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Preface

This volume contains the papers presented at the 17th European Performance Engi-
neering Workshop (EPEW 2021) and the 26th International Conference on Analytical
& Stochastic Modelling Techniques & Applications (ASMTA 2021) which were held
concurrently during December 9–10 and December 13–14, 2021, respectively. Due to
the COVID-19 pandemic it was decided to organize them - exceptionally - online.

For the EPEW conference, there were 11 submissions. Each submission was
reviewed by three Program Committee members on average. The committee decided to
accept nine papers. For the ASMTA conference, there were 26 submissions. Each
submission was reviewed by three Program Committee members on average. The
committee decided to accept 20 papers.

It was our privilege to invite Dieter Fiems (Ghent University) and Jean-Michel
Fourneau (Université de Versailles St Quentin) to give keynote talks at EPEW 2021
and to invite Antonis Economou (National and Kapodistrian University of Athens) and
Neil Walton (University of Manchester) to give keynote talks at ASMTA 2021.

We would like to thank all authors of all the papers appearing in this proceedings for
their interesting contributions. Special thanks go to the members of the Program
Committees for their time and effort in assuring the quality of the selected papers.
Finally, we cordially thank the EasyChair and Springer teams for their support in
publishing this volume.

See you in 2022!

December 2021 Paolo Ballarini
Hind Castel

Ioannis Dimitriou
Mauro Iacono

Tuan Phung-Duc
Joris Walraevens



Organization EPEW 2021

General Chair

Tuan Phung-Duc University of Tsukuba, Japan

Program Committee Chairs

Paolo Ballarini CentraleSupélec, France
Hind Castel Telecom SudParis, France
Mauro Iacono Università degli studi della Campania Luigi Vanvitelli,

Italy

Logistics and Web Chair

M. Akif Yazici Istanbul Technical University, Turkey

Program Committee

Paolo Ballarini CentraleSupélec, France
Enrico Barbierato Università Cattolica del Sacro Cuore, Italy
Benoit Barbot Université Paris-Est Créteil, France
Marco Beccuti Università degli Studi di Torino, Italy
Marco Bernardo University of Urbino, Italy
Laura Carnevali University of Florence, Italy
Hind Castel Telecom SudParis, France
Davide Cerotti Politecnico di Milano, Italy
Ioannis Dimitriou University of Patras, Greece
Dieter Fiems Ghent University, Belgium
Jean-Michel Fourneau Université de Versailles-Saint-Quentin-en-Yvelines,

France
Stephen Gilmore University of Edinburgh, UK
Marco Gribaudo Politecnico di Milano, Italy
András Horváth Università degli Studi di Torino, Italy
Gábor Horváth Budapest University of Technology and Economics,

Hungary
Emmanuel Hyon Université Paris Nanterre, France
Esa Hyytiä University of Iceland, Iceland
Mauro Iacono Università degli studi della Campania Luigi Vanvitelli,

Italy
Alain Jean-Marie Inria, France
William Knottenbelt Imperial College London, UK
Lasse Leskelä Aalto University, Finland



Oleg Lukashenko Karelian Research Centre, Russia
Marco Paolieri University of Southern California, USA
Dave Parker University of Birmingham, UK
Nihal Pekergin Université Paris-Est Créteil, France
Carla Piazza University of Udine, Italy
Philipp Reinecke Cardiff University, UK
Sabina Rossi Università Ca’ Foscari di Venezia
Alexander Rumyantsev Karelian Research Centre, Russia
Markus Siegle Bundeswehr University Munich, Germany
Miklos Telek Budapest University of Technology and Economics,

Hungary
Nigel Thomas Newcastle University, UK
Enrico Vicario University of Florence, Italy
Joris Walraevens Ghent University, Belgium

viii Organization EPEW 2021



Organization ASMTA 2021

General Chair

Tuan Phung-Duc University of Tsukuba, Japan

Program Committee Chairs

Ioannis Dimitriou University of Patras, Greece
Joris Walraevens Ghent University, Belgium

Logistics and Web Chair

M. Akif Yazici Istanbul Technical University, Turkey

Publicity Chair

Sabine Wittevrongel Ghent University, Belgium

Program Committee

Nail Akar Bilkent University, Turkey
Jonatha Anselmi Inria, France
Konstantin Avrachenkov Inria, France
Paolo Ballarini CentraleSupélec, France
Simonetta Balsamo Università Ca' Foscari di Venezia
Tejas Bodas IIT Dharwad, India
Hind Castel Telecom SudParis, France
Dieter Claeys Ghent University, Belgium
Céline Comte Eindhoven University of Technology, The Netherlands
Koen De Turck CentraleSupélec, Belgium
Antonis Economou University of Athens, Greece
Dieter Fiems Ghent University, Belgium
Marco Gribaudo Politecnico di Milano, Italy
Irina Gudkova People’s Friendship University of Russia, Russia
Antonio Gómez-Corral Universidad Complutense de Madrid, Spain
Yezekael Hayel LIA/University of Avignon, France
András Horváth University of Turin, Italy
Gábor Horváth Budapest University of Technology and Economics,

Hungary
Mauro Iacono Università degli studi della Campania Luigi Vanvitelli,

Italy
Yoshiaki Inoue Osaka University, Japan



Helen Karatza Aristotle University of Thessaloniki, Greece
William Knottenbelt Imperial College London, UK
Samouylov Konstantin Peoples’ Friendship University of Russia, Russia
Lasse Leskelä Aalto University, Finland
Martin Lopez Garcia University of Leeds, UK
Andrea Marin Università Ca’ Foscari Venezia, Italy
Jose Nino-Mora Carlos III University of Madrid, Spain
Juan F. Perez Universidad del Rosario, Colombia
Tuan Phung-Duc University of Tsukuba, Japan
Balakrishna Prabhu LAAS-CNRS, France
Liron Ravner University of Amsterdam, The Netherlands
Marie-Ange Remiche University of Namur, Belgium
Jacques Resing Eindhoven University of Technology, The Netherlands
Yutaka Sakuma National Defense Academy of Japan, Japan
Bruno Sericola Inria, France
Ali Devin Sezer Middle East Technical University, Turkey
Seva Shneer Heriot-Watt University, UK
Janos Sztrik University of Debrecen, Hungary
Miklos Telek Budapest University of Technology and Economics,

Hungary
Nigel Thomas Newcastle University, UK
Benny Van Houdt University of Antwerp, Belgium
Jinting Wang Central University of Finance and Economics, China
Sabine Wittevrongel Ghent University, Belgium
Alexander Zeifman Vologda State University, Russia

x Organization ASMTA 2021



Contents

EPEW 2021

Workload Prediction in BTC Blockchain and Application
to the Confirmation Time Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Ivan Malakhov, Carlo Gaetan, Andrea Marin, and Sabina Rossi

A Petri Net Formalism to Study Systems at Different Scales Exploiting
Agent-Based and Stochastic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

M. Beccuti, P. Castagno, G. Franceschinis, M. Pennisi, and S. Pernice

State Space Minimization Preserving Embeddings for Continuous-Time
Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Susmoy Das and Arpit Sharma

Multi-timescale Fairness for Heterogeneous Broadband Traffic
in Access-Aggregation Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Szilveszter Nádas, Balázs Varga, Illés Horváth, András Mészáros,
and Miklós Telek

DiPS: A Tool for Data-Informed Parameter Synthesis for Markov Chains
from Multiple-Property Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Matej Hajnal, David Šafránek, and Tatjana Petrov

Modelling a Fair-Exchange Protocol in the Presence of Misbehaviour
Using PEPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Ohud Almutairi and Nigel Thomas

Performance Evaluation of a Data Lake Architecture via
Modeling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Enrico Barbierato, Marco Gribaudo, Giuseppe Serazzi,
and Letizia Tanca

Computing Bounds for Delay in a Stochastic Network. . . . . . . . . . . . . . . . . 131
Jean-Michel Fourneau, Edouard Longueville, Yann Ben Maissa,
Loubna Echabbi, and Houda Lotfi

Mixture Density Networks as a General Framework for Estimation
and Prediction of Waiting Time Distributions in Queueing Systems. . . . . . . . 148

Hung Quoc Nguyen and Tuan Phung-Duc



ASMTA 2021

Performance Evaluation and Energy Consumption for DVFS Processor . . . . . 165
Youssef Ait El Mahjoub, Jean-Michel Fourneau, and Hind Castel-Taleb

Performance Models of NFV-Based Hybrid Systems
for Delay-Sensitive Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Mitsuki Sato, Kohei Kawamura, Ken’ichi Kawanishi,
and Tuan Phung-Duc

A Stochastic SVIR Model with Imperfect Vaccine and External Source
of Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Maria Gamboa, Martín López-García, and Maria Jesus Lopez-Herrero

Analysis of Single Bacterium Dynamics in a Stochastic Model
of Toxin-Producing Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Jamie Paterson, Martín López-García, Joseph Gillard, Thomas R. Laws,
Grant Lythe, and Carmen Molina-París

EM Based Parameter Estimation for Markov Modulated Fluid
Arrival Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Salah Al-Deen Almousa, Gábor Horváth, and Miklós Telek

Reinforcement Learning with Model-Based Approaches for Dynamic
Resource Allocation in a Tandem Queue . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Thomas Tournaire, Jeanne Barthelemy, Hind Castel-Taleb,
and Emmanuel Hyon

Performance Analysis of Production Lines Through Statistical
Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Paolo Ballarini and András Horváth

Reliability Reference Model for Topology Configuration . . . . . . . . . . . . . . . 282
Paul Kevin Reeser

Splittable Routing Games in Ring Topology with Losses . . . . . . . . . . . . . . . 298
Sami Dallali, Clara Fontaine, and Eitan Altman

Routing of Strategic Passengers in a Transportation Station . . . . . . . . . . . . . 308
Dimitrios Logothetis and Antonis Economou

Coupled Queueing and Charging Game Model with Energy
Capacity Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Alix Dupont, Yezekael Hayel, Tania Jiménez, Olivier Beaude,
and Cheng Wan

xii Contents



Hybrid Simulation of Energy Management in IoT Edge Computing
Surveillance Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Lelio Campanile, Marco Gribaudo, Mauro Iacono,
and Michele Mastroianni

Highly Accurate, Explicit Approximation for Erlang B . . . . . . . . . . . . . . . . 360
Paul Kevin Reeser

The Join the Shortest Orbit Queue System with a Finite Priority Line . . . . . . 375
Ioannis Dimitriou

A Short Note on the System-Length Distribution in a Finite-Buffer
GIX=C-MSP/1/N Queue Using Roots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Abhijit Datta Banik, Mohan L. Chaudhry, Sabine Wittevrongel,
and Herwig Bruneel

Stationary Analysis of Infinite Server Queue with Batch Service . . . . . . . . . . 411
Ayane Nakamura and Tuan Phung-Duc

Performance Evaluation of Stochastic Bipartite Matching Models . . . . . . . . . 425
Céline Comte and Jan-Pieter Dorsman

Analysis of Tandem Retrial Queue with Common Orbit and Poisson
Arrival Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Anatoly Nazarov, Svetlana Paul, Tuan Phung-Duc,
and Mariya Morozova

Queueing Analysis of a Mixed Model of Public and Demand
Responsive Transportations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Ayane Nakamura, Tuan Phung-Duc, and Hiroyasu Ando

An Analytical Framework for Video Quality and Excess Data Distribution
in Multiple-Quality Video Under Dynamic Channel Conditions . . . . . . . . . . 472

Mehmet Akif Yazici

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Contents xiii



EPEW 2021



Workload Prediction in BTC Blockchain
and Application to the Confirmation

Time Estimation

Ivan Malakhov(B) , Carlo Gaetan , Andrea Marin , and Sabina Rossi

Università Ca’ Foscari Venezia, Via Torino 155, 30173 Venice, Italy
{ivan.malakhov,gaetan,marin,sabina.rossi}@unive.it

Abstract. Blockchains are distributed ledgers storing data and proce-
dures in an immutable way. The validation of the information stored
therein as well as the guarantee of its immutability can be achieved
without the need of a central authority. Proof-of-work is the maximum
expression of the distributed nature of such systems, and requires miners
to spend a large amount of energy to secure the blockchain. The cost is
mostly paid by the end-users that offer fees to support the validation of
their transactions. In general, higher fees correspond to shorter valida-
tion delays. However, given the limited throughput of the system and
variability of the workload, the fee one needs to offer to satisfy a certain
requirement on the validation delay strongly depends on the intensity of
the workload that, in turns, is subject to high variability.

In this work, we propose a time series analysis of the workload of Bit-
coin blockchain and compare the accuracy of Facebook Prophet model
with a ARIMA model. We take into account the periodicity of the work-
load and show by simulations how these predictions, accompanied with
their confidence intervals, can be used to estimate the confirmation delays
of the transactions given the offered fees.

Keywords: Blockchain · Confirmation time analysis · Time series
analysis

1 Introduction

Blockchains have been attracting more and more attention from the research
community from the economical, security and application points of view. More
recently, the quantitative analysis of blockchains has also emerged as an impor-
tant research challenge.

The blockchain distributed ledger has substantially three main roles: (i) verify
the information or procedures that end-users wants to store according to some
rules, (ii) guarantee the immutability of the stored information and (iii) make
the information or procedure publicly available. While there are several ways to
achieve these goals, in this paper, we focus on the most popular one, namely the
proof-of-work (PoW).
c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 3–21, 2021.
https://doi.org/10.1007/978-3-030-91825-5_1
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PoW has been introduced by the seminal paper [12] by the pseudonym
Satoshi Nakamoto with the aim of creating a distributed ledger for econom-
ical transactions based on the cryptocurrency Bitcoin (BTC). Many public
blockchains use PoW as consensus algorithm and, recently, it has been proposed
also for permissioned blockchains [10]. Therefore, henceforth, we will focus on
BTC blockchain since it is, together with Ethereum, the mostly used and known
blockchains. However, the methodologies and discussions that we propose can
be easily extended to other blockchain systems with similar characteristics.

In BTC, the blockchain stores transactions into blocks. Blocks have a max-
imum size of 1MB and are generated, on average, every 10 min. This means
that the maximum throughput of the system is fixed by design. Transactions are
proposed by the end users and are sent to the miners for being processed.

Miners maintain a queue called Mempool that contains all the pending trans-
actions, i.e., the transactions sent by end users but that have not been added to a
block yet. When a transaction is included in a block, we say that it is confirmed,
i.e., it is permanently stored in the system. The transaction residence time in
the Mempool is called confirmation delay. This delay is crucial in determining
the Quality-of-Service (QoS) of applications based on blockchains.

In order to understand the quantitative dynamics of the transaction confor-
mations, we need to review the procedure implemented by the miners to secure
the blockchain system. Each miner selects from the Mempool a set of trans-
actions to fill a block, then he/she checks their integrity (e.g., when there is
a transfer of cryptocurrency it verifies that there is not double spending) and
finally it works on a computational problem that requires a large amount of
energy in order to be solved. This latter step is the PoW. The miner that firstly
announces the solution of its computational problem is entitled to add his/her
new block to the blockchain after the other peers have verified the correctness
of the solution.

In order to cover the energy and hardware costs, miners receive a certain
amount of cryptocurrency when they succeed in a block consolidation: some is
freshly created by the system and given to the miners and then they receive the
fees promised by the owners of the transactions added to new block. These fees
are offered by the end users on a voluntary base, i.e., they can even offer 0 BTC.
However, the miners tend to select from the Mempool those transactions that
offer the highest fee.

From the end-user’s point of view, an interesting trade off arises: on the one
hand, he/she wishes to offer the lowest possible fee to reduce the running costs
of his/her activities, on the other he/she may have some requirements on the
QoS, e.g., the need to confirm the transaction within a certain amount of time.
For example, the transaction may be associated with a trading speculation and
hence must be confirmed in a few minutes, or may be a bid for a certain auction
with a deadline.

Blockchain systems can be studied as distributed systems by means of formal
methods in the style of [5,6]. Queueing theory allows us to study the relation
between the holding time in the Mempool and the arrival intensity of the transac-
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tions. Clearly, when the holding times increase, the transaction fees also increase.
However, while for high fees consolidated in few blocks it is safe to assume that
the arrival intensity is time homogeneous, for transactions offering low fees this
is unrealistic.

In this paper, we study the problem of predicting the traffic intensity in
BTC blockchain with the aim of parameterising a simulation model that stud-
ies the expected confirmation time of transactions. After collecting data about
the transaction arrival process at our BTC node, we use these traces to train
two possible prediction models: one based on Facebook Prophet model [13], and
the other is the well-known Autoregressive Integrate Moving Average (ARIMA)
model. Both models provide confidence intervals in the prediction of the arrival
process and allow us to consider pessimistic-, average- and optimistic-case sce-
narios. After comparing the two predictive models, we study by simulation the
transaction confirmation time as a function of the offered fees and compare the
results obtained with the real trace as input with those obtained by using the
predicted trace as input.

The paper is structured as follows. In Sect. 2, we discuss the related work
done in similar fields. Section 3 describes the motivation of this paper and gives
a brief description of the applied prediction models. In Sect. 4, we examine the
ARIMA and Prophet forecasts accuracy after certain hours from the transaction
arrival and the accuracy of the predictions on the expected confirmation time
using Monte Carlo simulations. Finally, Sect. 5 concludes the paper and provides
an insight for future work.

2 Related Work

Statistical analysis on blockchain and in particular BTC system have been widely
investigated in the recent years. However, most of the research efforts have been
devoted to the prediction of the conversion rate to USD or other currencies (see,
e.g., [4,11]).

In our case, we are interested in studying the cost of transaction fees. Most
of the previous works assume a time-homogeneous arrival process, as in [1,7,8]
which can be reasonable for expensive transactions that are confirmed within one
hour from their request. However, when the delay is longer, the fluctuations of
the arrival process cause the model with the homogeneity assumption to generate
inaccurate predictions.

In addition, [9] provides a similar contribution by demonstrating the station-
ary analysis of the queueing model and the definition of the customer priority
classes. However, the authors focus on a game theoretical framework where they
attempt to find correlations between the fee fluctuations and the miners’ eco-
nomical incentive.

Another work [14] analyses the transaction fees in the blockchain networks.
However, their research is related to the Ethereum blockchain and particularly
the smart contract transactions.
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To the best of our knowledge, this is the first study that aims at predicting
the intensity of the transaction arrival process by using time series analysis and
predicting on the confirmation time based on the offered fee.

3 Background and Motivation

This section describes the goal of the paper and provides background information
about the models used for the prediction of the arrival rate of transactions.

3.1 The Problem of Predicting the Minimum Fee for QoS

PoW is a method for both reaching consensus among the miners and guarantee-
ing the immutability of the blockchain contents. More precisely, it quantifies the
expected energy cost required to modify a confirmed transaction. The more com-
putational power (usually called hashpower) the miners invest the more secure
the distributed ledger is. For this reason it becomes crucial to incentivize more
miners to join the network with some rewards.

In the BTC blockchain, miners are rewarded in two ways: i) for each con-
firmed block, the miner who created it receives a certain amount of cryptocur-
rency and ii) for each transaction included in the block, the same miner receives
the fee offered by the user who created that transaction.

In BTC the cryptocurrency is the Bitcoin but since its value is high (at the
moment, 1BTC � 35, 000 USD), fees are usually expressed in Satoshi (sat) where
1BTC = 108sat.

While the former reward is going to be dismissed in the next years, the latter
plays a crucial role in understanding the QoS of applications that use BTC
blockchain. Indeed, miners aim at maximising their profit and thus choose to
include in the block the transactions with the highest fee.

Transaction fees are known to be subject to high fluctuations as shown by
Fig. 1a. We may notice that the average fee for a transaction can vary from
around 4.5 to 9 USD in a month. How to decide which fee to offer to have an
expected confirmation delay?

It is important to understand that the answer to this question depends on
several state variables of the blockchain. First, we should consider the Mempool
occupancy (usually called improperly Mempool size), i.e., the backlog of the
transactions that are waiting to be confirmed. Figure 1b shows the trace of the
Mempool occupancy in the month of June 2021. The are several bursts that
clearly affect the decision on the fee to be offered.

However, the most important factor is the transaction arrival process. Recall
that all the transactions arriving after a tagged transaction t offering a fee per
byte f will overtake t if they offer more than f . Fee per byte is commonly used
to compare the cost of transactions because these may have different sizes. Since
block sizes are fixed (i.e., a block can contain approximately 2, 300 transactions at
most) and the inter-generation time of blocks is on average 10 min, this implies
that the competition among the transactions gets tougher when the traffic is
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(a) Transaction fee in USD in the Bitcoin network. The data are retrieved from
http://www.blockchain.com
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(b) Memory Pool size in transactions in the Bitcoin network. The data are retrieved
from http://www.blockchain.com

Fig. 1. Blockchain network indicators.

higher. Figure 2b shows the distribution of the fee per byte offered under heavy-
load conditions as measured by our monitor.

Summarising, the confirmation time of a transaction t arriving at time τ
depends on the following aspects:
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(a) Arrival rate of transactions as a function of time with step of 10 minutes. The data
are retrieved from the installed node.

(b) Empirical probability density function of fee per byte in heavy workload conditions.
The data are retrieved from the installed node.

Fig. 2. Continue. Blockchain network indicators.

– The arrival rate of the transactions after τ and before the confirmation of t,
limited to those whose fees are higher than the fee offered by t;

– The state of the Mempool at τ ;
– The distribution of fees offered by the other users.
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In general, we measure the confirmation delay in number of blocks rather than
in seconds. However, it is well-known that the time between consecutive block
consolidations is approximately exponential with mean 600 s [3].

Figure 2a shows the intensity of the arrival process in a period of time. This
is subject to high variability and exhibits a clear seasonality. Therefore, in any
procedure aimed at predicting the expected confirmation time of transactions,
we must implicitly or explicitly deal with the prediction of the arrival intensity
at the moment in which the transactions is sent to the ledger.

The goal of this paper is that of evaluating the quality of the predictions
of the arrival process given by two popular approaches to time series analysis:
the ARIMA and Facebook Prophet models. Moreover, we will use these pre-
dictions to assess, by simulation, the quality of the estimations of the expected
confirmation time of transactions.

3.2 Background on the ARIMA Model

ARIMA(p, d, q) model [2] one of the most widely used models for statistical
forecasting a time series of observations Xt. The ARIMA equation is a linear
(i.e., regression-type) equation in which the predictors consist of lags of the
dependent variable and/or lags of the forecast errors. The general model can be
written as

(1 − φ1L − · · · − φpL
p)(1 − L)dXt = c + (1 + θ1L + · · · + θqL

q)εt

where L is the lag-operator, i.e. Lkat = at−k and εt is a white noise. The
value p refers to the “AutoRegressive” component and represents the number of
lagged observations included in the model. The “Integrated part” of the ARIMA
model indicates that the data values have been replaced with the difference
between their current and previous values, i.e. (1 − L)xt = xt − xt−1. The value
d is a number of times that the raw observations are differenced. In general,
differencing refers to the transformation applied to non-stationary time series
in order to make them stationary by attempting to remove the deterministic
components such as trends or periodicities. The value q, stands for the size of the
“Moving Average” window for the forecast errors. Automatic identification of the
orders p, d, q and statistical estimation of the parameters φ1, . . . , φp, θ1, . . . , θq
can be done easily (see [2]).

The data are collected every 10 min and our time series exhibit seasonal-
ity with frequency of 144 = 24 × 6 which is exactly 24 h in 10-min terms. In
our experiment, using the Akaike Information Criterion, we identify a special
instance of the ARIMA model, namely a multiplicative seasonal model [2]:

(1 − φ1L − φ2L
p)(1 − L)(1 − L144)Xt = (1 + θ1L + θ2L

2)εt.

3.3 Background on the Facebook Prophet Model

The Prophet model [13] is a modular regression model with interpretable param-
eters that can be adjusted in order to optimize the prediction response.



10 I. Malakhov et al.

The authors use a decomposable time series model with three key compo-
nents, namely trend, seasonality, and holidays. The model may be represented
as follows:

Xt = gt + st + ht + εt.

where gt refers to the trend function that simulates non-periodic changes in the
value of the time series, st describes periodic changes of the series, that is any
seasonality effects, and ht stands for the effects of holidays which occur on rather
irregular pattern over one or more days. The error term εt is still white noise
and represents any idiosyncratic changes of the model.

What is more, one of the features of gt can be changepoint prior scale. The
changepoints allow to incorporate trend changes in the growth models and stand
for the points in time at which the trend is supposed to change its vector. It can
be set manually otherwise it will be done automatically. This feature modulates
the flexibility of the automatic changepoint selection. Larger values will allow
many changepoints and small ones - few.

The authors frame the forecasting problem as a curve-fitting exercise, which
differs from the models that account for the temporal dependence structure in the
data. Although they miss some inferential benefits of using a generative model,
e.g., the ARIMA model, their approach provides several practical advantages
such as the fast fitting, ability to use irregular time data, flexible tuning of the
trend, and seasonality behaviour.

4 Evaluation of the Accuracy in Performance Predictions

This section consists of two parts. First, we study the accuracy of the ARIMA
and Prophet predictions on the time series of the transaction arrivals in the BTC
blockchain. This allows us to obtain a punctual value of the prediction after τ
hours from the last considered arrival of transaction and its confidence interval.
Thus, for each epoch, we have a predicted expected value, a lower bound that
represents the optimistic scenario and an upper bound leading to the pessimistic
scenario.

The second contribution of the section is the estimation of the accuracy
of the predictions on the expected confirmation time by means of Monte Carlo
simulations of the confirmation process. The simulation uses as input three values
of the confidence interval (lower, upper and central) to obtain an optimistic,
pessimistic and expected estimation of the confirmation time.

It is worthy of notice that, while the expected confirmation delay is monotonic
increasing with respect to the arrival rate, the relation between waiting time and
intensity of the arrival process is not linear and hence the intervals obtained in the
confirmation delay predictions are not symmetric with respect to the prediction
obtained using the expected arrival rate.

4.1 Comparison of Time Series Prediction Models

This section describes the accuracy of the estimates as well as their insights
obtained by the aforementioned prediction models.
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In order to collect the time series, we have installed a BTC mining node and
logged the transactions announced at its Mempool. We have collected the data
for five days and obtained our dataset that was coherent with the information
available on specialised websites but with higher granularity (see Fig. 2a). Addi-
tionally, we analysed the distribution of transaction fees of the Bitcoin clients in
heavy load conditions (see Fig. 2b).

In order to train the models, we divided our dataset in two parts with the
same size: the first one has been used to train the models, while the second part
has been used to assess the accuracy of the prediction.

For both the models, we use prediction intervals with a coverage of 95%.
Figure 3 and 4 show predictions of the transaction arrival intensity provided

by the Prophet and ARIMA models, respectively. What is more, Fig. 3a and 3b
illustrate the prediction deviation due to the choice of different changepoint
prior scale values, namely, 0.06 and 0.07 accordingly. Thus, the outcome of the
Prophet model at the parameter 0.07 gives the best prediction, according to our
experiment. In our assessment, we will use the best results.

For both the plots, we used the first 2.5 days of data to train the model, and
then we predicted the future arrivals. We show the test data of our dataset (blue
line), the prediction of the model (red line) and the confidence intervals (grey
lines). As expected, as the prediction time is moved far in the future, the con-
fidence interval becomes wider. However, for practical applications, predictions
are useful when performed within approximately 10 or 12 h, otherwise it is very
likely that the transaction is delay tolerant.

Even before formally testing the accuracy of the predictions with an error
measure, we may notice that Prophet seems to give a better accuracy in this
context.

Now, we consider the predictions of the Prophet and ARIMA model at fixed
time intervals. More precisely, given an interval τ , at each time t we use all the
data up to t to train the model, and forecast the value of the time series at time
t + τ .

Figure 6 shows the comparison of the predictions obtained with the Prophet
and ARIMA models for different values of τ . We can see that, although the
ARIMA predictions tend to be more noisy, both the models show rather good
predictions of the test data.

More precisely, in Table 1 we compute the absolute errors of the Prophet
and ARIMA predictions. According to our experiments, Prophet outperforms
ARIMA, especially for short term predictions. Henceforth, we will carry out our
experiments by using the Prophet model (Figs. 5, 7 and 8).

4.2 Simulations

In this section, we are interested in determining the accuracy of the estimation of
the expected confirmation time using the Prophet prediction model to determine
the arrival intensity of the transactions.

We resort to Monte Carlo simulations whose structure can be summarised as
follows:
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(a) The comparison at changepoint prior scale of 0.06.
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(b) The comparison at changepoint prior scale of 0.07.

Fig. 3. Comparison of the actual arrival rate of transactions and the predicted response
based on the Prophet model with different changepoint prior scale.

– We consider a fixed sequence of transaction arrivals. This can be trace-driven
by our dataset or obtained by the models (optimistic-, average- or pessimistic-
case scenarios).

– The generation of the blocks occurs at random time intervals, exponentially
distributed with average 10 min. This follows from the memoryless charac-
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Fig. 4. Comparison of the actual arrival rate of transactions and the predicted response
based on the ARIMA model.

Table 1. Mean absolute errors of prophet and ARIMA models with different size of
the prediction horizon.

Prediction horizon τ in hours Prophet error ARIMA error

1 0.3120 0.3668

2 0.3366 0.3896

4 0.3966 0.4219

12 0.6333 0.6416

teristic of the mining process and from the invariant properties of the BTC
blockchain.

– At a block generation instant, the most valuable transactions of the Mempool
are confirmed and removed from the queue. We assume that the block contains
2, 300 transactions. Transaction fees are chosen probabilistically using the
distribution of Fig. 2b.

– Initially, the Mempool is populated with a fixed amount of transactions. These
transactions offer a fee per byte according to the distribution of Fig. 2b. Notice
that, although this is an approximation since the cheapest transactions tend
to remain in the Mempool, the comparison remains fair since the initial Mem-
pool population is the same for all the scenarios.

More precisely, we number the transactions from −M to ∞, where M is the
initial Mempool size, transaction 0 is the tagged transaction whose confirmation
time is measured, and transaction denoted by i > 0 are those arriving after the
tagged one.
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(a) Comparison of the actual arrival rate of transactions and the predicted response
for τ = 1 hour ahead based on the Prophet with changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and the predicted response
for τ = 1 hour ahead based on the ARIMA model.

Fig. 5. Comparison of the Prophet and ARIMA prediction models at prediction horizon
τ = 1 h and confidence interval of 0.95.

Transaction ti is denoted by a pair (τi, fi), where τi is the arrival time and
fi the offered fee. For i ≤ 0, ti = 0. fi is sampled from the distribution of Fig. 2b
independently of τi. τi, for i > 0 are obtained from the real traces or from
the predictions of Prophet. Notice that, in practice, the fees may be dependent
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(a) Comparison of the actual arrival rate of transactions and the predicted response
for τ = 2 hours ahead based on the Prophet with changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and the predicted response
for τ = 2 hours ahead based on the ARIMA model.

Fig. 6. Comparison of the Prophet and ARIMA prediction models with prediction
horizon τ = 2 h and confidence interval of 0.95.

from the system state (Mempool size, intensity of the arrival process) but in
this context we use the simplifying assumption of independence since we mainly
focus on the accuracy of the predictive power of the Prophet model.
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(a) Comparison of the actual arrival rate of transactions and the predicted response
for τ = 4 hours ahead based on the Prophet with changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and the predicted response
for τ = 4 hours ahead based on the ARIMA model.

Fig. 7. Comparison of the Prophet and ARIMA prediction models with prediction
horizon τ = 4 h and confidence interval of 0.95.

Let T be the set of transactions.
Let X1,X2, . . . be the sequence of block consolidation times, and assume

X0 = 0. Then, Xi+1 − Xi, i ≥ 0, are i.i.d. exponential random variables with
mean 10 min.
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(a) Comparison of the actual arrival rate of transactions and predicted response for
τ = 12 hours ahead based on the Prophet prediction approach by Facebook with
changepoint prior scale of 0.07.
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(b) Comparison of the actual arrival rate of transactions and predicted response for
τ = 12 hours ahead based on the ARIMA model.

Fig. 8. Comparison of the Prophet and ARIMA prediction models with prediction
horizon τ = 12 h and confidence interval of 0.95.

The state of the simulation model is described by a collection of transactions
in the Mempool, denoted by Mi, where the subscript i expresses that the state
is associated with the instant immediately after the consolidation of block i.
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The set of transactions arriving during the consolidation of the (i + 1)-th
block, but after the consolidation of the i-th, can be denoted by:

Ai = {ti ∈ T : τi > Xi ∧ τi ≤ Xi+1}

Now, let F(M) the set of at most 2, 300 transactions with the highest fee
present in M.

Thus we have the following recursive relation:

– M0 = {ti ∈ T : τi ≤ 0}
– Mi+1 = Mi ∪ Ai\F(Mi ∪ Ai)

Thus, the confirmation time Tc for the tagged transaction is given by:

Tc = min{i : t0 /∈ Mi}.

The Monte Carlo simulation experiment consists of 10, 000 samples of Tc for
a fixed fee f0. Then, the expected confirmation time is obtained by averaging the
sample values. The experiments have been repeated 30 times and the estimates
have been used to determine the confidence interval for the expected confirmation
delay. To avoid confusion, we omit the confidence interval from the plot. For a
confidence of 95% we have a maximum relative error of 7%.

For each scenario that we consider, the tagged transaction offers a certain
fee per byte that controls the confirmation time: the higher the fee, the quicker
the process.

According to the trace of arrival that we use, we obtain 4 estimates: the
first using the real data, the second using the average prediction of Prophet, the
third and fourth using the trace given by the lower and upper bounds of the
confidence intervals determined by the Prophet. These two latter scenarios can
be interpreted as pessimistic and optimistic cases in terms of confirmation delay.

Figure 9a and 9b show the expected number of blocks required for the trans-
action confirmation for different offered transaction fees. The grey bars refer to
the expected number of blocks obtained from the real data while the stack of
the second bar in light, normal and dark blue represent the optimistic-, average-
and pessimistic- case scenarios, respectively, derived from the predicted data.

In the scenario of Fig. 9a, the data were derived from the time series shown
in Fig. 3b, and the arrival time of the tagged transaction is 2020/11/18 05:10.
Thus, the first half of the dataset was used to train the model. While in the sec-
ond scenario (Fig. 9b), the arrival time for the tagged transaction is 2020/11/19
08:30:00, and hence the training data include all the series up to that epoch.

The inspection of Fig. 9a shows that the pessimistic case scenario for 70 sat/B
is absent: this happens because the transaction is dropped before its confirmation
(usually after 72 h of residence in the Mempool). A second observation is that,
especially in heavy-load (70 and 80 sat/B), the distance between the optimistic
prediction and the average is smaller than that from the pessimistic and the
average. This is due to the non-linearity of expected response time of a queueing
system with respect to the arrival intensity. Finally, for this scenario, we notice
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(a) The simulation results at 50% of the training data.
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(b) The simulation results at 70% of the training data.

Fig. 9. Simulation results based on the actual data (grey bar) compared to the results of
the Prophet predicted response (blue bars) with the optimistic, average and pessimistic
cases and the initial Mempool occupancy of 10, 000 transactions and different amount
of the training data. (Color figure online)

that while the prediction obtained with the dataset is always within the opti-
mistic and pessimistic cases, it seems to be closer to the latter. Indeed, Fig. 3b
shows that predicted values for the first period of time are rather underestimated
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by the model. To confirm this explanation, we can look at the beginning of the
next prediction interval (2020/11/19 08:30:00) when the prediction accuracy is
higher. In this case, there is a good matching between the predicted average
confirmation time and that obtained by using the real dataset (see Fig. 9b).

5 Conclusion

In this paper, we have applied two different time series forecast models, namely
the Prophet by Facebook and ARIMA, in order to predict the arrival rate of the
transactions at the Mempool of the Bitcoin network. According to our exper-
iments, the Prophet model provides more accurate predictions in terms of the
absolute errors.

Moreover, we have investigated if these predictions can be used to parame-
terise a model aimed at estimating the expected confirmation time of a trans-
action given its offered fee. We have shown two scenarios and in both cases we
obtained valuable predictions that can be used to study the trade off between
the blockchain running costs and the quality of service.

Although our study has been carried out for the BTC blockchain, it can be
extended to any similar system where transactions are chosen from the Mempool
according to an auction (e.g., Ethereum blockchain).

Future works have several directions. First, it would be important to compare
the approach proposed here with other forecasting models, e.g., based on machine
learning. Second, an analytical model of the queueing processes associated with
the transactions should be studied to avoid the computationally expensive Monte
Carlo simulations required to obtain the prediction on the expected confirmation
time.
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Abstract. The recent technological advances in computer science have
enabled the definition of new modeling paradigms that differ from the
classical ones in describing the system in terms of its components or enti-
ties. Among them, Agent-Based Models (ABMs) are gaining more and
more popularity thanks to their ability to capture emergent phenomena
resulting from the interactions of individual entities. However, ABMs
lack a formal definition and precisely defined semantics. To overcome
this issue we propose a new method exploiting Petri Nets as a graphical
meta-formalism for modeling a system from which an ABM model with
clear and well-defined semantics can be automatically derived and simu-
lated. We aim to define a framework, based on a PN formalism, in which
a system can be efficiently studied through both Agent-Based Simulation
and classical Stochastic one depending on the study goal.

Keywords: Agent based modeling and simulation · Stochastic
simulation · Extended stochastic symmetric Petri nets

1 Introduction

In the last decades, computational modeling has become increasingly common
for studying real-world phenomena, either natural or artificial, by using different
modeling perspectives. Indeed, it is possible to focus on the specific mechanisms
driving the phenomena of interest (microscopic point of view), or, on the other
hand, to model the system’s overall behavior, allowing to study the interaction
with the external environment (macroscopic point of view). According to this,
researchers may exploit different modeling approaches to capture the macro or
the micro behavior of the system.

Roughly speaking, the approaches focusing on the macro behavior of sys-
tems are further classified into deterministic or stochastic. Deterministic mod-
els are typically formulated as systems of differential equations (in continuous
time) or difference equations (in discrete time) and provide an average descrip-
tion of the system evolution at the population scale [10]. Stochastic ones are
c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 22–43, 2021.
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instead formulated as stochastic processes defined on families of random variables
(e.g. Discrete-Time Markov Chain - DTMC, Continuous Time Markov Chain -
CTMC) and they are particularly suitable in cases where randomness plays an
important role [2]. It is important to observe that the system’s complexity may
prevent the explicit generation and solution of the underlying stochastic process
so that Stochastic Simulation Algorithm (SSA) [8] and its approximations [3,9]
end up being the only possibility.

Among the approaches for modeling a system in terms of its micro behavior,
those based on the Agent-Based Modeling (ABM) paradigm are quite powerful:
in this case the system is described in terms of interactions among its individuals,
namely agents [12]. This approach is more suitable for studying specific spatial
aspects thanks to its ability to represent a more realistic environment in which
the agents interact, as well as any agent’s specific behavior.

In the literature, various works highlight the strengths of ABM over other
modeling techniques in terms of their ability to (i) capture emergent phenomena
from the interactions of agents; (ii) provide a natural description of the system.
However, to the best of our knowledge, ABM suffers from a lack of unique
well-defined semantics specifying how the agents and environment behaviors are
coupled and scheduled. One aspect concerns the time advance mechanism [11]
that can be Fixed Interval Time Advance (FITA) or Next Event Time Advance
(NETA). The first advances the current time of a fixed and constant amount,
while the latter employs an event-driven approach, increasing the simulation time
to that of the first event occurring in time. Another relevant aspect common to
many case studies using ABM is how conflicts and concurrency among the agents
are handled. Indeed in most cases, the ABM scheduler may introduce implicit
(probabilistic or deterministic) rules in the ordering of events that may affect
the simulation outcome. These two aspects are deeply discussed in [7], where the
authors compare SSA and ABM simulations through four increasingly complex
models of the immune system.

To deal with this crucial aspect, we propose to use high-level Stochastic Petri
Nets (SPN) as a graphical meta-formalism for modeling a system and derive
both an SSA simulator and an ABM one with clear and well-defined semantics
based on the same underlying CTMC. This approach has allowed us to define a
graphical framework where users can study a system through different modeling
perspectives without any intervention on the model description itself. Accord-
ing to the questions of interest, users can exploit SSA simulation to efficiently
derive measures on the overall system or ABM one to study the behavior of the
single system entities and understand how the global behavior is derived by the
interactions of these entities.

2 Background

Before describing how an ABM with clear and well-defined semantics can be
automatically derived from the PN model, in this section, we briefly introduce
the Extended Stochastic Symmetric Nets (ESSN) and the ABM formalisms.
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2.1 The ESSN Formalism

Among the existing SPN formalisms in this paper we focus on Extended Stochas-
tic Symmetric Nets (ESSN) [13], a high-level SPN formalism extending Stochas-
tic Symmetric Net (SSN) [6] with the possibility of easily defining complex rate
functions. Such extension has proven its effectiveness in modeling epidemiologi-
cal and biological systems in a compact, readable and parametric way [4,14,15].

The formal ESSN definition is reported in Appendix 3, while hereafter we
describe the main features of this formalism using the ESSN example in Fig. 1.

Fig. 1. The SEIRS ESSN model. Initial marking: N agents in place S (uniformly dis-
tributed among |Zone| positions and 5 agents in place I (all in the same position).

An ESSN is a bipartite graph whose nodes are places, and transitions. Places,
graphically represented as circles, denote a system local state while transitions,
graphically represented as boxes, model the system events. Places and transi-
tions are connected by directed and annotated arcs, which express the relation
between states and event occurrences. Let us consider the ESSN model depicted in
Fig. 1, which represents an extended version of the Susceptible-Exposed-Infected-
Recovered-Susceptible (SEIRS) model considering the population space and age
distribution, for more details we refer to Sect. 4. The model is defined by five
places S, E, I, R, and D modeling susceptible, exposed, infected, recovered, and
dead individuals, respectively, and eight transitions defining the possible events,
for instance transition Recovery represents the recovery of infected individuals.

A place p can hold tokens belonging to the place color domain cd(p) where
color domains are defined by the Cartesian product of elementary types called
color classes, C = {C1, . . . , Cn}, which are finite and disjoint sets, and might be
further partitioned into (static) subclasses. For instance, considering the SEIRS
example, the color domains of all places is defined by the product of the following
three color classes: Agents, Age and Zones. The former represents the color
class of agents ids (i.e., individuals) in the model, while the last two classes are
the features that are associated with each agent. Specifically, Age is subdivided
into three subclasses A0, A1, and A2, representing the population age structure,
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comprising three sub-classes. While Zones represents the different positions that
each agent might stay in.

Similarly, a color domain is associated with each transition and is defined as
a set of typed variables where the variables are those appearing in the functions
labeling the transition arcs and their types are the color classes. Thus, var assigns
to each transition t ∈ T a set of variables, each taking values in a given element
Ci of C (the variable’s type); fixed order on the set of variables, the color domain
of t, cd(t), is defined as the Cartesian product of its variables’ types. Then, we can
define an instance, denoted as 〈t, c〉, of a given transition t as an assignment (or
binding) c of the transition variables to a specific color of a proper type. Arcs are
annotated by the functions I[p, t], if the arc connects a place p to a transition t, or
O[p, t] for the opposite direction. The evaluation of I[p, t] (resp. O[p, t]), given a
legal binding of t, provides the multiset of colored tokens that will be withdrawn
from (input arc) or added to (output arc) the place connected to that arc by the
firing of such transition instance. The set of input/output places of transition
t is denoted by •t/t•. Considering the Recovery transition in Fig. 1, its color
domain is defined as cd(Recovery) = Agent × Age × Zone, and the firing of
color instance 〈Recovery, id1 = 1, age1 = young, pos = zone0〉 would remove
from place I a token representing the young agent with id 1 staying in position
zone0, and add it to place R. This is due to the arc expression 〈id1, age1, pos〉
annotating both input and output arcs of transition Recovery.

It is possible to associate specific guards with transitions: a guard is a logical
expression defined on the color domain of the transition, which can be used to
define constraints on its legal instances. A transition instance 〈t, c〉 is enabled
and can fire in a marking1 m, if its guard evaluated on c is true, and for each
input place p we have that I[p, t](c) ≤ m[p], where ≤ is the comparison operator
between multisets. The firing of 〈t, c〉 in m produces a new marking m′ such
that, for each place p, we have m′[p] = m[p] + O[p, t](c) − I[p, t](c). The set of
all instances of t enabled in marking m is denoted by E(t,m).

Finally, each transition is associated with a specific velocity, representing the
parameter of the exponential distribution modeling its random firing time. Con-
sidering the ESSN, the set of transition T is divided into two subsets Tma and
Tg depending on the associated velocity. The former subset contains all transi-
tions which fire with a velocity defined by the Mass Action (MA) law [17]. The
latter includes all transitions whose random firing times have velocities that are
defined as general real functions. Hence, we will refer to the transitions belong-
ing to Tma as standard transitions and as general transitions those in Tg. This
allows to easily model events that do not follow the MA law but more complex
function. Observe that in the SEIRS example in Fig. 1, we considered only stan-
dard transitions for simplicity, but general ones are anyway taken into account
in the translation algorithm proposed in Sect. 3. Let us define m̂(ν) = m(ν)|•t ,
where the notation m|Pi

, Pi ⊂ P—denotes the projection of the marking m on
a subset Pi of places; the rate parameter associated with an enabled transition
instance 〈t, c〉 is given by the function

1 A marking m is a P-indexed vector, m[p] is a multiset on cd(p), and m[p][c] is the
multiplicity of c ∈ cd(p) in the multiset m[p]; m(ν) denotes the marking at time ν.
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F (m̂(ν), t, c, ν) :=

{
ϕ(m̂(ν), t, c), t ∈ Tma,

f〈t,c〉(m̂(ν), ν), t ∈ Tg,
(1)

In particular, ϕ(m(ν), t, c) is the MA law, i.e.

ϕ(m(ν), t, c) = ω(t, c)
∏

〈pj ,c′〉| pj∈•t ∧ c′∈cd(pj)

m[pj ][c′](ν)I[pj ,t](c)[c′] (2)

with ω(t, c) the MA constant rate parameter of the enabled transition instance
〈t, c〉. Observe that ϕ(m̂(ν), t, c) and f〈t,c〉(m̂(ν), ν) can depend only on the time
ν and the marking of the input places of transition t at time ν. Stochastic firing
delays, sampled from a negative exponential distribution, allow one to automati-
cally derive the underlying CTMC that can be studied to quantitatively evaluate
the system behaviour [1]. In details, the CTMC state space, S, corresponds to
the reachability set of the corresponding ESSN, i.e., all possible markings that
can be reached from the initial marking. The Master equations (MEs) for the
CTMC are defined as follows:

dπ(mi, ν)
dν

=
∑
mk

π(mk, ν)qmk,mi
mi,mk ∈ S (3)

where π(mi, ν) represents the probability to be in marking mi at time ν, and
qmk,mi

the element of the infinitesimal generator (i.e., the velocity to reach the
marking mi from mk), which is defined as follows:

qmk,mi
=

∑
t∈T∧c′∈cd(t)∧

〈t,c′〉∈E(t,mk)|mi

F (mk, t, c′, ν). (4)

with E(t,mk)|mi
is the subset of E(t,mk) whose firing leads to marking mi.

In complex systems, the equations (3) are often computationally intractable
and several techniques can be exploited to study the system taking into account
stochasticity. The Stochastic Simulation Algorithm (SSA) [8] is an exact stochas-
tic method used to simulate systems, whose behaviour can be described by the
MEs. Although the SSA was proposed to simulate chemical or biochemical sys-
tems of reactions, it can be easily extended to simulate different systems. Since
in this work the algorithm is directly applied to ESSN models, here we describe
it by using the ESSN notation. Let us consider an ESSN model whose state at
time ν is described by marking m(ν). Thus, given the MEs introduced in Eq. 3
and the exponential distribution properties2, the time necessary (τ) to the next
transition firing is the exponentially distributed random variable whose mean is
defined as:

1
qm(ν)

, with qm(ν) ≡
∑

mi∈S, mi �=m(ν)

qm(ν),mi
. (5)

2 Let {Xi}n
i=1 be independent exponentially distributed random variables with param-

eters {λi}n
i=1 respectively. Then 1) X = min(X1, . . . , Xn) is exponentially dis-

tributed with parameter
∑n

i=1 λi, and 2) Prob(Xi = min(X1, . . . , Xn)) =
λi∑n

i=1 λi
.
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To advance the system from m(ν) to m(ν + τ), the inverse transform sampling
approach is exploited. Specifically, two random numbers r1 and r2 are sampled
from the uniform distribution in the unit interval, and then the time τ to the
next reaction is obtained from the following equation:

τ =
1

qm(ν)
ln(

1
r1

). (6)

While, the next transition instance to fire is the first 〈t, c〉 ∈ E(t,m(ν)) (assuming
an arbitrary total order of the instances in the set) satisfying∑

〈t′,c′〉∈E(t,m(ν)),〈t′,c′〉≤〈t,c〉
F (m(ν), t′, c′, ν) > r2 qm(ν). (7)

The system state is then updated according to the marking change O− I associ-
ated with the transition instance 〈t, c〉, and this process gets repeated until some
final time or condition is reached.

2.2 The ABM Formalism

Agent-based Modeling and Simulation (ABMS) follows a bottom-up approach,
in which the global behavior of a system results from the local behaviors of the
individual particles.

While there is no clear and universally recognized consensus on the definition
of ABM, it is possible to delineate some peculiar characteristics. First, ABMs
are based on agents: identifiable and discrete objects or individuals that can be
heterogeneous in nature. The agents may possess internal features or states used
to describe some relevant properties and intrinsic characteristics; the features
may be static or dynamic, may differ from an agent to another, and usually
influence the behavior of the agents.

Agents act and adapt their internal and external behavior following pre-
defined rules, and according to their internal states (non-interaction-driven
dynamics). Furthermore, agents can interact with each other and behave conse-
quently (interaction driven dynamics), according to interaction rules that may
define both the requirements (i.e., the required value of the internal features of
the agents and/or the type of the agents) enabling the interaction occurrence and
the results of the interaction (i.e., state-change, death and birth of the agents).

Interactions can be deterministic or stochastic. In the former case, if all
requirements are satisfied the interaction occurs in a deterministic manner. In
the latter, a probability γ ∈ (0, 1) is defined, possibly as a function of the agents’
internal states and/or types, and the interaction is treated as a Bernoulli event.
Rules may be very simple, as if-then rules, or very complex, as rules that make
use of complex inner models from, for example, the fields of AI or Bioinformatics.

The way and the protocols used to describe how an agent behaves may largely
vary from an implementation to another. This also holds for the mechanisms used
to describe non-interaction driven dynamics.
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It is worth noting that most ABMs used for the simulation of population
dynamics include a description of the spatial domain, that can be either discrete
or continuous. In such cases, interactions among agents may depend also on
their physical proximity inside the environment. Furthermore, agents may be
allowed to move and diffuse throughout the environment, or in parts of it. While
the agent position could be considered as an internal feature of the agent itself,
and thus managed in the context of the internal-driven dynamics, it is usually
represented explicitly and separately from the other features, mainly for the
visualization of agents distribution in space.

We can define an ABM as 〈P,F ,S, I, Ω(0)〉 where:

• P = {P1,P2, ...Pn} is a finite set of agent types;
• F = {F1,F2, ...Fm} is a finite set of agent features (i.e., attributes);
• S (SPi

) is the set of all the possible configurations of agents (of type Pi);
• I is the set of interaction/transition rules;
• Ω(0) defines the initial set of agents and their configuration at time 0.

We define F = {F1,F2, ...Fm} as a set of agent features possibly owned by
agents. Each feature Fi, can be a limited or unlimited integer or real variable used
to represent the specific attributes of an agent type (e.g., position, age, energy
or activity state, . . .). SPi

∈ S is the set of possible attribute configurations of
type Pi agents. More specifically, SPi

is a subset of the Cartesian product of the
features {Fk1 ,Fk2 , ...,Fkh

} ⊆ F associated with the agent type Pi.

Each agent ej ∈ Ω(t) is characterized by a type
∼
P ∈ P, and its configuration

s′ ∈ S∼
P at time t. Note that even if two agents of the same type

∼
P have the same

identical configuration s′ ∈ S∼
P at time t, they will be identified and treated as

distinct entities. We assume that agents cannot change type over time.
The set of interaction/transition rules I can be partitioned in two sets Itran

and Iint, with Itran∩Iint = ∅. Itran refers to the transition rules describing non-
interaction driven dynamics. Iint defines the set of rules describing interaction
driven dynamics. In general, a rule defines:

• A list of involved agents (including the newborn) with their type;
• The precondition on the agents’ configurations expressed through a boolean

function on their state;
• An occurrence probability or rate expressed as a real function that may

depend on the internal states of the involved agents;
• The definition of the state-changes caused by the rule execution on the

involved agents, possibly creating new agents or eliminating existing ones.
It can be expressed as a set of functions, one for each involved agent (includ-
ing the newborn). Each function is defined on the configuration of all (already
existing) involved agents, and its codomain is the set of possible configura-
tions of the corresponding agent type plus a null configuration modeling the
agent death.
It is worth noting here that while discrete-time ABMs generally use γ as
a probability for the application of a stochastic transition, continuous-time
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ABMs use γ to represent a transition rate characterizing the random variable
modeling the waiting time for the application of the rule.

So, when a rule has to be applied, one or more agents ei ∈ Ω(t) are selected,
the preconditions on the agents’ types and configurations defined by the interac-
tion rule are checked and, if the rule is applied (according to γ), the configuration
of the involved agents is changed according to the rule definition. Furthermore,
the application of the rule may lead to the death of some of the involved agents,
and/or to the introduction of newborn agents.

Let ei, [ej , . . .] ∈ Ω(t) be one or more agents, the application of a generic rule
to the selected agents can be denoted as follows:

I([ei(Pi, s
′), ej(Pj , s

′′), . . .])
p→

〈[ei(Pi,
∼
s

′
),ej(Pj ,

∼
s

′′
), . . . , enew1(Pnew1, snew1), . . .]〉

Rules that produce newborn agents without involving any existing agent are also
possible: I p→ 〈en+1(Pj , s

′)〉 creates a new agent of type Pj and configuration s′.
Generally, the evolution of the system is obtained by continuously apply-

ing the interaction/transition rules to the agents that satisfy the preconditions
defined by rules themselves. To this end, it is fundamental to define a scheduling
function F that establishes the policies on the order of the agents, on the order
of the rules that will be applied on them, and manages possible conflicts and the
synchronous or asynchronous updating of agents. However there is no universal
consensus on how such a scheduler should behave, and therefore any ABM tool
and implementation may use a different approach.

Discrete-time ABMs usually make use of a FITA approach. In this scenario,
the evolution proceeds by discrete time-steps of the same length δ. The applica-
tion of scheduling function F to Ω(t) moves the system from Ω(t) to Ω(t + δ),
by executing a series of actions (each action being the application of a rule to a
given set of compatible agents), with a given order. However, it is supposed that
all the applied actions happen within the same interval (t, t + δ).

Depending on the scheduling policies of ABM tools (e.g. NetLogo), an agent
already involved in a given action may be involved again for the application of
another rule within the same time-step (for passively participating in another
interaction, or for a rule that requires a different agent configuration).

In Continuous-time ABMs the time is instead continuously updated for each
action (i.e., for each applied rule), and the scheduling function considers only
one action at a time. Each possible action has an associated time which is a
random variable with a given distribution. When this distribution is exponential
all actions have an associated rate that is used to calculate a waiting-time, and
the time increment δ(t) depends on the sum of the rates associated with all the
possible actions that can be executed at time t.

Anyhow, in both approaches the role of the scheduling function and its imple-
mented policies are fundamental to obtain reliable results. We will present in the
next section our approach for the simulation of a continuous-time ABM.
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3 Deriving an ABM from the ESSN Representation

The class of ESSN models that can be translated into an ABM following the
procedure described in this section is called AB-ESSN, and comprises some addi-
tional annotation allowing to identify the agent classes and the space structure
where the agents are located. Each place color domain is a Cartesian product
of classes including exactly one agent class and possibly other classes used to
represent the agent attributes including its location in space. The set of places
can thus be partitioned in as many subsets as the number of agent classes in the
model, their initial marking must ensure that each agent identity color appears
only once in the corresponding subset of places, and the net structure must
imply that each such subset identifies a marking invariant of the model. Such
invariance property can be checked using automatic structural analysis methods.

The transitions of AB-ESSNs may represent intra-agent events or interac-
tions among two or more agents. The former type of transition causes a state
change in only one agent, and it must comprise a variable, in its color domain,
corresponding to the agent identity; it typically has one input and one output
place from the subset of places for that agent type. The latter type of tran-
sitions involves two or more agents, and this is reflected in the corresponding
color domain, which must comprise (at least) as many variables as the number
of agents participating in the interaction: one of these agents is indicated as the
active agent while the others are passive (the explicit choice of the agent with
the active role may convey useful information on the model interpretation, how-
ever a default selection is also possible). The transition velocities can be defined
through general functions but they cannot depend on the specific agent id color.

For each transition that does not involve agents’ birth or death, the set of
input agents is equal to the set of output agents, while for the transitions including
birth or death of agents this is not true: this balance can be recovered by adding a
dummy place which can be seen as a pool of fresh agent ids, from which a new id is
withdrawn every time a new agent is generated, and where the ids of dead agents
are put for reuse. This ensures the above mentioned marking invariance property.

Hereafter we assume that the modeler explicitly annotates the model to iden-
tify the agent classes and those representing the locations; the automatic iden-
tification of the agent classes in a not annotated ESSN is not trivial, although
it may be pursued by checking which class satisfies the required constraints.

The set of agent types in the ABM coincides with the color classes repre-
senting agent ids in the AB-ESSN. For each agent type, its state is represented
by a variable corresponding to the id of the place where the “agent token” is
located and a data structure representing the position in the modeled space. In
case the “agent token” in the AB-ESSN model carries additional information,
representing the value of some agent feature, additional variables are included
(whose type corresponds to the color class used to represent the attribute in the
AB-ESSN: e.g. the age category in the SEIRS model).

The agent behavior must embed the state change rules for the ESSN pro-
jection on the corresponding agent type and the mechanism for the continuous
time, event-driven simulation algorithm described in Algorithm 1. The following
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translation algorithm defines how to translate an AB-ESSN into an executable
(NETA) agent-based simulation model.

The Translation Algorithm

• For each color class C(i), i ∈ {1, . . . , m}, identifying an agent type, a Type Pi

will be added to the set of possible agent types P. For each other color class
Cj a feature Fj is added to F .

• Let Gi be the set of places whose color domain includes C(i), (C(i) ∈
cd(p),∀p ∈ Gi) (an agent id class) then a new feature FPi

will be added
to the set of possible agents features F , and the set of possible values of FPi

is Gi. Moreover, the set of possible configurations for agents of type Pi, SPi

will include FPi
.

For each place p ∈ Gi, let cd(p) = C
np,1
1 , . . . , C

np,m
m be its color domain

(where np,k denotes the number of repetitions of class Ck in cd(p)), there
shall be a feature Fj of type Cj in F . Furthermore, SPi

will include as
many repetitions of the feature Fj as the maxj(np,j), i.e., Fj,1...Fj,maxj

.
So, depending on the value of the feature encoding the place identity, the
corresponding subset of features will be used in the agent ABM specification.
Concluding, SPi

will be defined as a subset of the Cartesian product among
{FPi

,Fj1,1, ...,Fj1,maxj1 ,Fj2,1, ...,Fj2,maxj2 , ...}, with Fj1,Fj2, ... ∈ F .
• For each transition t, a new rule Ij ∈ I will be introduced. The color domain

of the transition with its guard c, and the input arc expressions define the rule
preconditions. The rule Ij will involve as many agents as the tokens identified
by I[p, t],∀p ∈• t. The conditions on the configuration of the involved agents
will include a clause checking that the value of the feature corresponding to
each agent state be equal to the input place, and other clauses on the features
(transition variables) appearing in the transition guard c.

• Let O[p, t],∀p ∈ t• be the expressions corresponding to the output arcs of
transition t; the rule Ij will affect as many agents as the number of tokens
produced by O[p, t],∀p ∈ t•. The function defining the state change will be
derived from the input and output arc expressions of t. We note that if a
transition consumes a token with a given color “id” ∈ C(i), and produces
a new token with the same type and “id”, but possibly in another place
∈ Gi, and/or with different values on the other features, the corresponding
interaction rule I∗ will not destroy the involved agent and will not create a
new agent, but it will just change the internal configuration s′ of the selected
agent ej of type Pi to s′′, with s′, s′′ ∈ SPi

.
• The rate function of the transition t (described by a Mass Action law function

or a general function such as, for example, a Michaelis-Menten equation) will
be used to determine the appropriate rate function γ of the corresponding
rule.

We introduce now the definition of the scheduling algorithm for the sim-
ulation of the translated ABM. The main idea is to use an approach that is
in line with the SSA algorithm presented in Sect. 2.1, but that takes also into
account the concept of agent. To simplify the implementation in existing ABM
frameworks, we suppose that the scheduler function will choose the next event
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by randomly selecting among all the agents (with a roulette-wheel method) the
next agent with a probability proportional to the sum of the rates of the rules
that can be applied on it, and thus selecting (again with a roulette-wheel method
on the rates of the rules) a rule among all the rules that can be applied on the
selected agent. While this process is quite straightforward for transition rules,
some assumptions must be made for interaction rules, i.e., rules that involve
more than one agent. In this scenario, we suppose that for each interaction rule
∈ Iint there is an active participant (identified by a given type P∗, and a given
configuration s∗ ∈ SP∗) that will take care of executing the rule, and one or more
passive participants that will undergo the rule execution. As a consequence, the
interaction rule rates will be only included in the calculation of the cumulative
rates of their respective active agents. This also involves that for the calcula-
tion of the rule rates any active agent must be aware of the number of possible
combinations of passive agents it can interact with.

When a given agent e∗ is selected for the next event, and an interaction rule
I∗ has been selected among the possible rules associated with e∗, the passive
agents will be randomly selected among those that are compatible with I∗ and
the rule will be applied.

For transitions with no input places, that can be used to represent environ-
mental and/or global events such as the introduction of novel agents inside the
simulation, we introduce, for the sake of the translation, a global “meta-agent”
(the environment), that will be in charge of these rules. This meta-agent will
have its own rate according to the associated rules, and will always compete
with all the other real agents for the selection of the next agent and rule.

To obtain a more efficient implementation of the scheduler function we will
take advantage of a common characteristic owned by the majority of ABM tools,
i.e., the description of the physical space on which the agents move and behave.
We then suppose that all agents own a specific feature F∗ that will represent
their position pi inside a physical space P , with pi ∈ P . For simplicity, we
consider P as composed of a finite set of positions (i.e., discrete space). Multiple
agents may be in the same pi at the same time, but each agent can be in only one
position at a given time. Movement is implemented using specific transition rules
that change the position of the agents. Moreover, a notion of physical proximity
derived from the position may limit the application of the interaction rules to
agents that are within a given range (e.g., in the same position).

As a consequence, when an event occurs and an interaction rule is carried
on some selected agents, the event will at most influence only the rates of the
agents that are in the positions on which the rule had an effect, i.e., in the same or
close positions for agents influenced by an interaction rule, or in the starting and
ending position for an agent that moved. So, thanks to the memory-less property
of the exponential distribution and the locality of rules, we can recalculate the
agent rates only for the agents in the positions affected by the last event. The
pseudo-code can be found as follows in Algorithm 1.

We note here that, since the state change in the ESSN is local, it is possible
to introduce further optimizations in Algorithm 1 by limiting the recalculation
of the enabled rules and of the corresponding rates exploiting such locality (par-
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tially implemented in the proposed algorithm using on agents’ position). This
can be directly derived from the net structure. Such optimization method is
similar to the technique applied in [16].

Algorithm 1: Scheduler function for continuous-time ABM simulation
(Initialization);
CurrentTime ← 0;
foreach position pi do

set the update status of position upi ← 1;
end
(Algorithm execution);
while CurrentTime ≤ FinalTime do

(Calculation of agents’ individual rates);
foreach agent ej in a position pi, with upi = 1 do

foreach rule Ih compatible with the agent ej do
Calculate, for the agent ej , the rule rate γ(ej ,Ih);

end
Set the agent cumulative rate γej ← ∑

γ(ej ,Ih);

end
foreach position pi with upi = 1 do

set the update status of position upi ← 0 ;
end
(Calculation of the global rate);
γtot ← ∑

γej ;
(Selection of the next agent and rule according to their rates);
e∗ ← roulette wheel selection(ej ,γej );
I∗ ← roulette wheel selection(Ih,γ(e∗,Ih) );
Execute the rule I∗ on agent e∗ (and on other involved passive agents);
foreach pj influenced by the execution of I∗ do

upj ← 1;
end
(Time update);
CurrentTime ← CurrentTime + 1

γtot
· ln ( 1

random float(0,1)
) ;

end

4 Case Study: SEIRS

In this section, we propose an extended version of the Susceptible-Exposed-
Infected-Recovered-Susceptible (SEIRS) model considering the population space
and age distribution (already introduced in Sect. 2.1). The model is defined by
exploiting the AM-ESSN formalism, as depicted in Fig. 1. It is characterized by
five modules, each including one place, representing the susceptible (S), exposed
(E), infected (I), recovered (R), and dead (D) individuals.

Let us now briefly describe each module. The Susceptible module is char-
acterized by place S representing the susceptible individuals, and it models indi-
viduals not exposed to the pathogen. Such individuals may get infected if they get
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in touch with an infected individual, through the Infection transition, becoming
an exposed individual. The Exposed module, defined by place E, is charac-
terized by the exposed individuals which do not show symptoms until the end
of the incubation period. Through the EndIncubation transition the exposed
individual becomes an infected individual modeled by place I in the Infected
module. After a certain time period, an infected individual may (1) recover
becoming a recovered individual, which is not contagious anymore: in this case,
he/she moves from place I in the Infected module to place R in the Recovered
module by means of transition Recovery ; (2) die moving from place I in the
Infected module to place D in the Dead module. A recovered individual even-
tually becomes susceptible again through the EndImmunity transition, but while
in R state he/she can not be infected and remains out of the disease dynamics.

All demographic changes in the population (births, deaths not caused by the
infection, and ageing) are explicitly disregarded in our model. Finally, the Sus-
ceptible, Exposed and Infected modules include a movement transition (MoveS,
MoveE, and MoveI respectively) representing the movement of agents among
different positions. It is possible to automatically verify that all places in this
model are covered by a P-invariant which implies that if in the initial mark-
ing each token has a different agent id, then all reachable markings have this
property, moreover each agent can be in only one state (S, E, I, R or D).

Application of the Translation to the SEIRS Example. We implemented the ABM
translation of the SEIRS model using the approach described in Sect. 3. The
model has been implemented on top of the NetLogo ABM framework [18]. The
template examples to code an ABM model with NetLogo using the approach
described here are given in the Appendix 1. In NetLogo agents are named turtles,
space is explicitly represented by means of a particular type of agents, called
patches, that do not move: each position is represented by a patch. In this
example there is only one type of turtles; they own age (with three possible
values) and a value called “pdelta” that is used to store the death rate according
to the corresponding age. We also used another variable named “tgamma” to
temporary store the cumulative agent rate. Patches own a specific property called
“update”, that is used for the local optimization described in the scheduling
algorithm, and a property called “gamma” for the cumulative rate of the patch.
Using the NetLogo “ask” command it is possible to tell the agents (turtles or
patches) to do something. While the procedure for the selection of the next
event, and thus of the next turtle to act, implements the scheduling Algorithm
1, the result of the rule logic has been instead implemented inside the turtle code
using the “ask” command. We note here that, even if the transition rates of our
SEIRS ESSN example are defined according to Mass Action law velocities, in
principle any general real function can be used and translated. The complete
SEIRS NetLogo model with all the code and comments is available at https://
github.com/qBioTurin/AM-ESSN.

Simulation Experiments. Some simulation experiments have been performed
using the SSA simulator integrated into GreatMod tool [4] on the (unfolded)
ESSN model and using the Netlogo model automatically generated from the
same ESSN model and implementing Algorithm 1. The first simulator is obtained

https://github.com/qBioTurin/AM-ESSN
https://github.com/qBioTurin/AM-ESSN
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Fig. 2. Comparison among the trajectories (represented exploiting box-plots) gener-
ated exploiting the SSA (cyan) and AM (red) approaches considering 5 positions. (Color
figure online)

after decoloring [5] the model of Fig. 1 w.r.t. the agents’ id color class (Agent):
this can be done without affecting the model behavior (by properly defining the
transition MA rates so that the underlying CTMC is an exact lumping of the
original one).

Table 1. Execution times (sec.) of
the two approaches.

# Pos. #S ESSN ABMS

5 1000 54 328

10 1000 95 315

20 1000 623 332

25 1000 1656 333

5 2000 54 1200

5 4000 54 5259

5 8000 64 25860

Table 1 shows the measured times vary-
ing number of positions and susceptible pop-
ulation size: these are obtained perform-
ing 1000 simulation runs using the ESSN
derived SSA (this includes the code gen-
eration time from the unfolded ESSN and
the actual simulation) and using the Netl-
ogo simulator (which has been generated by
applying the rules described in Sect. 3; the
automatic translation is being implemented
and some heuristics to speed up the simula-
tion are being experimented). It is easy to
see that the first approach is not affected by
the increase in the population size (since the agents id is not maintained) while
the time increases with the number of positions; on the other hand, the ABMS
time is not affected when increasing the number of positions while it increases
when increasing the population size. Furthermore, in Fig. 2 results obtained with
both approaches are plotted, considering 5 positions and 1000 simulations for
each approach. In details, for each time point two box-plots are plotted: the red
one (on the left) shows the variability of the distribution of the AM simulations
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at a specific time point, while the blue box-plot (on the right) is associated
with the SSA simulations. The solid lines represent the mean trajectory of both
approaches, while the dashed lines show the standard deviation of the simula-
tions w.r.t. the means. Results in Fig. 2 show very good accordance. It is possible
to note the equivalence of the results by observing that i) the mean of the simu-
lations experiments are overlapping, and ii) the boxes reporting the probability
distribution of each population class over the time obtained through AM and
SSA are comparable.Further analysis regarding this equivalence are reported the
Appendix 2.

5 Conclusions and Future Work

In this paper, we present the AB-ESSN metaformalism to study systems exploit-
ing two orthogonal simulation approaches with respect to the system description
detail level (macroscopic or microscopic). Specifically, our methodology derives
an agent based or a stochastic simulator starting from a unique graphical repre-
sentation, provided through the AB-ESSN formalism. The automatic translation
from AB-ESSN to ABMS leads to a well defined semantics. The newly proposed
scheduling algorithm for agents’ actions makes event scheduling independent
from any implementation choice about the order of the agents, and the exe-
cution of their actions by the underlying ABMS engine. Combining these two
aspects provides coherence between the two simulation methodologies.

Closely related to the macro versus micro perspective, the ease of measur-
ing specific aspects of our simulation models is a key aspect in selecting the
most suitable computational approach (i.e. SSA or ABMS) for a given study.
For instance, as shown by our experiment ABMS is more efficient in handling
spatial aspects of the diseases’ spread; while SSA scales up better when the
population is increased. Moreover, measures taking into account the identities
of the components/entities of the system are more easily derived using ABMS.
For instance, considering the SEIRS model presented in Sect.4, the individuals’
number who fall ill again in the ABM requires only to count, for each agent,
the times this event happens. On the other hand, the computation of the same
measure using SSA requires updating the ESSN model tracking each reinfection
with an additional color, increasing the complexity of the model.

As further work, we will integrate the proposed algorithm in GreatMod
(https://qbioturin.github.io/epimod/) a powerful framework developed by our
group for the analysis of biological and epidemiological systems. We will work
also to implement the proposed translation algorithm on top of other ABM
frameworks, as FlameGPU (https://flamegpu.com/). Finally, the ABMS algo-
rithm performance will be improved by taking advantage of the information on
the dependency between rules that can be derived from the ESSN structure.
Beyond that, we are studying an optimized version of the scheduling algorithm
exploiting symmetries automatically derived from the ESSN structure.
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Appendix 1: NetLogo Templates from ESSN to ABM
Translation

ESSN to ABM translation step:
For each color class C(i), i ∈ {1, . . . ,m}, identifying an agent type, a Type Pi will be
added to the set of possible agent types P. For each other color class Cj a feature Fj

is added to F .
Netlogo template code:
;this is a comment!
breed [AGENTS_Pi ANAGENT_Pi]

breed [AGENTS_Pj ANAGENT_Pj]

breed [AGENTS_Pk ANAGENT_Pk]

;``breed'' creates a new agent type, AGENTS_Pi refers to the entire
; population of type Pi, while ANAGENT_Pi will be the keyword
; to indicate an agent of type Pi
ESSN to ABM translation step:
Let Gi be the set of places whose color domain includes C(i), (C(i) ∈ cd(p), ∀p ∈ Gi)
(an agent id class) then a new feature FPi will be added to the set of possible agents
features F , and the set of possible values of FPi is Gi. Moreover, the set of possible
configurations for agents of type Pi, SPi will include FPi .
Netlogo template code:
; Tbere is no Enum type in NetLogo, so the possible values must be
; initially set into the "setup" procedure, and managed through the
; interaction and transition rules.
AGENTS_Pi-own FPi

AGENTS_Pj-own FPj

AGENTS_Pk-own FPk

;Initial values and populations can be set inside the ``to setup''
;procedure, while the execution code can be set in the ``to go'' procedure
to setup [

create-AGENTS_Pi 10 [ ;; create 10 agents of type Pi
set color red ;; set initial values...
set FPi "SOMEINITIALVALUE"

]

]

to go [ ;execution code
ask AGENTS_Pi [do-something...]

]
ESSN to ABM translation step:

For each place p ∈ Gi, let cd(p) = C
np,1
1 , . . . , C

np,m
m its color domain (where np,k

denotes the number of repetitions of class Ck in cd(p)), there shall be a feature Fj of
type Cj in F . Furthermore, SPi will include as many repetitions of the feature Fj as
the maxj(np,j), i.e. Fj,1...Fj,maxj . So, depending on the value of the feature encoding
the place identity, the corresponding subset of features will be used in the agent ABM
specification. Concluding, SPi will be defined as a subset of the Cartesian product
among {FPi ,Fj1,1, ...,Fj1,maxj1 ,Fj2,1, ...,Fj2,maxj2 , ...}, with Fj1,Fj2, ... ∈ F .

Netlogo template code:
;Repeated for each Cj in cd(Gi)
AGENTS_Pi-own Cj

AGENTS_Pi-own Ch

;...
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AGENTS_Pj-own Cl

AGENTS_Pk-own Ck

;...
; As said before, no Enum type in NetLogo, Variables will be
; initially set into the "setup" procedure, and managed
; through the interaction and transition rules

ESSN to ABM translation step:
For each transition t, a new rule Ij ∈ I will be introduced. The color domain of the
transition with its guard c, and the input arc expressions define the preconditions that
will be checked to select the rule Ij . If I[p, t] is the expression function on the input
arcs on the transition t (for each p ∈• t) the rule Ij will involve as many agents
as the tokens identified by I[p, t], The conditions on the state of the involved agents
will be determined according to the guard c of the transition and according to the
functions on the input arcs that define conditions on the marking of the input places.Let
O[p, t], ∀p ∈ t• be the expressions corresponding to the output arcs of transition t,
The rule Ij will affect as many agents ei, ej , . . . as the number of tokens produced
by O[p, t]. The function defining the state change will be derived from the input and
output functions of t.
Netlogo template code:
; Let us suppose that NEXT_TO_INTERACT is one of the active
; agents of type Pi that has been selected according the
; scheduling procedure, and suppose the agent chooses the next rule
; to be executed with a roulette wheel method.The other passive
; agents participating to the rule can be selected as follows
ask NEXT_TO_INTERACT [

let FRIEND1 one-of AGENTS_Pj with [Cl = "SOMETHING" ]

;...
let FRIEND2 one-of AGENTS_Pk with [Ck = "SOMETHINGELSE" ]

; these two last statements are repeated as many times as
; the number of passive agents required for the selected rule.
; With the "with" command we select only agents that satisfy
;the given preconditions on their state established by the rules
; If the rule is used to select another agent of type Pi
; (i.e., of the same type as the active agent) it is possible
; to use the statement
let FRIEND3 one-of other AGENTS_Pi with [...]

; To select n agents of a given type it is possible to use
; the statement ``n-of'' instead of ``one-of''.
; To apply the actions required by the rule to change the state
; on passive agents

ask FRIEND1 [

;possible commands (some examples)
set Cl "SOMETHINGNEW" ; changing internal configuration
hatch_AGENTS_Pj 10 [ ; create 10 agents of type pj with a given configuration
set Cl "SOMEPREDEFINEDVALUE"]

]

ask FRIEND2 [

;possible example commands
fd 1 ; move the agent ahead of one position
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set color "green" ; change agent color
die ; kill the agent FRIEND2

] ; We can also have actions for the active agent
do-something

die

;....
]

ESSN to ABM translation step:
The rate function of the transition t will be used to determine the appropriate rate
function p of the corresponding rule.
Netlogo template code:
; if the agents of type Pi have, for example, a rate r1 to change their
; configuration and rate r2 to interact (as active agents) with
; agents of type Pj (passive agents) in the same position,
; the following code template can be used.
ask patches with [update = 1] [set totPj count AGENTS_Pj-here with [...]]

; The rule counts all passive agents Pj in each position (that
; needs recalculation) eventually with given characteristics.
; totPj can be defined as a patch variable with the command patches-own
ask AGENTS_Pi-on patches with [update = 1] [

; calculation of agent cumulative rate only for agents on positions
; that need to be updated. tgamma is a turtle variable that contains
; its cumulative interaction rate
set tgamma r1 + totPj * r2 ]

; here rate calculation for other agents...
; calculation of cumulative gamma per position
; gamma is defined as a patch variable

ask patches with [update = 1] [

set gamma sum [tgamma] of turtles-here

set update 0 ]

; turtles-here selects all types of agents on the position
set gammatot sum [gamma] of patches ; global rate calculation
; time increment calculation
let increment ((-1 /(gammatot)) * ln(random-float 1))

set time time + increment

; choice of next agent to interact using aroulette wheel method.
; In this case we use the NetLogo rnd extension
let NEXT_TO_INTERACT rnd:weighted-one-of turtles [tgamma]

ask NEXT_TO_INTERACT [

; roulette wheel selection among the two possible actions of the agent
let p1 (totPj * r2 / tgamma)

let pp random-float 1

; interaction rule code here
if-else pp < p1 [do-something... ]

; transition rule code here
[do-something-else...] ]

Appendix 2: Simulation Results

The curves in Figs. 2 and 3 show the number of Susceptible, Exposed, Infected
and Recovered people in the time period (0, 20) with an initial state comprising
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Fig. 3. Results with 10, 20 and 25 positions
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1000 susceptible individuals, uniformly distributed among the K ∈ {5, 10, 20, 25}
positions, and 5 infected concentrated in one position. People can freely move
from one position towards any other position (with equal probability). The
results are obtained by performing 1000 runs with the ESSN derived SSA (in
cyan) and the NetLogo simulation (in red): the curves show consistent results.

We performed a thorough analysis to check the statistical equivalence
between the SSA and the ABM simulation. We wanted to show that curves
generated from two independent CTMCs X1 and X2 are equally distributed
(X1

d= X2). Since we are studying data represented by curves (i.e., functional
data), we apply the functional data analysis (FDA) to test the distribution equiv-
alence. In details, we used the R package fdatest (https://cran.r-project.org/
web/packages/fdatest) in which the FDA is used to define a statistical hypothe-
sis test with the aim to verify the null hypothesis X1

d= X2 against the alternative

X1

d

= X2. The approach3, on which the test is based, is called the Interval Test-
ing Procedure (ITP) and it is characterized by projecting the functional data
(which belong to an infinite-dimensional space) into a finite-dimensional space
with a definition of coefficients of a suitable basis expansion (i.e., B-spline) on
a uniform grid. Successively, univariate permutation tests for each basis coeffi-
cient are jointly performed, and then combined to obtain the p-values for the
test associated with each spline coefficient (the p-values can be further corrected
to assure the control of the level of the test for each possible set of true null
hypotheses).

The results obtained refer to p = 9 uniformly spaced B-splines of order m =
2, and all the places (S, E, I, R) were tested considering all the scenarios with
different number of positions. Thus, in each interval characterizing the B-spline
no significant differences are found (i.e., all the corrected p-values associated
with each B-spline coefficients are greater than .05) between the curves obtained
from the SSA and the ABM simulation.

Appendix 3: Formal Definition of the ESSN Formalism

Definition 1 (Extended Stochastic Symmetric Net). An ESSN is a ten-
tuple:

NESSN = 〈P, T, C, I, O, cd , Θ, ω,Ω,m0〉
where

– P = {pi} is a finite and non empty set of places, with i = 0, . . . , np, where
np is the number of places.

– T is the set of transitions and is defined as T = Tma ∪Tg, with Tma ∩Tg = ∅.
Where Tma = {t∗i }1≤i≤nTma

is the set of the nTma
transitions whose speeds

follow the MA law, and Tg = {ti}1≤i≤nTg
is the set of the nTg

transitions
whose speeds are defined as continuous functions.

3 Pini, Alessia, and Simone Vantini. “The interval testing procedure: inference for
functional data controlling the family-wise error rate on intervals”. MOX-Report 13
(2013): 2013.

https://cran.r-project.org/web/packages/fdatest
https://cran.r-project.org/web/packages/fdatest
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– C = {C1, . . . , Cn} is the finite set of basic color classes; a color class Ci can
be partitioned into subclasses Ci,j or can be circularly ordered.

– I,O[p, t] : cd(t) → Bag[cd(p)],∀p ∈ P, t ∈ T are the input and output matri-
ces4, whose elements are functions annotating the directed arc connecting t
and p (if the arc does not exist the corresponding function is the empty con-
stant). The arc functions are denoted by expressions that take the form of
weighted sums of tuples

∑
i λi.〈f1, . . . , fk〉[g], where g is a standard predicate

(following the same syntax of the transition guards), the tuple elements fi are
class functions [6] built upon a restricted set of basic functions namely pro-
jection denoted by a transition variable vi, successor denoted !vi (only defined
on ordered classes), and a constant function denoted Si (Si,j) returning all
the elements of (sub)class Ci (Ci,j):

fi =
m∑

k=1

αk.vk +
||C||∑
q=1

∑
j

βq,j .SCq,j
+

m∑
k=1

γk.!vk; αk, βk, γk ∈ Z

– cd :
⊗n

i=1

⊗ei

j Cj
i is a function defining the color domain of each place and

transition (where ei ∈ N is the number of occurrences of the class Ci); for
places it is expressed as the Cartesian product of basic color classes, for transi-
tions it is expressed as a list of variables with their types. Observe that a place
may contain undistinguished tokens or a transition may have no parameters,
in this case their domain is neutral.

– Θ is the vector of guards and maps each element of T into a standard predi-
cate. The admissible basic predicates are v = v′, v ∈ Ci,q, d(v) = d(v′) where
v, v′ ∈ var(t) have same type Ci and d(v) denotes the static subclass Ci,j of
the color assigned to v by a given transition instance c ∈ cd(t) (Θ(t) may be
the constant true, that is also a standard predicate).

– ω(t, c) is the rate parameter of transition t ∈ Tma when firing the instance
〈t, c〉.

– Φ = {f〈t,c〉}t∈T∧c∈cd(t) is set of all transition speeds ∀t ∈ T . These must be
continuous and derivable functions, and they can depend only on the marking
of the input places of transition t at time ν defined in Eqs. 1 and 2.

– m0 : P → Bag[cd(p)] is the initial marking, a P-indexed vector, mapping
each place p on a multiset on cd(p).
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Abstract. This paper defines embeddings which allow one to construct
an action labeled continuous-time Markov chain (ACTMC) from a state
labeled continuous-time Markov chain (SCTMC) and vice versa. We
prove that these embeddings preserve strong forward bisimulation and
strong backward bisimulation. We define weak backward bisimulation for
ACTMCs and SCTMCs, and also prove that our embeddings preserve
both weak forward and weak backward bisimulation. Next, we define
the invertibility criteria and the inverse of these embeddings. Finally, we
prove that an ACTMC can be minimized by minimizing its embedded
model, i.e. SCTMC and taking the inverse of the embedding. Similarly,
we prove that an SCTMC can be minimized by minimizing its embedded
model, i.e. ACTMC and taking the inverse of the embedding.

Keywords: Markov chain · Behavioral equivalence · Bisimulation
equivalence · Stochastic systems · Embeddings

1 Introduction

Continuous-time Markov chains (CTMCs) have a wide applicability ranging
from classical performance and dependability evaluation to systems biology.
CTMC models are categorized as either state labeled CTMCs (SCTMCs) or
action labeled CTMCs (ACTMCs). SCTMCs are primarily used by the model
checking community for the formal verification of stochastic systems. Real-time
properties can be expressed for SCTMCs using continuous stochastic logic (CSL)
[3,5], CSLTA [16], deterministic timed automaton (DTA) [1] and metric tem-
poral logic (MTL) [33] formulas. State-of-the-art model checking algorithms
[3,13,16] and tools such as Probabilistic Symbolic Model Checker (PRISM) [27],
Markov Reward Model Checker (MRMC) [24] and Storm [15] have been imple-
mented to model check these real-time objectives. To tackle the state space
explosion problem [2], several abstraction techniques have been proposed for
SCTMCs, e.g. three-valued abstraction [25], symmetry reduction [26] and simu-
lation/bisimulation minimization [23]. In contrast, ACTMCs are more commonly
used as semantic model for amongst others stochastic process algebras [8,21,22],
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stochastic Petri nets [28] and stochastic activity networks [29,34]. Various linear-
time and branching-time relations on ACTMCs have been defined such as trace
and testing equivalences [8,10,39], weak and strong variants of bisimulation
equivalence and simulation pre-order [4,9,11,22]. Although both these models
are regarded to be on an equal footing, no effort has been made in the past to
let the analysis techniques and tools of one community to be utilized by the
other. More specifically, these two communities have independently developed
their methods and tools without leveraging the advancements made by the other
community. For example, performance analysis tools have also been developed
for ACTMCs, e.g. mCRL2 [12] and CADP [17]. Similarly, several equivalences
have been defined for SCTMCs [3,5,37].

This paper focuses on providing a formal framework which allows one to
use the state-of-the-art tools developed in one setting for model minimization
in the other setting. For example, backward bisimulation and weak backward
bisimulation minimization is not supported by any of the well known stochastic
model checking tools, e.g. PRISM, MRMC and Storm. This means that if one
of these tools in the state based stochastic setting implements the quotienting
algorithm, then using our framework, models in the action labeled stochastic
setting can also be minimized and vice versa. To achieve this goal, we define the
embeddings slc from ACTMCs to SCTMCs and alc from SCTMCs to ACTMCs.
We prove that both these embeddings preserve strong forward and strong back-
ward bisimulation. Next, we define weak backward bisimulation for SCTMCs
and ACTMCs, and show that weak forward and weak backward bisimulaion are
incomparable. We also prove that weak forward and weak backward bisimulation
are preserved by our newly defined embeddings.

In order to reverse the effects of alc and slc, we define the invertibility cri-
terion and the left inverse of these embeddings, i.e. alc−1 from ACTMCs to
SCTMCs and slc−1 from SCTMCs to ACTMCs. We also show that the invert-
ibility is preserved w.r.t. strong forward, strong backward, weak forward and
weak backward bisimulation. Finally, we prove that a model can be minimized
in one setting by minimizing its embedded model in the other setting and apply-
ing the inverse of the embedding. For example, if one applies alc to an SCTMC
and minimizes it, then the left inverse embedding, i.e. alc−1 will return the
minimal SCTMC (for all the strong and weak variants of bisimulation).

Organisation of the Paper. Section 2 presents the related work. Section 3 briefly
recalls the main concepts of SCTMCs and ACTMCs. Section 4 defines the
embeddings slc and alc. Section 5 proves that these embeddings preserve both
forward and backward bisimulation. Section 6 proves that these embeddings also
preserve both weak forward and weak backward bisimulation. Section 7 defines
inverse embeddings and proves that model minimization is preserved under our
framework. Finally, Sect. 8 concludes the paper and provides pointers for future
research.
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2 Related Work

In [31,32], De Nicola and Vaandrager showed that there are embeddings between
Kripke structures (KSs) and labeled transitions systems (LTSs). These results
have enabled one to use a process algebra to describe the system behaviour as an
LTS and to use Computational Tree Logic (CTL) or CTL* to specify the require-
ment the system has to comply with. Additionally, authors have shown that stut-
tering equivalence for KSs coincides with divergence-sensitive branching bisimula-
tion for LTSs. In [35,36], Reniers et al. have extended the above mentioned results
by defining two additional translations, i.e. inverse embeddings which enable min-
imization modulo behavioral equivalences. In this paper, authors have shown that
their embeddings can also be used for a range of other equivalences of interest, e.g.
strong bisimilarity, simulation equivalence, and trace equivalence. In [30], a tool
was developed which takes a process description and an action-based version of
CTL (ACTL) formula to be verified, and then translates them into a Kripke Struc-
ture and CTL, respectively. In [18,19], author have presented a new proposal to
evaluate the relative expressive power of process calculi. Unlike full abstraction,
their proposal is more focused on expressiveness issues and is also interesting for
separation results. In the software product line setting [6,7], authors have demon-
strated that modal transition systems (MTSs) with variability constraints are
equally expressive as featured transition systems (FTSs). This has been achieved
by defining two transformation functions between these models, and proving the
soundness and completeness of both the transformations. In the probabilistic set-
ting, a formal framework for relating the two types of discrete time probabilistic
models has been proposed in [14]. This framework preserves strong bisimulation
and trace equivalences and allows taking the inverse of the embedding. This frame-
work can not be directly lifted to the stochastic setting as it fails to preserve weak
(forward and backward) bisimulation equivalences.

3 Preliminaries

This section presents the necessary definitions and basic concepts related to
continuous-time Markov chains (CTMCs) that are needed for the understanding
of the rest of this paper.

Definition 1 (SCTMC). A state labeled continuous-time Markov chain
(SCTMC) is a tuple C = (S,AP,R, s0, L) where:

– S is a countable, nonempty set of states,
– AP is the set of atomic propositions,
– R : S × S → R≥0 is a rate function,
– s0 is the initial state, and
– L : S → 2AP is a labeling function.

C is called finite if S and AP are finite. Let →= {(s, r, t) | R(s, t) = r > 0}
denote the set of all transitions for an SCTMC C. We denote s

r−→ t if (s, r, t) ∈→.
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Let s
r−→ denote that ∃s′ ∈ S s.t. R(s, s′) > 0. Similarly, let r−→ s denote that

∃s′ ∈ S s.t. R(s′, s) > 0. For C ⊆ S, let R(s, C) =
∑

t∈C R(s, t). For C ⊆ S,
R(C, s) =

∑
t∈C R(t, s). The exit rate E(s) for the state s ∈ S be given by

E(s) =
∑

s′∈S R(s, s′). Note that, E(s) = R(s, S). For a state s, E(s) = 0 is
equivalent to calling s an absorbing state.

Definition 2 (ACTMC). An action labeled continuous-time Markov chain
(ACTMC) is a tuple C = (S,Act,R, s0) where:

– S is a countable, nonempty set of states,
– Act is the set of actions which contains the special action τ ,
– R : S × Act × S → R≥0 is a rate function, and
– s0 is the initial state.

C is called finite if S and Act are finite. τ is special action used to denote an
invisible ccomputation. The analogous concept in SCTMC refers to moving to
states with the same label. Let →= {(s, a, r, t) | R(s, a, t) = r > 0} denote the set
of all transitions for an ACTMC C. We denote s

a,r−−→ t if (s, a, r, t) ∈→. Let s
a,r−−→

denote that ∃s′ ∈ S and ∃a ∈ Act s.t. R(s, a, s′) > 0. If a state s cannot perform
a particular action, say a, with a positive rate, we denote it by s �→a. Similarly,
let

a,r−−→ s denotes that ∃s′ ∈ S and ∃a ∈ Act s.t. R(s′, a, s) > 0. If a state s
cannot be reached by performing a particular action, say a, in one step with a
positive rate we denote it by �→a s. For C ⊆ S, let R(s, a, C) =

∑
t∈C R(s, a, t).

For C ⊆ S, R(C, a, s) =
∑

t∈C R(t, a, s). The exit rate E(s) for the state s ∈ S
be given by E(s) =

∑
s′∈S,a∈Act R(s, a, s′). Note that, E(s) =

∑
a∈Act R(s, a, S).

For a state s, E(s) = 0 is equivalent to calling s an absorbing state. We assume
that our SCTMC and ACTMC models do not have absorbing states.

4 Embeddings

This section defines the embeddings slc and alc. slc allows one to construct an
SCTMC from an ACTMC. Similarly, alc is useful for constructing an ACTMC
from an SCTMC.

Definition 3 (slc). Let C = (S,Act,R, s0) be an ACTMC and θ ∈ R>0 be
a positive real which is fixed. The embedding slc : ACTMC → SCTMC is
formally defined as slc(C) = (S′, AP ′, R′, s′

0, L
′) s.t.:

– S′ = S ∪ {(a, t) | R(s, a, t) > 0 for some s, t ∈ S and a �= τ},
– AP ′ = (Act\{τ}) ∪ {⊥} where ⊥ /∈ Act,
– The rate function R′ is defined by:

R′(s, (a, t)) = R(s, a, t) ∀s, t ∈ S s.t. R(s, a, t) > 0 and a �= τ,

R′(s, t) = R(s, τ, t) ∀s, t ∈ S s.t. R(s, τ, t) > 0, and

R′((a, t), t) = θ ∀(a, t) ∈ S′\S,

– s′
0 = s0, and
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– L′(s) = {⊥} ∀s ∈ S and L′((a, t)) = {a}.
Let |S| denote the cardinality of a given set S.

Example 1. Consider the ACTMC C shown in Fig. 1 (left). The SCTMC
obtained by applying slc, i.e. slc(C) is shown in Fig. 1 (right).

s0

s1

s2

s3

s0

{⊥}
s1

{⊥}
s2

{⊥}
s3

{⊥}

a, 4

a, 4

τ, 7

b, 2

b, 2
b, 5

τ, 7

(a, s1)

{a}
(a, s2)

{a}
(b, s3)

{b}
θ θ

θ4

7

4 2

2

5

7

Fig. 1. ACTMC C and slc(C)

Remark 1. Let C be an ACTMC with |S| = n, |Act| = t and let m be the
maximum number of different actions (excluding τ) through which any state
s can be reached in C in one step (clearly, m ≤ |Act| = t). Then for slc(C),
|S′| ≤ n+(n·m) = (m+1)·n ≤ (t+1)·n and | →′ | ≤ | → |+(n·m) ≤ | → |+(n·t).
This is due to the fact that each outgoing transition for a particular action (�= τ)

to a state results in only one new state in slc(C), e.g. if s
a,r−−→ t and s′ a,r′

−−→ t,
then we only create one new state (a, t) in slc(C). The number of transitions in
slc(C) increases by an amount exactly the same as the increase in the number
of states, as for each new state, we add exactly one additional transition of the

form (a, t) θ−→
′

t.

Definition 4 (alc). Let C = (S,AP,R, s0, L) be an SCTMC and θ ∈ R>0 be
a positive real which is fixed. The embedding alc : SCTMC → ACTMC is
formally defined as alc(C) = (S′, Act′, R′, s′

0) s.t.:

– S′ = S ∪ {s | s ∈ S},
– Act′ = 2AP ∪ {τ,⊥},
– R′ is defined by:

R′(s,⊥, t) = R(s, t) ∀s, t ∈ S s.t. R(s, t) > 0 and L(s) �= L(t),

R′(s, τ, t) = R(s, t) ∀s, t ∈ S s.t. R(s, t) > 0 and L(s) = L(t),

R′(s, L(s), s) = θ ∀s ∈ S, and

– s′
0 = s0.
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Remark 2. Let C be an SCTMC with |S| = n. Then for alc(C), |S′| = 2 · n and
| →′ | = | → | + n. The number of transitions increases by an amount exactly
the same as the increase in the number of states, as for each state, we add one

additional transition of the form s
L(s),θ−−−−→

′

s.

Both alc and slc introduce new transitions with rate θ. Note that, in the embed-
ded CTMC, the steady state probabilities and the timed reachability probabili-
ties are not preserved, as the embedded system will also spend time in the new
states. When θ converges to 0, the steady state probabilities converge to that of
the original CTMC. The convergence of θ is not a problem because our goal is to
minimize the system after applying the embedding and then take the inverse of
the embedding to get back the quotient of the original model. Taking the inverse
will reverse the effects of applying an embedding and will return a model without
θ-labeled transitions which will preserve the steady state and timed reachability
probabilities.

Example 2. Consider the SCTMC C shown in Fig. 2 (left). The ACTMC
obtained by applying alc, i.e. alc(C) is shown in Fig. 2 (right).
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τ, 5

Fig. 2. SCTMC C and alc(C)

Remark 3. From [20], we know that the correctness of the embeddings (‘encod-
ings’) involves fulfilling the notion of full abstraction. An emebedding is said to
satisfy the criterion of ‘full abstraction’ if and only if it maps every equivalent
pair of states to an equivalent pair in the range set and vice versa. As a result,
a ‘correct’ embedding has to map equivalent source pairs into equivalent target
pairs and, conversely, equivalent images of this mapping must have originated
from equivalent source pairs.

Next, we establish these claims for our definition of the embeddings.

5 Preservation of Strong Bisimulation

In this section, we show that the embeddings defined in Sect. 4, i.e. slc and
alc preserve both forward and backward notions of strong bisimulation. We
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first recall the definitions of forward and backward bisimulation [4,5]. Given
an equivalence relation R, let S/R denote the set consisting of all R-equivalence
classes. Let [s]R denote the equivalence class of state s under R, i.e. [s]R = {s′ ∈
S | (s, s′) ∈ R}.

Definition 5 (Forward bisimulation for SCTMCs). Equivalence R on S
is a forward bisimulation on C if for any (s, s′) ∈ R we have: L(s) = L(s′), and
R(s, C) = R(s′, C) for all C in S/R. s and s′ are forward bisimilar, denoted
s ∼ s′, if there exists a forward bisimulation R on C s.t. (s, s′) ∈ R.

These conditions require that any two forward bisimilar states are equally labeled
and have identical rates to move to any equivalence class C ∈ S/R.

Definition 6 (Forward bisimulation for ACTMCs). Equivalence R on S
is a forward bisimulation on C if for any (s, s′) ∈ R we have: R(s, a, C) =
R(s′, a, C), for all C in S/R and a ∈ Act. s and s′ are forward bisimilar, denoted
s ∼ s′, if there exists a forward bisimulation R on C s.t. (s, s′) ∈ R.

This condition requires that forward bisimilar states exhibit the same stepwise
behavior. We write C |= s ∼ s′ to denote (s, s′) ∈ R for some forward bisimula-
tion R on an SCTMC C (ACTMC C, respectively). Next, we recall the definition
of backward bisimulation for SCTMCs and define it for ACTMCs in a similar
fashion.

Definition 7 (Backward bisimulation for SCTMCs [38]). Equivalence R
on S is a backward bisimulation on C if for any (s, s′) ∈ R we have: L(s) = L(s′),
R(C, s) = R(C, s′) for all C in S/R, and E(s) = E(s′). s and s′ are backward
bisimilar, denoted s ∼b s′, if there exists a backward bisimulation R on C s.t.
(s, s′) ∈ R.

These conditions require that any two backward bisimilar states are equally
labeled, have identical incoming rates from any equivalence class C ∈ S/R and
have the same exit rates.

Definition 8 (Backward bisimulation for ACTMCs). Equivalence R on
S is a backward bisimulation on C if for any (s, s′) ∈ R we have: R(C, a, s) =
R(C, a, s′), for all C in S/R and a ∈ Act, and E(s) = E(s′). s and s′ are
backward bisimilar, denoted s ∼b s′, if there exists a backward bisimulation R
on C s.t. (s, s′) ∈ R.

We write C |= s ∼b s′ to denote (s, s′) ∈ R for some backward bisimulation
R on an SCTMC C (ACTMC C, respectively). The definitions of forward and
backward bisimulation can be easily extended to compare the behavior of two
SCTMCs (ACTMCs, respectively). Given an SCTMC C, the function that yields
a minimal quotient of C’s forward or backward bisimulation relation is denoted
by ∼MS (∼bMS , respectively). Similarly, for an ACTMC C, the function that
yields a minimal quotient of C’s forward or backward bisimulation relation is
denoted by ∼MA (∼bMA, respectively). From [38], we know that forward and
backward bisimulation are incomparable for SCTMCs. Next, we show that it is
also true for ACTMCs.
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Fig. 3. SCTMC C

Proposition 1. For ACTMCs, ∼ �=⇒ ∼b and ∼b �=⇒ ∼.

Example 3. Consider the SCTMC in Fig. 3. Here, we find that the states s2 and
s3 are forward bisimilar as L(s2) = L(s3) = {b}, R(s2, C1) = R(s3, C1) = 1,
where C1 = {s8} and R(s2, C2) = R(s3, C2) = 2, where C2 = {s7, s9}. But
these two states do not satisfy the condition of backward bisimilarity of SCTMC
[Definition 7] as R(C ′

3, s2) = 2 and R(C ′
3, s3) = 1, where C ′

3 = {s0}, and hence
s2 ∼ s3 but s2 �∼ bs3.

On the other hand, in the same figure we have states s2 and s4 which are
backward bisimilar as L(s2) = L(s4) = {b} and R(C ′

3, s2) = R(C ′
3, s4) = 2,

where C ′
3 = {s0} and E(s2) = E(s4) = 3. These two states are not forward

bisimilar as R(s2, C1) = 1 and R(s4, C1) = 2, where C1 = {s8}, i.e. s2 ∼b s4 but
s2 �∼ s4.

This demonstrates that these relations are incomparable and give different
quotients. In a similar way, we can prove that forward and backward bisimulation
are incomparable for ACTMCs by showing suitable counterexamples. �
Next, we discuss the main results of this section.

Theorem 1. Let C = (S,Act,R, s0) be an ACTMC. Then, given an equivalence
↔∈ {∼,∼b}, ∀s, s′ ∈ S, we have C |= s ↔ s′ ⇔ slc(C) |= s ↔ s′.

Theorem 2. Let C = (S,AP,R, s0, L) be an SCTMC. Then, given an equiva-
lence ↔∈ {∼,∼b}, ∀s, s′ ∈ S, we have C |= s ↔ s′ ⇔ alc(C) |= s ↔ s′.



52 S. Das and A. Sharma

Proof idea for Theorem 1 and Theorem 2. We begin by defining a new relation
R′ in the embedded system which comprises of all the state pairs from the
original system which were related under the forward (backward) bisimulation
relation R. Additionally, only those new state pairs are added for which the
state components were related under R, e.g. ((a, t), (a, t′)) ∈ R′ iff (t, t′) ∈ R
((s, s′) ∈ R′ iff (s, s′) ∈ R respectively). Next, we prove that this new relation
is indeed a forward (backward) bisimulation equivalence.

6 Preservation of Weak Bisimulation

Unfortunately, bisimulation is too fine, and it is often desirable to obtain a
quotient system smaller than bisimulation such that properties of interest are
still preserved. To achieve this several variants of weak bisimulation have been
defined in the literature. Weak bisimulation relations are important for system
synthesis as well as system analysis. Weak bisimulations abstract away from non-
observable steps. In this section, we show that the embeddings defined in Sect. 4,
i.e. slc and alc preserve both forward and backward weak bisimulation. We first
recall the definition of weak forward bisimulation for SCTMCs and ACTMCs
[4,5].

Definition 9 (Weak Forward bisimulation for SCTMCs). Equivalence
R on S is a weak forward bisimulation on C if for any (s, s′) ∈ R we have:
L(s) = L(s′), and R(s, C) = R(s′, C) for all C in S/R with C �= [s]R. s and
s′ are weak forward bisimilar, denoted s ≈ s′, if there exists a weak forward
bisimulation R on C s.t. (s, s′) ∈ R.

These conditions require that any two weak forward bisimilar states are equally
labeled and have identical ‘relative rates’ to move to any external equivalence
class C ∈ S/R.

Definition 10 (Weak Forward bisimulation for ACTMCs). Equivalence
R on S is a weak forward bisimulation on C if for any (s, s′) ∈ R we have:
R(s, a, C) = R(s′, a, C), for all C in S/R and a ∈ Act with a �= τ or s, s′ /∈ C. s
and s′ are weak forward bisimilar, denoted s ≈ s′, if there exists a weak forward
bisimulation R on C s.t. (s, s′) ∈ R.

We write C |= s ≈ s′ to denote (s, s′) ∈ R for some weak forward bisimulation
R on an SCTMC C (ACTMC C, respectively). Next, we define weak backward
bisimulation and its quotient for SCTMCs and ACTMCs.

Definition 11 (Weak Backward bisimulation for SCTMCs). Equiva-
lence R on S is a weak backward bisimulation on C if for any (s, s′) ∈ R we
have: L(s) = L(s′), R(C, s) = R(C, s′) for all C in S/R s.t. C �= [s]R, and
E(s) = E(s′). s and s′ are weak backward bisimilar, denoted s ≈b s′, if there
exists a weak backward bisimulation R on C s.t. (s, s′) ∈ R.

These conditions require that any two weak backward bisimilar states are equally
labeled, have identical incoming rates from any external equivalence class C ∈
S/R and have the same exit rates.



Embeddings for Continuous-Time Markov Chains 53

Definition 12 (Weak Backward bisimulation for ACTMCs). Equiva-
lence R on S is a weak backward bisimulation on C if for any (s, s′) ∈ R we have:
R(C, a, s) = R(C, a, s′), for all C in S/R and a ∈ Act with a �= τ or s, s′ /∈ C,
and E(s) = E(s′). s and s′ are weak backward bisimilar, denoted s ≈b s′, if there
exists a weak backward bisimulation R on C s.t. (s, s′) ∈ R.

We write C |= s ≈b s′ to denote (s, s′) ∈ R for some weak backward bisimulation
R on an SCTMC C (ACTMC C, respectively). The definitions of weak forward
and backward bisimulation can be easily extended to compare the behavior of
two SCTMCs (ACTMCs, respectively). Given an SCTMC C, the function that
yields a minimal quotient of C’s weak forward or weak backward bisimulation
relation be denoted by ≈MS (≈bMS , respectively). Similarly, for an ACTMC
C, the function that yields a minimal quotient of C’s weak forward or weak
backward bisimulation relation be denoted by ≈MA (≈bMA , respectively). We
use ↔ to denote multiple relations for which the result holds true followed by
the definition of its scope. The following proposition asserts that weak forward
bisimulation and weak backward bisimulation are incomparable.

Proposition 2. For both SCTMCs and ACTMCs, ≈ �=⇒ ≈b and ≈b �=⇒ ≈.

Example 4. Consider the SCTMC in Fig. 3. Here, we find that the states s5
and s7 are weak forward bisimilar as L(s5) = L(s7) = {d} and R(s5, C1) =
R(s7, C1) = 2, where C1 = {s10, s11}. But these two states do not satisfy the
condition of weak backward bisimilarity of SCTMC [Definition 11] as R(C ′

2, s5) =
1 and R(C ′

2, s7) = 2, where C ′
2 = {s1, s2}, and hence s5 ≈ s7 but s5 �≈ bs7.

On the other hand, in the same figure we have states s1 and s2 which are
weak backward bisimilar as L(s1) = L(s2) = {b} and R(C ′

3, s1) = R(C ′
3, s2) = 2,

where C ′
3 = {s0} and E(s1) = E(s2) = 3. These two states are not weak forward

bisimilar as R(s1, C4) = 1 and R(s2, C4) = 2, where C4 = {s5, s7}, i.e. s1 ≈b s2
but s1 �≈ s2.

This demonstrates that these relations are incomparable and give different
quotients as a result. In a similar way, we can prove that forward and backward
bisimulation are incomparable for ACTMCs by showing suitable counterexam-
ples. Table 1 shows the relationship between different bisimulation equivalences
discussed in this paper. The table is based on the SCTMC C shown in Fig. 3. �

From [4,5], we know that ∼ is strictly finer than ≈ for both SCTMCs and
ACTMCs. The following proposition asserts that it is also true for ∼b and ≈b.

Table 1. Relationship between equivalences

States ∼ ∼b ≈ ≈b

(s2, s3) � × � ×
(s1, s2) × × × �
(s5, s7) × × � ×
(s2, s4) × � × �
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Proposition 3. For both SCTMCs and ACTMCs, ∼b =⇒ ≈b but ≈b �=⇒ ∼b.

Next, we discuss the main results of this section.

Theorem 3. Let C = (S,Act,R, s0) be an ACTMC. Then, given an equivalence
↔∈ {≈,≈b}, ∀s, s′ ∈ S, we have C |= s ↔ s′ ⇔ slc(C) |= s ↔ s′.

Theorem 4. Let C = (S,AP,R, s0, L) be an SCTMC. Then, given an equiva-
lence ↔∈ {≈,≈b}, ∀s, s′ ∈ S, we have C |= s ↔ s′ ⇔ alc(C) |= s ↔ s′.

These theorems assert that slc and alc preserve weak forward and backward
bisimulation. The proof ideas are similar to that of Theorem 1 and 2 respectively.

7 Inverse of the Embeddings and Minimization

This section defines the invertibility criteria followed by the definitions of the
inverse of the embeddings alc, i.e. alc−1 and slc, i.e. slc−1. We also prove that
a model in one setting can be minimized by minimizing its embedded model in
the other setting and taking the inverse of the embedding. Subsection 7.1 defines
alc−1 and Subsect. 7.2 defines slc−1.

7.1 Inverse of the Embedding from ACTMCs to SCTMCs

The embedding alc defined in Sect. 4 will always create an ACTMC which satis-
fies the invertibility criterion. The explicit definition of the invertibility criterion
is only meant for situations when one wishes to apply the inverse embedding
first. Additionally, the unique rate θ will be needed to apply alc after applying
alc−1 to revert back to the original system.

Definition 13 (Invertibility criterion). Let C = (S,Act,R, s0) be an
ACTMC. Then C is invertible iff:

– Act\{τ} = 2AP ∪ {⊥} for some set AP ,

– s0 can only perform s0
A,θ−−→ for some A ∈ 2AP ,

– all the states which can perform an action A ∈ Act\{⊥, τ}, must have only
one outgoing transition with label A. Additionally, all the states which are
capable of performing an action from Act\{⊥, τ} must do it with an identical

rate, say θ, i.e. ∀s, s′ ∈ S s.t. s
A,θ1−−−→ and s′ A′,θ2−−−→, then θ1 = θ2 = θ,

– ∀s, s′ ∈ S and A ∈ 2AP if s
A,θ−−→ s′, then all the outgoing transitions from s′

have either ⊥ or τ as their action label,
– ∀s, s′ ∈ S, if s

⊥,r−−→ s′, then s′ A,θ−−→, for some A ∈ 2AP , and
– ∀s, s′ ∈ S, if s

τ,r−−→ s′, then either s′ ⊥,r−−→ or s′ τ,r−−→ for some r ∈ R>0.

The following lemma asserts that if a given system is invertible, then the minimal
quotient of any system equivalent to the given system is also invertible under all
the equivalences discussed in this paper.
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Lemma 1. Let C be an arbitrary invertible ACTMC. For ↔∈ {∼,∼b,≈,≈b},
given any ACTMC C′, s.t. C ↔ C′, ↔MA (C′) is also invertible.

Now, we are in a position to define the inverse of the embedding alc.

Definition 14 (alc−1). Let C = (S,Act,R, s0) be an invertible ACTMC. Then
alc−1 is the inverse of the embedding alc, where alc−1 : ACTMC → SCTMC
is formally defined as alc−1(C) = (S′′, AP ′′, R′′, s

′′
0 , L′′) is an SCTMC s.t.:

– S′′ = {s ∈ S | R(s,A, s′) = θ where A ∈ 2AP ′′
and A ∩ {⊥, τ} = ∅},

–
AP ′′ = (

⋃

X∈Act∧⊥/∈X
X )\{τ},

– R′′ is defined as:

R′′(s, s′′) = r iff ∃s′, R(s,A, s′) = θ and R(s′,⊥, s′′) = r, and

R′′(s, s′′′) = r iff ∃s′, s′′, R(s, A, s′) = θ, R(s′′′, A′, s′′) = θ and R(s′, τ, s′′) = r

where A,A′ ∈ 2AP ′′\{⊥},
– s′′

0 = s0, and
– L′′(s) = {x ∈ A | R(s,A, s′) = θ and A ∈ 2AP ′′}.
The following proposition establishes that alc−1 is the inverse of embedding of
alc.

Proposition 4. Let C be an SCTMC. Then, alc−1(alc(C)) = C.

Proof. Consider an arbitrary SCTMC C = (S,AP,R, s0, L). Let alc(C) =
(S′, Act′, R′, s′

0) and alc−1(alc(C)) = (S′′, AP ′′, R′′, s′′
0 , L′′). We establish the iso-

morphism by proving that there are isomorphisms between the components of
both SCTMCs, i.e. we show isomorphisms between S and S′′, R and R′′, AP
and AP ′′ and L and L′′.

From the definition of alc, when applied to C, we have,

– S′ = S ∪ {s | s ∈ S}
– Act′ = 2AP ∪ {τ,⊥}
– R′(s,⊥, t) = R(s, t) ∀s, t ∈ S s.t. R(s, t) > 0 and L(s) �= L(t),

R′(s, τ, t) = R(s, t) ∀s, t ∈ S s.t. R(s, t) > 0 and L(s) = L(t) and
R′(s, L(s), s) = θ ∀s ∈ S, and

– s′
0 = s0.

Since, alc(C) trivially satisfies all the invertibility criterion, it is invertible. Thus,
an application of alc−1 on the transformed alc(C) yields:

– S′′ = {s ∈ S′ | R′(s,A, s′) = θ ∧ A ∩ {⊥, τ} = φ}
= {s ∈ S′ | s ∈ S}
= S
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– AP ′′ = (
⋃

X∈Act′∧⊥/∈X X )\{τ}
= (

⋃
X∈2AP ∪{τ,⊥}∧⊥/∈X X )\{τ}

= (
⋃

X∈2AP ∪{τ} X )\{τ}
= (AP ∪ {τ})\{τ}
= AP

– R′′(s, s′) = R′(s, τ, s′) = R(s, s′) ∀s, s′ ∈ S′′ = S if L(s) = L(t) and
R′′(s, s′) = R′(s,⊥, s′) = R(s, s′) ∀s, s′ ∈ S′′ = S if L(s) �= L(t)
thus establishing R′′ = R.

– s′′
0 = s′

0 = s0.
– L′′(s) = {x ∈ A | R′(s,A, s′) = θ and A ∈ 2AP ′′}

= {x ∈ A | R′(s,A, s′) = θ and A ∈ 2AP }
= {x ∈ A | R′(s,A, s) = θ ⇔ L(s) = A}
= {x ∈ A | L(s) = A}
= L(s) �

Note that, the inverse defined is the ‘left-inverse’ of the embedding alc and not
the general inverse, as alc(alc−1(C)) is not defined for any arbitrary ACTMC.
Next, we prove that the embeddings alc and its inverse alc−1 preserve minimality
across ACTMCs and SCTMCs for all the equivalences discussed in this paper.
Our goal is to show that if one starts with a minimal invertible ACTMC and
applies the inverse embedding alc−1 to obtain an SCTMC, then it will also be
minimal (w.r.t. ∼,∼b,≈,≈b). We first prove some auxiliary lemmas which are
required for proving the main results of this section.

Lemma 2. Let alc preserves and reflects through ↔ where ↔∈ {∼,∼b,≈,≈b}.
Then, for any SCTMC C,

↔MS (C) = alc−1(↔MA (alc(↔MS (C)))) =⇒ ↔MS (C) = alc−1(↔MA (alc(C))).

In the following lemma, we show that the ACTMC obtained after applying alc
to a minimal SCTMC is already minimal and we do not need to minimize it
further.

Lemma 3. For any SCTMC C, and for ↔∈ {∼,∼b,≈,≈b}, the following holds:

↔MA (alc(↔MS (C))) = alc(↔MS (C))

We use these lemmas to prove the main theorem which asserts that if we apply
alc to an SCTMC and minimize it, then by applying the inverse embedding, i.e.
alc−1, we will get the minimal SCTMC (across all equivalences discussed in this
paper).

Theorem 5. For any SCTMC C, and for ↔∈ {∼,∼b,≈,≈b}, the following
holds:

↔MS (C) = alc−1(↔MA (alc(C)))

Proof. Case ↔=∼: For any SCTMC C, from Lemma 3 we have:

∼MA (alc(∼MS (C))) = alc(∼MS (C))
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Lemma 1 combined with the functionality of alc−1 gives us:

alc−1(∼MA (alc(∼MS (C)))) = alc−1(alc(∼MS (C)))

Finally, using Lemma 2, we have our desired conclusion.

∼MS (C) = alc−1(∼MA (alc(C)))

The proof is analogous for cases when ↔∈ {∼b,≈,≈b}. �
Intuitively, an SCTMC C can be minimized by simply minimizing its embedded
ACTMC and applying the inverse.

7.2 Inverse of the Embedding from SCTMC to ACTMC

Remark 4. The embedding slc defined in Sect. 4 will always create an SCTMC
which satisfies the invertibility criterion. The explicit definition of the invertibil-
ity criterion is only meant for situations when one wishes to apply the inverse
embedding first. Additionally, the unique rate θ will be needed to apply slc after
applying slc−1 to revert back to the original system.

Definition 15 (Invertibility criterion). Let C = (S,AP,R, s0, L) be an
SCTMC. Then C is invertible iff:

– AP = Act ∪ {⊥} for some set Act,
– |L(s)| = 1 ∀s ∈ S,
– all the states, i.e. s ∈ S s.t. ⊥ /∈ L(s) must have a single outgoing transition.

Additionally, all such states must have an identical rate (say θ) on their single
outgoing transition, i.e. ∀s, s′ ∈ S s.t. ⊥ /∈ L(s) and ⊥ /∈ L(s′), if we have,
s

θ1−→ and s′ θ2−→ then θ1 = θ2 = θ, and
– If ∃s ∈ S s.t. ⊥ /∈ L(s), then s can be reached in one step from a state s′ s.t.

L(s′) = {⊥} and s′ r−→ s and s has a single outgoing transition of the form
s

θ−→ s′′ for some s′′ ∈ S s.t. L(s′′) = {⊥}.
The following lemma asserts that if a given system is invertible, then the minimal
quotient of any system equivalent to the given system is also invertible under all
the equivalences discussed in this paper.

Lemma 4. Let C be an arbitrary invertible SCTMC. For ↔∈ {∼,∼b,≈,≈b},
given any SCTMC C′, s.t. C ↔ C′, ↔MS (C′) is also invertible.

Definition 16 (slc−1). Let C = (S,AP,R, s0, L) be an invertible SCTMC. Then
slc−1 is the inverse of the embedding slc, where slc−1 : SCTMC → ACTMC
is formally defined as slc−1(C) = (S′′, Act′′, R′′, s

′′
0 ) s.t.:

– S
′′

= {s ∈ S | L(s) = {⊥}},
– Act′′ = (AP\{⊥}) ∪ {τ},
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– R′′ is defined as:

R′′(s, a, s′) = r iff R(s, s′′) = r,R(s′′, s′) = θ and ⊥ /∈ L(s′′),

R′′(s, τ, s′) = r iff R(s, s′) = r, and L(s) = L(s′) = {⊥},
– s

′′
0 = s0.

The following proposition establishes that slc−1 is the inverse of embedding of
slc.

Proposition 5. Let C be an ACTMC. Then, slc−1(slc(C)) = C.

Again, note that, the inverse defined is the ‘left-inverse’. Next, we prove that the
embeddings slc and its inverse slc−1 preserve minimality across ACTMCs and
SCTMCs for all the equivalences discussed in this paper.

Lemma 5. Let slc preserves and reflects through ↔ where ↔∈ {∼,∼b,≈,≈b}.
Then, for any ACTMC C,

↔MA (C) = slc−1(↔MS (slc(↔MA (C)))) =⇒ ↔MA (C) = slc−1(↔MS (slc(C))).

In the following lemma, we show that the SCTMC obtained after applying slc
to a minimal ACTMC is already minimal and we need not minimize it further.

Lemma 6. For any ACTMC C, and for ↔∈ {∼,∼b,≈,≈b}, the following holds:

↔MS (slc(↔MA (C))) = slc(↔MA (C))

We use these lemmas to prove the main theorem which asserts that if we apply
slc to an ACTMC and minimize it, then by applying the inverse embedding, i.e.
slc−1, we will get the minimal ACTMC (across all equivalences discussed in this
paper).

Theorem 6. For any ACTMC C, and for ↔∈ {∼,∼b,≈,≈b}, the following
holds:

↔MA (C) = slc−1(↔MS (slc(C)))

Proof. The proof is similar to that of Theorem 5. �
Intuitively, an ACTMC C can be minimized by simply minimizing its embedded
SCTMC and applying the inverse.

8 Conclusions

We have proposed a formal framework which allows one to move from ACTMCs
to SCTMCs, and, conversely, from SCTMCs to ACTMCs. We have defined
two embeddings and proved that strong forward bisimulation, strong backward
bisimulation, weak forward bisimulation and weak backward bisimulation are
preserved by these embeddings. Next, we have defined the invertibility criteria
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and the inverse of these embeddings. We have shown that invertibility is pre-
served with respect to all the four variants of bisimulation. Finally, we have
proved that minimization in one setting can be achieved by simply minimiz-
ing the embedded model in the other setting and applying the inverse of the
embedding. Our framework helps in bridging the gap between two equally impor-
tant stochastic modeling communities. Additionally, from an application point
of view, our results have enabled the practitioners to use the state-of-the-art
tools developed in one setting for model minimization and analysis in the other
setting. For instance, if one of the stochastic model checking tools, e.g. PRISM
or Storm implements the quotienting algorithm for (weak) backward bisimula-
tion, then using our embeddings, models in the action labeled stochastic setting
can also be directly minimized. This research work can be extended in several
interesting directions which are as follows:

– Implement a tool that allows one to construct an ACTMC from an SCTMC
model and vice versa. For example, this tool would allow transforming
ACTMCs to SCTMCs and use the state-of-art-the machinery provided by
PRISM [27] for minimization and analysis.

– Investigate the possibility to design more advanced embedding techniques to
reduce the size of the embedded model.

– Investigate the preservation of (weak) linear-time equivalences by these
embeddings [37,39].
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Abstract. We propose a throughput value function (TVF) based solu-
tion for providing multi time-scale (MTS) fairness for broadband traffic
in access-aggregation networks. The primary goal of MTS fairness is a
dynamic control of resource sharing that considers the usage history of
the broadband connection. We present a flow level description of the
multi time-scale throughput value function (MTS-TVF) based resource
sharing. We provide dimensioning guidelines in traffic aggregation sce-
narios and present its simulation-based performance analysis.

In the performance analysis, our focus is on overloaded systems involv-
ing both low load users (with temporally active traffic) and high load
users (with heavy traffic, e.g. continuous multiple downloads). We find
that the Quality of Experience (QoE) of low load users significantly
increases when using MTS-TVF and it becomes similar to that of a
lightly loaded system, while the change in the QoE is minimal for high
load users.

Keywords: Fairness · Multiple timescales · Core stateless · Resource
sharing · Throughput value function · QoS · Fluid model

1 Introduction

Resource sharing among traffic flows has remained an area of interest in net-
working research. Fairness is usually interpreted as equal (or weighted) through-
put [1] experienced by flows. By definition, throughput is a measure derived
from total packet transmission during a time interval, the length of which is
called timescale. With the introduction of 5G for mobile and Fiber-To-The-
Home (FTTH) for fixed Internet access, the capacity of the last mile has signif-
icantly been increased, resulting in much higher load on the access-aggregation
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networks than before, thus moving bottlenecks from the edge to routers in the
aggregation. In such a network, the congestion controls used by the flows and the
(propagation) round trip times (RTTs) are much more heterogeneous than in
data centers and other closed enterprise networks. To handle the increased load
and to serve these high-speed bottlenecks, a new node functionality is needed,
where controlling resource sharing is an important design goal.

Most current resource sharing control methods are based on throughput mea-
sured only on a short timescale (e.g. RTT). For bursty traffic, throughput mea-
sured on multiple timescales (e.g. RTT, 1 s, 10 s, session duration) usually results
in different values. From the end-user perspective, network performance is bet-
ter described by throughput during the active periods of a source as opposed to
the general case when active and inactive periods are both considered. Taking
the history of inactivity into account is advantageous for short transmissions like
web downloads or initial buffering of adaptive video streaming. A comprehensive
recent survey on fairness [1] states that “getting a scheme to instantly serve web
flows for improved performance while maintaining fairness between other persis-
tent traffic remains an open and significant design problem to be investigated.”
For elastic flows, [2] argues that “highly unequal flow rates have led to flow com-
pletion times considerably better than with equal flow rates, indeed nearly as
good as they were before the contending long-running flow was introduced”.

The literature on these two main concepts, resource sharing control meth-
ods based on multi-timescale (MTS) throughput measurement and throughput
value function (TVF) is limited. A solution for providing MTS fairness, referred
to as Multi-Timescale Bandwidth Profile (MTS-BWP), was introduced in [3].
It defines and implements multi-timescale fairness for a network scenario with
few sources with well-defined traffic behaviour. MTS-BWP applies several token
buckets per Drop Precedence representing increasing timescales of throughput
measurements. MTS-BWP implementation complexity increases with the num-
ber of drop precedences, which may out-weigh its advantages when fine grained
control is needed. The concept of using TVFs for fine-grained resource shar-
ing based on short timescale throughput measure was introduced in [4], and the
MTS extension of the TVF is discussed in [5]. The packet level behaviour of multi
time-scale throughput value function (MTS-TVF) is considered and evaluated
in [5], using a packet level simulation tool. Due to the inherent complexity of the
packet level behaviour, the applicability of the packet level analysis is restricted
to rather simple scenarios, much smaller than the aggregation scenario consid-
ered in this paper. Practically, only the evaluation of the initial transient of a
small network scenario is feasible with the packet level simulator, which is a sin-
gle jump in the fluid simulator. A contribution of the paper is the introduction of
the fluid model of MTS-TVF resource sharing and an associated fluid simulation
tool, which makes it possible to evaluate the performance of MTS-TVF based
resource sharing in real networking aggregation scenarios.

To really utilize the advantages of MTS-TVF, flexible but explicit dimen-
sioning guidelines are needed. The main contribution of this paper is a design
approach for MTS-TVF resource sharing, that provides such dimensioning guide-
lines to achieve MTS fairness goals for heterogeneous broadband traffic in access-
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aggregation network. The benefit of using the proposed MTS-TVF resource shar-
ing is evaluated by comparing its behaviour with the single timescale TVF (STS-
TVF) based one, and the TCP fairness based one.

The rest of the paper is organized as follows. Section 2 gives an overview
of TVF based resource sharing. Section 3 introduces multi-timescale fairness.
Section 4 describes a fluid model of the proposed resource sharing method that
will be used for dimensioning. Section 5 provides dimensioning guidelines for
specific goals. Section 6 provides an approximate analysis of the system based on
analytic calculations. Section 7 provides numerical results, and Sect. 8 concludes
the work.

2 Overview of STS-TVF Resource Sharing

In a very high level view, TVF determines how the resources are shared between
users with different bandwidths. The STS-TVF resource sharing [4] extends the
idea of core stateless resource sharing solutions like [6,7] by marking each packet
with a continuous value called Packet Value (PV). The main goal in a network
element is to maximize the total aggregate PV of delivered packets. The resource
sharing procedure is composed of two phases: 1) Packet marking at network edge;
2) Packet scheduling and dropping based on the PV in the middle of the network.

1) The goal of packet marking is to assign a PV to each packet based on the
operator policy and the traffic rate R of the traffic source node (represents e.g. a
subscriber and referred to as node in the sequel). The PV represents the potential
of the packet to get through the network, but the transmission probability also
depends on the congestion level of the network. If the network is highly congested
packet with high PVs might be dropped, while in case of moderate congestion
even packets with low PV get through.

To achieve this goal, packets are marked at the edge of the network by using
the resource sharing policy of the operator described by a TVF (denoted by
TV F (.)). The marker assigns random PVs to packets from a proper TVF and
bandwidth dependent distribution, such that the rate of packets of the given
node with PV larger than x is TV F (x).

The packet marker is implemented as follows. Generated traffic is measured
on a single time scale: when the measured rate is R, the assigned PV is TV F (x),
where x is a uniformly distributed sample in [0, R]. The same packet marking
algorithm is applied in all nodes.

We note that operators might have different TVFs for different user classes
(e.g. Gold, Silver, Background, Voice), but in this paper we restrict our attention
to a single user class.

2) Resource nodes in the middle of the network treat packets solely relying
on the carried PVs. Each such node aims at maximizing the total amount of
PV transmitted over the shared bottleneck. To this end, scheduling algorithms
of different complexity can be used, including algorithms that drop the packet
with the smallest PV (even from the middle of the buffer) when the buffer
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length is too long [4] or using proportional integral controllers (PI-controllers)
to determine a PV threshold for packet dropping [8].

Accordingly, at high congestion only packets with high PVs are transmit-
ted, more precisely packets with PV above a given Congestion Threshold Value
(CTV) that reflects the actual congestion level. Note that the amount of high and
low PV packets in different flows determines the resource share between them.
As a result, flows with larger share of high PV packets receive more throughput.

3 Multi-timescale Fairness

For bandwidth profiling, bitrate is typically measured on a short timescale in
the order of RTT. It expresses the instantaneous resource usage and it can even
capture short bursts. STS-TVF resource sharing uses only this short timescale
bitrate to share bandwidth. In other words, the history of nodes is not considered
in STS-TVF resource sharing. When our goal is to ensure long-term fairness
(or network usage service level agreement) among flows with largely different
profiles, bitrates on longer timescales are far more expressive. We assume n
timescales (TS1, . . . , TSn) with different lengths: TS1 « RTT ă TS2 ă . . . ă
TSn (e.g. RTT, 1 s, 10 s, session duration). For a flow with an equally spaced,
stable traffic, after the time associated with the largest timescale has elapsed,
we expect all those rate measurements to be the same, i.e., Ri « R, @TSi,
where Ri is the measured rate on timescale TSi. However, in transient situations,
e.g. when transmission starts for a previously silent flow, we expect small rate
measurements of long timescales, while R1 (of TS1 « RTT) may be high (i.e.
R1 ą R2 ą . . . ą Rn). Rate measurements at shorter timescales react faster to
the changes of network conditions, while at longer timescales temporal changes
may remain invisible. Similar behavior with the opposite ordering can be seen
for a case when a flow stops transmission (or its rate decreases) after a long
active period. Implementation of rate measurement algorithms is detailed in [5].

3.1 Multi-timescale Throughput Value Functions (MTS-TVF)

The goal of MTS-TVF [5] is to control the resource sharing between users with
different rates on different timescales. E.g. such that after an inactive period of
a subscriber it gets an advantage for its new session compared to subscribers
with long time transmission.

Figure 1 depicts an example with four TVFs: TVF4() . . . TVF1() (disregard
the other notations for the time being). The actual throughput value of the
packet is derived from the four TVFs based on the actual R4, . . . , R1 throughput
measurements as follows.

3.2 MTS Rate Measurement-Based Marker

The packet marking based on MTS-TVF is a two steps procedure.
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Algorithm 1. CTVF(n,Ri, TVFi(), i P {1, . . . , n})
R′

n “ Rn,
for i “ n ´ 1, i ą 0, i “ i ´ 1 do

R′
i “ max(R′

i`1, Ri), //largest of Rj , j � i

PVi “ TVFi`1

(
R′

i`1 ` ∑n´1
j“i`1 Δj

)
,

Δi “ TVF ´1
i (PVi) ´

(
R′

i`1 ` ∑n´1
j“i`1 Δj

)
,

end for
CTVF “⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TVFn (x) if x ă R′
n,

TVFn´1 (x ` Δn´1) if R′
n ≤ x ă R′

n´1,
...

...

TVF1

(
x ` ∑n´1

j“i Δj

)
if R′

2 ≤ x,

Return(CTVF ),

– First, a composite TVF (CTVF) is computed based on the actual Ri mea-
surements and the TVFi(), i P {1, . . . , n} functions.

– In the second step, the computed CTVF function is used as the (single) TVF
in STS-TVF resource sharing and the PV is randomly assigned as follows.
When the measured rates are R1, . . . , Rn, the assigned PV is CTVF (x), where
x is a uniformly distributed random sample in [0, R1].

Algorithm 1 (from [5]) implements the marking procedure, where the for
loop goes downward and the

∑n´1
j“i`1 summation is idle for i “ n ´ 1. In a

high level description of the procedure, the first step is to compile a single TVF
referred to as CTVF, which is sensitive to the Ri rates and the second step
is to apply the “single time scale” packet marking approach from [4]. Figure 1
and 2 demonstrate the composition of the CTVF using a 4 TS example. The
algorithm constructs the CTVF by properly shifting sections from each of the
TVFi() functions to form a single monotone decreasing function. Intuitively, the
idea is that a given TVFi() determines the resource share when the instantaneous
rate is between Ri`1 and Ri (when Ri`1 ă Ri). For a detailed explanation of
Algorithm 1, we refer to [5], while here we provide some further remarks.

The algorithm does not utilize R1 (it is only used for computing a PV). When
Ri`1 ă Ri holds for i P {1, . . . , n ´ 1}, as it is in Fig. 1, R′

i “ Ri and the for
cycle computes Δi values and PVi values for i P {1, . . . , n ´ 1}.

The composition of CTVF is demonstrated in Fig. 2 (where this shifting
changes the appearance of the function in log-log scale). Essentially, the Ri values
determine which part of TVFi() plays role in the CTVF. The higher Ri ´ Ri`1

is, the more significant the role of TVFi() in the CTVF is. When the Ri`1 ă Ri

relation is violated for some i, the procedure compiles the CTVF without using
the TVFi() function.
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Fig. 1. Example of TVFs for 4-timescales Fig. 2. CTVF composed from the
Example in Fig. 1

4 Fluid Simulation of MTS-TVF Resource Sharing

With MTS-TVF we can implement fine grained resource sharing policies. The
appropriate evaluation and validation are crucial elements of developing such
policies. However, these are not trivial tasks for MTS-TVS. In [5], the behaviour
of the MTS-TVF resource sharing is investigated with a packet level simula-
tor, unfortunately this approach, while precise, restricts the analysis to simple
scenarios over a rather short time period. In order to gain dimensioning level
information, in this section, we introduce a fluid model [9] of the MTS-TVF
resource sharing method. Our fluid model assumes idealized resource sharing
characteristics, namely instantaneous bandwidth adaptation and no bottleneck
buffer: RTT is equal to 0, there is no packet loss, and packets are infinitesimally
small. These assumptions correspond to a fluid model where the throughput of
each flow adapts instantly to varying conditions. Although at packet level, con-
gestion results in packets lost and re-sent, for dimensioning purposes there is no
need for such level of detail and fluid models work properly.

4.1 Fluid Model of Packet Marking and Forwarding

In the fluid model the rate measurements are maintained on all timescales
(R1 . . . Rn) and based on that the CTVF is computed for all nodes using Algo-
rithm 1.

In the fluid model the PV computation of the nodes and the associated
packet dropping at bottleneck link is replaced by the calculation of the ideal
resource sharing using the concept of Congestion Threshold Value (CTV), which
is computed from

∑

uP{all nodes}
CTVF ´1

u (CTV ) “ C, (1)

where C is the capacity of the bottleneck link. Intuitively, (1) states that the
instantaneous bandwidth allocated to node u is CTVF ´1

u (CTV ), and the allo-
cated bandwidth sums up to C. (1) is an implicit equation for the unknown
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CTV , whose solution is unique due to the strict monotonicity of CTVFu(x), the
simulator computes the solution of (1) by binary search.

4.2 Fluid Simulator

In our model, a node can generate multiple flows with different characteristics
(e.g. web download, video).

Our fluid simulator keeps track of the state of the system:

– the arrival time and finishing time of each flow;
– the list of all active flows at all nodes along with the remaining flow size;
– the bitrate history of each node (from which R1, . . . , Rn is known).

Based on the above information, the simulator calculates the CTV according
to (1) and the bandwidth rate allocation for each node and for each flow in the
system. The simulator recalculates all information at regular small time intervals
Δt, and whenever a flow arrives or leaves the system.

5 Dimensioning Guidelines

MTS-TVF is a powerful tool to control resource sharing. However, to fully utilize
its capabilities, properly founded dimensioning rules are needed. In this section
we propose resource sharing guidelines for providing MTS fairness for hetero-
geneous broadband traffic in an access-aggregation network. In the dimension-
ing we only consider the resource sharing for congested system states, because
throughput goals are more critical in these cases. Specifically, we consider the
following scenario: There are two kinds of nodes, high load nodes (HLNs) and low
load nodes (LLNs), competing for the bandwidth (C) of a common bottleneck
link. The numbers of HLNs, LLNs and all nodes are NH , NL, and N “ NH `NL,
respectively. The NH HLNs are constantly active, resulting in a fully utilized bot-
tleneck link. Consequently, the traffic history of HLNs is the same with relatively
high measured throughput on the largest timescale and the load of a single LLN
is low enough that a newly active LLN has negligible measured throughput on
the largest timescale.

In this scenario we aim to achieve the following dimensioning goals (DGs):

DG1: We want each HLN to achieve at least BW1 throughput in long-term
average.

DG2: If a LLN with inactive history becomes active we aim to allocate it approx-
imately ρ times as much bandwidth as HLNs get, and this allocated band-
width has to be high enough so that the LLN is able to download ibs Mbit
in t1 seconds.

DG3: To avoid extreme fluctuations in the bandwidth allocated, ρ set to be the
lowest value satisfying DG2.
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DG2 can correspond to, e.g. downloading a web page in t1 time. In the
simulations in Sect. 7 we consider video downloads. The video starts only when
a buffer is filled in the video player (hence the name ibs, initial buffer size).

5.1 The Proposed MTS-TVF

For DG1 to hold, it is necessary that

NHBW1 ` �L · C ă C, (2)

where �L is the total load of LLNs relative to C (i.e. �L · C is the total load of
LLNs). To satisfy the DGs we propose to use two timescales with the following
TVFs (shown in Fig. 3):

TVF1(x) “
⎧
⎨

⎩

1{x, if x ă BW1,
(BW2´x)

(BW2´BW1)BW1
` ρ(x´BW1)

(BW2´BW1)ρBW2
, if BW1 ≤ x ă BW2,

ρ{x, otherwise,
(3)

TVF2(x) “ 1{x, (4)

where BW2 is set to BW2 “ ρ(BW1 ` ε), thus TVF1(x) is strictly monotone
decreasing (i.e., invertible, which is needed for the Algorithm 1 to work) in the
(BW1, BW2) interval, where ε is a small positive value (0 ă ε ăă BW1) and
TVF1(x) is linear between BW1 and BW2. Cf. Algorithm 1, as the number of
timescales is two

Δ1 “ TVF ´1
1 (TVF2(R2)) ´ R2. (5)

The first timescale is the RTT. The second timescale and ρ are set to satisfy
DG2 and DG3:

TS2 “ ibs

BW1
and ρ “ ibs

BW1t1
. (6)

5.2 Intuitive Behaviour of the Proposed MTS-TVF

For x ă BW1, TVF1(x) “ TVF2(x), and consequently Δ1 “ 0 (see (5) and also
Fig. 3). For any node with R2 ≤ BW1 (where R2 is its bitrate on TS2) the CTVF
(purple/dashed curve in Fig. 4) is

CTVF (x) “ TVF1(x). (7)

For any node with R2 ą BW1, we assume that ε is a rather small value to make
TVF1 invertible (with the given numerical precision) thus we avoid the discussion
of the case when BW1 ă R2 ă BW1 ` ε. In the case when R2 ą BW1 ` ε,
Δ1 “ (ρ ´ 1)R2 and the CTVF is (brown/solid curve in Fig. 4)

̂CTVF (x) “
{

1{x if x ≤ R2

1{(x ` Δ1)ρ otherwise. (8)
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Fig. 3. The proposed TVFs Fig. 4. CTVFs for R2 ă BW1 and
R2 ą BW1

Fig. 5. CTV with R
(L)
2 ă BW1 and

R
(H)
2 ą BW1

Fig. 6. CTV with R
(L)
2 ą BW1 and

R
(H)
2 ą BW1

Let R
(H)
2 denote the bitrate of HLNs measured on TS2, R

(L)
2 denote the

bitrate of a chosen active LLN measured on TS2 and r(H) and r(L) denote the
instantaneous bitrates of HLNs and active LLNs, respectively.

Assuming that the system is always close its stationary behaviour and the
number of active LLNs is relatively stable, r(H) is close to constant, consequently
R

(H)
2 « r(H), and due to (2), R

(H)
2 « r(H) ą BW1 the associated CTVF at r(H)

is ̂CTVF (r(H)) « 1{r(H) « 1{R(H)
2 .

Furthermore, assuming that HLNs with identical history compete for the
bandwidth remaining for HLNs, (1 ´ �L)C, the CTV is obtained from (1) as
follows
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∑
uP{HLNs} CTVF ´1

u (CTV ) “ (1 ´ �L)C,

⇓
̂CTVF

´1
(CTV ) “ (1 ´ �L)C{NH “ R

(H)
2 ą BW1,

⇓
CTV “ ̂CTVF (R(H)

2 ) “ 1{R(H)
2 ă 1{BW1.

where R
(H)
2 ą BW1 comes from (2).

Let us assume that a formerly inactive LLN becomes active at a given point
in time. Then R

(L)
2 “ 0, and the CTVF of the node is CTVF () “ TVF1(). As this

LLN is added to the competition for the bandwidth, the CTV increases a bit and
the bandwidth of the HLNs decreases a bit, but the CTV remains below 1{BW1

and the bandwidth allocated to LLNs is r(L) “ CTVF
´1

(CTV ) “ ρ{CTV
(from the “otherwise” option of TVF1()), while the bandwidth allocated to HLNs
is r(H) “ 1{CTV (as it is exemplified in Fig. 5). From this point R

(L)
2 starts

increasing monotonically such that and r(L) « ρr(H) for as long as R
(L)
2 ă BW1.

If ibs megabits are downloaded in time tibs ≤ TS2 then at tibs after the LLN
becomes active

R
(L)
2 � ibs

TS2
“ BW1, (9)

where we used TS2 from (6) in the second step. According to (9) and (6), ibs
megabits are downloaded with rate

r(L) « ρr(H) ą ρBW1 “ ibs

t1
, (10)

therefore DG2 will be fulfilled and ibs megabits will be downloaded in less than
t1 seconds. At the limit of the inequality (2), r(L) “ ρBW1 “ ibs{t1, which is
just enough to download ibs megabits in t1 seconds, therefore we set ρ according
to (6), which is the lowest ρ to satisfy DG3.

When, due to the high throughput (r(L) « ρr(H)) at the beginning of the
active period of the LLN, R

(L)
2 increases above BW1 the associated CTVF

becomes ̂CTVF (x) and the bandwidth allocation modifies according to Fig. 6.

6 Approximate Analysis of the Stationary Behaviour

In general, we expect the system to converge to some stationary behaviour, but
calculating the stationary distribution explicitly is infeasible. Instead, we focus
on the mean number of active LLNs in the stationary distribution. In this setting,
all HLNs are active, and one of the dimensioning parameter is the number of
active LLNs.
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In this section, we present an approximate calculation based on intuitive
assumptions which allow to compute the stationary behaviour and later we eval-
uate the accuracy of the approximation. The approximate analysis is based on
the assumption that all active LLNs have a single flow which started from a per-
fect node history. Note that even apart from this assumption, the calculations
only provide an approximation due to the non-linearity and long memory of the
system.

The following calculations are specific to the TVF designed in Sect. 5, which
sharply distinguish the nodes with high and low measured Ri rates, referred to as
good and bad history. The active LLNs are divided into the following categories:

– N
(1)
L is the mean number of active LLNs with a web flow with good history;

– N
(2)
L is the mean number of active LLNs with a web flow with bad history;

– N
(3)
L is the mean number of active LLNs with a video flow with good history;

– N
(4)
L is the mean number of active LLNs with a video flow with bad history.

Using the notations also from Table 1, we approximate the system behaviour
with the following equations:

C “ (N (1)
L `N

(3)
L )ρRst ` (N (2)

L `N
(4)
L `NH)Rst, (11)

�L · C “ (N (1)
L `N

(3)
L )ρRst ` (N (2)

L `N
(4)
L )Rst, (12)

N
(1)
L

N
(2)
L

“ ibs2
(fs1 ´ ibs2)ρ

, (13)

N
(3)
L

N
(4)
L

“ ibs2
(fs2 ´ ibs2)ρ

, (14)

20%
80%

“ ρN
(1)
L ` N

(2)
L

ρN
(3)
L ` N

(4)
L

, (15)

where Rst is the mean bandwidth allocated to a node with bad history (identical
to all nodes with bad history).

(11) corresponds to the fact that the system is always used at full capacity
(due to �L ` �H ą 1). According to (12), the entire load of the LLNs is serviced
(no discarding at LLNs). (13) and (14) set the ratio of time spent in good/bad
node history for LLNs, taking into account that the node history changes from
good to bad after downloading initial buffer size ibs2. Finally, (15) sets the
web/video ratio of the incoming data.

(11)–(15) leads to a system of linear equations describing the mean stationary
behaviour of the system, which can then be compared with actual simulations,
done in the next section.
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Table 1. Model parameters

C 1000 Mbps Total capacity

NL 900 Number of LLNs

NH 100 Number of HLNs

80%{20% LLNs’ video/web data ratio

fs1 5 MB Web download file size

fs2 18.75 MB Video download file size

ibs2 3.125 MB Initial video buffer size

t1 2 s Initial buffer download time

t2 30 s Video download time

30 Number of HLN flows per node

10 Maximal number of flows at a LLN

BW1 5 Mbps Guaranteed throughput of HLNs

�L 0.1, 0.2, 0.3, 0.4 Load of LLNs proportional to C

Table 2. Number of active LLNs according to simulation and approximate calculation

�L “ 0.2 �L “ 0.4

Approx. Sim. Approx. Sim.

Slow LLN (N
(2)
L ` N

(4)
L ) 19.5 17.3 49.4 51.4

Fast LLN (N
(1)
L ` N

(3)
L ) 2.6 3.9 6.9 6.6

7 Simulation Results

7.1 Simulation Setup

The parameters of the considered heterogeneous Broadband traffic scenario of
the Access-Aggregation Network is summarized in Table 1. The HLNs have 30
continuously active flows with data to transmit and the LLNs initiate web and
video flows according to Poisson arrival processes, whose arrival rate can be
obtained from �L, fs1, fs2 and the video/web data ratio of LLNs. The number
of flows at a LLN is at most 10. Flows arriving when this limit is reached are
dropped.

Based on the simulation runs we check the following requirements:

– if the long-term average throughput of HLNs is larger than BW1 (DG1);
– if the video flows can fill up the initial buffer of size ibs2 in time t1.
– if the full video of size fs2 is downloaded in time t2. (The throughput required

for this is fs2{t2, which is equal to BW1, which is provided for the nodes even
with bad history (see Table 1). So as long as a LLN has exactly one active
flow which is a video download, then it is guaranteed to finish downloading
in t2 time).
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Fig. 7. Node bandwidth time series with
100 bad history nodes

Fig. 8. CTV time series with 100 bad
history nodes

Fig. 9. Node bandwidth time series with
199 bad history nodes

Fig. 10. CTV time series with 199 bad
history nodes

We note that web downloads have been included for a more realistic traffic
model, but no criteria or dimensioning is included for web downloads in the
present paper.

7.2 Numerical Analysis of the Mean Stationary Behaviour

To validate the approximate calculations of Sect. 6, the number of active LLNs
was also evaluated by simulation. Table 2 displays the results, grouped according
to fast nodes (good history, N

(1)
L ` N

(3)
L with the notation of Sect. 6) and slow

nodes (bad history, N
(2)
L ` N

(4)
L ). The relative load of LLNs is �L “ 0.2 or 0.4.

Table 2 shows that the approximate calculation holds up nicely, even for
�L “ 0.4. The maximal value of �L for which (2) holds is 0.5, as this limit is
approached the assumption on the single active flow per LLN is violated with
higher and higher probability (hence the larger error for �L “ 0.4).
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7.3 Time Series Examples

We show two sample realizations. The first system assumes the parameters from
Table 1. The second system differs in the number of HLNs and LLNs. In the
example shown in Figs. 7 and 8, the system has 100 active nodes, all with bad
history. A video flow arrives at 50 s (point (a)) at a LLN with perfect history.

In the setup of Sect. 7.1, the 100 active nodes with bad history correspond to
the 100 HLNs, and the single active LLN corresponds to �L “ 0.01 as calculated
from (11)–(15).

Figure 7 displays the instant bitrate of the LLN (r(L)), its bitrate on the 5 s
timescale (R(L)

2 ), and the instant bitrate of a node with bad history (r(H)), while
Fig. 8 displays the associated CTV of the system. The TVF related reasons for
this evolution of the bandwidth sharing and the CTV are discussed in relation
with Fig. 5 and 6 in Sect. 4.

We note that DG1 (or, equivalently, (2)) allows 200 active nodes at most,
so the 100 ` 1 active nodes is well below this limit, and as a result, all nodes
are allocated a relatively high bandwidth. Nodes with bad history get 10 Mbps
(instead of the required BW1 “ 5 Mbps), and due to the dimensioning of the
TVF, the single LLN gets 2.5 · 10 “ 25 Mbps until the initial buffer is filled up
(point (b)), which takes less than the required t1 “ 2 s, and the total download
also takes much less time than the required 30 s.

On the other hand, in the example shown in Figs. 9 and 10, the system has
199 active nodes with bad history when a video flow arrives (marked with (a) in
the figures) at a LLN with perfect history. Figure 9 displays the instant bitrate
of the LLN (r(L)), its bitrate on the 5 s timescale (R(L)

2 ), and the instant bitrate
of a node with bad history (r(H)), while Fig. 10 displays the CTV.

In the setup of Sect. 7.1, the 200 active nodes correspond to 100 HLNs, 99
LLNs with bad history and 1 LLN with good history corresponding to �L “ 0.5
as calculated from (11)–(15).

This system is critical in the sense that DG1 and (2) hold with equality now.
From (6),

ρ “ ibs2
BW1t1

“ 25Mbit
5Mbps · 2 s

“ 2.5,

and the single LLN has bandwidth ρBW1 “ 12.5Mbps allocated until the initial
buffer size is reached at point (b) (exactly t1 “ 2 s after (a)); after that, its history
reverts back to bad and its bandwidth allocation drops to BW1 “ 5 Mbps until
the video is finished at point (c) (27 s after (a)).

7.4 Statistical Results

In this section, we make a statistical comparison of three congestion control prin-
ciples: the MTS-TVF is compared with TCP-fair and node-fair. For TCP-fair,
each active node is allocated bandwidth proportional to its number of active
flows, while for node-fair, each active node is allocated equal bandwidth. Actu-
ally, node-fair can be realized by using STS-TVF, see also [8].

Based on the simulator output, we compute the following statistics:
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Fig. 11. Node throughput statistics Fig. 12. Video throughput statistics

Fig. 13. Web download throughput
statistics

Fig. 14. Video initial buffer criterion
at LLNs

– the node throughput for active periods (periods when there is no traffic at
the respective node are excluded) for LLNs and HLNs;

– the flow throughput for video and web download flows at LLNs;
– ratio of flows where the time-to-play (TTP) criterion and total download time

criterion is satisfied.

Figure 11 compares the node throughput of both LLNs and HLNs for the
three congestion controls and various load setups according to Sect. 7.1, with
the total low load varying. The figure depicts the node throughput average with
a × symbol and the 10% best – 10% worst interval with bars. The main advan-
tage of MTS-TVF is that it offers better performance for LLNs without hurting
the long term performance of HLNs. TCP-fair provides flow count proportional
throughput, resulting in very poor performance for LLNs. Node-fair and MTS-
PPV provide proper prioritization for LLNs at no cost in the performance of
HLNs.

Figure 12 and 13 display video throughput and web download throughput
at LLNs. The significantly better throughput provided to web downloads by
MTS-TVF is due to prioritizing nodes with good history, which applies to LLNs
as the load of an individual LLN is so small that rare arrivals occur mostly at
good history. The initial buffer size of video downloads is 3.125 MB = 25 Mbit,
and the applied TVF is dimensioned so that the first 25 Mbit of any flow at a
node with good history is allocated a high bandwidth (2.5 times larger than for
HLNs). The effect on the overall flow throughput is more pronounced for web
downloads (5 MB = 40 Mbit) than video downloads (18.75 MB = 150 Mbit) as
a relatively larger portion of the flow is downloaded at a high bandwidth.

Figure 14 displays the ratio of video download flows which meet the initial
buffer criterion of downloading 25 Mbit in 2 s. Note that this criteria is included
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Fig. 15. Video initial buffer throughput
at LLNs

Fig. 16. Throughput criterion for the
whole video at LLNs

in the dimensioning guidelines of the MTS-TVF, and accordingly, for MTS-
TVF, over 90% of all video download flows meet this criterion even for low
load �L “ 0.4, while for TCP-fair and node-fair, the ratio of flows meeting
this criterion is practically zero. This is one of the major advantages of using a
properly dimensioned MTS-TVF. The flows that do not meet the criterion for
MTS-TVF are due to a flow arriving shortly after another flow at a LLN, with
the node history still bad when the second flow arrives. As the number of LLNs
increases, the probability of this goes to 0; for 900 LLNs, it still occurs with a
small probability (also depending on the total load of LLNs).

Figure 15 displays the throughput statistics for the initial buffer of video
downloads at LLNs, that is, the throughput the flow until the initial buffer is
full. Again, MTS-TVF vastly outperforms the other two resource sharing meth-
ods. Figure 16 displays the ratio of video download flows which meet the total
download criterion. MTS-TVF was dimensioned so that this criterion is met, and
accordingly, for MTS-TVF, it is met for the vast majority of flows. For TCP-fair,
this criterion is failed entirely, while for node-fair, it is met for a smaller but still
relatively high portion of the flows.

8 Conclusion

The MTS-TVF based resource sharing introduced in [5], extends the advantages
of Multi-Timescale Bandwidth Profile to a wide range of traffic scenarios from
only a well defined scenario. It formalizes Multi-Timescale fairness and describes
ideal time-series behaviour of resource sharing. However, to utilize the potential
benefits of MTS-TVF resource sharing, we need flexible, but explicit dimension-
ing rules.

In this work we provided a dimensioning method for an access-aggregation
network scenario and illustrated the advantages of MTS-TVF using heteroge-
neous broadband traffic model in access-aggregation network. Using an idealized
fluid system model, we showed the time-series behaviour for the working point
(CTV) and we showed how the system behaves for several dynamic workloads.

In the studied system, the QoE (assumed based on experienced bandwidth) of
low load users significantly increased when using MTS-TVF, effectively making
the QoE similar to that of a lightly loaded system, while the effect on the QoE of
high load users was minimal. MTS-TVF uses the same policy for both heavy and
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light loaded users, does not require service identification, and uses well defined
policies, therefore it is ideal from a net neutrality perspective.

As an example we showed how the proposed MTS-TVF optimizes the
video QoE of moderate loaded users. The current dimensioning concept can be
extended for several QoE requirements. Also the same concept can be used for
other traffic aggregates, e.g. services, network slices. Additionally, the concept
can be combined with the multi-layer virtualization concept, when MTS-TVF
is applied for different traffic aggregates simultaneously, e.g. for services, sub-
scribers and network slices at the same time.
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Abstract. We present a tool for inferring the parameters of a Discrete-
time Markov chain (DTMC) with respect to properties written in prob-
abilistic temporal logic (PCTL) informed by data observations. The tool
combines, in a modular and user-friendly way, the existing methods and
tools for parameter synthesis of DTMCs. On top of this, the tool imple-
ments several hybrid methods for the exploration of the parameter space
based on utilising the intermediate results of parametric model checking
– the symbolic representation of properties’ satisfaction in the form of
rational functions. These methods are combined to support three dif-
ferent parameter exploration methods: (i) optimisation, (ii) parameter
synthesis, (iii) Bayesian parameter inference. Each of the available meth-
ods makes a different trade-off between scalability and inference quality,
which can be chosen by the user depending on the application context.
In this paper, we present the implementation, the main features of the
tool, and we evaluate its performance on several benchmarks.

1 Introduction

Modelling stochastic dynamical systems such as a biological cell, epidemic spread
in a population, or a randomised communication protocol is challenging, espe-
cially when parameters are not available, subject to uncertainty, and when exper-
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imental data measurements are scarce. Parameter synthesis is particularly use-
ful in this context, as it determines the regions of parameter space, for which
a high-level property holds. Such high-level property is typically a functional
specification (e.g. ‘error states are reached with small probability’). Parameter
synthesis of discrete-time Markov chains (DTMCs) is supported by several exist-
ing tools for probabilistic verification [8,9,12,22]. Most of these implementations
specialise in the case when a single qualitative or quantitative property is of
interest. In practice, there is an emerging need to reason about multiple proper-
ties at the same time. One such situation is when multiple functional properties
should be satisfied simultaneously. Another scenario occurs when a functional
property (specification) is additionally constrained by properties derived from
experimental data, typical for modelling biological systems or in the context of
grey-box system verification and testing [1]. For instance, a qualitative summary
of experimental observations at a steady-state such as ‘a certain group of states is
eventually reached as a terminal state with probability greater than a threshold’,
can be used to additionally constrain the parameter synthesis procedure. Data
observations alone can be encoded in the form of multiple temporal properties,
e.g. steady-state observations in a chain with more than one bottom strongly
connected component (BSCC) [14].

In this paper, we present DiPS1 – a tool for data-informed parameter synthe-
sis for parametric discrete time Markov chains (pMC) from multiple-property
specifications. For a single property expressed in Probabilistic Computation Tree
Logic (PCTL) [17], the standard parameter synthesis procedures provide a sym-
bolic representation of satisfaction probability in the form of rational functions,
which will evaluate exactly to the satisfaction probability for that single property
in the given chain. We leverage existing tools PRISM [22] and Storm [9] to obtain
the rational functions characterising satisfaction probability of each among the
multiple properties in the specification and before incorporating threshold con-
straints available from the data measurements. Resulting rational functions are
the cornerstone of the tool as all further analyses are based on them. In the next
step, the (experimental) data are used as thresholds for constraining the rational
functions, for given confidence level and based on frequentist statistics interpre-
tation. The resulting algebraic constraints are finally employed to explore the
parameter space for which the chain behaviour agrees with the observations.

To explore parameter values respecting given specification supported with
data, DiPS employs several different methods working with the synthesised alge-
braic constraints – rational functions and confidence intervals obtained from
experimentally observed satisfaction of the specification. The computational
workflow utilises the following methods: optimisation, parameter space refine-
ment, parameter space sampling, and Metropolis-Hastings. In Fig. 1, it is shown
how these methods are combined in the tool to tackle the complex data-informed
specification-driven procedures including optimisation, parameter synthesis, and
Bayesian inference. In particular, the tool implements the following tasks:

1 https://github.com/xhajnal/DiPS.

https://github.com/xhajnal/DiPS
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– marking single points in the parameter space sat (green) or unsat (red) wrt.
the algebraic constraints satisfaction [8] (space sampling), or

– marking entire regions (hyper-rectangles) in the parameter space safe (green),
unsafe (red) wrt. the algebraic constraints satisfaction with SMT solver [8,
11,19,20] or interval arithmetics (space refinement), or

– identifying a single point in the parameter space with the least distance wrt.
data (optimisation), or

– identifying a distribution over possible parametrisations based on their rela-
tive likelihood wrt. data using Bayesian inference (Metropolis-Hastings).

– providing a novel hybrid method that combines Bayesian inference with space
refinement (HMH ),

– facilitating a user-friendly interface allowing to visualise the results and adapt
the workflow by combining the tasks above,

– exploring the potential of the methods for efficient parallel processing on a
multi-core hardware.

model
(pMC)

temporal
properties

rational functions

data

data intervals

space
sampling &
refinement

algebraic
constraints

sampling-based:
optimisation

Metropolis Hastings

Fig. 1. The main workflow of DiPS. Parametric model checking produces a rational
function, encoded as a symbolic expression representing the satisfaction probability of
temporal properties, which can be observed at execution time (in the data). The data
can be used to compute confidence intervals and set thresholds to rational functions,
resulting in a set of algebraic constraints. The space of parameters satisfying the alge-
braic constraints is computed by sampling and refinement technique that partitions
the space into rectangular regions. The data can be applied directly (without comput-
ing confidence intervals) with rational functions to find parameter points minimising
the distance between these two inputs (optimisation) or to approximate the posterior
distribution of the parameters using Bayesian inference (Metropolis-Hastings).

We start with briefly introducing the key theoretical concepts of the imple-
mented methods (Sect. 2) and follow by stating the original features of DiPS in
detail (Sect. 3). The implementation of the tool is described in Sect. 4 including
the evaluation of the key tool features conducted on several models from differ-
ent domains. The tool is available as open source (see footnote 1) including a
ready to run virtual machine with instructions on how to run the experimental
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evaluation. A tutorial containing detailed information on the tool’s functionality
accompanied with a running example is bundled with the tool.

1.1 Related Work

Parametric model checking has been continuously developed, starting with state
elimination similar to finite-state automata reduction to regular expressions [6,
15], later enhanced with set-based state elimination simplifying the intermediate
results [13], all the way to the SCC decomposition technique with a special
structure to store individual factors [18] that improved the speed and memory
efficiency.

PRISM [22] is a well-established tool for modelling and model checking
DTMCs, Continuous-Time Markov Chains (CTMCs), Markov decision processes
(MDPs), and Probabilistic Timed Automata (PTA). As PRISM is easy to be
installed, we use it as the first option to obtain rational functions - paramet-
ric model checking. PRISM also provides space partitioning using sampling. We
leverage this functionality and add a visualisation of the result.

Storm [9] is a command-line tool for analysis of DTMCs, CTMCs, MDPs,
and Markov automata (MA). It improves memory efficiency, speed, and output
usability of parametric model checking by implementing efficient methods pro-
posed in [18]. In DiPS, one can use Storm instead of PRISM to improve the
performance of parametric model checking.

Storm also provides efficient parameter synthesis of Markov chains with
multi-affine parametrisations – parameter lifting [25]. DiPS can call Storm to
refine the parameter space. Storm output consists of separate results for each
property while considering the lower and upper bound of the interval of the
respective algebraic constraint separately. To that end, DiPS can merge these
partial results to obtain (and visualise) the overall result for the conjunction of
properties.

Parameter lifting technique was updated with monotonicity checking in [27].
PARAM [12] is another tool for parametric model checking of DTMCs

employing state elimination and state-lumping techniques, however, it is not
that efficient as Storm – see benchmarks in [8].

PROPhESY [8] supports discrete-time models with safety and liveness prop-
erties. It provides space sampling and refinement employing SMT-solvers; how-
ever, the usability is limited to properties with exactly two parameters and by
the dependencies/VM environment.

In [24], Bayesian inference ideas were used to constrain the parameter values
directly from data (without using rational functions). It improves the results of
Statistical Model Checking (SMC), especially in the case of sparse data.

PRISM-PSY [5] implements parametric uniformisation to explore parameter
space for parametrised CTMCs with Continuous Stochastic Logic (CSL) speci-
fication and employs GPU hardware. It was reused for robust design synthesis
in RODES [4].

U-check [2] employs Bayesian statistical algorithm and smoothed model
checking for CTMCs with Metric Interval Temporal Logic (MiTL) specification.
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Fig. 2. The architecture of DiPS. Main GUI components, six tabs (in green), main
functionality components (in blue), and leveraged tools and libraries (in red). (Color
figure online)

2 Methods

In this section, we briefly recall incorporated methods introduced in former
works and explain the methods and concepts in detail. Moreover, we describe
a novel method based on a combination of Monte Carlo and refinement-based
approaches. Additionally, we add information on the parallelisation potential of
the individual methods. More information about methods’ outputs and their
settings in DiPS can be seen in the tutorial which is a part of the tool package.

2.1 Model Checking

Model checking verifies whether a given model satisfies a given specification,
while the specification is often formalised in the form of temporal property.
Probabilistic operators within the property answer questions such as whether
a probability of reaching target state is higher than a given threshold, e.g. 0,4:
P>0.4[F Target]. In the second form of temporal properties, quantitative prop-
erties, we can ask for the value of probability itself: P=?[F Target].

When the values of probabilities within the models are unknown, a parameter
can be used to address this uncertainty. Model checking parametrised models
using quantitative property, in the form P=?, results in a symbolic expression
over model parameters. For pMCs, the expressions are in the form of rational
functions, fi. To obtain rational functions, we leverage already existing tools
PRISM and Storm. All the methods implemented in DiPS build upon calculated
rational functions.

2.2 Data

Data, [d1, . . . , dm], represents empirical estimates of satisfaction probabilities or
reward for each of the respective properties. Data points are used to compute
intervals constraining the rational function or directly within optimisation and
Metropolis-Hastings.
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2.3 Optimisation

Optimisation returns a single parametrisation θ̂ ∈ R
n which minimises the sum

of distances between the rational functions, f(θ̂) ∈ R, and data, d:

θ̂ := arg min
θ∈Θ

∑

i∈{1,...,m}
wi · dist(fi(θ), di) (1)

where distance function dist : [0, 1] × [0, 1] → R≥0 can be redefined. Currently,
we support the least mean squares distance as provided by scipy library. To
reflect that an observation can be more influential or desired to achieve, wi is a
weight term to scale the distance of the respective data point.

2.4 Data Intervals

Data intervals, [I1, . . . , Im], are confidence intervals with given number of mea-
surements, N , and confidence level, C. We currently support six methods for con-
fidence intervals for proportions: standard (CLT/Wald), Agresti-Coull (default)
[3], Wilson [3], Jeffreys [3], and Clopper-Pearson [3] implemented in library stats
[26], and Rule of three [16]. The standard confidence intervals, defined as

Ik = dk ±
(

zα/2

√
dk(1 − dk)

N

)
(2)

where dk is the k-th data point, and α = 1−C is the chosen alpha level, are not
generally reaching expected coverage of selected confidence level [3,7]. Therefore,
we provide more suitable options with Agresti-Coull method as the default one.
When the number of observation is low (below 40), Wilson or Jeffreys method
may be more suitable [3]. All the methods are directly applicable when the data
estimates probability, the observed value of a quantitative probabilistic property
- P=?.

Data intervals are then used to constrain the rational functions, ∀k ∈
{1, . . . , m}, fk ∈ Ik, and the algebraic constraints are used in the space sam-
pling and refinement methods.

2.5 Sampling

The decision problem whether the instantiation of pMC model satisfies a given
PCTL property can be answered by model checking the instantiated DTMC.
With the knowledge of rational functions, this problem boils down to evaluating
algebraic constraints.

In the sampling, a uniform grid of points is created and in each point we
evaluate the constraints to mark the point sat(green)/unsat(red). Where for the
sat point, all the constraints are satisfied and for unsat point at least one of the
constraints is violated.

For one or two parameters, the result is visualised as green and red dots in
phase space - see Fig. 4a, c. In the multidimensional case, each parametrisation
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satisfying the properties is visualised as a scatter-line plot where each parameter
is plotted against its index in the parameter space, i.e. parametrisation θ̂ ∈ Θ is
plotted as a function: i �→ θ̂i for each parameter index i ∈ {1, 2, . . . , n}.

Trivial parallelisation of sampling is based on the independence of algebraic
constraint evaluation in the points to be sampled.

2.6 Quantitative Sampling

This method is very similar to ordinary sampling. The only difference is that
instead of checking satisfaction, L1 distance to violate each of the algebraic con-
straints is summed to give a numeric value. For each pair of algebraic constraints
derived from lower and upper bound of intervals, a lower distance is used for the
pair. Positive values in the sum represent that the respective algebraic constraint
is satisfied (in the given point). Note that this assumption does not hold for the
whole sum. In each of the sampled points, the sum of distances is visualised by
a colour spectrum.

This method hence provides quantitative estimation to better describe the
satisfaction landscape of the parameter space. The parallelisation of this method
benefits from the same fact as sampling: the algebraic constraints are evaluated
in parallel for each point to be sampled.

2.7 Space Refinement

Here we address the problem of inferring parameter values for quantitative prop-
erties globally, not only in separate points. This problem is usually solved by
space partitioning [20]. For multi-affine parametrisations, Storm implements a
efficient method, parameter lifting [25]. Prophesy uses SMT solvers and PRISM
uses sampling of the partitions to solve the problem approximatively. We provide
similar methods for partitioning of space with aim to solve multiple properties
in a CEGAR like style, while providing an option to run PRISM or Storm for
multiple properties as well.

DiPS supports two SMT solvers, z3 and dreal, and interval arithmetics as
proposed in [10] (implemented by library mpmath) to solve the satisfaction of
individual regions2. This is done in two steps, check safe, verifying whether all
the points within the region are satisfying, and check unsafe, verifying whether
all the points within the region are not satisfying. If neither of these holds,
we split the region (in the longest dimension into two rectangles with equal
volume). As verifying of the region can be expensive, we provide an option to
sample the region before calling the solver - sampling-guided refinement. In all
cases of sampling result, one of the solver calls can be skipped and if both sat
and unsat samples are found, both solver calls are skipped3 and the region is
2 In comparison with SMT solvers, interval arithmetics provide faster iterations for

price of higher probability to mark a region unknown.
3 If the sampling contains an unsat point, it is a counterexample of safeness and vice

versa if the sampling contains a sat point, it is a counterexample of unsafeness of
the region under consideration.
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split based on the position of sat vs unsat points. In more detail, we calculate
rectangular hulls of the sat and unsat points. If the two hulls have no overlap
there is a single line/plane dividing these two hulls and we split the region along
the line/plane. If one of the two hulls is inside the other hull, we cut the space
along the borders of the smaller hull. And finally, if none of two previous holds,
we cut the space in all dimensions. As we use two sample points in each dimension
the cutting lines/planes are always in the middle of dimension(s).

To choose a new region to check, we select all unknown regions with the
biggest volume. Refinement parallelisation relies on the independence of refining
these selected regions.

For one and two parameters a phase space of safe (green), unsafe (red), and
unknown (white) rectangles is shown - see Fig. 4b, c. For more dimensions, over-
approximation of safe or unsafe space as a projection to each of dimensions is
visualised.

2.8 Metropolis-Hastings

Metropolis-Hastings [23] is a Markov chain Monte Carlo (MCMC) algorithm for
approximating the posterior distribution over model parametrisations wrt. avail-
able data. For a given number of iterations, it walks through the parameter space
and compares the posterior probability of the current and the next parameter
point. It results in a sequence of accepted points predicting the true parameter
value.

Importantly, the rational functions fi(θ) allow us to evaluate the data like-
lihood P (D | θ) for each parametrisation and data outcome exactly. Without
the rational functions, we would have to hypothesise a class of distributions pro-
portional to the likelihood or simulate the chain to approximate the likelihood
which is computationally expensive and/or imprecise.

For one or two parameters, posterior distribution is visualised as rectangu-
larised space where the number of accepted points within each of the rectangle
is visualised by a colour gradient - see Fig. 4d. For more dimensions DiPS shows
scatter-line plot connecting values of parameters for each of the accepted points.

This visualisation is accompanied by two metadata visualisations. In the
first one, the sequence of the accepted point with a histogram is shown for each
parameter. In the latter, the sequence of all points, accepted and rejected, is
shown as a projection for each of the parameters. For one or two dimensions also
the sequence is shown in phase space for both accompanying visualisations.

2.9 Metropolis-Hastings-guided Refinement – HMH

The newly proposed method for parameter synthesis, Hajnal-Metropolis-
Hastings (HMH), combines two interconnected methods: Metropolis-
Hastings and space refinement. Posterior distribution as the result of Metropolis-
Hastings serves to split the space into rectangles with marking of the number
of accepted points within each of the rectangles. The discrepancy of this value
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and the expected number of accepted points in each of the rectangles serves to
quantify expectation of probability of the rectangle to be safe. Safe rectangles
are expected to contain more accepted points than unsafe rectangles. This aids
the refinement procedure to select rectangles: 1. with a higher probability to be
either safe or unsafe and 2. to find a safe region faster, as on many occasions,
one is interested in finding a safe area rather than validate the whole parameter
space.

3 Key Tool Features and Contributions

The main contribution of this paper is a tool offering a palette of parameter
inference methods for pMCs. In comparison with the state-of-art we extend
existing tools and workflows in the following aspects:

1. DiPS provides a fully automated computation of the confidence intervals serv-
ing as thresholds for probability satisfaction of the specified property. The
user can pick one of the six methods, with the default option, Agresti Coull
method [3], performing much better than the standard (Wald) method.

2. DiPS allows two satisfaction probability thresholds (a lower and an upper
bound of the satisfaction probability, e.g., bounds of the confidence inter-
val) per each single temporal property. These bounds constrain the rational
functions provided that both of the respective inequalities must be satisfied.
DiPS supports the conjunction of multiple constrained rational functions –
algebraic expressions of satisfaction probability of multiple properties. Multi-
ple properties further allow the experts to maximise the predictive power of
sparse data in order to find satisfactory parameter values. We have demon-
strated the necessity of such a setting in our case study of the population
model of honey bee mass stinging [14] containing several different BSCCs. In
that case, it was necessary to constrain reachability probabilities for each of
the BSCCs.
Native support for multiple properties allows DiPS to reach desired cover-
age of space refinement, while PRISM and Storm tends to reach lower than
desired coverage without the possibility of continuation of the refinement to
enhance the coverage.

3. We extend the palette of methods with optimisation, Metropolis-Hastings,
and HMH allowing to work with large model instances. For instance, Bayesian
inference will always give some information within the available time frame,
even though it cannot provide a global partitioning of parameter space,
as is the case with the space refinement method. In addition, Metropolis-
Hastings gives the quantitative result providing more information than the
qualitative sat/unsat answer.

4. Precision and efficiency of optimisation and Metropolis-Hastings is enhanced
by the knowledge of rational functions. To obtain the probability of satisfac-
tion of a PCTL formula without having rational functions, one needs to run
the pMC. As this has to be done in each parameter point to be analysed, the
estimation becomes imprecise and/or expensive.
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5. Modularity of DiPS provides an option to begin the procedure in any phase
of the workflow, starting with:

– model, properties, and data/intervals,
– (rational) functions and data/intervals,
– algebraic constraints, or
– refined space.

This allows using manually computed confidence intervals instead of data
and generalisation of input functions, adding more rational functions and/or
algebraic constraints or even to load previously refined parameter space, and
continue refinement with a different setting and/or algebraic constraints.

6. Modularity of the design and its multiple methods allow interconnecting the
results; Metropolis-Hastings can be initialised from the optimised point, space
refinement can start with initial partitioning based on sampling results (pre-
sampled refinement) or Metropolis-Hastings result (HMH), etc. – see Fig. 2.

7. Finally, DiPS is able to analyse and visualise output even for models with
more than two parameters - more details with example in tutorial.

4 Implementation and Experiments

4.1 Implementation

DiPS is an open source Python project, which is capable to communicate with
and leverage PRISM and Storm. The command-line interface (CLI) serves for
optimal performance and fast development. It is supplied with a GUI, divided
in 6 functionally different tabs. The GUI provides user-friendly access to the
workflow implemented by the CLI.

In the main workflow - see Fig. 1, models (PRISM models in .p format)
and properties (in .pctl format) are fed to PRISM or Storm to run parametric
model checking resulting in rational functions. Data are used directly with ratio-
nal functions to search for parameter point minimising the distance between the
inputs (optimisation) or in Metropolis-Hastings to compute posterior distribu-
tion. For other methods (space sampling and space refinement), data intervals
(e.g. confidence intervals) are computed from the data to either create data-
informed properties or combine with rational function to create algebraic con-
straints. Moreover, data-informed properties (combination of properties and data
intervals) and the model are used for the partitioning using PRISM or Storm,
while DiPS uses algebraic constraints directly. DiPS’s functional units and their
connections are depicted in more details in Fig. 2.

Modularity of DiPS allows starting the workflow at any given point, allowing
to adjust or to create a new input. Visualisations provide information on results
of implemented methods as well as the output of partitioning results of PRISM
and Storm. To parallelise the methods, we use multiprocessing Python library
using Pools with pool.map.
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4.2 Experiments

We have evaluated the performance of our tool on a variant of the well-known
Knuth’s die [21] and a model of stinging bees presented in [14]. The evaluation
consists of three parts: (1) runtimes of parallelisation results of sampling, (2)
sampling guided refinement vs regular refinement and its parallelisation, and
(3) a comparison of refinement methods implemented in DiPS with PRISM and
Storm implementations. Shown results were obtained using a tower PC, Skadi,
with 64 bit Ubuntu 20.04.2, i9-9900K CPU, 32 GB RAM, SSD disk.

The first case study is Knuth’s die [21] which emulates a 6-sided die with a
coin. To obtain the result, at least three flips of the coin are used, where we used
three biased coins, one for each of the flips, to generate the data – the probability
of rolling a side of the die. The parameters are probabilities of tossing heads with
each coin – p1, p2, p3. We scale this model using a version with single parameter
(p1 = p2 = p3), two parameters (p1, p2, p3 = 0.5), and a version with all three
parameters.

In the second case study, we look at the population model of honeybees [14].
Honeybees protect their hive against vertebrates by mass-stinging. This action
costs a bee life. Collective decision which bee stings and which does not is crucial
for the vitality of the colony. When the hive is attacked, a bee decides to sting
with an unknown probability p. A stinging bee releases an alarm pheromone,
which promotes the stinging of other bees. A bee that initially decided not to
sting can sense this pheromone and opt for stinging with probability q. In the
refined version of the model (multiparam), this parameter, qi, is modulated by
the number of already stinging bees, i. Here we investigate the semisynchronous
version of the model, which means that in the first transition (before sensing
alarm pheromone) all bees make a decision to sting or not to sting - synchronous
update. Afterwards, in each transition only a single bee makes a decision - asyn-
choronous update. To generate synthetic data, we simulate the chain and obtain
probabilities of reaching every possible number of stinging bees from zero to m:
d0, d1, . . . dm, where di is the fraction of simulations that ended up with i sting-
ing bees. In the model, this is equal to the probability of reaching the respective
BSCC and it can be encoded in terms of a PCTL property, ϕi = P=?F (BSCCi).
The distribution of the number of stinging bees is reflected as a conjunction of
respective probabilities, ϕ0 = d0 ∧ ϕ1 = d1 ∧ · · · ∧ ϕm = dm.

For easier comparison with results in [14] we use the same settings for con-
fidence intervals – the Wald method with a correction term. All intervals were
computed using N - number of samples: 100, C - confidence level: 0.95.

A script reproducing experiments, examined models, properties, and data is
included in the tool package.

Sampling Parallelisation. Results visualised in Fig. 3a show that for smaller
models the overhead of parallelisation is higher than the benefits, but in absolute
values, the speedup for bigger models is much more dominant. Moreover, the
overhead of more cores diminishes as the model and hence rational functions
increase in size.
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Refinement Parallelisation. In Fig. 3b, c we can see that the most advantage
gaining solver is z3. Refinement with z3 requires fewer but more exhaustive calls;
hence the overhead of creating processes is minimised. The overhead of more
cores diminishes as the model and hence rational functions increase in size.
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Fig. 3. Runtimes of sampling and refinement. Time in seconds (vertical axis), the
sequential version and the number of processes - Pool size (horizontal axis). The curves
display the average of 300 runs (sampling) and 20 runs (refinement).

Sampling-Guided Refinement Parallelisation. We show the benefits of
sampling-guided refinement using z3 solver in Fig. 3 (a vs b). In all instances the
sampling-guided refinement performs better. The same effect with slightly lower
amplitude can be observed using dreal. Finally, calls of interval arithmetic are
so fast that the overhead of sampling overweights the benefits. We recommend
using the standard (not sampling-guided) parallel refinement in this case.

Comparison of Refinement Using DiPS, Storm, and PRISM. Refine-
ment implemented in Storm does not reach selected coverage because the merg-
ing of the refinements for the respective property may create more unknown
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Table 1. Runtimes of refinement (fastest setting). Space refinement using SMT solver
(z3 and dreal) and interval arithmetic. The fastest method shown in bold. Times in
seconds. Timeout (TO) 1 h. In all experiments, a property specifying the reachability
of all BSCCs in the model is employed (formulated as a conjunction of reachability
of individual BSCCs). Number of samples, N = 100, confidence level, C = 0.95. Not
shown models timed out for all three methods.

Model Refinement SMT solver:
z3, dreal

Refinement interval
arithmetic

Knuth die, true point p1 = 0.4, p2 = 0.7, p3 = 0.5
data, [0.208, 0.081, 0.1, 0.254, 0.261, 0.096]

# states: 13, # transitions: 20, # BSCCs: 6

Knuth unfair
1-param

0.01177, 0.001163 0.007269

Knuth unfair
2-param

0.741, 0.3656 0.5874

Knuth unfair
3-param

1.326, 0.6033 3.963

Honeybee model of m agents, 2 parameters, dataset 1

# states: 9,13,24, # transitions: 12,19,39, # BSCCs:
m+1

semisyn 2 0.6514, 0.3593 3.46

semisyn 3 0.8337, 0.6943 201.3

semisyn 5 1.552, 63.55 TO

Honeybee model of m agents, n parameters, dataset 1

# states: 13, # transitions: 19, # BSCCs: m+1

semisyn 3 0.3419, 0.1206 0.1155

regions, e.g., merging a safe and an unknown rectangle. Surprisingly, we have
been unable to obtain the desired coverage for multiple properties input with
PRISM as well. Hence manual tweaking of the coverage value and rerunning
the analysis is necessary to obtain the desired coverage. Moreover, parameter
lifting is limited to multi-affine transition functions. In conclusion, in Table 1
we show the fastest average runtimes (number of processes, sampling-guided vs
regular) of refinements that reached the desired coverage. DiPS tackles the scal-
ability problem of refinement with many parameters or large rational functions
by using other methods – optimisation, sampling, and Metropolis-Hastings.
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Fig. 4. Visualisation (screenshot from GUI of DiPS) of sampling (a), refinement (b),
sampling and refinement (c), and Metropolis-Hastings (d) as a result of 2-param Knuth
model. Examples of multidimensional visualisations are shown and explained in the
tutorial. (Color figure online)
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5 Conclusions and Future Work

We presented a new open source tool, DiPS, dedicated to parameter exploration
for pMCs. It focuses on multiple temporal logic properties informed by data.
To this aim, we automatically compute rational functions – symbolic represen-
tations of satisfaction of each property, by leveraging the existing parameter
synthesis tools, as well as their respective probability thresholds, through the
confidence intervals derived from data following frequentist statistics interpre-
tation. These two elements are coupled into algebraic constraints over unknown
parameters. DiPS solves the algebraic constraints by partitioning the parameter
space and can leverage PRISM or Storm for parameter synthesis as well. We
add the visualisation of the synthesis results including merging of the Storm
bound-wise results. The tool implements two additional methods for parame-
ter exploration, optimisation and Metropolis-Hastings, to tackle the scalability
problem of Space Refinement. Moreover, we proposed a new method, HMH,
for parameter synthesis combining Metropolis-Hastings and refinement. Finally,
parallelisation, modularity, and interconnections of the methods provide further
advantages.

In comparison with the mentioned tools, DiPS improves analysis for multi-
ple observations using the conjunction of properties, visualisation of functions in
selected points to compare with data, and it complements the analyses with opti-
misation and Bayesian inference. The possibility to apply different approaches
to explore the parameters is especially useful because these analyses have a dif-
ferent trade-off between computational efficiency and the type of information
they provide, and the modeller may want to explore different approaches. For
example, Bayesian inference will always give some information within the avail-
able time frame, but it cannot provide a global partitioning of parameter space,
as it is the case with the space refinement method.

We illustrate the applicability of the tool on a variation of Knuth’s die[21]
and a case study of honeybee mass-stinging behaviour [14].
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Abstract. This paper explores the performance costs introduced by
a security protocol known as an anonymous and failure resilient fair-
exchange e-commerce protocol. The protocol guarantees customer anony-
mity and fair exchange between two parties in an e-commerce environ-
ment. In this paper, the protocol is studied and modelled when misbe-
haviour between participants occurs. Models are formulated using the
PEPA formalism to investigate the performance overheads introduced
by the security properties and behaviour of the protocol when a dispute
between the parties exists. This study uses a PEPA Eclipse plug-in to
support the creation and evaluation of the proposed PEPA models.

Keywords: PEPA · Security protocol · Misbehaviour

1 Introduction

Computing systems are becoming increasingly complex and consist of multi-
ple interactive components. Performance has been seen as an important aspect
for evaluating computing systems. Many computing systems are connected to
the network, either privately or publicly, and this can pose vulnerability issues,
exposing systems to threats and attacks. Security protocols can add an extra
overhead to a system, directly influencing its performance. This is a problem for
many different domains. For example, the performance of a web server is reduced
in response to the implementation of the secure sockets layer protocol [2,3].

Performance and security are essential aspects for almost all systems. Thus,
it is important to develop a system that affords an optimal balance between secu-
rity and performance concerns. Therefore, the extra cost that security aspects
contribute to the system’s performance has attracted widespread attention. As a
result, developers have conducted explorations and taken measurements with the
aim of developing a secure system that gives satisfactory performance [3,8,9].

This paper explores a type of non-repudiation e-commerce security protocol
when misbehaviour and disputes between the customer and merchant occur. This
protocol is called an anonymous and failure resilient fair-exchange e-commerce
protocol. It was proposed by Ray et al. [6]. It guarantees a fair exchange between
c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 96–114, 2021.
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two parties and satisfies the following features: first, fairness – no party can have
any advantages over the other party during the course of the exchange; second,
the anonymity of the parties – a customer can interact without disclosing any
personal information; third, no manual dispute resolution; fourth, not relying on
the service of a single trusted third party (TTP) – instead, multiple TTPs are
available to provide services; fifth, offline TTP – the involvement of such a party
must be at a minimum level, only when any problem occurs; and finally, any
type of digital merchandise can be exchanged. Moreover, the protocol is based
on an approach called ‘cross-validation’, which allows the customer to validate
the encrypted electronic product without decrypting it.

Based on the description provided by Ray et al. [6], the protocol has two ver-
sions: with and without an anonymity feature. In this paper, we consider the pro-
tocol version that ensures customer privacy is protected from any other parties.
The customer does not need to share any personal information with a merchant
to buy. Thus, the customer’s true identity is hidden from the merchant. Ray et
al. modified the basic failure resilient fair-exchange protocol to prevent the cus-
tomer’s personal information from being known by the merchant by following the
electronic cash system [5]. In the basic version, the payment token that the cus-
tomer sends to the merchant contains some personal information, such as the cus-
tomer’s identity and bank account information. Therefore, the merchant will have
detailed personal information about the customer once it receives the payment
token. However, in this modified version, the customer uses digital base money to
buy from merchants. By using this method, merchants can not obtain any personal
information from the customer or create a customer profile without permission.

The protocol relies on TTPs but does not need them to be active at any time
except if a problem occurs. Therefore, the protocol has two main descriptions
depending on the type of TTP involvement: offline TTP (basic) and online TTP
(extension) [6]. With offline TTP involvement, there is no TTP active involve-
ment as no parties misbehave or prematurely terminate the protocol. However,
with online TTP, when parties misbehave or prematurely terminate the protocol,
the TTP must be involved in resolving the problem and ensuring fair exchange.
In [1], we studied the protocol’s performance without dispute between parties.
In this paper, we study the protocol’s performance when a dispute between the
parties occurs. In addition, the discussion focuses on the behaviour aspects of
the protocols in order to analyse their performance.

The approach is used to model the protocol is Performance Evaluation Pro-
cess Algebra (PEPA). PEPA is a well-known implementation of the Stochastic
Process Algebra (SPA). A system is modelled in the PEPA formalism as a set of
components which interact and engage individually or with other components in
activities in order to evaluate its performance [4]. Thus, the components repre-
sent the active parts in the system and the behaviour of each part is represented
by its activities. The creation and performance evaluation of a PEPA model is
supported by the PEPA Eclipse plug-in [7]. This tool has been developed to
support the Markovian steady-state analysis, Stochastic Simulation Algorithms
(SSA) analysis, and Ordinary Differential Equations (ODE) analysis of PEPA
models in the Eclipse Platform [7].
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The paper is organized as follows. Section 2 provides the protocol specifica-
tion. In Sect. 3, the proposed PEPA model of the protocol is presented. Section 4
presents the protocol’s evaluation and results. Finally, Sect. 5 concludes the paper
by providing an overview of the study findings and future work.

2 Protocol Specification

2.1 An Anonymous and Failure Resilient Fair-Exchange
E-Commerce Protocol

This subsection provides an informal description of the protocol. The formal
description of the protocol and security-related details are provided in [6]. Before
the protocol is initiated, the environment needs to be set up with the same steps
detailed in [1,6]. The customer (C) uses a pseudo identifier C′ when starting a
new transaction with the merchant (M) to preserve the anonymity of C. Thus,
no parties in the protocol except the customers themselves have sufficient infor-
mation to link the C′ used in the transaction with C, which is the real customer
identity. B is the bank or the financial institution, and TTP is the Trust Third
Party. The following are the main nine interaction steps (Fig. 1). A more detailed
description of the steps is provided in [1,6]. All texts in bold indicate the names
of the actions used in the PEPA model presented in this paper:

Fig. 1. An anonymous and failure resilient fair-exchange e-commerce protocol.

1. download (TTP ⇒ C): C visits the TTP website and downloads the
encrypted electronic product from the TTP server. This encrypted electronic
product can be used to validate the product received from M.

2. requestBDigitalCoins (C ⇒ B): C sends a request to B for digital coins.
3. sendCDigitalCoins (B ⇒ C): B sends the signed blinded coin to C.
4. sendMPO (C′ ⇒ M): C′ sends a message containing the purchase order

(PO) to M.
5. sendCEP or sendCAbort (M ⇒ C′): M sends the encrypted product to C′

or sends an abort statement to end the transaction if M is not satisfied.
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6. sendMCoinDk or sendMAbort (C′ ⇒ M): C′ sends the decryption key
of the digital coin to M or sends an abort message to end the transaction.
If M sends the encrypted electronic product, then C′ validates it with the
encrypted electronic product received from TTP (step 1). If the product is
valid, C′ sends the decryption key for the digital coin to M and then waits
for the product decryption key by setting a timer. If C′ does not receive the
key within the time set, they will require TTP involvement. If the product is
not valid, C′ sends an abort statement to M.

7. sendBCoinByM or sendCAbort (M ⇒ B or M ⇒ C′): M sends B the
digital coin for validation, or M sends C′ an abort message to terminate the
transaction. If M is unsatisfied for any reason, M sends C′ an abort message
to terminate the transaction.

8. sendMyes or sendMno (B ⇒ M): B sends M either ‘yes’ or ‘no’. If the coin
has been spent, B sends M ‘no’. If the coin has not been spent, B credits M’s
account with the same amount of money as the digital coin and then sends
M ‘yes’.

9. sendCPDk or sendCAbort (M ⇒ C′): M sends the electronic product
decryption key to C′ after receiving ‘yes’ from B, or ends the transaction by
sending an abort message to C′ after receiving ‘no’ from B.

2.2 The Extended Protocol for Handling Misbehaviours
and Communication Problems

This subsection presents scenarios to solve any dispute between the merchant
and the customer. When misbehaviours and/or communication problems occur,
the extended protocol is initiated, and TTP status is changed to online during
the protocol execution. The execution of the extended protocol is started when
the customer’s timer expires (after Step 6 in the protocol), and the protocol does
not reach completion status or when the customer receives an abort message or
an invalid product decryption key in Step 9.

A dispute resolution is initiated when a customer sends TTP an initiation
message that contains evidence of misbehaving. The misbehaviour scenarios
solved by the extended protocol are illustrated as follows (all texts in bold indi-
cate the names of the actions used in the PEPA models presented in this paper):

Merchant Behaves Improperly

Scenario 1: M sends an invalid product decryption key (Step 9 in the protocol
steps). The interaction actions for resolving this dispute are as follows:

1. seekingHelpFromTTP and then sendTTPinfo: C initiates the execution
of the extended protocol by seeking help from TTP. Then C sends an initiation
message to TTP to seek a resolution of the problem.

2. validateCoinToB: TTP receives the customer’s dispute resolution request.
Then it starts to contact B to validate the coin.
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3. sendTTPyes: B confirms that the coin is valid, which means that the cus-
tomer play fairly.

4. askMForValidK: TTP orders M to send a valid product decryption key.
5. sendTTPvalidK or timeoutTTP : M responds within the timeout period

by sending the valid product decryption key to TTP, or M does not respond
and the timeout expires.

6. forwardKtoC or sendCkByTTP and takeActionAgainstM: If TTP
receives the valid product decryption key from M, it forwards it to C. However,
if TTP does not receive the valid product decryption key within a specified
timeout period, TTP sends C the preserved product decryption key and then
takes action against M.

Scenario 2: M sends an invalid product decryption key (Step 9 in the protocol
steps). The coin in this scenario is invalid. The interaction actions for resolving
this dispute are as follows:

1. seekingHelpFromTTP and then sendTTPinfo: same as step 1 in the first
scenario.

2. validateCoinToB: same as step 2 in the first scenario.
3. sendTTPno: B confirms that the coin is invalid, which means that TTP

needs to investigate who spent the coin.
4. investigationInvalidCoinToB: TTP contacts B to investigate who spent

the coin.
5. mspentTheCoinToTTP: B confirms that the coin is spent by M.
6. askMForValidK: same as step 4 in the first scenario.
7. sendTTPvalidK or timeoutTTP: same as step 5 in the first scenario.
8. forwardKtoC or sendCkByTTP and takeActionAgainstM: same as

step 6 in the first scenario.

Scenario 3: M disappears without sending a valid product decryption key (Step
9 in the main protocol steps). The interaction actions for resolving this dispute
are as follows:

1. cTimeoutExpired and then sendTTPinfo: C initiates the extended pro-
tocol by sending an initiation message after the timeout period for receiving
the decryption key has expired.

2. validateCoinToB: same as step 2 in the first scenario.
3. sendTTPyes: same as step 3 in the first scenario.
4. askMForValidK: same as step 4 in the first scenario.
5. sendTTPvalidK or timeoutTTP: same as step 5 in the first scenario.
6. forwardKtoC or sendCkByTTP and takeActionAgainstM: same as

step 6 in the first scenario.

Scenario 4: M claims that a valid product decryption key has not been sent
because an invalid coin’s decryption key has been received from C. The interac-
tion actions for resolving this dispute are as follows:
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1. sendTTPreason: M responds to TTP by identifying the reason for not
sending the valid product decryption key to C after TTP contacts it to send
a valid decryption key.

2. sendTTPvalidK: M must still send TTP the valid product decryption key.
3. sendMpKbyTTP and forwardKtoC: When TTP receives the valid prod-

uct decryption key from M, it sends M the valid coin decryption key and
forwards the valid product decryption key to C.

Customer Behaves Improperly. In this case, after C sends TTP an initiation
message for the extended protocol, TTP starts contacting B to validate the
coin. If the coin is invalid (sendTTPno), TTP then starts contacting B to
investigate who spent the coin (investigationInvalidCoinToB). If B confirms
that the customer is who spent the coin (cspentTheCoinToTTP), TTP will
not forward the valid product decryption key to C (discoverMisbehavingC).

3 PEPA Models of the Extended Protocol

This section proposes a PEPA model for the protocol extension for handling
misbehaviour. The model is an extended protocol to solve the misbehaving event
between M and C parties with a probability of M misbehaving. The PEPA
model comprises four main components. The four components are Merchant
(M), Customer (C), Trust Third Party (TTP) and Bank (B). M, C and TTP
are sequential components in the PEPA model, whereas B is a static component.
The extended PEPA model is formulated as follows:

Merchant Component

M0
def= (sendMPO, rsendMPO).M1

M1
def= (sendCEP, rsendCEP ).M2 + (sendCAbort, rsendCAbort).M8

M2
def= (sendMCoinDk, rsendMCoinDk).M3 + (sendMAbort, rsendMAbort).M6

M3
def= (startContactB, rstartContactB).M3a + (sendCAbort, rsendCAbort).M6

M3a
def= (sendBCoinByM, rsendBCoinByM ).M4

M4
def= (sendMyes, rsendMyes).M5 + (sendMno, rsendMno).M7

M5
def= (sendCPDk, rsendCPDk).M6 + (cT imeoutExpired, rcT imeoutExpired).M6

M6
def= (complete, rcomplete).M0 + (askMforV alidK, raskMforV alidK).M9

M7
def= (sendCAbort, rsendCAbort).M6

M8
def= (sendMAbort, rsendMAbort).M6

M9
def= (sendTTPvalidK, rsendTTPvalidK).M6

+ (timeoutTTP, rtimeoutTTP ).M10

+ (sendTTPreason, rsendTTPreason).M11

M10
def= (takeActionAgainstM, rtakeActionAgainstM ).M6

M11
def= (sendTTPvalidK, rsendTTPvalidK).M12

M12
def= (sendMpkbyTTP, rsendMpkbyTTP ).M6
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The above model component specifies M’s different behaviours, moving from
M0 to M12. It has fourteen behaviours to reflect the protocol’s steps for M.
M moves sequentially between the different behaviours based on the activities
specified in the PEPA component. The actions presented reflect the protocol’s
interaction steps related to M.

Customer Component

C0
def= (download, rd).C1

C1
def= (requestBDigitalCoins, rrequestBDC).C2

C2
def= (sendCDigitalCoins, rsendCDC).C3

C3
def= (sendMPO, rsendMPO).C4

C4
def= (sendCEP, rsendCEP ).C5 + (sendCAbort, rsendCAbort).C8

C5
def= (sendMCoinDk, rsendMCDk).C6 + (sendMAbort, rsendMAbort).C7

C6
def= (sendCPDk, p ∗ rsendCPDk).C7 + (sendCPDk, (1 − p) ∗ rsendCPDk).C9

+ (sendCAbort, p ∗ rsendCAbort).C7

+ (sendCAbort, (1 − p) ∗ rsendCAbort).C9

+ (cT imeoutExpired, p ∗ rcT imeoutExpired).C7

+ (cT imeoutExpired, (1 − p) ∗ rcT imeoutExpired).C9

C7
def= (complete, rcomplete).C0

C8
def= (sendMAbort, rsendMAbort).C7

C9
def= (sendTTPinfo, rsendTTPinfo).C10

C10
def= (forwardKtoC, rforwardKtoC).C7 + (sendCkByTTP, rsendCkByTTP ).C7

+ (discoverMisbehavingC, rdiscoverMisbehavingC).C7

The above model component specifies C’s different behaviours, moving from
C0 to C10. It has eleven behaviours to reflect the protocol’s steps for C. C moves
sequentially between the different behaviours based on the activities specified in
the PEPA component. The actions presented reflect the protocol’s interaction
steps related to C. In C6, we introduced a probability of M misbehaving in the
actions rates as the customer is the one who initiates contact with TTP seeking
dispute resolution. p indicates the probability that C will receive an honest or
satisfactory response from M (assuming M is honest), and (1 − p) indicates the
probability that C will receive an invalid or no response from M (assuming M
is misbehaving). When C receives an invalid or no response from M, C will
initiate contact with TTP to resolve the dispute. Therefore, in C6, there are 6
actions could happen either sendCPDk at rate rsendCPDk ∗ p moving to C7,
sendCPDk at rate rsendCPDk ∗ (1−p) moving to C9 to seek a dispute resolution
form TTP, sendCAbort at rate rsendCAbort∗p moving to C7, sendCAbort at rate
rsendCAbort ∗ (1−p) moving to C9, cT imeoutExpired at rate rcT imeoutExpired ∗p
moving to C7 or cT imeoutExpired at rate rcT imeoutExpired ∗ (1 − p) moving to
C9.
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TTP Component

TTP0
def= (download, rd).TTP1 + (sendTTPinfo, rsendTTPinfo).TTP1

TTP1
def= (validateCoinToB, rvr).TTP2

TTP2
def= (sendTTPyes, ryes).TTP3 + (sendTTPno , rno).TTP7

TTP3
def= (askMforV alidK, raskMforV alidK).TTP4

TTP4
def= (sendTTPvalidK, rsendTTPvalidK).TTP5a

+ (timeoutTTP, rtimeoutTTP ).TTP6

+ (sendTTPreason, rsendTTPreason).TTP4a

TTP4a
def= (sendTTPvalidK, rsendTTPvalidK).TTP5

TTP5
def= (sendMpkbyTTP, rsendMpkbyTTP ).TTP5a

TTP5a
def= (forwardKtoC, rforwardKtoC).TTP0

TTP6
def= (sendCkByTTP, rsendCkByTTP ).TTP8

TTP7
def= (investigationInvalidCoinToB, rinvestigationInvalidCoinToB).TTP9

TTP8
def= (takeActionAgainstM, rtakeActionAgainstM ).TTP0

TTP9
def= (cspentTheCoinToTTP, rcspentTheCoin).TTP10

+ (mspentTheCoinToTTP, rmspentTheCoin).TTP3

TTP10
def= (discoverMisbehavingC, rdiscoverMisbehavingC).TTP0

The above model component specifies TTC’s different behaviours. TTP has
thirteen states. TTP moves from states TTP0 to TTP10 to solve the dispute
between C and M. The actions are preformed based on the specified rates in order
for TTP to involve in the interaction and provide a fair resolution for the disputed
parties. TTP’s main actions are download, validateCoinToB, askMforV alidK,
timeoutTTP , sendMpkbyTTP , forwardKtoC, sendCkByTTP , investigation-
InvalidCoinToB, takeActionAgainstM and discoverMisbehavingC. TTP
controls the rates of those actions.

Bank Component

B
def= (requestBDigitalCoins, rrequestBDC).B
+ (sendCDigitalCoins, rsendCDC).B + (sendBCoinByM, rsendBCByM ).B
+ (sendMyes, rsendMyes).B + (sendMno, rsendMno).B
+ (cspentTheCoinToTTP, rcspentTheCoin).B
+ (mspentTheCoinToTTP, rmspentTheCoin).B + (validateCoinToB, rvc).B
+ (sendTTPyes, ryes).B + (sendTTPno, rno).B
+ (investigationInvalidCoinToB, rinvestigationInvalidCoinToB).B

The last part of the model is for B component. B has one state. The B’s
main actions to support the purchase processes between the components C
and M are sendCDigitalCoins, sendMyes and sendMno and to support the
dispute resolution are sendTTPyes, sendTTPno, cspentTheCoinToTTP and
mspentTheCoinToTTP as described in the scenarios of the extended protocol
specification (Subsect. 2.2). The rates of these actions are controlled by B.
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The System Equation. The system equation and complete specification are
given by

System
def= TTP [K] ��R (B[S] ��M (C0[N ] ��L M0[N ]))

where the cooperation sets R = {download, sendTTPinfo, validateCoin-
ToB, sendTTPyes, sendTTPno, askMforValidK, sendTTPvalidK, timeoutTTP,
sendTTPreason, sendMpkbyTTP, forwardKtoC, sendCkByTTP, investigation-
InvalidCoinToB, takeActionAgainstM, cspentTheCoinToTTP, mspentTheCoin-
ToTTP, discoverMisbehavingC}, M = {requestBDigitalCoins, sendCDigital-
Coins, sendMno, sendBCoinByM, sendMyes} and L = {sendMPO, sendCEP,
sendCAbort, sendMCoinDk, sendMAbort, sendCPDk, complete, cTimeoutEx-
pired}, any action in the lists R, L and M is shared action between the compo-
nents specified in the system equation. N is the number of clients and merchant
copies on the system, K is the number of TTPs, S is the number of Bs. The
four components are initially in the states TTP0, C0, M0 and B.

Furthermore, M has a number of copies depending on the number of cus-
tomers in the system; each copy is associated with one C in order to serve it.
This indicates that the rates of all the main actions carried out by M depend on
the number of Cs interacting with M. The rates of M’s main activities are divided
by the number of Cs that interact with it. The M’s main actions are sendCEP ,
sendCAbort, startContactB, sendBCoinByM , sendCPDk, sendTTPvalidK
and sendTTPreason. For example, the rate of sendCEP action is calculated as
follows:

rsendCEP =
rsendCEP1

N

Additionally, the service rates of all the main actions of B are calculated based
on the number of C and M’s copies and the number of Bs involved in the inter-
action. The B’s main actions are sendCDigitalCoins, sendMno, sendMyes,
mspentTheCoinToTTP , cspentTheCoinToTTP , sendTTPyes and sendTTP -
no. One, two or more Bs can be involved in the protocol to serve C and M. For
example, the rate of sendCDigitalCoins action is calculated as follows:

rsendCDC =
(rsendCDigitalCoins1

N

)
∗ S

Further, the service rates of all TTP’s main actions depend on the num-
ber of both Cs and TTPs interacting with each other. TTP’s main actions are
forwardKtoC, download, sendCkByTTP , askMForV alidK, takeActionAgai-
nstM , discoverIncorrectPTK, sendMpKbyTTP , validateCoinToB, sendMp-
kbyTTP and investigationInvalidCoinToB. One, two or more TTPs can be
involved in the protocol [6]. For example, the rate of download action is calcu-
lated as follows:

rd =
(rdownload

N

)
∗ K
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4 Performance Evaluation of the Extended Protocol

We seek to calculate the average response times of TTPs when they serve C to
solve the dispute. We assigned 1 as a value for all rates. The main actions of M
are calculated based on the number of customers in the system, and the main
actions of TTP are calculated based on the number of customers and TTP in
the system, as mentioned in Sect. 3.

(a) Number of TTPs (K ) is 20

(b) Number of TTPs (K ) is 40

Fig. 2. The average response time of TTP5a, TTP6 and TTP10 using ODE when S = 20
and the probability of M to be honest is 0.1.
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In Fig. 2(a), the number of TTP involved in the system is 20 and we change
the number of customers from 200 to 1000 to show how increasing the number
of the customer seeking help from TTP would impact the performance of the
protocol. The average response time of TTP for all main states (TTP5a, TTP6

and TTP10) to solve the dispute is the same. Having a large number of customers
significantly increases the average response time of TTPs, which creates more
performance overhead. However, in Fig. 2(b), the number of TTP is increased
to 40 which causes a decrease in the response time in relation to the number
of customers in the system compared to Fig. 2(c). Therefore, having a larger
number of TTPs involved in the protocol when the dispute occurs between C
and M mitigates the security protocol’s performance overhead.

We are also interested in investigating the population level analysis of C4,
C6, C9 and C10 (C4 and C6 for having a service from M and C9 and C10 for
interacting and having a service from TTP) and throughput analysis of some
main actions that provide service to C. Both analyses are studied in relation to
different probabilities of M to be honest and different population numbers of Cs
and M’s copies.

In Figs. 3(a) and 4(a), the probabilities for M to be honest are changed from
p = 0.1 to p = 0.9, the number of TTP is 20, the number of C and M’s copies
is 200 and the number of banks is 20. Figure 3(a) shows how decreasing the
probabilities of M to be honest has a clear effect on increasing the number of
C10 copies. So more customers seek dispute resolution. However, the number
of C in C4 and C6 does not experience any change but there are more Cs in
C6 waiting to get a decryption key for the encrypted product than in C4 to
get an encrypted product. Figure 4(a) illustrates the significant increase in the
throughput of the TTP’s actions that provide the dispute resolution when the
probabilities of M to be honest is decreasing. We believe this is because more
customers are seeking help from TTP.

In Figs. 3(b) and 4(b), the number of C and M’s copies (N) is increased
to 600. Increasing the number of Cs in a system has a clear impact on the
population level and the actions’ throughputs. Just like Fig. 3(a), Fig. 3(b) shows
how decreasing the probabilities of M to be honest has a clear effect on increasing
the average number of C10 as more customers seek a dispute resolution. Also,
the number of Cs in C4 and C6 does not experience any change, but more Cs
in C6 waiting to get a decryption key for the encrypted product than in C4 to
get an encrypted product. However, increasing the number of Cs in the system
does not significantly impact C9 and C10. The impact is clearly on C4 and C6,
compared to C4 and C6 in Fig. 3(a).

Moreover, Fig. 4(b) shows the increase in the throughput of the TTP’s actions
that provide the dispute resolution when the probabilities of M to be honest is
decreasing. We believe this is because more customers are seeking help from
TTP. Moreover, all actions have a clear reduction on their throughput when we
increased the number of C. The throughput values of the TTP’s actions are less
than the throughput of the TTP’s actions in Fig. 4(a) when the number of Cs
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in a system is 200. Therefore, a larger number of customers in the system will
have an effect on the TTP’s responses.

(a) N = 200

(b) N = 600

Fig. 3. The population level analysis using ODE with K = 20 and S = 20 in relation
to different probabilities of M to be honest.
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(a) N = 200

(b) N = 600

Fig. 4. The throughput analysis of actions using ODE with K = 20 and S = 20 in
relation to different probabilities of M to be honest.

Figure 5 shows how faster the system settled in relation to the population
number of Cs and M’s copies and the probabilities of M being honest. The
larger the population number is and the less probability of M to be honest is,
the longer time will be taken for the system to settle.
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Fig. 5. The steady-state detection time in relation to the population number (N =
200 and N = 600).

Now we are interested in changing the rates of the shared actions between M
and B. The shared actions between M and B are rsendBCoinByM , rsendMyes
and rsendMno. We increased and decreased the rates to show how these would
have an impact on the system performance. First, the shared actions rates
between M and B are decreased to r = 0.2 and r = 0.5. Then they are increased
to r = 2 and r = 4. The rates are calculated depending on the number of N and
S involved in the system, as follows:

rsendBCoinByM = r/N
rsendMyes = (r/N) ∗ S
rsendMno = (r/N) ∗ S

Where N is the number of Cs and M’s copies and S is the number of banks.
The following figure shows the population level analysis of C4 and C6 for

having a service from M and C9 and C10 for interacting and having a service
from TTP. The probability for M to be honest is changed from p = 0.1 to p = 0.9.
Figures 6(a) and 6(b) illustrate that when the shared actions rates between M
and B to check the C’s digital coin’s validity are slow, C experiences a big delay
in receiving a product decryption key. There are large waiting Cs in C6. In
Figs. 6(a) and 6(b), you can notice that the population levels of C9 and C10 are
slightly decreased. We believe this is because more Cs waiting in C4 and C6 to
be served before moving to C9 and C10. So the faster the rate, the less delay
would be, as shown in Figs. 6(c) and 6(d). Moreover, Figs. 6(c) and 6(d) show a
significant increase in the population levels of C10.
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(a) r = 0.2

(b) r = 0.5

(c) r = 2

Fig. 6. The population level analysis using ODE with K = 20, N = 200 and S = 20
and with different rates for the shared actions between M and B.
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(d) r = 4

Fig. 6. (continued)

Figure 7 shows the throughput of some main actions to serve a customer.
These actions are discoverMisbehavingC, forwardKtoC, sendCkByTTP and
sendTTPinfo to interact and seek a help form TTP and sendCAbort, sendCEP
and sendCPDk to get a service form M and cT imeoutExpired. In Fig. 7, the
probabilities for M to be honest are changed from p = 0.1 to p = 0.9, the number
of TTP is 20, the number of C and M’s copies is 200 and the number of banks
is 20. The shared actions rates between M and B are decreased to r = 0.2 and
r = 0.5 and then increased to r = 2 and r = 4. The rates are calculated based
on the number of N and S involved in the system, as mentioned in this Section.

Figure 7 illustrates a significant increase in the throughput of the TTP’s
actions that provide the dispute resolution when M’s probabilities of being honest
are decreasing in all Figures. The TTP’s actions are discoverMisbehavingC,
forwardKtoC, sendCkByTTP and sendTTPinfo. We believe this is because
more customers are seeking help from TTP when M’s probabilities of being
honest are lower. Moreover, there is a considerable improvement in all actions’
throughputs when the shared actions rates between M and B to check the C’s
digital coin’s validity are higher.
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(a) r = 0.2

(b) r = 0.5

(c) r = 2

Fig. 7. The throughput analysis using ODE with K = 20, N = 200 and S = 20 and
with different rates for the shared actions between M and B.
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(d) r = 4

Fig. 7. (continued)

5 Conclusion

This investigation explores an anonymous and failure resilient fair-exchange e-
commerce protocol when the misbehaviour and connections problem occurs. The
involvement of TTP becomes essential to resolving disputes between partici-
pants. We propose the PEPA model for the protocol. The evaluation results
indicated that when the protocol preserved customer anonymity, this introduced
extra performance costs. Furthermore, when there is a dispute between partic-
ipants, the TTP involvement is active, and this would introduce extra load on
TTP and/or Bs, which would influence the system performance. Moreover, we
showed how scaling up TTP and B resources to handle escalating misbehaving
parties mitigates the negative impact on the system performance. In this paper,
we concentrate on the misbehaviour of the merchant. In our future work, we will
consider models and scenarios when misbehaviour occurs from customers. Also,
we will consider PEPA models of malicious misbehaviour where an adversary’s
behaviour changes over time and the system needs to respond in kind in order
to remain secure and to provide a sustainable level of performance to the legiti-
mate users by, for example, scaling of the resources to handle escalating threats
without a negative impact on the rest of the system.

References

1. Almutairi, O., Thomas, N.: Performance modelling of an anonymous and fail-
ure resilient fair-exchange e-commerce protocol. In: Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering, pp. 5–12 (2019)

2. Apostolopoulos, G., Peris, V., Pradhan, P., Saha, D.: Securing electronic commerce:
reducing the SSL overhead. IEEE Netw. 14(4), 8–16 (2000)



114 O. Almutairi and N. Thomas

3. Apostolopoulos, G., Peris, V., Saha, D.: Transport layer security: how much does
it really cost? In: IEEE INFOCOM 1999. Conference on Computer Communica-
tions. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. The Future is Now (Cat. No. 99CH36320), vol. 2, pp.
717–725. IEEE (1999)

4. Hillston, J.: A Compositional Approach to Performance Modelling, vol. 12. Cam-
bridge University Press, Cambridge (2005)

5. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992). https://doi.org/10.
1007/3-540-46766-1 27

6. Ray, I., Ray, I., Natarajan, N.: An anonymous and failure resilient fair-exchange
e-commerce protocol. Decis. Support Syst. 39(3), 267–292 (2005)

7. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA eclipse plug-in. Perform. Eval.
Rev. 36(4), 28 (2009)

8. Zeng, W., Chow, M.Y.: A trade-off model for performance and security in secured
networked control systems. In: 2011 IEEE International Symposium on Industrial
Electronics, pp. 1997–2002. IEEE (2011)

9. Zhao, Y., Thomas, N.: Performance modelling of optimistic fair exchange. In: Wit-
tevrongel, S., Phung-Duc, T. (eds.) ASMTA 2016. LNCS, vol. 9845, pp. 298–313.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43904-4 21

https://doi.org/10.1007/3-540-46766-1_27
https://doi.org/10.1007/3-540-46766-1_27
https://doi.org/10.1007/978-3-319-43904-4_21


Performance Evaluation of a Data Lake
Architecture via Modeling Techniques

Enrico Barbierato1(B) , Marco Gribaudo2 , Giuseppe Serazzi2 ,
and Letizia Tanca2

1 Dip. di Matematica e Fisica, Università Cattolica del Sacro Cuore,
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Abstract. Data Lake is a term denoting a repository storing hetero-
geneous data, both structured and unstructured, resulting in a flexible
organization that allows Data Lake users to reorganize and integrate
dynamically the information they need according to the required query
or analysis. The success of its implementation depends on many fac-
tors, notably the distributed storage, the kind of media deployed, the
data access protocols and the network used. However, flaws in the design
might become evident only in a later phase of the system development,
causing significant delays in complex projects. This article presents an
application of queuing networks modeling technique to detect significant
issues, such as bottlenecks and performance degradation, for different
workload scenarios.

Keywords: Data lake · Queuing networks · JMT

1 Introduction

The concept of Data Lake emerged quite recently and relatively to Big Data, aim-
ing at complementing, or even replacing, more conventional approaches such as
Data Warehouses and Business Intelligence applications1. A Data Lake provides
a most efficient architecture supporting data science applications projecting the
effective value of business performance; as a result, it is of paramount importance
to be able to predict the performance of a Data Lake architecture. Unfortunately,
environments of this sort do not adhere to a standardised design yet, making
difficult to establish valuable metrics capable of determining the effective bene-
fit of using a Data Lake. In principle, the performance of massively distributed
environments relies upon a few indicators, most notably event throughput, which

1 https://infocus.delltechnologies.com/william schmarzo/why-do-i-need-a-data-lake-
for-big-data/.
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in turn depends on storage performance, the topology of the deployed resources,
the co-location of data compared to the computing resources, and the possibility
to access data locally against a remote distribution.

Modeling represents a powerful technique to assess system performance. In
this respect, the literature offers a wide range of approaches, including stochastic
paradigms such as Queueing Networks, Fault Trees and Petri Nets to cite the
most notable. The advantage of this approach emerges in an early stage of a
project identifying bottlenecks or scenarios causing an impact on performance,
resulting in deploying a more efficient and cost-saving architecture.

As a contribution, this work presents a novel performance model of an appli-
cation querying a Data Lake storage, considering utilization as a performance
measure.

The remaining part of the article is organized as follows: Sect. 2 introduces
the concept of Data Lake. Section 3 presents some notable examples of implemen-
tations, while Sect. 4 discusses the scenario of a Data Lake application modeled
by using a queuing system. Section 5 presents an overview regarding the related
work, and finally Sect. 6 draws some conclusions proposing the directions of
future work.

2 Data Lakes

Typically, data fall into different categories, depending on whether they are
structured (e.g., in the form of a relational schema), semi-structured (e.g., JSON
or XML format) or unstructured (such as pdf files, YouTube videos or Facebook
posts). Due to the growing heterogeneity of information, new paradigms and
technologies have been developed; most notably, the Big Data phenomenon has
brought innovative ways to analyze and extract significant value in terms of use.
In this sense, several enterprises dedicate most of their efforts to mining the vast
amount of data at their disposal, to increase their volume of business. Many
innovations have been introduced by Big Data, starting from unlimited storage
volume, due to the way used to represent data, which are segmented on different
clusters. This innovative approach requested the development of a new type of a
software framework, called HDFS (Hadoop Distributed File System), providing
the capability of storing, retrieving and processing huge data sets. The term
Data Lake, introduced in 2010 by J. Dixon2, is not well defined, though it can be
understood3 as a storage repository, which is massive and scalable, holding raw
data, with an associated engine capable of processing the information without
altering its structure.

However, if on one side the lack of a rigid data schema is a strength, it can
be tough to maintain order when new data are received, making data lake gov-
ernance very critical. Put in other words, the mere data ingestion does not take
into account the semantics and context of the data. It is therefore important to
2 https://jamesdixon.wordpress.com/.
3 https://searchcio.techtarget.com/feature/Data-lake-governance-A-big-data-do-or-

die.
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consider, besides traditional dictionaries and indexes, the introduction of a rich
set of metadata, as they play a very important role by giving data a meaning.
For example, it should be possible to add semantic information to a Data Lake,
in order to guarantee that data have a context and ultimately, a governance.
In [9] the authors cite a few properties and requirements characterizing a Data
Lake, such as i) Architecture scalability; ii) Governance, Cataloging and index-
ing; iii) Tracking data transformation; iv) Storing the data sharing the content
to applications; v) Providing the ability to access the data by using different
formats; vi) Granting data access from every sort of device; vii) Allowing differ-
ent data analytics methods and finally, viii) Data compression and absence of
duplication.

Supporting fast data analytics4 is another crucial aspect of Data Lakes
ecosystems. Both relational and NoSQL databases assume that data are physi-
cally retrieved from a disk (with slow access time), which requires a significant
amount of optimization. However, these techniques turn out to be redundant
when flash devices are deployed, and anyway they might not be suited for cloud
environments. As a result, new approaches have emerged, such as in-memory
databases and data grid on flash units (or even a combination of the two). Since
identifying which data need to be mined immediately is of paramount impor-
tance, fast data - corresponding to smaller data sets in real-time to solve a
specific problem - fit the need to apply fast data analytics. The latter requires
two specific approaches: on the one side, since data are received as a stream,
the system must be able to deliver the events with the same speed as they were
received. On the other hand, the received data must be processed by a data
store as they come. This process is articulated in three distinct steps: an ingest
phase (where massive amounts of data are received in a very small amount of
time), a decision regarding an event taken on the basis of the data and real-time
analysis, where an automatic decision-making policy can be implemented.

2.1 Data Lake, Data Warehouse and Data Hub

According to a recent Gartner assessment5, terms such as Data Lake, Data Ware-
house and Data Hubs are used interchangeably, resulting in a growing confusion
about the roles of separate architectures aiming at different purposes.

At first sight, the concept of Data Lake may overlap the definition of Data
Warehouse. However, even if these concepts share a common goal, they are
distinct. A Data Warehouse can be regarded as a highly structured repository,
conceived mainly for (typically already envisaged) business intelligence analysis
on structured data. Usually, warehouse data are extracted from other repositories
- typically transactional Databases -, cleaned and reorganized according to the
business intelligence tasks that are considered as the most frequent, indexed and
loaded into tables, and finally related to the remaining data in the warehouse.

4 https://venturebeat.com/2014/06/25/the-next-big-disruption-in-big-data/.
5 https://www.gartner.com/en/documents/3980938-data-hubs-data-lakes-and-data-

warehouses-how-they-are-di.
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However, this kind of organization doesn’t fit well the adaptability requested by
heterogeneous applications, being constrained by data management procedures.
Furthermore, a Data Warehouse is not optimized to handle a high volume of
data represented in a variety of formats. By contrast, a Data Lake can be hosted
by Hadoop, with a significant reduction of ROI (Return of Investment) and
ownership, Hadoop being a open source product where data can be structured
or not, matches the intrinsic agility of Data Lake, while in a Data Warehouse
any structural change must be carefully evaluated.

Summarizing, as well explained in [7], the Data Warehouse performs an
Extract, Transform and Load (ETL) cycle during the ingestion phase, typically
works on Relational Data Bases and uses SQL to access the data, while the
Data Lake ingests data as is, works on different structures than relational data
bases and considers a broad range of methods (such as programming languages
or different query techniques than SQL).

To conclude, it can be noted that a Data Hub differs deeply with respect to
both Data Lakes and Data Warehouses, as it is not oriented to analytical data
investigation. In the case of Data Hubs, the point is to connect data producers
and consumers by means of governance controls, rather than running Business
Intelligence reports (that are quite rare).

3 Data Lake Architectures

As per [10], the life cycle of a dataset that has entered a Data Lake can be
described as composed of the following stages: i) Ingestion; ii) Data extraction;
iii) Data cleaning ; iv) Data discovery ; v) Metadata management and vi) Dataset
versioning.

Within the Ingestion phase, data are injected into the Data Lake, checked
against duplicates, indexed and versioned; the produced output consists of raw
datasets in the shape of either text or binary data.

During Data extraction, the raw datasets are transformed into an abstract
data representation model (e.g., relational).

With the Data cleaning step, the organized data obtained earlier are verified
against a set of integrity constraints.

The Data Discovery process aims at finding similar datasets, for example by
using exploration-by-graph techniques.

The creation of a catalog, in the Metadata management phase - indispensable
to prevent the Data Lake from becoming a Data Swamp -, is followed by the
Dataset versioning stage, where data redundancy, rather typical in Data Ware-
houses, is discouraged because of the cost (especially in case of large datasets),
preferring instead git-like approaches.

From an architectural perspective, in [7] the authors recall two classic
approaches, i.e., pond and zone. As described in [8], the former envisages to
move the raw data into a specific data pond named raw. After a transforma-
tion process has been executed, data are moved again to a different pond called
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analog. From this moment, data are ready to be analytically processed. Archi-
tectures based on the notion of zone are described, for example, in [4]: the Data
Lake space is subdivided into zones suited for different stages of the dataset
life-cycle (loading, storing, validating and so forth).

More in general, the latter approach suits specific domains such as healthcare.
In fact, in these applications6, very often the Data Lake is organized in different
zones, which can be physical or logical ways to separate the data. A raw data
zone contains data in original format, analyzed by data scientists; a trusted data
zone is regarded by an organization as the universal truth; similarly to the case
of Data Warehouses, a refined data zone regroups data into Subject Area Marts
to produce a data view equivalent to a trusted zone but dedicated to a specific
domain; finally, the exploration zone can be used as a sandbox just by moving
data into it from any other zone for private use.

The procedure of data-refining is suitable to present information viewed from
different angles. For example, the data in raw format received by a streaming
process can be stored in the so-called bronze zone. Data of this type are not
immediately available, as they need be processed to allow a query to be deployed.
As a result, normalized data are stored in a silver area. A further, refining
step is taken by aggregating the most used metrics. The output of this process
constitutes a gold zone. From this point onward, Machine Learning and reporting
techniques can be applied.

3.1 Smart Data Lake

In [2], the authors present the architecture of a Smart Data Lake or SDL, as
opposed to classic approaches such as HDFS and S3. A SDL is oriented to self-
tuning, and comparable to a middleware operating between two type of nodes:
storage and computing. It provides direct access to raw data and intermediate
data representations on-the-fly being, at the same time, aware of the hardware
used (local disks, SSDs, NVMs, etc.). A SDL architecture consists of an interface
offering a set of layers granting data access, a shared messaging queueing system
to swap messages between RAW (a commercial package to manage data in
heterogeneous formats) and Proteus (a tool performing the execution of the
analytical processes), a local catalog, and finally a policy for the tiers. Data are
subdivided in segments, which are located in storage tiers by a Storage allocator,
specific for each tier. The authors state that the tier policy algorithm is still
ongoing work. However, it is possible to predict access patterns by using tracking
techniques, and consequently to manage cache mechanisms more efficiently. A
Storage Manager (SM) is located between the storage and the processing layers
in order to handle calls for read or write operations. An instance of SM is running
on all the computing nodes. When a query is executed, SM is contacted to find
the data location and, more importantly, whether the data are stored in a cache
or remotely.

6 See, for example, https://www.healthcatalyst.com/four-essential-zones-healthcare-
data-lake.
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Read and write operations occur by exploiting an inter-process technique.
Notably, SDL uses a component to handle the unpredictability of the arrival rate
of I/O requests. The authors review two techniques called respectively polled I/O
and interrupt-driven I/O, and propose an adaptive system using both. When SM
works in interrupt-driven fashion, it waits for new requests in a sleeping status,
but when a request is added to the queue, the event is detected and a signal is
sent to SM. From this moment on, SM switches to polled mode, checking if new
requests have been sent; after a certain amount of time, SM returns to the initial
state. In other words, SM can work in two ways according to the frequency of
the times it is invoked.

3.2 Azure Data Lake Store

In [12], the authors introduce Azure Data Lake Store (ADLS), defined as a
file system that is scalable and secure at the same time. Its strong point is
the support to Hadoop Distributed File System (HDFS) and Cosmos, a file
system project developed by Microsoft in 2006. When data are processed, a
query invokes ADLS to determine where the data are stored, generating a plan
necessary to guarantee that the tasks be executed nearby. As data can be stored
remotely, ADLS copies them on the node where the task is requested to run. An
ADLS file is composed of a sequence of extents (blocks whose size can be up to
4Mb). Any part of a file can be located in one or more storage tiers, which in turn
can be local (on the same node where processing has been scheduled) or remote
(outside an ADLS cluster). Being a file possibly spanning over different tiers,
ADLS supports the concept of partial file that is regarded as a sub-sequence.
An ADLS cluster is composed of the following nodes: back-end, dedicated to
storing data and executing tasks on local tiers; front-end, acting as a gateway
and checking the access, and micro-service, hosting special services. The latter
are orchestrated by a Secure Storage Service, essentially an entry point to ADLS.
A set of metadata services are based on a RSL-HK, a component providing an
efficient and persistent state.

3.3 Google File Storage

The architecture of Google File Storage (GFS) is discussed in [6]. The authors
present its design by saying that it is based on the following assumptions: compo-
nent monitoring, efficient management of multi-GB files, subdivision into large
and small streams of read workload, a sound semantics to allow users to append
data on a file in a concurrent way, and finally the capability to sustain a high
bandwidth. A GFS is organized into clusters, each one consisting of one master
and many replicated chunkservers. A file is composed of chunks, identified by
a handle and stored on local disk by chunkservers, while the master preserves
the metadata. The latter polls periodically the chunkservers to gather informa-
tion about their state. Cache memory is not strictly necessary, as usually the
applications tend to stream a high volume of data.
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Google claims7 that such a cloud storage architecture can serve a Data Lake,
performing efficiently data ingestion, analytics and data mining.

3.4 Amazon S3

The Amazon S3 storage architecture8 consists of two-level namespaces. The top
level contains a set of buckets (typically 100) denoted by a unique global name.
They can contain users data and consequently allow users to be identified when
they are loaded. The following level is the data object : identified by a name
and a set of metadata, it is the basic information block contained in a bucket.
An object can be altered by a user, according to a set of security restrictions.
Within a bucket, the object’s name is used to perform queries. With regard to
data access, S3 supports the SOAP, REST and BitTorrent protocols. Security
is assigned to a user when the initial contract is formalized by a public/private
key scheme. Amazon S3 storage provides several features, such as object locking,
storage classes, versioning, batch operations and replication.

3.5 A Generic Data Lake Architecture

Fig. 1. High level architecture

According to the objective of the paper, we derive a general Data Lake archi-
tecture from the descriptions of the previous sections, which will be used to
implement the models. The proposed system is shown in Fig. 1 and consists of
the following components: i) several Analytics applications querying the data
storage; ii) a Data Base (DB) or a cache memory containing the output of an
application; iii) a Data Catalog, containing a set of metadata, which is updated

7 https://cloud.google.com/architecture/build-a-data-lake-on-gcp.
8 https://docs.aws.amazon.com/AmazonS3/latest/userguide/managing-storage.

html.
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Fig. 2. Data ingestion sequence diagram

Fig. 3. Query sequence diagram

every time the content of the storage (or the DB/Cache) is changed; iv) a remote
filter9, whose output is stored in the DB/cache and finally v) a storage. Note
that data can be pre-processed locally by a different type of filter.

In the following sections, three scenarios have been identified and described
as per the sequence diagram in Fig. 2.

Case 1: Synchronous Filters. A filter is called Synchronous when the sources
generate data and inject them into the Data Lake, updating the Data Catalog
and then the storage. Furthermore, when an instance of remote filtering is exe-
cuted, the resulting output is stored in the DB/Cache component and the Data
Catalog is updated one more time.

9 The term filter denotes a type of data processing, producing a result.
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Case 2: Asynchronous Filters and Batch Process. A filter is called Asyn-
chronous when, after the data have been injected, the Data Catalog and the
Storage are updated and the process exits. Another batch process, running in
the background, is able to detect that some data have been uploaded and con-
sequently, processes them. Again, the results are stored in the DB/Cache and
Data Catalog is updated.

Case 3: Local Filters. In this case, after the process has started and the Data
Catalog has been checked out, one or more filters process the data at local level.
In the next stage, both Data Catalog and DB/Cache are updated.

Queries. As per the sequence diagram shown in Fig. 3, a query can be invoked
on pre-filtered or locally filtered data. In the former, a user executes an applica-
tion, causing the corresponding query to look for previously produced results in
the Data Catalog. If there is a hit, the output is retrieved from the DB/Cache
area, otherwise data are retrieved from the Storage and processed by the remote
filter. Finally, the db/Cache is updated. In case the data are locally filtered, the
application performs first a check against the Data Catalog: as the data have to
be locally filtered, they are processed and the resulting output is stored in the
DB/Cache component.

4 Case Study

4.1 Introduction

This chapter is organized as follows: Subsect. 4.2 introduces the background of
a case study, while Subsect. 4.3 explains how the considered scenario has been
modelled by using JMT. Finally, Subsect. 4.4 discusses the experiment settings
and the results.

4.2 Considered Scenario

The case study discussed in this work consists of a medical research centre inves-
tigating the capability of predicting the presence of cancer in patients at an early
stage. Oncologists and data scientists need a shared deposit to store data origi-
nated from different sources, such as radiographs, computerized tomographs and
magnetic resonance images. While the different data are fed into a Data Lake
as a daily routine, the researchers are focusing on the development of efficient
Machine Learning classifiers, whose algorithms need to query the stored data
providing meaningful results in a short time. The output of the classifiers is
used to determine the best treatment for the patients.

It is supposed that the Data Lake architecture reflects the general principles
introduced in Sect. 3.5. For the sake of simplicity, the study takes into account
a synchronous scenario and the vertical scaling of Application Server and DB/
Cache in a high load scenario.
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Note that specific Data Lakes areas of interest, such as raw data zone, trusted
data zone, refined data zone, Subject Area Marts, exploration zone, bronze, silver
and gold zones will be studied in future work.

4.3 The Model

Architecture. The model, created by the JMT suite (see [1]), and shown in
Fig. 4 is a queueing network that simulate the resources utilized during the exe-
cution of the queries with synchronous filtering. The five queue stations are
devoted respectively to the simulation of the following operations: i) DataCat,
update of the Data Catalog; ii) Storage, update of the data in the storage; iii)
Rem. Filter, perform the operations required by the Remote Filter processing;
iv) DB/Cache, store and retrieve the data in the DB and cache; and v) Query
App, simulate the component that manage the application queries.

The workload of the model consists of four classes of requests referred to as i)
Data Raw, ii) Meta Data, iii) QIC (Query In Cache) and iv) QNC (Query Not in
Cache). The requests of each class can follow different paths within the resources.
To increase the possible scenarios that can be simulated (e.g., cache hit or miss),
the requests can change class during their execution within Class-Switch sta-
tions. A request entering a Class-Switch station in class-i can leave the same
station in class-j according to the probability set in a matrix associated with
the station. Three Class-Switch stations are in the model: CSSto, ReDCat, and
CSUsers.

The requests of the open class Data Raw are generated by the Source1
station with rate λsrc and exponentially distributed interarrival times, and are
routed to Data Catalog server and then to CSSto class-switch station. Other
types of distributions, e.g., burst, hyperexponential, or phase-type, can be easily
generated by the tool if needed. The delay station Users simulate the physicians
that submit queries to the system. Their number Nusers is constant and the
requests are initially of QIC class, that is a closed class, and sent to the Query
App server for their management. From the Query App server are routed to the
Data Cat server and then to the CSSto class-switch station which split them
into two streams: those that have a cache hit (of class QIC) and those that have
a cache miss (of class QNC). While QIC requests are sent directly to the DB/
Cache server, the QNC are routed to Storage and Remote Filter server before
reaching the DB/Cache server.

Once a QIC query has been executed by DB/Cache it is routed to the Users
station and leaves the system. Then, since the QIC class is closed, a new query
will be generated after a mean time Zusers, exponentially distributed, and sent
to the Query App server. Otherwise, a QNC query that exits the DB/Cache is
routed to the Data Cat server to update the data in the catalog and leaves
the system after changing its class to QIC in the CS Users station. This last
operation is necessary to allow the simulator to compute the global performance
indices such as System Response Time and Throughput.

The data generated by the oncological centre, e.g., medical images, etc., are
of the open class Data Raw and are sent from the Source1 to the DataCat server.
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After their analysis in the Data Cat, they are routed through CSSto to Storage,
Rem.Filter, and DB/Cache servers. Their processing in these servers generate
some metadata and thus a new access to update the Data Catalog is required.
When they exit the DB/Cache are sent to RetDCat class-switch station where
their class is changed from Data Raw to Meta Data and then are routed to Data
Cat server. When their processing is completed, they leave the system trough
Sink 1 station.

The service demands of the various servers are exponentially distributed.

Fig. 4. The JMT model

4.4 Simulation Results

In this section, results have been computed with a 99% confidence interval, with
the simulation stopping when a 3% relative error is reached. To simplify the
following discussion, only the average of the confidence interval is presented.

It is assumed that the oncological centre produces λsrc medical images per
minute, where Nusers doctors query the system on the average every Zusers.
Data catalog requires SDC-read for reading, and SDC-write for writing entries.
The storage requires on the average Sstorage, while filtering requires Snew-filter

to extract features from a new image being inserted, or Sre-filter to re-analyze
a set of images to perform a query requiring results not in cache. Due to the
high load of these components, they are respectively replicated on Kstorage and
Kfilter instances. Requests of data which have already been extracted and are still
available in the cache require instead Scache. Table 1 shows the basic parameters
used in our test scenario.

As it can be seen from Fig. 5, with the initial settings the bottleneck is the
storage. Adding a second storage server Kstorage = 2, the bottleneck moves to
the filtering. To remove this secondary bottleneck, at least Kfilter = 6 nodes
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Table 1. System parameters

Parameter Value

λsrc 0.5 job/min

Nusers 20 users

Zusers 1 min

Sapp 0.1 min

Kstorage 1 servers

Kfilter 3 servers

pinCache 0.8

SDC-read 0.01 min

SDC-write 0.05 min

Sstorage 1 min

Snew-filter 0.3 min

Sre-filter 5 min

Scache 0.05 min

are required. The minimal response time is then reached with Kstorage = 3 and
Kfilter = 8, where the system response time for the Nusers stabilizes at around
Rusers = 2.72 min. All experiments considered a probability pinCache = 0.8 of
finding the results of the filtering stage already in cache.

Fig. 5. Determining the optimal number of servers

Figure 6 shows the effect of cache for the filtering data, as function of its
hit/miss probability on the optimal scenario previously outlined with Kstorage =
3 and Kfilter = 8. As expected, caching has a big impact on the load of both
the storage and the filtering. In particular, while storage is also affected by data
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sources, filtering is mainly conditioned by caching, as shown by the swap of
the two curves for pinCache = 0.95. In this scenario, the caching service is still
capable of supporting the application, even if as expected its workload increases
with the probability of finding data in cache. What is less obvious, is that the
increase in performance of the system due to caching, shifts the bottleneck to the
query application server, a component that probably would have been undersized
without adequate modeling analysis.

Fig. 6. Effect of cache hit probability

Finally we focus on a case with a larger load, where sources upload images
at the rate λsrc = 5 job/min, and with a number of users in the range
20 ≤ Nusers ≤ 50, and a probability of finding a result in cache pinCache = 0.8.
Both storage and filtering have been properly sized to handle the considered
load, respectively with Kstorage = 10 and Kfilter = 20; moreover, the data cata-
log, since it requires only very short queries at the beginning of each transaction,
does pose particular threats to the system and its initial configuration can be
maintained for all the considered workload range. The application server and the
cache are the two components that need to be addressed in this case (see Fig. 7):
this time we consider vertical scaling. Instead of requesting a larger number
of virtual machines to support these components, we imagine to migrate them
to server with higher capacity, ranging from 1.33× to 2×. As the application
server power is increased, the load to the cache becomes higher, and the bot-
tleneck switches when it is migrated to a system 1.67× faster. To increase the
performance of the system then, the cache increased at least to a system 1.33×,
moving the bottleneck back to the application server. A subsequent improvement
to the latter (2×), has then the effect of moving the bottleneck to the filtering
component. This complex sequence of bottleneck switches among the resources
shows the importance of addressing Data Lake architectures with a modelling
approach, to follow workload evolution which would be otherwise very hard to
handle. Figure 7 also shows the effect of the vertical scaling both on the response
time and on the throughput of the users.
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Fig. 7. Vertical scaling of Application Server and DB/Cache with high load workload.
The speed of the servers are in the (application server, DB/Cache) order.

5 Related Work

To the best of our knowledge, scientific literature discuss a few approaches
regarding Data Lakes performance, mostly from a qualitative perspective. In
[13], the authors provide an interesting abstraction by claiming that a data chunk
corresponds to a mass and density, two quantities that make difficult to move
data from one location to another, therefore introducing an interesting metaphor
with the concept of gravity. The notion of Personal Data Lake is described as
data mass with gravitational pull; the performance of such a system depends on
a fast data base system and ultimately on the collections of the corresponding
metadata. A qualitative approach measurement of a Data Lake performance, is
discussed in [5], where data quality, flexibility, acquisition, access time to raw
data, preservation and agility are considered the main parameters to monitor.

In [3], the architecture of a Data Lake is presented, including the perfor-
mance study of a prototype. The analysis is performed by measuring the data
access time on different workflows (CPU and I/O bound respectively, the latter
performing worse).

With regard to modeling, the work in [11] presents a metadata vault model,
i.e. a data model facilitating schema evolutions, to manage Data Lake metadata.
The conceptual metadata vault is translated by the authors into logical and
physical models. Interestingly, the authors seek to measure the robustness of the
metadata model in case the source data scale up, showing that their approach
is rather promising.
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6 Conclusions and Future Work

Modeling techniques are of paramount importance to recognize flaws and bot-
tlenecks within a proposed system architecture.

With regard to the Data Lake model discussed in Sect. 4.4, it has been shown
that caching determines a relevant impact on the load of both storage and
filtering. Furthermore, an increase in performance of the system, explainable
by caching, shifts the bottleneck to the query application server. Furthermore,
another scenario has shown an interesting sequence of bottleneck switches more
difficult to determine without the deployment of modeling techniques.

Future work will address the performance analysis of more complex aspects
of Data Lake architectures with respect to different domains, such as banking
and air traffic control.
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Abstract. We consider a stochastic network where the arcs are associ-
ated to discrete random variables which represent the delay. We need to
compute the shortest delay (or equivalently the distance) from the source
to the sink in the network. Due to the randomness, this problem is known
to be hard while it has many polynomial algorithms when the arcs have
deterministic lengths (or durations). We provide three approaches and we
prove algorithms to obtain stochastic bounds for the distribution of the
distance. We present several examples to compare the precision and the
time. The approach based on the association of random variables gives
very accurate results on the examples and has the smallest complexity.

1 Introduction

In the transportation systems in smart cities, due to the large number of sensors
available, we collect a huge volume of data. The data could not be seen as
deterministic anymore and we have to deal with the apparent randomness of our
measures due to noise, contention, incidents. Here we propose a method to deal
with this randomness for a classical problem: the computation of the distance
between two nodes.

We consider a directed graph G = (V,E) (digraph) which does not contain
any directed cycle, such that each arc (i, j) is associated with a random delay (or
distance) W (i, j) to join j from i. These random variables (r.v. in the following)
will be denoted as Wm where m is the arc label. We assume that these random
variables are discrete and their supports Sm (m is the index of the r.v.) are finite
subsets of R+. We also assume that these random variables are independent. As
the digraph does not contain any directed cycle, it is associated to a topological
ordering of the nodes. The graph contains N nodes and M directed edges (or
arcs). Among these nodes, we distinguish the first node (labelled s and numbered
1). We want to compute the distance (or delay) between s and any node t in
the graph. Let X = (X1, ..,Xt, .,XN ) be the random variables associated with
the distance or the delay from s to all the nodes t. By construction, Xs has a
distribution with a single atom in 0 associated with a probability equal to 1.
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Let PG(s, t) be the set of paths P (t) from s to t in the graph G. We assume
without loss of generality that PG(s, t) is not empty. As G is a Directed Acyclic
Graph (or DAG), there exists a finite number of paths from s to t and these paths
have a finite number of edges. Let L(P (t)) be the delay to reach t departing from
s, we can define:

L(P (t)) =
∑

(a,b)∈P (t)

W (a, b), (1)

and
d(s, t) = MinP∈PG(s,t)L(P ). (2)

Computing d(s, t) is a difficult problem due to the randomness of W (i, j) while
many polynomial algorithms exist in the deterministic case. The two reasons are
the size of the resulting distributions and the dependence of the path lengths
when they share an arc. Indeed, even if the arcs lengths are supposed to be inde-
pendent, the paths lengths are not independent. Therefore a simple computation
of addition and minimum requires conditioning. Furthermore, a convolution of
two distributions with size S (associated with the addition of the independent
r.v.) may lead to a distribution with size S2. Thus each new arc added in a
path may geometrically increase the number of atoms in the resulting distri-
bution. Such problem was ignored in a recent approach [6] where distributions
were modeled by polynomials: during the computation the number of monomials
increases geometrically and the approach quickly becomes intractable.

A simple algorithm (with non polynomial complexity) can however be
designed, using conditioning on the random variables to solve the problem for
small instances when the discrete variables take values in very small sets. It is
sufficient to use the Total Probability Theorem after conditioning on the states
of all the random variables. Clearly

Pr(d(s, t) = k) =
∑

k1,k2,...,kM

1D(s,t,k1,k2,...,kM )=k

M∏

m=1

Pr(Wm = km)

where D(s, t, k1, k2, ..., kM ) is the distance from s to t when the length of arc
m is km. D(s, t, k1, k2, ..., kM ) can be obtained by any deterministic algorithm
(with complexity O(M)) to compute the distances in a directed graph. Clearly
the complexity of this approach is M

∏M
m=1 |Sm| (see [2] for a survey on the

complexity for various delays and flow problems for networks or graphs with
random discrete costs or durations).

Here we develop several algorithms to derive stochastic bounds on the dis-
tribution of the distance. These bounds are easier to compute and they provide
guarantee on the expectation and for some of them on the tail of the distri-
bution. The technical part of the paper is as follows. In Sect. 2, we introduce
strong stochastic bounds and increasing concave bounds. Based on monotonic-
ity of d(s, t), we propose two algorithms relying on a reduction of the size of the
supports of W (i, j). This first approach based on the fact that the distance is an
increasing and concave function was already used to bound max flow problems
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for stochastic networks [3]. Section 3 is devoted to associated random variables to
present a new and more efficient approach. We prove that the distances between
nodes are associated as some paths share arcs. Then we propose an algorithm
to obtain lower bounds on the distance based on this property. We also develop
an upper bound algorithm which relies on arc disjoint paths. To the best of our
knowledge associated random variables have been considered for PERT networks
(Program Evaluation and Review Technic) but their application to the shortest
distance problem is original. These algorithms are then numerically compared on
some examples in Sect. 4. The algorithms will be integrated in the next version
of the XBorne tool [5].

2 Stochastic Bounds Based on Stochastic Monotonicity

The complexity of the exact calculation of the distribution comes from the num-
ber of atoms. Therefore it is appealing to derive bounds when we decrease the
number of atoms. In [1] we have proposed some methods which keep some quanti-
tative and qualitative information on the results after a reduction of the number
of atoms. This is obtained through the use of stochastic orderings. We begin
with the definition of the orders we will use in this paper (see [7] for more
information).

Definition 1 (strong stochastic ordering). Let X and Y be two random
variables, X <st Y if for all increasing functions Φ, E[φ(X)] ≤ E[φ(Y )] if the
expectations exist.

Remark that for all r.v. X we have X <st X. Let us denote by X =st Y the
equality in distribution of random variables X and Y . The stochastic comparison
of random variables also implies an inequality between their expectations as seen
below.

Property 1. Let X and Y be two random variables, such that X <st Y . Then
E[X] ≤ E[Y ]. Furthermore, if E[X] = E[Y ] then X =st Y .

We also use some orders based on the variability of the random variables to
obtain tighter bounds. Let us first consider convex order �cx which are defined
as follows.

Definition 2 (stochastic convex ordering). Let X and Y be two random
variables, X �cx Y if E[X] = E[Y ] and for all convex functions φ, E[φ(X)] ≤
E[φ(Y )] if the expectations exist.

Here we will use the concave ordering �cv which is easily derived from the convex
ordering.

Definition 3 (stochastic concave ordering). Let X and Y be two random
variables, X �cv Y if Y �cx X

And finally,



134 J.-M. Fourneau et al.

Definition 4 (increasing concave ordering). Let X and Y be two random
variables, X �icv Y if for all increasing concave functions φ, E[φ(X)] ≤ E[φ(Y )]
if the expectations exist.

The distance from s to t in the network is define as the minimum of the path
lengths from s to t. And the length of a path is the sum of the length of the arcs
in the path. Therefore the distance is defined using operators “Min” and “+”.
And both operators are increasing and concave. More formally, we can define:

d(s, t) = f(W1,W2, ...,WM ),

and we know that f is increasing and concave. We now define the monotonicity
for some ordering and we mention the key property for this approach.

Definition 5 (Ψ−Monotony). A function f is Ψ−monotone if for all random
variables X and Y such that X �ψ Y , then f(X) �ψ f(Y ).

Due to the definitions of the orderings we considered by sets of functions, the
following property holds:

Property 2. If function f is increasing, then it is st − monotone. Similarly,
if function f is increasing and concave then it is monotone for the increasing
concave ordering.

Algorithms for st-bounds: Computing st-bounds of d(s, t) is very simple (see [3]
for more details). It is sufficient to replace the distributions for the length of an
arc by an “st” bound of this distribution as stated in Algorithm2. If we consider
a smaller support, the bound will be easier to compute. The first step consists in
building “st” bounds (upper and lower for the input distributions of Wm. This
can be done with a very simple algorithm we now describe:

Algorithm 1. Simple “st” Bounds for input discrete distributions
1: Choose the size of the bounding distribution (say K) for Wm. Of course K < Sm.

2: Divide the set Sm into K proper subsets S
(i)
m (i between 1 and K) such that all the

atoms in S
(i)
m are smaller than atoms in S

(i+1)
m . Let l

(i)
m (resp. u

(i)
m ) be the smallest

(resp. largest) atom in S
(i)
m .

3: The distribution with K atoms l
(i)
m with probability

∑
a∈S

(i)
m

Pr(Wm = a) is a

lower st-bound of Wm.
4: Similarly the distribution with K atoms u

(i)
m and the same probability vector is an

upper st-bound of Wm.

In Algorithm 2, we give a short presentation of the algorithm for st-lower
bounds. The upper bounds are obtained by similar arguments. We also present
in Table 1 and Table 2, the results for the first example we give in Sect. 4. Remark
that upper and lower bounds share the same probability vector but they do not
have the same support.
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Algorithm 2. St Bounds for the distance distributions.
1: Derive Lm stochastic lower bound for Wm, for all m ∈ [1..M ] with the former

algorithm.
2: Compute f(L1, ..., LM ) by conditioning and the total probability theorem. The

stochastic monotonicity implies that f(L1, ..., LM ) <st d(s, t).

Algorithms for Increasing Concave Bounds: The approach is similar. It is suf-
ficient to build “icv”-bounds of the input distributions. However the derivation
of these bounds differs significantly from the st-bound algorithm (see [3] for the
details).

Algorithm 3. “icv” Bounds for the distance distributions.
1: while The number of atoms in the bound of distribution Wm is larger than the

objective do
2: To obtain an upper bound, consider two atoms in the actual distribution, replace

these atoms by a new atom which is the barycenter of the atoms.
3: To obtain a lower bound, consider a subset of at least three atoms in the actual

distribution and replace them with the two extreme atoms keeping the same
expectation.

4: end while

Again, for the sake of conciseness we just state the algorithm for “icv”-lower
bounds.

Algorithm 4. “icv” lower bounds for the distance distributions.
1: Derive Vm increasing concave lower bound for Wm, for all m ∈ [1..M ].
2: Compute f(V 1, ..., VM ) by conditioning and the total probability theorem. The

increasing concave monotonicity implies that f(V 1, ..., VM ) �icv d(s, t).

Corollary 1. Replacing all random variables W (i, j) by their expectation pro-
vides an increasing concave upper bound for the distance (like in Jensen inequal-
ity). Thus, this strategy to eliminate the randomness has a systematic bias. In
the following, this bound will be denoted as Fulkerson bound.

Property 3 (Complexity). Let M be the number of arcs in the graph. Assum-
ing that all input distributions have size |S|, that we compress the distributions to
obtain input bounds with size K, then the algorithm needs O(M |S|) operations
to derive the input bounds and O(M 2K) to get the bounds on the distance.

Note that both approaches simplify the computation to obtain bounds and
that we obtain distinct bounds when we change the partition (finding the most
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Table 1. Input Distributions, model 1.

Arcs Atoms Probability vector

e0, e2, e4 {2 5 8 10 12 15 18 20} {0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2}
e1, e11 {5 10 15 20 25 30 35 40} {0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1}
e3 {1 2 3 4 7 8 9 12} {0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1}
e5, e10 {2 3 7 8 10 11 15 16} {0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1}
e6 {1 2 3 4 8 9 10 13} {0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1}
e7 {1 2 3 4 6 9 11 16} {0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2}
e8, e9 {3 10 15 20 22 25 30 35} {0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1}

Table 2. Stochastic Bounds with two atoms.

Arc Atoms Probability Atoms Atoms Probability Atoms Probability

“st” lower “st” upper “icv” lower “icv” upper

e0, e2, e4 2 12 0.5 0.5 10 20 2 20 0.444 0.556 10 15 0.6 0.4

e1, e11 5 25 0.6 0.4 20 40 5 40 0.543 0.457 15 30 0.6 0.4

e3 1 7 0.6 0.4 4 12 1 12 0.636 0.364 2 7 0.4 0.6

e5, e10 2 10 0.5 0.5 8 16 2 16 0.5 0.5 8 13 0.8 0.2

e6 1 8 0.5 0.5 4 13 1 13 0.583 0.417 6 11 0.8 0.2

e7 1 6 0.5 0.5 4 16 1 16 0.6 0.4 3 13 0.6 0.4

e8, e9 3 22 0.6 0.4 20 35 3 35 0.531 0.469 15 30 0.8 0.2

accurate partition and bound is still an open problem). However the complexity
remains exponential if we consider distributions which have more than one atom.
The theory of associated random vectors will be used to derive less complex
bounds. In many cases they are also much more accurate (at least for the lower
bound).

3 Bounds Based on Associated Random Vectors

For a more detailed presentation of associated random variables, see [4].

Definition 1. The random variables X1, ..,Xn are associated if, given two coor-
dinatewise nondecreasing functions f and g: Rn → R,

Cov(f(X1, ..,Xn), g(X1, ..,Xn)) ≥ 0.

Remark 1. One can also consider non increasing functions, as Cov(f(X),
g(X)) = Cov(−f(X),−g(X)) and f is non increasing implies that −f is non
decreasing.

Remark 2. As Cov(f(X), g(X)) = E[f(X)g(X)] − E[f(X)]E[g(Y )], one can
also define an associated random vector as E[f(X)g(X)] ≥ E[f(X)]E[g(X)].

As a large part of the theory came from reliability, one has more results when
the r.v. are Boolean.
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Property 4 (Barlow et Proschan). Let X1, ...,Xn be n Boolean r.v., then

Pr[(
∏

i

Xi) = 1] ≥
∏

i

Pr[Xi = 1]

and
Pr[(max

i
Xi) = 1] ≥ max

i
Pr[Xi = 1]

Taking into account that the r.v. are boolean, we have: (maxi Xi) = 1 −∏
i(1 − Xi). This elementary property is used to derive useful inequalities.

Property 5. Let X a random vector with n associated random variables. We
have:

Pr(X1 > x1,X2 > x2, ..,Xn > xn)) ≥
∏

k

Pr(Xk > xk),

and
Pr(X1 ≤ x1,X2 ≤ x2, ..,Xn ≤ xn)) ≥

∏

k

Pr(Xk ≤ xk).

Proof: we define Ti(t) = 1Xi>t for all i. Ti is increasing in Xi and is a boolean.
The random vector (Xi) is associated. Thus random vector (Ti) is also associated.
We apply both inequalities of Property 4 on Ti to prove inequalities on X.

Corollary 2. Thus, Pr(mini(Xi) > x) ≥ ∏
k Pr(Xi > x).

Proof: it is sufficient to remark that Pr(mini(Xi) > x) = Pr(X1 > x,X2 >
x, ..,Xn > x)).

To the best of our knowledge, proving an algorithm to check that discrete
random variables are associated is still an open problem. Therefore association
is proved using the following properties (see the next section on distance in a
stochastic network). Starting with a given set of associated random variables
(independence is useful here), it is rather simple to obtain new families of asso-
ciated random variables with increasing transformation.

Property 6. Every random variable X is associated with itself.

Property 7. If X = (X1,X2, ...,XN ) is a random vector such that all the Xi

are independent random variables, then X is associated.

Property 8. Every subset of an associated random vector is associated.

Property 9. Let X1, X2, ... Xn be independent of the variables Y1, Y2, ..., Ym.
Assume that X1, X2, ... Xn are associated random variables. Assume also that
Y1, Y2, ..., Ym are associated random variables. Then X1, X2, ... Xn, Y1, Y2,
..., Ym are associated random variables.

Property 10. Let X1, X2, ... Xn be n associated random variables, and con-
sider coordinatewise nondecreasing functions f1, .., fK : Rn → R. Then random
variables Y1 = f1(X1,X2, ...Xn),.., fK(X1,X2, ...Xn), are associated.
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3.1 Links with <st Ordering and Independence

Notation 1. Let X = (X1, ..,Xn) an associated random vector. For all i
between 1 and n, let us denote by Xi a random variable such that Xi =st Xi while
Xi and Xj are independent for all j �= i. Xi will be denoted as the independent
version of Xi.

We begin with a well-known property which was used in [8,9] to obtain
bounds for PERT networks. As we do not use “Max” operator in this paper we
do not give the proof of this property.

Property 11. Let X = (X1, ..,Xn) an associated random vector. Then,

Pr(maxk(Xk)) ≥ Pr(maxk(Xk)).

Equivalently maxk(Xk) <st maxk(Xk). The independent versions of the random
variables provide a strong stochastic upper bound of the max (a guarantee).

Here, the operator we use for the path length is the “Min” operator. Thus
we derive a similar result for the distance.

Property 12. Let X = (X1, ..,Xn) an associated random vector. Then,
mink(X̄k) <st mink(Xk). The independent versions of the random variables
provide a strong stochastic lower bound of the min.

Proof: We consider the first relation of Property 5, taking for all i xi = x.

Pr(X1 > x,X2 > x, ..,Xn > x)) ≥
∏

k

Pr(Xk > x).

The left part of the inequality is Pr(mink(Xk) > x)) while the right part is:
∏

k

Pr(Xk > x) =
∏

k

Pr(Xk > x) = Pr(X1 > x, X2 > x, .., Xn > x) = Pr(mink(Xk) > x).

Thus,
Pr(mink(Xk) > x)) ≥ Pr(mink(Xk) > x).

or equivalently
mink(Xk) <st mink(Xk).

3.2 Distance and Association

We now prove that in a stochastic network with independent random variables
for the length, the distances between nodes are associated random variables. We
begin with a technical lemma which also provides an intuition about associated
random variables.

Lemma 1. Let Y , Z1 and Z2 three independent r.v., then Y + Z1 and Y + Z2
are associated.
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Proof: Y , Z1 and Z2 are independent. Thus (Y,Z1, Z2) is an associated random
vector. We consider functions f1, f2 and f3: R3 → R defined by:

f1(Y,Z1, Z2) = Y, f2(Y,Z1, Z2) = Y + Z1, f3(Y,Z1, Z2) = Y + Z2.

Clearly these three functions are increasing. Thus according to Property 10, ran-
dom vector (f1(Y,Z1, Z2), f2(Y,Z1, Z2), f3(Y,Z1, Z2)) = (Y, Y + Z1, Y + Z2)
is associated. Due to Property 8, (Y + Z1, Y + Z2) is also associated.

Property 13. Let YP = L(P (t)) a r.v. equal to the length of path P (t) from s
to t in digraph G, Y = (YP )P∈PG(s,t) is an associated random vector.

Proof: Let P1 et P2 two paths from s to t. We have two cases to consider:

1. P1 and P2 are arc-disjoint.
2. The intersection of P1 and P2 contains some arcs.

In the first case, L(P1) and L(P2) are independent as they are summations
of distinct independent random variables (the length of the arcs which belong
to the path). As they are independent, they are also associated according to
Property 7.

Now assume that the intersection of P1 and P2 contains some arcs and
let Q = P1 ∩ P2. As the “+” operator in the definition of the path length is
commutative, one can separate each path into two subsets of arcs such that

L(P1) = L(Q) + L(P1 \ Q) and L(P2) = L(Q) + L(P2 \ Q)

As Q = P1∩P2, we have (P1\Q)∩ (P2\Q) = ∅, thus L(P1\Q) and L(P2\Q)
are independent random variables. Similarly L(Q) is independent of these two
r.v. and we can apply Lemma 1 to prove that L(P1) and L(P2) are associated.

3.3 Algorithm for a Lower Bound

Let di(j) represent the distance from node 1 to node j where all the nodes
between 1 and i have been taken into account to find paths. In general we
cannot compute the distribution of di(j) because of Property 13 without condi-
tioning and using an exponential complexity algorithm. Instead we compute a
stochastic bound li(j). The algorithm proceeds by iteration adding one node at
each iteration. Each node allows to add new paths and to decrease the shortest
distance computed so far. Remember that the directed graph is a DAG and we
use this property to consider the nodes in the topological order associated to the
DAG. Note that d(s, t) = dN (t) (i.e. we have considered all the nodes to build
paths from 1 to t).

By definition lk−1(u) has the same distribution and is independent. Further-
more we know how to numerically compute the minimum of two independent
distributions.

Theorem 1. lk(u) is an “st” lower bound for the distance: for all node indices
k and u, lk(u) <st dk(u). And lN (t) <st d(s, t).
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Algorithm 5. St lower bounds based on association of paths.
1: Init l1(u) = W (1, u) for all nodes u which are neighbor of node s = 1.
2: for all k (node number) from 2 to N do
3: for all node u neighbors of node k − 1 do

4: let lk(u) = min
(
lk−1(u), lk−1(k − 1) +W (k − 1, u)

)

5: end for
6: end for

Proof: by induction on k.

– k = 1. We consider the neighbors (say u) of node 1. The distance to reach
node u is exactly the length of the arcs W (1, u). Therefore d1(u) = W (1, u)
and thus l1(u) <st d1(u) for all these nodes u.

– k ⇒ k + 1. Adding new arc from k to u allows to decrease the distance (see
Fig. 1). By construction we have:

dk(u) = min
(
dk−1(u), dk−1(k − 1) + W (k − 1, u)

)
.

By Property 13, we know that the path lengths are associated. Thus for all u,

min
(
dk−1(u)), dk−1(k − 1) + W (k − 1, u)

)
<st dk(u)

As “min” and “+” are increasing functions, if x <st y and z independent of
y and x, then min(z, x) <st min(z, y) and x + z <st y + z. By induction, we
have: lk−1(k − 1) <st dk−1(k − 1). Therefore:

min
(
lk−1(u), lk−1(k − 1) + W (k − 1, u)

)
<st

min
(
dk−1(u), dk−1(k − 1) + W (k − 1, u)

)
.

By transitivity: min
(
lk−1(u), lk−1(k − 1) + W (k − 1, u)

)
<st dk(u), and

finally, lk(u) <st dk(u).

The two basic operations in Algorithm 5 is the addition and the minimum of
two independent random variables. These operations obviously depend on the
size of the discrete distributions. Note that each convolution operation leads to
an increase of the size of the distributions and this size has to be controlled to
avoid that the last steps of the algorithm deals with very large distributions.

Corollary 3. In Algorithm5, after each computation of lk(u), we replace lk(u)
by a “st” lower bound of lk(u) with at most K atoms. The algorithm still compute
a “st” lower bound of d(s, t) by transitivity.

Assume that the distributions are represented by sorted lists with size d1 and
d2 and let d = max(d1, d2). The minimum can be computed in O(d) operations
and the output distribution has a size smaller than d. The addition of indepen-
dent random variables is associated with the convolution of their distributions.
Efficient algorithms exist with a complexity in O(d log(d)) and the output has
size which is at most d2.
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Fig. 1. Considering node 4 allows to modify the distance distribution to node 5 and
to initialize the distance distribution to node 6.

Property 14 (Complexity of Algorithm 5). Assume that at each step of
the algorithm, the distributions have size K. Each step requires O(K logK) oper-
ations and after calculation, lk(u) has size at most K2 (due to the convolution).
The extra step of lower bounds introduced in Corollary 3 has a linear complexity
in K2. And the number of iterations in the nested loops of the algorithm is M .
Therefore the complexity is O(M K2).

3.4 Algorithms for an Upper Bound

We combine two arguments:

– When the two paths are arc disjoint, the lengths of the paths are independent
(see the first part of the proof of Property 13) and we know how to compute
them.

– If we only consider a subset of paths, we compute an “st” upper bound. More
formally, if A(s, t) ⊂ P(s, t), then

d(s, t) = MinP∈P(s,t)L(P ) <st m(s, t) = MinP∈A(s,t)L(P ).

Thus, the algorithm consists in finding arc-disjoint paths (the largest set) and
computing the distance associated with this set of paths.

Property 15 (Complexity). First step requires O(F M) operations to obtain
F arc disjoint paths and F < M . During step 2, the distribution of the distance is
obtained by the convolution of independent random variables of size smaller than
K. Each convolution is followed by a compression of the resulting distribution
(whose size is at most K2). Let D the diameter of the graph, the complexity of
this step is O(F D K2) using the same arguments as in Property 14. The last
step consists in computing the minimum of F distributions with size K and this
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Algorithm 6. St Upper Bounds based on subgraphs and independence of paths.

1: Find the largest set of arc-disjoint paths. This is easily done with a max flow algo-
rithm on the original graph where all the arcs receive capacity 1. The augmenting
paths provided by a max flow algorithm, on such a graph with arc capacity equal
to 1, are by construction arc disjoint. Thus the max-flow algorithm returns the
maximal number of arc disjoint paths.

2: Compute the distribution of length for each path. The length of a path is the sum
of arc length which are by assumption independent. Thus one can use convolution
algorithm to obtain the length of any path.

3: Compute the distribution of the “Min” of these random variables. As the paths are
arc-disjoint, the r.v. are independent and the computation of the “Min” is an easy
task.

can be done with O(F K ln(K)) operations. Therefore, the total complexity is
O(F D K2).

4 Numerical Results

We begin with a toy example where it is feasible to obtain the exact solution
to check the accuracy of the methods. Even if it is possible, the exact algorithm
is really time consuming. The graph has 8 nodes and 12 edges (see Fig. 2). All
the distributions have 8 atoms. The input distributions are given in Table 1. The
“st” bounds and “icv” bounds with two atoms for these distributions are given
in Table 2. These distributions with 4 atoms will be given in an appendix of the
full paper.

Table 3. Expectation of the distributions (Model1).

Method Association St Monotonicity “icv” Monotonicity Fulkerson Exact

2 atoms 4 atoms 2 atoms 4 atoms

Exp. Lower bound 19.35 10.88 16.19 15.02 18.80 . 19.385

Upper bound 26 28.29 21.99 21.23 20.83 23 .

We present in Fig. 3 the cdf of the distributions. We only present the exact
result, the “st” bounds based on association and the “st” upper and lower bounds
with 2 and 4 atoms in the input bounds. We do not draw the “icv” bounds to
avoid confusion. Note that as the “st” bounds are not all based on the same
strategy, the cdf may cross (for instance the purple and the red curves). The
most important point to remark here is the tightness of the lower bound based
on association.
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Fig. 2. Graph for toy example.

Fig. 3. Stochastic bounds and exact results for toy model. The exact results are
depicted as black dots. Note that the new lower bounds (the blue curve) are close
to the exact results

To compare all these strategies, we compute the expectation of the distance
(in Table 3). The algorithms are very fast for this small graph: computing the
distribution with the algorithms based on association need 0.01 s on an ordinary
laptop, while the bounds based on bounding input distributions atoms needs
0.02 s (resp. 14s) for bounds with 2 (resp. 4) atoms. Note that computing “st”
bounds or “icv” bounds requires the same time as we deal with distributions
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with the same number of atoms. Finally, the exact results are obtained after
17 h and 26 min on the same laptop.

We now study two examples: a larger graph with 26 arcs and 14 nodes (Fig. 4).
As the distributions all have 8 atoms, the number of deterministic cases we have
to solve with the approach based on conditioning is 826 and this precludes to
give the exact solution.

Fig. 4. Graph for Model 2.

For the first method which bounds the input distributions, we consider two
strategies. In the first one, we only keep 2 atoms per input distributions. Thus
the number of deterministic cases generated by the conditioning is 226. To keep
the number of cases smaller than 230, the second strategy consists in bounding
all the input distributions by distributions with 2 atoms, except distributions for
arcs e22, e23, e24 and e25 which have 4 atoms. The first strategy needs 3 min
while the second needs 48 min. Stochastic bounds based on association are very
easily solved. They require less than 1s.

Remark in Table 4 that the best lower bound is provided by the association
algorithm. But the best upper bound is obtained by the first approach with 230

deterministic cases. Clearly we have to improve the strategy based on arc-disjoint
paths. This point will be developed in the full version of the paper (Fig. 5).
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Fig. 5. Probability distribution for the bounds of the distance (Model 2).

Table 4. Bounds of the expectation for Model 2.

Method Association Input Bounds: “st” Input Bounds: “icv”

226 230 226 230

Expectation Lower bound 111.660 76.868 78.596 92.652 94.198

Upper bound 183.596 160.149 153.877 132.016 131.109

Now we consider a Series-Parallel (SP for short) digraph (see Fig. 6) with 48
nodes and 54 arcs. Such a graph has a recursive construction and this provides
a recursive algorithm to compute the distribution of the distance. Note however
that the distributions which appear during the execution of the recursive algo-
rithm still suffer of the size explosion problem due to the convolution operation
and we have to bound them if we want to keep their size smaller than K. The arcs
all have the same distribution of delay with 8 atoms (1, 2, 5, 6, 12, 19, 28, 34) and
probability vector (0.1, 0.1, 0.05, 0.3, 0.05, 0.1, 0.2, 0.1). As the number of arcs is
too large, we only report the results based on association. The exact algorithm
based on the SP structure only requires 66 s, while the bounding algorithms
are faster (1.7 s for the upper bound and 3.8s for the lower bound). The exact
expectation is 191.66 while the lower (resp. upper) bounding distribution has an
expectation equal to 174.15 (resp. 234.38). This last example (and many others
we cannot report here due to the lack of space) shows that the lower bound is
still quite accurate. The quality of the upper bound may depend of other graph
properties and may be very bad (Fig. 7).
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Fig. 6. SP-Graph for Model 3.

Fig. 7. Probability distribution for the bounds of the distance (Model 3).
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5 Concluding Remarks

These two approaches provide some tradeoff between complexity and accuracy of
the numerical results. They also suggest new approaches combining association of
random variables as well as graph properties that we will present in the extended
version of this paper. We have now derived new algorithms based on recursive
construction of the graph or a subgraph to combine the “st” bounds approach
with the associated r.v. results. We have also generalized some of our results to
networks where the delays to cross the arcs are not independent. This allows to
study new models of traffic.
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Abstract. We employ Mixture Density Networks (MDNs) as a general
approach for estimation of customer waiting times in queueing systems
based on system states that customers observe upon their arrival. We
generate a large amount of data by using discrete-event simulation. Part
of the generated dataset is used to train the model, and we utilize the
whole dataset for the evaluation of the model. Finally, we illustrate this
application in a real-world dataset.

Keywords: Queueing systems · Waiting times · Mixture density
networks · Discrete-event simulation

1 Introduction

Queueing is a part of everyday life; however, queueing customers are impatient.
Psychological studies revealed that waiting in uncertainty over the waiting time
seems to become longer [14]. The expected waiting time is also an important
measure that affects the decision-making process in most frameworks modeling
queues with strategic customers [5,17]. As a matter of fact, it is desirable to
have an estimation of waiting times for the sake of not only customers but
also platform managers. Queueing theory suggests that when queueing systems
are under stationary settings, the waiting time of each customer is a random
variable following a probability distribution whose parameters depend on the
system state the customer observes upon his arrival. The more information is
added to the system states as features, the narrower waiting time distributions
become. In other words, it is not really feasible to predict a specific value for
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queueing times, especially when less information about system states and fewer
data are available.

Under simple settings, waiting time distributions can be handily computed by
mathematical procedures if processes have stationary distributions. Whitt [20]
proposed the Queue-theory based predictor using Laplace transform and illus-
trated the method in several examples of systems with exponentially distributed
service times. This technique was then followed in multiple later studies and
applied in more complex systems, such as service systems with time-varying
demand and capacity [12], call centers [11] or call centers with and without
reneging customers [13].

In more complicated systems, for example, a G/G/c queue or a queueing sys-
tem with multiple types of agents, this traditional approach may not be appli-
cable due to the presence of numerous parameters. On the other hand, it is also
challenging to fit real-world systems into the framework of queueing theory for
two main reasons. First, the queueing theory depends on various assumptions,
some of which are usually unrealistic. Second, the information about the system
(such as the number of servers or queueing discipline) is not always fully reported.
This is when the learning-based approach comes in handy. Several attempts have
been made to give a prediction for the queueing time in different systems, such
as airport [4], banks [7] or call centers [19]. However, that being mentioned, since
the waiting time is stochastic, we would not like to obtain an exact value for
the prediction of the queueing time. On the one hand, an overestimation of the
actual waiting time may reduce the incentive of customers to join the queue
from the beginning. On the other hand, if customers are informed of an underes-
timation of their actual queueing time, customers may become more impatient
during the extra waiting time. Therefore, in many cases, it is more reasonable
to derive a distribution of waiting times. Practically, a probability distribution
of the waiting time can provide information about a reasonable interval of the
actual waiting time.

Motivated by the idea of queueing theory and the power of the learning app-
roach, we employ a machine learning approach called Mixture Density Networks
(MDNs) [2] as a general approach for estimation and prediction of customer wait-
ing time in queueing systems based on system states. An MDN is a combination
of a neural network and a mixture model output, which outputs conditional
probability distributions of the data. Several noticeable applications of MDNs
can be named, such as speech generation in voice assistants on smartphones [1],
artificial handwriting [9], games [10] and trajectory predictions [15]. Prediction
of waiting time distributions in queueing systems using MDNs was once con-
ducted on simulated data with chosen parameters in [18]; however, this study
does not leverage the information on system states to give prediction but uses
historical waiting times instead. This approach may not be applicable if the time
series are subject to discrete breaks in the structure.

In this study, we generate 5 (out of 6) datasets to see how MDNs work on
simulated data and illustrate the application of MDNs in different scenarios.
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We focus on finding the best-fitted model for a real-world dataset by tuning
parameters and designing a proper evaluation method.

The rest of this paper is organized as follows. Section 2 describes datasets and
feature selections. In Sect. 3, we summarize the structure of Mixture Density
Networks. In Sect. 4, we design evaluation metrics for the model. In Sect. 5,
results are presented. Lastly, Sect. 6 contains some concluding remarks.

2 Descriptions of Datasets and Feature Selections

In this section, we describe three datasets that are used to illustrate the perfor-
mance of MDNs. Three of the four datasets are simulated using Discrete-event
simulations, and one is a real-world dataset. All parameters of simulated queue-
ing systems are set in advance for the purpose of simulation only and assumed
unknown when training models.

Dataset 1: An M/M/1 Queueing System. We simulate an M/M/1 queueing
system where both interarrival times and service times follow exponential dis-
tributions with rate parameters λ = 4 and μ = 5, respectively. The simulated
dataset includes three features as follows.

– Arriving time: The time when customers arrive at the system.
– Entering time: The time when customers enter the server.
– Leaving time: The time when customers finish and leave the system.

From the above three features, we further process the data. The processed
dataset includes two columns: System state and Waiting time. We try to pre-
dict the distributions of waiting times of customers based on the system state
they observe upon arrival. In this case, the system state is one-dimensionally
represented by the queue length. The simulated dataset contains about 40, 000
observations. The simple setting of this system allows us to derive the ground
truth of waiting time distributions, which are Erlang distributions with density
functions given as follows

f(x) =
μkxk−1e−µx

(k − 1)!
, (1)

where k denotes the queue length observed by customers upon their arrival.

Dataset 2: M/M/c Queueing Systems. We simulate seven M/M/c queueing sys-
tems with the number of servers c ranging from 1 to 7. In this simulation, we
fix the service rate at μ = 5. The arrival rates λ are set higher in systems with
more servers. Suppose that we are considering employing more servers due to the
increasing demand (reflected by arrival rates λ). The simulated dataset includes
four features as follows.

– Arriving time: The time when customers arrive at the system.
– Entering time: The time when customers enter the server.
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– Leaving time: The time when customers finish and leave the system.
– The number of servers in the system.

From the above three features, we further process the data. The processed
dataset includes three columns: System state, Number of servers and Waiting
time. We attempt to predict waiting time distributions in the new system from
the queue lengths observed by customers upon their arrival (i.e., system states)
and the number of servers of the system they enter.

Theoretically, waiting times of customers who arrive at an M/M/c queueing
system and observe a queue length of k customers follow an Erlang distribution
given as below

g(x) =
(cμ)kxk−1e−cµx

(k − 1)!
. (2)

We will use this to evaluate the performance of the model.

Dataset 3: An Erlang-Type G/G/ c Queueing System. We simulate an queueing
system where interarrival times follow an Erlang distribution with shape param-
eter k1 = 6 and rate parameter λ1 = 15, and service times follow an Erlang
distribution with shape parameter k2 = 4 and rate parameter μ = 5. There are
3 identical servers. The simulated dataset includes three features as follows.

– Arriving time: The time when customers arrive at the system.
– Entering time: The time when customers enter the server.
– Leaving time: The time when customers finish and leave the system.

From the above three features, we further process the data. The processed
dataset includes two columns: System state and Waiting time. We try to pre-
dict the distributions of waiting times of customers based on the system state
they observe upon arrival. In this case, the system state is one-dimensionally
represented by the queue length. The simulated dataset contains about 40, 000
observations.

Dataset 4: A Weibull-type G/G/ c Queueing System. Similarly to Dataset 3,
we simulate a queueing system with 3 identical servers but replace the Erlang
distributions of interarrival times and service times by Weibull distributions.
Interarrival times follow a Weibull distribution with shape parameter k1 = 3
and rate parameter λ1 = 12, and service times follow a Weibull distribution
with shape parameter k2 = 4 and rate parameter μ = 5. There are 3 identical
servers.

Dataset 5: A Preemptive Queueing System with two Classes of Customers. This
dataset simulates a cognitive wireless network system considered in [16]. There
are two classes of users arriving at a system with c = 3 servers: primary users
and secondary users. Interarrival times and service times of both classes of users
follow exponential distributions with rate parameters λ1 = 3, μ1 = 6 (primary
users’ mean arrival rate and service rate), and λ2 = 4, μ2 = 7 (secondary users’
mean arrival rate and service rate). Behaviors of users are subject to the following
discipline.
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• If a secondary user arrives and there is at least one available server, the user
will occupy the server.

• If a secondary user arrives and there is no available server, the user will wait
in a queue.

• If a primary user arrives and there is at least one available server, the user
will occupy the server.

• If a primary user arrives and there is at least one available server, the user
will occupy the server.

• If a primary user arrives and all servers are occupied by at least one secondary
user, a secondary user’s session will be interrupted for the primary user to
enter and occupy the server. The interrupted secondary user goes back to the
queue and waits.

• If a primary user arrives and all servers are occupied by other primary users,
that user will leave the system immediately

The simulated dataset includes the following information.

– Arriving time: The time when users arrive at the system.
– Entering time: The time when users enter the server.
– Leaving time: The time when users finish and leave the system.
– Whether a user is a primary or secondary one.

From the above three features, we further process the data. The processed
dataset includes three columns: The number of SUs in the system upon arrival,
The number of PUs in the system upon arrival and Waiting time.

In this system, the setting is highly complicated and it is not trivial to derive
waiting time distributions. The ground truth of distributions, based on the law
of large numbers, is obtained by simulating the system within a large amount of
time. We extract 90, 000 observations as a part of the dataset to train the model
and use the whole large dataset to compare and evaluate the training results.

Dataset 6: Waiting Times and Service Times at Three Banks in Nigeria. This
dataset, which is publicly available in [3], includes time recording of customers’
activities at three selected banks in Ogun State, Nigeria. Data was collected
during four weeks for each bank, containing a total of 52, 499 observations. The
dataset includes three features as follows.

– Arriving time: The time when customers arrive at the system.
– Entering time: The time when customers enter the server.
– Leaving time: The time when customers finish and leave the system.

In this dataset, other information such as the number of servers is not reported.
From the given information in the dataset, we process and obtain two features
describing the system state upon arrivals of each customer: The number of cus-
tomers being served and The current number of customers waiting in the queue.
Since the data is noisy, we rescale waiting times into the range between 0 and 1,
using the following formula

zi =
ti − min(t)

max(t) − min(t)
,
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where t = (t1, ..., tN ) containing all N observations of waiting times in the
dataset, and zi is now the ith normalized data. This normalization does not ruin
the structure of distributions.

We split the available dataset into a training set and a test set containing
50% of data in each.

3 Mixture Density Networks

We are interested in deriving distributions of waiting times of customers. In this
study, system parameters are assumed latent and used for the purpose of data
generation only. What we really observe are the system state s at each time when
a customer arrives and the actual waiting time of the corresponding customer t.
Our purpose is to learn the probability densities of t given that s takes a specific
value, denoted by p(t|s), which is assumed to be a mixture of k distributions.
Note that the type of probability distributions can be arbitrarily chosen. In
this paper, we select a Gaussian mixture model because a mixture of Gaussian
distributions with enough components is able to universally approximate any
probability distribution [8, pp. 65]. The estimation takes the form given as below.

p(t|s) =
K∑

k=1

πk(s)φ(t, μk(s), σk(s)),

where each πk(s) acts as the weight of each component distribution such that∑
k πk = 1; μk, σk are the mean and standard deviation parameters for the kth

Gaussian; and φ denotes the Gaussian density function, given by

φ(t, μk, σk) =
1

σk

√
2π

exp

(
− (t − μk)2

2

)
.

The loss function is given by

L = −log

(
N∏

i=1

(
K∑

k=1

πk(si)φ(t, μk(si), σk(si)

))
,

where N denotes the number of observations. In any G/G/c queue, the state
s is 1-dimensionally represented by the number of customers in the system at
the time of each arrival. In the multiserver preemptive queue, the state is 2-
dimensional, represented by the number of primary users and the number of
secondary users in the system. In the problem of multiple M/M/c queues, s is
2-dimensional, represented by the queue length and the number of servers of the
system. Lastly, in the problem of queueing at the three banks, s is 2-dimensional,
represented by the queue length and the number of customers being served.
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4 Evaluation Metrics

As for the first four datasets, because the ground truth probability distributions
are known, we can intuitively compare the prediction for any unobserved or
barely observed data in the training set. By plotting the estimated distribution
and the known ground truth on the same graph, we can visually compare how
well the estimation fits the ground truth.

As for Dataset 6, since the ground truth probability distributions are
unknown, we measure the goodness of fit of the estimated probability density
function on the test dataset by a proper scoring rule [6]. Furthermore, as the data
is continuous, Continuous Ranked Probability Score (CRPS) is chosen to mea-
sure the error of the estimation. Let t be an observation of the random variable
of waiting times and F be its corresponding estimated cumulative distribution
function (CDF), then the CRPS between t and F is defined as

crps(F, t) = −
∫ +∞

−∞
(F (t) − H(y, t))2 dy,

where H denotes the Heaviside step function, which is defined as follows.

H(y, t) =

{
1 if y ≥ t,
0 otherwise.

We take the mean of CRPSs over all observations to evaluate the performance
of MDNs.

CRPS =
1
N

N∑

i=1

crps(Fi, ti).

5 Results

In this section, we report the results of experiments that fit mixture models
in each dataset described in the earlier section. Note that the number of hid-
den layers, the number of nodes in each hidden layer and the number of Gaus-
sian components in each mixture are hyperparameters and set manually. Ideally,
we want a large enough number of Gaussian components to precisely estimate
waiting time distributions; however, with a limited amount of data, too many
densities in the mixture may lead to overfitting and trigger bad results. Such
hyperparameters are experimentally tuned to yield a reasonable result.

5.1 The M/M/1 Queueing System (Dataset 1)

We train the model with about 30, 000 observations with an MDN with 1 hidden
layer containing 20 nodes, to output a mixture of 6 normal distributions as
the estimation of desired distributions. The following figures illustrate how the
estimated distributions fit the data in the test set in some specific examples
(Fig. 1).
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(a) s = 5 (b) s = 10 (c) s = 20

(d) s = 25 (e) s = 35 (f) s = 45

Fig. 1. Estimation of density functions of waiting times in the M/M/1 queueing system.

As s becomes larger, the number of corresponding observations in the training
set becomes smaller. From the figures, we can see that the estimations fit well
until s reaches about 25 (which is observed only 3 times in the training set). The
accuracy of the prediction is likely to decrease with rarer observations such as
s = 35 or s = 45.

5.2 The M/M/c Queueing Systems (Dataset 2)

We train the model with about 50, 000 observations with an MDN with 3 hidden
layers containing 12 nodes in each to output a mixture of 10 normal distributions
(Fig. 2).
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(a) s = (40, 4) (b) s = (11, 8) (c) s = (20, 8)

(d) s = (14, 10) (e) s = (20, 12) (f) s = (18, 15)

Fig. 2. Estimation of density functions of waiting times in different M/M/c queueing
systems.

The above figures visually show how the predicted distributions fit the ground
truth in several examples. Note that all of the observations chosen in those
examples are not present in the training set. We can observe that MDNs give
good predictions for observations which are not too “far” from the existing data.
The fitted predictions deviate more from the ground truth with farther new
observations such as s = (18, 15) (intuitively, it seems more difficult to predict
waiting time distributions in a system with 15 servers than in a system with 8
servers, given the data on the systems with the number of servers ranging from
1 to 7).

5.3 The G/G/c Queueing Systems (Dataset 3 and Dataset 4)

For both datasets, we train the modelith an MDN with 1 hidden layer contain-
ing 20 nodes, to output a mixture of 6 normal distributions as the estimation
of desired distributions. Dataset 3 contains about 350, 000 observations, while
Dataset 4 contains about 110, 000 observations. The two datasets are highly
imbalanced with no observations of queue lengths which are larger than 7, and
fewer than 20 observations of queue lengths equal to 5 and 6 (Figs. 3 and 4).
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(a) s = 3 (b) s = 5 (c) s = 7

Fig. 3. Estimation of density functions of waiting times in the Erlang-type G/G/c
queueing system.

(a) s = 3 (b) s = 5 (c) s = 7

Fig. 4. Estimation of density functions of waiting times in the Weibull-type G/G/c
queueing system.

Similarly to the results on Dataset 1, we can see that the precision decreases
with observations with fewer occurrences in the dataset.

5.4 The Preemptive Queueing System (Dataset 5)

We train the model with about 90, 000 observations with an MDN with 2 hidden
layers containing 12 nodes and 10 nodes in each, to output a mixture of 10
normal distributions as the estimation of desired distributions. In this case, as
the actual density functions are not derived, the ground truth is obtained by
simulating the system within a large amount of time. The system parameters
used for simulation are λ1 = 3, μ1 = 6, λ2 = 4, μ2 = 7 and c = 3. We illustrate
the estimation and prediction results in some specific examples of system states
(Fig. 5).
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(a) s = (1, 3) (b) s = (10, 0) (c) s = (9, 2)

(d) s = (14, 2) (e) s = (11, 3) (f) s = (15, 3)

Fig. 5. Estimation of density functions of waiting times in different M/M/c queueing
systems (Dataset 5 ).

Except for the first example of s = (1, 3) which has many observations in
the training set, all of the remaining examples show the fitted distributions on
the observations of system states which barely show up in the training set (less
than 5 observations). We can see that as the states become rarer (for example,
in case s = (14, 2) or s = (15, 3)), the predicted distributions become spiky, and
the predicted means are more likely to deviate from the true means.

5.5 Three Banks in Nigeria

We train the model with 26, 249 observations in the training set, experimenting
with 3 different settings of MDNs. The results are summarized in Table 1.

Table 1. CRPS of estimation by MDNs with different architectures.

#Gaussians #Hidden layers #Nodes CRPS

4 2 5 nodes in each hidden layer 0.06844

6 2 5 nodes in each hidden layer 0.06606

8 3 5 nodes in each hidden layer 0.06621
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The experimental results show that the MDN containing 2 hidden layers and
outputting a mixture of 6 Gaussian distributions yields the best fit for the data
with the smallest CRPS (Fig. 6).

(a) s = (4, 0) (b) s = (8, 0) (c) s = (15, 0)

(d) s = (19, 14) (e) s = (19, 18) (f) s = (21, 17)

Fig. 6. Estimation of density functions of waiting times in queues in three banks in
Nigeria.

The above figures illustrate how the estimated distributions fit the data in
the test set in some specific examples. We choose the observations with high
frequency in the test set (more than 30) and compare the estimation results
with probability density functions estimated on testing data by the Kernel Den-
sity Estimation (KDE) method. It can be seen that the estimated distributions
become spikier as the number of output mixture distributions is larger. Also,
the mixture of 6 Gaussian distributions seems to be closest to the estimated
distribution using KDE performed on the test set.

6 Concluding Remarks

This paper illustrated a potential application of Mixture Density Networks
(MDNs) in the estimation and prediction of waiting time distributions in queue-
ing systems. This method allows us to derive the relationship between waiting
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times and system states, and also gives a prediction of waiting time distribution
when a customer enters a rarely occurring state, in the case that we barely know
information on the system parameters and can only observe historical data.

While the traditional approach using queueing theory relies heavily on
assumptions of stationary distributions over processes, MDNs have shown the
power in the real-world system. Also, compared to most of the other statistical
methods (such as Maximum Likelihood Estimation or Kernel Density Estima-
tion) which can only give estimations for existing observations, MDNs have the
ability to make predictions. In this sense, MDNs are particularly meaningful
when it comes to estimations of the waiting times corresponding to the queue
length with few observations in the dataset.

A shortcoming of this method, as seen in the implementations on Dataset 3
and Dataset 4, is that it does not perform well on highly imbalanced datasets
where the feature contains too few different values. Also, predictions become
more imprecise with new observations which are distant from existing observa-
tions in the dataset. One possible solution could be to instantly feed new data
and restrain the model.

Future works may consider learning and outputting a mixture of exponential
distributions (as a general phase-type distribution) instead of a conventional
Gaussian mixture.
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Abstract. Dynamic Voltage and Frequency Scaling (DVFS) involves
adjusting the speed to match power consumption and performance
requirements of the system. This technology has been shown to provide
major power and energy savings in many system components (processor
cores, memory system ...). In this work, we study the DVFS mecha-
nism for a processor that implements various levels of speed and power
(we call these levels “Pstates”). We model the system as a birth-death
process and we compare different configurations, using stochastic com-
parison, in order to evaluate the impact on the response time and power
(and energy) consumption. In the case of two Pstates, we proposed a
closed form for the steady state distribution and we derived a cost func-
tion that uses both performance and energy consumption. Finally, we
derive an algorithm that suggests a threshold which minimizes the cost
function.

Keywords: DVFS · Performance evaluation · Energy consumption ·
Stochastic comparison

1 Introduction

The IT sector has a very high contribution on the increase of the overall energy
consumption. Many methods to reduce consumption in other industries or ser-
vices result in more IT and telecommunications (the “Green by IT” approach
[1]). Approaches which are used to minimize the power/energy consumption
of ICT equipment are known as power management techniques. At processing
level, in order to minimize the energy, either the device needs less power to
operate, or it is simply switched off when it is not in use. However, a switched
off device is unavailable to perform any task and might take considerable time
to become available. Therefore, hardware designers implement other capabili-
ties to devices such as Dynamic Voltage and Frequency Scaling (DVFS). This
technique allows the processor to adapt its frequency according to energy or per-
formance constraints. Higher frequencies leads to higher performance but more
power consumption. DVFS is a promising approach to prevent power wastage
c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 165–180, 2021.
https://doi.org/10.1007/978-3-030-91825-5_10
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in distributed large data centers (such as cloud environment [2]), also in the
high performance computing (in Graphics Processing Units context [3]). Queu-
ing models have been widely used in the literature to model DVFS schemes. In
[4], an M/M/1 queue is considered for the reduction of energy consumption by
switching the frequency and voltage, also in [5] authors employs a GI/G/N queue
to model server clusters of cloud data centers with the respect of Service Level
Agreements (SLA) between users and service providers. In [6] authors model a
k-server farm with a fixed power budget which can be split among k servers
with Processor Sharing (PS) discipline with the aim of minimizing the mean
response time. In this paper, we model a DVFS processor by a queue system
to have analytical formulas for performance and energy consumption measures.
We established a stochastic comparison for the performance between different
systems with one and two Pstates. We also provide sufficient condition for the
comparison of power (and energy) consumption. In the case of two Pstates, ana-
lytical formulas are used to derive an optimization algorithm that investigates
the best threshold that minimizes the cost function.

The objective of this work is to evaluate the response time, power and energy
per job consumed in two distinct processor configurations. In Sect. 2, we present
the features of a Pstate processor. In Sect. 3, we focus on a configuration where
the processor uses a single Pstate, we compare the performance and power con-
sumption of the sixth configurations. In Sect. 4, the processor considers two
Pstates. We have proposed a closed form for steady-state distribution and we
derived a cost function that uses both performance and energy consumption. We
also show, through an algorithm we suggest, the best combination of Pstates to
use and the corresponding minimizing threshold.

2 DVFS Pstate Processor

Many manufacturers of CPUs and GPUs (Intel, AMD, ... ) implement the
DVFS concept. In this document, only numerical values comes from the AMD
(Advanced Micro Devices) Opteron processor [7]. The analysis we propose is
more general. The Pstate processor operates at several frequencies and voltages
denoted as “Pstates” (see Table 1). The highest Pstate runs the processor at
full rate and full voltage. But during off-peak periods, the clock can go down to
1 GHz, saving up to 75 percent of the power at full speed.

Table 1. Pstates support in AMD opteron processor [7].

States P1 P2 P3 P4 P5 P6

Frequency (GHz) 1 1.8 2 2.2 2.4 2.6

Power (W) ≈32 ≈55 ≈65 ≈76 ≈90 ≈95

Table 1 represents the frequency (in GHz) that corresponds to the number of
processor’s instruction per time unit “t”. We notice that the power consumption
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increases with the frequency in a non-linear approach. The Pstates power is a
super-linearly function of the frequency. We model the Pstate processor as a
multi-server queue. Cores of the processor represents servers in the queue. We
also assume that

– The processor contains C cores.
– External arrivals of tasks follow independent Poisson process with rate λ.
– Service rates are distributed according to exponential distributions.
– Task scheduling discipline is FCFS (First Come, First Served).
– Tasks arriving into a processor may require “b” instructions (with b > 0).

So the service rate (i.e. the number of tasks executed per time unit by a
processor’s core), is μi = f(Pstatei)

b where “f” is the frequency.

Note that, service rate will depend on the model considered. In one Pstate
model, service rate is fixed to the frequency of the Pstate considered, while in
two Pstates system, service rate changes and depends on the current workload
in the processor.

3 A Multi-core Processor with One Pstate

In this section, we consider that the Pstate processor has only one Pstate “i”.
Thus, a classical M/M/C queue can represent this model. The servers speed
rate μi > 0 is fixed and only depends on the chosen Pstate “i”. We denote such
a system Si. We will study the performance and power consumption in each
Pstate separately. Steady-state distribution and rewards as mean response time,
mean number of tasks in the system are well known in the literature. Here, we
show how to calculate, analytically, the mean power consumption and energy
per job/task in the system. We also compare the performance and the power
and energy consumption for the different systems.

We first recall some definitions about the “st” comparison between CTMCs
processes and birth-death processes.

Lemma 1. (Comparison of steady-state distributions [8])
Let {Xt

1, t ≥ 0} and {Xt
2, t ≥ 0} be two CTMCs. Hence, if the steady-state

distribution Π1 (resp. Π2) exists, then

{Xt
1, t ≥ 0} ≤st {Xt

2, t ≥ 0} ⇒ Π1 ≤st Π2. (1)

Theorem 1. (Comparison of birth-death processes [8])
Stoyan theorem states that: considering two homogeneous birth-death processes
{Xt

1, t ≥ 0} and {Xt
2, t ≥ 0} with Poisson arrivals rate λ

(S1)
x and λ

(S2)
x , and

Exponential service rates μ
(S1)
x and μ

(S2)
x . Note that arrivals rate and service rate

depends on the state x. If

∀ state x ≥ 0 μ(S1)
x ≥ μ(S2)

x and λ(S1)
x ≤ λ(S2)

x ,

then
{Xt

1, t ≥ 0} ≤st {Xt
2, t ≥ 0}.
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3.1 Mean Number of Jobs and Response Time

Under the classical assumptions we mention in Sect. 2, {Xt
i , t ≥ 0} is the CTMC

that describes the system Si. If the system is stable, then the steady-state dis-
tribution exists. Let Πi be this distribution, and E[Xi] (resp. Ti) be the mean
number of jobs (resp. the mean response time). So

E[Xi] =
∞∑

x=0

xΠi(x) and Ti =
E[Xi]

λ
(Little′s law). (2)

Corollary 1. We consider six stable systems (corresponding to the sixth Pstates
in Table 1). Let μ1, μ2, . . . , μ6 be processor’s speed (i.e. service rate of cores in
each system). Let ∀ t ≥ 0 {Xt

1}, {Xt
2}, . . . , {Xt

6} be the Markov chain, and
Π1,Π2, . . . , Π6 the steady-state distribution for each stable multi-core Pstate pro-
cessor, then

μ1 ≤ μ2, . . . ,≤ μ6 ⇒ Π6 ≤st Π5, . . . ,≤st Π1. (3)

Proof. The proof is directly derived from Theorem 1 and Lemma 1.
In our systems, we have the same arrivals rate λ in every system. Then for all

the states “x”, λ
(S1)
x = λ

(S2)
x =, . . . ,= λ

(S6)
x = λ. Also from the assumption, we

have for all state x, μ
(S1)
x ≤ μ

(S2)
x ≤, . . . ,≤ μ

(S6)
x as a consequence of μ

(Si)
x = μi,

then all conditions are satisfied to apply the theorem cited above. Therefore,
we get ∀ t ≥ 0, {Xt

6} ≤st {Xt
5} ≤st, . . . ,≤st {Xt

1}. Hence, from Lemma 1 we
conclude that Π6 ≤st Π5, . . . ,≤st Π1. ��
Property 1. Let E[X1],E[X2], . . . ,E[X6] (resp. T1, T2, . . . , T6) be the mean num-
ber of jobs (resp. the mean response time) for stable multi-core Pstate processors
S1, S2, . . . , S6 that uses one Pstate, then

Π6 ≤st Π5, . . . ,≤st Π1 ⇒
⎧
⎨

⎩

E[X1] ≥ E[X2], . . . ,≥ E[X6],

T1 ≥ T2, . . . ,≥ T6.
(4)

Proof. The systems are supposed to be stable, therefore, the steady-state distri-
bution exists. Then

Π6 ≤st Π5, . . . ,≤st Π1 ⇒
∑

x≥0

xΠ1(x) ≥
∑

x≥0

xΠ2(x) ≥, . . . ,≥
∑

x≥0

xΠ6(x), (5)

and using Eq. 2, we get

Π6 ≤st Π5, . . . ,≤st Π1 ⇒ E[X1] ≥ E[X2], . . . ,≥ E[X6]. (6)

Mean response time is obtained using Little’s law for the jobs in the system (see
Eq. 2).



Performance Evaluation and Energy Consumption for DVFS Processor 169

Corollary 2. The result of this proposition is the conjunction of Corollary 1 and
Property 1. Under stability condition of systems, we state that a higher speed of
the Pstate processors (so higher Pstates) implies a lesser mean number of jobs
and response time.
If μ1 ≤ μ2, . . . ,≤ μ6, then

E[X1] ≥ E[X2], . . . ,≥ E[X6] and T1 ≥ T2, . . . ,≥ T6. (7)

No proof is needed since Eq. 7 is the result of the conjunction of Eq. 3 and Eq. 4.

3.2 Power and Energy Consumption

Let pi (resp. pi,Id) for i ∈ {1, . . . , 6} be the Pstate power (resp. Pstate idle
power) used by a core in a system Si (see Table 1), and let 0 ≤ α < 1 such that

pi,Id = αpi. (8)

Lemma 2. The mean power consumption of a stable mono Pstate system PWi

is the sum the mean power of the servers in activity PW
(a)
i and the idle power

PW
(Id)
i :

PWi = PW
(a)
i + PW

(Id)
i = pi,IdC +

(pi − pi,Id)λ
μi

. (9)

Proof. Let Πi(x) be the steady-state distribution of the stable Markov chain
{Xt

i , t ≥ 0}, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PW
(a)
i =

∑∞
x=0 Πi(x)

[
pi ∗ min{x,C}

]
,

PW
(Id)
i =

∑∞
x=0 Πi(x)

[
(C − min{x,C}) ∗ pi,Id

]
.

(10)

∑∞
x=0 Πi(x)

[
min{x,C}

]
represents the mean number of servers in activity of

the system Si. The mean number of jobs in service corresponds to the mean
number of servers in activity since a job is served by one server at each time. We
will use Little’s law for servers in activity, which states that the mean number
of jobs in service is the mean service time 1

μi
(since servers are homogeneous)

times the mean arrivals rate λ. Then we have
∑∞

x=0 Πi(x)
[
min{x,C}

]
= λ

μi
.

After simplifications, Eq. 10 becomes:

PW
(a)
i =

λpi

μi
and PW

(Id)
i =

(
C − λ

μi

)
pi,Id. (11)

By summing PW
(a)
i and PW

(Id)
i we get the expression of the mean power con-

sumption to complete the proof. ��
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Notice that the model we study here is a stable a M/M/C queue, and by def-
inition the stability condition of the system is λ < Cμi so (C − λ

μi
) > 0 then

PW
(Id)
i > 0, therefore, PWi > 0. ��

Lemma 3. Let E
(Job)
i be the energy consumption per job in a stable system Si,

E
(Job)
i =

PWi

λ
. (12)

Proof. The energy consumption of a device is the power consumed on a period
of time. Therefore, we expressed the energy consumption of a stable system as
the mean power consumption PWi times the mean resident time of a task Ti.
Let Engi be this energy

Engi = PWi ∗ Ti. (13)

Engi is the energy consumption of the system when considering all jobs. Hence,
in order to obtain the energy consumption per one job,

E
(Job)
i =

Engi

E[Xi]
. (14)

Using Little’s law for the mean number of jobs in a steady-state system
(E[Xi] = λTi), then by substitution we get Eq. 12, the proof is complete. ��

Lemma 4. Let E
(Job)
i (resp. E

(Job)
j ) be the energy consumption per job of a

stable system Si (resp. Sj). Also let PWi (resp. PWj) be the corresponding mean
power consumption. In below, we present a sufficient and necessary condition for
the comparison of the mean power and the energy per job consumption:

pi

pj
≤ μig(μj)

μjg(μi)
⇐⇒

⎧
⎨

⎩

PWi ≤ PWj

E
(Job)
i ≤ E

(Job)
j

(15)

where
g(μi) = αμiC + (1 − α)λ. (16)

Proof. By the substitution of pi,Id = αpi, we get

PWi =

(
αμiC + (1 − α)λ

μi

)
pi. (17)

then

E
(Job)
i ≤ E

(Job)
j ⇔ PWi ≤ PWj ⇔ pi

pj
≤ (αμjC + (1 − α)λ)μi

(αμiC + (1 − α)λ)μj
(18)

and using Eq. 16 the proof is complete. ��
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Lemma 5. In this lemma we present a sufficient condition for the comparison
of the mean power and the energy per job consumption in two stable systems Si

and Sj (with i ≤ j):

μi ≤ μj and
pi

pj
≤ μi

μj
=⇒

⎧
⎨

⎩

PWi ≤ PWj

E
(Job)
i ≤ E

(Job)
j .

(19)

Proof. Equation 15 in Lemma 4 presents a sufficient and necessary condition.
Therefore:

pi

pj
≤ αμiμjC + (1 − α)λμi

αμiμjC + (1 − α)λμj
⇒

⎧
⎨

⎩

PWi ≤ PWj

E
(Job)
i ≤ E

(Job)
j .

(20)

Hence, we only have to verify that

μi

μj
≤ αμiμjC + (1 − α)λμi

αμiμjC + (1 − α)λμj
. (21)

Equation 21 can be expressed as

αμ2
i μjC + (1 − α)λμiμj ≤ αμiμ

2
jC + (1 − α)λμiμj . (22)

After simplification of terms we obtain μi ≤ μj , which is the assumption stated
in the presentation of this lemma. Hence, from Eq. 20 and 21 we obtain Eq. 19,
and the proof is complete. ��

3.3 Numerical Comparison of the Six Pstates Configurations

We consider here the six systems S1, . . . , S6, each system has C = 20 cores.
The speed of the servers (i.e. cores) depends on the Pstate performed. Also, we
suppose that each task requires one core’s instruction b = 1, therefore, μi = fi.
Let α = 0.25 which provides a power gain of 75% when the processor is in idle
Pstate (see Eq. 8).

Performance, Power and Energy per Job: In Fig. 1 we observe that, (a)
by increasing the task’s arrivals load, the system fills up more and the waiting
time in the queue increases. (b) In stable cases of each system, Pstate6 (con-
trary to Pstate1) presents the best results in terms of performance i.e. mean
number of tasks and waiting time in the network, but requires the highest power
consumption (see Fig. 2). These numerical results are clearly matching with our
analytical results (Corollary 2, Lemma 4 and Lemma 5).
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Condition Verification for Power and Energy Comparison: In Lemma
5 we only need the core’s speed and core’s power consumption to make a com-
parison of the mean power consumption and the energy per job consumption
between two single-Pstate processors. This comparison is sufficient and not nec-
essary, which means that when μi ≤ μj and pi

pj
≤ μi

μj
is verified, then Pstate “i”

consumes less mean power and energy per job consumption than the system with
Pstate “j”. Otherwise, we don’t dispose of much information to compare the two
systems. In that case, we can use Lemma 4, which, additionally, includes traffic
arrivals rate and other parameters. For instance, we observed that (i = 1, j = 2)
and (i = 5, j = 6) does not verify the assumption of Lemma 5. Hence, using
Lemma 4 we obtained that: (a) for the case of (i = 1, j = 2), PW1 ≤ PW2 (and
E

(job)
1 ≤ E

(job)
2 ) for all values of λ that makes both systems stable. (b) for the

case of (i = 5, j = 6), when λ ≤ 34 we have PW5 ≤ PW6 (and E
(Job)
5 ≤ E

(Job)
6 ).

Otherwise, PW6 < PW5. That explains the crossover behavior between the red
and the green curve in the right figure of Fig. 2.
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Fig. 1. Mean response time. Parameters: C = 20 servers, server’s rate (i.e. core’s speed)
in each Pstate is depicted in Table 1.

4 A Multi-core Processor with Two Pstates

In this model we consider a birth-death process with two Pstates “i” and “j”
with i ≤ j. Servers speed rate depends on the number of tasks in the system.
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Fig. 2. Mean power consumption. Parameters are the same as in Fig. 1.

It means that if the number of tasks is below a certain threshold “th”, then
servers (cores) speed corresponds to μi, otherwise it is supposed that the queue
is well loaded, therefore, servers speed rate are fixed to μj . We denote such a
system S(i, j, th). Stability condition of this model, that verifies the existence of
a steady-state distribution is λ < Cμj .

4.1 Closed Form for the Steady-State Distribution

The processor contains C cores. Therefore, when x tasks are in the system,
min{C, x} tasks are in service and (x − min{C, x})+ are queued. Under the
classical assumptions we mention in Sect. 2, {Xt

i,j,th, t ≥ 0} is a Markov chain,
and the transitions are as follows:

(x) → (x + 1) with rate λ,
(x) → (max{0, x −1}) with rate min{x,C}·μ(x). (23)

and service rate μ(x) is μ(x) = μi = fi

b if x ≤ th and μ(x) = μj = fj

b if x > th.
Note that, b is the number of instructions per task, and fi is the frequency (GHz)
given in Table 1.

Theorem 2. The transition diagram of this Markov chain is a birth-death pro-
cess. Then, under stability condition (i.e. λ < Cμj), we can derive Πi,j,th(x) the
steady-state probability of the two Pstates processor S(i, j, th).
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Let

Ψ(x) =
x∏

k=1

min{k,C}μ(k), and R = max{C, th},

then

Πi,j,th(x) =

⎧
⎪⎨

⎪⎩

λx

Ψ(x)Πi,j,th(0) ∀ 0 < x ≤ R,

λx
[
(Cμj)x−RΨ(R)

]−1

Πi,j,th(0) ∀ x > R,

(24)

where

Πi,j,th(0) =

[
1 +

λR+1

(Cμj − λ)Ψ(R)
+

R∑

x=1

λx

Ψ(x)

]−1

. (25)

Proof. The Markov chain we consider is a birth-death process. We set “R” the
state at which the system maintains it’s service rate. This simplifies the calcu-
lation of the steady state distribution. Hence, we have divided the calculation
of Πi,j,th(x) into two parts. States from 1 to “R” and states from “R” to +∞.
From classical equations in a birth-death process, we deduce that:

Πi,j,th(x) =

⎧
⎪⎨

⎪⎩

λ
min{x,C}μ(x)Πi,j,th(x − 1) ∀ 0 < x ≤ R,

(
λ

Cμj

)x−R

Πi,j,th(R) ∀ x > R.

(26)

After simple substitutions in Eq. 26 (i.e. to write Πi,j,th(x) as a function of
Πi,j,th(0) for all x ∈ [1,+∞[), we get Eq. 24. Finally, as the system is supposed
to be stable, then Eq. 25 is obtained after the normalization of probabilities (∑+∞

x=0 Πi,j,th(x) = 1). ��

4.2 Mean Number of Jobs and Response Time

Here we seek to compare the mean number of jobs and mean response time
between two stable systems S(i, j, th1) with i ≤ j and S(k, l, th2) with k ≤ l.
Note that, to calculate the mean number of jobs E[Xi,j,th] and mean response
time T i,j,th, we use the same approach as in Eq. 2.

Corollary 3. We consider the two stable systems described above, then for any
thresholds th1 and th2, we have:

j ≤ k ⇒
⎧
⎨

⎩

E[Xk,l,th2] ≤ E[Xi,j,th1]

T k,l,th2 ≤ T i,j,th1.
(27)

Proof. Let {Xt
i,j,th1, t ≥ 0} (resp. {Xt

k,l,th2, t ≥ 0}) the Markov chain of the
stable system S(i, j, th1) (resp. S(k, l, th2)). Also, let Πi,j,th1 and Πk,l,th2 be
the steady-state distributions of both systems. Let λ

S(i,j,th1)
x , λ

S(k,l,th2)
x (resp.

μ
S(i,j,th1)
x , μ

S(k,l,th2)
x ) be the arrivals rate (resp. service rate) generated at the

state “x” in the system S(i, j, th1) and S(k, l, th2).
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– We first derive the “st” comparison between the two systems. The arrivals rate
λ is supposed the same. Then for all the states “x”, λ

S(i,j,th1)
x = λ

S(k,l,th2)
x =

λ. Also, we have j ≤ k from the assumption, and i ≤ j and k ≤ l from the
definition of systems, then i ≤ j ≤ k ≤ l. It means that, for any values of
“th1” and “th2”, services rates in S(k, l, th2) are always greater than the ones
in S(i, j, th1), so μ

S(k,l,th2)
x ≥ μ

S(i,j,th1)
x . From Theorem 1 we deduce that

{Xt
k,l,th2, t ≥ 0} ≤st {Xt

i,j,th1, t ≥ 0}. (28)

– Both systems are supposed stable, then using Lemma 1, we have

{Xt
k,l,th2, t ≥ 0} ≤st {Xt

i,j,th1, t ≥ 0} ⇒ Πk,l,th2 ≤st Πi,j,th1. (29)

– Finally, the same approach of property 1 is used to get

Πk,l,th2 ≤st Πi,j,th1 ⇒
⎧
⎨

⎩

E[Xk,l,th2] ≤ E[Xi,j,th1]

T k,l,th2 ≤ T i,j,th1.
(30)

By combining the three last equations we obtain Eq. 27, that concludes the proof.
��

Corollary 4. In this corollary, we use another assumption, that concerns two
stable systems using the same Pstates and different thresholds S(i, j, th1) and
S(i, j, th2). We have:

th1 ≤ th2 ⇒
⎧
⎨

⎩

E[Xi,j,th1] ≤ E[Xi,j,th2]

T i,j,th1 ≤ T i,j,th2.
(31)

Proof. The approach of the proof is similar to the one in Corollary 3.

– We have th1 ≤ th2 ⇒ μ
S(i,j,th1)
x ≥ μ

S(i,j,th2)
x . It means that system

S(i, j, th1) will activate the higher Pstate “j” earlier than system S(i, j, th2).
Therefore, from Theorem 1 we deduce that

{Xt
i,j,th1, t ≥ 0} ≤st {Xt

i,j,th2, t ≥ 0}. (32)

– Using Lemma 1, and Property 1 for two Pstates systems. We obtain Eq. 31,
and the proof is complete. ��

4.3 Power and Energy Consumption

Let pi (resp. pj) be the power consumption corresponding to Pstate i (resp.
Pstate j), with i ≤ j. The power consumed by the processor depends on the
speed of its cores, which is a function of the number of tasks assigned to it. Let
(x) be the number of tasks in the processor, then the power consumed by each
core, when hosting x tasks, is pi if x ≤ th and pj if x > th.
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Lemma 6. Let PWi,j,th be the mean power consumption of the system
S(i, j, th),

PWi,j,th = pi(1 − α)
[
pi

∑th
x=0 min{x, C}Πi,j,th(x) + pj

∑+∞
x=th+1 min{x, C}Πi,j,th(x)

]

+αC
[
pj + (pi − pj)

∑th
x=0 Πi,j,th(x)

]
.

(33)

Proof. Let PW
(a)
i,j,th (resp. PW

(Id)
i,j,th) be the mean power consumption of the

servers in activity state (resp. Idle state). Hence, as in Lemma 2, we have

PWi,j,th = PW
(a)
i,j,th + PW

(Id)
i,j,th , (34)

where
⎧
⎪⎨

⎪⎩

PW
(a)
i,j,th = pi

∑th
x=0 min{x,C}Πi,j,th(x) + pj

∑+∞
x=th+1 min{x,C}Πi,j,th(x),

PW
(Id)
i,j,th = pi,Id

∑th
x=0(C − min{x,C})Πi,j,th(x)

+pj,Id

∑+∞
x=th+1(C − min{x,C})Πi,j,th(x).

(35)
After simple simplifications: using Eq. 8 in Eq. 35, and by substituting PW

(a)
i,j,th

and PW
(Id)
i,j,th in Eq. 34, we obtain Eq. 33 and the proof is complete. ��

Note that Lemma 3, for energy consumption per job, still hold for this model.
Hence, E

(Job)
i,j,th = PWi,j,th

λ .

4.4 Optimization Under Energy and Response Time Constraints

– From Corollary 4, we conclude that when comparing two stable systems
S(i, j, th1) and S(i, j, th2) with th1 ≤ th2 then T i,j,th1 ≤ T i,j,th2. There-
fore, the mean response time (and mean number of jobs) is an increasing
function of the threshold. Hence, to minimize the mean response time in a
two-Pstates system, th = 1 is the optimal threshold to use.

– The “st” comparison does not hold for the mean power consumption (resp.
energy per job) function. The function is not monotone with the threshold.

– So in order to optimize the mean power consumption (resp. energy consump-
tion), we shall consider an exhaustive algorithm to obtain for the best thresh-
old.

In the following, we suggest merging the mean response time T i,j,th and the
energy per job consumption E

(job)
i,j,th in a single function to minimize. Let c1 (resp.

c2) be the cost of the mean response time (resp. energy per job consumption).
Let Θ be the total cost to minimize.

Θ = T i,j,th ∗ c1 + E
(job)
i,j,th ∗ c2 (36)

To analyze Eq. 36, we propose the algorithm below. This algorithm, under
stability constraint, generates the best threshold (in the range [1, . . . , THMAX])
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to use for each couple of Pstates (i, j). Given the input parameters: number of
servers C, services rate (given in Table 1), an upper bound THMAX for the
thresholds, arrival rate of tasks λ, and the rewards costs c1 and c2.

Algorithm 1: Purchasing the best threshold for each two-Pstates sys-
tem

Input : Number of servers C, arrivals rate λ, rewards cost c1, c2, and a
value of THMAX.

Output: Threshold that minimizes cost function Θ for each couple of
Pstates (i, j)

1 for (i, j) with 1 ≤ i ≤ j ≤ 6 do
2 if λ < Cμj then // The system is stable

3 initiate “th∗“;
4 for th ← 1 to THMAX do
5 1) Calculate the steady-state distribution (Equation 24 and 25)

for the system S(i, j, th) ;

6 2) Derive the mean response time T i,j,th (Equation 2) and

energy per job consumption E
(job)
i,j,th ;

7 3) Calculate the cost function (Equation 36) ;
8 4) Update “th∗“ if the current cost function is lower than the

cost function for the previous iteration.
9 end

10 Print ”The best threshold for the couple of Pstates (i,j) is “th∗“ ;

11 else
12 Print ”The system is not stable for the couple of Pstates (i,j)”;
13 end

14 end

4.5 Numerical Results

We now investigate the influence of cost values c1 and c2 on Pstates (i, j) and
their optimal thresholds. We considered the following parameters: arrivals rate
λ = 20, number of servers C = 20, and the maximal threshold to purchase is
THMAX = 100. Services rate are inspired from Table 1 with b = 1. Cost values
(c1 and c2) are taken randomly in order to reflect the energy or performance
constraints. We present here two experiments:

– In the first experiment (Fig. 3), we seek to minimize the cost function under
the energy per job constraints. Therefore, we consider higher c2 costs and
lower c1 costs. In particular, c1 = 1 and c2 = 50.

– In the second experiment (Fig. 4), we focus on response time constraints.
Therefore, we consider higher c1 costs (and lower c2 costs). So c1 = 200 and
c2 = 1.
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Note that, the following results are derived from Algorithm 1. In the figures
below, white areas are due to “i ≤ j” which is an assumption of a two-Pstates
(i, j) system. Colored square areas represents the values of the objective function
(Eq. 36). Blue integer in colored areas is the value of the optimal threshold we
obtained (in the range [1, . . . , THMAX]) that minimizes the objective function
for the corresponding couple of Pstates (i,j). Case of i = j the threshold has
no meaning since the system remains in the same Pstate, that explains the “-”
entry in the figure.

Optimization Under Energy per Job Constraints. Recall that in this
experiment c1 = 1 and c2 = 50. We observe in Fig. 3, that:

– Energy per job consumption increases with the value of Pstate “i”. Therefore,
the best couples of Pstates minimizing the objective function are in the green
range (i = 1, j ∈ {2, . . . , 6}). In order to reduce the energy consumption, the
system opts for low Pstates.

– Optimal thresholds (blue integers in the colored squares) for the energy per
job, achieves the highest levels (up to th = THMAX = 100). Notice that,
under high energy costs, it is consistent that the system switches “lately”
to the higher Pstate “j” which consumes more. The system remains mostly
all the time in Pstate “i”. That explains the unnoticed modifications of cost
function when changing the Pstate “j”.

Optimization Under Performance Constraints: To evaluate the cost func-
tion under response time requirement, we considered a second experiment:
c1 = 200 and c2 = 1. We observe in Fig. 4, that:

– The system opts for high Pstates to reduce the response time component in
the cost function.

– The optimal thresholds corresponds to a very small values. It shows that the
Pstate processor switches quickly its cores to the higher Pstate “j”, i.e. after
having 1, 2, 3, 4, or 5 jobs in the system.

– When increasing c1 cost (above 500), we observe that the best threshold for
all configurations is th = 1. Energy per job cost is irrelevant with regard to the
response time’s cost. Therefore, the system behaves as there is no constraints
on the energy per job. In that case, we have proved (as a consequence of
Corollary 4) that response time function increases with the threshold, which
explains the best threshold th = 1.
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Fig. 3. c1 = 1, c2 = 50: objective function and optimal threshold for all pairs (i, j).
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5 Conclusion

We model a Pstate processor as a birth-death process in order to provide analyt-
ical formulas. We have compared, analytically and numerically, different config-
urations for the model with one Pstate. We have also proposed an optimization
algorithm that generates the best threshold to use in the model with two Pstates.
Note that, the steady-state formula we have proposed can be trivially extended
to a model with N > 2 Pstates. However, the optimization algorithm may not
be efficient if the number of Pstates to be used (and THMAX) is very high. In
that case, a Markovian Decision Process can be considered in future work.
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Abstract. NFV (Network Functions Virtualization) technology widely
deployed in recent cloud computing is essential to provide network ser-
vices. NFV is useful for saving operational cost because VNFs (Virtual-
ized Network Functions) are created dynamically by scaling in/out vir-
tual machines. On the other hand, utilizing existing computing resources,
which are provided by legacy equipments and thus do not possess adap-
tive property of allocating virtual computing resources, is of importance
to contribute for maintaining the required performance. In this paper,
we propose queueing models of hybrid systems that utilize the NFV
technology as well as legacy network equipments. Examples of such sys-
tems include 5G networks systems. We focus on a scenario of providing
delay-sensitive real-time services, and in particular evaluate the delay
performance.

Keywords: Cloud computing · Network functions virtualization ·
Markov chains · Delay-sensitive services · Delay performance

1 Introduction

Recently, NFV (Network Functions Virtualization) technology is commonly used
for cloud computing on which various IT (Information Technology) services are
provided. In the NFV environments, VNFs (Virtualized Network Functions)
play a key role. VNFs realize network services such as firewalls and routings
in a software-based manner, and are run on several virtual machines. Accord-
ingly, VNF instances are created dynamically by scaling in/out virtual machines.
Therefore, NFV enables us to adjust required computing resources such as CPU
and memory, and thus is useful for service providers not only to meet on-demand
requests but to reduce operational cost. It is also advantageous to save energy.
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While pure NFV-based systems allow service providers to build network
services platforms efficiently, it would be favorable to utilize widely deployed
existing legacy network equipments. In fact, we can find such a scenario in typi-
cal cellular networks, where network service providers are forced to provide new
advanced services efficiently, at the same time keeping in mind making effective
use of existing legacy equipments. Using legacy equipments is not effective in
saving energy, but improves user performance. Actually, VNF instances may not
promptly response to service requests due to some setup time during which ser-
vice requests cannot receive services. This is not the case for legacy equipments
because they are always powered on and ready for providing services.

In this paper, we study the performance of such hybrid systems by simple
analytical models. In this subject, prior work [9] assumes that the service rate
provided by virtual machines is equivalent to that of legacy servers while [10]
assumes that these service rates are different but jobs serving in a virtual machine
may be transferred to a legacy server. We assume the service rate of the virtual
machines is not the same to that of legacy server and a job is served by the same
server until completion. In most cases, we expect that the virtual machines, which
are based on advanced technology, provide higher service rates than the legacy
servers. To the best of our knowledge, our scenario has not been investigated in
the literature. We believe that our scenario in this paper would be more practical.
We also assume that hybrid systems provide time-constrained services and thus
jobs have to be completed by service-specific deadlines. A typical example of the
time-constrained services is real-time video delivery, because the QoS (Quality
of Service), and more importantly QoE (Quality of Experience) of video delivery
services are delay-sensitive. We summarize our goals of this paper as follows:

– Using the matrix-analytic approach, we evaluate performance of the hybrid
systems in steady state. We assume inter-arrival times of jobs, service times
of legacy servers and virtual machines, setup times of virtual machines, and
deadline times of jobs are distributed exponentially and independently each
other. These assumptions allow us to formulate the system dynamics by
continuous-time Markov chains (CTMC). Using the Markov chains, we discuss
the effect of the service rate of virtual machines on waiting time performance
of jobs.

– For the system model with exponential deadline times, we analyze the waiting
time distribution of jobs. It should be noted that we cannot use the distribu-
tional Little’s law in the model. Therefore, we resort to an absorbing Markov
chain to evaluate waiting time distribution as in [8]. Using the waiting time
distribution, we evaluate the expectation of the waiting time conditional to
the jobs that receive their services or abandon the queue.

– We also consider the case where the deadline is deterministic, not random, for
all jobs. In this case, we propose an approximate but analytically tractable
model to evaluate the stationary performance. It is clear that the determin-
istic deadline does not possess the so-called Markov property. As a heuristic
approach for this challenging issue, we propose a Markov chain model using
the result in [3]. We validate the approach by computer simulation.



Performance Models of NFV-Based Hybrid Systems 183

The rest of the paper is organized as follows. In Sect. 2, we introduce two
system models to describe the dynamics of the hybrid systems. In Sect. 3, we
provide performance measures of the system models. In Sect. 4, we discuss the
system performance by illustrating numerical examples of the waiting time per-
formance. Finally, we conclude the paper in Sect. 5.

2 System Models

In this section, we introduce two system models described by CTMC for the
hybrid systems. Our models are basically variants of multiserver queueing models
with finite capacity. One of the distinctive properties of the models is the setup
policy. In [1], multiserver queues with staggered setup policy are investigated.
The feature of the staggered setup policy is that the number of servers in setup
in a time is limited to one. In our system models, however, we assume that the
several servers are allowed to setup simultaneously, not limited to one.

We assume the hybrid system has � legacy servers, and the maximum number
of virtual machines that can be scaled out is limited to v. The legacy servers are
always powered on, do not require setup, and are available upon job arrivals if
the legacy servers are idle. On the other hand, the virtual machines are ready
to serve jobs, provided that setup is completed. We assume the system capacity
is limited to K(≥ � + v). It should be noted that the capacity includes jobs in
service by legacy servers or virtual machines as well as jobs waiting for setup
or service completion. If the system is full upon job arrivals, then the jobs are
blocked and immediately lost.

Suppose that a job arrives when the system is empty, i.e., there is no legacy
server in active, i.e., processing a job, and all virtual machines are powered off.
Since legacy servers is always powered on, the job is assigned to one of the idle
legacy servers and the job’s service immediately begins. The jobs are served
according to the FCFS discipline. If there is no idle legacy server upon job’s
arrival, then one of the virtual machines is powered on and setup of the virtual
machine is initiated. Since the setup needs some time to complete, the job must
wait in queue during the setup time, and the service of the job begins after the
virtual machine completes the setup. We describe the policy of job assignment
when there are some virtual machines in setup.

1. Once the setup of the virtual machine completes and the service begins, then
job is dedicated to the virtual machine until the job’s service ends.

2. If one of the legacy servers or virtual machines completes the service before
the setup completion of the virtual machine initiated by a job, then the job
is assigned to the legacy server or the virtual machine that completes the
service. In this case, there are two subcases:
(a) If the number of jobs waiting for service is larger than the number of

virtual machines in setup, then the virtual machine continues to setup.
(b) If not, then one of the virtual machines in setup is powered off.
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Remark 1. The first policy of job assignment implies that jobs continue to receive
services from virtual machines, not transferred to legacy servers, once jobs are
assigned to virtual machines. In contrast to [9], this policy is unfavorable in
terms of energy saving. But we believe that such policy is practical.

Remark 2. The second policy, which is favorable to save energy, is also adopted
in our models as in [9]. As a result, the number of virtual machines in setup is
always given by the minimum of the number of jobs waiting in queue and the
number of virtual machines not serving jobs.

If there are no waiting jobs when the virtual machine completes the service,
then the virtual machine is immediately powered off. If not, the virtual machine
begins the service of the job waiting for service without setup according to the
FCFS discipline.

We assume inter-arrival times of jobs are exponentially distributed with mean
1/λ. We also assume that the service times of legacy servers are exponentially
distributed with mean 1/μ. The service and setup times of virtual machines
are also exponentially distributed with mean 1/ν and 1/α, respectively. Since
we assume that jobs may abandon the queue before receiving their services,
we specify the probability distribution of the time to abandon the queue. We
analyze two cases. First, we assume that the abandonment time is exponentially
distributed with mean 1/θ. Second, we consider the deterministic deadline τ =
1/θ. The first case allows us to construct CTMC. However, the description of the
second case by CTMC is hard and hence the exact analysis of the deterministic
deadline is challenging. To overcome the difficulty, we propose an approximate
and analytically tractable model.

2.1 Markov Model with Random Reneging

First, we consider the system model where the abandonment time is exponen-
tially distributed. We formulate the system by CTMC. We call it Markov model
with random reneging.

Let us consider a two-dimensional CTMC {X(t) = (C(t), N(t)); t ≥ 0} on
state space S = {(i, j) | i = 0, 1, . . . , v, j = 0, 1, . . . ,K − i}, where C(t) denotes
the number of active virtual machines (processing a job) at time t, and N(t)
denotes the sum of the number of jobs being served by legacy servers and waiting
jobs at time t. The infinitesimal generator Q of {X(t); t ≥ 0} has the block
tridiagonal form given by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q0,0 Q0,1 O · · · O

Q1,0 Q1,1 Q1,2

. . .
...

O Q2,1

. . . . . . O
...

. . . . . . . . . QK−1,K

O · · · O QK,K−1 QK,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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where O denotes a zero matrix with an appropriate dimension. The block matri-
ces Qj,j+1 (0 ≤ j < �),Qj,j (0 ≤ j ≤ �) and Qj,j−1 (0 < j ≤ �) are (v+1)×(v+1)
matrices given by

Qj,j+1 = λI, Qj,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−q0,j 0 · · · · · · 0

ν −q1,j
. . .

...
... 2ν

. . . . . .
...

...
. . . . . . 0

0 · · · · · · vν −qv,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Qj,j−1 = jμI,

where I is the identity matrix with an appropriate dimension. The exit rate qi,j

of state (i, j) ∈ S for 0 ≤ i ≤ v and 0 ≤ j ≤ � is given by

qi,j = λ + jμ + iν.

The matrices Qj,j+1 (� ≤ j < � + v),Qj,j (� < j ≤ � + v) and Qj,j−1 (� < j ≤
� + v) are (v + 1) × (v + 1) matrices given by

Qj,j+1 = λI, Qj,j = −diag{q0,j , q1,j , . . . , qv,j},

Qj,j−1 = {�μ + (j − �)θ}I + νdiag{0, 1, . . . , v} +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 p0,jα 0 · · · 0

0
. . . p1,jα

. . .
...

...
. . . . . . . . . 0

...
. . . . . . pv−1,jα

0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where pi,j = min{j − �, v − i}. The exit rate qi,j of state (i, j) ∈ S for 0 ≤ i ≤ v
and � < j ≤ � + v is given by

qi,j = λ + �μ + (j − �)θ + iν + pi,jα.

The matrices Qj,j+1(�+v ≤ j < K),Qj,j(�+v < j ≤ K) and Qj,j−1(�+v <
j ≤ K) are (K−j+1)×(K−j), (K−j+1)×(K−j+1) and (K−j+1)×(K−j+2)
matrices respectively, and are explicitly given by

Qj,j+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ 0 · · · 0

0 λ
. . .

...
...

. . . . . . 0
0 · · · 0 λ

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Qj,j = −diag{q0,j , q1,j , . . . , qK−j,j},

Qj,j−1 =
[{�μ + (j − �)θ}I 0�]

+
[
νdiag{0, 1, . . . , v} 0�]

+

⎡
⎢⎢⎢⎢⎣

0 p0,jα 0 · · · 0
...

. . . p1,jα
. . .

...
...

. . . . . . 0
0 · · · · · · 0 pK−j,jα

⎤
⎥⎥⎥⎥⎦

,
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Fig. 1. The state transition diagram of Markov chain with random reneging.

where 0 is row vector of zeros with an appropriate dimension and 0� is its
transpose. The exit rate qi,j of state (i, j) ∈ S for 0 ≤ i ≤ K−j and �+v < j ≤ K
is given by

qi,j =

{
λ + �μ + (j − �)θ + iν + pi,jα, j < K,

�μ + (j − �)θ + iν + pi,jα, j = K.

In Fig. 1, we show an example of the state transition diagram with � =
2, v = 2 and K = 5. For state (i, j) ∈ S, there are i active virtual machines,
min{�, j} active legacy servers, and there are [j − �]+ jobs waiting for service,
where [x]+ = max{x, 0}. In addition, for the state (i, j) ∈ S with j > �, there
are min{v − i, j − �} virtual machines in setup.

It is clear that {X(t); t ≥ 0} is an irreducible Markov chain. Since S is finite,
{X(t); t ≥ 0} is positive recurrent and thus the Markov chain {X(t); t ≥ 0} has
the unique stationary distribution π defined by

πQ = 0, πe = 1,

where e is column vector of ones with an appropriate dimension. Similar to Q,
the stationary distribution π is also block partitioned as

π = (π0,π1, . . . ,πK),
πj = (π0,j , π1,j , . . . , πmin(K−j,v),j), j = 0, 1, . . . ,K,

where πi,j is the stationary distribution of state (i, j) ∈ S and is equal to the
limiting distribution, i.e.,

πi,j = lim
t→∞ P(C(t) = i,N(t) = j), (i, j) ∈ S.

Remark 3. If � = 0, then the system has no legacy servers. In this case, the
system model substantially reduces to that in [7,8], in which we can obtain the
stationary distribution efficiently by exploiting the special structure of the block
matrices and the local balance equation. Since we cannot apply the specially
tailored approach when � > 0, we obtain the stationary distribution by using
standard method, e.g., the approach in [4].
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2.2 Virtual Waiting Time Process

Next, we analyze the stationary waiting time of a job in the Markov model with
random reneging. To this end, we consider the virtual waiting time of an accepted
job. Let V denote the virtual waiting. The actual waiting time W of an accepted
job is given by W = min{V,Z}, where Z is a random variable exponentially
distributed with mean 1/θ. Since V and Z are independent, we have

P(W > t) = e−θtP(V > t), t ≥ 0.

Therefore, we are lead to consider P(V > t). Let PB denote the probability that
a job that sees K jobs in the system upon arrival. By PASTA (Poisson arrivals
see time averages) property, PB is given by

PB =
v∑

i=0

πi,K−i.

Then, the conditional probability that an arriving job who is accepted by the
system and sees state (i, j) ∈ S upon arrival is given by

π̄i,j =

⎧
⎨
⎩

πi,j

1 − PB
, i = 0, 1, . . . , v, j = 0, 1, . . . ,K − i − 1,

0, i = 0, 1, . . . , v, j = K − i.

Using π̄i,j , we obtain

P(V > t) =
∑

(i,j)∈Sq

π̄i,jP(V > t | C(0) = i,N(0) = j), t ≥ 0.

where Sq = {(i, j) ∈ S | j = �, � + 1, . . . , K − i}. We can obtain P(V > t |
C(0) = i,N(0) = j) by considering an absorbing Markov chain as in [8]. Let Q̂
denote the infinitesimal generator of the absorbing Markov chain. Then it can
be written to be

Q̂ =
[
0 0
s S

]
,

where S is the sub-generator describing the state transitions of transient states
and s = −Se. We can construct S to have the block structure and explicitly
obtain S using the system parameters. We omit the detail because it is almost
the same as [8]. Using an appropriate vector β comprising π̄i,j such that βe =∑

(i,j)∈Sq
π̄i,j , which gives the probability that an accepted job is delayed, the

stationary distribution of the virtual waiting time is described by the phase-
type distribution with representation (β,S) and hence P(V > t) = β exp[St]e
for t ≥ 0. Therefore, we have

P(W > t) = e−θtβ exp[St]e = β exp[(S − θI)t]e, t ≥ 0.
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It implies that the distribution of W is also of phase-type but with different
representation (β,S − θI). Let E[W ] and E[W 2] denote the first and second
moments of W , respectively. Using the property of the phase-type distribution,
we have

E[W ] = β[θI − S]−1e, E[W 2] = 2β[θI − S]−2e.

It should be noted that we can readily obtain E[W ] by Little’s law even though
the system model does not allow us to apply the distributional Little’s law.
However, it is not for E[W 2]. Therefore, the absorbing Markov chain is useful to
evaluate not only the distribution of W but higher moments of W . In addition,
it helps us evaluate fine-grained performance measures of the system model. For
example, let E[W |Ab] denote the conditional expectation of waiting time given
that the jobs abandon the queue. It is shown in [8] that E[W |Ab] can be written
in terms of E[W ] and E[W 2] as

E[W |Ab] =
E[W 2]
2E[W ]

=
1 + c2W

2
E[W ],

where cW is the coefficient of variation of the waiting time.

2.3 Markov Model with Deterministic Reneging

In contrast to exponential random abandonment times, the stochastic process
of the system model with deterministic reneging time is hard to describe. This
is because the system dynamics cannot be determined completely by only spec-
ifying the number of jobs and the active virtual machines, if the abandonment
time is constant. It is possible to recover the Markov property by adding the
waiting time of each job (actually the waiting time of jobs in head of the queue
is enough if the deadline is common to all jobs), but the analysis is complicated.
Therefore, we propose an approximate but tractable Markov chain model. We
call it Markov model with deterministic reneging.

Our approach is basically due to the idea in [6], which follows the result in [3].
The idea of [3] is to consider a probability density function pk(·) of the waiting
time of the oldest job in the system but not yet served, under the condition that
there are k jobs waiting, in steady state. It should be noted that the model in [3]
assumes homogeneous servers, where service rates are identical to all servers. In
contrast, the model in this paper has heterogeneous servers, i.e., legacy servers
and virtual machines can serve jobs simultaneously but with different service
rates. We propose an approximate Markov model that has pk(·) given by

pk(x) =
xk−1e−�μx

∫ τ

0

tk−1e−�μtdt

, x ∈ [0, τ ].

Our proposal implies that that pk(·) of the dynamics of the system model is
approximated as if only legacy servers can serve jobs. Then, we assume that the



Performance Models of NFV-Based Hybrid Systems 189

rate rk that a waiting job leaves the queue under the condition that there are k
jobs waiting is given by rk = pk(τ), i.e.,

rk =
τk−1e−�μτ

∫ τ

0

tk−1e−�μtdt

, k = 1, 2, . . . ,K − �. (1)

We construct the Markov model with deterministic reneging by replacing the
abandonment rate kθ of the Markov model with random reneging with rk.

Remark 4. Since rk’s in (1) corresponds to assuming the situation where the
services of the system model are provided by only legacy servers, we expect that
our proposal well approximates the actual system model, if setup time of virtual
machines is large, or equivalently small value of α. This is because that virtual
machines are substantially not available and almost all jobs are served by only
legacy servers in such a situation even though virtual machines are created. We
validate the approximate approach by computer simulation.

We describe the approximate Markov model based on (1). Let us consider a
Markov chain {X̃(t); t ≥ 0} on the same state space S of {X(t); t ≥ 0}. Let Q̃
denote the infinitesimal generator of {X̃(t); t ≥ 0}. Then, similar to the case of
Q, we can arrange Q̃ to have the tridiagonal block structure given by

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q̃0,0 Q̃0,1 O · · · O

Q̃1,0 Q̃1,1 Q̃1,2

. . .
...

O Q̃2,1

. . . . . . O
...

. . . . . . . . . Q̃K−1,K

O · · · O Q̃K,K−1 Q̃K,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The block matrices Q̃j,j (0 ≤ j ≤ K), Q̃j,j+1 (0 ≤ j < K) and Q̃j,j−1 (0 < j ≤
K) have the same dimensions corresponding to Qj,j (0 ≤ j ≤ K),Qj,j+1 (0 ≤
j < K) and Qj,j−1 (0 < j ≤ K), respectively.

For Q̃j,j+1 (0 ≤ j < K), we have Q̃j,j+1 = Qj,j+1. For Q̃j,j (0 ≤ j ≤ �)
and Q̃j,j−1 (0 < j ≤ �), we have Q̃j,j = Qj,j and Q̃j,j−1 = Qj,j−1, respectively.
The other block matrices are almost the same to those of {X(t); t ≥ 0}. For
� < j ≤ � + v, we have

Qj,j−1 = {�μ + rj−�}I + νdiag{0, 1, . . . , v} +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 p0,jα 0 · · · 0

0
. . . p1,jα

. . .
...

...
. . . . . . . . . 0

...
. . . . . . pv−1,jα

0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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and for � + v < j ≤ K,

Q̃j,j−1 =
[{�μ + rj−�}I 0�]

+
[
νdiag{0, 1, . . . , v} 0�]

+

⎡
⎢⎢⎢⎢⎣

0 p0,jα 0 · · · 0
...

. . . p1,jα
. . .

...
...

. . . . . . 0
0 · · · · · · 0 pK−j,jα

⎤
⎥⎥⎥⎥⎦

.

For � < j ≤ K, we have

Q̃j,j = −diag{q̃0,j , q̃1,j , . . . , q̃min{K−j,v},j},

where the exit rate q̃i,j of state (i, j) ∈ S for 0 ≤ i ≤ v and � < j ≤ K is given
by

q̃i,j =

{
λ + �μ + rj−� + iν + pi,jα, j < K,

�μ + rj−� + iν + pi,jα, j = K.

Similar to {X(t); t ≥ 0}, we can see that {X̃(t); t ≥ 0} is also an irreducible
finite Markov chain. Therefore, there exists the unique stationary distribution π̃
of {X̃(t); t ≥ 0} defined by

π̃Q̃ = 0, π̃e = 1.

3 Performance Measures

In this section, we show some performance measures obtained by the stationary
distribution. At first, we show the performance measures explicitly only for the
Markov chain model with random reneging.

Let E[W ] denote the expectation of the waiting time of jobs in queue accepted
by the Markov model with random reneging. By Little’s law, we have

E[W ] =
E[Q]

λ(1 − PB)
,

where E[Q] denotes the expectation of the number of jobs waiting. For the
Markov model with random reneging, we have

E[Q] =
K∑

j=�+1

(j − �)πje =
K∑

j=�+1

(j − �)
min{K−j,v}∑

i=0

πi,j .

It should be equal to the one obtained by the absorbing Markov chain, i.e.,
E[W ] = β[θI − S]−1e. In the numerical examples shown later, we show the
results computed by the absorbing Markov chain.
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Let PD denote the probability that an accepted job abandons the queue
before receiving service. It is defined as the ratio of the intensity of abandonments
to the intensity of arrival of jobs who are not blocked. Then, PD of the Markov
model with random reneging is given by

PD =

∑K
j=�+1(j − �)θπje

λ(1 − PB)
.

Then, for the Markov model with random reneging, we can readily obtain

PD = θE[W ].

Note that the above relation holds if the abandonment time is exponentially
distributed [2,11]. Therefore, we can find PD through E[W ] for the Markov
model with random reneging by using the proportional relationship.

The other performance measure of interest and feasible to compute by the
Markov model with random reneging is the conditional expectation of waiting
time given that the jobs receive services. If we denote it by E[W |Sr], by law of
total probability, we have

E[W ] = E[W |Ab]PD + E[W |Sr](1 − PD).

Using the relation PD = θE[W ] and results in [8], we have

E[W |Sr] =
E[W ]

1 − θE[W ]

(
1 − θE[W ]

1 + c2W
2

)
.

Therefore, we can evaluate E[W |Sr] in terms of the first and second moments of
W , which in turn can be computed by the distribution of W for Markov model
with random reneging.

Next, we describe performance measures for the model with constant deadline
time. Let P̃B denote the probability that an arriving job is blocked and lost in
the Markov model with deterministic reneging. Since jobs arrive according to
Poisson processes, we can apply the PASTA property to obtain

P̃B =
v∑

i=0

π̃i,K−i.

Let E[W̃ ] denote the expectation of the waiting time of accepted job in queue
for the Markov model with deterministic reneging. Thanks to the Little’s law,
we have

E[W̃ ] =
E[Q̃]

λ(1 − P̃B)
,

where E[Q̃] is the mean number of jobs waiting in queue or the Markov model
with deterministic reneging, and defined by

E[Q̃] =
K∑

j=�+1

(j − �)
min{K−j,v}∑

i=0

π̃i,j .
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Therefore, we can evaluate E[W̃ ] in terms of E[Q̃] that can be computed by the
stationary distribution of the Markov model with deterministic reneging.

4 Numerical Examples

In this section, we show numerical examples of delay performance of both Markov
models with random reneging and deterministic reneging. For the deterministic
reneging, we also provide results of computer simulation (Monte Carlo simula-
tion) to validate the Markov model with deterministic reneging. In computer
simulation of the deterministic reneging, the inter-arrival times, service times
of legacy servers and virtual machines, and setup times are all sampled from
exponential distributions, but the deadline times are constant. We repeated 100
computer simulations to collect experiment results and obtain the sample mean
of delay. For each experiment, we obtain results by running simulation until
10,000,000 jobs are accepted. This implies that at least 10,000,000 jobs are gen-
erated because some of jobs may be blocked and lost upon arrival. As a result,
we obtain the length of 95% confidence interval less than 10−3 for the sample
mean of delay in our parameter setting.

4.1 Random Reneging Model

First, we show numerical examples of the Markov model with random reneging.
We set default values of system parameters K = 30, � = 10, v = 10. The arrival
rate λ is varied within the interval (0, 60]. The default values of other parameters
are set as μ = 1, θ = 0.01.

Figure 2 shows E[W ] versus λ with several values of parameters α and ν. As
pointed out in [9], we observe that the impacts of λ on E[W ] is divided into four
phases for small values of α, i.e., α = 0.01, 0.05, 0.1. Starting from zero, E[W ]
rapidly increases, and then decreases as increasing λ. Finally, E[W ] approaches
to a bound specified by system capacity K. Such a complicated behavior of
E[W ] is due to the long setup time of virtual machines. In fact, we do not clearly
observe the behavior when α = 1.

With regard to the impacts of ν on E[W ], we observe that asymptotic values
of E[W ] for large λ are placed in the reverse order of the values of ν. This is
intuitively acceptable because virtual machines with high service rates contribute
to reduce the waiting time of jobs. Though it may seem counterintuitive, we can
find some range of λ, where E[W ] with α = 0.01 decreases as decreasing ν.

In Fig. 3, we show E[W |Ab] and E[W |Sr] versus λ with α = 0.01 and several
values of ν. We observe that E[W |Ab] and E[W |Sr] almost synchronize. Note
here that E[W |Sr] is dominant for E[W ]. In fact, E[W ] is bounded above by
about one in this parameter setting, PD is bounded above by PD = θE[W ] ≈ 0.01
and thus E[W ] ≈ E[W |Sr] in this parameter setting. Therefore, this does not
lead us to obtain any information about E[W |Ab]. Thanks to the absorbing
Markov chains, however, we find the behavior of E[W |Ab].
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Fig. 2. E[W ] of Markov model with random reneging.

4.2 Deterministic Reneging Model

Next, we discuss the performance measures of the Markov model with determin-
istic reneging. In Fig. 4, we show E[W̃ ] against the arrival rate λ of the Markov
model with random reneging for α = 0.005, 0.0005. In this case, we set other
parameters as follows: system parameters are K = 200, � = 100, v = 40, service
rates of legacy servers and virtual machines are μ = 1 and ν = 1.5, and the
constant deadline time is specified by 1/θ with θ = 1.2.

We observe that the Markov model with deterministic reneging almost agrees
with computer simulation results. Since the Markov model with deterministic
reneging assumes (1), which is just a simple heuristic approach, the agreement
is somewhat surprising. It should be noted that the distribution of the time to
abandon the queue drastically affects the mean waiting time. Indeed, we observe
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Fig. 3. E[W |Ab] and E[W | Sr] of Markov model with random reneging.

Fig. 4. E[W̃ ] of Markov model with deterministic reneging. For comparison, E[W̃ ] by
computer simulation and E[W ] of Markov model with random reneging are shown.

that the deterministic reneging induces long waiting time compared with the
random reneging. Therefore, we are not allowed to use the Markov model with
random reneging as a performance model for the constant deadline time. Since
the hybrid systems with deterministic deadline is more practical but the exact
analysis seems challenging, the heuristic approach in this paper is useful enough
to estimate the mean waiting time without relying on time-consuming computer
simulation.

5 Concluding Remarks

In this paper, we have considered NFV-based hybrid systems. In addition to VNF
instances, the hybrid systems utilize legacy network equipments for the purpose
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of effective use of them. One of the salient features of the hybrid systems is
that VNF instances are created dynamically by scaling in/out virtual machines.
While legacy servers are always powered on and thus can immediately provide
services, VNF instances cannot begin services until virtual machines are ready
for services after setup completion. We have assumed that the hybrid systems
process time-constrained jobs, such as real-time video delivery. We have consid-
ered two cases where the time to abandon the queue is exponentially distributed,
and deterministic. We have analyzed the former case using the Markov model
formulated by QBD processes. We have also obtained waiting time distribution
allowing us to evaluate conditional expectation of waiting time. For the latter,
we have proposed an analytically tractable Markov model based on a heuristic
approach and validated the Markov model by computer simulation.

Since we have restricted to the validation of the heuristic approach only in
terms of the mean waiting time in this paper, we need more extensive simulation
experiments under practical parameter settings to enhance reliability of the app-
roach. While we have resorted to a heuristic approach to construct the Markov
model with deterministic deadline, it would be more reliable if the hybrid sys-
tems are analyzed by rigorous approach such as [5], where delayed offloading in
mobile networks are investigated. These issues are left for future work.
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and Maria Jesus Lopez-Herrero1

1 Faculty of Statistical Studies, Complutense University of Madrid, Madrid, Spain
{mgamboa,lherrero}@ucm.es

2 School of Mathematics, University of Leeds, Leeds, UK
M.LopezGarcia@leeds.ac.uk

Abstract. A stochastic SIR (Susceptible - Infected - Recovered) type
model, with external source of infection, is considered for the spread
of a disease in a finite population of constant size. Our interest is in
studying this process in the situation where some individuals have been
vaccinated prior to the start of the epidemic, but where the efficacy of
the vaccine to prevent infection is not perfect. The evolution of the epi-
demic is represented by an absorbing three-dimensional continuous-time
Markov chain. We focus on analysing the time for a threshold number of
individuals to become infected, and carry out a global sensitivity analysis
for the impact of varying model parameters on the summary statistic of
interest.
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1 Introduction

Infectious diseases have been a serious threat to society throughout history.
Plague, cholera and smallpox are examples of epidemics in the past that killed
many people. This is a problem that we still suffer today, with emerging diseases
such as Ebola, SARS and COVID-19 that continue to claim lives every day.

Understanding epidemic processes is vitally important to forecast the inci-
dence of a disease and to establish mitigation strategies, and mathematical mod-
elling has proven to be a robust tool in this area. Deterministic models have
been widely used due to their mathematical tractability [1,2], and are especially
relevant when considering large populations or when stochastic effects can be
neglected. On the other hand, when considering small populations or if extinc-
tion events play a relevant role, stochastic models need to be considered instead
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of classic ones due to the influence on the impact of the disease of random differ-
ences in infectiousness and susceptibility among individuals, while these random
effects tend to cancel out each other as population size increases [3,4].

The Kermack and McKendrick model [5] has probably been the most influ-
ential in representing the spread of an epidemic in the last decades. It is a
compartmental deterministic model that classifies individuals according to their
“state” with respect to the disease over time: susceptible (S), infected (I) and
recovered (R). This SIR model is appropriate for describing a disease for which
individuals develop permanent immunity after infection. The SIR model, and a
number of different variations, has been widely analysed both for homogeneous
[6,7] and heterogeneous populations [8]. In these systems, of particular interest
can be specific summary statistics that characterize an outbreak, such as the
size of the outbreak [9], its length [10,11] or the reproduction number [12].

Vaccination is an effective preventive measure to limit or avoid an outbreak,
where the presence of a high percentage of vaccinated individuals in a given
population can prevent transmission, reducing the size and impact of epidemic
outbreaks, or the probability of these outbreaks happening at all. A number of
mathematical models have considered vaccinated individuals as an extra com-
partment in the model [13], and some studies have added vaccination strategies
into these mathematical models [14–17]. In some cases, vaccines do not provide
permanent immunity, and boosters are required [18]. In other occasions, a vac-
cine might not be fully effective in preventing disease [19], and a proportion of
vaccinated individuals might still be partially susceptible against infection. In
this situation of an imperfect vaccine, the population runs the risk of losing or
not achieving herd immunity [20].

In the literature we can find examples of studies assuming either fully pro-
tective [21] or imperfect [22,23] vaccines. In [24,25], authors quantify disease
transmission in a stochastic SIS model with external source of infection and
imperfect vaccine and study preventive measures surrounding vaccination. Under
the assumption of imperfect vaccine, authors in [26] study the stationary distri-
bution of the system for a closed population in a stochastic SVIR-type model.
On the other hand, in [27] the time to extinction is studied for a non-linear
incidence rate model.

In this paper, we consider a SVIR model with imperfect vaccine and external
source of infection for a finite homogeneous population of fixed size. Our interest
is in analysing the time until a threshold number of individuals get infected, as a
way of quantifying the timescales for disease spread. We do this by representing
the epidemic process in terms of a multidimensional continuous-time Markov
chain (CTMC), and studying a time to absorption in this process. We show
how a particular organization of states in this CTMC leads to the study of a
level-dependent quasi birth-and-death process (LD-QBD) [28], and propose an
efficient scheme to analyse the summary statistic of interest. Our methodology
is based on the analysis of Laplace-Stieltjes transforms and the implementation
of first-step arguments, adapting techniques in [24,25].
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This paper is organized as follows. In Sect. 2 we introduce the SVIR stochastic
model with imperfect vaccine and external source of infection. In Sect. 3 we
define the summary statistic of interest, and provide an efficient algorithm to
compute any of its moments. In Sect. 4 we illustrate our methodology by carrying
out a global sensitivity analysis on model parameters. Finally, we present our
conclusions in Sect. 5, and discuss possible future lines of research.

2 Model Description

We model the spread of an infectious disease across a population of constant
size N , where a percentage of individuals are vaccinated at time t = 0 as a pro-
phylactic device to control disease spread. We assume that vaccine is not perfect
so that vaccinated individuals can get the infection with probability h ∈ (0, 1),
which we refer to as the vaccine failure probability. Vaccine protection lasts for
at least the length of an outbreak, hence further vaccination during the outbreak
is not considered. We consider SIR-type dynamics, so that infected individuals
become recovered after their infectious period, and denote the recovery rate by
γ. Transmission can occur through direct contact, with rate β, or due to an
external source of infection, with rate ξ.

We represent this epidemic process in terms of a three-dimensional
continuous-time Markov chain (CTMC) X = {(V (t), S(t), I(t)) : t ≥ 0}, where
V (t), S(t) and I(t) represent the number of vaccinated, susceptible and infected
individuals in the population at time t ≥ 0. Given that the population size
remains constant, it is clear that R(t) = N − V (t) − S(t) − I(t) represents the
number of recovered individual at time t. If one assumes that there are no recov-
ered individuals at the beginning of the epidemic process, the initial state is
given by (V (0), S(0), I(0)) = (v0, s0, N − v0 − s0), for some v0, s0 ≥ 0, with
v0 + s0 ≤ N . The state space of the Markov chain is then given by

S = {(v, s, i) : 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, 0 ≤ v + s + i ≤ N}, (1)

which is finite and contains (v0 +1)(s0 +1)(N +1− s0+v0
2 ) states, with a unique

absorbing state (0, 0, 0).
We assume that recoveries and contacts between individuals happen inde-

pendently of each other, with exponentially distributed inter-event times. The
evolution of the epidemic process over time is represented by transitions between
states in S, where the possible events/transitions are outlined in Table 1. In par-
ticular, given the current state (v, s, i) ∈ S, possible events are:

(E1) A susceptible individual gets infected, which occurs with rate

λs,i = s

(
βi

N
+ ξ

)
.

(E2) Considering imperfect vaccination with vaccine failure probability h, a vac-
cinated individual can still become infected at rate

ηv,i = vh

(
βi

N
+ ξ

)
.
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(E3) An infectious individual recovers with rate

γi = γi.

Table 1. Possible events and their transition rates.

Effective outgoing event Transition Rate

Infection of susceptible individual (v, s, i) → (v, s − 1, i + 1) λs,i

Infection of vaccinated individual (v, s, i) → (v − 1, s, i + 1) ηv,i

Recovery (v, s, i) → (v, s, i − 1) γi

Times spent at each state (v, s, i) ∈ S are independent and exponentially
distributed random variables, with rate qv,s,i = λs,i + ηv,i + γi. The dynamics
of X is determined by its infinitesimal generator, Q, which one can efficiently
construct by organising first the space of states S in terms of levels and sub-levels.
In particular, for a particular initial state (v0, s0, N − s0 − v0),

S = ∪v0
v=0l(v),

l(v) = ∪s0
s=0l(v, s), 0 ≤ v ≤ v0,

l(v, s) = {(v, s, i) ∈ S : 0 ≤ i ≤ N − v − s}, 0 ≤ s ≤ s0, 0 ≤ v ≤ v0.

We note that the number of states in each sub-level is #l(v, s) = N − v − s + 1,
while the number of states in each level is #l(v) = (s0 +1)(N −v+1)− s0(s0+1)

2 .
By ordering states within each sub-level as

(v, s, 0) ≺ (v, s, 1) ≺ · · · ≺ (v, s,N − v − s),

and ordering then states by sub-levels and levels, the infinitesimal generator of
X , Q, is given by

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q0,0

Q1,0 Q1,1

Q2,1 Q2,2

. . . . . .
Qv0,v0−1 Qv0,v0

⎞
⎟⎟⎟⎟⎟⎠

,

with v0, s0 ≥ 0 and v0 + s0 ≤ N .
We note that sub-matrices Qv,v∗ are of dimensions #l(v) × #l(v∗). Sub-

matrices Qv,v, for 0 ≤ v ≤ v0, contain rates corresponding to transitions between
states within the level l(v). These events, according to the definition of levels
and Table 1, correspond to susceptible individuals becoming infected, or infected
individuals recovering. On the other hand, sub-matrices Qv,v−1, for 1 ≤ v ≤ v0,
correspond to transitions from states in level l(v) to states in level l(v − 1),
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which occur due to vaccinated individuals becoming infected. More specifically,
sub-matrices Qv,v∗ are described as follows:

Qv,v−1 =

⎛
⎜⎜⎜⎝

Av,v−1(0, 0)
Av,v−1(1, 1)

. . .
Av,v−1(s0, s0)

⎞
⎟⎟⎟⎠ , 1 ≤ v ≤ v0,

Qv,v =

⎛
⎜⎜⎜⎜⎜⎝

Av,v(0, 0)
Av,v(1, 0) Av,v(1, 1)

Av,v(2, 1) Av,v(2, 2)
. . . . . .

Av,v(s0, s0 − 1) Av,v(s0, s0)

⎞
⎟⎟⎟⎟⎟⎠

, 0 ≤ v ≤ v0.

Sub-matrices Av,v−1(s, s), for 1 ≤ v ≤ v0, 0 ≤ s ≤ s0, have dimensions
(N − v − s + 1) × (N − v − s + 2), and contain the transition rates from states
in sub-level l(v, s) to states in sub-level l(v − 1, s). These transitions represent
infections of vaccinated individuals. Sub-matrices Av,v(s, s) contain the tran-
sition rates from states in sub-level l(v, s) to states within the same sub-level,
and correspond to recoveries of infected individuals. Sub-matrices Av,v(s, s − 1)
contain transition rates from states in sub-level l(v, s) to states in sub-level
l(v, s − 1), corresponding to infections of susceptible individuals. In particular,
these sub-matrices are defined as follows:

• For 0 ≤ v ≤ v0, 0 ≤ s ≤ s0, Av,v(s, s) is a matrix of dimensions (N − v − s +
1) × (N − v − s + 1), with

Av,v(s, s) =

⎛
⎜⎜⎜⎜⎜⎝

−qv,s,0

γ −qv,s,1

2γ −qv,s,2

. . . . . .
(N − v − s)γ −qv,s,N−v−s

⎞
⎟⎟⎟⎟⎟⎠

.

• For 1 ≤ v ≤ v0, 0 ≤ s ≤ s0, Av,v−1(s, s) is a matrix of dimensions (N − v −
s + 1) × (N − v − s + 2), with

Av,v−1(s, s) =

⎛
⎜⎜⎜⎝

0 ηv,0

0 ηv,1

. . . . . .
0 ηv,N−v−s

⎞
⎟⎟⎟⎠ .
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• For 0 ≤ v ≤ v0, 1 ≤ s ≤ s0, Av,v(s, s − 1) is a matrix of dimensions (N − v −
s + 1) × (N − v − s + 2), with

Av,v(s, s − 1) =

⎛
⎜⎜⎜⎝

0 λs,0

0 λs,1

. . . . . .
0 λs,N−v−s

⎞
⎟⎟⎟⎠ .

3 Time Until M Individuals Get Infected

In this section, we analyse the speed of transmission by focusing on the time that
it takes for a threshold number M of individuals to get infected, W (M). W (M) is
a non-negative continuous random variable that denotes the time elapsed until
a total of M individuals become infected. In order to analyse this summary
statistic, we redefine the CTMC as X ∗ = {(J(t), S(t), I(t)) : t ≥ 0} where S(t)
and I(t) denote the number of susceptible and infected individuals respectively
at time t, and J(t) = S(t)+V (t) represents the sum of vaccinated and susceptible
individuals at time t. For an initial state (j0, s0, i0) and a threshold value M of
interest, with 1 ≤ M ≤ N , W (M) can be defined as

Wj0,s0,i0(M) = inf{t ≥ 0 : J(t) = N − M | (J(0), S(0), I(0)) = (j0, s0, i0)}.

To analyse this random variable, one can study the evolution of the Markov chain
X ∗ in the set of states S∗ = {(j, s, i) : N −M ≤ j ≤ j0,max(0, j +s0−j0) ≤ s ≤
s0,max(0, N − M − j + 1) ≤ i ≤ N − j}, and where trivially Wj0,s0,i0(M) ≡ 0
if M ≤ N − j0. Then, the variable Wj0,s0,i0(M) can be studied as first-passage
time to the set of absorbing states S∗

M = {(N − M, s, i) ∈ S∗} of the Markov
chain X ∗.

For any initial state (j0, s0, i0), and threshold value of interest 1 ≤ M ≤ N ,
it is clear that P(Wj0,s0,i0(M) < +∞) = 1, since the external source of infection
ensures that all individuals will eventually become infected. On the other hand,
the definition of Wj0,s0,i0(M) for the initial state of interest (j0, s0, i0) can be
extended to any other state (j, s, i) ∈ S∗, and the random variable of interest
Wj0,s0,i0(M) can be studied by analysing as well the auxiliary ones Wj,s,i(M),
(j, s, i) ∈ S∗. In particular, we can introduce the Laplace-Stieltjes transforms for
any (j, s, i) ∈ S∗ as φj,s,i(z) = E

[
e−zWj,s,i

]
, z ∈ C, with Re(z) ≥ 0, and where

we omit M from notation from now on.
The Laplace-Stieltjes transforms φj,s,i(z) satisfy a set of linear equations,

which is obtained via first-step arguments by conditioning on the possible tran-
sitions out of state (j, s, i) ∈ S∗. In particular,
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φj,s,i(z) = (1 − δi,0)
γi

z + qj−s,s,i
φj,s,i−1(z)

+(1 − δs,0)
λs,i

z + qj−s,s,i
φj−1,s−1,i+1(z)

+
ηj−s,i

z + qj−s,s,i
φj−1,s,i+1(z), (2)

where δi,j represents the Kronecker’s delta function, defined as 1 when i = j, and
0 otherwise. This system of equations has boundary conditions φN−M,s,i(z) = 1
for those states at which the number M of infections is reached. We can also
note that, by definition, φj,s,i(0) = 1, for any (j, s, i) ∈ S∗.

These Laplace-Stieltjes transforms could be computed, at any point z ∈ C, by
solving system (2). Furthermore, with the help of numerical methods for Laplace
transforms inversion, it is possible to calculate the probability distribution func-
tion of W (M) [29,30]. Although the numerical inversion is indeed possible, it is
many times computationally not feasible. However, our interest instead here is
in computing different order moments of these variables. In particular, moments
can be computed from direct differentiation of the transform, as

mk
j,s,i = E

[
W k

j,s,i

]
= (−1)k dkφj,s,i(z)

dzk

∣∣∣∣
z=0

, k ≥ 1. (3)

Thus, by differentiating Eq. (2) with respect to z k times (k ≥ 1) and evaluating
at z = 0, we obtain the equations involving the moments as

qj,s,im
k
j,s,i = kmk−1

j,s,i + λs,im
k
j−1,s−1,i+1 + ηj−s,im

k
j−1,s,i+1 + γim

k
j,s,i−1, (4)

with boundary conditions m0
j,s,i = 1, mk

N−M,s,i = 0 for any k ≥ 1.
The loop-free structure of the transition rates of the CMTC X ∗ allows one to

compute moments in a recursive way from the system above, for increasing values
of k ≥ 1 and taking into account that moments of order 0 are trivially equal
to 1. Algorithm 1 outlines how to carry out this computation in an efficient and
ordered way, which is based on Theorem1 below. Proof of Theorem1 is omitted
here for the sake of brevity, since it consists of a recursive solution scheme directly
based on Eq. (4).
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Algorithm 1. Computation of the kth-order moments of the random variable
Wj0,s0,i0(M), for 1 ≤ k ≤ kmax for some maximum desired order kmax

Input : j0, s0, i0, N, M, β, ξ, γ and kmax.
Step 1: Set j = N − M

Step 1a: Set s = max(0, j + s0 − j0)
Step 1b: Set k = 0 and set m0

N−M,s,i = 1 for max(0, N−M−j+1) ≤ i ≤ N−j.
Step 1c: Set k = k+1, set mk

N−M,s,i = 0 for max(0, N−M−j+1) ≤ i ≤ N−j.
Step 1d: If k < kmax, go to Step 1c.
Step 1e: Set s = s + 1. If s ≤ s0, go to Step 1b.

Step 2: Set j = N − M + 1.
Step 2a: Set s = max(0, j + s0 − j0).
Step 2b: Set k = 0 and set m0

j,s,i = 1 for max(0, N − M − j + 1) ≤ i ≤ N − j.
Step 2c: Set k = 1 and set mk

j,s,i for max(0, N − M − j + 1) ≤ i ≤ N − j,
from (6).

Step 2d: Set k = k+1 and compute mk
j,s,i for max(0, N−M−j+1) ≤ i ≤ N−j,

from (7)-(8).
Step 2e: If k < kmax, go to Step 2d.
Step 2f: If s < s0, set s = s + 1 and go to Step 2b.

Step 3: If j = j0, stop.
Step 4: Set j = j + 1.

Step 4a: Set s = max(0, j + s0 − j0).
Step 4b: Set k = 0 and set m0

j,s,i = 1 from max(0, N −M −j+1) ≤ i ≤ N −j.
Step 4c: Set k = k+1 and compute mk

j,s,i for max(0, N−M−j+1) ≤ i ≤ N−j,
from (7)-(8).

Step 4d: If k < kmax, go to Step 4c.
Step 4e: If s < s0, set s = s + 1 and go to Step 4b.

Step 5: If j < j0, go to Step 4. If j = j0, stop.
Output: mk

j0,s0,i0 , for 0 ≤ k ≤ kmax.

Theorem 1. Given a number of initial vaccinated and susceptible individuals
v0 ≥ 0 and s0 ≥ 0, with 0 ≤ v0 + s0 ≤ N and an integer k, k ≥ 0, and
1 ≤ M ≤ N , the central moments of order k of the variable Wj0,s0,i0(M), are
obtained from the following expressions for all (j, s, i) ∈ S∗:

m0
j,s,i = 1, mk

N−M,s,i = 0, for k ≥ 1, (5)

m1
N−M+1,s,i =

i∑
r=0

i!γi−r

r!∏i
l=r qN−M−s+1,s,l

, (6)

mk
j,s,i =

i∑
r=0

i!γi−r

r! T k
j,s,r∏i

l=r qj−s,s,l

for k ≥ 1 (7)

with

T k
j,s,i = kmk−1

j,s,i + (1 − δs,0)λs,im
k
j−1,s−1,i+1 + (1 − δj,s)ηj−s,im

k
j−1,s,i+1. (8)
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4 Results

In this section, we illustrate our analysis in Sect. 3 by carrying out a global
sensitivity analysis on model parameters for the summary statistic of interest.
We set the recovery rate γ = 1.0 in all the numerical experiments, so that the
time unit is taken as the expected time that an infected individual takes to
recover. We consider a population of N = 100 individuals here, and assume that
50% of them are partially protected against the infection through the vaccine,
so that the initial state is (v0, s0, i0) = (50, 49, 1).

Fig. 1. Mean time E[W (M)] until M individuals get infected, for different values of
M , R0, h and ξ. Initial state (v0, s0, i0) = (50, 49, 1).

In Fig. 1, we plot WM = E[W (M)] for different values of the Basic Repro-
duction Number, R0 = β/γ, ξ, h and M . The average time to reach a total of
M infections increases with increasing values of M , as one would expect. On the
other hand, WM decreases with the external source of infection rate, ξ, since
these external infections can contribute towards reaching the threshold M . An
interplay can be observed between the value of the reproduction number R0 and
the vaccine failure probability h, so that large values of WM can be due to small
transmission rates (small R0) or to small probability of vaccine failure, h. We
note that the value of M , together with the proportion of individuals initially
vaccinated, are directly relevant to understand the dynamics in Fig. 1. The rel-
evance of h is observed to be smaller for M = 50, since in this situation the
outbreak can reach 50 infections just by those infections suffered by susceptible
individuals in this system. On the other hand, increasing values of M require
infections to happen among the vaccinated sub-population, and thus small val-
ues of the vaccine failure probability lead to significantly increased times WM to
reach M infections. We also note that, for small values of ξ (e.g.; ξ = 0.01R0),
the mean time WM to reach M infections can span several orders of magnitude
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for different values of the parameters (M,R0, h). This can be explained by the
fact that, if the external source of infection is small and the outbreak was to
finish without the level M of infections being reached, one would need to wait
until a subsequent outbreak to occur in the remaining susceptible/vaccinated
population, which would take long under small values of ξ. Larger values of ξ
lead to “overlapping” outbreaks, where external infections can constantly occur,
facilitating smaller values of the mean time WM .

Fig. 2. Mean time E[W (M)] (solid curves) plus and minus its standard deviation
σ[W (M)] (shaded area) versus M , for ξ = 0.01R0, N = 100, R0 ∈ {1.5, 5} and h ∈
{0.01, 0.1, 0.3}. Initial state (v0, s0, i0) = (50, 49, 1).

Some of the dynamics described above can be better understood by exploring
Fig. 2, that shows the expected time elapsed until M infections have been reached
as a function of M , for a relatively small value of ξ = 0.01R0 and for several val-
ues of h and two different values of R0. Shaded areas are obtained by considering
E[W (M)]±σ[W (M)]. As expected, increasing values of R0 or decreasing values
of h lead to increasing times to reach M infections. On the other hand, vaccines
with higher probability of failure lead to situations where less time is needed in
order to reach M infections, and in consequence the expansion of the disease is
faster. This behaviour reveals the importance of the vaccine effectiveness. Par-
ticularly interesting is the asymptotic behaviour of the curves, where the time
to reach M infections can significantly increase when approaching particular
values of M in some situations. This is directly related to the vaccine failure
probability h, and the initial number of susceptible and vaccinated individuals
(s0, v0) = (49, 50). In particular, and when focusing for example on R0 = 1.5 and
h = 0.01, the small vaccine failure probability means that infections in order to
reach the threshold value M are likely to occur among susceptible individuals,
and unlikely to happen among vaccinated ones. Since 50% of the population is
vaccinated, and we start with 1 infected individual, up to M = 50 individuals
can become infected in relatively short periods of time (given that R0 = 1.5)
by infections happening in the susceptible pool. However, as soon as M exceeds
the value 50 infections among the vaccinated pool are required to happen for
this threshold to be reached. These infections would be rare (h = 0.01), leading
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to significant increases in the expected time E[W (M)]. These behaviours nicely
illustrate the protection that a nearly perfect vaccination confers to the pool of
vaccinated individuals, where a relatively fast outbreak (due to R0 = 1.5 > 1)
would decelerate when approaching M = s0 + i0. For significantly small values
of h (e.g.; h = 0.01), the dynamics described above are relatively similar regard-
less of considering R0 = 5 instead of R0 = 1.5, although increasing values of
R0 facilitate an overshoot effect, as can be observed when comparing the two
plots in Fig. 2. For relatively larger vaccine failure probabilities (e.g.; h = 0.1 or
h = 0.3), these asymptotic behaviours can be partially compensated by increas-
ing values of R0, where some infections in the vaccinated pool can be achieved
due to the large value of R0, facilitating the attainment of the threshold number
of infections M .

Numerical experiments show that the expected value of W (M) presents an
increasing behaviour, as a function of M . Moreover, when we increase the vac-
cination coverage v0 and keep fixed the remaining model parameters, the mean
time to achieve a number of M infections also increases. This is in accordance to
intuition because when an outbreak starts with a big proportion of vaccine pro-
tected individuals, infections are becoming less likely and the time to infect M
individuals is larger in comparison with outbreaks starting with a lesser number
of vaccinated individuals.

Computational times are very high and complexity increases when consid-
ering populations larger than 1000 individuals. For instance, when N = 1000
individuals the state space S∗ contains around 4.16 × 107 states, while for a
population of 10000 individuals the number of states increases to 4.16 × 1010.
The elapsed time to compute E[W (M)] takes around 4 min when N = 1000 and
it lasts more than 5 h when N = 10000, in a personal computer with 8 GB of
RAM, M1 memory Chip with GPU of 7 Kernels.

5 Conclusions

In this paper, we have considered a stochastic SVIR model with imperfect vaccine
and external source of infection. We have represented this in terms of a multidi-
mensional continuous-time Markov chain, and have showed that by appropriately
ordering its space of states in terms of levels and sub-levels, this leads to the
study of a LD-QBD. Our interest was in analysing the speed at which the epi-
demic occurs, by studying the time to reach a threshold number M of infections
in the population. By means of first-step arguments, we have obtained a system
of linear equations which can be solved efficiently and recursively, as outlined in
Algorithm 1. In our results in Sect. 4, we have illustrated our methodology by
carrying out a wide sensitivity analysis on model parameters, where an interplay
can be observed between the reproduction number R0, the threshold of interest
M , the vaccine failure probability h, the external source of infection rate ξ, and
the initial number of vaccinated individuals v0. Our techniques can in principle
be applied in order to study other summary statistics of potential interest in this
system, such as the exact reproduction number [24,31] or the time until the end
of the outbreak [8]. This remains the aim of future work.
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Abstract. We stochastically model two bacterial populations which can
produce toxins. We propose to analyse this biological system by follow-
ing the dynamics of a single bacterium during its lifetime, as well as its
progeny. We study the lifespan of a single bacterium, the number of divi-
sions that this bacterium undergoes, and the number of toxin molecules
that it produces during its lifetime. We also compute the mean number
of bacteria in the genealogy of the original bacterium and the number of
toxin molecules produced by its genealogy. We illustrate the applicability
of our methods by considering the bacteria Bacillus anthracis and antibi-
otic treatment, making use of in vitro experimental data. We quantify,
for the first time, bacterial toxin production by exploiting an in vitro
assay for the A16R strain, and make use of the resulting parameterised
model to illustrate our techniques.

Keywords: Bacteria · Toxins · Stochastic model · Continuous time ·
Markov chain · Single cell · Antibiotic

1 Introduction

Mathematical modelling has proven to be a robust approach to analyse biological
systems of relevance in infection and immunity at different scales, such as the
molecular [24], intra-cellular [6], within-host [7] and population (or epidemic)
levels [4]. While deterministic models are usually more amenable for mathemati-
cal analysis [1], stochastic methods are generally better suited for characterising
biological systems involving few individuals [23] or cells [7], or when extinction
events play a crucial role [5]. Markov processes, either in discrete or continuous
time, have been used in such instances given their mathematical convenience [2].
While non-Markovian dynamics are typically more difficult to analyse [8,14], the
Markovian or memoryless property usually allows for mathematical tractability
and efficient numerical implementation [12].
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When considering a population of cells in an immune response, or bacteria
during an infection, competition for resources is usually represented in terms of
logistic growth models [1]. On the other hand, when individuals behave indepen-
dently (e.g., they do not compete for common resources), the theory of branching
processes [18] has been widely applied to follow these populations (of cells or bac-
teria) over time. Multi-type branching processes [20] allow one to consider differ-
ent types of bacteria, which might represent different phenotypes [9] or different
spatial locations (e.g., tissues or organs) within the body during an infection [7].
The complexity of these processes, and their mathematical tractability, typically
depends on the number of compartments considered, and the number of poten-
tial events that can occur in the system (e.g., division or death of bacteria, or
bacterial movement across compartments) [26].

Novel technological developments have recently allowed for single cells to be
precisely followed, together with their progeny [15,17,19,27]. This motivates the
idea of mathematically tracking single individuals in these stochastic systems,
and to quantify summary statistics related to the lifetime of a single individual
(or bacterium in our case), and its progeny or genealogy. Analysing the dynamics
of the system by tracking a single individual has already been proposed in related
areas such as population dynamics [13] and, more recently, when analysing the
stochastic journey of T lymphocytes in lymph nodes and blood [16].

Bacterial systems have been widely studied with stochastic methods in the
past [6,7], yet less attention has been paid to the study of toxin-producing bac-
teria. The production of toxins over time can be especially relevant for certain
kinds of bacteria for which the secreted toxins can cause suppression of the
host’s immune system, and are a key component of pathogenesis in vivo [3].
In this work, we illustrate our single cell approach in a stochastic model of
two types of toxin-producing bacteria. In particular, we focus on computing the
expected lifespan of a single bacterium in this system, as well as the number
of toxin molecules secreted and the number of divisions undergone during its
lifetime. We also compute two summary statistics that are directly related to
the progeny of a single bacterium: the number of bacteria within its genealogy
and the number of toxin molecules produced by its genealogy. We illustrate our
results by focusing on the bacterium Bacillus anthracis and its anthrax toxins.
For the A16R B. anthracis strain we quantify for the first time the rate of pro-
tective antigen (PA) production making use of published data from an in vitro
experimental assay [28]. The resulting parametrized mathematical model serves
to illustrate our techniques and allows us to consider antibiotic treatment.

The structure of the manuscript is as follows: in Sect. 2 we introduce the
mathematical model. The single bacterium model is discussed in Sect. 3. A num-
ber of summary statistics of interest related to a single bacterium and its progeny
are analytically studied in Sect. 3. Model calibration for the A16R B. anthracis
strain is carried out in Sect. 4 using data from an in vitro experimental assay,
and the parameterised model is used in this section to illustrate our methods.
Concluding remarks are provided in Sect. 5.
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2 The Mathematical Model

Our interest is in modelling a system with two toxin-producing bacterial popu-
lations (see Fig. 1). Type-i bacteria, i ∈ {1, 2}, can divide with rate λi, produce
toxins with rate γi, die with rate μi, or become type-j bacteria, j ∈ {1, 2} j �= i,
with rate νij . We propose a stochastic model of these events as a continuous time
Markov chain (CTMC) X = {(B1(t), B2(t), T (t)) : t ≥ 0}, where Bi(t) denotes
the number of type-i bacteria at time t ≥ 0, i ∈ {1, 2}, and T (t) represents the
number of toxin molecules at time t ≥ 0. We assume that bacteria and toxins
behave independently of each other, and that toxins are degraded at rate ξ. The
space of states of X is given by S = N

3
0, where we denote N0 = N∪ {0}, and the

possible one-step transitions between states in X are depicted in Fig. 1.

Fig. 1. Left. Diagram showing the dynamics of the two toxin-producing bacterial
populations. Right. Allowed transitions between states in X and their rates.

Since each bacterium behaves independently, one can analyse the dynamics
of a single bacterium without explicitly modelling the dynamics of the rest of
the population. In Sect. 3, we propose a method which allows us to analyse the
dynamics of a single bacterium and its progeny. In particular, and by means of
first step arguments, we compute the lifespan of a single bacterium, the number
of divisions that this bacterium undergoes, and the number of toxin molecules
that it produces during its lifetime. We also compute the mean number of cells
within the genealogy of the original bacterium and the number of toxin molecules
produced by this progeny. We note that a particular advantage of this single
bacterium approach is that it can be implemented regardless of the complexity
of the model, i.e., regardless of the number of compartments in the model, two
compartments in our model (see Fig. 1), or the number of events governing the
toxin and bacterial dynamics across compartments, as long as the dynamics of
each bacterium is independent of the rest of the population.

3 Dynamics of a Single Bacterium and Its Progeny

Our interest in this section is in following a single bacterium of type i during
its lifespan, instead of focusing on the population CTMC X . In particular, we
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consider a single bacterium (either of type-1 or type-2) at time t = 0, and follow
its dynamics during its lifetime by studying the continuous time Markov chain
Y = {Y (t) : t > 0}, where Y (t) represents the “state” of the bacterium at time
t ≥ 0. By state, we mean that the bacterium can be of type-1, type-2 or dead
at any given time. Thus, Y is defined on the state space S = {B1, B2, ∅}, where
Bi here represents the bacterium being of type-i at any given instant, and ∅
indicates the bacterium is dead. If the bacterium is of type-i at a given instant,
meaning that Y is in state Bi, production of a toxin molecule does not change
its state, and Y remains in Bi. If a division occurs, we randomly choose one of
the daughter cells and consider it to be our bacterium of interest, which remains
in state Bi.

∅
∅

∅

∅

∅
∅

apoptosis∅

B1 bacterium

B2 bacterium

Fig. 2. Example of a stochastic realisation of the population process, starting with one
type-1 bacterium. Solid arrows indicate the single bacterium being tracked in process
Y. In this realisation, the stochastic process Y visits states B1 → B1 → B1 → B2 →
B1 → B1 → ∅. Consecutive visits to the same state are due to bacterial division. Toxin
production is not explicitly depicted here but can occur during the process.

Figure 2 shows one realisation of the population dynamics for our biological
system. The state of the stochastic process Y only depends on tracking the orig-
inal bacterium throughout its lifetime, which is depicted via solid arrows. When
a division occurs, a daughter is randomly chosen to represent the tracked bac-
terium of interest. In the following sections we investigate a number of stochastic
descriptors or summary statistics that relate to the single bacterium, as well as
its genealogy.

3.1 Lifespan of a Bacterium

For an initial bacterium of type i, i ∈ {1, 2}, we define its lifespan as the random
variable, Ti = inf{t ≥ 0 : Y (t) = ∅|Y (0) = Bi}. We consider the Laplace-Stieltjes
transform of Ti given by

φi(s) = E[e−sTi ], Re(s) ≥ 0,
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which one can compute with first step arguments. This leads to the following
equations

φ1(s) =
λ1

Δ1 + s
φ1(s) +

μ1

Δ1 + s
+

γ1
Δ1 + s

φ1(s) +
ν12

Δ1 + s
φ2(s),

φ2(s) =
λ2

Δ2 + s
φ2(s) +

μ2

Δ2 + s
+

γ2
Δ2 + s

φ2(s) +
ν21

Δ2 + s
φ1(s),

with Δi = λi + μi + γi + νij , j ∈ {1, 2}, j �= i. These equations simplify to

(μ1 + ν12 + s) φ1(s) = ν12φ2(s) + μ1,

(μ2 + ν21 + s) φ2(s) = ν21φ1(s) + μ2.

Interestingly, we can see that these equations do not depend on the parameters
λi (division rate) or γi (toxin production rate). This is consistent with our expec-
tations, since division and toxin production events do not affect the lifespan of a
bacterium, as can be noticed from inspecting the dynamics in Fig. 1 and Fig. 2.
We can find solutions for these equations as follows

φ1(s) = a−1(s)
1

μ1 + ν12 + s

(
ν12μ2

μ2 + ν21 + s
+ μ1

)
,

φ2(s) = a−1(s)
1

μ2 + ν21 + s

(
ν21μ1

μ1 + ν12 + s
+ μ2

)
,

with a(s) = 1 − ν12ν21
(μ1+ν12+s)(μ2+ν21+s) . We also note that these expressions would

simplify for particular scenarios of the bacterial system. For instance, if the
change from type-1 to type-2 bacterium was irreversible so that ν21 = 0, one
obtains

φ1(s) =
1

μ1 + ν12 + s

(
ν12μ2

μ2 + s
+ μ1

)
,

φ2(s) =
μ2

μ2 + s
,

where we note that in this case T2 ∼ Exp(μ2). This is an interesting and impor-
tant case to consider since the bacterial conversion with rate ν12 and reversion
rate ν21 = 0 represents the irreversible antibiotic treatment we study and analyse
in Sect. 4

One can use the Laplace-Stieltjes transform to compute any order moment
of Ti by direct differentiation. For example, the average lifetime of a type-i
bacterium is given by

E[T1] = a−1(0)
1

μ1 + ν12

(
ν12

μ2 + ν21
+ 1

)
,

E[T2] = a−1(0)
1

μ2 + ν21

(
ν21

μ1 + ν12
+ 1

)
.
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The Laplace-Stieltjes transform allows one to find higher order moments. One
such example is the second order moment of the lifespan of a bacterium starting
in state 1 when ν21 = 0, which is given by

E[T 2
1 ] =

2
μ1 + ν12

(
1

μ1 + ν12
+

ν12
μ2(μ1 + ν12)

+
ν12
μ2
2

)
.

3.2 Number of Toxin Molecules Produced by a Bacterium in Its
Lifetime

We denote by ωi the random variable that describes the number of toxin
molecules produced by the tracked bacterium during its lifetime, if this bac-
terium is initially of type i, i ∈ {1, 2}. We consider its probability generating
function defined as follows

ψi(z) = E[zωi ],

for |z| ≤ 1. By means of a first step argument, one can show that

(μ1 + γ1(1 − z) + ν12)ψ1(z) = ν12ψ2(z) + μ1,

(μ2 + γ2(1 − z) + ν21)ψ2(z) = ν21ψ1(z) + μ2.

The equations above have the following solutions

ψ1(z) = b−1(z)
1

μ1 + γ1(1 − z) + ν12

(
ν12μ2

μ2 + ν21 + γ2(1 − z)
+ μ1

)
,

ψ2(z) = b−1(z)
1

μ2 + γ2(1 − z) + ν21

(
ν21μ1

μ1 + ν12 + γ1(1 − z)
+ μ2

)
,

with b(z) = 1 − ν12ν21
(μ1+γ1(1−z)+ν12)(μ2+γ2(1−z)+ν21)

. Once again, the particular case
where ν21 = 0 leads to simplified solutions, given by

ψ1(z) =
1

μ1 + γ1(1 − z) + ν12

(
μ2

μ2 + γ2(1 − z)
ν12 + μ1

)
,

ψ2(z) =
μ2

μ2 + γ2(1 − z)
.

We note that in this case ω2 ∼ Geo( μ2
μ2+γ2

). If ν21 = 0, it is also possible to
obtain the probability mass function of ω1, which for n = 0, 1, 2, . . ., it can be
written as follows

P(ω1 = n) = γn
1

(
μ2

γ2 + μ2
ν12 + μ1

)
(γ1 + ν12 + μ1)−(n+1)

+ ν12
μ2

γ2 + μ2

n−1∑
k=0

γk
1

(
γ2

γ2 + μ2

)n−k

(γ1 + ν12 + μ1)−(k+1),
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where the sum above is equal to 0 when n = 0. The mean number of toxin
molecules produced by a single bacterium can be computed from direct differ-
entiation of ψi(z) with respect to z. One can show that

E[ω1] = b−1(1)
1

μ1 + ν12

(
γ2ν12

μ2 + ν21
+ γ1

)
,

E[ω2] = b−1(1)
1

μ2 + ν21

(
γ1ν21

μ1 + ν12
+ γ2

)
.

3.3 Number of Division Events in the Lifespan of a Bacterium

Let us consider now the number of times that the tracked bacterium divides
during its lifetime, Di, if this bacterium is originally of type i, i ∈ {1, 2}. We can
define its probability generating function as Φi(z) = E[zDi ] for |z| ≤ 1. Φi(z)
satisfies the following equations:

Δ1Φ1(z) = λ1zΦ1(z) + μ1 + γ1Φ1(z) + ν12Φ2(z),
Δ2Φ2(z) = λ2zΦ2(z) + μ2 + γ2Φ2(z) + ν21Φ1(z).

These equations have solutions

Φ1(z) = c−1(z)
1

μ1 + ν12 + λ1(1 − z)

(
μ2ν12

μ2 + ν21 + λ2(1 − z)
+ μ1

)
,

Φ2(z) = c−1(z)
1

μ2 + ν21 + λ2(1 − z)

(
μ1ν21

μ1 + ν12 + λ1(1 − z)
+ μ2

)
,

with c(z) = 1− ν12ν21
(μ1+ν12+λ1(1−z))(μ2+ν21+λ2(1−z)) . We note that these expressions,

as one would expect, do not depend on the toxin production rate, γi. The desired
average number of divisions is then given by

E[D1] = c−1(1)
1

μ1 + ν12

(
λ2ν12

μ2 + ν21
+ λ1

)
,

E[D2] = c−1(1)
1

μ2 + ν21

(
λ1ν21

μ1 + ν12
+ λ2

)
.

Once again, particular scenarios might lead to simplified expressions. If one sets
ν21 = 0, this yields

E[D1] =
1

μ1 + ν12

(
λ2ν12
μ2

+ λ1

)
,

E[D2] =
λ2

μ2
.

This choice implies D2 ∼ Geo( μ2
μ2+λ2

).
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3.4 Number of Bacteria in the Genealogy of a Bacterium

We focus now on the random variable describing the number of bacteria in
the genealogy of the original bacterium (see Fig. 2). We denote this number
as Gi, with i indicating the original bacterium type. We restrict ourselves in
what follows to computing the expectation value, Ĝi = E[Gi]. If Gi denotes the
number of bacteria in the progeny (not including the original bacterium itself, so
that G1 = 15 in the particular realization depicted in Fig. 2), then its expectation
satisfies

Ĝ1(μ1 + ν12 − λ1) = 2λ1 + ν12(Ĝ2 + 1),
Ĝ2(μ2 + ν21 − λ2) = 2λ2 + ν21(Ĝ1 + 1).

These quantities will be positive and finite only if μ1+ν12 > λ1 and μ2+ν21 > λ2,
which become conditions for the number of cells in the genealogy to be finite.
Solutions are given by

Ĝ1 = g−1 1
μ1 + ν12 − λ1

(
2λ1 + ν12

λ2 + 2ν21 + μ2

μ2 + ν21 − λ2

)
,

Ĝ2 = g−1 1
μ2 + ν21 − λ2

(
2λ2 + ν21

λ1 + 2ν12 + μ1

μ1 + ν12 − λ1

)
,

with g = 1− ν12ν21
(μ1+ν12−λ1)(μ2+ν21−λ2)

. In order for these averages to be positive, we

also require g > 0. This leads to a third condition; namely, we have: ν21+μ2−λ2
ν21

>
ν12

ν12+μ1−λ1
. For the specific case when ν21 = 0, one obtains

Ĝ1 =
1

μ1 + ν12 − λ1

(
2λ1 + ν12

λ2 + μ2

μ2 − λ2

)
,

Ĝ2 =
2λ2

μ2 − λ2
.

3.5 Number of Toxin Molecules Produced by the Genealogy
of a Bacterium

Our interest is to mathematically describe a system of toxin-producing bacteria,
thus, we now compute the number of toxin molecules produced by the progeny
of the original bacterium. We then introduce, Ωi, the number of toxin molecules
produced by the genealogy of an initial type-i bacterium, including any toxins
produced by this bacterium. We denote its expectation value by Ω̂i = E[Ωi], for
i ∈ {1, 2}. We note that the number of toxin molecules produced by the genealogy
of the single bacterium will be finite if and only if the number of bacteria within
the genealogy is finite, so that the conditions on the model parameters described
in the previous section are needed in what follows. The expected values, Ω̂1 and
Ω̂2, satisfy

(μ1 + ν12 − λ1)Ω̂1 = γ1 + ν12Ω̂2,

(μ2 + ν21 − λ2)Ω̂2 = γ2 + ν21Ω̂1,
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with solutions

Ω̂1 = g−1 1
μ1 + ν12 − λ1

(
γ1 + ν12

γ2
μ2 + ν21 − λ2

)
,

Ω̂2 = g−1 1
μ2 + ν21 − λ2

(
γ2 + ν21

γ1
μ1 + ν12 − λ1

)
.

When ν21 = 0 the equations simplify to

Ω̂1 =
1

μ1 + ν12 − λ1

(
γ1 + ν12

γ2
μ2 − λ2

)
,

Ω̂2 =
γ2

μ2 − λ2
.

We note that there exist links between the expected number of toxin molecules
produced by the genealogy and the expected number of bacteria in this geneal-
ogy. For instance, when ν21 = 0 the average number of bacteria in the genealogy
of an original type-2 bacterium, including this original bacterium, is Ĝ2 + 1 =
2λ2

μ2−λ2
+ 1 = μ2+λ2

μ2−λ2
(see Sect. 3.4). It is clear that, in this case, the genealogy is

formed by type-2 bacteria only since ν21 = 0. Each of these type-2 bacteria will
produce, on average, γ2

λ2+μ2
toxins (from a geometric distribution) before they

decide their fate (division or death). Thus, the mean number of toxin molecules
produced by the genealogy is μ2+λ2

μ2−λ2
× γ2

λ2+μ2
= γ2

μ2−λ2
= Ω̂2, as computed above.

4 Results

We now make use of the previous results to analyse the behaviour of Bacillus
anthracis bacteria, which causes anthrax infection, in the presence of antibi-
otic treatment. We consider that non-treated fully vegetative Bacillus anthracis
bacteria form the B1 compartment in Fig. 1, while the second compartment,
B2, represents bacteria affected by the antibiotic. B. anthracis produces three
anthrax exotoxin components [22]: protective antigen (PA), lethal factor (LF)
and edema factor (EF). The effectiveness of the anthrax toxins in infecting cells
and causing symptoms is mainly due to the protective antigen (PA) capsule [21],
with which the other toxin components can form complexes [22]. Therefore, we
focus here on the production of PA when implementing our methods. We con-
sider an antibiotic treatment, such as Ciprofloxacin, that inhibits bacterial divi-
sion and triggers cellular death, so that we shall assume μ2 ≥ μ1 and λ2 = 0.
It is to be expected that the production rate of toxin molecules by antibiotic-
treated cells would be at most equal to non-treated cells, and thus, we consider
γ2 ≤ γ1. Bacteria become treated at some rate ν12, and we set ν21 = 0 to indi-
cate that the process is irreversible. In Sect. 4.1 we leverage data from an in vitro
assay for the A16R strain of B. anthracis [28] to inform our choice of parameters
(λ1, μ1, γ1). On the other hand, a global sensitivity analysis of model parameters
(ν12, μ2, γ2) allows us in Sect. 4.2 to study the impact of treatment on the sum-
mary statistics introduced and analysed in Sect. 3, illustrating the applicability
of our techniques.
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4.1 Parameter Calibration

In Ref. [28] the authors examine the growth of the A16R B. anthracis strain by
measuring the viable count of colony forming units (CFU) per mL in the assay
for the following time points: t ∈ {4 h, 8 h, 12 h, 16 h, 20 h}. They also develop a
sandwich ELISA and cytotoxicity-based method to quantify the concentration
of PA every two hours during the experiment, from t = 4 h to t = 26 h. In order
to exploit this data set, and to estimate representative values for λ1, μ1 and γ1,
we consider its corresponding deterministic model (for the first compartment of
non-treated bacteria)

dB

dt
= (λ1 − μ1)B,

dT

dt
= γ1B − ξT,

where B(t) is the concentration (in units [CFU/mL]) of bacteria at time t,
and T (t) the concentration of PA (in units of [ng/mL]). Results from Ref. [28,
Figure 1] support bacterial exponential growth during the first 12 h of the exper-
iment. The bacterial population reaches a carrying capacity after this point,
indicating that there exists competition for resources. Thus, since our interest
(see Fig. 1) is the analysis of non-competing bacteria, we focus here on the first
period of the experiment: t ∈ [4 h, 12 h]. In particular, we set λ1 = 0.8 h−1 from
Ref. [10], and use bacterial counts from Ref. [28, Figure 1] and toxin concentra-
tion measurements from Ref. [28, Figure 4] to estimate the bacterial death rate,
μ1, and the toxin production rate, γ1. Since the dynamics of the toxin popula-
tion is likely to be dominated by the production of toxins from an exponentially
growing bacterial population, we neglect toxin degradation and set ξ = 0 in
what follows. We acknowledge that this might lead to underestimating the rate
γ1. Yet, the rate ξ has no effect on any of the summary statistics analysed in
Sect. 3.

Parameters μ1 and γ1 are estimated making use of the curve fit function
from the scipy.optimize package in Python, which is based on a non-linear least
squares method. This leads to point estimates μ1 = 0.43 h−1 and γ1 = 4.63 ×
10−6 ng CFU−1h−1. A comparison between model predictions and observed
measurements is provided in Fig. 3. Finally, in order to use our estimate for γ1
in the stochastic model from Fig. 1, one needs to convert units (from mass in ng to
number of molecules). To do this, we note that PA has a relative molecular mass
of 83 kD [11,25]. This means that 7.2 × 109 PA molecules have an approximate
weight of 1ng, so that γ1 = 3.34 × 104 molecules CFU−1h−1.

4.2 Summary Statistics

We now perform a global sensitivity analysis on a subset of the model parameters
for the summary statistics of interest introduced in Sect. 3. We consider the
stochastic model of Fig. 1 with baseline parameter values: μ1 = 0.43 h−1, λ1 =
0.8 h−1 and γ1 = 3.34 × 104 molecules CFU−1 h−1, according to the calibration
carried out in the previous section. To analyse the role of antibiotic treatment (B1
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Fig. 3. Mathematical model predictions compared to experimental observations from
Ref. [28].

represents non-treated bacteria and B2 antibiotic-treated bacteria, respectively),
we explore parameter regimes with ν12 > 0, ν21 = λ2 = 0, μ2 ≥ μ1 and γ2 ≤ γ1.

In Fig. 4 we look at summary statistics directly related to the lifetime of
a single bacterium. We assume at time t = 0 we start with one non-treated
bacterium. We first carry out a sensitivity analysis for parameters μ2, ν12 and
γ2. This allows one to analyse the impact of treatment on the tracked bacterium
during its lifespan. On the other hand, even when we have a baseline value for
μ1, we vary this parameter when considering the number of divisions undergone
by the tracked bacterium, for illustrative purposes. The top-left plot in Fig. 4
shows the impact of treatment on the mean lifespan of the bacterium, E[T1],
which varies between 1 and 3 h for the parameter values considered. Increasing
antibiotic efficiency (in terms of larger values of μ2 and ν12) leads to shorter
lifespans. We note that if one assumes μ2 = μ1 = 0.43 h−1, no effect of treatment
on the lifespan is expected, and the value of ν12 (which is directly related to
the rate at which antibiotic can affect bacteria, as well as the concentration of
antibiotic present in the system) becomes irrelevant. Finally, increasing values
of μ2 make the value of ν12 increasingly relevant, as one would expect.

The top-right plot of Fig. 4 shows the expected number of divisions undergone
by the bacterium, E[D1], for a range of μ1 and ν12 values. We note here that
since λ2 = 0, μ2 has no effect on D1. Thus, we vary μ1 instead. As one would
expect, increasing values of ν12 and μ1 lead to fewer bacterial divisions. We
indicate that in order for the bacterial population to grow as a function of time,
each bacterium (on average) needs to undergo more than one division events. We
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Fig. 4. Top-left. Expected lifespan [hours] of a bacterium. Top-right. Expected
number of divisions during the lifetime of a bacterium. Bottom. Expected number
of toxin molecules produced by a bacterium during its lifetime for different values of
ν12 ∈ {1, 5, 10} (left to right). Units for γ2 are molecules CFU−1 h−1.

highlight the value E[D1] = 1 by a green line in Fig. 4, which is achieved when
ν12 + μ1 = λ1. The bottom row in Fig. 4 shows the effect of varying ν12, μ2 and
γ2 on the expected number of toxin molecules produced by a bacterium during
its lifetime, E[ω1]. Increasing values of μ2 and ν12 can have a significant effect
on the number of toxin molecules produced. The values γ2 = γ1 = 3.34 × 104

molecules CFU−1 h−1 and μ2 = μ1 = 0.43 h−1 represent no treatment effect for
the tracked bacterium, and for these choices the value of ν12 has no effect on
E[ω1]. On the other hand, decreasing values of γ2 have a significant effect on the
predicted number of PA molecules produced, especially for increasing values of
ν12.

In Fig. 5 we present summary statistics of relevance to the genealogy of a
B1 bacterium. The top plot of Fig. 5 shows the effect that parameters ν12 and
μ1 have on the mean number of cells in the genealogy of a single bacterium,
1 + Ĝ1. We note that, in this plot, the white area corresponds to parameter
combinations for which the mean number of cells in the genealogy is not finite.
This happens when λ1 ≥ μ1 + ν12. Values of μ1 + ν12 larger but close to λ1 lead
to increasing the mean number of cells in the genealogy, as one would expect.
On the other hand, the bottom row of Fig. 5 shows the effect on the number
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Fig. 5. Top. Mean number of bacteria in the genealogy of a single bacterium. Bottom.
Mean number of toxin molecules secreted by the genealogy of a single bacterium for
different values of ν12 ∈ {1, 5, 10} (from left to right). Units for γ2 are molecules
CFU−1 h−1.

of toxin molecules secreted by the genealogy of a single bacterium for varying
values of μ2 and γ2. We investigate these parameter values for three different
choices of ν12 ∈ {1, 5, 10}. It is clear that γ2 has a large impact on the expected
value, Ω̂1, which mimics the similar effect that γ2 has on its single bacterium
counterpart, E[ω1] (see Fig. 4). Figure 4 and Fig. 5 show the significance of ν12 on
the expected number of toxin molecules produced. Interestingly, as ν12 becomes
much larger than λ1, we observe that E[ω1] approaches Ω̂1, since in this case
1 + Ĝ1 ≈ 1 represents the single bacterium of interest.

5 Conclusions

We have defined and analysed a two-compartment stochastic model for toxin-
producing bacteria. Our focus has been a number of summary statistics that
relate to the lifetime of a single bacterium (tracked over time) and its progeny. In
particular, we have studied the lifespan of the bacterium, the number of divisions
undergone and the number of toxin molecules produced during its lifetime, as
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well as the number of cells in its genealogy, and the number of toxin molecules
produced by this progeny. We illustrated in Sect. 4 our methods by focusing on
the growth of B. anthracis bacteria in the presence of antibiotic treatment. To the
best of our knowledge, this is the first approach to quantify the PA production
rate in this system. We acknowledge that our estimate for this rate might be an
underestimate, given that we neglected PA degradation.

We point out that, although the model considered in Fig. 1 is relatively sim-
ple, consisting only of two bacterial compartments, our single bacterium app-
roach can be applied to any network topology of compartments, as long as the
bacteria behave independently, so that the dynamics of a single bacterium can
be effectively followed. Implementing our techniques in more complex systems,
such as those representing in vivo infection and bacterial dissemination between
different organs, remains the aim of future work. We also indicate that, while we
have analysed probability generating functions and Laplace-Stieltjes transforms
in Sect. 3, we have focused in practice, for simplicity and brevity, on computing
the first order moments for the summary statistics of interest. However, this app-
roach can be easily generalised to compute higher order moments or probability
mass functions.
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6. Carruthers, J., López-Garćıa, M., Gillard, J.J., Laws, T.R., Lythe, G., Molina-
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Abstract. Markov modulated discrete arrival processes have a wide lit-
erature, including parameter estimation methods based on expectation-
maximization (EM). In this paper, we investigate the adaptation of
these EM based methods to Markov modulated fluid arrival processes
(MMFAP), and conclude that only some parameters of MMFAPs can be
approximated this way.

Keywords: Markov modulated fluid arrival processes ·
Expectation-maximization method · Parameter estimation

1 Introduction

Markovian queueing systems with discrete customers are widely used in stochas-
tic modeling. Markovian Arrival Process (MAP, [11]), that are able to charac-
terize a wide class of point processes, play an important role in these systems.
The properties of MAPs have been studied exhaustively, using queueing mod-
els involving MAPs nowadays has become common, queueing networks with
MAP traffic have also been investigated. Several methods exist to create a MAP
approximating real, empirical data. Some of them aim to match statistical quan-
tities like marginal moments, joint moments, auto-correlation, etc. [9,15] An
other approach to create MAPs from measurement data is based on likelihood
maximization, which is often performed by Expectation-Maximization (EM) [12].
Several EM-based fitting methods have been published for MAPs, based on ran-
domization [5], based on special structures [7,14], methods that support batch
arrivals [4] and those that are able to work with group data [13].

In many systems the workload can be represented easier with continuous,
fluid-like models rather than discrete demands [1]. Basic Markovian fluid mod-
els have been introduced and analyzed in [2,10], later on several model variants
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appeared and were investigated. Despite of their practical relevance, the “ecosys-
tem” around fluid models is far less complete than in the discrete case. In par-
ticular, fitting methods for Markov modulated fluid arrival processes (MMFAP)
are available only to some very restricted cases like on-off models, motivated
by telecommunication applications. To the best of our knowledge, fitting meth-
ods for the general class of MMFAPs based on likelihood maximization has not
been investigated in the past. At first glance adapting the methods available
for MAPs might seem feasible, since fluid models can be treated as a limit of a
discrete model generating infinitesimally small fluid drops. In fact, adapting the
algorithms for MAPs to MMFAPs is not straight forward at all, fitting MMFAPs
is a qualitatively different problem.

The rest of the paper is organized as follows. Section 2 introduces the mathe-
matical model and the parameter estimation problem. The next section discusses
the applicability of the EM method for MMFAPs. Some implementation details
associated with the EM method for MMFAPs are provided in Sect. 4. Finally,
Sect. 5 provides numerical experiments about the properties of the proposed
method and Sect. 6 concludes the paper.

2 Problem Definition

2.1 Fluid Arrival Process

The fluid arrival process {Z(t) = {J (t),X (t)}, t > 0} consists of a background
continuous time Markov chain {J (t), t > 0} which modulates the arrival process
of the fluid {X (t), t > 0}. When the Markov chain stays in state i for a Δ long
interval a normal distributed amount of fluid arrives with mean riΔ and variance
σ2

i Δ, that is, when J (τ) = i,∀τ ∈ (t, t + Δ)

d

dx
Pr(X (t + Δ) − X (t) < x) = N (riΔ,σ2

i Δ,x), (1)

where N (μ, σ2, x) = 1√
2πσ2 e− (x−μ)2

2σ2 is the Gaussian density function. We note
that our proposed analysis approach allows negative fluid rates as well. Since
the normal distribution has infinite support also in case of strictly positive fluid
rates Sect. 4.2 discusses a numerical approach to handle negative fluid samples.

The generator matrix and the initial probability vector of the N -state back-
ground continuous time Markov chain (CTMC) are Q and α, and the diagonal
matrix of the fluid rates and the fluid variances are given by matrix R with
Ri,j = δi,jri, and matrix Σ with Σi,j = δi,jσ

2
i , where δi,j denotes the Kronecker

delta.
Assuming X (0) = 0, the amount of fluid arriving in the (0, t) interval is X (t),

with density matrix defined by

[N(t, x)]i,j =
∂

∂x
Pr (X (t) < x,J (t) = j|J (0) = i) (2)
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The double sided Laplace transform of this quantity regarding the amount
of fluid arrived can be expressed as [6]

N∗(t, v) =
∫ ∞

x=−∞
e−xvN(t, x)dx = e(Q−vR−v2Σ/2)t. (3)

The stationary distribution of the CTMC is denoted by vector π, which is the
solution of πQ = 0, π1 = 1. In this work, we are interested in the stationary fluid
arrival process and assume that the initial probability vector of the background
CTMC is α = π.

2.2 Measurement Data to Fit

We assume that the data to fit is given by a series of pairs D = {(tk, xk); k =
1, . . . ,K}, where tk is the time since the last measurement instant and xk is
the amount of fluid arrived since the last measurement instant (which can be
negative as well). That is, the measurement instances are Tk =

∑k
�=1 t� for

k ∈ {1, . . . , K}.
The likelihood of the data is defined as

L = α

K∏
k=1

N(tk, xk)1. (4)

Our goal is to find Q, R and S which maximize the likelihood.

3 The EM Algorithm

The EM algorithm is based on the observation that the likelihood would be
easier to maximize when certain unobserved, hidden variables were known. In
our case the hidden variables are related to the trajectory of the hidden Markov
chain, specifically

– J
(k)
n is the nth state visited by the Markov chain in the kth measurement

interval,
– θ

(k)
n is the sojourn time of the nth sojourn of the Markov chain (which is in

state J
(k)
n ) in the kth measurement interval,

– f
(k)
n is the fluid accumulated during the nth sojourn in the kth measurement

interval,
– n(k) is the number of sojourns in the kth measurement interval.

Based on these hidden variables the logarithm of the likelihood is computed
in the next section.
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3.1 Log-Likelihood as a Function of the Hidden Variables

With the hidden variables defined above, the likelihood L can be expressed as

L =
K∏

k=1

e
−θ

(k)
1 q

J
(k)
1 N

(
θ
(k)
1 r

J
(k)
1

, θ
(k)
1 σ2

J
(k)
1

, f
(k)
1

)
q
J

(k)
1 J

(k)
2

· e
−θ

(k)
2 q

J
(k)
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(
θ
(k)
2 r

J
(k)
2

, θ
(k)
2 σ2

J
(k)
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, f
(k)
2

)
q
J

(k)
2 J
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· . . .

· e
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n(k) N
(
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n(k)σ
2

J
(k)

n(k)
, f

(k)
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)

=
K∏

k=1

n(k)−1∏
n=1

e
−θ(k)

n q
J
(k)
n N

(
θ(k)n r

J
(k)
n

, θ(k)n σ2

J
(k)
n

, f (k)
n

)
q
J

(k)
n J

(k)
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· e
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(k)
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(k)
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(k)
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)
,

where N (μ, σ2, x) is the Gaussian density function and qi =
∑

j,j �=i qij is the

departure rate of state i of the CTMC. Using log N (μ, σ2, x) = − c
2 − log σ2

2 −
(x−μ)2

2σ2 with c = log 2π we have

log
(
N

(
θ(k)n r

J
(k)
n

, θ(k)n σ2

J
(k)
n

, f (k)
n

))
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log(θ(k)n ) + log(σ2

J
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J
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n

+ θ
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2
r2
J
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2θ
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n r

J
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J
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J
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2σ2

J
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,
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and the log-likelihood is

log L =
K∑

k=1

n(k)−1∑
n=1

−θ(k)n q
J

(k)
n

+ log
(
N

(
θ(k)n r

J
(k)
n

, θ(k)n σ2

J
(k)
n

, f (k)
n

))
+ log q

J
(k)
n J

(k)
n+1

− θ
(k)

n(k)qJ
(k)

n(k)
+ log

(
N

(
θ
(k)

n(k)rJ
(k)

n(k)
, θ

(k)

n(k)σ
2

J
(k)

n(k)
, f

(k)

n(k)

))

=
K∑

k=1

n(k)−1∑
n=1

−θ(k)n q
J

(k)
n

− c

2
− log θ

(k)
n

2
−

log(σ2

J
(k)
n

)

2
− f

(k)
n

2

2θ
(k)
n σ2

J
(k)
n

+
f
(k)
n r

J
(k)
n

σ2

J
(k)
n

−
θ
(k)
n r2

J
(k)
n

2σ2

J
(k)
n

+ log q
J

(k)
n J

(k)
n+1

− θ
(k)

n(k)qJ
(k)

n(k)
− c

2
− log θ

(k)

n(k)

2
−

log(σ2

J
(k)

n(k)

)

2

− f
(k)

n(k)

2

2θ
(k)

n(k)σ
2

J
(k)

n(k)

+
f
(k)

n(k)rJ
(k)

n(k)

σ2

J
(k)

n(k)

−
θ
(k)

n(k)r
2

J
(k)

n(k)

2σ2

J
(k)

n(k)

.

Observe that knowing each individual hidden variable is not necessary to
express the log-likelihood. It is enough to introduce the following aggregated
measures to fully characterize interval k:

– Θ
(k)
i =

∑n(k)

n=1 θ
(k)
n I{

J
(k)
n =i

} is the total time spent in state i,

– F
(k)
i =

∑n(k)

n=1 f
(k)
n I{

J
(k)
n =i

} is the total amount of fluid arriving during a

visit in state i,
– M

(k)
i =

∑n(k)

n=1 I{
J

(k)
n =i

} the number of visits to state i,

– M
(k)
i,j =

∑n(k)−1
n=1 I{

J
(k)
n =i,J

(k)
n+1=j

} the number of state transitions from state

i to state j, additionally
– LΘ

(k)
i =

∑n(k)

n=1 log θ
(k)
n I{

J
(k)
n =i

} is the total time spent in state i,

– FΘ
(k)
i =

∑n(k)

n=1
f(k)

n

2

θ
(k)
n

I{
J

(k)
n =i

} is the total amount of fluid arriving during a

visit in state i.
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With these aggregate measures the log-likelihood simplifies to

log L =
K∑

k=1

n(k)−1∑
n=1
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− c
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)
.

3.2 The Maximization Step of the EM Method

The maximization step of the EM method aims to find the optimal value of the
model parameters based on the hidden variables. They are obtained from the
partial derivatives of the log-likelihood as detailed in AppendixA.

Summarizing the results, the model parameter value which maximizes the
log-likelihood based on the hidden variables are

qi,j =

∑K
k=1 M

(k)
i,j∑K

k=1 Θ
(k)
i

, ri =
∑K

k=1 F
(k)
i∑K

k=1 Θ
(k)
i

, and σ2
i =

∑K
k=1 Θ

(k)
i r2i − 2F

(k)
i ri + FΘ

(k)
i∑K

k=1 M
(k)
i

.

That is,
∑K

k=1 Θ
(k)
i , and

∑K
k=1 M

(k)
i,j are needed for computing the optimal qi,j

parameters and additionally,
∑K

k=1 F
(k)
i ,

∑K
k=1 Mi and

∑K
k=1 FΘ

(k)
i are needed

for the optimal ri and σ2
i parameters.

3.3 The Expectation Step of the EM Method

In the expectation step of the EM method the expected values of the hidden
variables has to be evaluated based on the samples. Appendix B provides the
analysis of those expectations, resulting E(F (k)

i ) = riE(Θ(k)
i ) and E

(
FΘ

(k)
i

)
=

E
(
M

(k)
i

)
σ2

i + E
(
Θ

(k)
i

)
r2i , from which the zth iteration of the EM method

updates the fluid rate and variance parameters as

ri(z + 1) =

∑K
k=1 E

(
F

(k)
i

)
∑K

k=1 E
(
Θ

(k)
i

) = ri(z) (5)
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and

σ2
i (z + 1) =
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i

) = σ2
i (z). (6)

Consequently, the fluid rate and variance parameters remain untouched by the
EM method.

Remark 1. This result is in line with the results obtained for discrete arrival
processes in [13] considering the special features of the fluid model. That is, we
consider the MMPP arrival process, since there is no state transition at the fluid
drop arrival, and fluid drops are assumed to be infinitesimal, hence for a finite
amount of time there is an unbounded number of fluid drop arrivals. Using these
features, equations (21) and (23) of [13] take the form

E
(
Z

[k]
i

)
=

xk∑
l=0

∫ tk

0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ

E
(
Y

[k]
ii

)
= λii

xk−1∑
l=0

∫ tk

0

[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ.

Assuming xk is large, the update of λii in the zth step of the iteration is ((12)
of [13])

λii(z + 1) =

∑K
k=1 E

(
Y

[k]
ii

)
∑K

k=1 E
(
Z

[k]
i

)

= λii(z)
∑K

k=1

∑xk−1
l=0

∫ tk

0
[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ∑K

k=1

∑xk

l=0

∫ tk

0
[fk(l, τ)]i[bk(xk − l, tk − τ)]idτ

≈ λii(z).

The transition rate parameters are updated by the EM method as

qi,j =

∑K
k=1 E

(
M

(k)
i,j

)
∑K

k=1 E
(
Θ

(k)
i

) . (7)

The computation of E
(
M

(k)
i,j

)
and E

(
Θ

(k)
i

)
are detailed in Appendix C and the

results are summarized in (22) and (23).
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4 Implementation Details

The implementation of the EM based parameter estimation method contains
some intricate elements which influence the computational complexity and the
accuracy of the computations. This section summarizes our proposal for those
elements.

4.1 Structural Restrictions of MMFAP Models

In case of many discrete Markov modulated arrival processes (e.g. MAP, BMAP)
the representation is not unique, and starting form a given representation of an
arrival process infinitely many different, but stochastically equivalent represen-
tations of the same process can be generated with similarity transformation.
Based on past experience it is known that optimizing non-unique representa-
tions should be avoided, since most computational effort of the optimizers is
wasted on going back and forth between almost equivalent representations hav-
ing significantly different parameters. The usual solution to address this issue is
to apply some structural restrictions (e.g. the Jordan representation of some of
the matrices), which can make the representation unique [15].

In this work, we also apply a structural restriction to make the optimization
of MMFAPs more efficient (by making the path to the optimum more straight):
We restrict matrix R to be diagonal such that the diagonal elements of R are
non-decreasing, which makes the representation of an MMFAP unique except
for the ordering of states with identical fluid arrival rates.

4.2 Computation of the Double Sided Inverse Laplace Transform

A crucial step of the algorithm both in terms of execution speed and numeri-
cal accuracy is that to compute the numerical inverse Laplace transformation
(NILT) of the expression in (3). There are many efficient numerical inverse trans-
formation methods for single sided functions [8]. However, in our case the func-
tion we have is double sided (as Gauss distributions can be negative, too), and
numerical inverse transformation of double sided Laplace transforms are rather
limited.

If f(t) is the density of a positive random variable then
∫ ∞

−∞ e−stf(t)dt =∫ ∞
0

e−stf(t)dt and the single and double sided Laplace transforms of f(t) are
identical. If f(t) is the density of a random variable which is positive with a high
probability then

∫ ∞
−∞ e−stf(t)dt ≈ ∫ ∞

0
e−stf(t)dt. Based on this approximation

one can apply single sided numerical inverse Laplace transformation for density
functions of dominantly positive random variables.

For a general MMFAP the non-negativity of the fluid increase samples in
T = {(tk, xk); k = 1, . . . , K} can not be assumed. To make the single sided
numerical inverse Laplace transformation appropriately accurate also in this
case we apply the following model transformation

LQ,R,S({(tk, xk); k = 1, . . . , K}) = LQ,R+cI,S({(tk, xk + ctk); k = 1, . . . ,K}),
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where LQ,R,S({(t1, x1); (t2, x2); . . . ; (tK , xK)}) = α
∏K

k=1 N(tk, xk)1 is the like-
lihood of the samples when N(tk, xk) is computed with Q,R,S according to
(3) and c is an appropriate constant. If c is large enough, the relative differ-
ence of the fluid increase samples reduces and the likelihood function gets less
sensitive to the changes of the model parameters. If c is small, fluid increase sam-
ples might become close to zero and the single sided numerical inverse Laplace
transformation might cause numerical issues.

4.3 Reducing Computational Cost for Equidistant Measurement
Intervals

For computing the likelihood function, the numerical inverse Laplace transfor-
mation of matrix N∗(t, v) needs to be performed once for each data point, i.e.
K times, which might be computationally expensive.

In the special case when the samples are from identical time intervals, that
is t1 = . . . = tK = t̄, we apply the following approximate approach to reduce the
computational complexity to M (M << K) numerical inverse Laplace transfor-
mation of matrix N∗(t, v).

– Let xmin = min(x1, . . . , xK), xmax = max(x1, . . . , xK) and Δ = (xmax −
xmin)/M .

– Compute N(t̄, xmin + (m − 0.5)Δ) for m = 1, . . . ,M by NILT of N∗(t, v).
– For x ∈ (xmin + (m − 1)Δ,xmin + mΔ), apply N(t̄, x) ≈ N(t̄, xmin + (m −

0.5)Δ).

This way the [xmin, xmax] range is divided to M equidistant intervals and the
ILT is performed once for each. The higher the parameter M , the higher the
accuracy, but the slower the procedure.

4.4 Computation of E(Θ(k)
i ) and E(M (k)

i,j )

Let us introduce the forward and backward likelihood vectors for the beginning
and the end of the kth observation period

f̂k = α

(
k−1∏
�=1

N(t�, x�)

)
= α

k−1∏
�=1

ILTv→x�
N∗(t�, v), (8)

b̂k =

(
K∏

�=k+1

N(t�, x�)

)
1 =

K∏
�=k+1

ILTv→x�
N∗(t�, v)1. (9)

and the forward and backward likelihood vectors for an internal point in the kth
observation period as

fk(t, x) = α

(
k−1∏
�=1

N(t�, x�)

)
N(t, x), (10)

bk(t, x) = N(t, x)

(
K∏

�=k+1

N(t�, x�)

)
1. (11)
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We note that, using f̂k and b̂k, the likelihood can be expressed as

L = α · b1(t1, x1) = fk−1(tk−1, xk−1) · bk(tk, xk) = fK(tK , xK)1
= α · b̂0 = f̂ � · b̂�−1 = f̂K+11,

for any k = 2, . . . ,K − 1 and � = 1, . . . ,K.
To compute the expected value of Θ

(k)
i , the integrals of the forward and back-

ward likelihood vectors have to be evaluated. The special form of the integrals
allows for simplifications as

E(Θ(k)
i ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · [bk(tk − t, xk − x)]i dt dx

= f̂k

(∫ xk

x=0

∫ tk

t=0

N(t, x)ei · ei
T N(tk − t, xk − x) dt dx

)
b̂k

= f̂k ILTv→xk

(∫ tk

t=0

N∗(t, v)ei · ei
T N∗(tk − t, v) dt

)
b̂k

= f̂k ILTv→xk

(∫ tk

t=0

e(Q−vR−v2Σ/2)tei · ei
T e(Q−vR−v2Σ/2)(tk−t) dt

)
b̂k

= f̂k ILTv→xk

⎛
⎜⎜⎝

[
0 I

]
e

⎡
⎣Q − vR − v2Σ/2 ei · ei

T

0 Q − vR − v2Σ/2

⎤
⎦tk

[
I
0

]
⎞
⎟⎟⎠ b̂k.

That is, the convolution integral is replaced by the evaluation of a matrix expo-
nential of double size [16]. In a similar manner, the expected value of M

(k)
i,j is

E(M (k)
i,j ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · qij · [bk(tk − t, xk − x)]j dt dx

= qij f̂k ILTv→xk

⎛
⎜⎜⎝

[
0 I

]
e

⎡
⎣Q − vR − v2Σ/2 ei · ej

T

0 Q − vR − v2Σ/2

⎤
⎦tk

[
I
0

]
⎞
⎟⎟⎠ b̂k.
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We note that these expressions give an interpretation for the zth iteration of the
EM method for qi,j

qi,j(z + 1) =

∑K
k=1 E

(
M

(k)
i,j

)
∑K

k=1 E
(
Θ

(k)
i

) =

qi,j(z)

f̂k ILTv→xk

⎛
⎜⎜⎝

[
0 I

]
e

⎡
⎣Q − vR − v2Σ/2 ei · ej

T

0 Q − vR − v2Σ/2

⎤
⎦tk

[
I
0

]
⎞
⎟⎟⎠ b̂k

f̂k ILTv→xk

⎛
⎜⎜⎝

[
0 I

]
e

⎡
⎣Q − vR − v2Σ/2 ei · ei

T

0 Q − vR − v2Σ/2

⎤
⎦tk

[
I
0

]
⎞
⎟⎟⎠ b̂k

,

that is, qi,j(z + 1) is the product of qi,j(z) and an actual guess dependent value.

4.5 Computation of f̂ k and b̂k

The computation of f̂k and b̂k follows a similar pattern and contains the same
difficulties, except that f̂k is computed from k = 0 onward and b̂k is computed
from k = K downward. The main implementation issue with the computation
of f̂k and b̂k, is to avoid under-/overflow during the computation. We adopted
the under-/overflow avoiding method proposed in [3].

5 Numerical Examples

5.1 MMFAP Simulator

For the numerical evaluation of the proposed method we developed a simulator
which generates the required number (K) of traffic samples based on matrices
Q, R and S. In each step of the simulation, the program samples the next
state transition of the Markov chain and checks if it occurs before or after the
next measurement instance. In the first case it samples the accumulated fluid
until the next state transition and performs the state transition, in the second
case it samples the accumulated fluid until the next measurement instance and
maintains the state of the Markov chain.

To reduce the computational time of the fitting procedure by applying the
approximate approach introduced in Sect. 4.3, the simulator generates the data
samples such that t1 = . . . = tK = 1.

For the MMFAP with

Qslow =

⎡
⎣−0.8 0.5 0.3

0.6 −0.7 0.1
0.2 0.3 −0.5

⎤
⎦ , R =

⎡
⎣ 2 0 0

0 4 0
0 0 8

⎤
⎦ , S =

⎡
⎣0.01 0 0

0 0.02 0
0 0 0.04

⎤
⎦ (12)
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the histogram of the samples is presented in Fig. 1a. The histogram indicates
that the Markov chain is “slow” in this case, i.e., it stays in a single state (e.g.
state i) during the measurement interval of length 1 with high probability and
accumulates N (ri, σ

2
i ) distributed amount of fluid during this interval. That is

the explanation of the peaks at around r1 = 2, r2 = 4 and r3 = 8. It is also
visible that the transitions between state 1 and 2 are faster than the transitions
to and from state 3 and consequently, the histogram indicates fluid samples in
the x ∈ (2, 4) interval. These samples might come from measurement intervals
starting from state 1 with r1 = 2 and moving to state to with r2 = 4, or vice
versa.

To indicate the effect of the “speed” of the Markov chain on the histogram
of the generated samples, Fig. 1b depicts the histogram when the Markov chain
is “fast”, namely 10 times faster, Qfast = 10Qslow. The “fast” Markov chain
experiences state transitions during the measurement interval with very high
probability and the amount of fluid accumulated during the interval gets to
be less dependent on the state of the Markov chain at the beginning of the
measurement interval.

When the variance is low, as it is in this example, one can easily predict
the values of the R matrix with the “slow” Markov chain, while for the “fast”
Markov chain the values of the R matrix is not possible to guess based on the
histogram. Still, the minimal and the maximal sample values allows to estimate
the minimal and the maximal fluid rates of matrix R.

2 3 4 5 6 7 8
x0

100

200

300

400

Number of samples

2 3 4 5 6 7 8
x0

20

40

60

80

100

Number of samples

Fig. 1. Histogram of 5000 generated samples with Qslow, R and S and Qfast, R and
S defined in (12).

5.2 Approximating Q with the EM Method

Based on 300 samples of the MMFAP with

Q̄ =
[−2 2

4 −4

]
, R̄ =

[
4 0
0 8

]
, S̄ =

[
0.01 0
0 0.02

]
, (13)
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we approximate the MMFAP starting from Q̄0 =
[−1 1
2.5 −2.5

]
, R̄0 = R̄, S̄0 = S̄

with the EM method. The evolution of the log-likelihood value and the transition
rates of the Markov chain are depicted in Fig. 2a and 2b respectively, where the
dotted horizontal lines refer to the MMFAP according to (13), which was used
to generate the samples. The figure indicates that the obtained transition rates
provide a bit higher log-likelihood than the ones in (13). Additionally, the figures
report convergence after ∼ 25 iterations of the EM method.
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LikelihoodEM

20 40 60 80 100
Iteration

- 180

- 175

- 170

Likelihood

20 40 60 80 100
Iteration

1

2

3

4

Qij

Q12EM

Q12Original

Q21EM

Q21Original

Fig. 2. Behaviour of the EM method based on 300 samples generated from Q̄, R̄ and
S̄ in (13) with initial guess Q̄0, R̄0 and S̄0. According to (5) and (6), R̄0 and S̄0

remained unchanged during the EM iterations.

Similarly, we evaluated the EM based approximation of the MMFAP defined

in (12) based on 1000 samples starting from Q0 =

⎡
⎣−0.8 0.5 0.3

0.6 −0.7 0.1
0.2 0.3 −0.5

⎤
⎦, R0 = R,

S0 = S.
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Fig. 3. Behaviour of the EM method based on 1000 samples generated from Q, R and
S in (12) with initial guess Q0, R0 and S0.

The evolution of the log-likelihood value and the transition rates of the
Markov chain along the EM iterations are depicted in Fig. 3a and 3b respec-
tively. Figure 3a indicates that similar to the 2 × 2 example in Fig. 2a the like-
lihood value increased above the one obtained from original MMFAP. At the
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same time, the transition rate values in Fig. 3b differ more significantly from
ones of the original MMFAP than in Fig. 2b, which might be a consequence of
a looser relation between the transition rates and the likelihood value in higher
dimensions.

6 Conclusions

The EM method is commonly applied for parameter estimation of Markov mod-
ulated models. In this paper we consider the fitting of MMFAP and recognize
that the EM method is not applicable for optimizing the fluid rate and variance
parameters. As a result, we investigated the properties of the EM based MMFAP
method for fitting the parameters of the governing Markov chain via numerical
experiments.

Appendix

A Maximizing the Model Parameters

Assuming qi =
∑

j,j �=i qi,j , the derivatives of log L are as follows:

∂
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The optimal parameter values are obtained where the derivative is zero:

0 =
K∑

k=1

Θ
(k)
i − M

(k)
i,j /qi,j −→ qi,j =

∑K
k=1 M

(k)
i,j∑K

k=1 Θ
(k)
i

. (14)
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(k)
i
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i
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. (15)
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) 1
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i r2i − 2F
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k=1 M
(k)
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B Expected Values of the Hidden Parameters

For E(F (k)
i ) we have
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Let X (μ, σ2) denote a normal distributed random variable with mean μ and
variance σ2. Its second moment is E

(X 2(μ, σ2)
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= σ2 +μ2. When θ
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Substituting (19) into (18) results
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C Numerical Computation of the Expected Value of the
Hidden Parameters

In the E-step we compute the expected value of the hidden parameters for given
α, Q, R, S and observed data (tk, xk) for k = 1, . . . ,K. For the expected values
of Θ

(k)
i we have
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= αk
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t=0
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x=0

N(t, x)eiei
T N(tk − t, xk − x)1dxdt (21)

where the jth element of vector αk is Pr (J (0) = j) and ei is the ith unit column
vector.

According to (21), (10) and (11), the expected value of Θ
(k)
i is

E(Θ(k)
i ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · [bk(tk − t, xk − x)]i dt dx. (22)
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In a similar manner, the expected value of M
(k)
i,j is

E(M (k)
i,j ) =

∫ xk

x=0

∫ tk

t=0

[fk(t, x)]i · qi,j · [bk(tk − t, xk − x)]j dt dx. (23)
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Abstract. We consider three-tier network architecture modeled with
two physical nodes in tandem where an autonomous agent controls the
number of active resources on each node. We analyse the learning of
auto-scaling strategies in order to optimise both performance and energy
consumption of the whole system. We compare several model-based rein-
forcement learning with model-free Q-learning algorithm. The relevance
of these algorithms is to faster update Q-value function with an addi-
tional planning phase allowed by approximated model of the dynamics of
the environment. Secondly, we consider the same tandem queue scenario
with MMPP (Markov modulated Poisson process) for arrivals. In this
context, the arrival rate is varying over time and this information is hid-
den to the agent. Our goal is to assess the robustness of such model-based
reinforcement learning algorithms in this particular scenario.

Keywords: Model-based reinforcement learning · Tandem queues ·
Energy saving · Cloud · QoS guarantee

1 Introduction

Resource auto-scaling [2] technique is a very efficient solution in data center
owners for adapting resource provisioning to a variable service demand, by set-
ting up activation and deactivation of Virtual Machines (VMs) according to the
workload [6]. However, finding the policy that tailors resources to demand is a
crucial point that requires accurate assessment of both the energy expended and
the performance of the system. Unfortunately, these two measures are inversely
proportional, which motivates researchers to evaluate them simultaneously via
a unique global cost function.

Among others, Markov Decision Process (MDP) has been widely used to
model resource management, it performs actions (activation or deactivation) on
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the resources according to the queue state. Different algorithms exist to find
the optimal policy, but they require the knowledge of the underlying transition
probabilities [23]. On the other hand, Reinforcement Learning (RL) techniques
learn the optimal policy without requiring the knowledge of the statistics of
the system. A model-free reinforcement learning techniques with Q-Learning for
autonomic resource allocation in the cloud was proposed by Dutreilh et al. in [9].
They focus on a single node queuing system where the agent has to control the
number of active resources to satisfy Quality of Service (QoS) constraints. More-
over, [13] proposes Q-learning to derive auto-scaling policies in the cloud and
consider again a single node. Both show that while RL holds great promise for
learning adaptive control policies, it still suffers from slow convergence and detri-
mental random exploration. In this context, model-based reinforcement learning
techniques [18] can decrease exploration steps by learning a model of the envi-
ronment, allowing the agent to update faster the Q-Value by a supplementary
planning phase.

In this paper, we focus on N -tier architectures [12] which are the main soft-
ware application for client-server architectures. We model such network architec-
ture with queues in tandem and consequently consider a three-tier system. The
underlying system is represented by a Semi Markov Decision Process in contin-
uous time with a discounted criteria (a similar SMDP for average case appears
in [16]) but for our RL purpose the agent does not know it precisely.

It exists in the literature several works studying the structure of the optimal
policy in such systems. We refer to [23] for solving a single node system with
hysteresis policies and showing improvement while considering the policy struc-
ture in the MDP algorithms. Also in [16] is shown that under some assumptions
the optimal policy in a tandem queue system is a bang-bang control policy with
monotonicity properties. However, the aim of this work is not to focus on the
structural form of the policy but on the relevance of reinforcement learning algo-
rithms to find the optimal policy. Indeed, Reinforcement learning is a promising
axis in the discipline of queuing systems and many recent papers present RL
solutions for these systems [10]. Our goal is to adopt practitioners model-based
RL approaches [18], especially Dyna architectures [21] to assess their relevance,
if ever, or to improve them for dynamic resource allocation in queuing network
systems. The key contributions of this paper are as follows:

1. We propose two queuing systems for modelling three-tier architectures: tan-
dem queueing model with Poisson arrivals, and then with (MMPP) Markov
modulated Poisson process;

2. We integrate literature considerations regarding experimental comparison of
reinforcement learning algorithms;

3. We implement several versions of Dyna architecture and experimentally show
that model-based reinforcement learning techniques can outperform classical
model-free algorithms such as Q-Learning, on cloud auto-scaling applications;

4. We study the robustness of RL algorithms on a partially observable system
with Markov modulated Poisson process arrivals where arrival rate is varying
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over time and hidden to the agent. Nevertheless, we show that model-based
methods suffer more than Q-learning in changing environments.

The remainder of this paper is organised as follows. Section 2 reviews the
related works. In Sect. 3, we describe the tandem queueing model associated
with the three-tier architecture and the Markov decision process. We also detail
the cost function used to express the reward in terms of performance and energy
consumption. In Sect. 4, we describe model-based reinforcement learning algo-
rithms and discuss about their parameterisation. Section 5 presents the Markov
modulated Poisson process model where the agent is in partial observation mode
as the variation of arrival rate is hidden. Section 6 shows experimental results and
comparison between assessed algorithms. Finally, achieved results are discussed
in the conclusion and comments about further research issues are given.

2 Related Works

We are faced with several challenges: energy consumption reduction, optimal
management in the cloud to satisfy quality of services, queuing model repre-
sentation for cloud architectures and reinforcement learning solution for cloud
resource allocation.

2.1 Energy and Performance Management in the Cloud

Energy consumption increase is one of the many challenges facing large-scale
computing. When the resource utilisation is too low, some of them can be turned
off to save energy, without sacrificing performance. In a data center, the power
consumption can be divided into static and dynamic parts. The static parts
are the base costs of running the data center when being idle and the dynamic
costs depend on the current usage. In [15], a power-aware model was defined
to estimate the dynamic part of energy cost for a virtual machine (VM) of a
given size, this model keeps the philosophy of the pay as you go model but
based on energy consumption. Two main approaches of physical server resource
management have been proposed to improve the energy efficiency: shutdown or
switching on servers or VMs which is referred as dynamic power management
[6], and scaling of the CPU performance referred as Dynamic Voltage and Fre-
quency Scaling [14]. Shutdown strategies (considered here) are often combined
with consolidation algorithms that gather the load on a few servers to favour the
shutdown of the others. Hence, managing energy by switching on or switching
off VM is an intuitive and fairly widespread way to save energy. However, as
quoted in [6], coarse techniques of shutdown are most often not the best solution
to achieve energy reduction. Indeed, shutdown policies suffer from energy and
time losses when switching off and switching on take longer than the idle period.
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2.2 Control Management for Queueing Models and Markov
Decision Process

In order to represent the problems with activations and deactivations of virtual
machines, server farm models have been proposed [1,17]. Usually, these server
farm models are modeled with multi-server queueing systems [4]. Although multi-
server queues allow a fairly fine representation of the dynamicity due to virtu-
alisation, these models do not address issues related to the internal network of
the cloud since all VM are considered as parallel resources. Then, these models
are appropriate for studying simple nodes of several servers but does not extend
to more complex model as N-tier and we must consider more complex queueing
systems.

If queuing models allow us to easily compute performance metrics, the deci-
sion making for switching on or switching off the VM requires an additional step
which remains a key point. The computation of the optimal actions has led to
a large field of researches and methods. Dynamic control and especially Markov
decision Processes appear to be the most direct method. Hence, numerous works
have been devoted to compute optimal policy in multi-server queue models with
MDP (see [23] and references therein). However, Markov Decision Process frame-
work requires a perfect knowledge of the model (queuing statistics such as arrival
or service distributions etc.). Unhappily, these values are not always known in
practice and Reinforcement Learning techniques should be applied to dynamic
resource allocation to overcome this lack of information.

2.3 Three-Tier Software Architecture

A three-tier architecture [12] is a software architecture where the application is
decomposed into three logical tiers: the presentation layer or user interface, the
application layer where data is processed and the data storage layer. This archi-
tecture is widely used in client-server applications such as a web applications.
The main benefit of three-tier architecture is the local decomposition for each
tier on their own infrastructure. Each tier treats a specific task and can be man-
aged independently (scaling, updates, etc.). Currently multi-tier applications are
subject to modernisation, using cloud-native technologies such as containers and
can be instantiated in well-known cloud providers such as Amazon Web Scaling
[3]. Such architectures can be modeled by queuing models especially networks
of queues (see [24]). This makes our tandem multi-queue networks particularly
relevant for modeling a three-tier architecture.

2.4 Reinforcement Learning for Resource Allocation

A very complete survey about reinforcement learning techniques for auto-scaling
in the cloud can be found in [10]. Many works for RL application on cloud
resource allocation problems are presented and different taxonomies about the
resolution techniques, the criteria to optimize as well as the type of problem
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are given (ours is a scaling problem). The vast majority of RL techniques are
model-free: most often Q-learning and Deep Q-learning techniques.

For scaling problems, the seminal model-free proposals [9], considers model-
free Q-Learning algorithm, where an agent has to control the number of resources
to optimise, a cost function taking into account virtual machine costs and SLA.
Most of the following works focus mainly Q-learning algorithm on a single node
but have different optimisation criteria or state space: the work [11] considers
the response time and the average resource utilization and [25] proposes an
approach based on inhomogeneous VM. At last [13] assesses the applicability of
such approaches. Moreover, as far as we know, it does not exist any work about
reinforcement learning for scaling problems with several nodes in tandem.

In [10] only two methods are classified as model-based techniques and these
two works ought to estimate the transition probabilities and thereafter solve
the problem with MDP algorithms. Hence, due to the requirement of having a
complete model of the environment in Model-based methods, [5] estimates the
probability distribution of the transition between states and the planning of the
policy is done in an offline mode. However, as quoted in [18], the model based
framework is larger than the simple models presented in [10]. This, coupled with
the very few amount of works in literature about model-based reinforcement
learning for cloud applications call for further research in this topic and for
comparison of model-free algorithms.

3 Tandem Queue Model

This section presents the behaviour of our three-tier architecture. We describe
the queuing system as well as the transition probabilities and the costs. We
strongly insist that we describe here how the system works and not as it is seen
by the controller agent. The agent’s observation and its knowledge of the system
are described later.

3.1 Model Description

We model the 3-tier software architecture by two nodes (or multi-server stations)
in tandem, where one node acts for one tier: application tier and data tier. Each
node is represented by a multi server queue (or a buffer, where requests wait
for a service) and servers (or Virtual Machines: VMs) which can be activated or
deactivated by a controller. We assume that each node has a finite capacity, let
B1 (resp. B2) the capacity of node 1 (respectively node 2), where the capacity
of the node represents the maximum number of requests either waiting for a
service or in service. Each VM is represented by a server and we define by K1

(respectively K2) the maximum number of usable VMs in node 1 (respectively
node 2) knowing that we must have at least one machine activated. All virtual
machines (VMs) in a given node are homogeneous, and the service rates can
be modelled by an exponential distribution with rate μi for node i (i = 1, 2)
(Fig. 1).
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Fig. 1. Tandem queue representation of three-tier architecture

We suppose that requests arrive in the system only in node 1 and arrivals
follow a Poisson process with parameter λ. When a request arrives in node 1 and
finds B1 customers in node 1, then it is lost. Otherwise, it waits in the queue
until a server becomes free, then after being served in node 1 the request enters
in node 2 unless the second queue is full in which case the request is lost. Once
the request finishes its service in node 2, it leaves the system.

At each transition epoch, a single controller manages the number of activated
VM in each tier and can decide to turn on or turn off virtual machines or to
do nothing. Only one VM can be deactivated or activated in each station each
time. The only actions that the controller can trigger are then activation or
deactivation on each node.

3.2 Semi Markov Decision Process Description

System’s Dynamics. The system state includes the current number of requests
in node 1, denoted by m1, in node 2, denoted by m2, as well as the number of
active servers in node 1, denoted by k1, and in node 2, denoted by k2. Thus, the
state space is defined by S with s = (m1,m2, k1, k2) ∈ S such that 0 ≤ m1 ≤ B1,
0 ≤ m2 ≤ B2, 1 ≤ k1 ≤ K1, and 1 ≤ k2 ≤ K2.

We denote by ai the action available in node i (with i ∈ {1, 2}). It can take
three values: 1 if we activate one VM; −1 if we deactivate one VM; and 0 if the
number is left unchanged. Any action taken by the controller is the couple of
actions in each of the nodes. Hence, the action space is A where a = (a1, a2) ∈ A
with ai ∈ {−1,0,1}.

We describe now the transitions. We consider here that the controller can
observe the system just after any change in the state and reacts. The actions
are instantaneous. We describe now the effects of the controller’s action. Its
knowledge of the system as well as the way it decides which action to perform
are described in Sect. 4. After an action, the system evolves until the next tran-
sition occurs. We define the effect of the action in node i by N(ki + ai) =
min{max{1, ki + ai},Ki}.

So, at state s = (m1,m2, k1, k2), after triggering action a = (a1, a2), the
possible transitions are:



Reinforcement Learning 249

In case of an arrival in queue 1, we move, with rate λ, in:

s′
1 =

(
min(m1 + 1, B1),m2, N(k1 + a1), N(k2 + a2)

)
.

In case of departure from queue 1 and entry in queue 2, we move, with rate
μ1 min(m1, N(k1 + a1)) in:

s′
2 =

(
max(m1−1, 0),min(m2+1, B2), N(k1+a1), N(k2+a2)

)
.

In case of departure from queue 2, we move, with rate μ2 min(m2, N(k2 + a2)),
in:

s′
3 = (m1,max(m2 − 1, 0), N(k1 + a1), N(k2 + a2)) .

We define the transition rate of state-action pair (s, a) by Λ(s, a) such that:

Λ(s, a)=λ + μ1 min{m1, N(k1+a1)} + μ2 min{m2, N(k2+a2)} .

System’s Costs. We approach the problem with a cost-aware model. We intro-
duce here several costs that allow us to manage the trade-off between quality
of services (QoS ) and energy consumption. There are instantaneous costs that
are charged only once where CA denotes the activation cost of a VM, CD its
deactivation cost and CR the cost of rejecting a request. There are accumulated
costs that accumulate over time: CS denote the cost per time unit of using a
VM and CH the cost per time unit of holding a request in the system. In [22] is
presented a way to give values to these costs so that they have a real meaning
regarding cloud infrastructure. Formally, after triggering action a = (a1, a2) in
state s = (m1,m2, k1, k2), the accumulated cost ci at node i equals:

ci(s, a) = Ni(ki + ai) · CS + mi · CH

and the instantaneous cost at node i is equal to:

hi(s, a) = CA · 1{ai=1} + CD · 1{ai=−1} +
λ

Λ(s, a) + γ
CR1{mi=Bi} if i = 1;

hi(s, a) = CA · 1{ai=1} + CD · 1{ai=−1} +
min{m1, N(k1 + a1)} · μ1

Λ(s, a) + γ
CR1{mi=Bi}

if i = 2.
Terms in front of the reject cost CR comes from the probability that the

event is an arrival and the buffer is full.

Objective Function. We consider here a continuous time discounted model. The
discount factor is denoted by γ. We define a Markov Deterministic stationary
policy π as a mapping from state space to action space π : S → A. This mapping
defines the action to be performed in a given state s. From discounted model in
[19], we define the stage cost function R as:

R(s, a)=
1

Λ(s, a)+γ
[c1(s, a) + c2(s, a)] + h1(s, a)+h2(s, a).
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We search the best policy π to minimise the expected discounted expected
reward, then the objective function is:

V ∗(s) = min
π

Eπ

[ ∞∑

k=0

exp−γtk R(sk, π(sk)) | s0 = s

]

, (1)

with tk the epoch and sk the state of the kth transition.

Uniformisation. Most reinforcement learning models and more precisely
model-based applications deal with discrete time scenario. In order to handle
this control model with an RL approach we will uniformise the continuous time
model to obtain a discrete time model on which we can use standard methods
of R.L. some of which are already implemented in R.L. libraries.

The way to proceed (see details in Chap. 11 of [19]) is first to define a constant
which is finite and larger or equal to the maximum transition rate. Here we take
Λ̃ = λ + K1 · μ1 + K2 · μ2. Then, for each state-action couple (s, a) we add a
transition associated with a pseudo event so that the process remains in the
same state s. In (s, a), this transition has rate Λ̃ − (Λ(s, a)) thus the transition
rate is constant with rate Λ̃ regardless (s, a). The transition probabilities in the
uniformised model are denoted by p̃(s′|(s, a)) and are given by:

Λ̃ × p̃(s′|s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ if s′ = s′
1

μ1 min{m1, N(k1 + a1)} if s′ = s′
2

μ2 min{m2, N(k2 + a2)} if s′ = s′
3(

Λ̃ − Λ(s, a)
)

when s′ = s

0 otherwise .

The states s′
2 and s′

3 are defined in the system’s dynamic part above. It exists
only few states for which we naturally jump into the same state (i.e. s′ = s).
These states are such that m1 = B1 and N(k1 + a1) = a1 and N(k2 + a2) = a2

and the event is an arrival. In such cases the transition probability toward s′ = s
is equal to Λ̃ − (Λ(s, a) − λ

)
/Λ̃, see [19].

The stage costs also need to be modified. Now they are given in the discounted
model by:

R̃(s, a) =
Λ(s, a) + γ

Λ̃ + γ
R(s, a) .

Then the Bellman Equation of such a model is:

V ∗(s) = min
a∈A

(R̃(s, a) +
Λ̃

Λ̃ + γ

∑

s′
p̃(s′|(s, a))V ∗(s′)

)
.

Note that this equation is never solved in R.L. methods but we solve it in our
numerical experiments to assess the precision of the algorithms. Indeed its solu-
tion is the theoretical optimal value.
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4 Model-Based Reinforcement Learning

This section is devoted to the reinforcement learning elements. We first recall the
basics of reinforcement learning as presented in [21]. Then, we detail theoretically
and practically some model-based algorithms. Most of them are discussed in
[18]. In this work, we want to compare several tabular value-based model-based
RL algorithms with state of the art model-free algorithms, such as tabular Q-
Learning, in the tandem queue scenario. We would like to know if we can benefit
from learning the model underlying the environment and if it is worth increasing
complexity to speed up convergence.

4.1 Reinforcement Learning

Basics of Reinforcement Learning. A general presentation of Reinforcement
Learning can be found in [21]. This dynamic learning is related to the control
of dynamic systems. It involves an agent which should take actions in an envi-
ronment to maximize some cumulative reward. The environment is a view of
the stochastic system. The theoretical model behind this framework is that of
Markov decision process [19]. It allows to describe the interactions between the
agent and its environment in terms of states, actions, and rewards.

The state space S represents the environment knowing that this one is the
view of the system by the agent. The action space A represents the set of controls
available to the agent. At each step, the agent interacts with the environment
by the mean of an action, it receives a reward. We denote by R(s, a) the imme-
diate reward received after taking action a in state s. The environment behaves
stochastically from step to step and p (s′|(s, a)) denotes the probability to move
in state s′ at the next step after taking action a in state s. However the agent
does not know neither the transition probabilities nor the reward function.

The goal of the agent is to maximise the total discounted reward received
during an episode (or conversely to minimise the cost). For this, the agent has
to determine which actions will bring the greatest long-term benefit and then
determine the best policy π. The return of an episode of length T is defined as
the expected sum of the discounted rewards applying a policy π:

V π(s) = Eπ
( T∑

k=0

γtR(sk, π(sk)) | s0 = s
)

.

When the optimisation criterion is an infinite horizon criterion then the episodes
are repeated many times to approximate the infinite horizon expected cost. We
also define the action-value function (also called Q-function) which represents
the reward received applying action a and then applying policy π:

Qπ(s, a) = R̃(s, a) + γ
∑

s′
p(s′|(s, a))V π(s′) .

We have Vπ(s) = arg maxa Qπ(s, a) and π∗ = arg maxπ Vπ.
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Model-Free and Model-Based Definition. A model M mimics the dynamics
behaviour of the environment. Given a state s and an action a, it predicts the
next state s′ and the reward R(s, a). Basically, we have M = {p,R}. In rein-
forcement learning scenarios, such model is unknown and a learning is needed
to overcome this lack of information by updating online the policy or the value
function. Thus two frameworks exist: model-free learning in which agent updates
its policy or value function directly from experience; and model-based learning
in which agent tries to approximate the model M. So agent can do planning
and update its value function or policy. The RL agent performs planning by
sampling trajectories with its model using past experiences and updating its
value function again with Q-learning update. A major benefit of model-based
techniques is that it requires limited amount of experience and will achieve a
better policy with fewer interactions.

The Reinforcement Learning Model. We are dealing with a RL model
therefore the uniformised model of Sect. 3 is not known by the controller. Indeed,
the controller does not have any information about queuing statistics (arrival
rate, etc.), therefore does not know the dynamics of the system. The environment
has state space S and action space A similarly as the SMDP model. The discount
factor equals Λ̃/(Λ̃ + γ). When the agent interacts with the environment, the
SMDP model is simulated. It will behave by returning a state, sampled according
to the uniformised transition probabilities p̃, and return the uniformised costs
R̃(s, a). The cost and the new state are the only information that the controller
will discover.

We consider in this work countable discrete state space where the agent
can evaluate value function, policy, transition and reward matrices with tabular
forms. We want to minimise the expected discounted cumulative costs.

4.2 Advanced Model-Based Algorithms

We present now the model-based framework (see details in [18]). The generic
model-based reinforcement learning algorithm is given in pseudo-code in Algo-
rithm 1 and its different steps are detailed below.

Algorithms Architectures. For this purpose we implemented several ver-
sions of the Dyna-Q architecture [21]. The generic Dyna-Q algorithm behaves as
follow: the RL agent interacts with the real system and directly updates from
experiences its value function Q (model-free update). In the same stage, it also
learns a model M of the dynamics of the environment. Its model M acts as a
predictor to know what will be the next state s′ and reward r when it chooses
action a in state s. Then the agent can do a planning phase by simulating tra-
jectories with M to additionally update its Q value function or policy.

What Model to Learn. The difference between assessed algorithms relies in the
model choice. We describe two different model-based process: buffer-oriented and
model-oriented which we refer respectively as Dyna-Q-buffer and Dyna-Q-model.



Reinforcement Learning 253

In the offline planning phase, the first process will sample trajectories with
past experiences stored in a buffer, thus calling agent’s memory. It will plan
with M(s, a) to predict new state s′ and reward r from past experiences. We
can consider this method as model-based method assuming the environment is
deterministic. After each transition st, at → rt+1, st+1, the model maintains in
its memory for the couple st, at the prediction of the values of rt+1, st+1. This
prediction is a deterministic mapping from the couple st, at. Thus, if the model is
called for a state-action pair (s, a) that has been observed before, it will returns
the last-observed next state and next reward as its prediction.

The second process aims to learn a model of the dynamics of the environment,
i.e. transition probabilities p̄ and reward function R̄. The agent will be able to
generate trajectories with the learned model: s′, r ← p̄(s, a), R̄(s, a) and estimate
the return to update its value function. In model-oriented algorithms, we consider
tabular representation of transition matrix p̃ and reward matrix R as a model
for the agent. Updating the model means to approximate p̃ and R by counting
occurrences in tuples (s, a) and (s, a, s′):

p̄(s′|(a, s)) =
#(s, a, s′)
#(s, a)

Buffer Replay for Planning. After interaction with the environment, RL agents
can store their past experiences in a buffer and can reuse these experiments to
do offline planning. The algorithms randomly samples only from state-action
pairs that have previously been experienced. So the model is never queried with
a pair about which it has no information. Prioritised sweeping [21] is a heuris-
tic that rearranges the buffer so agent can plan with efficient tuples. It sorts
the replay buffer with TD-error criteria. The algorithm moves tuples with high-
est TD-error at the beginning of the replay buffer so the agent can re-update
its Q-value function on these uncertain tuples when planning. This process is
integrated in two previous algorithms and we denote: Dyna-Q-buffer-prior and
Dyna-Q-model-prior. Finally, Dyna-Q-+ [21] is an extended version of Dyna-Q
algorithm in which the agent keeps track of time steps elapsed since the last
trial of a pair and encourages with extra reward exploration of long-time unseen
pairs. Again, we extend our two main algorithms with this extended version: we
will refer to Dyna-Q-buffer-plus and Dyna-Q-model-plus.

Algorithms Parameterisation. In this part, we describe the different ele-
ments on which we can operate in the model-based algorithms. Indeed, many
factors affect the quality of learning: the frequency of model update and the
different planning parameters (frequency, state space browsing).

When to Update Model. Knowing when to update the model is a complex task.
Indeed, updating the model too often will increase complexity and, during the
early phase of learning, agent will plan using a very poor precision approximated
model.
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Integration Planning and Learning. In [21], Dyna-Q algorithm does planning
at every iteration. When the agent performs an action in the real system, it
stores the experience tuple in the buffer and do planning steps just after. This
has proven to outperform classical model-free techniques such as Q-learning on
simple environments with small state space such as games (mazes, etc.). However,
this can be too costly in network systems where the state space includes many
metrics such as number of packets, number of resources, etc. This raises the
question of how frequently an agent should do planning.

Planning Depth and Breadth. An autonomous agent can do planning with a
model to imagine consequences of a policy or actions. Based on a model of the
dynamics of the environment, he can memorise a given state s, then imagine an
action a = π(s) and evaluate its consequences with the model s′, r = M(s, a).
Now, an agent can perform two imaginary evaluations. Either it starts from a
state s and evaluates an episode (depth), or it browses the state space in large
and evaluates some actions in multiple independent states s (breadth). Several
parameterisation were assessed in this work but only one will be displayed in the
results for ease of comparison between model-free and dyna-based algorithms.
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5 Robustness of Model-Based RL

In this section we want to assess robustness of reinforcement learning algorithms
and especially model-based algorithms. For this purpose, we consider variations
in the requests arrival rate with Markov Modulated Poisson Process system.
However, these variations remain ignored by the agent which expects a constant
intensity. We study how the algorithms react to sudden and large increases of
packet arrivals and if they can quickly adapt their policy to overcome bursts
traffic. This is a key element in network in which statistics are often not very
precise. This is all the more important for model-based methods, since it was
quoted in [10] that offline policies might no be adequate as soon as there exist
changes in the dynamics of the environment. We think that this lack of flexibility
comes from the offline learning of the policy in model-based methods. The offline
learning is done from a predefined model which does not allow to adapt to
changes in the dynamics of the environment.

5.1 Markov Modulated Poisson Process

We modify now the arrival process. We want to integrate a variability feature
and we consider a Markov modulated Poisson process (MMPP) where arrival
rates vary over time. The process switches between different Poisson process
which differ by their intensity indicated by their arrival rate λj . We assume we
have J phases corresponding to a specific arrival rate λj . The switch between
the phases follows a continuous time Markov chain. It is represented by a birth
and death process [20] with rates Q. We move from phase j to phase j + 1 with
rate qj,j+1 and from phase j to phase j − 1 with rate qj,j−1. Usually [20], qj,j+1

and qj,j−1 for all j are much smaller than arrival rates {λj}j . We extend the
previous state s = (m1,m2, k1, k2) to a new state representation integrating the
phase:

s = (m1,m2, k1, k2, j)

with λj the current arrival rate in phase j.
In our model, we assume that J = 2. The first phase is considered as normal

and the second phase called burst is a phase with a very high intensity. We denote
by q1,2 the transition rate from phase 1 to phase 2 and by q2,1 the transition
rate from phase 2 to phase 1.

MMPP System’s Dynamics. We need to integrate new phase transitions in the
whole environment dynamics. Under one phase j, we have the dynamics detailed
in Sect. 3.2 for arrival rate λj . The system can have two additional events corre-
sponding to a change of its phase, i.e. the current arrival rate changes. Thus:

We move from s =
(
j,m1,m2, N(k1 + a1), N(k2 + a2)) with rate qj,j+1 to

s′
4 = (m1,m2, N(k1 + a1), N(k2 + a2), j + 1

)
, from s =

(
j,m1,m2, N(k1 +

a1), N(k2 +a2)) with rate qj,j−1 to s′
5 = (m1,m2, N(k1 +a1), N(k2 +a2), j −1

)
.

We define the new transition rate by state by Λ(s, a) such that:
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Λ(s, a)=qj,j+1+qj,j−1+λj +μ1 min{m1, N(k1+a1)}+μ2 min{m2, N(k2+a2)}
The cost function remains the same since variation in the arrival rate does not
induce additional costs.

MMPP Uniformisation. For the MMPP uniformisation process we take Λ̃ =
maxjqj,j+1+maxjqj,j−1+maxjλj +K1 ·μ1+K2 ·μ2. Then, for each state-action
couple (s, a) we add a transition associated with a pseudo event so that the
process remains in the same state s. In (s, a), this transition has rate Λ̃−Λ(s, a)
such that the transition rate of the whole point process is constant with rate
Λ̃ regardless (s, a). The transition probabilities in the uniformised model are
denoted by p̃(s′|(s, a)) and satisfy:

Λ̃ × p̃(s′|s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λj if s′ = s′
1

μ1 · min{m1, N(k1 + a1)} if s′ = s′
2

μ2 · min{m2, N(k2 + a2)} if s′ = s′
3

qj,j+1 if s′ = s′
4

qj,j−1 if s′ = s′
5(

Λ̃ − Λ(s, a)
)

when s′ = s

0 otherwise

.

Similarly as before, the states for which it exists a natural jump into the same
state are those already described for which the event is an arrival. In such a case
the transition probability toward s′ = s is equal to

(
Λ̃ − (Λ(s, a) − λ

))
/Λ̃.

5.2 Partially Observable System

As already said, we consider a model with variation of arrivals, thus the system
behaves as the SMDP described just above and the system state is described
by s = (m1,m2, k1, k2, j). However, we assume that the learning agent ignores
these variations. Hence, the system can be only observed partially and the envi-
ronment state is described by o = (m1,m2, k1, k2). In this way, the two system
states (m1,m2, k1, k2, 1) and (m1,m2, k1, k2, 2) translate in the same environ-
ment state (m1,m2, k1, k2). The goal is to assess and compare the robustness of
reinforcement learning algorithms in the context where the agent does not have
knowledge of an explanatory variable.

6 Experimental Results

6.1 Comparison Criteria Between Algorithms

Directly adapting methods to compare algorithms used by practitioners is prov-
ing to have little relevance and utility. We adopt the guidelines proposed in the
guide for rigorous comparisons of reinforcement learning algorithms [8]. Compar-
isons are divided into two main parts: comparison while learning and comparison
after learning on test environment.
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Learning Curves Comparison. First, we compare different algorithms during
the learning phase. Instead of only comparing the final performances of the RL
methods after t timesteps in test environment, we can compare performances
along learning. Indeed, performance measures while learning are represented by
a learning curve. This reveal differences in speed of convergence and can provide
more robust comparisons.

Test Policy Comparison. RL algorithms should also be assessed offline. The algo-
rithm performance after t iterations is measured as the average of the returns
over N evaluation episodes conducted independently after training. The evalua-
tion is done implementing the policy π returned by the RL method at step t.

Comparison Criteria Used. Based on literature and experimental considerations,
we devised our own comparison criteria, mainly for the learning comparison
between algorithms. We express two comparisons regarding learning curves. The
first one is the mean reward obtained after each learning episodes e. The second
one is the value function V for a given state s which is retrieved at the end of
each episode by:

V (s) = maxaQ(s, a)

The mean reward during an episode e is the average discounted reward
obtained over the learning episode. These two curves indicates how fast the
convergence is and how quickly RL algorithms can adapt the policy in envi-
ronment with changes such as Sect. 5.1. After learning, we evaluate the learned
policy of each algorithm in a test environment. We evaluate all policies in Monte
Carlo simulations (starting from a state s0) for 50 episodes of 10000 iterations.
We finally take the mean discounted reward obtained overall and can compare
the goodness of the algorithms. We also compare our results with the optimal
value V (s0) obtained by MDP policy computed with Value Iteration and which
serves as a baseline.

6.2 Environments and Simulation Parameters

Gym Environments. OpenAI Gym [7] is a toolkit for developing and compar-
ing reinforcement learning algorithms. We developed a python simulator under
a Gym environment to simulate the tandem queue model. Two environments
were implemented: Environment 1 represents the tandem queue model and
Environment 2 represents the model with MMPP. The goal is to compare
model-based and model-free algorithms on both environments.

Parameters. We ran multiple simulations on both environments. We first
describe cloud simulations parameters that are common to all experiments. We
focus on one main cloud scenario: B1 = B2 = 10, K1 = K2 = 3 and costs:
{Ca = 1, Cd = 1, Cs = 2, Ch = 2, Cr = 10} and on a larger scale scenario
B1 = B2 = 40, K1 = K2 = 5. Learning phase runs for 450 episodes of length
10000 iterations. One iteration corresponds to a transition from state s with
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action a to state s′ with reward r. The agent runs epsilon-greedy policy over
the whole learning process, with initial epsilon set to ε = 1 and epsilon decay
εdec = 0.99. We decrease epsilon value after each episode. The discount rate
is set to γ = 0.9. Despite our discussion about the algorithms parameterisa-
tion, in this paper experiments are performed with only one set of parameters.
This includes frequency update of the model (for model algorithms, frequency
of planning phases and the depth of the planning phase (number of planning
iterations).

6.3 Results

First, we display experimental results for the environment 1 with the normal
scenario. In this case, we consider the two families of model-based algorithms:
model -oriented or buffer -oriented. Next, we leave aside model -oriented algo-
rithms and we provide a comparison on the large scale cloud scenario to confirm
the preliminary results related to buffer -oriented methods. At last, we provide
experimental results on the MMPP environment.

Moreover, during the first environment study, we seek to consider two quan-
titative elements: the quantity of interactions as well as the execution time.
Indeed, these are two important elements for a machine learning analyst. It must
be noticed that, due to the offline updates, the complexities of the model-based
algorithms are greater than these of model-free algorithms. Thus model-based
algorithms have a larger running time for the same number of interactions with
the environment. Henceforth, we provide two comparisons: one where the num-
ber of interactions are the same between model-based algorithms and Q-learning
and a second one where the running times are the same. In this second case, this
means that Q-learning does additional iterations and requires more interactions.

First Environment Experiments

Learning Curves Comparison. We display in Fig. 2 the mean reward obtained
during learning episodes for all algorithms and observe a gain from dyna-Q-
buffer and dyna-Q-buffer-plus methods compared to Q-learning. We first see
from Fig. 2 that model -oriented algorithms suffers compared to buffer -oriented
algorithms. Indeed, we observe poor performances and a very high execution
time for these methods. In Fig. 3 is displayed value function of a given state s
over learning episodes. On the left hand side is given the value function for a same
number of online iterations between Q-learning and dyna-sampling methods and
on the right hand side is given the value function where Q-learning has more
online iterations to compensate the lack of offline update. Again, we see that
dyna-Q-buffer and dyna-Q-buffer-plus converge much faster than Q-learning.
Unfortunately, we obtain poor performances with prioritised sweeping heuristic
and this requires more work to fine-tune this method.



Reinforcement Learning 259

Fig. 2. Mean reward over learning episodes in tandem queue environment

Policies Comparison in Test Environments. We also compare algorithms by eval-
uating their learned policies in test environment. We provide to them the same
amount of learning time (Fig. 3 right hand side). We run the obtained policy in
a test environment for an evaluation which takes the average discounted reward
(return) obtained starting from a given state s. We can see that buffer-oriented
methods have converged while Q-learning has not. We do not display here model-
oriented algorithms with model approximation of p̃ since we have already shown
in learning curves their bad efficiency, due to poor offline planning update with
p̃,R. We observe in Table 1 that model-based buffer -oriented methods outper-
form Q-learning and are very close to the MDP policy performances.

Table 1. Mean cost over test episodes for policy evaluation after fixed period of learning

Algorithms policy Mean cost
Env 1

Mean cost Env 1
larger scale

Mean cost
Env 2

Random policy 3,37 3.47 3,58

MDP policy 2,25 2.73 Unknown

Q-learning 2,45 3.17 2,63

Dyna-Q-buffer 2,26 2,84 3,05

Dyna-Q-buffer-plus 2,26 2,87 2,92

Dyna-Q-buffer-prior 2,6 3,2 3,11
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Fig. 3. Value function for a given state s (left hand-side for same number of online
interactions, right hand-side for same number of iterations overall)

Larger Scale Scenario. We consider a larger scale cloud scenario (B1 = B2 =
40,K1 = K2 = 5) and compare buffer -oriented methods with Q-learning. Again,
we do not include model -oriented algorithms for this higher scale comparison,
neither buffer -oriented prioritised sweeping algorithm. We provide learning per-
formances in Fig. 4 and show policy evaluation in Table 1. We demonstrate again
that buffer -oriented techniques have better performances than Q-learning for a
same learning time.

Concluding Remarks. First we show in the environment 1 that model-oriented
algorithms denoted model are not efficient due to an extreme increase of complex-
ity and planning with low precision of the approximation of transitions. We also
exhibit that buffer -oriented techniques provide better performances than model-
free Q-learning, by accelerating the convergence. This appears in the learning
curves and on policy evaluation in test environments.

MMPP Environment Experiments

Environment Characteristics. We consider a scenario where burst arrivals can
appear. The goal is to assess robustness of RL algorithms to sudden changes in
the system. Arrival rates λj can take two values: 5, 20. We define transition rate
between phases by: q0,1 = 1 and q1,0 = 10. This leads to low chances to have
burst phase and when it happens to remain in this phase a very short amount
of time. We compare model-based buffer -oriented algorithms with Q-learning
on learning phase and test phase with evaluation of learned policies, on the low
scale cloud scenario (B1 = B2 = 10,K1 = K2 = 3).

Policy Evaluation. We show that model-based techniques suffers from variation
in queuing statistics. We can see in Table 1 that mean cost measured after sim-
ulations is better in model-free technique compared to model-based ones for a
same learning time. One explanation is that model-based RL agent keeps updat-
ing its value function based on an outdated model of the world. Therefore, they
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Fig. 4. Average reward over learning episodes in tandem queue environment with larger
scale

do not integrate new dynamics change and blend model-free update with model-
based update resulting in poor performances. These findings confirm theoretical
assumptions about model-based techniques for varying environment. The MDP
policy computation is still in progress for further comparison about mean reward.

Concluding Remarks. We illustrate that model-based RL algorithms are not
robust to environment changes, especially varying queuing statistics such as
arrival rate. We show on policy’s evaluation in test environments that Q-learning
performs better than model-based algorithms after a same learning time. Thus
we can conclude that model-based methods are not robust (in line with [18])
to changes in statistics. This is due to the fact that the agent updates its value
function with an outdated model for a certain time therefore fading the model-
free update.

7 Conclusion

In this paper we have shown that Dyna-buffer-based algorithms were outper-
forming model-free Q-learning algorithm in the tandem queue environment,
thus demonstrating the sample-efficiency and faster convergence of model-based
algorithms. Yet, model-oriented algorithms are suffering of high complexity and
dynamics poor approximation. We underline that the approach presented here
can be applied to more general network models and with a large set of distri-
butions for arrivals or services and even directly by using traffic traces of cloud
platforms. We expect these results would be still valid in these cases.
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This work raises several perspectives. First, we plan to apply the approach
presented here on a real cloud platform. Secondly, we want to extend this work
to network of queues with multiple nodes. This is namely very relevant in the
field of 5G slicing for the dynamic allocation of resources according to the QoS
(Quality of service) constraints of the different classes of slices. We also want
to consider larger-scale scenarios where we might have to approximate policy,
value function or models with functional forms such as neural networks, linear
approximation, Gaussian processes, etc.
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Abstract. Design and maintenance of reliable manufacturing systems
calls for the development of formal models that allow for performance
analysis. We consider the class of manufacturing systems such that the
production of a workpiece consists of a sequence of manufacturing stages
performed by fault-prone, repairable, workstations, equipped with finite-
sized input buffers. We name this kind of systems production lines. Rely-
ing on an expressive property specification formalism, namely the hybrid
automata specification language, we introduce a framework that allows
for 1) the automatic generation of stochastic Petri nets models of arbi-
trary sized production lines and 2) the generation of a number of sophisti-
cated performance indicators (in terms of hybrid automata) for analysing
the dynamics of a production line. We validate our approach by present-
ing a number of experiments executed by means of the statistical model
checker Cosmos.

Keywords: Manufacturing systems · Hybrid automata specifications ·
Statistical model checking

1 Introduction

The design of modern industrial production systems is strongly affected by prod-
uct quality and delivery reliability requirements. The ability to guarantee that
products are issued within given time deadlines and that they match given qual-
ity standards are essential factors throughout the design and maintenance of a
manufacturing system. In this paper we consider synchronous production lines,
namely production systems consisting of a sequence of unreliable machines sep-
arated by finite-size buffers (where pieces are temporally stored throughout the
intermediate phases of manufacturing) and whose dynamics is of a strongly syn-
chronous nature. As shown in previous works (e.g., [5,6,12–14]), this kind of
production systems are suitable to be modelled through discrete-time Markov
chains (DTMCs). Relying on the statistical model checking (SMC) framework
Cosmos [15], in this paper we introduce an integrated framework for formal
modeling and performance analysis of production lines. Our framework allows
c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 264–281, 2021.
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for the generation of a stochastic Petri net representation of a production line
of arbitrary size (i.e. arbitrary number of production machines and buffers’ size)
and, at the same, to introduce a number of sophisticated key performance indi-
cators (KPIs) formally defined through a property language which uses hybrid
automata as a formalism to specify a performance indicators (namely the hybrid
automata specification language (HASL) [9]).

The paper is organized as follows: Sect. 2 describes the production lines class
of systems. Section 3 gives an overview of the HASL model checking framework,
including the stochastic Petri net formalism it refers to. Section 4 shows the main
contribution of the paper, namely the Petri net encoding of production lines and
the definition of a few production lines related KPIs in HASL terms. In Sect. 5
we present experiments demonstrating the proposed framework. Conclusions are
drawn in Sect. 7.

2 Production Line Systems

A linear production system (or production line for short) is a type of manufactur-
ing system in which parts visit a number of workstations (called also machines)
in a fixed order (see Fig. 1) and following a single path (no branching). Machines
process one part per time unit. In many industries there are production pro-
cesses that can be described by such a simple model, for example food industry,
automotive industry, paper industry, or semiconductor manufacturing.

M1 M2B1 B2 MnBn−1

Fig. 1. A production line with n machines.

In this paper we assume two-state machines: a machine can be either up (or
UP or U for short) or broken (or DOWN or D for short). The state of a machine
changes in a random fashion. In each time unit (called also slot) an operational
machine can break with probability pi, 1 ≤ i ≤ n, where n is the number of
machines. A broken down machine gets instead repaired with probability ri,
1 ≤ i ≤ n. Standalone availability of a given machine Mi, i.e., the probability
that Mi is up assuming that it is not affected by the rest of the system, can be
calculated simply as ri/(ri + pi).

Between two adjacent machines there is a buffer where parts can be stored.
Accordingly, the number of buffers is n − 1. The capacity of the ith buffer, i.e.,
the number of parts it can hold, is denoted by ni with 1 ≤ i ≤ n − 1.

We refer to the ith machine by Mi and to the ith buffer by Bi. As for
terminology, Bi is called the upstream buffer of Mi+1 and the downstream buffer
of Mi. The first machine does not have an upstream buffer and we assume that
parts are always available to the first machine (it never gets starved). The last
machine does not have a downstream buffer and we assume that it can always
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output processed parts (i.e., it never gets blocked because of its full downstream
buffer).

A machine is operational if it is UP , its upstream buffer is not empty (i.e.,
it is not starved) and its downstream buffer is not full (i.e., it is not blocked).
An important and natural assumption to keep in mind is that only operational
machines can break down. In other words, a machine that is UP but starved
and/or blocked cannot break down, it remains in its UP state.

Let us turn our attention to the dynamics of the model. As already men-
tioned, we assume that things happen in slots, i.e., we have a discrete time
model. We can think of the update of the state of the model in a time unit as a
two-phase procedure: first, the states of all the machines are determined (proba-
bilistically) then the buffer occupancies are changed accordingly. If machine Mi

is operational and does not break down (which happens with probability 1− pi)
then it takes one part from its upstream buffer and puts one part in its down-
stream buffer. If it breaks down then it does not move any part. If it is UP but
either starved or blocked or both then it remains UP with probability 1 and
does not move any part. If machine Mi is DOWN then it gets repaired with
probability ri and in the same slot it can move a part from its upstream buffer
to its downstream buffer. If it remains DOWN (this happens with probability
1 − ri) then it does not move any part.

The state of the model is given by the state of the machines and the number
of parts in the buffers, i.e. by a (2n − 1)-tuple of the form

(m1, b1,m2, b2, . . . bn−1,mn)

where mi ∈ {U,D} is the state of the i-th machine and bi ∈ {0, . . . ni} is the
number of parts in buffer Bi. The stochastic process at hand is a discrete time
Markov chain (DTMC).

In order to give an example for a transition of the DTMC, consider a line
with three machines being in the state (U, 4,D, 0, U) with buffer sizes n1 = n2 =
10. Accordingly, the last machine is starved and cannot change state. The first
machine either breaks down or remains up and the second either gets repaired or
remains down. This means that there are four possible transitions with associated
probabilities as follow

(U, 4,D, 0, U)
(1−p1)·(1−r2)−−−−−−−−−→ (U, 5,D, 0, U), (U, 4,D, 0, U)

p1·r2−−−→ (D, 3, U, 1, U)

(U, 4,D, 0, U)
(1−p1)·r2−−−−−−→ (U, 4, U, 1, U), (U, 4,D, 0, U)

p1·(1−r2)−−−−−−→ (D, 4,D, 0, U)

Figure 2 shows the complete state-transition graph of the DTMC for a 2
machines line and assuming n1 = 4 as the size of the single buffer (for the sake
of space we denote p = 1 − p). Assuming that the initial state is (U, 0, U) the
number of reachable states is 13. Note that the initial state is transient meaning
that the system cannot reach it once it is left. The state space is irregular close
to the boundaries (empty or full buffer). For example, having the buffer full is
possible only with M1 up and M2 down.
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Fig. 2. The DTMC for the MBM system with buffer size n1=4 consists of 13 states.

3 HASL Model Checking

In order to develop our framework for formal modelling and performance anal-
ysis of production lines (see Sect. 4) we rely on the HASL [9] statistical model
checking (SMC) platform and the Cosmos tool [10,15]. SMC approaches [3]
spread out as of early 2000 as an alternative to classical numerical probabilis-
tic model checking approaches [7,16] which, requiring the storage of a model’s
state-space, do not scale up w.r.t. the model’s dimension. The overall idea with
SMC is to obtain an estimate of some performance indicator (i.e. property) by
sampling of (finite length) paths issued by stochastic simulation of the model: as
a consequence there’s no need to build, hence to store, the model’s state space,
therefore SMC can be applied even to infinite-state systems. The property to
estimate is formally expressed either as a temporal logic formula (associated
to a given grammar) or through an automata formalism (e.g. timed-automata,
hybrid automata).

HASL-SMC Scheme. The HASL model checker (Fig. 3) takes 3 inputs: a
discrete-state stochastic process, belonging to a very generic class which we sim-
ply name Discrete Event Stochastic Process (DESP), denoted M, a linear hybrid
automaton (LHA), denoted A, and a target expression denoted Z. The model
checker iteratively simulates paths from the product process M × A (see below
for details about M × A semantics) ending the simulation of a path as soon
as either the path reaches an accepting location of A (in which case the val-
ues stored in A’s variables are used for estimating Z), or the simulation halts
(because a deadlock state of M × A is reached), in which case the path, as well
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as the values of A’s variables, are discarded. Therefore A can be seen as a filter
of paths σ sampled from M: the accepted σ are used to produce the output, i.e.
the confidence interval of the sample mean value Z, which means that the true
mean value of Z falls in the estimated interval is [Z − δ, Z + δ] with probability
ε, where ε is the chosen confidence level and δ the chosen width of the interval
(both ε and δ being auxiliary inputs of the model checker).

SYSTEM PROPERTY / MEASURE

EXPR.

A
LHADiscrete Event 

Stochastic Process

D

width: δ
conf:

[Z−δ, Z+δ]

HASL
MODEL

CHECKER

Z

Conf-Interval 
parameters

Expression
(target measure)

Hybrid Automata
(accepted paths)

Fig. 3. HASL-SMC schema: sampled paths are filtered by a LHA and the accepted
ones used for a confidence interval estimate of the target measure.

Discrete Event Stochastic Processes and Paths. HASL-SMC refers to a
generic class of stochastic processes, named DESP, which subsumes, but is not
limited to, Markov chains. A DESP is a discrete-state stochastic process with
no specific restriction imposed on the type of probability distributions used to
model the delay with which an event occurs. Therefore the time at which an
event occurs can be described by any form of probability distribution, including,
e.g., discrete Dirac distributions. For the sake of simplicity we omit here the
formal definition of DESP [9]. Intuitively a DESP is characterised by a set of
states S, a set of events E (describing the possible kind of state transitions),
plus a number of auxiliary functions capturing the relevant stochastic aspects
of the model (e.g. the probability distribution associated to each event). The
notion of path of a DESP is relevant for understanding the semantics of tem-
poral logic properties. For M a DESP model we denote Path(M) the set of
possible paths of M where a path σ ∈ Path(M) is a (possibly infinite) sequence

σ = s0
t0−→ s1

t1−→ s2
t2−→ . . .

tn−1−−−→ sn . . . with ti ∈ R>0 being the sojourn-time
in state si ∈ S. Alternatively we may adopt the following enriched notation
σ=s0

0.25−−→
e1j

s1
0.5−−→
e2j

s2
0.15−−→
e3j

s3
1−−→

e4j
. . . where eij indicates that event ej occurred

on the i-th transition of the path. Notice that trajectories of DESP are càdlàg
(i.e. step) functions of time (e.g. blue plot in Fig. 5). It can be shown that a
DESP model M induces a probability space over the set of events 2Path(M),



Performance Analysis of Production Lines 269

where the probability of a set of paths E ∈ 2Path(M) is given by the probability
of their common finite prefix [8].

Petri Nets Representation of DESP. For practical reasons HASL-SMC (and
the Cosmos tool) uses Petri nets as a high-level formalism for representing DESP
models. Specifically HASL uses the non-Markovian generalisation of Generalised
Stochastic Petri Nets (GSPN) [4] as the modelling language for DESPs. For the
sake of space here we only give a very short account of the GSPN formalism that
we use for characterising the models of production lines (see Sect. 4): we take
for granted the basics about Petri nets (i.e. the notion of token game, transition
enabling/firing, input/output/inhibitor arcs). We refer the reader to [9] for an
exhaustive treatment.

Fig. 4. Example of non-Markovian extension of a GSPN model.

A GSPN model is a bipartite graph consisting of two classes of nodes: places
(circles), which may contain tokens, and transitions (bars), which describe how
tokens move between places. The state of a GSPN is given by the marking
(number of tokens in each one) of its places. Transitions of a GSPN can be
either timed (denoted by thick bars) or immediate (denoted by filled-in thin
bars). Immediate transitions represent activities that do not consume time: typ-
ically they are used either to disambiguate between non-deterministic choices
(through priorities) or to model a probabilistic choice (by means of weights).
Stochastic timed transitions are used to model time consuming events. With non-
Markovian GSPN (NMGSPN) we distinguish between Exponentially distributed
(thick, empty bars) and Generally distributed (thick, filled-in bars) timed transi-
tions. In order to disambiguate concurrent occurrence of timed transitions (which
may exist in case e.g. of Dirac distributions) a weight value is associated even
to generally distributed timed transitions (the weight is used to probabilistically
choose one out of several concurrently occurring timed transition).

Figure 4 shows an example of NMGSPN representing the dynamic of a pro-
duction machine that can undergo faults and repairs and that is equipped with
an output buffer. Mutually exclusive places Up and Dw represent the current
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operational (Up) or broken (Dw) state of the machine. Place B is the output
buffer. The 2 pairs of immediate transitions brk (weight), nbrk (weight w =p1,
resp. w=1−p1) and rep, nrep (weight w=r1, resp. w=1−r1) are used to model
probabilistic choices representing the probability that the machine breaks down,
when operational (i.e. p1), and that it gets repaired, when broken (i.e. r1). Three
time consuming activities are modelled through timed transitions: next, which
is assumed to follow an Exponential distribution of rate 1.0 (Exponential transi-
tions are depicted by thick empty rectangles) and tnwork and twork, which are
assumed to follow a Deterministic (Dirac) distribution of duration 1.0 (transi-
tions following a General distribution are depicted by thick filled-in rectangles).
Furthermore notice that, because of the inhibitor arc, transitions brk and nbrk
are enabled only when place B is empty. Finally observe that the priority value
of each transition is, by default, equal to 1, hence no priority is considered in
this example as it will be the case for all models discussed in this paper.

Hybrid Automaton as Property Specification. The driving principle of
HASL model checking is that of employing a LHA as a path selector through
synchronisation with the considered model M. A HASL-LHA A has access to
certain elements of model M, namely the events and the state-variables of M.
Formally a LHA for HASL is defined as an n-tuple:

A = 〈E,L,Λ, Init ,Final ,X,flow,→〉

where: E is a finite alphabet of events (the transitions of the GSPN represen-
tation of of M that drive the synchronisation); L is a finite set of locations;
Λ : L → Prop, a location labelling function (Prop being the set of atomic
proposition built on top of variables X); Init is a subset of L called the initial
locations; Final is a subset of L called the final locations; X = (x1, ...xn) a
n-tuple of data variables; flow : L �→ Indn is a function which gives for each
location the rate at which variable xi evolves (where the rate for variable xi is
given by an indicator function that depends on the state of the model Mθ);
→⊆ L × (

(Const × 2E) 	 (lConst × {�})
) × Up × L, a set of edges, where the

notation l
γ,E′,U−−−−→ l′ means that (l, γ, E′, U, l′) ∈→, with Const the set of con-

straints, whose elements are boolean combinations of inequalities of the form∑
1≤i≤n αixi + c ≺ 0 where αi and c are constants, ≺∈{=, <,>,≤,≥}, whereas

lConst is the set of left-closed constraints. Selection of a model’s trajectories
with an automaton A is achieved through synchronization of M with A, i.e.
by letting A synchronises its transitions with the transitions of the trajectory σ
being sampled. To this aim, an LHA for HASL admits two kinds of transitions:
synchronizing transitions (associated with a subset E ⊆ Σ of event names, with
ALL denoting Σ), which may be traversed when an event (in E) is observed on
σ (for example a reaction occurs), and autonomous transitions (denoted by �)
which are traversed autonomously (and have priority over synchronised transi-
tions), on given conditions, typically to update relevant statistics or to terminate
(accept) the analysis of σ.
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Synchronisation of Model and LHA. The synchronisation of M with A
boils down to the characterisation of the so-called product process M×A whose
semantics we describe intuitively here (referring the reader to [9] for its formal
characterisation). For M a DESP with state space S and A a LHA with loca-
tions L and variables X the states of M × A are triples (s, l, ν) where s ∈ S is
the current state of M, l ∈ L is the current location of A and ν : X → R

|X|

is the current value of the variables of A. The semantics of M × A naturally
yields a stochastic simulation procedure which is implemented by the HASL
model checker. The paths of M × A sampled by the HASL simulator are com-
posed of two kinds of transitions: synchronising transitions, that correspond to
a simultaneous occurrence of a transition in M and one in A, as opposed to,
autonomous transitions, that correspond to the occurrence of a transition in A
without any correspondence in M. Therefore a path of M × A can be seen as
the result of the synchronisation of a path σ of M with A (or conversely we
may say that a path of M × A always admits a projection over M). Given σ a
path of M we denote σ × A the corresponding path of M × A. For example if
σ : s

t1−→
e1

s1
t2−→
e2

s2 . . . is a path of M such that after sojourning for t1 in its origin

state s, switches to s1 through occurrence of event e1, and then, at t2, switches to
s2, through event e2 (and so on), then the corresponding path σ×A in the prod-

uct process may be σ×A : (s, l, ν) t1−→
e1

(s1, l1, ν1)
t∗
1−→
�

(s1, l2, ν2)
t2−→
e2

(s2, l3, ν3) . . .

where, the sequence of transitions e1 and e2 observed on σ is interleaved with
an autonomous transition (denoted �) in the product process: i.e. from state
(s1, l1, ν1) the product process jumps to state (s1, l2, ν2) (notice that state of M
does not change) before continuing mimicking σ. The semantics of the product
process is detailed in Example 1.

Example 1. Figure 5 depicts a toy GSPN model (left) of a simple, faulty, produc-
tion machine together with a toy LHA (right) for assessing properties of it. The
GSPN represents a simple machine that iteratively switches between a working
state (place Up) and a broken state (place Down) and that may produce work-
pieces to be placed in an output buffer B. When Up the machine may produce,
with a delay given by transition wrk a new piece and place in buffer B, or it can
change its state to Down, with a delay given by transition nwrk. When Down
the machine gets repaired and returns to Up with a delay given by transitions rep.
For simplicity all transitions in this example are assumed to be timed and expo-
nentially distributed (with rate λ1, λ2, λ3 and λ4 respectively). The two locations
LHA (top right) refers to the GSPN model (top left) with L = {l0, l1} and l0 the
initial location, l1 the final location. The LHA variables are X = {t, x1, n2} with
t a clock variable, x1 a real valued variable (for measuring the average number
of pieces in buffer B) and n2 an integer variable (for counting the number of
occurrences of the brk events). Variables with non-null flow are clock t, whose
flow is inherently constant and equal to 1, and x1, whose flow is given by B,
i.e. the marking of place B. Therefore (while in l0) x1 measure the integral of
the marking of B (based on σB the projection w.r.t. to B of the synchronising
trajectory σ). The synchronisation with a path σ issued of the GSPN model is
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GSPN model M linear hybrid automaton A

l0
ṫ:1

ẋ1:B

l1

�,t=T ,{x1/=T}

{brk},t<T ,{n2++}

ALL\{brk},t<T ,∅

synchronisation of M and A

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

time
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cu

pa
ti
on

)

σB

x1=
∫

X1dT

trace of M. σ : (1, 0, 1) 0.5−−−→
nbrk

(1, 0, 2) 1.5−−−→
nbrk

(1, 0, 3) 1−−−→
next

(1, 0, 2) 0.5−−−→
next

(1, 0, 1)

corresponding trace of M × A.

σB × A : (1, l0, [0, 0, 0]) 0.5−−−→
nbrk

(2, l0, [0.5, 0.5, 0]) 1.5−−−→
nbrk

(3, l0, [2, 3.5, 0]) 1−−−→
next

(2, l0, [3, 6.5, 1])
0.5−−−→

next
(1, l0, [3.5, 7.5, 2]) 0.5−−→

�
(1, l1, [4, 8/4, 2])

Fig. 5. Example of synchronisation of a GSPN model with a LHA. (Color figure online)

as follows: at time t = 0 the LHA starts in l0 and stays there up to t = T (T
being a constant assumed to value 4). As soon as t = T the synchronisation

with σ ends as the autonomous transition l0
�,t=T,{x1/=T}−−−−−−−−−−→ l1 becomes enabled

hence is fired (by definition autonomous transitions, which are labelled with �,
have priority over synchronised transitions in HASL). As long as t < T the LHA
is in l0 where it synchronises with the occurrences of the GSPN tranistions: on

occurrence of brk transition l0
{brk},t<T,{n2++}−−−−−−−−−−−−→ l0 (which is synchronised on

event set {brk}) is fired hence increasing the counter n2, whereas on occurrence

of any other GSPN transition the LHA transition l0
ALL\{brk},t<T,∅−−−−−−−−−−−→ l0 (which is

synchronised on event set ALL\{brk}, where ALL denotes all transitions of the
GSPN) fires without updating any variable. Finally on ending the synchronisa-
tion with σ variable x1 is updated to x1/T which corresponds to average marking
of place B observed over the time interval [0, T ]. Such a LHA can therefore be
used (through iterated synchronisation with a sufficiently large number of tra-
jectories) for estimating the confidence interval of random variables such as the
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“average number of pieces in the buffer” as well as the “number of break events”
observed over time interval [0, T ].

HASL Target Expression. The second component of an HASL specification is
an expression Z given by grammar (1). Z is associated to a LHA A and expresses
the target measure whose confidence interval should be estimated based on the
paths accepted by A.

Z :: = AV G(Y ) | Z + Z | Z × Z | Pdist

Pdist :: = PDF (Y, step, start, stop)) | CDF (Y, step, start, stop) | PROB()

Y :: = c | Y + Y | Y × Y | Y/Y | last(y) | min(y) | max(y)

y :: = c | x | y + y | y × y | y/y

(1)

There are two main types of expressions Z: AV G(Y ) (where AV G indicates
mean value of ) and Pdist (indicating a probability distribution or probability
value expression). Y represent a random variable built on top of algebraic com-
bination of some path operators applied to an LHA variable y, i.e. last(y) (i.e.
the last value that y has at the end of an accepted path, min(y)(resp.max(y)),
the min (resp. max) value of y along an accepted path. Conversely Z expres-
sions of Pdist type include PDF (Y, step, start, stop), which allows for estimat-
ing the PDF of random variable Y computed by discretisation of the support
set [start, stop] in (stop − start)/step sub-intervals of size step and similarly
CDF (Y, step, start, stop), Finally expression PROB() allows for estimating the
probability that a path is accepted, otherwise said PROB() is used to estimat-
ing the probability of the paths event set represented by the considered automa-
ton A. For example, referring to the LHA A of Fig. 5, the HASL specification
(A,AVG(last(x1))) corresponds to the mean number of pieces in buffer B within
T , while (A,PDF (last(x1), 0.1, 0, 10)) corresponds to the PDF of the mean num-
ber of pieces in buffer B within T computed over [0, 10] with discretisation step
0.1.

4 HASL Based Performance Analysis of Production Lines

4.1 Stochastic Petri Net Encoding of Production Lines

As discussed in Sect. 2, the kind of production lines we consider can be con-
veniently modelled by a DTMC, i.e., a discrete-time, memoryless stochastic
process. On the other hand, Cosmos, which supports DESP models in form
of NMGSPNs, allows us to use a wide range of delay distributions and, as a
consequence, gives us the possibility to formulate models whose behaviour is not
memoryless. As it happens, even if the model we consider is associated with a
discrete time memoryless process, and consequently all sojourn times are geo-
metric, the most straightforward encoding of the considered system in Cosmos is
by means of a NMGSPN whose timed transitions have deterministic firing times.
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Generally speaking deterministic firing times may lead to a non-memoryless pro-
cess but in the NMGSPN encoding we propose we make sure that the resulting
stochastic process is indeed a DTMC. In particular, we let all deterministic
transitions share the same firing time that corresponds to one slot of the DTMC
(hence the actual interleaving of transition firing is irrelevant). Furthermore we
have seen that the dynamics of the production line systems is of a fully syn-
chronous nature: the state of the machines as well as that of the buffers are
updated synchronously in each time slot. For sake of simplicity, we model such
synchronousity by splitting the model dynamics into two phases which can be
conveniently be done with NMGSPN: in the first phase the machine states are
updated through a probabilistic switch modelled using immediate transitions
(i.e., no time is consumed) while in the second the buffer occupation levels are
changed accordingly using deterministic transitions whose firing time correspond
to one time slot of the corresponding DTMC.

NMGSPN Models of Production Lines. We illustrate the NMGSPN encod-
ing of production lines by means of the 3-machines case given in Fig. 6. For each
machine there are four places. Places Upi and Dwi are used to represent the fact
that machine i is up or down at the beginning of a time slot of the DTMC. Places
Upi− and Dwi−, where token sojourn times are 0, indicate instead the state of
the machine at the end of the time slot. Places Upi and Dwi are connected to
places Upi− and Dwi− by immediate transition whose weights are set according
to the break down and repair probabilities (pi and ri). Deterministic transitions
whose firing time corresponds to one time slot are used to update the places Bi

that represent buffers. In particular, tnwrki and twrki are the transitions that
represent the fact that machine i does not process or does process a part, respec-
tively. Blocking of machines due to full buffers are modelled by inhibitor arcs
with multiplicity corresponding to buffer capacity (nbi in the figure). Blocking
by starvation is modelled instead by arcs that connect place Bi to transitions
brki and nbrki.

Fig. 6. NMGSPN model of the DTMC for a 3-machines production line (initially
machines are assumed to be all UP as buffer B2 contains 2 pieces and B1 is empty).
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Generator of NMGSPN Models. We developed a generator of NMGSPN
models (in the .gspn Cosmos format) of production lines of arbitrary size1. For
what concerns the dimension of the Petri net model of production lines, in case
of N machines we have (corresponding to straightforward adaptation of that
depicted in Fig. 6) 4 · N + (N − 1) places and 6 · N transitions (4 · N of which
are immediate and 2 · N are deterministic).

4.2 HASL Performance Indicators for Production Lines

To asses the dynamics of production lines we identified a number of relevant
KPIs including the following ones: φ1 ≡ “the probability distribution of the time
the system takes to produce N pieces”; φ2≡“mean delay to empty buffer Bi after
it got full”; φ2b ≡“probability to empty buffer Bi within T after it got full”; φ3≡
“the mean (or similarly, the probability distribution of the) occupation level of
buffer Bi within T”. Table 1 shows the LHA encoding of the above listed KPIs
(automaton Ai corresponds to φi). Notice that if A1, A2 and A3 accept all paths

Table 1. Linear hybrid automata for performance indicators of production lines.

1 available here https://gitlab-research.centralesupelec.fr/2011ballarinp/cosmos prod
uctionlines.

https://gitlab-research.centralesupelec.fr/2011ballarinp/cosmos_productionlines
https://gitlab-research.centralesupelec.fr/2011ballarinp/cosmos_productionlines
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5 Experiments

In this section we report about a selection of the experiments we run on Cosmos
based on the HASL encoding of the KPIs described in Sect. 4.2.

A1,PDF (last(t), 1 , 0 , 300 )

Fig. 7. Measured distribution of probability of delay to produce N pieces.

PDF of the Time to Produce N Pieces. Figure 7 (lhs) shows the probability
distribution of the time needed for producing N pieces for a production line with
5 machines. On the rhs, the distribution of the time to produce 10 parts is shown
for different number of machines. Note that we use the term PDF (which often
stands for probability density function) because in cosmos the keyword to obtain
such measures is PDF but, since in our case the model is discrete time, what we
obtain is a probability mass function.

A2,PDF (last(t1 ), 1 , 0 , 1000 )

Fig. 8. Measured distribution of probability of delay to empty a buffer after it is full.

PDF of the Time to Empty a Buffer After it is Full. Figure 8 shows
the estimated probability distribution for the delay to empty a buffer after it
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gets full2. The obtained plots (lhs) indicate that a downstream buffer is more
likely to empty faster than an upstream one, which, intuitively, is sensible since
a downstream buffer has fewer (breakable) downstream machines that can slow
down its emptying. Curves on rhs show that increasing the size of a buffer (B2)
spreads the probability of the delay for emptying B2.

A3,AVG(last(x1 , x2 , x3 , x4 ))

Fig. 9. Mean buffer occupation versus fault probability of machine Mi

Mean Buffer Occupation Versus Machines’ Fault Probability. Figure 9
depicts plots referring to the mean occupation level of each buffer obtained by
varying the break down probability of a single machine. All results here have
been obtained using (a 4 variables extension of) the LHA A3 (see Table 1)3.
As one may expect the outcome of these experiments indicate that augment-
ing the probability that Mi breaks down increases the mean occupation of the
upstream buffers while decreasing that of the downstream buffers. More specifi-
cally, we observe that beyond a certain value of pi the closest upstream (down-
stream) buffer has the highest (smallest) mean occupation, however there exists
2 Results obtained with A2 on a 5M production line with buffers of equal size 8 an

machines of equal fault/repair (0.01/0.1) probability.
3 Experiments obtained using A3 using T = 500 as time horizon and the 5M model

with fault probability pj = 0.01, for all machines Mj j �= i and repair probabilities
r1 = 0.1, r2 = 0.2, r3 = 0.15, r4 = 0.18, r5 = 0.1 with buffers of equal size n= 8 all
initially empty.
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a crossover point below which the furthers upstream (downstream) buffers have a
(slightly) higher occupation of the one which is closest to the Mi. Such an “inver-
sion” phenomenon may be explained as inertia: not breaking “enough” machine
Mi has little consequences on its neighbours buffers (i.e. Bi−1 and Bi+1), whereas
only when breaking becomes considerably likely the effect on neighbors buffers
becomes evident (i.e. Bi−1 getting more occupied than its upstream buffers and
Bi+1 getting less occupied than its downstream buffers).

Probability Distribution of Buffer Occupation. Figure 10 depicts results
of experiments related to those of Fig. 9: we use again A3 but this time for
estimating the distribution of probability of the mean occupation of buffers (B1,
top row, and B2, bottom row) versus the fault probability of the upstream, resp.
downstream, machine.

A3,PDF (last(xi), 0 .1 , 0 , 8 ))

Fig. 10. Probability distribution of mean buffer occupation versus fault probability.

The obtained plots indicate that increasing the probability that a machine
breaks down has the effect of concentrating the probability mass towards lower
(higher) occupation level for the downstream (upstream) buffer.

6 Discussion

The realm of stochastic simulation based tools for performance analysis of pro-
duction systems includes commercial products such as the Arena simulation



Performance Analysis of Production Lines 279

software [2] and the 3D Flexsim simulation tool [1]. Those tools are equipped
with custom made modelling frameworks through which models of production
lines are obtained by composition of basic building blocks (modules) and then
analysed by estimation of “classical” performance indices (e.g., total production,
average waiting time in queue, maximum waiting time in queue, etc.) through
discrete-event simulation engines.

We briefly discuss how the framework we introduce in this paper compares
with those tool. From a modelling point of view tools such as Arena and Flexsim
are more general as, differently from our framework, they are equipped with all
elements, including branching (i.e., fork) and join blocks, that are necessary to
model generic production systems. Furthermore, the Arena software allows also
for modelling of continuous-state production systems (to consider, for example,
production of liquids), hence, differently from our framework, is not limited to
discrete-state systems. In principle, our framework could straightforwardly be
extended to model also continuous-state systems by including fluid Petri-nets
amongst the supported modelling formalisms.

The added value of a model-checking framework like ours lies in the sep-
aration of concerns between the model construction which is, inherently, kept
independent of model analysis. By its very nature model checking, provides the
modeller with (besides a modelling language) a property language for formally
stating performance measures of interest. The expressive power of a formalism
like HASL allows us to conceive performance indicators well beyond the “classi-
cal ones” that can be measured with standard stochastic simulation tools (e.g.,
Arena and Flexsim). For example, measures such as, e.g., distribution of buffer
occupation over a certain period or distribution of time to empty a buffer once
it gets full (Fig. 8), in our understanding cannot be assessed through classical
stochastic simulation tools unless the simulator engines (and possibly the mod-
els) are adapted/enriched with the necessary means for measuring the considered
indicators. HASL model checking can therefore be viewed as a generic simula-
tion based tool which one can use to assess whatever indicator can be expressed
in terms of the HASL formalism, without requiring any adaptation of the sim-
ulation engine nor any enrichment of the model. Finally HASL based model
checking provides the user with arbitrary statistical guarantees as the output
of a KPI assessment is obtained by confidence interval estimation yield with a
desired confidence and accuracy (chosen by the user as inputs of the estima-
tion process, hence affecting the number of simulation runs generated for the
estimation).

7 Conclusion

We presented a framework for encoding of DTMC models of production lines in
terms of stochastic Petri nets. This allowed us to take advantage of the expres-
sive power of the HASL property specification framework in order to charac-
terise a number of sophisticated key indicators through which, at the aid of the
Cosmos tool, we assessed the performances of production lines. The switch to
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HASL/Cosmos allowed us to overcome the limited expressiveness we faced in
a previous study of the performances of production lines we carried out [11]
through CSL model checking using the PRISM tool [17]. Future developments
include the development and analysis of furthers relevant performance indica-
tors, as well as the extension of the proposed modelling framework to variants
of systems considered here, e.g. closed-loops production lines and/or production
systems with branching topologies.
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11. Ballarini, P., Horváth, A.: Formal analysis of production line systems byprobabilis-
tic model checking tools. In: Proceedings of the 2021 IEEE Emerging Technology
and Factory Automation (ETFA) (2021)

12. Colledani, M., Horvath, A., Angius, A.: Production quality performance in manu-
facturing systems processing deteriorating products. CIRP Ann. Manuf. Technol.
64, 431–434 (2015)

13. Colledani, M., Tolio, T.: Integrated quality, production logistics and mainte-
nance analysis of multi-stage asynchronous manufacturing systems with degrading
machines. CIRP Ann. Manuf. Technol. 61(1), 455–458 (2012)
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Abstract. We use a simple 2-tiered reference model consisting of servers and
sites to illustrate an approach to topology configuration and optimization, with a
focus on addressing geo-redundancy questions like howmany sites, and howmany
servers per site, are required to meet performance and reliability requirements.We
first develop a multi-dimensional component failure mode reference model, then
reduce this model to a one-dimensional service outage mode reference model. The
key contribution is the exact derivation of the outage and restoral rates from the
set of ‘available’ states to the set of ‘unavailable’ states using an adaptation of
the hyper-geometric “balls in urns” distribution with unequally likely combina-
tions. We describe a topology configuration tool for optimizing resources to meet
requirements and illustrate effective use of the tool for a hypothetical VoIP call
setup protocol message processing application.

Keywords: FMEA · Geo-redundant · Topology · Configuration · Optimization ·
Tool

1 Introduction

Most availability analyses typically start by characterizing a failure mode reference
model that captures the underlying hardware (HW) and software (SW) components that
constitute an application deployment. From a performance:reliability:cost optimization
perspective, these models are typically used to determine the minimal topology required
to meet the distributed application capacity and availability requirements.

In this paper, we use a simple 2-tiered reference model consisting of servers and
sites to illustrate an approach to topology configuration, with the focus on addressing
common geo-redundancy questions like how many sites, and how many servers per site,
are required to meet the requirements. Even for this simple 2-tiered reference model,
the number of states grows exponentially. We demonstrate techniques to reduce the state
space of more complex models, and we show how to collapse a state transition diagram
into a one-dimensional representation in terms of the amount of available server capacity,
where transitions can occur across multiple levels.

At the service level, application outages matter more than individual HW or SW
failures. Thus, we next develop a generic outage mode reference model based on the
one-dimensional representation of the failure model. The key contribution of this paper
is the exact derivation of the outage and restoral rates from the superset of ‘available’
states to the superset of ‘unavailable’ states as a function of the number of servers, the
number of sites, and the minimum required server capacity level.
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There are many papers analyzing and optimizing the availability of redundant, dis-
tributed topologies (c.f., [1–4] and themany references therein), especially in the context
of storage systems and virtualized applications. Yet to our knowledge, none have derived
the exact general formula for the composite service outage and restoral rates, based on
the hyper-geometric distribution with unequally likely combinations.

2 Reference Failure Model

2.1 Notation and Input Parameters

Typical availability analyses start by characterizing a failure mode reference model that
captures the underlying elements constituting the application deployment. These failure
models can vary in their level of detail, from simple block diagrams to sophisticated
failure trees. As we show, in most practical cases this detail can be aggregated to reduce
model complexity to a one-dimensional state space without losing underlying individual
component failure and restoral rates, dependencies, or interactions.

Typical reliability optimization questions that these models need to address include
the “how many eggs in one basket” type: How many application processes can run on
a single host? How many host servers in one rack? How many racks in one datacenter
site? How many sites per region, etc.? For the analysis to follow, we assume a very
simple 2-tiered reference model consisting of servers and sites, and we focus on the
common geo-redundancy questions: how many sites and how many servers per site?
Generalization to more than two tiers is straightforward.

Let M denote the number of geographically diverse sites (e.g., datacenters) and let
N denote the number of hosts (servers). For simplicity, we assume that N is an integer
multiple of M, and that N identical hosts are spread evenly across M identical sites. Let
J = N /M denote the number of hosts per site. Hosts and sites are the HW elements.

We assume that a single identical application instance is running on each host, and
the set of J instances at each site make up the resident application function. Instances
and resident functions are the SW elements. We assume that hosts and their associated
instances are tightly coupled (that is, if a host is down then its associated instance is
unavailable, and vice versa). Similarly, we assume that sites and their resident function
(set of J instances) are tightly coupled (that is, if a site is down its resident function is
unavailable, and vice versa). Let K denote the minimum number of instances required
for service to be up (i.e., to have adequate capacity to serve the workload).

Next, let
{
λ−1

I , λ−1
F , λ−1

H , λ−1
S

}
denote the mean time between failure (MTBF) and

let
{
μ−1

I , μ−1
F , μ−1

H , μ−1
S

}
denote the mean time to restore (MTTR) of the {Instance

SW, Function SW, Host HW, and Site HW} respectively. Then the typical failure modes
and associated effects (capacity impacts) for this canonical reference model are given
in Table 1. We include default MTBF/MTTR values in brackets [ ] that will be used for
the simple example later in the paper. A SW fault impacting a single instance could be
a buffer overflow that leads to an application restart, while a fault impacting an entire
resident function could be the corruption of shared data. AHW failure impacting a single
host could be a fan failure, while a failure impacting an entire site could be a transfer
switch failure following a commercial power outage.
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Table 1. Simple failure mode reference model.

Failure Mode Count MTBF λ–1 MTTR μ–1 Capacity Impact
Single SW instance N λI–1 [3 mo] μI–1 [1hr] 1 instance
Resident SW function M λF–1 [2 yr] μF–1 [6hr] Up to J instances
Single HW host N λH–1 [6 mo] μH–1 [2hr] 1 instance
Entire HW site M λS–1 [2 yr] μS–1 [4hr] Up to J instances

2.2 Probability State Space

Now that we have developed the failuremode referencemodel, we next typically develop
a state space transition diagram and solve for the stationary distribution. In order to
make the analysis tractable, we assume that failure and restoral rates are exponentially
distributed, and that the associated stochastic process forms a Markov chain (MC). The
first key step in our approach is to characterize states in terms of the amount of available
capacity. To illustrate for this simple reference model, let the M-tuple (j1, …, jm, …, jM )
denote the number of instances up at each site m = 1, …, M, where 0 ≤ jm ≤ J. There
are (J + 1)M total states. A ‘level’ in the state diagram consists of all states with n total
instances up, where

∑M
m=1 (jm) = n for every state on level n (0 ≤ n ≤ N). For all levels

where n ≥ K, the service is up; otherwise, service is down.
Next, we specify the state transitions. In this simple reference model, events can

result in 1-level transitions in the case of host/instance failure and restoral, or up to
J-level transitions in the case of site/function failure and restoral. Finally, we enumer-
ate and solve the resulting balance equations to determine the state probabilities. The
state diagram quickly becomes unwieldy as N and M grow, and the equations become
impossible to solve explicitly without the use of tools to find the matrix eigenvalues.

Figure 1 shows the state space and feasible transitions for the small referencemodel of
N = 6, M = 2, and K = 3. Service is available for unshaded (‘up’) states and unavailable
for shaded (‘down’) states where j1 + j2 < 3. Straight transition arrows correspond
to single host/instance failure and restoral, while curved arrows correspond to entire
site/function failure and restoral. Table 2 (in Sect. 2.3) lists the associated transition
rates.

As a prelude to the outage mode reference model presented later in this paper,
looking closely we see that a service outage can occur from any state other than the
level 6 ‘all up’ state (3,3). In general, an outage can occur from any level n state where
n − J < K. The key contribution of this paper is the exact derivation of the composite
outage and restoral rates between the superset of available (‘up’) states and the superset
of unavailable (‘down’) states as function of the input parameters N, M, and K, using
an adaptation of the hyper-geometric “balls in urns” distribution with unequally likely
combinations. Knowing these rates is critical when sizing deployments for services with
stringent (e.g., FCC reportable [5]) outage and restoral requirements.

2.3 Collapsing Failure Modes

In order to develop a generic framework, the second key step in advancing the state space
modeling is collapsing the failure modes; that is, combining all (HW and SW) failure
and restoral rates causing single instance as well as single site transitions. To this end,
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Fig. 1. State transition diagram for the small reference model of N = 6, M = 2, and K = 3.

let {AI , AF , AH , AS} denote the availability A = μ/(λ + μ) and let {ρI , ρF , ρH , ρS}
denote the utilization (load) ρ = λ/μ of the {instance SW, function SW, host HW, and
site HW}, respectively. First, the easy part is combining the failure rates, loads, and
availabilities. Let

λN ≡ host (HW + SW ) failure rate = λI + λH

λM ≡ site (HW + SW ) failure rate = λF + λS (1)

ρN ≡ host (HW + SW ) failure load = ρI + ρH

ρM ≡ site (HW + SW ) failure load = ρF + ρS (2)

AN ≡ host (HW + SW ) availability = AI AH

AM ≡ site (HW + SW ) availability = AF AS (3)

Now we come to the more interesting part: composite restoral rates. Let

μN ≡ host (HW + SW ) restoral rate

μM ≡ site (HW + SW ) restoral rate (4)

The most suitable approach to collapsing restoral rates depends on the particular failure
mode interactions and dependencies. Figure 2 shows four different example models, all
leading to different values forμN andμM . First, Model 1 is most appropriate if all failure
activity stops when any failure occurs. In this case, it can be shown that

Model 1: μN = λN /ρN = λN /(ρH + ρI )

μM = λM /ρM = λM /(ρS + ρF ).
(5)

Next, Model 2 is most appropriate if all failure activity stops when all failures occur. In
this case, it can be shown that
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Fig. 2. Examples of different models for collapsing failure modes.

Model 2: μN = λN /(ρN + ρIρH ) = λN /(ρH + (1 + ρH )ρI )

μM = λM /(ρM + ρFρS) = λM /(ρS + (1 + ρS)ρF ).
(6)

Next, Model 3 is most appropriate if all failure activity stops when a select failure occurs
(host failure for μN or site failure for μM ). In this case, it can be shown that

Model 3: μN = λN /
(
ρH + (1 + ρH ) λI

λH +μF

)

μM = λM /
(
ρS + (1 + ρS) λF

λS+μF

)
.

(7)

Finally, Model 4 is most appropriate if all failure activity stops when a select failure
occurs, and restoral activity is sequential (e.g. host then instance for μN or site then
resident function for μM ). In this case, it can be shown that

Model 4: μN = λN /
(
ρH + (1 + ρH ) λN

μF

)

μM = λM /
(
ρS + (1 + ρS) λM

μS

)
.

(8)

Each model is suitable for different reliability scenarios. The simplicity of Model 1, for
instance, makes it a good choice when combining many failure modes (e.g., internal
components of a server). Model 2 works well if all element failures and replacements
are independent (e.g., PC peripheral devices). Models 3 and 4 are most suitable if failure
modes are hierarchical (e.g., user session controlled by application SW running on server
HW). Model 4 is most appropriate for our reference failure model, since the instance (or
function) sits on top of the underlying host (or site) HW, and recovery involves replacing
the HW and restarting the SW in sequence.

While these example state space aggregation models are exact in terms of the mean
restoral rate, the resulting model may no longer form a MC. For tractability of analysis,
we assume that the aggregate restoral rates are still exponentially distributed, and the
resulting collapsed model still forms a MC. There is much literature (c.f., [6–9] and
references therein) addressing the Markovian implications of collapsing chains.

Now that for λN , λM , μN , and μM are defined, Table 2 lists the state transition rates
associated with the small reference model of N = 6, M = 2, and K = 3 illustrated in
Fig. 1.



Reliability Reference Model for Topology Configuration 287

Table 2. State transition rates for the small reference model of N = 6, M = 2, and K = 3.

Additional complexities can easily be incorporated without complicating the anal-
ysis. For example, an important implication of network function virtualization (NFV)
is the increased importance and added difficulty of fault detection and test coverage.
Separating SW from HW (with possibly different vendors for each) creates additional
reliability requirements enforcement challenges, such as how to ensure that different
vendors have robust defect instrumentation and detection mechanisms if failures lie
within the interaction between SW and HW, and how to ensure that test coverage is
adequate. From an analysis standpoint, we can easily include detection and coverage.
Let Cx denote the coverage factors and let ν−1

x denote the uncovered MTTRs (including
detection time) for x ∈ {I , F, H , S}. Then replace μx by μ′

x = Cxμx + (1 − Cx)νx.
As another example, consider scheduled maintenance. Single instance or host main-

tenance could be rolling applicationorfirmwareupgrades.Resident functionor sitemain-
tenance could be shared database upgrades or power backup testing. Let δx denote the
maintenance rates, let γ −1

x denote the maintenance MTTRs, and let πx = δx/γx denote
the maintenance load for x ∈ {I , F, H , S}. Then we can replace λx by λ′

x = λx + δx, ρx

by ρ′
x = ρx + πx, and μx by μ′

x = λ′
x/ρ

′
x.

2.4 Collapsing Failure Levels

Now that we have collapsed failure modes, the last key step in refining our state space
representation is to collapse the failure levels by combining all states with the same
number of available instances (capacity levels) and consolidating capacity level transition
rates. Figure 3 illustrates the approach for our small reference failure model of N = 6,
M = 2, and K = 3. As can be seen, our state space is reduced to N + 1 states, and
our individual transitions are consolidated. All transitions due to failure/restoral of a
single instance/host result in single-level transitions (—). Some single- and all multi-
level transitions (---) are due to failure/restoral of an entire resident function/site. For this
analysis,we again assume that the aggregate transition rates are exponentially distributed,
and the resulting collapsed model still forms a MC.

As noted previously, the key contribution of this paper is the exact derivation of
these composite transition rates, and in particular, the outage rate from the superset of
unshaded ‘up’ states to the superset of shaded ‘down’ states as a function of N, M, K.



288 P. K. Reeser

6

5

4

3

2

1

0

collapse

Fig. 3. Collapsing failure levels for the small reference model of N = 6, M = 2, and K = 3.

3 Reference Outage Model

3.1 Notation and Formulation

At the service level, application outages matter more than individual failures. Thus, we
next develop a generic outage mode reference model (based on the failure modes). Let
n ∈ [0, N ] denote the number of instances up and let m ∈ [0, M ] denote the number
of sites up. Next, let Pn denote the probability that n instances are up (0 ≤ n ≤ N), let
PUP denote the probability that ≥K instances are up (adequate capacity), and let PDN

= 1 − PUP denote the probability that <K instances are up (service outage). Finally,
let F ≡ λ−1

D denote the mean time between service-affecting outages and let R ≡ μ−1
U

denote the mean time to restore service following an outage.
Using the reference model of N = 6, M = 2, K = 3 as an example, P6 is the

probability that both sites and all instances are available, given by P6 = A2
M A6

N . Next,
P5 is the probability that both sites and 5 out of 6 instances are available, given by

P5 = A2
M

(
6
5

)
A5

N (1 − AN ). Similarly, P4 = A2
M

(
6
4

)
A4

N (1 − AN )2. Next, P3 is the

probability that 2 sites and 3 of 6 instances are available, plus the probability that 1 site

and all instances in the other site are available, given by P3 = A2
M

(
6
3

)
A3

N (1 − AN )3

+
(
2
1

)
AM (1 − AM )A3

N . P2 and P1 are similar. Finally, P0 is the probability that both

sites but no instances are available, plus the probability that 1 site is available but no
instances in the other site are available, plus the probability that no sites are available,

given by P0 = A2
M (1 − AN )6 +

(
2
1

)
AM (1 − AM )(1 − AN )3 + (1 − AM )2.

Generalizing, the capacity level state probabilities Pn are given by

Pn =
M∑

m=n/J

(
M
m

)
Am

M (1 − AM )M −m
(

mJ
n

)
An

N (1 − AN )mJ−n, (9)

where �x� in (9) denotes the smallest integer ≥ x.
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The probability that the service is up PUP and the ratio F/R are given by

PUP =
N∑

n=K

Pn and
F

R
= μU

λD
= PUP

1 − PUP
. (10)

In preparation for the analysis to follow, we decompose Pn as

Pn =
M∑

m=n/J
Pn|mPM (m), where

Pn|m =
(

mJ
n

)
An

N (1 − AN )mJ−n and PM (m) =
(

M
m

)
Am

M (1 − AM )M −m.

(11)

3.2 Balls in Urns Formulation

Note that F
R = μU

λD
is expressed as a ratio in (10), thus all that remains is to determine

λD (the transition rate from the up super-state to the down super-state). Figure 4 shows
relevant transitions from an up state to a down state. For K + J ≤ n ≤ N, transitions
from n to the down super-state (DN) are not possible. For K + 1 ≤ n ≤ K − 1 + J,
transitions from n → DN can occur if 1 of m sites fails. And for n = K, transitions from
K → DN can occur if 1 of m sites fails and do occur if 1 of K instances fails. Let m * (n)
denote the number of sites with at least enough (n − K + 1) instances up, such that its
failure leaves < K instances up. We now need to determine m* for each applicable n.

We can now begin to put mathematical structure around the solution. λD is given by

λD =
min(K−1+J ,N )∑

n=K

⎡
⎣

M∑
m=n/J

Pn|m
[
m∗(n)

]
PM (m)

⎤
⎦λM + PK KλN , (12)

where m * (n) is the number of sites out of m with > n − K instances up. The quantities
Pn|m

[
m∗(n)

]
PM (m) are the (weighted) combinations of ways to distribute n instances

to m sites. The inner sum is across all sites m that could be up
(
m ≥ ⌈ n

J

⌉)
. The outer

sum is across all states n where transition from n to DN due to site failure is possible.
The solution is a specialized “balls in urns” problem involving the hyper-geometric

distribution. There are N balls (instances) distributed in M urns (sites) with exactly J
balls in each urn. Of the population of N balls, n are UP balls and N − n are DN

balls. For M = 2, there are

(
n
i

)(
N − n
J − i

)
/

(
N
J

)
=
(

J
i

)(
J

n − i

)
/

(
N
n

)
ways

of distributing J instances to site 1 (S1) such that i instances are UP and J − i
instances are DN, with the remaining instances in site 2 (S2). For M = 3, there

are

(
J
i

)(
J
j

)(
J

n − i − j

)
/

(
N
n

)
ways of distributing i UP instances to S1, j UP

instances to S2, and n − i − j UP instances to site 3 (S3). For general M, there are(
J
i

)(
J
j

)
. . .

(
J
z

)(
J

n − i − j − . . . − z

)
/

(
N
n

)
ways of appropriately distributing n

UP instances to M sites.
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Fig. 4. Feasible transitions from an ‘up’ state to a ‘down’ state.

For simplicity (for now), consider the case of M = 2 sites. It would seem that

λD =
min(K−1+J ,N )∑

n=K

Pn

⎡
⎢⎢⎢⎣

min(n,J )∑
i=max(0,n−J )

(
J
i

)(
J

n − i

)

(
N
n

) [
Ii>n−K + Ii<K

]
⎤
⎥⎥⎥⎦λM + PK KλN .

(13)

The sum of indicator functions
[
Ii>n−K + Ii<K

]
in (13) is the number of sites with

enough UP instances to cause an outage if the site fails.

3.3 Unequal Combinations

The problem with (13) is that the

(
J
i

)(
J

n − i

)
/

(
N
n

)
combinations are not all equally

likely. If all sites are up, then all DN instances must be due to individual failures, thus
all combinations are equally likely (and if n > (M − 1)J, then all sites are up). And
all combinations where every site has >0 UP instances are equally likely. However,
combinations with 0 UP instances in a site could be due to J individual DN instances

or 1 DN site. Hence, we need to condition on m; that is, Pn =
M∑

m=n/J
Pn|mPM (m).

To illustrate, Fig. 5 shows the 41 feasible combinations for our small reference failure
model of N = 6, M = 2, K = 3. Transitions from n to DN are possible for 3≤ n ≤ 5. For

each n, there are

(
6
n

)
distributions of n UP instances into 2 sites, and

(
3
i

)(
3

n − i

)

distributions of i UP instances to S1 and n − i UP instances to S2, where n − 3 ≤ i ≤ 3.
Each row in each matrix represents a unique distribution of instances for that n, where
the first 3-tuple of columns corresponds to S1 and the second 3-tuple corresponds to S2.

As can be seen, for n = 5 (left) there are 6 distributions of 5 UP instances to 2 sites
(3 with 2 in S1 and 3 with 3 in S1). Since both sites have UP instances, both sites are up.
Since n = 5 > J = 3, only site failures (not individual instance failures) can result in an
outage. Since all combinations are the result of a single instance failure, all combinations
are equally likely. Finally, [Ii>2 + Ii<3] = 1 for all combinations.

For n = 4 (center), there are 15 equally likely distributions of 4 UP instances (3
with 1 in S1, 9 with 2 in S1, and 3 with 3 in S1). The main difference is that for the
9 combinations with 2 in S1 (and 2 in S2), [Ii>1 + Ii<3] = 2 (i.e., failure of either site
results in an outage). For the remaining 6 combinations, [Ii>1 + Ii<3] = 1.
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Fig. 5. Feasible combinations for the small reference model of N = 6, M = 2, K = 3.

For n = 3 (right), the flaw in the ‘equally likely’ assumption is exposed. There are
20 distributions of 3 UP instances in 2 sites (1 with 0 in S1, 9 with 1 in S1, 9 with 2
in S1, 1 with 3 in S1). The 18 combinations with either 1 or 2 UP instances in S1 (and
vice versa in S2) are the result of single instance failures, and all are equally likely. The
2 combinations with either 0 or 3 in S1 (and vice versa in S2) could result from either
3 individual instance failures or 1 site failure, so these combinations are more likely. In
fact, for the Table 1 defaults, these combinations account for 99.999% of P3.

To further illustrate, the erroneous “equally likely combinations” formula suggests

λD =
{

P5
3[1]+3[1]

6 + P4
3[1]+9[2]+3[1]

15 + P3
1[1]+9[2]+9[2]+1[1]

20

}
λM + P33λN

= {P5[1.0] + P4[1.6] + P3[1.9]}λM + P33λN .
(14)

For M = 2, this scenario of unequal combinations can only happen when i = 0 or n − i
= 0 (that is, when one site has no UP VMs). The result from the correct formula looks
like

λD =
{

P5
3[1]+3[1]

6 + P4
3[1]+9[2]+3[1]

15
+P3|2 1[1]+9[2]+9[2]+1[1]

20 PM (2) + P3|1 1[1]1 PM (1)

}
λM + P33λN

= {P5[1.0] + P4[1.6] + P3|2[1.9]PM (2) + P3|1[1.0]PM (1)
}
λM + P33λN .

(15)

3.4 Outage Rate

As illustrated in this example, we can account for the fact that not all combinations are
equally likely by breaking Pn apart and conditioning on m. The resulting exact formula
for λD for general M, N, and K is given by

λD = λM

min(K−1+J ,N )∑
n=K

⎧
⎨
⎩

M∑
m=n/J

Pn|mFn,mPM (m)

⎫
⎬
⎭+ λN PK K . (16)
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For M = 1,

Fn,m = 1 and λD = λM PUP + λN PK K . (17)

For M = 2,

Fn,m =
min(n,J )∑

i = max(0,
n − (m − 1)J )

⎡
⎢⎢⎢⎣

(
J
i

)(
(m − 1)J

n − i

)

(
mJ
n

) [
Ii>n−K + In−i>n−K

]
⎤
⎥⎥⎥⎦. (18)

For M = 3,

Fn,m =
min(n,J )∑

i = max(0,
n − (m − 1)J )

min(n−i,J )∑

j = max(0,
n − (m − 2)J − i)

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎝ J

i

⎞
⎠
⎛
⎝ J

j

⎞
⎠
⎛
⎝ (m − 2)J

n − i − j

⎞
⎠

⎛
⎝mJ

n

⎞
⎠

∗

[
Ii>n−K + Ij>n−K + Ii+j<K

]

⎤
⎥⎥⎥⎥⎥⎦

. (19)

For M = 4,

Fn,m =
min(n,J )∑

i = max(0, n−
(m − 1)J )

min(n−i,J )∑

j = max(0, n−
(m − 2)J − i)

min(n−i−j,J )∑

k = max(0, n−
(m − 3)J − i − j)

⎡
⎢⎢⎢⎢⎢⎣

(
J

i

)(
J

j

)(
J

k

)(
(m − 3)J

n − i − j − k

)

(
mJ
n

) ∗

[
Ii>n−K + Ij>n−K + Ik>n−K + Ii+j+k<K

]

⎤
⎥⎥⎥⎥⎥⎦

.

(20)

We now have the exact formula for the mean time between service outages F = λ−1
D ,

and can also compute the mean time to restore service R = μ−1
D = F(1 − PUP)/PUP .

As we show next, these are powerful tools to facilitate the analysis and optimal sizing
of application topologies to meet service performance and reliability requirements.

Although the equation for Fn,m becomes increasingly more awkward to express for
increasing M, it is very straightforward to program algorithmically for computation.
The combined number of terms evaluated is loosely bounded by 2N , so computational
complexity grows roughly exponentially with N. For a given SW application, the total
number of servers N is dictated by capacity needs and remains relatively insensitive to
the number of sites M across which those servers are spread.

Furthermore, in many practical applications, the number of deployment sites M
tends to remain relatively small due to failover latency, data replication/backup, and cost
constraints. For example, AmazonWeb Services (AWS) has four domestic US Regions,
each with 3–6 Availability Zones [10]. Applications requiring ultra-high availability
can deploy in M = 4 domestic regions, while latency-sensitive applications can be
regionalized and deploy in M = 3–6 availability zones per region. Thus, the modest
values for M considered here do in fact reflect realistic deployment scenarios.
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4 Example Application

4.1 Requirements and Assumptions

As a hypothetical example, consider aVoice over IP (VoIP) call setupmessage processing
application. The goal is to cost-effectively size the application (M sites and N virtual
instances) to satisfy the following requirements and assumptions:

• Application (service) availability A ≥ 0.99999.
• Adequate capacity to process 600 VoIP calls/sec.
• Peak traffic rate 1.5× average traffic rate.
• Mean message processing latency ≤30 ms, and 95th percentile ≤60 ms.
• Service outages lasting longer than 30 min are reportable.
• Probability of a reportable outage in 1 year ≤1%.
• An outage occurs if available capacity <50% (2X over-engineering).
• Local- and geo-redundancy required (minimum 2+ instances at each of 2+ sites).
• Instances implemented as virtual machines (VMs) of the 4-vCPU flavor.

4.2 Capacity and Latency Requirements

First, we consider the latency requirements to determine the required number of instances
N. Given that voice call arrivals are reasonably random, and protocol message process-
ing time is reasonably constant, we assume an M/D/C service model, where C is the
required number of vCPUs. Let E(W) and V(W) denote the mean and variance of the
waiting time W prior to service. Tijms [11] provides the exact, non-trivial solution for
the distribution of W(t), together with a recursive computational algorithm. For sim-
plicity, we use the well-known heavy traffic GI/G/C two-moment
approximations below (c.f., [12] and references therein) for E(W) and V(W) based on the
coefficients of variation C2

a and C2
s of the arrival process and the service process (where

C2
a = 1 and C2

s = 0 for the M/D/C system). Then the mean and variance of the waiting
time W are given by

E(W ) ∼= T 0
(

ρ

1 − ρ

[
C2

a + C2
s

2

])
= T 0x, and (21)

V (W ) ∼=
(

T 0
)2

C2
s +

(
T 0
)2{( ρ

1 − ρ

)2[C2
a + C2

s

2

]2[
1 + 4(1 − ρ)C2

s

ρ
(
1 + C2

s

)
]}

=
(

T 0x
)2

,

(22)

where T0 is the no-load message processing (code execution) time and x = ρ
2(1−ρ)

.
This approximation assumes that W is exponentially distributed
with mean T 0x, and latency T = T0+ W is a shifted exponential. The 95th percentile
latency is given approximately by T 0 + 3E(W ) = T 0(1 + 3x). Thus, the performance
requirements, combined with the capacity requirement of 600 calls/sec, become T 0 ≤
min
{
0.03
1+x , 0.06

1+3x

}
, where x = ρ

2(1−ρ)
, ρ = 600T 0

C , and C = number of vCPUs.
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Fig. 6. Relationship between allowable processing time and required number of vCPUs.

This result yields an explicit relationship (observed in [13]) between the maximum
allowable processing time T0 and minimum required number of vCPUs C, as shown in
Fig. 6. For ρ < 2/3, the mean delay requirement is more constraining, while for ρ >

2/3, the 95th percentile requirement is more constraining. Since ρ ≤ 50% is required to
ensure adequate capacity in the event of site failure, T0 = 20 ms and C = 24. Finally,
since SW instances are of the 4-vCPU flavor, N = 6 instances are required (J = K = 3).
Note that this relationship places a requirement on the SW, and if the SW vendor cannot
meet this 20 ms execution time target, then more vCPUs will be required.

4.3 Reference Outage Model and Availability Requirement

Next, given the proposed minimum topology M = 2, N = 6, and J = K = 3 that satisfies
the capacity and latency requirements, we can now apply the reference outage model.
For the default MTBF/MTTR values in Table 1, the model output parameters, explicit
formulae, and resulting values are given in Table 3. As can be seen, based on the assumed
MTBFs and MTTRs for this topology, F = 323567 h and R = 67 min.

Table 3. Model parameters, explicit formulae, and resulting values for N = 6, M = 2, K = 3.
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Now, consider the availability requirement and assume (worst case) that all outages
occur during peak traffic periods, where the peak-to-average traffic ratio σ = 1.5. Then
(see [13]) F ≥ σ RA/(1 − A) = 166498 h. Since 323567 > 166498, the availability
requirement is met, and it appears that the minimumM = 2,N = 6 topology is sufficient.
However, we must verify that this solution meets the reportable outage requirement.

4.4 Reportable Outage Requirement

Next, consider the service outage requirement P(no outages > 30 min in 8760 h)

=
∞∑

n=0
P(no outages > 0.5 hours | n outages)P(n outages in 8760 hours)

=
∞∑

n=0

[
1 − e− μ

2

]n
(8760λ)ne−8760λ

n! = e−8760λ
∞∑

n=0

(
8760λ

[
1−e− μ

2
])n

n!
= e−8760λe8760λ

[
1−e−μ/2

]
= e−8760λe−μ/2 ≥ 99% .

(23)

Then λe–μ/2 ≤ −ln(0.99)/8760= 871613–1 and F ≥ 871613e–0.5/1.11 = 556564 h. Since
323567 < 556564, the reportable outage requirement is not met.

There are a number of possible options, all easily evaluated using the reference outage
model. First, we canmodel the effect of hardening elements by increasingMTBFs and/or
decreasing MTTRs (details omitted). Hardening instance SW (increasing λ−1

I from 3
to 13 months) or the resident function SW (increasing λ−1

F from 2 to 6.4 years) both
result in increasing F above 556564 h. Interestingly, decreasing SW MTTRs is not as
effective because in this example (where the reportable service outage requirement is
most constraining), the solution is more sensitive to failure rates than to restoral rates.
Notably, hardening the HW (increasing MTBFs or decreasing MTTRs) does not help,
lending analytical support to the trend of using commodity hosts and public cloud sites
instead of high-end servers and hardened datacenters.

Next, we can add instances (N) and/or sites (M). Adding a fourth host/instance to
each site (M = 2, N = 8, J = 4) easily meets the requirement. Surprisingly, adding
a third site and redistributing the hosts (M = 3, N = 6, J = 2) also easily meets the
requirement. The reason is that although site failures are now more frequent with three
sites, the much more probable {1 site+ 1 instance} duplex failure is no longer an outage
mode.

5 Topology Configuration Tool

Given the minimal topology description of M sites, N hosts, J = N /M instances/site,
and K instances required for service to be up, and given the basic failure and restoral
rates {λI , λF , λH , λS} and {μI , μF , μH , μS} of the {instance SW, function SW, host
HW, site HW}, we determine the exact formulae for the service availability A = PUP ,
the mean time between service outages F = λ−1

D , and the mean time to restore service
R = μ−1

D . This reference outagemodel forms the kernel for a topology configuration and
optimization tool. Instead of inputting M, N, and K, and computing A and F, we want to
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input requirements for availability A and capacity K (and possibly other metrics), and
compute the most cost-effective system topology M and N.

Consider the following topology configuration and optimization algorithm.

Inputs:

• MTBFs and MTTRs for {instance, function, host, site}
• Annualized capital and operational expense costs {CM , OM , CN , ON}
• Required availability A and capacity K
• Required local- and geo-redundancy J ≥ j ≥ 1 and M ≥ m ≥ 1
• Required mean outage and restoral times F ≥ f and R ≤ r, etc.

Objective function:

Minimize {(CM + OM )M + (CN + ON )N} subject to PUP ≥ A, J ≥ j, M ≥ m, F ≥ f ,
R ≤ r, etc.

Given the inputs, the approach is to compute a family of feasible solution pairs {M,N}
that are generally in the range {m,Nmax},…, (Mmax ,j}. The most cost-optimal topology
is then easily determined given the capital and operational expense cost parameters.

Algorithm:

1. Start by setting M = m and AN = 1 (i.e., only site failures can occur).
2. Solve for {PUP, F, R}.
3. If any outputs {PUP, F, R} do not meet their respective requirements (that is, no

feasible solution exists for M for any N), then increment M ← M + 1 and go to step
2.

4. Set J = max(�K/M �, j), N = MJ, and AN = μN /(λN + μN ).
5. Solve for {PUP, F, R}. If any outputs {PUP, F, R} do not meet their respective

requirements, then increment N ← N + M and J ← J + 1, and repeat step 5.
6. Record {M, N} as a feasible solution pair.
7. If J > j, then increment M ← M + 1 and go to step 4; otherwise, stop.
8. The optimal solution is determined from the resulting set of feasible pairs {M, N}.

6 Conclusions

In this paper, we illustrate an approach to topology configuration and optimization, with
a focus on addressing geo-redundancy issues like howmany sites, and howmany servers
per site, are required to meet performance and reliability requirements. We first develop
a multi-dimensional component failure mode reference model, then show how to reduce
this model to a one-dimensional service outage mode reference model. We describe a
topology configuration tool for optimizing resources to meet requirements and illustrate
its effective use for a hypothetical application.

The key contribution of this work is the exact derivation of the composite service
outage and restoral rates as a function of the number of servers, the number of sites,
and the minimum required server capacity level, using a novel adaptation of the hyper-
geometric “balls in urns” distribution with unequally likely combinations.
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Abstract. We consider a splittable atomic game with lossy links on a
ring in which the cost that each player i minimizes is their own loss rate of
packets. The costs are therefore non-additive (unlike costs based on delays
or tolls) and moreover, there is no flow conservation (total flow entering
a link is greater than the flow leaving it). We derive a closed-form for the
equilibrium, which allows us to obtain insight on the structure of the equi-
librium. We also derive the globally optimal solution and obtain conditions
for the equilibrium to coincide with the globally optimal solution.

Keywords: Routing games · Loss probabilities · Ring topology

1 Introduction

We study routing on a ring network in which traffic originates from nodes on
the ring and is destined to the center node. Each node has two possible paths:
either a direct path from the node to the center node or a two-hop path in which
the packet is first relayed to the next node on the ring and then takes the direct
link from that next node to the common destination. The traffic originating
from a given node is assumed to form an independent Poisson process with some
intensity (which we call the demand). Beyond forwarding the traffic that arrives
from the previous node, each node has to decide what fraction of its own traffic
would be routed on each one of the two possible paths to the destination.

Routing games of this type have been intensively studied both in the road traf-
fic community [13] as well as in the community of telecommunications network
[12] under additive costs (such as delays or tolls) and conservation constraints (at
each node, the sum of incoming flow equals the sum of outgoing flows) [9]. In this
paper, we depart from these assumptions by considering loss networks in which
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losses may occur at all links: there are links with i.i.d. losses (relay links) and col-
lision losses (on direct links between source and the common destination node).

Two levels of system modeling are presented here: a flow level in which rout-
ing decisions are taken, and a more detailed packet-level modeling that deter-
mines the losses and thus the interference between flows from different sources.
The decisions of a node concern only the fraction of packets originated in that
node which will be routed on each of the two paths available to traffic from that
node. Then the actual packets to be transmitted over each one of the paths are
selected according to an i.i.d. Bernoulli thinning process. The decisions are thus
the Bernoulli thinning parameters.

The ring topology has received much less attention than the parallel-link
topology as well as the load-balancing triangular topology introduced by Prof
Kameda and his students. Although in practice, the ring topology may seem to
be a toy problem, we do encounter ring networks quite often in practice, mostly
in runabouts. Ring topologies can also be found in access to communication
networks, both in local area networks – see IEEE 802.5 token ring standard and
the metropolitan area network FDDI [4].

Related Work. Previous studies of routing games with circular topology have
appeared in citecircle1,burra,chen. [7,8] consider linear costs, and none of these
references consider non-conservation of flows. We note also that in [1], there are
either bi-directional roads or two rings, one in each of two directions (clockwise
and anti-clockwise), and cars have to decide which direction to drive in. In
[3] other non-additive cost criteria have been introduced in a context of load-
balancing games (triangle topology) where their performance measure is related
to blocking probabilities. See also [2] and [5] for other related work.

Focusing on symmetric ring networks, our main contribution is to obtain
closed-form expressions with the help of Maple. This includes best response
functions, derivatives of the costs that are used to compute the best response,
and the symmetric equilibrium. We derive the globally optimal solution as well
as the equilibrium solution.

2 The Model

We consider K nodes on a circle, indexed by 0, 1, ...,K − 1, see Fig. 1.
Each node k is connected to a set Nk containing N players. Each player

(n, k) ∈ Nk has to ship a strictly positive demand φk to a destination Δ common
to all players. Each of the Nk players generates packets following an independent
Poisson process. The player decides with what probability to send an arrival
that it generates over one of two possible paths to Δ; the packet can use a
direct transmission link D(k) or an indirect path consisting of first relaying the
packet to node k + 1 and only then transmit it to Δ through D(k+1) (note that
node indices are modulo K.) Let xn

k and αn
k denote the amount and fraction,

respectively, of class k flow originating from player (n, k) through the direct path,
i.e., through link D(k). We call

α = (αn
k , k = 0, ...,K − 1, n = 1, ..., N)
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Fig. 1. Ring network topology

the assignment or th action vector. For a given demand vector φ = (φn
k , k =

0, ...,K − 1, n = 1, ..., N), the assignment vector α completely specifies the set
of flows

x = (xn
k , k = 0, ...,K − 1, n = 1, ..., N) = (αn

kφn
k , k = 0, ...,K − 1, n = 1, ..., N).

With probability αn
j , a packet originating from player n in Nj takes a direct

path to the center, and otherwise it takes an indirect path: it is first relayed to
node j + 1 and then forwarded to the destination through link D(k + 1).

Loss Probabilities. We consider two types of losses: (1) i.i.d. losses at the relay:
a packet originating from node k is lost if relayed to node k +1 with probability
qk. (2) collision losses on the links Dk: whenever an arrival occurs while there
is another packet in service then there is a loss. The transmission duration of a
packet in link D(k) is exponentially distributed with parameter μk.

The total flow sent to the link D(k) consists of the superposition of (1) the
Poisson flows that arrive at node k and are transmitted over D(k), and (2) the
Poisson flow originated in node k −1 consisting of the packets that were not lost
in the relay to node k.

Thus the total rate of arrivals to D(k) is

R(k) =
N∑

n=1

φn
kαn

k + φn
k−1(1 − αn

k−1)(1 − qk)
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The loss probability of packets at D(k) is

P (k) =
R(k)

R(k) + μk
(1)

By the same arguments, the loss probability of packets at D(k + 1) is

P (k + 1) =
R(k + 1)

R(k + 1) + μk+1
(2)

The total rate of losses of packets of player (n, k) is

Jn
k (α) = φn

k

(
αn
kP (k) + (1 − αn

k )
[
qk + (1 − qk)P (k + 1)

])
(3)

In the rest of the paper we assume that φn
k , μk and qk are constant, independent

of k and n.

3 The Globally Optimal Solution and the Equilibrium

3.1 Minimizing Average Loss Probability

Consider a symmetric multi-strategy α for all players, i.e. in which αn
k are the

same for all players (n, k). Without loss of generality, let φ = 1/N . Then the rate
of arrival of packets at the links D(k) is R = 1 − (1 − α)q. The loss probability
on link D(k) is

Pl =
R

R + μ
= 1 − μ

1 − (1 − α)q + μ

so the global loss probability is

π = Pl + (1 − α)q.

It is minimized at α = 1, which means that all players take direct path to the
destination.

3.2 Equilibrium

Assume that player (n, k) deviates and plays b instead of playing α. Let u be
the multi-strategy after the deviation. Then

R(k, u) = [α + (1 − α)(1 − q)]
N − 1

N
+ [b + (1 − α)(1 − q)]

1
N

=
b − α

N
+ (1 − α)(1 − q)

R(k + 1, u) = [α + (1 − α)(1 − q)]
N − 1

N
+ [α + (1 − b)(1 − q)]

1
N
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= α + (1 − α)(1 − q) − (1 − q)
b − α

N

The loss probability for a player (k, n) is given by

Jn
k (u) =

1
N

(
bP (k, u) + (1 − b)

[
q + (1 − q)P (k + 1, u)

])

where the path loss probabilities P (k, u) and P (k + 1, u) are given in (1)–(2).
To obtain the equilibrium, we:

1. differentiate Jn
k (u) with respect to b, and obtain (using Maple) the expression

in Fig. 6. Equating the expression to 0 allows us to obtain the best response
action b = f(a) that minimizes the loss probabilities of a player when all
others use α.

2. obtain the symmetric equilibrium by computing the fixed point of the map-
ping b = f(α). This leads to

α∗ = −Nμq − Nq2 + Nq + q2 − 2q + 1
Nq2 − q2 + 2q − 2

If 0 < α∗ ≤ 1, then it is a symmetric equilibrium. If the fixed point is greater
than 1, then the symmetric equilibrium is the policy α = 1 for all players.
In that case, the equilibrium is globally optimal and only the direct links are
used. Thus, the equilibrium coincides with the globally optimal policy for all
q large enough.

3.3 Best Response

As already mentioned, we are able with the help of Maple to get an explicit
cumbersome expression for the best response. This allows us to obtain a much
simpler expression for the equilibrium (as a function of the parameters). We
present in Fig. 2 the best response b as a function of q.

3.4 When Is the Globally Optimal Policy α = 1 an Equilibrium

Consider the cost Jn
k (b, 1) for some player (n, k) where (b, 1) is the policy where

all players use α = 1 and the deviating player (k, n) uses b.

Theorem 1. A necessary and sufficient condition for α = 1 to be a symmetric
equilibrium is that

qN >
1

1 + μ

Proof. A necessary and sufficient condition for the symmetric policy α = 1 to
be an equilibrium is that the cost for the deviating player be decreasing in b at
b = 1. This is equivalent to the following first-order condition. The derivative of
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Fig. 2. Expression for the best response function b = f(α)

the cost of the deviating player evaluated at b = 1 when all other players use
α = 1 is non-negative. Calculation in Maple yields

dJn
k (b, 1)
db

∣∣∣∣
b=1

= −μ(Nμq + Nq − 1)
(1 + μ)2

(4)

This concludes the proof.

We conclude that if one invests in improving a communication channel thus
decreasing the loss probabilities (the parameter q in our case), then as a result
we may end up worsening the performance for all the users in the system.

4 Numerical Examples

With the help of Maple, we obtained a simple expression for the equilibrium as
a function of the parameters of the system. The following experiments allow us
to get an insight on equilibrium behavior.

4.1 The Equilibrium

We depict in Fig. 3 the parameter α∗ defining the symmetric equilibrium as a
function of the loss rate parameter q. The following parameters are fixed: N = 1
and μ = 1. As long as α∗ is in the unit interval, it is the equilibrium. This is the
case for q ≤ 0.5. For larger q, the corresponding symmetric equilibrium is α = 1.
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Fig. 3. The symmetric equilibrium as a function of the loss probability parameter q.

4.2 The Best Response

In Fig. 4, we depict the loss probability of a player that plays b when the others
play α. b is varied while α is held fixed. The figure thus allows us to identify the
best response b. In the case that the best response b(α) to a given α in the unit
interval satisfies b(α) = α, then α is a symmetric equilibrium.

The following parameters are fixed: N = 1 and μ = 1. There are three
curves: the first corresponds to α = 0.5012 and q = 0.01, the second to q = 0.3
and α = 0.55 and the third to q = 0.9 and α = 1. In the two first curves, b for
which the derivative of the cost is zero is within the unit interval and is thus
the best response to α. In the first curve, α = 0.5012 is a fixed point of the best
response function b(α). This confirms that α = 0.5012 is an equilibrium, which
can be seen from Fig. 3.

In the third curve, b that minimizes the cost is larger than 1 and the best
response is obtained on the boundary b = 1 and not on the b for which the
derivative w.r.t. b is zero.

4.3 Non-equilibrium of the Globally Optimal Policy α = 1

We depict the best response to the globally optimal policy in Fig. 5, for N = 1
and μ = 1 being held fixed, as a function of the loss parameter q. For the above
parameters, the best response function is given in Fig. 2.

We observe that for all q < 0.5, the best response to other players sending
their traffic through the direct path (i.e. α = 1) is to play b < 1. We conclude
that for these q, α = 1 is not an equilibrium. In contrast, for all q ≥ 0.5, the
best response to α = 1 is also α = 1 and hence the global optimal policy is an
equilibrium policy.
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Fig. 4. The symmetric equillibrium as a function of the loss probability parameter q.

4.4 The Derivative of the Cost of a Player

In order to provide an expression for the equilibrium, we had to differentiate
the cost of the player that uses b while others use a. Below is long expression
obtained by Maple for the derivative w.r.t. b of the cost for the player, i.e. of the
loss probability of packets of player (k, n) who plays b when all others play α.

Fig. 5. Sending all the traffic through direct paths is not an equilibrium. The Figure
shows the best response of a player when the others use α = 1 as a function of the loss
parameter q.
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Fig. 6. Expression for the derivative of the cost of the player (k, n) with respect to b.

5 Conclusions

We have seen that for any choice of system parameters, the equilibrium perfor-
mance improves when increasing the loss probability parameter q on the relay
links. The equilibrium loss probability of a player is thus decreasing in q. This
is a Braess-type paradox.

Furthermore, for any parameters of the system, if the number N of players
at each node is large enough, then the globally optimal policy is an equilibrium;
this means that in the regime of a large number of players (called a Wardrop
equilibrium), the above type of paradox does not occur.

The original Braess paradox [6] was shown to hold in a framework of a very
large number of players (Wardrop equilibrium). Later on it was shown to occur
also in the case of any number N > 1 players in [11]. The paradox we introduced,
known as the Kameda paradox, does not occur in the case of a very large number
of players. This was shown for standard delay-type cost functions in [10] for a
triangular network topology.
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Abstract. We study the routing decisions of passengers in a transporta-
tion station, where various types of facilities arrive with limited seating
availability. The passengers’ arrivals occur according to a Poisson pro-
cess, the arriving instants of the transportation facilities form indepen-
dent renewal processes and the seating availability at the successive visits
of the facilities correspond to independent random variables, identically
distributed for each facility. We analyze the strategic passenger behav-
ior and derive the equilibrium strategies. We also discuss the associated
social welfare optimization problem.
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1 Introduction

1.1 Overview and Scope

One can often model the components of production, transportation, service,
communication, or distributed computer systems as parallel queues, in which
jobs (customers) are processed by various servers. The servers could be produc-
tion stations, vehicles, office employees or public agents, or communication and
computer systems. In many cases, multiple jobs can be processed simultaneously
by one of many such service facilities.

In the present paper, we assume for concreteness the framework of a trans-
portation station (hub). In such a station, multiple types of transportation facil-
ities (e.g. buses, trains etc.) are scheduled to arrive and serve the incoming pas-
sengers who decide, upon arrival, which facility are going to wait. To this end, we
consider a stylized stochastic model for the study of strategic customer behavior
in such service systems which can be represented as a network of parallel clear-
ing systems that operate independently. New customers arrive at the system
according to a Poisson process and each transportation facility visits the station
at the instants of a renewal process, independently of the arrival process and
the other facilities’ visit processes. Upon arriving at the station, the customers
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decide which of the available transportation facilities (if any), is preferable for
them, according to the well-known Wardrop principle (see [30]). Based on their
decisions, customers will then start to accumulate at the corresponding waiting
room or platform. The model is assumed unobservable, i.e., the customers know
the operational and economic parameters of the station, but cannot observe the
number of customers who wait at the various platforms.

A key feature of this model is that each transportation facility has limited
capacity at its visits at the station. Thus, there is a positive probability for any
customer that he/she may not be accommodated by his/her chosen facility. In
this case, such customers seek some alternative option elsewhere (we model this
as an outside opportunity).

The paper focuses primarily on analyzing the strategic behavior of rational
customers regarding their routing decisions and on deriving the customer equilib-
rium and socially optimal routing strategies. A theoretical comparison between
these two cases shows that the equilibrium and socially optimal routing decisions
do not coincide, and, in general, customers use the facilities more than what is
socially desirable.

1.2 Literature Review

Formulating the behavior of individual customers as a game and identifying
equilibrium strategies enables a more meaningful assessment of how various
system parameters or control policies affect the effective arrival rate, which
represents the demand for the service provided. It is for this reason that the
papers on strategic analysis in queueing systems have been proliferated in the
last decades. The study of queueing systems under a game theoretic perspective
was initiated by Naor [22] who studied the strategic customer behavior and the
associated social welfare and profit maximization problems for the observable
M/M/1 queue regarding the join-or-balk dilemma. Naor showed that the strate-
gic customer behavior can lead to inefficient system outcomes and the system
administrator can rely on monetary transfers to coordinate the system. Edelson
and Hildebrand [14] studied the unobservable counterpart of Naor’s model. An
extensive survey of the main methodological approaches and several results in
this broader area can be found in the monographs by Hassin and Haviv [17],
Stidham [29] and Hassin [16]. Finally, Patriksson [24] provides a unified account
of models and methods for the problem of estimating equilibrium traffic flows in
urban areas and a survey of the scope and limitations of present traffic models.

In the present study, we analyze the strategic routing decisions of customers
in a network of parallel clearing systems. In each node, all present customers
are removed instantaneously at the events of renewal processes which represent
the visits of the transportation facilities. This model is related to the stream of
research that studies the strategic customer behavior in clearing systems and
also extends to the body of research related to strategic behavior in queueing
networks.

The literature on clearing systems from a performance evaluation point
of view is vast and goes back to Stidham [28]. However, the consideration of
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customer strategic behavior in such systems is a recent endeavor. Some key ref-
erences in this thread of research are the papers by Economou and Manou [13],
Manou, Economou and Karaesmen [21], Manou, Canbolat and Karaesmen [20],
Czerny, Guo and Hassin [12] and Canbolat [10]. However, all these papers focus
on the join-or-balk dilemma of the customers, and not on the routing decision
which is the object of the present paper.

If one drops the assumption of the instantaneous removal of customers that
cannot be accommodated, the appropriate model is a queueing system with
batch services of finite size. The analysis of strategic customer behavior in such
systems has been only recently initiated in the framework of the M/M/1 queue
with batch services, see e.g., Bountali and Economou [6,7] and [8].

Another thread of research that is closely related to the present work started
with the seminal paper of Bell and Stidham [5] who studied the routing decisions
of customers in a system of several parallel M/G/1 queues, with the same coeffi-
cient of variation for the service times. In that paper, the authors determined the
equilibrium and socially optimal strategies. Moreover, in the exponential case,
they also provided closed-form expressions. They showed that when arriving cus-
tomers are free to choose which server to join, they over-utilize the low-cost/high-
speed servers causing higher total costs in comparison to the socially optimal
policy. In general, it is known that the user equilibrium, where the customers
try to maximize their expected utility, and the social optimum, do not coin-
cide, both in the contexts of probabilistic routing, and state-dependent routing
(see e.g., Whitt [31], and Cohen and Kelly [11]). Other important related works
concerning the strategic customer behavior in queueing networks with parallel
servers are the papers [1–4,9,15,23,26,27]. However, all these works study the
strategic behavior regarding routing in parallel queues that process customers
one by one, unlike our work which considers routing in parallel clearing systems.

1.3 Organization of the Paper

The rest of the paper is structured as follows: In Sect. 2, we introduce the model
and calculate the key quantities that we will use in the sequel. Sections 3 and
4 include the main analysis for the computation of the equilibrium and socially
optimal strategies, and their comparison. Finally, Sect. 5 contains a discussion
of the results and points to directions for future study.

2 The Model

2.1 Mathematical Description and Notation

We consider a transportation station modeled as a network of n parallel clear-
ing systems (platforms), operating independently. The system i corresponds to
the platform of a transportation facility that visits the station according to a
renewal process {Mi(t)}. We denote the corresponding generic inter-visit time
by Xi, its distribution function by FXi

(t), its mean and second moment by x̄i
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and x̄i(2), respectively, and its density (in case of an absolute continuous r.v.)
by fXi

(t). Each transportation facility has its own capacity which is revealed
when it reaches the station. We assume that the successive capacities of the
transportation facility of type i form a sequence of i.i.d. random variables. We
denote a generic random variable representing the capacity at a visit of facility
i by Ci and its probability mass function by (gi(j) : j ∈ {1, 2, ...,mi}).

Customers arrive at the transportation station according to a Poisson process
with rate λ and are strategic in the sense that they decide which of the available
transportation facilities they might use. After choosing a facility of type i, a
customer moves directly to the corresponding facility’s waiting room/platform
which has infinite waiting space. He/she waits there for the transportation facil-
ity to arrive along with other customers who have made the same decision. The
service reward is ri and will be received only in the case where the next arriving
facility has the capacity to accommodate him/her. Moreover, the waiting cost
is c per time unit. The customer has also the option to balk from the station
which corresponds to zero cost and a diminished service value which is denoted
by v. This value can be set to zero for simplicity.

Each time that a transport facility of type i visits the station, having capacity
Ci, it will accommodate at most Ci customers. Moreover, we assume that those
customers who cannot be accommodated will not wait for the next facility, but
they will abandon the station. This is a realistic assumption when the cost of
waiting a whole inter-visit time is prohibitive. Thus, the number of customers
served by a facility i equals the minimum of its capacity and the number of
present customers at its arrival instant. After each visit of a facility, its platform
is left empty.

Finally, we assume that the boarding discipline into the various transporta-
tion facilities is the First-Come-First-Served (FCFS). Later, we will see that the
results remain valid for the Last-Come-First-Served (LCFS) and the Random-
Order (RO) disciplines as well.

2.2 Information Structure - Strategies

We assume that arriving customers have complete knowledge of the operational
and economic parameters of the model. However, they do not receive any infor-
mation about the actual state of the station, i.e., the model is unobservable. This
situation can be modeled as a symmetric game among the customers. In this case,
a customer’s strategy is a vector q = (q0, q1, ..., . . . , qn), where qi ∈ [0, 1], i ≥ 1
is the probability of choosing facility i and q0 is the probability of choosing the
balking/outside option. These probabilities sum to 1, i.e.

∑n
i=0 qi = 1.

2.3 Customer’s Utility Function

A key quantity for the study of strategic customer behavior in this model is
the expected net benefit of a tagged customer who decides to wait for a given
facility i, given that the population of customers follows a strategy q. A moment
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of reflection reveals that this quantity depends only on qi, so it will be denoted
by Gi(qi). Let

– Pi(qi) be the conditional probability that the tagged customer will be served
by the next facility of type i given that the customers who choose the i facility
will join with probability qi, and

– Ei be the expectation of his/her waiting time till the visit of the next facility
of type i.

The expected utility of the tagged customer who chooses to wait for facility’s i
next visit, is

Gi(qi) = riPi(qi) − cEi. (1)

Using simple probabilistic arguments, Gi(qi) can be found in a more explicit
form.

Proposition 1 (Expected utility). The expected utility of a tagged customer
who chooses facility i given that all other customers choose facility i with prob-
ability qi, is equal to

Gi(qi) = ri

mi∑

j=1

gi(j)
∫ ∞

0

pj(λqia)
1 − FXi

(a)
x̄i

da − c
x̄i(2)

2x̄i
, i = 1, 2, . . . , n, (2)

where

pj(s) =
j−1∑

i=0

e−s si

i!
=

1
(j − 1)!

∫ ∞

s

uj−1e−udu =
Γ (j, s)
(j − 1)!

, (3)

(with Γ (j, s) being the upper incomplete gamma function). For the balk-
ing/outside option, i = 0, we set G0(q0) = v = 0. Also, we note that pj(0) = 1

Proof. For the computation of the boarding probabilities, Pi(qi), we consider a
given renewal cycle and condition on the capacity of facility i being Ci = j. We
denote this quantity by Pi(qi, j). When the boarding discipline is the FCFS, a
tagged customer who chooses this facility will find a seat only if the capacity at
its next visit suffices to accommodate him/her. In other words, if the capacity
is j, then, he/she will be served if and only if at most j − 1 other customers
have arrived during the age of the corresponding renewal process. But, it is
well-known that the limiting distribution of the age Ai of {Mi(t)} is given by

FAi
(a) =

∫ a

0
(1 − FXi

(u))du

x̄i
(4)

(see, e.g., Kulkarni [19] Theorem 8.20). Moreover, the arrival rate of the cus-
tomers who choose facility i is λqi. Thus, the boarding probability conditioned
on Ci = j is

Pi(qi, j) =
∫ ∞

0

pj(λqia)
1 − FXi

(a)
x̄i

da, (5)
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with pj(s) given by (3). Unconditioning with respect to C, yields

Pi(qi) =
mi∑

j=1

gi(j)
∫ ∞

0

pj(λqia)
1 − FXi

(a)
x̄i

da.

The conditional expectation Ei is the mean residual lifetime of the process
{Mi(t)} at an arbitrary customer’s arrival instant. Because of PASTA (see [32]),
we have that it coincides with the corresponding mean residual lifetime in con-
tinuous time. Therefore,

Ei =
x̄i(2)

2x̄i
. (6)

Inserting these expressions for Pi(qi) and Ei in (1) yields (2). ��
Note that formula (2) for the expected utility is valid for any other board-

ing discipline that does not affect the number of customers that are served. For
example, the LCFS and the RO disciplines have the same expected utility for-
mula. We can think of this result also algebraically: Using the renewal-reward
theorem we have that the long-run proportion of customers who are served by
the facility i equals the expected number of customers who are served in an inter-
visit time over the expected number of customers that arrive in an inter-visit
time. The former can be expressed as

E[min(Ni(Xi), Ci)]
E[Ni(Xi)]

,

where Ni(Xi) is the number of Poisson arrivals with rate λqi in an inter-visit
time Xi and this quantity is independent of the boarding discipline being the
FCFS, the LCFS or the RO.

Corollary 1 (Monotonicity of Gi). The functions Gi for i ∈ {1, 2, . . . , n}
are strictly decreasing in qi.

Proof. This is immediate since the functions pj(s) for j ≥ 1, are strictly decreas-
ing in s. ��

3 Equilibrium Strategies

In the present section, we study the customer equilibrium strategies. First, in
Subsect. 3.1, we show how Wardrop’s equilibrium conditions are specified within
the framework of this model. In Subsect. 3.2 we provide necessary and sufficient
conditions for the existence of pure equilibrium strategies. Moreover, we report a
sufficient condition so that no customers abandon the system. We also study the
set of facilities that are used by some customers in equilibrium. Subsection 3.3
contains the core results of the paper. We prove the existence and uniqueness of
an equilibrium strategy for each instant of the model. The equilibrium strategy
assigns zero or positive probability to the balking option according to the value of
a critical quantity l̃. After introducing this quantity, we show how the equilibrium
strategy is obtained in these two cases.
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3.1 Characterization of an Equilibrium Strategy

An equilibrium strategy, qe, is defined as a strategy where no player has an incen-
tive to deviate from it unilaterally. In other words, a vector qe = (qe0, q

e
1, . . . , q

e
n)

constitutes an equilibrium strategy if and only if there exists a set ∅ �= Ke ⊂
{0, 1, . . . , n} such that the following two conditions are met:

ES1: (i) qei > 0, for i ∈ Ke, (ii) all Gi(qei ), i ∈ Ke are equal, and (iii)
∑

i∈Ke

qei = 1.
ES2: (i) qek = 0, for k /∈ Ke, and (ii) Gi(qei ) ≥ Gk(0) for i ∈ Ke and k /∈ Ke.

3.2 Unused Facilities

Depending on the parameter values, several facilities may remain unused. We
will see how such facilities can be determined. We set ai = Gi(1), bi = Gi(0) =
ri − c

x̄i(2)

2x̄i
, for i ≥ 1. We assume that the facilities have been numbered so that

b1 ≥ b2 ≥ · · · ≥ bn. (7)

Then, facility 1 is considered the most attractive under ideal conditions (i.e.,
when the boarding probability is 1, for the tagged customer) which implies that
it will be the sole candidate for being preferable by any pure equilibrium strategy.
Indeed, if a pure equilibrium strategy dictates that the customers route to a
station i �= 1 only, the by ES2 we should have ai = Gi(1) ≥ G1(0) = b1 But
b1 ≥ bi > ai, a contradiction.

The functions Gi are continuous and strictly decreasing and as a result, their
image will be the sets Gi([0, 1]) = [ai, bi], i ∈ {1, 2, ..., n}. We also set

i∗ = arg max
i=1,...,n

ai and ief = max{i ∈ {1, ..., n} : bi ≥ ai∗}. (8)

Using the above quantities we can easily determine necessary and sufficient con-
ditions for the existence of pure equilibrium strategies. Specifically we have the
following proposition:

Proposition 2 (Pure equilibrium strategies). The equilibrium strategy is

(i) qe = (1, 0, 0, 0, ..., 0) if and only if b1 ≤ v = 0.
(ii) qe = (0, 1, 0, 0, ..., 0) if and only if ief = 1 and a1 > 0.

Proof. (i) If qe0 = 1, then Ke = {0} and we immediately get from ES2(ii)
that Gi(0) ≤ G0(0) = v = 0 for every i ∈ {1, 2, . . . , n} which implies that
b1 ≤ v = 0. On the other hand, if b1 ≤ v = 0, then ES1 and ES2 are satisfied
with Ke = {0}.

(ii) If ief = 1, then we necessarily have that i∗ = 1. Indeed, if i∗ ≥ 2, then by
using the definition of ief and the ordering of bi, we will get that b1 > bi∗ >
ai∗ > bief = b1, which is a contradiction. Therefore, G1(1) = a1 > bi > Gi(q)
for every q ∈ (0, 1] and i ≥ 2. Also, a1 > 0 implies that G1(1) > 0 = v =
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G0(0) and therefore the strategy qe = (0, 1, 0, 0, ..., 0) is equilibrium. For
the converse, let qe = (0, 1, 0, 0, ..., 0). Then, qe1 = 1 and qei = 0 for i �= 1
and also G1(1) > Gi(q) for every i �= 1 and q ∈ [0, 1]. We conclude that
a1 = G1(1) > G0(0) = v = 0 and a1 > Gi(0) = bi ⇒ a1 > bi ⇒ ief = 1.

��
In view of Proposition 2, we will henceforth assume that

b1 > v = 0.

This implies that qe0 < 1, and thus, we exclude the situation where all passengers
balk. In the following proposition we establish a simple sufficient condition so
that no passenger balks.

Proposition 3 (No-balking condition). Let qe be the equilibrium strategy. If
ai∗ ≥ v = 0 then qe0 = 0.

Proof. Suppose that qe0 > 0, i.e., 0 ∈ Ke. In case that i∗ ∈ Ke, from ES1 we have
that qei∗ > 0, Gi∗(qei∗) = G0(qe0) and also that qei∗ + qe0 ≤ 1 which implies that
qei∗ < 1. However, ai∗ ≥ v = 0 shows that Gi∗(qei∗) > Gi∗(1) = ai∗ ≥ 0 = v =
G0(qe0). In case where i∗ /∈ Ke, ES2 implies that v = G0(qe0) ≥ Gi∗(0) = bi∗ > ai∗

which contradicts the hypothesis. Therefore qe0 = 0. ��

Proposition 4 (Unused facilities). Let Kef = {0, 1, . . . , ief}. Then, we have
that Ke ⊂ Kef . In particular, if the vector qe is the equilibrium, then qe =
(qe0, q

e
1, ..., q

e
ief , 0, ..., 0), with qei ∈ [0, 1) for every i ∈ Kef . Moreover, if for some

ĩ ∈ {2, ..., n} we have that qe
ĩ

= 0, then qei = 0 for every i = ĩ + 1, . . . , n.

Proof. Let qe be the equilibrium strategy. We assume that qe
ĩ

= 0 for some
ĩ ∈ {2, ..., n}. The functions Gi are strictly decreasing and thus, by (7), we have
that bĩ ≥ bi > ai for every i = ĩ + 1, ..., n. In this case

Gĩ(0) = bĩ ≥ bi > Gi(q), for every q ∈ (0, 1] and for every i = ĩ + 1, ..., n.

It is therefore clear from ES1 and ES2 that qei = 0 for every i = ĩ + 1, . . . , n. It
is only left to show that qief+1 = 0. To this end, we start by showing that for
the quantities i∗ and ief , the following properties hold:

1. ief ≥ i∗ and
2. Gi∗(q) �= Gief+1(q) for every q ∈ [0, 1].

To show 1, let ief < i∗ or i∗ ≥ ief + 1. In this case bi∗ ≤ bief+1 due to (7).
On the other hand, from the definition of ief we have that bief+1 < ai∗ and
thus, combining the above we conclude that bi∗ < ai∗ , a contradiction due the
monotonicity of G.
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To show 2, let q ∈ [0, 1]. From the definition of ief we have that bief+1 < ai∗

and thus

Gi∗(q) ≥ Gi∗(1) = ai∗ > bief+1 = Gief+1(0) ≥ Gief+1(q).

Therefore, if i∗ ∈ Ke, then using 2, we note that condition ES1(ii) does
not hold which implies that ief + 1 /∈ Ke. Thus qief+1 = 0. If i∗ /∈ Ke, then
qi∗ = 0 and due to the fact that i∗ ≤ ief < ief + 1 we will have again that
qief+1 = 0. ��
The facilities that are included in the set Kef \Ke will be those left unused, i.e.
qei = 0. Whenever qei > 0, the corresponding facilities will be used.

3.3 Derivation of the Equilibrium Strategy

For the derivation of the equilibrium strategy, we need first to introduce some
key quantities that are used for its computation.

By the strict monotonicity of Gi(x), i = 1, 2, . . . , n, it is easy to see that each
equation Gi(x) = bj , for 1 ≤ i ≤ j ≤ ief , has a unique solution which we denote
by qbij . In the sequel, we define the quantities

Q(k) =
k∑

i=1

qbik , k = 1, ..., ief

and we set
ie = max{k ∈ {1, ..., ief} : Q(k) < 1}. (9)

We note that the set {k ∈ {1, ..., ief} : Q(k) < 1} is non-empty due to ief ≥ 1
and Q(1) = qb11 = 0 < 1, hence ie is well-defined.

An important function for the computation of the equilibrium strategy is the
function

H(x) =
ie∑

i=1

G−1
i (x) − 1. (10)

The following lemma is the basic step towards the derivation of the equilib-
rium strategy.

Lemma 1. Let ief given by (8). Define l̃ as

l̃ =
{

H−1(0) ∈ [bie+1, bie) if ie < ief

H−1(0) ∈ [ai∗ , bie) if ie = ief
(11)

Then, there exists a vector (q̃1, q̃2, ..., q̃ie) which satisfies the following conditions:

(i) q̃i ∈ (0, 1], i = 1, ..., ie

(ii)
∑ie

i=1 q̃i = 1
(iii) Gi(q̃i) = l̃, for i = 1, ..., ie.
(iv) Gi(q̃i) = l̃ ≥ Gj(0), for i = 1, ..., ie and for any j = ie + 1, ..., n.
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Proof. We distinguish two cases according to whether ie < ief or ie = ief .

Case 1 ( ie < ief ). We have that Q(ie) < 1 and Q(ie + 1) ≥ 1. We consider
the function H(x) defined by (10) on [bie+1, bie ]. We note that bie+1 �= bie .
Indeed, if it were not the case we would have that Gi(qbiie ) = bie = bie+1 =
Gi(qbiie+1) ⇒ qbiie = qbiie+1 for every i ≤ ie, implying that 1 > Q(ie) = Q(ie+1)
which contradicts the definition of ie. Thus, H(x) is well defined continuous and
decreasing as sum of continuous and decreasing functions. Moreover,

H(bie+1) =
ie∑

i=1

G−1
i (bie+1) − 1 =

ie∑

i=1

qbiie+1 − 1 = Q(ie + 1) − 1 ≥ 0 and

H(bie) = Q(ie) − 1 < 0.

Therefore, H(x) has a unique root in [bie+1, bie) which we denote by l̃. Setting
q̃i = G−1

i (l̃) for i = 1, ..., ie, which are uniquely defined as G−1
i (x) are also

decreasing functions, we have that condition (i) of the Lemma is valid, i.e.,
q̃i ∈ (0, 1], i = 1, ..., ie. Indeed,

l̃ ∈ [bie+1, bie) ⇒ q̃i = G−1
i (l̃) ∈ G−1

i ([bie+1, bie)) = (qbiie , qbiie+1 ],

and qbiie ≥ 0, qbiie+1 ≤ 1 are the solutions in [0, 1] of the equations Gi(x) = bie

and Gi(x) = bie+1 respectively.
Noting that H(l̃) = 0 implies immediately the validity of conditions (ii) and

(iii) of the Lemma.
For proving (iv), we have only to show that Gi(q̃i) ≥ Gie+1(0) = bie+1. But

this is clear since Gi(q̃i) = l̃ ≥ bie+1 for every i = 1, ..., ie.

Case 2 ie = ief . We now have that Q(ie) = Q(ief ) < 1. We consider the function
H(x) given by (10) on [ai∗ , bief ]. We have that ai∗ �= bief . If this were not the
case, then Q(ie) ≥ qb

i∗ief
= 1, because qb

i∗ief
is the solution of the equation

Gi∗(x) = bief = ai∗ and thus x = 1. We set aii∗ the unique solution of the
equation Gi(x) = ai∗ . We get that

H(ai∗) =
ief∑

i=1

G−1
i (ai∗) − 1 =

ief∑

i=1

qaii∗ − 1 = qa1i∗ + ... + qai∗i∗ + ... + qa
ief i∗ − 1

= qa1i∗ + ... + qa
ief i∗ ≥ 0 due to qai∗i∗ = 1 and ief ≥ i∗

H(bief ) =
ief∑

i=1

G−1
i (bief ) − 1 =

ief∑

i=1

qb
iief

− 1 = Q(ief ) − 1 < 0.

Similarly to case 1, the function H(x) has a unique root l̃ ∈ [ai∗ , bief ). We set
q̃i = G−1

i (l̃) for i = 1, ..., ief . Then, we can check that conditions (i)–(iv) of the
Lemma are valid, along the same lines with case 1. ��
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Lemma 1 gives essentially the equilibrium strategy that satisfies conditions
ES1 and ES2, if l̃ ≥ 0. Otherwise, a correction is needed, since some customers
will balk in equilibrium. In this case, it turns out that the position of v = 0 in
the ordering of the bis is related to the number of facilities that remain unused.
More specifically, consider the partition of (l̃, b1) as

(l̃, b1) = (l̃, bie) ∪ [bie , bie−1) ∪ . . . ∪ [b2, b1) = Aie ∪ Aie−1 ∪ . . . ∪ A1. (12)

We define ke to be the index i of the set Ai from the above partition that v
belongs to. In other words,

ke = max{i : bi > v}. (13)

The following theorem presents the two cases (l̃ ≥ 0 and l̃ < 0) for the
equilibrium strategy of the customers. It constitutes the main result regarding
the existence and uniqueness of the equilibrium strategy.

Theorem 1 (Existence and uniqueness of the equilibrium strategy).
A unique equilibrium strategy exists. We have the following cases:

1. If l̃ ≥ 0 = v, then the unique equilibrium strategy is the vector qe =
(0, q̃1, ..., q̃ie , 0, ..., 0), with q̃i given in Lemma 1.

2. If l̃ < 0 = v then the strategy qe = (qe0, q
e
1, ..., q

e
ke , 0, ..., 0), with qei = G−1

i (0),
i = 1, 2, . . . , ke and qe0 = 1− (qe1 + ...+qeke), is the unique equilibrium strategy.

Proof. Case 1 (l̃ ≥ 0): Let ief ∈ {1, ..., n} and ie ∈ {1, ..., ief} be given by (8)
and (9) respectively. Also, let q̃1, q̃2, ..., q̃ie and l̃ be as in Lemma 1. If l̃ ≥ 0 = v,
then we have that G0(0) = v ≤ Gi(q̃i) for every i ∈ {1, ..., ie}. Combining this
with the result of Lemma 1, we can clearly see that Ke = {1, 2, ..., ie} and that
qe = (q̃1, ..., q̃ie , 0, ..., 0) is the equilibrium strategy. The monotonicity of the
functions G−1

i (x) implies the uniqueness of the equilibrium strategy.

Case 2 (l̃ < 0): We now consider the case where l̃ < 0 = v. Recall that
b1 > 0 = v. Thus, because of l̃ ∈ [bie+1, bie), the value v = 0 will be in the
partition of (l̃, b1) in the intervals (l̃, bie), [bie , bie−1), ..., [b2, b1) (noting that some
of them may be empty due to equality of some bi). By the definition of ke, we
have that b1 ≥ b2 ≥, ...,≥ bke > v. Moreover, v > ai∗ , so it is clear that
v ∈ ∩ke

i=1(ai, bi). By the definition of qei for i = 1, .., ke, we have 0 = v =
G1(qe1) = ... = Gke(qeke). We will show that Ke = {0, 1, 2, ..., ke}, that is, the
vector qe = (qe0, q

e
1, ..., q

e
ke , 0, ..., 0) satisfies the conditions ES1 and ES2.

Indeed, for i = 1, ..., ke, we have that bi > v > l̃ ⇒ Gi(0) > Gi(qei ) > Gi(q̃i).
Therefore, 0 < qei < q̃i and

∑ke

i=1 qei <
∑ie

i=1 q̃i = 1 ⇒ qe0 ∈ (0, 1). The Gi(qei ) are
all equal by definition and

∑
i∈Ke qei = 1. Finally, for any j ∈ {0, 1, 2, ..., n} \Ke

we have that qej = 0 and Gi(qei ) ≥ Gj(0) for every i ∈ Ke. ��
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4 The Social Optimization Problem

We now study the problem of a central planner who imposes the routing prob-
abilities with the objective of maximizing the social welfare, i.e., we seek for a
probability vector qsoc = (qsoc0 , qsoc1 , ..., qsocn ), the (socially) optimal policy, that
maximizes

S(q) = λ

n∑

i=1

qiGi(qi). (14)

The function S(q) is differentiable with partial derivatives

∂S(qi)
∂qi

= λ

(

Gi(qi) + qi
∂Gi(qi)

∂qi

)

= λFi(qi).

Applying the Karush–Kuhn–Tucker (KKT) conditions (see for example [25]),
we conclude that a vector qsoc = (qsoc0 , qsoc1 , . . . , qsocn ) constitutes a KKT point
(and therefore a candidate for optimal strategy) if and only if there exists a set
∅ �= Ksoc ⊂ {0, 1, . . . , n} such that the following two conditions are met:

OS1: (i) qsoci > 0, for i ∈ Ksoc, (ii) all Fi(qsoci ), i ∈ Ksoc are equal, and (iii)∑
i∈Ksoc qsoci = 1.

OS2: (i) qsock = 0, for k /∈ Ksoc, and (ii) Fi(qsoci ) ≥ Fk(0) for i ∈ Ksoc and
k /∈ Ksoc.

Therefore, the maximization problem is completely analogous to the equilibrium
problem of the previous section. In particular, the same analysis can be carried
out with the only difference being that, in this case we have the functions Fi(x)
in place of Gi(x) and all related quantities (ai, bi, etc.) should be computed
accordingly. However, there is a crucial difference: The functions Fi(x) may not
be monotone, in which case the overall analysis of the previous section breaks
down. In particular, many KKT points may exist and in addition the structure
that has been proved in the previous section will no longer be valid.

If all functions Fi(x) are strictly decreasing, then the analysis can proceed
exactly in the same lines with the equilibrium analysis. Therefore, we will have a
counterpart of Theorem 1. A sufficient condition which ensures the monotonicity
of the functions Fi(x) in [0, 1], is to assume concavity of the functions Pi(x). In
such cases, we can derive the unique social policy by following the same steps
as we did for the equilibrium strategy. In the sequel, we will denote the corre-
sponding quantities with the superscript ‘soc’ instead of ‘e’ that will refer to the
equilibrium counterparts. We present a numerical example in Fig. 1 where both
the equilibrium and the social policy are depicted. The idea of the algorithm for
computing the equilibrium is clear in this figure: When there is no balking, plot
all expected net benefit functions in the same grapgh. Then, draw a horizontal
line at a given level. The intersection points give the corresponding candidate
joining probabilities. When they sum to 1, these are the equilibrium joining
probabilities. The appropriate level of the horizontal line is found by bisection
procedure due to the monotonicity of the functions Gj(qj).
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Fig. 1. Equilibrium strategy and social policy in the case of three substations with
Exponential (μi) transportation visits and Geometric (ξi) available capacity for
facility i. In this example, the economic parameters are set to μ = (2, 2, 4), ξ =
(0.1, 0.5, 0.9), r = (2, 3, 1), c = 2, λ = 10, v = 0.

We close this section by comparing the equilibrium strategy qe, and the
optimal social policy qsoc, when the functions Fi(x) are decreasing. Of course,
the key quantity for the comparison of the two strategies is the difference between
Gi(x) and Fi(x). The following proposition states several results regarding the
comparison of the two strategies.

Proposition 5 (Comparison of equilibrium and optimal strategies).
Suppose that the functions Fi(x) are all strictly decreasing. Then,

(i) l̃e ≥ l̃soc.
(ii) If l̃e ≥ v then qe0 = 0. If l̃soc ≥ v, then qe0 = qsoc0 = 0.
(iii) If v ≥ l̃e, then ke = ksoc and qei > qsoci i = 1, . . . , ke.
(iv) qsoc0 ≥ qe0.
(v) If l̃e > v then isoc ≥ ie.

Proof. The functions Fi, F
−1
i are decreasing and Gi(q) ≥ Fi(q) for every q ∈

[0, 1], hence G−1
i (q) ≥ F−1

i (q) for every q ∈ [0, 1]. Thus, Hsoc(x) ≤ He(x). The l̃e

and l̃soc being the unique solutions of the equations He(x) = 0 and Hsoc(x) = 0
respectively, implies that l̃e ≥ l̃soc. Then, using the relations Gi(q) ≥ Fi(q),
Hsoc(x) ≤ He(x) and l̃e ≥ l̃soc, we can easily see the validity of (i)–(iv) by the
construction of the probabilities qei and qsoci in Theorem 1 - Case 1 and its social
optimization counterpart.

To obtain (v), we first let qGbij and qFbij be the solutions of the equations

Gi(q) = bj and Fi(q) = bj respectively. We also set QG(k) =
∑k

i=1 qGbik and
QF (k) =

∑k
i=1 qGbik . In light of Gi(q) ≥ Fi(q) for every q ∈ [0, 1], it holds that

qGbij ≥ qFbij for every j. Therefore QG(k) ≥ QF (k) for every k and we have that
isoc ≥ ie. ��
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In general, the above findings show that the equilibrium strategies do not
coincide with the socially optimal policies. Moreover, according to (i), the indi-
vidual welfare is always greater than the marginal profit under optimal social
policy. Also, when the latter is greater than the value of the outside option, then
(ii) shows that the station is fully utilized by the customers under any scenario.
According to (iv), the customers are using the station instead of balking more
than what is socially desirable.

Also, according to (iii), if the value of outside option is greater than or equal
to the individual welfare, the number of active facilities under the two scenarios
coincides. However, for each facility, the effective arrival rate under equilibrium
strategy is strictly less than under social policy. In contrast, (v) shows that
under the optimal policy, the number of active facilities would be at least equal
to equilibrium in the case where the value of the outside option is strictly less
than the individual welfare. Thus, regarding the number of active facilities under
the two scenarios, in general we have that Ke ⊂ Ksoc.

Finally, we note that if ksoc > ke then we have not necessarily that qei > qsi for
i ∈ Ke ∩ Ksoc. For example, if we consider a station with 4 facilities, with Xi ∼
Exp(μi) and Ci ∼ Geo(ξi) and with r = (2.1, 2.1, 2.1, 2.1), μ = (2, 3, 4, 10), ξ =
(0.5, 0.5, 0.5, 0.5), v = 0, we have that Ke = {3, 4} and Ks = {2, 3, 4} with
qe3 = 0.0564 < 0.1047 = qsoc3 and with qe4 = 0.9498 > 0.8496 = qsoc4 .

5 Discussion - Extensions

In this paper, we have studied the customer strategic behavior regarding routing
in a transportation station, where different types of transportation facilities visit
the station according to independent renewal processes. The primary focus was
on determining the equilibrium strategy of the passengers and the optimal policy
from the social planner’s point of view. A main message of these results is that
the passengers tend to overuse the station but use fewer facilities from what is
social desirable. A common remedy for this situation is to impose admission fees
for the available transportation facilities. Then, the customers will adopt the
optimal policy as their joining strategy.

Of course, the study needs to be complemented by further considerations. For
example, in real scenarios there are many passengers that are ‘loyal’ to certain
facilities. These customers can be thought of as non-strategic users who do not
change their preferences. A way to incorporate such cases into our model is to
consider several additional independent Poisson arrival processes for the various
facilities. The fixed vector λR = (λ1, ..., λn) may correspond to the arrival rates of
the loyal users while strategic passengers may arrive according to another Poisson
process with rate λ and can join any transportation facility. This situation is
more involved and is currently under investigation. The solution of the associated
profit-maximization problem for a monopoly is also of interest.

Some of the assumptions of the model seem substantially restrictive. How-
ever, as in all models, one makes simplifications in the seeking of the right balance
between accuracy and tractability. As this work is our first endeavor towards a
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thorough study of equilibrium customer routing behavior in a transportation
station from a queueing game perspective, we assumed the simplest possible
framework. We now discuss our main simplifying assumptions and suggest pos-
sible generalizations and extensions:

• Clearing system.
We have assumed that those customers who cannot be accommodated will not
wait for the next facility, but they will abandon the station. This assumption
is approximately valid in many transportation settings. Of course, there are
pathological situations that do not occur in practice that violate this assump-
tion, for example when the expected residual waiting time at an arbitrary
epoch is larger than the expected waiting time at a renewal epoch (due to
high coefficient of variation of the inter-visit times). In particular, the assump-
tion is realistic in the case of quite large expected inter-visit times with small
variances. For example, this is the case of remote stations that have only a
few well-scheduled facility visits per day. If one removes this assumption, then
the analysis becomes substantially more difficult, because the probability of a
customer being served by the next facility of type i does not only depend on
the number of customers that have been arrived during the ongoing inter-visit
time, but also on the number of customers that arrived in previous inter-visit
times and were not served. Moreover, to model the strategic behavior in this
case, one should enhance the space of strategies to account for the possibility
of reneging at the instants of the various facility visits.

• Unobservable system.
The unobservability of the system is a strong assumption, but it is quite
popular as a first level of analysis in the queueing game literature. This is the
reason for adopting it in the present study. However, the consideration of more
informative versions of the same problem seems a very challenging problem.
Modern transportation stations can provide to the customers information
about the arrival times of the facilities to come and on the congestion of the
facilities. Such information influence customers’ estimates for the probability
of being served by the next facility and/or their expected waiting time in
the station. If one drops the non-reneging feature of the model, it seems
reasonable to assume that either users wait until they are served (possibly
waiting for several facility arrivals), or they make a second decision (renege
or stay), upon arrival to the platform of their desired facility and observing
the number of waiting customers.

• Homogeneity of the customers.
An aspect that has not been taken into account in the present work is pas-
sengers’ heterogeneity. There are those passengers who arrive always the very
last moment paying attention on not waiting too much and the others who
want to be almost certain that it will be a seat for them. Moreover, there
are customers that prefer to use a certain type of facility in comparison with
others. Therefore, the consideration of a model with heterogeneous customers
regarding ri and c seems also interesting. Towards a tractable study, one can
think that there are finite classes of customers, each one with its own vector
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of ris corresponding to customers that have different preferences for the vari-
ous alternative facilities. And a customer’s waiting cost per time unit can be
sampled from a continuous distribution, as it is standard in the corresponding
literature.

• Complete knowledge of operational and economic parameters of the model.
In this study, we have assumed that the customers know exactly the opera-
tional and economic parameters of the model and can assess accurately the
utility of the other customers. This is a standard assumption in the literature
of queueing games, which is justified by the fact that a large population of
customers reuse the service systems indefinitely and so acquire accurate esti-
mates of its various parameters. However, some recent studies introduce learn-
ing processes in this area and their ideas can be used to relax this assumption
in the present framework.
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Abstract. With the rise of Electric Vehicles (EV), the demand in the
stations - both for a parking spots equipped with plugging devices and
for electricity to charge the batteries - is increasing. This motivates us
to study how we can improve the quality of service at the stations. We
model the arrival of EV in several stations and consider a criterium
of choice of the station for the users. In our model, EV arrive at the
stations according to a Poisson process with a random quantity of energy
needed to have a fully charged battery and a random parking time, both
following an exponential distribution. We quantify the quality of the
service as the probability of leaving the station with a fully charged
battery. The stations are characterized by their number of spots and the
way they share the power between the EV users. In this model, we study
the best way to share power in order to improve this quality of service.

Keywords: Stochastic model · Congestion games · Electric vehicles

1 Introduction

The huge and quick development of electric mobility raises many challenges
among research communities. Governments and political authorities have
imposed regulatory policies worldwide. Their target is that EVs should account
for 7% of the global vehicle fleet by 2030 [1].

This increase on EV traffic poses several problems for the supply of energy.
The providers offer efficient and smart charging mechanisms. Some of them can
be studied through the angle of queueing models due to the inherent stochastic
nature of events: arrival/departure of EV, power level available at a charging
point, etc. Therefore, performance evaluation methodologies can help to design
incentive and/or evaluate the impact of charging stations configuration (number
of charging points, scheduling power management, pricing schemes, ...) on the
quality of service of EV users [2]. Recent surveys have shown that the charging
time and the ‘risk’ of being out of energy during travel, are two of the main
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reluctant factors for drivers to invest in an EV. Performance evaluation models
help to improve smart charging in order to reduce this ‘risk’.

A simple queueing model based on M/M/S queue is proposed in [3]. In this
paper, the system is centralized and based on information about charging need of
each EV, a central authority routes each EV to charging station in a given area
in order to minimize the total average waiting time to charge completion. Tsang
et al. [4] developed a mixed queueing network model with an open queue of EVs
and a closed queue of batteries. Gusrialdi et al. in [5] addressed both the system-
level scheduling problem and the individual EVs decisions about their choice of
charging locations, while requiring only distributed information about EVs and
their charging at service stations along a highway. Another recent queueing model
is proposed in [6] where parking spots and a power allocation function are taken
into account in the model. This later model is based on an Erlang loss system.
Bounds and fluid limits of the number of EV that get fully charged are described.
A deeper investigation of this model has been published in [7]. All these papers are
not dealing with individual decisions of EV drivers such as which service station
to choose, how much energy to recharge, how long staying at the parking spot,
etc. Our framework is the first one that studies this kind of question based on a
queueing model. Only a very recent paper [8] integrates the notion of EV user
decision, but the charging time is considered to be deterministic, whereas in our
framework, it depends on the available power and other EV requirements.

In this paper we address the decision-making problem of Electric Vehicles
users to choose a charging station, in order to get their battery fully charged
(i.e. their State of Charge, or SoC, at capacity) with a maximum probability at
the end of their parking time.

As a simple beginning, and without losing generality for the following theo-
retical analysis, we consider only two stations, and we suppose that these stations
are geographically close. For example, this could fit the situation of two parking
in the same university campus, or in a business district. The two charging sta-
tions have different characteristics but are not independent in terms of electrical
constraints because they are supposed to be connected to the same electric-
ity network node (the “distribution network”, to be specific). In the proposed
model, this implies that they share a maximal power not to be exceeded when
adding their consumption. In each station, EVs share the power available based
on some scheduling rules which mainly depend on the number of EVs plugged
in at this location. Based on these rules, the probability of leaving the stations
with a fully charged battery can be explicitly computed. We analyze this set-
ting as a strategic game model, where users choose the best station for them:
the strategic aspect comes from the fact that the charging power delivered at a
station depends on the decision of other EV users. The novelty of this work is to
make the choice of a charging station an “active” EV users’ decision. An inter-
esting insight of our framework is the existence of a continuity of equilibrium, as
it is the case in capacitated networks [9]. Moreover, it is possible to determine
simple bounds on the Price of Anarchy (PoA) which helps to understand how
bad selfish routing behavior is in our smart charging context.
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This paper is organized as follows: in Sect. 2, we present the model and pre-
liminary results needed for the game model. In Sect. 3, we introduce a nonatomic
queueing game with some results on the associated equilibria. We also compute
the price of anarchy of the queueing game. In Sect. 4, we study an optimizing
problem on top of the equilibria. Finally, in Sect. 5, some numerical simulations
corresponding to realistic cases are presented.

2 Model Description

2.1 Mathematical Description

The EV arrivals to the stations follow a Poisson process with rate λ as the two
charging stations are supposed to be used by the same population. Each EV
chooses to join charging station i, for i ∈ {1, 2}, with a probability denoted by
θi. Then the arrival process of EVs at charging station i follows a Poisson process
with rate λi := θiλ. Each EV has a battery capacity denoted by Capa and a
State of Charge (SoC) when arriving at the stations: SoCarr. The SoCarr for each
EV depends mainly on the distance traveled in order to reach the parking spots,
but also on some exogenous parameters like ambient temperature, or traffic
conditions [10]. Then, each arriving EV has a random quantity B of energy (in
kWh) required in order to get a fully charged battery defined by:

B = Capa − SoCarr.

All EVs have different capacities and different states of charge when arriving at
the stations, then the quantity B of energy is approximated by an exponential
random variable of parameter μ. EV stays at their charging station a random
amount of time which is independent of the charging process. The random park-
ing time D of any EV follows an exponential distribution with parameter ν.
Then, at each instant, among all EVs parked at a charging station, some are
charging and some are not (see Fig. 1 for an illustration of the model).

Charging Stations Description. We follow the same nomenclature shown
in [7]. Charging station i ∈ {1, 2} has Ki > 0 parking spots; each one of them
being equipped with a charging point. At each charging station i and time t, Zi

t

denotes the number of EVs charging and Ci
t the number of EVs that are parked

but not charging at this time (given the definition of power scheduling rules,
it will be seen that those EVs have a fully charged battery). Then, the total
number of EVs at station i and time t is Qi

t := Zi
t + Ci

t .

Charging Power Scheduling. The available power is shared between the EVs
present at a time in each station, following a Processor Sharing policy. A power
level of pmax corresponds to the maximum power available for an EV at any
charging station. In the following, this power level is considered to be the same
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Fig. 1. Arriving users choose between the two stations connected to the same grid. The
proportion of green corresponds to the percentage of charge of the batteries. Power is
shared only between the EVs without a fully charged battery.

for both charging stations, which corresponds to the most common case for the
first charging stations installed.

Another key aspect strongly impacting power scheduling is the parameter
αi ∈ [0, 1], which determines the proportion of charging points that can be
used simultaneously at power level pmax. This coefficient corresponds to a sizing
decision of the operator - out of the scope of this paper. When the number
of EVs charging at station i is above this quantity αiKi, the maximum power
pmax is equally shared among all EVs. Denoting Li(.) the allocation function
for charging station i, the power available for an EV at time t charging at this
station i depends on Zi

t through:

Li(Zi
t) = pmax

min(Zi
t , αiKi)
Zi

t

. (1)

Based on the energy requirement of any EV b (an exponential realization
of the random variable B with rate μ) and arriving time t0 at station i, it is
possible to determine the finishing charging time t1 which corresponds to the
time at which the battery is fully charged. This time t1 satisfies the following
equation depending on b and t0:

∫ t1

t0

Li(Zi
t)dt = pmax

∫ t1

t0

min(Zi
t , αiKi)
Zi

t

dt = b.

It is clear from our context that, for each station i, the two-dimensional
process (Qi

t, Z
i
t) is Markov. Then, EV drivers choose their charging station in

order to maximize the probability of having a fully charged battery when leaving
(SoC = Capa). Below, we present an analytical form of the expected probability
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for an EV to leave a station with a full battery. Then, the strategic choice of the
charging station is done in order to maximize this expected probability.

2.2 Expected Number of EV Charging

In stationary regime of the Markov process, it has been proved in [7] that the
expected number z̄i of EVs charging at station i can be approximated by the
unique solution of Eq. (2):

z̄i = min(λi, νKi)E
[
min

(
D,

B

pmax
max(1,

z̄i

αiKi
)
)]

. (2)

Considering the PASTA property, which holds that arriving customers find on
average the same situation in the queueing system as an outside observer looking
at the system at an arbitrary point in time [11], an arriving EV at station i will
face an expected number z̄i of EV already parked at charging station i. Based
on that, the expected time t̄i for such EV to gain 1kw of energy is approximated
by:

t̄i =
1

Li(z̄i)
=

z̄i

pmax min(z̄i, αiKi)
=

max(1, z̄i

αiKi
)

pmax
.

Then, the random duration T̄i for an arriving EV at charging station i to com-
pletely recharge its battery, in stationary regime of the system, is equal to B × t̄i
and follows an exponential distribution with parameter pmaxμ

max(1,
z̄i

αiKi
)
.

Note that the solution of the fixed point Eq. (2) exists and is unique, so that
z̄i is well defined and its explicit expression is given in the following proposition.

Proposition 1. In stationary regime, the expected number z̄i of charging EVs
at station i is given by:

z̄i =

{
min(λi,νKi)

ν+pmaxμ if ν
ν+pmaxμ ≤ αi or λi

ν+pmaxμ ≤ αiKi,
min(λi,νKi)−pmaxμαiKi

ν else.
(3)

Proof of Proposition 1. The random variable min(D, T̄i) follows an exponen-
tial distribution with parameter ν + μ pmax

max(1,
z̄i

αiKi
)

as it is the minimum of two

independent exponential random variables. The fixed point Eq. (2) can then be
re-written as

z̄i = min(λi, νKi)
max(1, z̄i

αiKi
)

ν max(1, z̄i

αiKi
) + pmaxμ

. (4)

Let fi be the function from [0,Ki] to itself such that ∀z ∈ [0,Ki], fi(z) =

min(λi, νKi)
max(1, z

αiKi
)

ν max(1, z
αiKi

)+pmaxμ . In order to have an explicit expression of the

solutions, fi(z) is expressed as
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fi(z) =

{
min(λi,νK1)

ν+pmaxμ ∀z ∈ [0, αiKi],
min(λi,νK)

ν × z
z+ pmaxμ

ν αK
∀z ∈]αiKi,Ki],

and we look for the solutions of the equation:

fi(z) = z. (5)

Then, two different cases appear:

– If min(λi,νKi)
ν+pmaxμ ≤ αiKi, then Eq. (5) admits a unique solution on [0, αiKi]. A

short analysis on the function fi shows that there is no solution of (5) on
]αiKi,Ki] because ∀z ∈]αiKi,Ki], fi(z) < z. Then the unique solution of (5)
is:

z∗ =
min(λi, νKi)
ν + pmaxμ

if
min(λi, νK1)
ν + pmaxμ

≤ αiKi.

– If min(λi,νKi)
ν+pmaxμ > αiKi, then there is no solution of (5) on [0, αiKi]. As

fi(αiKi) > αiKi, fi(Ki) ≤ Ki, fi is continuous on [αiKi,Ki], and ∀z ∈
]αiKi,Ki[, f ′

i(z) < z, there is a unique solution of (5) on ]αiKi,Ki]. After
some algebras, the unique solution of (5) is given by:

z∗ =
min(λi, νKi) − pmaxμαiKi

ν
if

min(λi, νK1)
ν + pmaxμ

> αiKi.

Finally, the condition min(λi,νKi)
ν+pmaxμ ≤ αiKi is equivalent to the following condition:

ν

ν + pmaxμ
≤ αi or

λi

ν + pmaxμ
≤ αiKi,

which concludes the proof. �
Proposition 1 allows us to know explicitly when the stationary average num-

ber z̄i of charging EVs at station i is greater than the number αiKi of parking
spots that can charge at maximum power rate, that is :

z̄i > αiKi ⇔
{

ν
ν+pmaxμ > αi,

λi

ν+pmaxμ > αiKi.

2.3 Stationary Probability of Fully Charged Battery

It is therefore possible to determine the stationary probability P̄i for an EV of
leaving charging station i with a fully charged battery, which is the probability
that the time to charge entirely the battery is less than the parking time.

Proposition 2. In stationary regime, the probability P̄i of leaving the station i
with a fully charged battery can be approximated by:

P̄i = IP

(
D >

B

pmax
max(1,

z̄i

αKi
)
)

=
pmaxμ

ν max(1, z̄i

αiKi
) + pmaxμ

. (6)
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Note that if the expected number of EV charging z̄i is less than the charging
capacity αiKi at maximum power level at charging station i, then, an EV is
charging with power level pmax. In this case, the probability P̄i that an EV leaves
station i with a fully charged battery is simply given by the ratio pmaxμ

ν+pmaxμ .

Proof of Proposition 2. P̄i is the probability that the parking time D is greater
than the time T̄i to have a fully charged battery: P̄i = P (D > T̄i). As D
follows a exponential distribution of parameter ν (the distribution is the same
regardless the station), and T̄i follow as exponential distribution of parameter
ηi = pmaxμ

max(1,
z̄i

αiKi
)
,

P̄i = P (D > T̄i) =
∫ +∞

0

νe−νt(
∫ t

0

ηie
−ηisds)dt =

∫ +∞

0

νe−νt(1 − e−ηit)dt

= 1 − ν

ν + ηi

∫ +∞

0

(ν + ηi)e−(ν+ηi)sds = 1 − ν

ν + ηi

=
ηi

ν + ηi
=

pmaxμ

ν × max(1, z̄i

αiKi
) + pmaxμ

.

�
Given (6), we study in next section the non-cooperative game between EVs

that strategically decide which charging station to join in order to maximize this
probability.

3 Queueing Game with Two Stations

3.1 Definition of the Nonatomic Game

A possibly very large number of EVs interact in the system and then nonatomic
games (games with infinite number of players or population of players) are typical
game theoretic frameworks that are used to study equilibrium concepts in such
situations [12]. In particular, interactions between EVs are performed in queue-
ing systems, and therefore our approach is inspired from the rich literature of
queueing games [13,16]. In nonatomic games, each player has an infinitesimal
impact on the utility of the others. Precisely, as stated in the seminal paper
[14] about nonatomic games: one player has no influence but only an aggregate
behavior of large sets of players can change the utility. Let us first define mixed
strategies in such games.

Definition 1 (Mixed-strategy nonatomic queueing game). Let Γ denote
a nonatomic mixed-strategy game defined by

– A continuum of nonatomic players, which are EVs, of total weight 1;
– Each player has two pure actions: station 1 and station 2. Players take mixed

strategies that are probability distributions over the two pure actions.
– A profile of mixed strategies of all the players induce a probability law on the

proportion of players choosing station 1 in the population.
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Based on previous definition, the utility of a player using mixed strategy θ
(choosing station 1 with probability θ) depends on the average strategy used in
the population, and this utility is defined by:

u(θ, θ̄) = θP̄1(θ̄) + (1 − θ)P̄2(1 − θ̄),

where θ̄ is the average strategy used in the population.
The number of EVs at the stations is assumed to be unobservable. An equi-

librium is defined as a situation where any player cannot strictly increase her
utility by changing her strategy. All EV users are assumed to be indistinguish-
able and then the equilibrium is symmetric in the sense that, at equilibrium, all
EVs choose to join charging station 1 with the same probability denoted θ̃.

Definition 2 (Symmetric Mixed Strategy equilibrium). A symmetric
mixed strategy equilibrium is a profile of identical mixed strategies, i.e. every
player choosing going to station 1 with probability θ̃, such that

u(θ̃, θ̃) ≥ u(θ, θ̃), ∀θ ∈ [0, 1].

The set of equilibria is denoted by

Seq =
{

θ̃ ∈ [0, 1] : u(θ, θ̃) ≤ u(θ̃, θ̃), ∀θ ∈ [0, 1]
}

. (7)

There are two main congestion effects in our nonatomic game. First, EVs in
the stations occupy parking spots and thus reduce the chance for other EVs to
find a free parking spot. This can be called the ‘parking congestion’. Second,
the power allocation depends on the number of EVs already charging, so that
there is also an ‘energy congestion’ effect. These two kinds of congestion have
an impact on the players’ utility.

3.2 Properties of Equilibrium

The following proposition says that, at any equilibrium, the probability to leave
the station with a full battery is equal for both stations. This is mainly because
the maximum charging power pmax is the same in both stations.

Proposition 3. Seq =
{
θ ∈ [0, 1], P̄1(θ) = P̄2(1 − θ)

}
.

Proof of Proposition 3. A short analysis of Eq. (3) gives that z̄i is increasing
in λi, and Eq. (6) gives that P̄i is decreasing in z̄i. Then P̄1 is decreasing in θ
and P̄2 is increasing in θ. Let g : [0, 1] → [−1, 1] such that ∀θ ∈ [0, 1], g(θ) =
P̄1(θ) − P̄2(1 − θ). Then g is decreasing. Besides, Eqs. (3) and (6) gives that
P̄1(0) = P̄2(0). Thus, g(0) ≥ 0 and g(1) ≤ 0. Suppose there exist θ∗ ∈ Seq

such that P̄1(θ∗) �= P̄1(1 − θ∗). Then, by the indifference principle, θ∗ ∈ {0, 1}.
If θ∗ = 0, Eq. (7) gives that P̄2(1 − θ∗) > P̄1(θ∗), which is impossible because
g(0) ≥ 0. The reasoning is the same for θ∗ = 1. Then we have shown that
Seq ⊂ {

θ ∈ [0, 1], P̄1(θ) = P̄2(1 − θ)
}
. The other inclusion is immediate. �
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The next proposition establishes that Wardrop equilibria exist, the set of
such equilibria is not empty, and the probability for the players to leave their
chosen station with a full battery is the same for all the Wardrop equilibria.

Proposition 4. The set of Wardrop equilibria Seq is non-empty and convex.
Besides, there is a constant P̄eq such that for any Wardrop equilibrium θ̃ ∈ Seq,
P̄1(θ̃) = P̄2(1 − θ̃) = P̄eq.

Based on previous proposition, we observe that the utility of any EV at
equilibrium is equal to the probability P̄eq, i.e. for any equilibrium strategy θ̃,
u(θ̃, θ̃) = θ̃P̄1(θ̃) + (1 − θ̃)P̄2(1 − θ̃) = P̄eq.

Proof of Proposition 4. Seq = {θ ∈ [0, 1], g(θ) = 0} with g defined as in the proof
of proposition 3. Equation (6) gives the continuity of P̄i in θ, as a composition
of continuous functions. Then, g is continuous, decreasing, and g(0) ≥ 0 and
g(1) ≤ 0, so there exist θ ∈ [0, 1] such that g(θ) = 0 and Seq is convex.

If Seq is a singleton, then the second part of the proposition holds. Otherwise,
let (θ, θ̃) ∈ S2

eq such that θ̃ > θ. Suppose P̄1(θ) �= P̄1(θ̃) (which implies P̄2(1−θ) �=
P̄2(1−θ̃)). Then, because P̄1 is decreasing and P̄2 is increasing in θ, P̄1(θ) > P̄1(θ̃)
and P̄2(1−θ) < P̄2(1− θ̃). Then, g(θ) = P̄1(θ)− P̄2(1−θ) > P̄1(θ̃)− P̄2(1− θ̃) =
g(θ̃), which contradicts g(θ) = g(θ̃) = 0. This shows the second part of the
proposition.

�

The following proposition gives an explicit expression of the probability P̄eq

of any EV to leave its station at equilibrium with a full battery. This metric will
be used for determining which station to join.

Proposition 5. At equilibrium, the probability P̄eq for any EV to leave a station
with a full battery is given by:

P̄eq =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pmaxμ
ν+pmaxμ

if max(α1, α2) ≥ ν
ν+pmaxν

or α1K1 + α2K2 ≥ λ
ν+pmaxμ

,

pmaxμ
λ

(α1K1 + α2K2) if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(α1, α2) < ν
ν+pmaxν

,

α1K1 + α2K2 < λ
ν+pmaxμ

,

K1 + K2 > λ
ν
,

max(α1, α2) ≤ ν
λ
(α1K1 + α2K2),

pmaxμ
ν

max(α1, α2) else.

(8)

This expression of P̄eq can take three different values depending on system
parameters.

– The first one P̄eq = pmaxμ
ν+pmaxμ is the largest P̄eq possible. It happens when, for

some θ ∈ [0, 1], the average number of charging EVs z̄i at each station i is
lower than the threshold αiKi. This occurs when the profusion term αi of one
of the stations is large (max(α1, α2) ≥ ν

ν+pmaxν ) or when the total number
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of simultaneous maximum rate charging points (sum of the two stations) is
large (α1K1 + α2K2 ≥ λ

ν+pmaxμ ).
– The second expression P̄eq = pmaxμ

λ (α1K1 + α2K2) happens basically when
the total resource of energy is low compared to the demand, but the total
number of parking spots is large enough (K1 +K2 > λ

ν ). Then the maximum
average number of charging EVs at the stations is not reached at equilibrium:
z̄i < Ki(1 − pmax

μ
ν αi),∀i ∈ {1, 2}.

– The last expression P̄eq = pmaxμ
ν max(α1, α2) is when the total number of

parking spots is low, so that at equilibrium the maximum average number of
charging EVs is reached for at least one station : ∃i ∈ {1, 2} , z̄i = Ki(1 −
pmax

μ
ν αi).

Proof of Proposition 5. Equation (6) with Eq. (3) gives an expression of P̄1 and P̄2

in function of θ. In the proof, the goal is to solve the solution of P̄1(θ) = P̄2(1−θ).
For this, the curves of P̄1 and P̄2 are analysed.

The expressions of P̄1 and P̄2 in function of θi are decomposed into three
parts. When z̄i ≤ αiKi, then P̄i is at its highest value pmaxμ

ν+pmaxμ . When z̄i > αiKi,
if the maximum average number Ki(1−pmax

μ
ν αi) of charging EVs is not reached,

P̄i = pmaxμαiKi

θiλ
αi strictly decreases in θi, and if the maximum average number

Ki(1 − pmax
μ
ν αi) of charging EVs is reached, then P̄i = pmaxμ

ν αi is constant
again.

When max(α1, α2) ≥ ν
ν+pmaxν , then in at least one of the two stations, say

station i, the average number of charging EVs is always lower that the threshold
αiKi, so that the equilibrium happens when the average number of charging
EVs at the other station, say station j, is also lower than the threshold αjKj .
Then in this case P̄eq = pmaxμ

ν+pmaxμ .

In the following, max(α1, α2) < ν
ν+pmaxν is assumed. Then, z̄1 ≤ α1K1 ⇔

θ ≤ α1K1(ν+pmaxμ)
λ and z̄2 ≤ α2K2 ⇔ θ ≥ 1 − α2K2(ν+pmaxμ)

λ . Thus,
α1K1 + α2K2 ≥ λ

ν+pmaxμ ⇒ P̄1 = P̄2 = pmaxμ
ν+pmaxμ ,∀θ ∈ [max(0, 1 −

α2K2(ν+pmaxμ)
λ ),min(1, α1K1(ν+pmaxμ)

λ )].

In the following, α1K1 + α2K2 < λ
ν+pmaxμ is also assumed. Then, denoting

z̄max
i the maximum value of z̄i ∀i ∈ {1, 2}, z̄1 = z̄max

1 ⇔ θ ≥ νK1
λ and z̄2 =

z̄max
2 ⇔ θ ≤ 1 − νK2

λ . Thus, K1 + K2 ≤ λ
ν ⇒ P̄i = pmaxμ

ν αi ∀θ ∈ [νK1
λ , 1 − νK2

λ ].
Then, if α1 = α2, P̄eq = pmaxμ

ν α1 = pmaxμ
ν α2 = pmaxμ

ν max(α1, α2). Otherwise,
suppose for instance α1 < α2. Then, ∀θ ∈ [α1K1(ν+pmaxμ)

λ , νK1
λ ], P̄2 = pmaxμ

ν α2.
Also, P̄1(

α1K1(ν+pmaxμ)
λ ) = pmaxμ

ν+pmaxμ > pmaxμ
ν α2, P̄1(νK1

λ ) = pmaxμ
ν α1 < pmaxμ

ν α2

and P̄1 is continuous in θ. Thus, there exist θ∗ ∈ [α1K1(ν+pmaxμ)
λ , νK1

λ ] such that
P̄1 = P̄2 = pmaxμ

ν α2 = pmaxμ
ν max(α1, α2). The reasoning is the same if α1 > α2.

In the following, K1 + K2 > λ
ν is also assumed. Suppose also α1 > α2.

Then
(

νK1
λ < 1 and P̄2(νK1

λ ) < P̄1(νK1
λ )

) ⇔ α1 > ν
λ (α1K1 + α2K2). In this

case, P̄1(θ) = pmaxμ
ν α1,∀θ ∈ [νK1

λ , 1]. Besides, P̄2(νK1
λ ) < pmaxμ

ν α1, P̄2(1) >
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pmaxμ
ν α1 and P̄2 is continuous in θ. Thus there exist θ∗ ∈ [νK1

λ , 1] such that
P̄2(θ∗) = P̄1(θ∗) = pmaxμ

ν α1 = pmaxμ
ν max(α1, α2). Suppose now α1 ≤ ν

λ (α1K1 +
α2K2). Then, P̄2(min(1 − α2K2

ν+pmaxμ
λ , νK1

λ )) > P̄1(min(1 − α2K2
ν+pmaxμ

λ ,
νK1

λ )), P̄2(max(α1K1
ν+pmaxμ

λ , 1− νK2
λ )) < P̄1(max(α1K1

ν+pmaxμ
λ , 1− νK2

λ )) and
P̄i(θ) = pmaxαiKi

θiλ
, where θ1 = θ and θ2 = 1 − θ. As P̄1 and P̄2 are con-

tinuous in θ and pmaxα1K1
θλ = pmaxα2K2

(1−θ)λ ⇔ θ = α1K1
α1K1+α2K2

. Thus, P̄eq =
P̄1( α1K1

α1K1+α2K2
) = P̄2( α1K1

α1K1+α2K2
) = pmaxμ

λ (α1K1 + α2K2). The reasoning is
identical for α1 < α2. Note that α1 = α2 is impossible if K1 + K2 > λ

ν and
max(α1, α2) > ν

λ (α1K1 + α2K2).
�

3.3 Price of Anarchy

The Price of Anarchy (PoA) is a metric which evaluates how bad selfish behav-
ior is compared to an optimal centralized decision making. Indeed, the PoA is
defined as the ratio between the optimal social utility and the (worst) utility at
equilibrium [15]. The former is determined as if a central authority is controlling
the behavior, it is to say, the station choice of each EV. The social utility U is
defined when θ proportion of players choosing 1 as the average utility by:

U(θ) := u(θ, θ) = θP̄1(θ) + (1 − θ)P̄2(1 − θ).

The optimal social utility Uopt is then defined by:

Uopt := max
θ∈[0,1]

U(θ).

Based on the two metrics which correspond to a centralized point of view
with the social utility, and a decentralized point of view with the equilibrium
utility, we can determine the PoA as the ratio between this two metrics.

Definition 3 (Price of anarchy [15]). The price of anarchy of the game Γ is
the ratio between the socially optimal utility and the social utility at the equilibria:

PoA :=
Uopt

u(θ̃, θ̃)
=

Uopt

P̄eq
. (9)

Since P̄eq is always strictly positive, the PoA (9) is well defined. It is clear
that PoA ≥ 1 and, the closer it is to 1, the more efficient the equilibria are in
the sense that decentralized selfish decision leads to the same performance for
users as a centralized decision. Denote, for any couple (i, j) ∈ {(1, 2), (2, 1)}, the
following values:

γi = αiKi +
ν

ν + pmaxμ
Kj , Ai =

pmax μ αj

ν
(1 − αiKi

ν + pmax μ

λ
) + αiKi

pmax μ

λ
.

The following proposition gives sufficient conditions on system parameters
such that the PoA is equal to 1, meaning that the decentralized system in which
EV makes their decision selfishly induces the same performance in terms of prob-
ability of leaving a station with full battery compared to a centralized solution.
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Proposition 6. If max(α1, α2) ≥ ν
ν+pmaxμ or min(γ1, γ2) ≥ λ

ν+pmaxμ , then
PoA = 1.

The next proposition gives interesting bounds on the price of anarchy.

Proposition 7. If max(α1, α2) < ν
ν+pmaxμ and min(γ1, γ2) < λ

ν+pmaxμ , then the

PoA can take one of the values:
{

λAj

pmaxμ(α1K1+α2K2)
,

νAj

pmax μ max(α1,α2)
, j = 1, 2

}
.

In particular,

– If the PoA is of the form PoA = λAj

pmaxμ(α1K1+α2K2)
then

PoA ≤
ν

ν+pmaxμ

min(α1, α2)
.

– If PoA is of the form PoA = νAj

pmaxμmax(α1,α2)
then

PoA ≤ 2.

Proofs of Proposition 6 and 7. The proof mainly rely on Proposition 5. When
max(α1, α2) ≥ ν

ν+pmaxμ or α1K1 + α2K2 ≥ λ
ν+pmaxμ , P̄eq takes the highest value

P̄1 or P̄2 can have. u being an average between P̄1 and P̄2, it is clear that
Uopt ≤ P̄eq.

In the following, max(α1, α2) ≥ ν
ν+pmaxμ and α1K1 + α2K2 < λ

ν+pmaxμ
are assumed. Then, with a short analisys of the function u, it can be shown
that u is strictly increasing for θ ∈]0, α1K1

ν+pmaxμ
λ [, then convex for θ ∈

[α1K1
ν+pmaxμ

λ , 1 − α2K2
ν+pmaxμ

λ ], and then strictly decreasing for θ ∈]1 −
α2K2

ν+pmaxμ
λ , 1[. It gives argmax(u) ∈ [α1K1

ν+pmaxμ
λ , 1 − α2K2

ν+pmaxμ
λ ].

– Suppose K1 + K2 > λ
ν .

• min(γ1, γ2) ≥ λ
ν+pmaxμ implies that the equilibrium is reached for

θ ∈ [α1K1
ν+pmaxμ

λ , 1 − α2K2
ν+pmaxμ

λ ] and u is constant for θ ∈
[α1K1

ν+pmaxμ
λ , 1 − α2K2

ν+pmaxμ
λ ]. Then PoA = 1.

• γ1 < λ
ν+pmaxμ ≤ γ2 implies that u decreases and is then constant, so that

Uopt = A1. Two cases are possible for P̄eq: P̄eq = pmaxμ
λ (α1K1 + α2K2) if

α2 ≤ ν
λ (α1K1+α2K2) and P̄eq = pmaxμ

ν α2 = pmaxμ
ν max(α1, α2) otherwise.

The case γ2 < λ
ν+pmaxμ ≤ γ1 is symmetrical.

• max(γ1, γ2) < λ
ν+pmaxμ implies that u decreases, then is constant, and

then increases, so that Uopt = max(A1, A2). The value of P̄eq is the same
as in the previous case.

– Suppose now K1 + K2 ≤ λ
ν , then the convex curve of u shows that Uopt =

max(A1, A2), and P̄eq = pmaxμ
ν max(α1, α2).

The following gives the computations for the bounds of the PoA.
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– When PoA is of the form λAj

pmaxμ(α1K1+α2K2)
,

PoA ≤ λ max(A1, A2)

pmaxμ(α1K1 + α2K2)

<
max(α1(1 − α2K2

ν+pmaxμ
λ

) + α2K2
ν
λ
, α2(1 − α1K1

ν+pmaxμ
λ

) + α1K1
ν
λ
)

min(α1, α2)

<

ν
ν+pmaxμ

min(α1, α2)
.

where for the second inequality α1K1 + α2K2 ≥ min(α1, α2)(K1 + K2) >
min(α1, α2)λ

ν has been used. Indeed this form of the PoA can only hap-
pen when K1 + K2 > λ

ν . For the last inequality α2K2 ≤ α1K1 + α2K2 <
λ

ν+pmaxμ ,∀i ∈ {1, 2} has been used.

– When PoA is of the form νAj

pmaxμmax(α1,α2)
,

PoA ≤ ν max (A1, A2)
pmaxμmax(α1, α2)

≤ max
(

1 − α1K1
ν + pmaxμ

λ
+ K1

ν

λ
, 1 − α2K2

ν + pmaxμ

λ
+ K2

ν

λ

)

= 1 +
ν

λ
max

(
K1(1 − α1

ν + pmaxμ

ν
),K2(1 − α2

ν + pmaxμ

ν
)
)

≤ 2 − ν + pmaxμ

ν
min(α1, α2) < 2 − min(α1, α2)2 ≤ 2.

where for the second inequality ∀i ∈ {1, 2} , αi ≤ max(α1, α2) have been used,
for the third one ∀i ∈ {1, 2} ,Ki ≤ K1 + K2 ≤ λ

ν and αi ≥ min(α1, α2), for
the fourth one and last one only 0 ≤ min(α1, α2) < ν

ν+pmaxμ .

�

4 Energy Capacity

As it has been mentioned in Sect. 2, the two stations are considered geographi-
cally close to each other and connected to the same node of the grid (see Fig. 1).
In this context, the current section gives an illustration on how the considered
model could serve for a charging station operator (CSO) responsible for both
stations to take a fundamental sizing decision with a common power ‘capacity’
for both stations which is described by the value α1K1 + α2K2. Without giving
all the practical details, note that this ‘capacity’ choice can correspond to: either
an economical perspective if considering that the CSO has to choose for an elec-
tricity contract in which a maximal power has to be subscribed or; a physical
perspective if this power limit corresponds to some upgrades to be made on the
charging stations site (e.g. with a local transformer to be installed). The CSO
decision-making problem is then expressed as the maximization (in α1 and α2)
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of the probability P̄eq of leaving the stations with a full battery at equilibrium
(EV users’ QoS metric) under the constraint of a given power ‘capacity’. This
constraint optimization problem can be formulated as follows:

max
α1,α2

P̄eq (10)

s.t α1K1 + α2K2 ≤ C, (11)

where C ∈ N is the maximum number of charging points (parking spots) that
can be used at maximum power level simultaneously. The following proposition
gives the solution P opt

eq of the optimization problem (10) under constraint (11).

Proposition 8. Suppose, without loss of generalization, K1 ≤ K2. Let P opt
eq

be the optimal value of P̄eq under under the constraint (11), and Sopt
eq the set

of optimal values of α1 when the constraint (11) is active. Then, the solution
(P opt

eq , Sopt
eq ) of (10) under (11) is:

(P opt
eq , Sopt

eq ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( pmaxμ
ν+pmaxμ , S1), if C ≥ min(λ,K1ν)

ν+pmaxμ , (a)

(pmaxμ
λ C, I1), if

{
C < λ

ν+pmaxμ ,

K1 > λ
ν ,

(b)

(pmaxμ
ν

C
K1

, S2) if

{
C < K1ν

ν+pmaxμ , (c)
K1 ≤ λ

ν ,

(12)

where

I1 =
[
max(0,

C − K2

K1
,min(1,

C

K1
)
]

,

S1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1
1 if K1

ν
ν+μ̃ ≤ C < K2

ν
ν+μ̃ ,

S2
1 ∪ S1

1 if

{
K2 < λ

ν ,

K2
ν

ν+μ̃ ≤ C < min(λ,(K1+K2)ν)
ν+μ̃ ,

I1 if min(λ,(K1+K2)ν)
ν+μ̃ ≤ C,

with

S1
1 =

[
ν

ν+μ̃ ,min(1, C
K1

)
]
,

S2
1 =

[
max(0, C−K2

K1
), C

K1
− K2ν

K1(ν+μ̃)

]
,

and

S2 =

⎧⎨
⎩

{
C
K1

}
if K1 < K2,{

0, C
K1

}
if K1 = K2.

Remark 1. The opposite case K2 ≤ K1 is symmetric and straightforward.
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Proof of Proposition 8. The proof mainly rely on Proposition 5. Suppose the
constraint is α1K1 + α2K2 = C instead of (11). Then, α2 = C

K2
− α1

K1
K2

and I1

is the set of admissible α1: I1 = {α1 ∈ [0, 1], C
K2

− α1
K1
K2

∈ [0, 1]}.
Denoting X1 the set of α1 for which P̄eq = pmaxμ

ν+pmaxμ , X1 = I1 if C ≥ λ
ν+pmaxμ

and,

X1 = {α1 ∈ I1, max(α1,
C

K2
− α1

K1

K2
) ≥ ν

ν + pmaxν
}

=

[

max(0,
C − K2

K1
), min(1,

C

K1
− K2ν

K1(ν + pmaxμ)
)

]

∪
[

ν

ν + pmaxμ
, min(1,

C

K1
)

]

,

otherwise. Then X1 is non-empty if and only if C ≥ min(λ,K1ν)
ν+pmaxμ . With a short

analysis of the set X1, it gives part (a) of Eq. (12).

In the following, suppose C < min(λ,K1ν)
ν+pmaxμ . Then P̄eq = pmaxμ

λ C or P̄eq =
pmaxμ

ν max(α1, α2).

– Suppose K1 + K2 > λ
ν . Let

X2 = {α1 ∈ I1,max(α1,
C

K2
− α1

K1

K2
) ≥ ν

λ
C}

=
[
0,

C

K1
− C

νK2

λK1

[
∪

]
C

ν

λ
,

C

K1

]
.

A short analysis of the set X2 gives that X2 is empty if and only if K1 > λ
ν . In

this case, P̄eq = pmaxμ
λ C independently of α1, which gives part (b) of Eq. (12).

Otherwise if K1 ≤ λ
ν , a short analysis of X2 gives different behaviors of P̄eq:

• constant equal to pmaxμ
λ C and then increasing equal to pmaxμ

ν α1 if K2 ≥ λ
ν ,

which imply that
{

Sopt
eq = { C

K1
},

maxα1 P̄eq(α1) = pmaxμ
ν

C
K1

.

This assymetric case can only happen if K1 < K2;
• decreasing equal pmaxμ

ν ( C
K2

− α1
K1
K2

) then constant equal to pmaxμ
λ C and

then increasing equal to pmaxμ
ν α1, which implies that

⎧⎪⎨
⎪⎩

Sopt
eq =

{
{ C

K1
} if K1 < K2,

{0, C
K1

} if K1 = K2,

maxα1 P̄eq(α1) = max(pmaxμ
ν

C
K2

, pmaxμ
ν

C
K1

) = pmaxμ
ν

C
K1

;

• decreasing then increasing and the result is the same as in the previous
case.

– If K1 + K2 ≤ λ
ν , then ∀α1 ∈ I1, P̄eq = max(α1,

C
K2

− α1
K1
K2

), which gives the
same result as in the two last subcases.
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Part (c) of Eq. (12) is thus obtained.
Because P̄ opt

eq under constraint α1K1+α2K2 = C is increasing in C, its value
cannot be strictly greater with a smaller value of C. Thus the optimal value P̄ opt

eq

is the same with constraint (11).
�

Note that, at the optimum solution, the constraint (11) is active and then
all the capacity is used, i.e. α∗

1K1 + α∗
2K2 = C.

Next section illustrates all the previous results about equilibrium, PoA and
optimization of the probability depending on energy capacity C.

5 Numerical Illustrations

In this section some numerical examples illustrate the results obtained in previ-
ous sections in order to deepen the understanding of the dependency on system
parameters. These parameters are given in Table 1.

Table 1. Chosen parameters for the numerical examples.

K1 = 5 5 parking spots in station 1

K2 = 30 30 parking spots in station 2

C = 19 Maximum number of EVs that can charge at maximum power
simultaneously at both stations

pmax = 7 Maximum power available for an EV is 7 kW

λ = 20 EVs arrive in average every 3min

ν = 1/2 EVs stay in average 2 h at the chosen station

μ = 1/30 EVs need in average 30 kWh to have a fully charged battery

5.1 Probability of Full Battery at Equilibrium

In this use case, the number of parking spots is considered small, meaning that:
K1 +K2 ≤ λ

ν . As Proposition 5 states, there are two different equilibria depend-
ing on the maximum of the proportion of parking spots charging at maximum
rate of stations 1 and 2 max(α1, α2). The first example considers the following
parameters α1 = α2 = 0.6 which are inline with realistic scenario applied by a
typical french CSO (60% of the charging points can deliver maximum level of
power simultaneously).

– If max(α1, α2) < ν
ν+pmaxμ ≈ 0.68 then the value at equilibrium of the prob-

ability of leaving the station with a full battery is P̄eq = pmaxμ
ν max(α1, α2).

This first case is illustrated on Fig. 2a where the probability at equilibrium
is P̄eq = 0.28. Note that in this particular case (α1 = α2) the equilibrium
interval is

[
νK1

λ , 1 − νK2
λ

]
= [0.125, 0.25]. It means that around 20% of EVs

join station 1 at equilibrium.
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– Else max(α1, α2) > ν
ν+pmaxμ ≈ 0.68 then P̄eq = pmaxμ

ν+pmaxμ = 0.31. This case is
illustrated on Fig. 2b where α1 = 0.8. In this case, the probability at equilib-
rium is not significantly higher but at least 35% of EVs join station 1 which
has a higher capacity than station 2, even with lower parking spots.

Note that in the first case the probability P̄eq of leaving the chosen station
with a fully charged battery at equilibrium strictly increases with α1 when α1 >
α2, whereas it stays constant in α1 in the second case.

(a) (α1, α2) = (0.6, 0.6).

(b) (α1, α2) = (0.8, 0.6).

Fig. 2. The blue curve (resp. red curve) corresponds to the probability to leave station
1 (resp. station 2) with a fully charged battery. These probabilities are computed in
function on the probability θ for a user to choose station 1. The intersection of the two
curves correspond to the equilibrium.

The value of this probability at equilibrium is relatively low. But in fact EVs
remain parked at a station in average 2 h and the maximum power pmax is pretty
low 7kW. On Fig. 3 we illustrate the probability of leaving with a full battery at
equilibrium depending on the capacity parameter α1 of station 1. The capacity
parameter α2 for the second station is either fixed with the standard value of
60% (blue line) or depends on α1 so that the constraint (11) is active (red line).
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Interestingly, when α1 is less than 20% the probability is higher when the energy
capacity α2 of the second station is correlated with α1. Whereas, for the other
cases when this energy parameter is higher, it is better to have fixed value of α2.
Note that the expression of P̄eq is the same for both cases (blue and red lines).
In particular, P̄eq = pmaxμ

ν max(α1, α2) for α1 ≤ ν
ν+pmaxμ ≈ 0.68. The difference

when α1 < α2 = 0.6 comes mathematically from two reasons:

– For α1 ≤ C
K1+K2

≈ 0.54, max(α1, α2) = α2 for both curves but α2 stays
constant for the blue line whereas it decreases in α1 for the red line.

– For C
K1+K2

≤ α1 ≤ α2 = 0.6, max(α1, α2) = α2 for the blue line whereas
max(α1, α2) = α1 for the red line.

Fig. 3. The curves represent the probability P̄eq in function of α1: the red one in the
case of dependency between α1 and α2, the blue one with fixed value α2 = 0.6.

5.2 Price of Anarchy

The price of anarchy is illustrated on Fig. 4 depending on both α1 and α2. We
observe that in most cases the PoA is close to 1 : when α1 or α2 is greater than
the threshold ν

ν+pmaxμ ≈ 0.68. If not, for every fixed value of α2, the price of
anarchy in α1 is at its largest when α1 = α2. The observation is the same when
α1 is fixed and α2 varies. The price of anarchy takes only large values close to 1.7
when both energy capacities α1 and α2 are small and the two stations have the
same sharing policy α1 = α2. In this case there are more interactions in terms
of energy sharing between EVs and then a centralized point of view is better.

Figure 4 also shows that in case of dependency 5α1 + 30α2 = 19, the price of
anarchy will stay close to 1 because the maximum between α1 and α2 is always
relatively large (max(α1, α2) ≥ C

K1+K2
≈ 0.54).

Note also that the asymmetry between α1 and α2 comes from the different
number of parking spots in the stations: K1 �= K2.
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Fig. 4. Level lines and values of the price of anarchy in function of α1 and α2. The area
in black is the set of (α1, α2) which do not respect the constraint 5α1 + 30α2 ≤ 19.

6 Conclusions and Future Works

In this paper a nonatomic game model for an electric vehicle (EV) charging
system is proposed in order to study the EV best strategy about the choice of
charging station in order to maximize the probability of fully charging its battery.
EVs interact at the parking spots which have limited capacity in terms of the
number of charging points, EVs may stay parked even if not charging, and also
interact at the energy level because plugged EVs share a global amount of energy
to be shared at a station. These different levels of interactions make the analysis
of the equibrium of the nonatomic game complex but some properties of the
equilibrium are obtained theoretically. Moreover, we have been able to compare
the performance with a centralized point of view by giving explicit bounds on
the Price of Anarchy. Finally, a deep study of energy capacity parameters for
each station is proposed in order to maximize the probability of any EV to leave
teh service station with a full battery. Numerical examples based on realistic
scenario parameters illustrate our contributions.

In future works we will focus on the information aspect. In the framework
of this paper, EVs do not have any information about the stations occupancy,
and make their decision based on expected number of EV charging. Then, we
plan to study the impact of online information about station occupancy and/or
remaining charging time on the EV equilibrium decision. Another point of inter-
est is the integration of the rejection into the strategic decision of EV. In fact,
if all parking spots are occupied, a new EV is rejected and there is no waiting
list for the moment.



344 A. Dupont et al.

References

1. IEA: Global ev outlook 2020, Technical report, IEA (2020)
2. Khaksari, A., Tsaousoglou, G., Makris, P., Steriotis, K., Efthymiopoulos, N., Var-

varigos, E.: Sizing of electric vehicle charging stations with smart charging capa-
bilities and quality of service requirements. Sustain. Cities Soc. 70 (2021)

3. Said, D., Cherkaoui, S., Khoukhi, L: Queuing model for EVs charging at public
supply stations. In: Proceedings of the IWCNC (2013)

4. Tan, X., Sun, B., Tsang, D.H.: Queueing network models for electric vehicle charg-
ing station with battery swapping. In: IEEE International Conference on Smart
Grid Communications, pp. 1–6 (2014)

5. Gusrialdi, A., Qu, Z., Simaan, M.: Scheduling and cooperative control for charging
of electric vehicles’ at highway service stations. IEEE Trans. Intell. Transp. Syst.
18(10), 2713–2727 (2017)

6. Aveklouris, A., Nakahira, Y., Vlasiou, M., Zwart, B.: Electric vehicle charging: a
queueing approach. In: MAMA workshop (2017)

7. Aveklouris, A., Vlasiou, M., Zwart, B.: Bounds and limit theorems for a layered
queueing model in electric vehicle charging. Queueing Syst. 93, 83–137 (2019)

8. Liu, B., Pantelidis, T., Tam, S.J.: Chow An electric vehicle charging station access
equilibrium model with M/D/C queueing, ArXiv, 2102.05851 (2021)

9. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated net-
works. Math. Oper. Res. 29(4), 961–976 (2004)

10. Yi, Z., Bauer, P.: Effects of environmental factors on electric vehicle energy con-
sumption: a sensitivity analysis. IET Electr. Syst. Transp. 7(1), 3–13 (2017)

11. Kleinrock, L.: Queueing Systems. Wiley, Hoboken (1974)
12. Aumann, R., Shapley, L.: Value of Non-atomic Games. Princeton University Press,

Princeton (1974)
13. Hassin, R.: Rational Queueing. CRC Press, Boca Raton (2016)
14. Schmeidler, D.: Equilibrium Points in nonatomic games. J. Stat. Phys. 7(4), 295–

300 (1973)
15. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge

(2005)
16. Hassin, R., Haviv, M.: To Queue or Not to Queue. Kluwer Press, Amsterdam

(2003)



Hybrid Simulation of Energy
Management in IoT Edge Computing

Surveillance Systems

Lelio Campanile1, Marco Gribaudo2, Mauro Iacono1,
and Michele Mastroianni1(B)

1 Dipartimento di Matematica e Fisica, Università degli Studi della Campania,
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Abstract. Internet of Things (IoT) is a well established approach used
for the implementation of surveillance systems that are suitable for mon-
itoring large portions of territory. Current developments allow the design
of battery powered IoT nodes that can communicate over the network
with low energy requirements and locally perform some computing and
coordination task, besides running sensing and related processing: it is
thus possible to implement edge computing oriented solutions on IoT, if
the design encompasses both hardware and software elements in terms
of sensing, processing, computing, communications and routing energy
costs as one of the quality indices of the system. In this paper we propose
a modeling approach for edge computing IoT-based monitoring systems
energy related characteristics, suitable for the analysis of energy levels
of large battery powered monitoring systems with dynamic and reactive
computing workloads.

Keywords: Performance evaluation · IoT · Surveillance · Edge
computing

1 Introduction

The use of IoT is a commodity in many application fields. Since the introduc-
tion of this technology, its appeal and the large flexibility attracted the interest
of researchers, practitioners and industry, opening a wide number of different
research directions. From the design and engineering point of view, IoT present
many challenges, that encompasses all aspects related to the electronics of the
node and of the sensors, to its software layer, to data (pre)processing, to commu-
nications, to network management, and to some aspects that are simultaneously
related to both the node and the network levels, such as the ones that deal with
energy management in battery powered nodes. Battery powered IoT architec-
tures allow a high degree of flexibility in deployment, as they do not need any
c© Springer Nature Switzerland AG 2021
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infrastructure, so they are ideal to be used for applications that target scenar-
ios in historical buildings that cannot be wired, in natural environments where
deployment happens in the wild, and in risky contexts that do not allow free
access and in which nodes are, for example, thrown from drones or planes: con-
versely, they add a constraint in the design and development process, that dimin-
ishes the lifetime of each node and, at the same time, challenges the integrity of
the whole network, that is based on the contribution of nodes that also act as
intermediate interconnections to deliver data from all the network to the network
sink managing the link towards the rest of the computing architecture.

The progress in battery technology and the lowering costs and power require-
ments of hardware resources such as system-on-chip devices and memories pave
the way to a new generation of IoT, that can support edge computing technolo-
gies to provide higher level functionalities and on site distributed computing,
or more advanced management to make IoT more resilient and robust even
when the continuity of the connections of part of the nodes toward the sink is
threatened or momentarily unavailable: this makes the role of software on the
nodes more relevant, and also requires to consider the possibility of transmission
of larger data chunks, to support migration on tasks and offloading when the
energy level is critical on a node or to interact with the cloud; consequently, also
scheduling of software activities on the node and event-driven activation of tasks
play a significant role.

In this paper we present a modeling approach for battery powered, IoT
based, edge computing enabled monitoring architectures, aiming at consider-
ing the energy aspects in scenarios in which sensing and local computing react
to what happens in each part of the covered environment. The approach is based
on discrete events simulation and is demonstrated with a realistic case study that
deals with safety of natural sites.

This paper is organized as follows: Sect. 2 presents related work, Sect. 3
introduces the general architecture of the reference monitoring system, Sect. 4
describes the modeling approach, Sect. 5 describes a scenario to which the app-
roach is applied, Sect. 6 presents the result of the simulation and conclusions
close the paper.

2 Related Work

2.1 Analytical Methods

An approach quite used for minimize energy consumption in low-power devices is
based on queuing networks modeling, resolving the energy minimization by using
Lyapunov-based optimization algorithms. An early example may be found in [1],
in which offloading is used as an effective method for extending the lifetime of
handheld mobile devices by executing some components of applications remotely
(e.g., on the server in a data center or in a cloud). In order to achieve energy
saving while satisfying given application execution time requirement, a dynamic
offloading algorithm is proposed, which is based on Lyapunov optimization. An
example of this approach may be found in [2]. The authors deep into the problem
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of power consumption in a multiuser Mobile Edge Computing system with energy
harvesting devices, and the system power consumption, which includes the local
execution power and the offloading transmission power, is designated as the main
system performance index.

Another approach is based on game theory. In [3] the multi-user computation
offloading problem between mobile-edge and cloud is addressed. In this paper,
the authors make use of a multi-user computation offloading game, analyzing
the structural properties of the game and arguing that the game admits a Nash
equilibrium. A similar approach may be found in [4] and [5].

2.2 Simulation of Energy Management

In [6] the expected performance of Mobile Edge Computing is evaluated to
address application issues related to energy management on constrained IoT
devices with limited power sources, while also providing low-latency processing
of visual data being generated at high resolutions. In this paper an algorithm
is proposed that analyzes the tradeoffs in computing policies to offload visual
data processing to an edge cloud or a core cloud at low-to-high workloads, also
analyzing the impact on energy consumption in the decision-making under dif-
ferent visual data consumption requirements (i.e., users with thick clients or thin
clients). The algorithm is simulated using the ns-3 [7] network simulator.

In [8] a new simulator is proposed, named IoTSim-Edge, that extends the
capability of CloudSim to incorporate the different features of edge and IoT
devices. In particular, this simulator also includes support for modeling hetero-
geneous IoT protocols along with their energy consumption profile. In this paper
there are also two useful tables that summarize the main characteristics of dif-
ferent communication protocols (e.g., WiFi, 4G-LTE, Bluetooth and so on) and
different messaging application-layer protocols (e.g. HTTP, XMPP etc.).

2.3 Simulation and Analysis of Animal Movements

There is interesting literature which examines animal movements in small and
large scale, for individuals, groups or crowds and in different contexts, and propos-
ing analysis and simulation techniques. In [9] simulation of ecosystem data, includ-
ing animal movements, is examined, in a “virtual ecologist” perspective. [10] spe-
cially deals with animal path observation, sampling and modeling, with particu-
lar focus on the effects of actual distance correct estimation. In [11] the authors
introduce a ’stochastic movement simulator’ for estimating habitat connectivity
which is suitable for the analysis and modeling of animals and groups movement,
including the effects of correlations and environmental factors. [12] presents a R
package, namelyAnimal movement tools, for the analysis and synthesis of tracking
data about animals, with features that connect data to stochastic models. In [13]
individual movements are simulated as a correlated random walk in order to model
animal dispersal in a fragmented landscape taking into account landscape struc-
ture and animal behavior. [14] introduces spatially explicit individual-based mod-
els and compares four distinct movement approaches on a fish related case study.
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[15] proposes a point-to-point random trajectory generator for animal movement,
to be used in simulation scenarios with different geographical scales and for dif-
ferent species, including physical limitations.

In this paper we opted for a simpler approach, which takes into account the
essential elements pointed out by literature, due to the purposes of our work.

3 Characteristics of the System

The general architecture of the systems we aim to model is composed of IoT
nodes that can run additional workloads besides what is needed to execute sens-
ing, (pre)processing and communications. Nodes are scattered in the environ-
ment and have a basic monitoring mode, in which they alternate a sleeping
phase and, periodically, a sensing phase, or a low-energy always-on sensing state
in which they can react to events happening in the monitored environment. In
both cases, when events happen, an alert condition is raised and computing
tasks may be launched locally or on the near group of nodes, to analyze the
situation on a single or cooperative way: in this case, the node goes to a higher
energy need state, as it activates additional computing hardware and launches
one or more software tasks, eventually generating additional communications on
the network, with non negligible weight in the energy economy of the node. The
node may also have more than one higher energy need states, that may be used
to compute at different speeds if needed to face computing deadlines.

3.1 Activities

Activities may be classified into 4 categories: normal monitoring, alert, alarm
and reaction.

The normal monitoring category includes minimal activities, in which nodes
interact rarely to update the knowledge about the distributed state of the IoT
and perform basic sensing and related data processing, logging information about
the environment and waiting for anomalous elementary signals.

If such a signal is detected, the nodes that detected it execute alert activities,
in which the signal is locally compared to known ordinary events to understand if
it is not a threat, also coordinating with each other to obtain a better evaluation,
and reports the condition to the cloud, that may also check the situation.

In case the condition is not considered normal, alarm activities are performed,
that may require real time or computationally intensive tasks, to be executed
in edge mode in collaboration with the cloud section of the system, such as
image recognition, classification, tracking of moving object by analyzing audio
signals or other privacy compliant information available by sensors or other node
devices, generally operated by the nodes also in other conditions or specifically
activated during alert or alarm activities.

If the alert activities identified a dangerous situation or a violation, reaction
activities are executed on nodes, that may include video monitoring of the area
surrounding the tracked offender or the dangerous phenomenon by following
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the target activating and deactivating cameras along its path or by activating
all available cameras needed, depending on the area, the configuration and the
nature of the surveilled environment.

While normal monitoring activities are executed in a low energy state or by
periodically switching to it from a sleep state, all other activities are executed
at higher energy need states.

3.2 Organization

If allowed by the deployment mechanism, nodes may be installed in groups that
are meant to collaborate. In this case, nodes in the same group may be equipped
with different sensors, in order to operate in organized groups while execut-
ing alert, alarm or reaction activities. Groups may be preconfigured to facili-
tate offloading of computing tasks or to execute distributed computing tasks to
natively distribute energy utilization across a group. Groups may be reconfig-
urable during the lifetime of the IoT and may have redundant sensors to keep
them as cold or hot spares. Groups may also collaborate to efficiently detect
movements of targets that walk or run across the surveilled area. In the rest of
this paper groups based features will generally not be applied.

3.3 Energy Management

In order to guarantee the survival of the system, the overall use of energy should be
properly tuned and dynamically adjusted according to needs: the goal is to keep all
the IoT connected to its sink, not to lose coverage of the surveilled area. In order
to cope with this need, energy should be spent as a common resource. The nodes
that are more solicited by acting as intermediate carrier nodes between other nodes
and the sink will probably incur in a significantly faster energy consumption with
respect to the ones that are positioned at the margin of the covered area, as, in
a calm scenario, communications, that require transmission power, will anyway
happen periodically, differently from alert and alarm computing activities. These
nodes will serve as computing backup resources to which alert and alarm comput-
ing activities can be offloaded when intermediate carrier nodes will reach a given
attention threshold : in this situation, the node the battery of which has a decrease
of the energy level that reaches the attention threshold will have to transfer the
most energy needing computing tasks on a near node, in its neighborhood, to the
node that, according to a heuristic or to some optimization algorithm, is the best
candidate to let the network use its energy in the most useful way.

4 Modeling Approach

We consider systems that can be described by a tuple (E,Σ, V ) where E =
(Nx, Ny,Δx,Δy, σx, σy, r) describe the environment, Σ the sensor behavior, and
V the patterns of agents visiting the environment. In particular, the considered
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environment is composed by Nx × Ny sensor uniformly spread over a rectangu-
lar region. Sensors are distributed with an average distance Δx and Δy from each
other, with an error of σx and σy. Figure 1 shows an example of a region where
Nx = 40, Ny = 10, Δx = Δy = 80 m, and σx = σy = 20 m, which will be used
a running example in the following. Each sensor is described by a state machine
Σ = (S, T,A) composed by S = {s1, . . . , s|S|} states, and T ⊆ Σ × Σ transitions.
Each transition is triggered by an action a ∈ A, according to events occurring in
the environment. In the considered area, we have a set of possible visitors patterns
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Fig. 1. Example sensors positioning map (unit for both dimensions is km): four sensors,
that will be considered more in depth in the following, have been highlighted with a red
circle

V = {v1, . . . , |V |} that randomly pass through the environment. The proposed
technique is independent on the way in which the visitor pattern is simulated,
and such description, which is a research topic itself, is outside the scope of this
paper. We then resort to a simplified motion pattern description, where:

vi = {Pi, λi, πi, li}, with (1)
Pi = {pi1, . . . , piK}, and (2)
pij = (xij , yij , tij , sij) (3)

Each motion pattern vi is triggered by a Poisson process of rate λi, is character-
ized by an alert priority li ∈ N and by a detection probability πi ∈ [0, 1]: li and
πi will be discussed more in depth in the following. Each path is described by
an ordered set Pi (Eq. 2) of key-points pij (Eq. 3), and is composed by a set of
linear trajectories travelled at uniform and constant speed. In particular, each
segment pij−pij+1 connects the point of coordinates (xij , yij) to (xij , yij), which
are respectively visited after tij and tij+1 time units from the beginning of the
pattern. Figure 5, 6 and 7 show the path that will be used in the considered
example. To make simulation more realistic, each time a pattern is repeated, its
key-points are perturbed both in position and timing with a Gaussian noise of
zero mean, and variance sij = (σx, σy, σt). Since Gaussian noise can be negative,
particular attention is given to the time component: in particular, time instants
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are sorted after the perturbation, so to ensure a monotone flow of time. Figure 2
shows how basic path Hunting of Fig. 5 is perturbed to produce 10 different
instances, showing their variation in space and time.
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Fig. 2. Variation of trajectories in space and time

Simulation is performed by first generating a Poisson event stream for each
possible pattern vi ∈ V , and replicating a perturbed instance of vi at each event,
as shown in Fig. 3. Each trajectory and sensor are then considered separately,
and intersection events are generated: in particular, times tIk and tOk in which an
object enters in the sensor range r of a sensor is computed. Note that, as shown
in Fig. 4, an agent might change direction while in the range of a sensor. In this
case, the exit time tOk must be computed on the correct output segment.

Events generated by pattern vi will be considered with probability πi, and
discarded otherwise: this can be used to simulate the fact that some events might
not be detected by a sensor, or to model possible intermittent malfunctions.
Events can cause the state change of the corresponding sensor: to simplify its
logic, events are grouped in alarm levels li. The next state of a sensor will be
determined by actions a considering both the current sensor state, and the alarm
level li. Since actions can be very case specific, we will not describe them more
formally, and we will focus on the one used in this paper in the following section.
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Fig. 3. Execution of trajectories

5 Modeling a Scenario

In order to show the effectiveness of the modeling approach, we analyzed an
example scenario. The surveilled environment is a forest, that is usually free
from human presence. The surveillance is enacted to ensure early intervention in
case of spontaneous fires or in case of a pyromaniac or an arsonist. A sufficient
number of nodes is installed in the forest that can detect events by sensing noises
and temperature peaks, identify moving living beings, and make video footage
or stream live video (an example positioning used for our simulations is depicted
in Fig. 1). Each node executes activities from (some of) the categories presented
in Sect. 3.

Events like a branch that falls solicit the system for a short time, specifically
activating the group of nodes that is the nearest to the place in which the event
happens; events like a spontaneous fire solicit the system for a short time but
raise alert, alarm and reaction activities; events like wild animals that enter and
run across the forest solicit the groups that monitor the path in sequence, thus
allowing following the trajectory, identifying the signal as wildlife or humans to
be distinguished from each other by a proper local analysis, in case with the
assistance of the cloud; events like humans that enter and run across the forest
also require that the kind of behavior is identified as normal hiking, hunting
or other allowed activities versus suspicious behaviors, that may raise alarm
activities and/or reaction activities on part or all the IoT. In consequence of
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Fig. 4. Intersections between trajectories and sensing devices

these events, energy is used by the nodes in reaction to the events and differently
from node to node.

For the sake of simplicity, we consider in the following as solicitations by
living beings the activities of a fox and of a human. For the fox, three different
typical behaviors are considered: a fox running across the forest, a fox that marks
the forest as part of its own territory and a hunting fox that finds a prey; for the
human, four different typical behaviors are considered: a human doing hiking
in the forest, a human doing hiking with a stop to rest a bit, a hunter and an
arsonist. For each of these cases, a single sequence of movements and stops in time
has been considered as a base on which analogous cases have been generated with
scaling, flipping and rotating the sequence. Example base movement sequences
are in Fig. 5, 6 and 7. Speed profiles used for these simulated behavior are not
reported for the sake of space.

Fig. 5. Movements of foxes

Movement detected by the sensors are grouped in two different intensity
levels: li = 2 for the arsonist (Fig. 7), to denote its critical effect on the system,
and li = 1 for all the other movements (Fig. 5 and 6). Sensors are characterized
by four states S = {Idle,Low energy,High energy,Critical}, as shown in Fig. 8
together with their ID number.
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Fig. 6. Movements of visitors
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Fig. 7. Movements of an arsonist

Sensors starts in the “Idle” state. Each time tIj an agent enters it sensing range
r, a counter is incremented. If the event is discarded, this leads to a “Low energy”
state, and a counter of discarded events is incremented. If the entrance event is
not discarded, it leads either to a “High energy” or to a “Critical” state depend-
ing on the level li of the considered event. Each time tOj an agent leaves the sens-
ing range, the corresponding counter is decremented. If there are no more critical
events, but still regular events, the system returns either to state “High energy”
or “Low energy” depending on whether the reaming event was detected or not.
When no more events are being sensed, it returns the the “Idle” state. Figure 9
shows the state change for the four sensors highlighted in Fig. 1. Each sensor is
equipped with a battery, which in our model starts with an arbitrarily placed
value of 150. Depending on the state, the battery discharges at a different speed,
as shown in Table 1. The simulator then linearly reduces the charge of the bat-
tery, according to the time spent in each state, as shown for the four highlighted
sensors in Fig. 10. To increase the lifetime of the system, sensors might relay
their task on neighbour nodes if their battery level is below a threshold χ. In
this example, this has been arbitrarily set to χ = 50. In this case, the energy con-
sumed by the considered sensor is greatly reduced (see right column of Table 1),
and its workload is shared among the neighbours whose battery level is over the
considered threshold. The latter sensors will then experience a discharge that
is proportional to the type of detected event, and inversely proportional to the
number of nodes sharing this task.
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Fig. 8. State diagram of the sensors

Fig. 9. Changes in the state for four sensors

6 Results

Results where computed on a 2016 MacBook Pro laptop, with Intel i5 CPU
and 16 GB of RAM using a custom built script in MatLab. Each simulation
run required about 5s of execution time. A total of 100 simulation runs were
executed: where relevant, both the average and the variance of the results will
be presented, showing the possibility of computing confidence intervals if desired.

Figure 11 shows the locations in which some events were missed by the system
(i.e. when the missed event counter described in Sect. 5 was incremented). Dots
represent standard events, while circles correspond to the critical ones. This type
of plot can be used to better place sensors over the area: where more missed
events, especially critical ones, happen, it would be desirable to have more IoT
devices.
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Table 1. Battery discharge rate

State Normal rate Relay rate

Idle 0.1 0.1

Low energy 1 0.12

High energy 2 0.12

Critical 20 0.12
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Fig. 10. Battery charge as function of time

The lifetime of the sensors is instead considered in Fig. 12, for what concerns
both its average and its variance. As expected, in the area where more events are
missed, that also corresponds to the zone where more action takes place, sensors
tend to have a shorter lifetime. This could be used for example to plan different
battery capacities, so to equip sensors in these areas with larger ones. What is
also interesting is the high-variance area for y > 0.4 and x ≈ 1.5. That particular
section monitors the path used by the arsonist to escape the area: this higher
variance might denote that in many cases events occurring there might not be
detected, probably due to the speed at which they occur. This could guide in
deploying IoT devices with better sensing equipment in that area, to reduce the
probability of missing events.

Figure 13 shows instead the effect of the load distribution between neighbours
on the first three rows of sensors at time t = 500, comparing it against a scenario
in which all IoT only process data locally. As it can be seen, loading increases
the battery of the most targeted nodes, at the expense of some of the neighbour
devices. However, due to the large number of nodes among which load can be
shared, the effect on the neighbour is almost negligible.
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Fig. 13. Effect on battery life of the load distribution policy on the first three rows of
sensors: NR - without load distribution, R - with load distribution

7 Conclusions

The energy efficiency related issues in IoT systems designed to operate in iso-
lated locations present interesting challenges and represent a key factor for the
implementation of edge computing systems on IoT infrastructures. The increase
in computing power available on state-of-the-art devices calls for more sophisti-
cated applications, but requires a more careful management of on-board available
energy and attention for workload balancing to extend the maximum mission
time. In this paper we presented a simulation based approach for an energy
effective management of reactive tasks in an environmental monitoring system,
designed to interact and adapt to external stimuli to keep a sufficient knowledge
of the environment while saving energy and exhibit peak performances in case
of suspicious or critical conditions.

Future work concerns the inclusion in the approach of harvesting mechanisms
(e.g. solar panels) and of smarter migration techniques, based on fuzzy offloading
techniques [16], as well as the study of network conditions that allow keeping
selected functions alive even in critical energy conditions and selective node
pruning strategies.
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Campania “Luigi Vanvitelli”.
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Abstract. Exact solutions for distributions in the M/M/N/Q system are known,
but computational speed and stability can still be problematic. In this work, we
develop new expressions for the waiting time and response time distributions
in terms of the Erlang B formula, where its numerically stable recursion facil-
itates efficient solution for tail probabilities without any summations. We next
develop a highly accurate, numerically stable, explicit closed-form approxima-
tion for Erlang B that requires no recursion. Used separately or in combination,
these new foundational results can dramatically reduce the computational burden
in simulation and optimization algorithms, when system performance measures
must be computed many times, or when solutions are required in real time (e.g.,
SDN reconfiguration). In addition, the Erlang B approximation facilitates rapid
back-of-the-envelope system analyses (e.g., when tail probabilities are inputs).

Keywords: Waiting time · Response time · Distribution · Erlang B ·
Approximation

1 Introduction

Analysis of continuous-time Markov chains, birth-and-death (B&D) processes, and
Markovian queues dates to the early 20th century. Markov [1] first introduced the frame-
work in 1907, and Erlang [2] first derived his classic B and C formulae in 1917. Exact
solutions to all performance measures for M/M/N/Q finite-server, finite-buffer Marko-
vian queues have been widely documented in queueing theory texts (c.f. [3–8] and
references therein). Seemingly no stone has been left unturned.

Yet though the exact solutions are known, numerical stability and speed of com-
putation remain persistent problems at times. Solving for the simplest of performance
measures requires computing a normalization constant based on a sum of terms that
can become numerically unstable even for systems of modest size. This problem
becomes even more difficult when computing complicated performance measures such
as distributions, where both sums and sums of sums are required.

In this paper, we revisit a known expression for the state space normalization constant
and develop new expressions for the waiting time and response time distributions, in
terms of the Erlang B formula, without any summation (even in the case of distributions).
Although Erlang B is itself expressed as a sum of terms, there is a well-known, efficient,
numerically stable recursion that avoids sums of terms entirely. Next, we develop a new
approximation for Erlang B that allows us to avoid iteration or summation altogether.
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This new approximation is derived by first ‘anchoring’ the solution at known corners
(offered utilization ρ = 0, ρ = 1, number of servers N = 1, and N → ∞.) and then
‘shaping’ the approximation to mimic the known behavior in between. The result is
explicit, closed form, numerically stable, and extremely accurate.

The ability to express the normalization constant explicitly in terms of Erlang B
means that what could be a numerically challenging problem is now a simple, stable
N-step recursion. Furthermore, the ability to express waiting time and response time
distributions explicitly in terms of Erlang B means that what could be an extremely
difficult computational problem is now replaced by simple N- and Q-step recursions.
Finally, availability of an extremely accurate, explicit closed form, numerically stable
approximation for Erlang B allows us to avoid recursion or summation altogether.

All M/M/N/Q system performance measures are given exactly as a function of the
normalization constant. Thus, an accurate approximation for Erlang B yields accurate
approximations for all metrics. Still, one may ask why develop approximations when
we have the exact solutions via recursion. There are myriad reasons why fast, efficient,
numerically stable computational forms for the normalization constant, the waiting time
and response time distributions, and Erlang B itself are of value. For example, such
techniques can dramatically reduce computational burden in simulation and optimization
analyses, when key performance measures must be computed many times, or when
solutions are required in real time. Optimization problems may be easily solved using
approximation, whereas their solution may be difficult or impossible with the exact
function. Also, a continuous ErlangB approximation aids solution of problems involving
non-integer numbers of servers.

In addition, such approximations facilitate rapid back-of-the-envelope real-world
system sizing, when ‘normal’ performance outputs (mean blocking, delay, tail probabil-
ities, etc.) are specified as inputs, and the required system size (number of processors,
number of buffers, etc.) must be determined recursively (reverse engineering). These
capabilities are invaluable during the system requirements phase for vendor proposal
evaluation, or during the architecture phase for solution design evaluation.

2 M/M/N/Q Queueing System Refresher

2.1 Formulation

Using Kendall notation, we consider the classic M/M/N/Q finite-server, finite-buffer,
first-come-first-served Markovian queueing system with Poisson arrivals (rate λ), expo-
nential service (rate μ), N servers (0 < N ≤ ∞), and Q buffers (0 ≤ Q ≤ ∞), so that N
+ Q customers are allowed in the system. Let τ = μ–1 denote the mean service time, let
A = λτ denote the offered load, and let ρ = A/N denote the utilization (assume ρ ≤ 1).

Typical boundary cases include: single-server systems where N = 1 and (typically)
Q = ∞, infinite-server systems where N = ∞ and Q = 0 by default, and multi-server
systems where 1 < N < ∞ and Q = ∞ (Erlang C delay system) or Q = 0 (Erlang B
loss system). Although the Erlang B formula arose within this M/M/N/0 framework,
applications of an accurate approximation extend well beyond Markovian systems. We
consider only the infinite-source case but note that Erlang also derived the classic finite-
source Engset formula, and much work exists addressing its numerical evaluation (c.f.
[9]).
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Let Pi (0 ≤ i ≤ N + Q) denote the steady-state probability of i customers in the
system. Then the stationary distribution can be expressed as

Pi =

⎧
⎪⎨

⎪⎩

Ai
i! P0

NNρi

N ! P0

(0 ≤ i ≤ N )

(N ≤ i ≤ N + Q)
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[
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i! +
(
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)
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(
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]−1
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(1)

Let G ≡ PN denote the normalization constant. Then

G ≡ PN =
(
AN
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)

P0 =
[(
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AN
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i! + ρ
(
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)
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We define the normalization constant in terms of PN in order to facilitate its expression
as a function of the Erlang B formula. It is immediately obvious from (2) that

G =
[

1

B(N,A)
+ ρ

(
1 − ρQ

)

(1 − ρ)

]−1

, where B(N ,A) ≡
[(

N !
AN

)∑N

i=0

Ai

i!
]−1

(3)

is the well-known Erlang B formula. B(N ,A) represents the probability of blocking
(loss) in the M/M/N/0 system.

This result in (3) is not new (c.f. [8]). However, as mentioned previously, there are
several reasons to express the normalization constant G in terms of Erlang B. Most
notably, B(N ,A) can be computed using the well-known recursion

B(N ,A) =
[

AB(N − 1,A)

N + AB(N − 1,A)

]

, starting with B(0,A) = 1. (4)

In all cases,N iterations or terms are still required, but computingB(N ,A) recursively
is more stable than computing G directly by summation. As a prelude to the results to
follow,we develop an extremely accurate, explicit approximation forB(N ,A) that avoids
iteration or summation altogether and allows for the direct and accurate evaluation of G
using the relationship in (3).

2.2 Key Performance Indicators

All M/M/N/Q system performance measures are given exactly as a function of G, or
equivalently as a function of B(N ,A) using (3). For example:

• Probability of blocking β = GρQ

• Probability of queueing π = G(1–ρQ)/(1–ρ)
• Probability of waiting (given customer is admitted) P(W > 0) = π/(1–β), where the
random variable (r.v.) W denotes the waiting time

• Mean number in service (carried load) n = A(1 – β)
• Mean number in queue q = Gρ[1 – (Q – Qρ + 1)ρQ]/(1 – ρ)2

• Mean waiting time (given admitted) w = E(W ) = τq/n
• Mean response time (given admitted) r = E(R) = w + τ, where the r.v. R denotes the
response (sojourn) time.
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Next, consider the waiting time and response time distributions in the M/M/N/Q
system. Let W (t) ≡ P(W ≤ t|admitted) denote the waiting time distribution and let
R(t) ≡ P(R ≤ t|admitted) denote the response time distribution.We prove the following
relationships in the Appendix. For 0 < Q < ∞ and ρ < 1,

P(W > t | admitted) = G(At)Q−1e−Nt

(1 − β)(1 − ρ)(Q − 1)!
[

1

B(Q − 1,At)
− ρ

B(Q − 1,Nt)

]

.

(5)

For N > 1 and N – A �= 0, 1,

P(R > t | admitted) =
{

1 − π − β + GN

N − A − 1

[

1 −
(

A

N − 1

)Q
]}

e−t

1 − β

+ G(At)Q−1e−Nt

(1 − β)(N − 1)(Q − 1)!

⎧
⎨

⎩

(
N−1
N−A

)[
N

B(Q−1,At) − A
B(Q−1,Nt)

]
−

(
N

N−A−1

)[
N−1

B(Q−1,At) − A
B(Q−1,(N−1)t)

]

⎫
⎬

⎭
. (6)

Special cases for N = 1, N = 1 – A, N = A, Q = 0, and Q = ∞ are also derived in the
Appendix.

To the best of our knowledge, the results (5–6) are new. These representations ofW (t)
and R(t) in terms of Erlang B eliminate the multiple layers of summation and recursion
altogether. The significance of these representations is that W (t) and R(t) can now be
expressed explicitly in terms of Erlang B, resulting in the ability to compute waiting time
and response time tail probabilities quickly via simple traditional recursion, or directly
using the approximation to follow that avoids recursion altogether.

These new representations (5–6) forW (t) and R(t) contain a coefficient of the form{
(Nt)Qe−Nt/Q!}. This expression is the probability mass function at Q of the Poisson
r.v. with rate Nt, hence this coefficient ∈ [0, 1]. Nevertheless, for large N orQ or t, direct
computation of its individual parts may still become numerically unstable. In this case,
simple Q-step recursion can be used concurrent with the Q-step Erlang B recursion.
Thus, these results are numerically stable even for large systems.

3 Prior Work

As noted earlier,Markovian queueing systems have beenwidely studied and documented
(but it is rare to find the derivations of the waiting time and response time distributions
explicitly included in standard texts). Jagerman, Whitt, and many others at Bell Labo-
ratories performed seminal analyses of the characteristics of Erlang B beginning in the
1970s (c.f. [10–15]). Over the years, numerous bounds and approximations for Erlang B
have been proposed. Although many of these approximations are useful to provide ball-
park initial sizing estimates, none achieve the level of accuracy required for embedding
in complex optimization problems such as real-time software defined network (SDN)
route reconfiguration. Harel [16] developed bounds and approximations in 1988 that are
still widely cited. Figure 1 shows the exact value for B(N ,Nρ) vs. Harel’s bounds and
approximation as a function of ρ ∈ [0, 1] for N = 10 and N = 100. As can be seen,
although the fit improves asN increases, the bounds are not tight, and the approximation
does not become accurate until ρ → 1.
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Fig. 1. Exact B(N, Nρ) vs. Harel bounds and approximation for N = 10 and100 as a function of
ρ.

More recently, others (c.f. [17–20] and references therein) have proposed various
approximations for Erlang B that achieve good accuracy under certain conditions (e.g.,
low B or very largeN or heavy traffic ρ > 1). For example, Pinsky [17] proposes a simple
approximation for the low blocking range B ∈ [10−5, 10−1]. Salles and Barria [18]
and Shakhov [19] propose simple heavy-traffic approximations that are asymptotically
exact as N → ∞ or ρ → ∞. Janssen, et al. [20] develop bounds for large N that are
asymptotically exact as N → ∞. Unfortunately, these approximations fail to achieve
the required level of accuracy across the full practical range of N and ρ ≤ 1.

4 Erlang B Approximation

4.1 Properties

For simplicity, let B ≡ B(N ,Nρ) denote the exact Erlang B value for N servers and ρ

offered utilization, and let Ba ≡ Ba(N ,Nρ) denote the corresponding approximation.
The obvious properties of an accurate Erlang B approximation Ba are that it matches the
exact result for known boundary conditions (corners), and that it has the right shape in
between. The known boundary conditions are ρ = 0, ρ = 1, N = 1, and N → ∞.

Obviously we need Ba = 0 at ρ = 0 ∀N ≥ 1. Next, we want Ba = some function
F(N) at ρ = 1 ∀N ≥ 1. The solution to F(N) = B(N, N) will be provided shortly. Then
we want Ba = ρ/(1 + ρ) at N = 1 for 0 ≤ ρ ≤ 1. Finally, we want Ba → 0 via some
function G(ρ, N) as N → ∞ for 0 ≤ ρ < 1. The solution to G(ρ, N) will be provided
shortly. In terms of the shape (as a function of ρ), we want Ba to be concave for N = 1,
given by ρ/(1 + ρ), and we want Ba to be convex, with an inflection point, then concave
for N > 1.

The foundation for our Erlang B approximation consists of three pillars:

1. the solution to F(N) = B(N, N) at ρ = 1,
2. the solution to G(ρ, N) = lim

N→∞B(N ,Nρ) for fixed ρ, and

3. the solution to the shaping and fitting function H(ρ, N) at and in between corners.

Thus, Ba = F(N )G(ρ,N )H (ρ,N ), where the derivations of F, G, and H follow.



Highly Accurate, Explicit Approximation for Erlang B 365

4.2 B(N, N)

The first crucial pillar is the solution to F(N)= B(N, N). Through asymptotic expansion
of the incomplete Gamma function, Jagerman [10] and later van Leeuwaarden and
Temme [21] show that

6

4 + 3
√
2πN + √

2π/4
√
N

≤ B(N ,N ) ≤ 6

4 + 3
√
2πN

, (7)

and that lim
N→∞B(N ,N ) = 6

4 + 3
√
2πN

. (8)

Figure 2 shows the exact value and limit (upper bound) as N → ∞ for B(N ,N ) as a
function of N. As can be seen, the limit is surprisingly accurate even for small values of
N.

Next, we can easily correct the inaccuracy for small N. Figure 3 shows the ratio of
the exact value of B(N ,N ) over the limit for N between 1 and 1000 (log scale). As can
be seen, the correction is visually of the form 1 − k

f (N )
where (1) = 1, lim

N→∞ f (N ) →
∞, and

k = 1 − B(1, 1)

limit
= 1 − 0.5

6/
(
4 + 3

√
2π
) = 8 − 3

√
2π

12
≈ 0.04. (9)

The limit formula already includes the power of N termN0.5, so choosing f (N)=Nx for
some x simplifies the final form for F(N). The best (least squares) correction is achieved
with (N) = N0.8. Thus, the first approximation pillar F(N) is given by

F(N ) ≈ correction × limit =
(

1 − 8 − 3
√
2π

12N0.8

)(
6

4 + 3
√
2πN

)

=
(
12N0.8 − 8 + 3

√
2π

8N0.8 + 6
√
2πN1.3

)

. (10)

For future use, note that F(1) = 1
2 and lim

N→∞F(N ) = lim
N→∞

2√
2πN

.

4.3 lim
N→ ∞B(N,Nρ)

The next crucial pillar is the solution to G(ρ, N) = lim
N→∞B(N ,Nρ) for fixed ρ. We have

lim
N→∞B(N ,Nρ) = lim

N→∞

[(
N !

NNρN

)∑N

i=0

(ρN )i

i!

]−1

. (11)

Using the relationships lim
N→∞

[∑N
i=0

(ρN )i

i!
]

= eρN (Taylor) then lim
N→∞N ! =

√
2πNNNe−N (Sterling), we have

lim
N→∞B(N ,Nρ) = lim

N→∞
NNρN e−ρN

N ! = lim
N→∞

[
ρe(1−ρ)

]N

√
2πN

. (12)

The
√
2πN factor in the denominator of (12) is already contributed by F(N) as N →

∞, so this factor is redundant. Thus, the second approximation pillar is

G(ρ,N ) =
[
ρe(1−ρ)

]N
. (13)
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4.4 Shape and Fit

Thus far, our approximation is given by

Ba ≡ F(N )G(ρ,N )H (ρ,N ) =
(
12N 0.8 − 8 + 3

√
2π

8N 0.8 + 6
√
2πN 1.3

)
[
ρe(1−ρ)

]N
H (ρ,N ). (14)

The shaping/fitting functionH (ρ,N )must ensure that the approximation matches at the
corners and achieves the proper fit in between. To illuminate the desired shape, Fig. 4
shows the exact value for B(N ,Nρ) and F(N )G(ρ,N ) as functions of ρ ∈ [0, 1] for
N = 1,…,10000, where all functions are normalized to 1 when ρ = 1. As can be seen,
by anchoring the approximation at ρ = 1 via F(N) and using the theoretical asymptotic
decay rateG(ρ,N) asN → ∞, our results (thus far) significantly underestimate the exact
value, and there is opportunity for improvement via the fitting function H (ρ,N ).
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The first step is to compare the exact solution B(N ,Nρ) to the approximation at the
corners. When ρ = 1, we need

B(N ,N ) = F(N ) ≈ F(N )G(1,N )H (1,N ) = F(N )H (1,N ).

Thus,H (1,N ) = 1. (15)

Next, when N = 1, we need

B(1, ρ) = ρ/(1 + ρ) ≈ F(1)G(ρ, 1)H (ρ, 1) = 1

2
ρe(1−ρ)H (ρ, 1).

Thus,H (ρ, 1) =
(

2

1 + ρ

)

eρ−1. (16)

Finally, as N → ∞, we need

lim
N→∞B(N ,Nρ) = lim

N→∞

[
ρe(1−ρ)

]N

√
2πN

≈ lim
N→∞F(N )G(ρ,N )H (ρ,N ) = lim

N→∞
2
[
ρe(1−ρ)

]N

√
2πN

H (ρ,N ).

Thus, lim
N→∞H (ρ,N ) = 1

2
. (17)

There are many approaches to designing a function H (ρ,N ) that matches these three
corners and achieves the proper fit in between. The approach adopted here is to first
gradually ‘neutralize’ the most complex corner result (16). In particular, we desire the

two terms of H (ρ, 1) in (16) to evolve as follows as N goes from 1 to ∞:
(

2
1+ρ

)
→ 1

and
(
eρ−1

) → 1. With this desired behavior in mind, a first term of the form
(
1+ρx−1

1+ρy

)

and a second term of the form e(ρ−1)/z meet the needs, where (for simplicity) x, y, and z
are limited to either N or

√
N . Based on trial and error, x = y = N and z = √

N provide

the best fit in between. Thus, H (ρ, 1) =
(

2
1+ρ

)
eρ−1 generalizes well to

(
1 + ρN−1

1 + ρN

)

e(ρ−1)/
√
N for N ≥ 1. (18)
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Next considering (15, 17), a number of functional forms can be used to fit the corners

(1 at ρ = 1 or N = 1 and 1
2 as N → ∞). For instance, the forms 1

2−ρx−1 or
(
1+ρy

2

)1−1/z

both fit the boundary conditions. Though somewhat more complex, we prefer the latter
(
1+ρy

2

)1−1/z
form since it is continuous and more computationally stable, whereas the

former 1
2−ρx−1 form has a discontinuity at ρx−1 = 2 (in heavy traffic). Again based on

trial and error, y = √
πN and z = √

N provide the best fit. Thus, an excellent fit and
shape is achieved by generalizing lim

N→∞H (ρ,N ) = 1
2 to

(
1 + ρ

√
πN

2

)1−1/
√
N

. (19)

Thus combining (18–19), the third and final approximation pillar is

H (ρ,N ) =
(
1 + ρN−1

1 + ρN

)

e(ρ−1)/
√
N

(
1 + ρ

√
πN

2

)1−1/
√
N

. (20)

Combining (10, 13, 20), our Erlang B approximation Ba = F(N )G(ρ,N )H (ρ,N ) is
given by

Ba =
(
12N0.8 − 8 + 3

√
2π

8N0.8 + 6
√
2πN1.3

)
[
ρe(1−ρ)

]N
(
1 + ρN−1

1 + ρN

)

e(ρ−1)/
√
N

(
1 + ρ

√
πN

2

)1−1/
√
N

. (21)

While this approximation in (21) appears to be quite complicated, its five parts are all
computationally stable over the range ρ ∈ [0, 1] ∀N > 0, and straightforward to compute

directly without any recursion. Specifically, F(N ) =
(
12N 0.8−8+3

√
2π

8N 0.8+6
√
2πN 1.3

)
∈ [0, 1] ∀ N and

lim
N→∞F(N ) = lim

N→∞

√
2

πN = 0. Next, G(ρ,N ) = [
ρe(1−ρ)

]N ∈ [0, 1] ∀ N and ρ

(including heavy traffic ρ > 1). Finally,
(
1+ρN−1

1+ρN

)
∈[0,2] ∀ N and ρ (including ρ > 1),

e(ρ−1)/
√
N ∈ [0, 1] ∀ N and ∀ ρ ∈ [0, 1], and

(
1+ρ

√
πN

2

)1−1/
√
N

∈ [½,1] ∀ N and ∀ ρ ∈
[0, 1].

5 Results and Application

Figures 5, 6 and 7 show our approximation Ba(N ,Nρ) compared to the exact value of
Erlang B B(N ,Nρ) as functions of ρ ∈ [0, 1] for N = 1, 2, 5, 10 (Fig. 5), N = 50,
100, 500 (Fig. 6), and N = 1000, 10000 (Fig. 7). As can be seen, the approximation is
remarkably accurate, even for the small values ofN > 1 in Fig. 5, where the approximate
correction to the limit asN → ∞ forB(N ,N ) introduces some error. Note that the x-axis
in Fig. 6 starts at ρ = 0.5, and the x-axis in Fig. 7 starts at ρ = 0.9, in order to better
highlight the accuracy of the approximation in the range where B(N ,N ) > 0.
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As discussed earlier, an accurate Erlang B approximation yields accurate approxima-
tions for all system performance metrics. For example, Fig. 8 shows exact and approx-
imate values for the expected response time in the M/M/N/∞ system as a function of
ρ for various N. As can be seen, the resulting approximations are extremely accurate.
Note that the x-axes in Fig. 8 start at ρ = 0.5 and 0.95 to better highlight the accuracy.
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6 Conclusions and Future Work

Though exact solutions for the M/M/N/Q system are known, numerical speed and sta-
bility remain persistent problems at times. Solving for simple performance measures
requires computing a normalization constant that can become numerically unstable even
for systems of modest size. This problem becomes even more difficult when comput-
ing distributions. In this work, we develop new expressions for the waiting time and
response time distributions in terms of the Erlang B formula, where its numerically
stable recursion facilitates fast and efficient solution for tail probabilities.

We next develop a highly accurate, numerically stable, explicit closed-form approx-
imation for Erlang B that requires no recursion. Unlike most prior Erlang B approxima-
tions, our new result achieves both the required level of accuracy across the full practical
range of N and ρ ≤ 1 as well as the computational simplicity required to embed in
real-time network optimization algorithms (e.g., SDN reconfiguration).

Used separately or in combination, these new foundational results can dramatically
reduce the computational burden in simulation and optimization algorithms, when sys-
temperformancemeasuresmust be computedmany times, orwhen solutions are required
in real time. In addition, the Erlang B approximation facilitates rapid back-of-the-
envelope inverse analyses, when the usual outputs are specified as inputs, and required
system size must be determined recursively. These capabilities are invaluable during
the requirements phase for vendor proposal evaluation, or during the architecture phase
for solution design evaluation. Additional applications of an accurate approximation for
Erlang B extend well beyond Markovian systems.
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Although the goal of this work has always been to develop an approximation for
the practical range ρ ∈ [0, 1], possible future work includes assessing the accuracy of
the approximation in heavy traffic (ρ > 1), together with exploring techniques to ensure
computational stability when ρ > 1. The heavy traffic behavior of Erlang B has been
widely studied (c.f.,Whitt [12] and references therein, aswell as [18–20]). Various heavy
traffic ‘anchor’ points have been proposed for lim

N→∞B(N ,Nρ) for fixed ρ > 1, and for

lim
ρ→∞B(N ,Nρ) for fixed N. Leveraging these additional asymptotic behaviors may lead

to an entirely different (and perhaps simpler) shaping/fitting function H (ρ,N ).
Furthermore, as noted previously, there are many approaches to designing a shap-

ing/fitting function that matches the corners and achieves the proper fit in between, and
the approach adopted here was to first ‘neutralize’ the most complex corner result.While
beneficial in achieving excellent accuracy for the practical range ρ ∈ [0, 1], this app-

roach resulted in terms e(ρ−1)/
√
N and

(
1+ρ

√
πN

2

)1−1/
√
N

that both eventually become

unstable when ρ > 1, thus constraining this particular result to the range ρ ≤ 1. Taking
an entirely different approach to designing H (ρ,N ) may lead to a different result that
is both accurate and computationally stable for both light and heavy traffic.
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Appendix

Assume that μ = 1. Let W (t) ≡ P(W ≤ t | admitted) denote the waiting time distribu-
tion in the M/M/N/Q system, and let 1 − W (t) = P(W > t | admitted) denote its tail
probability. Let R(t) ≡ P(R ≤ t|admitted) denote the response time distribution, and
let 1 − R(t) = P(R > t | admitted) denote its tail probability.

W (t) and R(t) are typically expressed in terms of the Poisson distribution. Let

Pλx(k) ≡
∑k

i=0

[
(λx)i

i! e−λx

]

= (λx)ke−λx

k!B(k, λx)
(22)

denote the CDF of the Poisson r.v. with rate λx, and note that Pλx(k) can be expressed
as a function of the Erlang B formula (the foundation of the proofs to follow).

For 0 < Q < ∞ and ρ < 1, it has been shown (c.f. [7] pp. 97–99) that

P(W > t | admitted) = G

1 − β

∑Q−1

n=0
ρn[PNt(n)]. (23)

Substituting (22) into (23) and rearranging (omitting straightforward steps) yields

P(W > t | admitted) = G
1−β

Q−1∑

n=0
ρn[PNt(n)]

= Ge−Nt

1−β

Q−1∑

n=0
ρn

n∑

i=0

(Nt)i

i! = Ge−Nt

1−β

Q−1∑

i=0

(Nt)i

i!
Q−1∑

n=i
ρn

= Ge−Nt

1−β

Q−1∑

i=0

(At)i

i!
[
1−ρQ−i

1−ρ

]
= Ge−Nt

(1−β)(1−ρ)

[
Q−1∑

i=0

(At)i

i! − ρQ
Q−1∑

i=0

(Nt)i

i!

]

= G(At)Q−1e−Nt

(1−β)(1−ρ)(Q−1)!
[

1
B(Q−1,At) − ρ

B(Q−1,Nt)

]
.

(24)
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For ρ = 1,

P(W > t) = G
1−β

Q−1∑

n=0
[PNt(n)] = 1[

B(N ,N )−1+Q−1
]

Q−1∑

n=0

n∑

i=0

(Nt)i

i! e−Nt

= e−Nt
[
B(N ,N )−1+Q−1

]

[

Q
Q−1∑

i=0

(Nt)i

i! − Nt
Q−2∑

i=0

(Nt)i

i!

]

= e−Nt
[
B(N ,N )−1+Q−1

]

[
Q(Nt)Q−1

(Q−1)! B(Q − 1,Nt)−1 − (Nt)Q−1

(Q−2)! B(Q − 2,Nt)−1
]

= (Nt)Q−1e−Nt
[
B(N ,N )−1+Q−1

]
(Q−1)!

[
Nt + Q−Nt

B(Q−1,Nt)

]
.

(25)

For Q = 0, P(W > t) = 0, and for Q = ∞, P(W > t) = e−π t/w.
For N > 1 and N – A �= 0 or 1, it has been shown (c.f. [7] pp. 97–99) that

P(R > t | admitted) =
[
1−π−β
1−β

]
e−t

+ G
1−β

Q−1∑

n=0
ρn
[

PNt(n) + e−t
(

N
N−1

)n+1[
1 − P(N−1)t(n)

]
]

.
(26)

When N > 1 and N – A �= 0 or 1, substituting (22) into (26) and rearranging (again,
omitting straightforward steps) yields

P(R > t|admitted) =
[
1−π−β
1−β

]
e−t

+ G
1−β

Q−1∑

n=0
ρn
[

PNt(n) + e−t
(

N
N−1

)n+1[
1 − P(N−1)t(n)

]
]

=
[
1−π−β
1−β

]
e−t + G

1−β

⎧
⎪⎪⎨

⎪⎪⎩

[
N

N−A−1

][

1 −
(

A
N−1

)Q
]

e−t

+
Q−1∑

n=0
ρnPNt(n) − Ne−t

N−1

Q−1∑

n=0

(
A

N−1

)n
P(N−1)t(n)

⎫
⎪⎪⎬

⎪⎪⎭

=
{

1 − π − β + GN
N−A−1

[

1 −
(

A
N−1

)Q
]}

e−t

1−β

+ G
1−β

{
Q−1∑

n=0
ρnPNt(n) − Ne−Nt

N−1

Q−1∑

n=0

(
A

N−1

)n n∑

i=0

[(N−1)t]i

i!

}

=
{

1 − π − β + GN
N−A−1

[

1 −
(

A
N−1

)Q
]}

e−t

1−β

+ G
1−β

{
Q−1∑

n=0
ρnPNt(n) − Ne−Nt

N−A−1

Q−1∑

i=0

(At)i

i!
[

1 −
(

A
N−1

)Q−i
]}

=
{

1 − π − β + GN
N−A−1

[

1 −
(

A
N−1

)Q
]}

e−t

1−β

+ G(At)Q−1e−Nt

(1−β)(N−1)(Q−1)!

⎧
⎨

⎩

(
N−1
N−A

)[
N

B(Q−1,At) − A
B(Q−1,Nt)

]
−

(
N

N−A−1

)[
N−1

B(Q−1,At) − A
B(Q−1,(N−1)t)

]

⎫
⎬

⎭
.

(27)

For N = 1 and ρ < 1, P(R > t) = (1−π−β)(At)Qe−t

(1−β)(1−A)Q!
[

1
B(Q,At) − A

B(Q,t)

]
.

For N = 1 and ρ = 1, P(R > t) = tQe−t

(Q+1)!
[

Q+1
B(Q,t) − Q

B(Q−1,t)

]
.
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For N > 1 and N – A = 1,

P(R > t) =
{

1 − π − β + GQ

ρ

}
e−t

1 − β
+ GN (At)Q−1e−Nt

(1 − β)(Q − 1)!
{
1 + t − Q/A

B(Q − 1,At)
− ρ

B(Q − 1,Nt)
− t

}

.

For N > 1 and ρ = 1,

P(R > t) =
{

1 − π − β − GN

[

1 −
(

N

N − 1

)Q
]}

e−t

1 − β
+ G(Nt)Q−1e−Nt

(1 − β)(Q − 1)!

⎧
⎨

⎩

Nt + Q+N−Nt
B(Q−1,Nt)

− N2/(N−1)
B(Q−1,(N−1)t)

⎫
⎬

⎭
.

For Q = 0, P(R > t) = e−t .

For N > 1, N− A �= 1, andQ = ∞, P(R > t) =
[
1 − π

1−N+A

]
e−t +

[
π

1−N+A

]
e−(N−A)t .

For N > 1, N – A = 1, and Q = ∞, P(R > t) = (π t + 1)e−t .
Finally, for N = 1 and Q = ∞, P(R > t) = e−t/r .
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Abstract. We consider a Markovian single server retrial system with
two infinite capacity orbits and a finite capacity priority line. Arriving
job are primarily routed to the priority line. If an arriving job finds the
priority line fully occupied, it is forwarded to the least loaded orbit queue
with ties broken randomly. Orbiting jobs of either type retry to access
the server independently. We investigate the stability condition, and the
tail decay problem. Moreover, we obtain the equilibrium distribution by
using the compensation method.

Keywords: Join the shortest orbit queue · Retrials · Priority

1 Introduction

We consider a single server system with two infinite capacity orbit queues and
a finite capacity priority line, operating under the join the shortest queue (JSQ)
policy in the presence of retrials. Arriving jobs are initially routed to the priority
line (in case there is available space). If they find the service station fully occupied,
they join the least loaded orbit queue, and in case of a tie, the job joins either orbit
queue with probability 1/2. Orbiting jobs retry independently to connect with the
single server after a random time period. We assume that orbiting jobs are not
allowed to enter the priority line, and their only chance to get served is to find the
server idle upon a retrial time. Our aim is a) to show that the tail probabilities
for the shortest orbit queue are asymptotically geometric when the difference of
orbit queue sizes, and the size of the priority line are fixed, b) to investigate its
stationary behaviour by using the compensation method (CM).

The standard (i.e., without retrials) two-dimensional JSQ problem was ini-
tially studied in [9,10], and further developed in [5,8]. In [2–4], the authors
introduced the CM, an elegant and direct method to obtain explicitly the equi-
librium join queue-length distribution as infinite series of product form terms,
see also [14] (not exhaustive list). In [1], the CM was applied in the symmetric
two-queue system fed by Erlang arrivals under the JSQ policy.

In this work, we provide an exact analysis that incorporates priorities in a
retrial system with two orbits operating under the JSQ policy. Our primary aim
is to extend the applicability of the CM to random walks in the quarter plane

c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 375–395, 2021.
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modulated by a (K + 1)-state Markov process. For this modulated (K + 1)-
dimensional random walk we investigate its stationary behaviour by using the
CM. We also study the stability condition and investigate its stationary tail decay
rate. Our work, joint with [1,7], imply that CM can be extended to multi-layered
two-dimensional random walks that satisfy similar criteria as in [4].

Applications of this model can be found in relay-assisted cooperative commu-
nication systems that operate as follows: There is a source user that transmits
packets to a common destination node (i.e., the single service station), and a
finite number of relay nodes (i.e., the orbit queues) that assist the source user
by retransmitting its blocked packets, e.g., [6,12]. The JSQ policy serves as a
typical cooperation protocol among the source and the relays.

The paper is organized as follows. In Sect. 2 we describe the model in detail,
and investigate the necessary stability condition. Some useful preliminary results
along with the decay rate problem is presented in are also presented. The main
result that refers to the three-dimensional CM applied in a retrial network is
given in Sect. 3. A numerical example is presented in Sect. 4.

2 Model Description

Consider a single server retrial system with two infinite capacity orbit queues
and a single priority line of finite capacity K. Jobs arrive at the system according
to a Poisson process with rate λ > 0.

If an arriving customer finds the server free, it immediately occupies the
server and leaves the system after service. Otherwise, it joins the priority queue
provided there is available space. If an arriving job finds the priority queue
fully occupied, it joins the least loaded orbit queue. In case of a tie, the job
joins either orbit queue with probability 1/2. Orbiting jobs of either type retry
independently to occupy the server after an exponentially distributed time period
with rate α, i.e., we consider the constant retrial policy. Note that orbiting jobs
are not allowed to enter the priority line, and their only chance to get served
is to find the server idle upon a retrial time. Service times are independent and
exponentially distributed with rate μ.

Let Y (t) = {(N1(t), N2(t), C(t)), t ≥ 0}, where Nl(t) the number of jobs
stored in orbit l, l = 1, 2, at time t, and by C(t) the number of jobs in the
service station, i.e., the number of jobs in the priority line and in service at time
t, respectively. Y (t) is an irreducible Markov process on {0, 1, . . .} × {0, 1, . . .} ×
{0, 1, . . . ,K}. Denote by Y = {(N1, N2, C)} its stationary version. Define the
set of stationary probabilities for i, j = 0, 1, . . . , k = 0, 1, . . . ,K,

pi,j(k) = P(N1 = i,N2 = j, C = k),

and let the marginal probabilities pi,.(k) =
∑∞

j=0 pi,j(k), p.,j(k) =
∑∞

i=0 pi,j(k).
Note that due to the symmetry of the model pi,.(k) = p.,i(k), i = 0, 1, . . ..

Let J be a random variable indicating the orbit queue which an arriving
blocked job joins. Clearly, J is dependent on the vector N̄ = (N1, N2, C). The
conditional distribution of J given the vector N̄ and satisfies:
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P(J = 1|N̄ = (N1, N2, K), N1 > N2) = P(J = 2|N̄ = (N1, N2, K), N1 < N2) = 0,

P(J = l|N̄ = (N1, N2, K)) =
1{Nl≤Nk}

[
∑2

k=1 1{Nk=Nl}]
, P(J = l|N̄ = (N1, N2, 0)) = 0, l = 1, 2,

where, 1{E} the indicator function of the event E.

2.1 Equilibrium Equations and Stability Condition

The equilibrium equations read as follows:

pi,j(0)(λ + α(1{i>0} + 1{j>0})) = μpi,j(1), (1)

pi,j(1)(λ + μ) = λpi,j(0) + α[pi+1,j(0) + pi,j+1(0)] + μpi,j(2), (2)

pi,j(k)(λ + μ) = λpi,j(k − 1) + μpi,j(k + 1)1{k �=K}
+λ[pi−1,j(K)P(J = 1|Q = (i − 1, j,K))1{i>0}
+ pi,j−1(K)P(J = 2|Q = (i, j − 1,K))1{j>0}]1{k=K}.

(3)

Proposition 1.

P(C = 0) = 1 − λ
μ , P(C = 1) = λ

μ

(
1− λ

μ

1−(λ
μ )K

)

,

P(C = k) = (λ
μ )k−1P (C = 1), k = 2, . . . , K,

(4)

p0,.(0) = p.,0(0) = [
1− λ

μ

1−(λ
μ )K ](1 −

(
λ
μ

)K (
λ+2α
2α

)
). (5)

Proof. For each i = 0, 1, 2, ... we consider the cut between the states {N1 =
i, C = K} and {N1 = i + 1, C = 0}. According to the local balance approach,
we have

λP(J = 1, N1 = i, C = K) = αpi+1,.(0). (6)

Summing (6) for all i ≥ 0 yields

λP(J = 1, C = K) = α[P(C = 0) − p0,.(0)]. (7)

Note that (7) is a conservation of flow relation since it equates the flow of jobs
into orbit queue 1, with the flow of jobs out orbit queue 1. By repeating the
procedure for {N2 = j, C = K} and {N2 = j + 1, C = 0} yields

λP(J = 2, C = K) = α[P(C = 0) − p.,0(0)]. (8)

Summing (7), (8), and having in mind the symmetry of the model yields

λP(C = K) = 2αP(C = 0) − 2αp0,.(0)]. (9)

Summing (1) for all i, j ≥ 0 we obtain

(λ + 2α)P(C = 0) − μP(C = 1) = 2αp0,.(0). (10)
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Then, using (9), (10) we obtain

λP(C = K) + λP(C = 0) = μP(C = 1). (11)

Now, summing (2), (3) for all i, j ≥ 0 it is readily seen that

P(C = k) = λ
μP(C = k − 1) = . . . =

(
λ
μ

)k−1

P(C = 1), k = 2, 3, . . . ,K. (12)

Then, using the normalization condition, along with (11)–(12), we obtain (4),
and substituting back in (9), we obtain (5). Equation (5) indicates that ρ :=
(

λ
μ

)K (
λ+2α
2α

)
< 1, is necessary for the system to be stable.

Simulation experiments justify the theoretical findings. In Fig. 1 we observe
that as long as ρ < 1, the system is stable, while when ρ > 1, both orbits
become unstable. In all cases we observe that the external arrivals balance the
orbit queue lengths as expected.

Fig. 1. Orbit dynamics when K = 3 for the case ρ = 0.1 (up-left), ρ = 0.5 (up-right),
and for the case ρ = 1.1 (below-left and right)

To apply the CM, we consider the transformed process X(t) =
{(X1(t),X2(t), C(t)), t ≥ 0}, where X1(t) = min{N1(t), N2(t)}, X2(t) =
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|N2(t)−N1(t)|, and state space S = {(m,n, k) : m,n = 0, 1, . . . , k = 0, 1, . . . K};
see Fig. 2. Let

qm,n(k) = limt→∞ P((X1(t),X2(t), C(t)) = (m,n, k)), (m,n, k) ∈ S.

Let the column vector q(m,n) := (qm,n(0), qm,n(1), . . . , qm,n(K))T , where xT

denotes the transpose of vector (or matrix) x. The equilibrium equations read:

A0,0q(0, 0) + A0,−1q(0, 1) = 0, (13)
B0,0q(0, 1) + A0,−1q(0, 2) + 2A−1,1q(1, 0) + A0,1q(0, 0) = 0, (14)

X1

X2

A0,−1
A1,−1

B0,0

A0,−1
A1,−1

A−1,1

C0,0

A0,1

A0,0

A0,12A−1,1

C0,0

Fig. 2. Transition diagram of the transformed process.

corresponding to the states (0, 0), (0, 1). The vertical boundary equations are

B0,0q(0, n) + A0,−1q(0, n + 1) + A−1,1q(1, n − 1) = 0, n ≥ 2 (15)

The equations corresponding to the horizontal boundary are

C0,0q(m, 0) + A0,−1q(m, 1) + A1,−1q(m − 1, 1) = 0, m ≥ 1 (16)
C0,0q(m, 1) + A0,−1q(m, 2) + 2A−1,1q(m + 1, 0)

+A1,−1q(m − 1, 2) + A0,1q(m, 0) = 0, m ≥ 1. (17)

The equations corresponding to the states in the interior of the positive quadrant
read

C0,0q(m,n) + A0,−1q(m,n + 1) + A1,−1q(m − 1, n + 1)
+A−1,1q(m + 1, n − 1) = 0, m ≥ 1, n ≥ 2, (18)

where B0,0 = A0,0 − H, C0,0 = A0,0 − 2H, are all (K + 1) × (K + 1) matrices.
Moreover, H has the element (1, 1) equal to α and all the rest equal to zero and

A0,0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−λ μ
λ −(λ + μ) μ

. . . . . . . . .
λ −(λ + μ) μ

λ −(λ + μ)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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A0,−1 = A−1,1 are (K + 1) × (K + 1) matrices with element (2, 1) equal to α
and zeros elsewhere, and A0,1 = A1,−1 are also (K +1)× (K +1) matrices with
element (K +1,K +1) equal to λ and zeros elsewhere. The transformed process
{X(t)} is a quasi birth death (QBD) process with repeated blocks T−1, T0, T1

T0 =

⎛

⎜
⎜
⎜
⎝

CT
0,0 AT

0,1

AT
0,−1 CT

0,0

AT
0,−1 CT

0,0

. . . . . .

⎞

⎟
⎟
⎟
⎠

, T−1 =

⎛

⎜
⎜
⎜
⎝

OK+1 2AT
−1,1

OK+1 AT
−1,1

OK+1 AT
−1,1

. . . . . .

⎞

⎟
⎟
⎟
⎠

,

T1 =

⎛

⎜
⎜
⎜
⎝

OK+1 OK+1

AT
1,−1 OK+1

AT
1,−1 OK+1

. . . . . .

⎞

⎟
⎟
⎟
⎠

,

where OK+1 is the (K + 1) × (K + 1) zero matrix.

2.2 Preliminary Results and Decay Rate

Simulation experiments indicate that in the heavy traffic case (i.e., as ρ →
1) orbit queue lengths become indistinguishable, thus it seems that our model
employ a state space collapse property, i.e., the original model in heavy-traffic
would collapse to a one-dimensional line where the orbit queue lengths are equal;
see Fig. 1 (below-right).

State-space collapse occurs because the join the shortest orbit queue (JSOQ)
policy “forces” the two orbit queues to be equal. Thus, it seams that in the heavy
traffic regime the sum of the orbit queue lengths can be approximated by a single
orbit queue system with a double retrial rate, say the reference model ; see below.
The reference model behaves as if there is only a single orbit queue with all the
“servers” (i.e., the retrial servers) pooled together as an aggregated “server”
(in standard JSQ systems this is called complete resource pooling). This result
implies that JSOQ is asymptotically optimal, i.e., heavy-traffic delay optimal,
since the response time in the pooled single-orbit system is stochastically less
than that of a typical load balancing system. Note that the reference model seams
to serve as a lower bound (in the stochastic sense) on the total orbit queue length
of the original model. This means that the JSOQ policy is heavy-traffic optimal
as expected. However, a more formal justification is needed.

We conjecture that the equilibrium probabilities qm,n(k) can be written as a
series of product forms. To provide intuition for this conjecture we first study its
tail asymptotics. Following intuition from standard (i.e., without retrials) JSQ
systems, we show that when the difference of the orbit queue sizes, and the state
of the priority line are fixed, the decay rate for the shortest orbit queue equals
η2, where η < 1 is the decay rate for the orbit length of the reference model. We
prove this conjecture following the lines in [13]; see also [7].

The reference model operates as follows: jobs arrive according to a Poisson
process with rate λ, and service times are exponentially distributed with rate μ.
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Arriving jobs are primarily directed to the priority line. If there is available space,
the arriving job joins the priority line. If the priority line is fully occupied, the
arriving job is routed to the orbit. Orbiting jobs retry to access the server after
an exponentially distributed time with rate 2α. Denote by Q the equilibrium
orbit queue length of this model.

Lemma 1. For the reference model, and for ρ < 1, k = 0, 1, . . . ,K,
limm→∞ η−m

P(Q = m,C = k) = dxk, where

η := η(K) = λK(λ+2α)+2λαμ
∑K−2

i=0 λK−2−iμi

2αμ
∑K−1

i=0 λK−1−iμi
, K ≥ 1, (19)

and x = (xk)k=0,1,...,K is the left eigenvector of the rate matrix R (see Appendix
A) associated with η, and d is a multiplicative constant.

Proof. See Appendix A.

As already indicated in Fig. 1 (below-right), it is expected that P(N1 +N2 =
m), and P(Q = m) have the same decay rate, since both models will work at
full capacity when the number of jobs grow. On the other hand, since the JSOQ
policy always aims to balance the orbit queue lengths, we expect that as m → ∞,

P(min{N1, N2} = m) ≈ P(N1 + N2 = 2m) ≈ P(Q = 2m).

Lemma 1 states that P(Q = m) ≈ uηm. Therefore, we conjecture that
P(min{N1, N2} = m) ≈ u1η

2m. We now proceed with the analysis of the original
model by following [13].

Lemma 2. 1) Define the S∗×S∗ matrix (S∗ = N0×{0, 1, . . . ,K}) K = η2T−1+
T0 + η−2T1. Let v = (1, v1, . . . , vK)T , where

v1 = λ+2α
λ+2αη , vK = μη

(λ+μ)η−λvK−1,

vk =
λk−1(λ+2α)+2αμ(1−η)

∑k−2
j=0 λk−2−jμj

λk−1(λ+2αη)
, k = 2, . . . , K − 1,

and z = (η−nv, n ≥ 0). Then z is positive such that Kz = 0.

2) Let p = {p(n, k); (n, k) ∈ S∗} = {ηξnΔ−1
v ; l ≥ 0}. Then, p is such

that pK = 0, pz < ∞, where ξ̄ = {ξ̄n;n ≥ 0}, ξ̄D−1KD = 0, and
D = diag(Δv, η−1Δv, η−2Δv, . . .) and Δv = diag(1, v1, . . . , vK−1, vK).

Proof. See Appendix B.

Theorem 1. For ρ < 1, and fixed (n, k), limm→∞ η−2mqm,n(k) = Wp(n, k),
where W > 0, and p = {p(n, k); (n, k) ∈ S∗} as given in Lemma 2.

Proof. The proof of Theorem 1 is lengthy and composed of several steps. Lemma
2 is crucial for its proof. The rest of the proof is done following the lines in [13,
pp. 195–199]. Due to space constraints we omit the rest of the details.

Among others, Theorem 1 provides intuition about the (product) form that
would have the equilibrium probabilities qm,n(k).
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3 The Compensation Method

We now focus on obtaining the equilibrium probabilities of the transformed
process {X(t); t ≥ 0} by applying the CM. The CM aims to obtain explicitly the
equilibrium probabilities as infinite series of product form terms, and consists of
four basic steps:

1. Construct a basis of product form terms that satisfy the inner and the hori-
zontal boundary equilibrium equations.

2. We then construct a formal solution of the equilibrium equations as follows:
i) Construct an initial solution that satisfies the equilibrium equations (16)–
(18). ii) The initial solution does not satisfy the vertical boundary Eqs. (15),
thus we need to compensate for this error by adding additional terms from the
basis. iii) The new solution derived by the vertical compensation step does
not satisfy the horizontal boundary Eqs. (16), (17). Thus, another horizontal
compensation step is needed, etc. By repeating the above steps, a formal
solution is obtained.

3. The formal solution must converge. Thus, we must ensure that the sequences
of the terms derived in step 1 should converge to zero exponentially fast.

4. Finally the normalization constant should be obtained.

Before we formally applying the CM, we exploit the intuition developed in Sub-
sect. 2.2 about the tail asymptotics for the shortest orbit queue, namely, infor-
mation about the initial term that we need to construct the formal solution
through CM.

To this end, we create a modified model, which has equilibrium equations
(16)–(18), i.e., the inner and the horizontal boundary equilibrium equations of
the original one.

Lemma 3. For ρ < 1, the equilibrium distribution of the modified model has the
form

q̂(m,n) = η2mw(n), m ≥ −n, n ≥ 0, (20)

where η is as in (19), and w(n) = (w0(n), . . . , wK(n))T with {wk(n)}n∈N0

the unique solution (up to a multiplicative constant) of (16)–(18) such that∑
n≥0 η−2nwk(n) < ∞.

Proof. See Appendix C.

Lemma 3 states that the solution of the equilibrium equations (16)–(18), i.e.,
corresponding to the horizontal boundary and the inner states has a product-
form solution as given in (20). Moreover, this product-form is unique, since the
equilibrium distribution of the modified model is unique. A direct consequence
of Lemma 3 is the following lemma, which implies that the CM starts with
an initial solution that satisfies the inner and horizontal boundary equilibrium
equations.
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Lemma 4. For ρ < 1, the equilibrium equations (16)–(18) have a unique up to
a multiplicative constant solution of the form

q(m,n) = η2mv(n), m, n ≥ 0, (21)

where η is as in (19), and v(n) = (v0(n), . . . , vK(n))T with {vk(n)}n∈N0 such
that

∑
n≥0 η−2nvk(n) < ∞, k = 0, 1, . . . , K.

As stated above, CM starts with a product form satisfying the inner and the
horizontal equilibrium equations (as in all the related models that employ the
JSQ feature). Following the lines in [1, Proposition 4.2] we can show that CM
cannot start with a product form satisfying the inner and the vertical equilibrium
equations.

3.1 Construction of the Basis of Product Forms

We characterize the set of product forms γmδnθ satisfying (18).

Lemma 5. The product form q(m,n) = γmδnθ, m ≥ 0, n ≥ 1, satisfies (18)
if

D(γ, δ)θ = 0, (22)

where D(γ, δ) = γδC0,0 + γδ2A0,−1 + γ2A−1,1 + δ2A1,−1, and the eigenvector
θ := θK+1(γ, δ) = (θ0(γ, δ), θ1(γ, δ), . . . , θK(γ, δ))T , satisfies

θ1(γ,δ)
θ0(γ,δ) = λ+2α

μ , θk(γ,δ)
θk−1(γ,δ) = λ[γs(k)−λδs(k+1)]

γs(k−1)−λδs(k) , k = 2, 3, . . . , K, (23)

where s(k) =
∑K−k

j=0 λK−k−jμj, k = 1, . . . ,K, s(K+1) = 0.

Proof. Substituting the product form q(m,n) = γmδnθ in (18) and dividing with
γm−1δn−1 yields (22). Since we seek for non-zero solution θ, det(D(γ, δ)) = 0.
The rank of D(γ, δ) is K and allows to express θk(γ, δ) in terms of θ0(γ, δ),
k = 1, . . . ,K. The eigenvector θ is obtained by using (22). Simple calculations
yields in (23).

Asking for a non-zero solution of θ, det(D(γ, δ)) = 0 assumes the form

γδ[2(η + 1) − λ s(2)

s(1) ] + λ s(2)

s(1) δ
3 = 2ηδ2 + γδ2 + γ2. (24)

Lemma 6. 1) For fixed γ such that |γ| ∈ (0, 1) Eq. (24) has exactly a root δ,
such that |δ| ∈ (0, |γ|); see Fig. 3.

2) For fixed δ such that |δ| ∈ (0, 1) Eq. (24) has exactly a root γ, such that
|γ| ∈ (0, |δ|); see Fig. 3.
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Proof. Due to space constraints we prove only assertion 1). Assertion 2) is proved
analogously. Divide both sides of (24) with γ2 and set z = δ/γ. Then,

f(z) := λ s(2)

s(1) γz3 + z(2(η + 1) − λ s(2)

s(1) ) = (2η + γ)z2 + 1 =: g(z). (25)

Note that after some algebra f(z) = zλ s(2)

s(1) γ[z2 + λK(λ+2α)+αμ(λs(2)+2s(1))
λαμs(2)γ

], and

since
∣
∣
∣
λK(λ+2α)+αμ(λs(2)+2s(1))

λαμs(2)γ

∣
∣
∣ > 1, f(z) = 0 has a single root in |z| < 1, and

two roots in |z| > 1. Then, for |z| = 1,

|f(z)| = |z||λ s(2)

s(1) γz2 + 2(η + 1) − λ s(2)

s(1) | ≥ |λ s(2)

s(1) |γ| + 2(η + 1) − λ s(2)

s(1) |
= |λ s(2)

s(1) (|γ| − 1) + 2(η + 1)| = λ s(2)

s(1) (|γ| − 1) + 2(η + 1),

since |γ|, λ s(2)

s(1) ∈ (0, 1). Moreover, |g(z)| = |(2η + γ)z2 + 1| ≤ 2η + |γ| + 1. Note
that

2η + |γ| + 1 < λ s(2)

s(1) (|γ| − 1) + 2(η + 1) ⇔ |γ|(1 − λ s(2)

s(1) ) < 1 − λ s(2)

s(1) ⇔ |γ| < 1,

which is true. Thus, for |z| = 1, |f(z)| > |g(z)|, and by Rouché’s theorem
f(z)+g(z) (i.e., (25)) has a single root in |z| < 1. This means that for |γ| ∈ (0, 1),
(24) has a unique root |δ| ∈ (0, |γ|).

Fig. 3. det(D(γ, δ)) = 0 in R
2
+ for K = 3, λ = 1, μ = 6, α = 8.

3.2 The Formal Solution

Lemmas 5, 6 characterize the basic solutions that satisfy the inner equilibrium
equations (18). In the following, based on the basis of terms that satisfy (18) we
construct the formal solution of (13)–(18). We start with a suitable initial term
satisfying (16)–(18). In Sect. 2.2, we shown that γ0 = η2, and from Lemma 5 we
obtain a unique δ0, such that |δ0| < |γ0|. In Lemma 7 we specify the form of the
vector u(n).
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Lemma 7. For γ = γ0 ∈ (0, 1) let δ be the unique root of (24) such that
|δ| < |γ0| and let θ the corresponding zon-zero vector satisfying (22). Then,
the solution

q(m,n) =
{

h0γ
m
0 δnθ, m ≥ 0, n ≥ 1,

γm
0 ξ0, m ≥ 1, n = 0,

(26)

ξ = −h0
γ0

C−1
0,0[A1,−1 + γ0A0,−1]δ0θ, (27)

satisfies the equilibrium equations (16)–(18).

Proof. Substituting (26) in (16) to immediately obtain (27). By substituting
(16) to (17), then, using (26), and finally taking into account (22) the lemma
has been proved.

The initial solution (26) does not satisfy the vertical boundary equilib-
rium equations (15). Thus, to compensate for this error, we add a new term
c1γ

mδnθ(γ, δ) such that the sum h0γ
m
0 δn

0 θ(γ0, δ0)+ c1γ
mδnθ(γ, δ) satisfies (15),

(18). Substituting the last expression in (15) yields

h0δ
n−1
0 V (γ0, δ0)θ(γ0, δ0) + c1δ

n−1V (γ, δ)θ(γ, δ) = 0K+1, n ≥ 2, (28)

where V (γ, δ) = δB0,0 + δ2A0,−1 + γA−1,1. Using (22), we realize that
V (γ, δ)θ(γ, δ) = (H − δ

γ A1,−1)θ(γ, δ). Thus, δ = δ0, and γ = γ1 obtained in
Lemma 5 such that |γ1| < |δ0|, and leaving c1 for fulfilling K + 1 requirements.
Thus, this choice does not provide sufficient freedom to adapt the compensating
term to the requirements.

Lemma 8. (Vertical compensation) For |δ| ∈ (0, 1), let γ0, γ1 be roots of (24)
such that |γ1| < |δ| < |γ0|, and let θ := θ(γ0, δ), θ̂ := θ(γ1, δ), the non-zero
vectors satisfying (22). Then, there exists a coefficient c1 such that

q(m,n) =

{
h0γ

m
0 δnθ + c1γ

m
1 δnθ̂, m > 0, n ≥ 1,

h0δ
np · θ + c1δ

np̂ · θ̂, m = 0, n ≥ 1,

where “·” denotes internal vector product, p = (p0, . . . , pK)T , p̂ = (p̂0, . . . , p̂K)T ,
where pk = γ0s(k)

γ0s(k)−λδs(k+1) , k = 1, . . . ,K, p0 = λ+2α
λ+α

γ0s(1)

γ0s(1)−λδs(2) , p̂k =
γ1s(k)

γ1s(k)−λδs(k+1) , k = 1, . . . , K, p̂0 = λ+2α
λ+α

γ1s(1)

γ1s(1)−λδs(2) , and satisfies (18), (15).
The coefficient c1 equals

c1 = −h0
δL(δ)−γ0
δL(δ)−γ1

θK

θ̂K
, (29)

where L(δ) = (λ+2α)[λ(λ+α)(s(1)−μs(2))+αμ(1−δ)s(1)]+λαμ(λ+α)s(2)

αμ(λ+α)s(1) .

Proof. The proof is similar to the one given in [1, Lemma 4.5] and further details
are omitted due to space constraints.
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The vertical compensation step described in Lemma 8 creates an error, and
the new solution does not satisfy (16), (17). Consider the term c1γ

m
1 δm

0 θ(γ1, δ0),
|γ1| < |δ0| (that was added previously in the vertical boundary compensation
step). To compensate for the error of this term on the horizontal boundary, we
add the term h1γ

mδnθ(γ, δ) such that the sum c1γ
m
1 δm

0 θ(γ1, δ0)+h1γ
mδnθ(γ, δ)

satisfies (16)–(18). Substituting (16) to (17) yields for m ≥ 1,

[C0,0 − A0,1C
−1
0,0A0,−1 − 2A−1,1C

−1
0,0A1,−1]q(m, 1) + A0,−1q(m, 2)

+A1,−1q(m − 1, 2) − A0,1C
−1
0,0A0,−1q(m − 1, 1) − 2A−1,1C

−1
0,0A0,−1q(m + 1, 1) = 0.

(30)
Substituting this linear combination into (30) gives for m ≥ 1,

c1γ
m−1
1 δ0L(γ1, δ0)θ(γ1, δ0) + h1γ

m−1δL(γ, δ)θ(γ, δ) = 0K+1, m ≥ 1,

where L(γ, δ) = γ(C0,0 − A0,1C−1
0,0A0,−1 − 2A−1,1C−1

0,0A1,−1) + A1,−1δ −
A0,1C−1

0,0A1,−1 + A0,−1γδ − 2A−1,1C−1
0,0A0,1γ

2. Since the above equation holds
for m ≥ 1, we choose γ = γ1. Moreover, since the pair (γ1, δ) must satisfy also the
equilibrium equations (18), we must have δ = δ1 as the only root of (24) such that
|δ1| < |γ1|. Therefore, the linear combination c1γ

m
1 δm

0 θ(γ1, δ0)+h1γ
m
1 δn

1 θ(γ1, δ1)
satisfies (18). The following lemma provides the coefficient h1 so that this linear
combination to satisfy (30).

Lemma 9. (Horizontal compensation) Consider the product form c1γ
m
1 δn

0 θ
(γ1, δ0) with 0 < |γ1| < |δ0| < 1 and some coefficient c1, that satisfies (18)
and stems from a solution that satisfies (18), (15). For this fixed γ1, let δ1 be
the root that satisfies (24) with |δ1| < |γ1|. Then, there exists a non-zero vector
ξ1 and a coefficient h1 such that

q(m,n) =
{

c1γ
m
1 δn

0 θ(γ1, δ0) + h1γ
m
1 δn

1 θ(γ1, δ1), m ≥ 0, n ≥ 1,
γm
0 ξ0 + γm

1 ξ1, m ≥ 1, n = 0,
(31)

where the vector ξ as in (27) and ξ1 is given by

ξ1 = −γ0
γ1

ξ − 1
γ1

C−1
0,0[A0,−1γ1 + A1,−1](c1δ0θ(γ1, δ0) + h1δ1θ(γ1, δ1)), (32)

and the constant h1 satisfies

c1K(γ1, δ0) + h1K(γ1, δ1) = 0K+1, (33)

where for j = 0, 1, K(γ, δj) = [γ2A−1,1 + (2A−1,1γ + A0,1)C−1
0,0(A0,−1γ +

A1,−1)δj ]θ(γ, δj).

Proof. Substituting (31) in (16) gives (32). Then, substituting (31) in (30), and
using (22) we obtain after some algebra (33).

Adding the compensation term h1γ
m
1 δn

1 θ(γ1, δ1) we introduce an error on
the vertical boundary equations (15), for which another vertical compensation
step needs to be performed. Therefore the approach is as follows: after an initial
product form solution is constructed, CM alternates between horizontal (resp.
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vertical) compensation step to compensate for the error introduced on the ver-
tical (resp. horizontal) boundary in the previous compensation step. The CM
leads to an expression for the q(m,n) in terms of an infinite series of product
forms. These terms are obtained in an iterative fashion using Lemmas 6, 8, 9.
Continuing this procedure leads to all pairs of γ, δ, and the corresponding non-
zero vectors θ(γ, δ), the vectors ξ’s and the coefficients ci’s, hi’s, for which we
construct a formal expression for the equilibrium probability vectors q(m,n) as
follows (where ∝ means directly proportional).

Theorem 2. For all states (m,n, k), k = 0, 1, . . . ,K,

– For m > 0, n > 0, q(m,n) ∝ ∑∞
i=0 hiγ

m
i δn

i θ(γi, δi) +
∑∞

i=0 ci+1γ
m
i+1δ

n
i

θ(γi+1, δi).
– For m > 0, n = 0, q(m, 0) ∝ ∑∞

i=0 γm
i ξi.

– For m = 0, n > 0, q(m,n) ∝ ∑∞
i=0 hiδ

n
i pi · θ(γi, δi) +

∑∞
i=0 ci+1δ

n
i p̂i ·

θ(γi+1, δi).
– For m = n = 0, q(0, 0) ∝ −A−1

0,0A0,−1q(0, 1).

3.3 Absolute Convergence and the Normalization Constant

It remains to show that these formal expressions are absolutely convergent. This
means that we have to show that the error terms converge sufficiently fast to
zero. This is accomplished in two steps: i) to show that the sequences {γi}i∈N,
{δi}i∈N converge to zero exponentially fast, and ii) the formal solution converges
absolutely.

Proposition 2. The sequences {γi}i∈N, {δi}i∈N satisfy: 1) 1 > η2 = |γ0| >
|δ0| > |γ1| > |δ1| > . . .. 2) 0 ≤ |γi| ≤ ( 38 )iη2, and 0 ≤ |δi| ≤ 1

2 ( 38 )iη2.

Proof. 1) Note that each γi generates a δi through (24) that satisfies |δi| < |γi|,
and each δi generates an γi+1 through (24) that satisfies |γi+1| < |δi|. Thus,
we have the ordering |γ0| > |δ0| > |γ1| > |δ1| > . . ..

2) We prove this assertion by firstly showing that a) for a fixed γ, with |γ| < γ0,
|δ| < |γ|

2 , b) for a fixed δ, with |δ| ≤ γ0/2, we have |γ| < 2
3 |δ|. For a fixed γ,

set z = δ/γ on |z| = 1/2. Under this transform, (24) reads f(z) + g(z) = 0
with f(z), g(z) as given in Lemma 6. Then, for |z| = 1/2,

|f(z)| ≥ |z|
∣
∣
∣λ s(2)

s(1) |γ||z|2 + 2(η + 1) − λ s(2)

s(1)

∣
∣
∣ = 1

2

∣
∣
∣λ s(2)

s(1) (
|γ|
4 − 1) + 2(η + 1)

∣
∣
∣

= 1
2 [λ s(2)

s(1) (
|γ|
4 − 1) + 2(η + 1)].

Moreover, |g(z)| ≤ (2η + |γ|) 14 + 1 < 1
2 [λ s(2)

s(1) (
|γ|
4 − 1) + 2(η + 1)] ⇔ |γ| <

2(η−λ s(2)

s(1)
)

1−λ s(2)

2s(1)

.

Note that |γ| ≤ γ0 = η2 <
2(η−λ s(2)

s(1)
)

1−λ s(2)

2s(1)

. This completes the proof that |f(z)| >

|g(z)| on |z| = 1/2, and Rouché’s theorem proves the corresponding assertion.
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Set z = γ/δ, |z| = 3/4. Equation (24) reads f(z) + g(z) = 0, with f(z) =
z(δ − (B + 2)) + B + λ s(2)

s(1) (1 − δ), g(z) = z2, where B = 2η − λ s(2)

s(1) . Then,

|f(z)| = |z(δ − (B + 2)) + B + λ s(2)

s(1) (1 − δ)| > |z(δ − (B + 2))|
≥ |z|||δ| − (B + 2)| = 3

4 (B + 2 − |δ|),
|g(z)| = |z|2 = 9

16 < 3
4 (B + 2 − |δ|) < |f(z)| ⇔ |δ| < B + 5

4 ,

which is true since |δ| ≤ |γ0|
2 = η2

2 < 1 < B + 5
4 .

Having these results,

|δi| ≤ |γi|
2 ≤ 1

2
3
4 |δi−1| ≤ . . . ≤ (

1
2
3
4

)i |δ0| = 1
2

(
1
2
3
4

)i |γ0| = 1
2

(
3
8

)i
η2,

|γi| ≤ 3
4 |δi−1| ≤ 3

4
1
2 |γi−1| ≤ . . . ≤ (

3
4
1
2

)i |γ0| =
(
3
8

)i
η2

In Proposition 2 we established that the sequences {γi}i∈N, {δi}i∈N tend to zero
as i → ∞. This means that letting γ → 0, δ → 0 is equivalent to letting i → ∞.
We now focus on the limiting behaviour of the compensation parameters and
their associated eigenvectors.

Lemma 10. 1) For a fixed γi, let δi be the root of (24) with |δi| < |γi|. Then,
as γi → 0, the ratio δi/γi → v− < 1, where v− the smallest root of

2ηz2 − z(B + 2) + 1 = 0. (34)

The roots of (34) are given by v± =
B+2±

√

B2+4(1−λ s(2)

s(1)
)

4η .

2) For a fixed δi, let γi+1 be the root of (24) such that |γi+1| < |δi|. Then, as
δi → 0, the ratio γi+1/δi → 1/v+, where v+ > 1, the larger root of (34).

Proof. 1) Set z = δi

γi
in (24), divide with γ2

i and let γi → 0, to obtain (34). Note

that since η < 1, v+ =
B+2+

√

B2+4(1−λ s(2)

s(1)
)

4η > 1
2η > 1, and v+v− = 1

2η . Thus,
v− < 1.

2) Setting w = γi+1/δi in (24), dividing with δ2i and letting δi → 0 we obtain

w2 − (B + 2)w + 2η = 0. (35)

Note that (35) is derived from (34) for z = 1/w. We are interested for the
root of (35) inside the unit disk, say w− = 1/v+, where v+ > 1, the largest
root of (34).

Lemma 11. 1) Let γi, δi the roots of (24) for fixed γi, with 1 > |γi| > |δi|.
Then, the eigenvector θ(γi, δi) converges to θ = (θ0, θ1, . . . , θK)T such that

θ1
θ0

→ λ+2α
μ , θk

θk−1
→ λ[s(k)−λv−s(k+1)]

s(k−1)−λv−s(k) , k = 2, 3, . . . ,K, (36)
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2) Let γi+1, δi the roots of (24) for fixed δi, with 1 > |δi| > |γi+1|. Then, the
eigenvector θ(γi+1, δi) converges to θ̃ = (θ̃0, θ̃1, . . . , θ̃K)T such that

θ̃1

θ̃0
→ λ+2α

μ , θ̃k

θ̃k−1
→ λ[w−s(k)−λs(k+1)]

w−s(k−1)−λs(k) , k = 2, 3, . . . ,K, (37)

3) As i → ∞, ξ → −h0C−1
0,0v−A1,−1θ.

4) For i ≥ 1, and ξ0 := ξ, the vector ξi, is such that ξi → −[ v+

v− ξi−1 +
C−1

0,0A1,−1[hiv−θ + v+ciθ̃]], as i → ∞.

5) As i → ∞, ci+1
hi

→ v+
v−

(
qv−−1
1−qv+

)
θK

θ̃K
:= ζ, where q =

(λ+2α)(λ(λ+α)+αμ)s(1)−λ(λ+α)2μs(2)

αμ(λ+α)s(2) .

6) As i → ∞, hi

ci
→ − v+

v−

(
λ+μ−λv−
λ+μ−λv+

)
:= τ.

Proof. 1) Using (23) it is easy to see that for a fixed γi, with 1 > |γi| > |δi|, as
γi → 0,

θk

θk−1
→ λ(s(k)−λv−s(k+1))

s(k−1)−λv−s(k) , k = 2, . . . ,K − 1.

2) The proof is similar to the one in assertion 3.

3) Note that (27) and Lemma 10 implies that ξ → −h0C−1
0,0A1,−1v−θ.

4) The indexing in (32) implies for i ≥ 1 that

ξi = − 1
γi

[γi−1ξi−1 + C−1
0,0(A1,−1 + γiA0,−1)(ciδi−1θ̃ + hiδiθ]

= −[γi−1
δi

δi

γi
ξi−1 + C−1

0,0(A1,−1 + γiA0,−1)(ci
δi−1
γi

θ̃ + hi
δi

γi
θ]

→ −[ v+
v−

ξi−1 + C−1
0,0A1,−1(hiv−θ + v+ciθ̃].

The rest of the assertions are proved by using the indexing of the compen-
sation parameters and (33), (29).

Theorem 3. There exists a positive integer N such that:

1) The series
∑∞

i=0 hiγ
m
i δn

i θi,k,
∑∞

i=0 ci+1γ
m
i+1δ

n
i θ̃i+1,k (where θi := θ(γi, δi),

θ̃ := θ(γi+1, δi)), the sum of which defines qm,n(k) for m,n > 0, converge
absolutely for m,n > 0, such that m + n > N .

2) The series
∑∞

i=0 γm
i ξi,k where for ξ0 := ξ = (ξ0,0, ξ0,1, . . . , ξ0,K)T , ξi :=

(ξi,0, ξi,1, . . . , ξi,K)T , i ≥ 1, defines qm,0(k) for m > 0, converge absolutely for
m ≥ N .

3) The series
∑∞

i=0 hiδ
n
i pi,kθi,k,

∑∞
i=0 ci+1δ

n
i p̂i+1,kθ̃i+1,k, the sum of which

defines q0,n(k) for n > 0, converge absolutely for n > N .
4) The series

∑
m+n>N qm,n(k), converges absolutely.
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Proof. Note that we can assume θ0(γi, δi) = μ, for all γi, δi. Then, using results
from Lemma 5 we can show that θk(γi+1,δi+1)

θk(γi,δi)
= θk(γi+1,δi+1)

θ0(γi+1,δi+1)
θ0(γi+1,δi+1)

θk(γi,δi)
→ 1.

So, to establish absolute convergence, we do not need to take into account the
eigenvectors θ, θ̃. Due to space constraint we will consider only the first case.
Set for m ≥ 0, n ≥ 1,

R1(m, n) := limi→∞
∣
∣
∣

hi+1γm
i+1δn

i+1
hiγm

i δn
i

∣
∣
∣ = limi→∞

∣
∣
∣
∣
∣
∣
∣

hi+1
ci+1

γm
i+1

δm
i+1

δ
m+n
i+1

γ
m+n
i

hi
ci+1

γm
i

δm
i

δ
m+n
i

γ
m+n
i

∣
∣
∣
∣
∣
∣
∣

= |τζ|
( |v−|

|v+|

)m+n−1

.

R1(m,n) depends on m,n through their sum m + n. Similarly we can handle
the other term that refers to

∑∞
i=0 ci+1γ

m
i+1δ

n
i θ̃i+1,k, as well as the rest cases. So

by defining N to be the minimum integer for which all the ratios are less than
one, we know that the series that refers to the corresponding terms converge
absolutely. The rest of the proof is similar to the one in [1, Theorem 5.2], and due
to space constraints further details are omitted (the index N is small. Numerical
experiments indicate that N = 0, as in the standard JSQ).

4 A Simple Numerical Example

As a simple numerical example, we aim to compare the JSOQ policy with
Bernoulli routing policy. Under the Bernoulli routing, a blocked arriving job
joins either orbit with probability 1/2. Our aim is to compare E(N1 +N2) when
we apply the JSOQ policy (by using the CM implemented through the Algo-
rithm 1), and the Bernoulli routing. We consider the case where K = 2. To
obtain E(N1 + N2) using the Bernoulli routing, we apply the generating func-
tion method, and by exploiting the symmetry of the model we can explicitly
obtain it. Let gi,j(k) the corresponding stationary probabilities for the Bernoulli
routing scheme, denote H(k)(x, y) =

∑∞
i=0

∑∞
j=0 gi,j(k)xiyj , |x|, |y| ≤ 1. Writing

down the balance equations and forming the generating functions, we obtain for
K = 2:

H(0)(x, y)(λ + 2α) − α(H(0)(x, 0) + H(0)(0, y)) = μH(1)(x, y),

(λ + μ)H(1)(x, y) = (λ + α
y

+ α
x
)H(0)(x, y) − α

y
H(0)(x, 0) − α

x
H(0)(0, y) + μH(2)(x, y)

H(2)(x, y) = λ

μ+ λ
2 (2−x−y)

H(1)(x, y).

The structure of the model allows to express all the pgfs in terms of H(0)(x, y),
which is a solution to the following functional equation:

R(x, y)H(0)(x, y) = A(x, y)H(0)(x, 0) + B(x, y)H(0)(0, y),
R(x, y) = (1 − x)y(λ2(λ+2α)

2 x − αμ2) + (1 − y)x(λ2(λ+2α)
2 y − αμ2)

−λαμ(2−x−y)2

2 ,

A(x, y) = αx[λ2y
2 (2 − x − y) + μ(y − 1)(μ + λ

2 (2 − x − y))],
B(x, y) = αy[λ2x

2 (2 − x − y) + μ(x − 1)(μ + λ
2 (2 − x − y))].
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Symmetry implies that H(0)(1, 0) = H(0)(0, 1), H
(0)
1 (1, 1) = H

(0)
2 (1, 1),

H
(0)
1 (1, 0) = H

(0)
2 (0, 1), where E(N (k)

j ) = H
(k)
j (1, 1), j = 1, 2, k = 0, 1, 2. It

is easy to show that

E(N (1)
1 ) = λ+2α

μ E(N (0)
1 ) − α

μH
(0)
1 (1, 0), E(N (2)

1 ) = λ2

2μ2P(C = 1) + λ
μE(N (0)

1 ),

and E(N1) =
∑2

k=0 E(N (k)
1 ), E(N (k)

1 ) = E(N (k)
2 ). By applying a similar app-

roach as in [6, Section 6], we obtain

E(N (0)
1 ) = λ2(1−λ/μ)

2μ2(1−ρ) [λ2(λ + 2α) + 2αμ(λ + μ) − α(1−(λ/μ)2)(4(λ2+μ2)−λμ)
1−ρ ],

H
(0)
1 (1, 0) =

2(1−λ/μ)[
λ2(λ+2α)

2 +
αλμ(1− 1−(λ/μ)2

1−ρ
)

2 +
αμ2(1−(λ/μ)2)

1−ρ ]

αλ2 .

Thus, after tedious calculations we obtain

E(N1 + N2) = λ3

μ3
1−λ/μ

1−(λ/μ)2 − 2α
μ H

(0)
1 (1, 0) + E(N (0)

1 )[1 + λ+2α
μ (1 + λ/μ)].

Figure 4 compares JSOQ to random routing for increasing values of λ, in terms
of the expected total number of orbiting jobs. It is easy to observe that JSOQ
routing is superior to Bernoulli routing, especially for large values of λ. For small
λ, an arriving job usually finds an available position in the priority line, so in
such a case, both routing policies operate equally well.

Fig. 4. JSOQ vs Bernoulli Routing, μ = 3, α = 5, K = 2.

Recall that as we observed in Sect. 2, as ρ → 1 the JSOQ system behaves as
a pooled system, which means that the sum of the orbit queue lengths can be
approximated by the reference model.
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Algorithm 1. CA algorithmic implementation
1: Inputs λ, α, μ, K, and the precision ε.
2: Set γ0 = η2, h0 = 1 and Nca = 1.
3: Compute δ0 from Equation (24), and set Tca = max{�log(ε)/ log(δ0)�, 3}.
4: Compute recursively γi, δi, θ(γi, δi) for i = 1, . . . , Nca, from (24), and (23), respec-

tively.
5: Compute the coefficients hi, ci, i = 0, 1, . . . , Nca, starting from h0 = 1 and using

the compensation steps. Then, calculate the vectors ξi, i = 0, 1, . . . , Nca.

6: For all �Tca/2� < m, n ≤ Tca, compute q
(Nca)
m,n (k), k = 0, 1, . . . , K, from Theorem 2.

7: For all 0 ≤ m, n ≤ �Tca/2�, solve the linear system of the balance equations (13)-

(18) and compute q
(Nca)
m,n (k).

8: Normalize q
(Nca)
m,n (k).

9: Stop if

∣
∣
∣
∣
∣
∣
∣

Tca∑

m,n=0
q
(Nca)
m,n (k)−

Tca∑

m,n=0
q
(Nca−1)
m,n (k)

Tca∑

m,n=0
q
(Nca)
m,n (k)

∣
∣
∣
∣
∣
∣
∣

< ε, else Nca = Nca + 1 and go to Step 4.

A Proof of Lemma 1

Let X0(t) = {(Q(t), C(t)); t ≥ 0} the Markovian process that describes the
reference model. Note that {X0(t)} is a QBD with state space Z

+×{0, 1, . . . ,K}
and a block tri-diagonal infinitesimal generator Q0 with repeated blocks 2AT

0,−1,
CT

0,0, AT
0,1.

Following [11], let z = (z0, z1, . . . , zK) the stationary probability vector
of Λ = 2AT

0,−1 + CT
0,0 + AT

0,1. Simple calculations yields z1 = λ+2α
μ z0,

zi =
(

λ
μ

)i−1

z1, i = 2, . . . ,K, while z0 = (1 + λ+2α
μ

(
1−(λ/μ)K

1−(λ/μ)

)
)−1. Then,

{X0(t); t ≥ 0} is positive recurrent if and only if zAT
0,11K+1 < z2AT

0,−11K+1, or

equivalently ρ =
(

λ
μ

)K
(λ+2α)

2α < 1, where 1 is a (K + 1) × 1 column vector with
all elements equal to 1.

Let ρ < 1, and π = (π0, π1, . . .), πm = (πm(0), πm(1), . . . , πm(K)), m ≥
0, the stationary probability vector associated to Q0. Following [11, Theorem
3.1.1], it is readily seen that the vector π satisfying πQ0, π1 = 1 is given by
πm = π1Rm−1, m ≥ 1, where the rate matrix R is the minimal non-negative
solution of the matrix-quadratic equation R22AT

0,−1 + RCT
0,0 + AT

0,1 = OK+1.
The vectors π0, π1 follow from the remaining boundary equations. Due to the
fact that 2AT

0,−1 = aT b, where aT = (2α, 0, . . . , 0)T , b = (0, 1, 0, . . . , 0), the
rate matrix R is explicitly computed as R = −AT

0,1(C
T
0,0 + AT

0,11K+1b)−1.
After simple but tedious algebraic computations, the maximal eigenvalue (and
the only positive) of R = (ri,j)i,j=0,...,K , is given in (19). Following known results
[11], xR = ηx.

Alternatively, one can realize that AT
0,1 = tT l, where tT = (0, 0, . . . , 0, λ)T ,

l = (0, 0, . . . , 0, 1), and thus, R = −AT
0,1(C

T
0,0 + η2AT

0,−1)
−1, where the decay

rate η is the unique root in (0, 1) of the determinant equation det(AT
0,1+ηCT

0,0+
η22AT

0,−1) = 0. Tedious algebraic calculations yields (19).
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B Proof of Lemma 2

Note that Ky = 0 implies

η−1[CT
0,0η + 2η2AT

−1,1 + AT
0,1]v = 0, n = 0,

η−n−1[AT
0,1 + 2η2AT

−1,1 + ηC0,0]v = 0, n ≥ 1.

Simple computations imply that, Ky = 0, and y is positive since v is positive.
We now construct a positive vector p = {pn, n ≥ 0} such that pK = 0. Let Δv

be the diagonal matrix whose diagonal elements are the corresponding elements
of v. Let the diagonal matrix D = diag(Δv, η−1Δv, η−2Δv, . . .), and denote
KD = D−1KD.

Note that KD is a transition rate matrix of a QBD with finite phases at each
level. Moreover, note that K is a block triangular matrix with repeated blocks
K̄1 = 2η2AT

−1,1 + AT
0,1, K1 = η2AT

−1,1, K−1 = η−2AT
1,−1 + AT

0,−1. To check the
ergodicity o KD let u the stationary probability vector of Δ−1

v [ηK−1 + K0 +
η−1K1]. After simple computations, the mean drift at internal states reads

u[η−1Δ−1
v K1Δv − ηΔ−1

v K−1Δv] = ηuΔ−1
v [η−2K1 − K−1]v < 0.

Since KD is ergodic [11], there exists a stationary distribution ξ̄ = {ξ̄n, n ≥ 0}
such that ξ̄KD = 0, or equivalently, since D is invertible, ξ̄D−1K = 0. Thus,
p = {ηnξ̄nΔ−1

v ;n ≥ 0} satisfies pK = 0, and pz < ∞, since pz = ξ̄1 = 1 < ∞.

C Proof of Lemma 3

We consider a modified model, closely related to the original one, which has the
same asymptotic behaviour, and is considered on a slightly different grid, namely
{(m,n, k) : m ≥ 0, n ≥ 0, k = 0, 1, . . . ,K} ∪ {(m,n, k) : m < 0, 2m + n ≥ 0, k =
0, 1, . . . ,K}.

In the interior and on the horizontal boundary, the modified model has the
same transition rates as the original model. Moreover, its balance equations for
2m + n = 0 are exactly the same as the ones in the interior (i.e., the modified
model has no “vertical” boundary equations) and both models have the same
stability region. Therefore, the balance equations for the modified model are
given by (16)–(18) for all 2m + n ≥ 0, m ∈ Z with only the equation for state
(0, 0, k), k = 0, 1, . . . ,K being different due to the incoming rates from the states
with 2m + n = 0, m ∈ Z.

The modified model, restricted the area {(m,n, k) : 2m ≥ m0 −
n, n ≥ 0,m0 = 1, 2, . . . , k = 0, 1, . . . ,K} embarked by a line parallel to
the 2m + n = 0 axis, yields the exact same process. Hence, we can con-
clude that the equilibrium distribution of the modified model, say q̂(m,n) :=
(q̂m,n(0), q̂m,n(1), . . . , q̂m,n(K))T , satisfies q̂(m + 1, n) = γq̂(m,n), 2m ≥
−n, n ≥ 0, and therefore

q̂(m,n) = γmq̂(0, n), 2m ≥ −n, n ≥ 0. (38)
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We further observe that
∑∞

n=0 q̂−n,n(k) =
∑∞

n=0 γ−nq̂0,n(k) < 1. To determine
the term γ we consider levels of the form (L, k) = {(m,n, k), : 2m + n = L},
k = 0, 1, . . . ,K and let q̂L =

∑
2m+n=L q̂(m,n). The balance equations among

the levels are:

C0,0q̂L + A1,−1q̂L−1 + 2A0,−1q̂L+1 = 0, L ≥ 1, (39)

Moreover, Eq. (38) yields

q̂L+1 =
∑

2k+l=L+1 γkq̂(0, n) = γ
∑

2k+l=L−1 γkq̂(0, n) = γq̂L−1. (40)

Substituting (40) into (39) yields q̂L+1 = −[γ(A1,−1+2γA0,−1)−1C0,0]q̂L. Com-
bining (40) with (39) with γ = η2 yields det(ηC0,0 + A1,−1 + η22A0,−1) = 0, or
equivalently,

2αμs(1)(1 − η)(λK(λ+2α)+2αλμ
∑K−1

i=0 λK−2−iμi

2αμ
∑K−1

i=0 λK−1−iμi
− η) = 0,

which implies that indeed γ = η2.
Thus, it is shown that the equilibrium distribution of the modified model has

a product-form solution which is unique up to a positive multiplicative constant.
Returning to the original process X(t), we immediately assume that the solution
of (16)–(18) is identical to the expression for the modified model as given in (21).
Moreover, the above analysis implies that this product-form is unique, since the
equilibrium distribution of the modified model is unique.
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Abstract. This paper deals with a renewal input finite-buffer single-
server queue, where the arrivals occur in batches and the server serves
the customers singly. It is assumed that the inter-batch arrival times are
generally distributed and the successive service times are correlated. The
correlated single-service process is exhibited by a continuous-time Marko-
vian service process (C-MSP ). As the buffer capacity N (including the
one in service) is finite, the partial-batch rejection policy is considered
here. Steady-state distributions at different epochs, namely pre-arrival
and arbitrary epochs are obtained. These distributions are used to obtain
some important performance measures, e.g. the blocking probability of
the first, an arbitrary, and the last customer of a batch, the average
number of customers in the system and the mean waiting time in the
system. The proposed analysis is based on the roots of a characteristic
equation which is derived from the balance equations of an embedded
Markov chain at pre-arrival epochs of a batch. For this non-renewal ser-
vice finite-buffer queueing model, we implement a novel as well as simple
procedure for deriving the characteristic equation and then finding the
stationary probability vectors in terms of the roots of the characteristic
equation. Finally, some numerical results are presented in the form of
tables for the case of a phase-type inter-batch arrival distribution.

Keywords: Renewal input · Batch arrival · Finite-buffer queue ·
Continuous-time Markovian service process (C-MSP ) · Roots

1 Introduction

A correlated nature of arrival and service processes has been frequently observed
in application areas such as manufacturing systems, production systems, and
c© Springer Nature Switzerland AG 2021
P. Ballarini et al. (Eds.): EPEW 2021/ASMTA 2021, LNCS 13104, pp. 396–410, 2021.
https://doi.org/10.1007/978-3-030-91825-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91825-5_24&domain=pdf
http://orcid.org/0000-0003-1570-8389
http://orcid.org/0000-0001-6985-8361
http://orcid.org/0000-0002-3739-327X
https://doi.org/10.1007/978-3-030-91825-5_24


Finite-Buffer GIX/C-MSP/1/N Queue Using Roots 397

communication networks. Such correlation is what makes queueing theory inter-
esting to study. The correlation among the inter-arrival and inter-batch arrival
times can be modelled by the continuous-time Markovian arrival process (C-
MAP ) and the continuous-time batch Markovian arrival process (C-BMAP ),
respectively. Queueing models with C-MAP arrivals were studied by many
researches, see Lucantoni et al. [15], Kasahara et al. [12] and Choi et al. [9].
It is to be remarked here that the C-BMAP can suitably represent the versatile
Markovian point process (V MPP ), see Neuts [18] and Ramaswami [20].

Analogous to the correlated inter-arrival times, the correlation among the ser-
vice times can be represented by the continuous-time Markovian service process
(C-MSP ), see Bocharov [4] as well as Albores and Tajonar [1]. The GI/C-
MSP/1 queue with infinite-buffer capacity was examined by Bocharov et al. [5],
while Albores and Tajonar [1] studied the multi-server GI/C-MSP/c/r queue.
The GI/C-MSP/1 queue was also analyzed by Gupta and Banik [11] using
a combination of an embedded Markov chain process, the supplementary vari-
able technique, and the matrix-geometric method. Applying perturbation theory,
the asymptotic analysis of GI/C-MSP/1 queue was also explained by Alfa et
al. [2]. Allowing the server to take vacations, Machihara [17] investigated the
G/SM/1/∞ queueing model. Chaudhry et al. [6] used roots and carried out the
analytic analysis of the GIX/C-MSP/1/∞ model. Simultaneously, Chaudhry et
al. [8] discussed the GI/C-MSP (a,b)/1/∞ queueing model using roots. Queue-
ing systems with finite buffers are more realistic than the corresponding infinite-
buffer models. For a detailed study of various finite-buffer queues with or with-
out vacation(s) of the server, the readers are referred to the book by Takagi [21].
Later, Banik and Gupta [3] investigated a finite-buffer batch arrival queue under
both the partial and total batch acceptance policies.

In this paper, it is assumed that the arrivals occur in batches of random
sizes and the service is governed by a C-MSP . The model can be denoted by
GIX/C-MSP/1/N . As the system capacity (N) is considered to be finite, it
may happen that an arriving batch cannot be accommodated fully in the sys-
tem. If an arriving batch contains more customers than the available space in
the system, then only the number of customers required for filling the remain-
ing space are allowed to join the system, i.e., a portion of the arriving batch
is accepted which is known as the partial batch rejection (PBR) policy. The
system-length distributions at pre-arrival and arbitrary epochs of the GIX/C-
MSP/1/N model with the PBR policy are considered here. It may be noted
that the GIX/C-MSP/1/N model was analyzed by Banik and Gupta [3] by
solving simultaneous equations. The current paper analyzes the same queueing
model under slightly different assumptions and with a quite different methodol-
ogy, i.e., using the roots of a characteristic equation. In view of this, the method
presented here unifies the approach used here and in the paper by Chaudhry
et al. [6] who deal with the infinite-buffer queue, i.e., both the finite-capacity
and infinite-capacity models can be solved simultaneously by using the same
approach. Kim and Chaudhry [13] first used the roots of a characteristic equa-
tion to find the stationary probabilities in a finite-buffer GI/M/c/N queue. In
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this paper, we implement a similar idea of obtaining each phase of the station-
ary probability vectors in terms of roots of the characteristic equation that is
derived from the vector-difference equations of the embedded Markov chain at
pre-arrival epochs in a GIX/C-MSP/1/N queue with a non-renewal type of ser-
vice process (it consists of several phases of service). Further, the present paper
makes several developments over some of the existing results (see Banik and
Gupta [3]) in the literature, e.g., the stationary probability vectors are obtained
using the balance equations associated with the embedded Markov chain at pre-
arrival epochs without evaluating the structure of the corresponding transition
probability matrix. Further, it may be mentioned here that in [3], the C-MSP
process was dependent on the idle restart service phase distribution, whereas
in the present paper we consider that the service phase of the C-MSP process
remains the same phase in which the last busy period ended.

2 Description of the Model GIX/C-MSP/1/N

A single-server finite-buffer queue with batch arrivals is discussed here. The batch
size of the arriving batches is assumed to be of random size and the corresponding
random variable is symbolized by X with P (X = i) = gi, i ≥ 1. The mean batch
size is determined as E(X) =

∑∞
i=1 igi = ḡ and further g

′
i is defined as g

′
i =∑∞

r=i gr, i ≥ 1. The probability generating function of the mass function gi (i ≥
1) is given by G(z) =

∑∞
i=1 giz

i. The time intervals between the occurrence
of two successive batches, i.e. the inter-batch arrival times, are considered to
be independent and identically distributed (i.i.d.) random variables (r.v.’s) A
with mean 1/λ. The arrival process is also considered to be independent of
the service process. Let the cumulative distribution function (D.F.), probability
density function (p.d.f.) and the Laplace-Stieltjes transform (LST) of the p.d.f.
of a random variable Y be symbolized by FY (y), fY (y) and f∗

Y (s), respectively.
Further, it is assumed that the capacity (N) of the system includes the customer
that is being served.

In this model, the m-state C-MSP is represented by the matrices L0 and
L1, where the (i, j)th (1 ≤ i, j ≤ m) entry of the matrix L0 denotes the state
transition rates among the underlying m states of the C-MSP without a service
completion and the (i, j)th (1 ≤ i, j ≤ m) entry of the matrix L1 denotes the
state transition rates among the underlying m states of the C-MSP with a
service completion. All entries of the matrices L0 and L1 are positive except
that [L0]i,i (1 ≤ i ≤ m) is negative and |[L0]i,i| =

∑m
j=1,j �=i[L0]i,j +

∑m
j=1[L1]i,j ,

where |α| indicates the modulus of α. This means the server can serve one
customer at a time. Further details on the C-MSP can be found in Chaudhry
et al. [6].

3 Analysis of the System-Length Distributions

If N(t) and J(t) represent the number of customers served and the state of the
underlying Markov chain at time t, respectively, then {N(t), J(t)} can be defined
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as a two-dimensional Markov process with state space {(�, i) : 0 ≤ � ≤ N, 1 ≤
i ≤ m}. If π̃j denotes the probability that a customer is getting service in steady
state with the server in phase j (1 ≤ j ≤ m), then the stationary probability row
vector is given by π̃ = [π̃1, π̃2, . . . , π̃m] and can be calculated from the following
relations:

π̃L = 0 and π̃e = 1, (1)

where e is a column vector of suitable size with all the entries 1 and L = L0+L1.
We write the dimension of e in its suffix when it is other than m. Hence, the
fundamental service rate or the mean service rate of customers is calculated by
μ∗ = π̃L1e.

For n ≥ 0, t ≥ 0 and 1 ≤ i, j ≤ m, if we define the conditional probability as

Pi,j(n, t) = Pr{N(t) = n, J(t) = j|N(0) = 0, J(0) = i},

then P (n, t) represents an m × m matrix whose (i, j)th component is Pi,j(n, t).
Hence, using matrix notation the system may be expressed as

d

dt
P (0, t) = P (0, t)L0, (2)

d

dt
P (n, t) = P (n, t)L0 + P (n − 1, t)L1, 1 ≤ n ≤ N − 1, (3)

d

dt
P (N, t) = P (N, t)L + P (N − 1, t)L1, (4)

with P (0, 0) = Im, where Im is the identity matrix of dimension m × m and
P (n, 0) = 0 for n ≥ 1. In the sequel the suffix m is dropped from the identity
matrix Im and in all other cases the dimension of an identity matrix I is written
in its suffix. The traffic intensity or offered load is given by ρ = λḡ/μ∗ and
let the carried load, i.e., the probability that the server is busy be denoted by
ρ

′
. For n ≥ 0, let the (i, j)th (1 ≤ i, j ≤ m) element of the matrix Sn with

dimension m×m be defined as the conditional probability of service completion
of n customers in an inter-batch arrival span, during which the phase of the
service process starting from phase i passes to phase j after completion of the
n-th service, provided that at the previous batch arrival instant there were at
least n customers in the system. Then

Sn =
∫ ∞

0

P (n, t)dFA(t), 0 ≤ n ≤ N. (5)

Let us denote S
′
n as

S
′
n =

N∑

k=n

Sk, 0 ≤ n ≤ N.

The Sn matrices can be evaluated using the arguments given by Lucantoni [14]
and Neuts [19]. Following the renewal theory of semi-Markov processes, Â and
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Ã are defined as the stationary remaining and elapsed times of an inter-batch
time, respectively, which satisfy the following equation.

F
̂A(x) = F

˜A(x) =
∫ x

0

λ(1 − FA(y)) dy. (6)

An m × m order matrix Ωn (n ≥ 0) is defined such that the (i, j)th entry
of the matrix represents the limiting probability that n services are completed
during an elapsed inter-batch arrival period while starting from phase i, the
phase of the service process passes to phase j, provided the inter-batch arrival
period started with at least (n + 1) customers in the system. Hence, applying
Markov renewal theory and following Chaudhry and Templeton [7, p. 74–77],
the following equation can be deduced:

Ωn = λ

∫ ∞

0

P (n, x)(1 − FA(x)) dx, 0 ≤ n ≤ N. (7)

The matrices Ωn can be expressed in terms of the matrices Sn and their rela-
tionship discussed by Chaudhry et al. [6] is as follows:

Ω0 = λ
(
Im − S0

)
(−L0)−1, (8)

and

Ωn =
(
Ωn−1L1 − λSn

)
(−L0)−1, 1 ≤ n ≤ N − 1, (9)

ΩN =
(
ΩN−1L1 − λSN

)
(−L)−1. (10)

It may be noted here that L being a singular matrix we are not able to evaluate
ΩN from Eq. (10). In view of this, we use ΩN =

(
ΩN−1L1−λSN

)
(−L0)−1 as a

close approximation. Further, one may note that the expression for ΩN is given
just for the sake completeness and it is not required to compute the stationary
probabilities in subsequent sections of the paper.

Further, P̃ij(n, t) is defined as the conditional probability that starting with n
customers in the system, at least n customers are served (which includes only the
possibility of all potential service completions of customers) in the time interval
(0, t] while the phase of the service process is i and j at the start and at the end
of the time interval, respectively. Hence, using the definition, we can obtain the
following relation:

P̃ij(n, t + Δt) = P̃ij(n, t) +
m∑

k=1

Pik(n − 1, t)[L1]kjΔt + o(Δt), 1 ≤ n ≤ N,

where the initial condition is P̃ij(n, 0) = 0, n ≥ 1. Now, for t ≥ 0, 1 ≤ i, j ≤ m,
rearranging the terms and taking the limit as Δt → 0, we can reduce this
equation to

d

dt
P̃ij(n, t) =

m∑

k=1

Pik(n − 1, t)[L1]kj , 1 ≤ n ≤ N,
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where the initial condition is given by P̃ij(n, 0) = 0. The matrix form of the
system may be written as

d

dt
P̃ (n, t) = P (n − 1, t)L1, 1 ≤ n ≤ N, (11)

with P̃ (n, 0) = 0 (1 ≤ n ≤ N). Let the (i, j)th element of the matrix S∗
n with

dimension m × m denote the probability that having exactly n customers in
the system at a batch arrival instant with the service phase being i, at least n
customers are served during the inter-batch arrival period and the service phase
at the next batch-arrival instant changes to phase j at the end of the n-th service
completion. Then using the above definition of S∗

n and Eq. (11), we obtain (see
Chaudhry et al. [6]).

S∗
n =

∫ ∞

0

P̃ (n, t)dFA(t)

=
1
λ

Ωn−1L1, 1 ≤ n ≤ N. (12)

For n ≥ 1, the matrix Ω∗
n of order m × m is defined such that the (i, j)th

element of the matrix represents the limiting probability that n or more services
are completed during an elapsed inter-batch arrival cycle while the phase of the
service process is i and j at the beginning of the cycle and at the n-th service
completion epoch, respectively, provided that at the batch arrival instant the
arrivals in the batch join to make a total of n customers already present in the
system. Then, from Markov renewal theory, it can be formulated that

Ω∗
n = λ

∫ ∞

0

P̃ (n, x)(1 − FA(x)) dx, 1 ≤ n ≤ N. (13)

As derived by Chaudhry et al. [6], it may be shown that

Ω∗
1 = (Im − Ω0) (−L0)

−1
L1, (14)

and Ω∗
n+1 = (Ω∗

n − Ωn) (−L0)
−1

L1, 1 ≤ n ≤ N − 1. (15)

3.1 Steady-State Distribution at a Pre-arrival Epoch

Let us consider the embedded points as the time epochs just before the batches
arrive in the system and denote the embedded points as t−i (i ≥ 0), where ti’s
are the time epochs at which batch arrivals are about to occur. If we let Nt−

i

and ξt−
i

denote the number of customers in the system (including the one in
service) and the phase of the service process at time t−i (i ≥ 0), respectively,
then at that time the state of the system is given by {Nt−

i
, ξt−

i
}. Let π−

j (n)
denote the limiting probabiloity that at a pre-arrival epoch of a batch there are
n number of customers in the system and the phase of the service is j, that is
π−

j (n) = limi→∞ P (Nt−
i

= n, ξt−
i

= j), 0 ≤ n ≤ N, 1 ≤ j ≤ m. For 0 ≤ n ≤ N ,
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π−(n) denotes a row vector of order 1 × m with i-th component π−
i (n). We

then form the following set of vector-difference equations by relating the state of
the system at two consecutive embedded Markov points (i.e., at two successive
pre-arrival epochs):

π−(0) =
N−1∑

i=0

π−(i)
N−i∑

r=1

grS
∗
i+r +

N−1∑

i=0

π−(i)g
′
N−iS

∗
N + π−(N)S∗

N , (16)

π−(n) =
n−2∑

i=0

π−(i)
N−i∑

r=n−i

grSi+r−n +
N−1∑

i=n−1

π−(i)
N−i∑

r=1

grSi+r−n

+
N−1∑

i=0

π−(i)g
′
N−iSN−n + π−(N)SN−n, 1 ≤ n ≤ N − 1, (17)

π−(N) =
N−1∑

i=0

π−(i)g
′
N−iS0 + π−(N)S0. (18)

The system of vector-difference Eqs. (16)–(18) may be solved using roots of a
characteristic equation, see Kim and Chaudhry [13]. For this, we assume the
solution to be of a general form (see Remark 1 below)

π−(n) =

[

c1z
n, c2z

n, c3z
n, . . . , cmzn

]

, 0 ≤ n ≤ N, c1, c2, c3, . . . cm �= 0.

(19)

Substituting this general solution form (19) into (16), (17), and (18), we obtain
[

c1, c2, c3, . . . , cm

]

=
N−1∑

i=0

[

c1z
i, c2z

i, c3z
i, . . . , cmzi

]
N−i∑

r=1

grS
∗
i+r

+
N−1∑

i=0

[

c1z
i, c2z

i, c3z
i, . . . , cmzi

]

g
′
N−iS

∗
N + π−(N)S∗

N ,

(20)

[
c1z

n, c2z
n, c3z

n, . . . , cmzn

]
=

n−2∑
i=0

[
c1z

i, c2z
i, c3z

i, . . . , cmzi

]
N−i∑

r=n−i

grSi+r−n

+

N−1∑
i=n−1

[
c1z

i, c2z
i, c3z

i, . . . , cmzi

]
N−i∑
r=1

grSi+r−n

+

N−1∑
i=0

[
c1z

i, c2z
i, c3z

i, . . . , cmzi

]
g

′
N−iSN−n

+

[
c1z

N , c2z
N , c3z

N , . . . , cmzN

]
SN−n, 1 ≤ n ≤ N − 1,

(21)
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and

[

c1z
N , c2z

N , c3z
N , . . . , cmzN

]

=
N−1∑

i=0

[

c1z
i, c2z

i, c3z
i, . . . , cmzi

]

g
′
N−iS0

+

[

c1z
N , c2z

N , c3z
N , . . . , cmzN

]

S0. (22)

Now after calculation of the right-hand sides of Eqs. (20)–(22), we obtain N
vector equations of the following form:[

c1z
n, c2z

n, c3z
n, . . . , cmzn

]
=

[
c1F

1
n1(z) + c2F

2
n1(z) + c3F

3
n1(z) + · · · + cmFm

n1(z),

c1F
1
n2(z) + c2F

2
n2(z) + c3F

3
n2(z) + · · · + cmFm

n2(z), . . . ,

c1F
1
nm(z) + c2F

2
nm(z) + c3F

3
nm(z) + · · · + cmFm

nm(z)

]
,

0 ≤ n ≤ N − 1, (23)

and[
c1z

N , c2z
N , c3z

N , . . . , cmzN

]
=

[
c1F

1
N1(z) + c2F

2
N1(z) + c3F

3
N1(z) + · · · + cmFm

N1(z),

c1F
1
N2(z) + c2F

2
N2(z) + c3F

3
N2(z) + · · · + cmFm

N2(z), . . . ,

c1F
1
Nm(z) + c2F

2
Nm(z) + c3F

3
Nm(z) + · · · + cmFm

Nm(z)

]
,

(24)

where the functions F k
nj(z), 0 ≤ n ≤ N, 1 ≤ j ≤ m, 1 ≤ k ≤ m, are certain

polynomials of degree up to N in z. From (20)–(22) these polynomials follow as

F k
0j(z) =

N−1∑

i=0

N−i∑

r=1

grz
i

[

S∗
i+r

]

k,j

+
N−1∑

i=0

g
′
N−iz

i

[

S∗
N

]

k,j

+ zN

[

S∗
N

]

k,j

, 1 ≤ j ≤ m, 1 ≤ k ≤ m, (25)

F k
nj(z) =

n−2∑

l=0

N−l∑

r=n−l

grz
l

[

Sl+r−n

]

k,j

+
N−1∑

l=n−1

N−l∑

r=1

grz
l

[

Sl+r−n

]

k,j

+
N−1∑

l=0

g
′
N−lz

l

[

SN−n

]

k,j

, 1 ≤ n < N, 1 ≤ j ≤ m, 1 ≤ k ≤ m, (26)

F k
Nj(z) =

N−1∑

l=0

g
′
N−iz

l

[

S0

]

k,j

+ zN

[

S0

]

k,j

, 1 ≤ j ≤ m, 1 ≤ k ≤ m, (27)
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where

[

Sn

]

k,j

are the (k, j)th elements of Sn (0 ≤ n ≤ N) and

[

S∗
n

]

k,j

are

the (k, j)th elements of S∗
n (1 ≤ n ≤ N). Now, after adding the vector Eqs. (23)

and (24), we consider the component-wise equality in the vector equations, and
considering a unique set of values of c1, c2, c3, . . . , cm, we obtain the following
determinant which must be equal to zero.

DN (z) =

N
n=0(F

1
n1(z)− zn) N

n=0 F
2
n1(z)

N
n=0 F

3
n1(z) · · · N

n=0 F
m−1
n1 (z) N

n=0 F
m
n1(z)

N
n=0 F

1
n2(z)

N
n=0(F

2
n2(z)− zn) N

n=0 F
3
n2(z) · · · N

n=0 F
m−1
n2 (z) N

n=0 F
m
n2(z)

N
n=0 F

1
n3(z)

N
n=0 F

2
n3(z)

N
n=0(F

3
n3(z)− zn) · · · N

n=0 F
m−1
n3 (z) N

n=0 F
m
n3(z)

...
...

...
. . .

...
...

N
n=0 F

1
nm−1(z)

N
n=0 F

2
nm−1(z)

N
n=0 F

3
nm−1(z) · · · N

n=0(F
m−1
nm−1(z)− zn) N

n=0 F
m
nm−1(z)

N
n=0 F

1
nm(z) N

n=0 F
2
nm(z) N

n=0 F
3
nm(z) · · · N

n=0 F
m−1
nm (z) N

n=0(F
m
nm(z)− zn)

.

(28)
Thus, we obtain the characteristic equation of the GIX/C-MSP/1/N queue-

ing model as follows:

DN (z) = 0, (29)

which is a polynomial in z of degree Nm giving Nm roots. Out of these Nm
roots, we use (N + 1) roots (which may be chosen arbitrarily from those Nm
roots) and the solution of the vector-difference Eqs. (16)–(18) can be written as

π−(n) =

[
N+1∑

i=1

d1iz
n
i ,

N+1∑

i=1

d2iz
n
i ,

N+1∑

i=1

d3iz
n
i , . . . ,

N+1∑

i=1

dmiz
n
i

]

, 0 ≤ n ≤ N,

(30)

where z1, z2, . . . , zN+1 are N + 1 arbitrarily chosen roots of the characteristic
Eq. (29) and dki (1 ≤ k ≤ m, 1 ≤ i ≤ N + 1) are non-zero constants which
can be calculated using the roots and the required number of vector-difference
Eqs. (16)–(18). It is interesting to note that out of the Nm roots of Eq. (29),
we use only (N + 1) roots. This is because each component of the probability
vector has N + 1 unknowns. Of course, if (N + 1) is odd, we need to use one
real root and the other complex roots though the complex conjugates have to
be used together. Another interesting point to note is that each component of
the probability vector is a mixture of constant weighted geometric terms, where
the constant weights are denoted by dki(1 ≤ k ≤ m and 1 ≤ i ≤ N + 1).

To determine these constants dki (1 ≤ k ≤ m, 1 ≤ i ≤ N + 1), we use the
vector-difference Eqs. (16)–(18). First, we substitute the solution of π−(n) as
presented above (see Eq. (30)) in the right-hand side of each and every Eq. (16)–
(18) and obtain component-wise values of each π−(n) (0 ≤ n ≤ N) in terms
of those constants dki (1 ≤ k ≤ m, 1 ≤ i ≤ N + 1). Now equating these
π−(n) (0 ≤ n ≤ N) with the corresponding components of π−(n) (0 ≤ n ≤ N)
in Eq. (30) gives a total of (N + 1)m linear equations with (N + 1)m unknowns
dki (1 ≤ k ≤ m, 1 ≤ i ≤ N + 1). Finally, one may remember that we must use
the following normalizing condition by skipping one of those (N + 1)m linear
equations, which is a redundant one. The normalizing condition is given by
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N∑

n=0

[
N+1∑

i=1

d1iz
n
i +

N+1∑

i=1

d2iz
n
i +

N+1∑

i=1

d3iz
n
i + · · · +

N+1∑

i=1

dmiz
n
i

]

= 1. (31)

Remark 1. It may be remarked here that the general solution of the form (19) is
along the lines proposed by Kim and Chaudhry [13] for the case of exponential
service time distribution where the number of service phases is ‘1’, i.e., m =
1. There the assumption of general solution is czn for the case of the finite-
buffer multi-server GIX/M/k/N queueing model, see Kim and Chaudhry [13]
for details.

3.2 Stationary Distribution at Arbitrary Epoch

For 0 ≤ n ≤ N , the steady-state system-length distribution at an arbitrary epoch
is denoted by π(n) = [π1(n), π2(n), . . . πm(n)] and is derived in this section.
The derivation requires the classical arguments of renewal theory and the relation
between the steady-state system-length distribution at an arbitrary epoch and
the corresponding pre-arrival epoch distribution. Hence, using Markov renewal
theory and semi-Markov processes, see Cinlar [10] or Lucantoni and Neuts [16],
it can be obtained as follows:

π(0) =
N−1∑

i=0

π−(i)
N−i∑

r=1

grΩ
∗
i+r +

N−1∑

i=0

π−(i)g
′
N−iΩ

∗
N + π−(N)Ω∗

N , (32)

π(n) =
n−2∑

i=0

π−(i)
N−i−1∑

r=n−i

grΩi+r−n +
N−1∑

i=n−1

π−(i)
N−i∑

r=1

grΩi+r−n

+
N−1∑

i=0

π−(i)g
′
N−iΩN−n + π−(N)ΩN−n, 1 ≤ n ≤ N − 1, (33)

π(N) =
N−1∑

i=0

π−(i)g
′
N−iΩ0 + π−(N)Ω0. (34)

Note that since an empty system causes an interruption in the service process,

it follows that
N∑

n=1
π(n) (L0 + L1) = 0, which implies that

N∑

n=1

π(n) = Cπ̃, [since from relation (1), π̃L = π̃(L0 + L1) = 0] (35)

where C is a positive constant. Now post-multiplying both sides of the Eq. (35)
by L1e, it can be concluded that

N∑

n=1

π(n)L1e = Cμ∗. (36)
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The left-hand side of Eq. (36) is the departure rate in steady state, which is
quantitatively the same as the steady-state effective arrival rate. If the blocking
probability of an arbitrary customer of a batch is denoted by PBA, then the
effective arrival rate (λ

′
) in steady state is λḡ(1−PBA) and the positive constant

can be evaluated as

C =
λḡ(1 − PBA)

μ∗ = ρ
′
. (37)

Now, rearranging the equation
N∑

n=0
π(n)e = 1 as π(0)e +

N∑

n=1
π(n)e = 1 and

noting that
N∑

n=1
π(n)e = C = ρ

′
(as follows from Eq. (35)), which also denotes

the probability that the server is busy, we can also formulate the probability
that the server is idle:

π(0)e = 1 − ρ
′
. (38)

3.3 Performance Measures

Following the determination of the state probabilities at various epochs, the
computation of some important performance measures may be obtained and is
discussed in this section. The mean number of customers in the system and in
the queue at an arbitrary epoch are given by

L =
N∑

i=0

iπ(i)e, Lq =
N∑

i=1

(i − 1)π(i)e.

Let PBf , PBl and PBa denote the blocking probabilities of the first, last and
an arbitrary customer in a batch. Then one can compute PBf as π−(N)e. The
probabilities PBl and PBa can be obtained by defining a r.v. G− which denotes
the number of customers in front of an arbitrary customer within the batch.
Chaudhry and Templeton [7, p. 93] provide the distribution of G− as

g−
r = P [G− = r] =

1
ḡ

∞∑

i=r+1

gi, r ≥ 0.

Hence, PBa and PBl are given by

PBa =
N∑

i=0

∞∑

j=N−i

π−(i)g−
j e, and PBl =

N∑

i=0

∞∑

j=N−i+1

π−(i)gje, (39)

respectively. Further, if the mean waiting time of an arbitrary customer in the
system (queue) is denoted by wa (wqa), then Little’s formula can be applied to
get wa = L

λ′ , and wqa = Lq

λ′ , respectively, where λ
′
is the effective arrival rate

and is evaluated as λ
′
= λḡ(1 − PBa).
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4 Numerical Results

Using the results formulated in previous sections, we present some numerical
results in this section to illustrate the developed methodology. Although numer-
ical calculations were carried out with high precision, due to lack of space the
results are reported to 6 decimal places. The system length distribution at pre-
arrival and arbitrary time epochs (using roots of a characteristic equation) of
a GIX/C-MSP/1/10 queue under the PBR policy is represented in Table 1.
For this system, gn (n ≥ 1) is considered to be the coefficient of zn in the
expansion of the probability generating function of the batch-size distribution
G(z) = 4z/(3 − z)2 with ḡ = 2.0. The density function of the inter-batch arrival
time is considered as a 3-phase continuous phase-type (C-PH) distribution with
representation

α1 = [0.2, 0.3, 0.5], T1 =

⎛

⎝
−2.5 0.5 0.2
0.1 −2.0 0.1
0.2 0.4 −3.7

⎞

⎠ ,

and the 4-phase C-MSP representation is taken as

L0 =

⎛

⎜
⎜
⎝

−6.5 0.1 0.6 0.3
0.3 −5.4 0.8 0.2
0.2 0.7 −4.3 0.1
0.6 0.4 0.1 −3.9

⎞

⎟
⎟
⎠ , L1 =

⎛

⎜
⎜
⎝

1.1 1.7 1.5 1.2
1.3 0.9 0.7 1.2
1.4 0.9 0.3 0.7
0.9 0.5 1.1 0.3

⎞

⎟
⎟
⎠ .

Interested readers are referred to Neuts [19] for a probability vector and a non-
singular matrix representation of a C-PH-distribution. For these representations
of C-PH and C-MSP , it is found that μ∗ = 3.862496, λ = 2.221854, ρ =
1.150476 and π̃ = [0.224993, 0.240930, 0.283610, 0.250467].

Table 1. Distribution of the system length for the C-PHX/C-MSP/1/10-PBR queue
at pre-arrival and arbitrary epochs using roots

n π−
1 (n) π−

2 (n) π−
3 (n) π−

4 (n) π −(n)e π1(n) π2(n) π3(n) π4(n) π (n)e

0 0.031660 0.026752 0.023690 0.022724 0.104826 0.034236 0.028905 0.025595 0.024553 0.113289

1 0.014403 0.014454 0.015758 0.014173 0.058788 0.014513 0.014623 0.016016 0.014387 0.059538

2 0.015804 0.016158 0.018006 0.016105 0.066073 0.015901 0.016300 0.018221 0.016284 0.066707

3 0.016746 0.017376 0.019695 0.017541 0.071358 0.016854 0.017517 0.019893 0.017710 0.071974

4 0.017787 0.018625 0.021335 0.018954 0.076700 0.017896 0.018759 0.021515 0.019109 0.077279

5 0.019003 0.020000 0.023048 0.020449 0.082500 0.019092 0.020109 0.023196 0.020575 0.082973

6 0.020416 0.021543 0.024906 0.022081 0.088946 0.020447 0.021593 0.024987 0.022147 0.089175

7 0.022075 0.023308 0.026978 0.023919 0.096280 0.021982 0.023233 0.026925 0.023865 0.096005

8 0.024009 0.025443 0.029443 0.026064 0.104958 0.023668 0.025122 0.029129 0.025773 0.103692

9 0.027158 0.027687 0.032041 0.028458 0.115344 0.026322 0.026903 0.031233 0.027720 0.112179

10 0.024216 0.031132 0.042509 0.036371 0.134227 0.022828 0.029476 0.040365 0.034520 0.127189

sum 0.233278 0.242477 0.277408 0.246838 1.000000 0.233740 0.242540 0.277075 0.246645 1.000000
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Fig. 1. The roots of the characteristic equation for the PBR model are marked as red
dots in the complex plane (Color figure online)

The roots used to calculate the stationary probability vectors for the above
Table 1 are presented next. The Nm = 40 roots of the characteristic Eq. (29) for
this PBR model are given in Fig. 1 above.

We use N + 1 = 11 roots (z1 = −0.975907, z2 = −0.855094 −
0.348176i, z3 = −0.855094 + 0.348176i, z4 = −0.660588 − 0.626857i, z5 =
−0.660588 + 0.626857i, z6 = −0.600024 − 0.270433i, z7 = −0.600024 +
0.270433i, z8 = −0.193425 − 0.958256i, z9 = −0.193425 + 0.958256i, z10 =
−0.172185 − 0.254405i, z11 = −0.172185 + 0.254405i) to get the 11 unknown
constants involved in the 1st component of the probability vector π−(n)
and subsequently the stationary probability vectors at a pre-arrival epoch.
The constants corresponding to the first component of the stationary prob-
ability vectors at a pre-arrival epoch (for the PBR model) are found as
d1,1 = 132.111093, d1,2 = 149.655211 − 77.022170i, d1,3 = 149.655211 +
77.022170i, d1,4 = 32.811374−23.656608i, d1,5 = 32.811374+23.656608i, d1,6 =
−174.340305+544.507012i, d1,7 = −174.340305−544.507012i, d1,8 = 0.041539−
1.016160i, d1,9 = 0.041539+1.016160i, d1,10 = −74.207536−31.033273i, d1,11 =
−74.207536 + 31.033273i, and the corresponding probabilities (for the PBR
model) are given in Table 1. The constants in the other components of the prob-
ability vector as well as the related probabilities are evaluated using the same
11 roots.

From Table 1, it is calculated that ρ′ = 0.886710 and it can also be checked
that

∑N
n=1 π(n)/ρ′ � π̃ for the PBR model. The mean waiting time of an arbi-

trary customer is also obtained from Little’s law for the PBR model and it is
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found that wa = L/λ
′

= 1.591564 with PBa = 0.229266, L = 5.450976, and
λ

′
= 3.424917.

5 Conclusion

In this paper, we have analyzed the GIX/C-MSP/1/N queue and obtained
steady-state probability distributions at pre-arrival and arbitrary epochs. The
proposed method of analysis is based on the roots of the characteristic equa-
tion which is derived from the balance equations obtained from an embedded
Markov chain at pre-arrival epochs. Specifically, the pre-arrival epoch probabil-
ity vectors are written in terms of the roots of the characteristic equation. Also,
we have obtained stationary performance measures, such as the mean waiting
time and the blocking probabilities for the first customer, an arbitrary customer
and the last customer in an accepted batch. It should be pointed out that the
roots method works very well for any type of inter-batch arrival distribution
including heavy-tailed inter-batch arrival times which have been discussed by
Chaudhry et al. [6] through numerical examples of the C-PHX/C-MSP/1/∞
and ParetoX/C-MSP/1/∞ queueing models. The Laplace-Stieltjes transforms
(LST) of actual waiting time of the first, an arbitrary, and the last customer
in an accepted batch can be derived as a further extension of this queueing
model. The system can also adopt the total batch rejection (TBR) policy, i.e.,
where an entire batch is rejected if the batch is loaded with more customers than
the available system space. The system-length distributions at pre-arrival and
arbitrary epochs of the GIX/C-MSP/1/N model with a TBR policy can be
considered in future work. Further, the corresponding finite-buffer discrete-time
queues may be attempted using a similar methodology of roots and are left for
future investigations.
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Abstract. In this paper, we consider an infinite server queue with batch
service. Although many studies on queues with finite number of servers
and batch service have been conducted, there are only a few research
related to the infinite server queue with batch service and they only con-
sider the moments of the queue length. We present the derivation of the
stationary distribution for the infinite server queue with batch service
by the method based on factorial moment generating function. Further-
more, we derive some performance measures and show some numerical
examples of the stationary distribution.

Keywords: Infinite server queue · Batch service · Factorial moments

1 Introduction

In our modern society, there exist various systems with batch service. For exam-
ple, transportation services such as ride-sharing and demand-bus, logistics such
as home-delivery can be cited. In the telecommunications field, research on batch
services of data centers and optical burst switched networks is conducted from
the perspectives of the effective use of the resources.

Batch service queueing models were originated by Bailey [1]. He derived
the stationary distribution of queue with the fixed-batch service by using the
embedded-Markov chain technique. After that, Neuts [2] introduced the general
batch service rule. The general batch service rule states that the server will start
to provide service only when at least ‘a’ units in the queue, and the maximum
service capacity is ‘b’, which also includes the fixed-batch service. Downton [3]
derived the waiting time distribution of batch service queues. Holman et al.
[4] analyzed batch service queue with general service time using supplementary
method. As studies on multiple servers queue with batch service, Arora [5] ana-
lyzed two server batch service queue and Ghare [6] generalized the results of
Arora to ‘c’ servers. In addition, Cosmetatos [7] and Sim et al. [8,9] considered
M/M(a,∞)/N queue where the number of customers exceeds some control limit
c© Springer Nature Switzerland AG 2021
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‘a’, an idle server will take for service all the waiting customers in the queue.
Besides, studies on batch service queues with vacation [10] and tandem queues
with batch service [11] and so on have been conducted (see the survey [12] in
details).

However, only few studies on an infinite server queue with batch service
have been conducted. Ushakumari et al. [13] studied an infinite server queue
in continuous time in which arrivals are batches of variable size and service is
provided in groups of fixed size R. This paper derived the recursive relations
of the binomial moment of the number of busy servers at arbitrary time. As
a special case of the binomial moment, they derived the expected number of
busy servers at arbitrary epoch. Liu et al. [14] also considered same approach
to the same model as [13]. They discussed several cases and gave some insights.
For example, about GIK/MR/∞ system (the batch sizes of the arrival and the
service are both constant), they found that the change of K has only a small
effect on the amount of computational work while the computational complexity
increases with the service batch size R. Besides, Liu et al. [15] considered an
infinite server queue where customers have a choice of individual service or batch
service is studied. They analyzed the model as two variable Markov chain of the
busy servers and the waiting customers. They derived the first two moments
of the time dependent number of busy servers by transforming the Kolmogorov
equations and LST of the waiting time for the customers. Ushakumari et al. [16]
considered an infinite server queue where customers can opt for single service
of varying size with the restriction that single service is provided only when
none is waiting in the queue. This paper derived the first two moments of busy
servers using the similar solution with [15]. They also derived the waiting time
distribution. We should note that all these studies do not consider the steady
state probabilities of the system. In this paper, we analyze M/M(b)/∞ queue,
in other words, an infinite server queue with the fixed-batch service. The main
contribution of this paper is the derivation of the steady state probabilities of
the model. We also derive other performance measures such as the sojourn time
distribution.

The rest of the paper is constructed as follows. In Sect. 2, we show the deriva-
tion of the stationary distribution for M/M(b)/∞ queue. Section 3 presents some
other performance measures and Sect. 4 shows some numerical examples for the
stationary distribution. Finally, we present the conclusion of this paper and
future work in Sect. 5.

2 Stationary Distribution of M/M(b)/∞ Queue

This section presents the derivation of the stationary distribution for M/M(b)/∞
queue. In M/M(b)/∞ queue, customers arrive according to a Poisson process
with rate λ. A service is executed in batch with a fixed size b. In that reason,
there is a waiting time of customers for the batch of b customers to be completed
although M/M(b)/∞ queue has infinite servers. Besides, we assume that the
service time follows the exponential distribution of parameter μ.
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An example of the possible application of this model is shared transportation
systems such as ridesharing [17]. We assume the situation that there are enough
number of cars at a car station and a capacity of a car is b. Customers who want
to visit same destination arrive the car station according to a Poisson process
with rate λ. If there are b customers at the car station, the customers immediately
ride on the car and start to drive the car, which takes the time following an
exponential distribution of rate μ. We can also adapt other examples, such as
the batch service of a huge data center, logistic system, inventory management
system, etc., to this model.

Fig. 1. The transition diagram of M/M(b)/∞ queue.

Let N(t) denote the number of customers in the system at time t, the stochas-
tic process {N(t) | t � 0} is an irreducible continuous-time Markov chain with
state space Z = {0, 1, 2, . . . }. Here, we can define the stationary distribution of
the model pj as,

pj = lim
t→∞P(N(t) = j). (1)

It should be noted that it is difficult to analyze the model as one variable Markov
chain of N(t). In the previous research of queues with batch service (e.g., [1]),
the models were analyzed as a two variable Markov chain of the number of
customers in the system and the number of busy servers. However, in M/M(b)/∞
queue, it is not easy to adapt this technique itself because both variables have an
infinite state space. Therefore, we present to analyze M/M(b)/∞ queue as two
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variable Markov chain of the number of busy servers (i.e., the number of groups
of customers) and the number of waiting customers in the system. Let I(t) and
S(t) denote the number of busy servers and the number of waiting customers
in the system at time t respectively, it is easy to find the following relational
expression for N(t), I(t) and S(t):

N(t) = bI(t) + S(t), (2)

Besides, defining as S = {0, 1, 2, . . . , b − 1}, L = Z × S, it is clear that
{(I(t), S(t)) | t � 0} becomes an irreducible continuous-time Markov chain
with state space L (see the transition diagram in Fig. 1). Note that this model
becomes level-dependent quasi-birth-and-death process (QBD) [18]. However, a
level-dependent QBD does not have close from solution in general.

We can also denote the stationary distribution as:

πi,k = lim
t→∞P(I(t) = i, S(t) = k). (3)

In addition, from (2), it is obvious that the following relationship between the
stationary distributions holds.

pbi+k = πi,k. (4)

The stationary distribution πi,k is given by Theorem 1.

Theorem 1. πi,k is given as follows:

πi,b−1 =
1
i!

∞∑

n=0

1
b

n+i∏

l=1

⎛

⎜⎜⎜⎝

l

(
λ

μl + λ

)b

1 −
(

λ

μl + λ

)b

⎞

⎟⎟⎟⎠
(−1)n

n!
, k = b − 1, (5)

πi,k =
1

i!

∞∑

n=0

1

b

(
λ

μ(n + i) + λ

)k+1

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n+i∏

l=1

⎛

⎜⎜⎜⎝

l

(
λ

μl + λ

)b

1 −
(

λ

μl + λ

)b

⎞

⎟⎟⎟⎠ + (n + i)

n+i−1∏

l=1

⎛

⎜⎜⎜⎝

l

(
λ

μl + λ

)b

1 −
(

λ

μl + λ

)b

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(−1)n

n!
,

0 � k � b − 2, (6)

where
∏0

l=1 = 1.

Proof. The balance equations of the Markov chain (I(t), S(t)) are given by (7)–
(9).
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λπ0,0 = μπ1,0, i = 0, k = 0, (7)

(λ + iμ)πi,0 = λπi−1,b−1 + (i + 1)μπi+1,0, i � 1, k = 0, (8)

(λ + iμ)πi,k = λπi,k−1 + (i + 1)μπi+1,k, 1 � k � b − 1. (9)

Here, we define the probability generating functions (PGF) Πk(z) (0 � k � b−1)
as follows:

Πk(z) =
∞∑

i=0

πi,kzi, 0 � k � b − 1. (10)

Multiplying (7)–(9) by zi, taking the sum over i ∈ Z, and rearranging the result,
we obtain the following simultaneous differential equations:

(μz − μ)Π ′
0(z) = −λΠ0(z) + λzΠb−1(z), k = 0, (11)

(μz − μ)Π ′
k(z) = −λΠk(z) + λΠk−1(z), 1 � k � b − 1. (12)

However, it is not easy to obtain the solution of the simultaneous differential
equations because the coefficients are not constant. Hence, we use the moment
generating function method [19]. Let I and S denote the number of busy servers
in the steady state, and the number of the waiting customers, respectively, we
define the factorial moments as follows:

m(k)
n = E

[
I(I − 1)(I − 2) . . . (I − n + 1)1l{S=k}

]
, n � 1,

m
(k)
0 =

∞∑

i=0

πi,k,

where 1l{A} is the indicator function. Moreover, we define the factorial moment
generating function (FMGF) as:

Mk(z) =
∞∑

n=0

m(k)
n

zn

n!
= Πk(z + 1). (13)

Using FMGF, we can rearrange (11) and (12) as the following simultaneous
differential equations.

μzM ′
0(z) = −λM0(z) + λ(1 + z)Mb−1(z), k = 0, (14)

μzM ′
k(z) = −λMk(z) + λMk−1(z), 1 � k � b − 1. (15)

Equating the coefficients of zn on both sides of (14) and (15) yield

(μn + λ)m(0)
n = λm(b−1)

n + λnm
(b−1)
n−1 , k = 0, (16)

(μn + λ)m(k)
n = λm(k−1)

n , 1 � k � b − 1. (17)
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Furthermore, the following equation obviously holds by substituting 0 into (11)
and (12):

m
(k)
0 =

∞∑

i=0

πi,k =
1
b
, 0 � k � b − 1. (18)

Therefore, we obtain

m(b−1)
n =

1
b

n∏

l=1

l

(
λ

μl + λ

)b

1 −
(

λ

μl + λ

)b
, k = b − 1, (19)

m(k)
n =

(
λ

μn + λ

)k+1 (
m(b−1)

n + nm
(b−1)
n−1

)

=
1
b

(
λ

μn + λ

)k+1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∏

l=1

l

(
λ

μl + λ

)b

1 −
(

λ

μl + λ

)b
+ n

n−1∏

l=1

l

(
λ

μl + λ

)b

1 −
(

λ

μl + λ

)b

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

0 � k � b − 2.
(20)

Moreover, substituting z → z − 1 into (13), we obtain

πi,k =
∞∑

n=i

(
n

i

)
m(k)

n

(−1)n−i

n!
=

1
i!

∞∑

n=0

m
(k)
n+i

(−1)n

n!
, (21)

The stationary distribution is given by (5) and (6).
It should be noted that (5) and (6) always hold by the ratio test for FMGF

as follows:
For k = b − 1,

lim
n→∞

∣∣∣∣∣
m

(b−1)
n+1 /(n + 1)!

m
(b−1)
n /n!

∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣∣∣∣∣

1
(n + 1)

(n + 1)
(

λ

μ(n + 1) + λ

)b

1 −
(

λ

μ(n + 1) + λ

)b

∣∣∣∣∣∣∣∣∣

= 0,

(22)
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and for k �= b − 1,

lim
n→∞

∣∣∣∣∣
m

(k)
n+1/(n + 1)!

m
(k)
n /n!

∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣∣∣∣∣

1

(n + 1)

(
λ

μ(n + 1) + λ

)k+1

(
λ

μn + λ

)k+1

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n + 1)

(
λ

μ(n + 1) + λ

)b

1 −
(

λ

μ(n + 1) + λ

)b
+

n(n + 1)

(
λ

μn + λ

)b

1 −
(

λ

μn + λ

)b

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣

= 0.

(23)
These results readily guarantee the convergent radius of the FMGF is ∞. ��
Remark 1. The stationary distribution of M/M(1)/∞ queue is identical to a
Poisson distribution of parameter ρ (= λ/μ) (i.e., the stationary distribution of
M/M/∞ queue).

Proof. We obtain the following formula for b = 1 by considering (4) and substi-
tuting b = 1 into (5).

pj = πj

=
1
j!

∞∑

n=0

n+j∏

l=1

⎛

⎜⎜⎝
l

(
λ

μl + λ

)

1 −
(

λ

μl + λ

)

⎞

⎟⎟⎠
(−1)n

n!

=
ρj

j!

∞∑

n=0

(−ρ)n

n!

=
ρj

j!
e−ρ.

(24)

��

3 Other Performance Measures for M/M(b)/∞ Queue

Additionally, we present some performance measures in the following theorems.
Let L, I, W , Lq and Wq denote the number of customers in the system, the
number of busy servers in the system, the sojourn time in the system, the number
of waiting customers, and the waiting time, at the steady state, respectively.

Theorem 2. The mean number of customers in the system in steady state E[L]
is given as follows:

E[L] =
b − 1

2
+

λ

μ
. (25)
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Proof. Using (4) and the factorial moments, we obtain the following formula
manipulation.

E[L] =
∞∑

j=0

pjj

=
b−1∑

k=0

∞∑

i=0

πi,k(ib + k)

=
b−1∑

k=0

(bm(k)
1 +

k

b
)

=
b − 1

2
+

(
λ

μ + λ

){
1 −

(
λ

μ + λ

)b−1
}

1 −
(

λ

μ + λ

) b
(
m

(b−1)
1 + m

(b−1)
0

)
+ bm

(b−1)
1

=
b − 1

2
+

λ

μ
.

(26)
��

Theorem 3. The variance for number of busy servers in the system in steady
state V(I) is given as follows:

V(I) =
λ

bμ

1

1 −
(

λ

μ + λ

)b
−

(
λ

bμ

)2

.
(27)

Proof. The first and second order moments for number of busy servers in the
system are given as follows:

E[I] =
λ

bμ
. (28)

E[I2] =
b−1∑

k=0

m
(k)
2 +

b−1∑

k=0

m
(k)
1

=
λ

bμ

1

1 −
(

λ

μ + λ

)b
.

(29)

Therefore, Theorem 3 holds.
��

Theorem 4. The mean sojourn time (the sum of the waiting time and the ser-
vice time) in steady state E[W ] is given as follows:

E[W ] =
b − 1
2λ

+
1
μ

. (30)
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Proof. Theorem 2 and Little’s law yield Theorem 4. ��
Theorem 5. The mean number of waiting customers in steady state E[Lq] is
given as follows:

E[Lq] =
b − 1

2
. (31)

Proof. Using (4) and the factorial moments, we obtain the following formula
manipulation.

E[Lq] =
b−1∑

k=0

∞∑

i=0

πi,kk

=
b−1∑

k=0

k

b

=
b − 1

2
.

(32)

��
Theorem 6. The mean waiting time in steady state E[Wq] is given as follows:

E[Wq] =
b − 1
2λ

. (33)

Proof. Theorem 5 and Little’s law yield Theorem 6. ��
Theorem 7. The distribution function of the waiting time in steady state Fq(t)
is given as follows:

Fq(t) =
1
b

+
1
b

b−2∑

k=0

(
1 −

b−k−2∑

n=0

e−λt (λt)n

n!

)
. (34)

Proof. The waiting time for a tagged customer who sees b−1 waiting customers
upon its arrival is 0 due to the infinite number of servers. In other words, a group
of customers is completed upon its arrival. On the other hand, the waiting time
for a tagged customer who sees less than b−1 waiting customers upon its arrival
follows Erlang distribution with parameter λ and phase which is derived by b
minus the position of the tagged customer. Additionally, due to PASTA, (35)
holds.

Fq(t) = P(Wq � t)

=
1
b

× 1 +
b−2∑

k=0

1
b

(
1 −

b−k−2∑

n=0

e−λt (λt)n

n!

)
.

(35)

��
Theorem 8. The distribution function of the sojourn time F (t) is given as
follows:
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For λ �= μ,

F (t) = 1 − e−μt −
b−2∑

k=0

1
b

(
b−k−2∑

n=0

μe−λtλnTn

)
, (36)

and Tn is explicitly given by

Tn =
1

(λ − μ)n+1

{
e(λ−μ)t −

n∑

k=0

{t(λ − μ)}k

k!

}
, n = 0, 1, 2, . . . , (37)

and for λ = μ,

F (t) =
1
b

b−1∑

k=0

(
1 −

b−k−1∑

n=0

e−λt (λt)n

n!

)
. (38)

Proof. The proof for λ �= μ is as follows. The sojourn time for a tagged customer
who sees b−1 waiting customers upon its arrival follows an exponential distribu-
tion of parameter μ. On the other hand, the sojourn time for a tagged customer
who sees less than b − 1 waiting customers upon its arrival is calculated by the
sum of the Erlang distribution derived in Theorem 6 and an exponential distri-
bution of parameter μ. Therefore, due to PASTA, we can obtain the following
formula manipulation.

F (t) = P(W � t)

=
1
b
(1 − e−μt) +

b−2∑

k=0

1
b

∫ t

0

(
1 −

b−k−2∑

n=0

e−λ(t−y) (λ(t − y))n

n!

)
μe−μydy

=
1
b
(1 − e−μt)

+
b−2∑

k=0

1
b

{∫ t

0

μe−μydy −
∫ t

0

(
b−k−2∑

n=0

μe−λ(t−y)−μy (λ(t − y))n

n!

)
dy

}

= 1 − e−μt −
b−2∑

k=0

1
b

(
b−k−2∑

n=0

μe−λtλn

n!

∫ t

0

e−(μ−λ)y(t − y)ndy

)
.

(39)
Defining In =

∫ t

0
e−(μ−λ)y(t − y)ndy, the following holds.

In =
∫ t

0

e−(μ−λ)y(t − y)ndy

=
∫ t

0

1
−(μ − λ)

(e−(μ−λ)y)′(t − y)ndy

=
tn

μ − λ
− n

μ − λ
In−1, n = 1, 2, . . . ,

(40)

where
I0 =

1
λ − μ

(e(λ−μ)t − 1). (41)
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Dividing (40) by n!, we obtain

In

n!
=

tn

n!(μ − λ)
− 1

μ − λ

In−1

(n − 1)!
, (42)

and by defining Tn =
In

n!
, we gain

Tn =
Tn−1

λ − μ
− tn

n!(λ − μ)
. (43)

From this equation and T0 = I0, we obtain (37).
The sojourn time distribution for λ = μ is obtained by adapting (35) as

F (t) =
1
b

× (1 − e−λt) +
b−2∑

k=0

1
b

(
1 −

b−k−1∑

n=0

e−λt (λt)n

n!

)
. (44)

��

4 Numerical Examples

In this section, we present some numerical examples for the stationary distribu-
tion of M/M(b)/∞ queue. It should be noted that the stationary distribution
(Theorem 1) contains infinite sum. That means that we have to use the approx-
imation for the infinite sum to conduct the numerical experiments. Therefore,
it is important to confirm the validity of the results compared to the simulation
experiments.

In our numerical experiments, we calculate (45) and (46). Besides, we define
a parameter ε (we set ε = 10−16 in this paper), and obtain the approximation
value of the stationary distribution which satisfies (47).

π
(s)
i,b−1 =

1
i!

s∑

n=0

1
b

n+i∏

l=1

⎛

⎜⎜⎜⎝

l

(
λ

μl + λ

)b

1 −
(

λ

μl + λ

)b

⎞

⎟⎟⎟⎠
(−1)n

n!
, k = b − 1, (45)

π
(s)
i,k =

1

i!

s∑

n=0

1

b

(
λ

μ(n + i) + λ

)k+1

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n+i∏

l=1

⎛

⎜⎜⎜⎝

l

(
λ

μl + λ

)b

1−
(

λ

μl + λ

)b

⎞

⎟⎟⎟⎠ + (n + i)

n+i−1∏

l=1

⎛

⎜⎜⎜⎝

l

(
λ

μl + λ

)b

1−
(

λ

μl + λ

)b

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(−1)n

n!
,

0 � k � b − 2, (46)
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πi,k ≈ π
(s∗)
i,k , s∗ := inf{s ∈ Z| |π(s)

i,k − π
(s−1)
i,k | < ε}. (47)

Figure 2 and Fig. 3 show the results of the calculation and the simulation
for the stationary distribution of M/M(b)/∞ queue. By these results, we can
consider the approximation of the stationary distribution (i.e., (47)) is almost
valid.

Fig. 2. The stationary distribution of M/M(b)/∞ queue (λ = 100, μ = 30, b = 3).

Fig. 3. The stationary distribution of M/M(b)/∞ queue (λ = 100, μ = 30, b = 6).
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5 Conclusion

In this paper, we have considered M/M(b)/∞ queue and have presented the
analysis of the stationary distribution. Moreover, we have derived some per-
formance measures such as the expected sojourn time. Through the numerical
experiments, we have confirmed the results of the analysis generally match the
results of simulation. As potential extensions, we are planning to conduct time-
dependent analysis and also discuss M/G(b)/∞ queue.
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Abstract. We consider a stochastic bipartite matching model consist-
ing of multi-class customers and multi-class servers. Compatibility con-
straints between the customer and server classes are described by a bipar-
tite graph. Each time slot, exactly one customer and one server arrive.
The incoming customer (resp. server) is matched with the earliest arrived
server (resp. customer) with a class that is compatible with its own class,
if there is any, in which case the matched customer-server couple immedi-
ately leaves the system; otherwise, the incoming customer (resp. server)
waits in the system until it is matched. Contrary to classical queue-
ing models, both customers and servers may have to wait, so that their
roles are interchangeable. While (the process underlying) this model was
already known to have a product-form stationary distribution, this paper
derives a new compact and manageable expression for the normalization
constant of this distribution, as well as for the waiting probability and
mean waiting time of customers and servers. We also provide a numerical
example and make some important observations.

Keywords: Bipartite matching models · Order-independent queues ·
Performance analysis · Product-form stationary distribution

1 Introduction

Stochastic matching models typically consist of items of multiple classes that
arrive at random instants to be matched with items of other classes. In the same
spirit as classical (static) matching models, stochastic models encode compati-
bility constraints between items using a graph on the classes. This allows for the
modeling of many matching applications that are stochastic in nature, such as
organ transplants where not every patient is compatible with every donor organ.

In the literature on stochastic matching, a rough distinction is made between
bipartite and non-bipartite models. In a bipartite matching model, the graph that
describes compatibility relations between item classes is bipartite. In this way,
item classes can be divided into two groups called customers and servers, so
that customers (resp. servers) cannot be matched with one another. This is the
c© Springer Nature Switzerland AG 2021
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1 2 3 4

A B C D E

Customers

Servers

(a) Compatibility graph

State c = (1, 2, 1)

1 2 1

State d = (D,D,D)

D D D

2

C

New customer

New server

(b) First-come-first-matched policy

Fig. 1. A stochastic bipartite matching model with a set I = {1, 2, 3, 4} of customer
classes and a set K = {A, B, C, D, E} of server classes.

variant that we consider in this paper. It is discrete-time in nature and assumes
that, every time unit, exactly one customer and one server arrive. The classes
of incoming customers and servers are drawn independently from each other,
and they are also independent and identically distributed across time units. Fol-
lowing [7,8], we adopt the common first-come-first-matched policy, whereby an
arriving customer (resp. server) is matched with the earliest arriving compat-
ible server (resp. customer). A toy example is shown in Fig. 1. This model is
equivalent to the first-come-first-served infinite bipartite matching model, stud-
ied in [1,2,8], which can be used to describe the evolution of waiting lists in
public-housing programs and adoption agencies for instance [8].

In contrast, in a stochastic non-bipartite matching model, item classes can-
not be divided into two groups because the compatibility graph is non-bipartite.
Another notable difference is that only one item arrives at each time slot, the
classes of successive items being drawn independently from the same distribu-
tion. While [15] derived stability conditions for this non-bipartite model, [16]
showed that the stationary distribution of the process underlying this model has
a product form. The recent work [10] built on the latter result to derive closed-
form expressions for several performance metrics, by also exploiting a connection
with order-independent (loss) queues [5,14]. The present work seeks to provide
a similar analysis for the above-mentioned bipartite model.

More specifically, we derive closed-form expressions for several performance
metrics in the stochastic bipartite model studied in [1]. While earlier studies [3,8]
were skeptical about the tractability of the stationary distribution corresponding
to this variant, [1] showed that this stationary distribution in fact possesses
the product-form property, thus paving the way for an analysis similar to that
of [10]. That is, we use techniques from order-independent (loss) queues [5,14]
and other product-form models with compatibility constraints (cf. [12] for a
recent overview) to analyze the stochastic bipartite matching model.

The rest of this paper is structured as follows. In Sect. 2, we introduce the
model and cast it in terms of a framework commonly used for analysis of product-
form models. We then provide a performance evaluation of this model. More
specifically, we first derive an alternative closed-form expression for the normal-
ization constant of the stationary distribution. While the computational com-
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plexity of this expression is prohibitive for instances with many classes (as was
the case for the expression derived in [1]), it draws the relation with product-form
queues and paves the way for heavy-traffic analysis. Furthermore, it allows us to
directly derive recursive expressions for several other performance metrics, such
as the probability that incoming customers or servers have to wait and the mean
number of customers and servers that are waiting. To the best of the authors’
knowledge, this paper is the first to provide expressions for these performance
metrics. This analysis is presented in Sect. 3. Finally, Sect. 4 numerically studies
a model instance and makes some important observations.

2 Model and Preliminary Results

In Sect. 2.1, we describe a stochastic bipartite matching model in which items of
two groups, called customers and servers, arrive randomly and are matched with
one another. As mentioned earlier, this model is analogous to that introduced
in [8] and further studied in [1–3,7]. Section 2.2 focuses on a discrete-time Markov
chain that describes the evolution of this model. Finally, Sect. 2.3 recalls several
results that are useful for the analysis of Sect. 3.

2.1 Model and Notation

Bipartite Compatibility Graph. Consider a finite set I of I customer classes and
a finite set K of K server classes. Also consider a connected bipartite graph on
the sets I and K. For each i ∈ I and k ∈ K, we write i ∼ k if there is an edge
between nodes i and k in this graph, and i � k otherwise. This bipartite graph
is called the compatibility graph of the model. It describes the compatibility
relations between customers and servers in the sense that, for each i ∈ I and
k ∈ K, a class-i customer and a class-k server can be matched with one another if
and only if there is an edge between the corresponding nodes in the compatibility
graph. An example is shown in Fig. 1a. To simplify reading, we consistently use
the letters i, j ∈ I for customer classes and k, � ∈ K for server classes.

Discrete-Time Stochastic Matching. Unmatched customers and servers are
stored in two separate queues in their arrival order. In Fig. 1b, items are ordered
from the oldest on the left to the newest on the right, and each item is labeled
by its class. The two queues are initially empty. Time is slotted and, during
each time slot, exactly one customer and exactly one server arrive. The incom-
ing customer belongs to class i with probability λi > 0, for each i ∈ I, and
the incoming server belongs to class k with probability μk > 0 for each k ∈ K,
with

∑
i∈I λi =

∑
k∈K μk = 1. The classes of incoming customers and servers are

independent within and across time slots. The matching policy, called first-come-
first-matched, consists of applying the following four steps upon each arrival:

1. Match the incoming customer with the compatible unmatched server that has
been in the queue the longest, if any.
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2. Match the incoming server with the compatible unmatched customer that has
been in the queue the longest, if any.

3. If neither the incoming customer nor the incoming server can be matched
with unmatched items, match them together if they are compatible.

4. If an incoming customer and/or incoming server remains unmatched after the
previous steps, it is appended to the back of its respective queue.

When two items are matched with one another, they immediately disappear. In
the example of Fig. 1b, the couple (2, C) arrives while the sequence of unmatched
customer and server classes are (1, 2, 1) and (D,D,D). According to the com-
patibility graph of Fig. 1a, class C is compatible with class 2 but not with
class 1. Therefore, the incoming class-C server is matched with the second oldest
unmatched customer, of class 2. The incoming class-2 customer is not matched
with any present item (even if it is compatible with the incoming class-C server),
therefore it is appended to the queue of unmatched customers. After this tran-
sition, the sequence of unmatched customer classes becomes (1, 1, 2), while the
sequence of unmatched server classes is unchanged.

Remark 1. If we would consider the random sequences of classes of incoming
customers and servers, we would retrieve the state descriptor of the infinite
bipartite matching model introduced in [8] and studied in [1–3,7]. For analysis
purposes, we however adopted the above-introduced state descriptor consisting
of the sequences of (waiting) unmatched customers and servers, corresponding
to the natural pair-by-pair FCFS Markov chain introduced in [1, Sect. 2].

Set Notation. The following notation will be useful. Given two sets A and B, we
write A ⊆ B if A is a subset of B and A � B if A is a proper subset of B. For
each i ∈ I, we let Ki ⊆ K denote the set of server classes that can be matched
with class-i customers. Similarly, for each k ∈ K, we let Ik ⊆ I denote the set
of customer classes that can be matched with class-k servers. For each i ∈ I
and k ∈ K, the statements i ∼ k, i ∈ Ik, and k ∈ Ki are equivalent. In Fig. 1a
for instance, we have K1 = {A,B}, K2 = {B,C}, K3 = {C,D}, K4 = {D,E}
IA = {1}, IB = {1, 2}, IC = {2, 3}, ID = {3, 4}, and IE = {4}. With a slight
abuse of notation, for each A ⊆ I, we let λ(A) =

∑
i∈A λi denote the probability

that the class of an incoming customer belongs to A and K(A) =
⋃

i∈A Ki the
set of server classes that are compatible with customer classes in A. Similarly,
for each A ⊆ K, we write μ(A) =

∑
k∈A μk and I(A) =

⋃
k∈A Ik. In particular,

we have λ(I) = μ(K) = 1, K(I) = K, and I(K) = I.

2.2 Discrete-Time Markov Chain

We now consider a Markov chain that describes the evolution of the system.

System State. We consider the couple (c, d), where c = (c1, . . . , cn) ∈ I∗

is the sequence of unmatched customer classes, ordered by arrival, and d =
(d1, . . . , dn) ∈ K∗ is the sequence of unmatched server classes, ordered by arrival.
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In particular, c1 is the class of the oldest unmatched customer, if any, and d1
is the class of the oldest unmatched server, if any. The notation I∗ (resp. K∗)
refers to the Kleene star on I (resp. K), that is, the set of sequences of elements
in I (resp. K) with a length that is finite but arbitrarily large [11, Chapter 1,
Sect. 2]. As we will see later, the matching policy guarantees that the numbers
of unmatched customers and servers are always equal to each other, and con-
sequently the integer n will be called the length of the state. The empty state,
with n = 0, is denoted by ∅.

The evolution of this state over time defines a (discrete-time) Markov chain
that is further detailed below. For each sequence c = (c1, . . . , cn) ∈ I∗, we let
|c| = n denote the length of sequence c, |c|i the number of occurrences of class i
in sequence c, for each i ∈ I, and, with a slight abuse of notation, {c1, . . . , cn}
the set of classes that appear in sequence c (irrespective of their multiplicity).
Analogous notation is introduced for each sequence d = (d1, . . . , dn) ∈ K∗.

Transitions. Each transition of the Markov chain is triggered by the arrival of
a customer-server couple. We distinguish five types of transitions depending on
their impact on the queues of unmatched customers and servers:

−/− The incoming customer is matched with an unmatched server and the
incoming server is matched with an unmatched customer.

±/= The incoming customer cannot be matched with any present server but
the incoming server is matched with an unmatched customer.

=/± The incoming customer is matched with a present server but the incoming
server cannot be matched with any present customer.

=/= Neither the incoming customer nor the incoming server can be matched
with an unmatched item, but they are matched with one another.

+/+ Neither the incoming customer nor the incoming server can be matched
with an unmatched item, and they cannot be matched with one another.

Labels indicate the impact of the corresponding transition. For instance, a tran-
sition −/− leads to a deletion (−) in the customer queue and a deletion (−)
in the server queue, while a transition ±/= leads to a replacement (±) in the
customer queue and no modification in the server queue (=). Transitions −/−
reduce the lengths of both queues by one, transitions ±/=, =/±, and =/= leave
the queue lengths unchanged, and transitions +/+ increase the lengths of both
queues by one. Note that the numbers of unmatched customers and servers are
always equal to each other. We omit the transition probabilities, as we will rely
on an existing result giving the stationary distribution of the Markov chain.

State Space. The greediness of the matching policy prevents the queues from con-
taining an unmatched customer and an unmatched server that are compatible.
Therefore, the state space of the Markov chain is the subset of I∗ × K∗ given by

Π =
∞⋃

n=0

{(c, d) ∈ In × Kn : cp � dq for each p, q ∈ {1, . . . , n}} .



430 C. Comte and J.-P. Dorsman

The Markov chain is irreducible. Indeed, using the facts that the compatibility
graph is connected, that λi > 0 for each i ∈ I, and that μk > 0 for each k ∈ K,
we can show that the Markov chain can go from any state (c, d) ∈ Π to any
state (c′, d′) ∈ Π via state ∅ in |c| + |c′| = |d| + |d′| jumps.

Remark 2. We can also consider the following continuous-time variant of the
model introduced in Sect. 2.1. Instead of assuming that time is slotted, we can
assume that customer-server couples arrive according to a Poisson process with
unit rate. If the class of the incoming customers and servers are drawn inde-
pendently at random, according to the probabilities λi for i ∈ I and μk for
k ∈ K, then the rate diagram of the continuous-time Markov chain describing
the evolution of the sequences of unmatched items is identical to the transition
diagram of the Markov chain introduced above. Consequently, the results recalled
in Sect. 2.3 and those derived in Sect. 3 can be applied without any modification
to this continuous-time Markov chain.

2.3 Stability Conditions and Stationary Distribution

For purposes of later analysis, we now state the following theorem, which was
proved in [3, Theorem 3] and [1, Lemma 2 and Theorems 2 and 8].

Theorem 1. The stationary measures of the Markov chain associated with the
system state are of the form

π(c, d) = π(∅)
n∏

p=1

λcp

μ(K({c1, . . . , cp}))
μdp

λ(I({d1, . . . , dp}))
, (c, d) ∈ Π. (1)

The system is stable, in the sense that this Markov chain is ergodic, if and only
if one of the following two equivalent conditions is satisfied:

λ(A) < μ(K(A)) for each non-empty set A � I, (2)
μ(A) < λ(I(A)) for each non-empty set A � K. (3)

In this case, the stationary distribution of the Markov chain associated with the
system state is given by (1), with the normalization constant

π(∅) =

⎛

⎝
∑

(c,d)∈Π

n∏

p=1

λcp

μ(K({c1, . . . , cp}))
μdp

λ(I({d1, . . . , dp}))

⎞

⎠

−1

. (4)

The states of the two queues are not independent in general because their
lengths are equal. However, (1) shows that these two queue states are condition-
ally independent given the number n of unmatched items. This property will
contribute to simplify the analysis in Sect. 3.

Remark 3. The stationary measures (1) seem identical to the stationary mea-
sures associated with another queueing model, called an FCFS-ALIS parallel
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queueing model [2,4]. The only (crucial) difference lies in the definition of the
state space of the corresponding Markov chain. In particular, our model imposes
that the lengths of the two queues are equal to each other. In contrast, in the
FCFS-ALIS parallel queueing model, there is an upper bound on the number
of unmatched servers, while the number of customers can be arbitrarily large.
This difference significantly changes the analysis. The analysis that we propose
in Sect. 3 is based on the resemblance with another queueing model, called a
multi-server queue for simplicity, that was introduced in [9,13].

3 Performance Evaluation by State Aggregation

We now assume that the stability conditions (2)–(3) are satisfied, and we let π
denote the stationary distribution, recalled in Theorem 1, of the Markov chain
of Sect. 2.2. Sections 3.2, 3.3 and 3.4 provide closed-form expressions for several
performance metrics, based on a method explained in Sect. 3.1. The time com-
plexity to implement these formulas and the relation with related works [1,3]
are discussed in Sect. 3.5. The reader who is not interested in understanding the
proofs can move directly to Sect. 3.2.

3.1 Partition of the State Space

A naive application of (4) does not allow calculation of the normalization con-
stant, nor any other long-run performance metric as a result, because the state-
space Π is infinite. To circumvent this, we define a partition of the state space.

Partition of the State Space Π. Let I denote the family of sets A ⊆ I∪K such that
A is an independent set of the compatibility graph and the sets A∩I and A∩K
are non-empty. Also let I0 = I ∪ {∅}. For each A ∈ I0, we let ΠA denote the set
of couples (c, d) ∈ Π such that {c1, . . . , cn} = A ∩ I and {d1, . . . , dn} = A ∩ K;
in other words, ΠA is the set of states such that the set of unmatched classes is
A. We can show that {ΠA,A ∈ I0} forms a partition of Π, and in particular

Π =
⋃

A∈I0

ΠA.

The first cornerstone of our analysis is the observation that, for each (c, d) ∈ ΠA,
we have μ(K({c1, . . . , cn})) = μ(K(A ∩ I)) and λ(I({d1, . . . , dn})) = λ(I(A ∩ K)).
In anticipation of Sect. 3.2, for each A ∈ I, we let

Δ(A) = μ(K(A ∩ I))λ(I(A ∩ K)) − λ(A ∩ I)μ(A ∩ K). (5)

One can verify that Δ(A) > 0 for each A ∈ I if and only if the stability con-
ditions (2)–(3) are satisfied. The product λ(A ∩ I)μ(A ∩ K) is the probability
that an incoming client-server couple has its classes in A, while the product
μ(K(A∩I))λ(I(A∩K)) is the probability that an incoming client-server couple
can be matched with clients and servers whose classes belong to A. By anal-
ogy with the queueing models in [10,13], the former product can be seen as the
“arrival rate” of the classes in A, while the latter product can be seen as the
maximal “departure rate” of these classes.
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Partition of the Subsets ΠA. The second cornerstone of the analysis is a partition
of the set ΠA for each A ∈ I. More specifically, for each A ∈ I, we have

ΠA =
⋃

i∈A∩I

⋃

k∈A∩K

(
ΠA ∪ ΠA\{i} ∪ ΠA\{k} ∪ ΠA\{i,k}

) · (i, k), (6)

where S · (i, k) = {((c1, . . . , cn, i), (d1, . . . , dn, k)) : ((c1, . . . , cn), (d1, . . . , dn)) ∈
S} for each S ⊆ Π, i ∈ I, and k ∈ K, and the unions are disjoint. Indeed,
for each (c, d) ∈ ΠA, the sequence c = (c1, . . . , cn) can be divided into a prefix
(c1, . . . , cn−1) and a suffix i = cn; the suffix can take any value in A ∩ I, while the
prefix satisfies {c1, . . . , cn−1} = A ∩ I or {c1, . . . , cn−1} = (A\{i}) ∩ I. Similarly,
for each (c, d) ∈ ΠA, the sequence d = (d1, . . . , dn) can be divided into a prefix
(d1, . . . , dn−1) and a prefix k = dn; the prefix can take any value in A∩K, while
the prefix satisfies {d1, . . . , dn−1} = A ∩ K or {d1, . . . , dn−1} = (A\{k}) ∩ K.

3.2 Normalization Constant

The first performance metric that we consider is the probability that the system
is empty. According to (4), this is also the normalization constant. With a slight
abuse of notation, we first let

π(A) =
∑

(c,d)∈ΠA

π(c, d), A ∈ I0.

To simplify notation, we adopt the convention that π(A) = 0 if A /∈ I0. The
following proposition, combined with the normalization equation

∑
A∈I0

π(A) =
1, allows us to calculate the probability π(∅) = π(∅) that the system is empty.

Proposition 1. The stationary distribution of the set of unmatched item classes
satisfies the recursion

Δ(A)π(A) = μ(A ∩ K)
∑

i∈A∩I
λiπ(A\{i}) + λ(A ∩ I)

∑

k∈A∩K
μkπ(A\{k})

+
∑

i∈A∩I

∑

k∈A∩K
λiμkπ(A\{i, k}), A ∈ I. (7)

Proof. Let A ∈ I. Substituting (1) into the definition of π(A) yields

π(A) =
∑

(c,d)∈ΠA

n∏

p=1

λcp

μ(K({c1, . . . , cp}))
μdp

λ(I({d1, . . . , dp}))
,

=
∑

(c,d)∈ΠA

λcn

μ(K(A ∩ I))
μdn

λ(I(A ∩ K))
π((c1, . . . , cn−1), (d1, . . . , dn−1)).

Then, by applying (6) and making a change of variable, we obtain

μ(K(A ∩ I))λ(I(A ∩ K))π(A)

=
∑

i∈A∩I

∑

k∈A∩K
λiμk

(
π(A) + π(A\{i}) + π(A\{k}) + π(A\{i, k})

)
. (8)

The result follows by rearranging the terms.
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3.3 Waiting Probability

The second performance metric that we consider is the waiting probability, that
is, the probability that an item cannot be matched with another item upon
arrival. The waiting probabilities of the customers and servers of each class can
again be calculated using Proposition 1, as they are given by

ωi =
∑

A∈I0:A∩Ki=∅

⎛

⎝1 −
∑

k∈Ki\K(A∩I)

μk

⎞

⎠ π(A), i ∈ I,

ωk =
∑

A∈I0:A∩Ik=∅

⎛

⎝1 −
∑

i∈Ik\I(A∩K)

λi

⎞

⎠ π(A), k ∈ K.

If we consider the continuous-time variant described in Remark 2, these equa-
tions follow directly from the PASTA property. That this result also holds for
the discrete-time variant of the model follows from the fact that the transition
diagrams and stationary distributions of both models are identical.

Corollary 1 below follows from Proposition 1. It shows that the probability
that both the incoming customer and the incoming server can be matched with
present items (corresponding to transitions −/−) is equal to the probability that
both the incoming customer and the incoming server have to wait (corresponding
to transitions +/+). The proof is given in the appendix.

Corollary 1. The following equality is satisfied:
∑

(i,k)∈I×K
λiμk

∑

A∈I:i∈I(A∩K),
k∈K(A∩I)

π(A) =
∑

(i,k)∈I×K:
i�k

λiμk

∑

A∈I0:i/∈I(A∩K),
k/∈K(A∩I)

π(A). (9)

This corollary means that, in the long run, the rate at which the queue lengths
increase is equal to the rate at which the queue lengths decrease. Equation (9) is
therefore satisfied by every matching policy that makes the system stable. This
equation also has the following graphical interpretation. Consider a busy sequence
of the system, consisting of a sequence of customer classes and a sequence of
server classes that arrive between two consecutive instants when both queues
are empty. We construct a bipartite graph, whose nodes are the elements of
these two sequences, by adding an edge between customers and servers that
arrive at the same time or are matched with one another. An example is shown
in Fig. 2 for the compatibility graph of Fig. 1a. If we ignore the customer-server
couples that arrive at the same time and are also matched with one another, we
obtain a 2-regular graph, that is, a graph where all nodes have degree two. Such
a graph consists of one or more disconnected cycles. We define a left (resp. right)
extremity as a vertical edge adjacent only to edges moving to the right (resp.
left); such an edge represents a +/+ (resp. −/−) transition. One can verify that
each cycle contains as many left extremities as right extremities. In the example
of Fig. 2, after eliminating the couple 1–A, we obtain two disconnected cycles.
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2 3 4 1 2 1 4

A E D D B A C

Fig. 2. A busy sequence associated with the compatibility graph of Fig. 1a. The arrival
sequences are 2, 3, 4, 1, 2, 1, 4 and A, E, D, D, B, A, C. Each component of the
corresponding bipartite graph is depicted with a different line style.

The cycle depicted with a solid line has one left extremity (2–A) and one right
extremity (4–C). The cycle depicted with a dashed line also has one left extremity
(3–E) and one right extremity (4–C). Since stability means that the mean length
of a busy sequence is finite, combining this observation with classical results from
renewal theory gives an alternative proof that (9) is satisfied by every matching
policy that makes the system stable.

3.4 Mean Number of Unmatched Items and Mean Waiting Time

We now turn to the mean number of unmatched items. Proposition 2 gives
a closed-form expression for the mean number of unmatched customers of each
class. Proposition 3 gives a simpler expression for the mean number of unmatched
customers (all classes included). The proofs are similar to that of Proposition 1,
with a few technical complications, and are deferred to the appendix. Analogous
results can be obtained for the servers by using the model symmetry.

Proposition 2. For each i ∈ I, the mean number of unmatched class-i
customers is Li =

∑
A∈I0

�i(A), where �i(A)/π(A) is the mean number of
unmatched class-i customers given that the set of unmatched classes is A, and
satisfies the recursion

Δ(A)�i(A) = λiμ(A ∩ K) (π(A) + π(A\{i}))

+ λi

∑

k∈A∩K
μk (π(A\{k}) + π(A\{i, k}))

+ μ(A ∩ K)
∑

j∈A
λj�i(A\{j}) + λ(A ∩ I)

∑

k∈A∩K
μk�i(A\{k})

+
∑

j∈A

∑

k∈A∩K
λjμk�i(A\{j, k}), (10)

for each A ∈ I such that i ∈ A, with the base case �i(A) = 0 if i /∈ A and the
convention that �i(A) = 0 if A /∈ I0.

Proposition 3. The mean number of unmatched customers is LI =∑
A∈I0

�I(A), where �I(A)/π(A) is the mean number of unmatched customers
given that the set of unmatched classes is A, and satisfies the recursion

Δ(A)�I(A) = μ(K(A ∩ I))λ(I(A ∩ K))π(A)
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+ μ(A ∩ K)
∑

i∈A∩I
λi�I(A\{i}) + λ(A ∩ I)

∑

k∈A∩K
μk�I(A\{k})

+
∑

i∈A∩I

∑

k∈A∩K
λiμk�I(A\{i, k}). (11)

for each A ∈ I, with the base case �I(∅) = 0 and the convention that �I(A) = 0
for each A /∈ I0.

By Little’s law, the mean waiting time of class-i customers is Li/λi, for each
i ∈ I, and the mean waiting time of customers (all classes included) is L. By
following the same approach as [10, Propositions 9 and 10], we can derive, for
each class, closed-form expressions for the distribution transforms of the number
of unmatched items and waiting time. In the interest of space, and to avoid
complicated notation, these results are omitted.

3.5 Time Complexity and Related Work

To conclude Sect. 3, we briefly discuss the merit of our approach compared to
the expression derived in [3, Theorem 3] and rederived in [1, Theorem 7] for the
normalization constant (equal to the inverse of the probability that the system
is empty). This approach relies on a Markov chain called the server-by-server
FCFS augmented matching process in [1, Sect. 5.4].

Flexibility. The first merit of our approach is that it can be almost straightfor-
wardly applied to derive other relevant performance metrics. Sections 3.3 and 3.4
provide two examples: the expression of the waiting probability is a side-result
of Proposition 1, while the mean waiting time follows by a derivation along
the same lines. Performance metrics that can be calculated in a similar fashion
include the variance of the stationary number of unmatched items of each class,
the mean length of a busy sequence, and the fractions of transitions of types
−/−, ±/=, =/±, =/=, and +/+. Our approach may also be adapted to derive
an alternative expression for the matching rates calculated in [3, Sect. 3]. Indeed,
upon applying the PASTA property, it suffices to calculate the stationary distri-
bution of the order of first occurrence of unmatched classes in the queues (rather
than just the set of unmatched classes); this distribution can be evaluated by
considering a refinement of the partition introduced in Sect. 3.1.

Time Complexity. Compared to the formula of [3, Theorem 3], our method leads
to a lower time complexity if the number of independent sets in the compatibility
graph is smaller than the cardinalities of the power sets of the sets I and K. This
is the case, for instance, in d-regular graphs, where the number of independent
sets is at most (2d+1 − 1)(I+K)/2d [18]. To illustrate this, let us first recall how
to compute the probability that the system is empty using Proposition 1. The
idea is to first apply (7) recursively with the base case π(∅) = 1, and then
derive the value of π(∅) by applying the normalization equation. For each A ∈ I,
assuming that the values of π(A\{i}), π(A\{k}), and π(A\{i, k}) are known for
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each i ∈ A ∩ I and k ∈ A ∩ K, evaluating π(A) using (7) requires O(I · K)
operations, where I is the number of customer classes and K is the number of
server classes. The time complexity to evaluate the probability that the system
is empty is therefore given by O(T + N · I · K), where N is the number of
independent sets in the compatibility graph and T is the time complexity to
enumerate all maximal independent sets. The result of [17] implies that the
time complexity to enumerate all maximal independent sets in the (bipartite)
compatibility graph O((I + K) · I · K · M), where M is the number of maximal
independent sets. Overall, the time complexity to evaluate the normalization
constant using Proposition 1 is O(I · K · ((I + K) · M + N)).

In comparison, the time complexity to evaluate the normalization constant
using [3, Theorem 3] is O((I + K) · 2min(I,K)) if we implement these formulas
recursively, in a similar way as in [6]. Our method thus leads to a lower time
complexity if the number of independent sets of the compatibility graph is small.

4 Numerical Evaluation

To illustrate our results, we apply the formulas of Sect. 3 to the toy example of
Fig. 1a. The arrival probabilities are chosen as follows: for any ρ ∈ (0, 1),

λ1 = λ2 = λ3 = λ4 =
1
4
, μA =

ρ

4
, μB = μC = μD =

1
4
, μE =

1 − ρ

4
. (12)

Figure 3 shows several performance metrics. The lines are plotted using the
results of Sect. 3. To verify these results, we plotted marks representing simulated
values based on averaging the results of 20 discrete-event simulation runs, each
consisting of 106 transitions after a warm-up period of 106 transitions. The stan-
dard deviation of the simulated waiting times (resp. probabilities) never exceeded
1.9 (resp. 0.008) per experiment, validating the reliability of the results.

Due to the parameter settings, performance is symmetrical around ρ = 1
2 .

Figure 3a and 3b show that classes 1, 2, 3, C, D, and E become unstable, in the
sense that their mean waiting time tends to infinity, as ρ ↓ 0. This is confirmed
by observing that Δ(A) ↓ 0 for A ∈ {{4, A}, {4, A,B}, {4, A,B,C}, {3, 4, A},
{3, 4, A,B}, {2, 3, 4, A}} when ρ ↓ 0. We conjecture that this limiting regime can
be studied by adapting the heavy-traffic analysis of [10, Section 6.2], although
the behavior is different due to the concurrent arrivals of customers and servers.

Even if classes 1, 2, 3, C, D, and E all become unstable as ρ ↓ 0, we can distin-
guish two qualitatively-different behaviors: the waiting probabilities of classes 1
and E tend to one, while for classes 2, 3, C, and D the limit is strictly less than
one. This difference lies in the fact that the former classes have degree one in
the compatibility graph, while the latter have degree two. Especially class C is
intriguing, as the monotonicity of its waiting probability and mean waiting time
are reversed, and would be worth further investigation.

Figure 3c shows that the probabilities of transitions −/− and +/+ are equal
to each other (as announced by Corollary 1) and are approximately constant. The
probabilities of transitions ±/=, =/±, and =/=, which impact the imbalance
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(a) Customer-oriented performance metrics
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(b) Server-oriented performance metrics
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(c) Transition probabilities

Fig. 3. Numerical results associated with the graph of Fig. 1a. The abscissa is the
parameter ρ defined in (12).

between classes but not the total queue lengths, vary with ρ. In particular, the
probability of transitions =/= is maximal when ρ = 1

2 , which may explain why
ρ = 1

2 minimizes the average waiting probability and mean waiting time.

Appendix: Proofs of the Results of Sect. 3

Proof of Corollary 1. Summing (8) over all A ∈ I and rearranging the sum sym-
bols yields

∑

(i,k)∈I×K
λiμk

∑

A∈I:i∈I(A∩K),
k∈K(A∩I)

π(A)

=
∑

(i,k)∈I×K:
i�k

λiμk

∑

A∈I:
i∈A,k∈A

(
π(A) + π(A\{i}) + π(A\{k}) + π(A\{i, k})

)
. (13)
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The left-hand side of this equation is the left-hand side of (9). The right-hand
side can be rewritten by making changes of variables. For instance, for each i ∈ I
and k ∈ K such that i � k, replacing A with A\{i, k} in the last sum yields

∑

A∈I:i∈A,k∈A
π(A\{i, k}) =

∑

A⊆I∪K:i/∈A,k/∈A,
A∪{i,k}∈I

π(A) =
∑

A∈I0:i/∈A,k/∈A,
i/∈I(A∩K),k/∈K(A∩I)

π(A).

The second equality is true only because i � k. By applying changes of variables
to the other terms, we obtain that the right-hand side of (13) is equal to

∑

(i,k)∈I×K:
i�k

λiμk

(
∑

A∈I0:i∈I,k∈A,
i/∈I(A∩K),k/∈K(A∩I)

π(A) +
∑

A∈I0:i/∈I,k∈A,
i/∈I(A∩K),k/∈K(A∩I)

π(A)

+
∑

A∈I0:i∈I,k/∈A,
i/∈I(A∩K),k/∈K(A∩I)

π(A) +
∑

A∈I0:i/∈A,k/∈A,
i/∈I(A∩K),k/∈K(A∩I)

π(A)

)

=
∑

(i,k)∈I×K:i�k

λiμk

∑

A∈I0:i/∈I(A∩K),k/∈K(A∩I)

π(A).

Proof of Proposition 2. Let i ∈ I. We have Li =
∑

A∈I0
�i(A), where

�i(A) =
∑

(c,d)∈ΠA

|c|iπ(c, d), A ∈ I0.

Let A ∈ I. If i /∈ A, we have directly �i(A) = 0 because |c|i = 0 for each
(c, d) ∈ ΠA. Now assume that i ∈ A (so that in particular A is non-empty). The
method is similar to the proof of Proposition 1. First, by applying (1), we have

�i(A) =
∑

(c,d)∈ΠA

|c|i λcn

μ(K(A ∩ I))
μdn

λ(I(A ∩ K))
π((c1, . . . , cn−1), (d1, . . . , dn−1)).

Then applying (6) and doing a change of variable yields

μ(K(A ∩ I))λ(I(A ∩ K))�i(A)

= λi

∑

k∈A∩K
μk

( ∑

(c,d)∈ΠA

(|c|i + 1)π(c, d) +
∑

(c,d)∈ΠA\{i}

(0 + 1)π(c, d)

+
∑

(c,d)∈ΠA\{k}

(|c|i + 1)π(c, d) +
∑

(c,d)∈ΠA\{i,k}

(0 + 1)π(c, d)

)
,

+
∑

j∈(A\{i})∩I

∑

k∈A∩K
λjμk

( ∑

(c,d)∈ΠA

|c|iπ(c, d) +
∑

(c,d)∈ΠA\{j}

|c|iπ(c, d)

+
∑

(c,d)∈ΠA\{k}

|c|iπ(c, d) +
∑

(c,d)∈ΠA\{j,k}

|c|iπ(c, d)

)
,
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= λi

∑

k∈A∩K
μk (�i(A) + π(A) + π(A\{i}) + �i(A\{k}) + π(A\{k}) + π(A\{i, k}))

+
∑

j∈(A\{i})∩I

∑

k∈A∩K
λjμk (�i(A) + �i(A\{j}) + �i(A\{k}) + �i(A\{j, k})) .

The result follows by rearranging the terms.

Proof of Proposition 3. Equation (11) follows by summing (10) over all i ∈ I∩A
and simplifying the result using (8).
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Abstract. In this paper, we present a diffusion limit for the time-
dependent distribution of the number of customers in the orbit for a tan-
dem queueing system with one orbit, Poisson arrival process of incoming
calls and two sequentially connected servers using a characteristic func-
tion approach. Under the condition that the mean time of a customer in
the orbit tends to infinity, the number of customers in the orbit explodes.
Using a proper scaling, we prove that the scaled version of the number of
customers in the orbit asymptotically follows a diffusion process. Using
the steady-state solution of the diffusion process, we build an approx-
imation for the steady-state distribution of the number of customers
in the orbit. We compare this new approximation with the traditional
approximation based on the central limit theorem and with simulation.
Numerical results show that the new approximation has higher accuracy
than that based on the central limit theorem.

Keywords: Tandem retrial queue system · Sequentially connected
servers · Asymptotic diffusion analysis

1 Introduction

Retrial phenomena are ubiquitous in service systems. For example, in call cen-
ters, customers who cannot immediately connect with the operator may make
a phone call later. In some ITC systems, if requests are not processed immedi-
ately, some protocol automatically and repeatedly reconnects with the server.
The analysis of retrial queues is more challenging in comparison with the counter
part models with infinite buffer because the arrival rate of retrial customers
depends on the number of retrying customers. As a result, explicit results are
obtained in only a few special cases with small number of servers [9]. We refer
to Phung-Duc [7] for a review of recent results on the research of retrial queues.
In the network context, retrial queueing networks do not possess product form
and thus the computation is challenging.
c© Springer Nature Switzerland AG 2021
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To the best of our knowledge, only a few works on tandem queues with retrials
are available [1,2,4,6]. The papers [1,2] present some exact and approximate
analyses for tandem queues with a common orbit of constant retrial rate. In [4],
the authors consider a tandem queue without intermediate buffer and thus the
blocking phenomenon occurs in the first server, where arriving customers who
see the first server either busy or blocked join the orbit and retry to the first
server according to a constant retrial rate policy. As for tandem queue with linear
retrial rate, Phung-Duc [6] considers a model with two servers in tandem and
without an intermediate buffer. Customers who finish service at the first server
and sees the second server busy are lost (not join the orbit). Later, Falin [3]
studies the same model using an alternative method. For that model, explicit
expressions of the stationary queue length distribution are derived.

In this paper, we consider a more complex model than that by Phung-Duc
[6] where we assume that customers who finish service in the first server and see
the second server busy also joins the same orbit as customers who are blocked at
the first server. Although the model can be formulated using a level-dependent
quasi-birth-and-death process for which some numerical method is available (see
e.g. [8]), an explicit solution for even the stationary distribution cannot be
obtained. In this paper, we consider a challenging problem characterizing the
time-dependent distribution of the number of customers in the orbit. To this
end, we focus to the asymptotic behavior of the distribution of the number of
customers in the orbit in a special regime with an extremely small retrial rate
(i.e. extremely large mean time in the orbit).

The rest of the paper is organized as follows. In Sect. 2, the description of the
model is presented. In Sect. 3, we present a set of Kolmogorov differential equa-
tions while Sect. 4 and 5 are devoted to the first and the second order asymptotic
analysis of the distribution of the number of customers in the orbit. Section 6
presents the asymptotic diffusion approach where we obtain an approximation
for the distribution of the number of customers in the orbit in the stationary
regime. Section 7 presents some numerical examples.

2 Mathematical Model

Let us consider a retrial tandem queueing system with Poisson arrival process
of incoming calls with rate λ and two sequentially connected servers (see Fig. 1).
Upon the arrival of a call, if the first server is free, the call occupies it. The call is
served for a random time exponentially distributed with parameter μ1 and then
tries to go to the second server. If the second server is free, the call moves to
it for a random time exponentially distributed with parameter μ2. When a call
arrives, if the first server is busy, the call instantly goes to the orbit, stays there
during a random time exponentially distributed with parameter σ and then tries
to occupy the first server again. After being served at the first server, if the call
finds that the second server is busy, it instantly goes to the same orbit, where,
after an exponentially distributed delay with parameter σ, tries to move to the
first server for service again.
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Fig. 1. The model.

We define some notations as follows.

Process N1(t) - the state of the first server at time t: 0, if the server is free; 1, if
the server is busy;
Process N2(t) - the state of the second server at time t: 0, if the server is free;
1, if the server is busy;
Process I(t) - number of calls in the orbit at the time t.

The goal of the study is two-fold. First, we derive a diffusion limit of the
time-dependent distribution of the number of calls in the orbit I(t) and the
distribution of the servers’ states in our system, under a special regime where
the retrial rate is extremely small (σ → 0). Second, based on the steady-state
behavior of the diffusion solution, we obtain an approximation to the stationary
distribution of the number of customers in the orbit.

3 The System of Differential Kolmogorov Equations

We define probabilities

Pn1n2(i, t) = P{N1(t) = n1, N2(t) = n2, I(t) = i};n1 = 0, 1;n2 = 0, 1. (1)

The three-dimensional process {N1(t), N2(t), I(t)} is a Markov chain. For proba-
bility distribution (1), we can write the system of differential Kolmogorov equa-
tions:

∂P00(i, t)
∂t

= −(λ + iσ)P00(i, t) + μ2P01(i, t),

∂P10(i, t)
∂t

= λP00(i, t) + (i + 1)σP00(i + 1, t) − (λ + μ1)P10(i, t)

+λP10(i − 1, t) + μ2P11(i, t),

∂P01(i, t)
∂t

= μ1P10(i, t) − (λ + iσ + μ2)P01(i, t) + μ1P11(i − 1, t),

∂P11(i, t)
∂t

= λP01(i, t) + (i + 1)σP01(i + 1, t) − (λ + μ1 + μ2)P11(i, t)

+ λP11(i − 1, t). (2)
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We introduce partial characteristic functions, denoting j =
√−1

Hn1n2(u, t) =
∞∑

i=0

ejuiPn1n2(i, t). (3)

So, we have

∂H00(u, t)
∂t

= −λH00(u, t) + μ2H01(u, t) + jσ
∂H00(u, t)

∂u
,

∂H10(u, t)
∂t

=
(
λ

(
eju − 1

) − μ1

)
H10(u, t) + λH00 + μ2H11(u, t)

− jσe−ju ∂H00(u, t)
∂u

,

∂H01(u, t)
∂t

= μ1H10(u, t) − (λ + μ2)H01(u, t) + μ1e
juH11(u, t)

+ jσ
∂H01(u, t)

∂u
,

∂H11(u, t)
∂t

=
(
λ

(
eju − 1

) − μ1 − μ2

)
H11(u, t) + λH01(u, t)

− jσe−ju ∂H01(u, t)
∂u

. (4)

Define matrices

A =

⎡

⎢⎢⎣

−λ λ 0 0
0 −(λ + μ1) μ1 0
μ2 0 −(λ + μ2) λ

0 μ2 0 −(λ + μ1 + μ2)

⎤

⎥⎥⎦ ,

B =

⎡

⎢⎢⎣

0 0 0 0
0 λ 0 0
0 0 0 0
0 0 μ2 λ

⎤

⎥⎥⎦ , I0 =

⎡

⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤

⎥⎥⎦ , I1 =

⎡

⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ . (5)

Let us write the system (4) in the matrix form

∂H(u, t)
∂t

= H(u, t){A + ejuB} + jσ
∂H(u, t)

∂u
{I0 − e−juI1}, (6)

where H(u, t) = {H00(u, t),H10(u, t),H01(u, t),H11(u, t)}.
Multiplying equations of system (6) by the identity column vector e, we

obtain

∂H(u, t)
∂t

e = H(u, t){A + ejuB}e + ju
∂H(u, t)

∂u
{I0 − e−juI1}e. (7)

Given (A + B)e = 0 and (I0 − I1)e = 0, we get scalar equation
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∂H(u, t)
∂t

e = (eju − 1)
{
H(u, t)B + jσe−ju ∂H(u, t)

∂u
I1

}
e. (8)

From matrix equation (6) and scalar equation (8) we have the form

∂H(u, t)
∂t

= H(u, t){A + ejuB} + jσ
∂H(u, t)

∂u
{I0 − e−juI1},

∂H(u, t)
∂t

e = (eju − 1)
{
H(u, t)B + jσe−ju ∂H(u, t)

∂u
I1

}
e. (9)

This system of equations is the basis in further research. We will solve it by
a method of asymptotic diffusion analysis under the asymptotic condition σ →
0.

4 The First Order Asymptotic: Fluid Limit

In this section, we present the first order asymptotic of the number of customers
in the orbit. This type of asymptotic is also called fluid limit in the literature [10].

By denoting σ = ε and performing the following substitution in the system
(9)

τ = tε, u = wε, H(u, t) = F(w, τ, ε), (10)

we rewrite the system (9) as

ε
∂F(w, τ, ε)

∂t
= F(w, τ, ε)(A + ejεwB) + j

∂F(w, τ, ε)
∂w

(I0 − e−jεwI1),

ε
∂F(w, τ, ε)

∂t
e = (ejεw − 1)

{
F(w, τ, ε)B + je−jεw ∂F(w, τ, ε)

∂w
I0

}
e. (11)

Let us denote

lim
ε→0

F(w, τ, ε) = F(w, τ), F(0, τ) = r. (12)

The row vector r defines two-dimensional probability distribution of the states
of servers (n1,n2). It will be seen below that the row vector r, that satisfies the
normalization condition re = 1, is a solution of the matrix equation

r{A + B − x(I0 − I1)} = 0. (13)

Coefficients of this equation depend on variable x, so, solution r depends on
value of x, therefore denote r = r(x). It should be noted that x is a function of
τ and r is a function of x but sometime we omit τ and x for simplicity.

Solving the system (11) under asymptotic condition ε → 0 (σ → 0), we obtain
the following statement.
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Theorem 1. Under the limit condition σ → 0, the following equality is true

lim
σ→0

EejwσI( τ
σ ) = ejwx(τ). (14)

Here the scalar function x = x(τ) is a solution of differential equation

x′(τ) = r(x)(B − xI0)e, (15)

where the vector r(x) satisfies the normalization condition

r(x)e = 1 (16)

and is a solution of the matrix equation

r(x){A + B − x(I0 − I1)} = 0. (17)

Proof. Let us take the limit ε → 0 in the system (11). Denoting lim
ε→0

F(w, τ, ε) =

F(w, τ) we obtain

F(w, τ)(A + B) + j
∂F(w, τ)

∂w
(I0 − I1) = 0,

∂F(w, τ)
∂τ

e = jw

{
F(w, τ)B + j

∂F(w, τ)
∂w

I0

}
e. (18)

We find the solution of system (18) in the form

F(w, τ) = r(x)ejwx(τ), (19)

where x = x(τ) - is a scalar function with argument τ, which has a meaning of
asymptotic (while ε → 0) value of σI(τ/σ), i.e., the number of customers in the
orbit normalized by ε = σ. Substituting (19) into (18), we obtain

r(x) {A + B − x(I0 − I1)} = 0, (20)

x′(τ) = r(x) (B − xI0) e. (21)

Because the scalar function x(τ) with argument τ is an asymptotic value (while
ε → 0) of the normalized number of calls in the orbit σi(τ/σ), equality (14) is
true. So, Theorem 1 is proved.

Let us substitute the solution r(x ) of the system of Eqs. (20) in the scalar
equation (21) and we will get

a(x) = r(x)(B − xI0)e, (22)

Function a(x) is very important for the study retrial queuing systems by the
method of asymptotic diffusion analysis. Firstly, as we have shown in Theorem1,
a(x) = x′(τ), therefore, function a(x) characterizes dynamic of the process x(τ),
the limit under σ → 0 for the normalized number of calls in the orbit σ(τ/σ).
Secondly, we will show that function a(x) is the drift coefficient for diffusion
process which determines the asymptotic number of customers in the orbit I(t).
Using a(x) we will get necessary condition for the existence of steady-state regime
in the retrial queuing system under consideration.
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5 The Second Order Asymptotic: Diffusion Limit

Substituting the following in the system (9)

H(u, t) = ej
u
σ
x(σt)H(1)(u, t) (23)

and taking into account the Eq. (22), we obtain

∂H(1)(u, t)
∂t

+ jua(x)H(1)(u, t) = H(1)(u, t)
(
A + ejuB − x

(
I0 − e−juI1

))

+ jσ
∂H(1)(u, t)

∂u
(I0 − e−juI1),

∂H(1)(u, t)
∂t

e + jua(x)H(1)(u, t)e = (eju − 1)

×
{
H(1)(u, t)(B − e−juxI0) + jσe−ju ∂H(1)(u, t)

∂u
I0

}
e. (24)

We make a substitute (23) with a view to asymptotic centering of random
process I(t) because H(1)(u, t) is a vector characteristic function of a centring
random process, where the function x(τ) was obtained in the first stage of asymp-
totic analysis.

By denoting σ = ε2 in the system (24) and making substitutions

τ = tε2, u = wε, H(1)(u, t) = F(1)(w, τ, ε), (25)

we can rewrite the system in the following form

ε2
∂F(1)(w, τ, ε)

∂τ
+ jεwa(x)F(1)(w, τ, ε)

= F(1)(w, τ, ε)
(
A + ejεwB − x(I0 − e−jεwI1)

)

+ jε
∂F(1)(w, τ, ε)

∂w
(I0 − e−jεwI1),

ε2
∂F(1)(w, τ, ε)

∂τ
e + jεwa(x)F(1)(w, τ, ε)e = (ejεw − 1)

×
(
F(1)(w, τ, ε)

(
B − e−jεwxI0

)
+ e−jεwjε

∂F(1)(w, τ, ε)
∂w

I0

)
e. (26)

Denote

lim
ε→0

F(1)(w, τ, ε) = F(1)(w, τ), lim
ε→0

∂F(1)(w, τ, ε)
∂τ

=
∂F(1)(w, τ)

∂τ
(27)

and prove the following statement.
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Theorem 2. Function F(1)(w, τ) has the following form

F(1)(w, τ) = Φ(w, τ)r(x), (28)

where the row vector r(x) depends on variable x. The vector r(x) is determined
by Theorem1, with vector’s components rn1n2(x), and the scalar function Φ(w, τ)
is the solution of the partial differential equation:

∂Φ(w, τ)
∂τ

= a′(x)w
∂Φ(w, τ)

∂w
+ b(x)

(jw)2

2
Φ(w, τ). (29)

Here the function a(x) is determined by (15) and the scalar function b(x) has
the form

b(x) = a(x) + 2g(x)(B − xI0)e + 2xr(x)e, (30)

where vector g(x) is determined by system of equations

g(x) (A + B + x(I1 − I0)) = a(x)r(x) + r(x)(xI0 − B),

g(x)e = 0. (31)

Proof. Let us write the first equation of the system (26) up to O
(
ε2

)

jεwa(x)F(1)(w, τ, ε) (A + B + jεwB − x(I0 − I1 + jεwI1))

+ jε
∂F(1)(w, τ, ε)

∂w
(I0 − I1) = O

(
ε2

)
. (32)

We find the solution of this equation in the following form

F(1)(w, τ, ε) = Φ(w, τ) (r(x) + jεwf(x)) + O
(
ε2

)
, (33)

where Φ(w, τ) - is some scalar function whose expression is obtained later. We
have

jεwa(x)Φ(w, τ)r(x) = Φ(w, τ) {r(x) (A + B − x(I0 − I1))

+jεw [f(x) (A + B − x(I0 − I1)) + r(x)(B − xI0)]}

+ jε
∂Φ(w, τ)

∂w
r(x)(I0 − I1) + O

(
ε2

)
. (34)

Taking Eq. (22) into account, dividing Eq. (34) by jε and taking the limit ε →
0, we obtain

f(x) (A + B − x(I0 − I1))

= a(x)r(x) − r(x)(B − xI0) +
∂Φ(w, τ)/∂w

wΦ(w, τ)
r(x)(I0 − I1). (35)

According to the superposition principle, we can write a solution f(x) of this
equation in the form of sum

f(x) = Cr(x) + g(x) − ϕ(x)
∂Φ(w, τ)/∂w

wΦ(w, τ)
. (36)
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Substituting it into Eq. (35), we obtain equations

ϕ(x) (A + B − x(I1 − I0)) = r(x)(I0 − I1), (37)

g(x) (A + B − x(I1 − I0)) = a(x)r(x) + r(x)(xI0 − B). (38)

Notice that Eq. (38) for vector g(x) coincides with the first expression of Eq. (31),
therefore Eq. (31) is true.

Now, consider Eq. (20). Let us differentiate it by x to obtain equation

∂r(x)
∂x

{A + B − x(I0 − I1)} + r(x)(I0 − I1) = 0. (39)

Comparing Eq. (39) and Eq. (37) for ϕ(x), we can conclude that:

ϕ(x) =
∂r(x)
∂x

. (40)

The additional condition ϕ(x)e = 0 is fulfilled because of the normalization
condition (16) for vector ϕ(x).

Vector g(x) is a particular solution of the non-homogeneous system of
Eqs. (38), so it should satisfy some additional condition which we choose in the
form g(x)e = 0. Then the solution g(x) of the system (38) is uniquely defined
by the system (31).

Now, let us consider the second scalar equation of the system (24). We sub-
stitute the expansion (33) in it and rewrite it up to O(ε3)

ε2
∂Φ(w, τ)

∂τ
+ jεwa(x)Φ(w, τ) + (jεw)2a(x)Φ(w, τ)f(x)e

= Φ(w, τ)
{
(jεw)2f(x)(B − xI0) + (jεw)2r(x)xI0

+
(jεw)2

2
r(x)(B − xI0) + (jεw)2

∂Φ(w, τ)/∂w

w
r(x)I0

}
e + O(ε3). (41)

Applying Eq. (22), we obtain

ε2
∂Φ(w, τ)

∂τ
+ (jεw)2a(x)Φ(w, τ)f(x)e

= Φ(w, τ)
{
(jεw)2f(x)(B − xI0) + (jεw)2r(x)xI0

+
(jεw)2

2
a(x) + (jεw)2

∂Φ(w, τ)/∂w

w
r(x)I0

}
e + O(ε3). (42)

Let us divide this equation by ε2 and take the limit ε → 0 to obtain

∂Φ(w, τ)/∂τ

Φ(w, τ)
=

(jw)2

2
{2f(x)(B − xI0) + 2r(x)xI0 + a(x)

−2a(x)f(x) +
∂Φ(w, τ)/∂w

w
r(x)I0

}
e. (43)
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Substituting the Eq. (36) here, we obtain

∂Φ(w, τ)/∂τ

Φ(w, τ)
=

(jw)2

2
{2g(x)(B − xI0)e + 2r(x)xI0e + a(x)}

− w
∂Φ(w, τ)/∂w

Φ(w, τ)
(ϕ(x)(B − xI0) − r(x)I0) e. (44)

Denoting
b(x) = 2g(x)(B − xI0)e + 2r(x)I0xe + a(x), (45)

we can rewrite the Eq. (44) in the form

∂Φ(w, τ)
∂τ

= w
∂Φ(w, τ)

∂w
(ϕ(x)(B − xI0)e − r(x)I0e) +

(jw)2

2
b(x)Φ(w, τ). (46)

Let us consider the expression individually

ϕ(x)(B − xI0)e − r(x)I0e. (47)

Using (40), we obtain

∂r(x)
∂x

(B − xI0)e − r(x)I0e. (48)

Let us consider the expression from (22)

a(x) = r(x)(B − xI0)e. (49)

Differentiating a(x) by x and taking into account that vector r(x) is a solution
of the system (15) and depends on x, we obtain

d(x) = a′(x) =
∂r(x)
∂x

(B − xI0)e − r(x)I0. (50)

Comparing (50) and (48), we rewrite (46) in the form

∂Φ(w, τ)
∂τ

= a′(x)w
∂Φ(w, τ)

∂w
+ b(x)

(jw)2

2
Φ(w, τ), (51)

that coincides with Eq. (29). So, Theorem 2 is proved.

Later we will show that function b(x) is the diffusion coefficient of a diffusion
process which has the function a(x) as the coefficient of drift, defined by the
Eq. (22).

Thus, we have defined functions a(x) by the Eq. (22) and b(x) by the Eq. (30).
These functions are important in the next section where we propose an approx-
imation to the stationary distribution of the number of customers in the orbit.
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6 Stationary Distribution of the Diffusion Process and
Queue Length Approximation

In this section of the paper, we will consider an implementation of the diffu-
sion limit in Theorem 2 for finding the stationary probability distribution of the
number of calls in the orbit I(t) under the asymptotic condition σ → 0.

Lemma 1. Asymptotic stochastic process under the condition σ → 0

y(τ) = lim
σ→0

√
σ

{
I(

τ

σ
) − 1

σ
x(τ)

}
, (52)

is a solution of the stochastic differential equation

dy(τ) = a′(x)ydτ +
√

b(x)dw(τ), (53)

that depends on continuous parameter x.

Proof. Consider the Eq. (29) from Theorem 2

∂Φ(w, τ)
∂τ

= a′(x)w
∂Φ(w, τ)

∂w
+ b(x)

(jw)2

2
Φ(w, τ), (54)

with a(x) and b(x) determined by Eqs. (22) and (30).
Solution Φ(w, τ) of this equation determines the asymptotic characteristic

function for the centered and normalized stochastic process
√

σ
{
I( τ

σ
) − 1

σ
x(τ)

}

of the number I(t) of calls in the orbit under the condition σ → 0 and for its
probability density distribution.

Let us make an inverse Fourier transform in this equation on argument w.
Then for the probability density function p(y, τ) of process y(τ), we obtain the
equation

∂p(y, τ)
∂τ

= − ∂

∂y
{a′(x)yp(y, τ)} +

1
2

∂2

∂y2
{b(x)p(y, τ)}, (55)

which is the Fokker-Planck equation for probability density function p(y, τ).
Hence, the stochastic process y(τ) is a diffusion process with drift coefficient
d(x)y and diffusion coefficient b(x). Therefore, the diffusion process y(τ) is a
solution of the stochastic differential equation (53). So, Lemma 1 is proved.

Let us consider the following stochastic process

z(τ) = x(τ) + εy(τ),

where ε =
√

σ as before. This process is the sum of the normalized mean and
the centered number of calls in the orbit.

Lemma 2. Stochastic process z(τ) is a solution to stochastic differential equa-
tion

dz(τ) = a(z)dτ +
√

σb(z)dw(τ) (56)

with a precision up to an infinitesimal of order ε2.
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Proof. Because x(τ) is a solution of differential equation dx(τ) = a(x)dτ and
process y(τ) satisfied Eq. (53), the following equality is true

dz(τ) = d(x(τ) + εy(τ)) = (a(x) + εya′(x))dτ + ε
√

b(x)dw(τ). (57)

We can represent its coefficients in the form

a(x) + εyd(x) = a(x + εy) + O(ε2) = a(z) + O(ε2),

ε
√

b(x) = ε
√

b(x + εy) + O(ε) = ε
(√

b(z) + O(ε)
)

=
√

σb(z) + O(ε2), (58)

and, so, we can rewrite Eq. (46) as follows:

dz(τ) = a(z)dτ +
√

σb(z)dw(τ) + O(ε2). (59)

It coincides with the Eq. (56) with a precision up to infinitesimal O(ε2). So,
Lemma 2 is proved.

Suppose that the system is in steady-state regime. We consider the stationary
probability density function for the process z(τ)

s(z, τ) = s(z) =
∂P{z(τ) < z}

∂z
. (60)

Theorem 3. Stationary probability density s(z) of the stochastic process z(τ)
has the form

s(z) =
C

b(z)
exp

⎧
⎨

⎩
2
σ

z∫

0

a(x)
b(x)

dx

⎫
⎬

⎭ , (61)

where C is a normalizing constant.

Proof. Because z(τ) is the solution of the stochastic differential equation (56),
the process is diffusion with drift coefficient a(z) and diffusion coefficient b(z).
Therefore, its probability density function s(z) is the solution of the Fokker-
Planck equation

− ∂

∂z
{a(z)s(z)} +

1
2

∂2

∂z2
{σb(x)s(z)} = 0. (62)

This equation is an ordinary differential equation of the second order

(−a(z)s(z))′ +
σ

2
(b(z)s(z))′′ = 0,

− a(z)s(z) +
σ

2
(b(z)s(z))′ = 0. (63)

Solving it and taking into account the normalization condition and boundary
condition s(∞) = 0, we obtain the probability density function s(z) of the nor-
malized number of calls in the orbit in the following form

s(z) =
C

b(z)
exp

⎧
⎨

⎩
2
σ

z∫

0

a(x)
b(x)

dx

⎫
⎬

⎭ . (64)

So, Theorem 3 is proved.
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7 Approximations Accuracy and Their Application Area

On of the goals our paper is to find an approximation of discrete probability
distribution P (i) number of calls in the orbit. Using density function s(z) of the
stochastic process z(τ), we construct an approximation for discrete probability
distribution P (i). There are different ways to shift from the density function s(z)
of continuous stochastic process z(τ) to discrete distribution P (i) of the discrete
stochastic process i(τ). We will use the following one.

Taking into account Eq. (31), we write a non-negative function G(i) of the
discrete argument i in the form

G(i) =
C

b(σi)
exp

⎧
⎨

⎩
2
σ

σi∫

0

a(x)
b(x)

dx

⎫
⎬

⎭ , (65)

Using the normalization condition, we can write

P1(i) =
G(i)

∞∑
i=0

G(i)
. (66)

This probability distribution P1(i) we will use as an approximation for the
probability distribution P (i) = P{I(t) = i} that the number of calls in the orbit.
Also, early we had obtained one more approximation using the classical method
of asymptotic analysis [5]. Denote it by P2(i).

Approximations accuracy will be defined and compare by using Kolmogorov
range

Δv=1,2 = max
k≥0

∣∣∣∣∣

k∑

i=0

(Pv(i) − P (i))

∣∣∣∣∣ , (67)

where P (i) is an empirical probability distribution of the number i of calls in
the orbit obtained by the simulation.

The table contains values for this range for various values of σ and ρ (system
load) (Table 1):

ρ =
λ(μ1 + μ2)

μ1μ2
. (68)

We consider μ1 = 1 and μ2 = 2 for all experiments.
Density diagrams of probability distributions are shown in Figs. 2, 3 and 4.

The solid line represents the probability distribution of the number i of calls in
the orbit obtained by the simulation, the dotted - approximations obtained by
method of asymptotic diffusion and analysis (P1) and by the classical method
of asymptotic analysis (P2).
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Table 1. Kolmogorov range.

σ ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

2 0.061 0.041 0.021 0.006 0.009 Δ1

0.094 0.158 0.191 0.258 0.363 Δ2

1.3 0.049 0.025 0.007 0.017 0.018 Δ1

0.101 0.134 0.176 0.224 0.305 Δ2

0.5 0.011 0.027 0.032 0.030 0.021 Δ1

0.142 0.125 0.112 0.146 0.198 Δ2

0.1 0.033 0.023 0.014 0.012 0.008 Δ1

0.071 0.049 0.055 0.071 0.097 Δ2

0.05 0.019 0.012 0.008 0.035 0.003 Δ1

0.034 0.039 0.040 0.036 0.074 Δ2

0.02 0.013 0.009 0.002 0.011 0.004 Δ1

0.022 0.024 0.026 0.031 0.049 Δ2

Fig. 2. σ = 2, ρ = 0.5.

It can be seen, the accuracy of the approximations increases with decreasing
parameters ρ and σ. The approximation P1(i) is applicable for values of σ <
1.3, where the relative error, in the form of the Kolmogorov distance, does not
exceed 0.05. The approximation P2(i) is applicable for values of σ < 0.02, that
is about 7.5 times less than for approximation obtained through the method of
asymptotic diffusion analysis.
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Fig. 3. σ = 0.1, ρ = 0.5.

Fig. 4. σ = 0.02, ρ = 0.5.

8 Conclusion

In this paper, we consider the tandem retrial queueing system with Poisson
arrival process. Using the method of asymptotic diffusion analysis under the
asymptotic condition of the long delay in the orbit, we obtain parameters of the
diffusion process. Probability density distribution of this process has enabled us
to construct an approximation for probability distribution number of calls in the
orbit in the considered RQ-system.

Also we compare the applicability of analytical results obtained by the
method of asymptotic diffusion analysis and by the classical method of asymp-
totic analysis on the basis of the simulation. It turns out that the method of
asymptotic diffusion analysis is 7.5 times more accurate and can be used for
σ < 1.3.
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Abstract. In this research, we discuss Car/Ride-Share (CRS), which is
a novel concept of Demand Responsive Transportation (DRT) aiming at
reducing the uneven distribution of cars in traditional carsharing service
and the congestion of cars and people. We model a scenario where CRS
service is introduced between a spot (e.g., university, company, etc.) and
its nearest train station by a bus company using queueing theory. Then,
using an approximation model, we derive the probability density func-
tion of the required time (the sum of waiting and traveling times) for
the customers considering the road congestion. Further, we show some
numerical results of the distribution of the required time and discuss
the effectiveness of CRS depending on road congestion. We confirm that
the excessive introduction of CRS may be ineffective when the road is
congested from the perspective of the required time.

Keywords: Transportation systems · Queueing theory · Road
congestion

1 Introduction

In this research, we discuss Car/Ride-Share (CRS), which may be a new type
of demand responsive transportation (DRT) with good social impacts (see the
detailed explanation in Sect. 2). We consider a queueing model of CRS and dis-
cuss the effectiveness of CRS in this paper.

CRS is defined as a system where people carry out carsharing (i.e., the car
rental for short periods) and ridesharing (e.g., the system where people ride a car
together to the destination) simultaneously using private cars [1]. We consider a
scenario where a bus company itself introduces CRS between a train station and
c© Springer Nature Switzerland AG 2021
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its nearest spot (e.g., university, company) where bus transportation services
already exist for both directions and reduces the number of the buses. This CRS
system has the following three features [1].

1. Owners of private cars can get financial incentives by sharing their cars.
2. People can carry out carsharing and ridesharing simultaneously, so that the

disadvantage of conventional carsharing such as uneven distribution of cars
does not occur, i.e., the operator does not have to redistribute the cars.

3. It might be an alternative transportation service with less financial and time
burden for existing transportations (bus in this study) in the case of conges-
tion.

About CRS, Ando et al. [1] conducted simulation experiments and showed
the decrease of the mean waiting time for customers. Besides, Nakamura et al. [2–
4] modeled CRS between a university and a station where a bus transportation
already existed using queueing theory and discussed the characteristics of the
system. Furthermore, [3,4] considered various scenarios of the price mechanism
of CRS, where a third organization or a bus company introduces this service.
However, we put several assumptions, for example, Poisson arrival of buses, the
state of the station side is the number of the demands of CRS; the buses from
the station are always full because of the congestion, and the customers arrive
one by one to simplify the model. Besides, we did not incorporate the state of the
road between the two points to our model. We did not consider the possibility
that the occurrences of CRS cause the road congestion, which is not a good
situation for the customers.

Based on the above, we propose analyzing a queueing model of CRS with the
following conditions and execute the Monte Carlo simulation aiming at a more
realistic discussion in this research.

1. Inter-arrivals of buses are independently and identically distributed (I.I.D)
according to Erlang distribution which can be used to approximate the fixed
interval (this enables us to discuss the influence of the uncertainty of bus
inter-arrivals to the system by adjusting the variance of the distribution).

2. We define the state of the station as the number of people, and do not assume
that the buses from the station are always full as in [2–4].

3. The customers at the station side arrive in groups (imaging that people got
off the train arrive at all once).

As an extension of [2–4], we incorporated road congestion into our model
in [5]. Nevertheless, we only discussed the mean required time (the sum of the
waiting time and the traveling time) for customers considering the road con-
gestion, and we did not discuss the distribution of the required time in [5]. In
this research, by analyzing a queueing model, we derive the distribution of the
required time for the customers in the CRS system using the theory of phase-
type distribution. It should be noted that this research considers the distribution
of the required time. In contrast, all previous studies [2–5] only considered the
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mean required time of customers, and thus this paper enables more detailed
discussions.

Here, we introduce several related works using some mathematical methods.
There are many studies using optimization theory to operate shared transporta-
tion properly [6,7]. However, most of these optimization models assume that the
travel demands are known in advance and do not take into account the uncer-
tainty in traffic (e.g., traffic delay due to an accident, the time it takes customers
to get on and off the vehicles, fluctuations in traffic demand due to exogenous
factors).

As the latest studies using queueing theory, Shuang et al. [8,9] considered
bike-sharing queueing models. However, they assumed that customers arrive
one by one according to a Poisson process and also assumed that the travel
time of bike-sharing simply follows an exponential distribution, which means the
possibility that the occurrence of the bike-sharing induces road congestion (i.e.,
the travel time depends on the number of the occurrences of the bike-sharing)
is not considered.

From a more general perspective on transportation, Daganzo et al. [10] con-
structed a simple stochastic model of demand-responsive transportation services,
including non-shared taxi, dial-a-ride, and ridesharing. They also compared the
existing urban transportation modes in scenarios involving different city types
and levels of demand. However, the crucial point that must be further studied
in [10] is to consider how multiple transportation systems can work together
because there is not just one mobility service at a time like the model in [10] in
the real world.

Compared to the above previous research, the novelties of our research of
CRS are as follows:

I. Proposing a new concept of transportation, in other words, a fusion of multiple
shared transportation services (i.e., carsharing and ridesharing).

II. Solving the hassle for the redistribution of cars in carsharing by considering
the matching trip demand in the opposite direction, not by a conventional
optimization method.

III. Constructing a stochastic model of CRS (note that this approach does not
cost money, unlike social experiments), which enables us to consider the uncer-
tainty of people and traffic in this system by conducting numerical experi-
ments in various settings.

IV. Incorporating more realistic and complicated elements into the model com-
pared to the previous work [8–10], considering the batch arrival of customers,
the road congestion, and the coexistence of multiple transportation services.

The rest of the paper is structured as follows. In Sect. 2, we state the detailed
mechanism of CRS using queueing theory. In Sect. 3, we present a queueing model
for CRS. Section 4 shows the derivation of the distribution of the required time
for the customers in the CRS system. Section 5 presents some numerical results
for the discussion of Sects. 4. Finally, we present concluding remarks in Sect. 6.
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2 The CRS System

In this section, we describe the model of CRS.

2.1 Queueing Model

We model a scenario in which CRS is introduced by a bus company between a
train station and a spot (e.g., university, company, etc.) where bus transportation
has been existing already, and we also assume that there is a parking lot of cars
to carry out CRS at the spot side (see Fig. 1).

Fig. 1. The schematic illustration of the CRS system.

Fig. 2. The modelling of the road.



Queueing Analysis of Public and Demand Responsive Transportations 461

Table 1. The parameters used in the CRS model.

Parameters Definitions

λ (people/h) Arrival rate of customers at the spot

σ (veh/h) Occurrence rate of CRS

δ (group/h) Arrival rate of a group of customers at the station

q1(2), r1(2) Shape and Rate parameters of the Erlang distribution for the
departure interval of buses from the spot (station)

l (people) Capacity of buses

m (people) Minimum number of passengers of cars

n (people) Maximum number of passengers of cars

K (people) Maximum number of customers that can exist at the station

M (veh/km) Maximum traffic density

εus(su) (veh/h) Arrival rate of general cars at the service station from the spot to
the station (from the station to the spot)

αus(su) (veh/h) Total arrival rate at the service station on the road from the spot
to the station (from the station to the spot). → in Sect. 3.2

β (veh/h) Service rate at the service stations

SN (km/h) Nominal speed of cars

d (km) Distance between the spot and the station

sus (km/h) Effective speed of cars on the road from the spot to the station

ssu (km/h) Effective speed of cars on the road from the station to the spot

As a premise, people who came to the spot by their private cars provide these
cars as CRS cars (simply denoted by car) for receiving some financial incentives.
Recently, peer-to-peer carsharing [11], where people lend their private cars for
some incentives, is becoming popular, and we incorporate this system into our
model simply. This paper does not consider the insurance implication and other
realistic conditions to simplify the model.

We assume that the minimum and the maximum numbers of passengers for
a car are m and n, respectively. Customers can use these cars to move between
the spot and the station, but these cars must be returned to the spot.

At the station, groups of customers arrive according to a Poisson process with
a rate δ, and the number of people for a group (e.g., people who got off a train
arrives at all the once) follows an arbitrary distribution. We define the batch
size (i.e., the number of people in a group) X follows an arbitrary distribution,
and write as

xk = P(X = k),

for k ∈ N.
To make it easier to analyze, we assume that it is acceptable to have up to

K people at the station at the same moment. If there are already K people at
the station side, new visitors are blocked and go to the spot by other means of
transportation, such as a taxi. We also assume that if the number of free spaces
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is less than the size of the arriving group at the station, the exceeded number
of customers are blocked under the assumption that the probability that each
person in the group is blocked is identical. On the spot side, customers arrive
according to a Poisson process with rate a λ. Here, we further assume that all
the customers have a driving license and do not prefer whether they use the bus
or CRS to simplify the discussion.

Buses depart from the spot (the station) to the station (the spot) at intervals
following Erlang distribution with rate r1(2) and shape q1(2) (this means the
sum of q1(2) exponentially distributed random variables of parameter r1(2)). We
assume that the capacity of a bus is l, and the spot and the station are the
first bus stops, i.e., a bus is empty upon arrival. People lined up at the spot
continuously get on a bus on a first-come, first-served basis within the limit of
the capacity of the bus.

CRS occurs from the spot at intervals following the exponential distribution
with parameter σ when both the spot and the station are crowded above a
certain level i.e., when there are more than m people are on the both sides.
Here, m is the minimum number of passengers for a car, as mentioned above.
In the same way as buses, people get on a car on a first-come, first-served basis
within the capacity limit. The interval of the occurrences of CRS follows an
exponential distribution because it takes for a group of passengers to reach the
point where the car exists in the parking lot and actually starts driving may
vary. Furthermore, it takes some matching time for the group of customers in
the spot and that in the station. Besides, we assume that the customers who use
CRS at the station exit the queue at the moment of the departure of the car
(i.e., the car which they will take over) at the spot and that they wait for the
arrival of the car at the waiting space for CRS.

A car departing at the spot goes to the station, and after arriving at the
station, those in the car get off. Then, people waiting at the station take over
the car and drive the CRS to the spot. After the car arrives at the spot, people
who got on at the station get off, and the car is returned to its original position.
This series of flows, can be considered to meet the demand on the station side
under the condition that the cars return to their original point (the spot).

The movement on the road between two points is modeled as shown in Fig. 2
regarding the method of Vandaele et al. [12]. In this method, a part of the
road between two points is considered a service station (i.e., a queue with single
server), and the service interval follows an exponential distribution of the param-
eter β. The parameter β of this exponential distribution is derived as β (number
of vehicles/unit time) = SN (km/unit time) M (number of vehicles/km). We
also assume that other vehicles (defined as general vehicles) except for the buses
and CRS cars arrive at the service station according to a Poisson process with
parameter εus(su).

Using the mean sojourn time in the system, the maximum traffic density of
the road M (the inverse of M is considered to be the size of the service station),
and the distance of the road between the two points d, we can derive the relative
speed of the vehicle on the road sus(su) (see [12] for details). Then, we can
determine the travel time required for the vehicles on the road using sus(su).
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2.2 The Difficulty of this Model

In this model, the travel time of the vehicles on the road is derived by dividing
the distance of the road by the relative speed, so it has a constant distribution.
As mentioned above, customers always transfer the cars of CRS at the station in
this system. Therefore, to understand the exact arrival process of vehicles (bus,
car, and general vehicle) at the service station from the station to the spot, it is
necessary to keep track the timing when the CRS cars depart from the spot and
the travel times required to reach the station side in the model. As a result, this
model does not become a simple Markov chain, and it is not easy to analyze the
entire system in a simple form. Based on the above, we consider an approximate
model that decomposes the whole system into two queueing models, i.e., vehicle
model and road model.

3 Approximation Model

This section describes the outline of two queueing models, i.e., vehicle model and
road model. We decompose the whole system into these two models, and we use
the results of the vehicle model to calculation of the road model approximately.

3.1 Vehicle Model

The vehicle model expresses how buses depart from both points and how cars
of CRS depart from the spot. Thereby, this model also expresses the number
of people waiting at both points. The vehicle model can be formulated using a
GI/M/1-type Markov chain. Let Z+, I, R1, R2, and S denote Z+ = {0, 1, 2, . . . },
I = {0, 1, 2, . . . ,K}, R1 = {0, 1, 2, . . . , r1 − 1}, R2 = {0, 1, 2, . . . , r2 − 1} and
S = Z+×I ×R1×R2, respectively. Then let N(t), I(t), R1(t), and R2(t) express
the number of the waiting people at the spot, the number of the waiting people
at the station, the progress of the Erlang distribution for the buses from the
spot and that for the buses from the station at time t, respectively. It is easy
to see that {(N(t), I(t), R1(t), R2(t)); t ≥ 0} forms a Markov chain in the state
space S. Our Markov chain is of GI/M/1-type, where N(t) is the level and
{(I(t), R1(t), R2(t))} is the phase.

Assuming that the Markov chain is stable, we define the steady state prob-
abilities as follows:

π(j,ξ,ψ,ω) = lim
t→∞ P(N(t) = j, I(t) = ξ,R1(t) = ψ,R2(t) = ω),

where, j ∈ Z+, ξ ∈ I, ψ ∈ R1, ω ∈ R2. We can obtain the values of these
probabilities and the stability condition using an existing method [13]. Based on
the steady state probability, we define some performance measures in Table 1.
In Table 1, the throughput is counted by the number of people served per unit
time. We omit the detailed derivation of the queueing analysis due to space
limitations.
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Table 2. Performance measures of the vehicle model.

Parameters Definitions

E[Wu] Mean waiting time for customers at the spot

E[Ws] Mean waiting time for customers at the station

E[C] Number of occurrences of CRS per unit time

Ttotal(s) Total throughput from the station

TCRS(s) Throughput by CRS from the station

3.2 Road Model

The road model expresses the state of the road, i.e., the road congestion. As
described in Sect. 2.2, it is difficult to grasp the exact arrival processes at the
service stations. Therefore, we assume that the arrival processes of the service
stations follow the Poisson process with rates

αus =
q1
r1

+ E[C] + εus, αsu =
q2
r2

+ E[C] + εsu.

Here, we assume that the arrival rates of the service stations are the sum
of the expected values for the numbers of the buses and CRS, and the arrival
rate of general vehicles per unit time. In other words, we use the performance
measures of the vehicle model to approximate parameters of the road model.

By these approximations, the service stations become M/M/1 queues, and
we can derive the mean sojourn times for vehicles easily as follows:

E[Wus] =
1

β − αus
, E[Wsu] =

1
β − αsu

.

Then, we derive the effective speeds sus and ssu (i.e., the mean speeds of cars
on the road) as follows [12]:

sus =
1

E[Wus] × M
, ssu =

1
E[Wus] × M

.

From the above results, the mean of the times for a vehicle to travel from the
spot to the station and vice versa E[Rus] and E[Rsu] can be derived as

E[Rus] =
d

sus
, E[Rsu] =

d

ssu
.

Besides, we can calculate the mean of the total required time for customers from
the spot to the station (i.e., the mean time from when a customer arrives at the
spot to when he arrives at the station) and also vice versa E[Aus] and E[Asu]
as follows. Note that we obtain the values of E[Wu] and E[Ws] from the vehicle
model (see Table 2).

E[Aus] = E[Wu] + E[Rus], E[Asu] = E[Ws] + E[Rsu] + PCRSE[Rus],
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where PCRS is the rate of customers from the station to the spot who use CRS
as

PCRS =
TCRS(s)

Ttotal(s)
.

Here, note that the cars of CRS are located at the spot; as a result, only cus-
tomers who use CRS from the station have the waiting time for the car from the
spot to the station to come before they ride on it.

4 The Required Time Distribution at the Spot

In this section, we present the derivation of the distribution of required time for
the customers at the spot using the existing theory of phase-type distribution.
Let Z

∗
+ denote Z

∗
+ = {0, 1, 2, . . . ϕ} and S∗ = Z

∗
+ × Z

∗
+ × I × R1 × R2, where

ϕ := inf{n ∈ Z+|1 −
n∑

j=0

‖πj‖ < ε}, (1)

and πj = (π(j,0,0,0), π(j,0,0,1), π(j,0,0,2), . . . , π(j,K,r1−1,r2−1)), ‖πj‖ =∑K
ξ=0

∑r1−1
ψ=0

∑r2−1
ω=0 π(j,ξ,ψ,ω) and ε is an extremely small value.

We also assume that Q∗ is the square matrix truncated Q at level ϕ. Then,
we can compute the steady state probabilities π∗(= (π∗

(0,0,0,0), π
∗
(0,0,0,1), · · · ,

π∗
(ϕ,K,r1−1,r2−1))) such that π∗Q∗ = 0 with π∗e = 1. Letting X(t) denote the

number of people lined up before a tagged customer (including the tagged cus-
tomer) at the spot and N∗(t) denote the number of the customers at the spot,
respectively, {(X(t), N∗(t), I(t), R1(t), R2(t)); t ≥ 0} forms an absorbed Markov
process in the set space S∗ with the absorption state as X(t) = 0. The infinites-
imal generator of this absorbed Markov chain is written as

Q =
(

0 0
q̂ Q̂

)
,

where the contents of q̂ and Q̂ are defined in Appendix. Besides, we define the
initial distribution a∗ of the absorbed Markov chain as

a∗ = (a0,a1, . . . ,aϕ) = (a0, ȧ),

where a0 = 0, ȧ = (a1, . . . , aϕ), aj = (a(j,0,0,0,0), a(j,0,0,0,1), · · · , a(j,ϕ,K,r1−1,r2−1)).
Then, we can write the distribution function F̃ (t) and the probability density

function f̃(t) of the waiting time for a tagged customer as follows:

F̃ (t) = 1 − ȧ exp(Q̂t)e, t � 0,

f̃(t) = F̃ ′(t) = ȧ exp(Q̂t)q̂, t � 0.

Letting ḃ denote

ḃ(ζ̇,θ̇,ξ̇,ψ̇,ω̇) = (ḃ(1,0,0,0,0), ḃ(1,0,0,0,0), ḃ(1,0,0,0,0), . . . , ḃ(ϕ,ϕ,K,r1−1,r2−1)),
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where, ḃ(ζ̇,ζ̇,ξ̇,ψ̇,ω̇) = 1 for ζ̇ ∈ X \ {0}, ξ̇ ∈ I, ψ̇ ∈ R1, ω̇ ∈ R2, 0 for the other
elements, the distribution function F (t) and the probability density function
f(t) of the waiting time for any customer are written as follows:

F (t) =
ϕ∑

ζ̇=1

K∑

ξ̇=0

r1−1∑

ψ̇=0

r2−1∑

ω̇=0

π∗
(ζ̇−1,ξ̇,ψ̇,ω̇)

{1 − ḃ(ζ̇,ζ̇,ξ̇,ψ̇,ω̇) exp(Q̂t)e}, t � 0,

f(t) =
ϕ∑

ζ̇=1

K∑

ξ̇=0

r1−1∑

ψ̇=0

r2−1∑

ω̇=0

π∗
(ζ̇−1,ξ̇,ψ̇,ω̇)

{ḃ(ζ̇,ζ̇,ξ̇,ψ̇,ω̇) exp(Q̂t)q̂}, t � 0.

Here, we derive the distribution of the required time (the sum of the waiting
time and the travel time) for any customer at the spot. Considering Rus is
constant for all the vehicles on the road, the distribution function F (t) and the
probability density function f(t) of the required time for any customer at the
spot are written as

F (t) = F (t − Rus), t � 0,

f(t) = f(t − Rus), t � 0.

When we conduct numerical experiments, we apply the method of normalization
for the matrix Q̂. Letting q̂ii denote the diagonal elements of Q̂, we can define
P̂ as

P̂ = I +
1
ν̂

Q̂,

where, ν̂ = sup0�i�ϕ{−q̂ii}.
Therefore, we can rewrite f(t) as

f(t) =
ϕ∑

ζ̇=1

K∑

ξ̇=0

r1−1∑

ψ̇=0

r2−1∑

ω̇=0

π∗
(ζ̇−1,ξ̇,ψ̇,ω̇)

{ḃ(ζ̇,ζ̇,ξ̇,ψ̇,ω̇)e
−ν̂t

υ∑

n=0

(ν̂t)n

n!
P̂ nq̂}, t � 0,

where υ is defined as

υ := inf{k ∈ Z+|1 −
k∑

n=0

e−ν̂t (ν̂t)n

n!
< ε}. (2)

The distribution of the required time for any customer at the station can be
derived in the same way. However, we omit it due to space limitations.

5 Numerical Experiments

In this section, we show some numerical results for the probability density func-
tion and the distribution function of the waiting time, and the required time of
any customer at the spot, which are derived in the previous section. At first, we
show the results of the comparison of the numerical experiment results for an
approximation model (i.e., the formulae derived in Sect. 4) and the simulation
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results in Fig. 3 (f(t)) and Fig. 4 (f(t)). Here, we should note that the effective
speed of cars at the road sus is determined by reflecting the exact arrival rates
of cars at the service station considering the whole system as one queueing net-
work. We set the parameters as λ = 10, σ = 30, δ = 100,m = 2, n = 4, l =
10,K = 10, q1 = 10, r1 = 1, q2 = 10, r2 = 1, εus = 10000, SN = 60, and M = 200
for both theoretical analysis and simulation. We also set ε = 10−5 in both (1)
and (2) for the approximation model. From the results, we can consider that
the approximation model can explain a similar tendency. More concretely, we
show the 20 times simulation results for the required time distribution function
(F (t)) in Table 3. The parameter setting is the same as in Fig. 3 and Fig. 4. We
can understand that the approximation model can show a similar tendency as
the simulation results, although the approximation model evaluates the required
time a little longer. That means that the approximation shows safer results for
the required time.

Next, we show the numerical results of f(t) in Sect. 3 for two scenarios; the
case where the road is not congested (Fig. 5) and the road is congested (Fig. 6).
Note that we can change how congested the road is by adjusting the values of
εus (the arrival rate of general cars at the service station from the spot to the
station) properly. In these graphs, we set εus = 10000 in Fig. 5 and εus = 11950
in Fig. 6. Other parameter settings are the same as in Fig. 3 and Fig. 4.

It turns out that the required time becomes smaller as σ (the occurrence
rate of CRS) becomes larger in Fig. 5 (i.e., the introduction of CRS is effective
from the perspective of the required time for the customers). On the other hand,
interestingly the opposite trend is observed in Fig. 6. That means that the intro-
duction of CRS accelerates the road congestion and makes the required time
longer as a result in the case that the road is already congested. To summarize,
according to the results in Figs. 5 and 6, our analysis implies that CRS should
be actively introduced when the road is not so congested. However, it turned
out that the operator has to be careful about introducing CRS when the road is
congested.

Table 3. Numerical results of the distribution of the required time of customers F (t).

t 0.30 0.35 0.40 0.45

Approximation 0.5677 0.8273 0.933 0.9744

Simulation (Mean) 0.6412 0.8607 0.9451 0.9823

(Standard deviation) 0.1027 0.0306 0.0123 0.0007

(95% Confidence interval lower limit) 0.5962 0.8472 0.9398 0.9794

(95% Confidence interval upper limit) 0.6861 0.8741 0.9505 0.0852
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Fig. 3. The density of the waiting time of customers f(t) (approximation model and
simulation).

Fig. 4. The density of the required time of customers f(t) (approximation model and
simulation).
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Fig. 5. The density of the required time of customers f(t) (the case where the road is
not congested).

Fig. 6. The density of the required time of customers f(t) (the case where the road is
congested).

6 Conclusion

In this paper, we have considered the CRS system considering road congestion
using queueing theory. We have analyzed an approximation model which decom-
poses the whole system into two models; the vehicle model and the road model.
Further, we have derived the probability density function of the required time
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for the customers in the CRS system using the theory of phase-type distribu-
tion. By conducting some numerical experiments, we have confirmed that the
result of the approximation model generally matches the simulation result that
reproduces the actual behavior of the cars on the road in the system. Besides, we
have shown the results of the probability density function of the required time
for the customers for both cases where the road is not congested and congested
and have shown that the introduction of CRS would not be practical when the
road is congested. These results have implied that the operator should decide
whether to introduce CRS depending on the state of the road congestion.
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Appendix

We define the elements of q̂ and Q̂ for ζ ∈ X\{0}, θ ∈ Z
∗
+, ξ ∈ I, ψ ∈ R1, ω ∈ R2.

Here, we write q̂ and Q̂ as

q̂ =

⎛

⎜⎜⎜⎜⎜⎝

q̂(1,0,0,0,0)

q̂(1,0,0,0,1)

q̂(1,0,0,0,2)

...
q̂(ϕ,ϕ,K,r1−1,r2−1)

⎞

⎟⎟⎟⎟⎟⎠
,

Q̂ =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q̂(1,0,0,0,0),(1,0,0,0) Q̂(1,0,0,0,0),(1,0,0,1) Q̂(1,0,0,0,0),(1,0,0,2)

. . . Q̂(1,0,0,0,0),(ϕ,K,r1−1,r2−1)

Q̂(1,0,0,0,1),(1,0,0,0) Q̂(1,0,0,0,1),(1,0,0,1) Q̂(1,0,0,0,1),(1,0,0,2)

. . . Q̂(1,0,0,0,1),(ϕ,K,r1−1,r2−1)

Q̂(1,0,0,0,2),(1,0,0,0) Q̂(1,0,0,0,2),(1,0,0,1) Q̂(1,0,0,0,2),(1,0,0,2)

. . . Q̂(1,0,0,0,2),(ϕ,K,r1−1,r2−1)

...
. . . . . . . . .

...

Q̂(ϕ,ϕ,K,r1−1,r2−1),(1,0,0,0) Q̂(ϕ,ϕ,K,r1−1,r2−1),(1,0,0,1) Q̂(ϕ,ϕ,K,r1−1,r2−1),(1,0,0,2)

. . . Q̂(ϕ,ϕ,K,r1−1,r2−1),(ϕ,K,r1−1,r2−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, the elements of q̂ and Q̂ are defined as follows:

q̂(ζ,θ,ξ,r1−1,ω) = q1, ζ � l,

q̂(ζ,θ,ξ,ψ,ω) = σ, ζ � n, θ � m, ξ � m,

Q̂(ζ,θ,ξ,ψ,ω),(ζ,θ+1,ξ,ψ,ω) = λ, θ � ϕ − 1,

Q̂(ζ,θ,ξ,ψ,ω),(ζ,θ,ξ′,ψ,ω) = δxξ′−ξ, ξ + 1 � ξ′ � K − 1,

Q̂(ζ,θ,ξ,ψ,ω),(ζ,θ,K,ψ,ω) = δ

∞∑

k=K−ξ

xk, 0 � ξ � K − 1,

Q̂(ζ,θ,ξ,ψ,ω),(ζ,θ,ξ,ψ+1,ω) = q1, 0 � ψ � r1 − 2,

Q̂(ζ,θ,ξ,ψ,ω),(ζ,θ,ξ,ψ,ω+1) = q2, 0 � ω � r2 − 2,
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Q̂(ζ,θ,ξ,r1−1,ω),(ζ−l,θ−l,ξ,0,ω) = q1, ζ � l + 1,

Q̂(ζ,θ,ξ,ψ,r2−1),(ζ,θ,ξ−l,ψ,0) = q2, ξ � l + 1,

Q̂(ζ,θ,ξ,ψ,r2−1),(ζ,θ,0,ψ,0) = q2(1 − δ(ξ,q2),(0,0)), ξ � l,

Q̂(ζ,θ,ξ,ψ,ω),(ζ−n,θ−n,ξ−min(n,ξ),ψ,ω) = σ, ζ � n + 1, θ � m, ξ � m,

̂Q(ζ,θ,ξ,ψ,ω),(ζ,θ,ξ,ψ,ω) = −(
∑

(ζ′,θ′,ξ′,ψ′,ω′)∈X\{0}×Z
∗
+×I×R1×R2

(ζ′,θ′,ξ′,ψ′,ω′) �=(ζ,θ,ξ,ψ,ω)

̂Q(ζ,θ,ξ,ψ,ω),(ζ′,θ′,ξ′,ψ′,ω′)

+
∑

(θ′,ξ′,ψ′,ω′)∈Z∗
+×I×R1×R2

q̂(ζ,θ,ξ,ψ,ω),(θ′,ξ′,ψ′,ω′)),

where, δ(ξ,q2),(0,0) = 1 for (ξ, q2) = (0, 0) and 0 otherwise.
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Abstract. We present an analytical framework to obtain the distribu-
tion of frozen, low quality, and high quality video in a setting with two
video quality levels where the channel is dynamic and the data rate the
user can achieve varies with time. The presented model, which is based
on multi-regime Markov fluid queues, is also capable of producing the
distribution of the excess data present in the playout buffer at the end
of the video session duration, which will be wasted. The playout con-
trol is assumed to be hysteretic, and the effects of the values of thresh-
olds selected for starting playout, switching to low/high quality levels,
and pausing/resuming download on the distribution of video quality and
excess data is investigated. The presented model can be extended to
quality levels more than two.

Keywords: Quality of experience · Markov fluid queue · Video ·
Wasted video data

1 Introduction

Video content remains one of the significant components of Internet traffic [1].
In the abundance of content, the quality of experience (QoE) a user sees is
a decisive factor in the user’s behavior in watching the content. Among the
objective QoE metrics that can be computed and used as indicators of subjective
QoE metrics are video freeze probability, video quality and the share of time a
user sees high quality content. In this study, we present an analytical framework
for evaluating the distribution of frozen, low quality, and high quality video
content where two quality levels are available in a scenario where the data rate
the user device achieves is varying with time due to channel conditions. This is
a typical wireless (WiFi, cellular, or other) channel scenario, while the method
we present is independent of the underlying technology.
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A typical playout control mechanism present in most contemporary video
providers/players is pausing download when a certain amount of unwatched
video is present in the playout buffer. As video, and in general Internet traffic
demand is very high and continuously increasing, providers limit the download
in order to reduce traffic load on the backbone as well as to reduce energy
consumption. To this end, the framework presented in this study also provides
the distribution and the mean of the excess (wasted) data present in the playout
buffer when the user stops the playout, or seeks to another location within a
longer content. This is typical video consumption behavior especially for video-
on-demand content. The video session duration considered in this study could
be viewed as either the duration of the video, or the duration that the user is
willing to watch the content. This may depend on the physical quality of the
video as well as the quality of the content with respect to the tastes of the user.

There exists a number of studies in the literature investigating the QoE met-
rics for video. [18] analyzes the effect of prefetching on the probability of buffer
starvation and the distribution of playback intervals. [11] offers an asymptotic
solution for a fluid buffer in case of base station caching. [13] proposes an M/D/1
model, whereas [12] employs diffusion approximation to solve a G/G/1/N buffer
model. [8] gives a simple two-state Markovian model to estimate the appropri-
ate initial buffering delay to achieve a given buffer depletion probability. In a
previous study [19], we had presented a Markov fluid queue-based analytical
framework for the computation of freeze probability of video playout in a cellu-
lar communication setting, and investigated the effects of initial buffering, initial
state, and adaptive playout.

The contribution of this paper can be summarized as follows:

– We present an analytical framework for the distribution of frozen, low quality,
and high quality video playout in a dynamical channel. This fills a gap in the
literature as we have not encountered any publications on analytical models
for video QoE metrics with multiple quality levels.

– The framework presented is also capable of producing the distribution of the
excess data, as well as its mean. Existing works in the literature for wasted
video data either rely on simulations [7,15] or use measurements [16] and
present only average values. Although these are valuable work, they cannot
provide the distribution of the excess data in a variety of scenarios.

2 System Model

We consider a system where a user wants to watch video content that has two
quality levels: low quality and high quality. The bit rates for low quality and high
quality contents are vL and vH , respectively. The dynamics of the channel that
the user downloads the content is modeled by a continuous-time Markov chain
(CTMC) with infinitesimal generator Qc, with N states. In state i, 1 ≤ i ≤ N ,
the data rate the user gets is ri ≥ 0. In this setting, the technology of the
communication and the nature of the channel (e.g. wired/wireless) is irrelevant
as long as it can be modeled as a CTMC.
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The switch from low to high and high to low quality video depends on the
amount of data in the playout buffer. In order to avoid frequent quality switches,
we consider a hysteretic playout control:

(i) Three thresholds are defined: 0 < B1 < B2 < B3.
(ii) When the request to the video content is made and data starts being down-

loaded, we require the buffer level to reach B2 to start the playout.
(iii) Playout starts with low quality when the buffer reaches B2.
(iv) During playout with low quality, if the buffer gets depleted, video playout

freezes. Playout can resume only when the buffer reaches B2 again.
(v) During playout with low quality, if the buffer reaches B3, playout switches

to high quality video. At the same time, download is paused.
(vi) During playout with high quality, if the buffer drops to B2, download is

resumed and playout continues in high quality.
(vii) During playout with high quality, if the buffer drops to B1, playout switches

to low quality video.

This mechanism is summarized in Fig. 1. Pausing the download when the buffer
level reaches a certain level could be either due to a limited buffer, or in order to
minimize the excess data downloaded but not played out. When user behavior
is considered regarding video content, especially for relatively short on-demand
videos, giving up on the video or skipping to a different position is common.
Hence, downloading is not continued indefinitely even if the channel conditions
are fine. This behavior can be observed in most modern video content providers.

0

B1

B2

B3

video freezes

switch to low quality

start/resume playout

resume download

switch to high quality, stop download

Fig. 1. Summary of the hysteretic playout control.

2.1 Markov Fluid Queues

The playout buffer of user device is modeled as a multi-regime Markov fluid
queue. A Markov fluid queue is a two dimensional stochastic process {X(t), Z(t)}



An Analytical Framework for Video Quality and Excess Data Distribution 475

where X(t) represents the fluid amount in the queue (buffer) and Z(t) represents
the background CTMC that determines the net drift into (or out of) the buffer:

d

dt
X(t) = d(Z(t)), t > 0.

For ease of notation, we write d(Z(t)) = di when Z(t) = i.
The steady-state distribution of the fluid level, if it exists, is defined as

fi(x) = lim
t→∞

d

dx
P {X(t) ≤ x, Z(t) = i} ,

f(x) =
[
f1(x), f2(x), · · · , fN (x)

]
.

This distribution satisfies the system of differential equations:

d

dx
f(x)R = f(x)Q,

along with a set of boundary conditions, where Q is the infinitesimal generator
of Z(t), and R is the diagonal matrix with the drift rates d1, . . . , dN on its
main diagonal [10]. Solution methods for the steady-state distribution are well-
known [4].

If the system parameters, namely Q and R matrices, depend on the buffer
level X(t) in a piecewise-constant manner, the structure is called a multi-regime
Markov fluid queue (MRMFQ) [17]. In a K–regime MRMFQ, there are K + 1
regime boundaries: 0 = B0 < B1 < · · · < BK . When Bi−1 < X(t) < Bi, the
MRMFQ is said to be in regime i, where the state transitions occur according
to the infinitesimal generator Q(i), and the drift rates are given in R(i). The
behavior of the fluid at the thresholds are also important, and state transitions
occur according to Q̃(i) and net drifts are given in R̃(i) when x = Bi. The steady
state probability density of the fluid in this case satisfies

d

dx
f (i)(x)R(i) = f (i)(x)Q(i), k ∈ {1, 2, . . . ,K}, (1)

along with a set of boundary conditions. The solution for (1) is given in [9].
Probability masses can be observed at the regime thresholds depending on the
signs of the drifts on both sides of the threshold. For details, we refer the reader
to [9].

2.2 Multi-regime Markov Fluid Queue Model for the Playout
Buffer

The MRMFQ model for the playout buffer consists of three regimes, bounded
by the thresholds 0 < B1 < B2 < B3. We will also model the video session
duration using a phase-type distribution. This will cover most cases as phase-
type distributions are dense in the field of all positive-valued distributions. If
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the video session duration is deterministic (fixed), Erlangization [14] or ME-
fication [3] can be used. Let α represent the initial distribution of the phase-type
distribution of the session duration, whereas

[
T T 0

01×L 0

]

is the state transition matrix, where T and T 0 blocks are L × L and L × 1,
respectively, and satisfy T 0 = −T 1L×1. In this formulation and the remainder,
we denote a matrix of size m × n of all ones with 1m×n, and a matrix of size
m × n of all zeros with 0m×n.

As the playout is not an indefinite process and expires after some time, the
problem inherently becomes a transient one. We employ a modified version of the
technique described in [21], which introduces three artificial states that derive
the buffer to its initial state after each cycle of the duration. In reference [21],
the cycle is assumed to complete when either the duration ends, or the buffer
becomes empty, and it is desirable to distinguish between these two situations.
Furthermore, the initial buffer content is a non-zero value. In our model, we
always start the buffer from 0, and do not stop the cycle when buffer is depleted.
Hence, compared to the three artificial states introduced in [21], we use a single
“reset” (RST) state. At the instant when the phase-type distribution modeling
the session duration expires, the buffer level gives the value of the excess data
that will not be played out, i.e. essentially wasted. Then, RST state drives the
buffer content to 0 to start a new cycle. In this way, akin to a simulation which
is repeated infinitely many times, the steady state distribution of this MRMFQ
will give us the distributions at the time when the video duration expires.

Apart from the RST state, each state needs to represent three variables:

(i) the channel state (to determine the data rate),
(ii) the quality level (or frozen video), and
(iii) the phase-type state (for the session duration).

Hence, a state will be represented by a triplet of the form (i, q, s), where i ∈
{1, 2, . . . , N}, q ∈ {F,L,Hp,Hd}, and s ∈ {1, 2, . . . , L}. Here, F , L, Hp, and Hd

refer to frozen video, low quality video, high quality video with playout only, and
high quality video with download, respectively.

The following state transitions are observed within each regime:

– (i, q, s) to (j, q, s), i, j ∈ {1, 2, . . . , N}: A change in channel state
– (i, q, s) to (i, q, s + 1), s ∈ {1, 2, . . . , L − 1}: A change in duration state
– (i, q, L) to RST: Duration expires

Enumerating all the states as {RST, (1, F, 1), (2, F, 1), . . . , (N,F, 1),
(1, L, 1), (2, L, 1), . . . , (N,L, 1), (1,Hp, 1), (2,Hp, 1), . . ., (N,Hp, 1), (1,Hd, 1),
(2,Hd, 1), . . ., (N,Hd, 1), (1, F, 2), . . ., (N,Hd, 2), (1, F, 3), . . . , (N,Hd, L)}, the
infinitesimal generator of Z(t) in each regime can be written as

Q(1) = Q(2) = Q(3) =
[
0 01×4NL

T 0 ⊗ 14N×1 IL ⊗ (I4 ⊗ Qc) + T ⊗ I4N

]
, (2)
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where Im is the m × m identity matrix.
Recalling that the video bit rate is vL and vH in low and high quality states,

respectively, and download is paused in Hp states, and the RST state takes the
buffer to 0, the drift matrices can be written as

R(1) = R(2) = R(3) =
[−1 01×4NL

04NL×1 IL ⊗ R̄

]
, (3)

where

Rc =

⎡

⎢
⎢
⎢
⎣

r1
r2

. . .
rN

⎤

⎥
⎥
⎥
⎦

,

R̄ =

⎡

⎢
⎢
⎣

Rc

Rc − vL IN

−vH IN

Rc − vH IN

⎤

⎥
⎥
⎦ .

At the regime boundaries, the following state transitions occur:

– At B0 = 0,
• (i, L, s) to (i, F, s): Low quality video to frozen video
• (i, F, s) to (j, F, s): A change in channel state

– At B1,
• (i,Hd, s) to (i, L, s): High quality video to low quality video
• (i, F, s) to (j, F, s): A change in channel state
• (i, L, s) to (j, L, s): A change in channel state

– At B2,
• (i,Hp, s) to (i,Hd, s): Download is resumed
• (i, F, s) to (i, L, s): Playout starts/resumes
• (i,Hd, s) to (j,Hd, s): A change in channel state
• (i, L, s) to (j, L, s): A change in channel state

– At B3,
• (i, L, s) to (i,Hp, s): Low quality video to high quality video, and down-

load is paused
• (i,Hd, s) to (i,Hp, s): Download is paused

The transition rate from (i, q, s) to j, q, s is equal to Qc(i, j) when i �= j.
The rates for the other transitions are selected as 1. Note that these transitions
in reality are immediate and instantaneous. For instance, when high quality
video is playing and the buffer content falls to B1 from above, it is supposed to
immediately switch to low quality video. However, this instantaneous transitions
cannot be accommodated in a Markovian model. Hence, we let the buffer spend
an exponentially distributed amount of time at level B1 (during which no other
transition is allowed), and then allow the state to change. After the steady
state distribution is obtained, the probability masses at the regime boundaries
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Table 1. Existence of probability masses on the thresholds and their conditions.

Boundary RST state F states L states Hp states Hd states

B3 – – if d > 0 – if d > 0

B2 – if d > 0 – – –

B1 – – – if d < 0 if d < 0

B0 Yes if d < 0 if d < 0 – –

due to these spurious periods can be censored out and the distribution can be
normalized. Based on these, the infinitesimal generators at the regime boundaries
are written as:

Q̃(i) =

[−1 11×L ⊗ (α ⊗ αc)
04NL×1 IL ⊗

(
A

(i)
1 ⊗ IN + A

(i)
2 ⊗ Qc

)
]

, i ∈ {0, 1, 2, 3}, (4)

where αc is the initial distribution of the channel states, and

A
(0)
1 =

⎡
⎢⎢⎣

0, 0, 0, 0
1, 0, 0, 0
1, 0, 0, 0
1, 0, 0, 0

⎤
⎥⎥⎦ , A

(1)
1 =

⎡
⎢⎢⎣

0, 0, 0, 0
0, 0, 0, 0
0, 1, 0, 0
0, 1, 0, 0

⎤
⎥⎥⎦ , A

(2)
1 =

⎡
⎢⎢⎣

0, 1, 0, 0
0, 0, 0, 0
0, 0, 0, 1
0, 0, 0, 0

⎤
⎥⎥⎦ , A

(3)
1 =

⎡
⎢⎢⎣

0, 0, 1, 0
0, 0, 1, 0
0, 0, 0, 0
0, 0, 1, 0

⎤
⎥⎥⎦ ,

A
(0)
2 =

⎡
⎢⎢⎣

1, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0

⎤
⎥⎥⎦ , A

(1)
2 =

⎡
⎢⎢⎣

1, 0, 0, 0
0, 1, 0, 0
0, 0, 0, 0
0, 0, 0, 0

⎤
⎥⎥⎦ , A

(2)
2 =

⎡
⎢⎢⎣

0, 0, 0, 0
0, 1, 0, 0
0, 0, 0, 0
0, 0, 0, 1

⎤
⎥⎥⎦ , A

(3)
2 =

⎡
⎢⎢⎣

0, 0, 0, 0
0, 0, 0, 0
0, 0, 1, 0
0, 0, 0, 0

⎤
⎥⎥⎦ .

The drift matrices at the regime boundaries, R̃(i), i ∈ {0, 1, 2, 3}, are essen-
tially equal to R(i), except for the transitions at the corresponding boundaries.
For instance, the drift in state (i,Hd, s) is ri − vH . However, since there will
be a forced transition from (i,Hd, s) to (i, L, s) at B1, the corresponding rates
in the matrix R̃(1) are changed to 0 to ensure the buffer level stays at B1 until
the state transition. Accordingly, the probability masses indicated in Table 1 will
occur in the steady state distribution. Among these, only the probability mass
due to F states at 0 are observed in reality. Hence, all masses except for that
will be censored out from the steady state distribution.

This completes the definition of the MRMFQ model for the playout buffer.
We follow the methodology laid out in [9] to solve this system and leave out the
details here.

2.3 The Distribution of Excess Data

The data present in the playout buffer at the end of the session duration will
not be played out and hence is wasted. In this study, we quantify the distribu-
tion as well as the mean excess data. The end of the session is signified by a
transition into the RST state. Hence, the distribution of the buffer occupancy
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at the beginning of the RST state gives the distribution of the excess data. In a
Markov fluid queue, the CDF of the buffer level at the state transition instant
into state j is given by [2]

Fb(x, j) = lim
t→∞, Δt↓0

P{X(t) ≤ x |Z(t + Δt) = j, Z(t) �= j}

=

∑

i�=j

F (x, i)Q(i, j)

∑

i�=j

F (∞, i)Q(i, j)
,

(5)

where F (x, i) = lim
t→∞ P{X(t) ≤ x, Z(t) = i} is the steady state CDF of the

buffer level, and Q is the infinitesimal generator. Hence, by setting j = RST, we
obtain the CDF of the excess data. To find the mean, one can use the well-known
relation between the mean and the CDF of any non-negative random variable:

E[X] =
∫ ∞

0

(1 − FX(x)) dx. (6)

3 Numerical Results

We consider a system with the channel state determined by a CTMC whose
infinitesimal generator is

Qc =

⎡

⎢
⎢
⎣

−w w/3 w/3 w/3
0.2 −1 0.4 0.4
0.2 0.4 −1 0.4
0.2 0.4 0.4 −1

⎤

⎥
⎥
⎦ , (7)

with the corresponding data rates in Mbps

r1 = 10−3, r2 = 1, r3 = 3, r4 = 5.

Here, the first state represents the state in which the channel deteriorates and
the data rate reduces to a mere 1 Kbps. As seen from (7), the mean holding
times for the states are 1 s, except for the state with 1 Kbps data rate, whose
mean holding time is parametrized as 1/w. Furthermore, the transition rates
among states 2 to 4 are equal to each other and double the transition rate into
state 1. The transition rates from state 1 to the others are selected equal. The
initial distribution αc is selected as the steady state distribution of Qc, i.e. αc

satisfies αc Qc = 01×N , αc 1N×1 = 1.
The video bit rates are selected as vL = 2 and vH = 4 Mbps for the low and

high quality content, respectively, in line with YouTube recommendations [5,6].
Therefore, in the first and second states, the channel does not have sufficient
data rate for neither quality level; in the third state, the channel does not have
sufficient data rate for the high quality content but has sufficient data rate for
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the low quality content; and the channel can provide the high quality content in
the fourth state in this scenario. The duration of the video session is assumed
to have an Erlang-2 distribution with a mean of H.

We start by investigating the effect of the size of the playout buffer. In this
scenario, B1 is varied from 1 to 10 Mbps, B3 = 2B2 = 4B1, and w = 3. The
distribution of the time the user sees frozen, low quality, and high quality video
is given in Fig. 2 for H = 60 s, and in Fig. 3 for H = 300 s. From these figures,
we observe that the value of B1 has a more profound effect on the probability of
frozen video for smaller H, which is due to the fact that the video starts frozen
until the buffer content reaches B2. Moreover, for H = 60 s, there seems to be an
optimal value of B1 with respect to the probability of frozen video. On the other
hand, the probability of frozen video monotonically decreases with increasing B1

for H = 300 s as expected, since the initial buffering becomes a much smaller
part of the playout duration.

When it comes to the probability of high quality video, as the buffer is
required to reach B3 in order to switch to high quality, the probability of high
quality video also decreases with increasing B1. This shows that a joint opti-
mization with respect to the probability of frozen video and the probability of
high quality video would be required under this setting.

Fig. 2. Video quality distribution for B3 = 2B2 = 4B1 varied from 4 to 40 Mbits,
H = 60 s, and w = 3

We also look at the amount of data present in the buffer at the end of the
session. This is another metric that can be taken into account when designing
playout and buffering mechanisms. Under the same scenario with H = 300, we
plot two of the CDFs for the excess data in Figs. 4 and 5, which are selected
as they are representative of the other scenarios. Notice the deflections at B1
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Fig. 3. Video quality distribution for B3 = 2B2 = 4B1 varied from 4 to 40 Mbits,
H = 300 s, and w = 3.

and B2 at each of these plots. Furthermore, we plot the mean of the excess data
computed from (6) in Fig. 6, which shows that mean excess data is almost linear
in B1, with very little dependence on session duration.

Next, we look at the effect of the selection of B2, when B1 and B3 are fixed.
We select B1 = 4 and B3 = 16 Mbits as this pair of values seem to be reasonable
choices based on Figs. 2 and 3. Again, we use w = 3. The distribution of the
time the user sees frozen, low quality, and high quality video is given in Fig. 7
for H = 60 s, and in Fig. 8 for H = 300 s. From these figures, it is evident that
increasing B2 hurts the performance in terms of the probability of frozen video
whereas improves the probability of high quality video. The effect of B2 on the
probability of frozen video is mainly due to initial buffering as seen from the
comparison of Figs. 7 and 8. Thus, for longer video durations, selecting higher
B2 values could be preferable.

In Fig. 9, we present the mean excess data for again B1 = 4 and B3 = 16
Mbits, B2 ranging from 5 to 15 Mbits, H = 300, and w = 3. Although there
seems to be an optimum B2 value for the mean excess data, the absolute change
in the amount of the mean excess data is not significant. Our experiments (whose
results are omitted here) with other sets of parameters show that the mean excess
data has little dependence on B2 when B1 and B3 are fixed.
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Fig. 4. Excess data CDF for 4B1 = 2B2 = B3 = 4 Mbits, H = 300 s, and w = 3.

Fig. 5. Excess data CDF for 4B1 = 2B2 = B3 = 36 Mbits, H = 300 s, and w = 3.

Lastly, we look at the effect of the parameter w, the transition rate out of
state 1. As the data rate in state 1 is very low, we expect improved performance
as w increases, which is seen in Figs. 10 and 11. Although not obvious from the
figures, the relative improvement in the probability of frozen video (from 0.1115
to 0.0578 for H = 60, and from 0.07578 to 0.02158 for H = 300) is greater than
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Fig. 6. Mean excess data CDF for 4B1 = 2B2 = B3 ranging from 4 to 40 Mbits, and
w = 3.

Fig. 7. Video quality distribution for B1 = 4 Mbits, B3 = 16 Mbits, B2 is varied from
5 to 15 Mbits, H = 60 s, and w = 3.
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Fig. 8. Video quality distribution for B1 = 4 Mbits, B3 = 16 Mbits, B2 is varied from
5 to 15 Mbits, H = 300 s, and w = 3.

Fig. 9. Mean excess data for B1 = 4 Mbits, B3 = 16 Mbits, B2 is varied from 5 to 15
Mbits, H = 300 s, and w = 3.

the relative improvement in the probability of high quality video (from 0.1827
to 0.283 for H = 60, and from 0.1946 to 0.3002 for H = 300) as w is varied from
1 to 6.
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Fig. 10. Video quality distribution for B3 = 2B2 = 4B1 = 16 Mbits, H = 60 s, and w
is varied.

Fig. 11. Video quality distribution for B3 = 2B2 = 4B1 = 16 Mbits, H = 300 s, and
w is varied.

4 Conclusion

We present an analytical framework based on Markov fluid queues for the distri-
bution of frozen, low quality, and high quality video playout of a video content
with two quality levels in a dynamic channel. The framework also produces the
distribution of the excess (wasted) data that is downloaded but not played out.
We present a number of scenarios based on the presented model and draw con-
clusions. It should be noted that we do not make any universal inferences based
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on the presented scenario, but use the given numerical results as a demonstration
of the capabilities of the model and sample scenarios. Extensive studies should
be made to determine rules of thumb or general policies for video playout. The
following points should be made on the current work:

– The roles of the thresholds B1, B2, and B3 can be modified and more thresh-
olds can be accommodated easily. For instance, we use B2 both as the level
required for starting playout, and resuming download. It is possible to use
distinct values for these two thresholds, in which case one additional regime
should be defined and the matrices of the MRMFQ should be modified accord-
ingly.

– Although we present the model using only two quality levels (low and high)
for ease of definition and implementation, more quality levels can be accom-
modated easily by defining new thresholds as necessary, modifying the drift
matrices, and defining separate playout rates for each quality level. The solu-
tion methodology stays the same.

– In both of these extensions, the number of regimes increases as new thresh-
olds are defined. However, as pointed out in [20], the numerical solution of
MRMFQ systems in general can be obtained in linear time with respect to the
number of regimes. Thus, these possible extensions do not impose significant
computational overheads.

– The video session duration is modeled as a phase-type distribution, which is a
very general setting. As pointed out earlier, this can represent the duration of
the video, or the amount of time the user wants to watch a particular video.
In a general sense, the quality experienced by the user affects the amount
of time he or she watches the video. Therefore, the session duration may be
modeled in such a way that the desire to continue watching diminishes with
frozen and/or low quality video. This will be the future work after this study.
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