
DiPS: A Tool for Data-Informed
Parameter Synthesis for Markov Chains
from Multiple-Property Specifications

Matej Hajnal1,3(B), David Šafránek3, and Tatjana Petrov1,2

1 Department of Computer and Information Sciences, University of Konstanz,
Konstanz, Germany
374185@mail.muni.cz

2 Centre for the Advanced Study of Collective Behaviour, University of Konstanz,
78464 Konstanz, Germany

3 Systems Biology Laboratory, Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

Abstract. We present a tool for inferring the parameters of a Discrete-
time Markov chain (DTMC) with respect to properties written in prob-
abilistic temporal logic (PCTL) informed by data observations. The tool
combines, in a modular and user-friendly way, the existing methods and
tools for parameter synthesis of DTMCs. On top of this, the tool imple-
ments several hybrid methods for the exploration of the parameter space
based on utilising the intermediate results of parametric model checking
– the symbolic representation of properties’ satisfaction in the form of
rational functions. These methods are combined to support three dif-
ferent parameter exploration methods: (i) optimisation, (ii) parameter
synthesis, (iii) Bayesian parameter inference. Each of the available meth-
ods makes a different trade-off between scalability and inference quality,
which can be chosen by the user depending on the application context.
In this paper, we present the implementation, the main features of the
tool, and we evaluate its performance on several benchmarks.

1 Introduction

Modelling stochastic dynamical systems such as a biological cell, epidemic spread
in a population, or a randomised communication protocol is challenging, espe-
cially when parameters are not available, subject to uncertainty, and when exper-

TP’s research is supported by the Ministry of Science, Research and the Arts of
the state of Baden-Württemberg, the DFG Centre of Excellence 2117 ‘Centre for
the Advanced Study of Collective Behaviour’ (ID: 422037984), and AFF (Committee
on Research, University of Konstanz), MH’s research is supported by Young Scholar
Fund (YSF), project no. P83943018FP430 /18, and Max Planck Institute of Animal
Behaviour. DŠ’s research is supported by the Czech Grant Agency grant no. GA18-
00178S. The authors acknowledge Denis Repin, Nhat-Huy Phung, and Stefano Tognazzi
for functional testing, feedback, and solving code issues.

c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 79–95, 2021.
https://doi.org/10.1007/978-3-030-91825-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91825-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-91825-5_5

80 M. Hajnal et al.

imental data measurements are scarce. Parameter synthesis is particularly use-
ful in this context, as it determines the regions of parameter space, for which
a high-level property holds. Such high-level property is typically a functional
specification (e.g. ‘error states are reached with small probability’). Parameter
synthesis of discrete-time Markov chains (DTMCs) is supported by several exist-
ing tools for probabilistic verification [8,9,12,22]. Most of these implementations
specialise in the case when a single qualitative or quantitative property is of
interest. In practice, there is an emerging need to reason about multiple proper-
ties at the same time. One such situation is when multiple functional properties
should be satisfied simultaneously. Another scenario occurs when a functional
property (specification) is additionally constrained by properties derived from
experimental data, typical for modelling biological systems or in the context of
grey-box system verification and testing [1]. For instance, a qualitative summary
of experimental observations at a steady-state such as ‘a certain group of states is
eventually reached as a terminal state with probability greater than a threshold’,
can be used to additionally constrain the parameter synthesis procedure. Data
observations alone can be encoded in the form of multiple temporal properties,
e.g. steady-state observations in a chain with more than one bottom strongly
connected component (BSCC) [14].

In this paper, we present DiPS1 – a tool for data-informed parameter synthe-
sis for parametric discrete time Markov chains (pMC) from multiple-property
specifications. For a single property expressed in Probabilistic Computation Tree
Logic (PCTL) [17], the standard parameter synthesis procedures provide a sym-
bolic representation of satisfaction probability in the form of rational functions,
which will evaluate exactly to the satisfaction probability for that single property
in the given chain. We leverage existing tools PRISM [22] and Storm [9] to obtain
the rational functions characterising satisfaction probability of each among the
multiple properties in the specification and before incorporating threshold con-
straints available from the data measurements. Resulting rational functions are
the cornerstone of the tool as all further analyses are based on them. In the next
step, the (experimental) data are used as thresholds for constraining the rational
functions, for given confidence level and based on frequentist statistics interpre-
tation. The resulting algebraic constraints are finally employed to explore the
parameter space for which the chain behaviour agrees with the observations.

To explore parameter values respecting given specification supported with
data, DiPS employs several different methods working with the synthesised alge-
braic constraints – rational functions and confidence intervals obtained from
experimentally observed satisfaction of the specification. The computational
workflow utilises the following methods: optimisation, parameter space refine-
ment, parameter space sampling, and Metropolis-Hastings. In Fig. 1, it is shown
how these methods are combined in the tool to tackle the complex data-informed
specification-driven procedures including optimisation, parameter synthesis, and
Bayesian inference. In particular, the tool implements the following tasks:

1 https://github.com/xhajnal/DiPS.

https://github.com/xhajnal/DiPS

DiPS: A Tool for Data-Informed Parameter Synthesis 81

– marking single points in the parameter space sat (green) or unsat (red) wrt.
the algebraic constraints satisfaction [8] (space sampling), or

– marking entire regions (hyper-rectangles) in the parameter space safe (green),
unsafe (red) wrt. the algebraic constraints satisfaction with SMT solver [8,
11,19,20] or interval arithmetics (space refinement), or

– identifying a single point in the parameter space with the least distance wrt.
data (optimisation), or

– identifying a distribution over possible parametrisations based on their rela-
tive likelihood wrt. data using Bayesian inference (Metropolis-Hastings).

– providing a novel hybrid method that combines Bayesian inference with space
refinement (HMH),

– facilitating a user-friendly interface allowing to visualise the results and adapt
the workflow by combining the tasks above,

– exploring the potential of the methods for efficient parallel processing on a
multi-core hardware.

model
(pMC)

temporal
properties

rational functions

data

data intervals

space
sampling &
refinement

algebraic
constraints

sampling-based:
optimisation

Metropolis Hastings

Fig. 1. The main workflow of DiPS. Parametric model checking produces a rational
function, encoded as a symbolic expression representing the satisfaction probability of
temporal properties, which can be observed at execution time (in the data). The data
can be used to compute confidence intervals and set thresholds to rational functions,
resulting in a set of algebraic constraints. The space of parameters satisfying the alge-
braic constraints is computed by sampling and refinement technique that partitions
the space into rectangular regions. The data can be applied directly (without comput-
ing confidence intervals) with rational functions to find parameter points minimising
the distance between these two inputs (optimisation) or to approximate the posterior
distribution of the parameters using Bayesian inference (Metropolis-Hastings).

We start with briefly introducing the key theoretical concepts of the imple-
mented methods (Sect. 2) and follow by stating the original features of DiPS in
detail (Sect. 3). The implementation of the tool is described in Sect. 4 including
the evaluation of the key tool features conducted on several models from differ-
ent domains. The tool is available as open source (see footnote 1) including a
ready to run virtual machine with instructions on how to run the experimental

82 M. Hajnal et al.

evaluation. A tutorial containing detailed information on the tool’s functionality
accompanied with a running example is bundled with the tool.

1.1 Related Work

Parametric model checking has been continuously developed, starting with state
elimination similar to finite-state automata reduction to regular expressions [6,
15], later enhanced with set-based state elimination simplifying the intermediate
results [13], all the way to the SCC decomposition technique with a special
structure to store individual factors [18] that improved the speed and memory
efficiency.

PRISM [22] is a well-established tool for modelling and model checking
DTMCs, Continuous-Time Markov Chains (CTMCs), Markov decision processes
(MDPs), and Probabilistic Timed Automata (PTA). As PRISM is easy to be
installed, we use it as the first option to obtain rational functions - paramet-
ric model checking. PRISM also provides space partitioning using sampling. We
leverage this functionality and add a visualisation of the result.

Storm [9] is a command-line tool for analysis of DTMCs, CTMCs, MDPs,
and Markov automata (MA). It improves memory efficiency, speed, and output
usability of parametric model checking by implementing efficient methods pro-
posed in [18]. In DiPS, one can use Storm instead of PRISM to improve the
performance of parametric model checking.

Storm also provides efficient parameter synthesis of Markov chains with
multi-affine parametrisations – parameter lifting [25]. DiPS can call Storm to
refine the parameter space. Storm output consists of separate results for each
property while considering the lower and upper bound of the interval of the
respective algebraic constraint separately. To that end, DiPS can merge these
partial results to obtain (and visualise) the overall result for the conjunction of
properties.

Parameter lifting technique was updated with monotonicity checking in [27].
PARAM [12] is another tool for parametric model checking of DTMCs

employing state elimination and state-lumping techniques, however, it is not
that efficient as Storm – see benchmarks in [8].

PROPhESY [8] supports discrete-time models with safety and liveness prop-
erties. It provides space sampling and refinement employing SMT-solvers; how-
ever, the usability is limited to properties with exactly two parameters and by
the dependencies/VM environment.

In [24], Bayesian inference ideas were used to constrain the parameter values
directly from data (without using rational functions). It improves the results of
Statistical Model Checking (SMC), especially in the case of sparse data.

PRISM-PSY [5] implements parametric uniformisation to explore parameter
space for parametrised CTMCs with Continuous Stochastic Logic (CSL) speci-
fication and employs GPU hardware. It was reused for robust design synthesis
in RODES [4].

U-check [2] employs Bayesian statistical algorithm and smoothed model
checking for CTMCs with Metric Interval Temporal Logic (MiTL) specification.

DiPS: A Tool for Data-Informed Parameter Synthesis 83

 GUI Model and
Properties

Synthesise
functions

Sample
functions

Data and
Intervals Constraints Sample and

Refine space

model (.pm)
dataproperties (.pctl)

Parser

Parametic model
checking

 .
 StormPRISM

rational
functions

constraints
Sample

functions

 Refine
 space

Compute
intervals

Compute

constraints

data intervals

Sample
space

RefinedSpace

Metropolis
Hastings

Optimisation

HastingsResults

Z3
dReal

Visualise
functions and

data

scipy

mpmath

Partition Refinement

StormPRISM

Parser
data-informed

properties (.pctl)

Create
data-informed

properties

refinement result (.txt)

statsmodels

mpmath
dReal

Fig. 2. The architecture of DiPS. Main GUI components, six tabs (in green), main
functionality components (in blue), and leveraged tools and libraries (in red). (Color
figure online)

2 Methods

In this section, we briefly recall incorporated methods introduced in former
works and explain the methods and concepts in detail. Moreover, we describe
a novel method based on a combination of Monte Carlo and refinement-based
approaches. Additionally, we add information on the parallelisation potential of
the individual methods. More information about methods’ outputs and their
settings in DiPS can be seen in the tutorial which is a part of the tool package.

2.1 Model Checking

Model checking verifies whether a given model satisfies a given specification,
while the specification is often formalised in the form of temporal property.
Probabilistic operators within the property answer questions such as whether
a probability of reaching target state is higher than a given threshold, e.g. 0,4:
P>0.4[F Target]. In the second form of temporal properties, quantitative prop-
erties, we can ask for the value of probability itself: P=?[F Target].

When the values of probabilities within the models are unknown, a parameter
can be used to address this uncertainty. Model checking parametrised models
using quantitative property, in the form P=?, results in a symbolic expression
over model parameters. For pMCs, the expressions are in the form of rational
functions, fi. To obtain rational functions, we leverage already existing tools
PRISM and Storm. All the methods implemented in DiPS build upon calculated
rational functions.

2.2 Data

Data, [d1, . . . , dm], represents empirical estimates of satisfaction probabilities or
reward for each of the respective properties. Data points are used to compute
intervals constraining the rational function or directly within optimisation and
Metropolis-Hastings.

84 M. Hajnal et al.

2.3 Optimisation

Optimisation returns a single parametrisation θ̂ ∈ R
n which minimises the sum

of distances between the rational functions, f(θ̂) ∈ R, and data, d:

θ̂ := arg min
θ∈Θ

∑

i∈{1,...,m}
wi · dist(fi(θ), di) (1)

where distance function dist : [0, 1] × [0, 1] → R≥0 can be redefined. Currently,
we support the least mean squares distance as provided by scipy library. To
reflect that an observation can be more influential or desired to achieve, wi is a
weight term to scale the distance of the respective data point.

2.4 Data Intervals

Data intervals, [I1, . . . , Im], are confidence intervals with given number of mea-
surements, N , and confidence level, C. We currently support six methods for con-
fidence intervals for proportions: standard (CLT/Wald), Agresti-Coull (default)
[3], Wilson [3], Jeffreys [3], and Clopper-Pearson [3] implemented in library stats
[26], and Rule of three [16]. The standard confidence intervals, defined as

Ik = dk ±
(

zα/2

√
dk(1 − dk)

N

)
(2)

where dk is the k-th data point, and α = 1−C is the chosen alpha level, are not
generally reaching expected coverage of selected confidence level [3,7]. Therefore,
we provide more suitable options with Agresti-Coull method as the default one.
When the number of observation is low (below 40), Wilson or Jeffreys method
may be more suitable [3]. All the methods are directly applicable when the data
estimates probability, the observed value of a quantitative probabilistic property
- P=?.

Data intervals are then used to constrain the rational functions, ∀k ∈
{1, . . . , m}, fk ∈ Ik, and the algebraic constraints are used in the space sam-
pling and refinement methods.

2.5 Sampling

The decision problem whether the instantiation of pMC model satisfies a given
PCTL property can be answered by model checking the instantiated DTMC.
With the knowledge of rational functions, this problem boils down to evaluating
algebraic constraints.

In the sampling, a uniform grid of points is created and in each point we
evaluate the constraints to mark the point sat(green)/unsat(red). Where for the
sat point, all the constraints are satisfied and for unsat point at least one of the
constraints is violated.

For one or two parameters, the result is visualised as green and red dots in
phase space - see Fig. 4a, c. In the multidimensional case, each parametrisation

DiPS: A Tool for Data-Informed Parameter Synthesis 85

satisfying the properties is visualised as a scatter-line plot where each parameter
is plotted against its index in the parameter space, i.e. parametrisation θ̂ ∈ Θ is
plotted as a function: i �→ θ̂i for each parameter index i ∈ {1, 2, . . . , n}.

Trivial parallelisation of sampling is based on the independence of algebraic
constraint evaluation in the points to be sampled.

2.6 Quantitative Sampling

This method is very similar to ordinary sampling. The only difference is that
instead of checking satisfaction, L1 distance to violate each of the algebraic con-
straints is summed to give a numeric value. For each pair of algebraic constraints
derived from lower and upper bound of intervals, a lower distance is used for the
pair. Positive values in the sum represent that the respective algebraic constraint
is satisfied (in the given point). Note that this assumption does not hold for the
whole sum. In each of the sampled points, the sum of distances is visualised by
a colour spectrum.

This method hence provides quantitative estimation to better describe the
satisfaction landscape of the parameter space. The parallelisation of this method
benefits from the same fact as sampling: the algebraic constraints are evaluated
in parallel for each point to be sampled.

2.7 Space Refinement

Here we address the problem of inferring parameter values for quantitative prop-
erties globally, not only in separate points. This problem is usually solved by
space partitioning [20]. For multi-affine parametrisations, Storm implements a
efficient method, parameter lifting [25]. Prophesy uses SMT solvers and PRISM
uses sampling of the partitions to solve the problem approximatively. We provide
similar methods for partitioning of space with aim to solve multiple properties
in a CEGAR like style, while providing an option to run PRISM or Storm for
multiple properties as well.

DiPS supports two SMT solvers, z3 and dreal, and interval arithmetics as
proposed in [10] (implemented by library mpmath) to solve the satisfaction of
individual regions2. This is done in two steps, check safe, verifying whether all
the points within the region are satisfying, and check unsafe, verifying whether
all the points within the region are not satisfying. If neither of these holds,
we split the region (in the longest dimension into two rectangles with equal
volume). As verifying of the region can be expensive, we provide an option to
sample the region before calling the solver - sampling-guided refinement. In all
cases of sampling result, one of the solver calls can be skipped and if both sat
and unsat samples are found, both solver calls are skipped3 and the region is
2 In comparison with SMT solvers, interval arithmetics provide faster iterations for

price of higher probability to mark a region unknown.
3 If the sampling contains an unsat point, it is a counterexample of safeness and vice

versa if the sampling contains a sat point, it is a counterexample of unsafeness of
the region under consideration.

86 M. Hajnal et al.

split based on the position of sat vs unsat points. In more detail, we calculate
rectangular hulls of the sat and unsat points. If the two hulls have no overlap
there is a single line/plane dividing these two hulls and we split the region along
the line/plane. If one of the two hulls is inside the other hull, we cut the space
along the borders of the smaller hull. And finally, if none of two previous holds,
we cut the space in all dimensions. As we use two sample points in each dimension
the cutting lines/planes are always in the middle of dimension(s).

To choose a new region to check, we select all unknown regions with the
biggest volume. Refinement parallelisation relies on the independence of refining
these selected regions.

For one and two parameters a phase space of safe (green), unsafe (red), and
unknown (white) rectangles is shown - see Fig. 4b, c. For more dimensions, over-
approximation of safe or unsafe space as a projection to each of dimensions is
visualised.

2.8 Metropolis-Hastings

Metropolis-Hastings [23] is a Markov chain Monte Carlo (MCMC) algorithm for
approximating the posterior distribution over model parametrisations wrt. avail-
able data. For a given number of iterations, it walks through the parameter space
and compares the posterior probability of the current and the next parameter
point. It results in a sequence of accepted points predicting the true parameter
value.

Importantly, the rational functions fi(θ) allow us to evaluate the data like-
lihood P (D | θ) for each parametrisation and data outcome exactly. Without
the rational functions, we would have to hypothesise a class of distributions pro-
portional to the likelihood or simulate the chain to approximate the likelihood
which is computationally expensive and/or imprecise.

For one or two parameters, posterior distribution is visualised as rectangu-
larised space where the number of accepted points within each of the rectangle
is visualised by a colour gradient - see Fig. 4d. For more dimensions DiPS shows
scatter-line plot connecting values of parameters for each of the accepted points.

This visualisation is accompanied by two metadata visualisations. In the
first one, the sequence of the accepted point with a histogram is shown for each
parameter. In the latter, the sequence of all points, accepted and rejected, is
shown as a projection for each of the parameters. For one or two dimensions also
the sequence is shown in phase space for both accompanying visualisations.

2.9 Metropolis-Hastings-guided Refinement – HMH

The newly proposed method for parameter synthesis, Hajnal-Metropolis-
Hastings (HMH), combines two interconnected methods: Metropolis-
Hastings and space refinement. Posterior distribution as the result of Metropolis-
Hastings serves to split the space into rectangles with marking of the number
of accepted points within each of the rectangles. The discrepancy of this value

DiPS: A Tool for Data-Informed Parameter Synthesis 87

and the expected number of accepted points in each of the rectangles serves to
quantify expectation of probability of the rectangle to be safe. Safe rectangles
are expected to contain more accepted points than unsafe rectangles. This aids
the refinement procedure to select rectangles: 1. with a higher probability to be
either safe or unsafe and 2. to find a safe region faster, as on many occasions,
one is interested in finding a safe area rather than validate the whole parameter
space.

3 Key Tool Features and Contributions

The main contribution of this paper is a tool offering a palette of parameter
inference methods for pMCs. In comparison with the state-of-art we extend
existing tools and workflows in the following aspects:

1. DiPS provides a fully automated computation of the confidence intervals serv-
ing as thresholds for probability satisfaction of the specified property. The
user can pick one of the six methods, with the default option, Agresti Coull
method [3], performing much better than the standard (Wald) method.

2. DiPS allows two satisfaction probability thresholds (a lower and an upper
bound of the satisfaction probability, e.g., bounds of the confidence inter-
val) per each single temporal property. These bounds constrain the rational
functions provided that both of the respective inequalities must be satisfied.
DiPS supports the conjunction of multiple constrained rational functions –
algebraic expressions of satisfaction probability of multiple properties. Multi-
ple properties further allow the experts to maximise the predictive power of
sparse data in order to find satisfactory parameter values. We have demon-
strated the necessity of such a setting in our case study of the population
model of honey bee mass stinging [14] containing several different BSCCs. In
that case, it was necessary to constrain reachability probabilities for each of
the BSCCs.
Native support for multiple properties allows DiPS to reach desired cover-
age of space refinement, while PRISM and Storm tends to reach lower than
desired coverage without the possibility of continuation of the refinement to
enhance the coverage.

3. We extend the palette of methods with optimisation, Metropolis-Hastings,
and HMH allowing to work with large model instances. For instance, Bayesian
inference will always give some information within the available time frame,
even though it cannot provide a global partitioning of parameter space,
as is the case with the space refinement method. In addition, Metropolis-
Hastings gives the quantitative result providing more information than the
qualitative sat/unsat answer.

4. Precision and efficiency of optimisation and Metropolis-Hastings is enhanced
by the knowledge of rational functions. To obtain the probability of satisfac-
tion of a PCTL formula without having rational functions, one needs to run
the pMC. As this has to be done in each parameter point to be analysed, the
estimation becomes imprecise and/or expensive.

88 M. Hajnal et al.

5. Modularity of DiPS provides an option to begin the procedure in any phase
of the workflow, starting with:

– model, properties, and data/intervals,
– (rational) functions and data/intervals,
– algebraic constraints, or
– refined space.

This allows using manually computed confidence intervals instead of data
and generalisation of input functions, adding more rational functions and/or
algebraic constraints or even to load previously refined parameter space, and
continue refinement with a different setting and/or algebraic constraints.

6. Modularity of the design and its multiple methods allow interconnecting the
results; Metropolis-Hastings can be initialised from the optimised point, space
refinement can start with initial partitioning based on sampling results (pre-
sampled refinement) or Metropolis-Hastings result (HMH), etc. – see Fig. 2.

7. Finally, DiPS is able to analyse and visualise output even for models with
more than two parameters - more details with example in tutorial.

4 Implementation and Experiments

4.1 Implementation

DiPS is an open source Python project, which is capable to communicate with
and leverage PRISM and Storm. The command-line interface (CLI) serves for
optimal performance and fast development. It is supplied with a GUI, divided
in 6 functionally different tabs. The GUI provides user-friendly access to the
workflow implemented by the CLI.

In the main workflow - see Fig. 1, models (PRISM models in .p format)
and properties (in .pctl format) are fed to PRISM or Storm to run parametric
model checking resulting in rational functions. Data are used directly with ratio-
nal functions to search for parameter point minimising the distance between the
inputs (optimisation) or in Metropolis-Hastings to compute posterior distribu-
tion. For other methods (space sampling and space refinement), data intervals
(e.g. confidence intervals) are computed from the data to either create data-
informed properties or combine with rational function to create algebraic con-
straints. Moreover, data-informed properties (combination of properties and data
intervals) and the model are used for the partitioning using PRISM or Storm,
while DiPS uses algebraic constraints directly. DiPS’s functional units and their
connections are depicted in more details in Fig. 2.

Modularity of DiPS allows starting the workflow at any given point, allowing
to adjust or to create a new input. Visualisations provide information on results
of implemented methods as well as the output of partitioning results of PRISM
and Storm. To parallelise the methods, we use multiprocessing Python library
using Pools with pool.map.

DiPS: A Tool for Data-Informed Parameter Synthesis 89

4.2 Experiments

We have evaluated the performance of our tool on a variant of the well-known
Knuth’s die [21] and a model of stinging bees presented in [14]. The evaluation
consists of three parts: (1) runtimes of parallelisation results of sampling, (2)
sampling guided refinement vs regular refinement and its parallelisation, and
(3) a comparison of refinement methods implemented in DiPS with PRISM and
Storm implementations. Shown results were obtained using a tower PC, Skadi,
with 64 bit Ubuntu 20.04.2, i9-9900K CPU, 32 GB RAM, SSD disk.

The first case study is Knuth’s die [21] which emulates a 6-sided die with a
coin. To obtain the result, at least three flips of the coin are used, where we used
three biased coins, one for each of the flips, to generate the data – the probability
of rolling a side of the die. The parameters are probabilities of tossing heads with
each coin – p1, p2, p3. We scale this model using a version with single parameter
(p1 = p2 = p3), two parameters (p1, p2, p3 = 0.5), and a version with all three
parameters.

In the second case study, we look at the population model of honeybees [14].
Honeybees protect their hive against vertebrates by mass-stinging. This action
costs a bee life. Collective decision which bee stings and which does not is crucial
for the vitality of the colony. When the hive is attacked, a bee decides to sting
with an unknown probability p. A stinging bee releases an alarm pheromone,
which promotes the stinging of other bees. A bee that initially decided not to
sting can sense this pheromone and opt for stinging with probability q. In the
refined version of the model (multiparam), this parameter, qi, is modulated by
the number of already stinging bees, i. Here we investigate the semisynchronous
version of the model, which means that in the first transition (before sensing
alarm pheromone) all bees make a decision to sting or not to sting - synchronous
update. Afterwards, in each transition only a single bee makes a decision - asyn-
choronous update. To generate synthetic data, we simulate the chain and obtain
probabilities of reaching every possible number of stinging bees from zero to m:
d0, d1, . . . dm, where di is the fraction of simulations that ended up with i sting-
ing bees. In the model, this is equal to the probability of reaching the respective
BSCC and it can be encoded in terms of a PCTL property, ϕi = P=?F (BSCCi).
The distribution of the number of stinging bees is reflected as a conjunction of
respective probabilities, ϕ0 = d0 ∧ ϕ1 = d1 ∧ · · · ∧ ϕm = dm.

For easier comparison with results in [14] we use the same settings for con-
fidence intervals – the Wald method with a correction term. All intervals were
computed using N - number of samples: 100, C - confidence level: 0.95.

A script reproducing experiments, examined models, properties, and data is
included in the tool package.

Sampling Parallelisation. Results visualised in Fig. 3a show that for smaller
models the overhead of parallelisation is higher than the benefits, but in absolute
values, the speedup for bigger models is much more dominant. Moreover, the
overhead of more cores diminishes as the model and hence rational functions
increase in size.

90 M. Hajnal et al.

Refinement Parallelisation. In Fig. 3b, c we can see that the most advantage
gaining solver is z3. Refinement with z3 requires fewer but more exhaustive calls;
hence the overhead of creating processes is minimised. The overhead of more
cores diminishes as the model and hence rational functions increase in size.

Pool size

Av
er

ag
e

ru
nt

im
e

(s
)

0.0

0.2

0.4

0.6

0.8

1 2 4 8 12 15

2 bees

3 bees

5 bees

10 bees

15 bees

Knuth die
3 param

(a) Sampling, 25 samples per dimension
Pool size

Av
er

ag
e

ru
nt

im
e

(s
)

0.01

0.1

1

10

100

1000

sequential 1 2 4 8 15

 - 2 bees
dreal

- 3 bees
dreal

- 5 bees
dreal

- Knuth die
1 param
dreal

- Knuth die
2 param
dreal

- Knuth die
3 param

--- 2 bees

--- 3 bees

--- Knuth
die 1

--- Knuth
die 2

--- Knuth
die 3

(b) Refinement: dreal (solid line) interval
arithmetic (dotted line)

Pool size

Av
er

ag
e

ru
nt

im
e

(s
)

0

10

20

30

40

sequential 1 2 4 8 15

2 bees

3 bees

5 bees

Knuth die 1
param

Knuth die 2
param

Knuth die 3
param

(c) Refinement: z3

Pool size

Av
er

ag
e

ru
nt

im
e

(s
)

0

2

4

6

1 2 4 8 15

2 bees

3 bees

5 bees

Knuth die
1 param

Knuth die
2 param

Knuth die
3 param

(d) Sampling-guided refinement: z3

Fig. 3. Runtimes of sampling and refinement. Time in seconds (vertical axis), the
sequential version and the number of processes - Pool size (horizontal axis). The curves
display the average of 300 runs (sampling) and 20 runs (refinement).

Sampling-Guided Refinement Parallelisation. We show the benefits of
sampling-guided refinement using z3 solver in Fig. 3 (a vs b). In all instances the
sampling-guided refinement performs better. The same effect with slightly lower
amplitude can be observed using dreal. Finally, calls of interval arithmetic are
so fast that the overhead of sampling overweights the benefits. We recommend
using the standard (not sampling-guided) parallel refinement in this case.

Comparison of Refinement Using DiPS, Storm, and PRISM. Refine-
ment implemented in Storm does not reach selected coverage because the merg-
ing of the refinements for the respective property may create more unknown

DiPS: A Tool for Data-Informed Parameter Synthesis 91

Table 1. Runtimes of refinement (fastest setting). Space refinement using SMT solver
(z3 and dreal) and interval arithmetic. The fastest method shown in bold. Times in
seconds. Timeout (TO) 1 h. In all experiments, a property specifying the reachability
of all BSCCs in the model is employed (formulated as a conjunction of reachability
of individual BSCCs). Number of samples, N = 100, confidence level, C = 0.95. Not
shown models timed out for all three methods.

Model Refinement SMT solver:
z3, dreal

Refinement interval
arithmetic

Knuth die, true point p1 = 0.4, p2 = 0.7, p3 = 0.5
data, [0.208, 0.081, 0.1, 0.254, 0.261, 0.096]

states: 13, # transitions: 20, # BSCCs: 6

Knuth unfair
1-param

0.01177, 0.001163 0.007269

Knuth unfair
2-param

0.741, 0.3656 0.5874

Knuth unfair
3-param

1.326, 0.6033 3.963

Honeybee model of m agents, 2 parameters, dataset 1

states: 9,13,24, # transitions: 12,19,39, # BSCCs:
m+1

semisyn 2 0.6514, 0.3593 3.46

semisyn 3 0.8337, 0.6943 201.3

semisyn 5 1.552, 63.55 TO

Honeybee model of m agents, n parameters, dataset 1

states: 13, # transitions: 19, # BSCCs: m+1

semisyn 3 0.3419, 0.1206 0.1155

regions, e.g., merging a safe and an unknown rectangle. Surprisingly, we have
been unable to obtain the desired coverage for multiple properties input with
PRISM as well. Hence manual tweaking of the coverage value and rerunning
the analysis is necessary to obtain the desired coverage. Moreover, parameter
lifting is limited to multi-affine transition functions. In conclusion, in Table 1
we show the fastest average runtimes (number of processes, sampling-guided vs
regular) of refinements that reached the desired coverage. DiPS tackles the scal-
ability problem of refinement with many parameters or large rational functions
by using other methods – optimisation, sampling, and Metropolis-Hastings.

92 M. Hajnal et al.

Fig. 4. Visualisation (screenshot from GUI of DiPS) of sampling (a), refinement (b),
sampling and refinement (c), and Metropolis-Hastings (d) as a result of 2-param Knuth
model. Examples of multidimensional visualisations are shown and explained in the
tutorial. (Color figure online)

DiPS: A Tool for Data-Informed Parameter Synthesis 93

5 Conclusions and Future Work

We presented a new open source tool, DiPS, dedicated to parameter exploration
for pMCs. It focuses on multiple temporal logic properties informed by data.
To this aim, we automatically compute rational functions – symbolic represen-
tations of satisfaction of each property, by leveraging the existing parameter
synthesis tools, as well as their respective probability thresholds, through the
confidence intervals derived from data following frequentist statistics interpre-
tation. These two elements are coupled into algebraic constraints over unknown
parameters. DiPS solves the algebraic constraints by partitioning the parameter
space and can leverage PRISM or Storm for parameter synthesis as well. We
add the visualisation of the synthesis results including merging of the Storm
bound-wise results. The tool implements two additional methods for parame-
ter exploration, optimisation and Metropolis-Hastings, to tackle the scalability
problem of Space Refinement. Moreover, we proposed a new method, HMH,
for parameter synthesis combining Metropolis-Hastings and refinement. Finally,
parallelisation, modularity, and interconnections of the methods provide further
advantages.

In comparison with the mentioned tools, DiPS improves analysis for multi-
ple observations using the conjunction of properties, visualisation of functions in
selected points to compare with data, and it complements the analyses with opti-
misation and Bayesian inference. The possibility to apply different approaches
to explore the parameters is especially useful because these analyses have a dif-
ferent trade-off between computational efficiency and the type of information
they provide, and the modeller may want to explore different approaches. For
example, Bayesian inference will always give some information within the avail-
able time frame, but it cannot provide a global partitioning of parameter space,
as it is the case with the space refinement method.

We illustrate the applicability of the tool on a variation of Knuth’s die[21]
and a case study of honeybee mass-stinging behaviour [14].

References

1. Ashok, P., Daca, P., Křet́ınský, J., Weininger, M.: Statistical model checking: black
or white? In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp.
331–349. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 19

2. Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter
synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015.
LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22264-6 6

3. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial propor-
tion. Stat. Sci. 16, 101–117 (2001)

4. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: RODES: a
robust-design synthesis tool for probabilistic systems. In: Bertrand, N., Bortolussi,
L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 304–308. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66335-7 20

https://doi.org/10.1007/978-3-030-61362-4_19
https://doi.org/10.1007/978-3-319-22264-6_6
https://doi.org/10.1007/978-3-319-22264-6_6
https://doi.org/10.1007/978-3-319-66335-7_20

94 M. Hajnal et al.

5. Češka, M., Pilař, P., Paoletti, N., Brim, L., Kwiatkowska, M.: PRISM-PSY: pre-
cise GPU-accelerated parameter synthesis for stochastic systems. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 367–384. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49674-9 21

6. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

7. Dean, N., Pagano, M.: Evaluating confidence interval methods for binomial pro-
portions in clustered surveys. J. Surv. Stat. Methodol. 3(4), 484–503 (2015)

8. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

9. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

10. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric
Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 18

11. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20398-5 12

12. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 56

13. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

14. Hajnal, M., Nouvian, M., Petrov, T., Šafránek, D.: Data-informed parameter syn-
thesis for population Markov chains. In: Bortolussi, L., Sanguinetti, G. (eds.)
CMSB 2019. LNCS, vol. 11773, pp. 383–386. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-31304-3 32

15. Han, Y.S.: State elimination heuristics for short regular expressions. Fund. Inform.
128(4), 445–462 (2013)

16. Hanley, J., Lippman-Hand, A.: If nothing goes wrong, is everything all right? Inter-
preting zero numerators. JAMA 249(13), 1743–1745 (1983)

17. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

18. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman,
G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

19. Junges, S., et al.: Parameter synthesis for Markov models. CoRR abs/1903.07993
(2019). http://arxiv.org/abs/1903.07993

20. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 31–45.
ACM (2016)

21. Knuth, D., Yao, A.: The complexity of nonuniform random number generation. In:
Algorithms and Complexity: New Directions and Recent Results. Academic Press
(1976)

https://doi.org/10.1007/978-3-662-49674-9_21
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-030-31304-3_32
https://doi.org/10.1007/978-3-030-31304-3_32
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-319-10696-0_31
http://arxiv.org/abs/1903.07993

DiPS: A Tool for Data-Informed Parameter Synthesis 95

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

23. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953)

24. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Data-efficient Bayesian
verification of parametric Markov chains. In: Agha, G., Van Houdt, B. (eds.) QEST
2016. LNCS, vol. 9826, pp. 35–51. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43425-4 3

25. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

26. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with
Python. In: 9th Python in Science Conference (2010)

27. Spel, J., Junges, S., Katoen, J.P.: Finding provably optimal Markov chains. Tools
Algorithms Const. Anal. Syst. 12651, 173 (2021)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-43425-4_3
https://doi.org/10.1007/978-3-319-43425-4_3
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4

	DiPS: A Tool for Data-Informed Parameter Synthesis for Markov Chains from Multiple-Property Specifications
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Model Checking
	2.2 Data
	2.3 Optimisation
	2.4 Data Intervals
	2.5 Sampling
	2.6 Quantitative Sampling
	2.7 Space Refinement
	2.8 Metropolis-Hastings
	2.9 Metropolis-Hastings-guided Refinement – HMH

	3 Key Tool Features and Contributions
	4 Implementation and Experiments
	4.1 Implementation
	4.2 Experiments

	5 Conclusions and Future Work
	References

