucleotide base, the most frequently occurring 
base to be correct and other calls to be errors. 
Using these estimated error rates in a binomial 
distribution, Fujimoto et  al. implemented 
MIMcall a somatic indel caller and applied their 
algorithm on ~3000 paired bams from ICGC and 
TCGA to detect microsatellites showing 
 instability among a list of microsatellites gener-
ated using MsDetector, Tandem Repeats Finder, 
and MISA [27]. They selected about 200,000 
microsatellites showing instability in at least 2–3 
samples, and they considered a sample to be MSI 
if the proportion of microsatellites showing insta-
bility among the selected microsatellites was 
≥3%. Their approach allowed the identification 
of MSI across 21 different types of cancers [27].

 Complex Methods Based on Machine 
Learning Approaches

The methods presented in this section are based 
on different machine learning approaches for 

MSI detection. The various MSI classifiers first 
vary according to the underlying model chosen in 
each paper. MSIpred relies on a SVM model, 
while MIRMMR used a penalized logistic regres-
sion. In Cortes-Ciriano et al., they used random 
forests [18], whereas decision trees were used in 
MSIseq/NGS classifier and in Hause et al. (C4.5 
algorithm for MSIseq/NGS classifier and recur-
sive partitioning trees in Hause et  al. [38]). 
Finally a score relying on a Bayesian model was 
used in Redford et al. and Gallon et al. [29, 78], 
while a score was built from beta distributions in 
Gallon et al. [28]. The Hause et al. and Cortes- 
Ciriano et al. approaches are quite similar as they 
both start by identifying microsatellites using a 
reference sequence, they then proceed by extract-
ing features from these markers and finally these 
features are fed, respectively, to random forests 
and recursive partitioning trees in Cortes-Ciriano 
et al. and Hause et al., respectively. The second 
main difference between all these models is the 
input features they used. Some of them use only 
very specific features. Foltz et  al. trained and 
validated MIRMMR on CADD scores and meth-
ylation values from genes involved in the MMR 
pathway only [26]. In Redford et al., the read dis-
tribution of only 17 microsatellites (and their 
flanking SNPs) were used in their final Bayesian 
model [78], while Gallon et  al. used the same 
model and showed comparable performances 
with a mere 6 microsatellites. In Gallon et  al. 
[29], they built a score using the inferred beta dis-
tributions of 24 microsatellites. In all the remain-
ing approaches, pan-genomic features were 
incorporated into their model. MSIseq and 
MSIpred both use global variant type counts, but 
MSIpred also uses the same features by genomic 
location and effect type [89]. Cortes-Ciriano 
et al. used the instability status of all the covered 
microsatellites [18]. Hause et al. used only two 
features in their final model: the instability status 
of one locus within DEFB105A/B and the aver-
age gain in unique alleles in tumors relative to 
matched normal tissue across all interrogated 
microsatellites [38].

MSIpred
MSIpred uses 22 features extracted from the 
variation information contained in a MAF file 
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produced using paired whole exome data [89]. 
These features include the global SNP and indel 
count per Mb, the same counts within simple 
repeat regions (UCSC “Simple Repeats” track) 
and various counts based on the variant location 
(splicing sites, UTR, flanking sites) and effect 
(silent, missense and nonsense). Wang et al. then 
trained an SVM classifier with a radial basis 
function kernel on ~1000 TCGA samples with a 
known MSI status [89]. The gamma and C 
parameters from the kernel were chosen using a 
grid search approach in order to maximize the 
average accuracy during a tenfold cross valida-
tion. MSIpred showed an overall accuracy of 
98.3% compared to MSI-PCR on 358 TCGA 
tumors [89]. Wang et  al. also demonstrated 
MSIpred had a higher sensitivity and accuracy 
compared to MSIseq [44, 89].

The MSIseq/NGS Classifier
The MSIseq/NGS classifier allows for direct MSI 
assessment using WES somatic mutation data 
(small nucleotide substitutions and indels). The 
method was developed from four machine learn-
ing frameworks, including random forest, logis-
tic regression, naïve Bayes, and decision tree 
[44]. This approach uses the rate and ratio of the 
small nucleotide substitutions in all sequence 
types as well as the indels found in mono- to 
tetra-nucleotide repeat microsatellites to classify 
the tumor samples into “MSI” and “non-MSI” 
phenotypes. The authors showed that the MSIseq/
NGS classifier gave the best results with the deci-
sion tree classifier [44].

MIRMMR (Microsatellite Instability 
Regression Using Methylation and Mutations 
in R)
In the MIRMMR paper, Foltz et al. built a model 
relying on the gene CADD scores calculated 
from variants in 35 genes involved in the MMR 
pathway, the methylation values in these genes, 
and the point mutation rate as features using 
TCGA data [26]. These features were fed into a 
penalized logistic regression with a tenfold cross 
validation. This function was run 1000 times, and 
the best performing lambda (the lambda which 
minimizes the mean cross-validation error) was 

chosen for the final model. With a cutoff score of 
0.1922, MIRMMR presented a maximized sum 
of sensitivity and specificity for MSI detection, 
with performances similar to those obtained with 
mSINGs and MSIsensor [26].

Cortes-Ciriano Method
Cortes-Ciriano et al. proposed a model based on 
random forests to distinguish MSI-H and MSS 
samples using paired whole exome data from 
TCGA [18]. First, they scanned a transcriptome 
reference sequence to identify microsatellites 
using Sputnik. For each tumor and for each of 
these microsatellites with a minimum coverage 
of 5 reads for the tumor and normal samples, a 
Kolmogorow–Smirnov test was applied to the 
distribution of read lengths extracted from the 
normal and tumor bams in order to detect indi-
vidual specific sites of instability (FDR <0.05) 
[18]. Second, for each tumor, a vector was con-
structed with the total number of unstable sites 
and binary values indicating whether the micro-
satellite was unstable for the patient for all the 
microsatellites showing instability in at least one 
sample. Random forests along with conformal 
prediction were used to build a binary MSI status 
predictor. This approach has been used to detect 
MSI from WES and WGS data of TCGA in a 
pan-cancer study including 23 types of cancer 
[18].

Hause Method (mSING + 1 Locus) MOSAIC
Hause et al. implemented a pipeline similar to the 
one from Cortes-Ciriano et al. Indeed, they first 
established a list of microsatellites to investigate 
using MISA instead of Sputnik in Cortes-Ciriano 
method. From this list, they also extracted a list 
of unstable microsatellites using mSINGS [79], a 
simpler approach which considered a microsatel-
lite to be unstable if there was at least one addi-
tional length in the read length distribution of the 
tumor sample compared to the normal [38]. The 
main difference between the approach described 
by Cortes-Ciriano et al. and Hause et al. lies in 
the model used for the classifier itself and the fea-
tures that were fed to their respective model. 
Indeed, Cortes-Ciriano et al. used all the micro-
satellites showing instability in at least one sam-
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ple as features [18]. Hause et  al., on the other 
hand, extracted summary features from their MSI 
calls. In their final model called MOSAIC, Hause 
et al. used the average gain in unique alleles in 
tumor relative to matched normal tissue across all 
interrogated microsatellites (peak_avg) and the 
instability status of the most discriminating mic-
rosatellite, a locus within DEFB105A/B, chr. 
8:7679723–7679741 on hg19, between MSI-H 
and MSS tumors using Fisher’s exact tests [38]. 
These features were fed into recursive partition-
ing trees using a leave-one-sample-out cross- 
validation strategy to optimize the parameters. 
MOSAIC has notably allowed the detection of 
MSI from TCGA data in 14 out of 18 cancer 
types [38].

Redford and Gallon Methods
These methods were developed from a small 
number of microsatellite loci, with the same scor-
ing approach [29, 78]. Redford et al. investigated 
mononucleotide repeat microsatellites with sizes 
7–12 bp as they are less subject to experimental 
biases [78]. They used TGCA CRC WGS align-
ments merged into a control and MSI-H group to 
identify 120 microsatellites showing instability 
in the MSI-H group compared to the control 
group and with a flanking SNP in dbsnp within 
30 bp of the repeat. These markers were typed in 
a discovery cohort on the Illumina Miseq. Using 
the percentage of reads presenting a deletion as a 
threshold to classify MSI-H and MSS samples, 
Redford et al. were able to draw a ROC curve and 
calculate the associated AUC for each marker 
[78]. These AUCs along with the amplicon length 
were used to select a final list of 17 markers. A 
Bayesian model relying on the deletion frequency 
and allelic bias for these markers was trained 
using the discovery cohort to produce a MSI 
score which could in turn be used to classify a 
sample as MSI-H or MSS. Redford et al. showed 
their model had the same classification perfor-
mance compared to fragment analysis on ~200 
CRC tumor samples [78]. In a later publication, 
Gallon et  al. [29] reused the same panel of 24 
markers from Gallon et al. [28], a subset of the 
120 markers mentioned earlier, and extracted 6 
markers with a backward–forward stepwise 

selection showing the same accuracy than the 
24-marker panel using ~100 CRC samples for 
training and ~200 CRC samples for testing from 
3 independent cohorts.

Gallon Method 2
Gallon et  al. selected 24 markers from the 120 
microsatellites described by Redford et  al. and 
built a model to predict whether a sample has 
CMMRD using non-neoplastic tissues, which are 
characterized by low-level microsatellite insta-
bility [28]. For each of these markers, they fit the 
distribution of percentage of wild type reads 
(WTP) on that microsatellite over all the control 
samples to a beta distribution. Given a new sam-
ple with an observed percentage of wild type 
reads pi for marker i, the probability to observe 
WTP ≥pi can be calculated. These probabilities 
were then combined using Fisher’s method to 
produce a probability that the sample is from the 
control group [28]. Their model was initially 
built on 40 control samples and 5 CMMRD 
patients. On a second cohort of 27 CMMRD 
patients and 54 controls, their model achieved 
100% sensitivity and 98% specificity across all 
samples [28]. By fine-tuning parameters to make 
the model more conservative, they reached 97% 
sensitivity and 100% specificity misclassifying 
one CMMRD patient [28].

 Examples of Clinical Applications 
Using MSI Detection by NGS

 Implications of the MSI Phenotype 
for Cancer Diagnosis, Prognosis, 
Prediction of Treatment Response 
and Therapeutic Decision-Making

The determination of MSI status has many clini-
cal implications for cancer patients. MSI testing 
by MSI-PCR is recommended for the diagnosis 
of two inherited cancer-predisposing syndromes 
known as Lynch and CMMRD syndromes, 
alongside dMMR testing with IHC. 
Approximatively 3% of colorectal tumors (and 
2% of endometrial tumors) arise in the context of 
Lynch syndrome where a constitutional mutation 
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of a MMR gene leads to an increased risk of can-
cer incidence (10% at 50  years and 40% at 
70 years) and requires a specific management of 
the affected patients as well as members of their 
family [2, 5, 32, 63]. In 2015, the European 
Society for Medical Oncology therefore recom-
mended that every CRC patient should be tested 
for MSI at the time of diagnosis as a first screen 
for Lynch syndrome [82]. Moreover, a more 
severe syndrome known as CMMRD caused by 
bi-allelic germline mutations of one of the four 
MMR genes is characterized by the appearance 
of colorectal cancer in childhood and also 
requires a specific management similar to Lynch 
syndrome [92, 93].

Concerning the predictive and prognosis value 
of MSI phenotype, it was shown in stage II/III 
CRC that MSI was associated with a better prog-
nosis and was also predictive of the response to 
different chemotherapy combinations [51, 96]. 
Thus, adjuvant 5’fluorouracil chemotherapy pre-
sented no benefits for stage II CRC patients, 
while it showed improved response in combina-
tion with oxaliplatin in stage III CRC patients 
[51, 96]. MSI status might thus be used to guide 
the choice of a tailored treatment for stage II and 
III CRC patients. Moreover, in metastatic CRC as 
well as in other metastatic solid cancers patients, 
MSI was shown to be a major predictor of 
response to immune blockade therapy [59, 60, 
71, 72]. Thus, the Food and Drug Administration 
(FDA) approved in 2017 the administration of 
immune checkpoint inhibitors (nivolumab and 
pembrolizumab) for the treatment of every solid 
cancer with this genetic feature, regardless of 
their tumor type [14, 65].

 Assessment of MSI Status by NGS 
in Tumors

The gold standard method for MSI testing in the 
clinic is based on MSI-PCR using either NCI/
Betesda or pentaplex panel in FFPE tumor sam-
ples [86]. As an emerging new technology for 
MSI detection in cancer, NGS has been evaluated 
in tumor samples for routine clinical testing and 
compared to MSI-PCR in several studies [94]. 
However, MSI-PCR was used in most of these 

studies as the reference method, and it was there-
fore not possible to know which method actually 
reflected a genuine MMR deficiency when dis-
crepancies were observed between MSI-PCR and 
NGS (Table 5.1), except when a third method such 
as dMMR IHC or full sequencing of MMR genes 
was included. We thereby focused on these latter 
studies allowing the comparison of performances 
of MSI detection by NGS and MSI-PCR.

A first study using the MSIplus panel and the 
mSING algorithm showed that NGS presented 
slightly better performances (97% sensitivity and 
100% specificity) compared to MSI-PCR (97% 
sensitivity and 95% specificity) on a cohort of 78 
FFPE CRC samples without the need of matched 
normal samples [40]. The MSI-ColonCore panel 
was used to assess MSI in 91 FFPE CRC samples 
and presented slightly lower concordance rates 
(92.3%) with IHC than MSI-PCR (93.4%) with 
IHC [97]. In prostate cancer, MSI plus, BROCA, 
and UW-OncoPlex panels combined with the 
mSING algorithm have been used to detect MSI 
in a set of 71 FFPE and 20 fresh frozen prostate 
tumors [39]. MSIplus and the larger panels pre-
sented 96.6% and 93.1% sensitivity and 100% 
and 98.4% specificity, respectively, while MSI- 
PCR had 72.4% sensitivity and 100% specificity 
[39]. Using the pan-cancer panel of 111 micro-
satellites and mSING, Waalkes et  al. evaluated 
the detection of MSI in three types of cancer and 
compared the performances of their method to 
MSI-PCR. Their approach showed equal perfor-
mances for colorectal cancer (100% sensitivity 
and specificity) and improved performances for 
prostate (100% sensitivity and specificity vs. 
81.8% sensitivity and 100% specificity) and 
endometrial (95.8% sensitivity and 100% speci-
ficity vs. 75.0% sensitivity and 100% specificity) 
cancer compared to MSI-PCR using the penta-
plex panel [88].

The recommended algorithms for the diagno-
sis of Lynch syndrome are complex, time- 
consuming, and involve multiple sequential steps 
and different techniques including MSI-PCR, 
dMMR IHC, and/or Sanger sequencing of BRAF 
and/or MMR genes [32]. With the advent of 
NGS, the direct next-generation sequencing of 
the MMR genes in CRC tumors has been pro-
posed as a replacement of the standard multi-test 
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approaches for Lynch screening and presented 
improved sensitivity and simplified steps [36]. 
Moreover, a study based on the detection of MSI 
by NGS using a pan-cancer microsatellite panel 
from MSK-IMPACT assay and MSI-sensor algo-
rithm aimed to determine the prevalence of Lynch 
syndrome across multiple types of cancers (more 
than 15,000 tumors and 50 cancer types) [58]. 
Their results showed that the detection of MSI 
using NGS was predictive of Lynch syndrome in 
all types of tumors, half of the cases concerned 
tumor types not previously or rarely being associ-
ated with this syndrome and a little less than half 
not meeting the clinical criteria (familial and per-
sonal cancer history) for Lynch syndrome genetic 
testing [58]. These results suggested that the 
assessment of MSI by NGS could thereby be 
used for Lynch syndrome screening prior to 
germline screening [58].

These studies illustrated the clinical potential 
of MSI detection using NGS for MSI testing in 
tumors and for Lynch syndrome diagnosis. MSI 
detection using NGS approaches generally pre-
sented better performances (sensitivity and speci-
ficity) compared to MSI-PCR, notably in 
non-CRC tumors and could potentially replace 
the latter method. The main advantage of NGS is 
that it can combine different types of genetic 
analyses in a same gene panel-based experiment 
including MSI testing, tumor mutation burden 
(TMB) assessment, single nucleotide variations, 
fusions, and/or copy number alterations in 
cancer- related genes. The analysis of these 
genetic alterations could thereby guide the thera-
peutic decision-making and management of the 
patients. For example, Vanderwalde et  al. com-
bined, in a recent study based on NGS of a panel 
of 592 genes in thousands of FFPE tumor sam-
ples from 26 cancer types, the detection of MSI 
and the evaluation of TMB, which is another pre-
dictive biomarker of the response to immune 
checkpoint inhibitors whose status can only be 
assessed to date by NGS [87]. As MSI and high 
TMB were only partially overlapping in tumor 
samples, they could potentially be used together 
to identify more patients that may benefit from 
these treatments than when each marker is used 
alone [87]. Pan-cancer panels of genes allowing 
the analysis of multiple types of genetic altera-

tions in cancer by NGS are therefore of great 
interest for precision oncology and need to be 
developed.

 Assessment of MSI Status by NGS 
in Blood and Plasma Samples

Besides the development of novel NGS-based 
approaches for the detection of MSI in tumor 
samples, some studies focused on the capacity to 
detect MSI in non-tumoral samples, notably 
blood and plasma samples. The benefits for the 
patients could be the early and non-invasive diag-
nosis of MSI in patients with suspected MSI/
dMMR cancer or Lynch and/or CMMRD syn-
dromes and the prediction and/or monitoring of 
treatment response.

In the context of CMMRD syndrome diagno-
sis, several approaches have been proposed for 
the detection of MSI from whole blood DNA. 
gMSI is based on the analysis of stutter peaks fol-
lowing MSI-PCR on di-nucleotide repeat micro-
satellites using a freely available software but is 
unable to detect MSI due to MSH6 deficiency 
[45]. A second approach named evMSI proposed 
to detect MSI in lymphoblastoid cell lines derived 
from the blood of CMMRD patients using MSI- 
PCR and presented 100% sensitivity and speci-
ficity but required 120  days of in  vitro culture 
after immortalization [10]. Recently, Gallon et al. 
proposed a simple method for CMMRD diagno-
sis based on a panel of 24 mono-nucleotide repeat 
microsatellites combined with NGS library prep-
aration that included unique molecular identifiers 
(UMI) for slippage error correction and using a 
bioinformatic algorithm for MSI scoring [28]. 
The use of UMI allowed PCR and sequencing 
slippage error correction and to identify genuine 
MSI events in the panel, while the MSI score 
allowed the correct detection of MSI in all 
CMMRD and suspected-CMMRD samples 
including those with MSH6 deficiency and thus 
outperforming the gMSI method [28]. This sim-
ple method may lead to use in clinics for rapid 
CMMRD diagnosis and screening of at-risk 
populations.

Serum and plasma have been extensively stud-
ied for decades and used for cell-free nucleid 
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acid-based biormarkers analysis in cancer 
patients which presents great interest for numer-
ous non-invasive clinical applications such as 
early diagnosis and the prediction and/or moni-
toring of treatment response [61, 80]. Very few 
studies have evaluated MSI in plasma samples of 
MSI cancer patients, although the presence of 
MSI was demonstrated by MSI-PCR in cell-free 
DNA of serum from head and neck cancer 
patients, since 1996 [68]. In two recent and 
simulteneous studies, MSI has been assessed 
using NGS in cell-free DNA of plasma from can-
cer patients including some receiving immune 
checkpoint inhibitors [90]. Willis et  al. used a 
plasma-based cancer genotyping assay 
(Guardant360 assay) and NGS digital sequencing 
for slippage error correction to detect MSI in 
more than 28,000 cfDNA samples. Their 
approach showed a LOD of MSI of 0.1% and a 
high concondance between MSI statuts of paired 
plasma and tumor, where the overall accuracy for 
MSI detection in plasma was evaluated at 98.4% 
when compared to the status of matched tumor 
tissues [91]. Alternatively Georgiadis et al. also 
developed an approach for the detection of MSI 
and TMB-H in plasma using a 58 gene panel, 
where UMI barcoding and a digital peak finding 
algorithm allowed slippage error correction and 
the accurate detection of MSI events with a LOD 
of 1% [31]. Their approach presented 78% and 
67% sensitivities and >99% specificity for MSI 
detection and TMB-H, respectively. It also 
showed that the presence of MSI in pretreatment 
plasma can predict progression-free survival, 
whereas the disapearance of MSI in post- 
treatment plasma is associated with progression- 
free and overall surival [31].

 Conclusion

Since its discovery almost 30 years ago, MSI was 
mainly studied and used as a genetic biomarker 
in CRC and Lynch syndrome. Recently, whole 
genome and whole exome studies showed the 
presence of MSI in dozens of cancer types cor-
relating to patient survival outcome in a positive 
dose-effect manner. Moreover, MSI was also 

identified as a major predicator of the response of 
immune checkpoint blockade therapy in solid 
cancers, which marked a renewed interest in the 
study of this genetic alteration in cancer. 
Consequently, in 2017, the FDA approved the use 
of MSI status for the administration of immune 
checkpoint inhibitors in advanced solid cancers, 
regardless of the type of cancer. Therefore, there 
was a need for the development of new tools for 
pan-cancer MSI detection as the gold standard 
methods based on PCR and capillary electropho-
resis generally presented poor performances for 
non-colorectal cancers. Although more complex, 
NGS could be a powerful method for the detec-
tion and analysis of MSI in cancer compared to 
MSI-PCR, as it could drastically increase the 
number of interrogated microsatellite loci for 
sensitive pan-cancer MSI detection and combine 
in a same experiment the analyses of several 
other types of genetic alteration (single nucleo-
tide variations, fusions, copy number alterations, 
TMB), which are required for the stratification of 
patient tumors for precision oncology. Several 
panels of microsatellites including pan-cancer 
panels as well as new bioinformatics algorithms 
have been proposed to assess MSI in cancer sam-
ples. The computational methods generally took 
into account the particularities of microsatellites, 
including their highly polymorphic nature and 
polymerase slippage errors, as well as the diffi-
culties for the analysis of microsatellite data due 
to the errors induced during the sequencing-by- 
synthesis of homopolymers by NGS, the aligne-
ment errors induced by the short read length, and 
the low accuracy of indel calling. As a result, 
these methods proposed different approaches for 
the determination of MSI status that sometimes 
showed better performances than MSI- 
PCR.  Future perspectives should include the 
development of pan-cancer panels of genes and 
of highly sensitive and specific microsatellite 
markers allowing the simultaneous detection and 
identification of multiple genetic alterations 
including MSI in all types of cancer samples for 
precision oncology. Moreover, a global evalua-
tion, comparison, and validation of the different 
microsatellite panels and computational algo-
rithms proposed to date for MSI detection should 

V. Renault et al.



95

also be performed in the different types of cancer, 
prior to their implementation in routine clinical 
testing.
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Abstract

While the clonal model of cancer evolution 
was first proposed over 40  years ago, only 
recently next-generation sequencing has 
allowed a more precise and quantitative 
assessment of tumor clonal and subclonal 
landscape. Consequently, a plethora of com-
putational approaches and tools have been 
developed to analyze this data with the goal of 
inferring the clonal landscape of a tumor and 
characterize its temporal or spatial evolution. 
This chapter introduces intra-tumor heteroge-
neity (ITH) in the context of precision oncol-
ogy applications and provides an overview of 
the basic concepts, algorithms, and tools for 
the dissection, analysis, and visualization of 
ITH from bulk DNA sequencing.

 Intra-tumor Heterogeneity 
and Cancer Evolution

Intra-tumor heterogeneity (ITH) refers to the 
genetic diversity observed in the population of 
cancer cells that make up an individual tumor. 
Such heterogeneity is the result of an evolution-
ary process that begins with one or more genetic 
alterations acquired by a single cell and passed 
on to its offspring [1]. While most alterations are 
likely passenger events that do not confer a selec-
tive growth advantage to the tumor, a small sub-
set of driver alterations lead to the activation of 
oncogenes and/or the inactivation of tumor sup-
pressors, promoting uncontrolled cell prolifera-
tion and immortality. As the disease progresses, 
tumor cells acquire additional alterations follow-
ing a linear or a branched evolution pattern [2] 
(Fig.  6.1). While linear evolution involves the 
sequential acquisition of alterations over time, 
branched evolution is characterized by the emer-
gence of subclonal cell populations which acquire 
different alterations and evolve independently 
[1]. Subclones may either cooperate or compete. 
Clonal cooperation can support tumor growth 
and progression. For example, a study on colorec-
tal cancer demonstrated that RAS-mutant cells 
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Fig. 6.1 Models of tumor clonal evolution. (a) Linear 
evolution: cells making up the tumor mass acquire and 
accumulate alterations (a, b, c, d) sequentially. (b) 

Branching evolution: subclones emerge by indepen-
dent acquisition of additional alterations. The founding 
clone shown in purple is characterized by alteration a

(continued)

A. Laganà



103

resistant to EGFR blockade by cetuximab created 
a protective microenvironment for sensitive cells 
by secretion of TGFα and amphiregulin, whose 
production was further increased by cetuximab 
treatment [3]. On the other hand, subclones may 
compete for space and vital resources and even 
alternate in a back-and-forth fashion for domi-
nance with therapy [1, 4]. Furthermore, if a sub-
clone promoting tumor growth through its 
interactions with the microenvironment is out-
competed by a more proliferative subclone which 
also depends on that favorable microenviron-
ment, it can cause tumor collapse [5].

As ITH affects tumor behavior and growth, it 
may carry prognostic significance and drive drug 
resistance. A study by Landau et al. demonstrated 
the impact of subclonal heterogeneity on clinical 
outcome in chronic lymphocytic leukemia (CLL) 
patients, where the presence of a subclonal driver 
detected before treatment was associated with 
shorter progression-free survival, independently 
of the treatment received [6]. In our recent study 
on the characterization of newly diagnosed mul-
tiple myeloma (MM), we found that tumors char-
acterized by complex subclonal landscape had 
significantly higher mutation burden and were 
less responsive to standard of care treatment [7]. 
A study on 54 childhood cancers, including neu-
roblastoma and Wilms tumors, revealed that the 
most dynamic landscapes characterized by clonal 
sweep, that is, the process through which a sub-
clone outcompetes all the others and become 
dominant, or by the local emergence of numerous 
small clones, were associated with the poorest 
prognosis [8].

ITH is also one of the hallmarks of metastasis. 
For example, multi-region sequencing of primary 
renal cell carcinomas and associated metastatic 
sites revealed branched evolutionary tumor 
growth and significant mutational and gene 

expression heterogeneity between the different 
areas of the same tumors, characterized by differ-
ent prognostic features [9]. This clearly indicates 
that a single biopsy may not provide sufficient 
information about an individual cancer and repre-
sents a significant challenge for the design of an 
effective treatment.

 Intra-tumor Heterogeneity 
and Precision Oncology

Precision oncology is an emerging and fast evolv-
ing research field introducing a novel approach to 
cancer patient’s care where diagnosis, prognosis, 
and therapy are informed by the specific genetic 
and molecular features of the individual patient’s 
cancer, rather than by the cancer type [10–14]. A 
key concept in precision oncology is the action-
able alteration, which is an alteration (e.g., a 
mutation, a copy number change or another struc-
tural variation) that can be targeted with a specific 
drug or drug combination [15]. A typical example 
is the BRAF V600E mutation in melanoma, 
which can be targeted by BRAF and/or MEK 
inhibitors [16]. While several successful cases of 
targeted therapies have been reported, many 
patients only experience partial and/or short-lived 
benefits, and ITH is one of the likely causes for 
treatment failure. In fact, while the presence of a 
specific alteration in a tumor may indicate a 
potential benefit from a specific targeted treat-
ment, it does not account for other subclones, 
often barely detectable before treatment, which 
may already have or develop resistance to the 
same therapy, and which would then emerge and 
re-shape the tumor landscape once the sensitive 
subclones have been eliminated [17]. Furthermore, 
initially sensitive clones may adapt to selective 
pressure imposed by therapy and develop de novo 

Fig. 6.1 (continued) (e.g., a mutation). The green and 
orange subclones acquire alterations b and c, respectively, 
and inherit alteration a from the parent clone. A further 
subclone, represented in yellow, emerges from the green 
subclone, carrying an additional alteration d. The tumor 
mass is then composed of a mixture of cells harboring 
different alterations. Subclones in different branches 
share all the alterations of their ancestors and carry unique 

alterations specific to the branch. (c) The impact of ther-
apy on the tumor’s clonal landscape. In this example, 
therapy eradicates the green and yellow subclones. 
However, the orange subclone is resistant and expands 
following treatment. Two new subclones, magenta and 
brown, emerge acquiring additional alterations. The 
tumor mass after therapy is quite different than the found-
ing one
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resistance. Increasing evidence suggests that 
therapy in the presence of resistant subclones 
may actually accelerate tumor progression [1]. 
For example, HER2 targeted therapies in breast 
cancer are only successful when all the tumor 
cells express and are dependent on HER2, and a 
recent study reported that breast tumors with high 
degree of ITH and HER2 status heterogeneity are 
associated with shorter disease-free survival [18]. 
Therefore, ITH poses a significant challenge in 
the successful implementation of targeted thera-
pies. Ideally, one way to prevent the scenario 
illustrated above is to target multiple subclones 
simultaneously, assuming that the subclones har-
bor targetable alterations and that the correspond-
ing drug combination is implementable. Another 
possible approach is to prevent the emergence of 
resistance subclones by targeting multiple path-
ways simultaneously, like in the case of BRAF 
mutant melanoma, where both the MAPK and 
PI3K pathways upfront may block or delay the 
emergence of resistance clones [19].

Novel clinical trials have been designed to 
investigate tumor’s ITH and evolution and their 
clinical implications. For example, the TRACERx 
trial for non-small cell lung cancer aims at defin-
ing the evolutionary trajectories of individual 
cancers both spatially and temporally through 
multi-region and longitudinal tumor sampling 
[20–22]. Interim findings from the trial revealed 
widespread ITH in terms of both SNVs and CNAs 
and that higher ITH was associated with increased 
risk of relapse and death. Moreover, the analysis 
suggested an important role of ongoing chromo-
somal instability in subclonal selection and tumor 
evolution, which was then further investigated 
and demonstrated in a follow-up pan-cancer study 
[23]. The TRACERx trial for renal cell carcinoma 
showed similar findings and provided evidence of 
specific alterations, such as loss of chromosome 
3p, preceding the growth of a clinically detectable 
tumor by 30–50 years [24–26].

These and similar studies not only allow to dis-
sect the genetic and molecular mechanisms driv-
ing cancer evolution, but also demonstrate the 
clinical implications of ITH, from prognosis 
assessment to therapy design and management. 
The DARWIN and DARWIN II trials (Deciphering 

Anti-tumor Response With INtratumor 
Heterogeneity) (http://clinicaltrials.gov/show/
NCT02183883) were designed for patients 
enrolled in TRACERx and aim to assess the 
impact of ITH in lung cancer patients with specific 
actionable mutations (e.g., activating EGFR muta-
tions, BRAF V600 mutations, or ALK/RET rear-
rangements) assigned to study arms according to 
their alterations (e.g., afatinib for EGFR, vemu-
rafenib for BRAF V600, or alectinib for ALK/
RET rearrangements). The data from the study 
will be used to determine the impact of a targeted 
clonal versus subclonal mutation on treatment out-
come and to dissect the dynamics of subclonal 
changes through therapy. Moreover, in DARWIN 
II, patients without actionable mutations receive 
the anti-PD-L1 monoclonal antibody atezoli-
zumab and their disease is tracked to investigate 
genomic and immune markers that may predict 
response to immune checkpoint inhibitors (https://
clinicaltrials.gov/ct2/show/NCT02314481).

To account for ITH and its clinical conse-
quences, precision oncology platforms should be 
equipped with specific tools to reconstruct and 
characterize the individual tumor’s clonal land-
scape and model tumor’s evolution by inferring 
its clonal temporal and spatial trajectory. 
Specialized tools addressing these tasks are dis-
cussed in the next section, along with practical 
considerations for their implementation in preci-
sion oncology pipelines.

 Inferring Tumor’s Clonal Landscape 
from Bulk DNA Sequencing

While the clonal model of cancer evolution was 
first proposed over 40  years ago, only recently 
next-generation sequencing has allowed a more 
precise and quantitative assessment of tumor 
clonal and subclonal landscape. Consequently, a 
plethora of computational approaches and tools 
have been developed to analyze this data with the 
goal of inferring the clonal landscape of a tumor 
and characterize its temporal and/or spatial 
 evolution. This section covers the basic concepts 
behind the computational approaches for the dis-
section of ITH from bulk whole-genome (WGS) 
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and whole-exome (WES) sequencing. A more 
comprehensive and in-depth review of the prin-
ciples and methods for cancer subclonal recon-
struction can be found elsewhere [27–29].

The main goal of ITH analysis in bulk 
sequencing data is to identify the set of clonal 
and subclonal cell populations in a tumor sample 
and annotate each clone/subclone with the spe-
cific alterations that they carry. Additionally, 
many tools also address the problem of recon-
structing the tumor phylogeny, which organizes 
the identified clones/subclones in tree structures, 
where downstream nodes inherit all the altera-
tions present in their ancestor nodes and carry 
additional ones (Fig. 6.1). For practical purpose 
and increased readability, moving forward we 
will refer to both clones and subclones simply as 
clones, except where a distinction is necessary.

The main idea that most algorithms for the 
identification of tumor clones implement is that 
single nucleotide variants (SNVs) that co-occur 
in the same clone have similar allele frequency 
(VAF); therefore, such values can be used to infer 
the proportion of cells carrying a specific SNV, or 
its cellular prevalence (CP) (See also Glossary in 
Box 6.1). Moreover, since tumor samples are 
often contaminated by non-cancer cells, tumor 
purity (TP), which is the proportion of cancer 
cells in the sample, allows to calculate the pro-
portion of tumor cells which carry the SNV, or 
cancer cell fraction (CCF). Methods for tumor 
clonal landscape reconstruction rely on the 
infinite- sites assumption (ISA), which states that 
a site does note mutate twice during the evolu-
tionary history of a tumor. Although this assump-
tion may not be true at all times, it is necessary in 
order to solve the problem of inferring tumor 
clones, which would otherwise be computation-
ally intractable. Furthermore, the ISA supports 
the pigeonhole principle used for the reconstruc-
tion of tumor phylogeny, which states that the 
sum of CCFs of subclones cannot exceed the 
CCF of their ancestors [27, 28, 30].
Cancer genomes are often characterized by wide-
spread copy number alterations (CNAs), and 
knowing the number of copies of a chromosome 
segment bearing an SNV, which is known as mul-
tiplicity, is necessary to accurately infer tumor 

Box 6.1. Key Terms
Branched evolution: the independent 
acquisition of different alterations by sub-
clones, which causes the emergence of sub-
clonal cell populations described by a 
branching structure in the clonal tree.

Cancer cell fraction (CCF): the fraction 
of tumor cells harboring a set of SNVs.

Cellular prevalence (CP): the fraction 
of cells harboring a set of SNVs. It includes 
both tumor and normal cells in the sample.

Clonal tree: a phylogenetic tree struc-
ture describing the evolutionary relation-
ships between clones and subclones.

Clone: a population of mutant cells that 
expands to form a neoplasm. Multiple 
clones can cooperate or compete to domi-
nate the tumor ecosystem.

Copy number alteration (CNA): somatic 
changes in the number of copies of a chro-
mosome area, which can be gained (>2 
copies) or lost (<2 copies). CNA can affect 
small sections of a chromosome (focal) or 
wide areas, including whole chromosome 
arms (broad).

Infinite sites assumption (ISA): a site in 
the genome does note mutate twice during 
the evolutionary history of a tumor. This 
assumption is essential to reduce the com-
plexity of computational subclonal recon-
struction and holds true in most cases, 
although it can be occasionally violated for 
SNVs.

Linear evolution: the sequential acquisi-
tion of alterations over time, where each 
node (clone/subclone) in the clonal tree can 
only have one parent and one child.

Multiplicity: the number of copies of a 
chromosome segment carrying an SNV.

Pigeonhole principle: the sum of CCFs 
of tumor subclones must be less than the 
CCF of their ancestor clones.

Single nucleotide variation (SNV): a 
variation in a single nucleotide, also known 
as a point mutation. SNVs can be germline, 
that is, present in all cells and hereditary, or 

(continued)
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clones. For example, if a site mutates and is next 
duplicated, its VAF will be different than it would 
be if the duplication had occurred before the 
mutation. For this reason, most tools for ITH 
reconstruction leverage both SNVs and CNAs, 
often pre-calculated using other specific tools. 
Besides identifying chromosome sections with 
copy number changes, CNA callers can addition-
ally infer allele-specific copy number and esti-
mate tumor purity and ploidy (i.e., the number of 
sets of chromosomes in the tumor). Therefore, 
the information they provide is employed to esti-
mate the CCF of clones.

Modeling ITH is a very complex problem, 
since the SNV and CNA profile of a tumor can 
often be explained by several equally likely mod-
els. For example, two different clonal popula-
tions with the same CCF are likely to be identified 
as a unique clone. While mutation phasing, that 
is, determining whether SNVs are co-occurring 
or mutually exclusive, can often be performed on 
a single tumor sample, thus enabling the 
 separation of distinct clones, adding more infor-
mation is often necessary to accurately dissect 
the clonal landscape of a tumor. This can be done 
by providing multiple samples from the same 
cancer, separated either longitudinally (i.e., sam-
pled at different times through disease evolution 

and treatment course) or spatially (i.e., sampled 
from different areas of the tumor mass or from 
metastatic sites). The additional information pro-
vided by multi-sample sequencing may indeed 
allow better mutation phasing and to distinguish 
between similar cell populations that may have 
different CCFs in different regions and/or at dif-
ferent times.

Numerous tools have been developed in the 
past decade to reconstruct the tumor landscape 
and evolutionary phylogeny from bulk sequenc-
ing data. The remainder of this section present 
the most popular tools for ITH deconvolution, 
introduced chronologically. For each tool, the 
main features, algorithm, and limitations, along 
with the type of input accepted and output gener-
ated, are provided. Tools are also summarized in 
Table  6.1, along with their distinctive features 
and URLs.

 PyClone

PyClone is a tool that implements a hierarchical 
Bayes statistical model for the identification and 
quantification of subclonal tumor cell popula-
tions based on WES data [31]. It requires a cov-
erage of at least 100× and works on both single 
and multiple samples from the same patient. 
The algorithm works under the assumption that 
mutations with similar VAF belong to the same 
subclone but uses a Bayesian beta-binomial 
model to estimate the proportion of tumor cells 
harboring a mutation using its VAF.  PyClone 
incorporates allele-specific copy number at each 
mutation locus in each sample, obtained from 
either genotyping array (e.g., Array Comparative 
Genomic Hybridization or aCGH) or WGS, 
which enables it to cluster mutations occurring 
in regions with copy number variations. It out-
puts posterior densities of cellular prevalences 
for each mutation and the clustering structure 
over the mutations. A new version of PyClone, 
called PyClone-VI, is orders of magnitude faster 
than the original PyClone, while maintaining 
the same accuracy [32]. PyClone-VI enables the 
analysis of WGS data from large cohorts of 
tumor samples harboring hundreds of thousands 
of mutations.

somatic, that is, only present in specific 
cells, such as a tumor clone.

Structural variation (SV): a large 
genomic alteration, including deletions, 
inversions, insertions, and translocations.

Subclone: a population of mutant cells 
that arise from the main tumor clone or 
another subclone by acquiring additional 
alterations, including drivers of tumor 
expansion and/or drug resistance.

Tumor purity (TP): the fraction of tumor 
cells in a sample.

Variant allele frequency (VAF): the per-
centage of sequence reads harboring a vari-
ation, for example, an SNV, divided by 
number of total reads covering the specific 
genomic locus.

Box 6.1 (continued)
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107

Ta
bl

e 
6.

1 
C

om
pu

ta
tio

na
l t

oo
ls

 f
or

 th
e 

an
al

ys
is

 o
f 

IT
H

 a
nd

 s
ub

cl
on

al
 r

ec
on

st
ru

ct
io

n

To
ol

Si
ng

le
/m

ul
ti 

sa
m

pl
es

a

Se
q 

ty
pe

b
In

pu
tc

Ph
yl

og
en

yd
N

ot
es

U
R

L
R

ef
s.

C
A

L
D

E
R

M
ul

tip
le

 
(t

em
po

ra
l)

W
E

S/
W

G
S

SN
V

Y
es

D
oe

s 
no

t c
or

re
ct

 f
or

 C
N

A
ht

tp
s:

//g
ith

ub
.c

om
/r

ap
ha

el
- 

gr
ou

p/
ca

ld
er

[4
4]

C
an

op
y

M
ul

tip
le

 (
sp

at
ia

l 
or

 te
m

po
ra

l)
W

E
S/

W
G

S
SN

V
, C

N
A

Y
es

–
ht

tp
s:

//g
ith

ub
.c

om
/

yu
ch

ao
jia

ng
/C

an
op

y
[3

7]

C
lo

ne
H

D
Si

ng
le

 o
r 

m
ul

tip
le

 
(s

pa
tia

l o
r 

te
m

po
ra

l)

W
E

S/
W

G
S

SN
V

, r
ea

d 
de

pt
h,

 B
-a

lle
le

 
co

un
ts

N
o

–
ht

tp
s:

//g
ith

ub
.c

om
/a

nd
re

j-
 

fis
ch

er
/c

lo
ne

H
D

[3
4]

Fa
st

C
lo

ne
Si

ng
le

W
E

S/
W

G
S

SN
V

, C
N

A
Y

es
–

ht
tp

s:
//g

ith
ub

.c
om

/G
ua

nL
ab

/
Fa

st
C

lo
ne

_G
ua

nL
ab

[4
8]

M
el

to
s

M
ul

tip
le

 (
sp

at
ia

l)
W

G
S

SN
V

, S
V

, B
A

M
, 

ph
yl

og
en

y 
tr

ee
Y

es
E

xt
ra

ct
s 

re
ad

 c
ou

nt
s 

di
re

ct
ly

 f
ro

m
 B

A
M

ht
tp

s:
//g

ith
ub

.c
om

/ih
- l

ab
/

M
el

to
s

[4
6]

Pa
lim

ps
es

t
Si

ng
le

 o
r 

m
ul

tip
le

W
E

S/
W

G
S

SN
V

, C
N

A
, 

pu
ri

ty
N

o
G

en
er

at
es

 a
 c

om
pr

eh
en

si
ve

 o
nc

og
en

ic
 ti

m
el

in
e 

an
no

ta
te

d 
w

ith
 th

e 
cl

on
al

 a
nd

 s
ub

cl
on

al
 m

ut
at

io
ns

 
an

d 
th

e 
tim

in
g 

of
 th

e 
pr

ed
ic

te
d 

dr
iv

er
 m

ut
at

io
ns

ht
tp

s:
//g

ith
ub

.c
om

/F
un

G
eS

T
/

Pa
lim

ps
es

t
[3

8]

Ph
yl

oW
G

S
Si

ng
le

 o
r 

m
ul

tip
le

 
(t

em
po

ra
l)

W
E

S/
W

G
S

SN
V

, C
N

A
Y

es
–

ht
tp

s:
//g

ith
ub

.c
om

/m
or

ri
sl

ab
/

ph
yl

ow
gs

[3
5]

Py
C

lo
ne

Si
ng

le
 o

r 
m

ul
tip

le
W

E
S/

W
G

S
SN

V
, C

N
A

N
o

–
ht

tp
s:

//g
ith

ub
.c

om
/R

ot
h-

 L
ab

/
py

cl
on

e
[3

1]

Py
C

lo
ne

-V
I

Si
ng

le
 o

r 
m

ul
tip

le
W

E
S/

W
G

S
SN

V
, C

N
A

N
o

Fa
st

er
 v

er
si

on
 o

f 
Py

C
lo

ne
ht

tp
s:

//g
ith

ub
.c

om
/R

ot
h-

 L
ab

/
py

cl
on

e-
 vi

[3
2]

Q
ua

nt
um

C
lo

ne
Si

ng
le

 o
r 

m
ul

tip
le

 
(t

em
po

ra
l)

W
E

S/
W

G
S

SN
V

, C
N

A
N

o
–

ht
tp

s:
//g

ith
ub

.c
om

/D
ev

ea
uP

/
Q

ua
nt

um
C

lo
ne

[3
9]

Sc
iC

lo
ne

Si
ng

le
 o

r 
m

ul
tip

le
W

E
S/

W
G

S
SN

V
, C

N
A

N
o

D
oe

s 
no

t c
or

re
ct

 f
or

 C
N

A
ht

tp
s:

//g
ith

ub
.c

om
/g

en
om

e/
sc

ic
lo

ne
[3

3]

SP
R

U
C

E
M

ul
tip

le
 

(t
em

po
ra

l)
W

E
S/

W
G

S
SN

V
, C

N
A

Y
es

–
ht

tp
s:

//g
ith

ub
.c

om
/r

ap
ha

el
- 

gr
ou

p/
sp

ru
ce

[3
6]

Su
bM

A
R

in
e

Si
ng

le
 o

r 
m

ul
tip

le
W

E
S/

W
G

S
SN

V
, C

N
A

Y
es

–
ht

tp
s:

//g
ith

ub
.c

om
/m

or
ri

sl
ab

/
su

bm
ar

in
e

[5
3]

(c
on

tin
ue

d)

6 Computational Approaches for the Investigation of Intra-tumor Heterogeneity and Clonal Evolution…

https://github.com/raphael-group/calder
https://github.com/raphael-group/calder
https://github.com/yuchaojiang/Canopy
https://github.com/yuchaojiang/Canopy
https://github.com/andrej-fischer/cloneHD
https://github.com/andrej-fischer/cloneHD
https://github.com/GuanLab/FastClone_GuanLab
https://github.com/GuanLab/FastClone_GuanLab
https://github.com/ih-lab/Meltos
https://github.com/ih-lab/Meltos
https://github.com/FunGeST/Palimpsest
https://github.com/FunGeST/Palimpsest
https://github.com/morrislab/phylowgs
https://github.com/morrislab/phylowgs
https://github.com/Roth-Lab/pyclone
https://github.com/Roth-Lab/pyclone
https://github.com/Roth-Lab/pyclone-vi
https://github.com/Roth-Lab/pyclone-vi
https://github.com/DeveauP/QuantumClone
https://github.com/DeveauP/QuantumClone
https://github.com/genome/sciclone
https://github.com/genome/sciclone
https://github.com/raphael-group/spruce
https://github.com/raphael-group/spruce
https://github.com/morrislab/submarine
https://github.com/morrislab/submarine


108

Ta
bl

e 
6.

1 
(c

on
tin

ue
d)

To
ol

Si
ng

le
/m

ul
ti 

sa
m

pl
es

a

Se
q 

ty
pe

b
In

pu
tc

Ph
yl

og
en

yd
N

ot
es

U
R

L
R

ef
s.

Su
pe

rF
re

q
Si

ng
le

 o
r 

m
ul

tip
le

W
E

S/
W

G
S

SN
V

, C
N

A
, 

B
A

M
Y

es
D

oe
s 

no
t n

ee
d 

a 
m

at
ch

ed
 n

or
m

al
 s

am
pl

e;
 u

se
s 

qu
al

ity
 

sc
or

es
 f

ro
m

 B
A

M
 fi

le
ht

tp
s:

//g
ith

ub
.c

om
/

C
hr

is
to

ff
er

Fl
en

sb
ur

g/
su

pe
rF

re
q

[5
0]

SV
cl

on
e

Si
ng

le
W

G
S

SV
, B

A
M

N
o

SN
V

, C
N

A
 a

nd
 T

P 
ca

n 
be

 o
pt

io
na

lly
 p

ro
vi

de
d

ht
tp

s:
//g

ith
ub

.c
om

/m
cm

er
o/

SV
cl

on
e

[4
2]

T
us

v
Si

ng
le

 o
r 

M
ul

tip
le

W
G

S
SV

, C
N

A
Y

es
D

oe
s 

no
t u

se
 S

N
V

 d
at

a
ht

tp
s:

//g
ith

ub
.c

om
/

ja
eb

ir
d1

23
/tu

sv
[4

0]

a W
he

th
er

 th
e 

to
ol

 r
un

s 
on

 a
 s

in
gl

e 
or

 m
ul

tip
le

 tu
m

or
 s

am
pl

es
, e

ith
er

 s
pa

tia
lly

 o
r 

te
m

po
ra

lly
 s

ep
ar

at
ed

, o
r 

bo
th

b T
yp

e 
of

 s
eq

ue
nc

in
g 

da
ta

 n
ec

es
sa

ry
. W

G
S 

=
 w

ho
le

 g
en

om
e 

se
qu

en
ci

ng
; W

E
S 

=
 w

ho
le

 e
xo

m
e 

se
qu

en
ci

ng
c T

yp
e 

of
 i

np
ut

 a
cc

ep
te

d.
 S

N
V

 =
 s

in
gl

e 
nu

cl
eo

tid
e 

va
ri

an
ts

; 
C

A
N

 =
 c

op
y 

nu
m

be
r 

al
te

ra
tio

ns
; 

SV
 =

 s
tr

uc
tu

ra
l 

va
ri

an
ts

; 
B

A
M

 =
 b

in
ar

y 
al

ig
nm

en
t 

m
ap

 (
fil

e 
fo

rm
at

 o
f 

re
ad

s 
al

ig
nm

en
t)

d W
he

th
er

 th
e 

to
ol

 g
en

er
at

es
 a

 tu
m

or
 p

hy
lo

ge
ne

tic
 tr

ee

A. Laganà

https://github.com/ChristofferFlensburg/superFreq
https://github.com/ChristofferFlensburg/superFreq
https://github.com/ChristofferFlensburg/superFreq
https://github.com/mcmero/SVclone
https://github.com/mcmero/SVclone
https://github.com/jaebird123/tusv
https://github.com/jaebird123/tusv


109

 SciClone

SciClone employs a variational Bayesian mixture 
model to identify the number and composition of 
tumor subclones in single or multiple samples 
from the same patient, based on the VAF of SNVs 
[33]. Like PyClone, SciClone assumes that muta-
tions with similar VAF belong to the same sub-
clone; thus, neither tool can distinguish between 
different subclones with similar CP.  While 
SciClone does take both SNVs and CNAs as 
input, it only overlays CNAs on copy number 
neutral SNVs. Therefore, it cannot cluster muta-
tions in regions with CNAs, which makes it not 
applicable to many types of tumors which recur-
rently harbor such genetic events.

 CloneHD

CloneHD reconstructs the subclonal structure of 
a tumor cell population employing a set of cou-
pled Hidden Markov Models (HMMs) jointly 
across multiple sources of information, such as 
read depth, B-allele counts, and SNV VAFs, in a 
way that facilitates ruling out different competing 
models [34]. Read depth, which refers to the 
number of reads mapping to different loci in the 
genome, is used to infer the copy number profiles 
of the different cell population. B-allele counts, 
that is, the number of reads reporting a minor 
allele at an originally heterozygous locus, help 
differentiating between balanced and unbalanced 
copy number changes. SNV data provides infor-
mation about the size and genotype of the differ-
ent subclonal fractions. Using multiple samples 
from the same patient, either spatially or longitu-
dinally correlated, can improve inference of the 
tumor structure, under the assumption that the 
same subclones are present in all samples, possi-
bly at different CCF.

 PhyloWGS

PhyloWGS was specifically designed to infer the 
subclonal landscape of tumor cells using SNVs 
and CNAs obtained from WGS samples, where 
the decreased read depth, which can complicate 

subclonal reconstruction, is compensated by the 
larger number of mutations [35]. However, 
PhyloWGS can be also applied to WES data or a 
mixture of WES and WGS data, for example, 
SNVs from WES and CNAs from WGS.

Similar to PyClone, PhyloWGS accounts for 
CNAs but it integrates it with SNVs in a phylo-
genic reconstruction. In fact, the observed VAF 
of SNVs in a sample is affected by the phyloge-
netic relationships between SNVs and CNAs. For 
example, a heterozygous SNV which occurs 
before a copy number gain of its locus, will be 
now present in two out of the three copies of the 
area. However, if the copy number gain occurs 
before the SNV, this will be present in one copy 
only (Fig.  6.1). Another scenario can present 
when the SNV and CNA occur in the same locus 
but on different branches of the subclonal popu-
lations. Therefore, the VAF of the SNV will 
reflect such differences. PhyloWGS models all 
these scenarios to provide a more accurate land-
scape of the tumor subclonal composition. It 
employs a generative probabilistic model of 
VAFs that incorporates a non-parametric 
Bayesian prior over tree. The output includes the 
list of subclonal cell populations with their esti-
mated CCF and their SNVs and CNAs. It also 
provides samples of the phylogenetic trees 
explaining the data, ranked by their likelihood. 
When multiple longitudinal samples from the 
same patient are provided, the phylogenetic trees 
visualize the changes in CCF across time points.

 SPRUCE

SPRUCE defines the problem of inferring tumor 
evolution as a perfect phylogeny mixture decon-
volution problem, where the goal is to reconstruct 
a tumor phylogenetic tree given mixtures of its 
leaves, that is, the observed mixtures of cancer 
cells with different SNVs and CNAs, under the 
infinite alleles model [36]. This means that while 
a genomic locus may mutate multiple times in the 
tree, each specific mutation may only appear once. 
The algorithm solves the problem by jointly 
modeling SNV and CNA data from multiple 
tumor samples using a combinatorial enumeration 
approach. It first computes a set of compatible 
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trees for each altered genomic locus, where a 
locus is described by a multi-state character com-
prising the number of wild type and mutated cop-
ies. Then, it derives a compatibility graph whose 
edges are pairs of compatible trees for pairs of 
altered genomic loci. All the evolutionary trees 
that are compatible with the observed data are 
then obtained by enumerating all the multi-state 
perfect phylogeny trees on the largest subset of 
characters. While potentially high, the number of 
phylogenetic trees is dramatically reduced when 
considering multiple samples for a tumor, thus 
reducing the ambiguity associated with many 
potential solutions.

 Canopy

Canopy implements a probabilistic model and 
performs joint phylogenetics and deconvolution 
using a Markov chain Monte Carlo (MCMC) 
sampling procedure [37]. It is specifically 
designed for the analysis of ITH in multiple spa-
tially or temporally separated samples from the 
same patient; thus, it is unsuited for cases where 
only one tumor sample is available. Canopy takes 
SNV VAFs and allele-specific CNA estimates 
and, like PhyloWGS, jointly models them so that 
SNVs that fall within CNA regions can be phased 
and temporally ordered. However, while 
PhyloWGS requires pre-processed CNA data and 
uses the absolute copy number of each allele to 
first estimate the subclonal structure, which is 
then integrated with SNVs, Canopy takes raw 
CNA data and performs a truly joint inference of 
subclones and their evolutionary history, which 
allows it to achieve greater accuracy in complex 
scenarios. The algorithm includes a pre- clustering 
initialization step aimed at improving robustness 
to noise and reducing computation time. The out-
put consists of one or multiple evolutionary mod-
els explaining the data along with their posterior 
confidence assessment.

 Palimpsest

Palimpsest implements an automated compre-
hensive workflow for the integrative analysis of 

mutational signatures and clonality analysis 
aimed at reconstructing tumor phylogeny [38]. 
Palimpsest takes as input SNVs, CNAs, and 
tumor purity from one or multiple tumor sample 
from the same patient. The algorithm first esti-
mates CCF based on TP and CNA, then classifies 
each variant as clonal or subclonal and uses 
SNVs to extract patterns of mutational signatures 
in early and late subclonal mutations. 
Additionally, users can provide data on structural 
variations (SVs), which are then classified in 38 
different categories according to their type (e.g., 
deletion, inversion, chromosomal translocation) 
and size. Then the algorithm uses a Bayesian sta-
tistic to estimate the probability of each SNV and 
SV being due to each identified signature and to 
predict the mechanism at the origin of each driver 
event. The integrated analysis of SNVs and CNAs 
then allows to estimate the molecular timing of 
chromosomal gains using the proportion of dupli-
cated/non-duplicated SNVs. Finally, Palimpsest 
generates a comprehensive oncogenic timeline 
annotated with the clonal and subclonal muta-
tions and the timing of the predicted driver 
mutations.

 QuantumClone

Like PhyloWGS, SPRUCE, and Canopy, 
QuantumClone uses both SNV and CNA data to 
improve the accuracy of tumor clonal reconstruc-
tion [39]. It can be applied to single or multiple 
samples from the same patient, either spatially or 
temporally separated. The algorithm performs 
clustering of cellular prevalence of SNVs, which 
are calculated as a function of VAF, number of 
copies of the corresponding locus in tumor and 
normal cells, and TP.  As the number of copies 
carrying each variant is unknown, the Expectation 
Maximization (EM) algorithm is used to identify 
the most probable cellular prevalence value based 
on the probability to observe a specific number of 
reads supporting a mutation given the number of 
reads overlapping the locus, the purity, and the 
cellularity of a clone. The authors of 
QuantumClone showed that their method outper-
forms PhyloWGS, as well as PyClone and 
SciClone, both in terms of accuracy of clonal 
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reconstruction and computation time. However, 
QuantumClone does not model tumor 
phylogeny.

 Tusv

Tusv aims at resolving tumor deconvolution and 
phylogeny based on SVs, which are defined as 
pairs of breakpoints found adjacent to one another 
in the tumor sample but at non-adjacent positions 
in the reference genome [40]. The algorithm uses 
CNA data in the specific form produced by the 
tool Weaver, which returns allele-specific copy 
numbers of regions and phased breakpoints sup-
porting the SVs [41]. Tusv employs coordinate 
descent, an optimization algorithm, to solve copy 
number profiles at subclonal level, the distribu-
tion of clones, and the phylogeny describing the 
ancestral relationships between clones by lever-
aging the mixed copy number profile and break-
points from the tumor sample. Because SVs can 
be accurately inferred only from WGS data, Tusv 
cannot be applied to WES data, therefore limiting 
its range of applicability. Another limitation of 
Tusv, with regard to precision medicine applica-
tions, is that it does not take into account SNV 
data, thus reducing the clinical actionability of 
the inferred subclonal cell populations to specific 
cases supported by SV-related data.

 SVclone

Similar to Tusv, SVclone aims at inferring the 
CCF of SV breakpoints, including CNAs, from 
WGS data of a single tumor sample [42]. The 
algorithm requires pre-calculated SV calls, for 
example by the tool Socrates, and the alignment 
file in BAM format, which it uses to determine 
the directionality of SVs and to classify them 
according to their type (inversions, deletions, tan-
dem duplications, interspersed duplications, and 
intra- and inter-chromosomal translocations) 
[43]. Then, it estimates the VAF of SVs based on 
the number of supporting reads and removes low- 
quality SVs. If CNVs, SNVs, and TP are pro-

vided, SVclone infers the background copy 
number for each break-end and match SNVs with 
the SV loci. Next, the algorithm uses purity, 
ploidy, and copy number status of the normal and 
tumor cell populations to estimate the SV CCFs 
and then cluster them based on these values. To 
compensate for possible small number of SVs 
and improve the inference of clonal composition, 
SVclone additionally derives clusters from SNVs 
and then reassigns SV cluster memberships to 
either an SNV model, or to a joint SV + SNV 
model. The output consists of the estimated sub-
clonal composition of the tumor, that is, number 
of clusters (subclones), the subclonal multiplic-
ity, the variants assigned to each subclone, and 
their CCF.  SVclone does not infer tumor 
phylogeny.

 CALDER

CALDER is a tool that reconstructs tumor phylo-
genetic trees from longitudinal samples based on 
a vertex-colored tree model, where colors encod-
ing temporal order are assigned to each node, that 
is, cell population [44]. The problem of recon-
structing the tree is formulated as the Longitudinal 
Variant Allele Frequency Factorization Problem 
(LVAFFP), where SNVs are first clustered based 
on their VAFs, under the assumptions that they 
are in copy-neutral regions. SNVs affected by 
CNA should be excluded from the analysis or 
their read counts be corrected accordingly prior 
to running the analysis. The clonal tree is recon-
structed using a matrix factorization approach, 
where the goal is to determine a perfect phylog-
eny matrix B, which describes the evolutionary 
relationships between clones, and a clone propor-
tion matrix U, which describes the composition 
of a tumor at each time point, such that the matrix 
of the observed mutation frequencies at different 
time points F is a product of U and B, that is, 
F = U*B. The output of CALDER consists of a 
file containing the inferred phylogenetic tree T, 
which can be visualized using tools such as 
graphviz, and a file containing the clone propor-
tion matrix U [45].
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 Meltos

Meltos is a computational probabilistic frame-
work that uses somatic structural variants (SVs) 
from multiple spatially separated WGS samples 
from the same patient to reconstruct tumor phy-
logeny trees [46]. Meltos leverages phylogeny 
trees inferred more accurately from somatic 
SNVs to identify high confidence SVs and learn 
about the evolution of SVs in a multiple-sample 
scenario. The authors show that, although the 
evolutionary trajectory of SVs is not necessarily 
the same as for SNVs, the phylogeny tree inferred 
from SNVs can guide the assignment of somatic 
SVs to the tree. Meltos extracts read counts 
directly from BAM files and takes as input SNV 
and SV calls along with a phylogeny tree already 
inferred from SNV by the tool LICHeE [47]. It 
then applies quality filters and calculates VAFs 
for SNVs and SVs, which are then matched and 
clustered together. SVs with VAFs that do not 
match any cluster form new potential nodes and 
place in the tree using evolutionary constraints, 
under the assumption that a tree inferred based on 
SNVs only is a subtree of the true clonal tree.

 FastClone

FastClone implements a probabilistic model for 
inferring tumor heterogeneity similar to previous 
tools such as PyClone, SciClone, and PhyloWGS 
[48]. It ranked first in the DREAM SMC-Het 
challenge, which is discussed in section 
“Visualizing Clonal Landscape and Tumor 
Clonal Evolution”, and its main innovation is that 
it extends previous approaches with the scenario 
in which different subclones have independent 
CNV events within the same chromosome sec-
tions [49]. Furthermore, the algorithm is 
extremely fast and can analyze a tumor sample 
with tens of thousands of mutations in a few sec-
onds. FastClone’s input consists of SNV calls in 
VCF format and CNV calls from the tool 
Battenberg [30]. The algorithm first identifies 
subclones via Kernel density estimation based on 
the VAF and copy number of the SNVs located 
on non-ambiguous chromosome regions. Then, it 

assigns all the SNVs, regardless of their CNA 
status, to the subclones by maximizing an SNV/
subclone association score. Its output consists of 
a list of subclones annotated with their CCF and 
the assigned mutations, as well as the structure of 
the phylogenetic tree with the highest 
likelihood.

 SuperFreq

SuperFreq is a WES analysis pipeline that inte-
grates the identification of SNVs and CNAs with 
the inference of intra-tumoral heterogeneity and 
clonal evolution over multiple samples from the 
same individual [50]. Notably, SuperFreq does 
not require a matched normal and instead relies 
on unrelated controls to separate somatic and 
germline SNVs. This makes it a suitable choice 
for those applications where it is not easy to 
obtain normal samples. SuperFreq takes BAM 
files for tumor and reference normal samples and 
preliminary SNV calls as input, for example 
obtained using samtools or varscan, then filter the 
SNVs using quality scores in the BAM file and 
through comparison with the reference normal 
samples [51, 52].

 SubMARine

SubMARine is a tool that reconstruct the evolu-
tionary history of a tumor by calculating a partial 
clone tree, which is a polynomial-space represen-
tation of a potentially exponentially sized set of 
clone trees [53]. More specifically, it defines pair-
wise ancestral relationships between subclones 
(e.g., subclone A is an ancestor of subclone B) 
and select all the trees that are consistent with 
such relationship as well as their parents. The 
Maximally Constrained Ancestral Reconstruction 
(MAR) is the unique partial clone tree which 
defines the maximal set of all the ancestral rela-
tionships constrained by the input data. The 
SubMARine algorithm identifies the subMAR, 
which is a unique partial clone tree that approxi-
mates the MAR and whose relationships are 
guaranteed to be a subset of those present in the 
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MAR, in polynomial time. SubMARine models 
both SNVs and CNAs and, like FastClone, can 
infer the clonal landscape of a tumor in a very 
short time.

 Measuring ITH from Bulk RNA-Seq

As explained in the previous sections, ITH is 
defined based on genomic alterations, for exam-
ple, SNVs, CNAs, and SVs; therefore, it is 
straightforward to solve it by modeling these 
types of alterations obtained from WES or WGS 
data. Nevertheless, a few approaches have been 
proposed to evaluate ITH levels using RNA-Seq 
data. In fact, genomic alterations often lead to 
changes in gene expression profiles. Moreover, 
being able to dissect ITH from RNA-Seq data 
would have the advantage of simultaneously 
describing the transcriptomic alterations associ-
ated with clonal heterogeneity and, ultimately, 
provide a more comprehensive landscape of a 
tumor. However, reconstructing ITH using RNA- 
Seq is a challenging task. While gene expression 
deconvolution has been successfully employed to 
identify different cell populations in a mixture 
sample, that is, a sample comprising both tumor 
and stromal cells, by relying on certain signatures 
specific of the different cell populations that may 
be present, it is not a viable strategy in the context 
of ITH, where the different cell populations are 
for the most part arbitrary and specific to the indi-
vidual patient [54]. Currently, there are no meth-
ods or tools available to dissect ITH using bulk 
RNA-Seq data, but a few approaches have been 
proposed to measure and quantify levels of ITH 
in tumor RNA-Seq samples.

Park et  al. have proposed a method called 
tITH (transcriptome-ITH), which models ITH in 
RNA-Seq samples as an entropy-based distance 
between two protein-protein interaction networks 
(PPIs) [55]. More specifically, tITH uses PPI net-
works to model gene-gene relationships and 
pathway information. The assumption is that 
pathway ambiguity increases along with tumor’s 
clonal complexity as subclones arise, which can 
be expressed as network perturbation and mea-
sured by nJSD (network-based Jensen-Shannon 

divergence), which is the sum of entropy values 
measured at each of the genes in a PPI network. 
In their article, the authors show that their method 
effectively measures levels of ITH, as tITH cor-
relates with genomic ITH during tumor progres-
sion, and higher tITH is significantly associated 
with worse prognosis. A more recent work pro-
posed DEPTH (Deviating gene Expression 
Profiling Tumor Heterogeneity), a novel algo-
rithm to evaluate ITH levels in RNA-Seq samples 
[56]. DEPTH is based on the observation that 
consistently high or low deviation of gene expres-
sion from their mean values correspond to low 
ITH, while mixed deviation values correspond to 
high ITH. The authors showed that the DEPTH 
score positively correlates with measures of 
genomic instability such as tumor mutation bur-
den (TMB), microsatellite instability (MSI), and 
homologous recombination deficiency (HRD), 
and that higher DEPTH scores correspond with 
worse survival in multiple cancer types.

While RNA-Seq-based approaches for the 
analysis of ITH cannot dissect the clonal land-
scape of a tumor and identify clonal cell popula-
tions, they can still provide a measure of ITH in 
the tumor, particularly where DNA data is not 
available. However, it is not yet clear whether 
RNA-based measure provides additional infor-
mation compared to other established metrics of 
genomic instability and tumor complexity, espe-
cially in the context of a precision oncology 
application.

 Visualizing Clonal Landscape 
and Tumor Clonal Evolution

Intuitive and informative diagrams have been 
developed to represent ITH and visualize the 
clonal landscape of a tumor and its evolution in 
time and space. Such diagrams can be very useful 
features in precision oncology, allowing to con-
vey the complexity of ITH clearly and concisely 
in patient genomic reports.

A perspective article, from a few years ago, 
discusses how to effectively visualize temporal 
and spatial clonal evolution in 2D plots [57]. 
Qualitative tumor clone evolution diagrams are 
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introduced and dissected, presenting different 
scenarios describing tumor progression, genetic 
and therapeutic bottlenecks, and clonal changes 
following clinical response. Graphical strategies 
for drawing clone evolution diagrams are pre-
sented and discussed, as well as how to combine 
quantitative displays of evolutionary relation-
ships and clone populations.

Many of the tools for ITH reconstruction and 
modeling of tumor evolution introduced in this 
chapter provide both textual and graphical out-
put, where the latter may consist of a plot dis-
playing clusters of cell populations or a tree 
describing the hierarchical relationship between 
the different clonal populations and the linear and 
branching patterns of tumor evolution.

Figure 6.2 displays three different representa-
tions of clonal plots. In Fig. 6.2a, an example of 
output from SciClone is shown, where the top 
plot displays the kernel density plot across 
regions of one to four copies, identifying five dif-
ferent clones (each clone corresponding to a peak 
in the model fit) and the plots below display 
mutation clusters as VAFs versus read depth for 
each of the four copy number regions [33]. 
SciClone does not infer clonal evolution; there-
fore, the graphical output is limited to cell 
clustering.

Figure 6.2b shows an example of tumor clonal 
tree and trajectory from diagnosis (sample 1) to 
relapse (sample 2) inferred by PhyloWGS [35]. 
In the upper panel, clone 0 represents a normal 
cell, clone 1 represents the parent tumor clone 
and the children nodes represent the subclones, 
which are connected with clone 1 and with one 
another via edges describing their evolutionary 
relationships. The size of each node is propor-
tional to the CCF of the clone. In the specific 
example, the parent clone has a mutation in 
BRAF, which is then inherited by all children 
subclones. Additionally, subclone 3 has acquired 
a TP53 mutation, which is passed to subclone 4. 
In the other branch, instead, subclone 6 has 
acquired a mutation in EGFR. The bottom panel 
shows the trajectories of subclonal expansion 
from diagnosis to relapse, where subclones 2 and 
3 have a slightly lower CCF at relapse, subclone 

4 is almost wiped out, and subclone 5 has 
expanded.

Finally, Fig. 6.2c shows an example of tumor 
evolutionary trajectory generated by the R pack-
age fishplot [58]. While fishplot automatically 
imports tumor phylogenies inferred by the tool 
ClonEvol, it can also be easily applied to data 
generated by any ITH tool, which must be pro-
vided as a matrix with the fraction of each cell 
population at each time point [59]. In the figure, 
the founding clone with a BRAF mutation is rep-
resented in gray and two children subclones are 
shown in green and red. A very small subclone is 
represented in yellow. A further subclone has 
emerged from the red population, represented in 
orange, harboring an additional mutation in 
MET.  At relapse, the tumor is made up by the 
yellow subclone, barely present at diagnosis and 
carrying a mutation in KRAS, and the red sub-
clone, while the green and orange subclones have 
been eradicated by therapy.

 Assessment of ITH Estimates

Assessing the accuracy of the different methods 
and tools for clonal reconstruction is a difficult 
task, given the lack of a gold-standard or ground 
truth reference for benchmarking as well as of 
objective metrics and scores to use for the assess-
ment. A study published a few years ago per-
formed a systematic evaluation of six 
computational methods for ITH reconstruction 
from bulk WES data on a large dataset with 
>1600 samples of breast invasive carcinoma, 
bladder urothelial carcinoma, and head and neck 
squamous cell carcinoma from The Cancer 
Genome Atlas (TCGA) [60]. The study included 
the tools SciClone, PyClone, and PhyloWGS, 
which were presented and discussed earlier in 
this chapter. Not all tools were able to produce 
outputs for all the samples, for different reasons 
such as insufficient number of SNVs in regions 
without CNA or LOH events (SciClone) or 
extremely long runtime (PyClone and 
PhyloWGS); therefore, the analysis of the results 
was limited to a subset of 686 samples for which 
all tools completed successfully. The study 
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showed that runtime of PyClone and PhyloWGS 
increased dramatically with the number of muta-
tions, while SciClone was able to finish in very 

short time even for heavily mutated tumors. 
Quantification of ITH was inconsistent across the 
tools assessed, where the number of clonal popu-

Fig. 6.2 Visualization of ITH and tumor evolution. (a) 
Plots generated by the tool SciClone. The top plot dis-
plays the kernel density plot across regions of one to four 
copies and identifies several different clones, each corre-
sponding to a peak in the model fit. The plots below dis-
play mutation clusters as VAFs versus read depth for each 
of the four copy number regions. (b) The upper panel 

shows a tumor phylogenetic tree generated by PhyloWGS 
with two samples from the same patient collected at diag-
nosis and relapse, where each subclones inherit the altera-
tions present in their ancestors and acquire additional 
ones. The lower panel shows the trajectory of the CCF of 
subclones from diagnosis to relapse
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lations identified in the same samples were rather 
different between tools, in some cases even nega-
tively correlated. Furthermore, there was limited 
prognostic value of ITH estimates in terms of 
metrics such as the number of subclonal popula-
tions and the evolutionary patterns (early vs. late 
clonal diversification) and demonstrated no 
improvement over established clinical factors.

More recently, the ICGC-TCGA DREAM 
Somatic Mutation Calling Tumor Heterogeneity 
Challenge (SMC-Het) was developed to address 
the problem of creating standards for evaluating 
tumor subclonal reconstruction and to compare 
the different methods available through a crowd- 
sourced benchmarking effort. The organizers of 
the challenge generated simulated realistic 
tumors and developed robust scoring metrics 
which were then employed to evaluate the meth-
ods developed by the challenge participants and 
provided as re-distributable software containers 
[49]. SMC-Het consisted of seven subchallenges. 
Subchallenges 1A, 1B, and 1C evaluated the per-
formances of the algorithms in terms of global 
characteristics of tumor composition, such as TP, 
the number of subclonal lineages, and 
CP. Subchallenges 2A and 2B evaluated hard and 
soft assignment (i.e., absolute and through prob-
ability) of SNVs to subclones. Subchallenges 3A 
and 3B evaluated the ability of the algorithms to 
recover the ancestral relationships between sub-
clones. To assess the performance of the algo-
rithms, four metrics were identified: Matthew’s 
correlation coefficient (MCC), area under the 
precision-recall curve (AUPR), Jensen-Shannon 
divergence (AJSD), and Pearson’s correlation 
coefficient (PCC). A fifth metric, clonal fraction 
(CF), was added to subchallenges 3A and 3B, to 
evaluate the accuracy of the predicted fraction of 
mutations assigned to the subclones. These met-
rics were tested by evaluating different mistake 
scenarios in several tree topologies and compared 
with the ranking of the scenarios by a panel of 
nine experts. The challenge was run on simulated 
tumor data, which was generated using a variant 
of the tool BAMSurgeon developed specifically 
for the challenge to create realistic tumors with 
accurate SNVs, indels, large-scale allele-specific 
copy number changes, translocations, and other 

cancer genome features [61]. The top-performing 
algorithm of SMC-Het was FastClone, described 
in section “FastClone” of this chapter [48]. The 
metrics and evaluation model developed for 
SMC-Het provide a basis for the establishment of 
gold-standard methods for the analysis of ITH 
and represent a useful resource for the evaluation 
of novel methodologies for subclonal 
reconstruction.

 Conclusions and Perspectives

Despite over 10 years of research and a plethora 
of computational tools developed to measure, 
quantify, and dissect ITH from bulk DNA 
sequencing, the remarkable differences observed 
between the results generated by different meth-
ods indicate that there is still a clear need for 
improvement. While many of the approaches dis-
cussed in this chapter have been successfully 
used to dissect and describe important features in 
the spatial and temporal subclonal evolution of 
several cancers, as well as the impact of clonality 
on therapy resistance, their application in the 
context of a precision oncology pipeline remains 
a challenge. Nevertheless, having information 
regarding the clonal or subclonal nature of vari-
ants and being able to attribute variants to differ-
ent subclones has the potential to significantly 
impact patient care by enabling the design of 
clone-aware therapies that may delay or even 
avoid the development of drug resistance. 
Therefore, the incorporation of one or more tools 
for subclonal reconstruction in a clinical decision- 
making pipeline and the critical interpretation of 
their outputs may add an important layer of infor-
mation to a patient’s profile and help improve 
outcomes. Novel approaches based on single-cell 
sequencing, where clonality can be directly mea-
sured and dissected rather than imputed, are 
likely to take over and become a standard analyti-
cal tool in a not so far future, as technology 
improves and costs decrease. In the meantime, as 
clinical sequencing is increasingly adopted as a 
routine standard of care, the computational 
approaches described in this chapter and their 
future iterations will likely be an important addi-
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tion to the arsenal of tools for genomic profiling 
and personalized treatment of cancer patients.
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Computational Methods for Drug 
Repurposing

Rosaria Valentina Rapicavoli, Salvatore Alaimo, 
Alfredo Ferro, and Alfredo Pulvirenti

Abstract

The wealth of knowledge and multi-omics 
data available in drug research has allowed the 
rise of several computational methods in the 
drug discovery field, resulting in a novel and 
exciting strategy called drug repurposing. 
Drug repurposing consists in finding new 
applications for existing drugs. Numerous 
computational methods perform a high-level 
integration of different knowledge sources to 
facilitate the discovery of unknown mecha-
nisms. In this chapter, we present a survey of 
data resources and computational tools avail-
able for drug repositioning.

 Introduction

Systematic drug repurposing, also known as drug 
repositioning, is the re-evaluation of known, 
pharmaceutically relevant compounds to identify 
new therapeutic applications.

Finding alternative uses for old drugs has the 
advantage of optimizing the discovery and devel-
opment research process, yielding high cost and 
time savings in drug development. Since in vitro 
and in  vivo screening, chemical optimization, 
toxicology, mass production, and clinical trials 
have already been completed and can be 
bypassed, substantial risks and “overheads” are 
removed from the path to market (these are 
known as Bioavailability and Absorption, 
Distribution, Metabolism, Excretion and 
Toxicity—ADMET profiles) [1].

Ideal drug candidates for repurposing are 
those that have passed Phase III, in terms of the 
American Food and Drug Administration (FDA) 
system, as this implies that they have proven to 
be effective in larger populations and verified to 
be safe. In this way, clinical trials can proceed at 
a much faster rate [1].

A repurposed drug does not need the initial 
6–9 (or more) years, neither 2–3 billion dollars 
typically required for new drug development [2, 
3], but it will proceed directly to preclinical test-
ing and clinical trials, resulting in reduced risks 
and costs.
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Among the best-known examples, sildenafil 
citrate (brand name: Viagra) [3] has been repur-
posed from a common hypertension drug to ther-
apy for erectile dysfunction.

There are many successes in repositioning old 
drugs, and what was initially driven by serendip-
ity is now operated by focused and systematic 
computational explorations that precede shorter 
experimental design cycles [1].

In a world where thousands of therapeutic 
molecules are known, drug repositioning is 
becoming an attractive form of drug discovery 
with a significant impact on personalized 
medicine.

Customizing or optimizing repositioning 
methods into efficient drug repositioning pipe-
lines requires a comprehensive understanding of 
the available methods obtained by evaluating 
both biological and pharmaceutical knowledge 
and the mechanism of action of drugs [3].

In addition, the advent of high-throughput 
technologies to explore biological systems (drug- 
related data, high-throughput genomic screens, 
protein structures) resulted in the generation of 
an impressive amount of data that requires com-
putational analysis and mining tools to be 
explored and used. Methods and tools available 
in chemoinformatics, bioinformatics, network 
biology, and systems biology play a key role in 
making full use of known targets, drugs, and bio-
markers or disease pathways, thus leading to the 
development of proof-of-concept methods and 
accelerated timeframe clinical trial design.

Repositioning involves a deep synergy of 
investigators and computational scientists to 
develop relevant and realistic exploration tools. 
However, advanced computational tools are often 
difficult to understand or use, limiting their 
accessibility to scientists without a solid compu-
tational background [1]. For example, life scien-
tists will find it challenging to use many of the 
computational tools that require data preparation, 
installation, and execution of packaged software; 
computer scientists, on the other hand, will not be 
able to make experimental validations of 
predictions.

In this chapter, we describe how to choose a 
proper drug repositioning approach based on 
information and knowledge, focusing on priori-

tizing the methods. Then, we discuss some of the 
tools built to facilitate the approach to this 
research field for both life scientists and com-
puter scientists, bridging the gap due to different 
cultural backgrounds.

 Drug Repositioning Methods 
and Approaches

Over the past few years, the number of drug repo-
sitioning methods has increased dramatically. 
Applying an efficient drug repositioning pipeline 
to a specific study requires identifying suitable 
methods based on available information about 
the drugs or diseases of interest [1, 3]. Therefore, 
it becomes essential to understand these existing 
methods better and prioritize them based on spe-
cific studies.

Computational drug repositioning methods 
can be classified as target-based, knowledge- 
based, signature-based, pathway- or network- 
based, and mechanism-targeted methods.

According to the information available and the 
elicited mechanisms, methods can be defined as 
drug-oriented, disease-oriented, and treatment- 
oriented. Therefore, these computational drug 
repositioning methods allow researchers to screen 
almost any drug candidate and test it on a large 
number of diseases in a relatively short time [1].

Because repositioning studies are tied to prior 
knowledge and available information, this will 
guide the choice of a drug repositioning method-
ology, and therefore the prioritization: (i) when 
there is limited information available for the 
studied disease, phenotypic screening or off-label 
FDA use would be the best option; (ii) if a protein 
biomarker exists for the studied disease, target- 
based or knowledge-based methods should be 
prioritized; (iii) when disease information is 
available, knowledge-based or signature-based 
methods can be used to integrate available dis-
ease pathways or disease-related omics data into 
the drug repositioning process; (iv) when omics 
data related to drug treatment are available, 
signature- based or mechanism-targeted methods 
can be used to elucidate unknown targeted mech-
anisms, such as off-targets and targeted signaling 
pathways [1, 3].
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 Screening Methods or Blinded 
Research

Blind drug repositioning methods mainly depend 
on serendipitous identification from targeted dis-
ease- and drug-specific assays and do not involve 
pharmaceutical or biological information. These 
methods can be applied to a large number of 
drugs or diseases [3].

 Target-Based Methods

Target-based drug repurposing methods involve 
in  vitro and in  vivo high-throughput or high- 
content screening (HTS/HCS) of drugs for a pro-
tein or biomarker of interest and an in silico 
screening of drugs or compounds from drug 
libraries. The use of target information in drug 
repurposing ensures a greater chance of finding 
valuable drugs than blind methods. These meth-
ods allow researchers to screen almost any drug 
or compound with known chemical structure 
information within days [3].

 Knowledge-Based Methods

Knowledge-based drug repositioning methods 
apply bioinformatics or cheminformatics 
approaches to integrate available drug informa-
tion, drug-target networks, chemical structures of 
targets and drugs, clinical trial information 
(including adverse effects), FDA approval labels, 
and signaling or metabolic pathways. This 
knowledge is then used to predict unknown 
mechanisms, unknown drug similarities, and new 
biomarkers for diseases [3].

 Signature-Based Methods

These methods rely on the use of gene signatures 
derived from disease omics data (i.e., microarray, 
RNA-seq), with or without treatments, to uncover 
unknown off-targets or unknown disease mecha-
nisms. This type of data is now available on 

various databases, including NCBI Gene 
Expression Omnibus (GEO), Connectivity Map 
(CMap), and Cancer Cell Line Encyclopedia 
(CCLE). Signature-based methods can support 
discovering unknown mechanisms of action of 
molecules and drugs because they are supported 
by molecular information from which valuable 
information can be extracted (i.e., differential 
expression of genes concerning disease or drug 
administration). This method is advantageous 
when, for example, drugs need to be repurposed 
for a large number of diseases. Since the required 
knowledge (biomarkers, targets) may not be 
available or may be difficult to derive from avail-
able literature or databases, deriving gene signa-
tures for those diseases from publicly available 
genomic data becomes the best option [3].

 Pathway- or Network-Based Methods

Pathway or network-based drug repositioning 
methods use available disease omics data, signal-
ing or metabolic pathways, and protein interac-
tion networks to reconstruct disease-specific 
pathways that provide key targets for reposi-
tioned drugs. These methods are beneficial in 
identifying, within extensive pathways, subnet-
works, or a small number of crucial, targetable 
proteins [3].

 Targeted Mechanism-Based Methods

Targeted mechanism-based methods use treat-
ment omics data, known signaling pathway infor-
mation, or protein interaction networks to 
delineate unknown drug action mechanisms. The 
application of these approaches involves the use 
of sophisticated computational models that are 
characteristic of Systems Biology. Such models 
find vast space in the era of precision medicine 
and can also be a valuable support in clinical 
practice [3]. One potential application is studying 
the molecular mechanisms that lead cancer 
patients to drug resistance after a few months of 
treatment [3]. The methods described above 
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demonstrate that the success of drug reposition-
ing is closely related to the complexity and rich-
ness of the available information [3].

 Drug Repurposing Tools: Web-Based 
Solutions

The field of drug repositioning requires the close 
collaboration of scientists belonging to different 
fields. Life scientists, experimental and clinical 
scientists, evaluate and interpret data and results. 
Computer scientists and bioinformaticians pro-
vide powerful computational software and sys-
tems to model the intrinsic complexity of 
biological models and make predictions to 
acquire novel knowledge.

The correct use of this type of software may 
be complex when the appropriate bioinformatics 
skills are lacking. For this reason, in the last few 
years, several tools available on the web have 
emerged. These provide easy-to-use computa-
tional solutions to bridge the gap between wet- 
lab scientists and the software tools available for 
drug discovery.

It is possible to consider three main categories 
of web-based platforms that help in drug repur-
posing based on the type of interaction used to 
perform repositioning studies: predicting drug- 
target interactions and using drug-induced gene 
expression to predict new connections and link 
drugs to disease.

 Web-Based Tools: Predicting Drug- 
Target Interactions

Within this category, the various tools are classi-
fied into five subcategories based on the data 
used to do repositioning and how they are param-
eterized [1]:
 1. Ligand similarity using fingerprint encoding
 2. 3D structures of drugs and targets
 3. Network-based approaches
 4. Binding site parameterization
 5. Other

 Ligand Similarity Using Fingerprint 
Encoding

The paradigm underlying ligand-centered predic-
tions is that the structural similarity implies com-
parable biological functions or properties. Similar 
compounds will therefore be likely to bind the 
same target, which is why a priori knowledge of 
query-binding targets is used to uncover previ-
ously unknown leads. In this sense, it becomes 
essential to know the fingerprint of molecules, be 
it 1D, 2D, or 3D.

Some tools belonging to this subcategory are 
indicated below.

 ChemMapper
To find similar molecules and target annotations 
to identify candidate targets for a given query, 
ChemMapper uses a 3D similarity algorithm 
called SHAFTS (SHApe-FeaTure Similarity). 
The usage of 3D similarity metrics has been 
shown to improve off-target prediction accuracy 
[4].

SHAFTS relies on a triplet hashing technique 
for rapid alignment of molecular conformations 
and uses shape and chemotype to assess similar-
ity [4].

ChemMapper uses drug information and tar-
get annotations from various sources such as 
ChEMBL, DrugBank, BindingDB, KEGG, and 
the Protein Database (PDB) [4].

ChemMapper offers the possibility to choose 
the most appropriate application depending on 
the final goal of the user (list of plausible pro-
teins, related compounds) and the type of input 
available (protein ID, protein sequence, list of 
compounds) [4].

 ChemProt 3.0
ChemProt 3.0 is a publicly available collection of 
chemical-protein disease annotation resources 
enabling the study of systems pharmacology for 
a small molecule at different levels of complexity 
(from molecular to clinical level) [5].

The platform allows users to navigate various 
data and make assessments from the global scale 
to specific analyses.
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ChemProt 3.0 includes several computational 
approaches: Similarity Ensemble Approach—
SEA, Quantitative Structure-Activity 
Relationship—QSAR, and network biology- 
based enrichment analysis [5].

These approaches support generating new 
hypotheses for bioactivity of novel and already 
annotated compounds and identifying other 
genes that may play significant roles in modulat-
ing chemical perturbations in humans [5].

The user can search for information about a 
compound, protein, or clinical outcome or can 
choose to perform a QSAR prediction for a spe-
cific compound. Each molecule can be imported 
as a SMILES (Simplified Molecular-Input Line- 
Entry System) code, or it can be drawn or 
uploaded from a compound structure file via the 
SD file format [5].

Through the “Heatmap” feature, ChemProt 
3.0 allows the user to have a general overview of 
chemical-protein interactions, providing a global 
map linking bioactivities of compounds and pro-
teins based on more than 7 million stored interac-
tions collected from multiple databases 
annotating compounds, proteins, and diseases. 
ChemProt has one of the most extensive data-
bases for each category (drugs, proteins, interac-
tions, diseases) [5].

QSAR prediction can have two types of appli-
cation cases: (i) Comparison of the query mole-
cule with the drug set and thus the map will 
provide a method to navigate through known 
interactions. (ii) Prediction of new interactions. 
In this case, the similarity of the molecule finger-
prints is used to generate similar drugs and pre-
dict the activity of the new compound [5].

 HitPick
HitPick is a web server for identifying hits in 
high-throughput chemical screenings and pre-
dicting their molecular targets. It is currently the 
only resource that can process hits from chemical 
biology screening experiments and provide target 
prediction. Indeed, the user can upload the results 
of the biological assay [6].

HitPick applies the B-score method for identi-
fying high-quality hits based on a statistical eval-
uation of many screening parameters and an 

integrative approach that combines 1-nearest- 
neighbor (1NN) similarity metrics and Laplacian- 
modified naïve Bayesian target models to predict 
the targets of identified hits [6].

Targets are predicted based on 2D molecular 
fingerprints.

The most similar compound from the 
compound- target interactions is identified using 
the pairwise Tanimoto coefficient. A ranking of 
target predictions will then be performed based 
on the Laplacian-modified Naive Bayesian 
method-based score.

 iDrug-Target
iDrug-Target comprises four subpredictors: 
iDrug-GPCR, iDrug-Chl, iDrug-Ezy, and iDrug-
 NR, focusing, respectively, on the identification 
of drug interactions with G protein-coupled 
receptors (iDrug-GPCR), ion channels (iDrug- 
Chl), enzymes (iDrug-Ezy), and nuclear recep-
tors (iDrug-NR) based on KEGG data. The 
predictions attempt to avoid oversampling due to 
non-interacting drug-target pairs. The 
Neighborhood Cleaning Rule and the Synthetic 
Minority Over-Sampling Technique are used to 
eliminate redundant negative samples, and some 
hypothetical positive samples are also added [7]. 
The Neighborhood Cleaning Rule (NCL) method 
is among the most popular under-sampling meth-
ods. All the samples of the class of interest are 
maintained, whereas those from the rest of the 
data are reduced [8]. On the other hand, Synthetic 
Minority Over-sampling TEchnique (SMOTE) is 
an over-sampling method that addresses this 
problem by creating synthetic minority samples 
to balance the data set. The minority class is over- 
sampled by taking each minority class sample 
and introducing synthetic examples along the 
line segments joining any/all of the k minority 
class nearest neighbors [9].

iDrug-Target combines protein sequence 
encoding, using pseudo amino acid composition, 
with a 256-component 2D fingerprint representa-
tion of the ligand. This molecular signature must 
also be generated to construct a query. iDrug- 
Target uses a Support Vector Machine (SVM) to 
classify inputs as interactive or non-interactive 
[7].
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 Polypharmacology Browser—PPB
Merged footprints combining features between 
different footprints can also be generated. PPB 
searches through 4613 groups of at least ten anno-
tated targets of bioactive molecules from ChEMBL 
and returns a list of predicted targets ranked by 
consensus voting scheme and p-value [10].

Targets can be ranked by their p-values. 
Indeed, it was found that the pairwise overlap 
between high confidence (low p-value) targets of 
different fingerprints was significantly higher 
than low confidence (high p-value) targets. In 
PPB, the similarity is calculated using city-block 
distances. This tool reports better performance 
from fusion and pairwise combination finger-
prints than single fingerprints [10].

 Similarity Ensemble Approach—SEA
SEA was the first tool that used ligand similarity 
to cluster proteins. The protein clusters thus 
formed represented functional themes that were 
potentially useful in predicting the polypharma-
cology of ligands [11].

The ligands were grouped according to the 
minimum coverage tree, while Tanimoto coeffi-
cients (TC) were used to determine similarity and 
Daylight 2D fingerprints. The encoding of the 
ligands is done through 2D fingerprints. The 
pipeline suggested by SEA, which leads to the 
identification of new suggestions of repositioned 
drugs, ultimately provides for validation with 
experimental techniques [11].

 SuperPred
SuperPred is a prediction web server able to con-
nect the chemical similarity of compounds to 
drugs with molecular targets and a therapeutic 
approach based on the principle of similar prop-
erty [11, 12].

The ligand-target interactions are first aggre-
gated by SuperTarget, ChEMBL, and BindingDB, 
then the set of ligands is normalized/cleaned using 
JChem to obtain a single set of ligands [11, 12].

Among them, only molecular targets will be 
extracted through the use of stringent binding 
affinity thresholds.

Drug-target prediction is achieved by consid-
ering the 2D Tanimoto similarity between a query 

compound and the ligands associated with their 
respective targets (target sets) [11, 12].

The specificity of each prediction is done 
through the calculation of two parameters called 
Z scores and E-values. The E-value is used as a 
threshold value. An E-value >1 means that the 
prediction is random. In order to evaluate the 
similarity between ligands, a weighting factor is 
calculated. The use of weight improves the accu-
racy of the predictions.

Thanks to the presence of these thresholds, 
SuperPred has a prediction success rate of 94.1% 
[11, 12].

 SwissTargetPrediction
SwissTargetPrediction is a web server that has 
been online since 2014 [13, 14] and whose ratio-
nale is based on the observation that similar bio-
active molecules are more likely to share similar 
targets. Thus, identifying proteins with known 
ligands similar to the query molecule can predict 
the targets of a given molecule.

This tool combines 2D and 3D similarity met-
rics to predict targets of bioactive molecules to 
improve target prediction accuracy. Query mole-
cules can be inputted either as SMILES or drawn 
in 2D using the javascript-based molecular editor 
of ChemAxon. This system uses ChEMBL ver-
sion 23 (the old version was based on ChEMBL 
version 16) as a data source. The dataset includes 
376,342 unique compounds (580,496 binding 
activities on 3068 protein targets) [13, 14].

SwissTargetPrediction offers the possibility to 
perform predictions in different organisms, and 
mapping predictions by homology within and 
between different species is enabled for close 
paralogs and orthologs. The updated version can 
choose among humans, rats, and mice [13, 14].

The similarity quantification consists of calcu-
lating a pairwise comparison of 1D vectors 
describing molecular structures. The 2D measure 
uses the Tanimoto coefficient between path- 
based binary footprints (FP2), while the 3D mea-
sure is based on a Manhattan similarity distance 
between Electroshape 5D float vectors (ES5D) 
[13, 14].

Targets are prioritized based on a logistic regres-
sion of the 2D–3D similarity values [13, 14].
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 TarPred
TarPred is an online computational model based 
on a reference library containing 533 individual 
targets with 179,807 active ligands [13, 15].

Given a query compound, TarPred provides 
the first 30 ranked interacting targets. For each of 
them, the structure of the three most similar 
ligands is displayed, along with the disease indi-
cations associated with each target. This informa-
tion helps understand the mechanisms of action 
and toxicity of active compounds and may offer 
new inputs for drug repositioning [13, 15].

To calculate the similarity of the query with 
the set of drug-related targets, TarPred also uses a 
combination of ECFP4 (Extended-Connectivity 
Fingerprints), designed for molecular character-
ization, similarity searching, and structure- 
activity modeling, together with the Tanimoto 
coefficient. The prioritized list of targets pro-
duced is closely associated with FDA-approved 
drugs [13, 15].

Protein sequences that interact with FDA- 
approved drugs (FDA-approved drug targets) are 
retrieved from DrugBank and subjected to 
BLAST against BindingDB proteins [13, 15].

TarPred calculates ECFP4 similarity scores 
between the query compound and ligand sets, 
producing a ranked list of targets [13, 15].

 TargetHunter
TargetHunter is a web-based tool that uses an 
algorithm based on the Tanimoto similarity 
index, called TAMOSIC (Targets Associated 
with its MOst SImilar Counterparts) [16].

The similarity to the query compound is cal-
culated using three different 2D fingerprints. The 
targets associated with the first “N” most similar 
compounds are shown as possible targets. The 
data for the compounds are retrieved from 
ChEMBL [16].

 3D Structures of Drugs and Targets

Structure-based design is founded on the knowl-
edge of the three-dimensional structure of the 
molecular target for the drug. The methods to 
derive the 3D structure are X-ray crystallography 
and NMR solution. Alternatively, homology 

models based on related proteins are commonly 
used.

This type of approach focuses on exploring 
the similarity of binding sites from PDB crystal 
structures.

Structure-based design predominantly uses 
molecular modeling techniques such as docking 
and pharmacophore models to calculate binding 
affinities of leads.

From the computational point of view, these 
techniques are more expensive. In fact, most of 
the computational research in this area is used to 
create predictive software rather than building 
real-time web-based applications.

Below are some web services that use this 
type of approach.

 idTarget
idTarget can predict possible binding targets of a 
small chemical molecule via a divide et impera 
docking approach combined with scoring func-
tions based on regression analysis and quantum 
chemical charge models. The affinity profiles of 
the protein targets are used to provide the confi-
dence levels of the prediction. The divide et 
impera docking approach uses small overlapping 
grids adaptively constructed to limit the search 
space, thus achieving better efficiency in terms of 
time. idTarget performs screening on almost all 
protein structures deposited in the Protein Data 
Bank (PDB) [17].

The search engine of the idTarget web server 
is MEDock, which generates initial docking 
poses of the small ligand [17].

 Protein-Drug Interaction Database 
(PDID)
PDID can be used to systematically catalog 
protein- drug interactions and facilitate various 
studies related to drug polypharmacology and 
drug repurposing.

PDID queries the binding sites within the 
PDB’s drug-protein complexes based on strin-
gent filters against all other proteins on the PDB 
to find likely off-targets of the original drugs 
[18].

PDID uses experimentally curated interac-
tions present in DrugBank, BindingDB, and 
Protein Data Bank.
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PDID is based on nearly 1.1 million all-atom 
predictions on the entire human structural pro-
teome (10,000 structures for over 3700 proteins) 
and provides access to all putative targets 
(between 4444 and 7184, depending on the pre-
diction method used) of several popular drugs. 
Therefore, it represents a valid starting point for 
drug repositioning [18].

 TARget FIShing DOCKing (TarFisDock)
TarFisDock is a tool created to automatize the 
procedure of searching for small molecule- 
protein interactions on an extensive repertoire of 
protein structures. It provided a database of 
potential drug targets (PDTDs) containing 698 
protein structures covering 15 therapeutic areas 
and was one of the first online tools to offer a 
reverse ligand-protein docking program. Reverse 
ligand-protein docking aims to search for poten-
tial protein targets by examining an appropriate 
protein database [19].

TarFisDock requests as input the small mole-
cule to be tested in standard mol2 format and per-
forms the docking through the DOCK 4.0 
algorithm using protein structures present in 
PDTD.  Targets can be provided by the user or 
retrieved from PDTD.  The ligand-protein inter-
action energy terms of the DOCK program are 
adopted to classify proteins [19].

 Network-Based Approaches

Many databases store annotations on system- 
wide biological networks, including information 
on various entities that interact with drugs (e.g., 
targets). Integrating these types of biological net-
works can help understand the pharmacological 
properties of specific molecules and thus in drug 
repositioning. However, working with this kind 
of data poses new challenges related to managing 
multidimensional interaction networks.

 BalestraWeb
BalestraWeb is an online service that allows users 
to make predictions about potential interactions 
between a chosen drug and target or predict the 
most likely interaction partners of any drug or 

target listed in DrugBank. It also enables to per-
form similarity search between drugs or deter-
mine the most similar targets based on their 
interaction patterns [20]. The system uses active 
learning (AL) techniques relying on probabilistic 
matrix factorization (PMF) to calculate the statis-
tical weight of each approved drug for all targets 
associated with the entire set of approved drugs. 
The server allows three types of queries to be 
submitted: drug-target interaction, drug-drug 
similarity, and target-target similarity [20].

Predictions made by BalestraWeb are not 
dependent on structural or chemical similarities 
[20].

 CSNAP
CSNAP (Chemical Similarity Network Analysis 
Pull-down) is a computational tool for target 
identification based on network similarity.

The method combines chemical similarity 
networks (CSNs) and chemical consensus that 
results in chemotype-based subnetworks, which 
predict targets for a set of drug classes [21].

The compounds and their information (e.g., 
bioactivity) are stored in databases such as 
ChEMBL and PubChem. Such compounds are 
grouped by CSN, and target prediction will be 
based on a consensus statistic determined by the 
target frequency shared by the first neighbors 
centered on the compound in the query. The 
resulting subnetwork will consist of nodes repre-
senting compounds and edges representing simi-
larity [21].

The S score is used to rank the targets of the 
first neighbor compounds, and the significance 
of each composite protein pair is calculated 
using an H score. CSNAP appears to have 
greater predictive ability than the SEA approach 
[21].

 DASPfind
DASPfind is a web service for identifying novel 
drug-target interactions using “simple paths” of 
particular lengths inferred from a heterogeneous 
graph composed of three types of subgraphs: 
drug-target interactions, drug-drug similarities, 
and similarities between drug-protein targets 
[22].
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The various known interactions were extracted 
from the KEGG BRITE, BRENDA, SuperTarget, 
and DrugBank databases. The chemical struc-
tures of the drugs were extracted from the KEGG 
LIGAND database, and the similarities between 
the drugs were calculated using SIMCOMP. Target 
similarity scores are calculated using a normal-
ized version of the Smith-Waterman algorithm 
[22].

DASPfind performs best when a subjective 
test using only the “top 1 candidate” is used [22].

 nAnnoLyze
nAnnoLyze is a web-based tool for target identi-
fication centered on the hypothesis that structur-
ally similar binding sites associate with similar 
ligands and is based on network-based compara-
tive docking called Annolyze. nAnnoLyze inte-
grates structural information into a bipartite 
network of interactions and similarities to predict 
compound-protein structural interactions on a 
proteomic scale [23].

This network consists of compounds found in 
PDB, protein-binding sites from LigBase, human 
proteome structure from ModBase, and 
DrugBank compounds [23].

Then, the protein subnetwork is constructed 
using targets that bind ligands above a threshold 
of drug similarity. The network is connected 
using the structural similarity of the binding sites 
calculated by ProBis. The two subnetworks are 
joined if a resolved PDB structure validates a 
known ligand-target interaction. Only proteins 
that have a resolved 3D structure are used for 
nAnnolyze predictions [23].

 PROMISCUOUS
PROMISCUOUS is one of the first public 
network- based Web servers for drug repurposing 
[24, 25]. The network employed consists of 
nodes representing drugs, proteins, side effects, 
and edges representing drug-target, drug-drug, 
target-target, and drug-side effect interactions. 
The information to support the network comes 
from publicly available databases such as 
SuperDrug, DrugBank, ChEMBL, SIDER, TTD, 
SuperTarget, and SuperPred [24, 25].

In the updated version of the Promiscuous 2.0 
Database, the number of drugs and drug-like 
compounds has been significantly increased from 
25,000 to nearly 1 million (side effects ~110,000, 
drug-target interactions ~3 million), compared to 
the first version. Promiscuous 2.0 also includes a 
section devoted to potential treatments for 
COVID-19 [24, 25].

Promiscuous is an easy-to-use resource that 
allows users to interactively create complex inter-
action networks and infer new indications for 
existing compounds. Users can also submit new 
molecular structures and be presented with sug-
gested application areas or, vice versa, get poten-
tial drug candidates for disease indications of 
interest [24, 25].

 SLAP
Semantic Link Association Prediction (SLAP) is 
a web-based tool that predicts associations 
between drugs and targets through semantic data-
base integration and statistical modeling. SLAP 
predicts associations using “path models,” pre-
defined association paradigms that include nodes 
and edges [26]. These are part of a semantic net-
work constructed using drug-drug and protein- 
protein similarity and drug-target interactions 
from Chem2Bio2RDF during semantic annota-
tions from the Chem2Bio2OWL ontology. The 
drug-target pairs used to construct the association 
network are taken from DrugBank [26].

SLAP uses the Heap-based Dijkstra algorithm 
to find the shortest path length between two 
nodes (shortest path length  <  3). The predicted 
values are associated with a p-value, calculated 
as the sum of the Z-scores of all valid paths 
between two nodes, that allows their ranking 
based on significance [26].

Three types of input can be given to SLAP: 
drug-pair and predict association; targets pre-
dicted by drugs and drugs with similar biological 
function; proteins alone and get associated 
ligands/for and obtain associated ligands [26].

The performance of SLAP is comparable to 
SEA for drug-target predictions and CMap for 
drug-association predictions [26].
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 STITCH
STITCH, a search tool for interacting chemicals, 
is a web service focused on providing the user a 
comprehensive map of drug-target interactions 
with sophisticated filters and visualization 
[27–30].

We can consider this platform as an interface 
that integrates drug-target interaction data 
resources derived from high-throughput, manu-
ally curated database experiments and many pre-
dictive algorithms.

STITCH has been updated many times and, 
over the many years of development, has been 
connected to many databases such as DrugBank, 
GLIDA, MATADOR, TTD, CTD, KEGG, PID, 
Reactome, BioCyc, ChEMBL, PDSP Ki 
Database, and PDB. Over time, STITCH has also 
been implemented with automated text mining 
algorithms that predict interactions based on co- 
occurrence in PubMed, MEDLINE, and NIH 
Re-PORTER [27–30].

A confidence score is given for each interac-
tion indicating its level of significance and 
certainty.

As input, it is possible to give a chemical 
name, a gene name, a chemical structure, or a 
protein sequence, from which a network of inter-
actions with related chemicals and proteins will 
be generated [27–30]. STITCH is a well- 
established and widely used resource by many 
research groups that directly use its results 
[27–30].

 DT-Web
DT-Web [31] is a web-based application to the 
Domain Tuned-Hybrid (DT-Hybrid) [32], which 
extends a well-established recommendation tech-
nique from domain-based knowledge that 
includes drug and target similarity.

This method, together with domain-specific 
knowledge expressing drug-target similarity, is 
used to calculate recommendations for each drug.

DT-Web can consider different matrices as 
input: known drug-target matrix, drug-drug simi-
larity matrix, and target-target similarity matrix.

The drug-target interactions are taken from 
DrugBank, and from this data, an adjacency 
matrix is constructed. The drug-drug similarity is 

assessed using SIMCOMP, and then a similarity 
matrix is constructed. The target similarity matrix 
can be obtained by performing BLAST or using 
the Smith-Waterman local alignment technique.

Then, using these three matrices, a drug-target 
interaction network is constructed. Each target is 
mapped to its Entrez Identifier and annotated 
with Gene Ontology (GO) terms in this interac-
tion network. For each pair of GO terms, the 
similarity score is calculated. Therefore, a p-value 
is calculated to evaluate the association between 
the predicted and validated targets.

Another potential of DT-Web is that, given a 
set of candidate disease genes as input, it can pre-
dict drug combinations whose targets are at an 
optimal distance from those genes. DT-Web 
shows better results than NBI and Hybrid, 
network- based interaction prediction algorithms.

 Searching off-lAbel dRUg 
aNd NEtwoRk—SAveRUNNER
SAveRUNNER is a freely available network- 
based algorithm for drug repurposing to detect 
potential new indications for existing drugs that 
could be used for other purposes [2, 33].

Starting from a list of drug-target interactions 
and disease-gene associations, this tool predicts 
drug-disease associations by computing a new 
network-based similarity measure that prioritizes 
associations between drugs and diseases located 
in the same neighborhoods [2, 33].

The SAveRUNNER pipeline consists of two 
macro steps [2, 33]:
 1. The construction of the proximity-based drug- 

disease network
 2. The construction of a similarity-based bipar-

tite drug-disease network
The construction of the proximity-based drug- 

disease network comprises three phases:
Computation of network proximity (p) to mea-

sure how close the disease and drug modules are 
in the human interactome. Given two modules T 
and S that, respectively, represent the drug mod-
ule, containing all t targets of the drug, and the 
disease module, comprising all s genes of the dis-
ease, we can describe this measure as the average 
length of the shortest path between the elements 
of T and S [2, 33].

R. V. Rapicavoli et al.



129

Computation of z-score proximity and p val-
ues. SAveRUNNER calculates z-scores and their 
p-values by building a reference distance distri-
bution corresponding to the expected distance 
between two randomly selected sets of proteins 
with the same size and degree distribution as the 
original sets of disease proteins and drug targets 
in the human interactome. The procedure is 
repeated 1000 times, and the z-score and its 
p-value are calculated through the mean and stan-
dard deviation of the reference distance distribu-
tion [2, 33].

Selection of statistically significant drug- 
disease associations by filtering p-values (gener-
ally, p-value ≤0.05) [2, 33].

Next, the pipeline involves the construction of 
a similarity-based bipartite drug-disease network 
that comprises the following steps:

Computation of Network Similarity
The similarity measure is calculated from the 
network proximity measure p through the 
equation

 

Similarity

network proximity.

�
� � �
� �

�

max

max

p p

p
p

 

This measure assumes a value between 0 and 
1 [2, 33].

Cluster Detection
SAveRUNNER uses a clustering algorithm based 
on greedy optimization of the modularity net-
work to define drug and disease groups. Each 
identified cluster is evaluated by the cluster qual-
ity score (QC) [2, 33].

Adjustment of Network Similarity
If a drug and a disease are part of the same clus-
ter, the drug can probably be repurposed for the 
disease. Thus, the drug-disease pair should have 
a higher similarity [2, 33].

Therefore, the similarity of a drug-disease pair 
belonging to the same cluster is increased pro-
portionally to the cluster’s QC score. On the other 
hand, if two nodes do not fall into the same 

cluster, QC is set to zero and the similarity value 
does not change [2, 33].

Normalization of Network Similarity by 
Applying a Sigmoid Function
SAveRUNNER outputs a list of predicted and 
prioritized drug-disease associations in a 
weighted bipartite network format, in which 
nodes represent drugs and diseases. A link 
between a drug and a disease occurs if the corre-
sponding drug targets and disease genes are close 
in the interactome with a significant p-value 
(p ≤ 0.05). Their interactions are represented by 
weighted edges in which the weight corresponds 
to the adjusted and normalized similarity value 
[2, 33].

 Binding Site Parametrization

Binding sites are structural regions of macromol-
ecules that bind ligands through interactions that 
are almost always reversible and can often be 
accompanied by conformational changes in the 
molecules. These are often conserved regions 
that can be used to search for other ligand- binding 
proteins that generally bind to other molecules by 
exploiting the structural similarity of these bind-
ing regions. Below, we explore some of the meth-
ods designed to predict targets based on the 
binding sites of query molecules.

 ProBis
The ProBiS-ligands Web server predicts the bind-
ing of ligands to a protein structure. Starting with 
a protein structure or binding site, ProBiS-ligands 
identify model proteins in the Protein Data Bank 
(PDB) that share similar binding sites to the 
query [34].

The algorithm uses the structure and physico-
chemical properties of the constituent amino 
acids and their backbones to compare two 
protein- binding sites [34].

Then, it detects structures sharing similar 3D 
amino acid motifs to the searched protein within 
the PDB [34].
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ProBiS-Database is a repository of non- 
redundant- binding sites and associated PDB 
structures, which is updated weekly. ProBiS can 
be used through pre-calculated data to get results 
faster or by starting from scratch by looking for a 
specific protein [34].

 PoSSuM
Pocket Similarity Search using Multiple- 
sketches, PoSSuM, searches the entire PDB data-
base for binding similarity of all coupling 
molecules. PoSSuM accepts three types of input: 
a protein structure; a ligand-binding site; and a 
ligand [35, 36].

Given a protein query, PoSSuM will search 
for all known ligand-binding sites with a struc-
ture similar to the input. PoSSuM can search for 
any known ligand-binding site or putative- 
binding site [35, 36]. It uses a neighbor-searching 
algorithm called SketchSort. The similarity mea-
sure is determined based on cosine similarity and 
a p-value indicating significance [35, 36]. On the 
other hand, dissimilarity values are given by the 
mean square deviation [35, 36].

 Other Web-Based Tools

This section is dedicated to tools that use disease 
association-dependent annotations. Disease- 
based approaches are used when drug pharma-
cology is not present or not considered.

 MeSHDD
MeSHDD is a literature-based repositioning 
methodology that leverages drug-drug similarity 
based on the MeSH term co-occurrence [37]. 
MeSHDD clusters drugs based on disease- 
centered Medical Subject Heading (MeSH) terms 
found in the MEDLINE Baseline Repository, 
which contains manually annotated MeSH terms 
for over 20 million biomedical articles, to predict 
shared indications [37].

MeSHDD uses drugs from DrugBank, includ-
ing manually curated information on approved, 
investigational, and illicit drugs and their targets, 
mechanisms of action, and indications. 
Co-occurrence of drug-MeSH terms is calculated 

using a hypergeometric P-value, followed by a 
Bonferroni correction [37]. The drug-drug simi-
larity is measured by calculating the bitwise dis-
tance from converting p-values to a binary 
representation. Drugs are clustered based on pair-
wise distances and bootstrap-means clustering 
techniques (implemented in R), and the Jaccard 
index was used to compare the clustering of vari-
ous k-values [37].

 RE:fine Drugs
RE:fine drugs is a freely available interactive 
dashboard for integrated search and discovery of 
drug repurposing candidates from GWAS and 
PheWAS repurposing datasets constructed using 
previously reported methods in Nature 
Biotechnology [38].

Given a disease as input to the web server, 
users receive a list of drugs that can potentially 
treat that disease [38].

The output predictions are classified as known/
discovered if present in DrugBank, strongly sup-
ported if present in the NIH clinical trial registry 
and biomedical literature, probable if the evi-
dence is in the NIH clinical trial registry or bio-
medical literature, and novel if not present in 
either [38].

 Bayesian ANalysis to Determine Drug 
Interaction Targets—BANDIT
BANDIT is a machine learning algorithm that 
uses a Bayesian approach to integrate multiple 
data types to predict possible interactions with 
therapeutic effects. The rationale for this 
approach is integrating multiple data types to sig-
nificantly improve the accuracy of target predic-
tion [39].

BANDIT integrates over 20,000,000 data 
points from six distinct data types (drug efficacy, 
post-treatment transcriptional responses, drug 
structures, reported adverse effects, bioassay 
results, and known targets) [39]. The tool is based 
on a database containing approximately 2000 dif-
ferent drugs with 1670 different known targets 
and over 100,000 compounds without known tar-
gets (orphans) [39].

For each data type, a similarity score is calcu-
lated for all drug pairs with known targets. For 
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each pair, BANDIT converts the similarity score 
into a likelihood ratio. These ratios are then com-
bined to obtain a total likelihood ratio (TLR) pro-
portional to the probability that two drugs share a 
target, given all available evidence [39].

The integrative approach of BANDIT can 
accurately identify drugs that share targets, dis-
cern the mechanisms of approved drugs, explain 
existing but not fully known clinical phenotypes, 
and repurpose drugs for new therapeutic indica-
tions [39]. Finally, BANDIT is a dynamic system 
that can be continuously updated [39]. BANDIT 
showed high accuracy in identifying shared tar-
get interactions and discovering novel targets for 
cancer treatment [39]. The use of this tool led to 
the identification of 14 novel microtubule inhibi-
tors, including 3 with activity on resistant cancer 
cells [39].

 Using Drug-Induced Gene 
Expression to Predict New 
Connections and Link Drugs 
to Disease

Drug-induced gene expression refers to the dif-
ferential mRNA expression profiles in a cell line 
before and after drug treatment. This repurposing 
approach is accomplished by comparing disease- 
associated expression signatures with these drug- 
induced expression signatures, looking for drugs 
that have opposite effects on the disease and may 
be effective.

 CMap

Connectivity Map (CMap) relies on a database of 
pre- and post-gene expression profiles from cel-
lular samples in response to various types of per-
turbation, e.g., genetic perturbations in response 
to drug administration. CMap provides mRNA 
expression data from DNA microarrays for 
researchers who want to monitor differential 
expression to identify drugs that produce reverse 
signatures to query expression signatures. 
Connectivities are measured using the 
Kolmogorov-Smirnov statistical test. To date, 

CMap has generated a library containing over 
1.5M gene expression profiles from ~5000 small 
molecule compounds and ~3000 gene reagents, 
tested in multiple cell types [40, 41]. CMap has 
profoundly impacted therapeutic research and 
has opened new challenges in scientific investiga-
tions in drug repurposing, MoA elucidation, bio-
logical understanding, and systems biology [40, 
41]. It provides one of the most valuable and 
direct methods to investigate the alternative ther-
apeutic potential of drugs [40, 41].

 DeSigN

DeSigN (differentially expressed gene signa-
tures—inhibitors) associates disease signatures 
with drug response signatures based on IC50 
(quantitative measure of drug efficacy often used 
to prioritize compounds in  vitro) data. Unlike 
CMap, which uses pre- and post-gene expression 
profiles, DeSigN uses only baseline gene expres-
sion profiles. DeSigN is constructed using GDSC 
[42].

 GoPredict

GoPredict uses gene expression data integrated 
with heterogeneous public information, such as 
signaling pathways and drug-target information. 
It takes gene expression data as input and returns 
drug predictions as output. The reference data-
bases used in GoPredict are TCGA, KEGGDrug, 
DrugBank, and Gene Ontology [43].

 MANTRA 2.0

MANTRA 2.0 predicts molecular drug targets 
from gene expression profiles before and after 
drug perturbation in a collaborative and additive 
learning environment [44].

An automated pipeline of MANTRA 2.0 
transforms the gene expression profiles into a 
single drug “node” in the network and allows 
users to explore their neighbors to find new indi-
cations and interactions. They calculate a proto-
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type ranked list (PRL) for each drug, followed by 
a method to compare two PRLs using a Gene Set 
Ensemble Approach (GSEA) based method [44].

 NFFinder

NFFinder uses the MARQ method to compare 
molecular signatures. Performing this analysis 
requires two sets of expression data, up- and 
downregulated genes compared to GEO, CMap, 
and DrugMatrix data [45].

 PDOD

The online server Prediction of Drugs with 
Opposing Effects on Disease Genes—PDOD 
uses gene expression data and associates to them 
information regarding “effect-type” and “effect- 
direction” using pathway information (KEGG) 
and drug-target information from DrugBank 
[46]. It uses case/control expression datasets pub-
lished in GEO to determine which gene expres-
sion changes happen due to a specific disease and 
looks for a drug that can counteract them [46].

To extract the gene signature, PDOD draws 
differentially expressed genes from the expres-
sion data by applying Limma and a function that 
evaluates the drug-disease score based on the 
parameterization of relationships [46].

 RGES

The Reverse Gene Expression Score—RGES is 
a system providing a predictive measure on 
how a given drug could reverse the gene expres-
sion profile for a given disease. The principle 
consists of contrasting overexpressed while 
increasing weakly expressed ones, thus restor-
ing gene expression to levels closer to normal 
tissue [33].

First, the computational pipeline needs to 
compute disease gene expression signatures and 
drug-induced gene expression signatures [33]. 
From these two molecular signatures, it can cal-
culate the Reverse gene expression score (RGES) 

between disease and drug. This score ranges 
from −1 to 1, and it represents a measure of how 
much the drug under consideration can counter-
act the changes in expression due to disease. A 
low RGES value indicates higher potency to 
reverse disease gene expression and vice versa 
[33].

RGES is hence dependent on biological con-
ditions. It is also reported that it is positively cor-
related with drug efficiency and, therefore, the 
IC50. RGES could also be used to provide 
insights into drug candidates’ mechanisms [33].

The required data to perform the analysis can 
be taken from various publicly available data-
bases such as TCGA, which includes gene expres-
sion profiles of tissue samples, LINCS, which 
includes perturbagen-mediated gene expression 
profiles, ChEMBL, which includes drug activity 
in cancer cells, and CCLE, which includes gene 
expression profiles of cancer cells [33].

Thanks to the progressively decreasing cost of 
many profiling technologies, large volumes of 
gene expression profiles of drugs in different bio-
logical conditions can be produced and made 
available to apply various drug repositioning and 
compound screening techniques such as RGES 
[33].
 Data Sources for Drug Repurposing

During the past decade, the rapid collection of 
genomic data has brought an explosion of new 
insights into the genetic basis of diseases. It is 
enough to mention the numerous studies through 
which the association of gene loci with the risk of 
developing certain diseases has been discovered 
or the sequencing of human tumors, thanks to 
which somatic mutations underlying many types 
of cancer have been identified.

The acquisition of new knowledge about some 
disease phenotypes and drug-induced perturba-
tions has increased the interest in new computa-
tional methods that can analyze and integrate 
large amounts of data to uncover new disease 
targets.

In general, applying these approaches on drug 
perturbation datasets has helped improve the 
understanding of the connection between genes, 
drugs, and diseases, as these methodologies can 
lead to the generation of novel hypotheses.

R. V. Rapicavoli et al.
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Machine learning techniques and biomedical 
text mining approaches have been crucial in dis-
covering hidden relationships between drugs and 
potential new therapeutic indications.

Systematic collection and analysis of gene 
expression data from human cell lines before and 
after drug treatment can be used to identify new 
opportunities for drug repurposing, discover new 
mechanisms of action for compounds, make 
small-molecule mimics of endogenous ligands, 
and predict side effects of such compounds [47].

This approach was initially enabled by the 
Connectivity Map that contains data on transcrip-
tional responses of human cancer cell lines to 
various drugs/compounds and other small 
molecules.

The first version of this database had limita-
tions due to its small scale, leading to the exten-
sion of the Connectivity Map project through the 
NIH Library of Integrated Network–based 
Cellular Signatures (LINCS) program. A new 
approach was introduced to increase the available 
experimental data. A cheaper technology than the 
classic RNA-seq, called L1000, was employed. 
The LINCS-L1000 provides the signatures of 
~50 human cell lines in response to ~20,000 
drugs (at various concentrations) for a total of 
over a million experiments [47].

In this section, we will provide an overview of 
CMap and its evolution LINCS L1000. These 
“big data” resources provide essential but 
straightforward platforms for characterizing 
small molecule–induced changes in gene expres-
sion and determining connections, similarities, or 
dissimilarities among diseases, drugs, genes, and 
pathways.

 CMap

The Connectivity Map (CMap), introduced in 
2006 by Lamb et  al., is a database collecting 
gene-expression profiles of drug-treated human 
cell cultures, which has been used for investiga-
tion of polypharmacology and drug repurposing.

Gene expression profiles are a series of exper-
iments conducted using a microarray platform 
(Affymetrix HT_HG_U133 and HG_U133A) 

and standardized preprocessing (MAS 5.0). 
Experiments were done on different cell lines at 
different vehicle concentrations and time points 
compared to controls [48].

In the original CMap study, the initial refer-
ence database (Build 1) included 455 treatment- 
control pairs, where treatment constitutes a 
selection of 165 drugs, 42 different concentra-
tions, 2-time points, and four human cell lines 
(MCF7, PC3, SKMEL5, and HL60). 
Subsequently, the database was significantly 
extended (Build 2), adding 1309 drugs with 156 
different concentrations for a total of about 7000 
gene expression profiles [48].

An “instance identifier” uniquely identifies 
each instance within the database. Thus, there is 
an instance representation in the reference data-
base for each drug corresponding to treatment 
and control conditions [48].

 The Connectivity Mapping Methods
CMap’s rationale is to use a reference database 
containing disease-specific gene expression pro-
files and compare it to the gene signature of a 
given drug. This approach is aimed to predict 
potential therapeutic candidate drugs. It also 
allows the identification of connections between 
drugs, genes, and diseases.

The CMap workflow comprises an initial 
query consisting of a set of gene signatures highly 
representative of a given biological state (e.g., 
disease). Although there is no definite way to 
generate the optimal gene signatures, the conven-
tional approach identifies and uses a statistically 
significant list of differentially expressed genes 
(DEGs) calculated from disease and control sam-
ples. This list of genes will delineate the charac-
teristic phenotype for a particular disease [48].

This kind of approach is platform- independent, 
allowing users to create query signatures from 
any gene expression platform [40]. Then, the 
query is used to interrogate the CMap catalog.

Within the database, each of the signatures 
consists of a weighted average of the three bio-
logical replicate perturbations to mitigate the 
effects of unrelated replicates or outliers [40].

At this point, a connectivity score with a 
p-value is estimated using a non-parametric 
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rank- ordered Kolmogorov-Smirnov (KS) test. 
The “connectivity score” is normalized through 
the random permutation described by Lamb 
et al., assuming values from 1 to −1 to reflect the 
closeness between expression profiles [40, 48].

A positive correlation indicates the degree of 
similarity between a query signature and a 
perturbation- derived profile after specific treat-
ment, whereas a negative correlation denotes an 
inverse similarity. These correlations are used to 
determine how exposure to a particular chemical 
may mimic or reverse the signature of the bio-
logical sample of interest.

A false discovery rate (FDR), which adjusts 
the p-value considering multiple hypothesis test-
ing, and a t-parameter, which compares an 
observed enrichment score to all others in the 
database, are also calculated [40]. These metrics 
allow a comprehensive assessment of the rela-
tionship between a query and a perturbation, 
rather than just sorting by similarity.

Since the methodology behind CMap involves 
using expression profiles to define molecular sig-
natures, it does not require prior knowledge of 
the detailed mechanism of action (MoA) or drug 
targets [40, 48]. This advantage makes it a widely 
used method in drug discovery and 
repositioning.

The original CMap database had limited 
chemical and genetic perturbation data due to the 
high cost of commercial gene expression micro-
arrays and RNA sequencing (RNA-seq). In addi-
tion, the expression profiles looked only at a few 
cell lines leaving the uncertainty of applicability 
to other cell lines, animal models, or human 
systems.

To improve the system and overcome these 
significant limitations, the same team of research-
ers developed a new simplified platform called 
L1000 to facilitate rapid and high-throughput 
gene expression profiles at a lower cost.

 L1000

The L1000 platform, developed at the Broad 
Institute by the CMap team, is a method to facili-
tate high-throughput, low-cost gene expression 

profiling and is suitable for extending CMap at a 
large scale [40, 48]. The development of this 
method was part of the NIH LINCS (Library of 
Integrated Cellular Signatures) consortium, 
which funds the generation of expression profiles 
across multiple cell types and perturbations. To 
date, through L1000 technology, over 1 million 
gene expressions have been profiled and 
collected.

Its name, L1000, is because it contains several 
reference transcripts equal to 1000, used to esti-
mate the signature of the whole genome gene 
expression generated by microarrays. Effectively, 
the basic idea is that it is possible to capture any 
cellular state by starting from a certain number of 
representative transcripts at a low cost.

The authors used a set (12,031) of Affymetrix 
HGU133A expression profiles available in the 
Gene Expression Omnibus (GEO) to define the 
threshold for the number of transcripts. From this 
analysis, it was estimated that 1000 landmarks 
were sufficient to recover 82% of the information 
in the entire transcriptome [40].

The L1000 platform combines ligation- 
mediated amplification, optically addressed and 
barcoded microspheres (beads), and a flow cyto-
metric detection system for gene expression sig-
nature analysis [40]. The L1000 platform is based 
on hybridization, making the detection of non- 
abundant transcripts feasible and with a substan-
tial degree of similarity to the profiles obtained 
with RNA-seq platforms while bypassing the 
problem of prohibitive costs inherent in this con-
ventional technique.

CMap and its updated versions provide a 
hypothesis-generating tool to identify new thera-
peutic targets (drug repositioning), signaling 
pathways affected by a compound, and search for 
new mechanisms of action (MoA), including 
potential side effects. It allows identifying new or 
known disease-gene-drug connections, depend-
ing on the observed level of changes.

Among the most exciting uses is the func-
tional annotation of previously uncharacterized 
small molecules. For example, using the new- 
generation CMAp, a new inhibitor of casein 
kinase CSNK1A1 (compound BRD-1868) was 
discovered. CSNK1A1 is a protein essential for 
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the survival of some myeloid malignancies. It is 
also implicated in resistance to EGFR inhibitors 
[40].

To facilitate the fruition and use of this sys-
tem, a platform called CLUE—CMap Linked 
User Environment has been developed. It can 
provide several analyses and allow access to all 
data at multiple levels of pre-processing via Gene 
Expression Omnibus (GEO: GSE92742) [40].

The L1000 LINCS currently includes over 1 
million gene expression profiles of chemically 
disrupted human cell lines. Several resources and 
databases derived from L1000 LINCS data are 
available, for example, the L1000 Characteristic 
Direction Signature (L1000CDS2) search engine 
described below.

 L1000CDS2
L1000CDS2 is a web-based search engine soft-
ware designed to query gene expression signa-
tures versus LINCS data to discover and prioritize 
small molecules that reverse or mimic the entered 
gene expression profile [47].

To compute the signatures, the L1000CDS2 
uses a multivariate method called the 
Characteristic Direction (CD). Processing L1000 
data with the Characteristic Direction (CD) 
method significantly improves the signature 
noise compared to the MODZ method used to 
calculate L1000 signatures [47]. The L1000CDS2 
tool can be applied in many biological and bio-
medical contexts, improving knowledge extrac-
tion from the LINCS L1000 resource.

The L1000CDS2 search engine prioritizes 
thousands of small molecule signatures and their 
pairwise combinations predicted to mimic or 
reverse an input gene expression signature. The 
L1000CDS2 search engine also predicts drug tar-
gets for all small molecules profiled by the L1000 
assay [47].

Rather than giving relevance to fold-change 
and assigning greater weight to single genes that 
show a big fold-change, the CD method assigns a 
higher weight to genes that move together in the 
same direction. Thus, a gene that changes less but 
“moves” along with a large group of other genes 
may have more weight than a single gene that has 
changed more in magnitude [47].

The method first identifies the linear hyper-
plane that best separates control samples from 
treatment samples using linear discriminant anal-
ysis and then uses the normal to this hyperplane 
to define the direction of change in expression 
space for each gene [47]. The CD method is more 
sensitive in identifying “correct” differentially 
expressed genes than the other alternative meth-
ods [47]. CD L1000 signatures can be accessed 
through an advanced web-based application 
called L1000CDS2 [47].

When accessing L1000CDS2, there are five 
sections on the application’s home page [47]: the 
first section on the left consists of two text boxes 
to enter up- or downregulated genes. The applica-
tion also gives the possibility to insert an input 
signature [47]. In this case, the signature should 
be pasted in the upregulated gene textbox and 
expression values. The search can be started by 
clicking on the “search” button once the text 
boxes are filled [47].

In the central part of the home page, there is a 
section dedicated to some examples, a configura-
tion section, a section dedicated to metadata, and 
a section dedicated to recent searches [47].

Optional parameters provided in the configu-
ration section offer several possibilities to cus-
tomize a search process. For example, through 
the mimic/reverse cursor, it is possible to look for 
small molecules that mimic or reverse the input 
signature. The default search mode is reverse. 
The system also supports searching for paired 
combinations of small molecules [47].

In the metadata section, any metadata associ-
ated with the input signature can be entered. In 
the recent searches section, the last 20 queries are 
stored and are easily accessible by clicking on 
each entry [47].

Interestingly, there is a function that allows 
users to share their input signatures and metadata 
so that others can query those signatures [47].

After starting the search by clicking the Search 
button, the first 50 signatures are shown in a table 
on the results page (14 entries for each page) 
[47].

Each entry provides seven columns of signa-
ture information: rank, score, perturbation, cell 
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line, dose, time point, and overlap with input 
[47].

Clicking the overlap button, the overlapped 
genes (and their values) will be shown in the two 
text boxes. If the user had given up/down genes 
as input, then the first box will show the overlap-
ping genes between the up input and the up sig-
nature, while the second box will show the 
overlap between the down input and the down 
signature. If the input is a signature, then the first 
box will show the genes with a positive value 
from the input signature, and the second box will 
have negative values [47].

It is possible to download all the information 
about a signature as a JavaScript Object Notation 
file (JSON) by clicking on the download button. 
Through the tag button, it is possible to view the 
inserted metadata [47].

Clicking the diamond icon button, it is possi-
ble to execute the enrichment analysis on the sub-
structures of the best classified small molecules. 
The enrichment analysis results are displayed as 
a table where each row provides three pieces of 
information: the substructure, the p-value (calcu-
lated using Fisher’s exact test), and the perturba-
tion count. The substructure is represented as a 
string in the SMARTS format [47].

The cloud icon is used to download the results 
in table format to a .csv file. Clicking on the share 
icon provides a permanent URL that can be used 
to share the enrichment analysis results through 
an email, publication, or other documentation 
[47].

If the user chooses to search for combinations 
of small molecules, then a table of signature 
combinations will appear below the table of sin-
gle perturbation results. Each entry provides 
information about the identified combinations: 
rank, synergy score, and combinations [47].

When looking for combinations, L1000CDS2 
compares each possible pair among the top 50 
matching signatures and calculates the potential 
synergy between each pair by examining the 
level of orthogonality. The synergy score is cal-
culated as the combined overlap of the differen-
tially expressed genes of the two drug signatures 
with the input gene lists [47].

Clicking on a perturbation will highlight that 
perturbation in the single signature results table 
so that the user can learn more details about that 
particular perturbation. Clicking the cloud down-
load button in the upper right will download the 
combination table in a .csv file [47].

In summary, L1000CDS2 is a computational 
method that potentially elevates the usefulness of 
a subset of the newly generated publicly available 
LINCS-L1000 data set to rapidly prioritize small 
molecules that could reverse or mimic expression 
in disease and other biological settings [47].

Thanks to L1000CDS2, kenpaullone has been 
identified as a small molecule that can potentially 
interfere with the infectious process caused by 
Ebola by inhibiting GSK3B. Kenpaullone 
induces the expression of immune response 
genes and, as such, is a potential antiviral candi-
date [47].

 Conclusion

In this chapter we have reviewed data resources 
and computational tools available for drug repo-
sitioning with the aim of providing a comprehen-
sive guide for researchers and practitioners 
interested in such a topic. The survey highlights 
the content and the limitations of each tool or 
database and compares their content.

References

 1. Sam E, Athri P. Web-based drug repurposing tools: a 
survey. Brief Bioinform. 2019;20:299–316.

 2. Fiscon G, Paci P. SAveRUNNER: an R-based tool for 
drug repurposing. BMC Bioinformatics. 2021;22:150.

 3. Jin G, Wong STC. Toward better drug repositioning: 
prioritizing and integrating existing methods into effi-
cient pipelines. Drug Discov Today. 2014;19:637–44.

 4. Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, Li 
H.  ChemMapper: a versatile web server for explor-
ing pharmacology and chemical structure asso-
ciation based on molecular 3D similarity method. 
Bioinformatics. 2013;29:1827–9.

 5. Kringelum J, Kjaerulff SK, Brunak S, Lund O, 
Oprea TI, Taboureau O.  ChemProt-3.0: a global 
chemical biology diseases mapping. Database. 
2016;2016:bav123. https://doi.org/10.1093/database/
bav123.

7 Computational Methods for Drug Repurposing

https://doi.org/10.1093/database/bav123
https://doi.org/10.1093/database/bav123


140

 6. Liu X, Vogt I, Haque T, Campillos M.  HitPick: 
a web server for hit identification and target pre-
diction of chemical screenings. Bioinformatics. 
2013;29:1910–2.

 7. Xiao X, Min J-L, Lin W-Z, Liu Z, Cheng X, Chou 
K-C. iDrug-Target: predicting the interactions 
between drug compounds and target proteins in cel-
lular networking via benchmark dataset optimization 
approach. J Biomol Struct Dyn. 2015;33:2221–33.

 8. Abdouli NOA, Al Abdouli NO, Aung Z, Woon WL, 
Svetinovic D.  Tackling class imbalance problem in 
binary classification using augmented neighborhood 
cleaning algorithm. In: Kim K, editor. Information 
science and applications. Lecture notes in electri-
cal engineering. Berlin, Heidelberg: Springer; 2015. 
p. 827–34.

 9. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer 
WP.  SMOTE: Synthetic Minority Over-sampling 
TEchnique. J Artif Intell Res. 2002;16:321–57.

 10. Awale M, Reymond J-L.  The polypharmacol-
ogy browser: a web-based multi-fingerprint target 
prediction tool using ChEMBL bioactivity data. J 
Cheminform. 2017;9:11.

 11. Keiser MJ, Roth BL, Armbruster BN, Ernsberger 
P, Irwin JJ, Shoichet BK.  Relating protein phar-
macology by ligand chemistry. Nat Biotechnol. 
2007;25:197–206.

 12. Nickel J, Gohlke B-O, Erehman J, Banerjee P, Rong 
WW, Goede A, Dunkel M, Preissner R.  SuperPred: 
update on drug classification and target prediction. 
Nucleic Acids Res. 2014;42:W26–31.

 13. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin 
O, Zoete V.  SwissTargetPrediction: a web server 
for target prediction of bioactive small molecules. 
Nucleic Acids Res. 2014;42:W32–8.

 14. Daina A, Michielin O, Zoete V.  SwissTargetPredic 
tion: updated data and new features for efficient pre-
diction of protein targets of small molecules. Nucleic 
Acids Res. 2019;47:W357–64.

 15. Liu X, Gao Y, Peng J, Xu Y, Wang Y, Zhou N, Xing 
J, Luo X, Jiang H, Zheng M. TarPred: a web appli-
cation for predicting therapeutic and side effect 
targets of chemical compounds. Bioinformatics. 
2015;31:2049–51.

 16. Wang L, Ma C, Wipf P, Liu H, Su W, Xie 
X-Q.  TargetHunter: an in silico target identification 
tool for predicting therapeutic potential of small 
organic molecules based on chemogenomic database. 
AAPS J. 2013;15:395–406.

 17. Wang J-C, Chu P-Y, Chen C-M, Lin J-H. idTarget: 
a web server for identifying protein targets of small 
chemical molecules with robust scoring functions 
and a divide-and-conquer docking approach. Nucleic 
Acids Res. 2012;40:W393–9.

 18. Wang C, Hu G, Wang K, Brylinski M, Xie L, Kurgan 
L.  PDID: database of molecular-level putative pro-
tein–drug interactions in the structural human pro-
teome. Bioinformatics. 2016;32:579–86.

 19. Li H, Gao Z, Kang L, et al. TarFisDock: a web server 
for identifying drug targets with docking approach. 
Nucleic Acids Res. 2006;34:W219–24.

 20. Cobanoglu MC, Oltvai ZN, Taylor DL, Bahar 
I.  BalestraWeb: efficient online evaluation of drug- 
target interactions. Bioinformatics. 2015;31:131–3.

 21. Lo Y-C, Senese S, Li C-M, Hu Q, Huang Y, 
Damoiseaux R, Torres JZ.  Large-scale chemical 
similarity networks for target profiling of compounds 
identified in cell-based chemical screens. PLoS 
Comput Biol. 2015;11:e1004153.

 22. Ba-Alawi W, Soufan O, Essack M, Kalnis P, Bajic 
VB. DASPfind: new efficient method to predict drug- 
target interactions. J Cheminform. 2016;8:15.

 23. Martínez-Jiménez F, Marti-Renom MA.  Ligand- 
target prediction by structural network biology using 
nAnnoLyze. PLoS Comput Biol. 2015;11:e1004157.

 24. von Eichborn J, Murgueitio MS, Dunkel M, Koerner 
S, Bourne PE, Preissner R. PROMISCUOUS: a data-
base for network-based drug-repositioning. Nucleic 
Acids Res. 2011;39:D1060–6.

 25. Gallo K, Goede A, Eckert A, Moahamed B, 
Preissner R, Gohlke B-O.  PROMISCUOUS 2.0: a 
resource for drug-repositioning. Nucleic Acids Res. 
2021;49:D1373–80.

 26. Chen B, Ding Y, Wild DJ. Assessing drug target asso-
ciation using semantic linked data. PLoS Comput 
Biol. 2012;8:e1002574.

 27. Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher 
TH, von Mering C, Jensen LJ, Bork P.  STITCH 4: 
integration of protein-chemical interactions with user 
data. Nucleic Acids Res. 2014;42:D401–7.

 28. Kuhn M, Szklarczyk D, Franceschini A, von Mering 
C, Jensen LJ, Bork P.  STITCH 3: zooming in on 
protein-chemical interactions. Nucleic Acids Res. 
2012;40:D876–80.

 29. Szklarczyk D, Santos A, von Mering C, Jensen LJ, 
Bork P, Kuhn M.  STITCH 5: augmenting protein–
chemical interaction networks with tissue and affinity 
data. Nucleic Acids Res. 2016;44:D380–4.

 30. Kuhn M, Szklarczyk D, Franceschini A, Campillos M, 
von Mering C, Jensen LJ, Beyer A, Bork P. STITCH 
2: an interaction network database for small molecules 
and proteins. Nucleic Acids Res. 2010;38:D552–6.

 31. Alaimo S, Bonnici V, Cancemi D, Ferro A, Giugno 
R, Pulvirenti A. DT-Web: a web-based application for 
drug-target interaction and drug combination predic-
tion through domain-tuned network-based inference. 
BMC Syst Biol. 2015;9(Suppl 3):S4.

 32. Alaimo S, Pulvirenti A, Giugno R, Ferro A.  Drug- 
target interaction prediction through domain- 
tuned network-based inference. Bioinformatics. 
2013;29:2004–8.

 33. Chen B, Ma L, Paik H, Sirota M, Wei W, Chua M-S, 
So S, Butte AJ.  Reversal of cancer gene expression 
correlates with drug efficacy and reveals therapeutic 
targets. Nat Commun. 2017;8:16022.

 34. Konc J, Janezic D.  ProBiS-2012: web server and 
web services for detection of structurally simi-
lar binding sites in proteins. Nucleic Acids Res. 
2012;40:W214–21.

 35. Ito J-I, Tabei Y, Shimizu K, Tsuda K, Tomii 
K.  PoSSuM: a database of similar protein-ligand 
binding and putative pockets. Nucleic Acids Res. 
2012;40:D541–8.

R. V. Rapicavoli et al.



141

 36. Ito J-I, Ikeda K, Yamada K, Mizuguchi K, Tomii 
K.  PoSSuM v.2.0: data update and a new func-
tion for investigating ligand analogs and target pro-
teins of small-molecule drugs. Nucleic Acids Res. 
2015;43:D392–8.

 37. Brown AS, Patel CJ. MeSHDD: literature-based drug- 
drug similarity for drug repositioning. J Am Med 
Inform Assoc. 2017;24:614–8.

 38. Moosavinasab S, Patterson J, Strouse R, Rastegar- 
Mojarad M, Regan K, Payne PRO, Huang Y, Lin 
SM. “RE:fine drugs”: an interactive dashboard to 
access drug repurposing opportunities. Database. 
2016;2016:baw083. https://doi.org/10.1093/database/
baw083.

 39. Madhukar NS, Khade PK, Huang L, Gayvert K, 
Galletti G, Stogniew M, Allen JE, Giannakakou P, 
Elemento O. A Bayesian machine learning approach 
for drug target identification using diverse data types. 
Nat Commun. 2019;10:5221.

 40. Subramanian A, Narayan R, Corsello SM, et al. A next 
generation connectivity map: L1000 platform and the 
first 1,000,000 profiles. Cell. 2017;171:1437–1452.
e17.

 41. Lamb J, Crawford ED, Peck D, et al. The Connectivity 
Map: using gene-expression signatures to con-
nect small molecules, genes, and disease. Science. 
2006;313:1929–35.

 42. Lee BKB, Tiong KH, Chang JK, Liew CS, Abdul 
Rahman ZA, Tan AC, Khang TF, Cheong SC. DeSigN: 
connecting gene expression with therapeutics for 

drug repurposing and development. BMC Genomics. 
2017;18:934.

 43. Louhimo R, Laakso M, Belitskin D, Klefström J, 
Lehtonen R, Hautaniemi S. Data integration to priori-
tize drugs using genomics and curated data. BioData 
Min. 2016;9:21.

 44. Carrella D, Napolitano F, Rispoli R, Miglietta M, 
Carissimo A, Cutillo L, Sirci F, Gregoretti F, Di 
Bernardo D.  Mantra 2.0: an online collaborative 
resource for drug mode of action and repurposing by 
network analysis. Bioinformatics. 2014;30:1787–8.

 45. Setoain J, Franch M, Martínez M, Tabas-Madrid D, 
Sorzano COS, Bakker A, Gonzalez-Couto E, Elvira 
J, Pascual-Montano A.  NFFinder: an online bioin-
formatics tool for searching similar transcriptomics 
experiments in the context of drug repositioning. 
Nucleic Acids Res. 2015;43:W193–9.

 46. Yu H, Choo S, Park J, Jung J, Kang Y, Lee D. Prediction 
of drugs having opposite effects on disease genes 
in a directed network. BMC Syst Biol. 2016;10:S2. 
https://doi.org/10.1186/s12918- 015- 0243- 2.

 47. Duan Q, Reid SP, Clark NR, et  al. L1000CDS2: 
LINCS L1000 characteristic direction signatures 
search engine. npj Syst Biol Appl. 2016;2:16015. 
https://doi.org/10.1038/npjsba.2016.15.

 48. Musa A, Ghoraie LS, Zhang S-D, Glazko G, Yli- 
Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib 
F.  A review of connectivity map and computational 
approaches in pharmacogenomics. Brief Bioinform. 
2018;19:506–23.

7 Computational Methods for Drug Repurposing

https://doi.org/10.1093/database/baw083
https://doi.org/10.1093/database/baw083
https://doi.org/10.1186/s12918-015-0243-2
https://doi.org/10.1038/npjsba.2016.15


143© Springer Nature Switzerland AG 2022 
A. Laganà (ed.), Computational Methods for Precision Oncology, Advances in Experimental 
Medicine and Biology 1361, https://doi.org/10.1007/978-3-030-91836-1_8

Pathway Analysis for Cancer 
Research and Precision Oncology 
Applications

Alessandro La Ferlita, Salvatore Alaimo, 
Alfredo Ferro, and Alfredo Pulvirenti

Abstract

With the advent of OMICs technologies, sev-
eral bioinformatics methods have been devel-
oped to infer biological knowledge from such 
data. Pathway analysis methodologies help 
integrate multi-OMICs data and find altered 
function in known metabolic and signaling 
pathways. As widely known, such alterations 
promote the cancer cells’ progression and the 
maintenance of the malignant state. In this 
chapter, we provide (i) a comprehensive 
description of the primary data sources for 
omics data, cancer “omics” projects, and pre-
cision oncology knowledge bases; (ii) a sur-
vey of the main biological pathway databases; 
(iii) and a global view of the principal path-
way analysis tools and methodologies, 
describing their main characteristics and 
shortcomings highlighting their potential 
applications in cancer research and precision 
oncology.

 Introduction: From Patients 
to Pathways

In medicine, due to human physiology complex-
ity, clinicians rarely have enough data to make 
fully informed decisions. Significant contributors 
to this complexity are genetic mutations, epigen-
etic modifications, alteration in gene expression, 
and metabolite levels. For this reason, multi- 
omics approaches (e.g., genomics, transcrip-
tomics, proteomics, metabolomics) are playing a 
pivotal role in modern medicine [1, 2]. Moreover, 
in diseases like cancer, this knowledge is quite 
relevant since many diverse alterations can estab-
lish abnormal cell growth, leading to radically 
different treatments.

With the term “multi-omics,” we mean using 
more than one of the current high-throughput 
biomolecular experimental techniques to charac-
terize biological systems at the phenomenologi-
cal level [2]. It is well known that every omic 
contributes in a specific way to describe the bio-
logical mechanism underlying the phenotype 
under study. For this reason, it has become evi-
dent that there is a need for novel integrative sys-
tems that gather and organize such information 
into mechanistic or semi-mechanistic descrip-
tions of the biological phenomenon [2]. This 
issue has been particularly relevant for studying 
complex phenotypes, such as cancer [2]. Indeed, 
many factors are involved in developing and 
maintaining the malignant state of cancer cells, 
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such as genetic aberrations, epigenetic altera-
tions, changes in response to cellular signaling, 
metabolic alterations, and beyond [2]. Hence, by 
analyzing cancer as a complex pathology, we try 
to gain insight into the cancer cells’ molecular 
mechanisms by looking at their different compo-
nents. A strategy to integrate such multi-omics 
data in an in silico model is presented by pathway 
analysis approaches.

Pathway analysis is an extensive class of 
methods that can determine biological processes’ 
status, identifying altered functionalities in com-
plex diseases [3]. Specifically, they use knowl-
edge from pathway databases such as the Kyoto 
Encyclopedia of Gene and Genomes (KEGG) 
[4–10], Reactome [11–15], WikiPathways [16–
19], and Pathway Commons [20, 21] to identify 
perturbed pathways associated with a specific 
phenotype or condition starting from a combina-
tion of several different types of omics data such 
as genomics, transcriptomics, proteomics, and 
metabolomics data [22]. Indeed, growing pieces 
of evidence suggest that cancer can be better 
understood through dysregulated pathways rather 
than individual mutations [23]. However, biolog-
ical pathways are still partial and incomplete. 
Therefore, their annotation with other experi-
mentally validated interactions may increase the 
reliability of pathway-based analysis methods 
[24].

In this chapter, we will provide (i) a descrip-
tion of the primary data sources for omics data, 
cancer “omics” projects, and precision oncology 
knowledge bases; (ii) a summary of the main bio-
logical pathway databases; (iii) and a global view 
of the principal pathway analysis methodologies, 
describing their main characteristics and short-
comings highlighting their applications in cancer 
research and precision oncology.

 Omics Data Source for Pathway 
Analysis

Different types of omics data such as genomics, 
transcriptomics, proteomics, and metabolomics 
are recommended to perform pathway analysis. 
Indeed, each omic contributes to highlighting 

essential aspects of the development and mainte-
nance of cancer cells’ malignant state. Therefore, 
the availability of such heterogeneous data is cru-
cial for cancer research. Fortunately, the amount 
of such data in public repositories is rising. 
However, since NGS technologies are cheap and 
widely used, genomic and transcriptomic data 
sources are more widespread than proteomics 
and metabolomics since they rely on mass spec-
trometry and Nuclear Magnetic Resonance 
(NMR) spectroscopy.

In what follows, we survey (i) the central 
sequencing data repositories for genomics and 
transcriptomics data; (ii) some of the most widely 
known repositories for proteomics and metabolo-
mics data; (iii) some cancer “omics” projects 
which are landmarks for cancer research; (iv) and 
finally some knowledge bases which are useful 
for precision oncology applications.

 Sequencing Data Repositories

Historically, databases have been pivotal in biol-
ogy and biomedicine research advancements. 
Since its creation in 1982, GenBank (previously 
known as Los Alamos Sequence Database), 
which is now available through the platform of 
the National Center for Biotechnology 
Information (NCBI), has been a seminal resource 
in its field. After that, a joint effort between 
NCBI, the European Molecular Biology 
Laboratory (EMBL), and the DNA Databank of 
Japan (DDBJ) created the International 
Nucleotide Sequence Database Collaboration 
(INSDC) to collect the nucleotide and amino acid 
sequence data that was becoming available. Since 
then, the INSDC databases have grown every 
day, reflecting an exponential growth rate in 
which the amount of stored data has doubled 
every 18 months.

A terrific contribution to the growth of such 
databases has been the advent of NGS technolo-
gies, which are exponentially increasing the vol-
ume and complexity of these sequence data 
collections [25]. Indeed, these technologies allow 
the sequencing of entire genomes in a few days, 
yielding the possibility to detect gene mutations 
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or polymorphisms (e.g., CNV, SNPs, INDEL, 
STR) potentially associated with different dis-
eases [26]. Moreover, NGS technologies are also 
extensively used for transcriptome profiling 
(RNA-Seq), allowing the identification of differ-
entially expressed coding-protein genes and non- 
coding RNAs (ncRNAs), splicing variants, or 
complex gene rearrangements which could repre-
sent driver events in specific diseases [27].

Due to the broad spectrum of biological, bio-
technological, and biomedical research applica-
tions, NGS data are continuously generated and 
then discussed and analyzed through scientific 
papers. Consequently, before the publication of 
study results, a mandatory step is to share the 
data produced during the research by submitting 
raw DNA-Seq and RNA-Seq data into an INSDC 
database such as NCBI SRA, EBI ENA, and 
DDBJ DRA (Table 8.1).

The availability of such data is essential to the 
reproducibility of the results. Furthermore, it 
enables other researchers to reuse such data, per-
haps focusing on different angles. Due to 
sequencing data’s plasticity, they can then be 
used for projects and purposes different from 
those designed by the original authors of the data.

 Proteomics and Metabolomics Data 
Repositories

Like sequencing data, proteomics and metabolo-
mics data also have specific repositories. 
However, compared to other data-intensive disci-
plines such as genomics and transcriptomics, 
public resources of mass spectrometry (MS)–
based proteomics and metabolomics data are 
fewer due to the complexity of the data [28]. 

Several public repositories for MS proteomics 
and metabolomics experiments have been devel-
oped to address this need, each with different 
purposes. Concerning proteomics, the most 
established resources are the Global Proteome 
Machine Database (GPMDB), PeptideAtlas, and 
PRIDE, while for metabolomics data, we cite 
MetaboLights and The Human Metabolome 
Database (HMDB) (Table 8.2).

GPMDB [29] is one of the most well-known 
protein expression databases. The GPMDB pipe-
line reprocesses the MS data provided by users or 
raw data stored in other repositories using the 
popular open-source search engine X!Tandem 
[30]. Peptide and protein identifications are gen-
erated and stored in XML files indexed in a 
MySQL database.

PeptideAtlas [31–33] was created to serve as 
the endpoint for the trans-proteomic pipeline 
(TPP) processing software [34]. More recently, 
PeptideAtlas has grown as a data reprocessing 
resource, and it has served as a research database 
for the development of spectral libraries [35] and 
SRM-related tools [36, 37]. Currently, 
PeptideAtlas is one of the most extensive and 
well-curated protein expression data resources.

PRIDE [38] was initially developed at the 
European Bioinformatics Institute (EBI, 
Cambridge, UK) to store the experimental data 
included in publications, supporting the manu-
script review process. The primary data types 
stored in PRIDE are peptide/protein identifica-
tions, peptide/protein expression values, the ana-
lyzed mass spectra (both as raw data and peak 
lists), and the related technical/biological 
metadata.

MetaboLights [39] is a database for metabolic 
experiments recommended by several leading 

Table 8.1 Main international sequencing data repositories

Repository name Link
Raw read file 
downloadable Download

Sequencing Read Archive 
(SRA)

https://www.ncbi.nlm.nih.gov/
sra

SRA Command-line SRA 
toolkit

European Nucleotide Archive 
(ENA)

https://www.ebi.ac.uk/ena/
browser/home

FASTQ, SRA ENA browser WEB 
GUI

DDBJ Sequence Read 
Archive (DRA)

https://www.ddbj.nig.ac.jp/dra/
index- e.html

FASTQ, SRA DRASearch WEB 
GUI
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Table 8.2 Proteomics and metabolomics data repositories

Repository name Link OMICS data Type of data Technology
Global Proteome 
Machine Database 
(GPMDB)

http://gpmdb.
thegpm.org/

Proteomics Peptide/protein expressions
2D page blots
Technical/biological metadata
GO analysis results

Mass spectrometer

PeptideAtlas http://www.
peptideatlas.org/

Proteomics Peptide identification, peptide/
protein expressions

Mass spectrometer

PRIDE https://www.ebi.
ac.uk/pride/

Proteomics Experimental proteomics data 
included in the publication. The 
downloadable data include 
technical/biological metadata, 
raw and analyzed mass spectra, 
and peptide/protein expressions

Any high-throughput 
proteomics 
technology

MetaboLights https://www.ebi.
ac.uk/
metabolights/
index

Metabolomics Experimental metabolomics data 
included in the publication.
The downloadable data are 
technical/biological metadata, 
raw and analyzed mass spectra, 
and metabolite concentrations

Mass spectrometer, 
NMR spectroscopy

The Human 
Metabolome 
Database (HMDB)

https://hmdb.ca/ Metabolomics MetaboCards containing several 
information for each metabolite 
found in the human body

Mass spectrometer, 
NMR spectroscopy

journals to store experimental data included in 
publications. The database is cross-species, 
cross-technique, and covers metabolite structures 
and their reference spectra and their biological 
roles, locations, concentrations, and experimen-
tal data from metabolic experiments.

HMDB [40] is a freely available database con-
taining detailed information (e.g., chemical data, 
clinical data, and biochemistry data) about 
metabolites found in the human body. Each entry 
has a MetaboCard containing more than 100 data 
fields, with 2/3 of the information being devoted 
to chemical/clinical data and the other 1/3 
devoted to enzymatic or biochemical data. Many 
data fields are linked to other databases (KEGG, 
PubChem, MetaCyc, ChEBI, PDB, Swiss-Prot, 
and GenBank) and various structure and pathway 
viewing apps.

 Cancer “Omics” Projects Data

Thanks to the advent of these novel omics tech-
nologies, several genomics, and transcriptomics 
cancer-related projects were started. Precisely, 
some of them were involved in the molecular 
characterization of the widely used cancer cell 

lines. In contrast, others were involved in the 
characterization of primary tumor samples and 
new cancer models. As a result of these initia-
tives, several petabytes of OMICs data are now 
publicly available to help scientists study differ-
ent cancer biology aspects. In what follows, we 
survey some of the most known cancer “omics” 
projects highlighting the type of data produced 
by them (Table 8.3).

The Cancer Cell Line Encyclopedia (CCLE) 
[41, 42] is a database consisting of a detailed 
genetic and pharmacologic characterization of a 
large panel of human cancer models (over 1100 
cell lines). The goal was to develop integrated 
computational analyses linking distinct pharma-
cologic vulnerabilities to genomic patterns and 
translating cell line integrative genomics into 
cancer patient stratification [41, 42]. The CCLE 
portal (https://portals.broadinstitute.org/ccle) 
provides public access to these datasets: (1) copy 
number variation, (2) mRNA expression (Affy 
and RNAseq), (3) reverse phase protein array 
(RPPA), and (4) reduced-representation bisulfite 
sequencing (RRBS). Raw sequencing data such 
as whole genome sequencing (WGS), whole 
exome sequencing (WXS), and RNA-Seq can 
also be freely downloaded from GDC Legacy 
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Archive (https://portal.gdc.cancer.gov/legacy- 
archive/search/f) or NCBI SRA/EBI ENA data-
bases (accession number PRJNA523380).

The Cancer Genome Atlas (TCGA) is a land-
mark cancer genomics program designed to 
molecularly characterize over 20,000 primary 
cancers and matched normal samples spanning 
33 different cancer types [43, 44]. The goal was 
to apply high-throughput analysis techniques to 
improve the ability to diagnose, treat, and prevent 
cancer by better understanding this disease’s 
genetic basis [43, 44]. TCGA generated over 2.5 
petabytes of OMICs data publicly available from 
the NCI GDC data portal (https://portal.gdc.can-
cer.gov/). TCGA is supervised by the National 
Cancer Institute’s Center for Cancer Genomics 
and the National Human Genome Research 
Institute, funded by the US government.

MMRF CoMMpass Study is a significant 
research project in which more than 1100 patients 
with newly diagnosed active myeloma are being 
tracked for 8 years. This study collects informa-
tion about clinical data, treatments and responses, 
quality of life data, and cytogenetics immuno-
phenotyping. Blood and bone marrow samples 
were collected from patients and subjected to 
WGS, WXS, and RNA-Seq. Notably, the samples 
were taken from patients at three different times 
(1) when they entered the study, (2) when they 
responded to treatment, and (3) when they had a 
relapse (https://themmrf.org/finding- a- cure/our- 
work/the- mmrf- commpass- study/). Sequencing 
data can be downloaded from the NCI GDC data 
portal (https://portal.gdc.cancer.gov/) and NCBI 
dbGaP (https://www.ncbi.nlm.nih.gov/gap/. ID 
of the project: phs000748).

The Therapeutically Applicable Research to 
Generate Effective Treatments (TARGET) pro-
gram applies a comprehensive genomic approach 
to determine molecular changes that drive child-
hood cancers [45, 46]. The program’s goal was to 
guide the development of effective and less toxic 
therapies by generating data available to the 
research community, enabling the identification 
of therapeutic targets and prognostic markers for 
novel and more effective treatment strategies. 
The TARGET initiative originated with two pilot 
projects characterizing the genomes and tran-
scriptomes of “high-risk” subtypes of acute lym-

phoblastic leukemia (ALL) [47–52] and 
neuroblastoma (NBL) [53]. The two pilot project 
teams’ success allowed TARGET to expand its 
efforts by incorporating additional childhood 
cancers [54–58]. To date, TARGET researchers 
have molecularly characterized subtypes of acute 
myeloid leukemia, osteosarcoma, and select kid-
ney tumors, and additional subtypes of ALL and 
NBL.  Sequencing data are available from such 
tumors, such as WGS, WXS, and RNA-Seq 
(mRNA-Seq and miRNA-Seq). All these data are 
stored in the NCI GDC data portal (https://portal.
gdc.cancer.gov/).

The Human Cancer Models Initiative (HCMI) 
is a project aimed at creating up to 1000 next- 
generation cancer models (e.g., organoids, condi-
tionally reprogrammed cells, and optimal growth 
condition models) from patient tumors that are 
clinically and molecularly characterized [59], 
with collected data harmonized and accessible 
through the NCI’s GDC data portal (https://por-
tal.gdc.cancer.gov/). Precisely, HCMI next- 
generation cancer models were generated from 
parent tumors, which span a range of different 
cancer subtypes (e.g., breast, colorectal, glioblas-
toma, gastroesophageal, lung, melanoma, pan-
creas, neuroblastoma, osteosarcoma, Wilms 
tumor, rhabdomyosarcoma, and Ewing sarcoma), 
and annotated with clinical, genomic, and 
 molecular data that include (1) clinical informa-
tion, (2) biospecimen data, (3) tumor- and model- 
associated somatic mutations, (4) gene expression 
data, (5) raw sequencing data for WGS, WXS, or 
RNA-Seq, and (6) harmonized datasets which 
contain germline variants. These models repre-
sent valuable resources for translational cancer 
research and may contribute to developing inno-
vative therapeutic strategies, identifying novel 
diagnostic markers, and individualized patient 
treatment plans.

 Knowledge Bases for Precision 
Oncology

As we described above, omics technologies are 
extensively used today for cancer research. In 
fact, they have allowed us to discover new prog-
nostic and diagnostic biomarkers for several can-
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cer types, molecularly characterize cancer 
models, and identify the molecular mechanisms 
of cancer resistance to several anti-tumor drugs. 
In this direction, the previously discussed data 
sources, together with the considerable amount 
of publicly available omics data produced by the 
several multi-omics cancer projects, had an 
invaluable contribution to this cause. Currently, 
however, growing attention is given on translat-
ing such knowledge and omics technologies into 
clinical practice. For this reason, a new oncologi-
cal discipline named “precision oncology” is ris-
ing. The premise of precision oncology is to 
develop treatments that target the tumor’s molec-
ular characteristics. The emergence of this kind 
of targeted therapy is an exciting moment in the 
battle against cancer. However, for the precision- 
oncology dream to be fully realized, the treat-
ments must help more people with cancer than 
the 5–10% who currently benefit [60]. One way 
to do this is to identify more molecular targets. 
With this purpose, several tumor molecular pro-
filing such as DNA-Seq, RNA-Seq, and mass 
spectrometry for proteomics and metabolomics 
analyses are currently used to identify new 
options for cancer treatment. However, today, the 
most widely used molecular profiling method is 
DNA-Seq. The introduction of DNA-Seq into 
clinical oncology has provided oncologists with a 
large amount of genomic information, which can 
be used in clinical decision-making [61]. Not all 
genomic variants identified by DNA-Seq analy-
ses are clinically relevant. In fact, after detecting 
such variants, several additional steps are neces-
sary. For example, germline polymorphisms, 
false-positive artifacts, and clinically insignifi-
cant synonymous variants must be filtered out 
from the final report. Moreover, the clinical sig-
nificance of the remaining variants must be 

assessed by oncologists to identify potential 
treatments [61]. With the introduction of large 
numbers of targeted therapy drugs and genotype- 
selected clinical trials, it is challenging for oncol-
ogists to fully explore all appropriate treatment 
options [61]. For this purpose, several precision 
oncology knowledge bases have been developed 
to provide clinical decision support for oncolo-
gists in interpreting genomic data and identifying 
therapy targets. We describe some examples of 
the most common and used knowledge bases for 
precision oncology in what follows (Table 8.4).

Cancer Genome Interpreter (CGI) (https://
www.cancergenomeinterpreter.org/home) incor-
porates several different databases for the annota-
tion of alterations, the identification of driver 
mutations, the determination of variant action-
ability, and exploration of biomarker interactions 
[62]. Also, CGI tries to assess the tumorigenic 
potential of Variants of Unknown Significance 
(VUS) by using a rule-based approach. It com-
bines several VUS features, including the gene’s 
action, the consequence of the mutation, its posi-
tion within the transcript, its prevalence within 
the human population, and whether the mutation 
occurs in a domain of the protein that is depleted 
of germline variants. This aspect is essential 
since the clinical relevance of VUS represents 
one of the most challenging aspects during the 
interpretation of genomic information influenc-
ing clinical decisions. CGI is hosted at the 
Barcelona Biomedical Genomics Lab.

Clinical Interpretations of Variants in Cancer 
(CIViC) (https://civicdb.org/home) is a knowl-
edge base for the clinical implications of cancer 
genome variants [63]. It contains 7575 curated 
clinical evidence records for 2602 variants affect-
ing 431 genes at the time of writing. Each evi-
dence record is associated with a specific gene 

Table 8.4 Knowledge bases for precision oncology

Precision oncology knowledge base References Link
CGI [62] https://www.cancergenomeinterpreter.org/home
CIViC [63] https://civicdb.org/home
MCG [66] https://www.mycancergenome.org/
PMKB [67] https://pmkb.weill.cornell.edu/
OncoKB [68] https://www.oncokb.org/
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variant and contains information related to ther-
apy, prognosis, diagnosis, and cancer predisposi-
tion. Genetic variants are ranked accordingly 
with the evidence of their clinical utility from 
level A (established clinical utility) to E (inferen-
tial) [63]. CIViC is hosted at the Washington 
University in St. Louis School of Medicine.

My Cancer Genome (MCG) (https://www.
mycancergenome.org/) is a knowledge base that 
offers information on targeted therapies and clin-
ical trials for several genetic variants that are 
involved in tumorigenesis [64]. Unlike many 
other precision oncology knowledge bases, MCG 
organizes clinical evidence for genomic variants 
in a disease-centric approach instead of a gene- 
centric approach [65]. MCG distinguishes genetic 
variants within the same gene [66] that could 
potentially discourage the use of specific targeted 
agents or not. MCG is hosted at Vanderbilt 
University Medical Center and has a commercial 
relationship with GenomOncology LLC 
(Cleveland, OH, United States).

Precision Medicine Knowledge Base (PMKB) 
(https://pmkb.weill.cornell.edu/) is a knowledge 
base for cancer mutation interpretations [67]. 
Like CIViC, PMKB rates variant interpretations 
by a numeric tier, indicating the clinical action-
ability: Tier 1, strong evidence of clinical utility, 
Tier 2, potential clinical relevance, and Tier 3, 
undetermined clinical significance [67]. PMKB 
is hosted at Weill Cornell Medicine Englander 
Institute for Precision Medicine.

Precision Oncology Knowledge Base 
(OncoKB) (https://www.oncokb.org/) is a preci-
sion oncology knowledge base of tumor variants 
and their related FDA-approved therapies and/or 
other drugs that are under study in clinical trials 
[68]. OncoKB offers information for 5425 
genetic variants in 682 cancer-associated genes 
from 56 tumor types. Interestingly, OncoKB also 

highlights adverse outcomes of off-label drugs in 
specific mutational contexts [65]. OncoKB is 
hosted at the Memorial Sloan Kettering Cancer 
Center.

 Biological Pathways Databases

Information derived from the analysis of genom-
ics, transcriptomics, proteomics, and metabolo-
mics experiments could be integrated into 
pathways that describe the samples under study 
to understand the interrelations between the dif-
ferent components and their effects. Pathway- 
centric approaches are widely used to interpret 
and contextualize omics data. Several pathway 
databases that describe the already known signal-
ing and metabolic pathways in humans and other 
organisms have been developed for this purpose. 
Examples include KEGG [4–10], Reactome [11–
15], WikiPathways [16–19], and Pathway 
Commons [20, 21]  (Table 8.5). However, these 
databases contain different representations of the 
same biological pathway, leading to varying 
results during pathway analysis [69]. Besides, 
pathways are often also described at different lev-
els of detail [69]. Nonetheless, most pathway 
analyses are conducted extensively by using 
pathway information retrieved from such data-
bases. Some well-known examples of pathway 
databases are briefly described below.

Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (https://www.genome.jp/kegg/) is an 
online resource consisting of 18 databases used 
to study biological systems from large-scale 
molecular datasets generated by high-throughput 
experimental technologies [4–10]. Among these 
databases, there is KEGG pathway, a collection 
of manually drawn pathways representing our 
knowledge of the molecular interaction, reaction, 

Table 8.5 Biological pathway databases

Pathway database References Link
KEGG [4–10] https://www.genome.jp/kegg/
Reactome [11–15] https://reactome.org/
Pathway Commons [20, 21] https://www.pathwaycommons.org
WikiPathways [16–19] https://www.wikipathways.org/index.php/WikiPathways
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and relation networks for many metabolic, sig-
naling, and disease pathways.

Reactome (https://reactome.org/) is an open- 
source, open access, and manually curated path-
way database that helps scientists find, organize, 
and utilize biological information to support data 
visualization, integration, and analysis [11–15]. 
Indeed, Reactome could be used (i) to interpret 
the results of high-throughput experimental stud-
ies; (ii) to develop novel algorithms for pathway 
analysis; (iii) and to implement predictive models 
of normal and disease pathways [11–15]. The 
core unit of the Reactome data model is the reac-
tion. Entities (proteins, enzymes, metabolites, 
anti-cancer drugs, etc.) participating in reactions 
form a network of biological interactions and are 
grouped into pathways [11–15]. Examples of 
biological pathways in Reactome include meta-
bolic pathways, signaling pathways, transcrip-
tional regulation, apoptosis, and disease.

Pathway Commons (https://www.pathway-
commons.org) is another publicly available data-
base of biological pathways. It collects data from 
different pathway databases [20, 21]. Pathway 
Commons does not compete with other pathway 
databases, but it adds value to these existing ones 
by providing a unique online resource for sharing 
and querying pathway information [20, 21].

WikiPathways was established to facilitate the 
contribution and maintenance of pathway infor-
mation by biologists [16–19]. Indeed, 
WikiPathways is an open, collaborative platform 
dedicated to curating biological pathways that 
enhance and complement ongoing efforts, such 
as KEGG, Reactome, and Pathway Commons 
[16–19]. The easy-to-use web-based interface of 
WikiPathways was specifically developed to 
reduce the obstacles to participate in pathway 
curation. Any pathway can be edited from within 
its wiki page by using the pathway editor. More 
importantly, the open approach of WikiPathways 
encourages broader participation of the scientific 
community [16–19]. Finally, pathways and their 
content can be downloaded in several data and 
image formats, including GPML, which can be 
used by pathway visualization and analysis tools 
such as Cytoscape, GenMAPP, and PathVisio.

 Strategies for Pathway Analysis 
and Their Applications in Cancer 
Research and Precision Oncology

 Pathway Analysis Methods

Initially, pathway analysis identified a class of 
techniques for (i) the study of ontological terms 
and protein-protein interaction (PPI) networks; 
and (ii) the inference of gene regulatory networks 
from expression data. The aim was to use ontolo-
gies and/or pathways as knowledge bases for 
grouping genes or proteins into smaller subsets 
according to some relationships, reducing the 
dimensionality of expression data. However, 
more recently, research effort has been devoted to 
deploying a novel class of knowledge base–
driven pathway analysis methods. Such methods 
leverage existing databases such as the previ-
ously discussed KEGG [4], Reactome [11], 
WikiPathways [16–19], and Pathway Commons 
[20, 21], to identify perturbed pathways associ-
ated with a specific phenotype or condition. A 
typical knowledge base–driven pathway analysis 
method starts from two types of input data: (i) a 
set of pathways representing the molecular inter-
action knowledge base, and (ii) experimental 
OMICs or multi-omics data containing 
 measurements of gene expressions, protein abun-
dance, or metabolite concentration in two or 
more conditions [24]. A graph model is then built 
to represent pathways. Models depend on path-
way type: (i) signaling pathway where nodes are 
gene (or gene products), and edges represent sig-
nals, such as activation or repression, (ii) meta-
bolic pathway in which nodes are biochemical 
compounds, and enzymes and edges represent 
reactions that transform one or more compounds 
into another one. Pathways are then ranked 
according to the perturbation level, which is com-
puted through a scoring scheme [24]. Following 
temporal criteria, knowledge base–driven path-
way analysis methods can be classified into three 
generations of approaches: (i) Over-
Representation Analysis (ORA), (ii) Functional 
Class Scoring (FCS), and (iii) Pathway Topology 
(PT)-based analysis [24]. More recently, new 
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approaches have been proposed to analyze path-
ways augmented with missing regulatory ele-
ments, such as microRNAs and their 
post-transcriptional regulatory interactions with 
genes [3].

 Over-Representation Analysis (ORA)
ORA methods are the first generation of pathway 
analysis models. ORA techniques measure path-
way perturbation considering only the number of 
DIfferentially Expressed Genes (DEGs) present 
in the pathway. Their primary hypothesis is that a 
statistically significant pathway contains more 
DEGs than those that would appear by chance. 
Therefore, ORA strategies typically divide the 
list of genes according to the pathway each gene 
belongs to. Then, they compute the probability of 
observing a certain number of altered genes in a 
pathway by chance applying a hypothesis test 
[24]. However, these methods have several draw-
backs. First, they ignore the expression of genes 
and the magnitude of their change. Second, they 
analyze only DEGs, missing genes with coordi-
nated alterations, which may lead to remarkable 
effects. Finally, pathways are analyzed indepen-
dently from the surrounding biological context, 
ignoring the dependence from other pathways 
encoding different molecular processes. 
Unfortunately, the hypothesis behind ORA meth-
ods is a very simplified representation of what 
happens in reality, where several biological pro-
cesses are accomplished by chains of reactions 
involving two or more pathways [24]. Some 
examples of ORA methods follow below.

DIANA-miRPath [70] is an example of a first- 
generation pathway analysis that assesses miR-
NAs’ impact on biological processes by 
identifying the pathways they are significantly 
involved in. The tool functionally annotates one 
or more miRNAs through a hypergeometric dis-
tribution, an unbiased empirical distribution, or a 
statistical meta-analysis. Moreover, it allows 
identifying subsets of miRNAs, which signifi-
cantly regulate a collection of pathways, starting 
from experimental data.

Onto-Express [71, 72] is a Java-based tool to 
automatically translate a list of differentially reg-

ulated genes into functional profiles characteriz-
ing their impact. More specifically, Onto-Express 
uses public data and GO categories to create 
functional profiles that correlate expression pro-
files with the following categories: cytogenetic 
locations, biochemical and molecular functions, 
biological processes, cellular components, and 
cellular roles of the translated proteins. For each 
pathway and category, statistical significance val-
ues are calculated by using a user-chosen bino-
mial or χ2 test. In the case of χ2 test unreliability, 
Onto-Express automatically determines expected 
values and uses Fisher’s exact test.

FuncAssociate [73] is a web-based tool to 
characterize large gene sets starting from GO 
attributes. The input is a list of genes. For each 
attribute, the algorithm detects the number of 
genes annotated with such an attribute. Finally, 
multiple hypotheses testing is performed to 
establish the statistical significance of this num-
ber. FuncAssociate can also handle ranked input 
lists. This option is useful when the user wants to 
rank genes according to some criterion of inter-
est, e.g., their significance or their fold-change in 
mRNA abundance between two different 
conditions.

GeneMerge [74] is a web-based and stand-
alone program that returns a range of functional 
and genomic data for a given set of study genes 
and provides statistical rank scores for 
 over- representing particular functions or catego-
ries in the data set.

GOToolBox [75] is a set of methods and tools 
to process GO annotations. The user can find all 
GO terms associated with each gene in the input 
dataset, rank all annotation terms, evaluate the 
significance of their occurrences within the data-
set, group together functionally related genes 
based on their GO terms, and find genes sharing 
GO terms with a user-given gene, based on a 
functional similarity calculation.

MAPPFinder [76] dynamically links gene 
expression data to the GO hierarchy. The algo-
rithm calculates the percentage of genes that 
meet a user-defined criterion for a meaningful 
gene expression change.
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 Functional Class Scoring (FCS)
Second-generation tools, named Functional Class 
Scoring, consider both changes in gene expres-
sions and their correlations with a phenotype of 
interest. FCS methods’ central hypothesis is that 
pathway status is affected by significant gene 
expression changes as well as smaller changes 
with a combined significant contribution [24]. 
FCS methods typically start by computing a 
gene-level statistic from gene expression values, 
such as the correlation of molecular measure-
ments with the phenotype (i.e., ANOVA, 
Q-statistic, signal-to-noise ratio, t-test, and 
Z-score). Next, gene-level statistics for all genes 
in a pathway are aggregated into a single 
pathway- level statistic, such as Kolmogorov- 
Smirnov statistic; sum, mean, or median of gene- 
level statistics; Wilcoxon rank-sum; or max-mean 
statistic. Finally, the pathway-level statistic’s sig-
nificance is assessed through an appropriate null 
hypothesis, which can be self-contained or com-
petitive [24]. In the first case, class labels (i.e., 
phenotypes) are permuted for each sample, and 
the set of genes in a given pathway is compared 
to itself, ignoring genes that are not present in the 
pathway. In competitive null hypotheses, gene 
labels are permuted for each pathway, and the set 
of genes in the pathway is compared to the set of 
genes that are not in the pathway. FCS approaches 
can rank genes through their expression levels 
and consider the dependencies within a pathway. 
This idea allows going beyond some of the limi-
tations of ORA methods. However, they do not 
consider either genes’ deregulation magnitude 
for pathway activity estimation, or the interac-
tions between genes, or their direction, type, and 
strength. Therefore, FCS methods, as well as 
ORA methods, treat pathways as simple sets of 
genes [24]. Examples of FCS methods are listed 
below.

Gene Set Enrichment Analysis (GSEA) [77] 
ranks genes according to the correlation between 
gene expression and phenotype. It computes a 
score that expresses how much the pathway is 
related to the phenotypic class distinction.

GSA [78] is an extension of GSEA, improved 
by using a max-mean statistic to summarize 
gene-sets and adding a restandardization proce-

dure. Restandardization consists of centering and 
scaling the max-mean statistic by its mean and 
standard deviation under row randomizations. 
This standardized max-mean statistic is then 
computed both on the original data and on the 
permuted datasets.

GlobalANCOVA [79] is a general methodol-
ogy that uses gene-wise linear models and aggre-
gates their information in a multivariate test 
procedure. It can be used to study how expression 
structure within a group of genes is influenced by 
design aspects of the study, such as group mem-
bership, time course, group by time course inter-
action, dosage, group by dose interaction, etc. 
Gene-wise linear models are used to formalize 
the relationship of gene expression with pheno-
typic or genomic covariates. An ANOVA-based 
sum of squares summarizes individual gene-wise 
linear models to a group statement. A permuta-
tion test and an asymptotic distribution of the test 
statistics under the null hypothesis are available 
to calculate p-values.

 Pathway Topology (PT)-Based Analysis
The third generation of pathway analysis systems 
is the so-called Topology-based methods. They 
fully exploit the topological information encoded 
by pathways when computing perturbation 
scores. Pathways are modeled as complex graphs 
where each node is a gene or a protein, and each 
edge is an interaction between them. Even though 
thousands of genes are not annotated in path-
ways, and existing annotations may be inaccu-
rate, graphs in these databases provide a more 
detailed view of biological processes within the 
cell, helping the interpretation of high- throughput 
experiments [24]. Some examples of PT methods 
are listed below.

ScorePAGE [80] computes similarities 
between each pair of genes in a pathway (e.g., 
correlation, covariance). The similarity is aver-
aged to calculate a pathway-level score. A weight 
is given to pairwise similarities, dividing simi-
larities by the number of reactions needed to con-
nect two genes in a given pathway.

In [81], Draghici et al. introduce a technique 
called impact factor (IF). The impact factor is a 
pathway-level score that considers the magnitude 
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of changes in gene expression, the type of inter-
action, and the location of genes in the pathway 
graph. Authors also define a gene-level statistic 
called perturbation factor (PF), which is a linear 
function of the change in gene expression and the 
perturbation of its neighborhood. This statistic is 
then combined for each element in the pathway, 
and a p-value is computed using an exponential 
distribution. The IF technique has been imple-
mented as a web-based tool, called Pathway- 
Express, and freely available as part of Onto-Tools 
(http://vortex.cs.wayne.edu).

SPIA [82] improves Draghici’s method by 
attenuating the effect of expression changes in 
the PF computation and lowering the high rate of 
false positives when the input list of genes is 
small.

NetGSA [83] considers both the change in cor-
relation and the change in the network structure 
as experimental conditions change. Like the IF 
technique, NetGSA models gene expression as a 
linear function of other network genes. It consid-
ers a gene baseline expression by representing it 
as a latent variable in the model. However, path-
ways must be defined as directed acyclic graphs 
(DAGs).

PARADIGM [84] can predict the degree of 
alteration in the patient-specific genetic activity 
of a pathway by employing a probabilistic infer-
ence algorithm. Each pathway is converted into a 
factor graph that includes both hidden and 
observed states. The factor graph integrates 
observations on gene- and biological process- 
related state information with a structure describ-
ing known interactions among the entities. 
Variables of the model describe the states of enti-
ties in a cell, such as mRNAs or complexes, and 
factors represent the interactions and information 
flow between these entities. These variables rep-
resent the differential state of each entity com-
pared to a “control” or normal level rather than 
the direct concentrations of the molecular enti-
ties. Parameters of the observation factors are 
estimated using an EM algorithm. Authors show 
that their model achieves more reliable results 
than SPIA, but Mitrea et  al. in [85] state they 
could not reproduce the results reported in [84].

pDis [86] is another PT method that can iden-
tify significantly impacted pathways using the 
entire set of genes, rather than focusing only on 
DE genes. To reduce false positives and false 
negatives, they propose a scoring scheme that can 
distinguish between genes that are sources of pri-
mary deregulation due to mutations, copy num-
ber variations, epigenetic changes, etc., and genes 
that merely respond to perturbation signals from 
upstream genes. The method yields significant 
improvements to SPIA, GSEA, and GSA in terms 
of both ranks and p-values of perturbed 
pathways.

 miRNA-Sensitive Topological Pathway 
Analysis
Most pathway analysis methods do not consider 
the effects of post-transcriptional regulatory 
interactions involving microRNAs. Recently, 
new methodologies have been proposed in this 
direction. In [3], the authors present MITHrIL, a 
tool that extends the method in [81] and SPIA 
[82]. The method returns a list of pathways sorted 
according to their deregulation degree and the 
corresponding statistical significance starting 
from expression values of genes and microRNAs. 
A predicted degree of alteration for each end-
point (i.e., a pathway node whose alteration, 
based on current knowledge, affects the pheno-
type in a specific way) is computed. Validated 
inhibition interactions between miRNA and tar-
gets are taken from miRTarBase [87] and 
 miRecords [88]. Endpoints in each pathway are 
found through a Depth-First Search (DFS) algo-
rithm to automatically mark genes located at the 
end of the chains of reactions in the pathway. 
Putative endpoints are then manually screened to 
determine if they are associated with phenotypic 
changes as stated in the KEGG database. For 
each gene in a pathway, MITHrIL computes a 
perturbation factor (PF), which estimates how 
much its activity is altered considering its expres-
sion and its immediate neighbors. By appropri-
ately combining each PF of a pathway, MITHrIL 
can compute an impact factor (IF) and an accu-
mulator (Acc). IF indicates how important the 
pathway changes are, while Acc measures the 
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total level of perturbation in the pathway and the 
tendency to have a majority of activated or inhib-
ited genes. Next, a p-value is associated with the 
Acc measure to estimate the probability of get-
ting such an accumulator by chance. Finally, the 
false discovery rate is calculated, and p-values 
are adjusted on multiple hypotheses. The output 
of MITHrIL consists of a list of pathways along 
with their impact factor, accumulator, and 
adjusted p-values. Such a list is sorted by p-value 
and Acc.

A summary of all surveyed pathway analysis 
methods is shown in Table 8.6.

 Applications of Pathway Analysis 
Methods in Cancer Research

As we discussed above, pathway analysis is an 
essential step for interpreting omics data to 
understand the phenotype under study. Hence, 
the increasing amount of data available is foster-
ing rapid advances in accurate and reliable path-
way analysis tools. This aspect is quite relevant in 
complex diseases like cancer, where alterations 
can establish abnormal cell growth. Indeed, many 
factors are involved in developing and maintain-
ing the malignant state of cancer cells, such as 
genetic aberrations, epigenetic alterations, 
changes in gene expression, metabolic altera-
tions, and beyond [2]. Therefore, by analyzing 
cancer as a complex pathology, we try to gain 
insight into the cancer cells’ molecular mecha-
nisms by looking at their different components. 
Such knowledge can be extrapolated from the 
different OMICs data types and integrated into 
pathway analysis approaches through in silico 
models representing the biological system under 
study. Few examples of pathway analyses in can-
cer research include the following: (i) the identi-
fication of driver genes and pathways [89, 90]; 
(ii) the discovery of novel tumor subtypes [91]; 
(iii) understanding cancer mechanisms and bio-
markers [90, 91]; and (iv) the identification of 
key regulators in cancer gene networks [92, 93]. 
Many scientific studies show successful applica-
tions of pathway analysis approaches to get 
insights into several cancer biology aspects. This 

aspect is straightforward if we consider that many 
critical pathways’ functions are altered during 
cancer initiation and progression.

In this context, PT methods play a more piv-
otal role than previous generation systems such 
as ORA and FCS methods. In fact, PT methods 
fully exploit the topological information encoded 
by pathways when computing perturbation scores 
and not only the presence of particular sets of 
DEGs for specific pathways and the magnitude of 
their dysregulation to identify the altered path-
ways. This aspect should not be underestimated 
since PT methods allow integrating high- 
throughput data into a more realistic model where 
each element (genes, proteins, metabolites, etc.) 
is connected accordingly with functional interac-
tion available on the several pathway databases 
previously discussed.

Although biological pathways are partial and 
incomplete, pathway analyses are still conducted 
extensively to interpret the results of high- 
throughput experiments. In any case, the annota-
tion of pathways with other experimentally 
validated interactions may increase the reliability 
of PT-based analysis methods [24]. For example, 
many regulatory ncRNAs’ functional interac-
tions are still missing in pathway databases. 
Among the plethora of different ncRNA classes 
already discovered, miRNAs have been revealed 
to be important in modulating several pathways 
via the exertion of their regulatory function when 
targeting essential genes [94, 95]. Indeed, the 
deregulation of even a single miRNA is capable 
of causing cancer, as in the case of miR-155, 
which is responsible for the onset of acute lym-
phoblastic leukemia/high-grade lymphoma in 
mice [96]. Additionally, the predominant roles 
played by miRs 21, 221, and 222 in several can-
cer types prove the importance these small RNA 
molecules have in tumor pathogenesis and pro-
gression while also being a determining factor in 
drug resistance [95]. In light of this and many 
other pieces of evidence discovered in more 
recent years, the integration of miRNA expres-
sion when evaluating cancer pathway perturba-
tion has become of utmost crucial importance. 
Indeed, considering the effects of miRNAs on 
overall gene expression contributes to a more 
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comprehensive depiction of the biological reality, 
providing a more accurate means for pathway 
assessment and phenotype categorization [3]. 
Leveraging on the potential offered by miRNA 
enrichment in pathway analysis, MITHrIL [3] 
represents a bioinformatic resource capable of a 
far more accurate evaluation of pathway deregu-
lation in cancer. This feature could provide a 
decisive contribution to cancer research in terms 
of directing researchers more effectively, reduc-
ing costs and time requirements [3]. However, 
additional classes of ncRNAs such as tRNA- 
derived small ncRNAs (tsRNAs) are still missing 
in biological pathways despite their roles in can-
cer development and progression have been 
extensively assessed in recent years [97–100]. 
Indeed, among their functions, it seems that tsR-
NAs are also complexed with AGO proteins, and 
they might act as negative regulators of gene 
expression in a miRNA-like manner [99, 101, 
102]. Therefore, in the upcoming years, it is rea-
sonable to think that they will soon be annotated 
in biological pathways, increasing our knowl-
edge of the molecular interaction acting in cancer 
cells and the accuracy of pathway analysis 
methods.

 Phenotype and Therapy Predictions: 
Applications for Precision Oncology

In addition to pathway analysis, the knowledge 
retrieved from pathway databases can also be 
used in system biology to predict the effect of 
gene dysregulation, gene mutations, chromo-
somal deletion, and cellular response to specific 
signals and drugs on phenotypes. As widely 
known, all these alterations can be efficiently 
assessed by the new OMICs technologies. 
However, despite the improvements in our under-
standing of cell biology, it is challenging to link 
OMICs data to the physiopathological status. In 
any case, systems biology computational 
approaches have emerged as efficient means 
capable of bridging the gap between experimen-
tal biology at the system-level and quantitative 
sciences [103]. Indeed, such methods can be used 
as time- and cost-saving solutions for efficient in 

silico predictions [103, 104]. At present, several 
simulation models have been developed, and they 
can be mainly grouped into two broad categories: 
(i) discrete/logic or (ii) continuous models [105]. 
Briefly, discrete models represent each element’s 
state in a biological network as discrete levels, 
and the temporal dynamic is also discretized. At 
each time step, the state is updated according to a 
function, determining how an entity’s state 
depends on the state of other (usually connected) 
entities. Boolean networks [106, 107] and Petri 
nets [108] represent two types of discrete models. 
On the other hand, continuous models usually 
produce real continuous measurements, instead 
of discretized values, simulating network dynam-
ics over a continuous timescale. Although they 
could provide a greater degree of accuracy, these 
methods are limited by our current description of 
the biological systems and our measurement 
techniques’ capabilities. Continuous linear mod-
els [109, 110] and flux balance analysis [111] are 
the most representative continuous models. A 
new web-based and user-friendly system named 
PHENSIM [112] has been recently released for 
phenotype prediction among these systems. 
Specifically, PHENSIM allows phenotype pre-
dictions on selected cell lines or tissues in three 
different organisms (Homo sapiens, Mus muscu-
lus, and Rattus norvegicus) using a probabilistic 
algorithm to compute the effect of dysregulated 
genes, proteins, miRNAs, and metabolites on 
KEGG pathways. Results are then summarized 
through a Perturbation value, which represents 
the expected magnitude of the alteration, and an 
Activity Score, which is an index of both the pre-
dicted effect of a gene dysregulation on a node 
(up- or downregulation) and its likelihood. All 
values are also summarized at the pathway level. 
To achieve better performance, PHENSIM per-
forms all calculations in a more realistic model 
that is the KEGG meta-pathway, obtained by 
merging all pathways [113] and integrating infor-
mation on miRNA-target and transcription factor 
(TF)-miRNA extracted from online public 
knowledge bases [3]. Intuitively, such a method 
has many potential applications in cancer 
research and precision oncology. First, these 
techniques can simulate the effect of mutations 
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on normal cells or the influence of drugs (or drug 
combinations) on tumor cell lines. It is also pos-
sible to predict the probable result of laboratory 
experiments, prioritize the most promising ones, 
and optimize resource use. Finally, thanks to the 
possibility of simulating the effect of drugs, these 
techniques can be applied to data from individual 
patients to predict which approved drugs may be 
potentially the most appropriate for the treatment 
of the disease or repositioning if no suitable ther-
apy is available.

 Conclusion

It is widely known that oncological research and 
new disciplines such as precision oncology rely 
on OMICs data, computational tools, and knowl-
edge bases for data analysis and results interpre-
tation. However, in contexts like biology and 
biomedicine, the literature rises fast, and, there-
fore, the ecosystem of up-to-date models 
increases rapidly. In this chapter, we gave a com-
prehensive survey of the main data sources for 
publicly available OMICs data (e.g., genomics, 
transcriptomics, proteomics, and metabolomics), 
together with the main cancer-related OMICs 
projects and knowledge bases for precision 
oncology applications. Then, we provided a user- 
view of relevant examples of pathway databases 
and pathway analysis methods that can be used 
for multi-OMICs integration and analysis. 
Ultimately, this chapter aimed to provide a guide 
for researchers interested in using omics data and 
pathway analysis methods for cancer research 
and precision oncology application.
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RNA-seq Fusion Detection 
in Clinical Oncology

Dale J. Hedges

Abstract

Gene fusions play a prominent role in the 
oncogenesis of many cancers and have been 
extensively targeted as biomarkers for diag-
nostic, prognostic, and therapeutic purposes. 
Detection methods span a number of plat-
forms, including cytogenetics (e.g., FISH), 
targeted qPCR, and sequencing-based assays. 
Before the advent of next-generation sequenc-
ing (NGS), fusion testing was primarily tar-
geted to specific genome loci, with assays 
tailored for previously characterized fusion 
events. The availability of whole genome 
sequencing (WGS) and whole transcriptome 
sequencing (RNA-seq) allows for genome- 
wide screening for the simultaneous detection 
of both known and novel fusions. RNA-seq, in 
particular, offers the possibility of rapid turn- 
around testing with less dedicated sequencing 
than WGS. This makes it an attractive target 
for clinical oncology testing, particularly 
when transcriptome data can be multi- 
purposed for tumor classification and addi-
tional analyses. Despite considerable efforts 
and substantial progress, however, genome- 
wide screening for fusions solely based on 

RNA-seq data remains an ongoing challenge. 
A host of technical artifacts adversely impact 
the sensitivity and specificity of existing soft-
ware tools. In this chapter, the general strate-
gies employed by current fusion software are 
discussed, and a selection of available fusion 
detection tools are surveyed. Despite its cur-
rent limitations, RNA-seq-based fusion detec-
tion offers a more comprehensive and efficient 
strategy as compared to multiple targeted 
fusion assays. When thoughtfully employed 
within a wider ecosystem of diagnostic assays 
and clinical information, RNA-seq fusion 
detection represents a powerful tool for preci-
sion oncology.

 Introduction

 Importance of Fusions for Clinical 
Oncology

The significance of oncogenic fusions in clinical 
oncology has been well established, both in terms 
of their role in oncogenesis and their use as bio-
markers of diagnostic, prognostic, and therapeu-
tic significance [1]. Classic or “canonical” gene 
fusions in cancer are typified by the in-frame 
conjunction of two (or more) amino acid-coding 
frames from distinct genes, yielding chimeric 
proteins with oncogenic properties (Fig.  9.1). 
The term “fusion,” is also commonly extended to 
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molecular phenomenon such as “promoter- 
swaps” and related regulatory region alterations. 
In the course of this chapter, both canonical 
fusions, as well as the larger class of “fusion- 
like” events, will be discussed. The nomenclature 
and classification of fusions are briefly addressed 
in section “Nomenclature of Fusions and Related 
Phenomena”.

While oncogenic fusions contribute to a num-
ber of adult cancers, they exhibit a higher preva-
lence among pediatric cancers, where they 
comprise a significant fraction of driver altera-
tions in common childhood leukemias. 
Commonly observed driver fusions include 
ETV6-RUNX1, which is present in approximately 
25% of pediatric acute lymphoblastic leukemia 
(ALL) cases diagnosed between the ages of 2 and 
10 [2]. Fusion drivers are also commonly found 
in pediatric brain tumors and solid tumors, such 
as BRAF-KIAA1549 in astrocytoma and PAX3- 
FOX01A in rhabdomyosarcoma.

For the most prevalent and well-characterized 
fusions, robust targeted molecular assays are 
readily available based on traditional cytogenetic 
(e.g., FISH) and PCR-based technologies. Since 
resource availability typically constrains the 
number/scope of tests that can be performed on a 
given sample, targeted assays are often preferred, 
selected based upon initial clinical, histopatho-
logical, and/or laboratory findings. Although this 
approach has enjoyed considerable success, 
especially for common fusion lesions, there 
remains increased risk for false negatives when a 
patient exhibits atypical clinical and/or molecular 
presentations. Moreover, even in the case of the 
most prevalent fusion types, rare junctions 
between the gene partners can remain undetected, 

simply due to their falling outside the boundaries 
of a given targeted assay’s design parameters. 
Targeted PCR-based assays, for example, are 
generally based on the observed distribution of 
known fusion junction sites and may not compre-
hensively cover all possible oncogenic combina-
tions between two partner genes. The difficulty 
of exhaustively screening a pair of fusion genes 
can increase with gene length, exon number, and 
other factors, such as interspersed homology, that 
can further constrain assay designs. The result is 
that fusions involving larger genes, or those with 
significant runs of homology, can be more sus-
ceptible to false negatives for atypical junctions. 
It is also the case that some genes are promiscu-
ous fusion partners, forming chimeras with sev-
eral partners, and each partner may be observed 
at different frequencies. One such example is 
BCR, which has been observed to partner with 
ABL1, FGFR1, JAK2, and PDGFRA, among oth-
ers [4]. In these cases, it can be difficult to 
exhaustively screen all possible combinations 
without a more comprehensive transcriptome 
sequencing solution. Although not covered here, 
the Archer FusionPlex (Illumina) targeted fusion 
system, based on next-generation sequencing 
technology, represents one option that lies in 
between multiple independent tests and full tran-
scriptome surveys.

Although each class of rare or otherwise atyp-
ical fusion may on its own represent only a small 
fraction of oncogenic fusions, in aggregate, these 
rare events comprise an appreciable portion of 
cases. It is for these less common, less well- 
characterized lesions that RNA-seq based 
approaches hold the most promise. In this chap-
ter, the strategies behind RNA-seq fusion 

Fig. 9.1 BRC-ABL1 fusion. An example of one observed BCR-ABL1 fusion product, joining exon1 of BCR with exon 
2 of ABL1. (Image generated by ProteinPaint (https://proteinpaint.stjude.org/) [3])
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 detection are surveyed, along with the benefits 
and challenges of a technology that has demon-
strable advantages over traditional fusion detec-
tion methods, but also one that is not without its 
limitations.

 Nomenclature of Fusions and Related 
Phenomena

Apart from canonical, coding fusions producing 
chimeric proteins, related molecular phenomena 
are also categorized as fusions and targeted by 
detection software with some degree of regular-
ity. The purpose of this section is not to indicate 
which molecular lesions should or should not be 
formally considered fusions. It is, however, 
important to be aware that such variation in usage 
exists. Consequently, for any given piece of soft-
ware, it is imperative to understand the range of 
molecular phenomena targeted.

The categories of molecular lesions most 
commonly assessed by fusion software are sum-
marized in Fig. 9.2, along with an indication of 
their usage. Proto-typical fusions, forming chi-
meric proteins of canonical coding genes, are 
reliably targeted by all fusion-focused software 
applications. Out-of-frame fusions formed from 
protein-coding transcripts are also commonly 
detected, but their relative prioritization vs. the 

prototype fusion may vary from one software to 
another. The topic of prioritization and ranking 
is discussed in section “Annotation, 
Prioritization, and Visualization”. Fusions 
involving the untranslated regions (UTR) of 
transcripts or nearby regulatory regions, where 
“in-frame” vs. “out-of-frame” status is no lon-
ger applicable, are also commonly detected and 
reported. In the case of these events, however, 
both sensitivity and prioritization can vary con-
siderably between detection tools, warranting 
caution if these types of events are expected to 
contribute to the phenotypes under examination. 
Chimeric transcripts in which one or both genes 
are noncoding RNAs are less consistently tar-
geted, captured, and/or prioritized. Additional 
related phenomenon, such as internal tandem 
duplications (ITDs) exist at the periphery of 
fusion software targeting and are captured with 
considerably less regularity. ITDs are, in some 
respects, fusion-like events wherein the “chi-
mera” is formed from the coding region of a 
single gene. While their status as bona fide 
proper fusions may be debatable, these clini-
cally important lesions can sometimes fall out-
side the radar of short indel callers, standard 
structural variation analysis, and fusion detec-
tion software alike. A reliable detection strategy 
from transcriptome can alleviate the need for 
independent targeted testing for important 

Fig. 9.2 The variety of 
molecular lesions 
targeted by fusion tools. 
In the center, in-frame 
fusions of protein-
coding genes are 
universally targeted, as 
expected, while other 
molecular phenomena 
are captured and 
prioritized with differing 
levels of consistency 
across applications, 
indicated by lighter 
shading radiating out 
from the center
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lesions such as FLT3 ITDs in pediatric leuke-
mias or FGFR1 ITDs in brain tumors. CICERO 
[5] and Squid [6] are among the few fusion-ori-
ented tools that explicitly target ITDs from 
RNA-seq data. It should be noted that, in the 
case of ITDs, DNA- based detection is currently 
more robust than RNA-based testing, where 
seasoned tools, such as Pindel [7], can reliably 
detect ITD events at known hot-spot loci when 
sufficient coverage is present. Also on the 
periphery of the fusion- related events are splic-
ing abnormalities resulting in chimeric tran-
scripts. These are typically observed in the 
context of adjacent or otherwise neighboring 
genes. In some instances, aberrant cis-splicing 
between nearby genes can form products that 
appear to be canonical fusion events without 
any corresponding indication of structural varia-
tion at the DNA level [8]. However, many adja-
cent genes yield run-on products, comprised of 
various chimeras of adjacent genes that are also 
observed within normal tissue expression, gen-
erating a multitude of red herring events among 
fusion detection output. In section “Selections 
from Available Software” strategies for filtering 
out innocuous run-on chimeras without, inad-
vertently, removing legitimate oncogenic 
fusions at such neighboring regions (e.g., 
P2RYR8-CRLF2), will be presented. Also 
included on the periphery of phenomena tar-
geted by fusion-oriented software applications 
are circular RNA molecules, which are formed 
through back-splicing of exons (reviewed in 
[9]). These products, typically associated with 
no underlying DNA variation, can be difficult to 
distinguish from other structural variations and 
sequencing artifacts that can yield similar 
observable products.

 Heterogeneity of Sequence Data 
Sources

Fusion workflows ultimately benefit from the fact 
that they can be initiated from multiple input 
sources and by a variety of platforms. Fusion test-
ing can accept both DNA and RNA, and com-
bined results from the parallel performance of 

RNA-seq and WGS workflows, while resource- 
intensive, can be superior to either platform on its 
own [10]. Other aspects of input data heterogene-
ity, however, contribute unwelcome complexity to 
the evaluation of fusion detection software. Even 
restricting our discussion to RNA-seq for the pur-
poses of this chapter, a fusion detection algorithm 
can receive data from diverse laboratory work-
flows and sequencing instruments, contributing to 
differences in molecular fragment sizes, sequenc-
ing lengths, and input sequence quality. Sequence 
data quality can be further influenced by upstream 
sample handling and processing, which can vary 
by locale and are not always in the control of the 
laboratory testing facility. All this potential for 
input heterogeneity adds complexity to algorithm 
design and the assessment of software perfor-
mance. Ideally, detection software would be eval-
uated and validated using the laboratory 
parameters (sample processing, laboratory proto-
col, sequencing instrument) that will be used in 
the actual testing environment, performed using a 
set of positive and negative controls that reflect 
the targeted population. The degree to which this 
ideal is achieved will vary with the nature of the 
testing cohort, including phenotype prevalence 
and the availability resources such positive con-
trol samples harboring an appropriately diverse 
group of fusion products. Because of these limita-
tions, it is recommended that fusion workflow 
testing be supplemented with additional syntheti-
cally derived controls, such as Seraseq RNA 
fusion mix v4 (Seracare), which include titrations 
of 18 clinically relevant fusions. While not captur-
ing the full range of diversity of sample quality, 
allele frequency, or lesions likely to be encoun-
tered during testing, this approach allows the 
entire workflow to be evaluated, beginning with 
initial laboratory processing. Several available 
tools also exist for simulating fusion read data 
(e.g., FusionSimulator Toolkit (https://github.
c o m / F u s i o n S i m u l a t o r T o o l k i t /
FusionSimulatorToolkit/wiki)). While such simu-
lated data sets are not a robust substitute for true 
end-to-end testing beginning at the lab bench, 
they nevertheless increase the variety of lesions 
available to challenge software algorithms and 
evaluate parameterization.
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 Fusion Detection

 Primary Signals

While the tissue sources and granular details of 
sequencing input may vary, the principal ele-
ments involved in fusion detection from RNA- 
seq can be distilled to a few essential elements. 
These are “junction” or “clipped” sequencing 
reads, anomalous “paired-end” reads, and, to a 
lesser extent, expression levels, as assessed by 
sequencing coverage depth at putative fusion 
loci. Each of these fundamental elements of 
fusion analysis are addressed in section “Fusion 
Detection Strategies”. All of the above can be 
ultimately derived from primary sequence read 
inputs, such as the .fastq files generated by mod-
ern sequencers. These basic units of information 
determine the strategies available for RNA-seq- 
based fusion detection. Note that to detect 
abnormal read pairing, paired-end library prepa-
rations and sequencing runs are required. While 
some fusion tools accept unpaired, single-end 
sequencing input, current mainstream sequenc-
ing platforms such as the Illumina instrument 
series widely adopted in molecular pathology 
laboratories, should be run with paired-end 
libraries for optimal fusion detection. As 
explained below, paired-end reads increase the 
variety of information available to algorithms 
for fusion detection (see section “Anomalous 
Paired Read Signals”). Single molecule tech-
nologies, such as Oxford Nanopore and Pacific 
Biosystem’s SMRT sequencing technology, 
which provide extended read lengths, are not 
covered here, as throughput and other consider-
ations have so far limited adoption in oncology 
testing contexts. Nevertheless, the extended 
read lengths offered by these systems can be 
expected to enjoy increased adoption as these 
technologies are further advanced and refined. 
Long read analyses ultimately target the same 
basic signals of chimeric transcript junctions 
described in section “Fusion Detection 
Strategies”, with the added advantage that the 
increased read lengths can significantly reduce 
the level of alignment ambiguity present with 
shorter read approaches.

 Fusion Detection Strategies

 De Novo Transcriptome Assembly
The first approach is only briefly addressed here, 
on account of its limited adoption among current 
fusion detection pipelines. In principle, given 
sufficient transcript read data, the entire reper-
toire of transcriptome products can be recon-
structed, including fusion chimeras, from 
established de novo graph-based assembly algo-
rithms, such as the one reviewed in [11]. 
Following de novo assembly, annotation and 
alignment with known transcripts can be used to 
reveal the presence of anomalous junctions sup-
porting fusion events. More recent efforts to 
apply assembly strategies to fusion detection 
include TrinityFusion [12]. Despite considerable 
progress, however, tools that are primarily reliant 
on de novo assembly have thus far enjoyed lim-
ited adoption. For one, de novo assembly of 
mammalian genomes is resource-intensive from 
a computational standpoint and requires substan-
tial amounts of memory and processing time. 
Many investigators may not have ready access to 
the requisite computing resources. Another con-
tributing factor is the high degree of interspersed 
homology present within mammalian genomes, 
with over 50% of the human genome comprised 
of repetitive elements, not including homologous 
gene families, pseudogenes, segmental duplica-
tions, and related sources of homology. When 
this homology is combined alongside with struc-
tural genomic variation, inconsistent transcript 
coverage, and rampant sequencing artifacts, the 
difficulty of the assembly task and subsequent 
task of selecting candidate fusions is tremen-
dously increased. The end result, in addition to 
increased resource demands, is generally poorer 
sensitivity and specificity, in comparison to alter-
native strategies discussed below (reviewed in 
[13]).

 Mining Junction or “Clipped Reads”
Perhaps the most definitive RNA-seq evidence 
for a fusion event is the presence of a breakpoint 
within a sequencing read, where the sequence of 
one gene transcript abruptly transitions to that of 
another gene. These events (among others) are 
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represented by soft-clipping in modern aligner 
output, where the portion of the sequencing read 
that is not aligned to the reference sequence is 
indicated with an “S” within the CIGAR field of 
the SAM or BAM alignment file. The location of 
such a breakpoint can occur anywhere through-
out the sequencing read, and such junctions are 
most informative when there is an adequate num-
ber of bases present on both sides of the break-
point to allow for unique alignment to their 
respective source genes. One such ideal read is 
represented in Fig. 9.3. The more RNA-seq cov-
erage of the fusion event, the more likely one or 
more junctions will be fully informative in this 
respect, drawing a clear link implicating the two 
genes in a fusion event. Often, however, the junc-
tion observed may fall near the end of a given 
sequence read. In these cases, the short “stub” of 
remaining sequence may not be sufficient for 
unique placement on reference or proposed 
fusion partner gene transcript. Even fragments of 
appreciable size (e.g., >15–20 bp) cannot always 
be uniquely located on the reference due to the 
presence of interspersed homology throughout 
the genome. These reads can nevertheless prove 
informative, as will be described further below, 
when combined with additional supporting infor-
mation. It should be noted that the soft-clip sig-
natures described above can be generated for a 
number of reasons, most of which have nothing 

to do with fusions. They can be formed, for 
example, when the sequence read extends into 
remnant anchor sequences from the library prep-
aration process, particularly if the sequences 
have not been previously trimmed for such 
appendages. Soft-clip junctions can also occur 
when the sequence read quality diminishes to 
such an extent that the alignment can no longer 
be extended. A further challenge for the fusion 
detection workflow is to separate out these addi-
tional clipping signatures from those represent-
ing legitimate fusion support.

While the basic concept of a sequencing read 
spanning a breakpoint junction may be straightfor-
ward, their representation both within alignment 
files and visualization can be less so. For example, 
any given read spanning a fusion breakpoint junc-
tion will be anchored by its primary alignment to 
the location of one gene’s transcript in the genome 
or its fusion partner gene’s transcript. The remain-
ing unaligned, soft-clipped sequence portion of 
the read may not be readily visualized in a browser, 
such as IGV, depending upon view settings and, 
even if it is visualized, there is no clear indication 
of where it might belong (Fig.  9.3). A separate 
supporting read for the same fusion event may 
anchored with its primary alignment the partner 
gene, and thus only be observed when browsing at 
that gene’s location. Further discussion of fusion 
visualization is provided in section “Visualization”.

Fig. 9.3 Depiction of fusion evidence from inside a stan-
dard alignment viewer. Here, the gene currently in focus 
in the browser (gene A, blue), is super-imposed (gene B, 
light green with dashed lines). At the predicted breakpoint 

junction in gene A, evidence from fusion partner gene B 
may be visible only as soft-clipped extensions of gene B 
alignments. The mirror situation exists when gene B is in 
focus

D. J. Hedges



169

These considerations extend beyond visual-
ization, however. In both scenarios above, the 
position of the two fusion supporting reads in a 
coordinate-sorted BAM or SAM file will be 
anchored to their respective primary alignment 
and will not appear in proximity within the align-
ment file. Fusion detection algorithms must 
therefore work to aggregate evidence from dis-
tant genomic locations to support individual 
fusion breakpoint candidates. To make the matter 
more challenging, one side of a clipped read may 
be of insufficient length for unambiguous align-
ment to a reference sequence. One such orphaned 
“stub” is depicted in Fig. 9.3. Finally, the ubiqui-
tous presence of interspersed homology, sequenc-
ing artifact, and normal structural variation in the 
population further frustrate the process of junc-
tion detection and support. In the case of inter-
spersed homology, the seeding and extension of 
an alignment at a highly homologous region will 
result in an abrupt junction being formed once 
the alignment reaches the end of the homologous 
sequence and can no longer extend into the adja-
cent region. Chimeric artifact molecules gener-
ated during library preparation and sequencing 
can also introduce soft-clipped junction simply 
by juxtaposing sequence from two unrelated 
transcripts. Structural variation in the population, 
such as polymorphic mobile element insertions 
and segmental duplications, provides yet addi-
tional sources of junction signals. The challenges 
posed by phenomena that mimic fusion evidence, 
as well as some strategies for addressing them, 
are covered further in section “Artifacts, Technical 
Scoring, and Filtration”.

 Anomalous Paired Read Signals
As indicated above, the ability to obtain abnor-
mal spans is dependent upon a paired-end 
sequencing run, as available on modern second- 
generation sequencers. In the context of WGS 
sequencing, anomalous insert sizes can be 
flagged for further examination based on the dis-
tance between where the reads align in the refer-
ence genome. If the distance falls significantly 
outside the expected fragment length distribution 
based on the laboratory sequencing protocol and/
or the empirical distribution obtained from the 

sequencing data, the read pair may be flagged as 
a potential anomaly. A similar process is applied 
in RNA-seq for fusion detection, based instead 
on the expected locations of the ends within the 
existing annotated transcriptome units of expres-
sion. In principle, any RNA-seq mapping placing 
one end of the pair within an annotated gene A, 
and the other paired end in annotated gene B, can 
provide evidence for a putative a fusion event. As 
is so often the case in short read mapping, how-
ever, things are rarely that straightforward. Large, 
repetitive genomes, such as that of Homo sapiens 
and Mus musculus, present numerous opportuni-
ties for alignment error, yielding phantom chime-
ras having no underlying molecular basis. 
Exacerbating the situation, the library prepara-
tion and sequencing process itself can produce 
chimeric sequencing artifacts that combine frag-
ments of two independent molecules. These aber-
rant molecules are faithfully registered by the 
sequencer but were never present within the orig-
inal sample being tested. Such fragments are 
largely indistinguishable from legitimate chime-
ras. Both of the above processes can yield spuri-
ous fusion evidence. It falls upon the fusion 
detection software to make an attempt to distin-
guish legitimate fusion transcripts from artifac-
tual ones, and the difficulty of this process 
represents one of the primary constraints in cur-
rent RNA-seq based fusion testing (see section 
“Artifacts, Technical Scoring, and Filtration”).

 Expression Abnormalities
Apart from the detecting evidence supporting the 
primary sequence of chimeric transcripts, the 
magnitude of expression across participating 
genes can prove informative in some circum-
stances. This source of information is not as com-
monly drawn upon as those listed above, since 
the nature of RNA-seq coverage support can vary 
significantly across fusion classes, participating 
genes, and even among different combinations of 
the same fusion partners. In the case of a fusion at 
a high percentage within the tumor, the expres-
sion levels before and after breakpoints in the 
parent genes may indicate a marked transition. 
More reliably, the target genes of fusions involv-
ing regulatory regions, including promoters, may 
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exhibit dramatic increases in expression com-
pared to a similar sample cohort. Such a shift in 
expression can, in the context of additional 
sequencing evidence suggestive of a regulatory 
fusion, add support for the event. Expression- 
level- based evidence warrants an amount of cau-
tion, however, since a great many factors can lead 
to aberrant expression within cancerous tissue. 
Examination of expression, while occasionally 
used within software algorithms, is most com-
monly done during visualization and assessment 
of the technical quality of specific fusion candi-
dates, as described below.

 Artifacts, Technical Scoring, 
and Filtration

 Technical Scoring of Fusion Candidates
Following the filtering process, there remains 
significant work yet to be done by a complete 
fusion workflow. Depending on parameteriza-
tion, a typical fusion detection application can 
yield anywhere from five predicted candidates to 
several thousand. The first order of business is 
typically to determine which putative fusions are 
best supported by the available sequence evi-
dence. Most software tools provide some mecha-
nism of scoring or rating fusions with respect to 
quality. At a basic level, virtually universal 
among fusion detection software outputs are 
counts of the number of supporting junction 
reads and the number of supporting anomalous 
paired ends, along with the proposed locations of 
the junction points within the parent genes. 
Beyond these staple software output fields, there 
is little consistency among programs. Most appli-
cations have some method for providing the pre-
cise sequence read records supporting the 
candidate fusion, either via supplemental output 
files or by providing their associated SAM id of 
the read for later retrieval. Additional output 
fields that may be provided for each candidate 
include the longest anchor sequence (primary 
alignment) supporting the event. Since longer 
primary alignment lengths reduce the chance that 

the read evidence is the result of spurious homol-
ogy, longer anchor sequences are weighted as 
better supporting technical evidence. The consis-
tency of the breakpoint position itself can also 
provide critical information. While normal 
sequencing error can lead to ambiguous place-
ment of breakpoints within a target region, too 
much heterogeneity at the breakpoint location is 
often indicative of artifacts caused by inter-
spersed homology. For each software package, 
these data fields are combined through a number 
of strategies to produce a technical score. In some 
software, such as Arriba, this score may be trans-
lated to a qualitive rating indicate “high confi-
dence” and “low confidence” predictions [14].

CICERO, as one example, combines several 
data points to calculate its technical score, includ-
ing both the number and length of supporting 
read alignments [5]. The technical scoring above 
will frequently be augmented with additional 
annotation and cross-referenced with known arti-
facts in a filtering procedure.

The result of this “filter” process may either 
remove candidates from the list or demarcate 
them in some fashion to indicate their risk of 
being either an artifact or otherwise undesirable 
candidate, such as assigning a “neighboring” 
status to gene partners at risk of forming run-on 
chimeras. The latter, label-based, approach is 
generally advised, as it offers more flexibility 
for attempting different filtering parameters in 
different contexts or during different phases of 
review.

While the technical merit of any fusion call is 
critical, determining which fusion candidates 
warrant additional scrutiny by a human may 
sometimes involve additional input from the 
annotation and prioritization schemes discussed 
in the next section. Although not every putative 
candidate from list of several thousand can 
receive detailed human curation, it is often trac-
table to prioritize fusions involving genes known 
to participate in oncogenic fusions. Methods to 
elevate these candidates, by the means discussed 
in the next section, can assist in focusing human 
curator efforts.
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 Annotation, Prioritization, 
and Visualization

 Annotation and Prioritization

Before fusion candidates can be considered for 
their possible significance, the participating 
genes and/or regulatory sequences must be iden-
tified and appropriately annotated. In the case of 
canonical protein-coding fusions, an effort must 
also be made to determine whether the fusion 
remains in-frame. In the case of well-supported 
junctions, this can usually be done without error, 
making use of the predicted chimeric transcrip-
tion. However, fusion breakpoints can often coin-
cide with SNV-indel events as well as complex 
rearrangements in the vicinity of breakpoints. 
These events can occasionally confound auto-
mated frame prediction and require additional 
manual curation for correction. In general, any 
promising candidate fusion that is annotated as 
out-of-frame should receive additional scrutiny 
to determine if the detection software has made 
an annotation error. Apart from coding frame sta-
tus prediction (where relevant), there is a host of 
additional information that can be layered on to a 
given fusion candidate to help assess its rele-
vance. Among the more important pieces of 
information to be collected is which protein 
domains are retained in the final fusion product. 
In many cases, established fusions are character-
ized by the abnormal or unregulated activity of a 
domain from a source gene (e.g., tyrosine kinase 
domain). If a fusion’s pathogenic mechanism is 
known to occur via the constitutive activity of a 
domain, and that domain is included in the pre-
dicted fusion product, the candidate warrants fur-
ther scrutiny. The prediction could be the result 
of an artifact, but it is also possible that complex 
structural alterations in the vicinity of the fusion 
breakpoint have rendered the protein prediction 
incorrect.

In addition to the standard transcript informa-
tion provided by genome releases such as 
GRCh38, a number of public resources are avail-
able to assist with this process (Table 9.1), and 
most fusion software packages draw upon one or 
more available resources in the course of their 

execution. In cases where the number of putative 
fusions is excessively high, the ability to screen 
events for those with the greatest likelihood to be 
of clinical significance is paramount, particularly 
when testing is conducted on restricted set of 
phenotypes with known candidate fusion genes. 
In a research setting, a wider selection of candi-
dates would typically be considered; otherwise, 
there is the risk of missing an important, yet 
uncharacterized, fusion lesion.

The list of resources provided in Table 9.1 is 
not exhaustive, and new resources continue to 
become available. As a general rule in prioritiza-
tion, previously described fusions with known 
clinical implication that are present in curated 
databases are prioritized higher than those that 
are unknown and/or have no documented patho-
genic effect. Following known fusions, any 
fusion product containing gene that is known to 
participate in a clinically significant fusion would 
typically be ranked higher in priority than those 
predictions containing genes not known to par-
ticipate in oncogenic fusions. Other factors that 
may impact prioritization include the coding sta-
tus of genes, the in-frame or out-of-frame status 
of the predicted fusion product. As indicated pre-
viously, however, automated frame predictions 
are not universally accurate, and fusions involv-
ing noncoding sequence do not fall neatly under 
in-frame or out-of-frame categories. 
Prioritization, apart from technical scoring rank, 
is a process that can be highly individualized to 
the particular testing environment or research 
question at hand. This is typically an area where 
a customized approach suitable to the phenotypes 
under examination will, in most cases, be supe-
rior to a generic attempt to determine possible 
relevance.

 Visualization

Visualization is employed for two main purposes 
during the fusion detection workflow. Initially, it 
can be used as part of the technical assessment 
process. In this instance, a genome viewer such 
as Integrative Genomics Viewer [15] can be 
employed to examine the read alignments sup-
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porting a given fusion event to assess their qual-
ity and survey the local region for possible 
sources of artifact (e.g., low complexity 
sequence). As indicated previously, the process is 
not entirely straightforward and can involve navi-
gating between both candidate genes to assess 
available evidence. When using IGV, it is recom-
mended to turn on the option to view soft clips, 
which is not enabled by default. Third party tools 
are available that can take fusion read data as 
input and output a IGV input file. One such 
example is Clinker [16].

Visualization can also be used for prioritiza-
tion and interpretations purposes, such as when 
assessing which protein domains remain in the 
final fusion product. While there is no stand-out 
leader in fusion visualization, there are several 
applications available. FusionEditor  (https://pro-
teinpaint.stjude.org/examples/fusioneditor.html), 
published as part of the CICERO package, offers 
one of the more visually appealing and intuitive 
means of interactively viewing fusion event, 
including representations on alternate isoforms 
of the participant genes [5]. It is currently limited 
to output obtained from CICERO, however, the 
output of other software tools could potentially 
be transformed to CICERO format. The Arriba 
software package also comes with its own visual-
ization tool, which can be either automatically 
run or separately invoked with an included R 
script, draw_fusions.R. Although not interactive, 
Arriba visualization software produces publica-
tion quality pdf images, including Circos plot 
representations of fusion events (Fig.  9.4). The 
straightforward images produced provide most of 
the key information necessary for evaluating the 
impact of a given fusion event, including read 

support and indication of which protein domains 
are retained in the fused product. One drawback 
is that only a single annotated transcript is 
selected for visualization, although it is possible 
to compel the use of an alternate transcript by 
providing annotation that elevates the priority of 
the desired transcript. Additional visualization 
options are provided by shinyFuse, published as 
part of the recently published annoFuse applica-
tion [17].

 Available Fusion Detection 
Software

What follows is by no means an exhaustive list-
ing of the many RNA-seq-based fusion detection 
tools. Rather, a curated list of tools is discussed 
that the author has personally observed to pro-
vide a reasonable balance of ease of deployment, 
run times, and, critically, combination of sensi-
tivity and specificity. For a comprehensive exam-
ination of the performance attributes of numerous 
available packages, relative performance of 23 
available software packages was extensively 
reviewed recently in [13]. Although both labora-
tory technologies and analytical approaches will 
rapidly date any specific suggestions, the tools 
listed in Table 9.2 are recommended for consider-
ation when developing a fusion workflow.

 Selections from Available Software

The tools listed in Table  9.2 all employ some 
combination of the strategies outlined in section 
“Fusion Detection Strategies”, although with dif-

Table 9.1 Public fusion annotation resources

Resource Website
Tumor fusion gene data portal https://www.tumorfusions.org/
ChimerDB http://www.kobic.re.kr/chimerdb/
Mitelman database https://mitelmandatabase.isb- cgc.org/
FusionGDB https://ccsm.uth.edu/FusionGDB/
Fusion hub https://fusionhub.persistent.co.in/
Archer quiver http://quiver.archerdx.com/
COSMIC fusion resource https://cancer.sanger.ac.uk/cosmic/fusion
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ferences in implementations, points of emphasis, 
and methods for evaluating and ranking final can-
didates. One notable exception here is Pizzly, 
which begins with a k-mer-based pseudo- 
alignment approach, resulting in rapid run times 
and relatively low resource requirements (https://
github.com/pmelsted/pizzly). Despite incurring a 
penalty of reduced sensitivity [13], its relatively 
low resource requirements make it an excellent 
candidate for addition to ensemble fusion work-

flows described in the next section, where it can 
provide additional support for fusions detected 
by one or more independent applications. One 
additional caveat, however, is that development 
on Pizzly has not been active for >3 years, and it 
may be increasingly difficult to port to newer 
genome releases and/or annotation sets. STAR- 
Fusion, Arriba, and DRAGEN-RNA stand out as 
well-rounded applications, offering a good bal-
ance of speed and sensitivity. FusionCatcher and 

Fig. 9.4 Arriba viewer visualization of ETV6-RUNX1 
fusion. An example ETV6-RUNX1 fusion event is 
depicted to demonstrate Arriba view output. In the upper 
portion of the image, the location of the fusion breakpoint 
is depicted with respect to each parent gene. Coverage 

information is simultaneously overlayed to aid in evi-
dence interpretation. In the lower portion of the figure, the 
number of supporting reads is provided, along with a 
depiction of the domains retained in the final fusion 
product

Table 9.2 Selected fusion detection software

Resource Reference
Arriba [14]
CICERO [5]
DRAGEN-RNA Illumina
FusionCatcher https://github.com/ndaniel/fusioncatcher
Pizzly https://github.com/pmelsted/pizzly
STAR-fusion [15]
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CICERO excel at detecting non-canonical fusion 
events often missed by alternative tools, with 
CICERO additionally targeting ITD events that 
are important in a number of cancers. The poten-
tial downside of the latter two applications is that 
they tend to be more resource-intensive and incur 
longer run times than some of the other candi-
dates. The CICERO authors have made a cloud- 
based version of their tool available in order to 
partly mitigate this issue and provide a dynamic 
fusion viewer, FusionEditor, adding value to 
availability of CICERO output [5]. With the 
exception of Pizzly, the above software packages 
can perform fairly well on their own. Nevertheless, 
it is highly recommended that one or more be run 
in combination as part of an ensemble approach, 
such as that described in the next section.

 Ensemble Strategies

In some respects, most modern fusion detection 
software employs a type of ensemble strategy, 
combining evidence from multiple, independent 
algorithmic approaches to identify and assess 
candidate fusions. This is particularly true with 
software such as FusionCatcher, which uses mul-
tiple independent alignment tools and a diverse 
array of heuristics. The ensemble strategies dis-
cussed in this section, however, take the process 
still further by independently running different 
fusion detection tools and then combining the 
resulting information to determine fusion sup-
port. Such ensemble efforts are not new and have 
been successfully employed for snv-indel calling 
[16]. The two principal disadvantages of ensem-
ble strategies are that they expand the number of 
computational resources required, typically 
resulting in longer run times. The other is that, 
depending on the method of evidence combina-
tion, an ensemble workflow can easily magnify 
RNA-seq fusion detection’s already substantial 
with excessive numbers of predicted fusions. A 
simple union of results, for example, would 
vastly increase the number of potential candi-
dates and, without further refinement, prove 
untenable for downstream interpretation. In con-
trast, requiring multiple callers to support a given 

event could err in being overly conservative, 
missing legitimate fusions by failing to capitalize 
on the possible strength of one caller in a particu-
lar edge case. For any in-house workflow devel-
opment, a customized mechanism for weighing 
output from different aligners and prioritizing 
results may be required. Efforts continue to be 
made in the arena of fusion. One notable example 
of an existing ensemble fusion caller is the nf- 
core/rna-fusion workflow (https://doi.
org/10.5281/zenodo.1400710), based on the 
Nextflow domain-specific language (https://
www.nextflow.io/). As the deployment of multi-
ple software tools in a local high performance 
computing environment can is not always a 
smooth or simple process, nf-core/rna-fusion 
offers a container-based approach that is amena-
ble to several popular commercial cloud systems 
(e.g., AWS, Google Cloud, and Microsoft Azure). 
The application also includes additional tools for 
combining and visualizing fusion evidence. 
While the specific tools used in the standard dis-
tribution may not be appropriate for all testing 
scenarios, the open-source framework provided 
can serve as a springboard for established custom 
workflows using alternative detection tools. Due 
to the complexity of the RNA-seq fusion detec-
tion, with no one algorithm or application able to 
accommodate the full range of calling challenges, 
the pursuit and refinement of new ensemble 
workflows will continue to develop.

 Conclusion

Comprehensive fusion screening remains a team 
effort, with no existing software able to regularly 
yield results that are directly amenable to clinical 
interpretation without significant prior human 
curation. Local bioinformatics personnel are typ-
ically required to prioritize and assess the techni-
cal merit of fusion evidence for particular events 
before passing candidates on to molecular pathol-
ogists or clinicians for further evaluation and 
clinical interpretation. The number of candidates 
generated by the typical whole transcriptome 
workflow can be daunting. The process of assess-
ing technical support for fusions is, however, 
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greatly facilitated by the availability of support-
ing DNA evidence from WGS for cross- reference. 
The financial, technical, and personnel resources 
required for combined RNA-seq and WGS analy-
sis remain a substantial barrier to widespread 
adoption of the parallel approach, but the benefits 
are nevertheless evident [10]. Even with known 
limitations, whole transcriptome sequencing nev-
ertheless represents a game-changing advance in 
oncogenic fusion screening. Testing facilities can 
achieve greater efficiencies, combining multiple 
tests into a single procedure, and patients with 
rarer fusion lesions will be better served. RNA- 
seq is nevertheless not without its limitations, and 
it remains only one component of an overall test-
ing ecosystem. Information from parallel labora-
tory testing, such as cytogenetics and 
immunohistochemistry, can be used to both cor-
roborate RNA-seq results and raise flags when a 
potential fusion may be missed. As both labora-
tory and computational technologies improve, 
RNA-seq-based fusion screening, with or with-
out accompanying whole genome sequencing, is 
expected to increasingly become the method of 
choice for oncogenic fusion screening.
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Computational Resources 
for the Interpretation of Variations 
in Cancer
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Alfredo Ferro, and Alfredo Pulvirenti

Abstract

A broad ecosystem of resources, databases, 
and systems to analyze cancer variations is 
present in the literature. These are a strategic 
element in the interpretation of NGS experi-
ments. However, the intrinsic wealth of data 
from RNA-seq, ChipSeq, and DNA-seq can 
be fully exploited only with the proper skill 
and knowledge. In this chapter, we survey rel-
evant literature concerning databases, annota-
tors, and variant prioritization tools.

 Introduction

Experiments from Next-Generation Sequencing 
(NGS) technologies, such as RNA-Seq, ChipSeq, 
and DNA-Seq, represent a common ground for 
most of the research conducted in biomedical 
laboratories, and the literature describing molec-

ular variants and their associated treatments is 
growing rapidly. A downside of such experiments 
is the vast amount of data they produce. DNA- 
Seq experiments, for example, produce an enor-
mous amount of variants that need to be 
interpreted to identify potential disease causal 
genes and driver or passenger mutations. 
Furthermore, many somatic alterations identified 
by whole-exome and gene panel sequencing are 
likely passenger events with no influence on the 
patient’s prognosis or response to therapy.

Molecular pathologists need to summarize 
their findings on molecular reports without exten-
sive literature curation. To help them, the 
Association for Molecular Pathology [1], the 
American Society of Clinical Oncology [2], and 
the College of American Pathologists [3] (AMP/
ASCO/CAP) have published structured somatic 
variant clinical interpretation guidelines that spe-
cifically address diagnostic, prognostic, and ther-
apeutic implications.

Moving in this direction, many tools and data-
bases have been released. Variant explanatory 
databases usually provide information ranging 
from gene and phenotype descriptions to patho-
genicity assessment, treatment, and drug 
resistance.

This chapter reviews the resources to interpret 
variations in cancer, focusing on databases, anno-
tators, and variants prioritization tools. In partic-
ular, the Databases section provides a 
comprehensive survey of resources used to anno-
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tate the variants with essential information, such 
as their druggability, their interpretation, and 
their importance in a specific disease. The 
Annotator section gives a close look at the anno-
tation tools, which are strategic resources to auto-
matically and reliably annotate variants. The 
chapter ends with the Variant Prioritization sec-
tion, which introduces several tools used for vari-
ant prioritization and their applications to 
elucidate the pathogenicity of variants in cancer.

 Databases

In this section, we describe variant annotation 
resources and databases available in the litera-
ture. We provide a brief description for each 
resource with the details on how to access the 
data (Table 10.1).

 VICC Project

The Global Alliance for Genomic and Health 
(GA4GH) [4] is an international, nonprofit alli-
ance formed in 2013 to accelerate the potential of 
research and medicine to advance human health. 
It brings together 500+ leading organizations 
working in healthcare.

Since variant databases were often redundant 
and with a limited-access, this alliance aimed at 
allowing secure sharing of genomic and health 
data to boost advances in knowledge. In 2016, it 
supported the creation of the VICC (Variant 
Interpretation for Cancer Consortium) project 
[5]. This project brings together the institutions 
that are developing cancer variant interpretation 
databases.

The most crucial objective of the VICC proj-
ect is to increase the confidence of the variant to 
avoid redundancy and fill the gaps. The institutes 
need to have permissive licenses to share the vari-
ant interpretations. Notwithstanding, at the 
beginning of the project, the variants used were 
derived from published findings. Now, they pro-
vide comprehensive reports of clinically relevant 
variants along with their diagnostic, prognostic, 
and treatment data in patients. Data can be bulk 

downloaded or searched through proper APIs or 
web interfaces equipped with query systems.

 CIViC

Clinical Interpretation of Variants in Cancer [6] 
(CIViC) is an open-source database. It was first 
released in 2015 to centralize variant informa-
tion. The database consists of data concerning the 
therapeutic, prognostic, diagnostic, and predis-
posing relevance of inherited and somatic vari-
ants of all types.

The clinical interpretations are displayed for a 
specific gene, variant, disease, and clinical action. 
Each clinical interpretation is annotated with an 
evidence type and an evidence level. The former 
denotes whether a variant is predictive of 
response to therapy, prognostic, diagnostic, or 
predisposing for cancer. The latter indicates 
whether a variant has an established clinical util-
ity from a case study, has preclinical evidence, or 
represents only inferential evidence.

The database provides five different evidence 
levels: (i) A—Validated association: those which 
have proven/consensus associations in human 
medicine. (ii) B—Clinical evidence: associations 
supported by clinical trials or other primary 
patients data. (iii) C—Case study: variants found 
in case reports from clinical journals. (iv) 
D—Preclinical evidence: associations supported 
by in vivo or in vitro models. (v) E—Inferential 
association: indirect evidence.

Curators determine the variants, and editors 
review them. To be accepted, every variant sub-
mitted requires the agreement between at least 
two independent contributors, where at least one 
has to be an expert editor. CIViC also accepts 
public contributions, but these need to be con-
trolled and revised wisely by experts.

Furthermore, a panel of clinical domain 
experts provides independent guidance on the 
resource’s development and accuracy.

The latest release of the database at the time of 
writing, contains 2587 variants, 431 gene muta-
tions, and 455 drugs for 7570 evidence items. 
Additional variant information is imported from 
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other resources such as ClinVar [7], COSMIC [7, 
8], and ExAC [9].

CIViC offers APIs allowing its integration into 
clinical reports for gene panel, exome, whole- 
genome, and RNA sequencing of a tumor. 
Moreover, through https://civicdb.org/releases, it 
is possible to download directly nightly and 
monthly releases both as TSV and VCF files.

The database is now part of the VICC project 
to ensure long-term sustainability and coopera-
tion with other databases.

 PharmGKB

Pharmacogenomics Knowledgebase 
(PharmGKB) [10, 11] is a resource that collects 
curated information about the following: (i) 
potentially actionable gene-drug association; (ii) 
pathways, which are evidence-based diagrams 
depicting the pharmacokinetics (PK) or pharma-
codynamics (PD) of a drug with relevant pharma-
cogenetic (PGx) associations; (iii) Clinical 
Guideline Annotations for drugs dosing guide-
lines, annotated drug labels, and genotype- 
phenotype relationship.

PharmGKB was created to help precision 
medicine efforts and understand how genetic 
variation contributes to different responses to 
drugs. Gene-drug-disease relationships are 
extracted from the literature using manual cura-
tion and natural-language-processing techniques. 
Every clinical annotation is linked to PubMed 
identifiers.

The PharmGKB databases were built to pro-
vide a freely available collection of high-quality 
genotypic and phenotypic data retrieved from 
pharmacogenetics and pharmacogenomics 
studies.

PharmaGKB pathways are drug centered to 
highlight how interacting genes can affect both 
drug metabolism and drug response.

Like in CIViC, each clinical annotation is 
associated with a level of evidence score that 
measures the association’s confidence as deter-
mined by the PharmGKB curators. This score is 
based on existing replication of the association in 
connection to a p-value, odds ratio, and other rel-

evant indexes. There are different levels of 
annotations.

• Level 1A is associated with variants for which 
the PharmGKB staff is aware of clinical 
implementation tests or deployments.

• Level 2 annotations are for variant-drug com-
binations with moderate evidence of an asso-
ciation. In particular, level 2A is for VIP (Very 
Important Pharmacogene) genes that are well 
documented.

• Level 3 annotations are based on a single sig-
nificant study for a variant-drug combination 
or variant-drug annotation evaluated in multi-
ple studies but lacking clear evidence of an 
association.

• Level 4 annotations are based on a case report, 
on a biologically plausible study even if it 
does not achieve significance, or is based on 
in  vitro, molecular, or functional assay 
evidence.

For the variants with no associations in the lit-
erature, no clinical annotations are reported.

PharmGKB supports several clinically rele-
vant projects, like the Clinical Pharmacogenetics 
Implementation Consortium (CPIC) that pro-
vides drug-dosing guidelines based on the indi-
vidual genotype.

The PharmGKB web site, http://www.phar-
mgkb.org, provides genotype, molecular, and 
clinical knowledge integrated into pathway rep-
resentations and Very Important Pharmacogene 
(VIP) summaries with links to additional external 
resources.

Some information contained in the database is 
retrieved from other repositories, like drug names 
and structures from Drugbank [12], and gene 
symbols and names from the Human Genome 
Nomenclature Committee (HGNC) [13].

PharmGKB provides an interactive interface 
that allows inspecting pathway information, 
genes, and related drugs that can be downloaded 
and used in pathway analysis. Currently, it con-
tains 149 curated pathways. Every pathway pres-
ents a summary to describe the pathway graphics’ 
content, limitations, and controversial features 
that are not shown in the representation. The rep-
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resentation is a consensus of the opinions of the 
authors. Currently, these pathways are con-
structed by hand as graphic images.

 OncoKB

OncoKB is a comprehensive precision oncology 
database and is part of the VICC project. It is 
publicly available through an interactive website 
and integrated into the cBioPortal [13–15] for 
cancer genomics. Genomic alterations are anno-
tated with their biological effects and clinical 
implications.

OncoKB supports treatment decisions col-
lected by oncologists, evidence-based informa-
tion about individual somatic mutations and 
structural alterations. The content of OncoKB is 
supervised by a physician and cancer biologists. 
Moreover, thanks to a continuous dialogue with 
the scientific and medical community, it inte-
grates clinical best practices.

OncoKB includes biological, clinical, and 
therapeutic information curated from multiple 
unstructured information resources, including 
guidelines and recommendations derived from 
FDA (Food and Drug Administration) labeling, 
NCCN (National Comprehensive Cancer 
Network) guidelines [16], other disease-specific 
expert and advocacy group recommendations, 
and the medical literature.

It also stores information about FDA-approved 
therapies, drugs under evaluation in clinical tri-
als, and data about negative clinical results for 
specific drug-biomarker pairs.

The information is organized by gene, altera-
tion, tumor type, and clinical implications. 
OncoKB contains 5293 alterations and 682 
genes.

It comprises a system of evidence classifica-
tion levels that communicates the mutation’s 
clinical utility to the user depending on tumor 
origin.

The evidence is organized into the following 
levels:

• Level 1 includes genes for which the FDA has 
recognized specific alterations as predictive of 

response to an FDA-approved drug for a par-
ticular disease context.

• Level 2A includes alterations that are not 
FDA-recognized biomarkers but are consid-
ered standard-of-care predictive biomarkers of 
response to an FDA-approved therapy in spe-
cific cancer types. These alterations are high-
lighted in the expert panel guidelines, such as 
the NCCN Compendium or ASCO Clinical 
Practice Guidelines. Level 2A associations 
involve rare cancer types or small sub- 
populations of common cancers and therefore 
unsuitable for randomized phase III clinical 
studies.

• Level 2B includes alterations that are standard 
predictive biomarkers of drug sensitivity in 
other tumor types.

• Level 3A includes mutations that are candi-
date predictive biomarkers of drug response 
based on off-label use of FDA-approved drugs 
or investigational agents not yet FDA- 
approved for any indication.

• Level 3B applies to all tumor types for which 
clinical activity of an off-label drug has not 
been yet reported.

• Level 4 alterations are candidate predictive 
biomarkers of response to either FDA- 
approved or investigational agents based on 
promising laboratory research data but no rel-
evant and robust clinical data.

A second type of classification, related to 
therapy- resistant mutations with three levels of 
evidence, is also available:

• Level R1 includes mutational events associ-
ated with drug resistance.

• Levels R2 and R3 include alterations that have 
hypothetical therapeutic implications and 
alterations predictive of drug resistance based 
on clinical or biological data, respectively. 
However, their usage in guiding treatment 
decisions is still considered investigational.

The majority of the alterations in OncoKB 
have curated biological effects and are classified 
as oncogenic, but their actionability is unknown.

10 Computational Resources for the Interpretation of Variations in Cancer
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It is possible to leave suggestions for new 
alterations analyzed by the scientific team of 
OncoKB and potentially integrated into the 
database.

Through the VICC project, OncoKB partici-
pates in both ClinGen [17] and the Global 
Alliance for Genomic Health (GA4GH) to pro-
mote harmonization of variant annotation.

All the alterations presented in the database 
are identified by their recurrence, from public 
variant databases, and by prior knowledge avail-
able in the literature. Biological and clinical ther-
apeutic implications of alterations are curated 
from several public resources, including disease- 
specific treatment guidelines, abstracts from 
major conference proceedings, such as ASCO, 
European Society For Medical Oncology 
(ESMO) [18], and American Association for 
Cancer Research (AACR) [19], and the scientific 
literature through PubMed.

 DoCM: Database of Curated 
Mutations in Cancer

DoCM is a cancer mutation open-source data-
base. It helps the research community to aggre-
gate, store, and track biologically important 
cancer variants. DoCM facilitates the aggrega-
tion of gene/variant information for variants with 
prognostic, diagnostic, predictive, or functional 
roles.

DoCM is licensed under the Creative 
Commons Attribution license (CC BY 4.0), 
allowing academic and industry researchers to 
freely access the content.

New variants can be added to DoCM, but they 
must be formatted and standardized. After sub-
mission, they are reviewed and evaluated by 
DoCM editors for inclusion. DoCM provides 
easy access to a current and accurate list of func-
tionally important cancer variants with clear 
provenance, based on peer-reviewed journal cita-
tions. The content of DoCM may be accessed 
through a web interface or a documented applica-
tion programming interface (API).

The data model and batch submission process 
used by DoCM places it at a critical intersection 

between the two major trade-offs of curated 
resources: comprehensiveness of variants and 
curation burden.

To be included in DoCM, variants need to be 
supported by peer-reviewed literature or expert 
opinions indicating their relevance to cancer or a 
cancer subtype. Furthermore, variants, single 
nucleotide substitutions (SNSs), and insertions 
and deletions (indels) should have published evi-
dence of clinical relevance, such as prognostic, 
diagnostic information, or response data for tar-
geted therapies.

Additionally, variants whose etiology in can-
cer has been established by functional experi-
mentation, in either cell lines or model organisms, 
are included. Finally, variations that have been 
observed in large-scale sequencing efforts as 
being significantly associated with a particular 
cancer type are included in the resource.

DoCM currently holds 1364 variants of 132 
genes across 122 cancer subtypes, based on 876 
publications.

 PMKB

The Precision Medicine Knowledge Base 
(PMKB) is a database of variant interpretation 
for oncology developed at Weill Cornell in col-
laboration with pathologists. All accepted inter-
pretations need to be approved by a board of 
molecular pathologists. The PMKB interpreta-
tions can be accessed either directly using a web 
interface or through an API. PMKB is designed 
to provide data granularity to automatize the 
retrieval of interpretations and provide a conve-
nient experience for pathologists.

Every interpretation in PMKB requires three 
associations: gene-variant descriptions, cancer 
and tumor-type descriptions, and tissue-type 
descriptions. Each interpretation includes the 
textual interpretation supported by literature and 
a numeric level indicating how clinically action-
able the interpretation is. The variants are 
described using the Human Genome Variation 
Society (HGVS) standards, using the gene and its 
associated variant categories like SNVs, copy 
number alterations, and gene fusions. SNV and 
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indels can be described through protein-change 
and DNA-change notation or the gene region- 
based description. Gene regions can be further 
divided into specific codons, specific exons, and 
the entire gene.

PMKB automatically retrieves specific gene 
region information from Ensembl based on 
Ensembl’s canonical transcript for a gene and its 
GRCh37-based API.

Separating variant descriptions into discrete 
fields facilitates the process of matching them 
against existing annotations. PMKB’s API takes 
a variant’s HGVS protein notation as input and 
matches that variant against multiple levels of 
variant descriptions, returning all relevant inter-
pretations. These matches are classified in order 
of their specificity.

The user can choose a specific tumor type and 
tissue type for which interpretations are returned. 
The PMKB possesses a multi-user interface for 
entering, editing, browsing, and querying vari-
ants. The user can search any gene symbol or 
enter a COSMIC Gene ID. Once a gene is cho-
sen, the user can select the variant type and other 
mutation details. Once the user submits the vari-
ant, PMKB adds region information using the 
Ensembl’s API.

The interface for entering interpretations 
allows users to first select from any gene in 
PMKB that has at least one variant description. 
This feature dramatically facilitates applying a 
single interpretation to many variants. It also 
allows the user to easily modify an existing inter-
pretive comment and apply newly edited com-
ments to one or more variants for a gene. Every 
variant needs at least one PubMed citation. 
PMKB contains 2247 alterations for 610 genes.

PMKB has three different user levels:

• A high-level “approver,” who can review and 
approve others’ entries; this role is reserved to 
the PMKB’s molecular pathologists.

• Standard users, who can submit edits that 
must be approved and eventually modified by 
the approver pathologist.

• Guests who cannot make changes.

All interpretations are available free of charge 
to the community under the Creative Commons 
Attribution 4.0.

 CGI

Cancer Genome Interpreter (CGI) [20] is a free 
platform that annotates all tumor variants that 
constitute state-of-the-art biomarkers of drug 
response organized using other clinical evidence. 
It comprises 5601 validated oncogenic altera-
tions, 1631 biomarkers of drug response, and 765 
cancer genes. It is continuously updated by a 
board of medical oncologists and cancer genom-
ics experts. It is available through an API or a 
web interface. The catalog was obtained using 
various resources such as manually curated 
resources, literature, and bioinformatic analysis 
of large tumor cohorts. Each gene is annotated 
with its mode of action in tumorigenesis based on 
experimentally verified sources or in silico 
prediction.

Each entry includes the name of the driver 
gene, the disease(s) it drives, the alteration type, 
the source of this information, the context in 
which these alterations are tumorigenic, and the 
gene mode of action in cancer. The CGI platform 
with its catalog identifies all known and likely 
tumorigenic genomic alterations and annotates 
the ones that constitute state-of-the-art biomark-
ers of drug response, organizing them based on 
clinical evidence.

CGI provides user-friendly reports. With a 
pan-cancer cohort of 6792 tumors sequenced, the 
CGI authors noted that only 5360 (916 unique 
variants) of the 44,601 protein-affecting muta-
tions (PAMs) found in cancer genes appear in 
this catalog. In other words, 88% of all PAMs 
that affect cancer genes in this cohort are cur-
rently of uncertain significance for 
tumorigenesis.

Furthermore, CGI assesses the unknown vari-
ants’ tumorigenic potential, especially for the 
genes that are therapeutic targets, using 
OncodriveMut, a bioinformatics method to iden-
tify the most likely driver mutations of a tumor.

10 Computational Resources for the Interpretation of Variations in Cancer
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CGI annotates the mutations that affect cancer 
genes, identifying the most likely drivers among 
the unknown significance variants. It uses four 
databases, with the former two exploring the 
associations between gene alterations and drug 
response, and with the latter two exploring the 
genes tumorigenesis:

 1. The Cancer Biomarkers database is a database 
that is currently being integrated with knowl-
edge databases of other institutions in a col-
laborative effort of the Global Alliance for 
Genomics and Health.

 2. The Cancer Bioactivities database contains 
information about 20,243 chemical 
compound- protein product interactions that 
may support novel research applications.

 3. The Catalog of Validated Oncogenic 
Mutations is a compiled inventory of muta-
tions in cancer genes demonstrated to drive 
tumor growth or predispose to cancer. It was 
built combining the DoCM, ClinVar, and 
OncoKB databases plus published experimen-
tal assays and manually curated results. It also 
includes germline mutation from ClinVar and 
IARC that predispose to cancer.

 4. The Catalog of Cancer Genes collects the 
genes driving tumorigenesis in several cancer 
types through a specific alteration (e.g., gene 
translocation). These genes are supported by 
validated data or computational predictions. 
This information is aggregated from the 
Cancer Gene Census [20, 21] and a manual 
curation effort. The computational predictions 
are made using tools included in the IntOGen 
resource [20–22].

CGI matches the alterations observed in newly 
sequenced tumors to the biomarkers or target 
genes in these two databases.

The CGI also reports co-occurring alterations 
that affect the response to a given treatment as 
appropriate, including the co-existence of resis-
tance or sensitivity biomarkers and biomarkers of 
drug sensitivity that depend upon simultaneous 
genomic events.

CGI can identify between 5.2% and 3.5% of 
the tumors with genomic alterations that are bio-

markers of drug response with high evidence lev-
els. If we consider biomarkers with low levels of 
evidence, CGI can identify 62% of tumors with at 
least one of these biomarkers. So CGI can help 
the process of decision-making for the therapies 
of a patient.

 Databases Consensus

Figures 10.1, 10.2, 10.3, and 10.4 show the con-
sensus among the different databases. We observe 
that the databases have few genes in common. 
This heterogeneity is due to several factors such 
as the manual curation, the lack of name stan-
dardization, and the existence in PharmGKB of 
different disease associations other than cancer. 
For this reason, projects like VICC have been 
established, to represent and share harmonized 
interpretations.

 COSMIC

The Catalogue Of Somatic Mutations In Cancer 
(COSMIC) [8] is a resource for exploring the 
effect of somatic mutations in human cancer. The 
current version (v92) comprises 9,215,470 gene 
variants curated over 27,724 papers. It covers 
non-coding mutations, gene fusions, copy num-
ber variants, and drug-resistance mutations. It 
draws together information about somatic muta-
tions across human cancers, deriving it from 
expert manual curation of scientific literature. It 
catalogs all genes that are causally implicated in 
cancer through somatic and germline mutations. 
Since 2016, COSMIC includes drug-resistance 
genetics, annotating the novel somatic gene 
mutations that enable a tumor to evade therapeu-
tic cancer drugs.

COSMIC started in 2004 as a survey of only 
four genes. It now usually has four releases per 
year. It is complemented by additional datasets 
and tools like The COSMIC Cell Lines Project 
that comprises data from whole-exome sequenc-
ing and molecular profiling of 1015 cell lines at 
the Wellcome Sanger Institute and aims to char-
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acterize the genetics and genomics of cancer cell 
lines systematically.

COSMIC-3D is a tool that links the detailed 
sequence-level mutation data in COSMIC with 
the rich protein-structural data in the Protein 
Data Bank [23], facilitating structure, function, 
and druggability analysis.

The Cancer Gene Census (CGC) identifies 
every gene with a demonstrable role across all 
forms of human cancer and explains how dys-

function of these genes drives cancer. In CGC, a 
gene is classified as an oncogene, a tumor sup-
pressor gene (TSG), or both, or a fusion gene 
after an evaluation process. Moreover, the genes 
are classified into tiers depending on the strength 
of the evidence supporting their cancer- promoting 
role. The genes are classified as follows:

• Tier 1, if they present a mutational pattern that 
strongly supports their involvement in cancer 

Fig. 10.1 Database Gene Intersection

Fig. 10.2 Database Drug and Drug combination Intersection
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etiology. It requires the existence of at least 
two publications from two independent groups 
that describe somatic mutations in the gene in 
at least one type of cancer and at least two 
independent publications that provide evi-
dence of functional involvement of the gene in 
biological processes driving cancer.

• Tier 2, if they have extensive literature evi-
dence for their tumor development participa-
tion but have less robust evidence supporting 

mutational patterns or functional conse-
quence. The evidence must be assessed inde-
pendently by at least two postdoctoral 
scientists.

A section of CGC is also focused on func-
tional descriptions of cancer genes to character-
ize each gene’s impact on the ten hallmarks of 
cancer.

Fig. 10.3 Database Disease Intersection

Fig. 10.4 Database Gene-Variant Intersection
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COSMIC also includes a wide variety of valu-
able annotations related to patients’ clinical 
details, diseases, and treatment.

 ClinVar

ClinVar is an archive of human genetic variants 
and their relationships to human health and dis-
ease. It was created at the National Center for 
Biotechnology Information (NCBI) at the 
National Institutes of Health (NIH) to provide a 
centralized, public open-access database for data 
needed to help users interpret variants. It pro-
vides a freely available archive of reports of rela-
tionships among medically important variants 
and phenotypes. It gives interpretations of the 
variation in relation to human health and the evi-
dence supporting each interpretation. ClinVar 
was first released in November 2012. Its database 
is part of the NCBI’s Entrez system.

ClinVar aims to facilitate evaluating variant- 
phenotype relationships by archiving submitted 
interpretations of these relationships with support-
ing evidence, taking data from multiple groups 
such as laboratories to search for a consensus 
about the interpretation. ClinVar is mainly focused 
on variations that may be medically relevant. 
ClinVar depends on MedGen to represent pheno-
type, Gene to represent genes, and Human RefSeq 
to represent the location of sequence variation.

ClinVar’s data model is based on five major 
categories of content: submitter data for attribu-
tion, the definition of the variation, characteriza-
tion of the phenotype, evidence about the effect 
of variation on health, and interpretation of that 
evidence. Whenever possible, the content is 
highly structured rather than free text and is har-
monized to controlled vocabularies or other data 
standards.

Variations submitted to ClinVar are compared 
to variations accessed by dbSNP or dbVar. If 
known, ClinVar adds the rs- (dbSNP) or variant 
call identifier (dbVar) to the RCV record. If 
novel, the information is submitted to the appro-
priate variation database to be accessed so that 
the identifiers can be added to ClinVar.

 Annotators

Identified variants need to be annotated to iden-
tify which genes, transcripts, and genomic 
regions they belong to, in order to understand 
their impact and role in the tumor. It is then pos-
sible to establish whether a gene is an onco-driver 
or is involved in therapy response or resistance, 
and how deleterious the variant is for the patient.

Several tools, such as ANNOVAR [24], SnpEff 
[25], and Variant Effect Predictor (VEP) [26], can 
annotate sequencing variants (Tables  10.2 and 
10.3).

Table 10.2 Annotator comparison

Annovar Oncotator SnpEff/SnpSift VEP Funcotator
Input VCF VCF, MAF VCF, BED VCF VCF
Output VCF, TXT VCF, TSV, 

MAF
VCF VCF VCF, MAF

Human supported 
genome versions

NCBI36, GRCh37, 
GRCh38

GRCh37 GRCh37, 
GRCh38

GRCh37, 
GRCh38

GRCh37, 
GRCh38

Web interface YES, wAnnovar Dismissed YES, in 
Galaxy

YES, Ensembl 
Tools

Available 
through GATK

Language Perl Python Java Perl Java
Research Availability Registration 

required
Free Free Free Free

Commercial 
Availability

License required NO Free Free Free
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Table 10.3 Annotator databases

Annovar Oncotator Funcotator VEP SnpEff/SnpSift
RefSeq ✓ ✓ ✓ ✓
UCSC Known Gene ✓ ✓ ✓
Ensembl gene ✓ ✓ ✓ ✓
GENCODE ✓ ✓ ✓ ✓ ✓
Epigenome Roadmap ✓
ESP ✓
CCLE ✓
TFBS Transcription factor binding site 
predictions

✓

NextProt ✓
UniProt ✓ ✓
HGNC ✓
COSMIC ✓ ✓ ✓ ✓
Cancer Gene Census ✓ ✓
Familiar Cancer Database ✓
HGMD-Public ✓
Oreganno ✓
Clinvar ✓ ✓ ✓ ✓ ✓
Intervar ✓
Exac ✓ ✓ ✓
1000Genome ✓ ✓ ✓ ✓
Kaviar ✓
NCI-60 ✓
dbsnp ✓ ✓ ✓ ✓
GnomAD ✓ ✓
NHLBI-ESP ✓
SIFT ✓ ✓ ✓ ✓
PolyPhen2 ✓ ✓ ✓ ✓
LRT ✓ ✓ ✓
MutationTaster ✓ ✓ ✓ ✓
PhyloP ✓ ✓ ✓
MutationAssessor ✓ ✓
GERP++ ✓ ✓ ✓ ✓
MetaSVM ✓
MetaLR ✓
CADD ✓ ✓
DANN ✓
fitCons ✓

(continued)
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 ANNOVAR

ANNOVAR (Annotate Variation) [24–27] is a 
well-known open-source command-line software 
developed as a configurable, flexible, updated, 
and cross-platform annotator to overcome all 
common problems arising after an NGS 
analysis.

It takes a VCF file and annotates it using sev-
eral built-in or user-generated databases. 
ANNOVAR modifies the VCF file to include col-
umns representing the chromosome, start posi-
tion, end position, the reference nucleotide(s), 
and the observed nucleotide(s). The user can also 
supply additional columns that will be printed 
out in the output files.

When the user downloads ANNOVAR, he 
needs first to download gene datasets and specify 
the genome version (hg18, hg19, or hg38).

ANNOVAR can perform three types of anno-
tations: (i) gene-based annotation, (ii) region- 
based annotation, and (iii) filter-based 
annotation.

In the gene-based annotation, ANNOVAR 
splits the variant in intronic, exonic, intergenic, 
5’-3’-UTR, splicing site, and upstream/down-
stream. For intergenic variants, the closest two 
genes and the distances between them are 
reported. Another file is created for the exonic 
variants, which are classified as frameshift inser-
tion/deletion/block substitution, stop-gain, stop- 
loss, non-frameshift insertion/deletion/block 
substitution, non-synonymous SNV, synonymous 

SNV, and unknown. It also reports the amino acid 
change.

The databases for gene-based annotation are 
RefSeq gene annotation, UCSC Known Gene, 
and Ensembl Gene annotation.

The region-based annotation refers to specific 
elements like conserved genomic regions, pre-
dicted transcription factor binding sites, pre-
dicted microRNA target sites, and predicted 
stable RNA secondary structures. The filter-based 
annotation consists of the comparison between 
the database and the user VCF. It produces two 
output files: one with the variants common to 
both the database and the VCF, and one with the 
variant existing only in the VCF file. The user can 
also decide to filter these variants by frequency 
(MAF—Minor allele frequency) or by SIFT [28] 
(Sorting Intolerant From Tolerant) score. The for-
mer is the frequency of the second most common 
allele in the population. It helps to differentiate 
between common and rare variants. The latter is 
the score predicting the consequence of an amino 
acid substitution on the protein function.

The databases available for variant filtering 
are 1000 Genomes Project dataset [29], with 
allele frequency in six populations; Kaviar data-
base [30] which contains a collection of variants; 
the Haplotype Reference Consortium (HRC) [31, 
32]; Allele frequency in 69 human subjects 
sequenced by Complete Genomics [33]; Allele 
frequency in Genome Aggregation Database 
(gnomAD) [34]; Latest Exome Aggregation 
Consortium (ExAC) dataset [35]; Latest NHLBI- 
ESP [36] project with 6500 exomes; GME 

Table 10.3 (continued)

Annovar Oncotator Funcotator VEP SnpEff/SnpSift
GWAS ✓
Condel ✓
FATHMM ✓ ✓ ✓
SiPhy ✓ ✓ ✓
Interpro ✓
Haploinsufficiency ✓
PhastCons ✓ ✓
GWAVA ✓
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(Greater Middle East Variome) allele frequency 
[37, 38]; Abraom, 2.3 million Brazilian genomic 
variants [39, 40]; dbnsfp41 [41, 42]: this dataset 
includes deleteriousness prediction scores SIFT, 
PolyPhen2 HDIV, PolyPhen2 HVAR [43], LRT 
(Likelihood Ratio Test) [44], MutationTaster 
[45], MutationAssessor [46], FATHMM 
(Functional Analysis through Hidden Markov 
Models) [47], MetaSVM [48], MetaLR [48], 
VEST [49], CADD (Combined Annotation–
Dependent Depletion) [50], BayesDel_addAF 
and BayesDel_noAF [51], CADD_hg19 [50], 
ClinPred [52], DEOGEN2 [53], Eigen and Eigen 
PC [54], FATHMM-XF [55], GenoCanyon [56], 
LINSIGHT [57], LIST-S2 [58], M-CAP [59], 
MPC [60], MutPred [61], MVP [62], PrimateAI 
[63, 64], REVEL [65], SIFT4G [66], DANN 
(deleterious annotation of genetic variants using 
neural networks) [67], fitCons (fitness conse-
quence) [68], conservation scores GERP++ [69], 
PhyloP [70], SiPhy [71], phyloP17-way_primate 
[72], phastCons17way_primate [73] and bStatis-
tic [74], and one score for loss of function predic-
tion ALoFT [75]; dbscSNV [76] version 1.1 for 
splice site prediction by AdaBoost and Random 
Forest; ClinVar database; Intervar [77] helps in 
the variants clinical significance interpretation; 
COSMIC v70; International Cancer Genome 
Consortium [78, 79] version 21, only for hg19; 
and NCI-60 human tumor cell line panel exome 
sequencing allele frequency data [80] and snp142 
[81] (Single Nucleotide Polymorphisms), which 
is a public repository of variants with information 
about the type of mutation.

 Oncotator and Funcotator

Oncotator [82] is a command-line tool for cancer 
variant annotation, written in Python and recom-
mended for advanced users. It also has a web 
interface, providing both an interactive user inter-
face and a programmatic web service. Although 
it is still downloadable, it has been officially dis-
missed by the Broad Institute and superseded by 
Funcotator [83].

Oncotator can be included in automated pipe-
lines since the annotation options, selection of 

data sources, and file formats are flexible. It owns 
a bundle of cancer-relevant information that users 
can use in a single step.

Oncotator needs a file with the genomic posi-
tion, reference allele, and variant allele in VCF or 
TSV format.

To map variants to specific genes and classify 
them, Oncotator uses GENCODE [84]. The 
nomenclature follows the Human Genome 
Variation Society (http://www.hgvs.org/mut-
nomen) standards. Moreover, to identify com-
mon Single Nucleotide Polymorphism (SNP) 
variants (which are less likely to contribute to 
tumorigenesis), Oncotator utilizes data from 
dbSNP, 1000 Genomes Project [29], and National 
Heart, Lung, and Blood Institute’s Exome 
Sequence Project.

Oncotator has a unique feature. It can annotate 
variants with their local GC content and their sur-
rounding nucleotides to discover if these muta-
tions are biological processes or artifactual 
mutation biases, such as oxidation of guanine 
bases during sequencing library construction 
(OxoG). It can also annotate genomic variants 
with protein-specific annotations derived from 
UniProt human protein sequence records to pre-
dict cancer mutation’s functional impact. Protein 
annotations added include “region” (e.g., protein 
kinase domain), “site” (e.g., ATP binding site), 
“natural variation” (e.g., Y → F in Pfeiffer syn-
drome), and “experimental” (e.g., Y → F: 50% 
decrease in interaction with PIK3C2B) data.

Gene Ontology annotations are derived from 
UniProt records. These annotations are catego-
rized as biological process, cellular component, 
and molecular function. Furthermore, Drugbank 
annotation for small molecules that target the 
protein of interest is integrated. The database 
dbNSFP is used to make functional predictions.

Oncotator also annotates variants with several 
cancer-specific databases such as COSMIC, the 
Cancer Cell Line Encyclopedia, Cancer Gene 
Census, ClinVar, The Familiar Cancer Database, 
and a curated set of DNA repair genes. COSMIC 
is used to identify variants reported in published 
studies and reports their observed frequency 
across all cancers and within each tissue type, 
overlapping breakpoint, and fusion genes. The 
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Cancer Cell Line Encyclopedia is employed to 
observe if a variant has already been observed in 
a cell line.

Depending on the type of input, the output is 
in either MAF or VCF format.

Oncotator uses a three-stage workflow:

 1. Convert the input data into an internal model 
of mutations.

 2. Annotate the mutation objects with a collec-
tion of pre-processed data sources (which can 
be locus-, variant- or gene-specific).

 3. Render the mutations to the specified output 
format (VCF or MAF).

Oncotator has been superseded by Funcotator 
(FUNCtional annOTATOR). It analyzes variants 
for their function. The user can use their data 
sources to create a custom annotation. All the 
databases integrated in the tool can be down-
loaded in one step with the 
FuncotatorDataSourceDownloader.

Different from Oncotator, Funcotator supports 
both GRCh37 and GRCh38 genomes.

Funcotator requires as inputs a reference 
genome sequence and the VCF sample that needs 
to be annotated. It performs some processing on 
the input data to create the GENCODE annota-
tions. The output can be either a MAF or a 
VCF.  The output file contains all the variants 
from the input with added annotations.

 SnpEff and SnpSift

SnpEff [25, 85] (SNP effect) is a multi-platform 
open-source Variant Effect predictor program 
written in java able to analyze and annotate thou-
sands of variants per second. It supports different 
genome versions. VCF and BED are its primary 
input formats. Furthermore, the user can add cus-
tom genomes and annotations from multiple spe-
cies. SnpEff can also annotate non-coding genes.

The output is a VCF or a TXT file that includes 
the following:

 1. Variant information consisting of the genomic 
position, the reference and variant sequences, 

change type, heterozygosity, quality, and 
coverage.

 2. Genetic information consisting of the gene Id, 
gene name, gene biotype, transcript ID, exon 
ID, and exon rank.

 3. Effect information consisting of the effect 
type, amino acid changes, codon changes, 
codon number in CDS, codon degeneracy, etc.

A variant can have more than one line in the out-
put if more than one transcript exists.

Human genome versions GRCh37 and 
GRCh38 are supported. The variant annotation 
and filtering are supported through SnpSift, 
which can also calculate a conservation score 
annotation through phastCons. Like Funcotator, 
SnpEff adds annotation information to the INFO 
field of a VCF file.

The annotation information is divided into the 
following:

• Allele or ALT for multiple ALT fields.
• Annotation or effect.
• Putative impact or deleteriousness.
• Gene name, the HGNC name. If the variant is 

intergenic, the closest gene name is used.
• Gene ID.
• Feature type.
• Feature ID.
• Transcript biotype.
• HGVS.c and HGVS.p Variant using HGVS 

notation, respectively, in DNA level and pro-
tein level.

• cDNA position and length.
• CDS position and length.
• Protein position and length.
• Distance to feature.
• Errors, warnings, or information messages

The impact categories (high, moderate, or 
low) have to be carefully handled since they have 
been created only to simplify the filtering pro-
cess. Indeed, there is no way to predict whether a 
high or low impact variant produces the pheno-
type of interest.

SnpEff possesses the command-line option—
cancer that helps users to compare somatic and 
germline samples. Furthermore, when multiple 

10 Computational Resources for the Interpretation of Variations in Cancer



192

ALTs, somatic, and germline samples are in a 
VCF file of cancer data, they can be separated 
using a TXT file with the cancerSample 
command- line option or using the PEDIGREE 
meta information of the VCF header.

Furthermore, the tool performs some statisti-
cal analysis available as HTML or CSV. Another 
output is a TXT file that counts the number of 
variants affecting each transcript and gene.

There is also a commercial version of SnpEff 
& SnpSift, and it is called ClinEff [86]. It is con-
sidered more stable and suitable for clinical and 
production operations, while SnpEff/SnpSift are 
designed for research use.

 VEP

The Ensembl Variant Effect Predictor (VEP) [26] 
is a software suite that performs annotation and 
analysis of most genomic variation types in the 
genome’s coding and non-coding regions. It can 
annotate and prioritize variants with well-defined 
changes, such as SNVs, insertions, deletions, and 
larger structural variants. VEP returns detailed 
annotation for effects on transcripts, proteins, 
and regulatory regions for all input variants. For 
known or overlapping variants, allele frequencies 
and disease or phenotype information are 
included. VEP can be used for any species for 
which an assembled genome and an annotated 
gene set exist. For human, it supports both 
GRCh38 and GRCh37 assemblies. VEP results 
include a wide variety of gene and transcript- 
related information.

The leading database annotation for Ensembl 
is the GENCODE gene set. Ensembl transcripts 
are matched exactly to the reference genome 
assembly eliminating the potential errors in the 
annotation. If VEP is configured to use RefSeq, 
any mismatch is reported to remove possible 
interpretation confusion.

A variant may have more than one alternative 
non-reference allele and may overlap with more 
than one transcript or regulatory region. 
Therefore, to present the most comprehensive 
annotation, VEP reports one line (or unit) of 

annotation per variant alternative allele and 
genomic feature. When there is no robust anno-
tation of dominant transcript per tissue type 
available, VEP includes various data to filter 
transcript isoforms. Cross-references to known 
proteins in UniProt and the option to filter for 
variants in protein-coding transcripts are also 
included.

VEP also indicates the effect of the amino acid 
change using protein biophysical properties. It 
contains several pathogenicity predictor scores 
and conservation scores. The former are the data-
base SIFT for the Top-10 species in Ensembl, 
PolyPhen2 [43] for human proteins, Condel [87], 
FATHMM [47], and MutationTaster [45] for 
human data. GERP [88] and GWAVA [89], 
CADD [50], and FATHMM-MKL [90] are avail-
able as plugins.

The Ensembl Regulatory Build is used for 
regulatory region annotation. Additional data-
bases are dbSNP, COSMIC, the Human Gene 
Mutation Database, and the Genomic Variants 
archive for structural variants and copy number 
variants. The allele frequencies can be filtered 
using 1000 Genomes, NHLBI exome sequenc-
ing, and ExAC project.

Every variant annotated with VEP has a 
PubMed identifier, the disease or trait using 
OMIM, Orphanet, and the Genome-Wide 
Association Study (GWAS Catalog) [91]. ClinVar 
reports the clinical significance.

VEP uses an input VCF file. The output con-
sists of an HTML or TXT summary file and a 
primary results file in VCF, GVF, or JSON for-
mat. VEP is available through a web interface, a 
Perl script, or via the Ensembl API.

 Variant Prioritization

A typical NGS assay can detect thousands of 
genetic variants. However, many variants do not 
have a specific classification. Such variants are 
therefore called “Variant of Uncertain (or 
Unknown) Significance” (VUS). Many tools can 
prioritize these variants as Pathogenic or Benign. 
This process is known as “Variant prioritization” 
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or “Variant filtration.” Examples include VINYL 
[92], KGGSeq [93], and MutationDistiller [94]. 
These tools filter and evaluate variants using 
existing databases, creating a pathogenicity 
score. Some tools like GeneDistiller [95] and 
Endeavour [96] prioritize the full gene instead of 
the single variants.

Prioritization helps the clinicians to separate 
authentic disease-causing variants from others. 
Unfortunately, prioritization tools are not com-
monly used. Furthermore, many institutions 
apply different criteria and filters, limiting the 
reproducibility of the analysis.

 GeneDistiller

GeneDistiller can be used as a prioritization tool 
or together with other prioritization tools to dis-
play rich information on human candidate genes. 
It offers users different approaches such as 
Projection, Selection, Sorting, and Prioritization. 
In the first approach, the user chooses the genes 
of interest. In the second, the user applies filters 
to the genes reducing them to a smaller group. In 
the third approach, the genes are sorted according 
to certain parameters. The fourth approach, the 
prioritization one, offers a function that ranks 
genes according to the researcher’s specifica-
tions. These methods can be combined. 
GeneDistiller can be used through a web user 
interface on http://www.genedistiller.org/.

 Endeavour

Endeavour forecasts the most promising candi-
date genes implicated in a disease. Differently 
from GeneDistiller, it executes gene prioritiza-
tion for six species (Homo sapiens, Mus mus-
culus, Rattus norvegicus, Drosophila 
melanogaster, Caenorhabditis elegans, and 
Danio rerio). The prioritization requires four 
stages: choosing the species, preparing a list of 
genes already associated with the disease of 
interest, picking data sources to use for the pri-

oritization, and finally defining the candidate 
genes. The output is a list of the genes ordered 
by prioritization with a p-value derived from 
the combination of rankings. Endeavour can be 
used through a web user interface on https://
endeavour.esat.kuleuven.be/.

 MutationDistiller

MutationDistiller prioritizes monogenic disease 
variants with the help of GeneDistiller. It filters 
the polymorphisms using ExAC and 1000Genome 
and uses ClinVar to identify known disease- 
causing mutations. After the analysis, 
MutationDistiller presents a prioritized list of the 
most likely candidate variants with information 
about them and their genes downloaded as a sum-
mary table. The table shows the variant in class; 
therefore, the user can focus on certain 
alterations.

 VINYL

VINYL derives a pathogenicity score aggregat-
ing various public databases. The idea behind the 
tool’s construction is that affected individuals 
have an excess of the deleterious variant with 
respect to a matched population of unaffected 
individuals. The tool is highly flexible, permit-
ting the incorporation of different types of anno-
tation and resources.

 KGGSeq

KGGSeq performs an analysis procedure for the 
discovery of human Mendelian disease genes 
combining filtration and prioritization functions. 
It filters and prioritizes the variants at three lev-
els, genetic, variant-gene, and knowledge, 
according to the resource used. Like 
MutationDistiller, it filters out common variants 
using public databases, such as 1000Genome, 
and the allele frequency threshold.
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 Pathogenicity Predictors

The pathogenicity of a variant within protein- 
coding transcripts can be assessed and assigned a 
score by several tools.

 Tools for Functional Prediction Scores

SIFT uses sequence homology to predict if an 
amino acid change will alter a protein’s function. 
According to SIFT, the amino acid change in a 
well-conserved position is presumed deleterious. 
To predict whether a substitution will affect the 
protein function, SIFT considers the type of the 
amino acid change and its position, calculating 
the probability of tolerance. The resulting score 
is the normalized probability that the amino acid 
change is tolerated. SIFT can be obtained from 
https://sift.bii.a- star.edu.sg/.

PolyPhen-2 (Polymorphism Phenotyping v2) 
is a tool that forecasts the possible impact of an 
amino acid substitution on a protein. To make the 
prediction, it uses comparative consideration, 
such as comparing the property of normal and 
mutant alleles. It estimates the mutations as 
benign, possibly damaging, or probably damag-
ing, calculating Naïve Bayes posterior probabil-
ity that the mutation is damaging. PolyPhen-2 
can be obtained from http://genetics.bwh.har-
vard.edu/pph2/.

LRT can identify deleterious mutations that 
affect highly conserved amino acids giving pro-
tein alterations. It was built to model phyloge-
netic relationships using a probabilistic 
framework and closely related species.

MutationTaster2 is a software that estimates 
the pathogenic potential of DNA sequence altera-
tions. It predicts the functional consequences of 
amino acid substitutions, intronic, intergenic, 
synonymous, and indel mutations. It uses a Bayes 
classifier and three classification models, one for 
alterations of single amino acid, one for altera-
tions that involve more than one amino acid, and 
one for non-coding and synonymous alterations. 
MutationTaster2 can be obtained from http://
www.mutationtaster.org/.

MutationAssessor predicts the functional 
impact of amino-acid substitutions in proteins. 
The prediction is made using evolutionary con-
servation information of the protein family 
through multiple alignment. MutationAssessor 
can be obtained from http://mutationassessor.org/
r3/.

FATHMM is a software for predicting the 
functional effects of protein missense variants. It 
can be applied to human and non-human 
genomes. It possesses several sub-algorithms, 
one for cancer-specific driver mutations [97] and 
one, called FATHMM-MKL, for coding and non- 
coding sequence variants. FATHMM can be 
obtained from http://fathmm.biocompute.org.
uk/.

MetaSVM and MetaLR provide an ensem-
ble score integrating nine scores (SIFT, 
PolyPhen-2, GERP++, MutationTaster, 
MutationAssessor, FATHMM, LRT, SiPhy, and 
PhyloP) with the MMAF (maximum minor allele 
frequency) of populations. MetaLR uses a logis-
tic regression (LR) algorithm, while MetaSVM 
uses Support Vector Machine (SVM)

VEST (Variant Effect Scoring Tool) is a 
supervised machine learning classifier that priori-
tizes missense mutations that alter protein func-
tion. VEST can be obtained from https://
karchinlab.org/apps/appVest.html.

CADD integrates multiple annotations for 
scoring the deleteriousness of single nucleotide 
variants and indel variants in the human genome. 
It was built from 60 genomic features. It uses a 
machine learning model trained with de novo 
variants and variants fixed in human populations. 
CADD can be obtained from https://cadd.gs.
washington.edu/.

DANN [67] is built using a deep neural net-
work trained using the same feature set and train-
ing data as the first CADD version. DANN data 
can be obtained from https://cbcl.ics.uci.edu/
public_data/DANN/.

PROVEAN [98] (Protein Variation Effect 
Analyzer) is a tool that predicts the functional 
impact of an amino acid change or an indel on a 
protein. It was tested on UniProtKB/Swiss-Prot 
database and experimental datasets. PROVEAN 
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can be obtained from http://provean.jcvi.org/
index.php.

FitCons is a method that estimates the proba-
bility that a point mutation in a genome will 
influence fitness. It computes a score that indi-
cates the evolution-based potential genomic 
function integrating evolutionary and functional 
data. fitCons can be obtained from http://comp-
gen.cshl.edu/fitCons/.

 Tools for Conservation Score

GERP++ [69] is a program that identifies con-
servation scores following a comparative 
genomic approach. It recognizes sites under evo-
lutionary constraint through multiple alignment 
of the human genome with 33 other mammalian 
species. GERP++ can be obtained from http://
mendel.stanford.edu/SidowLab/downloads/
gerp/.

SiPhy [71] identifies conservation scores as a 
decrease in the rate of mutation and searching for 
biased substitution patterns. It works with multi-
ple alignment data. SiPhy can be obtained from 
http://portals.broadinstitute.org/genome_bio/
siphy/index.html.

PhastCons [73] is a tool for the identification 
and scoring of conserved elements in multiple 
alignment sequences. It is based on a two-state 
phylogenetic hidden Markov model (phylo- 
HMM). PhastCons can be obtained from http://
compgen.cshl.edu/phast/.

PhyloP computes p-values for conservation or 
acceleration in functional elements. It was built 
by implementing four statistical phylogenetic 
tests, a likelihood ratio test, a score test, a test 
based on exact distributions of several substitu-
tions, and the genomic evolutionary rate profiling 
(GERP) test. PhyloP can be obtained from http://
compgen.cshl.edu/phast/.

 dbNSFP
In the last few years, all these tools have been 
gathered in a database called dbNSFP [99, 100], 
where the deleteriousness score has been 
 standardized to facilitate the evaluation of the 
importance of a mutation in sequencing studies. 

dbNSFP was built because each algorithm uses 
different information, and it is based on various 
training data, outcoming in different results. So, a 
more reliable prediction can come from an analy-
sis that uses multiple algorithms. dbNSFP, in its 
latest version (4.1), comprises all the tools of 
cited above and other 22 tools.

This latest version is based on human refer-
ence sequence version hg38 and GENCODE ver-
sion 29 and includes 81,782,923 nsSNVs and 
2,230,170 ssSNVs. It also includes the ExAC 
database, allele frequencies from the UK10K 
cohorts, the NHLBI Exome Sequencing Project 
data, and allele frequencies from the 1000 
Genomes Project phase 1 data, ClinVar, and 
dbSNP.

If one of the scores is missing in a database, it 
is imputed using BPCAfill [101] which is gener-
ally applied for the imputation of missing expres-
sion data from microarray analyses.

 Conclusion

In this chapter we have surveyed relevant 
resources for interpreting variations in cancer. 
We focused on databases, annotators, and vari-
ants prioritization tools to provide an up-to-date 
reference point to help researchers in their stud-
ies. Furthermore, we have highlighted the content 
and limitations of each tool and database, and 
compared their content.
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Network Approaches for Precision 
Oncology

Shraddha Pai

Abstract

The growth of multi-omic tumour profile data-
sets along with knowledge of genome regula-
tory networks has created an unprecedented 
opportunity to advance precision oncology. 
Achieving this goal requires computational 
methods that can make sense of and combine 
heterogeneous data sources. Interpretability 
and integration of prior knowledge is of par-
ticular relevance for genomic models to mini-
mize ungeneralizable models, promote 
rational treatment design, and make use of 
sparse genetic mutation data. While networks 
have long been used to capture genomic inter-
actions at the levels of genes, proteins, and 
pathways, the use of networks in precision 
oncology is relatively new. In this chapter, I 
provide an introduction to network-based 
approaches used to integrate multi-modal data 
sources for patient stratification and patient 
classification. There is a particular emphasis 
on methods using patient similarity networks 
(PSNs) as part of the design. I separately dis-
cuss strategies for inferring driver mutations 
from individual patient mutation data. Finally, 
I discuss challenges and opportunities the field 
will need to overcome to achieve its full poten-

tial, with an outlook towards a clinic of the 
future.

 Introduction

Precision oncology is the goal of using a patient’s 
clinical, genomic, and physiological profile to 
predict disease outcomes such as prognosis or 
treatment resistance and decide the course of 
clinical care. This goal can be achieved by divid-
ing tumour profiles into groups reflecting differ-
ent types of molecular dysregulation in cancer, 
which in turn contribute to a unique signature of 
pathophysiology, outcome, and treatment 
response. Tumour profiling, particularly in the 
area of genomics, has dramatically grown in the 
past decade thanks to international collaborations 
to pool patient samples, ever-cheaper genomic 
profiling assays, and the ubiquity of cloud com-
pute. The most recent integrative analysis of The 
Cancer Genome Atlas and International Cancer 
Genomics Consortium included nearly 10,000 
tumours spanning 33 most common cancers [1], 
providing a sizable resource for precision oncol-
ogy. However, an individual genomic assay can 
contain anywhere from thousands to millions of 
measures, increasing the challenge of discover-
ing predictive signals in the noise. Computational 
approaches of unsupervised and supervised 
learning – or clustering and classification – help 
solve these problems. These approaches have 
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been successfully used to identify clinically rele-
vant molecular subtypes in breast cancer, medul-
loblastoma, ependymoma, and others [2–5], and 
multiple commercial diagnostic tests exist for 
breast cancer, which use gene expression (e.g. 
Oncotype DX, ProSigna, Mammaprint) or immu-
nohistochemistry (MammoStrat, IHC4) [2, 6–
11]. However, models based on genomic data 
require interpretability for several reasons (see 
discussion in the next section), which involves 
modelling prior knowledge of molecular interac-
tions within a cell. Networks provide a conceptu-
ally intuitive and elegant way to achieve this 
goal.

Normal genome and cell function is mediated 
by molecular interactions or networks, resulting 
in metabolic and physiological outcomes of cell 
growth and division, maintenance of cellular 
identity, and energy production. Conversely, 
these interactions and outcomes are disrupted in 
cancer, affecting a core set of cellular signalling 
pathways as well as interactions unique to spe-
cific types of cancer [12]. As a data structure, 
therefore, graphs or networks are well suited to 
present the correlations of cellular measures that 
in turn reflect molecular interactions, but which 
also capture similarities at the level of individual 
patient tumour profiles. As we shall see, networks 
also provide the means to encode prior knowl-
edge of gene regulatory models, which can be 
used to improve inferences and interpretability 
from patient data.

This chapter will cover state-of-the-art 
network- based computational algorithms for 
patient stratification (or tumour subtype discov-
ery) and patient classification. It will begin with a 
brief background on the value of networks in pre-
cision oncology and introduce the reader to the 
concept of patient similarity networks. Box 1 
defines foundational concepts in the field. The 
chapter will then cover the tasks of patient strati-
fication and classification in turn, discussing 
major advances in terms of concepts, algorithms, 
and software in this problem space. It will also 
cover network-based approaches for inferring 
driver mutations from individual (N-of-1) patient 
tumour mutation profiles. Each section first 
describes the algorithm and associated concepts, 

and then covers applications to date in precision 
oncology. Table 11.1 provides a list of all meth-
ods discussed in this chapter, accompanied by 
links to current software implementations. 
Finally, this chapter discusses existing challenges 
and opportunities in this relatively new field, and 
suggests a vision for network-enabled precision 
oncology in the span of the next decade.

 Background

 Networks in Precision Oncology

Networks explicitly represent entities and their 
relationships, the latter of which may be quantita-
tive or qualitative; these are correspondingly 
depicted as nodes connected by weighted or 
unweighted edges (see example in Fig. 11.1). For 
oncology applications, networks can be used to 
reflect relations at various levels of system orga-
nization, including gene-gene or protein-protein 
interactions [13, 14], sets of pathways with over-
lapping member genes [15], or similarities in 
patient profiles [5, 16]. Box 1 outlines key con-
cepts related to the application of networks and 
network-based methods for precision oncology. 
While readers may be familiar with gene and pro-
tein association networks owing to their long use 
in understanding signalling pathways and pre-
dicting gene function (e.g [17, 18].), the para-
digm of patient similarity networks is relatively 
new. We therefore discuss it in some detail here.

 Patient Similarity Networks

The use of patient similarity networks has only 
recently been used in biomedical applications 
for stratification and classification [5, 16, 19]. 
As patient samples in cancer are often tumour 
samples, one may also think of these as tumour 
similarity networks. In essence, a patient simi-
larity network (PSN) is a network where the 
nodes are patients, and the edges are measures 
of pairwise similarity for the data from which 
the PSN was derived; an example is shown in 
Fig. 11.1. For example, in a PSN derived from 
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transcriptomic data, edges quantify how similar 
the transcriptomic profiles of the corresponding 
patients are. An unsupervised method, such as 
one for stratification or clustering, aims to dis-
cover patient labels, while a supervised 
approach aims to maximize discriminability 
between patients with known labels. In the lat-
ter instance, patients may be labelled by out-
come of interest, such as prognostic status or 
treatment response, or by previously identified 
tumour subtype (Fig. 11.2).

 Advantages of PSNs
• The framework provides an advantage for 

multi-modal data integration, as heterogeneous 

data types can be converted into a common 
space of patient similarity; that is, clinical, 
genomic, and imaging cohort data can be con-
verted to three PSNs, correspondingly repre-
senting clinical, genomic, and imaging profile 
similarity. Conversion to this common patient 
space allows data integration, which preserves 
correlation structure of each data layer; this is 
in contrast to concatenation, which ignores this 
correlation structure, possibly explaining its 
worse performance in multi-modal data-based 
tumour classification [5].

• Machine learning methods that take patient 
similarity networks as input do not require 
access to the raw data. In a compute envi-

Fig. 11.1 Networks in precision oncology. (a) The meth-
ods described in this chapter take as input patient data, 
often from multiple modalities, including clinical data, 
multiple ‘omic layers, sparse genetic data such as somatic 
mutations or copy number aberrations, and imaging data. 
Classification methods additionally require labels for each 
patient, which could reflect clinical outcome. (b) Patient 
similarity networks (PSNs) generated from sample data in 
(a). Nodes are patients, and edges quantify pairwise simi-
larity for a given profile type. Edge weight signifies simi-
larity strength. Node fill indicates known patient label. (c) 
Conversion of multimodal data to a PSN view enables 

data integration for the purposes of classification or clus-
tering. Classification methods like netDx additionally 
score input features (represented as PSN) based on ability 
to predict a given patient label. (d) Sparse genetic muta-
tion data can result in overfitting in classification models. 
To reduce sparsity, prior knowledge about gene-gene 
interaction networks is used to infer indirect mutations in 
genes neighbouring those with known mutations. 
Network-based stratification has demonstrated that infer-
ring indirect mutations using this approach improves 
tumour subtype discovery in uterine, ovarian, and lung 
cancers [21]
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ronment requiring controlled access to 
patient data  – for example, as in the case 
with genotype data  – PSNs can be com-
puted offline and uploaded to the system 
running the clustering or classification 
algorithms.

• Similarity networks are an arguably intui-
tive framework for clinical diagnosis, 
being conceptually similar to diagnosing a 
patient based on their profile similarity to 
patients with known diseases. 
Interpretability can be improved by feature 
engineering, such as grouping molecular 
measures based on prior knowledge of 
shared regulation; such a design would be 
more interpretable following feature selec-
tion, allowing mechanistic insight.

This chapter will later cover methods 
that encode multi-modal tumour profiles as 
PSNs for precision oncology: Similarity 
Network Fusion for stratification [5], and 
netDx and MORONET for patient classifi-
cation [16, 20].

 The Value of Interpretability 
and Prior Knowledge in Genomic 
Models

There are several reasons for trying to incorpo-
rate prior knowledge in genomic models, in order 
to have interpretability. One main reason is to 
safeguard against spuriously well-performing 
models, which may lead to lost research resources 
pursuing a false lead. A second is to use an inter-
pretable model’s insight to drive treatment 
design. A third still is the need to use prior knowl-
edge to interpret highly sparse data such as 
patient somatic mutations with low inter- 
individual recurrence.

Small sample size and overfitting Tumour clas-
sification algorithms use a computational strategy 
called machine learning, in which the algorithm 
assigns weights to predictive features by parti-
tioning data into a set of training samples and a 
held-out set of test samples. An iteration of the 
algorithm involves setting the importance (or 
weights) for input features based on the training 

Fig. 11.2 Flowchart to help identify a network-based tool for a precision oncology application
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samples, and evaluating predictive error on the 
test samples. This process is repeated for different 
random partitions of training and test data to 
adjust or “learn” weights, until these have stabi-
lized. Relative to traditional machine learning 
applications such as computer vision, genomic 
datasets for a given cancer type tend to be small, 
on the order of a few hundred samples in total 
[19]. This small size is particularly problematic 
when considering that tumour samples can be het-
erogeneous due to biological sources of variation 
that may not be directly relevant to the predictive 
task, including genetics, age, and environmental 
effects, in addition to disease heterogeneity and 
technical variation. Models therefore can be prone 
to overfitting, which occurs when a model demon-
strates high performance on the data with which it 
was trained, but does not generalize to new datas-
ets. Lack of generalization can occur because of 
bias in the training samples, which can be over-
come by better sampling design and increasing 
sample size. When provided with two models, one 
which performs well but is a “black box”, i.e. 
lacks transparency about which predictive fea-
tures contributes to performance, and another 
which is transparent, the latter is more open to 
critical evaluation. A transparent model that iden-
tifies features consistent with prior knowledge 
about disruptions in signalling pathways for a 
given cancer type inspires more confidence in its 
accuracy, than one which does not.

Hypothesis generation and rational treatment 
design Learning algorithms, such as clustering 
or classification algorithms, take features as 
input. Features may be provided at the level of 
individual molecules, such as when a regression 
model identifies weights for each gene in a tran-
scriptomic assay to predict tumour subtype, at the 
level of biologically meaningful groupings of 
measures such as pathways, or at the level of an 
entire data layer [5, 16]. Feature design that is 
based on prior knowledge of signalling pathways 
or gene regulatory networks may improve the 
ability to identify mechanisms contributing to 
clinical outcome, generating hypotheses for vali-
dation and principled treatment design.

Improving signal-to-noise with sparse 
data Another problem arises with the use of 
patient somatic mutations. These tend to be 
sparse and may include no statistically discern-
ible recurrence in individual genes [21, 22]. 
However, several algorithms have been devel-
oped taking advantage of the prior knowledge 
that oncogenic mutations tend to cluster in a 
small set of established signalling pathways [21, 
23–25]. These algorithms have overlaid patient 
mutation data with known gene and protein inter-
action networks, to infer indirect impact of muta-
tions using a guilt-by-association principle. This 
strategy has been used to improve tumour sub-
typing in ovarian carcinoma, lung adenocarci-
noma, and endometrial carcinoma [21], and 
predict driver mutations in breast and ovarian 
cancer [24]. A corollary of this outcome is that 
prior knowledge of variant significance or non- 
coding regulation may be useful in selecting 
which mutations or non-coding genomic mea-
sures be included in the model.

These arguments collectively advocate for the 
use of biologically aware models in precision 
oncology, an area that network-based representa-
tions excel in.

 Application Areas

 Patient Stratification

When provided with genomic or multi-omic pro-
files of a tumour type, the first step after data pro-
cessing is usually to explore data structure and 
use clustering or class discovery to identify 
tumour subtypes. Class discovery helps identify 
subgroups of tumours with shared molecular sig-
natures, which could reflect distinct oncogenic 
mechanisms and, more relevant to clinical deci-
sion-making, outcomes such as survival time, 
disease progression, and treatment response. It is 
therefore advisable to cluster even in instances 
where a project has defined an outcome of inter-
est (e.g. prognosis), as this method provides a 
means to identify potential alternate sources of 
biological or technical variation that drive struc-
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ture in the data. Once classes are discovered and 
validated, a classifier may be built for each sub-
type or alternate methods may be used, such as 
multi-task learning [26].

 Similarity Network Fusion and Similar 
for Data Integration and Clustering
Similarity Network Fusion (SNF) is an unsuper-
vised or clustering algorithm that integrates 
multi-modal patient data and identifies patient 
clusters [5]. It does this by first converting each 
input data type to a patient similarity network, 
choosing scaled Euclidean distance as the simi-
larity metric for continuous-valued measures. 
Input networks are then combined into a single 
fused network through an iterative step which 
increases the weight of those edges shared across 
networks and conversely decreases the weight of 
unshared edges. The final network is then “cut” 
into connected communities using spectral clus-
tering, conceptually a dimensionality reduction 
of network edges. SNF outperformed other 
approaches in a benchmark to identify clusters in 
5 different tumour types by integrating mRNA 
expression, DNA methylation, and miRNA 
expression. In particular, SNF-based clustering 
outperformed the strategy of simply concatenat-
ing data measures across all layers, consistent 
with the hypothesis that creating “views’‘of a 
given data type before integration improves 
model performance by capturing the correlation 
structure of each data layer. Yang et al. adapted 
SNF for use with somatic mutations [27].

Application SNF has been used to discover 
tumours in pancreatic ductal adenocarcinoma by 
integrating DNA methylation, mRNA, and 
miRNA profiles in 150 tumours [28]. This 
method identified a two-cluster solution consis-
tent with previous characterizations of a basal-
like and classical subtype [29], as well as the 
results obtained by clustering each ‘omic layer 
separately. Separately, the Medulloblastoma 
Advanced Genomics International Consortium 
applied SNF to 763 primary frozen medulloblas-
toma samples with high-quality DNA methyla-
tion and transcriptomic profiles, evaluating 
clustering performance for different choices for 

the number of clusters [30]. SNF was able to cap-
ture previously characterized four subtypes of 
medulloblastoma, namely, WNT, SSH, Group 3, 
and Group 4. Importantly, tumours demonstrated 
robustness of cluster membership across differ-
ent settings for numbers of clusters.

 Network-Based Stratification: 
Clustering Tumours by Somatic 
Mutations by Integrating Prior 
Knowledge
Method While somatic mutations provide a rich 
source with which to cluster tumours, mutations 
are sparse – one ovarian cancer cohort typically 
demonstrated fewer than 100 mutated bases in an 
entire patient exome [21]  – and lack of muta-
tional recurrence is common [22]. This sparsity 
provides a challenge to clustering tumours. 
Hofree et  al. [21] developed the approach of 
network- based stratification or NBS, to stratify 
tumours from somatic mutations, based on the 
idea that driver mutations impact a regulatory, 
signalling-related, or metabolic pathway, and 
therefore, a subnetwork of genes [12]. This idea 
was originally used in HotNet [23], a computa-
tional driver detection algorithm based on a heat 
diffusion model. Given a gene interaction net-
work constructed from prior knowledge, HotNet 
first assigns maximum heat to genes with known 
patient mutations. This heat then diffuses along 
neighbouring nodes with some decay, and statis-
tical tests are used to identify significantly clus-
tered subnetworks. Similarly, NBS diffuses 
inferred mutation status from mutated genes in 
the cohort outward to connected genes in the 
interaction network, with an applied threshold for 
the minimum eligible value. The resulting 
patient-gene mutation matrix, now consisting of 
direct as well as inferred, indirect mutations is 
then decomposed using non-negative matrix fac-
torization to identify subgroups with shared com-
monly mutated genes. NetNorM uses a similar 
strategy to NBS, except that patient mutations are 
normalized based on the location of the mutation 
relative to network topology, instead of smooth-
ing [31]. While NBS used a fixed gene network 
for all cancer types, He et al. found that creating 
cancer-specific networks – for example, from co- 
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expression networks – helped identify subtypes 
in endometrial carcinomas that were not discov-
ered using original NBS [32]. Similar strategies 
are used by other algorithms to integrate gene 
regulatory network information for transcrip-
tomic data, to improve tumour clustering [33, 
34].

Application NBS was applied to TCGA exome- 
sequencing data for ovarian carcinoma, lung ade-
nocarcinoma, and endometrial carcinoma, with 
consensus clustering used for comparison [21]. 
In uterine cancer, NBS identified tumour sub-
types with significantly higher association with 
recorded histological subtypes, as compared to 
those found by consensus clustering. In ovarian 
cancer, NBS subtypes correlated with overall sur-
vival, so that subtypes robustly predicted survival 
independent of clinical covariates. Importantly, 
permuting mutated genes in the network, which 
disrupted the relationship of the mutations to the 
gene network, abolished the association. 
Subsequent analysis of mutated subnetworks in 
ovarian cancer subtypes identified correlates of 
treatment response and other prior knowledge of 
cancer networks. For instance, subtype 1 was 
characterized by shortest platinum-free survival 
and also contained over 20 mutated genes from 
the fibroblast growth factor (FGF) pathway, a 
driver implicated in platinum resistance. NBS 
and similar algorithms have successfully been 
used to identify tumour subtypes related to clini-
cal outcomes such as patient survival, treatment 
response, or tumour histology in ovarian, lung, 
kidney, prostate, and endometrial cancers [21, 
32, 35].

 Topological Data Analysis
Li et al. used 73 clinical measures to identify type 
2 diabetes subtypes from electronic medical 
records [36]. In a common approach, patient net-
works were generated by applying singular value 
decomposition on variables, with pairwise patient 
similarity defined as the cosine function. The 
cosine function is a popular choice in natural lan-
guage processing applications. Once clusters had 
been identified, the authors used clinical and 

genetic data from the same patients to demon-
strate enrichment of specific comorbidities and 
biological pathways in specific subgroups. 
Although this method was not used in an applica-
tion of relevance to oncology, it is included for 
completeness.

 Patient Classification

This application area concerns building a predic-
tive model capable of discriminating between 
tumours with pre-assigned labels, such as molec-
ular subtype, treatment response, or prognosis. 
These problems are solved by a supervised learn-
ing approach called machine learning. As 
described above, machine learning involves the 
splitting of samples into a training and a test par-
tition. The training set is used to assign model 
weights, and the predictive error on the test sam-
ple is used to adjust or learn weights, until the 
predictor error falls below some user-defined 
threshold. The model’s accuracy is then evalu-
ated on an independent validation set.

 netDx
netDx is a recently developed supervised learn-
ing algorithm for patient classification, which 
uses the patient similarity network (PSN) para-
digm [16, 19]. It additionally provides interpret-
ability through feature engineering, allowing 
user-defined groupings that incorporate prior bio-
logical knowledge such as pathways and sparse 
somatic mutation data. As input, netDx requires 
patient labels, multi-modal data for each patient, 
and user-provided rules for feature engineering. 
Patient measures can be provided in tabular form 
(e.g. clinical or transcriptomic measures), or as 
genomic intervals used to encode sparse somatic 
mutations or copy number variant (CNV) calls, 
where each patient has an event at a different 
genomic locus. Custom similarity metrics can be 
used, although commonly used metrics such as 
Pearson correlation and normalized difference 
also exist.

Model training proceeds with the division of 
samples into a training and a held-out test parti-
tion, with feature selection using only training 
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samples. Data on training samples are converted 
to PSN, which serve as input features to the 
model. A form of constrained regression is used 
in the PSN edges to score networks, such that 
networks which tend to connect patients of the 
same label are upweighted. This step is per-
formed for each patient label in turn, and cross- 
validation is used to score networks between zero 
and a user-defined maximum. Networks passing 
a user-defined threshold are used to classify test 
patients. Classification of the held-out test set 
uses a PSN created by integrating selected fea-
tures, and which contains training as well as test 
samples. Label propagation is applied to this 
integrated PSN, starting with training patients, 
that is, those with known labels. A patient of 
unknown class is assigned a similarity score for 
each patient label and patients are classified as 
the class to which they are most similar. Finally, 
feature selection and patient scoring are repeated 
for numerous random train/test splits to identify 
consistently high-scoring features.

 MORONET
MORONET is a recent work which adapts patient 
similarity networks to a deep learning-based 
framework, for data integration and patient clas-
sification [20]. Deep learning is a relatively 
recent development in machine learning. In this 
framework, the classifier is a neural network, 
consisting of a set of simple non-linear functions 
(neurons) which are layers in different architec-
tural configurations fine-tuned for specific appli-
cations. Deep learning has been particularly 
successful in computer vision and natural lan-
guage processing [37]. MORONET uses a graph 
convolutional network (GCN) to provide input in 
PSN format to the deep learning model and 
 identifies cross-omics correlations by means of a 
View Correlation Discovery Network (VCDN), 
which it uses for label prediction. At the time of 
this writing, MORONET is limited to being able 
to handle at most three layers of input data.

Application netDx has been used to predict 
binarized survival by integrating six data types – 
clinical, mRNA, miRNA, DNA methylation, pro-
teomics, and somatic copy number aberrations 

[16]. This design was applied to ovarian cystad-
enocarcinoma (N  =  252 tumours), lung serous 
carcinoma (N  =  77 tumours), glioblastoma 
(N  =  155), and renal clear cell carcinoma 
(N  =  150) data from the Pan-Cancer survival 
project [16, 38]. In a benchmark, netDx outper-
formed other machine learning approaches for 
most applications, with the exception of the small 
lung cancer dataset where support vector 
machines were able to find highly non-linear sep-
arability. netDx was also used for binary classifi-
cation of a breast tumour as being either Luminal 
A or not, using pathway- based features created 
from mRNA (N = 348 tumours). In addition to 
excellent performance, netDx identified LumA-
predictive pathways consistent with prior knowl-
edge of disrupted regulatory and signalling 
pathways in this group of breast tumours, includ-
ing DNA damage repair and cell cycle regulation. 
Separately, MORONET was able to use mRNA, 
miRNA, and DNA methylation data to classify 
tumour subtypes in breast and low-grade glioma, 
as well as distinguish between three forms of kid-
ney cancer (renal clear cell carcinoma, chromo-
phobe renal cell carcinoma, and papillary renal 
cell carcinoma) [20]. It outperformed a battery of 
standard machine learning methods such as 
K-nearest neighbour, SVM, random forests, and 
latent models. It was able to identify gene- and 
miRNA-level biomarkers in breast cancer, includ-
ing well-known FOXA1, ERBB4, and AR from 
gene expression and LRCC25 and SOSTDC1 
from DNA methylation.

 Predicting Drivers from N-of-1 
Patient Tumour Profiles: DawnRank 
and OncoIMPACT

While the methods mentioned above require a 
cohort of samples, another category of methods 
makes inferences based on single patient profiles 
using the context of prior knowledge. Current 
approaches make use of patient-level whole- 
genome or -transcriptome level data, and some-
times additionally require matched comparisons 
of tumour and normal samples from the same 
patient. When provided with somatic genetic 

11 Network Approaches for Precision Oncology



208

mutations from a single patient, DawnRank uses 
gene interaction networks to rank genes to infer 
driver mutations [24]. It borrows the intuition 
from Google’s PageRank algorithm, which ranks 
websites in a search result based on the number 
of websites to which a page is linked. In 
DawnRank, a gene bearing a somatic mutation is 
ranked more highly if it is connected to genes 
known to be differentially expressed in cancer, 
than otherwise. The method uses a damping fac-
tor to ensure that the effect of a node drops with 
graph distance and is applied to the gene interac-
tion network which is modelled as a directed 
graph.

OncoIMPACT also ranks and calls driver 
mutations from a single patient’s somatic muta-
tion profile by integrating knowledge of gene 
interactions with tumour-specific gene expres-
sion, although its approach is different. When 
provided with patient somatic mutations, 
OncoIMPACT first identifies all deregulated 
genes connected to mutated genes by a minimum 
path length and where target genes exceed some 
threshold for tumour-specific differential expres-
sion [25]. It then clusters these deregulated genes 
by the putative causal mutation to which deregu-
lation can be attributed, in a way that parsimoni-
ously explains the deregulation. Generally, these 
methods represent an advance in providing 
patient-specific treatment guidance but are lim-
ited by requiring whole-genome sequencing of 
the patient in the clinic.

Applications DawnRank was applied to glio-
blastoma multiforme (N = 512 samples), breast 
cancer (N  =  504 samples), and ovarian cancer 
(N  =  572) samples from the TCGA, including 
non-synonymous mutations and insertions/dele-
tions in protein-coding regions and gene expres-
sion measures. The underlying gene interaction 
network was compiled from curated pathway 
databases such as Reactome [39, 40], NCI-Nature 
Curated PID [41], and KEGG [42], as well as 
from MEMo, which generates a single interac-
tion network by integrating multiple functional 
genomics sources [43]. DawnRank demonstrated 
greater specificity and sensitivity in prioritizing 
putative drivers from the Cancer Gene Census 

(CGC [44]), particularly in breast and ovarian 
cancers, which may indicate a robustness to a 
greater number of passenger mutations. In addi-
tion to identifying well-known drivers also iden-
tified by other methods, including TP53 and 
ATM, DawnRank additionally discovered 
BRCA1, CDH1, and PIK3R1, and a novel 
centromere- associated protein driver in basal 
breast tumours, CENPE. Similarly, OncoIMPACT 
was able to prioritize candidate driver events in 
glioblastoma, ovarian, prostate, and bladder can-
cers, including point mutations and indels, with 
higher precision than competing methods. 
OncoIMPACT also identified a previously 
uncharacterized patient-specific driver mutation 
in TRIM24 in melanoma, experimentally vali-
dated with siRNA-mediated downregulation in a 
patient-derived cell line. Subsequent literature 
search identified a role for TRIM24 in ubiquitin- 
mediated TP53 degradation in breast cancer.

 Challenges, Opportunities, 
and Perspectives

The use of the PSN framework in biomedical 
applications is fairly recent, and the strategy 
needs to be applied widely to develop an appre-
ciation of its relative merits, as compared to more 
established approaches such as regression, ran-
dom forests, support vector machines, and even 
deep learning approaches that do not rely on 
network- based encoding. Methodological 
advances as described here will accelerate the 
ability of these methods to achieve their potential 
in routine use for precision oncology. Here are 
some of the challenges and opportunities to bet-
ter use this paradigm for precision oncology:

Speed, scalability and tunability Analytical 
methods are needed to improve the ability of 
PSN-based methods to handle thousands of 
genomes and thousands of input networks; a 
pathway-based design currently uses ~2000 input 
networks, and research is required to identify 
strategies to maximize signal-to-noise ratio as 
sample size and feature size increases. Separately, 
methods are needed to identify predictive fea-
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tures when interactions are non-linear. PSN 
implementations such as netDx need the ability 
to improve performance by automatically tuning 
hyperparameters, rather than requiring users to 
manually try different configurations. This is 
automatically done for deep learning applications 
by libraries such as FastAI [45].

Feature engineering to model the non-coding 
genome Just as gene expression measures can 
be naturally grouped into pathway-level features 
as input to classifiers or clustering algorithms, so 
do filtering and grouping rules need to be devel-
oped for other types of data, including somatic 
mutations, germline variants, miRNA expres-
sion, and DNA methylation. A unique challenge 
is presented by measures in the non-coding 
genome; 43% disease-associated genetic variants 
are located in intergenic regions, and this fraction 
goes up to 88% if one includes introns [46]. 
Possible solutions for feature engineering of non- 
coding variants include use of prior knowledge of 
genome regulation and long-range chromatin 
structure for grouping by pathways or other 
meaningful units of genome regulation. Pan- 
tissue atlases of tissue-specific regulatory regions 
such as those generated by the NIH Roadmap 
Consortium, GTEx, and ENCODE3 could be 
used to tailor feature engineering for cancers 
affecting specific tissues [47–49]. As an example, 
predictors for a renal cell carcinoma and pancre-
atic adenocarcinomas would model non-coding 
measures correspondingly using kidney- and 
pancreas-specific genome regulatory maps, 
rather than using a tissue-agnostic map of genome 
regulation, such as that general pathways repre-
sent. Such prior knowledge is expected to further 
improve the interpretability of the corresponding 
features.

 Perspectives

Networks are a versatile paradigm to study inter-
actions at different levels of systems biology, 
from molecules to patients. They have helped 
classify patients, predict prognosis, identify 

driver mutations and activated pathways, and 
integrate multi-modal data. However, the use of 
networks for precision oncology applications is 
still in the realm of basic research, with many 
milestones necessary to develop a mature model 
used in the clinic, similar to that of OncotypeDx 
in breast cancer [7]. In particular, models will 
need to be validated in independent datasets as 
well as varied ethnicities, be actionable, and have 
oversight following clinical deployment (see [16] 
for discussion). At present, networks from pub-
lished research can be submitted to research 
repositories such as NDEx [50], creating a refer-
ence corpus to find patterns that generalize across 
different applications in precision oncology. One 
long-term vision for application of PSNs is in a 
doctor’s clinic of the near future [51]. In this sce-
nario, a physician would be able to generate a 
PSN profile of a patient, putting the patient in the 
context of a knowledge bank of PSNs reflecting 
prognosis and treatment outcome for the cancer 
type of interest. An interactive web-based inter-
face would automatically classify the patient 
based on these criteria, quantifying classification 
uncertainty and listing the features that influ-
enced classification, thereby influencing their 
treatment plan.

Network-based strategies, and particularly 
patient similarity networks, provide a means for 
predictive modelling of genomic data that is con-
ceptually intuitive and biologically grounded in 
the use of prior biological knowledge for effec-
tive model development. The coming years 
should see an increasing use of this strategy in 
characterizing tumour profiles for precision 
oncology.

 Box 1: Key Concepts

Networks Data structure representing entities 
represented as nodes, and quantitative or qualita-
tive relationships between entities represented by 
weighted or unweighted edges. Commonly used 
networks in precision oncology include those 
capturing patient profile similarity, gene-gene or 
protein-protein interaction networks, or networks 
of pathways enriched in a given tumour type.
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Similarity Metric used to quantify pairwise 
concordance of profiles in patient similarity net-
works. Commonly used similarity metrics 
include correlation for multivariate continuous- 
valued data such as gene expression, normalized 
difference for univariate similarity, or cosine 
similarity for tokenized clinical records. 
However, the choice of similarity metric can be 
defined based on the particular application.

Machine learning Algorithms that iteratively 
fit a mathematical model to data by evaluating 
goodness-of-fit on a held-out random subsample 
of data, and do so repeatedly till a user-defined 
criterion is achieved, either a certain number of 
cycles or a threshold for error. Common applica-
tions of machine learning in precision oncology 
include patient stratification using unsupervised 
or clustering algorithms, and tumour classifica-
tion and outcome prediction using supervised 
approaches.

Spectral clustering A graph clustering 
approach used in Similarity Network Fusion [5] 
for patient stratification. When provided with a 
similarity network, spectral clustering methods 
use top eigenvalues to “cut” the network into 
maximally connected communities.

Deep learning Popular supervised learning 
approach based on artificial neural network the-
ory that excels at finding non-linear decision 
boundaries between entities, with successes in 
image classification and more recently, genom-
ics. The model consists of layers of simple non- 
linear functions stacked into an overall 
configuration that is user-definable and tuneable 
for specific applications. Used by MORONET 
for patient classification [20].

Label propagation Graph-theoretic algo-
rithm commonly used to “diffuse” values 

from nodes with data to those without. 
Applications in precision oncology include 
classifying patients based on relative similar-
ity to labelled patients in a patient similarity 
network [16], and inferring impact of a driver 
mutation on neighbouring nodes or pathway 
[21, 24, 25].

Training and test set Partitions of patient data 
used respectively to train model parameters and 
to evaluate goodness-of-fit on an independent 
dataset. Used to prevent overfitting.

Overfitting Situation where a machine learning 
model has artificially high performance owing to 
having fit biases in the training data, with limited 
generalizability to other datasets.

Feature A unit of data provided to a machine 
learning algorithm, which is scored for predictive 
value and used to interpret a trained model. 
Features may include individual measures such 
as expression of a gene or clinical variation. 
Some network-based methods support grouping 
of measures into features that reflect prior knowl-
edge. For instance, netDx supports the creation of 
pathway-level features by grouping gene-level 
measures [16].

Feature engineering The use of domain- 
specific prior knowledge to filter or transform 
data to be provided as input to the model. In pre-
cision oncology applications, examples include 
deciding to group gene-level measures into path-
ways relevant to cancer, limiting genetic variants 
to driver mutations or to those correlating with 
gene expression in a tissue of interest.

Feature selection Machine learning algorithm 
step where features are scored by predictive 
value, using training samples.
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Patient-Derived In Vitro 
and In Vivo Models of Cancer

Sally E. Claridge, Julie-Ann Cavallo, 
and Benjamin D. Hopkins

Abstract

Over the last two decades, cancer researchers 
have taken the promise offered by the Human 
Genome Project and have expanded its capac-
ity to use sequencing to identify the genomic 
alterations that give rise to and sustain indi-
vidual tumors. This expansion has allowed 
researchers to identify and target highly recur-
rent alterations in specific cancer contexts, 
such as EGFR mutations in non-small cell 
lung cancer (Lynch et  al, N Engl J Med 
350:2129–2139, 2004; Sharifnia et  al., Proc 
Natl Acad Sci U S A 111:18661–18666, 
2014), BCR-ABL translocations in chronic 
myeloid leukemia (Deininger, Pharmacol  
Rev 55:401–423. https://doi.org/10.1124/pr. 
55.3.4, 2003; Druker et al, N Engl J Med 344. 
1038–1042, 2001; Druker et  al, N Engl J  
Med 344:1031–1037. https://doi.org/10.1056/
NEJM200104053441401, 2001), or HER2 
amplifications in breast cancer (Slamon et al, 
N Engl J Med 344:783–792. https://doi.
org/10.1056/NEJM200103153441101, 2001; 
Solca et  al, Beyond trastuzumab: second- 
generation targeted therapies for HER-2- 
positive breast cancer. In: Sibilia M, Zielinski 

CC, Bartsch R, Grunt TW (eds) Drugs for 
HER-2-positive breast cancer. Springer, Basel, 
pp 91–107, 2011). Despite these advances in 
our capacity to identify the genetic alterations 
that drive tumor initiation, survival, and pro-
liferation, our ability to target these alterations 
to provide effective treatment options for 
patients in need, particularly those with rare or 
advanced cancers, remains limited (Gould 
et  al, Nat Med 21:431–439. https://doi.
org/10.1038/nm.3853, 2015). Patient-derived 
models of cancer offer one potential mecha-
nism to overcome this barrier between the 
bench and bedside. Through the development 
and testing of patient-derived models of can-
cer, functional genomics efforts can identify 
tumor-specific drug sensitivities and thereby 
provide a connection between tumor genetics 
and effective therapeutics for patients in need 
of treatment options.

Recognizing that cancer is a multifaceted 
set of disease states, the development of per-
sonalized models of cancer that can be used to 
compare treatment options, identify tumor- 
specific vulnerabilities, and guide clinical 
decision-making has tremendous potential for 
improving patient outcomes. This chapter will 
describe a representative set of patient-derived 
models of cancer, reviewing each of their 
strengths and weaknesses and highlighting 
how selecting a model to suit a specific ques-
tion or context is critical. Each model comes 
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with a unique set of pros and cons, making 
them more or less appropriate for each spe-
cific research or clinical question. As each 
model can be leveraged to gain new insights 
into cancer biology, the key to their deploy-
ment is to identify the most appropriate model 
for a specific context, while carefully consid-
ering the strengths and limitations of the 
selected model. When used appropriately, 
patient-derived models may prove to be the 
missing link needed to bring the promise of 
personalized oncology to fruition in the clinic.

 Introduction: Why Are Patient- 
Derived Models Important 
and Useful?

Most cancer subtypes are complex and heteroge-
neous in histological presentation, genetic varia-
tion, and prognostic outcomes. For the most part, 
engineered models fail to recapitulate this 
 diversity, and natural processes that underpin this 
diversity, ultimately creating models that fail to 
recreate the complexity of the disease states. 
Patient-derived cancer models were developed in 
order to more closely recapitulate patient tumors 
and allow us to capture the specifics of individual 
tumors. They can be loosely defined as any model 
of cancer that is developed from patient samples. 
Cancerous patient tissues and/or cells, as com-
pared to genetically engineered cells or animal 
models, provide the benefit of having evolved in 
a patient and thereby having the full complement 
of genomic alterations acquired over time and 
driven by unique, environmental pressures pres-
ent in that patient. Every tumor consists of a 
unique ratio of tumor cells, immune cells, fibro-
blasts, extracellular scaffolding, and endothelial 
cells, all of which interact both physically and 
molecularly. Unlike traditional two-dimensional 
cancer cell lines, modern patient-derived models 
of cancer seek to preserve elements of the genetic 
profile, cell-cell interactions, and physical com-
ponents of a given tumor.

Patient-derived models of cancer provide trac-
table platforms with which researchers can test 
specific hypotheses. No model fully recapitulates 

the unique context of a patient’s tumor and, as a 
general rule, the greater the complexity of a 
model, the more limited is the number of ways 
one can perturb and/or evaluate it (Fig. 12.1). For 
example, two-dimensional cell line models can 
be plated in hundreds to thousands of replicates 
for high-throughput assays, but generating the 
equivalent number of mouse models is not practi-
cally feasible. Even the most complex cancer 
models do not fully recapitulate the native state 
of tumors, so when using these models, it is criti-
cal to account for the ways in which they do and 
do not faithfully represent the tumor from which 
they were derived. Additionally, evaluating 
agents that target tumor-extrinsic factors, such as 
the vasculature or immune system, is largely 
futile in simple systems that lack the complexity 
to evaluate multicellular (not to mention multi-
system) therapeutic responses. Interpretation of 
the data generated in a specific model and any 
clinically relevant conclusions thereof are limited 
to the capacity of said model to recapitulate the 
tumor from which they were derived. 
Furthermore, limitations can be present in a vari-
ety of different elements within a model system 
as well as in how it is being assessed. In short, it 
is critical to recognize the strengths and weak-
nesses of each model, to evaluate the data gener-
ated in each model within the context of its 
specific capacity and limitations, and to design 
experiments and workflows accordingly [1].

For decades and at present, cancer modeling 
has been dominated by the use of two- dimensional 
cell lines as representations of different tumor 
types. For much of this time, the focus was war-

Fig. 12.1 Relative relationship between ease of use in a 
laboratory setting and fidelity to the original patient across 
select patient-derived models of cancer. CCLs Cancer cell 
lines, TSCs tumor slice cultures, CAMs chorioallantoic 
membrane models, PDXs patient-derived xenografts
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ranted since site of origin and pathology were the 
best available methods for determining diagnosis 
and treatment. There are many benefits to work-
ing with two-dimensional cell lines, since they 
provide a relatively stable and largely reproduc-
ible platform for experimentation and analysis. 
Unfortunately, they fail to recapitulate many 
tumor elements that are critical to therapeutic 
response, e.g., tumor-stromal interactions and 
microenvironment [2], restricting researchers’ 
capacity to directly translate findings from these 
models into the clinic. Moreover, over time, cell 
lines evolve to their culture conditions, losing the 
heterogeneity and features of the cancer of which 
they were derived.

While patient-derived models can be powerful 
tools to study individual tumors, our capacity to 
use them to study the specific impact of a given 
gene alteration may be limited since models do 
not have naturally occurring isogenic controls 
and, rather, represent the accumulation of all of 
the alterations in a cell rather than an isolated 
few. Conversely, however, the genetic complexity 
of these models may be critical for gaining insight 
into the tumor’s signaling or metabolism or other 
interactions that play critical role in its sensitivity 
to therapeutics. One could supplement a patient- 
derived model with engineered cell lines, e.g., 
those with targeted oncogenic mutations in genes 
such as a KRAS G12D [3] or deletions of tumor 
suppressors such as PTEN [4], which is benefi-
cial when attempting to demonstrate the relation-
ship between a specific alteration and a given 
phenotype. Recognizing that each tumor is the 
result of its own unique environment and the 
selective pressures to which it was exposed, 
patient-derived models provide a means to assess 
each tumor individually. When paired with 
genomics, this information may prove vital to 
elucidating the complex interplay between 
genomics and therapeutic response.

With the advent of rapid next-generation 
sequencing technologies, there has been a shift in 
the clinic from a singular focus on tissue of origin 
toward using molecular diagnostics to inform 
therapeutic strategies. This shift has allowed for 
the development and use of agents not focused on 
tumor type but on targeting the genetic events 

that drive and sustain individual tumors [5–12] 
and even agents that target recurrence [13]. While 
actionable mutations can be predictive of thera-
peutic response, their predictive power is often 
context-dependent. To better capture how inter- 
patient physiological and genetic variation con-
tributes to therapeutic responses, it is imperative 
to both generate new cancer models and expand 
upon existing models to more accurately recapit-
ulate what is observed in  vivo on a molecular, 
genetic, histologic, and patient level. This will 
not only allow for discovery of novel interactions 
but will help in elucidating drug efficacy and 
 possibly even stratifying patients with similar 
cancer profiles into new therapeutic groups. In 
order to continue developing agents that target 
these tumor-specific alterations, there is a need 
for the development and use of increasingly per-
sonalized and higher-fidelity models. In the next 
decade, diagnostic approaches that incorporate 
functional genomics have the potential to become 
a routine part of patient care, whereby direct 
assessments of drug sensitivity in patient-derived 
models could provide an avenue for rapid com-
parisons and personalization of therapeutics pre-
scribed in the clinic [14–16]. Taken together with 
our increased capacity to sequence tumors to 
understand the genetic alterations driving and 
sustaining tumor growth, development, and treat-
ment response, there has been an expeditious 
development of myriad patient-derived modeling 
platforms that allow investigators to assess the 
effects of different treatment modalities on vari-
ous aspects of patient tumors (Fig.  12.2). 
Combining physiologically relevant information 
from complimentary model systems could be the 
key to designing functional pipelines that allow 
for personalized therapeutic decision-making in 
the clinic.

 Types of Models

This section will review several patient-derived 
models of cancer. It is key to note that each model 
has its own set of strengths and weaknesses and 
that their use is predicated on understanding and 
controlling for these system-specific consider-
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ations. For example, patient-derived xenografts 
in humanized mice may recapitulate more ele-
ments of the patient condition, but the feasibility, 
high cost, long timeline, and variable stability of 
these models limit the applications of their use. 
Conversely, patient-derived, two-dimensional 
tumor cell lines are relatively cheap and tractable 
but fail to reconstitute many of the elements of 
the tumor and its microenvironment that are tar-
geted by therapeutics, thus limiting the scope and 
therefore the questions that can be asked with 
them.

 Two-Dimensional Cancer Cell Lines

Two-dimensional cancer cell lines (CCLs) are a 
well-established model system for testing small 
molecules, such as the National Cancer Institute 
60 (NCI60) project [17, 18]. Over the decades, 
thousands of commercially available cancer cell 
lines have been generated [19] and assessed using 
high-throughput drug and genetic screens. CCLs 
can also be established directly from dissociated 
patient tissue. While not always easy to establish, 
the strength of these models is in the ease of their 
propagation and culture. Hundreds to thousands 

Fig. 12.2 Relative capacity of select patient-derived 
models of cancer to recapitulate two elements directly 
related to patient care, high-throughput screening and 
assessment on a clinical timeframe, and a select six core 
elements of tumor architecture and proliferation: Ability 
to quantify response to drugs or other perturbations, tumor 

microenvironment (TME) factors like stromal cells or 
extrinsic growth factors, various immune components, 
intra-tumoral cellular and/or molecular heterogeneity, 
vascular organization and angiogenesis paradigms, and 
the ability to invade surrounding tissue or matrix and to 
metastasize

S. E. Claridge et al.
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of copies of these lines can be generated in very 
short timeframes, making them ideal for high- 
throughput screening. They have been used in 
pseudo-unselected trials for multiple compounds 
targeting similar pathways [20] and for pseudo- 
enrichment trials for drug efficacy in breast can-
cer [21, 22]. There have also been large-scale 
efforts by the Dependency Map Consortium 
(DepMap) to conduct RNAi and CRISPR screens 
in genomically characterized CCLs to identify 
cancer type-specific and pan-cancer dependen-
cies [23–26] in conjunction with small molecule 
screening via the PRISM method that utilizes 
DNA barcoding to pool cell lines for high- 
efficiency drug screening [27]. Multiple other 
groups have also worked to generate publicly 
available pharmacogenomics datasets, such as 
the Cancer Cell Line Encyclopedia (CCLE) [28, 
29], Genomics of Drug Sensitivity in Cancer 
(GDSC) [30, 31], and the Cancer Therapeutics 
Response Portal (CTRP) [32–34].

Established CCLs have been shown to be 
inconsistent across different laboratories, e.g., in 
a study of 27 cell lines all labeled as MCF7 
(breast cancer), wide genetic variation and 
response to anticancer therapeutics were recorded 
[35], but this is an issue inherent in divergent evo-
lution during propagation and variable mainte-
nance practices, which is seen in other in  vitro 
culture systems. As the most broadly used mod-
els of cancer, CCLs have been at the center of 
debates concerning consistency across different 
datasets, namely, the CCLE and the 
GDSC. Studies have shown that drug-gene inter-
actions matched between CCLE and GDSC 
exhibited poor correlation and inconsistencies 
[36, 37], prompting other groups to join the 
debate on how best correct for experimental and 
methodological variation between the original 
drug screens and subsequent computational anal-
ysis [29, 38–43]. In response to these issues, mul-
tiple patient-derived tumor modeling platforms, 
e.g., a customizable Functional Genomics 
Pipeline [44] and the National Cancer Institute’s 
Patient-Derived Models Repository [45–47], 
have both implemented fidelity checks that use a 
combination of genomics and pathology to 
ensure model fidelity, and also produced datasets 

that explain the observed differences in drug 
sensitivity.

As patient-derived culture systems have been 
developed for the full gambit of tumor types, it is 
interesting to note that some tumor types, e.g., 
liver, are highly amenable to growth in two- 
dimensional culture while being resistant to 
growth in three dimensions. As such, two- 
dimensional culture of patient-derived models 
still has the potential to play a critical role in both 
precision oncology and cancer research at large. 
Besides known issues with inconsistent cell line 
nomenclature and contamination [48], a key out-
standing question for the implementation of 
patient-derived models is how well they model 
tumor dynamics or recapitulate clinical cancer 
vulnerabilities. Despite many large-scale grants 
and clinical trials being fundamentally anchored 
by results from screens conducted in CCLs, these 
models tend to require further validation, as their 
simplicity, which is key to their broad use, also 
limits their fidelity. Moreover, cancer cell cul-
tures grown in a monolayer lose their three- 
dimensional architecture and the resultant 
intercellular interactions. These changes induce 
changes in gene and protein expression. Thus, 
patient-derived models from heterogeneous can-
cers undergo in vitro selection, potentially alter-
ing their fidelity to the tumors from which they 
were derived.

 Patient-Derived Organoids

Patient-derived organoids (PDOs) are generated 
via the dissociation and subsequent expansion of 
patient tumor samples. Unlike traditional two- 
dimensional cultures, PDOs are grown in the 
context of a matrix, e.g., laminin, to generate 
three-dimensional models of the tumors from 
which they were derived. Because these cells are 
grown in a three-dimensional matrix, the models 
retain some of the structural features and cellular 
diversity of the tumors from which they were 
derived (Table 12.1). By culturing PDOs in con-
ditions that mimic the native environment, inves-
tigators are able to recapitulate elements of the 
primary tumor that are lost in two-dimensional 
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culture, including preserving cell-cell and cell- 
extracellular matrix interactions.

The PDO system is a middle-ground approach 
between more complex models and two- 
dimensional cultures in that it has the capacity for 
layered complexity through the addition of other 
cell types (such as T cells) while still allowing 
investigators to generate thousands of replicates, 
which can be evaluated in shorter time frames 
and across more conditions than complex mod-
els. PDOs are also amenable to application in 
other model systems in which the tumor organ-
oids serve as the base patient-derived model that 
is then made increasingly complex by the addi-
tion of alternative platforms, e.g., air interface 
models, tumor-immune co-cultures, and chorio-
allantoic membrane models. Furthermore, one 
can run concurrent-specific and high-throughput 
drug screens in mice and in three-dimensional 
culture (with or without co-cultures),  respectively. 
When PDOs are used in co-cultures and other 
more complex models, one can assess the intri-
cate interplay between tumors and their micro- 
and macroenvironments, making them a useful 
tool for the development of both clinical and pre-
clinical pipelines.

Air Interface Cultures
Cultures with an air-liquid interface (ALI) expose 
three-dimensional organoids to the air rather than 
encapsulating them in media and allow for long- 
term propagation of organoids. ALI organoids 
have been used to study differentiation programs 

[72], as well as paracrine signaling, and architec-
ture of oncogenically transformed gastrointesti-
nal tissues [73]. This model allows for in  vitro 
profiling of primary tumor epithelium and 
immune and stromal components from patient 
biopsies, and it has been shown to accurately 
model the effects of immunotherapy on endoge-
nous tumor-infiltrating lymphocytes [74]. Non- 
small cell lung cancer ALI cultures have been 
used to successfully screen aerosolized drugs, 
suggesting ALI cultures as a viable alternative to 
animal studies in regard to studying anticancer 
drug effects in the respiratory tract and inhalation 
delivery [75, 76]. These features make ALI mod-
els a good fit for studies assessing tumor-immune 
interactions, but the added complexity of the 
model increases the barrier to using them at large 
scale.

 Chorioallontoic Membrane Models

Chorioallontoic membrane (CAM) models use 
the developing chicken embryo as the host into 
which patient-derived tumor models can be 
implanted in order to evaluate growth interac-
tions with the vasculature and microenvironment. 
In contrast to the classic in  vivo rodent PDX 
model, CAMs provide a more tractable and 
cheaper option that is naturally immunodeficient 
[78], provide an easily manipulated vascular 
environment, has relatively reduced maintenance 
requirements, and requires shorter experimental 
timelines [79]. CAMs have been used to evaluate 
nanoparticle drug delivery in ovarian cancer [80], 
in  vivo perineural invasion of head and neck 
squamous cell carcinoma [81], cancer-associated 
autophagy programs [82], metastatic capacity of 
non-small cell lung and prostate cancer cells and 
screening for putative anti-metastatic drugs [83], 
and the effects of tumor cell invasion on vascular 
network structure and stability [83]. While CAMs 
are relatively tractable compared to PDXs, they 
are not as easily genetically manipulated, and 
many reagents, e.g., antibodies or cytokines, are 
incompatible with the avian model. Despite the 
aforementioned pitfalls of this model, CAMs can 
be used to provide insight to invasion studies, 

Table 12.1 Select publications demonstrating patient- 
derived organoid development for specific cancer types

Cancer type References
Bladder [49, 50]
Brain [51, 52]
Breast [53–55]
Colorectal [56–61]
Gastric [62]
Gastroesophageal [61]
Kidney [63]
Lung [64, 65]
Ovarian [66, 67]
Pancreatic [68, 69]
Prostate [70, 71]
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elucidate molecular and drug mechanisms, and 
drug pharmacokinetic and pharmacodynamic 
studies.

 Tumor Slice Cultures

Tumor slice cultures (TSCs) are generated by 
isolating tumors from patients and creating 
ex  vivo cultures that maintain the composition 
and orientation of the native tumor microenviron-
ment and extracellular matrix. They are particu-
larly well suited for assessment of the extent to 
which inter- and intra-tumoral heterogeneity 
affects the tumor response to therapies. In a TSC, 
the myriad cell types, vascular networks, and tis-
sue organization from the original tumor are 
maintained and can be easily imaged and visual-
ized. TSCs are also easily monitored over time, 
allowing researchers to examine the temporal 
dynamics of perturbation at the cellular level, a 
feat that is increasingly complicated in murine 
models, which cannot be as readily imaged. For 
example, Minami et al. used real-time and serial 
imaging and immunohistochemical analysis of 
drug-treated TSCs from a mouse model of malig-
nant glioma to inform the ways in which organo-
typic brain slice cultures could be used in testing 
anti-glioma drugs [84]. Since TSCs maintain the 
complexity and heterogeneity of the tumor from 
which they are derived and are rapidly culturable 
following biopsy, they have potential as personal-
ized preclinical models to stratify individual 
patients for treatment on a diagnostic timeline. 
Patient tissue is the limiting reagent in this model, 
rendering TSCs a low-throughput model. 
Furthermore, using certain media conditions for 
each tumor may select for tumor growth over sus-
taining the growth of other cells (i.e., immune 
cell populations). Unlike PDXs or cell-based 
models, these cultures cannot be propagated, 
only remain viable for limited time windows, and 
develop abnormal growth kinetics and signaling 
after approximately 6 days in culture, depending 
on the tumor type and level of optimization of the 
culture conditions.

Over time, protocols for slice cultures have 
evolved to standardize TSC volume and surface 

area, permitting these models to be used for mea-
suring metabolic activity across TSCs within and 
across patients, ultimately allowing for quantita-
tive measurements of different biologic activities 
[85]. Vaira et  al. showed that slices taken from 
human colon, lung, and prostate tumors main-
tained proliferative capacity and native morphol-
ogy in culture, and demonstrated reduced 
proliferation upon treatment with targeted inhibi-
tion of Mdm2 and PI3K [86]. Merz et al. demon-
strated that patient-derived glioblastoma TSCs 
recapitulated clinical responses to X-ray, spread- 
out Bragg-peak carbon irradiation, and temo-
zolomide, suggesting their use in understanding 
therapeutic effects in glioblastoma and dissecting 
resistance mechanisms [87]. Similarly, Martin 
et al. showed that patient-derived TSCs of liver 
metastases of colorectal cancer could be screened 
with cetuximab, oxaliplatin, and pembrolizumab 
in order to identify patient-specific response to 
these standard of care regimens, suggesting a 
potential utility for TSCs in personalized oncol-
ogy [88]. TSCs (ex vivo and from PDX) have 
also been shown to be a viable system for testing 
drug efficacy as shown in Table 12.2.

In addition to their potential use in evaluating 
tumor-specific drug sensitivities, TSCs have the 
capacity to stably model the tumor micro- and 
immune environment. Naipal et  al. developed 
culture methods for breast cancer TSCs that 
maintained tumor and stromal cell morphological 
and viability characteristics for up to 7 days [93]. 
TSC treatment with FAC in decreasing dilutions 
revealed variation in sensitivity to the chemother-
apeutic regimen due to morphological and prolif-
erative capacities as well as prior exposure to 
neo-adjuvant therapy in  vivo [93]. Jiang et  al. 
showed that TSCs of pancreatic ductal adenocar-
cinoma (PDAC) maintained staining for the stro-
mal component α-smooth muscle actin and 
infiltrating T cells and macrophages between day 
1 and 6 of culture [89], while Misra et al. showed 
that these PDAC models stably preserve the 
tumor micro- and immune environment, and can-
cerous cells maintained their proliferative capac-
ity and recapitulated the differentiation grade of 
the primary tumor, allowing for pharmacologic 
screening of heterogeneous patient-derived tissue 
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[90]. Varying dose responses for 5-FU and 
FOLFOX were evaluated in patient-derived 
colorectal cancer TSCs, further underscoring the 
ability of TSCs to capture inter-patient heteroge-
neity in drug sensitivity [92]. Sivakumar et  al. 
determined that the immune cell composition in 
TSCs from syngeneic mouse models of pancre-
atic, breast, and colon cancer, melanoma, and a 
primary liver tumor sample remained stable over 
7 days in culture and that TSCs from PDX mod-
els were valuable models for pharmacologic 
screening [91]. Taken together, TSC is a high- 
fidelity model that can be used to address drug 
sensitivity and mechanisms-of-action, metabolic 
studies, as well as monitor cell-cell molecular 
and physical interactions within a patient’s tumor, 
but their use is limited to a relatively small scale 
and the short time interval for which these cul-
tures remain viable.

 Microfluidic Platforms

In microfluidic platforms, synthetic scaffolds 
made of glass or polymers provide substrate onto 
which three-dimensional models can be seeded. 
Three-dimensional microfluidic systems have 
been used to mimic vascular biology and physi-
ological conditions by flowing fluid through 
chambers seeded with the cells of interest and 
monitoring phenotypes of interests [94]. In the 

cancer context, perfusable microfluidic systems 
have been shown to recapitulate expected drug 
toxicities in hepatoblastoma [95], triple-negative 
breast cancer [96], and head and neck cancer 
[97], to name a few. These platforms can also be 
customized to mimic in  vivo tumor microenvi-
ronment by repopulating decellularized matrix 
[98], which is an ideal system for pharmacologic 
screening. Another use case for microfluidic plat-
forms is to test candidate therapeutics against 
patient-derived single-cell suspensions, which 
can increase throughput from limited patient 
sample volume [99]. Lung adenocarcinoma PDX 
biopsies have been successfully screened with 
staurosporine in a microfluidic platform, indicat-
ing the potential of these systems to maintain 
physical interactions between cancers and their 
native tumor microenvironment [100].

Immune checkpoint blockade (ICB) treatment 
has been tested in murine- and patient-derived 
organotypic spheroids suspended in perfusable 
collagen hydrogels, which allows for monitoring 
of immune cell compositions and profiling of the 
secretome in response to ICB [101], though this 
model is restricted to tumor-infiltrating cells and 
does not address using appropriate immune cell 
ratios found in the parent patient tissue. Deng 
et  al. showed that patient-derived tumor spher-
oids in a 3D microfluidic device treated with 
CDK4/6 inhibitors palbociclib and trilaciclib 
released increased T-helper 1 cytokines, support-

Table 12.2 Select drug screening experiments in tumor slice culture models

Cancer type
Tumor 
source Drugs tested Reference

Pancreatic ductal 
adenocarcinoma

Patient Staurosporine, cycloheximide [89]

Pancreatic ductal 
adenocarcinoma

Patient Rapamycin [90]

Colon, triple-negative breast 
cancer

PDX
PDX

Staurosporine
Panels of FDA-approved drugs

[91]

Colorectal cancer Patient Cetuximab, oxaliplatin, and pembrolizumab [88]
Colorectal cancer Patient 5-fluorouracil (5-FU) and FOLFOX (5-FU and 

oxaliplatin)
[92]

Breast Patient FAC (5-FU, doxorubicin, 4-HC or preactivated 
cyclophosphamide)

[93]

Glioma Mouse Cisplatin, temozolomide, paclitaxel, tranilast [84]
Colon, lung, prostate Human LY294002 (PI3K inhibitor), Nutlin-3 [86]
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ing this model system as a future direction for 
studying the tumor immune microenvironment 
ex  vivo [102]. Microfluidics have been used to 
identify factors that influence TCR-engineered T 
cell efficacy against cancerous hepatocytes [103, 
104].

More complex microfluidic “organ-on-a- chip” 
(OOAC) systems can be used to assess how vas-
cularization affects therapeutic efficacy and 
delivery in co-cultures of endothelial cells, fibro-
blasts, and tumor cells [105] and have been used 
to assess dynamics of nanoparticle intravasation 
from vessels into tumors [106]. Colorectal and 
breast cancer cells have been shown to grow 
around and utilize synthetic vasculature and dis-
play clinically relevant responses to anticancer 
therapies, suggesting that these vascularized 
micro-organs and micro-tumors could be a prom-
ising model for therapeutic testing of angiogene-
sis inhibitors [107]. However, tumor vasculature 
has been shown to have varying effects on drug 
delivery (and even anti-angiogenic medications) 
due to poorly executed neo-angiogenesis and 
remodeling [108], which may alter drug efficacy 
modeled in synthetic vasculature. A breast cancer 
OOAC system successfully modeled ductal car-
cinoma in situ and mammary tissue layers that 
recapitulated clinical response to paclitaxel treat-
ment [109]. In another OOAC study, cancer 
growth and invasion of non-small cell lung can-
cer was faithfully modeled, as were the effect of 
mechanical breathing on vascularization and can-
cer cell response to tyrosine kinase inhibitor roci-
letinib [110].

While these microfluidic platforms can be dif-
ficult and expensive to develop and maintain, the 
capacity to customize three-dimensional micro-
fluidic platforms makes them ideal for modeling 
the complex interactions between cell  populations 
and highlights them as a powerful tool for dis-
secting the molecular mechanisms underpinning 
treatment efficacy.

 Patient-Derived Xenografts

Patient-derived xenografts (PDXs) are generated 
through the implantation of patient tumor tissue 

into mice, thus creating a mammalian model of 
the patient’s tumor [111]. Once implanted, these 
tumors have the capacity to grow, establish a 
blood supply, and interact with the murine host, 
thereby providing a living mammalian system in 
which to run analyses. Once established, PDX 
models can be propagated; however, much like 
other patient derived models, they can lose their 
heterogeneity and be subject to further evolution 
in their new hosts over time as dominant clones 
take over and the tumor endures subsequent pas-
saging. While early PDXs can retain elements of 
the tumor microenvironment, e.g., cancer- 
associated fibroblasts [112, 113], these elements 
can be lost over time as the tumors continue to 
evolve in their new environment. In a study of 
over a thousand PDXs across more than 18 tumor 
types, it was found that the selective environment 
of passaging xenografts in the mouse leads to the 
accumulation of copy number alterations, which 
puts evolutionary distance between the primary 
patient and the model [114]. This supports the 
notion that passage number may be a critical fac-
tor in retaining the complexity of PDX models 
and underscores the need to evaluate model fidel-
ity not only at the time of development but also at 
the time of use to ensure that key components of 
the tumor are being recapitulated as expected.

Increased fidelity to the patient of origin may 
be obtained for some tumor types by altering the 
site of xenograft implantation. Traditionally, all 
PDXs regardless of tumor type have been 
implanted in the flank of their murine hosts, but 
through orthotopic implantation into the tissue of 
origin, researchers may produce a more accurate 
tumor model [115, 116]. By placing the PDX in a 
context that more closely resembles its native site 
of initiation, the model can provide contextual 
feedbacks specific to the site of origin, e.g., air 
interface in the lung or microbes in the gut. The 
type of mouse, e.g., athymic nude or NOD-SCID 
[111], used can also significantly alter the fidelity 
of these models and the types of questions that 
can be addressed. While PDXs have been tradi-
tionally generated in immune-compromised 
mice, in the last decade multiple groups have 
generated increasingly complex “humanized 
mice” that are engineered to express human 

12 Patient-Derived In Vitro and In Vivo Models of Cancer



224

genes (or mice transplanted with human mono-
cytes) to allow for modeling of interactions 
between the tumor and the immune system [117]. 
Adding yet more complexity, other groups are 
advancing toward being able to generate person-
alized murine avatars that have patient-matched 
tumor and immune components [118], though 
these models are not stable for extended periods, 
which limits their capacity to model long-term 
therapeutic responses.

There are several strengths associated with 
PDX models for drug testing. They represent the 
gold standard for preclinical models by providing 
a system where researchers can evaluate the 
impact of therapies or other perturbations on 
patient tumors while also evaluating their effects 
on other organs in a mammalian system. PDXs 
can be generated in genetically modified animals 
to evaluate the role of a specific host gene or pro-
tein upon tumor development, progression, or 
drug response [116]. PDX models can be used 
concurrently with clinical trials to evaluate the 
impact of drugs on anti-tumor efficacy and to 
generate a readout of potential toxicities in criti-
cal organs [119–121]. Though PDXs can be 
incredibly powerful in both model capacity and 
level of fidelity, it is impractical to generate size-
able cohorts of these models to exhaustively test 
larger drug libraries. Furthermore, their clinical 
use is limited by factors such as differences in 
surgical techniques, take rates (i.e., the fraction 
of tumors that successfully implant to generate a 
PDX, which is dependent upon multiple factors 
such as tumor type and implantation site), and 
timing (the time to generate a cohort of PDXs 
from a single patient tumor adequate for testing 
can be months or years depending on growth 
rates). One could use PDXs to address the effi-
cacy and toxicity of drugs on a patient tumor and 
organ systems, and supplement this experiment 
with both genetically similar murine allografts 
and human xenografts to incorporate the immune 
system effects and increase the speed and power 
of the drug study. All together, these features 
limit the speed at which data from PDX models 
can be generated and used to identify treatment 
options for the patient from which they were 
derived but make them a useful tool for the devel-

opment of preclinical data sets that can be used to 
support clinical trials (Box 12.1).

 Conclusion

Patient-derived models of cancer have the poten-
tial to inform novel therapeutic options and eluci-
date the complex genetics and multifactorial 
intercellular interactions underlying cancer phe-
notypes. Depending on the specific research 
question, clinical context, or use case, and desired 
time  frame, all patient-derived models have the 
potential to be the “correct” model, especially 
when more than one model is used in an orthogo-
nal way or to approach different aspects of the 

Box 12.1 While not directly derived from 
patient tissue, it is worth noting that the 
power of fly genetics allows researchers to 
design complex Drosophila (fly) avatars 
that represent the individual genetics of a 
given patient with >15 putative driver 
mutations. While fly avatars do not provide 
a mammalian environment, the genomic 
drivers present in a patient’s cancer are 
modeled in Drosophila hindguts, which 
can then be screened with candidate thera-
peutics to assess drug toxicity and efficacy 
in  vivo and to quantify animal survival 
rates in a clinically relevant timeline of 
3  weeks [122, 123]. While the fidelity of 
these models to the initial patient tumor is 
much lower than that of PDXs, this avatar 
system is similar in that it can be read out in 
terms of survival, allowing researchers to 
gauge tumor-specific treatment efficacy as 
compared to generic toxicity. Unlike PDXs, 
these models can be generated and evalu-
ated in clinically relevant time frames and 
on a sufficiently large scale to allow for 
broader testing of drug libraries, and ulti-
mately, generating data that can be used to 
guide clinical decision-making [124].
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same question. Key features to consider that were 
touched on in this chapter are time, cost, scale, 
and fidelity (Table  12.3). While genomics has 
rapidly expanded our understanding of tumori-
genesis and tumor maintenance, the careful 
application of appropriate patient-derived models 
could provide a path to truly personalized oncol-
ogy by providing platforms to understand the 
complex interplay between tumors, their environ-
ment, and therapeutic sensitivities.
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Molecular Profiling of Liquid 
Biopsies for Precision Oncology

Edgar E. Gonzalez-Kozlova

Abstract

In recent years, the rapid development of next- 
generation sequencing (NGS) has led to a sig-
nificant increase in accuracy toward molecular 
profiling, allowing noninvasive and real-time 
detection of novel biomarkers for cancer 
screening and dynamic monitoring of disease 
development. Currently, the biggest challenge 
liquid biopsies face is the selection of the 
highest signal-bearing tissues (blood/urine or 
others) and components for diagnosis, being 
either circulating tumor cells (CTCs), circulat-
ing tumor DNA (ctDNA), or extracellular 
vesicles (EVs). This chapter describes the pro-
cess of identifying cancer-associated molecu-
lar signals from liquid biopsies. First, we 
address strategies in selecting and processing 
samples for sequencing, and technical consid-
erations involved in liquid biopsies under 
three settings: early detection, cancer diagno-
sis, and metastatic monitoring. Next, we dis-
cuss the methods and challenges to identify 
and validate prognostic signals, such as tumor 
burden or stage from CTC, targeted and non-
targeted mutations from ctDNA, or noncoding 
RNAs from EVs. Finally, we review the cur-

rent landscape of novel biomarkers and ongo-
ing clinical trials for liquid biopsies to discuss 
the potential avenues for future precision 
medicine and clinical implementation.

 Circulating Tumor Cells (CTCs)

In 1869, Ashworth et al. published for the first time 
the existence and isolation of CTCs, describing the 
study of CTCs as a challenging endeavor due their 
rarity [5, 82]. Since then, a variety of methods and 
technologies have been adapted and developed for 
CTC isolation, such as filtration, chip, ficoll gradi-
ent, electric field, and microfluidics [78, 82]. 
However, the most notorious developments land in 
the field of microfluidics. The first microfluidic 
devices processed samples through channels and 
relied on physical capture and immobilization of 
CTCs into surfaces coated with specific antibod-
ies, such as μpCTC-Chip and the HBCTC-Chip 
[5]. Most recent advances allow separating known 
cellular populations by depletion of leukocytes, 
erythrocytes, platelets, and noncellular objects, 
resulting in the enrichment of CTCs [5, 78].

The hypothesis of CTCs preceding metastasis 
has shown to be true for breast and pancreatic 
cancer [8, 79, 80]. Additionally, CTCs can be 
found within the bloodstream with a half-life 
between 1 and 2.4 hours, which is consistent with 
the observation that apoptotic CTCs are fre-
quently found in patients with cancer [9, 81]. 
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Thus, CTCs can be released from either primary 
or secondary tumors after undergoing strong reg-
ulatory conditions, potentially acting as biomark-
ers for solid tumors and metastatic precursors [1]. 
Interestingly, CTCs have shown evidence of rep-
resenting subclones of the primary tumor with 
the potential of being more invasive [79]. For 
example, in breast cancer, the median survival of 
a metastatic patient with epithelial CTCs exceed-
ing a cutoff of 15 CTCs is 6 months. However, 
for nonmetastatic patients, the survival increased 
to almost 1.5 years [80]. Their presence is also 
associated with a higher risk of recurrence and 
mortality in carcinomas and across all stages of 
disease [2]. Finally, the presence of notorious 
molecular markers at the RNA or protein levels 
such as EPCAM, CK8, CK18, CK19, MET, 
CD47, or CD44 can be used to determine CTCs; 
however, their expression can be sparse depend-
ing on the type of cancer, which results in false- 
positive results [82].

 Methods for CTCs Identification 
and Analysis

The sampling of CTCs in the peripheral blood 
proves to be the first and most challenging step in 
the study of tumor cells [7, 82] (see Note 1). Most 
recent advances in microfluidics, microdevices, 
immunobeads, and functional assays allow the 
collection of CTCs based on physical properties 
or/and cellular markers [6, 82]. Physical property- 
based assays such as dielectrophoretic field flow 
fractionation use membrane capacitance after 
polarization to gently filter cells at a flow rate of 
1 million cells per minute. However, it requires 
highly specific parameters such as electric field 
frequency. Another example is a metacell filtrac-
tion device that can isolate CTCs based on cell 
size, for slightly larger CTCs but fails to isolate 
smaller CTCs [6, 7].

The cellular heterogeneity is the second obsta-
cle in identifying tumor-specific cells due the 
sparse expression of the cancer-specific markers, 
which can lead to falsely identified or misclassi-
fied CTCs [10, 81]. Aggressive cancer CTCs 
have been described to express epithelial cell 

adhesion molecules (EPCAMs), allowing coloni-
zation of multiple tissues such as breast, liver, 
pancreas, lung, and others. However, they require 
integrin-based cell adhesion and extracellular 
matrix degradation mechanisms (RAC and 
RHOA activity). These molecular mechanisms 
are variable between CTCs and can be classified 
into 31 clusters with uniquely associated gene 
profiles [83]. Finally, sample size is also a com-
plicating factor, which is highly dependent on the 
downstream analysis, such as whole-genome 
amplification (WGA) [11, 17], WES [12], and 
NGS [15, 16]. However, increasing blood sample 
volumes is a possible solution that provides more 
accurate measurements, but it comes with its own 
time constraints and patient care challenges [4]. 
It is critical to acknowledge that currently there is 
no single standard regarding the isolation and 
sequencing of CTCs; however, plenty of tech-
nologies are available from standard companies 
such as Qubit, ThermoFisher, Agilent, and 
LifeTechnologies [19]. For example, to identify 
the CNA profiles of CTCs, laser microdissection 
slides (ThermoFisher) were used to remove 
CTCs from a slide into a microfluidics syringe 
for further sequencing with REPLI-g single cell 
kit (Qiagen) [11]. Ultimately, CTCs can be 
directly filtered from peripheral blood with a 
CellCollector (Gilupi) with antibodies against 
EPCAM, filtering 1.5 liters of blood during 
30 minutes. This new device was studied in clini-
cal trials by the European ERA-NET on 
Translational Cancer Research with promising 
capture rates (>5 CTCs) per 7.5 ml of blood per 
patient without adverse effects [11, 84].

The computational burden of analyzing next- 
generation sequencing data depends entirely on 
the data quality progressive reduction in costs 
and accessibility to methods. Thus, NGS is the 
single most direct and efficient approach to 
uncover single nucleotide variations (SNVs), 
copy number variations (CNVs), structure varia-
tions (SVs), gene expression, fusions, novel tran-
scripts, alternative splicing, methylation and 
chromatin patterns on a single cell level with the 
help of standardized algorithms such as trim_
galore, bowtie2, as well as SLIM and dbSUPER, 
used to identify hypomethylated genes like SOX2 
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and OCT4, which are associated with poor prog-
nosis in breast cancer [18]. Thus, these results 
encourage further multi-omic studies in order to 
identify key signatures and mechanisms associ-
ated with cell proliferation and protein synthesis 
[14]. Moreover, careful combination of multi- 
omic approaches has great potential to reveal 
novel biological concepts not previously investi-
gated, such as uncover new cell types in the ner-
vous system [20], immune system, and 
hematopoietic system [21], as well as new 
insights into the clonal evolution of cancer [22]. 
For example, tumor-associated macrophages 
(TAMs) are major components of the tumor 
microenvironment, and the CD163+ TAMs cor-
relate with mesenchymal CTC ratio in colorectal 
cancer metastasis [18, 21, 22]. An in-depth study 
of these TAMs revealed how they enhance 
colorectal cancer migration and CTC-mediated 
metastasis by regulating the JAK/STAT pathway 
with miR-506-3p/FoxQ1, increasing production 
of CCL2 and IL6, describing a new cross-talk 
between immune and tumor cells in the colorec-
tal cancer microenvironment [21].

 Successful Studies of CTCs

Single cell RNAseq pipelines for CTCs are very 
similar to standard guidelines, discussed in 
greater detail in Chap. 15. These pipelines involve 
the process of labeling each cell with barcodes 
using microfluidic devices that isolate a droplet 
with a single cell next to the barcoded RNAs. 
This allows to barcode each individual cell RNAs 
and then sequence all cells in the same machine 
(Multiplexing). Moreover, it is critical to ensure 
good RNA quality before sequencing. This can 
be achieved using a bioanalyzer or a nanodrop to 
estimate the quality and amount of contaminants 
in the sample. Later, after sequencing each bar-
code can be tracked with bioinformatics tools and 
the transcriptomic profile of each cell can be 
reconstructed and further analyzed. Briefly, these 
steps can be summarized as:

• First, rigorous QC of the samples for read 
quality assessment.

Single cell quality controls are usually embed-
ded with the type of technology used. For exam-
ple, 10X Genomics performs QC controls and 
provides detailed statistics of the mapping and 
barcode ratios in their pipeline Cellranger. 
Additionally, fastq files can be generated from 
the raw sequencing outputs and the quality of 
each read can be assessed through other tools 
such as trimmomatic [79] or cutadapt [80].

• Second, alignment to the reference genome.

After QC, aligning the resulting reads into a 
genome of reference is the next step. Although it 
is default to use the latest reference genome (e.g., 
Hg38), using alternative, shorter versions of the 
genome are also possible. This step is achieved 
with algorithms such as TopHat [81], STAR [82], 
or Cellranger [83]. Depending on the genome 
coverage per cell, which is usually linked to the 
number of cells sequenced, it is possible to use 
the reads to identify other aspects besides tran-
scription levels, such as clonality in the case of T 
or B cells for RNAseq. For whole exome sequenc-
ing and to approach genomic questions, other 
tools have proven to be more efficient, such as 
GATK (any) or DRAGEN (Illumina).

• Third, quantification as Reads-Per-Million 
(RPM), FPKM (Fragments Per Kilobase 
Million), or CPM (Counts-Per-Million).

The next step is to quantify the results reads or 
counts into a measurement that is representative 
of the sample profile. For single cell transcrip-
tomics, the data can be normalized into RPMs 
(best to compare genes of similar lengths) or 
FPKMs (more accurate comparisons between 
genes of different lengths). However, for visual-
ization, it is common to transform the data into a 
normal distribution per gene (Z-Score) and clip 
the maximum values to better illustrate the 
expression profiles per cell.
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• Fourth, application of a preferred unsuper-
vised clustering [24, 25] or trajectory analysis 
[26] and reduction of dimensionality (UMAP 
or tSNE).

Finally, the analysis of transcriptomic and 
genomic alignments can be separated into unsu-
pervised and supervised methods. Unsupervised 
methods such as hierarchical, spectral, or 
agglomerative clustering, DBScan or others, 
allow to define patterns in groups of samples. 
However, their performance is totally dependent 
on the amount and type of noise present in each 
study. By the contrary, supervised methods, such 
as nearest neighbors, regression, or Bayesian 
inference approaches can handle noisy datasets 
better, but have a disadvantage in the discovery of 
rare profiles. Most methods are available in R, 
python, or matlab packages and commonly avail-
able in repositories like github.

Clustering has been used routinely for indi-
vidual conditions or punctual comparisons trajec-
tory to infer the topology associations to 
biological features or time-dependent events 
[28].

This process is well illustrated in elegant stud-
ies done by Miyamoto et  al. [16], where CTCs 
were sampled from 13 prostate cancer patients 
(under treatment with an AR inhibitor) and 
untreated cases were collected, sequenced, and 
analyzed. This retrospective analysis of CTCs 
indicates activation of noncanonical Wnt signal-
ing and that ectopic expression of Wnt5a in pros-
tate cancer cells attenuates the antiproliferative 
effect of AR inhibition. Whereas its suppression 
in drug-resistant cells restores partial sensitivity 
to treatment. A key highlight from this study is 
that the authors define CTCs by setting a very 
clear and stringent thresholding based on the 
log10(RPM) values for CD45 and CD16 mark-
ers, in addition to KRT7, KRT8, KRT18, KRT19, 
EPCAM, AR, KLK3 (PSA), FOLH1 (PSMA), 
and AMACR (prostate-specific and epithelial 
markers), to avoid specimens containing contam-
inants, leukocytes, and other cells (see Note 2). 
Finally, the findings are independently validated 
using a parallel set of samples through qRT-PCR 
or dPCR.

Another outstanding example is a work by 
Yu-Heng Cheng et al. [27], demonstrating a cre-
ative use of microfluidics through a method 
labeled “Hydro-Seq,” which enables separation 
of CTCs and normal cells based on morphology 
or size selection. This approach does not rely on 
specific markers, which is an advantage in the 
context of heterogeneous expression of a specific 
marker. The downstream sequencing and compu-
tational analysis followed the same profile as 
summarized above.

Whole genomes approaches [29, 30] provide a 
platform to investigate the mutational profiles 
and genomic modifications CTCs can present as 
elucidated by Szczerba et al. [12]. Their research 
isolated CTCs associated to white blood cells, 
specifically neutrophils. These cells showed a 
number of differentially expressed genes associ-
ated with cycle progression, cell-cell junction, 
and cytokine receptors. Moreover, whole exome 
sequencing showed a unique mutational signa-
ture from metastatic inducing CTCs, in pair base 
alterations (C > T). These results suggest that the 
association between neutrophils and CTCs drives 
cell cycle progression within the bloodstream 
and expands the metastatic potential of CTCs, 
providing a rationale for targeting this interaction 
in treatment of breast cancer.

 Cell-Free DNA (cfDNA) and Circular 
Tumor DNA (ctDNA)

Cell-free nucleic acids in human blood were first 
described in 1948 by Mandel Metais [78]. 
Subsequently, circulating cell-free DNA has been 
found to range between 1 and 10 ng/ml in plasma 
of healthy individuals [4]. In 1989, Stroun et al. 
reported that at least some cfDNA in the plasma 
of cancer patients originated from cancer cells. 
Since then, studies have shown to detect muta-
tions in key genes like TP53 and KRAS muta-
tions matching colorectal, pancreatic, and lung 
cancers from liquid biopsies such as plasma, 
stool, and sputum samples. Thus, the cfDNA sub-
set of tumoral origins is labeled as circulating 
tumor DNA or ctDNA.
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The presence of ctDNA in human blood was 
officially first discovered in the 1950s [4]. Later, 
it was observed that cancer patients had also a 
higher concentration of cfDNA in serum and 
plasma probably due to the release of ctDNA 
from cancer cells [5]. However, the exact origin 
and release mechanisms are still not fully under-
stood, but there are clear fragment size character-
istics of cfDNA (>150 bp) and ctDNA (<150 bp), 
which suggests that most DNA is released possi-
bly through apoptosis, active release, or similar 
mechanisms [39].

 Methods for cfDNA and ctDNA 
Identification and Analysis

The main challenge of ctDNA analysis is the 
identification of a signal that is cancer specific, 
which can be done by using a series of experi-
mental methods based on the approach described 
in [23] (see Note 1). The first and most direct 
method is to test known markers through quanti-
tative PCR (qPCR) or digital PCR (dPCR), where 
both techniques excel in sensitivity, are rapid and 
cost-effective [32]. The second direction in 
ctDNA analysis involves several sequencing 
strategies. These consist of NGS techniques that 
can be developed for targeted (panel genes) and 
nontargeted analysis (WES & sWGS) reviewed 
in detail elsewhere [31]. However, because of the 
unique short fragment nature of ctDNA, it is 
incompatible with long read sequencing. Outside 
the blood circulation, cfDNA has been detected 
in various body fluids, including urine, cerebro-
spinal fluid, pleural fluid, and saliva. These sam-
ple types potentially harbor biomarkers and are 
flexible sample sources that have not been 
explored in detail.

Moreover, ctDNA approaches can be easily 
repeated over time due the easy access to samples 
to monitor the molecular evolution of the disease 
in the absence of clinical progression, of great 
interest for precision and personalized medicine. 
However, using ctDNA for early cancer diagno-
sis or therapeutic response monitoring can be 
challenging due to the low amount of tumor DNA 
detected in the circulation [33, 36]. Additionally, 

ctDNA may be diluted due the presence of DNA 
from nontumor cells. Development of new tech-
nologies such as dPCR or optimized targeted 
next-generation sequencing (NGS) has greatly 
improved the sensitivity, specificity, and preci-
sion for the detection of rare DNA sequences and 
copy number variations [35].

 Successful Studies of cfDNA 
and ctDNA

Early cancer diagnosis may face many technical 
challenges for ctDNA approaches [38]. However, 
recent research has demonstrated the efficacy of 
patient profiling using ctDNA for various cancer 
types [33], setting the path for its usage in phase 
I trials. A breast cancer study named “TARGET” 
built a target panel of 641 cancer-associated 
genes and identified actionable mutations in 41 
out of 100 patients, 11 of whom received matched 
therapy [37]. Similarly, another randomized clin-
ical trial I/II with over 600 patients showed that 
ctDNA quantification of PIK3CA levels pre-
dicted progression free survival. Additionally, it 
allowed us to closely monitor the effect of vari-
ous anti-tumoral drugs over breast cancer [34]. 
Despite the limitations of extracting ctDNA from 
liquid biopsies, the detection of ctDNA in itself is 
a good predictor of disease severity [46] (see 
Note 3).

FDA-approved panels, such as the Memorial 
Sloan Kettering–Integrated Mutation Profiling of 
Actionable Cancer Targets (MSK-IMPACT) 
panel, are designed to identify clinically action-
able mutations in tumor tissue [40]. This panel 
targets 4976 canonical, 104 noncanonical exons, 
and 33 introns of 341 cancer relevant genes. The 
mean average of coverage was 700X with an SD 
of 182, and 97% of all samples used was higher 
than the average sample (350X). The pipeline 
(assay and analysis) is a great example of tar-
geted identification of somatic mutations with 
high levels of accuracy, sensitivity, and reproduc-
ibility, feasible in the clinical setting [40]. 
However, analyses of low-frequency variants in 
cell-free DNA are much limited by the detection 
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thresholds of 0.02% and 0.0002% under optimal 
conditions is possible [41].

The rationale for ctDNA use is the ability to 
detect minimum residual disease from patients 
under surveillance noninvasively (TRACERx 
trial [85]). These clinical trials show that ctDNA 
detection is possible in over 90% of patients and 
allow to potentially detect relapse, metastasis, 
and potentially chemotherapy resistance mark-
ers, which could be integrated into a therapeutic 
application panel. Thus, metastatic monitoring 
and early identification are two sides of the same 
coin. Initial efforts using targeted panels and 
detecting mutations in known metastatic genes 
showed to be precise (>70%) but not that sensi-
tive considering that about 75% of all patients 
had detectable ctDNA [35–40] (see Note 4). The 
most established methodologies are described in 
several reviews for WES and the slightly more 
sensitive sWGS (shallow whole genome sequenc-
ing) [31, 32, 42, 48]. The most remarkable stud-
ies include TRACERx, CancerSEEK, TEC-seq, 
and CAPP-seq with the focus of quantifying 
genomic alterations with mPCR enrichment 
(TRACERx and CancerSEEK) or hybridization 
enrichment (CAPP-seq and TEC-seq). 
Interestingly, the correlation between their out-
comes can be expressed as a ratio between tumor 
burden and ctDNA mutant allele frequency 
(MAF). Although NGS platforms can detect 
plasma MAF values under 0.1% to 0.01%, panels 
similar to MSK-IMPACT solid tumor MAF 
detection limits are around 2% for hotspot muta-
tions, which is insufficient for analysis of low- 
frequency variants. Overall, ctDNA using NGS 
approaches showcases MAFs between 0.01 and 
9.3% (median 0.31%). Thus, there is a great 
enthusiasm of implementing ctDNA diagnostics 
to identify MRDs in order to improve patient 
stratification, for tumors in stages T3 to T1b 
(Classification based on tumor volume, diameter 
and stage) [31].

A longitudinal study regarding ctDNA track-
ing upon neoadjuvant therapy evaluated the 
reduction of ctDNA levels on treatment as a suc-
cessful recovery measure [47]. Moreover, they 
demonstrated that a careful design of the targeted 
panel can increase the detection threshold 100 

times fold. This could enable individualized clin-
ical management of patients with cancer treated 
with curative intent. Another remarkable study 
done by Scherer et al. [49] illustrates NGS profil-
ing through CAPP-seq analysis of B-cell lym-
phoma from 92 patients and 24 healthy subjects, 
showing that ctDNA correlates with clinical indi-
ces and allows to track multiple somatic muta-
tions outperforming immunoglobulin sequencing 
and radiographic imaging for detection of mini-
mal residual disease. Moreover, ctDNA allowed 
the authors to identify patterns of clonal evolu-
tion distinguishing indolent follicular lympho-
mas from treatment resistan[]t. Finally, they 
demonstrated that ctDNA analysis reveals bio-
logical factors that underlie outcomes and could 
facilitate individualized therapy by applying non-
redundant panels in a clinical setting to identify 
key signatures associated with resistance or 
metastasis, thus directing the design of 
treatment.

 Extracellular Vesicles

The discovery of the extracellular vesicles (EVs) 
was first overlooked during the 1980s, when it 
was thought that they contained waste products. 
However, with more studies detailing the molec-
ular contents of EVs, it was clear that there were 
many kinds of EVs with different purposes, such 
as microvesicles, ectosomes, apoptotic bodies, 
and exosomes. In 1987, the word “exosomes” 
was proposed for EVs of endosomal origin that 
form during the endosomal sorting complexes 
required for transport (ESCRT) pathway. The 
existence of this unusual type of EV was con-
firmed later in antigen-presenting cells such as 
epithelial cells and tumor cells. Further studies of 
exosomal contents revealed enrichment for miR-
NAs and other rare RNA biotypes, sparking 
interest.

Exosomes (30–150 nm) were indeed a revolu-
tionary contribution to cellular biology. This 
class of endocytic origin vesicles are secreted by 
most types of cells and circulate in bodily fluids 
such as blood, urine, saliva, and breast milk [69]. 
Their contents have been shown to be broad, 
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composed of various growth factors, proteins, 
lipids, and various nucleic acids, microRNAs, 
long noncoding RNAs, and circular RNAs (cir-
cRNAs) [60]. Exosomes start as intraluminal 
vesicles generated within the endolysosomal sys-
tem and secreted by the fusion of multivesicular 
endosomes (MVEs). Their abundance and con-
stant presence in biofluids make them an ideal 
target to survey in the search for biomarkers, in 
early and late stages of disease.

 Methods for EV Identification 
and Analysis

The isolation of exosomes for sequencing, pro-
teomics, or lipidomic analyses requires special-
ized equipment (ultracentrifugation, 
chromatography, or microfluidics) and validation 
through MVE-specific markers, to avoid other 
structures within a similar size range [51, 52] 
(see Note 1). However, compared to ctDNA or 
CTCs, exosomes are much easier to access [65].

Early detection is the hallmark of cancer ther-
apy characterized by a high heterogeneity in 
patient response. In ovarian cancer, exosomes 
have shown to carry proteins such as CD9, CD81, 
and CD63 used in screening and diagnosis [63]. 
For example, it was reported positive expression 
of claudin-4 in exosomes in the blood of 32 of 63 
patients, but in only 1 of 50 samples from healthy 
controls, with 51% sensitivity and 98% specific-
ity, indicating its clinical significance for diagno-
sis [64] (see Note 5).

The importance of the study of EVs in a clini-
cal setting to complement the diagnosis and 
prognosis of several diseases has been well dem-
onstrated [51–69]. Nonetheless, it is critical to 
highlight that the election of the most appropriate 
technique to be used in the clinic depends on the 
required outcome, which could be to obtain the 
highest concentration of EVs or to select one par-
ticular type of EVs (i.e., exosomes, microvesi-
cles, or apoptotic bodies) [67, 73]. This is 
illustrated in the identification of specific profiles 
of EVs from gingival crevicular fluid, showing 
that oral EVs in early pregnancy can identify 

patients at risk of developing gestational diabetes 
mellitus [67].

In colorectal, gastric, pancreatic, and lung 
cancer, a growing number of studies have focused 
on exosomal cargo, and their use in diagnosis, 
prognosis, and prediction as biomarkers have 
also been investigated [68, 71]. However, these 
studies have a low number of patients and do not 
control for variation between demographic vari-
ables like, age, sex, or race.

 Successful Studies on EV 
Identification and Analysis

The outstanding study done by Hoshino A. et al. 
[72] details how integrin content from exosomes 
dictates the target for the metastatic event to 
occur, suggesting that exosomes play a critical 
role in delivering specific molecular contents to 
specific cellular targets. Here, the authors dem-
onstrate that exosomes from mouse and human 
lung-, liver-, and brain-tropic tumor cells fuse 
preferentially with resident cells at their pre-
dicted destination, namely, lung fibroblasts and 
epithelial cells, liver Kupffer cells, and brain 
endothelial cells. Next, the tumor-derived exo-
somes uptaken by organ-specific cells suggest 
preparing the pre-metastatic niche. Thus, treat-
ment with exosomes from lung-tropic models 
redirected the metastasis of bone-tropic tumor 
cells. The proteomic analysis showed that integ-
rin expression patterns, in which the exosomal 
integrins α6β4 and α6β1 were associated with 
lung metastasis, while exosomal integrin αvβ5 
was linked to liver metastasis. Targeting the inte-
grins α6β4 and αvβ5 decreased exosome uptake, 
as well as lung and liver metastasis, respectively. 
This showcases a groundbreaking example for 
possible metastatic monitoring and the key role 
of proteins commonly dismissed as therapeutic 
targets and opens the possibility of a similar role 
for other exosomal contents such as RNA or 
lipids.

The computational methods employed in exo-
somal studies are no different from WES or sin-
gle cell RNA profiling. However, the molecular 
size distributions are much different between cel-
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lular transcriptomic profiles (mRNA average of 
1.4kpb) and exosomal RNAs (200pb average). 
Thus, the methods to characterize these small 
molecules in exosomes are limited [65, 74–77] 
(see note 6). An attempt to understand their bio-
logical relevance has been done by grouping the 
exosomal RNA reads into small read clusters [86, 
87]. The analysis of these small read clusters 
showed to significantly (FDR < 0.05) predict the 
survival outcome of liver cancer patients [87], 
exemplifying a viable alternative for quantifica-
tion of small RNA. These studies present differ-
ent approaches to treat RNA or proteomic 
expression as clusters or vectors rather than indi-
vidual piles up of genes/proteins, adding new 
information that correlates with biophysical 
properties.

 Future Directions

The implementation and personalization of exo-
somes from liquid biopsies have been poorly 
explored. Sample sizes are below optimal but the 
findings so far are very promising. Current com-
putational methods are robust enough to provide 
a characterization of the molecular contents of 
exosomes; however, more appropriate approaches 
that allow to understand the biological relevance 
of these molecules are lacking [65].

Accurate methods for identification of indi-
vidual traits from tissues, plasma, blood, urine, or 
other noninvasive liquid biopsies that can lead to 
diagnosis or patient classification for treatment 
targeting specific tumor types are needed. Here, 
we have presented studies and methods evidenc-
ing how structural variants, copy number altera-
tions, tumor cells, and even extracellular vesicles 
can be recovered noninvasively, allowing us to 
identify a specific cancer. These approaches 
could potentially direct the course of treatment 
for individual patients and improve our under-
standing of these diseases. However, challenges 
around the appropriate methods and limited sam-
ple sizes prevent these technologies from being 
currently in use. Although clinical trials in phase 
3 are promising, more in-depth and rigorous 
studies that take into account demographics, 

comorbidities, and reproducibility are needed. 
The recent breakthroughs in liquid biopsies tech-
nologies and the era of personalized medicine are 
indeed having a great impact in extending overall 
health, quality of life, and survival of patients.

 Notes

Next-generation sequencing and precise targeted 
digital polymerase chain reaction are the gold 
standard to identify and validate molecular tar-
gets for precision medicine therapies. 
Advancements in microfluidics and other purifi-
cation methods allow the careful isolation of spe-
cific components from liquid biopsies such as 
CTCs, ctDNAs, and EVs, boosting the signal 
quality of downstream analysis. Although these 
approaches remain costly and under develop-
ment, the possibilities, improvements, and 
advancement in materials are transforming the 
landscape of methods into more accessible and 
more precise tools (i.e., lab in a chip). Today, the 
studies are identifying several putative biomark-
ers in a series of cancer types and diseases. 
However, the current challenge is to overcome 
inter-patient and cellular heterogeneity. In this 
chapter, we reviewed the common consider-
ations, approaches, and resources one should 
implement when utilizing liquid biopsies for the 
purpose of uncovering the molecular drivers and 
mechanisms under the umbrella of precision 
medicine. Throughout this chapter, we empha-
size key points that should be accounted in order 
to both increase precision, sensitivity and facili-
tate the quality of data produced by NGS, includ-
ing the following:

 1. The isolation of cfDNA, ctDNA, CTCs, and 
EVs requires appropriate physical and molec-
ular validations (i.e., DNA quality, fragment 
size, molecular markers). The isolation selec-
tion protocols should reduce the stress caused 
on the fluid to avoid cellular debris from 
contaminants.

 2. Cellular heterogeneity is the main driver of 
variance in CTC studies and a critical compo-
nent to consider in any clinical setting. 
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Additionally, somatic patient mutations accu-
mulate over time and age is an additional fac-
tor to consider. Therefore, targeted panels are 
the most appropriate approach in a clinical 
setting, unless a robust validation is performed 
on an independent dataset.

 3. The levels of ctDNA can be variable and 
undetectable in some patients, which does 
correlate with therapy or disease stage. 
However, in patients where ctDNA is detect-
able, it can be used for monitoring residual 
disease and progression status.

 4. Structural and somatic variants can be called 
from CTCs and ctDNA; however, precision 
will scale with the amount of samples and 
validation is imperative.

 5. Patient heterogeneity and sample sizes are a 
key element in the study of exosomes (EVs). 
The researchers must ensure appropriate num-
bers between controls and cases, to distin-
guish disease from patient-specific 
signatures.

 6. We urge the researchers to incorporate omic 
approaches, in addition to as many resources 
as possible in downstream analysis with the 
objective of identifying the underlying biol-
ogy and molecular mechanisms behind the 
identified signatures.

 7. The list of resources mentioned throughout 
this chapter includes highly established meth-
ods and references that expand into each indi-
vidual topic but does not include the entire 
arsenal of possible available computational 
resources.
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Artificial Intelligence for Precision 
Oncology

Sherry Bhalla and Alessandro Laganà

Abstract

Precision oncology is an innovative approach 
to cancer care in which diagnosis, prognosis, 
and treatment are informed by the individual 
patient’s genetic and molecular profile. The 
rapid development of novel high-throughput 
omics technologies in recent years has led to 
the generation of massive amount of complex 
patient data, which in turn has prompted the 
development of novel computational infra-
structures, platforms, and tools to store, 
retrieve, and analyze this data efficiently. 
Artificial intelligence (AI), and in particular 
its subfield of machine learning, is ideal for 
deciphering patterns in large datasets and 
offers unique opportunities for advancing pre-
cision oncology. In this chapter, we provide an 
overview of the various public data resources 
and applications of AI in precision oncology 
and cancer research, from subtype identifica-

tion to drug prioritization, using multi-omics 
datasets. We also discuss the impact of 
AI-powered medical image analysis in oncol-
ogy and present the first diagnostic FDA- 
approved AI-powered tools.

 Introduction

The term “precision oncology” describes the 
genetic and molecular profiling of tumors to 
determine actionable alterations, which is 
increasingly being incorporated into mainstream 
clinical practices. Precision oncology includes a 
range of strategies such as the use of biomarkers 
to discern specific tumor subtypes and ascertain 
reoccurrence, creation of mouse models for test-
ing drugs, genome sequencing, and omics analy-
sis to identify targetable mutations and guide 
therapy [1]. Since the emergence of imatinib as 
the first targeted therapy for chronic myeloid leu-
kemia almost 20 years ago, the field of personal-
ized cancer medicine has taken off to achieve 
greater heights [2]. Novel high-throughput 
sequencing approaches and the rise of big data in 
oncology have led to the development of many 
predictive models based on artificial intelligence 
(AI), and particularly machine learning (ML) 
techniques for the discovery of early diagnosis, 
prognosis, and therapeutic biomarkers in differ-
ent cancer types. With precision oncology pro-
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gressively taking center stage, the need to develop 
predictive models in oncology has increased 
many folds. The availability of big public data 
resources like The Cancer Genome Atlas 
(TCGA), the International Cancer Genome 
Consortium (ICGC), and the Cancer Cell Line 
Encyclopedia (CCLE) has fueled the develop-
ment of the various prediction models that sus-
tain precision oncology. Among the challenges in 
big data analytics are the proper maintenance and 
sharing of patients’ data in a responsible manner. 
The FAIR guiding principles of Findability, 
Accessibility, Interoperability, and Reusability 
published in 2016 are guiding the data producers 
and publishers to overcome the hurdles in data 
management and sharing (https://www.go- fair.
org/fair- principles/).

Clinical oncology practice is now starting to 
reap the benefits of ML, data science (DS), and 
big data analytics by leveraging models that pre-
dict survival in specific cancer subtypes and 
response to specific therapies created by using 
single datatypes like genomics, proteomics, 
metabolomics, imaging and clinical notes, or 
combinations of these. There has been tremen-
dous development in the literature regarding the 
role of AI in the early prediction, diagnosis, and 
prognosis in different cancer types. But the field 
of personalized oncology is still in its infancy. 
Tumor heterogeneity and clonality, patient 
genetic makeup, and body response to drug treat-
ment regimens, collectively make it a complex 
problem. The development of new techniques, 
namely, single-cell genomics, spatial transcrip-
tomics, and high-throughput gene expression 
perturbation assays have gained traction in recent 
years. With the development of computer hard-
ware, the neural networks envisaged decades ago 
are now realized on the ground and have paved 
the way to handle high-dimensional datasets. By 
using AI, automated, scalable pipelines have 
been developed to identify cancer types and sub-
types and predict prognosis with performance 
comparable to physicians. In particular, deep 
learning models based on pathology images have 
propelled the progress in the field of precision 
oncology.

In this chapter, we focus on describing the 
major public data resources that are gold mines 
for developing precision medicine models. We 
describe developments in cancer subtype identifi-
cation analysis and the models that have been 
learned and leveraged to predict drug sensitivity 
on cell lines, which can be a very important guide 
to develop subtype-specific treatment in cancer. 
Next, we introduce machine learning models 
based on pathology images, which predict impor-
tant outcomes in oncology, and describe the pre-
dictive models that have gained FDA approval. 
Finally, we discuss the current challenges in real-
izing the full potential of machine learning mod-
els in clinical practice.

 Public Data Resources Powering 
Precision Oncology

Precision oncology is a data-driven approach to 
personalized cancer care. With the development 
of advanced sequencing techniques, data points 
are available for every step of the central dogma, 
ranging from genomics and transcriptomics to 
proteomics and metabolomics. At the genome 
level, data are generated from whole-genome 
sequencing (WGS) and whole-exome sequencing 
(WES), which include single nucleotide poly-
morphism (SNP), copy number variation (CNV), 
and structural variation (SV) data. At the tran-
scriptomic level, sequencing techniques provide 
expression measurements for coding and non- 
coding genes [3]. The proteomics data generated 
using protein array and mass spectrometry mea-
sure the expression of actionable protein mole-
cules [4]. With the role of epigenetics becoming 
more well defined in cancer, data illustrating epi-
genetic regulation and post-translational modifi-
cations (i.e., miRNA methylation and other 
chromosomal modifications) have become piv-
otal for prognostic models in oncology [5]. In 
parallel, there has been development in  non- omics 
datasets, e.g., imaging (pathology and medical 
imaging). Non-omics data, including electronic 
health records, radiographic, and histologic data, 
have been widely used to develop cancer diag-
nostic and prognostic algorithms. These data 
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have helped to gain a deeper understanding of 
cancer development and metastasis and have led 
to personalized and efficient oncologic care.

As cancer is a disease of the genome, publicly 
accessible genomic resources can undoubtedly 
promote precision medicine-based scientific dis-
covery (Table  14.1). The National Cancer 
Institute (NCI) has provided an array of reposito-
ries that house omics and non-omics data related 
to cancer. One of the well-curated data-sharing 
platforms for cancer supported by NCI is 
Genomics Data Common (GDC), which hosts 
genomics data collected from nearly 65 projects 
and 80,000 patients. The GDC covers the two 
most extensive data resources of oncology, incor-
porating The Cancer Genome Atlas (TCGA, 
https://cancergenome.nih.gov/) and 
Therapeutically Applicable Research to Generate 
Effective Therapies (TARGET, https://ocg.can-
cer.gov/programs/target). GDC aims to provide 
uniformly processed cancer data to support the 
development of precision medicine in oncology; 
it contains clinical, biospecimen, and molecular 
data for several cancer types. The molecular data 
in this repository include WGS, WES, transcrip-
tome sequencing (RNA-seq), microRNA 

sequencing, DNA methylation analysis, and 
DNA copy number analysis.

The uniform processing of data types in GDC 
allows the user to combine different datasets for 
analysis or test machine learning models of dif-
ferent datasets [6]. NCI also maintains a pro-
teomics data repository called Proteomic Data 
Commons (PDC), comprising raw and processed 
mass spectrometry data from cancer proteomics 
experiments. Most of the datasets have corre-
sponding genomic and imaging data available in 
other Cancer Research Data Commons [7, 8]. 
PDC contains datasets from three major reposito-
ries: NCI’s Clinical Proteomic Tumor Analysis 
Consortium (CPTAC), Children’s Brain Tumor 
Tissue Consortium (CBTTC), and International 
Cancer Proteogenomic Consortium (ICPC) ([9, 
10], https://icpc.cancer.gov/portal/). Currently, 
around 27 TB of proteomics data is available for 
11 major body sites. The major objective of this 
repository is to make proteomics data available to 
the research community and support the integra-
tion of proteomics data with genomics data to 
promote precision medicine. Further, the non- 
omics data for cancer are also archived and stored 
in various repositories. The NCI hosts The Cancer 

Table 14.1 Major data portals that aid the precision medicine in oncology

Name Portal Data type
GDC https://portal.gdc.cancer.gov mRNA expression, miRNA expression, mutation, CNV, 

methylation
PDC https://proteomic.datacommons.

cancer.gov
Proteomics expression, spectral data

TCIA https://www.
cancerimagingarchive.net

Medical images

NCI60 https://dtp.cancer.gov/discovery_
development/nci- 60/

mRNA expression, miRNA expression, protein expression, 
metabolomics data, methylation data, enzyme activity

GDSC https://www.cancerrxgene.org Drug sensitivity, mRNA expression, mutation, CNV, methylaion
CCLE https://portals.broadinstitute.org/

ccle
Drug sensitivity, genomics transcriptomics, protein array, DNA 
methylation

L1000 https://clue.io Perturbed gene expression data
cMAP http://clue.io/cmap Perturbed gene expression data
ALMANAC https://dtp.cancer.gov/ncialmanac Drug pair sensitivity, mRNA expression, miRNA expression, 

protein expression, metabolomics data, methylation data, 
enzyme activity

COSMIC https://cancer.sanger.ac.uk/cosmic Mutations, CNV, structural variants
CCLE https://portals.broadinstitute.org/

ccle
Drug sensitivity, genomics transcriptomics, protein array, DNA 
methylation

Depmap https://depmap.org Gene expression from CCLE, gene dependency data in form of 
CRISPR knockout screens
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Imaging Archive (TCIA), which archives a large 
number of publicly accessible medical images 
from 25 types of cancer for nearly 30,000 
patients. Along with image data, the associated 
clinical data such as patient outcomes, treatment 
details, genomics, pathology, and expert analyses 
are also provided when available [7].

Repositories comprising of pharmacogenomic 
screens of cancer cell lines have emerged as an 
appealing pre-clinical system for identifying 
tumor genetic subtypes with selective sensitivity 
to targeted therapeutic drugs [11]. One of the old-
est projects is NCI60, started in the late 1980s 
with the aim of creating an in vitro drug discov-
ery tool. With time, NCI 60 has become a rich 
source of information about the mechanisms of 
growth inhibition [12]. Another project called 
Cancer Cell Line Encyclopedia (CCLE) has been 
developed to store comprehensive genetic char-
acterization of a large panel of cancer cell lines. 
The CCLE provides public access to DNA copy 
number, mRNA expression, mutation data, and 
more, for 1000 cancer cell lines [13]. The 
Genomics of Drug Sensitivity in Cancer (GDSC) 
is another public resource that contains drug sen-
sitivity data for nearly 138 anticancer drugs 
across almost 800 cancer cell lines. GDSC is 
integrated with the Catalogue of Somatic 
Mutations in Cancer (COSMIC), an essential and 
comprehensive database of somatic mutations in 
cancer and represents an important resource for 
the identification of molecular markers of drug 
response [14].

Along with the drug sensitivity prediction 
resources, some repositories store the response to 
combination of drugs. One such repository is 
NCI-ALMANAC (A Large Matrix of Anti- 
Neoplastic Agent Combinations), containing 
therapeutic activity of over 5000 pairs of 
 FDA- approved cancer drugs against a panel of 
cell lines in NCI-60 [15].

While the abovementioned drug sensitivity 
projects store data before treatment with cell line, 
the Connectivity Map (CMap) and the Library of 
Integrated Network-Based Cellular Signatures 
(LINCS) projects are repositories that store data 
on the transcriptional responses of cancer cell 
lines after treatment with small molecules. The 

CMap is a repository of perturbational datasets 
containing transcriptomic profiles of dozens of 
cultivated cell lines treated with thousands of 
chemical compounds serving as reference data-
bases and has been scaled up to 1000-fold by 
using a low-cost, high-throughput, and reduced 
representation expression profiling method called 
L1000 to contain 1.3 million profiles. This 
method has been shown to be reproducible, anal-
ogous to RNA sequencing, and appropriate for 
computational inference of the expression levels 
of 81% of non-measured transcripts [16, 17].

Finally, the Cancer Dependency Map 
(DepMap) is a rolling project aimed at discover-
ing gene dependencies in many cancer cell lines 
using CRISPR and shRNA genome-wide screens. 
DepMap can be used to assess targets for highly 
selective drugs, predict the efficacy and selectiv-
ity of candidate drugs, and identify susceptible 
cell lines for testing them [18].

 AI in Cancer Subtype Identification

Molecular subtyping is a process to identify sub-
groups of samples that share features within a 
given cancer type. This workflow involves data 
preprocessing and an unsupervised clustering 
approach to identify best clusters, perform sub-
type characterization with clinical metadata, and 
calculate supervised classification of new sam-
ples. Molecular characterization is an essential 
component of personalized therapy. Subtype 
characterization is then fundamental as there is 
no ground truth and unbiased clustering of sam-
ples is assessed via statistical metrics and mean-
ingful correlation with clinical outcomes. 
Clustering approaches range from simple hierar-
chical clustering to Non-negative Matrix 
Factorization (NMF), integrative and consensus 
clustering. Generally, molecular subtypes are 
identified based purely on genomic information 
or integration of omics. These may not always be 
clinically meaningful as they do not always cor-
relate with patient survival, which is an essential 
criterion to assess the efficacy of therapy. Recent 
studies have integrated survival information in 
the clustering approach in a semi-supervised 
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fashion to make these workflows more robust and 
clinically actionable. Further, many studies now 
perform multi-omics data integration to improve 
the discovery of clinically and biologically mean-
ingful clusters [19–21]. The clusters obtained 
with this approach are often enriched for clinical 
outcomes, e.g., survival, morbidity, and mortal-
ity,, and therefore may be helpful for personal-
ized diagnosis, prognosis, and therapy. 
Upadhyaya et al. [22] have identified subgroup- 
specific clinical outcomes in the prospective 
multi-institutional trial of atypical teratoid rhab-
doid tumor (ATRT). A Pearson correlation-based 
distance matrix generated from genome-wide 
methylation probes was used to perform the clus-
tering. One of the three molecular subgroups 
identified was associated with metastasis and 
another one with best overall survival. The chal-
lenge of integrating ever increasing multi-omics 
datasets to identify clinically relevant subgroups 
remains elusive. Similarity network fusion (SNF) 
[21] is a recent method to generate multi-omics 
patient-level networks. These are obtained by 
generating a network from each data type and 
then merging those networks into a single one by 
an iterative non-linear optimization method 
based on message-passing theory. When tested 
on five cancer types from TCGA, SNF outper-
formed single omics-based subtype identification 
and survival prediction. Multiple flagship papers 
from TCGA have reported molecular subtypes 
identified based on multi-omics datasets. For 
instance, TCGA network performed consensus 
clustering using five omics datasets from breast 
cancer samples to identify four subtypes. They 
performed hierarchical and NMF clustering as 
well and found associations with clinical param-
eters [23]. In another study, Curtis et al. [24] per-
formed integrative clustering to identify ten 
subtypes of breast cancer by integrating CNA 
and gene expression datasets using discovery and 
validation cohorts.

Though most of the studies identify subgroups 
within tissue of origin, Hoadley et al. [25] imple-
mented Cluster-of-Cluster-Assignments (COCA) 
to cluster samples from 12 cancer types and iden-
tify similarities and differences among them. 
While some clusters had significant overlap to 

their tissue-of-origin counterparts, others 
included samples from different cancer types 
enriched for specific alterations and provided 
independent clinical associations to predict 
survival.

Cancer subtyping is not only based on omics 
data but also on secondary information derived 
from omics data, e.g., pathways and non-omics 
datasets such as histopathology images, whole- 
slide imaging, and medical imaging (radiomics, 
PET, CT scans, etc.). TCIA-based clinical MRI 
analysis of gliomas has led to a hybrid technique 
using radiomics and machine learning to classify 
molecular subtypes of gliomas. The study indi-
cates that a radiomics-based AI approach can be 
a reliable alternative to identify glioma subtypes 
with 80% accuracy [26]. Another example of 
methods based on secondary omics data is PACL, 
a pathway-based deep clustering method for 
molecular subtyping of cancer. PACL captures 
non-linear associations in high-dimensional data, 
including transcriptomic data and survival infor-
mation, and outperforms other clustering meth-
ods, providing meaningful biological 
interpretation of clustering outcomes [27]. 
Finally, DeePaN is a deep patient graph convolu-
tion network that stratifies non-small cell lung 
cancer (NSCLC) patients into subgroups associ-
ated with different outcomes from immuno- 
oncology therapies [28].

 AI-Powered Drug Prioritization 
in Cancer

Computationally driven drug prioritization takes 
a patient’s genetic makeup into account to decide 
treatment. Recently in 2017, the FDA approved 
Pembrolizumab for tumor-site agnostic molecu-
lar aberration of mismatch repair deficiency or 
high microsatellite instability, based on clinical 
trials in 15 cancer types [29]. Another drug called 
Larotrectinib was approved to target the tropo-
myosin receptor kinase gene fusion in multiple 
cancers [30]. These are the first examples of can-
cer drugs approved based on specific pan-cancer 
markers rather than tumor type. Machine learn-
ing has been extensively applied in this area to 
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help clinicians guide treatment, and several pre-
diction methods have been developed to facilitate 
the drug prioritization process (Table  14.2). 
Gupta et  al. developed a model using genomic 
features to predict drug response and achieved 
correlations ranging from 0.43 to 0.78 using the 
CCLE dataset [31]. Similarly, Dong et  al. pro-
posed a classification model based on Support 
Vector Machines (SVM) to predict drug sensitiv-
ity using gene expression profile in the CCLE 
dataset and attained good performance for sev-
eral drugs [32]. Additional methods have been 
developed to predict drug response via multi- 
omics data integration. Recently, a technique 
called MERGE (mutation, expression hubs, 
known regulators, genomic CNV, and methyla-
tion) has been developed to model the potential 
of a gene being a reliable marker for drugs based 
on the novel MERGE score, a weighted combi-
nation of the gene’s driver features [34]. MERGE 
concurrently learns the weights of driver features 
and the influence of the MERGE score on the 
observed gene-drug associations. The main inno-
vation of this method is that it combines disease- 
related, multi-omics prior evidence to rank 
gene-drug associations. Zhang et al. have devel-
oped a heterogeneous network-based method for 
drug response prediction named HNMDRP to 
predict cell line-drug associations by leveraging 
genomic information from cell lines, the chemi-
cal structure of the drug as well as drug-target 
and protein-protein interaction information [33]. 
Another method called PriorCD (prioritization of 
candidate drugs) has been developed to prioritize 
cancer drugs based on a global network and a 
drug-drug functional similarity network gener-
ated by integrating pathway and drug activity 
profiles using NCI-60 data. This approach applies 
the unique criteria of interpreting drug functional 
similarities at the pathway level and has been 
evaluated on drug datasets of ovarian and breast 
cancer where it achieved a performance of 0.82 
AUROC (Area Under the Receiver Operating 
Characteristic curve) [35]. The tool BMTMKL 
uses the state-of-the-art kernelized Bayesian 
matrix factorization (KBMF) method with 
component- wise multiple kernel learning for 
drug response prediction. The method also lever-

ages known pathway information to learn drug 
response associations. The authors have validated 
their results in the Fully Blinded Experimental 
settings using an in-house Acute Myeloid 
Leukemia (AML) cell line panel. The experimen-
tal and predicted drug sensitivity score showed 
correlation of 0.44 on eight compounds and six 
cell lines, which increased to 0.70 when the out-
lier drug Venetoclax was removed [44].

Deep learning methods have become preva-
lent in many fields and, more recently, deep 
learning-based neural networks have been devel-
oped to perform drug response prediction. Ding 
et al. explored the use of AutoEncoders to learn 
important information on the state of tumor cells 
before treatment. In the study, AutoEncoder 
models were built to derive compressed features 
from an input dataset comprising somatic muta-
tions, CNVs, and gene expression data. Further, 
elastic net classifiers were trained on the com-
pressed features to predict drug sensitivity in can-
cer cell lines. The encoded features resulted in 
high sensitivity and specificity but a low AUROC 
of 0.67 on the external validation dataset of 
CCLE [43]. Another similar method is Cancer 
Drug Response profile scan (CDRscan), an 
ensemble deep learning model of five convolu-
tional networks developed using the CCLP1 and 
GDSC6 drug response assay datasets. Four con-
volution networks out of five have dual conver-
gence architecture which means that a series of 
convolutions are applied on mutation and molec-
ular data separately, the data are merged, then 
convolution is applied again before predicting the 
IC50 values for cell line-drug pairs. To make the 
model more generalized and robust, mean predic-
tion values from five models were reported [37]. 
Another autoencoder-based method for predict-
ing drug sensitivity is DeepDSC, which was 
trained and evaluated on CCLE and GDSC. The 
model attained fairly high R2 scores with a ten-
fold cross-validation scheme. Still, performance 
reduced significantly when tested using the leave 
the drug out method, showing that the model is 
not robust to the compounds it has not seen before 
[42].

Although drug response prediction may help 
identifying the optimal treatment for some cancer 
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patients, drug resistance often emerges, often via 
subclonal tumor cell populations. Combining 
two or more drugs with different mechanisms of 
action increases the success rate of drug reposi-
tioning [45]. Synergetic combinations of drugs 
can limit toxicity by reducing drugs’ dosage and 
can help overcome drug resistance by targeting 
multiple pathways. Trial and error combination 
design has inadequate application in the clinic 
due to hazardous exposure to toxic combinations 
without improving efficacy [45–47]. Therefore, 
many computational methods have been devel-
oped to predict anticancer drug combination syn-
ergy based on a variety of genomic, drug 
structure, and biological data, while limiting tox-
icity. H-RACS is a machine learning technique 
that uses signature genes of basal cell lines and 
drug features, such as chemical descriptors, drug 
similarities, and drug targeting network features 
as input to compute a synergy score. Among the 
seven machine learning models tested, Gradient 
Boosting Regression gave the maximum AUC 
and lowest RMSE [36]. Combining two or more 
drugs with different mechanisms of action is an 
alternative approach to increase the success rate 
of drug repositioning. DeepSynergy is a deep 
neural network developed based on the Merk and 
Co. pharmacological data and Genomics data 
from GDSC [39]. The complete dataset consists 
of 23,062 samples, where every selection entail 
two compounds and one cell line involving 583 
distinct combinations, each tested against 39 
human cancer cell lines derived from 7 different 
tissue types. The network uses the gene expres-
sion profile of the cell line and the chemical 
descriptors of two drugs as input. The informa-
tion is then propagated through the layers of 
DeepSynergy until the output unit produces the 
predicted synergy score. The authors compared 
their deep learning model with other state-of-the- 
art machine learning methods like gradient boost-
ing, RFs, SVMs, and elastic net and showed that 
DeepSynergy performs significantly better. 
Another study by Xia et  al. used the subset of 
drug pairs in the NCI-ALMANAC database to 
develop neural networks for encoding features as 
well as predicting tumor growth, explaining 94% 
of the response variance. This model takes in 

gene expression, miRNA expression, protein 
abundance as well as drug descriptors and finger-
prints and returns a scalar prediction score of 
growth inhibition. However, the model in this 
study has not been validated in unseen drugs or 
cell lines [40]. Another innovative prediction 
method by Chen et  al. based on the DREAM 
2015 dataset consisting of 4999 drug pairs has 
been built using a deep belief network to predict 
drug synergy from gene expression profile, path-
way, and the ontological profile of genes derived 
from the literature [41]. This method was evalu-
ated using the leave-one-out approach and was 
not tested on a separate validation dataset. 
Additional recent work by Lee et al. has proposed 
the SELECT (synthetic lethality and rescue- 
mediated precision oncology via the transcrip-
tome) workflow for guided patient treatment 
using transcriptome data. This workflow pre-
dicted patients’ response to therapy in 80% of 
cancer clinical trials [48]. Finally, Yuan et  al. 
developed an interpretable machine learning tool, 
which incorporated a mathematical model of cell 
dynamics, to identify personalized combination 
therapy for cancer by using combinatorial pertur-
bations [49].

 The Impact of AI-Powered Image 
Analysis on Precision Oncology

Image analysis has emerged as the preferred and 
most advanced automated task in personalized 
oncology thanks to the development of novel 
neural network-based hardware and algorithms. 
In the deep neural network domain, convolu-
tional neural network (CNN) has become the best 
option so far due to its capability to handle image 
data efficiently compared to other deep neural 
network (DNN) architectures and conventional 
machine learning algorithms. Image analysis also 
leverages transfer learning, where a model is 
trained on huge image datasets and tested on the 
problem-specific data to predict a defined cancer 
by just tuning the model’s hyperparameters [50]. 
Machine learning and deep learning algorithms 
like CNN and autoencoders have been used in 
multiple medical image analysis applications 
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(Table 14.3). Interpretation of cancer histopathol-
ogy images is one of the most challenging tasks 
in disease detection. Machine learning and deep 
learning algorithms can aid dissecting the com-
plex patterns in imaging data and offer accurate 
and reproducible quantitative radiology assess-
ments. In cancer, there are many tasks where AI 
can assist the radiologist and help saving time. 
The first and foremost important task is cancer 
detection, which involves identifying abnormali-
ties based on the change in intensities in the 
image sections. The second task consists of the 
characterization of the tumor and involves tasks 
like segmentation, diagnosis, and staging, while 
the third task involves tracking the disease at dif-
ferent time points. To aid the pathologist and 
increase the accuracy of cancer detection, many 
algorithms have been designed to segregate nor-
mal and cancerous tissue through image analysis. 
Coudray et al. [75] used deep learning to process 
hematoxylin and eosin (H&E)-stained histopa-
thology whole-slide images (WSIs) from TCGA 
to distinguish lung adenocarcinoma (LUAD) vs. 
lung squamous cell carcinoma (LUSC) vs. nor-
mal lung tissue. The results of their method were 
compared with the assessment of three patholo-
gists, reporting comparable performance with an 
average AUC of 0.97. The model was based on 
the Inception-v3 architecture to differentiate nor-
mal vs. tumor first, and then to further classify 
tumors into LUSC or LUAD. The authors further 
extended the application of their method to pre-
dict the genotype of an established panel of genes 
with AUCs ranging from 0.73 to 0.86. Wang et al. 
[65] developed a fully automated deep CNN- 
based pipeline to identify prostate cancer patients 
from those with prostate benign conditions. Their 
DCNN model used magnetic resonance (MR) 
images as input and performed better than 
 non- deep learning methods (mean AUC: 0.84 vs 
0.70). Haenssle et al. [78] used the Inception-v4 
CNN architecture for diagnostic classification of 
dermoscopic images alone and in combination 
with clinical information. They also compared 
their method with the assessment of 58 derma-
tologists in different analyses and with the top 
five algorithms from the ISBI 2016 challenge. 
Their method not only outperformed the panel of 

dermatologists based on different performance 
metrics (AUC: 0.86 vs. 0.79) but was also found 
to be comparable to the top three ISBI 2016 chal-
lenge algorithms. In a quest to correlate H&E- 
stained histopathology images with proteomics 
data coming from the CPTAC consortium, Azuaje 
et  al. [79] employed transfer learning using the 
VGG16-CNN model on clear cell renal cell car-
cinoma (ccRCC) images. They not only found 
high correlation between image and proteomics 
features but also found that image-based models 
could identify ccRCC samples with 0.95 accu-
racy on a test dataset. Ribli et al. [80] used a pre-
viously published method, namely, Faster 
R-CNN framework, to classify malignant and 
benign lesions from mammograms. This method 
reported AUC of 0.95 on the INbreast dataset and 
0.85  in the Digital Mammography DREAM 
Challenge. Similarly, Lu et  al. [81] achieved 
AUC of 0.91 to classify metastatic lymph nodes 
in rectal cancer using the Faster R-CNN frame-
work on MR images.

To match the other omics data counterparts, 
the term “radiomics” was coined in 2012. 
Radiomics involves converting medical image 
data obtained from computed tomography, posi-
tron emission tomography, or magnetic reso-
nance imaging to high-dimensional features 
involving steps like image acquisition and resto-
ration, image segmentation, feature extraction, 
and then subsequent informatics analyses to per-
form correlation with clinical and biological data 
and derive diagnostic prognostic and predictive 
biomarkers. Applying these methods on drug 
perturbation data sets has proven to be beneficial 
in enhancing our understanding of the connection 
between genes, drugs, and diseases. Mobadersany 
et  al. developed a unified framework based on 
survival convolutional neural networks (SCNN) 
for integrating histology and genomic biomark-
ers for predicting time-to-event outcomes from 
histological images of glioma from TCGA.  In 
this framework, SCNN learns visual patterns 
associated with survival using convolution and 
pooling operations, then fully connected layers 
provide additional non-linear transformations of 
the extracted image features. Finally, a Cox pro-
portional hazard layer is added which models 
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time-to-event data, like overall survival or 
progression- free survival [62]. Another study by 
Bychkov and colleagues applied a combination 
of convolutional and recurrent architectures to 
train a deep network to predict colorectal cancer 
outcome based on images of tumor tissue sam-
ples. The model was evaluated on 420 colorectal 
cancer patients with clinicopathological and out-
come data available, showing that deep learning- 
based outcome prediction with only small tissue 
areas as input outperforms (hazard ratio HR 2.3) 
visual histological assessment performed by 
human experts on both TMA spot (HR 1.67) and 
whole-slide level (HR 1.65) in the stratification 
into low- and high-risk patients [58].

Recently, deep learning has also been applied 
to learn mutation status in cancer patients. EGFR 
mutation status is important to identify lung can-
cer patients eligible for EGFR-TKI treatment. 
Image-based assays are an important option in 
this case as tissue-based EGFR testing is invasive 
and the percentage of cells expressing an EGFR 
mutation changes dynamically. Image-based 
assays provide non-invasive and reproducible 
methods to determine EGFR status. Wang et al. 
developed a deep learning model on preoperative 
CT scan images to predict EGFR mutations. The 
model was trained on 14,926 images and obtained 
an AUC of 0.81 on an independent dataset [71]. 
Mu et  al. developed a 2D small-residual- 
convolutional- network (SResCNN) based on 
deep learning to predict EGFR mutation status 
from 18F-MPG, PET/CT imaging. The network 
was trained on 429 patients and validated on 187 
patients and on an additional external dataset of 
65 patients, obtaining an AUC of 0.81 [51].

Tumor mutation burden (TMB) is defined as 
the total number of mutations carried by tumor 
cells. Patients with higher TMB have a higher 
antigen load, which aids the immune system to 
recognize the tumors, and may benefit from treat-
ment with immune checkpoint inhibitors. 
Measurement of DNA sequencing-based TMB is 
costly and time-consuming. Recently, deep learn-
ing methods have been developed to predict TMB 
using pathology images. Jain et  al. developed 
Image2TMB using Inception-v3, a convolutional 
neural network (CNN) that has achieved state-of- 

the-art performance on the ImageNet Large Scale 
Visual Recognition Challenge. Image2TMB 
combines the prediction values from three deep 
learning models that operate at diverse resolution 
scales (×5, ×10 and ×20 magnification). On a 
held-out set of patients, Image2TMB achieved an 
area under the precision recall curve (AUPRC) of 
0.92 [54]. Another study by Wang et al. led to the 
development of a transfer deep learning method 
to extract the characteristics of digital whole- 
slide image and predict TMB from pathological 
images of gastric and colon cancer. The experi-
mental validation by the GoogLeNet model 
achieved an AUC of 0.75 for the gastric patients 
cohort and 0.82 for the colon adenocarcinoma 
patients cohort, which is of great value for clini-
cal applications [53].

It has been observed that patients with micro-
satellite instability (MSI) can benefit from immu-
notherapy. Although it is possible to assess MSI 
status using genetic or immunohistochemical 
tests, direct usage of the ubiquitously available 
H&E-stained images can serve as a good alterna-
tive. Kather et  al. [55] have employed a CNN 
with deep residual learning (resnet18) and the 
ImageNet database on gastric adenocarcinoma 
and colorectal cancer, achieving patient-level 
AUC values greater than 0.77. Yamashita et  al. 
[56] used MSINet, a deep learning method using 
H&E-stained whole-slide images (WSIs) to iden-
tify MSI in a subset of patients undergone pri-
mary colorectal cancer resection. Their deep 
learning model outperformed the prediction per-
formance of a panel of five pathologists. MSINet 
achieved AUROC of 0.93 and 0.78 on internal 
and external test datasets.

Finally, a study by Xu et al. used pre-treatment 
and post-treatment follow-up CT images to pre-
dict prognostic and other clinical endpoints for 
non-small cell lung cancer (NSCLC) patients 
treated with radiation therapy, using a ResNet 
CNN combined with an RNN.  The CNN 
extracted features from CT images of each time-
point, which were fed into a recurrent network 
for longitudinal analysis. The model predicted 
2-year overall survival with 1-month follow-up 
scan with an AUC of 0.64. The performance of 
the model increased with the addition of each 
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follow-up scan up to 6 months to an AUC of 0.74 
[63].

 AI-Related Models in Oncology 
Approved by US FDA

The successful implementation of machine learn-
ing and deep neural networks on medical and 
biological data has recently led to the unprece-
dented approval of AI-based oncology software 
by the Food and Drug Administration (FDA) 
(Table 14.4). Radiology is one of the areas where 
deep learning algorithms have been the most suc-
cessful. AI-based algorithms for image analysis 
have not only achieved accuracy and reproduc-
ibility but have also reduced the reading time of 
bulk images [82, 83]. AmCAD-UT is one of the 
first AI-based devices approved by FDA for the 
detection of thyroid cancer. It is designed to char-
acterize thyroid nodule sonographic features 
using pattern recognition and quantification algo-
rithms. The algorithm assesses the risk of malig-
nancy based on thyroid imaging reporting and 
data systems (TI-RADS). Reverter et  al. per-
formed an external validation study on 300 thy-
roid nodules, which exhibited a comparable 
sensitivity but lower specificity and area under 
the receiver operating characteristics (AUROC), 

compared to the clinical experts using the 
American Thyroid Association TI-RADS classi-
fication system [84]. Arterys Oncology DL, 
approved in 2018 by FDA, can identify lung nod-
ules (Lung-RADS) and liver lesions (LI-RADS) 
in an automated fashion using images from CT or 
MR scans. It does not only help comparing medi-
cal images from diverse modalities via 3D visual-
ization, but it also enables clinicians to edit the 
automated  segmentations, thus complementing 
the standard protocols.

In 2019, FDA cleared cmTriage, a notification- 
only algorithm used to prioritize specific patients 
to radiologists based on the presence of at least 
one suspicious lesion obtained from 2D Full- 
Field Digital Mammography (FFDM) screening 
mammograms (https://appliedradiology.com/
communities/Artificial-  Intell igence/the- 
po ten t ia l -  and-  rea l i ty -  o f -  a i -  in -  c l in ica l - 
application, https://curemetrix.com/
cm- triage- 2/). This passive notification algorithm 
helps the radiologist to prioritize patients based 
on difficult or suspicious cases with added vigi-
lance via Picture Archiving and Communication 
System (PACS) worklist.

The ProFound™ AI Software V2.1 was 
approved by FDA in October, 2019. It is a 
computer- assisted diagnosis device capable of 
detecting soft tissue density and calcification by 

Table 14.4 List of AI software related to oncology approved by the US FDA

Product name
FDA clearance 
number Year Cancer type Description

AmCAD-UT K180006 2018 Thyroid cancer Computer-assisted detection for thyroid cancer based 
on ultrasound images

Arterys 
Oncology DL

K173542 2018 Solid tumors 
(lung and liver 
cancer)

Measure, track lesions and nodules using CT/MRI 
scans

ProFound™ 
AI V2.1

K191994 2018 Breast Detect malignant soft tissue densities and calcifications 
from 3D DBT exams

cmTriage K183285 2019 Breast Notification triage algorithm based on presence of 
suspicious region of interest from 2D FFDM screening 
mammograms

Transpara™ 
1.6.0

K193229 2020 Breast Convolutional neural networks (CNN)-based AI 
system that aids radiologists in breast lesion detection, 
diagnosis, and biopsy guidance from FFDM/DBT 
systems

QuantX DEN170022 2020 Breast Artificial intelligence tool that aids the radiologists in 
breast lesion detection, diagnosis, and biopsy guidance 
from MRI data

RayCare 2.3 K191384 2019 Pan-cancer Medical charged-particle radiation therapy system

S. Bhalla and A. Laganà
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reading 3D digital breast tomosynthesis (DBT) 
exams. The algorithm assigns a score to the 
detected region as well as case which is reflective 
of the confidence of these being malignant. In 
other words, scores range from 0 to 100 with a 
lower to higher likeliness of malignancy. Another 
decision support AI software for breast cancer 
approved by the FDA in 2019 is the Transpara™ 
system. It helps to screen mammograms obtained 
from FFDM & DBT systems by identifying sus-
picious soft tissue lesions and calcifications, and 
reports a region-based as well as an overall score 
indicating the likelihood of malignancy. The 
authors have reported that radiologists achieved 
better performance in lesser time using Transpara 
(version 1.3.0), which is based on deep learning 
convolutional neural networks (CNN) and was 
trained and validated on nearly 9000 mammo-
grams with cancer and a matched number of non- 
malignant mammograms [85].

QuantX is another FDA-approved computer- 
aided diagnostic system for breast cancer which 
aids the radiologists in the assessment and 
characterization of breast aberrations in MRI 
data. The QuantX algorithm gives the output 
in the form of a QI Score, based on the features 
obtained from the characteristics of the region 
of interest, which helps the radiologist to com-
pare the lesion with known ground truth avail-
able in the form of a reference database. In a 
clinical study, it showed a 20% improvement in 
accuracy for breast MRI interpretation over con-
ventional software (https://www.qlarityimaging.
com/quantx- research- study). Finally, RayCare 
is a non-diagnostic information management 
system including patient data transfer, storage, 
conversion, and visualization. This system sup-
ports scheduling and workflow management, 
including patient follow-up across different can-
cer modalities in medical/surgical oncology and 
radiation therapy.

 Current Challenges and Future 
Perspectives

AI has increasingly become a powerful and indis-
pensable tool for advanced data analysis and 
inference. In this chapter, we summarized differ-

ent studies where AI-based techniques have been 
successfully applied to address different types of 
problems in cancer research with important 
applications in precision oncology. The identifi-
cation of multiple clinically actionable subtypes 
within a larger cohort is being assessed in pro-
spective clinical trials reflecting the need for dif-
ferent treatment regimens owing to differential 
response to therapies [22]. The successful appli-
cations of AI-based methods for biomedical 
image analysis and the FDA approvals of several 
such methods are encouraging and furthering the 
development of more sophisticated learning and 
inference tools. Although these efforts are paving 
the way for real-time AI-based pipelines to be 
employed in clinic and hospital settings, a lot 
more needs to be done to establish AI as a 
precision- point-of-care modality. Effective AI 
and machine learning rely on big data, and not all 
precision oncology applications have access to 
large datasets. For many therapeutics, the only 
data available from patients are from small clini-
cal trials, where patients’ samples are not always 
subject to high-throughput sequencing. In such 
cases, it is difficult to build a dataset large enough 
for a machine learning tool to detect any signal, 
which is further complicated by the inherent het-
erogeneity of cancer genomes. For AI applica-
tions to be successful, genomic data must be 
generated properly and abundantly, which is not 
always possible in many clinical settings. A dif-
ferent way to address this problem, which is also 
an active area of research, is to devise novel AI 
strategies that can successfully handle relatively 
smaller datasets.

Another challenge for the implementation of 
AI in clinical setting is interpretability. 
Explainable AI is the branch of AI dedicated to 
explaining the predictions, but it is still in its 
infancy. Physicians are not just happy with a 
black box predicting prognosis or treatment for a 
patient, and understandably so. It is instead cru-
cial to build trust and confidence in recommenda-
tion systems by providing explanations 
supporting diagnostic and prognostic predictions 
and rationales for the suggested therapies.

In conclusion, AI-based technologies are rap-
idly reshaping clinical care and becoming a cru-
cial developing part of the precision oncology 
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field. There is great optimism that AI-powered 
applications will soon be integrated in clinical 
practice, providing invaluable insights into 
patients’ disease and assistance to medical 
personnel.

References

 1. Doroshow DB, Doroshow JH. From the broad phase II 
trial to precision oncology: a perspective on the origins 
of basket and umbrella clinical trial designs in cancer 
drug development. Cancer J. 2019;25(4):245–53.

 2. Deininger MW, Druker BJ. Specific targeted therapy 
of chronic myelogenous leukemia with imatinib. 
Pharmacol Rev. 2003;55(3):401–23.

 3. Slatko BE, Gardner AF, Ausubel FM.  Overview of 
next-generation sequencing technologies. Curr Protoc 
Mol Biol. 2018;122(1):e59.

 4. Li X, Wang W, Chen J. Recent progress in mass spec-
trometry proteomics for biomedical research. Sci 
China Life Sci. 2017;60(10):1093–113.

 5. Werner RJ, Kelly AD, Issa JJ. Epigenetics and preci-
sion oncology. Cancer J. 2017;23(5):262–9.

 6. Jensen MA, Ferretti V, Grossman RL, Staudt LM. The 
NCI genomic data commons as an engine for preci-
sion medicine. Blood. 2017;130(4):453–9.

 7. Grossman RL, Heath A, Murphy M, Patterson M, 
Wells W. A case for data commons: toward data sci-
ence as a service. Comput Sci Eng. 2016;18(5):10–20.

 8. Prior FW, Clark K, Commean P, Freymann J, Jaffe 
C, Kirby J, Moore S, Smith K, Tarbox L, Vendt B, 
Marquez G. TCIA: An information resource to enable 
open science. Annu Int Conf IEEE Eng Med Biol Soc. 
2013;2013:1282–5.

 9. Chen F, Zhang Y, Creighton CJ. Systematic identifica-
tion of non-coding somatic single nucleotide variants 
associated with altered transcription and DNA meth-
ylation in adult and pediatric cancers. NAR Cancer. 
2021;3(1):zcab001.

 10. Rudnick PA, Markey SP, Roth J, Mirokhin Y, Yan 
X, Tchekhovskoi DV, Edwards NJ, Thangudu RR, 
Ketchum KA, Kinsinger CR, Mesri M, Rodriguez H, 
Stein SE. A description of the clinical proteomic tumor 
analysis consortium (CPTAC) common data analysis 
pipeline. J Proteome Res. 2016;15(3):1023–32.

 11. Jang IS, Neto EC, Guinney J, Friend SH, Margolin 
AA. Systematic assessment of analytical methods for 
drug sensitivity prediction from cancer cell line data. 
Pac Symp Biocomput. 2014:63–74.

 12. Shoemaker RH.  The NCI60 human tumour cell 
line anticancer drug screen. Nat Rev Cancer. 
2006;6(10):813–23.

 13. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, 
Lo CC, McDonald ER 3rd, Barretina J, Gelfand ET, 
Bielski CM, Li H, Hu K, Andreev-Drakhlin AY, Kim 
J, Hess JM, Haas BJ, Aguet F, Weir BA, Rothberg MV, 

Paolella BR, Lawrence MS, Akbani R, Lu Y, Tiv HL, 
Gokhale PC, de Weck A, Mansour AA, Oh C, Shih J, 
Hadi K, Rosen Y, Bistline J, Venkatesan K, Reddy A, 
Sonkin D, Liu M, Lehar J, Korn JM, Porter DA, Jones 
MD, Golji J, Caponigro G, Taylor JE, Dunning CM, 
Creech AL, Warren AC, McFarland JM, Zamanighomi 
M, Kauffmann A, Stransky N, Imielinski M, Maruvka 
YE, Cherniack AD, Tsherniak A, Vazquez F, Jaffe 
JD, Lane AA, Weinstock DM, Johannessen CM, 
Morrissey MP, Stegmeier F, Schlegel R, Hahn WC, 
Getz G, Mills GB, Boehm JS, Golub TR, Garraway 
LA, Sellers WR.  Next-generation characteriza-
tion of the Cancer Cell Line Encyclopedia. Nature. 
2019;569(7757):503–8.

 14. Yang W, Soares J, Greninger P, Edelman EJ, 
Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, 
Thompson IR, Ramaswamy S, Futreal PA, Haber 
DA, Stratton MR, Benes C, McDermott U, Garnett 
MJ. Genomics of Drug Sensitivity in Cancer (GDSC): 
a resource for therapeutic biomarker discovery in 
cancer cells. Nucleic Acids Res. 2013;41(Database 
issue):D955–61.

 15. Holbeck SL, Camalier R, Crowell JA, 
Govindharajulu JP, Hollingshead M, Anderson LW, 
Polley E, Rubinstein L, Srivastava A, Wilsker D, 
Collins JM, Doroshow JH.  The National Cancer 
Institute ALMANAC: a comprehensive screening 
resource for the detection of anticancer drug pairs 
with enhanced therapeutic activity. Cancer Res. 
2017;77(13):3564–76.

 16. Lamb J, Crawford ED, Peck D, Modell JW, Blat 
IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian 
A, Ross KN, Reich M, Hieronymus H, Wei G, 
Armstrong SA, Haggarty SJ, Clemons PA, Wei 
R, Carr SA, Lander ES, Golub TR.  The connectiv-
ity map: using gene- expression signatures to con-
nect small molecules, genes, and disease. Science. 
2006;313(5795):1929–35.

 17. Vidovic D, Koleti A, Schurer SC. Large-scale integra-
tion of small molecule-induced genome-wide tran-
scriptional responses, Kinome-wide binding affinities 
and cell-growth inhibition profiles reveal global trends 
characterizing systems-level drug action. Front Genet. 
2014;5:342.

 18. Meyers RM, Bryan JG, McFarland JM, Weir BA, 
Sizemore AE, Xu H, Dharia NV, Montgomery PG, 
Cowley GS, Pantel S, Goodale A, Lee Y, Ali LD, 
Jiang G, Lubonja R, Harrington WF, Strickland M, 
Wu T, Hawes DC, Zhivich VA, Wyatt MR, Kalani 
Z, Chang JJ, Okamoto M, Stegmaier K, Golub 
TR, Boehm JS, Vazquez F, Root DE, Hahn WC, 
Tsherniak A.  Computational correction of copy 
number effect improves specificity of CRISPR- 
Cas9 essentiality screens in cancer cells. Nat Genet. 
2017;49(12):1779–84.

 19. Bhalla S, Melnekoff DTM, Keats J, Onel K, 
Madduri D, Richter J, Richard S, Chari A, Cho 
HJ, Dudley JT, Jagannath S, Laganà A, Parekh 
S.  Patient similarity network of multiple myeloma 
identifies patient sub-groups with distinct genetic 

S. Bhalla and A. Laganà



265

and clinical features. bioRxiv. 2020; https://doi.
org/10.1101/2020.06.02.129767.

 20. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih 
DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy 
AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, 
Farooq H, Isaev K, Daniels C, Cho BK, Kim SK, 
Wang KC, Lee JY, Grajkowska WA, Perek-Polnik 
M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini 
C, Nageswara Rao AA, Li KKW, Ng HK, Eberhart 
CG, Pollack IF, Hamilton RL, Gillespie GY, Olson 
JM, Leary S, Weiss WA, Lach B, Chambless LB, 
Thompson RC, Cooper MK, Vibhakar R, Hauser P, 
van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe 
T, Lopez-Aguilar E, Zitterbart K, Sterba J, Finocchiaro 
G, Massimino M, Van Meir EG, Osuka S, Shofuda T, 
Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, 
Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, 
Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, 
Fouladi M, Pimentel J, Faria CC, Saad AG, Massimi 
L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, 
Perezpena-Diazconti M, Chico Ponce de Leon F, 
Robinson S, Zapotocky M, Lassaletta A, Huang A, 
Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks 
PB, Rutka JT, Bader GD, Reimand J, Goldenberg A, 
Ramaswamy V, Taylor MD. Intertumoral heterogene-
ity within Medulloblastoma subgroups. Cancer Cell. 
2017;31(6):737–754 e736.

 21. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, 
Brudno M, Haibe-Kains B, Goldenberg A. Similarity 
network fusion for aggregating data types on a 
genomic scale. Nat Methods. 2014;11(3):333–7.

 22. Upadhyaya SA, Robinson GW, Onar-Thomas A, Orr 
BA, Johann P, Wu G, Billups CA, Tatevossian RG, 
Dhanda SK, Srinivasan A, Broniscer A, Qaddoumi 
I, Vinitsky A, Armstrong GT, Bendel AE, Hassall T, 
Partap S, Fisher PG, Crawford JR, Chintagumpala 
M, Bouffet E, Gururangan S, Mostafavi R, Sanders 
RP, Klimo P Jr, Patay Z, Indelicato DJ, Nichols KE, 
Boop FA, Merchant TE, Kool M, Ellison DW, Gajjar 
A.  Relevance of molecular groups in children with 
newly diagnosed atypical teratoid rhabdoid tumor: 
results from prospective St. Jude multi-institutional 
trials. Clin Cancer Res. 2021;27(10):2879–89.

 23. Cancer Genome Atlas Network. Comprehensive 
molecular portraits of human breast tumours. Nature. 
2012;490(7418):61–70.

 24. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda 
OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa 
S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati 
A, Russell R, McKinney S, METABRIC Group, 
Langerod A, Green A, Provenzano E, Wishart 
G, Pinder S, Watson P, Markowetz F, Murphy 
L, Ellis I, Purushotham A, Borresen-Dale AL, 
Brenton JD, Tavare S, Caldas C, Aparicio S.  The 
genomic and transcriptomic architecture of 2,000 
breast tumours reveals novel subgroups. Nature. 
2012;486(7403):346–52.

 25. Hoadley KA, Yau C, Wolf DM, Cherniack AD, 
Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan 
MD, Uzunangelov V, Zhang J, Kandoth C, Akbani R, 

Shen H, Omberg L, Chu A, Margolin AA, Van’t Veer 
LJ, Lopez-Bigas N, Laird PW, Raphael BJ, Ding L, 
Robertson AG, Byers LA, Mills GB, Weinstein JN, 
Van Waes C, Chen Z, Collisson EA, Cancer Genome 
Atlas Research Network, Benz CC, Perou CM, Stuart 
JM. Multiplatform analysis of 12 cancer types reveals 
molecular classification within and across tissues of 
origin. Cell. 2014;158(4):929–44.

 26. Lu CF, Hsu FT, Hsieh KL, Kao YJ, Cheng SJ, 
Hsu JB, Tsai PH, Chen RJ, Huang CC, Yen Y, 
Chen CY.  Machine learning-based radiomics for 
molecular subtyping of gliomas. Clin Cancer Res. 
2018;24(18):4429–36.

 27. Mallavarapu T, Hao J, Kim Y, Oh JH, Kang 
M. Pathway-based deep clustering for molecular sub-
typing of cancer. Methods. 2020;173:24–31.

 28. Fang C, Xu D, Su J, Dry JR, Linghu B.  DeePaN: 
deep patient graph convolutional network integrating 
clinico-genomic evidence to stratify lung cancers for 
immunotherapy. NPJ Digit Med. 2021;4(1):14.

 29. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, 
Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, 
Wong F, Azad NS, Rucki AA, Laheru D, Donehower 
R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten 
TF, Duffy AG, Ciombor KK, Eyring AD, Lam BH, Joe 
A, Kang SP, Holdhoff M, Danilova L, Cope L, Meyer 
C, Zhou S, Goldberg RM, Armstrong DK, Bever KM, 
Fader AN, Taube J, Housseau F, Spetzler D, Xiao N, 
Pardoll DM, Papadopoulos N, Kinzler KW, Eshleman 
JR, Vogelstein B, Anders RA, Diaz LA Jr. Mismatch 
repair deficiency predicts response of solid tumors to 
PD-1 blockade. Science. 2017;357(6349):409–13.

 30. Drilon A, Laetsch TW, Kummar S, DuBois SG, 
Lassen UN, Demetri GD, Nathenson M, Doebele RC, 
Farago AF, Pappo AS, Turpin B, Dowlati A, Brose 
MS, Mascarenhas L, Federman N, Berlin J, El-Deiry 
WS, Baik C, Deeken J, Boni V, Nagasubramanian R, 
Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal 
DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, 
Ladanyi M, Tuch BB, Ebata K, Cruickshank S, 
Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman 
DM. Efficacy of larotrectinib in TRK fusion- positive 
cancers in adults and children. N Engl J Med. 
2018;378(8):731–9.

 31. Gupta S, Chaudhary K, Kumar R, Gautam A, 
Nanda JS, Dhanda SK, Brahmachari SK, Raghava 
GP. Prioritization of anticancer drugs against a cancer 
using genomic features of cancer cells: a step towards 
personalized medicine. Sci Rep. 2016;6:23857.

 32. Dong Z, Zhang N, Li C, Wang H, Fang Y, Wang J, 
Zheng X. Anticancer drug sensitivity prediction in cell 
lines from baseline gene expression through recursive 
feature selection. BMC Cancer. 2015;15:489.

 33. Zhang F, Wang M, Xi J, Yang J, Li A. A novel hetero-
geneous network-based method for drug response pre-
diction in cancer cell lines. Sci Rep. 2018;8(1):3355.

 34. Lee SI, Celik S, Logsdon BA, Lundberg SM, Martins 
TJ, Oehler VG, Estey EH, Miller CP, Chien S, Dai 
J, Saxena A, Blau CA, Becker PS. A machine learn-
ing approach to integrate big data for precision 

14 Artificial Intelligence for Precision Oncology

https://doi.org/10.1101/2020.06.02.129767
https://doi.org/10.1101/2020.06.02.129767


266

medicine in acute myeloid leukemia. Nat Commun. 
2018;9(1):42.

 35. Di J, Zheng B, Kong Q, Jiang Y, Liu S, Yang Y, Han 
X, Sheng Y, Zhang Y, Cheng L, Han J. Prioritization 
of candidate cancer drugs based on a drug func-
tional similarity network constructed by integrating 
pathway activities and drug activities. Mol Oncol. 
2019;13(10):2259–77.

 36. Yan X, Yang Y, Chen Z, Yin Z, Deng Z, Qiu T, 
Tang K, Cao Z.  H-RACS: a handy tool to rank 
anti-cancer synergistic drugs. Aging (Albany NY). 
2020;12(21):21504–17.

 37. Chang Y, Park H, Yang HJ, Lee S, Lee KY, Kim TS, 
Jung J, Shin JM. Cancer drug response profile scan 
(CDRscan): a deep learning model that predicts drug 
effectiveness from cancer genomic signature. Sci Rep. 
2018;8(1):8857.

 38. Rampasek L, Hidru D, Smirnov P, Haibe-Kains B, 
Goldenberg A.  Dr.VAE: improving drug response 
prediction via modeling of drug perturbation effects. 
Bioinformatics. 2019;35(19):3743–51.

 39. Preuer K, Lewis RPI, Hochreiter S, Bender A, 
Bulusu KC, Klambauer G.  DeepSynergy: predict-
ing anti- cancer drug synergy with deep learning. 
Bioinformatics. 2018;34(9):1538–46.

 40. Xia F, Shukla M, Brettin T, Garcia-Cardona C, Cohn 
J, Allen JE, Maslov S, Holbeck SL, Doroshow JH, 
Evrard YA, Stahlberg EA, Stevens RL.  Predicting 
tumor cell line response to drug pairs with deep learn-
ing. BMC Bioinform. 2018;19(Suppl 18):486.

 41. Chen G, Tsoi A, Xu H, Zheng WJ. Predict effective 
drug combination by deep belief network and ontol-
ogy fingerprints. J Biomed Inform. 2018;85:149–54.

 42. Li M, Wang Y, Zheng R, Shi X, Li Y, Wu FX, Wang 
J. DeepDSC: a deep learning method to predict drug 
sensitivity of cancer cell lines. IEEE/ACM Trans 
Comput Biol Bioinform. 2021;18(2):575–82.

 43. Ding MQ, Chen L, Cooper GF, Young JD, Lu 
X. Precision oncology beyond targeted therapy: com-
bining omics data with machine learning matches the 
majority of cancer cells to effective therapeutics. Mol 
Cancer Res. 2018;16(2):269–78.

 44. Ammad-Ud-Din M, Khan SA, Malani D, Murumagi 
A, Kallioniemi O, Aittokallio T, Kaski S.  Drug 
response prediction by inferring pathway-response 
associations with kernelized Bayesian matrix factor-
ization. Bioinformatics. 2016;32(17):i455–63.

 45. Sun W, Sanderson PE, Zheng W. Drug combination 
therapy increases successful drug repositioning. Drug 
Discov Today. 2016;21(7):1189–95.

 46. Hecht JR, Mitchell E, Chidiac T, Scroggin C, 
Hagenstad C, Spigel D, Marshall J, Cohn A, 
McCollum D, Stella P, Deeter R, Shahin S, Amado 
RG. A randomized phase IIIB trial of chemotherapy, 
bevacizumab, and panitumumab compared with che-
motherapy and bevacizumab alone for metastatic 
colorectal cancer. J Clin Oncol. 2009;27(5):672–80.

 47. Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers 
GJ, Schrama JG, Erdkamp FL, Vos AH, van 
Groeningen CJ, Sinnige HA, Richel DJ, Voest EE, 

Dijkstra JR, Vink-Borger ME, Antonini NF, Mol L, 
van Krieken JH, Dalesio O, Punt CJ. Chemotherapy, 
bevacizumab, and cetuximab in metastatic colorectal 
cancer. N Engl J Med. 2009;360(6):563–72.

 48. Lee JS, Nair NU, Dinstag G, Chapman L, Chung Y, 
Wang K, Sinha S, Cha H, Kim D, Schperberg AV, 
Srinivasan A, Lazar V, Rubin E, Hwang S, Berger 
R, Beker T, Ronai Z, Hannenhalli S, Gilbert MR, 
Kurzrock R, Lee SH, Aldape K, Ruppin E. Synthetic 
lethality-mediated precision oncology via the tumor 
transcriptome. Cell. 2021;184(9):2487–2502 e2413.

 49. Yuan B, Shen C, Luna A, Korkut A, Marks DS, 
Ingraham J, Sander C. CellBox: interpretable machine 
learning for perturbation biology with application to 
the design of cancer combination therapy. Cell Syst. 
2021;12(2):128–140 e124.

 50. Kim YG, Kim S, Cho CE, Song IH, Lee HJ, Ahn S, 
Park SY, Gong G, Kim N.  Effectiveness of transfer 
learning for enhancing tumor classification with a 
convolutional neural network on frozen sections. Sci 
Rep. 2020;10(1):21899.

 51. Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, Gao 
C, Sun Y, Tian J, Zhao X, Sun X, Gillies RJ, Schabath 
MB.  Non-invasive decision support for NSCLC 
treatment using PET/CT radiomics. Nat Commun. 
2020;11(1):5228.

 52. Jiang Y, Liang X, Wang W, Chen C, Yuan Q, Zhang 
X, Li N, Chen H, Yu J, Xie Y, Xu Y, Zhou Z, Li G, Li 
R. Noninvasive prediction of occult peritoneal metas-
tasis in gastric cancer using deep learning. JAMA 
Netw Open. 2021;4(1):e2032269.

 53. Wang L, Jiao Y, Qiao Y, Zeng N, Yu R.  A novel 
approach combined transfer learning and deep learn-
ing to predict TMB from histology image. Pattern 
Recogn Lett. 2020;135:244–8.

 54. Jain MS, Massoud TF. Predicting tumour mutational 
burden from histopathological images using multi-
scale deep learning. Nat Mach Intell. 2020;2:356–62.

 55. Kather JN, Pearson AT, Halama N, Jager D, Krause J, 
Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, 
Grabsch HI, Yoshikawa T, Brenner H, Chang-Claude 
J, Hoffmeister M, Trautwein C, Luedde T.  Deep 
learning can predict microsatellite instability directly 
from histology in gastrointestinal cancer. Nat Med. 
2019;25(7):1054–6.

 56. Yamashita R, Long J, Longacre T, Peng L, Berry G, 
Martin B, Higgins J, Rubin DL, Shen J. Deep learning 
model for the prediction of microsatellite instability in 
colorectal cancer: a diagnostic study. Lancet Oncol. 
2021;22(1):132–41.

 57. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen 
V, Samaras D, Shroyer KR, Zhao T, Batiste R, Van 
Arnam J, Cancer Genome Atlas Research Network, 
Shmulevich I, Rao AUK, Lazar AJ, Sharma A, 
Thorsson V. Spatial organization and molecular cor-
relation of tumor-infiltrating lymphocytes using 
deep learning on pathology images. Cell Rep. 
2018;23(1):181–193 e187.

 58. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen 
PE, Verrill C, Walliander M, Lundin M, Haglund 

S. Bhalla and A. Laganà



267

C, Lundin J.  Deep learning based tissue analy-
sis predicts outcome in colorectal cancer. Sci Rep. 
2018;8(1):3395.

 59. Akbar S, Peikari M, Salama S, Panah AY, Nofech- 
Mozes S, Martel AL. Automated and manual quantifi-
cation of tumour cellularity in digital slides for tumour 
burden assessment. Sci Rep. 2019;9(1):14099.

 60. Skrede OJ, De Raedt S, Kleppe A, Hveem TS, 
Liestol K, Maddison J, Askautrud HA, Pradhan M, 
Nesheim JA, Albregtsen F, Farstad IN, Domingo E, 
Church DN, Nesbakken A, Shepherd NA, Tomlinson 
I, Kerr R, Novelli M, Kerr DJ, Danielsen HE. Deep 
learning for prediction of colorectal cancer out-
come: a discovery and validation study. Lancet. 
2020;395(10221):350–60.

 61. Ehteshami Bejnordi B, Mullooly M, Pfeiffer RM, Fan 
S, Vacek PM, Weaver DL, Herschorn S, Brinton LA, 
van Ginneken B, Karssemeijer N, Beck AH, Gierach 
GL, van der Laak J, Sherman ME. Using deep con-
volutional neural networks to identify and classify 
tumor-associated stroma in diagnostic breast biopsies. 
Mod Pathol. 2018;31(10):1502–12.

 62. Mobadersany P, Yousefi S, Amgad M, Gutman DA, 
Barnholtz-Sloan JS, Velazquez Vega JE, Brat DJ, 
Cooper LAD. Predicting cancer outcomes from his-
tology and genomics using convolutional networks. 
Proc Natl Acad Sci U S A. 2018;115(13):E2970–9.

 63. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, 
Franco I, Mak RH, Aerts H. Deep learning predicts 
lung cancer treatment response from serial medical 
imaging. Clin Cancer Res. 2019;25(11):3266–75.

 64. McKinney SM, Sieniek M, Godbole V, Godwin 
J, Antropova N, Ashrafian H, Back T, Chesus M, 
Corrado GS, Darzi A, Etemadi M, Garcia-Vicente F, 
Gilbert FJ, Halling-Brown M, Hassabis D, Jansen S, 
Karthikesalingam A, Kelly CJ, King D, Ledsam JR, 
Melnick D, Mostofi H, Peng L, Reicher JJ, Romera- 
Paredes B, Sidebottom R, Suleyman M, Tse D, Young 
KC, De Fauw J, Shetty S.  International evaluation 
of an AI system for breast cancer screening. Nature. 
2020;577(7788):89–94.

 65. Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, 
Yan Y, Ke Z, Luo B, Liu T, Wang L. Searching for 
prostate cancer by fully automated magnetic reso-
nance imaging classification: deep learning versus 
non-deep learning. Sci Rep. 2017;7(1):15415.

 66. Zhou Q, Zhou Z, Chen C, Fan G, Chen G, Heng H, Ji 
J, Dai Y. Grading of hepatocellular carcinoma using 
3D SE-DenseNet in dynamic enhanced MR images. 
Comput Biol Med. 2019;107:47–57.

 67. Korfiatis P, Kline TL, Lachance DH, Parney IF, 
Buckner JC, Erickson BJ.  Residual deep convolu-
tional neural network predicts MGMT methylation 
status. J Digit Imaging. 2017;30(5):622–8.

 68. Shboul, Z. A., J. Chen and , KM Iftekharuddin (2020). 
Prediction of molecular mutations in diffuse low- 
grade gliomas using MR imaging features. Sci Rep 
10(1): 3711.

 69. Fassler DJ, Abousamra S, Gupta R, Chen C, Zhao 
M, Paredes D, Batool SA, Knudsen BS, Escobar- 

Hoyos L, Shroyer KR, Samaras D, Kurc T, Saltz 
J.  Deep learning-based image analysis methods for 
brightfield-acquired multiplex immunohistochemistry 
images. Diagn Pathol. 2020;15(1):100.

 70. Choi JH, Kim HA, Kim W, Lim I, Lee I, Byun BH, 
Noh WC, Seong MK, Lee SS, Kim BI, Choi CW, 
Lim SM, Woo SK.  Early prediction of neoadjuvant 
chemotherapy response for advanced breast can-
cer using PET/MRI image deep learning. Sci Rep. 
2020;10(1):21149.

 71. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu 
Y, Gevaert O, Wang K, Zhu Y, Zhou H, Liu Z, Tian 
J. Predicting EGFR mutation status in lung adenocar-
cinoma on computed tomography image using deep 
learning. Eur Respir J. 2019;53(3):1800986.

 72. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, 
Blau HM, Thrun S. Dermatologist-level classification 
of skin cancer with deep neural networks. Nature. 
2017;542(7639):115–8.

 73. Johannet P, Coudray N, Donnelly DM, Jour G, Illa- 
Bochaca I, Xia Y, Johnson DB, Wheless L, Patrinely 
JR, Nomikou S, Rimm DL, Pavlick AC, Weber JS, 
Zhong J, Tsirigos A, Osman I. Using machine learn-
ing algorithms to predict immunotherapy response in 
patients with advanced melanoma. Clin Cancer Res. 
2021;27(1):131–40.

 74. Chen M, Zhang B, Topatana W, Cao J, Zhu H, 
Juengpanich S, Mao Q, Yu H, Cai X.  Classification 
and mutation prediction based on histopathology 
H&E images in liver cancer using deep learning. NPJ 
Precis Oncol. 2020;4:14.

 75. Coudray N, Ocampo PS, Sakellaropoulos T, Narula 
N, Snuderl M, Fenyo D, Moreira AL, Razavian N, 
Tsirigos A.  Classification and mutation prediction 
from non-small cell lung cancer histopathology images 
using deep learning. Nat Med. 2018;24(10):1559–67.

 76. Nagpal K, Foote D, Liu Y, Chen PC, Wulczyn E, Tan 
F, Olson N, Smith JL, Mohtashamian A, Wren JH, 
Corrado GS, MacDonald R, Peng LH, Amin MB, 
Evans AJ, Sangoi AR, Mermel CH, Hipp JD, Stumpe 
MC. Development and validation of a deep learning 
algorithm for improving Gleason scoring of prostate 
cancer. NPJ Digit Med. 2019;2:48.

 77. Khosravi P, Kazemi E, Imielinski M, Elemento O, 
Hajirasouliha I. Deep convolutional neural networks 
enable discrimination of heterogeneous digital pathol-
ogy images. EBioMedicine. 2018;27:317–28.

 78. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, 
Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, 
Enk A, Uhlmann L, Reader study level-I and level-
 II Groups, Alt C, Arenbergerova M, Bakos R, Baltzer 
A, Bertlich I, Blum A, Bokor-Billmann T, Bowling 
J, Braghiroli N, Braun R, Buder-Bakhaya K, Buhl T, 
Cabo H, Cabrijan L, Cevic N, Classen A, Deltgen D, 
Fink C, Georgieva I, Hakim-Meibodi LE, Hanner S, 
Hartmann F, Hartmann J, Haus G, Hoxha E, Karls R, 
Koga H, Kreusch J, Lallas A, Majenka P, Marghoob 
A, Massone C, Mekokishvili L, Mestel D, Meyer V, 
Neuberger A, Nielsen K, Oliviero M, Pampena R, 
Paoli J, Pawlik E, Rao B, Rendon A, Russo T, Sadek 

14 Artificial Intelligence for Precision Oncology



268

A, Samhaber K, Schneiderbauer R, Schweizer A, 
Toberer F, Trennheuser L, Vlahova L, Wald A, Winkler 
J, Wolbing P, Zalaudek I. Man against machine: diag-
nostic performance of a deep learning convolutional 
neural network for dermoscopic melanoma recogni-
tion in comparison to 58 dermatologists. Ann Oncol. 
2018;29(8):1836–42.

 79. Azuaje F, Kim SY, Perez Hernandez D, Dittmar 
G.  Connecting histopathology imaging and pro-
teomics in kidney cancer through machine learning. J 
Clin Med. 2019;8(10):1535.

 80. Ribli D, Horvath A, Unger Z, Pollner P, Csabai 
I. Detecting and classifying lesions in mammograms 
with deep learning. Sci Rep. 2018;8(1):4165.

 81. Lu Y, Yu Q, Gao Y, Zhou Y, Liu G, Dong Q, Ma J, 
Ding L, Yao H, Zhang Z, Xiao G, An Q, Wang G, Xi 
J, Yuan W, Lian Y, Zhang D, Zhao C, Yao Q, Liu W, 
Zhou X, Liu S, Wu Q, Xu W, Zhang J, Wang D, Sun 
Z, Gao Y, Zhang X, Hu J, Zhang M, Wang G, Zheng 
X, Wang L, Zhao J, Yang S.  Identification of meta-
static lymph nodes in MR imaging with faster region- 

based convolutional neural networks. Cancer Res. 
2018;78(17):5135–43.

 82. Transin S, Souchon R, Gonindard-Melodelima C, de 
Rozario R, Walker P, Funes de la Vega M, Loffroy R, 
Cormier L, Rouviere O.  Computer-aided diagnosis 
system for characterizing ISUP grade>/=2 prostate 
cancers at multiparametric MRI: a cross-vendor eval-
uation. Diagn Interv Imaging. 2019;100(12):801–11.

 83. Wang S, Burtt K, Turkbey B, Choyke P, Summers 
RM. Computer aided-diagnosis of prostate cancer on 
multiparametric MRI: a technical review of current 
research. Biomed Res Int. 2014;2014:789561.

 84. Reverter JL, Vazquez F, Puig-Domingo M. Diagnostic 
performance evaluation of a computer-assisted 
imaging analysis system for ultrasound risk strati-
fication of thyroid nodules. AJR Am J Roentgenol. 
2019;213(1):169–74.

 85. Rodriguez-Ruiz A, Krupinski E, Mordang JJ, 
Schilling K, Heywang-Kobrunner SH, Sechopoulos 
I, Mann RM. Detection of breast cancer with mam-
mography: effect of an artificial intelligence support 
system. Radiology. 2019;290(2):305–14.

S. Bhalla and A. Laganà



269© Springer Nature Switzerland AG 2022 
A. Laganà (ed.), Computational Methods for Precision Oncology, Advances in Experimental 
Medicine and Biology 1361, https://doi.org/10.1007/978-3-030-91836-1_15

Single-Cell Sequencing 
Technologies in Precision 
Oncology

David T. Melnekoff and Alessandro Laganà

Abstract

Single-cell sequencing technologies are rev-
olutionizing cancer research and are poised 
to become the standard for translational can-
cer studies. Rapidly decreasing costs and 
increasing throughput and resolution are pav-
ing the way for the adoption of single-cell 
technologies in clinical settings for personal-
ized medicine applications. In this chapter, 
we review the state of the art of single-cell 
DNA and RNA sequencing technologies, the 
computational tools to analyze the data, and 
their potential application to precision oncol-
ogy. We also discuss the advantages of sin-
gle-cell over bulk sequencing for the 
dissection of intra-tumor heterogeneity and 
the characterization of subclonal cell popula-
tions, the implementation of targeted drug 
repurposing approaches, and describe 
advanced methodologies for multi-omics 

data integration and to assess cell signaling at 
single-cell resolution.

 Introduction

Single-cell sequencing technologies have revolu-
tionized the way we investigate disease pro-
cesses. The ability to measure omics data at 
single-cell resolution has led to great advances in 
our understanding of the immune system, devel-
opmental biology, bacterial-host interactions, 
and cancer mechanisms of action. In the context 
of genomics-based precision cancer medicine, 
most platforms have relied on bulk genomic 
sequencing technologies such as whole exome 
sequencing (WES), RNA sequencing (RNA-seq), 
or whole genome sequencing (WGS), to identify 
druggable targets. These technologies rely on the 
pooling of genomic materials from tumor sam-
ples, and then subsequent sequencing, giving you 
a snapshot of the mutational and transcriptomic 
landscape of the disease. But these technologies 
fail to address a major confounding factor in can-
cer precision medicine: intra-tumor heterogene-
ity (ITH).

Intra-tumor heterogeneity, or tumor clonality, 
is not a new finding, and was discovered well 
before the advent of next-generation sequencing 
(NGS) [1]. While the concept of variations 
between patients has been well known for 
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decades, the idea that within the same individual 
there are multiple subsets of cells which have 
unique genetic aberrations is quickly becoming a 
popular area of focus in cancer research and 
treatment [2, 3]. There are multiple models of 
intra-tumor heterogeneity, but all focus on cellu-
lar evolution of different populations of cancer 
cells with distinct genetic features which impart 
survival advantage in the tumor environment, 
whether in a solid tumor mass [4–6], or hemato-
logical malignancies [7]. In the context of treat-
ment resistance and relapse, intra-tumor 
heterogeneity can lead to the “bottleneck effect,” 
which selects for resistant clonal populations and 
leads to the expansion of resistant downstream 
disease clones. Thus, it is extremely important to 
take intra-tumor heterogeneity into account when 
attempting to perform precision and personalized 
cancer medicine, in order to obtain superior out-
comes and possibly full eradication of disease.

 Bulk Versus Single-Cell Sequencing 
for ITH Estimates in Precision 
Oncology

There are now many commercially available pre-
cision diagnostic and therapeutic tests for cancer 
including products from Foundation Medicine, 
Tempus Labs, and Memorial Sloan Kettering 
[8–10]. All of these tests rely on bulk sequencing 
of tumor DNA and RNA, to identify DNA aber-
rations such as mutations, or RNA aberrations 
such as gene fusions. While these tools have 
greatly expanded the therapeutic toolbox avail-
able to physicians, they lack the sensitivity to 
profile patient disease at the clonal level and can 
be improved by taking into account multiple dis-
ease clones with multiple actionable targets.

Disease clones are defined by cellular popula-
tions which have distinct DNA alterations [11]. 
In an attempt to leverage existing NGS platforms 
for investigation of cancer at the clonal level, 
methodologies have been developed for WES to 
describe tumor clones. Tools such as PhyloWGS, 
CANOPY, and SciClone are publicly available 
for the estimation of clonal composition of tumor 
samples [12–14]. These tools mainly rely on 

clustering of the Variant Allele Frequency (VAF) 
of mutations. The VAF is the proportion of alter-
nate (mutated) alleles to reference (non-mutated) 
alleles and describes the prevalence of specific 
mutations within a tumor sample. If mutations 
are acquired in a temporal manner, and cells con-
taining the mutations expand, mutations with 
higher VAF are assumed to have occurred earlier 
in tumor growth, while mutations with lower 
VAF are assumed to have occurred later on in the 
tumor lifespan. While these tools rely on differ-
ent sets of probabilistic assumptions, such as the 
infinite-sites assumption1 in the case of 
PhyoWGS, they all rely on a clustering of muta-
tions based on VAF, the rationale being that 
mutations with similar VAF were acquired at the 
same time. While these methods provide varying 
levels of estimation of tumor heterogeneity, they 
can also be misleading. This is due to multiple 
factors, such as the inability to detect very small/
rare subclones at low VAF, copy number altera-
tions which can also confer survival advantage 
and confound VAF of driver mutations, and an 
inability to separate possible co-occurring clones, 
also known as different disease clones which 
evolved at the same time. Alternatively, single- 
cell sequencing technologies directly measure 
each cell’s genomic content, at a resolution which 
far surpasses WES and even targeted bulk 
sequencing approaches. This allows for the clus-
tering of cells, not mutations, and thus removes 
much of the uncertainty around clonal estimates.

Another aspect of ITH which is critical to 
measure for effective precision medicine is tumor 
phylogeny, or the temporal and structural map of 
disease clones. Some of the tools mentioned pre-
viously, such as PhyloWGS, perform both VAF 
clustering and phylogeny estimations on WES 
data, while there are other tools which only per-
form phylogeny prediction such as CALDER and 
CloneEvol [15, 16]. Phylogeny estimates show 
the relationship of disease clones to each other, 
and an understanding of this structure would 
allow for effective tailoring of treatments. 
Downstream or children disease clones will har-

1 The infinite-sites assumption posits that a site does note 
mutate twice during the evolutionary history of a tumor.
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bor all the aberrations of the parent clone, and 
thus multiple disease clones may be targeted by a 
single therapeutic. In order to estimate tumor 
phylogeny from bulk sequencing technologies, 
probability modeling and statistical functions 
need to be designed to determine the “most 
likely” tree. These models may not be completely 
accurate, especially if there are minor subclones 
or LoH events, which are difficult to capture from 
bulk sequencing modalities. Using single-cell 
sequencing technologies we can easily see the 
temporal acquisition of mutations by measuring 
the presence and absence of mutations and copy 
number alterations within each cell. The ability 
to limit the amount of treatment a patient receives 
by intelligently designing combinatorial thera-
pies based on tumor phylogeny would lead to 
better outcomes and less side effects.

 RNA-seq for ITH in Precision 
Oncology

While most precision medicine tools and work-
flows focus on matching drugs to specific 
genomic alterations, very few leverage RNA 
transcript expression information to recommend 
therapeutics. It has been shown that using RNA 
expression to determine pathway activation, or 
dysregulation of specific genes, can lead to effec-
tive treatment recommendations with patients 
that lack actionable genomic alterations [17]. In 
the context of ITH though, RNA-seq technology 
does not allow for the estimation of clonal expres-
sion profiles. This is due to the measurement of 
pooled transcript abundance from an entire tumor 
sample. Reads from RNA-seq do not correspond 
directly to number of copies of DNA alleles, 
since a single region of the genome is transcribed 
repeatedly to generate multiple mRNAs, and ulti-
mately proteins. Furthermore, mapping of RNA 
transcripts to the human genome often discards 
mutated mRNAs, and mutation detection from 
RNA is notoriously unreliable. Deconvolution 
methods to segment RNA-seq data into distinct 
expression signatures of different cell popula-
tions exist, such as xCell and CIBERSORT, but 
require known expression signatures [18, 19]. 

This is normally reserved for samples of diverse 
cellular composition, such as whole blood, where 
there exist known expression signatures of differ-
ent white blood cell populations. In the context of 
tumor cells, deconvolution would not be able to 
resolve disease clones, because a known signa-
ture would need to be extracted from the RNA- 
seq measurements, and this is exactly what is 
trying to be determined. Using single-cell RNA 
sequencing (scRNA-seq) allows for the direct 
measurement of RNA transcript abundance in 
single cells and allows for the clustering of cells 
with similar expression profiles. These clustered 
expression profiles can then be used to perform 
cluster specific analysis, such as pathway analy-
sis or RNA-based drug repurposing. It is impor-
tant to reiterate that RNA-based cell clusters do 
not represent tumor disease clones, which are 
strictly defined by genomic alterations. 
Regardless, disease clones may evolve from 
genomic alterations which have no known tar-
geted therapeutic. In this case, we can utilize the 
scRNA-seq data to supplement our precision 
medicine predictions. This will allow for better 
combinatorial therapy prediction, and hopefully 
avoid the selection of resistant, and non- 
targetable, disease clones.

 Isolation of Tumor Cells Versus Tumor 
Microenvironment

Precision medicine is dependent on profiling 
patient-derived samples for analysis. The sample 
collection process is different for each different 
type of cancer. In the case of hematological 
malignancies, samples can be collected from the 
blood or the bone marrow. In the case of solid 
tumors, biopsies are resected from patient tumors 
surgically or via fine-needle aspirate. In both 
cases, it is important to have pure tumor sample 
so that results are not confounded from normal 
cells. In the context of hematological malignan-
cies, pure tumor can normally be isolated by cell 
sorting techniques based on cell surface markers, 
such as CD138+ selection of plasma cells in mul-
tiple myeloma. In the context of solid tumors, it 
may be unclear if only tumor cells were resected. 
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Furthermore, even though when performing 
WES-matched normal sample are used to filter 
out germline mutations, the tumor microenviron-
ment may have been included in the tumor 
biopsy. The tumor microenvironment harbors its 
own distinct alterations which would be consid-
ered to be somatic alterations within the tumor 
and confound results. Utilizing single-cell 
sequencing techniques would allow for the isola-
tion and removal of tumor microenvironment 
cells from the analysis, leading to more accurate 
therapeutic recommendations. Moreover, this 
would allow for the analysis of the tumor micro-
environment separately since cells from this 
niche have been implicated in tumor growth and 
immune suppression.

 Single-Cell RNA-seq

 The Technology

scRNA-seq has advanced dramatically over the 
past decade, and currently there are a plethora of 
different scRNA-seq technologies available. 
These technologies can be broadly divided into 
two classes: full-length transcript capture, and 3′ 

or 5′ end capture platforms [20]. Many reviews 
have been published which outline the specific 
strength and weaknesses of specific platforms, 
which differ in transcript capture class, transcript 
abundance quantification, and upstream sample 
preparation [21–23]. In short, the differences 
between scRNA-seq platforms can be distilled to 
the comparison of sensitivity vs. throughput. Full-
length transcript capture platforms such as Smart-
seq2 and MATQ-seq allow for the more precise 
analysis of individual transcripts including the 
measurement of allelic imbalance, RNA editing, 
and distinct transcript isoforms, with the penalty 
of lower throughput and a higher sequencing cost 
per cell [24]. 3′ and 5′ end capture platforms such 
as the 10× Genomics CHROMIUM platform 
allows for massive high-throughput sequencing of 
thousands of cells based on a microfluidic plat-
form [25]. This platform, and other droplet 
sequencing-based platforms such as MARS-seq 
[26], can allow for the profiling of much larger 
cell counts vs. full-transcript capture platforms 
which are often plate based. Droplet- based assays 
are normally cheaper to perform as well. The 
combined increased cellular throughput and 
reduced cost make droplet-based platforms more 
suitable for precision medicine (Table 15.1).

Table 15.1 Single-cell sequencing technologies

Method Name
Transcript 
measurement Throughput Cell isolation Reference

scRNA- 
seq

Smart-seq2 Full-length 100–1000 cells Well-based Picelli et al. [22]

MATQ-seq Full-length 100–1000 cells Plate-based Sheng et al. (2017)
MARS-seq 3′ 100–1000 cells Plate-based Jaitin et al. [26]
Cel-seq2 3′ 100–1000 cells Plate-based Hashimshony et al. 

(2016)
Chromium 3′ or 5′ ~10,000 cells Droplet- 

based
Zheng et al. (2017)

SPLiT-seq 3′ 1000–100,000 
cells

Plate-based Rosenberg et al. (2018)

Quartz-seq2 3′ 1000–100,000 
cells

Plate-based Sasagawa et al. (2018)

scDNA- 
seq

Sic-seq WGA >50,000 cells Droplet- 
based

Lan et al. [61]

Mission bio 
Tapestri

Amplicon >50,000 cells Droplet- 
based

Pellegrino et al [62]

10× Genomics 
scCNV

WGA ~10,000 cells Droplet- 
based

10xgenomics.com

D. T. Melnekoff and A. Laganà

http://10xgenomics.com


273

 Advantages of scRNA-seq in Precision 
Oncology

The paradigm of precision, or personalized, 
oncology treatment is dependent on in-depth 
characterization of patient-specific disease fac-
tors. As mentioned previously, bulk sequencing 
technologies provide an approximation, or aver-
age measurement, of RNA or DNA alterations in 
a single patient sample, whereas single-cell 
sequencing technologies allow the characteriza-
tion of disease at cellular resolution. Therefore, 
bulk sequencing technologies may overstate the 
alterations present in dominant disease clones 
and minimize those in minor clones. scRNA-seq 
measurement would allow for the direct measure-
ment of disease cellular states and allow for alter-
native methodologies to increase the therapeutic 
toolbox for oncologists.

 Investigating Intra-Tumor 
Heterogeneity with scRNA-seq

scRNA-seq has been shown in the research set-
ting to be a significant tool for investigating 
ITH. Guan et al. showed marked heterogeneity in 
the triple negative breast cancer cell line 
SUM149, including the expression of other clas-
sical breast cancer subtype markers such as 
HER2 and ER [27]. In patient samples, marked 
heterogeneity across tumor and immune subsets 
have been described in lung, bladder, and skin 
[28–30]. This is because scRNA-seq allows for 
the clustering of cellular populations based on 
similar transcriptomic expression. Many soft-
ware packages have been developed for this dis-
tinct purpose, including the Seurat R package and 
Bioconductor scRNA-seq R workflow. However, 
cellular populations identified by transcriptomic 
clustering may not represent “disease clones,” 
which are defined by genomic alterations. There 
are many confounding effects which may lead to 
inaccurate measurement of disease clones based 
on transcriptomic clustering, especially in 
scRNA-seq data, which is exceptionally sensitive 
to biological noise. One of the best documented 
effects is the cell cycle state of the cells at the 

time of sequencing, and multiple tools have been 
developed to regress out these effects [31–33]. 
Due to the rapid evolution and cellular turn-over 
of cancer cells, tumor biopsies may contain cells 
at various stages within the cell cycle. Therefore, 
the downstream transcriptomic measurements 
may be dominated by cell cycle-specific effects, 
leading to clustering of cells into cellular states 
rather than tumor clones or transcriptional pro-
grams. Regression of cell cycle signals is there-
fore crucial for accurate cellular clustering into 
functionally linked groups.

Even after appropriate QC, scRNA-seq clus-
ters may not be definitive disease clones. In prac-
tice scRNA-seq would often overestimate the 
number of clones within a patient sample, due to 
the larger variation in transcriptome state vs. 
genomic state. This could be detrimental in the 
determination of accurate treatment recommen-
dations for precision oncology, especially when 
drug toxicity and interaction must be considered. 
One methodology to further refine tumor scRNA- 
seq data, is the inference of copy number altera-
tions/variations (CNA/CNV) from the data, to 
inform and refine cellular clustering.

While the downstream transcriptomic effects 
of certain oncogenic drivers such as RAS family 
mutations have been well studied, the extent that 
other oncogene and tumor suppressor aberrations 
drive transcriptomic changes are not yet well 
understood. The ability to investigate distinct 
transcriptomic signatures of genomic alterations 
is one of the holy grails of scRNA-seq analysis 
and would lead to a plethora of new data points 
for possible therapeutic recommendations at 
clonal resolution. However, identifying muta-
tions from scRNA-seq data is challenging. Fan 
et  al. showed that the ability to detect known 
SNPs from paired WES in scRNA-seq data was 
only 0.34 [34]. However, CNV changes are also a 
well-documented source of ITH [35, 36]. CNV 
changes are more likely to have a direct effect in 
the expression profile of the genes contained 
within the CNV region, and thus provide an ave-
nue to map genomic alteration onto single-cell 
transcriptomic data. Multiple methods have been 
developed to estimate CNV data from scRNA- 
seq data with and without paired bulk DNA 
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sequencing, including HoneyBADGER and 
inferCNV, respectively [34, 37–40]. After map-
ping CNV states onto scRNA-seq data, cells can 
be clustered into genomically informed groups 
which would lead to more accurate clonal esti-
mates. Using these cell clusters, we can generate 
clone-specific transcriptomic profiles, and utilize 
these signatures with downstream analysis to 
identify possibly therapeutic targets (Table 15.2).

 Pathway Analysis Using scRNA-seq

Pathway analysis is a common methodology to 
determine biological and functional insights from 
sets of differentially expressed genes. An abun-
dance of methods has been developed to deter-
mine pathway activation or enrichment from bulk 
RNA-seq data, such as gene set enrichment anal-
ysis (GSEA), gene set variation analysis (GSVA), 
and signaling pathway impact analysis (SPIA) 
[41–43]. These tools allow for group and sample 
level pathway analysis, and have been shown to 
be effective in classifying patients into disease 
subgroups, and even informing treatment 
decision- making [17]. Pathway analysis in 
scRNA-seq data can be more challenging due to 
the technical limitations of the platform, such as 
a high drop-out rate and low coverage of certain 
regions of the transcriptome. Due to these issues, 
there are primarily two different methodologies 
for pathway analysis in scRNA-seq data: those 
which depend on a pre-determined differential 
expression (DE) profile, and those which deter-
mine pathways from raw scRNA-seq counts 
matrices and cluster cells based on those path-
ways. Tools which have been developed specifi-
cally for scRNA-seq, and rely on input of the 
entire cell-count matrix without a priori cluster-
ing, include PAGODA2, SCENIC, and iDEA 
[44–46]. An excellent in-depth review of the 
accuracy of many of these tools can be found by 
Zhang et al. [47] In short, tools varied greatly in 
their ability to cluster cells and define pathway 
enrichment within the same scRNA-seq dataset. 
Data preprocessing was also critical for influenc-
ing the outcomes of pathway analysis. In the con-

text of clinical precision medicine, these 
differences could be detrimental to patient out-
comes. Thus, we will focus on pathway activa-
tion/enrichment tools which use predetermined 
DE profiles, for example, those determined by 
pre-clustering based on available expert knowl-
edge (such as grouping of immune/tumor subsets 
on known marker expression) and inferred 
genomic data. This will increase the likelihood of 
developing clinically relevant and actionable 
pathway estimates for disease clones.

An advantage of using pre-clustered cells with 
DE expression profiles as our input for pathway 
analysis is that it allows for the usage of bulk 
RNA-seq pathway tools. Zhang et al. showed that 
the liger R package, which is an implementation 
of GSEA algorithm, was successful in identify-
ing relevant pathways for immune subsets in 
scRNA-seq data of rheumatoid arthritis joint 
synovial tissues [48]. GSEA and GSVA also per-
formed well in identifying immune cell subsets 
from their differential expression profiles derived 
from cellular clustering [49]. GSEA was also 
used to characterize newly identified subsets of 
chondrocytes in osteoarthritis, showing its utility 
outside of well-defined cell populations [50]. 
Topology-based pathway methods such as SPIA 
can also be used with scRNA-seq data, but they 
have yet to be benchmarked (Table 15.2).

 RNA-Based Drug Repurposing

Another avenue to therapeutic decision-making 
based on transcriptomics is RNA signature-based 
drug repurposing. This methodology has been 
used to match RNA signatures of disease to the 
reverse signature of drugs in cell lines, under the 
assumption that the drug would “reverse” the sig-
nature of the disease. Using DE profiles derived 
from cell clusters in scRNA-seq, RNA signature 
data bases can be queried for reverse signatures to 
form clone specific drug repurposing recommen-
dations. The LINCS L1000 database (L1000), 
Cancer Cell Line Encyclopedia (CCLE), and 
Genomics of Drug Sensitivity in Cancer (GDSC) 
datasets all contain RNA-profiles of cell line sensi-
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tivity data to thousands of compounds [51–53]. 
Each database has its own web-based portal for 
browsing and querying the data using a gene or 
gene list as input. Tools have also been developed 
to directly query these databases through com-
mand line tools, such as L1000FWD and 
GDSCtools [54, 55]. These tools allow for the 
direct attribution of therapeutics, even those out-
side of the realm of cancer, to specific cancer 
clones based on transcriptomic profiles, and may 
greatly expand the therapeutic options available 
for patients. Furthermore, these tools may reveal 
patterns of therapeutics within cancer subtypes 
that lead to hypothesis generation for further func-
tional and mechanistic validation (Table 15.2).

 Single-Cell DNA-seq

 The Technology

While scRNA-seq has become a widespread par-
adigm in biological research over the past decade, 
scDNA-seq has remained more elusive. This is 
due to the significant variation and difficulty in 
nucleic acid amplification and extraction meth-
odologies. One would ideally seek to character-
ize all possible genomic alterations in single cells 
using scDNA-seq technology using whole 
genome amplification (WGA), including both 
SNVs and CNVs. The difficulty in using single- 
cell WGA with respect to variant calling has been 
described in depth [56–58]. Each of the two 
major classes of single-cell WGA, PCR and mul-
tiple displacement amplification (MDA), are 
more suitable for CNV and SNV detection, 
respectively [59]. However, as stated previously, 
both SNVs and CNVs can be drivers of ITH and 
tumor evolution. Thus, the ability to measure 
both type of alterations accurately is crucial for 
accurate tumor clone identification. Another 
challenge in scDNA-seq is scalability. Up until 
recently, most scDNA-seq technologies have 
been limited to hundreds of cells, as opposed to 
thousands of cells [60]. The scalability of the 
technology must be a similar cellular throughput 
as drop-seq methods in scRNA-seq, to allow for 
the isolation and identification of rare subclones, 

which can measure <1% of tumor cells. Finally, 
for application in personalized medicine, the 
scDNA-seq technology should be an out-of-the- 
box solution which does not require significant 
wet lab intervention or customization. Two recent 
microfluidic technologies, SiC-seq and the 
Tapestri Platform from Mission Bio, both achieve 
cellular throughput of >50,000 cells using WGA 
or targeted amplicon sequencing, respectively 
[61, 62]. While both platforms still harbor the pit-
falls of their respective amplification technolo-
gies, namely, lack of specificity vs. lack of 
coverage, both have been used to characterize 
ITH in cancer. The ability to resolve genomically 
distinct populations within a single tumor sam-
ple, at high resolution, makes these platforms 
ideal for personalized cancer therapy prediction.

 Advantages of scDNA-seq 
in Precision Oncology

Single-cell DNA-seq solves multiple problems 
with regard to measuring ITH: (1) the determina-
tion of co-occurrence of genomic aberrations, (2) 
the temporal relationship between distinct tumor 
clones, (3) resolution of uncertainty in VAF in 
regions with an overlapping CNV and SNV, and 
(4) the identification of rare populations below the 
threshold of NGS sequencing. The direct measure-
ment of DNA sequences from single cells allows 
for direct measurement of ITH, rather than impu-
tation from bulk WES or WGS. This allows for a 
greater chance of assigning treatment regimens 
that hit all disease clones with the minimal amount 
of therapeutics, thus increasing treatment efficacy 
and reducing side effects.

 Investigating Intra-Tumor 
Heterogeneity with scDNA-seq

The specificity and confidence in ITH measure-
ments is greatly enhanced by scDNA-seq. The 
methods used to call mutations are similar, if not 
identical to, the methods used for bulk DNA 
sequencing. Once mutations and CNV values are 
assigned per cell, disease clones can be identi-
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fied. Instead of taking the totality of mutations 
and CNV events and merging them together by a 
common metric such as VAF, we can select muta-
tions and CNVs which are known or suspected to 
be deleterious. Similar to the analysis performed 
by Ediriwickrema, A. et al., mutations found in 
scDNA-seq data were selected by their appear-
ance in clinical cancer databases such as ClinVAR 
[63]. These mutations were then grouped in the 
context of specific cellular populations, leading 
to the definition of distinct disease clones. The 
temporal relationship between clones is fairly 
simple to ascertain, by appreciating the appear-
ance, disappearance, and co-occurrence of SNVs 
and CNVs within each cell. VAFs of SNPs within 
each cell are given as output, so CNVs can be 
inferred by VAFs which fall between homozy-
gous (100%) and heterozygous (50%). For exam-
ple, an amplification of an SNV region after a 
mutation would lead to a VAF of 66% (2 mutated, 
1 wt allele), while an SNV which occurred after a 
CNV amplification would lead to a VAF of ~33% 
(1 mutated allele, 1 wt allele). This further allows 
for the reconciliation of the temporal nature of 
CNVs and SNVs within a single tumor sample. 
Finally, the high sensitivity and throughput of 
modern microfluidic scDNA-seq platforms 
allows for the characterization of very rare sub-
clonal populations. A single tumor cell was iden-
tified out of a total cell output of ~8 thousand 
cells from a remission biopsy in AML, which 
would require a read depth greater than 16,000 to 
confidently identify it through bulk sequencing 
[63]. The ability to not only capture, but genomi-
cally profile such rare cell populations would be 
invaluable for precision oncology, because these 
rare populations could be the difference between 
a long-term cure and relapse.

 Assigning Therapeutics 
in scDNA-seq Data

As mentioned previously, multiple precision 
medicine pipelines rely on matching genomic 
alterations found with bulk sequencing to spe-
cific therapies. scDNA-seq supplies a similar out-

put, but in a cell population-specific manner. 
However the same resources can still be used for 
drug recommendations, such as CivicDB, 
OncoKB, and PMKB [64–66]. In short, these 
databases contain information from clinical and 
research trials which associate genomic altera-
tions with approved and research therapeutics, 
along with an evidence score which indicates the 
level of robustness of the study supporting the 
use of the therapeutics. By querying each clones’ 
alterations separately, we can ascertain combina-
torial therapies that would attack multiple, if not 
all, disease clones. This would hopefully lead to 
complete remission, or at least, a reduction in the 
possibility of treatment resistance (Table 15.2).

 Single-Cell Multi-Omics 
and Integration of Single-Cell 
Platforms

While RNA and DNA sequencing are the most 
common measurements used to characterize 
patient disease, it has been shown that bulk multi- 
omics analysis is beneficial in generating a com-
prehensive view of mechanistic pathways and the 
relationships between cellular processes. As 
described in a review by Lee et al., assays such as 
chromatin accessibility, proteomics, and DNA 
methylation have been performed in concert with 
bulk DNA or RNA measurements to further elu-
cidate disease processes and lead to a better 
understanding of cancer biology [67]. For exam-
ple, multi-omics assays of the combined effect of 
CNVs and DNA methylation on the transcrip-
tional profiles of liver cancer samples revealed 
three new prognostic groups [68]. Furthermore, 
as scRNA-seq and scDNA-seq have expanded 
the resolution and specificity of transcriptome 
and genomic measurements, single-cell multi- 
omics technologies have recently been developed 
to measure multiple cellular properties simulta-
neously from single cells. These single-cell 
multi-omics technologies vary in their through-
put, sensitivity, and analytes, the majority of 
which can measure two distinct analytes from 
single cells. In the context of precision oncology, 
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having the ability to measure all aspects of a 
cell’s biology would lead to more avenues to pre-
dicting successful therapeutics; however, no such 
technology exists yet. We have shown that both 
RNA and DNA information can be used to pre-
dict effective therapeutics, but single-cell tech-
nologies which measure both RNA and DNA at 
scale have remained elusive [67]. Therefore, the 
integration of paired and separate single-cell 
assays, similar to bulk multi-omics experiments, 
would allow for a more comprehensive view of 
patient disease, and would be scalable for use in 
precision oncology.

 Integration of scDNA-Seq 
and scRNA-Seq

As explained previously, matching genomic fea-
tures from bulk WES to scRNA-seq data can be 
helpful in defining tumor clones at the single-cell 
level. scDNA-seq can also directly measure dis-
tinct tumor populations. Therefore, the integra-
tion of scDNA-seq and scRNA-seq is possible 
and would be effective in defining the genome 
and transcriptome of disease clones, including 
rare clonal populations which are only found 
with the high resolution of scDNA-seq. Single- 
cell CNV profiles can be determined from 
scDNA-seq by measuring the allelic depths 
between each cell at specific loci. In order to gen-
erate accurate CNV profiles for each cell, a nor-
mal diploid cell population must be present in 
order to normalize the read depth, since the read 
depth will be specific to each run. In the specific 
case where purified tumor is used, spiking in a 
normal diploid cell line in a known concentration 
is advised to generate absolute, and not relative, 
CNV profiles. After determining cell-specific 
CNV profiles, cells can be clustered into different 
clonal populations based on CNVs. These clonal 
CNV profiles can then be mapped to scRNA-seq 
data using statistical or machine learning meth-
ods which compare regions of known CNVs and 
scRNA-seq transcript depths. Clone-Align is an 
example of a machine learning method which 
uses a Bayesian Inference to map clone-specific 
CNV profiles, generated from scDNA-seq data, 

to scRNA-seq data performed on the same sam-
ple [69]. This methodology would provide more 
accurate clonal CNV profiles than inferred from 
scRNA-seq data and allow for the merging of 
both genomic and transcriptomic information at 
single-cell resolution.

SNVs identified from scDNA-seq data can 
also be computationally matched to scRNA-seq 
data. Specifically, the mutations can be investi-
gated directly within the individual reads from 
scRNA-seq data. In the case of 10x Genomics 
Chromium scRNA-seq data, the tool Vartrix can 
be used to query the data for known variants [70]. 
In the case of other scRNA-seq technologies, 
common tools to investigate BAM files may be 
used, such as Samtools and Picard [71, 72]. 
While allelic drop out and variable coverage in 
the paired scRNA-seq data may be an issue, high 
confidence variants called from scDNA-seq 
should overcome the uncertainty in scRNA-seq 
data. Furthermore, cells which cluster closely to 
cells with measured mutations may be inferred to 
also harbor the same mutations. Finally, leverag-
ing CNV data may allow for the assignment of 
mutations to scRNA-seq data where SNVs are 
not detectably, mainly in the case of co-occurring 
CNVs and SNVs as measured by scDNA-seq. A 
schematic for the workflow proposed can be seen 
in Fig. 15.1.

The integration of single-cell platforms is also 
a strategy to circumvent the current limit of mea-
suring two types of omics data from a single cell. 
Single-cell multi-omics platforms like CITE-seq 
(RNA-Protein), MissionBio Tapestri (DNA- 
Protein), or Paired-seq (RNA-Chromatin) can 
generate data corresponding to the “same” cell, 
which can then be integrated using the same 
approaches to merge DNA and RNA features dis-
cussed above. This is especially exciting in the 
context of novel immune therapies, which are 
currently the focus of many clinical trials in can-
cer. Immune therapies are normally molecules 
with specific affinity to tumor cell surface pro-
teins and require an interaction between surface 
proteins of immune effector cells and target 
malignant cells. Using a platform such as CITE- 
seq can show the relationship between transcrip-
tomic profiles and the surface expression of 
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transcript proteins. Mission Bio Tapestri platform 
also allows for simultaneous protein expression 
and genomic measurements. The ability to relate 
transcriptomic or genomic features to external 
protein expression would be extremely useful for 
predicting immune therapy responsiveness, 
determine factors for relapse, and possible alter-
native targets or complimentary therapies. By 
integrating one multi-omics platform with a 
single- omics platform, we can generate a con-
glomerate picture of disease state, spanning three 
or more different omics technologies.

 Cell-Cell Signaling

Single-cell measurements can also be leveraged 
to determine interactions between cells, which 
can be useful when interrogating the specific cell 
types involved in disease processes or therapeutic 
action. For example, with the increasing popular-
ity and approval of immune-based therapies for 
cancer, the interaction between tumor and 
immune-microenvironment cells would be 
invaluable to determine the reasons for therapeu-
tic sensitivity or resistance. While extra-cellular 
measurements of circulating proteins can be per-
formed using clinical or research assays such as 
Ella or O-Link Proteomics, this does not provide 
directional or cell-specific interactions. New soft-
ware tools such as SingleCellSignalR [73] or 

CellPhoneDB [74] have been developed to use 
single-cell transcriptomics to map Ligand- 
Receptor(LR) interactions between cells within a 
single-cell experiment. Leveraging this informa-
tion, with the potential of multi-omics single-cell 
experiments, would allow for a more comprehen-
sive understanding of tumor-microenvironment 
interactions, for example, the ability to determine 
if specific tumor clones are resistant to immune- 
therapy due to lacking specific LR interactions 
with effector T cells, or the secretion of inhibi-
tory cytokines from specific tumor cells. 
Understanding which tumor populations need to 
be targeted with secondary agents to supplement 
immune-oncology therapeutics is currently a 
major unmet need in the field, and utilizing cell- 
cell interaction networks may provide the infor-
mation necessary to lead to precision 
immune-oncology solutions.

 Conclusion

Just as the cost reduction and out-of-the-box 
next-generation sequencing solutions ushered in 
an explosion of genomic, transcriptomic, and 
epigenomic data in a clinical setting, single-cell 
sequencing is fast becoming a viable option as a 
clinically focused technology. Single-cell 
sequencing technologies have already trans-
formed cancer research as we know it and are 

Fig. 15.1 Workflow for the integration of scDNA-seq and scRNA-seq data
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poised to become the standard for cancer analy-
sis. The unparalleled resolution and sensitivity of 
single-cell sequencing can be exploited to better 
profile patients prior to therapy, track patient’s 
disease progression, and characterize patients at 
relapse, all while providing vital information to 
further our understanding of cancer processes 
and inform clinical decision-making. The inclu-
sion of single-cell sequencing into clinical cancer 
sequencing pipelines is obviously imminent and 
could revolutionize patient care in the coming 
decade.
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Multi-Omics Profiling of the Tumor 
Microenvironment

Oliver Van Oekelen and Alessandro Laganà

Abstract

All solid tumors and many hematological 
malignancies grow and proliferate in a tumor 
microenvironment (TME), a spectrum of con-
tinuous and highly dynamic interactions with 
different immune and stromal cells. This eco-
system contributes to the extensive heteroge-
neity that exists between and within cancer 
patients. Understanding the characteristics of 
this intricate network could significantly 
improve cancer prognosis, as was demon-
strated already for a subset of patients by the 
advent of immunotherapies (including mono-
clonal antibodies, bispecific antibodies, and 
chimeric antigen receptor (CAR) T cells. The 
development of multimodal omics technolo-
gies has allowed researchers to document and 

characterize the TME at single-cell resolution, 
which provides an unprecedent opportunity to 
understand the full complexity of the tumor 
microenvironment. In this chapter, we high-
light the paradigm shift that has brought the 
TME to the forefront of cancer research and 
discuss its composition. In addition, we sum-
marize the available multimodal single-cell 
omics methods that allow studying the TME 
from different angles, as well as their advan-
tages and limitations. We discuss computa-
tional analysis tools, data integration, and 
methods to specifically study crosstalk 
between TME components. Finally, we touch 
upon the implications of studying the TME for 
ongoing or future clinical studies and how 
these can lead to more effective treatments for 
cancer patients.

 Introduction

For many decades, cancer research has been 
primarily focused on understanding the dis-
tinct characteristics and specific vulnerabilities 
of tumor cells. This has led to the development 
of a wide variety of targeted and non-targeted 
therapeutic interventions [1]. It has become 
increasingly clear, however, that this approach 
fails to fully capture disease heterogeneity. 

O. Van Oekelen 
Department of Genomics and Data Science, Icahn 
School of Medicine at Mount Sinai,  
New York, NY, USA 

A. Laganà (*) 
Department of Genetics and Genomic Sciences, 
Department of Oncological Sciences, Mount Sinai 
Icahn School of Medicine, New York, NY, USA
e-mail: alessandro.lagana@mssm.edu

16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91836-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-91836-1_16
mailto:alessandro.lagana@mssm.edu


284

More recently, the pivotal role of targeting 
non- malignant components of the tumor micro-
environment (TME) has become evident, most 
explicitly heralded by impressive and durable 
responses to immune-mediated therapies such 
as checkpoint inhibitors against PD-1, PD-L1, 
and CTLA-4 across different tumor types, 
albeit only in a subset of patients [2–6]. This 
suggests a largely untapped potential and 
emphasizes the unmet need to better under-
stand the composition and dynamics of the 
TME, with the ultimate goal to develop more 
effective anticancer treatments and rational 
treatment combinations.

Concurrently, biomedical research has seen 
a rapid rise in the development and propaga-
tion of so-called omics technologies that allow 
the comprehensive study of biological mole-
cules that determine the structure and function 
of cells (DNA, RNA, protein, metabolites, 
etc.). Whereas initially these technologies 
were applied to bulk data (i.e., averaged across 
a large population of input cells), recent 
advances in molecular biology have led to the 
availability of technologies that allow profil-
ing of (epi)genetic, proteomic, and spatial data 
modalities in individual cells. Today, the 
objective of simultaneously characterizing 
multiple data types in the same cell to achieve 
true single-cell multi-omics profiling is 
quickly becoming reality.

It should come as no surprise that the para-
digm shift toward increased interest in the 
TME coincided with the development of 
effective single- cell omics methods. It is pre-
cisely those technologies that have allowed 
us to query the heterogeneity present in the 
TME ecosystem. In this chapter, we set out to 
discuss how the microenvironment has come 
to play an increasingly central role in oncol-
ogy. We will summarize the approaches to 
study the composition of and crosstalk within 
the TME from multi-omics data sources. We 
believe that further developments and efforts 
in this field will lead to key insights that can 
help bring durable advantages to patients 
with cancer.

 The Central Role 
of Microenvironment in Oncology

The tumor microenvironment (TME) has increas-
ingly come into focus as a major determinant of 
clinical phenotype and prognosis in multiple can-
cer types [2, 5]. An appreciation of the signifi-
cance of the tumor environment is in itself not 
new. Paget’s seed and soil theory posited in the 
nineteenth century that cancer metastases are 
critically dependent on the properties of the organ 
where they arise [7, 8]. The TME is best under-
stood as an intricately connected network in 
which cellular and non-cellular components 
together create a dynamical niche where cancer 
cells can thrive [4]. The different components of 
the TME interact with each other and with the 
cancer cells directly or indirectly, thereby affect-
ing tumor growth and proliferation.

This contextual view replaces a somewhat 
outdated tumor cell-intrinsic perspective in which 
cancer development is largely or exclusively 
driven by a stepwise process of increasingly 
complex genomic aberrations that lead to uncon-
trolled cell growth [9, 10]. A better understanding 
of signal transduction in general, and the notion 
that the TME provides signals that impact cancer 
gene expression in a way that is comparable to 
the impact of oncogenes and tumor suppressor 
genes was important for this change in mindset 
[8]. Admittedly, the appreciation of cancer as a 
genetic disease has led to significant advances in 
treatment. However, it ignores the critical differ-
ential influence of cell-extrinsic factors on a (can-
cer) cell’s behavior. It should come as no surprise 
that an overly narrow focus on tumor genetics has 
not been able to provide effective treatments for a 
significant fraction of patients. A similar argu-
ment could be made about focusing exclusively 
on non-malignant components such as the 
immune system, which right now also provides 
benefit only for a subset of patients and tumor 
types. It is reasonable to expect that as our under-
standing of the intricate ecosystem of the TME 
increases, we will be able to design and recom-
mend rational treatment combinations with clini-
cal benefit in a larger group.
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The TME is composed of the tumor itself in a 
context of cellular and non-cellular elements. 
The cellular fraction consists of resident and 
recruited immune cells (e.g., T and B lympho-
cytes, monocytes, macrophages, NK cells) and 
stromal cells (e.g., cancer-associated fibroblasts, 
endothelial cells, pericytes, adipocytes, mesen-
chymal stem cells). The non-cellular components 
consist of chemicals secreted by the aforemen-
tioned cell types (e.g., cytokines/chemokines), as 
well as the extracellular matrix (ECM), local 
metabolites, and environmental conditions (aci-
dosis, hypoxia) present in the surrounding tissue. 
The bidirectional interactions between these 
components determine the balance between a 
tumorigenic/antitumoral niche. Therefore, it 
comes as no surprise that the microenvironment 
of different organs and different tumor types can 
be remarkably different and highly variable, as is 
the microenvironment of primary tumors versus 
later metastases [11]. These multiple levels of 
variability, in part, help explain differences in 
response and resistance to treatment between 
patients (even with similar tumor types) and 
within patients over time [12].

 The Immune Landscape of the Tumor 
Microenvironment

Despite this high degree of heterogeneity, general 
(albeit overly simplified) trends arise across mul-
tiple cancer types that are of interest for any sci-
entist trying to study the TME.  Here, we will 
attempt to summarize these basic rules of thumb. 
A more comprehensive and nuanced description 
is not the scope of this chapter and can be found 
elsewhere [6, 8, 13]. T cells have received most 
attention as it is clear that the proportion and 
functional status of T cells within the TME are 
major factors in determining tumor progression. 
CD8+ (cytotoxic) T cells are considered major 
effector cells that have the potential to kill tumor 
cells after mounting an adaptive immune 
response. It has been shown, however, that these 
T cells often develop a dysfunctional state over 
time that shares many similarities with the 
exhausted phenotype observed in chronic viral 

infections, characterized by high expression of 
inhibitory checkpoints (e.g., PD-1, CTLA-4, 
TIGIT, TIM-3, and LAG-3) and loss of prolifera-
tive capacity and effector functions, including the 
production of cytokines (e.g., IFN-γ, TNF-α). 
Modifying or reversing this dysfunctional state of 
exhaustion is one of the approaches that has 
shown effect in a subset of patients with check-
point inhibitors, that is, monoclonal antibodies 
blocking PD-1, PD-L1, or CTLA-4, approved for 
different cancer types. The plasticity of the 
exhausted phenotype is still not fully understood 
and might be irreversible. It should be noted that 
while high CD8+ T cell infiltration is associated 
with improved overall survival in many tumor 
types (e.g., melanoma, colorectal, non-small cell 
lung, breast, and bladder cancer), it is actually 
associated with worse overall survival in renal 
cell carcinoma and prostate cancer, highlighting 
the complexity of studying the TME and the 
importance of studying the functional character-
istics of cells present [5, 14, 15]. CD4+ (helper) 
T cells play a coordinating role in the adaptive 
immune response by secreting cytokine combi-
nations that impact a wide range of immune cells 
and can help mount a coordinated antitumor 
response. A subset of CD4+ T cells, regulatory T 
cells (Treg), are known to promote a suppressed 
and tolerogenic immune environment that gener-
ally benefits tumor growth and infiltration. 
Attempts to selectively target and eliminate these 
cells have been made using metronomic (i.e., 
low-dose) cyclophosphamide with some success 
[16–21]. T cells recognize a target by the highly 
specific interaction between the T cell receptor 
(TCR) and a peptide antigen bound in the major 
histocompatibility complex (MHC) on other 
cells, including cancer cells. Cancer cells, how-
ever, have developed strategies, such as down-
regulation of MHC expression, to bypass this 
interaction and escape T cell killing.

Natural killer (NK) cells are innate lymphoid 
cells that can recognize aberrant cells and subse-
quently kill them without antigen-specific bind-
ing. They can specifically target cells that lack 
the MHC complex and therefore might have an 
important role in supporting or initiating the anti-
cancer immune response [22]. Strategies to 
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enhance or leverage T/NK cell function (e.g., 
with bispecific antibodies) and cellular therapies 
where (genetically modified) T or NK cells (e.g., 
chimeric antigen receptor (CAR) cells) are 
infused have been approved in multiple hemato-
logical malignancies and are currently being 
studied across the full cancer spectrum [23–26].

CD8+ T cells recognize cognate antigens in 
the context of MHC-I which is present on all 
nucleated cells of the body and presents cytoplas-
mic peptides. Some immune cells, including 
macrophages and dendritic cells (DCs), have 
acquired a role as professional antigen- presenting 
cells (APCs) that take up antigens from their 
environment via endocytosis and present them in 
the context of MHC-II to CD4+ T cells. Notably, 
some DC have developed cross-presentation 
which allows them to transfer antigens to the 
cytoplasm after endocytosis and present them in 
the context of MHC-I to CD8+ cytotoxic T cells. 
Given the crucial effector role of these T cells in 
tumor killing, efforts have been made to use DC 
to help mount an effective immune response, for 
example, in cancer vaccine and immunotherapy 
studies. Differences in composition and state of 
APC between tissues that are frequently exposed 
to environmental microbial antigens (e.g., lung, 
gut, skin) and tissues that are typically sterile 
(e.g., pancreas, brain) are potentially driving the 
variations in T cell infiltration across diverse can-
cer types [11].

Other cells have also been implicated in the 
cancer-immune cycle, but their role is not as 
straightforward. Cells of the myeloid lineage, 
that is, monocytes and macrophages, play a dual 
role in tumor-immune control. Classical CD14+ 
monocytes are recruited to the TME where they 
differentiate into tumor-associated macrophages 
(TAMs). Macrophages are innate immune cells 
with a phagocytic potential that could help kill 
tumors. In general, an important distinction has 
been made between M1 (classical, proinflamma-
tory) and M2 (alternative, immunosuppressive) 
macrophages [27]. These two classes have a 
markedly different expression profile with the 
M1 macrophages often being characterized 
tumoricidal versus the tumorigenic M2 macro-
phages. It has been shown that a polarization of 

the macrophage phenotype occurs in the TME of 
different cancer types, contributing to tumor pro-
gression, although studying the diversity of mac-
rophage states in  vivo is an ongoing effort and 
phenotypes probably exist on a more continuous 
spectrum. This is further complicated by the exis-
tence and contribution of tissue-resident macro-
phages (i.e., not derived from monocytes) that 
have self-renewal characteristics independent of 
typical hematopoiesis and are important in tissue 
homeostasis. Other myeloid cells, for example, 
neutrophils and eosinophils, are also being con-
sidered as contributors to the cancer immune 
cycle, although their role is currently even less 
clear [28, 29]. A special group of immature 
myeloid cells, myeloid-derived suppressor cells 
(MDSCs), expands in the context of chronic 
inflammation and cancer. These cells are strongly 
immunosuppressive, and their presence is associ-
ated with poor prognosis and resistance to cancer 
treatment [30]. Subsets of MDSC with more 
monocytic characteristics (M-MDSC) versus 
more polymorphonuclear or granulocytic charac-
teristics (PMN-MDSC) have been described.

 The Stromal Compartment 
in the Tumor Microenvironment

Stromal factors are being implicated as well and 
they interact with both the tumor and with infil-
trating immune cells [11, 31]. Endothelial cells 
(ECs) that make up the lining of blood vessels are 
highly variable across anatomic sites to allow for 
differences in permeability or adhesion that 
determine biological function. In the TME, new 
blood vessels are formed that are characterized 
by structural abnormalities and generally 
increased permeability. The formation of such a 
tumor-associated vasculature also occurs in a 
tissue-specific manner, reflecting the local micro-
environment’s signals and intrinsic differences 
between EC at different anatomic locations. 
Notably, the established tumor vasculature then 
has a profound impact on the subsequent immune 
infiltration as it controls homing and extravasa-
tion of specific leukocytes subsets at the 
TME.  Direct immunosuppressive interaction of 
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EC with infiltrating immune cells (e.g., via 
expression of the FAS ligand) also contributes to 
modulation of an effective immune response 
[32]. Cancer-associated fibroblasts (CAFs) are 
mesenchymal cells that contribute to tumor 
immunity indirectly by modulating vessel perme-
ability and depositing matrix components, both 
of which can act as a physical barrier for attracted 
immune cells. They also directly act on the 
immune system by the secretion of chemokines 
and cytokines that hold back immune system 
components with antitumor properties while pro-
moting a more immunosuppressive environment. 
The deposition and organization of the extracel-
lular matrix by mesenchymal cells also has 
impact on the permeability of the TME to infil-
trating immune cells, mainly in solid tumors. 
Recently, the presence of nerve fibers within the 
TME has been associated with adverse prognosis 
in different tumor types, both due to a direct sup-
portive effect on the tumor via release of neu-
rotransmitters, as well as through indirect effect 
on angiogenesis and interaction with immune 
cells [33, 34]. Although the full heterogeneity of 
stromal components needs further investigation, 
these examples all support a common concept in 
which the tissue-specific stroma of the TME has 
an impact on tumor growth directly, as well as 
through its contribution to a particular immune 
microenvironment.

 Qualitative and Quantitative 
Description of the TME

In terms of the immune microenvironment, 
attempts have been made to come up with a clas-
sification system that somewhat reliably reflects 
the presence of the aforementioned cell types [6, 
35]. Tumors characterized by high infiltration of 
cytotoxic T cells across the entire tumor are often 
referred to as immunologically “hot” or inflamed, 
whereas a TME broadly populated with immune 
cells but with a sparsity of cytotoxic T cells in the 
tumor core itself has been described as immune- 
excluded or “cold.” In the latter case, cytotoxic T 
cells are often found restricted to the periphery of 
the tumor by putative mechanisms that involve 

fibroblasts and macrophages, but that remain to 
be clearly elucidated. Notably, tumor specimens 
that lack appreciable infiltration by cytotoxic T 
cells are often referred to as immune deserts. 
Within each of these major categories, more spe-
cific cancer-immune phenotypes can be delin-
eated, each having its unique underlying 
pathophysiology with consequences for potential 
treatment strategies. For example, a subset of the 
inflamed tumors histologically develop tertiary 
lymphoid structures (TLSs). These structured 
aggregates of lymphoid cells recapitulate the 
organization of lymph nodes and can act as pref-
erential sites of immune activation and recruit-
ment of adaptive anticancer immunity via 
antigen-presenting DC.  Different classification 
and scoring systems exist, but their exact prog-
nostic significance and/or therapeutic relevance 
is currently still limited to specific clinical con-
texts. The Immunoscore [14, 15] quantifies the 
CD8+ T cell infiltrate in the TME and was dem-
onstrated to be superior to traditional TNM 
(tumor-node-metastasis) staging in patients with 
colorectal cancer. The effort to come up with a 
widely applicable system across cancer types 
including both solid tumors and hematologic 
malignancies will undoubtedly benefit the under-
going characterization efforts.

 Therapeutic Implications of the TME

Understanding the full scope of cancer’s com-
plexity will be relevant to provide significant 
therapeutic improvement for those patients with 
the direst prognosis. Indeed, it is now increas-
ingly clear that the TME characteristics influence 
response to cancer therapy. Likewise, cancer 
therapy can shape the TME [5, 16], for example, 
chemotherapy and radiotherapy are known to 
recruit immune cells and trigger their activation 
and maturation in the TME but also to recruit 
bone marrow-derived mesenchymal stem cells 
(MSCs) that produce chemoprotective factors 
and anti-angiogenic agents result in the attraction 
of circulating endothelial cells and the induction 
of tumor-supportive fibroblasts. This reciprocal 
interaction opens opportunities for researches to 
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use their increased understanding to improve 
therapeutic outcome by explicitly targeting TME 
components [36]. The stromal and immune cells 
in the TME are genetically stable, arguably mak-
ing them a more attractive target for drugs than 
cancer cells (i.e., less susceptible to developing 
resistance mechanisms through evolution). 
Strengthening interactions between the tumor 
and the TME that keep tumor growth in check 
while at the same time blocking interactions that 
support tumor growth is a promising approach.

Clearly, targeting the TME is a potentially 
valuable strategy for the design of drugs and drug 
combinations, although many challenges and 
bottlenecks remain that have made this effort par-
ticularly challenging [36, 37]. Animal studies 
play an important role in preclinical research but 
fail to accurately mimic the interactions with the 
TME, especially when tumors are implanted 
ectopically. Targeting the TME may be associ-
ated with higher and unintended toxicities as 
drugs distort the normal homeostatic balance and 
disrupt a complex network of signal transduction. 
It is also conceivable that tumors could develop 
strategies to evade the disruption of a single 
microenvironmental factor which would lead to 
resistance. Also, the mechanisms of resistance to 
therapies targeting the TME are not completely 
understood. Furthermore, it has been suggested 
that the traditional paradigm of determining the 
maximal tolerated dose (MTD) as is common in 
clinical oncological trials might not be suitable 
for treatments targeting the TME where it might 
be more relevant to determine the optimal bio-
logical dose (OBD, i.e., the lowest dose that 
achieves maximal efficacy). This has also been 
suggested by the paradigm of metronomic che-
motherapy showing an effect of cyclophospha-
mide on the immune microenvironment and 
endothelial cells at doses much lower than the 
MTD [17–20]. An important obstacle is the lack 
of clear biomarkers that can be assessed at base-
line and predict response [5]. As a first step, 
attempts to classify different tumor immune 
microenvironments have been proposed to pre-
dict and guide immunotherapeutic responsive-
ness [6]. Finally, as our arsenal of cancer 
therapeutics expands, we need to think about 

treatment combination and sequencing in order 
to achieve cure or the most durable response with 
optimal quality of life [38].

This effort requires researchers to be able to 
capture and characterize the many different levels 
of heterogeneity: within a tumor (tumor cell 
genetic/epigenetic + local microenvironment dif-
ferences), between different lesions in patients 
with metastatic disease and, importantly, between 
different patients [39]. Studying cancer cell 
genetics in isolation merely touches upon a 
superficial layer of complexity. Although it is rel-
evant in determining drug responses to targeted 
therapies, genetic features alone cannot fully 
characterize the dynamic behavior of cancer 
cells, underscoring the importance of integrating 
other omics data.

 From Bulk to Single-Cell Omics Data 
Analysis

Omics data analysis allows the unbiased assess-
ment of different biological modalities and pro-
vides a rich and comprehensive picture in any 
biological context. Whole genome sequencing 
(WGS) and whole exome sequencing (WES) 
comprehensively capture the DNA of a sample 
(genome/exome), whereas RNA sequencing 
(RNA-seq) captures the transcriptional state 
(transcriptome) [40]. Other assays have been 
developed that allow characterizing the chemical 
state of DNA/RNA (epigenetics), proteins, and 
metabolites, respectively. The rapidly decreasing 
cost of high-throughput sequencing and develop-
ment of novel massively parallel technologies 
now allow to study the genome, epigenome, tran-
scriptome, proteome, metabolome, and other 
proposed omics modalities. Traditionally, profil-
ing was performed on a grouped collection of 
cells from a particular tissue sample, in so-called 
bulk analysis. This essentially results in the regis-
tration of the average genome and/or the average 
expression level across a large population of cells 
and fails to trace back expression to individual 
cells, the fundamental biological unit. Despite 
this limitation, RNA-seq has been particularly 
useful for comparative transcriptomics, and 
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robust analytical tools have been developed to 
conduct differential gene expression [41–43].

The blended nature of RNA-seq data led to the 
development of tools that use bulk data to esti-
mate relative cell composition, either through 
deconvolution [44–47] or gene set enrichment 
analysis (GSEA) [48], which has been used to 
determine the composition of tumor-infiltrating 
immune cells semi-quantitatively [49]. GSEA- 
based methods compute the enrichment score 
(ES) for a set of genes, for example, a gene set 
that is characteristically expressed in a particular 
cell type. The ES is high when the particular set 
of genes is overrepresented among the top highly 
expressed transcripts in a sample, which suggests 
the cell type is enriched in the sample. 
Deconvolution algorithms use a signature matrix 
of cell-type-specific expression values to quanti-
tatively reconstruct the contributions of the dif-
ferent cell types to the heterogeneous sample 
[49]. Many computational tools have been devel-
oped to characterize other aspects of (potential) 
tumor-immune cell interactions [50, 51]. Bulk 
RNA-seq data of the TME has been used to eval-
uate diversity and heterogeneity of the antigen 
receptor repertoire of B and T lymphocytes 
(MiXCR [52, 53], TRUST [54]) that can be used 
on bulk RNA-seq data of the TME.  Similarly, 
RNA-seq has been used (in combination with 
genomics data) to determine the presence of can-
cer neoantigens in patients as a result of muta-
tions, deletions, insertions, alternative splicing, 
and gene fusion events. When combined with 
(genomics-based) typing of the human leukocyte 
antigen (HLA) locus, this technique can be 
applied to identify cancer neoantigen peptides 
that are likely to bind to a patient’s antigen recep-
tor, elicit an adaptive immune response, and can 
therefore be used for rational cancer vaccine 
development [55].

As mentioned before, a disadvantage of study-
ing bulk populations is the fact that it blends out 
and potentially masks signals that are present in 
individual cell types. Despite the aforementioned 
tools, bulk sequencing is not sufficient to study 
heterogeneous biological system that contains 
multiple (uncommon) cell types and does not 
fully characterize the stochastic nature of gene 

expression. In practice, the diversity of individual 
cells in the TME exceeds what can be measured 
by merely studying a mixture of these cells. 
Furthermore, the genomes of individual cells are 
not always the same, especially in cancer. 
Studying any modality at single-cell resolution, 
in contrast, allows identification of rare cell types 
that potentially drive cancer progression, inva-
sion or response, and whose transcriptomic/epi-
genetic/etc. signal would be averaged out and lost 
in bulk analyses.

 Single-Cell RNA Sequencing: 
The Paradigm of Single-Cell 
Technology

Single-cell RNA sequencing (scRNA-seq) has 
been the frontrunner in the transition to single- 
cell analysis with the first single-cell transcrip-
tome published around 2009 [56]. It has rapidly 
become more widespread available with com-
mercial platforms allowing characterization of up 
to thousands of genes in more than 10,000 cells 
in a single experiment [57, 58]. Cells need to be 
dissociated from tissue into a single-cell suspen-
sion in a process that can have a considerable 
impact on the molecular profile and relative cell- 
type abundance, especially in the case of tissue 
from solid tumors. A reverse transcription and 
amplification process, conceptually similar to 
that of bulk RNA-seq, can be achieved by differ-
ent experimental approaches, resulting in differ-
ent strengths and weaknesses [59–62]. There are 
two main technological strategies for RNA cap-
ture: microfluidic (including droplet-based sys-
tems) and microwell (plate-based). 
Microdroplet-based technologies capture indi-
vidual cells in lipid droplets together with bar-
coded beads on which RNA capture and barcoded 
reverse transcription occur. They generally allow 
for the analysis of a large number of cells (thou-
sands) (i.e., highest throughput) but with a more 
restricted limited number of reads per cell 
(depth). Microwell-based protocols, on the other 
hand, are more limited in terms of the number of 
cells that can be analyzed (up to hundreds) but do 
provide much deeper sequencing of full-length 

16 Multi-Omics Profiling of the Tumor Microenvironment



290

transcripts and methods that can be combined 
effectively with cell sorting techniques, for 
example, to select cells of interest based on sur-
face markers. Other microfluidic platforms bring 
a more integrated system to the table, which auto-
mates the reactions necessary for library prepara-
tion and generally provides an intermediary 
throughput. Arguably more important is the dis-
tinction between full-length and tag-based tech-
nologies. Full-length platforms (e.g., C1/
Smart-seq [63], MATQ-seq [64], Smart-seq2 [65, 
66]) try to achieve a uniform read coverage over 
the whole transcript, whereas tag-based protocols 
(e.g., CEL-seq2 [67], Chromium [68], ddSEQ 
[69], DroNc-seq [70], Drop-seq [71], inDrop 
[72], MARS-seq [73], Nx1-seq [74], Quartz- 
Seq2 [75], Seq-Well [76], STRT-seq [77]) only 
capture the 3′ or 5′ end of the transcript, limiting 
its use for the characterization of splice variants, 
RNA editing, or detection of mutations. By incor-
porating unique molecular identifiers (UMIs) that 
act as barcodes added before PCR amplification, 
these technologies can reduce errors and amplifi-
cation bias. Although most platforms focus 
exclusively on capturing and studying mRNA, 
methods to sequence RNA more broadly (i.e., 
both polyadenylated and non-polyadenylated) 
have been proposed (e.g., SUPeR-seq [78], 
RamDa-seq [79], Small-seq [80], and Smart-seq- 
total [81]). Depending on the exact platform 
used, researchers should be especially mindful of 
potential problems including limited cell capture, 
biases in cell survival, reverse transcription effi-
ciency, and cDNA amplification that affect dis-
tinct protocols differently. Head-to-head 
comparisons have elucidated many of these 
weaknesses, stressing the importance of orthogo-
nal validation as these technologies continue to 
mature [57, 82, 83].

 The Analysis of Single-Cell RNA 
Sequencing Data

Data from scRNA-seq platforms are generally 
noisier, and its downstream analysis is consid-
ered to be more challenging than bulk RNA-seq. 
The relative absence of computational standards 

for analysis and interpretation after library gen-
eration and sequencing limits reproducibility. In 
terms of computational data analysis tools, bulk 
RNA-seq methods (for differential gene expres-
sion, regulatory network inference, etc.) have 
been applied to scRNA-seq datasets with variable 
success [84]. The presence of unique technical 
noise and extensive biological variability (includ-
ing stochastic transcription), however, raises the 
question whether this approach leads to meaning-
ful and optimal results. Recently, a growing num-
ber of tools specifically aimed at scRNA-seq 
datasets have come forward, although they each 
come with their (dis)advantages and proper head- 
to- head comparisons are rare, which makes 
method/parameter selection and reproducibility 
problematic [84, 85]. As the number of available 
tools grows rapidly, it becomes increasingly dif-
ficult to navigate the full spectrum of methods 
and generate an up-to-date and reproducible 
workflow. Several groups have begun to conduct 
cross-platform benchmarking studies to help 
address the critical problem [86].

A full review of the bioinformatics pipelines 
and applications available for analyzing scRNA- 
seq data is outside the scope of this chapter, and 
excellent reviews exist that explain specific chal-
lenges and current best practices [84, 87]. We do, 
however, want to highlight some aspects that are 
important in the context of studying the 
TME.  Whereas data analysis initially required 
considerable computational experience, research 
groups and companies that sell hardware and 
reagents for scRNA-seq have made efforts to 
release software and packages that provide tools 
for integrated quality control, dimensionality 
reduction, visualization, and data analysis, often 
with minimal parameter tuning or coding require-
ments. Researchers should carefully review the 
methods, including the underlying algorithms 
and parameters to understand the introduction of 
potential bias, especially in the absence of a gold- 
standard analysis platform. The most widely used 
packages are probably Seurat [88–90] in R, and 
Scanpy [91] in Python, the two most prominently 
used programming languages in the field. 
Recently, much effort has been invested in estab-
lishing proper cross-environment support.
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 Quality Control and Preparation 
of Single-Cell RNA Sequencing Data

Before downstream biological analysis, scRNA- 
seq data generally undergoes a series of quality 
control (QC) checks. This is particularly relevant 
when studying heterogeneous samples taken 
from the TME. Poor quality from single cells can 
be the result of poor cell viability, limited mRNA 
recovery, ambient RNA, poor cDNA production, 
etc. There is no clear consensus, and the best fil-
tering strategy often relies on the tissue type and 
sequencing platform used. Library size, number 
of (housekeeping) genes detected per cell, and 
fraction of mitochondrial-encoded mRNA mole-
cules are most commonly used, but thresholds 
vary widely and using them in isolation is espe-
cially problematic when studying the diverse set 
of cell types and metabolic states present in the 
TME. More integrated computational tools have 
been proposed to manage QC [92, 93] and 
remove contamination with ambient RNA (e.g., 
SoupX [94] and DecontX [95]). QC also involves 
detection and removal of doublets, for which sev-
eral tools are available [96–101]. A recent bench-
marking analysis [102] suggested that 
DoubletFinder [98] excels in detection accuracy, 
whereas scds [100] provides the best computa-
tional efficiency. The efficacy of any QC approach 
is generally determined by judging the quality 
and plausibility of downstream analytical perfor-
mance (e.g., cluster annotation and differential 
expression). In the context of studying the TME, 
there are often diverse cell populations with 
widely varying expression characteristics and 
viabilities that risk being removed as low-quality 
outliers. Therefore, in our experience, it is often 
valuable to start with a more permissive QC 
threshold and rerun a more stringent approach 
later, based on the initial results. This iterative 
strategy, however, introduces bias, and QC should 
not be exploited to improve downstream statisti-
cal tests.

When high-quality data are filtered, other 
preprocessing steps involve normalization, fea-
ture selection, and dimensionality reduction, 
which ultimately allow downstream cell- and 
gene-level analyses. Bulk expression methods 

have been attempted, but the specific sources 
of variation and noise has led to development 
of single-cell- specific methods. Whereas nor-
malization attempts to remove some of the 
effects of sampling individual mRNA mole-
cules, it cannot account for all technical and 
biological covariates that might still be present 
(including batch, dropout, and cell cycle 
effects). This can be done using a simple linear 
regression as well as more complicated mix-
ture models (e.g., f-scLVM [103, 104]) but 
should be considered carefully, since correct-
ing for biological covariates can obscure inter-
pretability and might unintentionally remove 
other relevant signals. For technical covariates, 
batch correction methods such as ComBat 
[105] have been shown to be applicable for 
scRNA-seq data [106]. A related problem is 
the integration of data from different experi-
ments which poses additional challenges as the 
cell- type composition might not be identical. 
Multiple methods including the Seurat imple-
mentation using canonical correlation analysis 
(CCA) [88], LIGER [107], and Harmony [108] 
have been released, although head-to-head 
comparison is limited.

Dropouts have been a particular challenge of 
scRNA-seq analysis. They refer to zero counts 
that are the result of sampling only a fraction of 
the mRNA present in any single cell (i.e., techni-
cal dropouts) but also can be caused by biological 
phenomena, such as transcriptional bursting (i.e., 
pulses of transcriptional activity are followed by 
inactive periods in which mRNA cannot be 
detected). These zero counts result in a unique 
data distribution that is different from bulk RNA- 
seq. Attempts to recover these (technical) drop-
outs (referred to as denoising or data imputation) 
have been proposed with tools such as scVI 
[109], scImpute [110], and DCA [111]. Although 
these methods generally result in appealing data 
(and visualizations), we want to emphasize that 
there are obvious risks of under- or overcorrec-
tion which could result in spurious correlations, 
as well as lack of reproducibility. In light of the 
current lack of standards, we argue that denoising 
or imputation should be clearly disclosed and 
used with caution.
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 Clustering and Compositional 
Analysis

These preparatory steps lead into cell- and gene- 
level analyses that are the highlight of scRNA- 
seq data. A first step is splitting the cells into 
biologically meaningful clusters. The standard 
approach (implemented in most packages includ-
ing Seurat and Scanpy) implements the Louvain 
algorithm [112] to identify communities on a 
single-cell KNN (K-Nearest Neighbors) graph. 
Careful cell-type annotation can be achieved by 
manual inspection of signature marker genes of 
each cluster. Notably, the resolution of clustering 
(i.e., the number of clusters) can be changed to 
alter the granularity. While this can be particu-
larly useful for sub-clustering major cell types 
present in the TME, it is important to realize that 
the clusters identified using an unsupervised 
approach do not necessarily coincide with bio-
logically valid cell types. Furthermore, the defi-
nition of what constitutes a cell type also depends 
on the type of experiment and the context, as cell 
types in different developmental or metabolic 
stages often appear as separate clusters [113]. For 
example, when considering T cells in the TME, it 
might be sufficient to classify them into CD4+ 
and CD8+ T cells for some biological context, 
whereas in other situations it might be necessary 
to divide these “major” populations into subpop-
ulations representing developmental (e.g., naïve 
versus memory) or functional (e.g., effector ver-
sus exhausted) states. It is conceivable that these 
cell states represent a transcriptional profile 
change that is continuous to some extent, making 
clustering (i.e., splitting them into distinct 
groups) somewhat arbitrary. This realization has 
been the inspiration for so-called trajectory anal-
ysis methods that explicitly try to capture transi-
tions between cell identities. Tools such as 
Monocle [114] and Wanderlust [115] have first 
established the feasibility and have sparked off a 
set of other methods that have reviewed compre-
hensively [116], suggesting the use of Slingshot 
[117] when expecting simple trajectories and 
PAGA [118] when dealing with complex bifurca-
tions, although ultimately the best algorithm var-
ies depending on the underlying data.

The reliance on manual inspection for cell- 
type annotation has prompted the development of 
reference databases (e.g., the Human Cell Atlas 
[119]) that can be used to provide guidance. 
Alternatively, researchers rely on prior knowl-
edge and literature to come up with marker genes, 
although this approach does not take into account 
the distinctive nature of single-cell data. 
Importantly, there is a weak or no correlation 
between mRNA expression and protein abun-
dance on the cell surface, restricting the use of 
traditional cytometry-based phenotyping mark-
ers, for example, when identifying immune cells 
in the TME. To limit bias, methods for automated 
cluster annotation have been presented, including 
Garnett [120], scmap [121], scMatch [122], 
SingleCellNet [123], and singleR [124]. Different 
tools were recently evaluated [125] showing the 
advantages and limitations of this approach. 
Whereas a manual annotation relies on prior 
knowledge and is intrinsically biased, automated 
cluster annotation offers speed, simplicity, and 
flexibility. When studying large and complex 
datasets such as those derived from TME sam-
ples, however, reference atlases often do not 
properly represent the full composition of cell 
types and states. It is therefore advisable to use a 
combination of both strategies (e.g., start with a 
“rough” automated cell-type annotation and 
complement this with manual sub-clustering).

When cell types and states are determined and 
annotated, compositional analysis (i.e., compare 
proportions of different cell types and states 
between samples of different patients or in 
response to disease/treatment/etc.) is a logical 
next step. Many analysis tools developed for 
(mass) cytometry data are being adapted for use 
on scRNA-seq datasets. It is important to under-
stand that analysis of TME samples usually is 
associated with a large variation of input material 
so that it is typical not meaningful to look at 
absolute cell number differences when compar-
ing samples. Instead, statistical tests focus on 
relative abundances (i.e., percentages of total 
cells), but of course tests for different cell types 
in the same data set are not independent. This is 
an important challenge that complicates interpre-
tation of such changes.

O. Van Oekelen and A. Laganà



293

Whereas previously we used gene-level data 
to describe and understand the cellular heteroge-
neity, now we can leverage this context for a 
deeper dissection of the data and comparison of 
different experimental conditions. This includes 
analysis like differential expression testing, gene 
set analysis, and gene regulatory network infer-
ence, originally developed and used on bulk gene 
expression data. The opportunity to discriminate 
the expression changes in different cell types 
separately is one of the main arguments to prefer 
single-cell transcriptomics over a bulk approach 
in analysis of the TME.  Because of the unique 
nature of scRNA-seq data, novel differential 
expression (DE) methods were developed that 
take into account dropouts and other sources of 
cell-cell variability that are not typically present 
in bulk RNA-seq data [126, 127]. Somewhat sur-
prisingly, a recent comparison of methods [128] 
found single-cell-specific DE methods provide 
no advantage over their bulk-derived counter-
parts, with the latter even achieving superior 
results when adapted using a gene-weighting 
strategy to properly model single-cell data [129]. 
This suggests that the widely used analysis tools 
EdgeR [130] and DESeq2 [41] can be adapted 
and used on scRNA-seq data. However, because 
bulk DE tools were originally designed for com-
paring a limited number of samples (instead of 
thousands of individual cells), this approach can 
quickly become computationally prohibitive. In 
this case, it is advisable to use either MAST 
[127], a single-cell DE method shown to achieve 
reliable results [86] or the limma-voom pipeline 
which optimizes computational speed [131]. To 
interpret differentially expressed genes, it is 
advisable to summarize the collection of signifi-
cant genes and search for overrepresented sets of 
genes based on biological process. Databases 
used in bulk transcriptomic data (e.g., GO, 
MSigDB, KEGG, Reactome) can be readily que-
ried using the gene lists from scRNA-seq data. At 
a higher level, it is possible to construct gene 
regulatory networks by studying co-expression 
of transcripts as a proxy for causal relationships. 
Tools such as SCODE [132] and SCENIC [133] 
were designed for single-cell transcriptomics 
data specifically, but they were shown to have a 

relatively poor performance (as did bulk meth-
ods) in a recent benchmark study [134]. Until 
more data becomes available, these methods 
should be applied with caution and their results 
interpreted prudently.

 Other Dimensions of Single-Cell 
Profiling in the Tumor 
Microenvironment

Single-cell RNA sequencing has cleared the path 
for other high-throughput omics technologies at 
the single-cell level, each of which contributes to 
a comprehensive and multifaceted snapshot of 
the TME. The data structures of these omics tech-
nologies and their associated analytical chal-
lenges share many similarities with scRNA-seq 
and will not be discussed in detail. Instead, we 
focus on what each of these data types can bring 
to the table to increase our understanding of the 
TME.

 Single-Cell DNA Sequencing

Single-cell DNA sequencing (scDNA-seq) 
allows investigation of genomic heterogeneity 
at single- cell resolution. It allows studying sin-
gle nucleotide variants (SNVs), copy number 
alterations (CNAs), as well as more complex 
chromosomal rearrangements [135]. This in 
turn provides an essential contribution to reli-
ably characterize tumor clonality and evolu-
tion. Understanding the clonal make-up of a 
tumor (and its metastatic lesions) has gained 
particular interest in the context of personal-
ized or precision oncology, with the expecta-
tion that a combination of (targeted) therapies 
aimed at the individual clones present might 
achieve better clinical outcomes. Single- cell 
whole-genome sequencing is achieved with 
different methods including MDA [136], DOP- 
PCR [137, 138], MALBAC [139], and TnBC 
[140], although other methods are available 
[135]. Over the last decade, scDNA-seq has 
increasingly been applied to characterize 
genetic heterogeneity within tumors, on circu-
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lating tumor cells and metastases to better 
understand the evolution and mutation rate as 
well as development of resistance to therapy 
[137, 141–148]. The analysis of scDNA-seq 
data is complicated by problems of non-uni-
form coverage, mutation bias, doublet detec-
tion, and the risk of allelic dropouts, all leading 
to false positive/negative results [135, 149, 
150]. Whole-genome coverage is often not 
essential when studying a particular tumor type 
with a known set of commonly mutated genes. 
To delineate the clonal architecture and deter-
mine CNAs, it might be sufficient and more 
efficient to target a limited panel of genes as 
has been proposed with the Tapestri platform 
[151, 152].

 Single-Cell Epigenomics

Single-cell epigenomics provides an extra 
perspective on the activity of genes in indi-
vidual cells [153]. When profiling tumor 
cells, it can be used to detect genes or chro-
mosomal regions that have been silenced 
through hypermethylation. Various cancer 
drugs are known to target epigenetic regula-
tors that result in altered histone modification 
patterns. However, epigenetic profiling at 
single-cell resolution is particularly impor-
tant for characterizing functional capacity 
present among different (immune) cells. Its 
use in the context of the TME has mostly 
focused on T cell differentiation. It is well 
understood that T cell development is charac-
terized by profound epigenetic changes, some 
of which are deemed irreversible. This has 
been of particular interest when studying 
CD8+ T cell dysfunction (“exhaustion”) in 
the TME and its contribution to immunother-
apy resistance. Multiple platforms exist that 
provide different information, including 
scATAC-seq [154] (assay for transposase-
accessible chromatin; i.e., chromatin acces-
sibility), scBS-seq [155] and scRRBS [156] 
(DNA methylation), scChIC- seq [157] (his-
tone modifications), and scHi-C [158] (chro-
matin configuration).

 Single-Cell Proteomics

Complementing genomic studies with protein 
expression at single-cell resolution is important 
as we know that the correlation between mRNA 
expression (as detected in scRNA-seq data sets) 
and protein abundance is limited. There is another 
clear benefit to detecting protein as this readout 
provides a more direct assessment of cell func-
tionality. In contrast to single-cell genomics and 
transcriptomics, high-throughput single-cell pro-
teomics (i.e., the detection of all proteins present 
at single-cell resolution) is not yet commercially 
viable or widely available, so measurements are 
limited to a prespecified panel of proteins of 
interest [159]. Nevertheless, single-cell protein 
detection is arguably not a novel technology. 
Flow cytometry has been available for decades to 
study surface and intracellular protein abundance 
at the level of individual cells. A limiting factor in 
terms of dimensionality has been the overlap in 
the spectrum of different fluorophores used, 
resulting in complex deconvolution methods for 
panels with more than a handful markers.

A workaround has been the development of 
mass cytometry (CyTOF) in which this problem 
is solved by conjugating antibodies with heavy 
metal isotopes that can be distinguished by mass 
spectrometry with minimal overlap [160–162]. 
This allowed using panels of up to about 50 anti-
gens on millions of cells in a single experiment 
and has facilitated using the technology to iden-
tify novel (immune) cell subsets or detect rare 
cell populations based on a combination of pro-
tein markers. Note that the technology is not 
restricted to surface protein detection but has 
been adapted to measure intracellular markers 
and cell signaling processes [162]. CyTOF has 
been especially transformational for research 
characterizing the TME in both solid and hema-
tologic malignancies and for immunophenotyp-
ing more generally in the context of 
immunotherapy. Limitations (in comparison to 
traditional flow cytometry) are the high fraction 
of cells lost during staining and acquisition, 
lower throughput, cost and availability of the 
technology, as well as the fact that no viable cells 
can be retained. This makes CyTOF an attractive 
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methodology for hypothesis generation and bio-
marker discovery that should be complemented 
with functional studies that confirm the pheno-
typic observations. Another more recent work-
around of the dimensionality limitation is the use 
of spectral flow cytometry in which the full spec-
trum of emitted fluorescence is taken into account 
for each probe [163, 164]. The data can later be 
unmixed based on reference spectra and known 
autofluorescence. This offsets some of the disad-
vantages of CyTOF, although panel design is 
generally more complicated and requires careful 
selection of markers and appropriate fluoro-
phores in order to acquire clean data with mini-
mal artifacts.

The rapid increase of protein markers in 
cytometry experiments has complicated tradi-
tional analysis workflows depending on manual 
gating. This traditional approach is still useful and 
powerful when conducting supervised cell- type 
annotation. However, it is intrinsically biased and 
cannot be relied upon for discovery of novel and 
unknown phenotypic populations (as the number 
of binary phenotypes increases exponentially). 
This has sparked off the implementation of com-
putational tools aimed at unsupervised clustering 
and visualization of multidimensional cytometry 
data, with algorithms used most prominently 
including SPADE [165], Phenograph [166], and 
FlowSOM [167]. The large number of cells (often 
millions) presents a computational challenge for 
most single-cell methods proposed for the analy-
sis of scRNA-seq data. Packages that provide 
integrated workflows in R [168, 169] and Python 
[170] for cytometry data analysis are available.

Whereas protein detection methods for sur-
face and intracellular markers are restricted by 
the limitations specified earlier, the detection of 
soluble proteins in plasma can be expanded to 
assess hundreds of proteins simultaneously, 
bringing the ultimate goal of characterizing the 
full plasma proteome closer. Technological meth-
ods exist based on either mass spectrometry or 
affinity proteomics platforms (i.e., the proximity 
extension assay (PEA) [171] or SOMAscan 
[172], commercialized by Olink and SomaLogic, 
respectively) [173]. Although the plasma protein 
repertoire obviously does not reflect the single- 

cell paradigm, it provides an extensive and high- 
level overview of the pathophysiological state of 
an organism. The array of circulating cytokines 
and chemokines in the blood can be queried to 
characterize the functional status of the immune 
system holistically and to discover biomarkers 
for response and resistance in all many different 
tumor types [174–176]. Additionally, for tumors 
that reside in the bone marrow (i.e., hematologi-
cal malignancies such as multiple myeloma or 
myelodysplastic syndrome) or metastasize to the 
bone marrow niche, these technologies can mea-
sure said markers directly in the TME and con-
tribute information on the ongoing crosstalk 
[177].

 The Multi-Omics Paradigm

The full impact of single-cell omics will become 
more obvious as new technologies emerge that 
allow concurrent measurement of different 
modalities from the same cell. The simultaneous 
characterization of genotype, epigenetic status, 
transcriptional program, and phenotype of indi-
vidual cells in the TME provides insights that 
would allow a more comprehensive perspective 
on the fundamental biological unit: the cell. Even 
integration of multiple omics data from different 
cells (from the same sample), for example, the 
combination of scRNA-seq with CyTOF can help 
to confirm new cellular phenotypes and better 
understand their transcriptional behavior at the 
same time as has been showcased successfully in 
different tumor types. Single-cell multimodal 
omics have attracted acclaim and attention across 
the entire biological spectrum which promoted 
Nature to name single-cell multimodal omics as 
its method of the year 2019 [178].

An important aspect of measuring multi- 
omics in the TME is the consideration of the spa-
tial context of cells. Single-cell experiments often 
rely on digesting (solid) tumors into soluble cell 
suspensions for subsequent analysis. Tumors, 
however, are complex 3D structures in which 
soluble mediators might indeed impact cells at a 
distance, although individual cells are affected 
mainly by interactions with their direct neigh-
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bors. This underscores the essential role of imag-
ing techniques to capture the spatial organization. 
Combining aforementioned omics technologies 
with the localization of tumor cells, non-tumor 
(immune, vascular, stromal) cells, and matrix 
components provides a unique window on the 
structural organization at a (sub)cellular 
resolution.

Methods focusing on protein detection in situ 
often build upon established imaging techniques 
such as immunohistochemistry (IHC) or immu-
nofluorescence (IF). Multiplexed IHC by itera-
tive staining of single slides (MICSSS) [179, 
180] is the most widely used chromogen-based 
example. It offers the ability to stain slides for a 
handful of different antigens using a protocol that 
can be readily implemented by most pathology 
labs and is complemented with automated digital 
analysis tools to automatically map the TME. To 
expand the number of proteins that can be mea-
sured, novel antibody-based techniques includ-
ing imaging mass cytometry (IMC) [181, 182] 
and multiplexed ion beam imaging (MIBI) [183] 
have been showcased, which combine spatial 
data collection with the dimensionality of mass 
cytometry (i.e., 20–40 markers) [184, 185]. These 
platforms are promising and have obvious poten-
tial to characterize the spatial heterogeneity pres-
ent in the TME. There are other methods that use 
oligonucleotide-tagged antibodies to achieve 
multiplexed protein detection (of up to 50 mark-
ers), such as co-detection by indexing (CODEX) 
[186] and Digital Spatial Profiling (DSP) [187]. 
DSP also allows RNA detection of up to 100 
genes. However, most of these methods are con-
sidered lower throughput due to the time neces-
sary to acquire and process the images, precluding 
analysis of large surfaces and multiple slides per 
specimen. Given the fact that it is currently 
unknown whether single slides can provide an 
accurate representation for the whole tumor con-
text, this limitation becomes even more relevant. 
IMC has been expanded to incorporate detection 
of RNA using metal-labeled oligonucleotides 
[188]. Specific computational methods have been 
developed to enable analysis of spatially resolved 
cytometry data (e.g., HistoCAT [189] and 
ImaCytE [190]).

Spatial transcriptomics methods are generally 
divided into two main categories. Targeted detec-
tion of a small panel of DNA/RNA molecules has 
been in use for years via fluorescence in situ 
hybridization (FISH). These FISH-based meth-
ods have been expanded to allow detection of a 
more expansive set of genes, but ultimately, these 
methods are limited by the molecular crowding 
leading to spatial overlap of the fluorescence sig-
nal and intrinsically biased. Recently, in situ 
hybridization has been modified through multi-
plexing and super-resolution imaging (e.g., seq-
FISH+ [191]) to achieve transcriptome-scale 
detection of mRNA. A second group of methods 
for spatial transcriptomics relies on single-cell 
sequencing to achieve unbiased coverage of the 
full transcriptome. In this case, tissues are still 
dissociated, so connecting the measured tran-
scriptomes back to their original spatial context 
leads to unique challenges. Technologies using a 
barcoded oligonucleotide capture array have 
been developed and commercially implemented, 
albeit with limited resolution of around 100 
micrometer [192]. Alternatively, a microdroplet- 
based method has been adapted to accommodate 
spatial information (i.e., Slide-seq [193]).

Incorporation of spatial information is only 
one example of a valuable addition to transcrip-
tomics when studying the TME, but many other 
multimodal single-cell technologies are rapidly 
emerging. Most of these methods share (single- 
cell) RNA-seq as the common scaffold and 
combine this with additional information 
sources to systemically cover different aspects 
of biology as shown in Fig.  16.1. A short 
description of these methods, including their 
potential use in characterization of the TME and 
relevant references, is provided in Table  16.1 
[191–227]. The crowded and quickly evolving 
field emphasizes the great excitement present in 
the scientific community but also make it diffi-
cult to navigate. In general, a trade-off exists 
between in-depth analysis of cells one by one, 
which often allows acquisition of a more com-
prehensive molecular profile (with often cleaner 
data) but suffers from low throughput and high 
cost per cell versus more scalable platforms that 
offer the advantage of profiling large numbers 
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of cells, which could prove advantageous in 
more heterogeneous contexts like the TME. The 
latter methods, however, tend to suffer from 
data sparsity (i.e., incomplete coverage, techni-
cal noise, high cell-to-cell variability) which 
complicates downstream interpretation. As 
technology evolves, it is now conceivable that, 
in the near future, we will have access to a plat-
form that allows characterization of all the dif-
ferent levels of the central dogma of biology 
(DNA-RNA-protein), all at the level of individ-
ual cells. Bridging these different omics would 
offer a rich data source that could help elucidate 
complex regulatory mechanisms underlying 
cancer (and other diseases), for example, by 
providing important insights into the mecha-
nisms related to tumorigenesis, metastasis, and 
(immune- mediated) response to treatment.

 Multi-Omics Data Integration

Despite great promise, many of these technolo-
gies present with a great degree of experimental 
and analytical complexity. Standardization of 
technologies and computational tools therefore 
remains a concern. Initially, different data types 
or data from different sources were typically pro-
cessed and analyzed separately and correlated at 
a later stage. This method is highly flexible and 
allows relying on existing methods developed for 
that specific data type, but it can also introduce 
biases or systematic errors and often fails to 
acknowledge the dependencies between different 
data types of the same cell. Methods for data inte-
gration are particularly critical to gain the most 
valuable insights from multimodal data [228, 
229]. There is a growing list of recent tools and 

Fig. 16.1 Multimodal omics methods build on single-cell RNA sequencing as a common scaffold

16 Multi-Omics Profiling of the Tumor Microenvironment



Ta
bl

e 
16

.1
 

Se
le

ct
io

n 
of

 c
ur

re
nt

 e
xp

er
im

en
ta

l m
et

ho
ds

 f
or

 m
ul

tim
od

al
 s

in
gl

e-
ce

ll 
m

ea
su

re
m

en
ts

Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

D
R

-s
eq

gD
N

A
- m

R
N

A
 s

eq
ue

nc
in

g
x

x
L

im
ite

d
D

ey
 e

t a
l. 

N
at

 
B

io
te

ch
 2

01
5

A
m

pl
ifi

ca
tio

n 
of

 
ge

no
m

ic
 D

N
A

 a
nd

 
m

R
N

A
 w

ith
ou

t p
ri

or
 

se
pa

ra
tio

n,
 s

ub
se

qu
en

t 
m

od
ifi

ed
 C

E
L

-s
eq

 a
nd

 
m

od
ifi

ed
 M

A
L

B
A

C

Id
en

tif
y 

ca
us

at
iv

e 
ge

ne
tic

 v
ar

ia
tio

ns
 f

or
 

va
ri

ab
le

 e
xp

re
ss

io
n 

in
 

tu
m

or
s 

or
 n

on
- t

um
or

 
ce

lls
 D

et
er

m
in

e 
ac

cu
ra

te
 tu

m
or

 
cl

on
al

ity
 li

nk
ed

 to
 

ex
pr

es
si

on
G

&
T-

se
q

G
en

om
e 

an
d 

tr
an

sc
ri

pt
om

e 
se

qu
en

ci
ng

x
x

L
im

ite
d

M
ac

au
la

y 
et

 a
l. 

N
at

 
M

et
ho

ds
 2

01
5

Fu
ll-

le
ng

th
 

tr
an

sc
ri

pt
om

e 
an

al
ys

is
 

us
in

g 
a 

m
od

ifi
ed

 
Sm

ar
t-

se
q2

 p
ro

to
co

l 
an

d 
se

pa
ra

te
 w

ho
le

-
ge

no
m

e 
am

pl
ifi

ca
tio

n
G

oT
G

en
ot

yp
in

g 
of

 
tr

an
sc

ri
pt

om
es

x*
x

Y
es

N
am

 e
t a

l. 
N

at
ur

e 
20

19
A

dd
s 

ge
no

ty
pi

ng
 

in
fo

rm
at

io
n 

to
 

si
ng

le
-c

el
l 

tr
an

sc
ri

pt
om

ic
s 

fo
r 

lim
ite

d 
nu

m
be

r 
of

 
ge

ne
s 

an
d/

or
 s

pe
ci

fic
 

ge
ne

tic
 a

lte
ra

tio
ns

C
O

R
TA

D
-s

eq
C

on
cu

rr
en

t s
eq

ue
nc

in
g 

of
 

th
e 

tr
an

sc
ri

pt
om

e 
an

d 
ta

rg
et

ed
 g

en
om

ic
 r

eg
io

ns

x*
x

L
im

ite
d

K
on

g 
et

 a
l. 

C
lin

 C
he

m
 

20
19

C
on

cu
rr

en
t e

va
lu

at
io

n 
of

 th
e 

tr
an

sc
ri

pt
om

e 
an

d 
ta

rg
et

ed
 g

en
om

ic
 

fe
at

ur
es

 w
ith

in
 th

e 
sa

m
e 

si
ng

le
 c

el
l o

n 
th

e 
Fl

ui
di

gm
 C

1 
pl

at
fo

rm
TA

R
G

E
T-

se
q

H
ig

h-
 se

ns
iti

vi
ty

 g
en

om
ic

 
D

N
A

 a
nd

 c
D

N
A

 
ge

no
ty

pi
ng

 w
ith

 
sc

R
N

A
-s

eq

x*
x

L
im

ite
d

R
od

ri
gu

ez
- 

M
ei

ra
 e

t a
l. 

M
ol

 C
el

l 2
01

9

M
et

ho
d 

fo
r 

th
e 

hi
gh

-s
en

si
tiv

ity
 

de
te

ct
io

n 
of

 m
ul

tip
le

 
m

ut
at

io
ns

 w
ith

in
 s

in
gl

e 
ce

lls
 f

ro
m

 b
ot

h 
ge

no
m

ic
 

an
d 

co
di

ng
 D

N
A

, i
n 

pa
ra

lle
l w

ith
 u

nb
ia

se
d 

w
ho

le
- t

ra
ns

cr
ip

to
m

e 
an

al
ys

is



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

sc
M

&
T-

se
q

Si
ng

le
-c

el
l m

et
hy

lo
m

e 
an

d 
tr

an
sc

ri
pt

om
e 

se
qu

en
ci

ng

a
x

L
im

ite
d

A
ng

er
m

ue
lle

r 
et

 a
l. 

N
at

 
M

et
ho

ds
 2

01
6

M
od

ifi
ca

tio
n 

of
 th

e 
G

&
T-

se
q 

pr
ot

oc
ol

 
ad

di
ng

 m
et

hy
lo

m
e 

se
qu

en
ci

ng
 u

si
ng

 
sc

B
S-

se
q

C
on

ne
ct

 m
et

hy
la

te
d 

el
em

en
ts

 a
nd

 
ch

ro
m

at
in

 
ac

ce
ss

ib
ili

ty
 w

ith
 

va
ri

ab
le

 g
en

e 
ex

pr
es

si
on

 in
 im

m
un

e 
ce

lls
, e

.g
., 

in
 T

-c
el

l 
ex

ha
us

tio
n.

 U
nc

ov
er

 
fu

nc
tio

na
l r

eg
ul

at
or

s 
of

 d
yn

am
ic

 (
im

m
un

e)
 

ce
ll 

st
at

es
, e

.g
., 

T-
ce

ll 
di

ff
er

en
tia

tio
n

sc
M

&
T-

se
q

Si
ng

le
-c

el
l m

et
hy

lo
m

e 
an

d 
tr

an
sc

ri
pt

om
e 

se
qu

en
ci

ng

a
x

L
im

ite
d

H
u 

et
 a

l. 
G

en
om

e 
B

io
l 

20
16

T
ra

ns
cr

ip
tio

na
l 

se
qu

en
ci

ng
 v

ia
 

Sm
ar

t-
se

q2
 a

nd
 

m
et

hy
lo

m
e 

se
qu

en
ci

ng
 

vi
a 

m
od

ifi
ed

 s
cR

R
B

S
sc

T
ri

o-
se

q
Si

ng
le

-c
el

l t
ri

pl
e 

om
ic

s 
se

qu
en

ci
ng

C
N

V
a

x
L

im
ite

d
H

ou
 e

t a
l. 

C
el

l 
R

es
 2

01
6

Si
m

ul
ta

ne
ou

s 
an

al
ys

is
 

of
 c

op
y 

nu
m

be
r 

va
ri

at
io

ns
 (

C
N

V
) 

an
d 

m
et

hy
lo

m
e 

(m
od

ifi
ed

 
sc

R
R

B
S)

, a
s 

w
el

l a
s 

tr
an

sc
ri

pt
om

e 
of

 a
 

si
ng

le
 m

am
m

al
ia

n 
ce

ll
sc

i-
C

A
R

Si
ng

le
-c

el
l c

om
bi

na
to

ri
al

 
in

de
xi

ng
 o

f 
ch

ro
m

at
in

 
ac

ce
ss

ib
ili

ty
 a

nd
 m

R
N

A

b
x

Y
es

C
ao

 e
t a

l. 
Sc

ie
nc

e 
20

18
Po

ol
ed

 b
ar

co
de

 m
et

ho
d 

th
at

 jo
in

tly
 a

na
ly

ze
s 

R
N

A
 tr

an
sc

ri
pt

s 
an

d 
ch

ro
m

at
in

 a
cc

es
si

bi
lit

y
T-

A
TA

C
-s

eq
T

ra
ns

cr
ip

t-
in

de
xe

d 
A

TA
C

-s
eq

b
x*

L
im

ite
d

Sa
tp

at
hy

 e
t a

l. 
N

at
 M

ed
 2

01
8

Se
qu

en
ci

ng
 o

f 
T

C
R

-e
nc

od
in

g 
ge

ne
 

m
R

N
A

 in
 c

om
bi

na
tio

n 
w

ith
 A

TA
C

-s
eq

 a
t 

si
ng

le
-c

el
l l

ev
el

(c
on

tin
ue

d)



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

sn
N

M
T-

se
q

Si
ng

le
-c

el
l n

uc
le

os
om

e,
 

m
et

hy
la

tio
n,

 a
nd

 
tr

an
sc

ri
pt

io
n 

se
qu

en
ci

ng

a,
c

x
L

im
ite

d
C

la
rk

 e
t a

l. 
N

at
 C

om
m

un
 

20
18

N
O

M
E

-s
eq

 a
da

pt
at

io
n,

 
tr

an
sc

ri
pt

om
e 

vi
a 

Sm
ar

t-
se

q2
 p

ro
to

co
l; 

m
et

hy
la

tio
n 

an
d 

ch
ro

m
at

in
 a

cc
es

si
bi

lit
y 

ar
e 

se
pa

ra
te

d 
bi

oi
nf

or
m

at
ic

al
ly

sn
m

C
T-

se
q

Si
ng

le
-n

uc
le

us
 

m
et

hy
lc

yt
os

in
e 

an
d 

tr
an

sc
ri

pt
om

e 
se

qu
en

ci
ng

a
x

Y
es

x
L

uo
 e

t a
l. 

bi
oR

xi
v 

20
18

Jo
in

t c
ap

tu
re

 o
f 

cy
to

si
ne

 D
N

A
 

m
et

hy
lo

m
e 

(5
m

C
) 

an
d 

tr
an

sc
ri

pt
om

e 
pr

ofi
le

s 
(b

as
ed

 o
n 

Sm
ar

-s
eq

2)
 

fr
om

 s
in

gl
e 

ce
lls

/n
uc

le
i 

re
qu

ir
in

g 
no

 p
hy

si
ca

l 
se

pa
ra

tio
n 

of
 R

N
A

 a
nd

 
D

N
A

sc
C

A
T-

se
q

Si
ng

le
-c

el
l c

hr
om

at
in

 
ac

ce
ss

ib
ili

ty
 a

nd
 

tr
an

sc
ri

pt
om

e 
se

qu
en

ci
ng

b
x

L
im

ite
d

L
iu

 e
t a

l. 
N

at
 

C
om

m
un

 2
01

9
In

te
gr

at
io

n 
of

 s
cA

TA
C

-
se

q 
an

d 
sc

R
N

A
-s

eq
 

us
in

g 
m

od
ifi

ed
 

Sm
ar

t-
se

q2
 p

ro
to

co
l

A
TA

C
-R

N
A

-
se

q
C

om
bi

ne
d 

A
TA

C
 

se
qu

en
ci

ng
 a

nd
 R

N
A

 
se

qu
en

ci
ng

b
x

L
im

ite
d

R
ey

es
 e

t a
l. 

A
dv

 
B

io
sy

st
em

s 
20

19

In
te

gr
at

io
n 

of
 c

hr
om

at
in

 
ac

ce
ss

ib
ili

ty
 w

ith
 b

ul
k 

ta
gm

en
ta

tio
n 

an
d 

sc
R

N
A

-s
eq

 u
si

ng
 

m
od

ifi
ed

 S
m

ar
t-

se
q2

 
pr

ot
oc

ol
SN

A
R

E
-s

eq
Si

ng
le

-n
uc

le
us

 c
hr

om
at

in
 

ac
ce

ss
ib

ili
ty

 a
nd

 m
R

N
A

 
ex

pr
es

si
on

 s
eq

ue
nc

in
g

b
x

Y
es

C
he

n 
et

 a
l. 

N
at

 
B

io
te

ch
 2

01
9

H
ig

hl
y 

pa
ra

lle
l p

ro
fil

in
g 

of
 c

hr
om

at
in

 
ac

ce
ss

ib
ili

ty
 a

nd
 m

R
N

A
 

fr
om

 in
di

vi
du

al
 n

uc
le

i, 
im

pl
em

en
te

d 
on

 a
 

m
ic

ro
-d

ro
pl

et
 p

la
tf

or
m

Ta
bl

e 
16

.1
 

(c
on

tin
ue

d)



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

Pa
ir

ed
-s

eq
Pa

ra
lle

l a
na

ly
si

s 
of

 
in

di
vi

du
al

 c
el

ls
 f

or
 R

N
A

 
ex

pr
es

si
on

 a
nd

 D
N

A
 

ac
ce

ss
ib

ili
ty

 b
y 

se
qu

en
ci

ng

b
x

Y
es

Z
hu

 e
t a

l. 
N

at
 

St
ru

ct
 M

ol
 

B
io

l 2
01

9

L
ig

at
io

n-
ba

se
d 

co
m

bi
na

to
ri

al
 in

de
xi

ng
 

st
ra

te
gy

 to
 

si
m

ul
ta

ne
ou

sl
y 

ta
g 

bo
th

 
op

en
 c

hr
om

at
in

 
fr

ag
m

en
ts

 g
en

er
at

ed
 b

y 
tr

an
sp

os
as

e 
an

d 
cD

N
A

 
m

ol
ec

ul
es

 g
en

er
at

ed
 

fr
om

 r
ev

er
se

 
tr

an
sc

ri
pt

io
n 

(R
T

) 
of

 
R

N
A

 in
 m

ill
io

ns
 o

f 
ce

lls
sn

m
C

2T
-s

eq
Si

ng
le

-n
uc

le
us

 
m

et
hy

lc
yt

os
in

e,
 c

hr
om

at
in

 
ac

ce
ss

ib
ili

ty
, a

nd
 

tr
an

sc
ri

pt
om

e 
se

qu
en

ci
ng

a,
b

x
Y

es
x

L
uo

 e
t a

l. 
bi

oR
xi

v 
20

19
sn

m
C

T-
se

q 
w

ith
 

ch
ro

m
at

in
 a

cc
es

si
bi

lit
y,

 
m

et
ho

d 
ba

se
d 

on
 

sc
N

O
M

e-
se

q
sc

N
O

M
eR

e-
se

q
Si

ng
le

-c
el

l n
uc

le
os

om
e 

oc
cu

pa
nc

y,
 m

et
hy

lo
m

e 
an

d 
R

N
A

 e
xp

re
ss

io
n 

se
qu

en
ci

ng

a,
c

x
L

im
ite

d
W

an
g 

et
 a

l. 
N

at
 C

om
m

un
 

20
21

C
om

bi
na

tio
n 

of
 

sc
N

O
M

e-
se

q 
w

ith
 

M
A

T
Q

-s
eq

 (
m

ul
tip

le
 

an
ne

al
in

g 
an

d 
dC

-t
ai

lin
g-

ba
se

d 
qu

an
tit

at
iv

e 
si

ng
le

-c
el

l 
R

N
A

 s
eq

ue
nc

in
g)

O
R

C
A

O
pt

ic
al

 r
ec

on
st

ru
ct

io
n 

of
 

ch
ro

m
at

in
 a

rc
hi

te
ct

ur
e

d
x*

x
L

im
ite

d
M

at
eo

 e
t a

l. 
N

at
ur

e 
20

19
In

 s
itu

 d
et

ec
tio

n 
of

 
D

N
A

 f
ol

di
ng

 a
nd

 
se

le
ct

ed
 g

en
e 

ex
pr

es
si

on
 (

R
N

A
-

FI
SH

) 
in

 s
in

gl
e 

ce
lls

(c
on

tin
ue

d)



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

C
IT

E
-s

eq
C

el
lu

la
r 

in
de

xi
ng

 o
f 

tr
an

sc
ri

pt
om

es
 a

nd
 

ep
ito

pe
s

x
x*

Y
es

St
oe

ck
iu

s 
et

 a
l. 

N
at

 M
et

ho
ds

 
20

17

C
el

l s
ur

fa
ce

 p
ro

te
in

 
de

te
ct

io
n 

w
ith

 b
ar

co
de

d 
ol

ig
on

uc
le

ot
id

e 
lin

ke
d 

to
 a

nt
ib

od
y

A
cc

ur
at

e 
ce

ll 
ty

pe
 a

nd
 

st
at

e 
an

no
ta

tio
n 

fo
r 

im
m

un
e 

an
d 

no
n-

im
m

un
e 

ce
ll 

su
bs

et
s 

in
 T

M
E

 D
ir

ec
t 

re
ad

-o
ut

 o
f 

su
rf

ac
e 

pr
ot

ei
n 

le
ve

ls
 th

at
 a

re
 

po
te

nt
ia

l t
ar

ge
ts

 o
f 

im
m

un
ot

he
ra

py
 (

e.
g.

, 
ch

ec
kp

oi
nt

 in
hi

bi
to

rs
 

an
d 

ot
he

r 
m

on
oc

lo
na

l 
an

tib
od

ie
s)

 o
r 

di
re

ct
 

re
ad

ou
t o

f 
in

tr
ac

el
lu

la
r 

pr
ot

ei
ns

 (
e.

g.
, 

tr
an

sc
ri

pt
io

n 
fa

ct
or

s)
 

in
 c

om
bi

na
tio

n 
w

ith
 

ge
ne

 e
xp

re
ss

io
n

R
E

A
P-

se
q

R
N

A
 e

xp
re

ss
io

n 
an

d 
pr

ot
ei

n 
se

qu
en

ci
ng

 a
ss

ay
x

x*
Y

es
Pe

te
rs

on
 e

t a
l. 

N
at

 B
io

te
ch

 
20

17

C
el

l s
ur

fa
ce

 p
ro

te
in

 
de

te
ct

io
n 

w
ith

 b
ar

co
de

d 
ol

ig
on

uc
le

ot
id

e 
lin

ke
d 

to
 a

nt
ib

od
y

A
bs

eq
x

x*
Y

es
Sh

ah
i e

t a
l. 

Sc
i 

R
ep

 2
01

7
A

nt
ib

od
ie

s 
to

 d
et

ec
t 

ep
ito

pe
s 

of
 in

te
re

st
 

la
be

le
d 

w
ith

 s
eq

ue
nc

e 
ta

gs
 th

at
 c

an
 b

e 
re

ad
 o

ut
 

w
ith

 m
ic

ro
flu

id
ic

 
ba

rc
od

in
g 

an
d 

D
N

A
 

se
qu

en
ci

ng
in

C
IT

E
-s

eq
In

tr
an

uc
le

ar
 c

el
lu

la
r 

 
in

de
xi

ng
 o

f 
tr

an
sc

ri
pt

om
es

 
an

d 
ep

ito
pe

s

x
x*

Y
es

x
C

hu
ng

 e
t a

l. 
bi

oR
xi

v 
20

21
M

ea
su

ri
ng

 m
ul

tip
le

xe
d 

in
tr

an
uc

le
ar

 p
ro

te
in

 
le

ve
ls

 a
nd

 th
e 

tr
an

sc
ri

pt
om

e 
in

 
pa

ra
lle

l i
n 

th
ou

sa
nd

s 
of

 
ce

lls
PH

A
G

E
-A

TA
C

b
x*

Y
es

x
Fi

sk
in

 e
t a

l. 
bi

oR
xi

v 
20

20
U

se
s 

en
gi

ne
er

ed
 

na
no

bo
dy

-d
is

pl
ay

in
g 

ph
ag

es
 f

or
 s

im
ul

ta
ne

ou
s 

si
ng

le
-c

el
l m

ea
su

re
m

en
t 

of
 s

ur
fa

ce
 p

ro
te

in
s,

 
ch

ro
m

at
in

 a
cc

es
si

bi
lit

y 
pr

ofi
le

s,
 a

nd
 m

tD
N

A
-

ba
se

d 
cl

on
al

 tr
ac

in
g 

th
ro

ug
h 

a 
m

as
si

ve
ly

 
pa

ra
lle

l d
ro

pl
et

-b
as

ed
 

A
TA

C
-s

eq
 a

ss
ay

Te
ch

no
lo

gi
es

 a
re

 
em

er
gi

ng
 th

at
 c

ap
tu

re
 

m
ea

su
re

m
en

ts
 o

f 
ge

ne
 

ac
tiv

ity
 r

an
gi

ng
 f

ro
m

 
ch

ro
m

at
in

 
ac

ce
ss

ib
ili

ty
 o

ve
r 

m
R

N
A

 e
xp

re
ss

io
n 

to
 

pr
ot

ei
n 

le
ve

ls
, 

al
lo

w
in

g 
a 

m
or

e 
co

m
pr

eh
en

si
ve

 
re

co
ns

tr
uc

tio
n 

of
 

re
gu

la
to

ry
 n

et
w

or
ks

 a
t 

si
ng

le
-c

el
l l

ev
el

Ta
bl

e 
16

.1
 

(c
on

tin
ue

d)



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

A
SA

P-
se

q
A

TA
C

 w
ith

 s
el

ec
t a

nt
ig

en
 

pr
ofi

lin
g 

by
 s

eq
ue

nc
in

g
b

x*
Y

es
M

im
ito

u 
et

 a
l. 

N
at

 B
io

te
ch

 
20

21

Pa
ir

s 
sp

ar
se

 s
cA

TA
C

-
se

q 
da

ta
 w

ith
 r

ob
us

t 
de

te
ct

io
n 

of
 h

un
dr

ed
s 

of
 c

el
l s

ur
fa

ce
 a

nd
 

in
tr

ac
el

lu
la

r 
pr

ot
ei

n 
m

ar
ke

rs
 (

an
d 

op
tio

na
l 

ca
pt

ur
e 

of
 

m
ito

ch
on

dr
ia

l D
N

A
 f

or
 

cl
on

al
 tr

ac
ki

ng
)

D
O

G
M

A
-s

eq
b

x
x*

Y
es

M
im

ito
u 

et
 a

l. 
N

at
 B

io
te

ch
 

20
21

A
 v

ar
ia

nt
 o

f 
C

IT
E

-s
eq

, 
al

lo
w

in
g 

co
-m

ea
su

re
m

en
t o

f 
ch

ro
m

at
in

 a
cc

es
si

bi
lit

y,
 

ge
ne

 e
xp

re
ss

io
n,

 a
nd

 
pr

ot
ei

n 
fr

om
 th

e 
sa

m
e 

ce
lls

T
E

A
-s

eq
T

ri
m

od
al

 a
ss

ay
 th

at
 

si
m

ul
ta

ne
ou

sl
y 

m
ea

su
re

s 
tr

an
sc

ri
pt

om
ic

s,
 e

pi
to

pe
s,

 
an

d 
ch

ro
m

at
in

 
ac

ce
ss

ib
ili

ty

b
x

x*
Y

es
Sw

an
so

n 
et

 a
l. 

eL
if

e 
20

21
A

da
pt

at
io

n 
of

 C
IT

E
-s

eq
 

pr
ot

oc
ol

 th
at

 in
cl

ud
es

 
ch

ro
m

at
in

 a
cc

es
si

bi
lit

y

(c
on

tin
ue

d)



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

Pe
rt

ur
b-

se
q

Po
ol

ed
, c

om
bi

na
to

ri
al

 
C

R
IS

PR
 s

cr
ee

ns
 w

ith
 

sc
R

N
A

-s
eq

 r
ea

do
ut

x
x

Y
es

D
ix

it 
et

 a
l. 

C
el

l 2
01

6
Po

ol
ed

 C
R

IS
PR

 s
cr

ee
n 

w
ith

 (
dr

op
le

t-
ba

se
d)

 
sc

R
N

A
-s

eq
 r

ea
do

ut

Si
ng

le
-c

el
l r

ep
or

tin
g 

of
 g

en
et

ic
 p

er
tu

rb
at

io
n 

Se
pa

ra
te

 p
er

tu
rb

at
io

n 
re

sp
on

se
s 

fr
om

 
po

te
nt

ia
l c

on
fo

un
de

rs
. 

H
el

p 
el

uc
id

at
e 

m
ol

ec
ul

ar
 c

ir
cu

its
, 

e.
g.

, i
m

m
un

e 
re

sp
on

se
 

in
 T

M
E

 o
r 

pe
rt

ur
ba

tio
n 

as
so

ci
at

ed
 w

ith
 d

ru
g 

re
sp

on
se

/r
es

is
ta

nc
e 

in
 

tu
m

or
 a

nd
 n

on
-t

um
or

 
ce

lls

C
R

IS
P-

se
q

A
n 

in
te

gr
at

ed
 m

et
ho

d 
fo

r 
si

ng
le

-c
el

l R
N

A
-s

eq
 a

nd
 

C
R

IS
PR

-p
oo

le
d 

sc
re

en
s

x
x

Y
es

Ja
iti

n 
et

 a
l. 

C
el

l 2
01

6
Po

ol
ed

 C
R

IS
PR

 s
cr

ee
n 

w
ith

 (
dr

op
le

t-
ba

se
d)

 
sc

R
N

A
-s

eq
 r

ea
do

ut
C

R
O

P-
se

q
C

R
IS

PR
 d

ro
pl

et
 

se
qu

en
ci

ng
x

x
Y

es
D

at
lin

ge
r 

et
 a

l. 
N

at
 M

et
ho

ds
 

20
17

Po
ol

ed
 C

R
IS

PR
 s

cr
ee

n 
w

ith
 (

dr
op

le
t-

ba
se

d)
 

sc
R

N
A

-s
eq

 r
ea

do
ut

Pe
rt

ur
b-

A
TA

C
-

se
q

Si
m

ul
ta

ne
ou

s 
C

R
IS

PR
 

gu
id

e 
de

te
ct

io
n 

an
d 

ep
ig

en
om

e 
pr

ofi
lin

g 
in

 
si

ng
le

 c
el

ls

b
x

x
Y

es
R

ub
in

 e
t a

l. 
C

el
l 2

01
8

C
om

bi
ne

s 
m

ul
tip

le
xe

d 
C

R
IS

PR
 in

te
rf

er
en

ce
 o

r 
kn

oc
ko

ut
 w

ith
 

ge
no

m
e-

w
id

e 
ch

ro
m

at
in

 
ac

ce
ss

ib
ili

ty
 p

ro
fil

in
g 

in
 

si
ng

le
 c

el
ls

 b
as

ed
 o

n 
th

e 
si

m
ul

ta
ne

ou
s 

de
te

ct
io

n 
of

 C
R

IS
PR

 g
ui

de
 R

N
A

s 
an

d 
op

en
 c

hr
om

at
in

 
si

te
s 

by
 A

TA
C

-s
eq

E
C

C
IT

E
-s

eq
E

xp
an

de
d 

C
R

IS
PR

-
co

m
pa

tib
le

 c
el

lu
la

r 
in

de
xi

ng
 o

f 
tr

an
sc

ri
pt

om
es

 
an

d 
ep

ito
pe

s 
by

 
se

qu
en

ci
ng

x
x*

x
Y

es
M

im
ito

u 
et

 a
l. 

N
at

 M
et

ho
ds

 
20

19

D
et

ec
tio

n 
of

 s
ur

fa
ce

 
pr

ot
ei

ns
 s

im
ila

r 
to

 
C

IT
E

-s
eq

 to
ge

th
er

 w
ith

 
th

e 
sc

R
N

A
-s

eq
 a

nd
 

cl
on

ot
yp

e 
fe

at
ur

es
; 

sy
st

em
 a

da
pt

ed
 to

 
en

ab
le

 d
ir

ec
t a

nd
 r

ob
us

t 
ca

pt
ur

e 
of

 s
gR

N
A

s 
fr

om
 e

xi
st

in
g 

gu
id

e 
lib

ra
ri

es
 a

nd
 c

om
m

on
ly

 
us

ed
 v

ec
to

rs
 c

om
pa

tib
le

 
w

ith
 p

oo
le

d 
cl

on
in

g

Ta
bl

e 
16

.1
 

(c
on

tin
ue

d)



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

Sp
at

ia
l 

tr
an

sc
ri

pt
om

ic
s

x
x

Y
es

St
ah

l e
t a

l. 
Sc

ie
nc

e 
20

16
H

is
to

lo
gi

ca
l s

ec
tio

ns
 o

n 
ar

ra
ye

d 
re

ve
rs

e 
tr

an
sc

ri
pt

io
n 

pr
im

er
s 

w
ith

 u
ni

qu
e 

po
si

tio
na

l 
ba

rc
od

es
; n

o 
tr

ue
 

si
ng

le
-c

el
l r

es
ol

ut
io

n

Pr
ov

id
es

 in
si

gh
t i

nt
o 

th
e 

sp
at

ia
l a

rc
hi

te
ct

ur
e 

of
 th

e 
T

M
E

 w
hi

ch
 c

an
 

be
ne

fit
 p

at
ie

nt
 

su
bt

yp
in

g 
(e

.g
., 

re
lia

bl
e 

id
en

tifi
ca

tio
n 

of
 im

m
un

e-
ex

cl
ud

ed
 

tu
m

or
s)

os
m

FI
SH

C
yc

lic
-o

ur
ob

or
os

 
si

ng
le

-m
ol

ec
ul

e 
flu

or
es

ce
nc

e 
in

 s
itu

 
hy

br
id

iz
at

io
n 

m
et

ho
d

x*
x

L
im

ite
d

C
od

el
up

pi
 

et
 a

l. 
N

at
 

M
et

ho
ds

 2
01

8

C
yc

lic
 s

in
gl

e-
m

ol
ec

ul
e 

flu
or

es
ce

nc
e 

in
 s

itu
 

hy
br

id
iz

at
io

n 
m

et
ho

do
lo

gy
, n

um
be

r 
of

 ta
rg

et
s 

sc
al

es
 li

ne
ar

ly
 

w
ith

 th
e 

nu
m

be
r 

of
 

hy
br

id
iz

at
io

n 
ro

un
ds

, 
lim

ite
d 

nu
m

be
r 

of
 

tr
an

sc
ri

pt
s

ST
A

R
m

ap
Sp

at
ia

lly
 r

es
ol

ve
d 

tr
an

sc
ri

pt
 a

m
pl

ic
on

 
re

ad
ou

t m
ap

pi
ng

x*
x

Y
es

W
an

g 
et

 a
l. 

Sc
ie

nc
e 

20
18

C
om

bi
na

tio
n 

of
 in

 s
itu

 
se

qu
en

ci
ng

 a
pp

ro
ac

h 
w

ith
 h

yd
ro

ge
l-

tis
su

e 
ch

em
is

tr
y 

to
 d

ev
el

op
 

te
ch

no
lo

gy
 f

or
 

th
re

e-
di

m
en

si
on

al
 (

3D
) 

in
ta

ct
-t

is
su

e 
R

N
A

 
se

qu
en

ci
ng

 o
f 

up
 to

 
10

00
 g

en
es

Sl
id

e-
se

q
x

x
Y

es
R

od
ri

qu
es

 
et

 a
l. 

Sc
ie

nc
e 

20
19

R
N

A
 s

pa
tia

lly
 r

es
ol

ve
d 

fr
om

 ti
ss

ue
 s

ec
tio

ns
 b

y 
tr

an
sf

er
 o

nt
o 

a 
su

rf
ac

e 
co

ve
re

d 
w

ith
 D

N
A

-
ba

rc
od

ed
 b

ea
ds

, 
se

qu
en

ci
ng

 s
im

ila
r 

to
 

D
ro

p-
se

q

(c
on

tin
ue

d)



Te
ch

no
lo

gy
Fu

ll 
na

m
e 

or
 d

es
cr

ip
tio

n
G

en
om

e
E

pi
g-

en
om

e
T

ra
n-

sc
ri

pt
om

e
Pr

o-
te

om
e

Pe
rt

ur
-

ba
tio

n
Sp

at
ia

l
Sc

al
ab

ili
ty

Pr
ep

ri
nt

R
ef

er
en

ce
N

ot
es

Po
te

nt
ia

l u
se

(s
) 

in
 

ch
ar

ac
te

ri
za

tio
n 

of
 th

e 
T

M
E

M
E

R
FI

SH
M

ul
tip

le
xe

d 
er

ro
r-

ro
bu

st
 

FI
SH

x*
x

Y
es

X
ia

 e
t a

l. 
PN

A
S 

20
19

N
ea

r-
ge

no
m

e-
w

id
e 

(~
10

,0
00

 g
en

es
),

 
sp

at
ia

lly
 r

es
ol

ve
d 

R
N

A
 

pr
ofi

lin
g 

of
 in

di
vi

du
al

 
ce

lls
se

qF
IS

H
+

Se
qu

en
tia

l fl
uo

re
sc

en
ce

 in
 

si
tu

 h
yb

ri
di

za
tio

n
x

x
Y

es
E

ng
 e

t a
l. 

N
at

ur
e 

20
19

Im
ag

e 
m

R
N

A
s 

fo
r 

10
,0

00
 g

en
es

 in
 s

in
gl

e 
ce

lls
 w

ith
 h

ig
h 

ac
cu

ra
cy

 
an

d 
su

b-
di

ff
ra

ct
io

n-
lim

it 
re

so
lu

tio
n

a 
M

et
hy

lo
m

e 
pr

ofi
lin

g
b 

C
hr

om
at

in
 a

cc
es

si
bi

lit
y

c 
N

uc
le

os
om

e 
oc

cu
pa

nc
y

d 
C

hr
om

at
in

 s
tr

uc
tu

re
*D

oe
s 

no
t p

ro
vi

de
 w

ho
le

-g
en

om
e 

co
ve

ra
ge

Ta
bl

e 
16

.1
 

(c
on

tin
ue

d)



307

methods that can be used depending on the data 
type, as well as the analysis goal (e.g., disease 
subtyping versus biomarker discovery). A selec-
tion of methods which have R or Python imple-
mentation is highlighted in Table 16.2 [90, 107, 
108, 220, 230–250].

 Crosstalk in the Tumor 
Microenvironment

Detecting and quantifying the presence of cell 
types in the TME within a particular spatial con-
text leaves out an important and critical aspect 
of heterogeneity: the interaction that occurs 
between cells in the TME, carried out by mole-
cules that are either secreted (including metabo-
lites, ions, hormones, extracellular matrix 
components) or expressed on the surface (mostly 
(glyco)proteins). These interactions can play a 
role in structure and communication, triggering 
downstream signaling pathways and changing 
transcriptional activity. Furthermore, they have 
been shown to be a major contributor to tumor 
phenotype [251, 252], prognosis [253] and, 
therefore, an important target for (novel) anti-
cancer agents [5, 254, 255]. The majority of 
such interactions, including various oncogenic 
pathways, growth receptor signaling, and 
immune modulation, obviously occur in a cell-
type-specific fashion (i.e., different cell types 
provide different signals), so that the use of sin-
gle-cell omics technologies provides a valuable 
source of information that can be used to model 
the intricate communication network that is typ-
ical for the TME.

A proteomic assessment, that is, direct mea-
surement of protein levels, would provide the 
most straightforward read-out to interpret ligand-
receptor pairs present in the TME, but it is diffi-
cult to achieve technically [159]. Computational 
methods have been developed in recent years to 
use gene expression data from interacting indi-
vidual cells to profile intercellular communica-
tion using multiple (single-cell) omics modalities 
[256, 257]. Early attempts using bulk RNA 
sequencing data to systematically characterize 
human ligand-receptor pairs established a refer-

ence and determined expression thresholds that 
lead to acceptable false-positive rates [258]. This 
reference has been used in different disease con-
text on scRNA-seq data to determine significant 
receptor-ligand interactions [259, 260]. 
CellPhoneDB [261, 262], currently one of the 
most used tools, uses such a predefined reposi-
tory of ligands, receptors, and their interactions 
and is available online or as a Python package. It 
takes into account the structural stoichiometry of 
ligands and receptors, which distinguishes it 
from many earlier approaches [251, 252, 263–
266]. This is particularly relevant for multimeric 
receptors in the TME (e.g., cytokine receptors) 
for which expression of all subunits is required in 
order to allow a functional interaction and com-
munication. A statistical framework allows to 
predict enriched cellular interactions between 
cell types based on single-cell transcriptomic 
data. The use of a curated database is a potential 
downside as it leads to bias but also prevents 
detection of spurious interactions. It has been 
used to characterize intercellular interactions in 
the TME of various cancer types as well as in 
non-oncological biological contexts [262, 267–
273]. The same approach with implementation of 
multimeric interactions has been expanded in 
more recent implementations, including CellChat 
[274] and ICELLNET [275]. NATMI (Network 
Analysis Toolkit for Multicellular Interactions) 
uses its own curated ligand-receptor database to 
create an asymmetric directional network and is 
slightly faster and results in the selection of more 
specific interactions, although it lacks the capac-
ity to take multimeric ligands/receptors into con-
sideration [276]. SingleCellSignalR is an R-based 
implementation that similarly uses a curated 
database of ligand-receptor interactions and links 
the ligand-receptor pairs to intracellular networks 
rooted at the receptors identified in a particular 
context [277, 278]. Its statistical implementation 
allows to determine the false discovery rate 
explicitly. A subset of methods relies on differen-
tial gene expression of both ligand and receptors 
between cell-type clusters in scRNA-seq data to 
determine potentially relevant pairs, including 
CellTalker [279], CCCExplorer [280], iTALK 
[281], and PyMINER [282].

16 Multi-Omics Profiling of the Tumor Microenvironment
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Incorporation of information beyond ligand-
receptor pairs is an obvious next step to improve 
the output. Spatial relations influence potential 
interactions between cell types, particularly in 
the case of cell surface ligand-receptor interac-
tions. Attempts to explicitly include spatial tran-
scriptomic/proteomic information in the analysis 
(SpaOTsc [283], SVCA [284]) infer three-dimen-
sional organization (RNA-Magnet [285]) or vali-
date existing tools like CellPhoneDB [271] using 
spatial data have all been proposed recently. 
Inferring interactions in the TME from transcrip-
tome data ultimately relies on the interpretation 
of co-expression data. Social network-style gene 
co-expression graphs, with nodes in the graph 
representing genes and edges referring to the 
strength of co- expression, have been used exten-
sively to analyze bulk RNA-seq data [286, 287]. 
PyMINER [282] tries to integrate the structure of 
a gene co-expression graph with information 
about protein- protein interaction into a scRNA-
seq analysis pipeline. NicheNet builds upon the 
sender-receiver framework to infer the effects of 
sender-cell ligands on a receiver-cell’s gene 
expression more comprehensively by integrating 
prior knowledge on ligand-target downstream 
signaling pathways [288]. It goes beyond ligand-
receptor interactions to predict which ligands 
influence the transcriptome of another cell and 
which target genes and signaling mediators may 
be involved. This methodology has been success-
fully used to characterize interactions with the 
TME in squamous cell carcinoma [288, 289] and 
colorectal cancer [290]. Other computational 
tools with similar objectives have been proposed 
[291] and which tool to use depends on whether 
there is previous knowledge of interactions of 
interest (versus a more unbiased characteriza-
tion) in the TME.

Differences in ligand-receptor pairs that are 
used as ground truth as well as profound differ-
ences in statistical methodology make a direct 
comparison particularly difficult. This has 
resulted in efforts to collate publicly available list 
into a single ligand-receptor repository [257]. 
Predicting cell-cell interactions from single-cell 
omics data is no easy task as it requires inference 
of protein levels from mRNA expression and 

integration of various inferred properties includ-
ing cell-type annotation, marker gene identifica-
tion, and dropout correction, in part explaining 
the abundance in variability in currently proposed 
methods. There is an urgent need for benchmark-
ing of computational prediction of crosstalk in 
the tissue microenvironment, and it is important 
to consider assumptions and limitations when 
selecting which tool to use. Furthermore, experi-
mental validation of interactions discovered in 
silico (through protein detection, visualization, 
and/or functional assays) remains crucial, even if 
false discovery rates can be controlled. It is clear 
that single-cell omics data modalities can help 
gain a better understanding of the crosstalk that 
occurs between components of the TME, which 
would inevitably lead to a better mechanistic 
understanding of the processes driving response 
and resistance in diverse tumor types and can 
guide the rational development of synergistic or 
targeted treatment regimens. Other aspects of 
crosstalk in the TME like extracellular vesicles 
and direct cell contact (e.g., via gap junctions) 
are more difficult to model, but efforts to study 
this comprehensively are underway.

 Conclusion

The increased interest into the role of the TME, 
driven in part by recent developments of single-
cell omics technologies, emphasizes the impor-
tance of expanding the concept of tumor 
heterogeneity to include aspects of the non-
tumoral context. Immune responses in cancer 
have been shown to be extremely variable within 
tumors from individual patients with same tumor 
type. The cancer- immune set point exists on a 
continuous spectrum, rather than as a discrete 
phenotype. The identification of factors that 
determine the immune profile and set point of 
individual patients represents a crucial goal. 
Biomarkers for response to immunotherapy 
include immune cell infiltration, cytokine profile, 
germline and tumor genetics, age, microbiome, 
(viral) infections, UV exposure, and (previous) 
exposure to immune-modifying drugs. The bal-
ance between anticancer activity and tolerance 
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that determines the efficacy of immunotherapy in 
individual patients may be primarily due to small 
differences in each of these factors, rather than 
dramatic splits. Another aspect that is currently 
incompletely understood is the dynamics and 
trafficking of immune cell types between the 
TME, the peripheral blood, and lymphoid tissues 
(lymph nodes, TLS, bone marrow) during cancer 
development, treatment, and eventual relapse.

This variability complicates biomarker dis-
covery and underlines the importance of incorpo-
rating rich clinical and demographic data to 
mitigate confounding factors. Thus far, the speed 
by which clinical trials involving cancer immu-
notherapy are conducted has exceeded the pace 
of our progress to understand the basic science 
behind the role of the (immune) microenviron-
ment in response and resistance. This observation 
suggests a critical opportunity for researchers to 
use novel single-cell technologies on trial patient 
samples, in order to reconcile scientific and clini-
cal insights synergistically as trials proceed. The 
lessons learned will not only greatly increase our 
understanding of the cancer-immune cycle but 
can also guide the identification of new targets 
and help set up a systematic framework for per-
sonalization of cancer treatment.

In conclusion, multimodal single-cell tech-
nologies offer an unprecedented insight to 
improve the understanding of physiology and 
disease. Analysis of genome, epigenome, tran-
scriptome, and proteome together in individual 
cells has the power to comprehensively charac-
terize cell identity and state, as well as reveal 
gene regulatory networks. The incorporation of 
spatial data and methods to specifically study 
crosstalk between cells offers an important 
advantage to capture the complexities present in 
the TME. In this chapter, we have highlighted a 
range of experimental methods and analytical 
tools that help acquire and leverage this data. 
Important challenges remain in terms of stan-
dardization, technical performance, integration, 
and systematic computational analysis. As data 
from individual studies and cell atlases becomes 
available, these tools will become more robust. 
We hope and we believe that this broader scope 

will translate to clinical improvements and more 
effective personalized cancer therapy.
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