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Preface

The Brazilian Symposium on Bioinformatics (BSB) is an international conference that
covers all aspects of bioinformatics and computational biology. This volume contains
the accepted papers for BSB 2021, held virtually during November 22–26, 2021.

As in past years, the special interest group in Computational Biology (CEBioComp)
of the Brazilian Computer Society (SBC) organized the event. A Program Committee
(PC) was in charge of reviewing submitted papers; this year, the PC had 42 members.
Each submission was reviewed by three PC members. There were two submission
tracks: full papers and short papers. In the full paper track, ten papers were accepted;
five papers were accepted in the short paper track. All of them are printed in this
volume and were presented orally at the event. In addition to the technical presentations,
BSB 2021 featured the following invited speakers, with the respective talk titles: João
Carlos Setubal (University of São Paulo, Brazil), Microbial genome informatics in
the microbiome era; Angelica Cibrian (CINVESTAV, Mexico), Evolutionary genomics
of ancient plants and their symbionts: from species to metabolites; Marc Hellmuth
(Stockholm University, Sweden), Gene family histories and homology relations; and
Deisy Morselli Gysi (Northeastern University, USA), Drug repurposing for treating dis-
eases: a network medicine approach. Also, we organized a special session dedicated to
“Bioinformatics and Artificial Intelligence” coordinated byMaribel Hernandez-Rosales
(CINVESTAV Irapuato, Mexico). Moreover, we proposed three round tables with the
objective of exchanging ideas among students, researchers, and professionals, which
were coordinated by following researchers focusing on the specific themes: Peter Stadler
(Leipzig University, Germany), Quo vadis, bioinformatics/computational biology?;
Maribel Hernadez-Rosales (CINVESTAV Irapuato, Mexico) and Vinita Gowda (IISER
Bhopal, India), STEM questions and challenges in bioinformatics; Steve Hoffman
(Leibniz Institute onAgingResearch/FritzLipmann Institute,Germany), ElizabethTapia
(CIFASIS-CONICET-UNR, Argentina), and Tania Carrillo-Roa (Roche Diagnostics),
Career opportunities - academy and industry.

BSB 2021 was made possible by the dedication and work of many people and
organizations. We would like to express our thanks to all Program Committee members.
Their names are listed in the pages that follow.We are also grateful to the local organizers,
Raquel Minardi, Waldeyr M. C. Silva, Daniel de Oliveira, Marcelo Reis, and volunteers
for their valuable work and for helping out with outreach; to the sponsors for making
the event financially viable; to the maintainers of JEMS, which was the system we used
to handle submissions; and to Springer for agreeing to publish this volume and their
staff for working with us on its production. Last but not least, we would like to thank
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all authors for their time and effort in submitting their work and the invited speakers for
having accepted our invitation.

November 2021 Peter F. Stadler
Maria Emilia M. T. Walter

Maribel Hernandez-Rosales
Marcelo M. Brigido
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Comparative Transcriptome Profiling
of Maytenus ilicifolia Root and Leaf

Mariana Marchi Santoni1(B) , João Vı́tor Félix de Lima1 ,
Keylla Utherdyany Bicalho2 , Tatiana Maria de Souza Moreira1 ,

Sandro Roberto Valentini1 , Maysa Furlan3 , and Cleslei Fernando Zanelli2

1 Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo
State University (UNESP), Araraquara, SP 14800-903, Brazil

mariana.santoni@unesp.br
2 VIB Center for Plant Systems Biology, 9052 Ghent, Belgium

3 Department of Organic Chemistry, Institute of Chemistry, São Paulo State

University (UNESP), Araraquara, SP 14800-900, Brazil

Abstract. Plants produce a wide variety of compounds called secondary
metabolites (SMs), which are extremely important for their survival. SMs
have also medicinal applications, but as chemical synthesis is not econom-
ically viable, plant extraction is the mainly option. Different biotechnol-
ogy strategies are applied to improve the yield of bioproduction of these
compounds, but commonly without the desired results due the limited
knowledge of biosynthetic and regulatory pathways. Maytenus ilicifolia,
a traditional Brazilian medicinal plant from Celastraceae family, pro-
duces in both root and leaves three main classes of SMs: sesquiterpenics,
flavonoids and quinonemethides. In this study, four cDNA libraries were
prepared from root and leaf tissues. The de novo transcriptome included
109,982 sequences that capture 92% of BUSCO orthologs, presented an
average length of 737bp and a GC content about 42% of. Function anno-
tation analysis identified homology for 44.8% of the transcripts. More-
over, 67,625 sequences were commonly expressed in both tissues, while
1,044 and 1,171 were differentially expressed in root and leaf, respec-
tively. In terms of SM, enzymes involved in “monoterpenoid biosynthesis”
and “isoflavonoid biosynthesis” were identified in root while “flavonoid
biosynthesis” and “Biosynthesis of alkaloids” in leaf.

Keywords: RNA-Seq · De novo assembly · Metabolic pathways

1 Introduction

Compounds produced by plants are categorized into primary and secondary
metabolites (SMs). Primary metabolites, such as carbohydrates, lipids, and pro-
teins, are involved in plant development [9] and essential for cell growth [17]. In

Supported by São Paulo Research Foundation (FAPESP) [2013/07600-3; 2016/16970-
7]; National Council for Scientific and Technological Development (CNPq)
[303757/2017-5]; National Institute for Science and Technology (INCT).

c© Springer Nature Switzerland AG 2021
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contrast, SMs (low molecular weight compounds) are multifunctional metabo-
lites produced as an evolutionary adaptation [4,23]. They are involved in plant
defense and environmental communication [4,8,23], plant color, taste, and scent
[9] and responses to biotic and abiotic stress [15,16,19].

The high variety of biological functions of the SMs is explained by diver-
sified chemical structure [4,24] originated from a restricted and distinct num-
ber of metabolic pathways such as the acetate, shikimic acid, mevalonic acid or
methylerythritol phosphate pathways [9,21]. SM are grouped in three classes: ter-
penes, alkaloids and phenylpropanoids, each one with its respective and unique
properties [4,24]. These compounds are identified in all plant tissues and their
formation and gene regulation is usually organ, tissue, cell and also develop-
ment specific, indicating that a range of transcription factors must cooperate
to transcribe secondary metabolism genes, controlling the general machinery of
biosynthetic pathways in production, transport and storage [18,22].

Many SMs are sources of drugs however, as chemical synthesis is uneco-
nomical, isolation from plants still represents the only option [4,13]. Different
biotechnological strategies have been applied to improve the production of these
compounds, but often without the desired results due to the lack of knowledge
about the biosynthetic routes [13,21]. Biotechnology techniques such as tran-
scriptome, proteome or metabolomics are used to identify genes and their func-
tions in plant metabolic pathways in order to clarify the mechanisms involved
in SMs synthesis [4].

Maytenus ilicifolia Mart ex Reissek (Celastraceae) is a Brazilian native plant
known for its variety of therapeutic properties. It has been used as a treatment
of several diseases such as gastric ulcer, dyspepsia, stomach acidity, diabetes
and cancer [12,13,20]. This species produces three main classes of bioactive
compounds: alkaloids sesquiterpene pyridines, flavonoids and quinonemethide
triterpenes [13] and the mainly products are maitenin, friedelin, fridelanol, pris-
timerine and terpenes [14]. Additionally, like other members of Celastraceae
family, some compounds are synthetized in a specific tissue: quinone methide
triterpenoids are accumulated in root bark [1,13] and flavonoids in leaves [2].

The analysis of differentially expressed transcripts between two tissues can
provide a better understanding of genes involved in secondary metabolic path-
ways [3,10,11]. In this context, the aim of the present study was to analyze
whole transcriptome of M. ilicifolia and identify genes involved in biosynthesis
of SMs by a comparative profiling of root and leaf. This study is the first report
of high-throughput analysis (de novo RNA-Seq) of M. ilicifolia transcriptome
that provides new insights at molecular knowledge.

2 Methods

2.1 Plant Material and Total RNA Isolation

Leaves of adult specimen of M. ilicifolia from the medicinal plant garden of the
Faculty of Pharmaceutical Sciences and leaves and roots of identified seedlings,
with approximately 6 months of planting, were harvested and stored in −80 ◦C
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(Fig. 1A). The total RNA from two specimens of roots (from two seedlings) and
two specimens of leaves (one leaf from seedling, coinciding with one of the spec-
imens used for root extraction and one leaf from adult specimen) was isolated
from 500 mg of material using RNeasy Plant mini kit (Qiagen, USA) according
to the manufacturer’s protocol. RNA quantity and quality were evaluated using
Nanodrop 1000 spectrophotometer and Agilent 2100 Bioanalyzer. RNA sam-
ples with quality ratios greater than 1.8 (260/280 nm and 28S/18S) and RNA
integrity number (RIN) greater than 7 were selected for subsequent processes.

Fig. 1. Experimental approaches for Maytenus ilicifolia transcriptome study.
A. Two samples of leaves (one leaf from adult specimen and one leaf from seedling) -
L1 and L2 - and two samples of roots from two independent seedlings (one root sample
coinciding with the same specimen of the leaf sample) - R1 and R2 - were collected
and stored in −80 ◦C for posterior RNA isolation. B. Library preparation and tran-
scriptome sequencing C. Pipeline used for de novo assembly.

2.2 Library Preparation and Sequencing

After isolated from total RNA with magnetic Oligo (dT) particles, mRNA was
chemically fragmented. Subsequently, cDNA libraries were prepared using Illu-
mina TruSeq RNA sample preparation v3 kit (Illumina, USA) (Fig. 1B). Quan-
tification and quality assessment of resulting libraries were performed on Agi-
lent 2100 Bioanalyzer. A total of 20 pmol of the libraries was submitted to
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“single-read” sequencing in HiSeq 2000 platform (leaf of the adult specimen) -
FCAV/Unesp - to generate 100bp reads or sequencing in MiSeq equipment (leaf
and roots of seedlings) - LAB Multi-FCFAR/Unesp - to generate 75bp paired-
end reads (Table 1).

Table 1. RNA-Seq traits of four Maytenus ilicifolia (*same specimen).

Sample ID Plant material Seq platform Protocol Read length No. of reads

L1 Leaf (adult) HiSeq 2000 Single read 100 46,798,882

L2* Leaf (seedling) MiSeq Paired-end 75 19,062,549

R1 Root (seedling) MiSeq Paired-end 75 24,435,760

R2* Root (seedling) MiSeq Paired-end 75 25,083,492

2.3 Quality Control and de novo Assembly

The public server Galaxy (usegalaxy.org) was used to process the high-
throughput data. The raw data generated by the sequencing, FASTQ files, were
evaluated by the FastQC tool (v0.11.8) for quality before and after filtering and
for GC content. Reads were filtered by TrimGalore! (v0.6.3), removing adapter
contamination and low-quality sequences (average quality below 25). Initial and
final bases were also removed from sequences with “q” value lower than 25 and,
finally, in the final FASTQ file of filtered reads, those with a size greater than
50 base pairs remained.

The high-quality data of roots and leaves samples was assembled using Trinity
(v2.9.1) on default parameters. The de novo assembly was evaluated by different
quality metrics including N50 length and BUSCO v4.1.2 analysis using OrthoDB
v10 ‘embryophyta’ database as a reference to access the assembly and annotation
completeness. Filtered reads were remapped to the assembled transcriptome in
order to obtain, using Salmon tool, an expression matrix reported in transcripts
per kilobase million (TPM). This matrix allowed the filtering of transcripts by
low expression, considering only those with at minimum 1% of dominant isoform
expression, generating the filtered transcriptome.

2.4 Functional Annotation

TransDecoder tool was used to find the probable coding regions of tran-
scripts and the open reading frames (ORFs) with a minimum length of 100
amino acids. Then, functional annotation of the transcripts was performed
using BLASTX against Uni-ProtKB/SwissProt databases and uniprot trEMBL
plants database (E-value <1e−5). Moreover, a homology search based on the
BLASTP was performed using the predicted proteins as query against UniPro-
tKB/SwissProt databases (E-value <1e−5). The assignments of Gene Ontol-
ogy (GO) terms to transcripts were performed based on UniProtKB/SwissProt
database to assign unigenes to functional categories. Additionally, the proteins
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with Enzyme Commission (EC) numbers were mapped onto the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) Pathway Database using online KEGG
Automatic Annotation Server (www.genome.jp/kegg/kaas) to assign pathway
information to the transcripts.

2.5 Differential Expression Analysis

Salmon tool was applied to estimate the expression level of transcripts. Each
filtered FASTQ file was separately aligned to the filtered transcriptome. Then,
the expression level of each transcript was normalized and reported in TPM.
To summarize the results and provide statistical tests for tissue comparison,
the differential expression analysis was performed using DESeq2 R package and
transcript expression difference was considered significant when the adjusted
p-value < 0.05.

2.6 Gene Ontology Enrichment and KEGG Analysis

Gene ontology (GO) enrichment analysis for biological process (BP) and molec-
ular function (MF) for the differentially expressed transcripts in each tissue was
conducted using topGO R package. Significant GO terms (Fisher’s exact test p-
value < 0.01) were visualized using REViGO (revigo.irb.hr) for semantic space
reduction. Transcripts associated with Enzyme Commission (EC) numbers were
mapped onto the KEGG pathway database.

3 Results and Discussion

3.1 De novo Assembly and Functional Annotation of M. ilicifolia

The single-read leaf cDNA library and the paired-end leaf and root cDNA
libraries subjected to full transcriptome sequencing generated about 115 mil-
lion of raw reads. The detailed information of the read numbers in different
samples is provided in Table 1.

High quality sequencing data, 112,609,211 reads, was used for assembly. The
de novo transcriptome generated included 163,780 transcripts (isoforms) with a
GC content of 41.8% and the N50 resulting in 1,222bp. The average transcript
size was 737 and 22% of them presented more than 1,000bp (Fig. 2A). By con-
sidering transcript expression, 15,704 transcripts represented 90% of the total
expression data (Ex90) and had an N50 of 1,487bp (Ex90N50). In addition, the
assembled transcriptome of M. ilicifolia captured 92.6% of the 1,614 orthologs
described for the Virdiplantae database (updated 2020-09-10): 53.0%, 39.6%,
4.2%, and 3.2% of the BUSCO genes were respectively classified as complete
single copy, complete duplicate, fragmented and absent. After filtering by low
expression, the final transcriptome included 109,982 sequences. These results
indicate that the integrity of assembly was high, and the sequencing quality had
met the requirements of further analysis.

www.genome.jp/kegg/kaas
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Fig. 2. Aspects of Maytenus ilicifolia transcriptome assembly. A. Size distri-
bution of assembled data. B. Principal component analysis (PCA) on the read counts
of root and leaf samples. (L1, L2, R1 and R2 - sample identification described in Fig. 1)
C. Venn diagram showing the number of transcripts for each source of sample D. tran-
scriptome traits for each tissue.

Results of PCA analysis revealed the distinct differences in transcript expres-
sion patterns among the samples. The first two principal components con-
tain 69.12% of the information grouping different tissues in separate clusters
(Fig. 2B). Considering transcripts identified in leaf and root individually, 67,625
isoforms were found in both tissues (Fig. 2C) and showed similar aspects in
respect to transcriptome traits (Fig. 2D).

In summary, M. ilicifolia transcriptome had GC content close to 40%, similar
values to those reported for Celastraceae family species like staff vine (41.5%)
[20] and thunder god vine (37.2%) [22]. Moreover, results of BUSCO analysis
captured more than 90% of the orthologs described for the chosen database
and the PCA results allowed the confirmation of expression differences in both
tissues, root and leaf.

The BLASTX against the uniprot trEMBL plants database found 36,625
alignments and revealed that M. ilicifolia predicted transcripts have highest sim-
ilarity with an organism classified in the same family, Tripterygium sp (47.3%)
(Fig. 3A), but homology was find for other family organisms (Fig. 3B). Candi-
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date coding regions in M. ilicifolia transcriptome were identified by TransDe-
coder and 65,533 ORFs and 46,282 probable coding sequences were predicted.
Sequence homology search results against the UniprotKB/SwissProt database
by BLASTX (E-value <1e−5, for filtered transcripts) and BLASTP (E-value
<1e−5, for predicted protein sequences) were 49,319 (44.8%) and 36,344 (55.5%)
aligned transcripts, respectively.

Fig. 3. Functional annotation for Maytenus ilicifolia transcriptome. Similarity
frequency distribution of different A. families and B. species. The BLASTx was per-
formed against the trEMBL plants database. Top ten GO terms in the transcriptome
assembly from C. molecular function, D. biological process and

Functional annotation for filtered transcriptome was followed by GO analysis
and 43,322 annotated transcripts were categorized into 9,989 GO IDs. The num-
ber of transcripts in three main categories of molecular function (MF), biological
process (BP) and cellular component (CC) was 41,148, 39,404 and 39,582, respec-
tively. The most dominant GO terms in the MF category were “protein binding,”



10 M. M. Santoni et al.

“ATP binding” and “metal iron binding” (Fig. 3C). In the BP category, “regu-
lation of transcription”, “protein phosphorylation” and “protein ubiquitination”
were the most prominent (Fig. 3D). In the CC category, “nucleus”, “plasma mem-
brane” and “integral component of membrane” were the most abundant terms
(Fig. 3E).

KEGG annotation analysis was performed to identify active metabolic pro-
cesses in M. ilicifolia transcriptome. In conclusion, 2,326 transcripts were
assigned to 428 KEGG pathways. Considering “Metabolism of terpenoids and
polyketides”, the most representative pathway was “Terpenoid backbone biosyn-
thesis (ko00900)”, followed by “Sesquiterpenoid and triterpenoid biosynthesis
(ko00909)”, with 216 and 127 mapped sequences that represent 50% and 10% of
the orthologous for each pathway, respectively.

In conclusion, the identification of about 40,000 protein accessions indicates
that in this study the de novo RNA-Seq and assembly could generate substantial
information about M. ilicifolia genes. The functional annotation of transcripts
covered a broad range of GO categories and KEGG allowed the identification
of transcripts involved in biosynthesis of triterpenoid backbone, as expected for
this species.

3.2 Identification of Differentially Expressed Transcripts in Both
Tissues

Comparative transcript abundance level revealed significant differential expres-
sion of 2,215 transcripts (FDR <0.05) between the transcriptome of both tis-
sues. Levels of expression were represented as log2 ratio of transcripts abun-
dance between leaf and root samples (Fig. 4A), showing the 1,044 differentially
expressed transcripts in root and 1,171 in leaf. Working on both tissues, it was
observed that a number of transcripts was expressed uniquely in either of the tis-
sues: among differentially expressed transcripts, 424 were exclusively expressed
in leaf and 298 in root.

To better characterize the tissue-biased transcriptome profile, topGO pack-
age were used to evaluated GO enrichment (p-value <0.01) for the differentially
expressed transcripts and further the representative terms were summarized
upon removal of redundant using REVIGO. Among the 770 roots differentially
expressed annotated transcripts, 568 genes were assigned to 260 GO terms, while
in the leaf, from the 902 differentially expressed annotated transcripts, 610 were
classified in 265 GO terms.

The GO analysis revealed enrichment for biological processes (BP) in root
for “response to ethylene”, “regulation of cellular process” and others (Fig. 3B),
while in leaf for “photosynthesis”, “protein-chromophore linkage” and others
(Fig. 3C). According to functional analysis terms, leaves and roots of M. illicifoia
also differ at levels of molecular function (MF), with transcripts overexpressed
in roots being mainly associated with “calcium ion binding”, “iron ion binding”
and others (Fig. 4B), while the overexpressed leaf transcripts are associated with
“oxidoreductase activity”, “chlorophyll binding” and others (Fig. 4C).
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Significant GO terms linked to secondary methabolism were found in 295
differentially expressed transcripts, 164 in root and 131 in leaf. Some terms
were found enriched in specific tissue, for example, “2-oxoglutarate-dependent
dioxygenase activity” and “response to herbivore” in root and “beta-amyrin
synthase activity” and “triterpenoid biosynthetic process” in leaf. Coincident
terms like “oxidoreductase activity” were observed in overexpressed transcripts
from both tissues (Table 2).

Fig. 4. Gene expression differences between root and leaf tissues of Maytenus
ilicifolia . A. The values of -log10 adjusted p-value were plotted according to the differ-
ential expression between root and leaf (log2 fold change). Differentially expressed root
transcripts are high-lighted in brown (left) and differentially expressed leaf transcripts,
in green (right). Top ten most represented terms of gene ontology enrichment analysis
in biological process (BP) and molecular function (MF) for differentially expressed tran-
scripts for B. root and C. and leaf (Color figure online)

The comparative transcriptome analysis led to the identification of 350 and
487 transcripts associated with Enzyme Commission (EC) numbers in root and
leaf, respectively. These tissue-biased transcripts were mapped onto the KEGG
pathway database for the “Biosynthesis of plant secondary metabolites map”
(ko01060) and related pathways. Enzymes involved in “monoterpenoid biosyn-
thesis” and isoflavonoid biosynthesis” were identified in root overexpressed tran-
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scripts while “flavonoid biosynthesis” and “Biosynthesis of alkaloids derived from
histidine and purine” in leaf (Table 3).

Taking together, the results of GO enrichment analysis and KEGG mapping
of transcripts overexpressed in root or leaf of M. ilicifolia confirmed the well-

Table 2. Number of transcripts overexpressed in Maytenus ilicifolia root or leaf char-
acterized according to enriched GO terms involved in secondary metabolism.

GO ID GO term Root Leaf

GO:0016706 (MF) 2-oxoglutarate-dependent dioxygenase activity 26 –

GO:0080027 (BP) Response to herbivore 15 –

GO:0016491 (MF) Oxidoreductase activity 7 25

GO:0016709 (MF) Oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular
oxygen, NAD(P)H as one donor, and incorporation
of one atom of oxygen

6 2

GO:0019742 (BP) Pentacyclic triterpenoid metabolic process 3 –

GO:0016106 (BP) Sesquiterpenoid biosynthetic process 3 –

GO:0042300 (MF) Beta-amyrin synthase activity – 6

GO:0016104 (BP) Triterpenoid biosynthetic process – 5

Table 3. Enzymes mapped KEGG pathways identified in the comparative transcrip-
tome analyses of root and leaf of Maytenus ilicifolia.

Root

map00902 Monoterpenoid biosynthesis EC:2.1.1.50

map00943 Isoflavonoid biosynthesis EC:2.1.1.46

Leaf

map00230 Purine metabolism EC:2.4.2.14
EC:2.7.6.5
EC:3.5.2.5

map00941 Flavonoid biosynthesis EC:2.3.1.133

map00950 Isoquinoline alkaloid biosynthesis EC:1.4.3.21
EC:2.6.1.5

map00960 Tropane, piperidine and pyridine alkaloid biosynthesis EC:1.4.3.21
EC:2.6.1.5

map01064 Biosynthesis of alkaloids derived from ornithine, lysine
and nicotinic acid

EC:1.4.3.21
EC:2.6.1.5

map01065 Biosynthesis of alkaloids derived from histidine and purine EC:4.1.2.13
EC:1.2.1.9
EC:2.4.2.14
EC:2.7.6.5
EC:5.1.3.1
EC:1.1.1.49
EC:2.2.1.1
EC:3.5.2.5
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reported SMs accumulation reveled by other methodological procedures, includ-
ing flavonoids, triterpenes, and sesquiterpenes in leaves [2], while roots contain
terpenes, triterpenes, alkaloids and especially the quinonemethide triterpenes
[5,13,14].

Finally, from the present study, an extensive transcriptome dataset has been
generated from de novo sequencing analyses of M. ilicifolia. The coverage of
the transcriptome data is consistent to discover genes involved in the secondary
metabolic pathways. Therefore, choosing the root and the leaf for comparative
transcriptome analysis facilitated the identification of the genes involved in the
organ-specific biosynthesis, an approach widely used for mining and identifying
novel genes in biosynthesis of SMs in plants[3,6,7,18,25,26].

References

1. Coppede, J.S., et al.: Cell cultures of Maytenus ilicifolia Mart. Are richer sources of
quinone-methide triterpenoids than plant roots in natura. Plant Cell Tissue Organ
Cult. (PCTOC) 118(1), 33–43 (2014). 10/f56kq9

2. De Souza, L.M., Cipriani, T.R., Iacomini, M., Gorin, P.A.J., Sassaki, G.L.:
HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract
from leaves of Maytenus ilicifolia. J. Pharm. Biomed. Anal. 47(1), 59–67 (2008).
10/c4vp7v

3. Devi, K., Mishra, S.K., Sahu, J., Panda, D., Modi, M.K., Sen, P.: Genome wide
transcriptome profiling reveals differential gene expression in secondary metabolite
pathway of Cymbopogon winterianus OPEN, 6(21026), 1–11 (2016). 10/f79vzf.
Nature Publishing Group
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Abstract. The cell highly regulates the translational process aiming to
maintain cellular stability and viability for mechanisms at the transcrip-
tional, translational, or metabolic level, such as the control of transcripts
forwarded for translation or autophagy. The translation elongation fac-
tor 5A (eIF5A) is evolutionarily conserved and essential in eukaryotic
cells. eIF5A undergoes a post-translational modification, called hypusi-
nation, which has two enzymatic steps. The first stage, catalyzed by
the deoxyhypusine synthase, occurs in a spermidine-dependent manner.
Spermidine is a polyamine in which intracellular imbalance can affect
some cellular processes. Studies show that this modification is funda-
mental to the role of eIF5A in the cell, assisting in the translation of a
subset of mRNA. We analyzed transcriptional and translational profiles
of the deoxyhypusine synthase mutant (dys1-1 ) in Saccharomyces cere-
visiae. From Polysome-seq, our results showed that the lack of hypusina-
tion leads to the impairment on the translation of short ORFs, that code
ribosomal mitochondrial proteins. From both profiles, the expression of
genes and transcription factors of the polyamine pathway, which needs
strict cell control, was altered. Besides, the inhibition of hypusination by
GC7 showed an increase in the protein level of two autophagy proteins,
Atg1 and Atg33, the latter is specific to mitophagy. In response to the
metabolic problems caused by non-hypusination, the cell can respond
with mitophagy and macroautophagy to maintain cell stability.

Keywords: Deoxyhypusine synthase · eIF5A · GC7.

1 Introduction

Translation comprises protein synthesis, where ribosomes and translational fac-
tors recognize and decode the messenger RNA template by cycling through
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translation initiation, elongation, termination phases and ribosome recycling
[29,32]. The translation elongation factor 5A (eIF5A), a structural ortholog
of the bacterial EF-P protein, is evolutionarily conserved among eukaryotes
(eIF5A) and archeas (aIF5A). eIF5A undergoes hypusination, an exclusive and
spermidine-dependent post-translational modification, that converts a specific
lysine residue (K51 in Saccharomyces cerevisiae) by the action of two enzymes:
deoxyhypusine synthase (Dys1 in yeast) and deoxyhypusine hydroxylase (Lia1
in yeast) [6,9,27,28]. The enzymes involved in this exclusive modification are
also conserved [24]. eIF5A is high abundant and essential for cell viability in
eukaryotic cells. Hypusinated eIF5A (eIF5AH) promotes a stabilization of the
peptide bond during the elongation of a subset of mRNAs, caracterized by low
translational processability, and is also related to termination [30].

Spermidine, an endogenous polyamine involved in hypusination, has also been
reported to induce autophagy [19]. Additionally, polyamines have roles in cellu-
lar proliferation, DNA binding, ion channels modulation and protein synthesis
[9,21,25]. A structural analogue of spermidine, N1-guanyl-1,7-diaminoheptane
(GC7), acts as an inhibitor of the first hypusination enzyme, anchoring at the
spermidine-binding site of Dys1 [2].

In this study, we combined polysome profiling and next-generation sequenc-
ing as a measure of translational profile to investigate the role of hypusination in
global translation in yeast. This characterization of the translational profile was
revealed to be correlated to the already consolidated ribosomal profile [15]. We
used the deoxyhypusine synthase mutant (dys1-1 ) datasets of Saccharomyces
cerevisiae [8] to identify transcripts dependent on eIF5A hypusination at tran-
scriptional and translational levels. The dys1-1 mutant displays compromised
translation of specific functional groups, including mitochondrial ribosomal pro-
teins. Besides, we found the mutation generated expression changes in genes
envolved in polyamine pathway, which possibly mimics the effect caused by the
addition of spermidine in the cell and consequently undergoing autophagy. Addi-
tionally, non-hypusination due to GC7 leads to an increase in the level of proteins
related to macroautophagy and mitophagy.

2 Materials and Methods

2.1 RNA-seq Data Analysis

RNA-seq and Polysome-seq datasets for DYS1 and dys1-1 were taken from [8]
and the Saccharomyces cerevisiae R64-1-1 S288C reference genome was used
for the analysis. Bioinformatic analysis was conducted according to [8]. Briefly,
adaptor sequence was trimmed using Trim-Galore! (Galaxy Tool Version: 0.4.3.1
+ galaxy1) and◦ low-quality reads (Phred score <25) were discarded. First,
trimmed reads were alignment to the RNA gene database FASTA file to remove
noncoding RNAs using Bowtie software (Galaxy Tool Version: 1.1.2) with the
parameters -v 2 -y -a -m 1 -best -strata -S -p 4. The remaining reads were then
aligned to the genome using Stringtie software (Galaxy Tool Version: 1.3.4)
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with standard parameters. The mapped reads were normalized TMM and dif-
ferentially expressed genes were identified using anota2seq [22]. Significance was
determined using an adjusted p-value limit of 0.05.

Translational efficiency (TE) was defined by transcript abundance in the
translatome profiling to the abundance of the respective transcript in the tran-
scriptome profiling. Changes in translational efficiency - changes for dys1-1 strain
compared to DYS1 strain in translated mRNA after adjustment for correspond-
ing changes in total RNA, also known as ΔTE - was calculated by anota2seq
using Analysis of Partial Variance (APV).

Gene ontology (GO) terms and biosynthetic pathways of differentially
expressed genes were determined using Yeastmine database [10], considering p-
value <0.05 for the Holm-Bonferroni correction test. Fisher exact test was used
to test for statistically significant differences, and the Holm-Bonferroni correc-
tion test procedure to adjust for the effects of multiple tests [3]. GO terms were
considered significant when FDR <0.01.

2.2 Strain and Growth Conditions

Saccharomyces cerevisiae strains SVL613 (MATa leu2 trp1 ura3 his3 dys1::HIS3
[DYS1/TRP1/CEN - pSV520]) and SVL614 (MATa leu2 trp1 ura3 his3
dys1 ::HIS3 [dys1-1/TRP1/CEN - pSV730]) were used to qPCR experiments.
The mutant dys1-1 (dys1-1W75R,T118A,A147T) and its special growth condi-
tions are described in [11].

For western blot assays, strains MATa ATG1-TAP::HIS3 his3Δ1 leu2Δ0
ura3Δ0 met15Δ0 and MATa ATG33-TAP::HIS3 his3Δ1 leu2Δ0 ura3Δ0
met15Δ0, from TAP-tagged yeast collection, were used [33]. The procedures for
cell growth were performed according to standard protocols [1]. Cells were grown
to OD600 ∼ 0.4 and then treated with 1 mM N1-guanyl-1,7-diaminoheptane
(GC7; Biosearch Technologies) or vehicle control (0.1 mM acetic acid) in cul-
ture medium for 12 h at 25 ◦C. For GC7 treatment, 1 mM aminoguanidine was
added to prevent degradation by monoamine oxidases [31]. The cultures were
centrifuged, and the cell pellets were stored at −80 ◦C.

2.3 RNA Isolation and qRT-PCR

For total RNA isolation, SVL613 and SVL614 strains were grown in exponential
phase an OD ∼ 0.6. Cultures were centrifuged and cell pellets were stored at
−80 ◦C. Cell lysis was conducted with zymolyase and total RNA was extracted
using the RNeasy mini kit (cat. number 74104, Qiagen). Total RNA was quanti-
fied using a NanoDrop 2000 Spectrophotometer (ThermoFisher) and its integrity
were verified by electrophoresis gel on 2100 Bioanalyzer equipment (Agilent,
Santa Clara, CA), using a High Sensitivity Total RNA Analysis Chip.

For the RNA analysis by real-time PCR, 5000 ng of RNA from SVL613
and SVL614 strains was treated with DNaseI kit (Sigma - AMPD1-1KT) and
the first-strand cDNA was synthesized by the SuperScript R© IV Reverse Tran-
scriptase (RT) kit (Life Technologies) following the manufacturer’s instructions.
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Real-time PCR was performed in a 7500 Real-Time PCR instrument (Applied
Biosystems) with the Power SYBRTM Green PCR Master Mix detection system
(Life Technologies). Reactions were performed in a total 20 µl volume with 10 ug
of the synthesized cDNA. Each sample was analyzed in triplicate with indepen-
dent biological replicates per sample. Values were normalized to the steady-state
SCR1 mRNA levels using ddCt method [17].

2.4 Protein Extraction and Western Blot Analysis

Protein extracts from TAP-tagged yeast collection strains were obtained from
mechanical lysis of the cell pellets vortexed for 12 min at 4 ◦C (alternating every
3 min, 1 min on ice) in lysis buffer (200 mM Tris-HCl, pH 7.5; 2 mM dithiothre-
itol; 2 mM EDTA, pH 8; 0.2% Triton X-100) with protease inhibitors (5 µg.mL-1
of pepstatin, leupeptin, aprotinin and chymostatin; and 2 Mm PMSF) and glass
beads. The cell extract was centrifuged (10,600 xg, at 4 ◦C, 15 min), the super-
natant was removed, and the total protein concentration was determined by the
Lowry method [23].

A specific amount of protein (40 µg for Atg1 and 25 µg for Atg33 west-
ern blots) in 6X SDS loading buffer (0.3 M Tris-HCl; 0.6 M DTT; 10% SDS;
0.06% Bromophenol blue; 30% glycerol) was heated in 96 ◦C heating block for
5 min. Protein samples were analyzed by SDS-PAGE using 12% polyacrylamide
gels and transferred to nitrocellulose membranes which were blocked (10% non-
fat powdered milk; PBS 1X; 0.25% Tween-20) and incubated with antibodies.
Antibody dilutions were as follows: anti-TAP (Sigma-Aldrich P1291), 1:4,000;
a rabbit polyclonal anti-Rpl5 antibody (yeast), 1:20,000; a rabbit polyclonal
anti-hypusine antibody (Merck Millipore ABS1064) 1:2,500; and anti-rabbit sec-
ondary antibody (Sigma-Aldrich A9169), 1:20,000. Immunoreactivity protein sig-
nals were quantified using ImageJ software.

3 Results and Discussion

3.1 Translation of Short ORFs is Impaired in dys1-1 Mutant

A polysome consists in an mRNA occupied by two or more ribosomes and
the number of ribosomes in an ORF relates directly to its length [13,14]. We
found significantly different ORF length distribution (p-value < 0,001 for Mann-
Whitney test) for up and down regulated mRNAs in dys1-1 translational pro-
file, compared to the DYS1, implying that ORFs recruited for translation in
the mutant strain are, on average, longer (median: 1152 nt), than those for the
wild type (1482 nt), while the translation of short ORFs (720 nt) was strongly
affected (Fig. 1A). These results were not observed for transcriptional profiling
(Fig. 1B).
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Fig. 1. Hypusination interferes with the gene expression of short ORFs. Vio-
lin and blox plot of ORF length in the (A) translational and (B) transcriptional profiles.
[***] indicates p-value <0,001 for Mann-Whitney test. (C) Relationship between ORF
length and translation efficiency (TE) changes in dys1-1 mutant. The values shown
represent the average percent change in TE for bins of 100 genes arranged by length.
The ORF lengths shown correspond to the point at which the average ORF length
of the bin exceeds the indicated value. Shaded areas represent absolute values for
all genes. (D) The relative quantification of mRNA encoding YDJ1 using qRT-PCR.
The qRT-PCR was carried out using primers specific for YDJ1 and SCR1 (control).
Error bar represents standard deviation from 3 different biological replicates, tested by
Mann-Whitney, using a p-value limit of 0.05.
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Considering that translation process efficiency - sum of decoding efficiencies
for individual codons [12] - correlates negatively to ORF length [35] and hypusi-
nation has been reported as necessary for translation of stalling motifs [30], we
investigated if the transcripts enriched in the translational profile of the dys1-
1 mutant more likely shared translation inhibitory characteristics. Similarly, as
Schuller et al. (2017) findings for eIF5A depletion, we found no evidence of
enrichment for identified codon pairs that inhibit translation [12]. Additionally,
stalling motifs [30] was not enriched in the upregulated genes from translational
profile dataset, lending initial support to the hypothesis that hypusinated eIF5A
is not recruited to alleviate these specific types of ribosomal arrest.

Short ORFs are the most highly expressed ones, encoding small proteins
that tend to play important maintenance roles in the cell and their translation
are related to the Asc1 protein, a component of the 40S ribosomal subunit.
As observed in asc1 mutant [34], ORFs <500 nts in dys1-1 presented lower
ΔTE values (Fig. 1C). Additionally, dys1-1 mutation is synthetically lethal when
combined with the asc1D mutation and the overexpression of DYS1 gene is toxic
to an asc1D strain [11]. In the present study, ASC1 gene is downregulated in the
translational profile (Fold change: −1.1, p-value: 0.004).

Short mRNAs that code for mitochondrial ribosomal proteins (MRP) (GO
0005762 and GO 0005763) are sensitive to the loss of Asc1 [34] and 67 out of 84
genes were also downregulated in the dys1-1 translational profile. Also, Ydj1,
a putative cytosolic factor involved in mitochondrial protein import, seems to
have the total mRNA levels downregulated in dys1-1 mutant (Fig. 1D). It was
reported that a ydj1Δ mutant exhibits defects in mitochondrial import [4] and
consequently, in morphology and function. Since mitochondrial ribosomes are
required for mitochondrial biogenesis and function [34], it is plausible that the
metabolic defects on dys1-1 mutant are consequences of the translation defects
observed for MRP genes. Previous studies in macrophages have also demon-
strated the engagement of eIF5A in cellular respiration [26]. However, this rela-
tionship was observed to be the efficient expression of a subset of mitochondrial
proteins involved in the tricarboxylic acid cycle and oxidative phosphorylation.

3.2 Hypusination Modulates Autophagy

We concerned if the decrease in Dys1 protein levels and consequent reduction in
the amount of hypusine-containing eIF5A in dys1-1 mutant [11] can affect the
cell metabolism due to polyamines accumulation, similar to the result observed in
mammalian cells by spermidine addition [16]. A transcriptional profile study with
the double mutant Δspe3 Δfms1 strain (spermidine auxotroph), treated with
spermidine in excess, showed significant changes in biosynthesis of methionine,
arginine, lysine, NAD, and biotin [5]. In our large-scale tracking, we observed
that genes involved in these pathways were transcriptionally upregulated in the
dys1-1 mutant.

Specifically for arginine biosynthesis, a polyamine precursor, we observed
an enrichment of this pathway, through Yeastmine database. When it comes
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Fig. 2. Representation of the polyamine biosynthetic pathway and hypusina-
tion. The levels of expression of the genes are represented for both large scale profiles.
The transcription factors of the polyamine pathway that had their expression altered
in the dys1-1 mutant are also indicated.

to the polyamine pathway, most of the genes and their respective transcrip-
tion factors have changed transcriptional and translational levels in the dys1-1
mutant (Fig. 2). These results suggest that dys1-1 mutant generate an imbal-
ance of polyamines levels. Those polyamines are essential for many basic cellular
functions; their intracellular levels are tightly regulated in their biosynthesis,
catabolism and/or transport. So, polyamine intracellular imbalance could affect
some cellular processes such as tran-scription, translation, gene expression reg-
ulation, stress resistance and autophagy [16,21].

In fact, we observed that most proteins involved in autophagy processes
(Atgs) have an increased translational efficiency in dys1-1 when compared to
DYS1 (Fig. 3A), configuring an increase in these mRNAs recruited for transla-
tion. Additionally, western blot analysis of two Atgs (Atg1 and Atg33) in wild
type strain with loss of hypusination caused by treatment with GC7, showed an
increase in the protein level for both proteins (Fig. 3B and 3C). The Atg1 protein
acts in the regulation and signaling to induce the formation of autophagosomes
[7,36] and Atg33 is a specific mitophagy protein. GC7 treatment also attenu-
ated anoxia-induced generation of reactive oxygen species in these cells and in
normoxic conditions and decreased the mitochondrial oxygen consumption rate
of cultured cells and mice [20]. Based on the above considerations polyamines
and eIF5A can modulate autophagy and hypusination could be the key of this
relationship [18,19].

Finally, our data suggest that hypusination supports the expression of a
set of short proteins, including mitochondrial ribosome proteins, providing a
possible explanation to why lack of hypusination results in cell respiration defect.



22 A. C. S. Paiva et al.

Fig. 3. Hypusination modulates autophagy and mitophagy. (A) Bar graph
represents the rate of translation efficiency (TE - number of reads translational pro-
file/number of reads from the transcriptional profile) of the wild and dys1-1 mutant,
as well as the delta TE (dys1-1/WT) for the ORFs of the Atgs proteins. Western
blot of the wild type strain of the TAP collection without/with the addition of GC7
to identify the protein level of (B) Atg33 and (C) Atg1, and their respective relative
quantifications (%). To measure the intensity of the bands, the Image-J software was
used, and the Rpl5 protein as a normalizer. Values are shown as mean ± SEM, n = 2.
[*] p-value <0.05 [**] p-value <0.01 for t-test. WT: wild type; WT vehicle: wild type
treated with 0.1 mM acetic acid (GC7 vehicle); WT GC7: wild type treated with 1
mM of GC7 plus 1 mM of aminoguanidine.
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This is a consequence of translational problems due to the lack of translational
processivity, as well as to the cellular imbalance of polyamines, resulting in long
ORFs occupying ribosomes. As a response to maintain cellular homeostasis,
there is an induction of macroautophagy and mitophagy.
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Abstract. Cancer is a complex disease caused by genetic mutations
categorized into two groups: passenger and driver. Contrary to passen-
ger, drivers mutations directly impact oncogenesis. Drivers identification
is a challenge in cancer genomics, frequently supported by statistical
and computational methods. These methods utilize the increasing vol-
ume of molecular data related to cancer, gene interactions networks,
and pathways. Reactome recently defined 26 Super Pathways that group
genes responsible for essential biological processes. Pathways networks
carry topological information relative to their biological functions that
emerge from genes interactions. Since some pathways are more associ-
ated with cancer than others and all have distinct structures, this work
aims to characterize cancer driver genes’ topological role in Super Path-
ways networks. We combine data from three different databases to create
Super Pathways networks enriched with cancer driver genes information.
Results show that Super Pathways networks have distinct topologies and
particular roles for drivers. Drivers have significant differences in clus-
tering, betweenness, and closeness centralities when compared to others
genes. Attacks using random and intentional removal reveal a remark-
able resilience in some Super Pathways networks. Attacks also reveal that
drivers in the Programmed Cell Death pathway are more critical than
hubs in keeping the network integrity. These distinguishable patterns
associated with drivers can support the task of identifying and validate
unknown drivers. In addition, recognize the topological role of drivers
helps understand the impact mutations in these genes have on pathways
structure.
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1 Introduction

Cancer is a molecular disease caused by genetic mutations that leads to cells
uncontrolled growth and division. Tumors undergo a large number of mutations,
but only a small portion of them contributes to oncogenesis and tumor progres-
sion. In this context, cancer mutations are classified into two groups: passenger
or driver. Contrary to passenger, driver mutations have a direct impact on onco-
genesis, conferring a growth advantage to the cell [25].

The study of driver mutations and their associated genes can contribute to
understanding the onset and evolution of the disease. Over the past few decades,
advances in DNA sequencing have generated several databases specialized in
cancer genomics, like TCGA (The Cancer Genome Atlas). These databases allow
the development of computational approaches, which include, for instance, the
study of how these drivers’ genetic changes are commonly involved in different
types of cancer [16]. Some recent databases, such as NCG [22], and IntOGen
[12], publicly make available online1 sets of known or predicted cancer driver
genes.

Genes are known to interact with each other in common biological functions.
Such interactions are part of a complex system that characterizes cell functioning
since it comprises many individual parts that work together to emerge biological
functions. This cell complex system is commonly modeled as a complex network
[14], such as REACTOME FI, in which genes (nodes) and interactions (links)
are characterized by non-trivial topologies observed in real phenomena. These
networks are frequently used in knowledge-based studies for the detection of
driver genes [16].

Pathways are a subset of genes that interact to perform specific biological
functions. Each pathway works as cell building blocks and describes the main
functions of this complex system [10]. Reactome2 is a consolidated pathway
database. In its most recent paper [8], the authors present the concept of Super
Pathways, which represent 26 biological functions that group 1803 sub-pathways.
Several studies and analyses involving pathways consider the modeling of path-
ways as complex networks. This approach is an improvement over other methods
of pathway analysis, since it makes possible the topological study of genes, com-
bining their biological function with the topological role in the network [5].

The study of topological characteristics of genes in the network and pathways
is an important topic, once it can contribute to understanding the role of drivers
and their genes in the networks. The work of [3] shows the gene network centrality
measures increase the potential of detecting possible drivers and false drivers.
Furthermore, a great number of network-based methods use information about
networks to identify significant genes in cancer [18].

In this context, this work models Super Pathways as complex networks to
observe the topological characteristics of driver genes and their central role in

1 http://ncg.kcl.ac.uk/ and https://www.intogen.org/.
2 https://reactome.org/.

http://ncg.kcl.ac.uk/
https://www.intogen.org/
https://reactome.org/
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such networks, aiming to investigate the hypothesis that driver genes are topo-
logically different from other genes in the same pathway.

In the next section, we describe how data from three different databases were
merged. Next, in Sect. 3, we studied the centrality role of drivers in its impact
on the resilience of Super Pathways networks. Such studies show that driver
nodes have a different topological role than other nodes and some networks are
high resilience. Finally, Sect. 4 discusses the results and concludes with possible
applications and future work.

2 Method

This section describes the steps taken in the development of this research.
Figure 1 shows an overview used to create the Super Pathway networks enriched
with cancer driver genes and posterior analyses. The data came from three dif-
ferent databases and are merged. Sections 2.1, 2.2, and 2.3 detail these steps.
Next, Sect. 3 discusses the analyses and results.

Fig. 1. Approach overview: data pipeline and analyses. We merge data from three
different bases to created enriched networks. The cancer driver genes in these networks
are analyzed using centrality measures and attacks.

2.1 Reactome Functional Iteration

Reactome is an open-source, open access, manually curated, and peer-reviewed
pathway database3. Reactome website provides many online Bioinformatics tools
to analyze and visualize pathway-related data. One of its tools is ReactomeFIViz
that is used to find pathways and network patterns related to cancer, and other
types of diseases [26]. ReactomeFIViz is a visualization enrichment tool built
upon the Reactome Functional Interaction (FI) network. This network was ini-
tially created by merging interactions extracted from human curated pathways
3 https://reactome.org/what-is-reactome.

https://reactome.org/what-is-reactome
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with interactions predicted using a machine learning approach [27]. Reactome
FI last version is from 2020 and has 14006 nodes and 259151 links. The average
degree is 37 while the biggest node has 1117 links. This scale-free distribution is
characterized by an exponent of 3.8.

2.2 Super Pathways as Reactome FI Sub-networks

Pathways are fundamental units essential to comprehend the emergence of cellu-
lar phenomenons [5,10]. Albeit the concept of pathway date back from the 1950s,
only in the mid-1990s the firsts pathways databases were created [5]. The asso-
ciation of gene groups to biological function enabled the development of many
function enrichment tools. These tools search pathways databases for statisti-
cally significant pathways associated with the input gene set given by the user
[5]. Recently function enrichment tools no longer consider the pathway as a set of
independent genes but as a network of interacting genes. In this sense, pathways
network topology analyzes is an evolution over the previous approaches since its
combines biological and topological information [5].

Reactome is a consolidated pathway database that consistently updates the
genes’ interactions and analyzes tools. In the most recent paper [8], they present
the concept of Super Pathways, which represent 26 biological functions that group
1803 sub-pathways. We extract induced sub-networks from Reactome FI, creating
Super Pathways networks for each Super Pathways genes set. In this paper, we ana-
lyze seven Super Pathway Networks with the most percentual presence of cancer
driver genes. We created a consensus Super Pathway Network, named All Super
Pathways, to represent all the 26 Super Pathways genes sets. Table 1 presents a
summary of the chosen Super Pathways and the corresponding Super Pathway
Network. LenSet, which is the size of Super Pathway gene set; LenCC, which is
the size of the resulting nodes (genes) in the induced network that may have more
than one Connect Component (CC); LenLCC, which is the size of nodes in the
Largest CC; Driver LCC, which is the number of cancer driver genes in the LCC;
Driver %, which shows the percentual presence of drivers in the LCC.

Table 1. Chosen super pathways

Super pathway name LenSet LenCC LenLCC Driver LCC Drivers %

Chromatin organization 240 218 (91%) 206 (86%) 45 22

Circadian clock 70 69 (99%) 64 (91%) 12 19

DNA repair 312 290 (93%) 284 (91%) 48 17

Reproduction 114 95 (83%) 81 (71%) 14 17

Gene expression 1536 1392 (91%) 1367 (89%) 194 14

Developmental biology 1097 972 (89%) 962 (88%) 137 14

Programmed cell death 216 208 (96%) 201 (93%) 27 13

All super pathways 11375 9472 (83%) 9399 (83%) 649 7

The seven chosen Super Pathways have specific biological functions and are
associated with cancer. Chromatin organization refers to the composition
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and conformation of complexes between DNA, protein, and RNA [20], and have
been reported to have a significant influence on regional mutation rates in human
cancer cells [23]. Circadian Clock is a master regulator of mammalian physi-
ology, regulating daily oscillations of crucial biological processes and behaviors.
Notably, circadian disruption has recently been identified as an independent risk
factor for cancer and classified as a carcinogen [24]. DNA Repair is responsi-
ble for the integrity of the cellular genome, and its malfunction is a notorious
cancer hallmark [9]. Reproduction pathway mixes the genomes of two indi-
viduals creating a new organism [19]. The mutations in BRCA, that belong to
the Reproduction pathway, and their role in fertility is studied by [4]. Gene
expression (Transcription) governs the transcription and translation that
are fundamental cellular processes for protein production of cells and are used
as inhibitors in cancer treatment [11]. Developmental Biology capture the
array of processes by which a fertilized egg gives rise to the diverse tissues of the
body. Two processes that are directly involved in this pathway are the regulation
of stem cells and activation of HOX genes [21]. These processes are investigated
in [2] for their potential in novel treatments for cancer. The malfunction of Pro-
grammed Cell Death pathway allows the cell to grow uncontrolled and is a
cancer hallmark present in most, if not all, types of cancer [6]. This pathway is
reported as one of most discussed in cancer therapy [15].

2.3 Super Pathways Sub-networks Enriched with Drivers
Information

The driver cancer genes used in this work came from two different databases:
The Network of Cancer Genes (NCG) and IntOGen. NCG is a manually curated
repository of 2372 genes whose somatic modifications have known or predicted
cancer driver roles [22]. From these 2372 genes, 711 are considered known drivers
and 1661 candidate drivers. IntOGen defines a pipeline applied to somatic muta-
tions of more than 28000 tumours of 66 cancer types that reveals 568 cancer
drivers genes [12]. We combine the 711 genes from NCG and the 568 from IntO-
Gen to found 866 unique drivers used to enrich the Super Pathways networks.

The discovery of cancer driver genes is an open research field. The sets of
drivers discussed in this subsection are not exhaustive. From now on, we use the
term Drivers for all nodes reported as cancer driver genes, and Non Drivers
for all other nodes, even though there may be undiscovered drivers in this group.

Figure 2 is a visual representation for the Programmed Cell Death Super
Pathway Network, that contains 201 nodes and 2636 links. The 27 Drivers in
this pathway are marked as red nodes and have a greater size than the 174 blue
nodes representing Non Drivers.

3 Results

Regarding the hypothesis of this work which driver genes are topologically dif-
ferent from other genes in the same pathway, we performed topological analyses
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Fig. 2. Programmed cell death network with cancer driver genes enrichment

on the networks presented in Table 1. Such analyses shows a comparison of topo-
logical role of Drivers against the Non Drivers in the Network Largest Connect
Component (LCC) for each Super Pathway.

Complex networks model the intrinsic relationships of complex systems that
can not be fully understood from a single perspective. The Subsect. 3.1 aims to
characterize the Driver at the node level using four centrality measures, while
Subsect. 3.2 discusses the Drivers’ impact on the network resilience using attacks.

3.1 Centrality Measures

A single node can assume multiples roles in the network. Centrality measures
capture this roles and are a way to quantity and compare nodes [17]. Since each
measure analyzes the nodes by one perspective, it is important to use more than
one centrality measure to characterize them. Although there are more than 400
measures [7]4, many of them are for specific types of networks, and there is a
high correlation among these measures, especially with the degree [17].

We extract ten centrality measures to characterize the Drivers and Non
Drivers: average neighbors degree, betweenness, bridging, closeness, clustering,
degree, eccentricity, eigenvector, kcore, and leverage. We choose four classic mea-
sures that show a low correlation with each other in Super Pathways networks,
indicating that they extract distinct characteristics: Degree indicates how many
neighbors a node has; Clustering define how the neighbors of a node are inter-
connected. Group of nodes that cluster together create communities, indicating
that they have something in common; Betweenness measure bottlenecks by
scoring nodes that frequently appear in shortest-paths between all pairs of nodes.
Betweenness is frequently used to identify nodes with a high flow of informa-
tion; Closeness measure the average minimum path length from each node to
4 https://www.centiserver.org/centrality/list/.

https://www.centiserver.org/centrality/list/
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every other node in the network. Nodes at the network’s periphery have a small
closeness, while nodes in the middle of the network have a high closeness.

Table 2 shows these four measures applied to all chosen networks. As these
some measures are scale-free, we divide the Drivers mean by the Non Drivers
mean and the Drivers median by the Non Drivers median for each measure and
network. For example, the table cell from Chromatin Organization and Degree
have values “1.09–1.12”. In this network, Drivers have a degree distribution mean
9% bigger than the Non Drivers, and a degree distribution median 12% bigger.

Table 2. Centrality measures: drivers mean and median divided by Non Drivers mean
and median

Degree Clustering Betweenness Closeness

Chromatin organization 1.09–1.12 0.89–0.84 1.05–2.57 1.02–1.07

Circadian clock 1.50–1.78 0.89–0.89 2.89–4.86 1.11–1.14

DNA repair 1.09–1.31 0.91–0.95 1.10–0.97 1.02–1.03

Reproduction 1.55–1.56 0.88–0.81 1.47–6.65 1.16–1.15

Gene expression 1.55–2.24 0.84–0.71 2.96–11.5 1.10–1.10

Developmental biology 1.55–1.79 0.76–0.64 3.86–5.83 1.14–1.12

Programmed cell death 1.36–2.07 0.61–0.60 7.74–18.1 1.13–1.12

All super pathways 2.30–3.61 0.73–0.69 5.29–12.3 1.12–1.10

Drivers show a greater degree, especially in All Super Pathways and Gene
Expression. Closeness has similar values for the mean and the median. Albeit
the percentual difference is subtle, these networks have a small diameter (small
world effect), meaning that Drivers are more central. Betweenness is a sensitive
measure, prone to outliers. Programmed Cell Death has the most significant
values, with the Driver median being 18 times greater.

The prevalence of a higher betweenness in Drivers indicates flow of informa-
tion. Usually, high betweenness and small clustering are signs of bridges (a single
node that connects two “isles”), but this does not fit with the higher degree. A
possible interpretation based on Table 2 is that Drivers are hubs (degree) posi-
tioned far from the periphery (closeness) that connect different parts (clustering
and degree), working as information gateways (betweenness). A visual inspec-
tion of Fig. 2 shows that Drivers DCC, LMNA, SATB1, and CDKN2A do not
follow this interpretation, but APC, CTNNB1, PAK2, TP53, and BIRC3 does.
This interpretation is a generalized idea based on four measures, not a rule.

To further investigate the distinction between Drivers and Non Drivers using
centrality measures, we visualize their normalized distributions. The analyses
also evidence the scale-free nature of some distributions. Figure 3 and 4 show
these analyses for all chosen networks.

The blue boxes represent Non Drivers, and the red boxes the Drivers. Since
the set of Drivers are considerably small than Non Drivers, as shown in Table 1,
their difference could be random. To address this issue, we also present random
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Fig. 3. Centrality measures distribution for programmed cell death, DNA repair, repro-
duction and all super pathways network.

Fig. 4. Centrality measures distribution for chromatin organization, circadian clock,
development biology and gene expression.
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sample means. Orange boxes are samples with the size of Drivers, randomly
chosen from the entire network. The first is only one sample, the second is the
mean of 10 samples, and the last is the mean of 100 samples. As the number of
random samples increases, their median tends to the mean and the variance to
zero. The top 5% from betweenness was removed in all cases to discard extreme
outliers in the plotting process but was considered in the Table 2 analysis.

DNA Repair Drivers distribution is slightly different from Non Drivers, and
random samples represent their median. Considering the four chosen central-
ity measures, Drivers in DNA Repair Network do not show any particular role.
Programmed Cell Death degree median is similar to random samples, but the
distribution variance is minor than one sample and greater than 10 samples.
All other measures show that drivers are considerably different. Reproduction
drivers have a small variance, and their medians are not aligned with any quar-
tile from Non Drivers and randoms. All Super Pathways Drivers have different
distribution and median. Although the clustering first quartile is similar to Non
Drivers and one random sample, its median is lower, and the 100 random samples
median tends to the clustering third quartile.

Chromatin Organization Driver’s betweenness and clustering are the only
measures with some differences. Except for Gene Expression degree, all other
networks measure’s in Fig. 4 have Driver’s median or interquartile range differ-
ence from Non Drivers and randoms.

3.2 Network Attack

Many real systems show a high resilience to random attacks, for example, mal-
functioning in communication nodes rarely impact the global system functioning.
This resistance is found in networks that have a scale-free degree distribution,
and are also associated with clustering and density [1]. The resilience to random
and intentional attacks in metabolic networks was explored by [13] and is a way
to characterize nodes’ topological role.

We incrementally remove nodes from all chosen Super Pathways networks
randomly choosing from the set of Drivers and Non Drivers. We also remove
the biggest hub in each interaction, independent of being Drivers or Non Driver.
The number of nodes removed is the size of Drivers set in each network.

Figure 5 shows these attacks. As we run 100 executions for each group
(Drivers, Non Drivers, and Hubs), the standard deviation from these execu-
tions are represented by a vertical line over the impact line. The dotted black
line indicates zero impact, removal does not break the network in more than one
connected component. The x-Axis indicates the percentual of nodes removed,
and the y-Axis is the percentual size of the largest connected component.

The first three networks have the expected behavior for scale-free networks:
high resilience to random attacks and fragility to hubs attacks [1]. Drivers are
slightly more impactful than Non Drivers, but both are close to the dotted
line. The following three networks show remarkable resilience, with all types of
attacks being close to zero impact. Development Biology has a global clustering
of 53% and 0.04% density. After removing 137 nodes (14%) in each attack, the



Topological Characterization of Cancer Driver Genes 35

Fig. 5. Random and intentional attacks. The X-axis shows the percentual node
removal, and the Y-axis is the percentual size of the largest connect component.

network barely created new connected components. The last two networks show
distinct resilience to each type of attack. Drivers removal in Programmed Cell
Death impact the network more than Hubs, which is unexpected for scale-free
networks. The eighth and ninth removal of hubs are responsible for the firsts
breaks. A further investigation shows that these two hubs are the genes CTNNB1
and CASP3, both reported as Drivers, respectively, an oncogene and a tumor
suppressor gene.

DNA Repair and Programmed Cell Death are two critical pathways in cancer
that show distinct topological behavior. They have the least and most difference
in centrality measures when comparing Drivers and Non Drivers. Albeit their
respective global clustering, 70% and 61%, and density, 16% and 13%, are similar,
the resilience to intentional attacks differ. Reproduction resilience is comparable
to DNA Repair, while their Drivers’ centrality behavior diverges, being more
similar in this aspect to Programmed Cell Death.

4 Discussion and Conclusion

Cancer is a disease with several mechanisms involved that impact its develop-
ment as a whole. Therefore, it is quite adequate to study it from the perspective
of complex systems, making it possible to understand it under different aspects.
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Cancer Drivers genes’ topological role was analyzed in different Super Path-
ways networks associated with cancer. We observed significant differences in
some centrality measures between Drivers and Non Drivers. For example, the
clustering of Drivers is approximately 20% smaller than genes not reported as
significant in cancer. The measures of betweenness and closeness also play an
essential role in characterizing the Drivers.

We also analyzed Drivers concerning the resilience of Super Pathways net-
works, which can help understand the impact of mutations in biological functions
and their influence on cancer. Considering Programmed Cell Death Pathway, we
observe Drivers’ central role in maintaining the network’s topological integrity.
In others networks, the behavior of Drivers was similar to the random removal
of nodes. At the same time, some networks show remarkable resilience even to
hub attacks.

The results show that Super Pathways networks have distinct topologies and
particular roles for Drivers. Groups of pathways that share similar results in
centrality measures differ on the resilience of intentional attacks. These findings
reinforce the need to diversify the analysis of Driver’s topology. Also, treating
each Super Pathway as an individual system may provide more reliable results.

In this sense, we plan to deepen the topological study of these networks
and the impact of Drivers in their structure. Other topological analyses, such
as persistence homology, can unveil hidden Drivers behaviors in pathways like
DNA Repair that did not show differences in centrality and resilience.

The topological characterization of Drivers is an important step to compre-
hend the role that cancer genes play in the cell complex system. The patterns
found can be used to identify and validate unknown Drivers that share similar
behaviors, like the 1661 candidate drivers from NCG.

Supplementary Information: Source codes, scripts of experiments and
the complete list of libraries and versions used in this work are available
on the following link: https://github.com/RodrigoHenriqueRamos/BSB-2021-
Topological-Characterization-of-Cancer-Driver-Genes.
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Abstract. Currently, several hundreds of Terabytes of COVID-19
single-cell RNA-seq (scRNA-seq) data are available in public reposito-
ries. This data refers to multiple tissues, comorbidities, and conditions.
We expect this trend to continue, and it is realistic to predict amounts of
COVID-19 scRNA-seq data increasing to several Petabytes in the com-
ing years. However, thoughtful analysis of this data requires large-scale
computing infrastructures, and software systems optimized for such plat-
forms to generate biological knowledge. This paper presents CellHeap,
a portable and robust workflow for scRNA-seq customizable analyses,
with quality control throughout the execution steps and deployable on
supercomputers. Furthermore, we present the deployment of CellHeap in
the Santos Dumont supercomputer for analyzing COVID-19 scRNA-seq
datasets, and discuss a case study that processed dozens of Terabytes of
COVID-19 scRNA-seq raw data.

Keywords: Single-cell RNA-seq · Bioinformatics workflow ·
COVID-19 · High-performance computing

1 Introduction

Gene expression is a highly heterogeneous biological process, even among similar
cell types. An accurate comprehension of the transcriptome of individual cells
is essential to elucidate its role in biological functions and to understand how
gene expression can promote beneficial or harmful states at the tissue and/or
organism level. While conventional bulk RNA sequencing (RNA-seq) can only
provide the average expression signal for a set of cells, single-cell RNA sequencing
c© Springer Nature Switzerland AG 2021
P. F. Stadler et al. (Eds.): BSB 2021, LNBI 13063, pp. 41–52, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91814-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-91814-9_4


42 V. S. Silva et al.

(scRNA-seq) describes the state of individual cells with extraordinary resolution.
Currently, the outcomes of this analysis can support various studies from micro-
bial population cells (e.g. bacteria, trypanosomatids, unicellular alga, yeast) to
mammalian tissues, making it possible to identify the high heterogeneity of cell
populations in different conditions [12,15,20,31].

Briefly, scRNA-seq sequencing consists of several steps, mainly: i) isolat-
ing single cells, ii) cell lysis, iii) mRNA hybridization, iv) reverse transcription,
v) PCR amplification, and vi) sequencing and analysis, where each mRNA is
mapped to its cell-of-origin and gene-of-origin, and each cell’s pool of mRNA
can be analyzed. Numerous sequencing protocols have been improved in recent
years, allowing us to develop a better knowledge of biological systems of the cell
[15,31]. A pleitora of scRNA-seq tools have been converged in the development of
specific scientific workflows applied in a variety of studies, including COVID-19.
The tools and protocols in different programming languages are quite a massive
field. The user should check which tool is more suitable for answering questions
from his/her study, and which language is most appropriate [31].

Scientific workflows (or pipelines) are composed of a set of interconnected and
automated tasks, which are run according to their input/output dependencies [1].
They are a powerful and successful apparatus, executed several times on daily
to solve problems in various research domains. To create a workflow, scientists
often use an ad hoc strategy, writing from scratch a set of scripts that are used
to connect the tasks. This approach leads to many workflows, each one targeting
a specific situation, usually leading to a myriad of slightly different variations of
the same idea. As a consequence, productivity is reduced, and the production of
results may take much longer than needed [5].

Nevertheless, most of the workflows used in the COVID-19 studies are static,
built in an ad hoc manner, and run in a standalone desktop machine [25–27,34].
In a scenario where sophisticated bioinformatics tools are created regularly, we
claim that scientific workflows must be flexible, enabling the user to choose
among different tools that execute the same task. In addition, workflows should
be extensible, allowing new modules or phases to be integrated into them. More-
over, we argue that a workflow for scRNA-seq studies that analyses samples
of hundreds of Gigabytes should be executed in a high-performance computing
platform, such as a supercomputer.

Here, we present CellHeap, a portable and robust workflow for scRNA-
seq customizable analysis, with quality control throughout the execution steps,
which ensures reliable results, and runs on supercomputers. Our workflow is
applicable to scRNA-seq derived from droplet-based methods with UMIs, such
as those related to 3′-end (e.g. Drop-seq [21]) and 5′-end (e.g. STRT-seq [13])
transcript sequencing technologies. CellHeap starts by performing the scRNA-
seq samples’ download and finishes with clustering processes and some com-
plex biological analysis. Our workflow integrates R tools, other bioinformatics
libraries and software, and is customizable depending on the purpose of each
analysis.
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2 Description of the CellHeap Workflow

This section presents CellHeap, a flexible, extensible, portable, and robust work-
flow for scRNA-Seq customized bioinformatics analysis. CellHeap allows quality
control to ensure reliable results and is focused on high capability computational
support for parallelizing and distributing workflow tasks.

CellHeap is composed of five phases (shown in Fig. 1): sample curation; gene
count matrix generation; quality control; dimensionality reduction and cluster-
ing analysis; and advanced cell level and gene level analysis. In addition to these
phases, we also provide an optional samples aggregation phase. Its code is pro-
vided at https://github.com/FioSysBio/CellHeap.

Fig. 1. CellHeap workflow conceptual view. Dashed rectangles identify the different
phases of the workflow.

Phase 1 refers to samples curation processes of the scRNA-Seq input datasets
related to organisms and tissues of interest. It follows the inclusion/exclusion cri-
teria established for the Expression Atlas [24] of the European Bioinformatics
Institute (EMBL-EBI) [14]. At the end of this phase, raw data sequences are
selected according to the quality criteria of samples. In this project, the adopted
main criteria are: (i) to link to supplementary files on the measurement of genes
of experiments; (ii) to access the sample’s raw data through SRA selector links;
(iii) to verify if all series samples belong to single species; (iv) to verify whether
samples come from non-bacterial species; (v) to verify the source of the descrip-
tion of experiments, protocols, cell line information, cell type, and disease, as
listed by Experimental Factor Ontology (EFO) [22] or publication data; (vi) to
check whether metadata matches the samples’ names; (vii) to verify whether
scRNA-Seq experiments use protocols of Smart-seq2, Smart-like, Drop-seq, Seq-
well, 10×V2 (3 and 5 prime), or 10×V3 (3 prime).

https://github.com/FioSysBio/CellHeap
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Phase 2 aims to generate the gene count matrix, which can be executed by
CellRanger1. CellRanger Count requires a reference genome and executes several
quality checks on both the dataset and the reference genome.

Phase 3 is related to the quality control of the single-cell data. Its input is
the gene-count matrix produced by phase 2, and it executes the package Seurat
[29] to produce filtered infected/uninfected cells. Filtering parameters remove
low-quality cells and doublets (or multiplets) which are artifacts from two (or
more cells) erroneously treated as a single cell with high gene counts. The fil-
tering parameters are adjustable to control the cell quality according to the
project’s objectives. We filtered cell matrices removing cell barcodes according
to the three criteria (covariates) commonly used for scRNA-Seq quality control
processing [19]: UMI counts; genes expressed per cell; and percentage of mito-
chondrial DNA. After the filtering process, we remove cells contaminated with
the SARS-CoV-2 virus, as indicated in the Cellranger Count analysis.

Phase 4 refers to the dimensionality reduction and clustering analysis, taking
as input the feature genes produced by the last phase, and executing algorithms
PCA, UMAP, t-SNE, or Metacell [2], to produce clusters of cells. This phase is
composed of two steps: dimensionality reduction for scRNA-Seq data analysis
related to cellular expression profiles [9,19]; and clustering of cell-level in scRNA-
Seq that groups cells based on the similarity of their gene expression profiles.

CellHeap’s phase 5 contains a vast amount of different advanced cell-level and
gene-level analyses. The cell-level analysis focuses on the identification, char-
acterization, and dynamics inference of groups of cells. Two processing activ-
ities can exemplify CellHeap cell-level analyses: trajectory analysis based on
pseudotime-based definition algorithms; and three-dimensional spatial analysis
that includes clustering dimensionality-reduction algorithms. Trajectory analy-
sis represents a dynamic model of gene expression to capture transitions between
cell identities and branch differentiation processes. It computes paths through
cellular space that minimizes transcriptional changes among neighboring cells.
A pseudotime variable describes the evolution of transcriptional states along the
trajectory under certain conditions of developmental time [10,28,33]. CellHeap
may execute three-dimensional spatial analysis for single cells, which explores
specific characteristics of a cell or a set of cells, such as cell-cell interactions.

The gene-level analysis focuses on analyzing the expression variation of sets
of genes among groups of cells. The CellHeap uses three sets of algorithms for
this analysis: differentially expressed genes (DEG) analysis; gene set enrichment
analysis; and network inference of interacting genes. In scRNA-Seq processing,
DEG analysis studies variations of gene expression between two conditions. The

1 Cellranger is a set of analysis pipelines that process Chromium single-cell data to
align reads, generate feature-barcode matrices, perform clustering and other sec-
ondary analysis, and more. CellRanger Count is executed once for each dataset,
and CellRanger Aggregate is optionally executed for aggregating several different
datasets/tissues. In addition, CellRanger Count and CellRanger Aggregate generate
a gene-count matrix, where the results depend on the analysis performed in a simple
or an aggregated way.



CellHeap: COVID-19 ScRNA-Seq Workflow 45

expression variation is counted in clusters of single cells, representing different
cell types or experimental conditions. As a general recommendation, differen-
tial expression requires non-corrected inputs matrices for batch effects or input
matrices that incorporate technical covariates [19]. Gene set enrichment analysis
aims to group DEGs as they are involved in common biological processes. The
CellHeap workflow can use available resources as Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Molecular Signatures Database
(MSigDB) [18], and Reactome [6]. Networks of interacting genes (pathways and
DEGs location) analysis support identifying and visualizing the main pathways
involved, and the DEGs’ localization in these pathways. The CellHeap can use
available resources as PANTHER [23], Database for Annotation, Visualization
and Integrated Discovery (DAVID) [11], The Reactome pathway analysis [6] and
ReactomeGSA [32].

3 Results

This section describes a practical experiment with the CellHeap workflow - a
COVID-19 single-cell RNA-seq Big Data scenario on the Santos Dumont Super-
computer. Our group had identified several hundreds of Terabytes of COVID-19
scRNA-seq data available in public repositories up to this date. This data relates
to multiple tissues, comorbidities, and conditions. The thoughtful analysis of this
data to generate biological knowledge requires large-scale computing infrastruc-
tures, and software systems optimized for platforms such as CellHeap.

3.1 Input Data and Experiment Setup

We took as input the bronchoalveolar scRNA-seq dataset GSE145926 from the
NIH GEO database, used by Liao et al. [17]. This dataset encompasses tens of
terabytes of raw data.

The experiment focus on the use of the CellHeap workflow in a scRNA-Seq
analysis from droplet-based methods with UMIs, such as those related to 3′-
end (e.g., Drop-seq [21]) and 5′-end (e.g., STRT-seq [13]) transcript sequencing
technologies. In what follows, we detail all the adopted tools, as guided by the
CellHeap workflow.

Phase 1. We selected the cataloged series of the Gene Expression Omnibus
(GEO) repository [4]. The results presented in Liao et al. [17] considered 13
patients, where 3 were controls, 3 presented mild symptoms, and 6 six patients
developed severe symptoms of COVID-19. However, when we applied the dataset
selection criteria (Sect. 2), one control dataset was discarded since the raw data
for the control dataset ID GSM3660650 was not available. Therefore, in the
following analysis, different from Liao et al. [17], we considered only 12 patients.

Phase 2. We downloaded the NCBI Sequence Read Archive (SRA) raw data
in FASTQ format files, with the NCBI SRA toolkit fastq-dump tool [30]. Each
downloaded sample had two associated read files, one containing information
about the UMI while the second file contained the transcription sequences.
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We used Cellranger v4.0.0 from 10X Genomics [35] to process scRNA-Seq
data, and generate the gene-barcode matrix. Cellranger requires high compu-
tational power, demanding a large amount of storage and high information
processing capacity. Some observations about the Cellranger scalability follow.
Cellranger supports a Job Submission Mode and a Cluster-Mode. Both running
modes are adequate for deploying Cellranger in clusters. These modes allow
Cellranger to efficiently use the computing power available in clusters, also rep-
resenting a significant advantage in big data scenarios, and over competing tools.
This phase is the most intensive computing among all the CellHeap’s phases. The
efficient use of the available computing power is a fundamental requirement, as
described in the big data deployment scenario. Besides, Cellranger requires access
to the raw data, demanding a large storage capacity. Therefore, the deployment
of this activity in the Santos Dumont supercomputer was mandatory.

Each dataset analyzed by Cellranger generates quality assessment reports
that display important quality metrics. For instance, Q30 measures the fraction
of bases with a Q-score of at least 30 in the cell barcode, RNA sequences and sam-
ple index sequences. All the output reports relative to the results of this section
are available at the repository. We built a hybrid reference that includes both the
human genome (GRCh38 v3.0.0) and the SARS-CoV-2 genome (NC 045512v2)
to generate the results. Cellranger’s output report also informs how many cells
contain genetic material from the virus.

Phase 3. We filtered the cell matrices by removing cell barcodes according to
the criteria already described in the CellHeap framework: (i) UMI counts; (ii)
genes expressed per cell; and (iii) percentage of mitochondrial DNA. These three
covariates are commonly used for scRNA-Seq quality control processing [19].

We used Seurat v4.0 [8] for single-cell quality control (QC). The output
matrices produced from Cellranger Count (or Cellranger Aggregate) are inputs to
the Seurat package. After this filtering process, considering the expression profile
corrected, we created a Seurat object using the CreateSeuratObject function.
The output of this step generated the gene count matrix.

After QC, we filtered cells contaminated with SARS-CoV-2, and generated
two files for further processing: one containing only non-infected cells; and the
other one only infected cell data.

Phase 4. For the case study described in this paper, we used MetaCell [2] in the
clustering phase. The Metacell algorithm aims to cluster cells with homogeneous
transcriptional profiles into groups, called metacells. The overall idea is that
cells belonging to a metacell could have been resampled from the same cell.
Metacell requires a feature gene set as additional input. Metacell processing
results depend on feature genes selection, which may be defined by the user,
related to the biological question of the analysis, or generated automatically,
based on gene markers with high variance. For this case study, we chose Metacell
clustering parameters other than feature genes according to Bost et al. [3]. In
addition, Metacell also applies an outlier filtering step to identify outlier cells
and doublets, then filtering the resulting clusters.
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Phase 5. The CellHeap workflow allows a variety of advanced cell-level and
gene-level analyses. In this paper, we illustrate phase 5 with several extended
analyses from Metacell. For instance, Metacell can generate heatmaps of genes
and metacells. Another type of analysis is the 2D projections of cells and meta-
cells, resulting in graphs where edges indicate metacells with similar transcrip-
tional profiles. In addition, Metacell generates log2 fold enrichment bar plots for
a specific gene over the median expression values of all the metacells in the same
analysis. Finally, another analysis is the hierarchical clustering of metacells used
in this paper to classify and color metacells according to cell type.

Beyond Metacell, we also used in this paper an automatics procedure to
identify cell types based on queries to the Enrichr [16] web application and the
PanglaoDB [7] repository.

3.2 Environmental Setup

We deployed the CellHeap workflow in the Santos Dumont (SDumont) Super-
computer2. SDumont has an installed processing capacity in the order of 5.1
Petaflop/s, presenting a hybrid configuration of computational nodes regard-
ing the available parallel processing architecture. It has 36,472 CPU cores, dis-
tributed across 1,134 computational nodes, of which the majority are composed
exclusively of CPUs with a multi-core architecture. In addition, the SDumont
Supercomputer has a Lustre parallel file system, integrated with the Infiniband
network, with a raw storage capacity of 1.7 PBytes and a secondary file system
with a raw capacity of 640 TBytes.

Our group has Premium access to SDumont, which provides allocations to
research projects that request more than 5,000,000 Allocation Units (AU). Each
AU corresponds to the use of one core of a B710 compute node for one hour. The
B710 compute nodes feature 2 Intel Xeon E5-2695v2 Ivy Bridge CPUs (12 cores
@2.4 GHz) and 64 Gb RAM. The running mode of Cellranger in the SDumont
supercomputer is the Job Submission mode. The workload manager available in
the SDumont supercomputer is Slurm3. At this moment, Cellranger’s Cluster-
Mode does not support Slurm.

3.3 Results Discussion

Phase 1 took up 48 h to execute for each of the 12 raw data samples analyzed
in this paper, on a B170 compute node. For Phase 2, Cellranger Count required
over 12 h of computing processing (not considering queuing time), on a B170
compute node, in the worst case for the datasets processed in this paper.

For Phase 3 processing, we mainly used Seurat functions. Regarding execu-
tion time, both Phase 3 and Phase 4/5 (Metacell) scripts execute much faster
when compared to execution times of Phases 1 and 2. Typically, Phase 3 and
Phase 4 scripts demanded less than 10 min on a B170 node.

2 Supercomputer details in https://sdumont.lncc.br.
3 Slurm details in https://slurm.schedmd.com.

https://sdumont.lncc.br
https://slurm.schedmd.com
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Regarding metacell processing, we used mcell gset filter varmean and
mcell gset filter cov functions for automatically generating the gene features,
used as input for metacells definition. We set the threshold on the variance/mean
ratio to 0.4 for this BALF dataset, as in [3]. For instance, this process resulted
in a feature set composed of 135 genes for the dataset of patients with mild
symptoms.

After building the K-nn cell similarity graph, resampling graph partitions,
and filtering parametric outliers from the metacell cover, we performed hierar-
chical clustering on the final set of metacells, to perform a systematic annotation
procedure. The results of this process are a “confusion matrix” and the corre-
sponding cluster hierarchy, as shown in Fig. 2. The confusion matrix is a meta-
cell pairwise similarity matrix, which summarizes the K-nn graph connectivity
among all cells in each pair of metacells. Metacells are then hierarchically clus-
tered based on this confusion matrix. In Fig. 2, on the left of the cluster hierarchy
(top of the figure), the top 5 marker genes for each cluster are shown. The mark-
ers on the left are the genes that maximize the average log-fold enrichment of
the metacells composing the cluster over all other metacells. Other markers (e.g.,
related to sibling subtrees, in gray) are shown on the right side. For systematic
annotation of metacells, we use the markers on the left side.

Fig. 2. Hierarchical Clustering (top) and confusion matrix (bottom) for the dataset
corresponding to patients with mild symptoms. Each blue bar on the top represents
a cluster of metacells. The normalized edge count is minimal (0) for white dots and
maximal (1) for yellow dots in the confusion matrix. (Color figure online)
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In Fig. 2, there are 65 metacells and 33 clusters of metacells. The largest
cluster has 59 metacells, and the smallest one, three. As expected in a hierarchical
clustering procedure, several clusters of metacells are proper subsets of larger
clusters. The user can adjust the number of clusters through the T gap parameter
in the mcell mc hierarchy. T gap defines the minimal branch length for defining
the structure of clusters of metacells. For generating Fig. 2, we used the standard
value of 0.04 for T gap.

For each metacell cluster (or supermetacell), the hierarchical clustering pro-
cessing generates sets of gene markers for each cluster (see Fig. 2). These gene
markers can be used to classify clusters of metacells, either by a human expert
or using automatics tools.

To illustrate this process, we submitted the 20 markers that maximize aver-
age log-fold enrichment of the metacells composing the cluster over all other
metacells to an automatic annotation website. Enrichr [16] is an interactive
gene list enrichment tool. One of the several functionalities of Enrich is to
indicate more probable cell types associated with a set of markers, based on
queries to several repositories. For this illustrative example, we chose results
obtained from PanglaoDB [7] (2021 edition), a repository for exploring human
and mouse scRNA-seq data. We did a preliminary annotation of the metacell
clusters shown in Fig. 2 using EnrichR/PanglaoDB, and plotted the resulting set
of colored metacells in a 2D projection using Metacell’s mcell mc2d force knn
and mcell mc2d plot functions (see Fig. 3).

Fig. 3. 2D Projection of cells and metacells - COVID-19 Patients with mild symptoms.
This projection includes only cells not infected with SARS-CoV-2. Colored dots are
cells, while circles represent metacells. Automated cell type classification and coloring
were based on queries to Enrichr/PanglaoDB websites. (Color figure online)
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As is the case with most automated methods, algorithmic-generated classifi-
cation results should be curated by human experts. Refinements are possible in
the classification presented in Fig. 3. In Fig. 2, it is possible to identify proper
subsets of the clusters defined in Fig. 3, which may represent opportunities for
more specific classifications. Nevertheless, since one of the objectives of Cell-
Heap is to maximize automation in scRNA-seq processing, Fig. 3 illustrates the
possibility of automating the analysis up to cell type annotation.

4 Conclusion

This paper presented CellHeap, a portable, flexible workflow for scRNA-seq data
processing deployable in supercomputers. Bioinformatics tools for scRNA-seq are
a very active area of research today, and the number of new tools has increased
substantially in the last few years. On the other hand, the amount of scRNA-
seq data available for analysis in public repositories has also been increasing
quickly. Therefore, flexible, robust, and scalable workflows are paramount to
take advantage of this massive amount of data to increase biological knowledge.

We expect CellHeap to improve continuously, aggregating new tools as they
are validated and become available. We also expect to deploy CellHeap in other
high-throughput platforms, such as computing clouds, soon.
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Davis, S. (eds.) Statistical Genomics. MMB, vol. 1418, pp. 93–110. Springer, New
York (2016). https://doi.org/10.1007/978-1-4939-3578-9 5

5. Deelman, E., Peterka, T., Altintas, I., et al.: The future of scientific workflows. Int.
J. High Perform. Comput. Appl. 32(1), 159–175 (2018)

6. Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., et al.: The reactome path-
way knowledgebase. Nucleic Acids Res. 4(46(D1)), D649–D655 (2018)

7. Franzén, O., Gan, L.M., Björkegren, J.L.: PanglaoDB: a web server for exploration
of mouse and human single-cell RNA sequencing data. Database 2019 (2019)

http://sdumont.lncc.br
https://doi.org/10.1007/978-1-4939-3578-9_5


CellHeap: COVID-19 ScRNA-Seq Workflow 51

8. Hao, Y., et al.: Integrated analysis of multimodal single-cell data. Cell (2021)
9. Heimberg, G., Bhatnagar, R., El-Samad, H., Thomson, M.: Dimensionality in gene

expression data enables the accurate extraction of transcriptional programs from
shallow sequencing. Cell Syst. 2(4), 239–250 (2016)

10. Herring, C.A., Banerjee, A., McKinley, E.T., et al.: Unsupervised trajectory anal-
ysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in
the gut. Cell Syst. 6(1), 37–51 (2018)

11. Huang, D., Sherman, B., Lempicki, R.: Systematic and integrative analysis of large
gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009)

12. Hwang, B., Lee, J., Bang, D.: Single-cell RNA sequencing technologies and bioin-
formatics pipelines. Exp. Mol. Med. 50, 1–14 (2018)

13. Islam, S., et al.: Highly multiplexed and strand-specific single-cell RNA 5′ end
sequencing. Nat. Protoc. 7(5), 813–828 (2012)

14. Kanz, C., Aldebert, P., Althorpe, N., et al.: The EMBL nucleotide sequence
database. Nucleic Acids Res. 33(Suppl 1), D29–D33 (2005)

15. Kuchina, A., et al.: Microbial single-cell RNA sequencing by split-pool barcoding.
Science (2020)

16. Kuleshov, M.V., et al.: Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res. 44(W1), W90–W97 (2016)

17. Liao, M., et al.: Single-cell landscape of bronchoalveolar immune cells in patients
with COVID-19. Nat. Med. 26(6), 842–844 (2020)

18. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P.,
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Abstract. In mathematical phylogenetics, types of events in a gene tree
T are formalized by vertex labels t(v) and set-valued edge labels λ(e). The
orthology and paralogy relations between genes are a special case of a map
δ on the pairs of leaves of T defined by δ(x, y) = q if the last common
ancestor lca(x, y) of x and y is labeled by an event type q, e.g., speciation
or duplication. Similarly, a map ε with m ∈ ε(x, y) if m ∈ λ(e) for at
least one edge e along the path from lca(x, y) to y generalizes xenology,
i.e., horizontal gene transfer. We show that a pair of maps (δ, ε) derives
from a tree (T, t, λ) in this manner if and only if there exists a common
refinement of the (unique) least-resolved vertex labeled tree (Tδ, tδ) that
explains δ and the (unique) least-resolved edge labeled tree (Tε, λε) that
explains ε (provided both trees exist). This result remains true if certain
combinations of labels at incident vertices and edges are forbidden.

Keywords: Mathematical phylogenetics · Rooted trees · Binary
relations · Symbolic ultrametric · Fitch map · Consistency

1 Introduction

An important task in evolutionary biology and genome research is to disentan-
gle the mutual relationships of related genes. The evolution of a gene family
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can be understood as a tree T whose leaves are genes and whose inner vertices
correspond to evolutionary events, in particular speciations (where genomes are
propagated into different lineages that henceforth evolve independently), dupli-
cations (of genes within the same genome), and horizontal gene transfer (where
copies of an individual’s genes are transferred into an unrelated species) [4].
Mathematically, these concepts are described in terms of rooted trees T with
vertex labels t representing event types and edge labels λ distinguishing vertical
and horizontal inheritance. On the other hand, orthology (descent from a spe-
ciation) or xenology (if the common history involves horizontal transfer events)
can be regarded as binary relations on the set L of genes. Given the orthology or
xenology relations, one then asks whether there exists a vertex or edge labeled
tree T with leaf set L that “explains” the relations [5,9]. Here, we ask when
such relational orthology and xenology data are consistent, i.e., when they can
be explained by a common tree. A conceptually similar question is addressed in
a very different formal setting in [15].

Instead of considering a single binary orthology or xenology relation, we con-
sider here multiple relations of each type. This is more conveniently formalized
in terms of maps that assign finite sets of labels. Two types of maps are of inter-
est: Symbolic ultrametrics, i.e., symmetric maps determined by a label at the
last common ancestor of two genes [2], generalize orthology; Fitch maps, i.e.,
non-symmetric maps determined by the union of labels along the path connect-
ing two genes [12], form a generalization of xenology. For both types of maps
unique least-resolved trees (minimal under edge-contraction) exist and can be
constructed by polynomial time algorithms [2,12]. Here we consider the problem
of finding trees that are simultaneously edge- and vertex-labeled and simultane-
ously explain both types of maps. We derive a simple condition for the existence
of explaining trees and show that there is again a unique least-resolved tree
among them. We then consider a restricted version of problem motivated by
concepts of observability introduced in [17].

2 Preliminaries

Trees and Hierarchies. Let T be a rooted tree with vertex set V (T ), leaf set
L = L(T ) ⊆ V (T ), set of inner vertices V 0(T ) := V (T )\L(T ), root ρ ∈ V 0(T ),
and edge set E(T ). An edge e = {u, v} ∈ E(T ) is an inner edge if u, v ∈ V 0(T ).
The ancestor partial order on V (T ) is defined by x �T y whenever y lies along the
unique path connecting x and the root. We write x ≺T y if x �T y and x �= y. For
v ∈ V (T ), we set childT (v) := {u | {v, u} ∈ E(T ), u ≺T v} and parentT (u) := v
for all u ∈ childT (v). All trees T considered here are phylogenetic, i.e., they
satisfy |childT (v)| ≥ 2 for all v ∈ V 0(T ). The last common ancestor of a vertex
set W ⊆ V (T ) is the unique �T -minimal vertex lcaT (W ) ∈ V (T ) satisfying
w �T lcaT (W ) for all w ∈ W . For brevity, we write lcaT (x, y) := lcaT ({x, y}).
Furthermore, we will sometimes write vu ∈ E(T ) as a shorthand for “{u, v} ∈
E(T ) with u ≺T v.” We denote by T (u) the subtree of T rooted in u and write
L(T (u)) for its leaf set.
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Furthermore, LT
v := {(x, y) | x, y ∈ L(T ), lcaT (x, y) = v} denotes the set

of pairs of leaves that have v as their last common ancestor. By construction,
LT

v ∩LT
v′ = ∅ if v �= v′. Since T is phylogenetic, we have LT

v �= ∅ for all v ∈ V 0(T ),
i.e., L(T ) := {LT

v | v ∈ V 0(T )} is a partition of the set of distinct pairs of vertices.
A hierarchy on L is set system H ⊆ 2L such that (i) L ∈ H, (ii) A ∩ B ∈

{A,B, ∅} for all A,B ∈ H, and (iii) {x} ∈ H for all x ∈ L. There is a well-known
bijection between rooted phylogenetic trees T with leaf set L and hierarchies
on L, see e.g. [19, Thm. 3.5.2]. It is given by H(T ) := {L(T (u)) | u ∈ V (T )};
conversely, the tree TH corresponding to a hierarchy H is the Hasse diagram
w.r.t. set inclusion. Thus, if v = lcaT (A) for some A ⊆ L(T ), then L(T (v)) is
the inclusion-minimal cluster in H(T ) that contains A [11].

Let T and T ∗ be phylogenetic trees with L(T ) = L(T ∗). We say that T ∗ is a
refinement of T if T can be obtained from T ∗ by contracting a subset of inner
edges or equivalently if and only if H(T ) ⊆ H(T ∗).

Lemma 1. Let T ∗ be a refinement of T and u∗v∗ ∈ E(T ∗). Then there is a
unique vertex w ∈ V (T ) such that L(T (w)) ∈ H(T ) is inclusion-minimal in H(T )
with the property that L(T ∗(v∗)) � L(T (w)). In particular, if lcaT ∗(x, y) = u∗,
then lcaT (x, y) = w.

Proof. Let u∗v∗ ∈ E(T ∗). Since H(T ) ⊆ H(T ∗), L(T ) = L(T ∗) ∈ H(T ) and
v∗ is not the root of T ∗, there is a unique inclusion-minimal A ∈ H(T ) with
L(T ∗(v∗)) � A, which corresponds to a unique vertex w ∈ V (T ) that satis-
fies L(T (w)) = A. In the following, we denote with w∗ ∈ V (T ∗) the unique
vertex that satisfies A = L(T ∗(w∗)), which exists since A ∈ H(T ) ⊆ H(T ∗).
Now let x, y ∈ L(T ) be two leaves with lcaT ∗(x, y) = u∗. From v∗ ≺T ∗ u∗,
we obtain L(T ∗(v∗)) � L(T ∗(u∗)) and L(T ∗(u∗)) ⊆ L(T ∗(w∗)) = L(T (w)).
Hence, we have L(T ∗(u∗)) ⊆ L(T (w)), which implies x, y ∈ L(T (w)) and thus
also z := lcaT (x, y) �T w. Denote by z∗ ∈ V (T ∗) the unique vertex in T ∗

with L(T ∗(z∗)) = L(T (z)). Since z �T w, it satisfies L(T ∗(z∗)) ⊆ L(T ∗(w∗)).
Since x, y ∈ L(T ∗(z∗)) ∩ L(T ∗(u∗)) �= ∅, we either have L(T ∗(u∗)) ⊆ L(T ∗(z∗))
or L(T ∗(z∗)) � L(T ∗(u∗)). In the second case, we obtain lcaT ∗(x, y) �T ∗

z∗ ≺T ∗ u∗, a contradiction to lcaT ∗(x, y) = u∗. In the first case, we have
L(T ∗(v∗)) � L(T ∗(u∗)) ⊆ L(T (z)) ⊆ L(T (w)). Due to inclusion minimality
of L(T (w)) we have L(T (z)) = L(T (w)). Thus lcaT (x, y) = z = w. 
�
Lemma 1 ensures that, for every u∗ ∈ V 0(T ∗), there is a unique w ∈ V (T ) such
that lcaT (x, y) = w for all (x, y) ∈ LT ∗

u∗ , and thus LT ∗
u∗ ⊆ LT

w. Thus we have

Corollary 1. If T ∗ is a refinement of T , then the partition L(T ∗) is a refine-
ment of L(T ).

Symbolic Ultrametrics. We write L(2) := {(x, y) | x, y ∈ L, x �= y} for the
“off-diagonal” pairs of leaves and let M be a finite set.

Definition 1. A tree T with leaf set L and labeling t : V 0(T ) → M of its inner
vertices explains a map δ : L(2) → M if t(lca(x, y)) = δ(x, y) for all distinct
x, y ∈ L.
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Such a map must be symmetric since lcaT (x, y) = lcaT (y, x) for all x, y ∈ L.
A shown in [2], a map δ : L(2) → M can be explained by a labeled tree
(T, t) if and only if δ is a symbolic ultrametric, i.e., iff, for all pairwise dis-
tinct u, v, x, y ∈ L holds (i) δ(x, y) = δ(y, x) (symmetry), (ii) δ(x, y) = δ(y, u) =
δ(u, v) �= δ(y, v) = δ(x, v) = δ(x, u) is never satisfied (co-graph property), and
(iii) |{δ(u, v), δ(u, x), δ(v, x)}| ≤ 2 (exclusion of rainbow triangles). In this case,
there exists a unique least-resolved tree (Tδ, tδ) (that explains δ) with a discrim-
inating vertex labeling tδ, i.e., tδ(x) �= tδ(y) for all xy ∈ E(Tδ) [2,9]. This tree
(Tδ, tδ) is also called a discriminating representation of δ [2].

The construction of symbolic ultrametrics could also be extended to maps
δ̃ : L(2) → 2M , i.e., to allow multiple labels at each vertex. However, this does
not introduce anything new. To see this, we note that the sets of vertex pairs LT

v

that share the same last common ancestor are pairwise disjoint. In particular, δ̃
thus must be a fixed element in 2M on each LT

v , v ∈ V 0, and thus we think of
the images δ̃(x, y) simply as single labels “associated to” elements in 2M rather
than sets of labels.

Lemma 2. Let δ : L(2) → M be a symbolic ultrametric with least-resolved tree
(Tδ, tδ). Then there is a map t : V (T ) → M such that (T, t) explains δ if and
only if T is a refinement of Tδ. In this case, the map t is uniquely determined
by T and δ.

Proof. Suppose (T, t) explains δ and let e = vu ∈ E(T ) be an edge with
t(u) = t(v) and u ≺ v. Note that both u and v must be inner vertices. Let
T/e denote the tree obtained from T by contracting the edge e, i.e., remov-
ing e from T and identifying u and v. We will keep the vertex v in T/e as
placeholder for the identified vertices u and v. By construction, T/e has the
clusters H(T/e) = H(T ) \ {L(T (u))}. Set tT/e(x) = t(x) for all x ∈ V 0(T ) \ {u}.
Clearly, v is the unique vertex in T/e such that L((T/e)(v)) is inclusion-
minimal with property L(T (u′)) � L((T/e)(v)) for any u′ ∈ childT (u). There-
fore, by Lemma 1, lcaT (x, y) = u implies lcaT/e(x, y) = v, and thus, we have
t(lcaT (x, y)) = tT/e(lcaT/e(x, y)) for all (x, y) ∈ L(2), and thus (T/e, tT/e)
explains δ. Stepwise contraction of all edges whose endpoints have the same
label eventually results in a tree T ′ and a map t′ such that t′(x) �= t′(y) for all
edges of T ′. Thus (T ′, t′) coincides with the unique discriminating representation
of δ, i.e., (T ′, t′) = (Tδ, tδ). By construction, T is a refinement of Tδ.

Conversely, let δ be a symbolic ultrametric with (unique) discriminating rep-
resentation (Tδ, tδ) and let T be a refinement of Tδ. By Corollary 1, L(T ) is a
refinement L(Tδ). Hence, the map t : V 0(T ) → M specified by t(lcaT (x, y)) :=
tδ(lcaTδ

(x, y)) for all (x, y) ∈ L(2) is well-defined. By construction, therefore,
(T, t) explains δ. In particular, therefore, every refinement T of Tδ admits a ver-
tex labeling t such that (T, t) explains δ. The choice of t is unique since every
inner vertex of a phylogenetic tree is the last common ancestor of at least one
pair of vertices, and thus no relabeling of an inner vertex preserves the property
that the resulting tree explains δ. 
�
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Fitch Maps encode directional events along edges of T , such as horizontal gene
transfer.

Definition 2. A tree T with edge labeling λ : E(T ) → 2N , with finite N ,
explains a map ε : L(2) → 2N if for all k ∈ N holds: k ∈ ε(x, y) iff k ∈ λ(e) for
some edge along the unique path in T that connects lcaT (x, y) and y.

A map ε : L(2) → 2N that is explained by a tree (T, λ) in this manner is a
Fitch map [12]. A Fitch map is called monochromatic if |N | = 1. Like symbolic
ultrametrics, Fitch maps are explained by unique least-resolved trees. The key
construction is provided by the sets U¬m[y] := {x ∈ L \ {y} | m /∈ ε(x, y)} ∪ {y}
for y ∈ L and m ∈ N . Let us write Nε := {U¬m[y] | y ∈ L, m ∈ N}. Then ε is
a Fitch map if and only if (i) Nε is hierarchy-like, i.e., A ∩ B ∈ {A,B, ∅} for all
A,B ∈ Nε and (ii) |U¬m[y′]| ≤ |U¬m[y]| for all y ∈ L, m ∈ N , and y′ ∈ U¬m[y]
[12, Thm. 3.11].

Fitch maps allow some freedom in distributing labels on the edge set. The
precise notion of “least-resolved” thus refers to the fact that it is neither pos-
sible to contract edges nor to remove subsets of labels from an edge. The
unique least-resolved tree for a Fitch map ε, called the ε-tree (Tε, λε), is deter-
mined by the hierarchy H(Tε) = Nε ∪ {L} ∪ {{x} | x ∈ L

}
and the label-

ing λε(parentTε
(v), v) := {m ∈ N | ∃y ∈ L s.t. L(Tε(v)) = U¬m[y]} for all

e = {parentTε
(v), v} ∈ E(Tε) [12, Thm. 4.4].

Let (T, λ) and (T ′, λ′) be two edge-labeled trees on the same leaf set and with
λ : E(T ) → 2N and λ′ : E(T ′) → 2N . Then (T, λ) is a refinement of (T ′, λ′), in
symbols (T ′, λ′) ≤ (T, λ) if (i) H(T ′) ⊆ H(T ) and (ii) if L(T (v)) = L(T ′(v′)),
then λ′(parentT ′(v′), v′) ⊆ λ(parentT (v), v).

Proposition 1. [12, Prop. 4.3, Thm. 4.4] If (T, λ) explains ε, then (Tε, λε) ≤
(T, λ). Furthermore, (Tε, λε) is the unique least-resolved tree that explains ε. In
particular, (Tε, λε) minimizes �min :=

∑
e∈E(Tε)

|λε(e)|.

Lemma 3. Let ε : L(2) → 2N be a Fitch map with least-resolved tree (Tε, λε).
Then there exists an edge labeling λ : E(T ) → 2N such that (T, λ) explains ε if
and only if T is a refinement of Tε.

Proof. Suppose (T, λ) explains ε. By Proposition 1, this implies (Tε, λε) ≤ (T, λ),
i.e., T is a refinement of Tε. Conversely, let ε be a Fitch map with least-
resolved tree (Tε, λε) and let T be a refinement of Tε. Define, for all edges
{parentT (v), v} ∈ E(T ), the edge labeling

λ({parentT (v), v}) :=

{
λε(parentTε

(v′), v′) if L(T (v)) = L(Tε(v′)),
∅ otherwise.

(1)

The map λ is well-defined, since there is at most one v′ ∈ V (Tε) with L(T (v)) =
L(Tε(v′)).

Claim. (T, λ) and (Tε, λε) explain the same Fitch map ε.
By assumption, (Tε, λε) explains ε. Let (a, b) ∈ L(2), k ∈ N , and let ε′ be the
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Fitch map explained by (T, λ). First, suppose k ∈ ε(a, b), i.e., there is an edge
e′ = {parentTε

(w′), w′} with k ∈ λε(e′) such that w′ ≺Tε
lcaTε

(a, b) by the
definition of Fitch maps. We have a /∈ L(Tε(w′)). Since T is a refinement of Tε,
there is a vertex w ∈ V (T ) with L(T (w)) = L(Tε(w′)). In particular, therefore,
λ({parentT (w), w}) = λε(e′). This together with the fact that a /∈ L(Tε(w′)) =
L(T (w)) immediately implies k ∈ ε′(a, b). Now suppose k ∈ ε′(a, b). Hence,
there is an edge e = {parentT (v), v} with v ≺T lcaT (a, b) and k ∈ λ(e). By
construction of λ, the latter implies that there is a vertex v′ ∈ V (Tε) with
L(T (v)) = L(Tε(v′)) and, in particular, k ∈ λε(parentTε

(v′), v′). The latter
together with a /∈ L(T (v)) = L(Tε(v′)) implies that k ∈ ε(a, b). Since (a, b) ∈
L(2) and k ∈ N were chosen arbitrarily, we conclude that ε = ε′, and thus, (T, λ)
also explains ε. 
�

The labeling λ defined in Eq. (1) satisfies �min =
∑

e∈T (e) |λ(e)| by construc-
tion and Proposition 1. Furthermore, we observe that (T ∗, λ∗) is obtained from
(T, λ) by contracting only edges with λ(e) = ∅. More precisely, e is contracted if
and only if e is an inner edge with λ(e) = ∅. This implies

Corollary 2. Suppose (T, λ′) explains the Fitch map ε. Then λ : E(T ) →
2N given by Eq. (1) is the unique labeling such that (T, λ) explains ε and∑

e∈E(T ) |λ(e)| = �min.

Proof. Suppose (T, λ′′) explains ε and
∑

e∈E(T ) |λ′′(e)| = �min. By Proposition 1,
we have (Tε, λε) ≤ (T, λ′′) and thus λε(parentTε

(v′), v′) ⊆ λ′′(parentT (v), v) if
L(Tε(v′)) = L(T (v)). Since, moreover, λε(parentTε

(v′), v′) = λ(parentT (v), v) if
L(Tε(v′)) = L(T (v)) by Eq. (1), minimality of λ′′ implies λ′′ = λ. 
�

3 Tree-Like Pairs of Maps

Symbolic ultrametrics and Fitch maps on L(2) derive from trees in very different
ways by implicitly leveraging information about inner vertices and edges of the a
priori unknown tree. It is of interest, therefore, to know when they are consistent
in the sense that they can be simultaneously explained by a tree.

Definition 3. An ordered pair (δ, ε) of maps δ : L(2) → M and ε : L(2) → 2N

is tree-like if there is a tree T endowed with a vertex labeling t : V 0(T ) → M
and edge labeling λ : L(2) → 2N such that (T, t) explains δ and (T, λ) explains ε.

Naturally, we ask when (δ, ε) is explained by a vertex and edge labeled tree
(T, t, λ), i.e., when (δ, ε) is a tree-like pair of maps on L(2). Furthermore, we ask
whether a tree-like pair of maps is again explained by a unique least-resolved
tree (T ∗, t∗, λ∗).

Theorem 1. Let δ : L(2) → M and ε : L(2) → 2N . Then (δ, ε) is tree-like if and
only if
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1. δ is a symbolic ultrametric.
2. ε is a Fitch map.
3. H∗ := H(Tδ) ∪ H(Tε) is a hierarchy.

In this case, there is a unique least-resolved vertex and edge labeled tree
(T ∗, t∗, λ∗) explaining (δ, ε). The tree T ∗ is determined by H(T ∗) = H∗, the
vertex labeling t∗ is uniquely determined by tδ and the edge labeling λ∗ with
minimum value of

∑
e∈E(T ∗) |λ∗(e)| is uniquely determined by λε.

Proof. Suppose (δ, ε) is tree-like, i.e., there is a tree (T, t, λ) such that (T, t)
explains δ and (T, λ) explains ε. Thus δ is a symbolic ultrametric and ε is a Fitch
map. Furthermore, T is a refinement of least-resolved trees Tδ and Tε because
of the uniqueness of these least-resolved trees, and we have H(Tδ) ⊆ H(T ) and
H(Tε) ⊆ H(T ) and thus H∗ ⊆ H(T ). Since H(T ) is a hierarchy and the subset
H∗ contains both L and all singletons {x} with x ∈ L, H∗ is a hierarchy.

Conversely, suppose conditions (1), (2), and (3) are satisfied. The first two
conditions guarantee the existence of the least-resolved tree (Tδ, tδ) and (Tε, λε)
explaining δ and ε, respectively. Thus H∗ = H(Tδ) ∪ H(Tε) is well-defined.
Condition (3) stipulates that H∗ is a hierarchy and thus there is a unique tree
T ∗ such that H(T ∗) = H∗, which by construction is a refinement of both Tδ

and Tε. By Lemmas 2 and 3, T ∗ can be equipped with a vertex-labeling t∗

and an edge-labeling λ∗ such that (T ∗, t∗) explains δ and (T ∗, λ∗) explains ε,
respectively. Thus (δ, ε) is tree-like.

We now show that (T ∗, t∗, λ∗) is least-resolved w.r.t. (δ, ε) and thus that
for every e ∈ E(T ∗), the tree T ′ := T ∗/e does not admit a vertex labeling
t′ : V 0(T ′) → M and an edge-labeling λ′ : E(T ′) → 2N such that (T ′, t′, λ′)
explains (δ, ε). Let e = {parentT ∗(v), v} ∈ E(T ∗). Hence, L(T ∗(v)) ∈ H(T ∗).
If v ∈ L(T ∗), then we have L(T ∗) �= L(T ′) and the claim trivially holds. Thus
suppose that v ∈ V 0(T ) in the following. Since the edge e is contracted in T ′, we
have H(T ′) = H(T ∗) \ {L(T (v))} and thus, H(Tδ) �⊆ H(T ′) or H(Tε) �⊆ H(T ′).
Thus T ′ is not a refinement of Tδ or Tε. By Lemmas 2 and 3, this implies that
there is no t′ such that (T ′, t′) explains δ or no λ′ such that (T ′, λ′) explains ε,
respectively. Thus (T ∗, t∗, λ∗) is least-resolved w.r.t. (δ, ε).

It remains to show that (T ∗, t∗, λ∗) is unique. Since T ∗ is uniquely determined
by H∗, it suffices to show that the labeling of T ∗ is unique. This, however, follows
immediately from Lemma 2 and Corollary 2, respectively. 
�

We note that every refinement T of the least-resolved tree (T ∗, t∗, λ∗) admits
a vertex labeling t : V 0(T ) → M and an edge labeling λ : E(T ) → 2N such that
(T, t, λ) explains (δ, ε).

Theorem 2. Given two maps δ : L(2) → M and ε : L(2) → 2N it can be
decided in O(|L|2|N |) whether (δ, ε) is tree-like. In the positive case, the unique
least-resolved tree (T ∗, t∗, λ∗) can be obtained with the same effort.

Proof. Based on Theorem 1, a possible algorithm consists of three steps: (i)
check whether δ is a symbolic ultrametric, (ii) check whether ε is a Fitch map
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and, if both statements are true, (iii) compute H∗ := H(Tδ) ∪ H(Tε) and use
this information to compute the unique least-resolved vertex and edge labeled
tree (T ∗, t∗, λ∗). By [12, Thm. 6.2], the decision whether ε is a Fitch map and,
in the positive case, the construction of the least-resolved tree (Tε, λε) can be
achieved in O(|L|2|N |) time. Moreover, it can be verified in O(|L|2) whether
or not a given map δ is a symbolic ultrametric, and, in the positive case, the
discriminating tree (Tδ, tδ) can be computed within the same time complexity
(cf. [13, Thm. 7]). The common refinement T with H(T ) = H(Tδ) ∪ H(Tε) can
be computed in O(|L|) time using LinCR [18].

The edge labels λ∗ are then carried over from (Tε, λε) using the correspondence
between u∗v∗ ∈ E(T ∗) and uv ∈ E(Tε) iff L(T ∗(v∗)) = L(Tε(v)), otherwise
λ∗({u∗, v∗}) = ∅. This requires O(|L| · |N |) operations. The vertex labels can
then be assigned by computing, for all (x, y) ∈ L(2), the vertex v = lcaT ∗(x, y)
and assigning t∗(v) = δ(x, y) in quadratic time using a fast last common ancestor
algorithm [7]. Thus we arrive at a total performance bound of O(|L|2|N |)). 
�

4 Tree-Like Pairs of Maps with Constraints

One interpretation of tree-like pairs of maps (δ, ε) is to consider δ as the orthol-
ogy relation and ε as the xenology relation. In such a setting, certain vertex
labels t(v) preclude some edge labels λ({v, u}) with u ≺ v. For example, a spe-
ciation vertex cannot be the source of a horizontal transfer edge. We use the
conventional notations t(u) = � and t(v) = � for speciation and duplication
vertices [6], respectively, set t(u) = � for a third vertex type, and consider the
monochromatic Fitch map ε : L(2) → {∅, I}. Thus, we require that λ({v, u}) = I

and u ≺T v implies t(v) = � [1,17,20]. This condition simply states that neither
a speciation nor a gene duplication is the source of a horizontal transfer.

In [17], we considered evolutionary scenarios that satisfy another rather strin-
gent observability condition:

(C) For every v ∈ V 0(T ), there is a child u ∈ childT (v) such that λ({v, u}) = ∅.

We call a Fitch map λ that satisfies (C) a type-C Fitch map. In this case, for
every v ∈ V 0(T ), there is a leaf x ∈ L(T (v)) such that λ(e) = ∅ for all edges
along the path from v to x. As an immediate consequence of (C), we observe
that, given |L| ≥ 2, for every x ∈ L there is a y �= x such that ε(x, y) = ∅. This
condition is not sufficient, however, as the following example shows. Consider
the tree ((x, y), (x′, y′)) in Newick notation, with the edges in the two cherries
(x, y) and (x′, y′) being labeled with ∅, and two I-labeled edges incident to the
root. Then, for every z ∈ L, we have ε(z, z′) = ∅, where z′ is the sibling of z, but
condition (C) is not satisfied. In a somewhat more general setting, we formalize
these two types of labeling constraints as follows:

Definition 4. Let δ : L(2) → M and ε : L(2) → 2N be two maps and M∅ ⊆ M .
Then, (δ, ε) is M∅-tree-like if there is a tree (T, t, λ) that explains (δ, ε) and the
labeling maps t : V 0(T ) → M and λ : E(T ) → 2N satisfy (C) and

(C1) If t(v) ∈ M∅, then λ({v, u}) = ∅ for all u ∈ childT (v).
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Fig. 1. Effect of an edge contraction on paths in T . All paths traversing the contracted
edge e = uv in T correspond to paths in T/e in which e is contracted. All other path
remain unchanged. Furthermore we = u′, i.e., the edge contraction corresponds to the
deletion of L(T (v)) from H(T ).

Hence, M∅ puts extra constraints to the vertex and edge labels on trees that
satisfy (C) and explain (δ, ε). Note, an ∅-tree-like (M∅ = ∅) must only satisfy
(C) and (C1) can be omitted.

Theorem 3. Let δ : L(2) → M and ε : L(2) → 2N be two maps and M∅ ⊆ M .
Then, (δ, ε) is M∅-tree-like if and only if (δ, ε) is tree-like and its least-resolved
tree (T ∗, t∗, λ∗) satisfies (C) and (C1).

Proof. If (δ, ε) is tree-like and its least-resolved tree (T ∗, t∗, λ∗) satisfies (C) and
(C1), then (δ, ε) is M∅-tree-like by definition. For the converse, suppose (δ, ε)
is M∅-tree-like and let (T, t, λ) be a vertex and edge labeled tree that explains
(δ, ε) and satisfies (C) and (C1).

Let λ′ be the edge labeling for T as specified in Eq. (1) where (Tε, λε)
is replaced by (T ∗, λ∗). By the arguments in the proof of Lemma 3, (T, λ′)
still explains ε and hence, (T, t, λ′) explains (δ, ε). Moreover, since �min :=∑

e∈E(T ∗) |λ∗(e)| and by construction of λ′, we have �min =
∑

e∈E(T ) |λ′(e)|.
Since (T ∗, λ∗) ≤ (T, λ′), it must hold λε(e′) ⊆ λ′(e) for all e′ = parentTε

(v′)v′ ∈
E(Tε) and e = parentT (v)v ∈ E(T ) with L(T (v)) = L(Tε(v′)). Since λ′ is min-
imal by construction, we have λε(e′) = λ′(e) for all corresponding edges e and
e′. In particular, it must hold that λ(e) = ∅ implies λ′(e) = ∅ for all e ∈ E(T ).
To see this, assume for contradiction there is some edge e = uv ∈ E(T ) with
λ(e) = ∅ but λ′(e) �= ∅. Since (T, λ) satisfies (C), there is a path from u to
some leaf y ∈ L(T ) that consists of edges f with label λ(f) = ∅ only and that
contains the edge e. Hence, for x ∈ L(T (u))\L(T (v)), we have lcaT (x, y) = u
and thus, ε(x, y) = ∅. However, since we assume that λ′(e) = N ′ �= ∅, we obtain
N ′ ⊆ ε(x, y) �= ∅; a contradiction. Now it is easy to verify that (T, t, λ′) still
satisfies (C) and (C1).

Now consider edge contractions, illustrated in Fig. 1. To obtain T ∗ we are
only allowed to contract edges e = uv ∈ E(T ) that satisfy t(u) = t(v) and
λ′(e) = ∅. The latter follows from the fact that edges uv with t(u) �= t(v) cannot
be contracted without losing the information of at least one of the labels t(u)
or t(v) and minimality of λ′, since otherwise the labels λ′(e) do not contribute
to the explanation of the Fitch map and thus would have been removed in the
construction of λ′. For such an edge e, the tree (T/e, tT/e, λ

′
T/e) is obtained by

contracting the edge e = uv to a new vertex we and assigning tT/e(we) = t(v) =
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t(u) and keeping the edge labels of all remaining edges. The tree (T/e, tT/e, λ
′
T/e)

then explains (δ, ε). To see this, we write y := lcaT (a, b) and y′ := lcaT/e(a, b)
for distinct a, b ∈ L and compare for c ∈ {a, b} the path Pyc in T and P ′

y′c in
T/e. If y = u or y = v then y′ = we. The paths therefore either consist only of
corresponding edges, in which case the edge labels are the same, or they differ
exactly by the contraction of e. The latter does not affect the explanation of
ε(a, b) because λ′(e) = ∅. Since t(u) = t(v), contraction of uv also does not
affect δ.

In particular, therefore, neither u nor v is a leaf, i.e., e is an inner edge.
Condition (C) is trivially preserved under contraction of inner edges. Suppose
t(v) = t(u) ∈ M∅ and thus tT/e(we) ∈ M∅. Since (T, t, λ′) satisfies (C1) we have
λ′({v, u′}) = λ′({u, u′′}) = ∅ for all u′ ∈ childT (v) and all u′′ ∈ childT (u) and
thus after contracting e it holds that λ′

T/e(we, w
′) = ∅ for all w′ ∈ childT/e(we) =

childT (v) ∪· childT (u). Otherwise, t(u) = t(v) /∈ M∅ and thus by construction
tT/e(we) /∈ M∅. In summary, (T/e, t′, λ) satisfies (C) and (C1). Repeating this
coarse graining until no further contractible inner edges are available results in
the unique least-resolved tree (T ∗, t∗, λ∗). 
�
Since the unique least-resolved tree (T ∗, t∗, λ∗) can be computed in quadratic
time by Theorem 2, and it suffices by Theorem 3 to check (C) and (C1) for
(T ∗, t∗, λ∗), the same performance bound applies to the recognition of con-
strained tree-like pairs of maps.

We note that an analogous result holds if only (C) or only (C1) is required
for (T, t, λ). Furthermore, one can extend (C1) in such a way that for a set Q of
pairs (q,m), with q ∈ M and m ∈ N , of labels that are incompatible at a vertex
v and an edge vv′ with v′ ∈ childT (v). The proof of Theorem 3 still remains
valid since also in this case no forbidden combinations of vertex an edge colors
can arise from contracting an edge e = uv with t(u) = t(v). In the special case
δ(x, y) = 1 /∈ M∅ for all (x, y) ∈ L(2), one obtains t∗(u) = 1 for all u ∈ V (T ∗)
and thus (T ∗, λ∗) = (Tε, λε) and (C1) imposes no constraint. Hence, Theorem 3
specializes to

Corollary 3. A Fitch map ε is type-C if and only if its least-resolved tree
(Tε, λε) satisfies (C).

In [17] a stronger version of condition (C) has been considered:

(C2) If λ({v, u}) �= ∅ for some u ∈ childT (v), then λ({v, u′}) = ∅ for all u′ ∈
childT (v) \ {u}.

This variant imposes an additional condition on the edges e = uv that can be
contracted. More precisely, an inner edge of (T, t, λ) can be contracted without
losing the explanation of (δ, ε) and properties (C1) and (C2) if and only if (i)
t(u) = t(v), (ii) λ(e) = ∅ and (iii) at most one of the edges uu′, u′ ∈ childT (u) and
vv′, v′ ∈ childT (v) has a non-empty label. Now consider two consecutive edges
uv and vw with t(u) = t(v) = t(w), λ({u, v}) = λ({v, w}) = ∅ and suppose there
is u′ ∈ childT (u) with λ({u, u′}) �= ∅, w′ ∈ childT (w) with λ({w,w′}) �= ∅, and
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λ({v, v′}) = ∅ for all v′ ∈ childT (v). Then one can contract either uv or vw but
not both edges. Thus least-resolved trees explaining (δ, ε) and satisfying (C1)
and (C2) are no longer unique.

5 Concluding Remark

Here we have shown that symbolic ultrametrics and Fitch maps can be combined
by the simple and easily verified condition that H(Tδ)∪H(Tε) is again a hierarchy
(Theorem 1), i.e., that the two least-resolved trees have a common refinement.
The least-resolved tree (T ∗, t∗, λ∗) that simultaneously explains both δ and ε
is unique in this case and can be computed in quadratic time if the label set
N is bounded and O(|L|2|N |) time in general. The closely related problem of
combining a hierarchy and symmetrized Fitch maps, defined by m ∈ ε(x, y) iff
there is an edge e with m ∈ λ(e) along the path from x to y [10], is NP-complete
[14]. It appears that the main difference is the fact that symmetrized Fitch
maps do not have a unique least-resolved tree as explanation. The distinction
between much simpler problems in the directed setting and hard problems in the
undirected case is also reminiscent of the reconciliation problem for trees, which
are easy for rooted trees and hard for unrooted trees, see e.g. [3].

We have also seen that certain restrictions on the Fitch maps that are related
to the “observability” of horizontal transfer do not alter the complexity of the
problem. These observability conditions are defined in terms of properties of
the explaining trees, raising the question whether these constraints also have a
natural characterization as properties of the Fitch maps. On a more general level,
both symbolic ultrametrics and Fitch maps arise from evolutionary scenarios
comprising an embedding of the gene tree T into a species tree, with labeling
functions t and λ on T encoding event-types and distinctions in the evolutionary
fate of offsprings, respectively. Here we have focused entirely on gene trees with
given labels. The embeddings into species trees are known to impose additional
constraints [8,16].
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Abstract. WepresentContFree-NGS, an open source software that removes reads
originating from contaminant organisms in your sequencing dataset. The user has
to provide a target taxon, and anything that does not belong to this taxon or its
descendants will be labelled as contaminant. In order to achieve this, ContFree-
NGS exploits results from a taxonomy assignment engine, like Kraken2 or Kaiju.

Keywords: NGS · Contamination · Bioinformatics

1 Introduction

Second and third generation DNA sequencing technologies are powerful tools that are
revolutionizing biology. However, results from these technologies often present con-
tamination, which could impact their interpretation [1, 2]. A contaminating sequence is
one that does not faithfully represent the genetic information from the biological source
organism because it contains one or more sequence segments of foreign origin, and they
could cause several problems in downstream analyses. The primary consequences of
contamination are time and effort wasted on meaningless analyses, erroneous conclu-
sions drawn about the biological significance of the sequence, misassembly of sequence
contigs and false sequence clustering, delay in the release of the sequence in public
databases and pollution of public databases [3].

Recently, some tools have been made available that aim to remove sequences from
contaminating organisms in next generation sequencing (NGS) datasets. DecontaMiner
is a tool to unravel the presence of contaminating sequences in the set of reads that do
not map to a reference genome [4]. Conterminator removes contaminating sequences
from contigs exploiting a taxonomic assignment file [5]. QC-Blind is an automatic
tool to do unsupervised assembly and contig binning to identify and remove putative
contaminants [6]. These tools have in common that they either require a reference genome
of the source organism, or need to perform assembly prior contaminant detection. Our
goal was to develop a simpler tool to remove contaminated sequences directly from
unassembled reads, without mapping, exploiting fast k-mer analysis implemented in
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taxonomic assignment engines commonly used in metagenomics. Thus, we developed
ContFree-NGS, an open source and very simple filter that removes sequences from
contaminating organisms in NGS datasets based on a taxonomic classification file.

2 Implementation

ContFree-NGS was implemented as a single Python v3 (>3.6) script, using the biopy-
thon module and the Python Environment for Tree Exploration (ETE). In order to assess
contamination, ContFree-NGS exploits a taxonomic assignment file containing the read
identifier and a NCBI taxonomic identifier for every sequence in the dataset. This tax-
onomic classification file can be generated with a taxonomic assignment engine, such
as Kraken2 [7] or Kaiju [8]. ContFree-NGS requires that the user provide a target taxon
and only reads assigned to this taxon or to its descendants will be regarded as target
sequences and further maintained. Sequences not assigned to the target taxon or its
descendants will be discarded and sequences that could not be assigned to any taxa will
be kept in a separated unclassified file. ContFree-NGS will process the NGS dataset and
the taxonomic assignment file in the following way:

1. It creates an indexed database for the sequencing dataset (FastQ format) using the
Bio.SeqIO.index_db function with the index stored in a SQLite database;

2. It creates a list with the NCBI identifier for the target taxon and all the identifiers of
its descendants according to the NCBI taxonomy database;

3. It iterates over the taxonomy assignment file. If the read was not assigned to any
taxa it is saved in a fastq file for unclassified reads. If the read was assigned, it will
check if its taxon is found in the list of the target taxon descendants, created in step
(ii), if so, will save the read to a fastq file for filtered reads, otherwise the read will
be discarded.

As ContFree-NGS exploits the results from a taxonomic assignment engine, users
must use the proper switches to achieve an accurate classification, for instance a proper
value of the --confidence switch in Kraken2.

3 Evaluation

We evaluated ContFree-NGS on three sugarcane artificially contaminated datasets, A
(50.000 paired end reads), B (250.000 paired end reads) and C (1.250.000 paired end
reads). In all datasets 80% of the reads came from sugarcane (SRR1774134), 15% came
fromAcinetobacter baumanii (SRR12763742) and 5% came fromAspergillus fumigatus
(DRR289670). We used Kraken2 for taxonomic assignment. To perform that, we built a
Kraken2 custom database containing the following reference libraries: archaea, bacteria,
viral, human, fungi, plant, protozoa and the NCBI non-redundant nucleotide database.
Then, Kraken2was runwith the confidence set to 0.05, resulting in the following number
of classified sequences: dataset A: 25.547, dataset B: 128.396, dataset C: 664.270.
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At the confidence level of 0.05 set in Kraken2, ContFree-NGS was able to remove
over 99% of the known contaminants in the set of classified reads. We run ContFree-
NGS on a high performance computing (HPC) cluster and recorded RAM usage and
processing wall time for the three datasets (see Fig. 1).

Fig. 1. This figure shows theRAMusage and time consuming to remove contaminants of the three
sugarcane artificially contaminated datasets. Memory usage is low and independent of the number
of classified sequences and wall time scale rapidly with the number of classified sequences. To
reduce time consuming, the end user could split the taxonomy assignment file in several files and
process them in parallel. Check our GitHub (https://github.com/labbces/ContFree-NGS) page for
more details.

4 Conclusion

ContFree-NGS is a very simple filter and useful tool that removes sequences from
contaminating organisms in a NGS dataset.

Funding. This work was supported by “Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP)” [grant number 2019/24796-5 to F.V.P] and by “Conselho Nacional de
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Abstract. Mass testing of the population is among the most effective
measures to combat the COVID-19 pandemic. Among existing diagnostic
methods, deep learning-based solutions have the potential to be afford-
able, quick and accurate. However, these techniques often rely on high-
quality datasets, which are not always available in medical scenarios. In
this work, we use convolutional neural networks to diagnose COVID-
19 on computed tomography images from the COVIDx-CT dataset [6].
The available scans often present noisy artifacts, originated from sensor-
and capturing-related errors, that can negatively impact the performance
of the model if left untreated. In this sense, we explore several pre-
processing strategies to reduce their impact and obtain a more accu-
rate method. Our best model, a ResNet50 fine-tuned with preprocessed
images, obtained 97.84% accuracy when prompted with a single image
and 99.50% when processing multiple images from the same patient. In
addition to achieving high accuracy, interpretability experiments show
that the network correctly learned features from the lung and chest area.

Keywords: COVID-19 diagnostic · CT image analysis · Deep Learning

1 Introduction

As of July 2021—one and a half years after its initial reporting—the COVID-19
(SARS-CoV-2) pandemic has caused more than four million deaths worldwide1.
From lockdown measures to vaccine research, the outbreak has shaped how gov-
ernments will approach future health crises to minimize impact in healthcare
systems, economic activity and citizen lives. Among most effective measures,
mass diagnostic testing was essential to control the spread of the virus [15]. The
gold standard diagnostic method for COVID-19 is the Reverse Transcription
Polymerase Chain Reaction (RT-PCR). Despite its wide acceptance and high
accuracy, its application is laborious, time-consuming, and expensive [14], which
hinders mass testing of the population. In this sense, the scientific community
urged to research affordable and efficient diagnostic methods for the disease.

As a worldwide event generating a massive amount of data—e.g., patient
health records, diagnostic results, social media repercussion—the community
1 https://www.worldometers.info/coronavirus/.
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naturally turned its attention to artificial intelligence [13]. Aiming to leverage
the capabilities of data-driven models—i.e., machine learning algorithms able to
learn, directly from the input data, the most discriminative features for a given
task—researchers proposed deep learning-based diagnostic methods for COVID-
19. The approaches act on different types of medical data, such as blood cell
counts [4], chest X-rays [10], and computed tomography (CT) scans [2,9,16]. In
this work, we are particularly interested in the latter; chest CT scans present a
higher sensitivity than X-rays for this problem [3] and have been successfully used
in computer-aided diagnosis, such as the classification of respiratory diseases [1].

The recent literature around CT image analysis for COVID-19 diagnosis
explores convolutional neural networks (CNN) to classify whether a scan belongs
to a healthy or infected patient. CNNs are a type of neural network specialized
in processing images, that achieved impressive results in medical imaging anal-
ysis [8]. In the case of COVID-19, several researchers work directly on 2D CT
scans [2,6,9,16], often fusing model decisions over individual CT slices into a
combined diagnosis. Ardakani et al. [2] evaluate several CNN architectures for
this problem. Each network is optimized with radiologist-appointed patches from
CT slices, and the authors report results that outperform the analyses made by
radiologists. Overcoming the need of an expert selecting potential CT regions to
be analysed, Xu et al. [16] employ a 3D segmentation CNN to extract regions
of interest. The slices are individually classified by a ResNet architecture [7]
and the answers are combined to determine the diagnosis. Even though both
works achieved interesting results, the datasets used are very limited in size and
patient representativity, consisting of less than 1,000 CT samples originated from
at most 110 COVID-positive patients. Exploring more representative datasets,
Mei et al. [9] combine the analysis of a ResNet over the CT scans with a support
vector machine trained over non-image clinical information, such as patient’s
gender, age, and white cell count. They report promising results in a dataset
collected from 905 patients, from which 419 tested positive for SARS-CoV-2.

With newer, bigger and more representative datasets becoming publicly avail-
able, more effort is required to curate such data. The quality of a CT sample
depends on many aspects, such as the conditions of the sensor, how the subject
poses in the patient bed and which clothes they are wearing. When proper data
sanitization is not done, low-quality CT scans might be present in the dataset,
which might impact machine-aided diagnosis.

In this work, we evaluate several preprocessing techniques to reduce the
impact of low-quality CT scans (Fig. 1) into deep learning-based diagnostic tools
for COVID-19. We perform our experiments on COVIDx-CT dataset [6], com-
prised of 104, 009 CT images from 1, 489 patients. We employ both a lightweight
baseline CNN as well as a ResNet architecture and report results at image-
and exam-level. Finally, we use interpretability techniques [12] to identify which
regions of the CT slice have high importance in the model’s decision. This acts as
a confidence check—to assess if the network is taking into consideration relevant
parts of the scan—, but also may guide medical staff into better understanding
the disease and how it manifests in patients.
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Fig. 1. Examples of artifacts present in CT images of the COVIDx-CT dataset [6]: (a)
rounded borders, (b) traces of clothes around chest area, (c) structure of the patient
bed in the bottom part of the images, (d) reflection and bright artifacts outside chest
area, and (e) background noise.

The remaining of the text is organized as follows. In Sect. 2, we describe
COVIDx-CT dataset, presenting the distribution of images per class and exam-
ples of existing image artifacts. We present details of our methodology in Sect. 3,
describing the overall pipeline of our evaluation and the preprocessing techniques
investigated. In Sect. 4, we present the experimental evaluation of all techniques
and CNN architectures for this problem. Finally, in Sect. 5, we discuss our final
thoughts and draw possible research lines for future work.

2 Dataset

The dataset used in this work is the COVIDx-CT dataset [6]. This database was
collected from several hospitals across China and comprises 4, 178 exams of 1, 489
patients, totaling 104, 009 CT images. Each exam is composed of several CT
slices and is categorized into three classes: Normal, Common Pneumonia (CP),
and Novel Coronavirus Pneumonia (NCP). Each class was organized by the
authors into train, validation and test splits. We present in Table 1 the number
of images and patients for each of them.

According to the authors, radiologists manually labeled all scans contained
in validation and test sets. Training images, on the other hand, were annotated
by non-radiologists, which might yield less trustworthy labels and add to the
noisiness of the dataset. Additionally, as the images were captured in differ-
ent hospitals with distinct equipments, they present a wide variety of quality,
resolution, and noisy patterns. Besides sensor-specific noises, they also present
artifacts originated from bad subject positioning in the patient bed, traces of
the subject’s clothes and reflections. Figure 1 illustrates some examples of clear
artifacts and noisy patterns in CT scans.
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Table 1. Image and patient distributions per set of the COVIDx-CT dataset [6].

Images Patients

Train Val Test Train Val Test

Normal 27,201 9,107 9,450 144 47 52

CP 22,061 7,400 7,395 420 190 125

NCP 12,520 4,529 4,346 300 95 116

Total 61,782 21,036 21,191 864 332 293

All of these artifacts, if left untreated, might be undesirably captured by
our models during training and induce errors at inference time. In this sense,
we present in the following sections the techniques employed to preprocess each
scan and reduce impact on model performance.

3 Methodology

Ultimately, our goal is to accurately classify if a chest CT scan belongs to a
patient with COVID-19 or not. Even though we aim to provide a diagnosis
at image level—i.e., with a model that processes a single slice and outputs a
classification decision among Normal, CP and NCP for that image—the dataset
also groups multiple CT slices of a patient into an exam. This allows us to
combine several image-level decisions into an exam-level diagnosis. As each slice
captures a different part of the chest and lungs, the rationale is that fusing
answers over distinct views might lead to a more reliable and accurate diagnosis.

In our evaluation, we follow the pipeline depicted in Fig. 2, in which each
input CT image is preprocessed, as to reduce the impact of capturing and sensor
artifacts, and then analyzed by a classification model. Once every image has
been classified, their answers are combined for an exam-level diagnosis. In the
next sections, we detail the preprocessing techniques, as well as present the CNN
architectures used in our evaluation.

3.1 Data Preprocessing

As the region of interest for assessing if a patient has signs of COVID-19 involves
mostly the lung areas within the CT image, the preprocessing steps aim to
remove the exterior region of the patient’s body. Besides not contributing for
the diagnosis, this region accounts for most artifacts and noisy patterns seen in
Fig. 1. To do so, we extract two masks of the patient’s chest region from the
original image following the steps presented in Fig. 3.

Initially, we apply 5 × 5 minimum filters to the original image, suppressing
most noisy patterns in the exterior region of the chest. This is followed by a
binarization and an edge detection, that yields the contour of the exterior chest
area and lungs of the patient. We apply flood fill with seed points in the corners of
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Fig. 2. Overview of our pipeline. An input CT scan is preprocessed to remove possible
artifacts and is fed to a CNN that classifies it as Normal, Common Pneumonia (CP)
or Novel Coronavirus Pneumonia (NCP). When an exam is considered, each of its
images are processed through the pipeline and the individual image-level diagnosis are
combined for an exam-level decision.

the image to remove the background related to the regions outside the patient’s
body. Finally, the resulting image generates a pair of masks. A subsequent flood
fill is performed to obtain the interior chest mask related to the lungs, whereas
the exterior chest mask is obtained by applying a sequence of minimum filtering
to erase the silhouette of the lungs. With both masks extracted, we explored
different ways to apply them to the original image, as depicted in Fig. 4:

– Rectangular: the original image is masked with a rectangular region corre-
sponding to the bounding box of exterior chest mask;

– Rectangular-Centered: similar to the Rectangular approach, but the
masked region is centered in the output image;

– Elliptical: the original image is masked with a elliptical region that fits the
bounding box of exterior chest mask;

– Elliptical-Centered: similar to the Elliptical approach, but the masked
region is centered in the output image;

– Exterior Chest: the original image is masked with the exterior chest mask;
– Interior Chest: the original image is masked with the interior chest mask

and white pixels as background;

All available images in the dataset have equal-sized width and height, ranging
from 512× 512 to 1024× 1024. As they are input to CNNs, which expect fixed-
sized images, we avoid performing crops that alter the image’s aspect ratio,
instead replacing the masked regions with black or white pixels. Besides the
masking operation, each image is resized to the CNN’s expected input dimensions
and pixel values are normalized to the range of [−1, 1].
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Fig. 3. Preprocessing steps performed to extract chest masks.

Fig. 4. Original image and examples of generated masked images.

3.2 Deep Neural Network Architectures

In this work, we explore two CNN architectures, a lightweight baseline network
trained from scratch and a ResNet50 [7] pretrained on the object classification
task of ImageNet dataset [5]. Our goal with the former is to evaluate the impact
of each preprocessing technique on a model with lower complexity and opti-
mized solely with the COVIDx-CT dataset. Whereas in our investigations with
ResNet50, we aim to fully leverage from a powerful network, employing Transfer
Learning [11] to benefit from the knowledge learned in a different task to better
generalize in this problem.

The baseline architecture consists of three convolutional blocks, followed by
a block of fully-connected layers. Each convolutional block has two convolu-
tional layers, followed by a max pooling with 2 × 2 kernel and dropout opera-
tion with rate 0.2. The number of convolutional filters starts at 32 for the first
block and is multiplied by 2 in each subsequent block. The fully-connected block
has three fully-connected layers with 256, 128 and 3 neurons, respectively. We
employ Scaled Exponential Linear Unit (SELU) as activation function in all
layers, except the last fully-connected layer which has a softmax activation.

To adapt the pretrained ResNet for our problem, we performed a series of
modifications in its architecture. We remove its last fully-connected layer—which
was specific to classify the 1,000 classes of ImageNet—, exchanging it for a
global average pooling and two fully-connected layers with 256 and 3 neurons,
respectively. Training a parameter-heavy network, such as ResNet, on a dataset
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with the scale of COVIDx-CT often leads to overfitting. Considering this, we
employ dropout operation with rate 0.2 between the last two fully-connected
layers. To further minimize the risk of overfitting, we keep the weights of initial
layers of the network fixed, only updating the final layers during the training
process. In Sect. 4.2, we evaluate the impact of fixing different layers on the
performance of COVID-19 diagnosis.

4 Experimental Evaluation

In this section, we present and discuss the experimental evaluation of the prepro-
cessing strategies and CNN architectures considered in this work. Initially, we
investigate the impact of each strategy on our baseline architecture. For the best
two approaches, we train a ResNet50 varying the number of layers with fixed
weights. Considering the best configuration in the previous experiment, we inves-
tigate how different image resolutions influence the performance on COVID-19
diagnosis. Finally, we compare the results obtained by our model both at image-
and exam-level on the test set of COVIDx-CT dataset, employing explainability
techniques to interpret the decisions of the method.

All networks are trained for 20 epochs with Adam optimizer, with a starting
learning rate of 10−4 and batch size of 32 images of dimensions 128 × 128. To
avoid the negative impact of class unbalance, we use class weights related to the
ratio between samples of each diagnosis. To evaluate our approaches, we consider
the balanced accuracy and the number of false negatives for the COVID-19 class
with respect to the validation set. In this scenario, wrongly classifying a COVID-
positive subject as healthy or with common pneumonia might be fatal for the
patient and hinders the containment of the virus in our society. Thus, in our
analyses, besides achieving high accuracy, we aim to minimize the false negatives
for this diagnosis.

4.1 Data Preprocessing

Each preprocessing strategy generates a version of a CT scan with different
properties. While Rectangular and Rectangular-Centered approaches retain some
details on the exterior border of the patient’s body, the Elliptical and Elliptical-
Centered feed the network with images that fit the shape of the chest more closely
while including less of those exterior artifacts. On the other hand, Exterior Chest
masked images preserve most of the information inside the patient’s chest area,
whereas Interior Chest focuses only on the region containing the lungs.

In this experiment, we evaluate each preprocessing strategy with the baseline
architecture. Each model is trained with images transformed by a single approach
and we compare their performances with a model trained on the original images,
presenting their results in Table 2.

As we expected, image preprocessing greatly impacts performance in this
problem. The most accurate model was the one trained with Interior Chest
strategy. This approach is able to correctly isolate most of the lung region,
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Table 2. Balanced accuracy and COVID-19 false negatives with respect to the vali-
dation set, considering baseline models trained with each preprocessing strategy. Best
result is highlighted in bold and second best is underlined.

Preprocessing ↑ Acc (%) ↓ COVID-19 FN (%)

No preprocessing 94.51 2.39

Rectangular 90.93 3.49

Rectangular-centered 94.28 2.63

Elliptical 85.67 6.64

Elliptical-centered 92.42 2.61

Exterior chest 93.39 2.04

Interior chest 94.53 1.31

allowing the network to focus on the most discriminative area of the CT scan
for diagnosing. Surprisingly, the method that achieved the second top accuracy
was the one trained with the original images. Even though this seems to be a
good result, a model trained with images that retain the artifacts in the exterior
of the patient’s body might be using such elements as shortcuts to identify the
class of an image, instead of learning features within the chest and lung regions.
In Sect. 4.4, we perform interpretability experiments to assess this behavior in
our models. Finally, when we consider the number of patients with COVID-19
that were diagnosed as non-COVID-19, both Exterior and Interior Chest strate-
gies obtained the best results. In this sense, we choose this two preprocessing
techniques to make further investigations with the ResNet50 architecture.

4.2 Transfer Learning with ResNet50

With Exterior and Interior Chest strategies selected, we evaluate the ResNet50
architecture. Training such a complex network with a dataset with thousands of
images can lead to overfitting. In this sense, we freeze some of its initial layers,
fixing their weights learned on the ImageNet pretrain and only updating the
weights of the unfrozen layers. We analyze the set of {0, 12, 24, 32, 40} unfrozen
layers, presenting in Table 3 the results obtained by each network configuration.

In terms of accuracy, the setup with 32 and 40 unfrozen layers and the
Exterior Chest preprocessing strategy presented a slight advantage over the
other models. Considering COVID-19 false negatives, the best configuration—
i.e., 32 unfrozen layers with Exterior Chest preprocessing strategy—achieved
0.87%, with a balanced accuracy of 96.00%. This setup surpassed the best result
obtained by our baseline architecture, which reached 1.31% of COVID-19 false
negatives and 94.53% accuracy. Employing a more complex network, while also
allowing more layers to be updated improves the network’s ability to adapt the
previously learned features for this new problem. These results also indicate
that focusing only on the lung region (Interior Chest) might lose some relevant
information that Exterior Chest models are able to capture.
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Table 3. Balanced accuracy and COVID-19 false negatives with respect to the val-
idation set, considering the ResNet50 architecture trained with different amount of
unfrozen layers for the Exterior Chest and Interior Chest preprocessing strategies.
Best result for each metric is highlighted in bold.

Unfrozen
layers

Exterior chest Interior chest

↑ Acc (%) ↓ COVID-19 FN (%) ↑ Acc (%) ↓ COVID-19 FN (%)

0 93.83 2.58 93.66 2.55

12 94.57 2.57 94.37 2.54

24 95.20 1.85 94.85 2.49

32 96.00 0.87 95.39 2.30

40 96.21 1.72 95.13 2.53

Table 4. Evaluation of ResNet50 models, trained with 128 × 128 and 224 × 224 res-
olution images preprocessed by the Exterior Chest strategy, with 32 unfrozen layers.
Best result is highlighted in bold.

Resolution ↑ Acc (%) ↓ COVID-19 FN (%)

128 × 128 96.00 0.87

224 × 224 97.65 0.78

In all previous experiments, the models were trained with images of 128×128
dimensions. Even though available images have higher resolution, the reduced
size allowed us to explore several setups and hyperparameter choices. Nonethe-
less, higher resolution images might present important details that are sup-
pressed when downscaled. In this sense, we investigated the impact of higher res-
olution on the best configuration of ResNet50 found previously. Table 4 presents
the results of the CT images with 128 × 128 resolution and with 224 × 224, the
default image size for the ResNet50 architecture. The best results were achieved
by the model trained with 224×244 images, which obtained 0.78% of COVID-19
false negatives and a balanced accuracy of 97.65%.

4.3 Image- and Exam-Level Classification of the Test Set

Driven by our results on the validation, we evaluated the method on the test
set. We considered images individually and also an exam-level classification—i.e.
combining the answers for several CT scans of the same patient. We employed the
ResNet50 model with 32 unfrozen layers trained on images of 224 × 224 resolu-
tion that were preprocessed by the Exterior Chest technique. For the exam-level
prediction, we made an ensemble considering a majority voting with the predic-
tions of all the images contained on the exam. Figure 5 presents the confusion
matrix of our method for image- and exam-level scenarios on the test set.

The model achieved a high balanced accuracy on both cases, with 97.84% and
99.50% on image- and exam-level, respectively. Nonetheless, combining different
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(a) Image-level (b) Exam-level

Fig. 5. Confusion matrix for image- and exam-levels on the test set.

views over the patient’s chest proved to be an essential step for this problem.
Besides that, this is more similar to a real application scenario, as each CT
exam generates several images from different slices of the lungs. Finally, we also
investigated the number of false negatives on COVID-19 cases. On the image-
level classification, our model misclassified 0.85% of COVID-19 examples in this
set, while in the exam-level classification, only 0.34% of samples were incorrectly
assigned as non-COVID.

4.4 Interpreting Model Decisions

Interpretability is an essential characteristic in sensitive tasks, such as medi-
cal diagnosis. Being able to understand what made a machine-learning model
determine that an image or patient’s record has a particular disease is crucial
not only to guarantee the correctness of that diagnosis, but also to assess the
trustworthiness of the model. It is not enough to have an accurate network, we
need to assert it is achieving the correct answers for the right reasons.

Considering this, we use Grad-CAM [12] to generate class-activation maps
with the best model of our evaluation. These maps highlight regions of the input
image that had a high impact in the model’s decision. We present in Fig. 6
maps for a few images of each class, considering models trained with the original
images without any preprocessing and Exterior Chest masking strategy.

For the Normal class, both preprocessing approaches show similar activa-
tions, with maps highlighting the central area of the scan. Considering COVID-
19 (NCP) and Pneumonia (CP) diagnoses, images that were not preprocessed
often present vestigial background artifacts on the corners of the scans that are
highlighted in the activation maps. This indicates that the model learned to
identify these artifacts and correlate them to the class label. However, when
we consider Exterior Chest masked images, this behavior does not happen. The
model correctly activates for areas within the patient’s lungs, without false acti-
vations on the remaining regions of the image.
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Fig. 6. Class-activation maps [12] for Normal, NCP and CP images from models with-
out any preprocessing and optimized with Exterior Chest masking strategy.

5 Conclusion

In this work, we evaluated image preprocessing techniques applied to deep
learning-based diagnosis of COVID-19 from CT scans. We trained a lightweight
baseline CNN and a ResNet50 on the COVIDx-CT dataset [6]. Scans capture the
chest area, but also present artifacts on the exterior region of the patient’s body
that are originated from bad posing and sensor quality. Our experiments showed
the importance of removing this noisy information, as it can be erroneously
captured by models and used as a shortcut to infer class label, instead of learn-
ing discriminative features for the task. Besides that, carefully increasing model
complexity and employing high-resolution images considerably improved the per-
formance in this task. Our best model—a fine-tuned ResNet50 optimized with
high-resolution images preprocessed to retain only the chest region of the CT
scan—achieved a balanced accuracy of 97.84% with a single image and 99.50%
when combining the answers of multiple scans of the same patient. As future
work, an ensemble of models could be explored to further improve the results,
investigating additional CNN architectures and assessing whether the prepro-
cessing strategies evaluated are complementary with one another.

References

1. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S.:
Lung pattern classification for interstitial lung diseases using a deep convolutional
neural network. IEEE Trans. Med. Imaging 35(5), 1207–1216 (2016)

2. Ardakani, A.A., Kanafi, A.R., Acharya, U.R., Khadem, N., Mohammadi, A.: Appli-
cation of deep learning technique to manage COVID-19 in routine clinical practice
using CT images: Results of 10 convolutional neural networks. Comput. Biol. Med.
121, 103795 (2020)



80 D. Ferber et al.

3. Borakati, A., Perera, A., Johnson, J., Sood, T.: Diagnostic accuracy of X-ray versus
CT in COVID-19: a propensity-matched database study. Br. Med. J. Open Access
(BMJ Open) 10(11), e042946 (2020)

4. Brinati, D., Campagner, A., Ferrari, D., Locatelli, M., Banfi, G., Cabitza, F.: Detec-
tion of COVID-19 infection from routine blood exams with machine learning: a
feasibility study. J. Med. Syst. 44(8), 1–12 (2020)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

6. Gunraj, H., Wang, L., Wong, A.: COVIDNet-CT: A tailored deep convolutional
neural network design for detection of COVID-19 cases from chest CT images.
Front. Med. 7 (2020)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (2016)

8. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

9. Mei, X., et al.: Artificial intelligence-enabled rapid diagnosis of patients with
COVID-19. Nat. Med. 26(8), 1224–1228 (2020)

10. Oliveira, G., et al.: COVID-19 X-ray image diagnostic with deep neural networks.
In: BSB 2020. LNCS, vol. 12558, pp. 57–68. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-65775-8 6

11. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding trans-
fer learning for medical imaging. In: Advances in Neural Information Processing
Systems (NIPS), pp. 3347–3357 (2019)

12. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

13. Shi, F., et al.: Review of artificial intelligence techniques in imaging data acqui-
sition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 14,
4–15 (2020)

14. Smyrlaki, I., et al.: Massive and rapid COVID-19 testing is feasible by extraction-
free SARS-CoV-2 RT-PCR. Nat. Commun. 11(1), 1–12 (2020)

15. Vandenberg, O., Martiny, D., Rochas, O., van Belkum, A., Kozlakidis, Z.: Con-
siderations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 19(3), 171–183
(2021)

16. Xu, X., et al.: A deep learning system to screen novel coronavirus disease 2019
pneumonia. Engineering 6(10), 1122–1129 (2020)

https://doi.org/10.1007/978-3-030-65775-8_6
https://doi.org/10.1007/978-3-030-65775-8_6


Feature Importance Analysis
of Non-coding DNA/RNA Sequences

Based on Machine Learning Approaches
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1 Background

Over the years, with the accelerated advance of biological studies, non-coding
RNAs (ncRNA) sequences have attracted attention in bioinformatics [12].
According to [34], recent studies have shown that ncRNAs can play essential
roles in biological processes, e.g., transcriptional regulation [24], epigenetics [26],
and human diseases [3]. The identification of ncRNA sequences is fundamental to
better understand their mechanisms and functions, but elucidating the function
of these non-coding regions is a key challenge [31], which has been addressed by
several ML studies.

Remarkable studies of ML have shown relevant results in various fields of
ncRNA, e.g., bacterial sRNAs, which are currently being discovered as impor-
tant elements in various physiological processes, including growth, development,
cell proliferation, differentiation, and metabolic reactions [28,29]; and circRNAs,
which have been identified in many species, including humans, mouse, plants,
and archaea [14,21].

Nevertheless, ML studies applied to biological data require the extraction
of features to identify patterns that allow their classification among other
sequences. ML models need to understand in a relatively concrete way the char-
acteristics of biological sequences, such as their statistics and other relevant
information. Thereby, the feature extraction plays an important step in ML [9].
Moreover, biological data has a higher dimensional nature, generating a large
number of variables, where feature selection and dimensionality reduction tech-
niques must be considered in conjunction with the feature extraction [33].

Techniques such as Deep Learning can do the process of feature extraction
by themselves, but problem-specific knowledge needs to be carefully modeled to
address, e.g., biological sequences and text mining problems [35]. Cases in which
Deep Learning struggles with a reasonable representation, considering known
feature engineering methods can help with the model, as we can see in [22],
which uses k-mer representation. Nevertheless, feature engineering yet can be a
crucial step to better understand the data and its relevant characteristics.

In scientific areas related to bioinformatics, finding the most significant fea-
ture (feature importance) generates relevant contributions to the interpretability
of the model [32], allowing the understanding of the internal decision-making pro-
cess [8]. Studies have focused on this theme, e.g., [8] proposed a model based on
decomposing solutions for Long non-coding RNAs (lncRNAs), in which the least
relevant features are suppressed according to their contribution to a classifica-
tion task. [2] reported an exploratory data analysis to select the most important
features for the ncRNA identification. [13] explored features that could distin-
guish cirRNAs from other lncRNAs. These studies have in common the search for
better features and the use of conventional feature descriptors, e.g., (Open Read-
ing Frame (ORF) and k-mer), following the pattern of several other approaches
related to ncRNAs [9].

Therefore, there is an increasing demand for interpretable computational
methods, involving the understanding of the best features [11]. In this study,
we propose a pipeline using hybrid feature vectors (mathematical (little covered
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in ncRNA [9]) and conventional descriptors - to generate this hybrid vector,
we use the MathFeature package [10]) with feature selection techniques and
dimensionality reduction in two case studies, e.g., (1) prediction of sRNAs in
Bacteria and (2) prediction of circRNA in Humans. Thereby, we assume the
following problematic:

– Problematic: Based on a hybrid feature vector with mathematical and con-
ventional descriptors, which are the most important features for classifying
sRNA (Bacteria) and circRNA (human) sequences?

Our experimental results reported two contributions: (1) High predictive per-
formance in both case studies and (2) the relevance of using the hybrid combi-
nation of mathematical and conventional descriptors.

2 Pipeline for Machine Learning Classification Task

As aforementioned, we investigated different feature descriptors (descriptor refers
to the feature extraction technique that can present several values/measures)
applied in two domain problems, such as: prediction of sRNAs in Bacteria
and prediction of circRNA in Humans. For that reason, we proposed a gen-
eral pipeline considering our benchmarks for predictive task analysis as illus-
trated in Fig. 1. Moreover, we evaluated a vector of hybrid features (mathemat-
ical and conventional) and different ML models behave in distinct organisms,
e.g., prokaryotes and eukaryotes. More details regarding to proposed pipeline
are introduced in the next subsections.

2.1 Prediction of sRNAs

Firstly, we described the pipeline for classification task of sRNAs in bacte-
ria, where we have selected curated sRNA sequences from [5], which also pro-
posed an improved method for classifying sRNA sequences. The data used are
experimentally-validated sRNAs of Salmonella Typhimurium LT2 (SLT2), col-
lected by [4] using RFAM database [18]. Authors in [5] created negative datasets
using EMBOSS’ shuffleseq [25] and it was also used for reproducibility and bet-
ter comparison. In total, we have used 182 sRNA vs. 182 non-sRNA (shuffled)
sequences in our pipeline. In addition, we have applied MathFeature framework,
a feature extraction package, that provides 37 descriptors based on several studies
found in the literature, e.g., multiple numeric mappings, genomic signal process-
ing, entropy, and complex networks [10]. As seen in [9], approaches using graphs
and entropy seem suitable methods to use with ML models. The package also has
conventional descriptors as Dinucleotide Composition (DNC) and Trinucleotide
Composition (TNC) used by [5], who reported a reasonable classification.

For prediction of sRNAs, we used the following feature descriptors: Complex
Networks (Graphs with k = 1, 2, . . . , 6 (13 features each k)), Shannon and Tsallis
Entropy, ORF, Fickett Score, DNC, and TNC. We also assess the degree of
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Fig. 1. Pipeline for prediction task of sRNA and circRNA

influence of each feature, applying feature selection techniques available in the
literature [7]. In that case, it is desirable to reduce the number of input variables
to reduce both the computational cost of modeling and, in some cases, to improve
the performance of the model. We have applied Mutual Information (MI) which
is a powerful method for detecting relationships between data sets [27], in which
variables with the most Information Gain were selected. To assess our model, we
use Accuracy (ACC), precision, F1-score, and Area Under the Curve (AUC).

Hyperparameter Optimization and Dimensionality Reduction: We
induced Support Vector Machines (SVMs) for classification (Scikit-learn [23]
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library), whereas this classifier had the best performance in [5]. For compar-
ison, we also induced the Random Forest (RF) and XGBoost [15] classifiers.
The Optuna library [1] was used to find the most adequate parameters for the
classification models. Optuna uses the TPE (Tree-structured Parzen Estimator),
which is a Bayesian optimization algorithm [1]. Optuna framework can be faster
and more efficient than popular methods such as Grid Search or Random Search
[16]. Thereby, ten thousand trials were performed with Optuna for each case,
fixing the SVM kernel as RBF but varying C (regularization parameter) and
γ (kernel coefficient). Finally, we have also included dimensionality reduction
analysis, which attempts a lower-dimensional representation of the numerical
input data that preserves prominent relationships in the data. The dimension-
ality reduction analysis is known for being used with linear techniques such as
Principal Component Analysis (PCA), but they cannot handle complex non-
linear data properly [30]. Considering this, we have applied recent state-of-art
techniques as Uniform Manifold Approximation and Projection (UMAP) [20] for
representing and visualizing the data. As seen in [6], non-linear dimensionality
reduction techniques are being more recognized and can avoid overcrowding of
the representation, wherein different clusters are represented on an overlapping
area.

2.2 Prediction of CircRNA

In our second study, we used the benchmark dataset provided by [9] for the
prediction of circRNA versus lncRNA with 11,995 sequences (6,995 circRNA
and 5,000 lncRNA). In addition, we also used the MathFeature framework [9],
extracting feature descriptors such as Nucleic acid composition (NAC), DNC,
TNC, Xmer k-Spaced Ymer Composition Frequency (kGap), Pseudo K-tuple
Nucleotide Composition (PseKNC), Fourier transform with complex numbers,
Shannon entropy, Fickett score and ORF. We also evaluated the influence degree
of each feature in this case study, using Gini importance of features as a reference
index to determine the optimal feature subset [19].

Hyperparameter Optimization: After the feature extraction process, we
generated a dataset with 455 features and 11,995 samples. We divided the dataset
into 70% of the samples (8,396) for training (10-fold cross-validation) and 30%
(3,599) for testing. To select the best classifiers and hyperparameters, an Auto-
mated Machine Learning technique (AutoML) was used, where all these steps
are performed automatically using the efficient Bayesian optimization method
[17], assessing 82 combinations of classifiers, with the best performance being the
combination of the ensemble learning technique, Adaboost, combined with Deci-
sion Tree (maximum depth equal to 6, 245 estimators and learning rate equal to
0.2225). To assess our model, we use ACC, precision, F1-score, and AUC.
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3 Results and Discussion

3.1 Case Study 1: sRNAs in Bacteria

In this case study, our experimental results show that mathematical descrip-
tors such as Complex Networks, Shannon, and Tsallis Entropy can contribute
to sRNA classification with conventional descriptors like ORF, Fickett Score,
DNC, and TNC. We realized that TNC descriptor is a suitable descriptor for
the classification as seen in [5], however, achieved a considerable improvement
when combining different descriptors. It’s important to add that the same shuf-
fled sequences, the first negative dataset in [5], was used for all training and
testing, considering how the model performance can be influenced by how these
sequences are shuffled. The ratio for training and testing was 1:1 and the results
shown are the average 10-fold cross-validation for each metric, as our reference
[5]. These results can be seen in Table 1.

Table 1. SVM model performance with optimal parameters.

Feature vector ACC Precision F1-Score AUC

Top features 0.8928 0.9205 0.8890 0.9398

Full 0.8899 0.9272 0.8850 0.9353

Graphs + TNC 0.8875 0.9177 0.8805 0.9450

Entropy + TNC 0.8847 0.9098 0.8786 0.9385

ORF + Fickett + DNC + TNC 0.8845 0.9096 0.8805 0.9337

TNC 0.8736 0.8828 0.8719 0.9277

Graphs + Entropy 0.7803 0.8169 0.7663 0.8515

Essentially, the RF and XGBoost classifiers reported lower average perfor-
mance with 0.8572 and 0.8769, respectively, for average ACC using full feature
vector. For SVM, the highest average ACC score was obtained when combining
all features with feature selection (MI). Furthermore, features based on complex
networks have an important highlight in terms of information gain (see Fig. 2).
Nevertheless, feature vectors based on conventional descriptors have all their
features used (see Table 2). While mathematical descriptors such as complex
networks and Tsallis entropy showed a reasonable proportion of features.

Table 2. Proportion of features used for each feature descriptor.

Feature vector Dimension Proportion used (%)

Complex networks 78 48.7179

Shannon entropy 24 12.5000

Tsallis entropy 24 75.0000

ORF 10 100

Fickett score 2 100

DNC 16 100

TNC 64 100
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Fig. 2. Top 10 features with most information gain using MI.

In addition, posteriorly to feature importance analysis, we apply PCA for
dimensionality reduction, to visualize and represent the data. The dataset was
reduced to 100 principal components, maintaining the same classification per-
formance. However, data visualization with PCA was not found to be a good
representation of the data, since it showed notable variance beyond the first
three components (see Fig. 3 (a)). Thus, for visualization, we adopted UMAP,
which can create a better representation, considering the observed non-linearity
(see Fig. 3 (b)).

Fig. 3. Representation in three dimensions using dimensionality reduction.

Non-linear dimensionality reduction techniques as UMAP are known to pre-
serve more of the global structure than linear techniques as PCA, and arguably
even than other non-linear techniques such as t-distributed Stochastic Neighbor
Embedding (t-SNE) [20]. These techniques are essential to represent non-linear
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complex biological data, although one of its weaknesses is the lack of strong
interpretability of PCA, as the dimensions of the UMAP embedding space have
no specific meaning [20]. Finally, for the classification task, our results suggest
that hybrid feature vectors, both mathematical and conventional descriptors,
can give us a better classification performance, in terms of metrics as ACC, F1-
score, and AUC, when compared to studies in the same benchmark dataset, as
in [5] (e.g., which applied a single descriptor as TNC). That is, using only this
feature descriptor, we reached an ACC of 0.8736, 1.92% less than the vector with
the top features (0.8928).

3.2 Case Study 2: CircRNA in Humans

In our second case study, the selected classifier (Adaboost combined with Deci-
sion Tree) performed well in the classification task with robust results, both
in training and testing, as can be seen in Table 3. According to the results,
our model reported performance with ACC, precision, F1-score, AUC of 0.9530,
0.9416, 0.9425, and 0.9897, respectively. Moreover, we realized that the feature
extraction step contributes positively to the definition of the non-coding RNA
classes, with all metrics close to 0.9500. Our pipeline reached a low rate of false
positives. Based on this, we investigated which features are most important to
classify circRNA and lncRNA. In that case, Fig. 4, provides the best 10 features,
calculated through the Gini importance in a normalized way. We also elaborated
the Table 4 with the importance score by descriptor.

Table 3. Performance on training and testing dataset.

Dataset ACC Precision F1-Score AUC

Training 0.9579 0.9498 0.9495 0.9930

Test 0.9530 0.9416 0.9425 0.9897

As seen in Fig. 4, the Fickett score is the most important descriptor in the
model decision, obtaining a very expressive value compared to the other features
that are representing the top 10. We also note that the two features extracted by
the Ficket score descriptor are present among the most important, reinforcing
that this representation is very determinant for the circRNA problem. Although
the TNC descriptor is the most important in the general group, as shown in
Table 4, it generates a large number of features (64), while Ficket score generates
only two. Therefore, this information can be investigated by biologists to try to
understand the meaning of these combinations of nitrogenous bases, and how
they can be used to differentiate circular and long non-coding RNAs.
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Fig. 4. The best 10 features based on Gini importance (normalized).

Table 4. Feature importance - circRNA versus lncRNA.

Descriptor Importance score

TNC 0.375193

Ficket score 0.157546

Complex networks 0.117040

ORF 0.081057

MonoDiKGap 0.073297

DiMonoKGap 0.072506

DNC 0.054250

Fourier transform with complex numbers 0.020534

PseKNC - type 2 0.018784

MonoMonoKGAP 0.011886

Shannon entropy 0.009029

NAC 0.008878

Finally, the importance of the features extracted by the TNC descriptor rep-
resents about 37.7% of the total score. However, we emphasize that the division
of importance between other descriptors, as the Fickett score and Complex Net-
work, are extremely significant, again indicating the relevance of our proposal
with hybrid vectors.

4 Conclusion

In this paper, we have proposed a general pipeline to deal with different domains,
prediction of sRNA in bacteria and prediction of circRNA in humans. For that
reason, we have proposed different ML approaches with efficient hyperparameters
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optimization, and also feature extraction techniques based on the MathFeature
package. To experimentally assess the best features, we have used two case stud-
ies. In the experiments, we obtained high predictive performance in both case
studies, highlighting the hybrid combination of mathematical (e.g., entropy and
complex networks) and conventional descriptors found in the literature (e.g.,
AAC, TNC, Coding). Finally, we realized that the inclusion of hyperparameters
optimization and AutoML improved the performance of non-coding sequences
predictive models.

Acknowledgments. The authors would like to thank ICMC-USP, UTFPR, Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) and São Paulo
Research Foundation (FAPESP), grant #2021/08561-8, for the financial support given
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Abstract. The Adjacency Graph is a structure used to model genomes
in several rearrangement distance problems. In particular, most stud-
ies use properties of a maximum cycle packing of this graph to develop
bounds and algorithms for rearrangement distance problems, such as
the reversal distance and the Double Cut and Join (DCJ) distance.
When each genome has no repeated genes, there exists only one cycle
packing for the graph. However, when each genome may have repeated
genes, the problem of finding a maximum cycle packing for the adjacency
graph (Adjacency Graph Packing) is NP-hard. In this work, we devel-
oped a greedy random heuristic and a genetic algorithm heuristic for the
Adjacency Graph Packing problem for genomes with repeated genes.
We present experimental results and compare these heuristics with the
SOAR framework. Furthermore, we show how the solutions from our
algorithms can improve the estimation for the reversal distance when
compared to the SOAR framework. Lastly, we applied our genetic algo-
rithm heuristic in real genomic data to validate its practical use.

Keywords: Genome rearrangements · Reversals · Cycle packing

1 Introduction

In the course of evolution, genomes undergo mutations. These mutations can be
punctual (i.e., insertion, deletion or duplication) [8,15] or large-scale rearrange-
ments, such as genome rearrangements, altering a large stretch of a genome.

In Comparative Genomics, a well-accepted way to infer the distance between
two genomes of closely related species is by computing the minimum number of
large-scale mutations needed to transform one genome into the other. Several
genome rearrangements have already been proposed and studied, such as the
reversal [1], where a block of genes from the genome is inverted, and the Double-
Cut-and-Join (DCJ) [2], that cuts the genome at two positions and creates two
new adjacencies by joining the four extremities affected by these cuts.

The first works on genome rearrangements considered genomes sharing the
same set of genes, and with no repeated genes. These restrictions allow to repre-
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sent gene order using a permutation, where each element has a ‘+’ or ‘-’ sign indi-
cating gene orientation. The reversal distance and the DCJ distance on signed
permutations can be solved in polynomial time [2,7].

Later, models considering duplicated or multiple copies of the same gene
started to be studied. In this case, it is common to represent genomes as strings,
where genes are represented by labels, and repeated genes use the same label
across the string. Similar to the genome representation using permutations, when
gene orientation is known it can be represented by signs. Although more realistic,
most of these problems belong to the class of NP-hard problems [3,4,12].

Most results for the rearrangement distance use the adjacency graph (or the
equivalent structured called breakpoint graph) [2,3,7] to model the two com-
pared genomes. This structure is defined in Sect. 2. More precisely, bounds and
algorithms rely on cycle packings of this graph. When there are no repeated
genes, there exists only one cycle packing and it is trivial to find it [7].

Any cycle packing of an adjacency graph induces a one-to-one assignment
between genes of same label. The size of a cycle packing, meaning the number
of cycles in it, is inversely related to the value of upper and lower bounds for the
reversal and DCJ distance. In this way, we are interested in finding maximum size
cycle packings of adjacency graphs. However, when there are repeated genes, the
problem of finding a maximum size cycle packing of an adjacency graph, called
Adjacency Graph Packing problem, is NP-hard [13]. A similar work on cycle
packing was recently presented by Pinheiro et al. [11], but they assumed no
repeated genes, and they did not consider gene orientation.

In this work, we create heuristics to find cycle packings of an adjacency graph
with as many cycles as possible when considering repeated genes and gene orien-
tation. We present two heuristics, one using a randomized greedy strategy, and
one using a Genetic Algorithm [10]. We test our heuristics in real and simulated
genomes and compare them against the SOAR framework [3].

This work is divided as follows. Section 2 presents all the definitions used
throughout the manuscript. Section 3 proposes a randomized greedy heuristic
for the Adjacency Graph Packing problem. Section 4 defines a heuristic based
on the Genetic Algorithm technique. Section 5 presents the experiments with the
proposed heuristics and the SOAR framework. Section 6 concludes the paper.

2 Definitions

A genome G = (g1 g2 . . . gn) is treated as a sequence of n genes labeled in order
as g1, g2, . . . , gn. We represent G by a signed string S, where each character Si

(i.e., the character at position i) corresponds to a gene gi and it has a + or −
sign representing the gene orientation.

The size of S is denoted by |S|. The alphabet of a string S, denoted by ΣS , is
the set of all characters of S ignoring their signs. In this work, we use numbers
as the characters of the strings that represent the genomes.
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A character α ∈ ΣS appears in S one or more times, and each one is called
an occurrence of α in S. The number of occurrences of α in S is denoted by
occ(α, S).

Given a string S, a character α is called a singleton, if occ(α, S) = 1, and it
is called replicated otherwise.

Example 1. A string S and some information of this string. The character 2 is
a singleton, while all other characters are replicated.

S = (+1 + 2 − 1 + 4 − 3 + 1 − 4 + 3)
ΣS = {1, 2, 3, 4}, |S| = 8, S1 = +1, S7 = −4

occ(1, S) = 3, occ(2, S) = 1, occ(3, S) = occ(4, S) = 2

We say that two strings S and P are balanced if ΣS = ΣP and occ(α, S) =
occ(α, P ), for every α ∈ ΣS . Note that balanced strings must have the same size.
In this work, we will assume that all strings are balanced.

We extend a string S by adding the elements S0 = +0 and S|S|+1 = +(|S|+1).
Henceforward, we consider that strings are in their extended form.

Given a string S, we define the partial graph GS = (VS , ES). For every
0 ≤ i ≤ |S|, there exists two vertices in VS of labels +Si and −Si+1 connected
by an undirected edge eSi ∈ ES , which is classified as a black edge. Note that
each character Si in S, except for +0 and +(|S|+1), corresponds to two vertices
+Si and −Si, and we say that such vertices are twins.

Given two balanced strings S and P , the adjacency graph G(S, P ) = (V,E)
includes the disjoint union of the partial graphs GS and GP , and the set of gray
edges Eg. For every pair u ∈ VS and v ∈ VP , there exists a gray edge {u, v} in
Eg if these vertices have the same label. Two gray edges {u, v} and {t, s} are
called twins if u and t are twins, and v and s are also twins. Figure 1 shows an
example of the adjacency graph for two balanced strings.

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

Fig. 1. The adjacency graph of two balanced strings S = (+1 + 4 − 2 − 4 − 3 + 3) and
P = (+1 + 2 − 4 + 4 − 3 − 3). Black edges are represented by continuous lines and gray
edges are represented by dashed lines. Some twin gray edges are represented by dotted
lines.

An alternating cycle of an adjacency graph G(S, P ) is a cycle composed of
alternating edges between blacks and grays. An alternating cycle packing (or
just cycle packing) of the graph G(S, P ) is a set of disjoint alternating cycles,
such that: (i) each vertex belongs to exactly one alternating cycle; (ii) a gray
edge {u, v} belongs to a cycle iff it does not have a twin or its twin edge is also
in some cycle. Figure 2 shows a cycle packing of the adjacency graph from Fig. 1.
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−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

Fig. 2. A cycle packing for the adjacency graph of two balanced strings S = (+1+4−
2 − 4 − 3 + 3) and P = (+1 + 2 − 4 + 4 − 3 − 3). The cycle packing has three different
alternating cycles.

Given an alternating cycle packing of G(S, P ), the gray edges encode a one-to-
one correspondence between genes from S and P . Two genes are correspondent
if the vertices originated from them are connected by gray edges. Note that
condition (ii) of cycle packing ensures that we do not have vertices originated
from a gene of one genome connected with vertices from distinct genes of another
genome.

In the Adjacency Graph Packing problem, given an adjacency graph G(S, P ),
the goal is to find an alternating cycle packing H∗ of G with maximum cardi-
nality.

3 Random Packings

Our first approach to solve the Adjacency Graph Packing problem is the Random
Packings (RP) heuristic. This heuristic randomly generates a set of M cycle
packings and selects the one with maximum cardinality. Besides the strings S and
P , the heuristic receives a parameter r indicating the number of cycles packings
to be generated. The BFS PACK procedure is responsible for the generation of
each random cycle packing and is explained next.

A partial alternating cycle packing (or just partial cycle packing) H of the
graph G(S, P ) is a set of disjoint alternating cycles, such that: (i) each vertex
belongs to at most one alternating cycle; (ii) a gray edge {u, v} belongs to a cycle
iff it does not have a twin, its twin edge is also in some cycle, or it is possible
to include a cycle in H containing its twin edge such that H remains a partial
alternating cycle packing. In other words, a partial alternating cycle packing is
an alternating cycle packing with more flexible restrictions allowing it to not
cover all the vertices.

The BFS PACK procedure initiates with a possibly empty partial cycle packing
H and inserts cycles in it until enough cycles are inserted to cover all vertices, in
this way, H becomes a cycle packing. Additionally, every insertion must ensure
that H remains a partial cycle packing.

Each cycle is selected using a breadth-first search in the adjacency graph.
At each iteration, the search for a new alternating cycle starts in a randomly
chosen vertex v, such that v is not yet covered by any cycle of H. During the
search, the following restrictions must be followed to ensure that the new cycle
does not violate the conditions of a partial cycle packing:
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Algorithm 1: Random Packings
Data: balanced strings S and P , and number of cycle packings r
Result: cycle packing for G(S, P )

1 M ← ∅
2 while |M| < r do
3 H ← ∅
4 while H does not cover all vertices of G(S, P ) do
5 v ← vertex of G(S, P ) not belonging to any cycle of M
6 C ← cycle resulting from a breadth-first search in G(S, P ), starting with

v and following the necessary restrictions
7 H ← H ∪ C

8 M ← M ∪ {H}
9 return Cycle packing belonging to M with maximum cardinality

– the search never uses an edge incident to a vertex belonging to a cycle already
in H (to ensure that the first condition is met);

– If the current vertex has a twin edge of an edge belonging to a cycle in H,
that edge must be chosen (to ensure that the second condition is met).

The search stops when the first cycle is found. At that point the new cycle is
added to H and, if H is not yet a cycle packing, a new search starts. Note that
all vertices not covered by a cycle in H have an available gray and black edge,
therefore, while the search does not find a cycle, it is possible to follow a black
or gray edge to another vertex. Eventually, the search finds an alternating cycle
of G not yet in H.

Algorithm 1 presents a pseudocode of the Random Packings heuristic, where
lines 4 to 7 show the BFS PACK procedure. It is worth noting that the BFS PACK
procedure can be applied to any partial cycle packing (not necessarily empty)
in order to obtain a cycle packing. Figure 3 shows an example of the BFS PACK
procedure.

4 Genetic Algorithm

In this section, we present our algorithm based on the Genetic Algorithm (GA)
approach [10]. This strategy was inspired by the process of evolution, where,
given an initial population, new generations arise from crossover and muta-
tions of individuals from the previous generation. Furthermore, individuals more
adapted to survive have a higher chance of participating in the crossovers. The
idea behind genetic algorithms is to represent each solution as an individual and
the value of that solution as the fitness of that individual. In the Adjacency
Graph Packing problem, each individual is a cycle packing and their fitness is
the size of the cycle packing.

Our genetic algorithm has three parameters: the total number of individuals
to be generated r, the size of the population p, and the mutation rate m. The
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−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

−5−3+3−3+3+4−4−4+4+2−2+1−1+0 −5−3+3−3+3+4−4−4+4+2−2+1−1+0

−5+3−3−3+3−4+4−2+2+4−4+1−1+0 −5+3−3−3+3−4+4−2+2+4−4+1−1+0

Fig. 3. Example of the BFS PACK procedure applied in the adjacency graph of two
balanced strings S = (+1 + 4 − 2 − 4 − 3 + 3) and P = (+1 + 2 − 4 + 4 − 3 − 3).
The cycles obtained on each breadth-first search are marked with an × indicating the
starting vertex of the search. Edges that can not be used in future searches are omitted
from the figure.

algorithm starts with an initial population P0 of individuals generated by the
Random Packings heuristic and, until we reach a total of r individuals, a new
population Pi+1 of individuals is produced using the individuals from the previ-
ous population Pi. The algorithm takes the following steps in order to generate
a new population:

1. Selection: At this step, the algorithm produces a set S with p/2 pairs of indi-
viduals to take part in the crossovers. Each individual of a pair is selected by
tournament, in which two individuals are randomly chosen and the one with
highest fitness is selected. A new pair is added to S, where the two individuals
are selected by two tournaments, until S has p/2 pairs. The random selection
of individuals for the tournament allows repetitions, so an individual may
belong to multiple pairs of S.

2. Crossover: For each pair of S, the algorithm applies twice the crossover oper-
ation to generate two new individuals. Given two cycle packings H and H′ of
an adjacency graph G(S, P ), a crossover of H and H′ is a new cycle packing
created by the following procedure. Let L and L′ be two randomly ordered
lists of the cycles from H and H′, respectively. Starting with an empty set
H′′, while H′′ is not a cycle packing and there are cycles in L or L′, remove a
cycle from L or L′ (with a 50% probability to remove from each list, or 100%
probability to remove from one list if the other is empty), and add it to H′′

if after the addition H′′ remains a partial cycle packing. If both lists L and
L′ are empty and H′′ is not yet a cycle packing, use the BFS PACK procedure
to complete the packing.



Cycle Packing of Adjacency Graphs 99

Algorithm 2: Genetic Algorithm
Data: balanced strings S and P , number of cycle packings r, size of the

population p, and mutation rate m
Result: cycle packing for G(S, P )

1 P0 ← p cycle packings generated by the Random Packings heuristic
2 M ← P0

3 i ← 0
4 while |M| < r do
5 S ← Sequence of p/2 selected pairs of individuals from Pi

6 P′
i+1 ← Set of p new individuals created by crossover of individuals from S

7 P′′
i+1 ← Set of p individuals obtained by mutation of individuals from P′

i+1

8 if the best individual of Pi is better than the worse individual of P ′′
i+1 then

9 Pi+1 ← Set P′′
i+1 with its worse individual replaced with the best

individual of Pi

10 else
11 Pi+1 ← P′′

i+1

12 M ← M ∪ {Pi+1}
13 i ← i + 1

14 return Cycle packing of M with maximum cardinality

3. Mutation: After the new individuals are generated, a mutation is applied to
each individual in order to increase the diversity of the population. In the
mutation of a cycle pack H′′, we remove each cycle of H′′ with probability
m and create a new packing using the BFS PACK procedure starting with the
remaining cycles of H′′.

4. Elitism: As we are going to replace the old population with the new one, we
cannot guarantee the quality of the new population. So, to ensure that at
least the best individual is kept, we replace the individual with the lowest
fitness from the new population with the individual with the highest fitness
from the old population, if the old individual has a higher fitness than the
new one.

Algorithm 2 presents a pseudocode for the Genetic Algorithm metaheuristic.
Figure 4 exemplifies the generation of a new cycle packing after the crossover of
two previous ones followed by a mutation.

5 Experimental Results

We create a dataset of simulated genomes to test the proposed heuristics. We
also implemented and tested the SOAR framework developed by Chen et al. [3].
The SOAR framework comprises two steps: (i) the simplification of the input
strings and (ii) the construction of a cycle packing using a heuristic similar to the
BFS PACK procedure. As a cycle packing for the simplified strings corresponds to
a cycle packing for the original strings, we can compare it with the cycle packings
returned by our heuristics.
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H′′′ =

Fig. 4. The two cycle packings H and H′ are combined by crossover resulting in the
cycle packing H′′, where two cycles are copied from H, two cycles are copied from H′,
and one cycle is inserted by the BFS PACK procedure. Afterwards, the cycle packing H′′

suffers a mutation resulting in the cycle packing H′′′, where two cycles are removed
and new cycles are inserted by the BFS PACK procedure.

Our dataset has 1,000 pairs of strings, divided into 10 sets of 100 pairs. Each
set uses an alphabet Σ of a specific size (|Σ|), such that sizes of alphabets range
from 10 to 100 in intervals of 10. Each pair (S, T ) of signed strings, representing
the source (S) and target (T ) strings, was generated as follows. We first construct
the source string S of size 100 such that, at each position i ∈ [1..100], we choose
(with replacement and using a uniform distribution) a character from Σ. After
that, the target string T is generated by shuffling S. Finally, each element from
S and T randomly receives a sign (‘+’ or ‘-’).

The Random Packing and Genetic Algorithm heuristics were implemented
in C++, and the experiments were conducted on a PC equipped with a 2.3GHz
Intel R© Xeon R© CPU E5-2650 v3, with 40 cores and 32 GB of RAM, running
Ubuntu 18.04.2.

Table 1 shows the average cycle packing size returned and the average execu-
tion time (in seconds) of the Genetic Algorithm heuristic with r = 1000, p = 100,
and m = 0.5 (GA-1k), the Genetic Algorithm heuristic with r = 10000, p = 100,
and m = 0.5 (GA-10k), the Random Packing heuristic with r = 1000 (RP-1k),
and the SOAR framework (SOAR).

We can see in Table 1 that with r = 1000 cycle packings both RP and GA
heuristics were able to find cycle packings larger than the ones encountered by
the SOAR framework. Also, the cycle packings returned by the GA heuristic
were, on average, larger than the ones returned by the RP heuristic. Regarding
the GA heuristic with r = 10000, the average size of the best cycle packing
returned was at least 30% higher than the average size of the cycle packing
returned by the SOAR framework.
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Table 1. Average cycle packing size returned (CPS) and average execution time (in
seconds) of our heuristics and the SOAR framework.

|Σ| RP-1k GA-1k GA-10k SOAR

CPS Time CPS Time CPS Time CPS Time

10 35.80 73.15 35.91 32.09 43.71 245.20 32.74 0.03

20 28.47 55.13 28.99 24.48 35.03 183.16 25.81 0.02

30 24.50 47.05 25.34 21.63 29.32 156.66 20.99 0.02

40 21.84 40.86 22.87 19.49 25.43 137.59 18.18 0.02

50 19.97 38.20 20.91 18.01 22.52 134.03 15.88 0.02

60 18.54 35.93 19.46 17.12 20.70 126.23 1.4.49 0.02

70 17.49 33.10 18.36 16.05 19.08 122.31 13.26 0.02

80 16.64 32.44 17.44 15.37 18.09 121.12 12.57 0.02

90 15.79 31.15 16.30 14.51 16.80 116.35 11.45 0.02

100 15.25 30.29 15.81 14.24 16.17 113.59 11.17 0.02

Concerning the execution times from Table 1, we can see that obtaining better
packings (i.e., the ones generated by our heuristics instead of SOAR framework)
comes at a cost. Besides, the GA heuristic with r = 1000 is less time-consuming
than the RP heuristic using the same value of r and it returns cycle packings
that are on average better than RP. If time is limited, the GA heuristic with
r = 1000 has a good trade-off between running time and the quality of the
solution. If time is not a problem, the GA heuristic with r = 10000 returns cycle
packings that have on average 11% more cycles than the ones returned by GA
using r = 1000.

5.1 Applications with the Reversal Distance

A reversal is a large-scale mutation that inverts a subsequence of genes (and,
consequently, their orientations). Formally, a reversal ρ(i, j), with 1 ≤ i ≤ j ≤ n,
when applied to a given signed string S = (S1 . . . Si−1 Si . . . Sj Sj+1 . . . Sn)
generates a new string S′ = S ·ρ(i, j) = (S1 . . . Si−1 −Sj . . . −Si Sj+1 . . . Sn).

The Sorting by Reversals problem (SbR) seeks the minimum number of rever-
sals required to transform one genome into the other, which is defined as the
reversal distance.

As explained in Sect. 1, the reversal distance can be obtained in polynomial
time if orientations are known and there are no duplicated genes [7]. This is due
to the fact that there is a unique cycle packing in its adjacency graph. In the
case of genomes with repeated genes, we can use any cycle packing obtained as
an upper bound for the reversal distance, since each packing defines a one-to-one
relation between genes of same label.

Table 2 shows the average reversal distance using the best cycle packing
returned by the Genetic Algorithm heuristic with r = 1000 (column GA-1k)
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Table 2. Average reversal distance when using the cycle packing provided by our
heuristics and by the SOAR framework.

|Σ| RP–1k GA–1k GA–10k SOAR

10 65.20 65.09 57.29 68.13

20 72.53 72.01 65.97 75.12

30 76.50 75.66 71.68 79.94

40 79.16 78.13 75.57 82.79

50 81.03 80.09 78.48 85.10

60 82.46 81.54 80.30 86.47

70 83.51 82.64 81.92 87.70

80 84.36 83.56 82.91 88.41

90 85.21 84.70 84.20 89.53

100 85.75 85.19 84.83 89.82

and with r = 10000 (column GA-10k), using the best cycle packing returned by
the Random Packing heuristic with r = 1000 (column RP-1k), and using the
cycle packing obtained from the SOAR framework (column SOAR). We can see
the distances obtained with the SOAR algorithm are on average greater than
those obtained by the proposed heuristics, regardless of the size of the alpha-
bet. For instance, the reversal distances using the cycle packing from the RP
heuristic were on average 4.4% lower than using the cycle packing provided by
SOAR framework, and the reversal distance using the cycle packing from the
GA heuristic with r = 1000 and r = 10000 were on average 5.3% and 8.7% lower
than the SOAR ones. Besides, the reversal distances using cycle packings from
the GA heuristic with both values of r were also consistently lower, on average,
than the reversal distances using cycle packings from the RP heuristic.

5.2 Experiments with Real Biological Data

To validate our algorithm with real biological data, we applied our Genetic Algo-
rithm heuristic for genomes from the Cyanorak 2.1 [6] system. Cyanorak 2.1
has a total of 97 genomes, being 51 Synechococcus, 43 Prochlorococcus, and 3
Cyanobium. The genomes sizes (number of genes) range from 1834 to 4391. Con-
sidering the ratio between the number of replicated genes and the total number of
genes in each genome, we have 0.35%, 1.93%, and 10.13% of minimum, average,
and maximum ratios, respectively. Considering the gene with the highest occur-
rence in each genome, we have the values of 2, 7.8, and 92 for minimum, average,
and maximum, respectively. From these values, we see that the number of repli-
cated genes compared to the size of the genomes is relatively small.

As our Genetic Algorithm heuristic can only be applied in balanced strings,
we performed a pre-processing step on each genome pair removing all non-
common genes and extra gene copies from each genome. For each gene present in
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Fig. 5. Phylogenetic tree resulting from the reversal distances obtained with the
Genetic Algorithm heuristic.

both genomes, we kept the first s copies from each genome, where s is the mini-
mum occurrence of the gene in the genome pair, and we removed the remaining
copies. Next, we applied the Genetic Algorithm heuristic (with r = 100, p = 10,
and m = 0.5) to estimate the reversal distances for each pair of genomes.

The tests took, on average, 19 s for each pair of genomes. Using the resulting
distances, we constructed a phylogenetic tree with the Circular Order Recon-
struction method [9], which is shown in Fig. 51. We can note that the genomes
of organisms are, in general, grouped according to their clade. Our phylogenetic
tree is considerably similar to the one presented by Laurence et al. [6], as pointed
by the P-value obtained using the approach proposed by de Vienne, Giraud, and
Martin [5] based on the maximum agreement subtrees (MAST). This P-value
corresponds to the probability of the trees being unrelated. We obtained a MAST
with 42 leaves and P-value = 3.47 × 10−19.

6 Conclusion

In this work, we investigated the Adjacency Graph Packing problem, which is a
NP-hard problem when genomes have repeated genes. The goal of this problem
is to find a cycle packing that has as many cycles as possible. We developed
two heuristics, one that uses a random approach and one based on the Genetic
Algorithm approach.

We implemented these heuristics and tested them in simulated and real
datasets. We also compared both heuristics with the SOAR framework. Although
more time-consuming, our heuristics were able to find cycle packings with more
1 Illustration created using treeio R package [14].
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cycles (on average) than the ones of SOAR. Furthermore, using these packings
to estimate the reversal distance allowed our heuristics to encounter shorter
distances than the ones provided by the SOAR framework.

As future works, the approach can be adapted to estimate rearrangement
distances considering other events (e.g. transposition, insertion, and deletion).
It is also possible to develop other heuristics for the Adjacency Graph Packing
problem based on common metaheuristics such as GRASP, Tabu Seach, and
Simulated Annealing.
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Abstract. DNA metabarcoding is an emerging monitoring method capable of
assessing biodiversity from environmental samples (eDNA). Advances in compu-
tational tools have been required due to the increase of Next-Generation Sequenc-
ing data. Tools for DNA metabarcoding analysis, such as MOTHUR, QIIME,
Obitools, PEMA, and mBRAVE have been widely used in ecological studies,
however, some difficulties are encountered when there is a need to use cus-
tom databases. Here we present PIMBA, a PIpeline for MetaBarcoding Anal-
ysis, which allows the use of customized databases, as well as other reference
databases used by the software mentioned here. PIMBA is an open-source and
user-friendly pipeline that consolidates all analyses in just three command lines.
PIMBA’s implementation is available at https://github.com/reinator/pimba.

Keywords: DNA metabarcoding · Flexible pipeline · OTU · ASV

1 Introduction

DNAmetabarcoding is a powerful tool that has been widely used for biodiversity moni-
toring and ecosystem assessment from environmental DNA samples (eDNA). The tech-
nique based on high-throughput sequencing (HTS) allows the multispecies detection
from specific molecular markers in a group (plants, animals, fungi, and bacteria) [1].
Next-Generation Sequencing (NGS) results in millions of DNA sequences (reads) that
allow deciphering the genetic code of species, answering taxonomic and functional ques-
tions. Nowadays, different sequencing platforms are available and can generate either
paired-end or single-end reads. The technologies associated with paired-end reads allow
to sequence a pool of different samples and automatically demultiplex them by using
different indexes. Such a pool of samples can also be achieved with single-end tech-
nologies, but they still did not automatize the demultiplexing steps. If single-end reads
are being sequenced for a metabarcoding analysis, the pool of samples might be done
by using either single or dual-indexes multiplexing, this latter allowing to pool a larger
number of samples in the same sequencing run, reducing costs and time.

The recent increase of NGS data has caused the development of new tools for DNA
metabarcoding analysis, making the metabarcoding method more accessible and user-
friendly [2]. Mothur [3], Qiime [4], Obitools [5], mBRAVE [6], and PEMA [7] are
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currently the most used tools for metabarcoding analysis. Most pipelines use operational
taxonomic units (OTUs) as the clustering method, except Pema which works for both
OTU clustering (1) and Amplicon Sequence Variants (ASVs) inference (2). In the first
approach (1) the reads are grouped into OTUs to differentiate species or taxa based on
the similarity of sequences [8, 9]. A similarity of 97% is commonly used as a cutoff,
but this value depends on the group to be evaluated [10]. The second approach (2) infers
ASVs, which are reads that differ in 1 nucleotide (or more than) [11].

The biggest restriction of these pipelines is to make it difficult of using a customized
database for taxonomy assignments. Among the available tools, Mothur is useful when
analyzing 16S/18S rRNA, Influenza viral, and fungal ITS regions, using Greengenes
[12], Influenza Virus, and SILVA [13] databases, respectively. Qiime (and even its
updated version, Qiime2) is optimized to analyze metabarcoding data from 16S rRNA,
18S rRNA, and fungal ITS marker genes, using Greengenes, SILVA, and UNITE [14]
databases, respectively. Qiime2 allows the user to train a classifier with a NaiveBayes
model, but they report tests by using only a 16S example andwith some constraints to the
use of this classifier with other marker genes. Obitools is optimized to analyze data from
16S (SILVA and PR2) and it also allows the use of the NCBI database for taxonomic
assignment. mBRAVE is optimized to use only the BOLD [15] database as a reference,
allowing the researcher to use a personalized database only after BOLD submission.
PEMA allows the analysis of metabarcoding data from 16S/18S rRNA, fungal ITS, and
metazoan COI, using SILVA, UNITE, and MIDORI [16] databases, respectively.

To allow the researcher to use a customized database in the metabarcoding analyses
as well as reference database such as NCBI/Genbank, we developed PIMBA, a PIpeline
for MetaBarcoding Analysis, which adapts the Qiime/BMP [17] pipeline for OTUs
clustering with additional and optional OTU corrections based on the algorithm LULU
[18]. PIMBA accepts both single and paired-end reads, with both single and dual-index.
PIMBA also allows inferring ASVs using Swarm [19]. A preliminary abundance and
diversity analysis are also automatically delivered. The main innovation of this pipeline
is, in just three command lines, the ease of using both standard and customized databases,
minimizing errors in taxonomic assignments.

2 Implementation

PIMBA is fully containerized in docker images, being more platform-independent and
easy to maintain and update. Besides implementing all the features provided by the
other metabarcoding tools, PIMBA also allows the user to apply different databases and
not only those commonly used by most of the available software. PIMBA can be used
with single or paired-end reads and is divided into three steps: (1) preprocessing, which
promotes the demultiplexing and quality treatment of reads (Fig. 1A); (2) taxonomy
assignment, in which reads are clustered into OTUs or ASVs are inferred, along with
errors correction (Fig. 1B), and (3) plotting, in which alfa and beta diversity plots are
built by Phyloseq [20], including rarefaction curves and Principal Coordinates Analysis
(PCoA), respectively. Ametadata file is required for this last step (all PIMBA commands
are available at https://github.com/reinator/pimba).

https://github.com/reinator/pimba
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Fig. 1. PIMBA workflow. (A) preprocessing, (B) OTU clustering or ASV inference, and (C)
plotting.

2.1 Preprocessing

PIMBA (pimba_prepare) can process either single-end or paired-end reads. Depend-
ing on the sequencing strategy, a few steps for demultiplexing or merging reads are
needed. For paired-end reads, first AdapterRemoval v2.2.3 [21] will trim the adapters
used in the sequencing (-mm 5, allowing 10% difference in the adapters sequence) with
additional quality treatment, by using a 10bp window (--trimwindows), removing all
reads with mean quality below PHRED 20 (--minquality) and with length less than
100bp (--minlength). Then, all read pairs will be merged with PEAR [22], using default
parameters.

For single-end reads, a demultiplex step is performed. PIMBAallows the demultiplex
of both single and dual-index libraries. In both cases, PIMBA will use Fastx-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/) to detect the 5’ or 3’ index (in the case of
single-index) or the 5’ and 3’ indexes (in the case of dual-index), generating at the

http://hannonlab.cshl.edu/fastx_toolkit/
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end all the demultiplexed reads. Then, AdapterRemoval is used to perform the quality
treatment with the same parameters as mentioned for paired-end reads.

Both high-quality paired-end and single-end demultiplexed reads are converted to
FASTAwith Prinseq v0.20.4 [23], relabeled and concatenated to a single FASTAfile, that
will be used in the next step, for OTU clustering orASV inference. All the steps above for
preprocessing (Fig. 1A) illumina paired-end datasets with 10 threads, for example, can
be run in the following command-line:./pimba_prepare.sh illumina< rawdata_dir> <

output_reads> < num_threads> < adapters.txt> <min_length> <min_phred>
(e.g.: pimba_prepare.sh illumina rawdata_dir/ AllSamples_16S_hqdata 10 adapters.txt
100 20).

2.2 Taxonomy Assignment

With the multiplexed FASTA file resulting from the preprocessing step, PIMBA
(pimba_run) will use VSEARCH v2.15.2 [24] to dereplicate, discard singletons and
trim the reads to a given length (−l 0, if no trim is desired). Then, depending on the
approach, PIMBA will cluster the reads into OTUs (-w out) at a given similarity thresh-
old (-s) using VSEARCH or infer the ASVs with Swarm (-w asv), accepting difference
in only one nucleotide. For both OTUs/ASVs, PIMBA will use VSEARCH to remove
chimeras (--uchime_denovo), Fastx_toolkit to format the FASTA file, and a Perl script
from BMP to rename the OTUs/ASVs. VSEARCH will also be used to map back the
reads to the OTUs/ASVs and then a script from QIIME will be used to generate an
OTU/ASV table. PIMBA will optionally use LULU to curate all the found OTUs/ASVs
(-x).

Depending on the marker gene the user is analyzing (-g), PIMBA will use different
databases to taxonomically assign the OTUs/ASVs. To work properly, the user will need
to pass a database file as a parameter (-d), where the location from the desired database
will be set. Currently, PIMBA allows the analysis of 16S rRNA (SILVA, Greengenes,
RDP [25] or Genbank [26]), fungal ITS (UNITE or Genbank), and for any other desired
marker gene (e.g., metazoan COI, plant ITS) with BLAST [27] assignment to the Gen-
bank database. Also, PIMBA allows the user to generate a customized database for
assignments. (see https://github.com/reinator/pimba). When the user desires to use the
SILVA, Greengenes, RDP, or UNITE databases, PIMBA will use scripts adapted from
QIIME/BMP pipeline, and the user will also need to define the similarity for the assign-
ment (-a). In the case of analyzing fungal ITS, PIMBAwill also use ITSx [28] to discard
the ribosomal regions flanking the ITS regions. When the user desires to use the NCBI
Genbank database, a set of PIMBA scripts will be used, and besides the assignment
similarity, the user will need to define the minimum alignment coverage (-c), the max-
imum e-value allowed (-e), and the number of hits per sequence that BLAST needs to
return (-h). When -h is 1, only the best hit is returned. If -h is greater than 1, PIMBA
will perform a voting system to properly assign the taxonomy. In case of a tie, the taxon
with greater similarity will be chosen.

Finally, PIMBA will use Biom v2.1.10 [29] to convert the OTU/ASV table to biom
format and add the taxonomy assignments, generating a summarized biom table file,
needed in the next step.

https://github.com/reinator/pimba
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All the steps above for running taxonomy assignment (Fig. 1B) can be run in the
following command-line:./pimba_run.sh -i < input_reads > -o < output_dir > -w <

approach > -s < otu_similarity > -a < assign_similarity > -c < coverage > -l <
otu_length > -h < hits_per_subject > -g < marker_gene > -t < num_threads > -e <
E-value > -d < databases.txt > -x < lulu > (e.g.: pimba_run.sh -i 16S_hqdata.fasta
-o run_OTU_NCBI -w otu -s 0.97 -a 0.9 -c 0.9 -l 200 -h 5 -g 16S-NCBI -t 10 -d
databases.txt).

2.3 Plotting

In the end, PIMBA(pimba_plot)will use Phyloseq to plot alpha and beta diversity results,
such as rarefaction curves and PCoA plots. The user only needs to give as parameters
the OTU/ASV table (-t), the taxonomy assignment file (-a), and a metadata file (-m).
Depending on the metadata file, the user will also be able to group the results according
to a given attribute from the samples (-g). To perform the plotting (Fig. 1C), the follow-
ing command-line can be used: pimba_plot.sh -t < otu_table > -a < tax_assignment
> -m < metadata > -g < group_by > (e.g.: pimba_plot.sh -t 16S_otu_table.txt -a
16S_otus_tax_assignments.txt -m mapping_file.csv -g Description).

3 Results and Discussion

To demonstrate that PIMBA is effective at analyzing a metabarcoding dataset, we used
the same benchmark used by PEMA [7]: three mock communities sequencing. PIMBA’s
results are also being compared to the results presented in the PEMA publication.

From the mock community sequencing, the first dataset is from the 16S rRNA gene,
comprising 20 bacterial species [30]. The second is a dataset from fungal ITS, comprising
19 fungal species [31]. The third is a dataset frommetazoan COI amplicons, comprising
14 species [32]. Information regarding the datasets mentioned above is summarized in
Table 1.

To evaluate the mock communities’ results, we ran an extensive comparative bench-
mark, varying parameters such as truncation length, minimum assignment similarity,
taxon database, and strategy (with OTU clustering or ASV inference). For each test,
we calculated the True-Positives (TP), False-Positives (FP), and False-Negatives (FN)
obtained by PIMBA, at both Genus and Species levels. Then, we were able to calculate
precision (to check how many correct results PIMBA returned), recall (to check how
much of the known taxa in the mock communities PIMBA can recover), and F1 score
(which combines the precision and recall values) [33]. All TP, FP, FN, and F1 values
obtained in the tests we performed are available at https://github.com/reinator/pimba.

For all tests, we fixed the cluster similarity for OTUs (-s 0.97) and maximum differ-
ence for ASV (-d 1). Besides, only taxa existing in all replicates were considered as a
hit, except for the COI dataset, where we accepted as a hit, taxon occurring in at least
two replicates, given its low depth. We also decided not to run LULU curation, as we
saw that in all tests, the F1 scores were lower than when LULUwas not used. In the next
sections, the results from the mock datasets will be described and discussed.

https://github.com/reinator/pimba
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Table 1. Mock community datasets and accessions. Total reads, bases, and sequencing read length
are also shown.

Marker gene SRA Total reads Total bases (Mb) Read length (bp)

16S SRR3163904
SRR3163905
SRR3163906

895,113 471.3 2 × 300

Fungal ITS SRR5838515
SRR5838516
SRR5838522

162,841 81.5 2 × 250

Metazoan COI ERR2181459
ERR2181468
ERR2181466

228,019 113.8 2 × 300

3.1 16S rRNA Mock Community

The 16S rRNA mock community was sequenced with Illumina MiSeq using the v3
reagent kit (2x300 cycles), targeting theV4 region (~252 bp) [30].After quality treatment
and pair merging, a total of 810,981 amplicon reads were used as input to pimba_run.
We varied the strategy (OTU or ASV), the minimum assignment similarity (0.90, 0.97,
and 0.99), the truncation length (200 bp, 250 bp), and the taxon database (SILVA or
Genbank/NCBI). The F1 scores obtained at the Genus level are shown in Table 2. The
best F1 scores are highlighted in all the tables that follow.

Table 2. F1 scores for each one of PIMBA’s 16S rRNA results at Genus level, when varying
assignment similarity, truncation length, strategy, and taxon database.

Min assign similarity 0.90 0.97 0.99

Truncation length 200 bp 250 bp 200 bp 250 bp 200 bp 250 bp

OTU - SILVA 0.89 0.89 0.89 0.91 0.88 0.90

ASV - SILVA 0.95 0.95 0.95 0.93 0.98 0.95

OTU – Genbank 0.90 0.93 0.90 0.93 0.90 0.93

ASV - Genbank 0.93 0.95 0.88 0.95 0.90 0.95

PIMBA performed better (F1 score= 0.98) when running ASV inference, truncating
the sequences at 200bp and assigning similarity only above 99% against the SILVA
database. This configuration returned only one false positive (Prevotella) and recovered
all 20 bacterial taxa, being 1.18-fold better than PEMA’s results (F1 = 0.83, see [7])
when analyzing the same dataset. At the Species level, PIMBA performed better when
runningOTU clustering at 250bp and assigning the taxa at any of the selected similarities
(Table 3).
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Table 3. F1 scores for each one of PIMBA’s 16S rRNA results at Species-level, when varying
assignment similarity, truncation length, strategy, and taxon database.

Min assign similarity 0.90 0.97 0.99

Truncation length 200 bp 250 bp 200 bp 250 bp 200 bp 250 bp

OTU - SILVA 0.28 0.39 0.21 0.33 0.22 0.37

ASV - SILVA 0.58 0.58 0.41 0.61 0.60 0.59

OTU – Genbank 0.78 0.80 0.78 0.80 0.78 0.80

ASV - Genbank 0.62 0.68 0.61 0.68 0.60 0.68

PIMBA recovered 17 species of the 20 bacterial taxa in the mock community when
used with OTU strategy, being 5.6-fold better than PEMA, which recovered only 3
species.

3.2 Fungal ITS Mock Community

The fungal mock community targeted the ITS2 region (~327bp, ± 40.1) [34] and
was sequenced with Illumina MiSeq, using v2 reagent kit (2 × 250 cycles) [31]. The
pimba_prepare script outputted a total of 155,691 amplicon reads, which were used by
pimba_run. We compared the results by varying the strategy (OTU or ASV), the mini-
mum assign similarity (0.90, 0.95, and 0.97), the truncation length (100 bp, 130 bp, and
160 bp), and the taxon database (UNITE or Genbank/NCBI). The F1 scores obtained at
the Genus levels are shown in Table 4.

Table 4. F1 scores for each one of PIMBA’s ITS results at Genus level, when varying assignment
similarity, truncation length, strategy, and taxon database.

Min assign
similarity

0.90 0.95 0.97

Truncation
length

100 bp 130 bp 160 bp 100 bp 130 bp 160 bp 100 bp 130 bp 160 bp

OTU -
UNITE

0.85 0.88 0.64 0.88 0.85 0.64 0.85 0.88 0.64

ASV
-UNITE

0.85 0.85 0.59 0.85 0.85 0.64 0.81 0.81 0.69

OTU -
Genbank

0.94 0.94 0.85 0.94 0.94 0.85 0.94 0.94 0.94

ASV -
Genbank

0.94 0.94 0.85 0.94 0.94 0.85 0.94 0.94 0.85

For ITS, PIMBA performed better (F1 = 0.94) when using the Genbank database
for taxonomy assignment, being 1.09-fold better than PEMA (F1 = 0.86, see [7]).
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Both OTU and ASV strategies used by PIMBA had the same F1 scores in almost all
configurations, except for truncation at 160bp, with 0.97 of assignment similarity, where
the OTU strategy outperformed ASV’s. At the Species level, PIMBA performed better
when running OTU clustering at 100bp and assigning the taxa at any of the selected
similarities (Table 5) using the Genbank database.

Table 5. F1 scores for each one of PIMBA’s ITS results at Species-level, when varying assignment
similarity, truncation length, strategy, and taxon database.

Min assign
similarity

0.90 0.95 0.97

Truncation
length

100 bp 130 bp 160 bp 100 bp 130 bp 160 bp 100 bp 130 bp 160 bp

OTU -
UNITE

038 0.37 0.33 0.44 0.38 0.32 0.43 0.36 0.31

ASV
-UNITE

0.38 0.37 0.26 0.43 0.38 0.33 0.37 0.36 0.31

OTU -
Genbank

0.74 0.72 0.63 0.74 0.72 0.61 0.74 0.72 0.72

ASV -
Genbank

0.67 0.67 0.61 065 0.67 061 0.65 0.67 0.63

PIMBA recovered 14 species of the 19 bacterial taxa in the mock community when
using either OTU or ASV strategy and truncating at 100 bp, being 2.8-fold better than
PEMA,which recovered only 5 species.However, the number of false positives increased
when the ASV strategy was used (10 False Positives), in comparison to OTU (5 False
Positives).

3.3 Metazoan COI Mock Community

This dataset comprises a 3’ region from the Cytochrome oxidase I gene (~450bp),
sequenced with Illumina MiSeq, using v2 reagent kit (2x250 cycles)[32]. After per-
forming preprocessing in the paired-end raw data, pimba_prepare outputted a total of
141,283 amplicon reads.We compared the results by varying the strategy (OTUorASV),
the minimum assign similarity (0.97, 0.98, and 0.99), the truncation length (250 bp, 350
bp, and 450 bp). PIMBA does not use a specific database for metazoan COI, so the
taxon database used was Genbank/NCBI. The F1 scores obtained at the Genus levels
and species levels were the same and are shown in Table 6.

PIMBA’s performance was quite homogenous when varying OTU and ASV, getting
an incredible F1 score of 1 in almost all configurations, being 1.35-fold better than
PEMA (F1 = 0.74, see [7]). PIMBA recovered all 13 invertebrate species from the
mock community.
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Table 6. F1 scores for each one of PIMBA’sCOI results at Genus and Species-level, when varying
assignment similarity, truncation length, strategy, and taxon database.

Min assign
similarity

0.97 0.98 0.99

Truncation
length

250 bp 350 bp 450 bp 250 bp 350 bp 450 bp 250 bp 350 bp 450 bp

OTU 0.96 1 1 0.96 1 1 0.96 1 1

ASV 1 1 0.96 1 1 1 1 0.96 1

4 Conclusion

In contrast to the pipelines mentioned above, PIMBA allows the use of some specific
or commonly used databases, such as Genbank, for taxonomy assignment. This feature
is of paramount importance when there is a need to work with private and non-public
databases.Another advantageofPIMBAis the freedom tousedifferent formsof grouping
sequences (ASVs or OTUs) within the same pipeline (most available pipelines apply a
unique grouping approach). Regarding the results, it was possible to see how accurate
PIMBA is in obtaining taxon for both Genus and Species levels and how flexible it is
in the use of different strategies, parameters, and databases. Using as a comparison the
PEMA pipeline, which applies similar strategies to PIMBA, we show that our results
(both OTUs and ASVs) were superior concerning the expected taxonomy since we used
a mock community as a dataset. Regarding the choice of the best grouping strategy
(OTU or AVS) for our dataset, OTU presented a better resolution at the Species level,
especially when using the Genbank database, while the ASV approach showed better
results for analysis at the level of Genus.
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Abstract. CEvADA is a database of amino acid coevolution networks
aimed to detect specificity determinant and function related sites in pro-
tein families. The database was also designed to provide an easy access to
protein coevolutionary constraints that can be incorporated in machine
learning classification models, just as sequence annotation and structure
prediction methods. The data can be accessed for the whole protein fam-
ily and specific protein sequences. We also provide sequence search and
a REST API for programmatic access in the database. The current ver-
sion of the database contains data related to 6.301 conserved domains
and 45 million protein sequences. CeVADA is free and can be accessed
at http://bioinfo.icb.ufmg.br/cevada.

Keywords: Amino acid coevolution · Database · Multiple sequence
alignments · Proteins

1 Introduction

Amino acid conservation is one of the oldest and most important estimators
of structural and functional importance in computational molecular biology, as
the lack of mutations accumulated over generations could suggest evolutionary
constraints when comparing paralog proteins [6,19,23]. Although homologous
sequences commonly share an overall main function, there is also a degree of
variance in subsets of these proteins, mainly when comparing proteins after a
gene duplication event [5,10]. Therefore, subset-specific conserved residues can
also highlight function and structural importance for that individual group of
sequences. An example can be seen in Bachega et al. (2009), where the authors
could predict and distinguish the sets of residues involved in the iron and man-
ganese superoxide dismutases by using statistical coupling analysis to find the
groups of co-occurring residues in the multiple sequence alignment [2,14].

Although there are many public databases related to protein families, there is
still a lack of information available regarding functional subfamilies since most
c© Springer Nature Switzerland AG 2021
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Fig. 1. Coverage of CeVADA in Pfam families in terms of the number of alignments
and the number of sequences in each alignment.

of these resources are either interested in classify the entire protein family or
single-domain components [17]. Protein function Information in the residue level
is even more scarse. At the moment, less than 10% of the entries in UniProt are
experimentally characterised, and less than 1% contains functional sites classifi-
cation [17].

Residue co-variation networks can be used to find function-related residues
and make data-driven research possible, as they can highlight patterns present
in uncharacterized proteins. This information can be useful in structure-function
reviews of protein families [11,13,15,16], rationalizing mutagenesis experiments
[3,18] and even in the annotation and characterization of novel proteins [7,9,17].

CEvADA is a database of pre-calculated amino acid coevolution networks
for conserved domains deposited in the Pfam [8]. It was designed to solve two
common issues in molecular co-evolutionary analysis: 1) provide instant access to
the data through the CEvADA REST API and the entry pages, as the calculation
of these networks can take a considerable amount of time. 2) provide easy access
to patterns from larger protein families, as these software usually have a limit in
the size of the input alignment or require access to high-performance computing
clusters.
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2 Technical Notes

The data was generated using CONAN’s standalone package [10] and multiple
sequence alignments from Pfam 32.0 (full). Sequences were discarded accord-
ing to the 80% maximum identity threshold, and coevolution was calculated
for residues presenting a positional frequency between 5% and 95%. Two met-
rics were used to calculate the correlations: the overlap score, computed by
the Jaccard similarity coefficient [12]; and the probability of the correlation
have occurred by random chance, using a hypergeometric distribution [20]. Two
thresholds were applied to remove the weak correlation signals: the minimum
negative log of the p-value of 15 and the maximum average Jaccard similarity
coefficient of 0.6. The database stores several cuts of the networks in intervals
of 0.05 average Jaccard coefficient. At the moment, CeVADA covers 35% of
the Pfam families, including all domains containing between 500 and 20.000
sequences after the filtering procedures. Unfortunately, as shown in Fig. 1, most
of the full alignments in Pfam 32.0 contain a relatively small number of non-
redundant sequences. Therefore these domains are still not included in CeVADA,
as this analysis requires a higher sampling to be able to validate the concurrences.
However, it is expected that many of those families will eventually be included,
given the constant increase in sequence availability from new genome projects.

The CeVADA REST API contains two public endpoints allowing third-party
applications to have easy programmatic access to the database. The users can
fetch data from a single protein family by passing a Pfam ID or accession code. In
addition, it is also possible to retrieve data from a specific protein by providing
a Uniprot ID, accession code or sequence. The communication is performed by
GET method, and the results are returned in the JSON format. The protein
family endpoint gives back the multiple sequence alignment and all the detected
residues for the given Pfam domain, numbered according to the positions in the
alignment. The protein sequence endpoint returns the co-variation data for all
the Pfam domains presented in the given protein sequence. In this case, the
positions are numbered according to the given sequence and divided into sets of
matches and mismatches.

The website also includes sequence and families entry pages with many data
visualizations and cross-references to external resources. The entry pages are
powered by internal and external APIs, such as UniprotKb, Gene Ontology
and Wikipedia. The protein sequences page includes the description and gen-
eral information extracted from the UniprotKb and the list of Pfam domains and
their regions in the protein. For each domain, there is a list of correlated residues
sets. In the protein family pages, the user has access to a general description of
the domain extracted from the Wikipedia, GO, and INTERPRO annotations
extracted from Pfam. The page also includes views of the networks, positions in
the sequences and the co-variation matrices.

The web application was built in Python using the Django framework and the
following data visualization packages: visNetwork [1], MSAViewer [22], ProtVista
[21] and d3 [4].
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Fig. 2. CeVADA entry pages: A) the protein sequence entry page corresponding to
TS1R1 HUMAN. The page is showing all its four conserved domains and their con-
served residues (mismatches are displayed in red); B) part of the protein family entry
page corresponded to the 7 transmembrane sweet-taste receptor of 3 GCPR (PF00003),
including the list of sequences, the coevolution network and the covariation matrices.
(Color figure online)
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Abstract. Proteomics is a fundamental research area that focuses
on large-scale protein analysis. Data generated from experimental
approaches in proteomics is becoming increasingly complex to orga-
nize and manage. Laboratory Information Management Systems (LIMS)
allow this data to be managed in a flexible and efficient way. However,
most LIMS have a high cost and are directed at specific needs. This
work introduces FluxPRT, a comprehensive and adaptable proteomics
workflow-based LIMS supported by an interactive web page guide aimed
at assisting novice researchers in a proteomics lab. FluxPRT is available
at http://www.flux2.luar.dcc.ufmg.br and provides an important tool to
assist preotemics research.

Keywords: Workflow-based data · Proteomics laboratory · LIMS and
Information management · Data collecting

1 Introduction

Proteomics experiments can provide invaluable scientific information that may
lead to important scientific discoveries. Modern proteomic methods allow these
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experiments to be performed very efficiently. A proteomics workflow involves sev-
eral steps, such as Orthogonal Protein Separations (Electrophoresis and Chro-
matographies); Mass Spectrometry (MS); and Proteomics Informatics (MS Infor-
matics and Quantification) [7]. Therefore, proteomics experiments can be very
complex and tracking all data related to an experiment can be challenging. Com-
puter systems can be an important aid in this matter. One type of such systems
is Laboratory Information Management Systems (LIMS).

LIMS are complex computer systems used to store and manage laboratory
data. Their main focus is guaranteeing the quality of the processes and ensuring
that results are produced consistently and reliably. They control the entire data
life cycle, from sample preparation to result analysis [5]. Several LIMS are cur-
rently available [8]. However, those are usually too complex and expensive, and
most are specialized in specific areas, making proteomics LIMS a desirable, but
hard to find tool.

LIMS, pipelines and analysis tools for mass spectrometry [9], quantitative
proteomics [10], and metaproteomics [2], are some of the proteomics manage-
ment tools available today. However, these solutions only control a subset of
the processes involved in a proteomics workflow and lack information to assist
inexperienced users in executing proteomics experiments.

In this work, we used the Flux LIMS [4], a workflow-based flexible LIMS
designed to manage laboratory data efficiently and reliably, to address this prob-
lem. Flux has been used as the basis for designing FluxPRT, a proteomics LIMS
that is flexible and powerful for managing proteomics experimental data. Flux-
PRT registers all actions, from sample collection through protein identification.
Additionally, we present an interactive guide that can be accessed as a standalone
web page to help new researchers with proteomics information.

2 Proteomics Lab Operations

Proteomics is the complex process of identifying and quantifying proteins
expressed under different conditions or phases of a cell or organism’s life. It
is performed on a large-scale and might vary considerably depending on the
protein source and the technology available [11].

Proteomic Analysis includes obtaining protein source material, extraction
and purification of proteins by chromatography and/or electrophoresis, analysis
by mass spectrometry (MS) to characterize proteins using their mass to charge
ratios (m/z) and relative abundances and identification of those by matching the
values obtained in MS to spectra in a database.

Three different approaches can be used in proteomics research. Partially
digested proteins and big protein fragments can be analyzed in MS using middle-
down proteomics [6]. It offers the benefit of giving higher proteome coverage,
including identification of splice variants and additional isoforms. The Bottom-
up or shotgun approach relies on isolating peptides for MS analysis. It has the
ability to be able to resolve the majority of full proteomes [3]. However, it lacks
the sensitivity required to detect proteoforms and post-translational modifica-
tions (PTMs). In the top-down strategy, complete proteins are introduced for
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MS analysis, which represents a highly efficient strategy to assess PTMs and
isoforms [1].

3 Methodology

3.1 Proteomics Workflow Construction and the Flux LIMS

Proteomic Analysis in a laboratory has been represented in Flux using a work-
flow. The workflow has been modeled using the draw.io tool (https://www.draw.
io/) after analyzing the demands of a proteomics laboratory. The sequence of
activities that compose the workflow represents these demands. Each activity
represents actions in a proteomics lab and has a set of attributes, which are
defined inside the activities. Each attribute has a type (ex: ‘string’, ‘integer’,
‘picture’, ‘register’, etc.), and activities can have precedence connections.

IdentificationDatabase
SearchSpectrometryChromatographyProtein

Quantification
Protein

Extraction
Experiment

Record 

Digestion

End

Start

Acquisition of
Protein Source

Material

Sample
Fractionation

1

Sample
Desalination

PAGE

2 3 4 5 6 7 8

Isoelectric
Focusing Image Analysis

Fig. 1. The FluxPRT workflow.

The modeled workflow was used to construct an XPDL workflow using a
built-in Workflow Editor in Flux, which was refined in collaboration with experts
from LPBP, a laboratory at UFV (Brazil). The workflow, named FluxPRT
workflow, was uploaded and tested in Flux. Flux is a workflow-based LIMS that
uses Java technology, with MySQL as database server and Apache Tomcat as
web server. Flux web interface is accessible via the major web browsers and
different workflow files can be uploaded, resulting in a more flexible system.

3.2 Proteomics Guide

To assist inexperienced users in using FluxPRT, a help is provided in the sys-
tem as well as in a proteomics guide. The Help button in the system provides
access to information about the Flux functions and features, along with a user
manual. Additionally, FluxPRT-specific documentation was created, through an
interactive guide with descriptions of the activities represented in the FluxPRT
workflow.

The interactive guide is a GitHub hosted web page built using HTML,
JavaScript and CSS. It was created using research and review articles as well as
proteomics protocol books. The web page was developed to provide information

https://www.draw.io/
https://www.draw.io/
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for screen reading technologies, with the goal of making it accessible to blind
people. Furthermore, the entire guide’s content was organized into an ebook
and made available on the website, allowing users to access information offline.
The visual information from the ebook was also examined in a color blindness
simulator.

4 Results and Discussion

4.1 FluxPRT Workflow

FluxPRT proteomics workflow has 14 activities (Fig. 1), which represent pro-
teomic analysis from sample preparation to protein identification including MS
and bioinformatics analysis. Moreover, it allows experiment tracking and proto-
col management.

4.2 Proteomics Guide

The interactive Proteomics Guide includes instructions, suggestions and theoret-
ical references for eight FluxPRT tasks. The guide has an interactive workflow
diagram, which allows users to navigate between tasks simply by clicking on
them. Users can also navigate between steps in each activity using the left side
menu. To facilitate access to the guide, a link has been provided in each workflow
activity in the Flux system (Fig. 2).

Fig. 2. FluxPRT interface and the Proteomics guide access.

4.3 FluxPRT Interface

FluxPRT has an easy-to-use interface where activities that represent proteomic
analysis steps are grouped in an Activity tree. Activities that have already been
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executed are represented by test tube icons in a different color from those for
activities that are available to be executed (Fig. 2). The system guides the users
through the entire process, informing them of which activities are available for
execution. It is also possible to modify, remove, or disable an activity and gen-
erate reports in pdf.

It should be noticed that FluxPRT is built in such a way that users can
register data according to the approach used (Fig. 3), rather than being limited
to a particular method of performing an experiment. Furthermore, depending
on the aim of the experiment, each activity can be performed more than once
and can be tracked in FluxPRT. For example, in the Chromatography step, a
first exploration can be executed and another HPLC-type chromatography step
can be conducted.

Fig. 3. Examples of three potential experiment flows based on top-down, middle-down
and bottom-up proteomics approaches.

With these functionalities, the FluxPRT system intends to be a support tool
for laboratory coordinators and technicians, keeping an accurate record of the
development of various projects inside the laboratory and regulating the level of
access for each member, enabling data traceability.

5 Concluding Remarks

This study presents the FluxPRT, a proteomics workflow based-LIMS that is
complemented by an interactive guide. It offers several functionalities, including
sample management, report generation and the possibility to repeat experiment
steps and adjust the process to different approaches, as illustrated by the inte-
gration of three entirely different proteomics approaches.

This ongoing work seeks to assist proteomics researchers in organizing experi-
ments and maximizing the learning of members with less expertise. In the future,
the workflow will be adapted to the MIAPE standards, the interactive guide will
be completed to cover other workflow activities and FluxPRT suitability must
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be tested more intensively in a proteomics laboratory. The current version of
FluxPRT is only in Portuguese, but the system is currently being translated to
English.

6 Availability

FluxPRT is available at http://www.flux2.luar.dcc.ufmg.br using the user
guest2021 and password gu3st, and the documentation website can be accessed
at https://fluxprt.github.io. Currently the FluxPRT system is in user tests, if
you are interested in applying this system to your laboratory, please contact the
corresponding author.

References

1. Brown, K.A., Melby, J.A., Roberts, D.S., Ge, Y.: Top-down proteomics: challenges,
innovations, and applications in basic and clinical research. Expert Rev. Proteomics
17(10), 719–733 (2020). https://doi.org/10.1080/14789450.2020.1855982

2. Cheng, K., et al.: Metalab: an automated pipeline for metaproteomic data analysis.
Microbiome 5(1), 1–10 (2017). https://doi.org/10.1186/s40168-017-0375-2

3. Dupree, E.J., Jayathirtha, M., Yorkey, H., Mihasan, M., Petre, B.A., Darie, C.C.:
A critical review of bottom-up proteomics: the good, the bad, and the future of
this field. Proteomes 8(3), 14 (2020). https://doi.org/10.3390/proteomes8030014

4. Faria-Campos, A.C., Hanke, L.A., Batista, P.H., Garcia, V., Campos, S.V.: An
innovative electronic health record system for rare and complex diseases. BMC
Bioinform. 16(19), 1–8 (2015). https://doi.org/10.1186/1471-2105-16-S19-S4

5. Hinton, M.: LIMS in the manufacturing environment. Lab. Autom. Inf. Manage.
31(2), 109–113 (1995). https://doi.org/10.1016/1381-141X(95)80027-Z

6. Lermyte, F., Tsybin, Y.O., O’Connor, P.B., Loo, J.A.: Top or middle? up or down?
toward a standard lexicon for protein top-down and allied mass spectrometry
approaches. J. Am. Soc. Mass Spectrometry 30(7), 1149–1157 (2019). https://
doi.org/10.1007/s13361-019-02201-x
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Abstract. Proinflammatory peptide (PIP) is a relevant part of the
inflammatory response, often the first response of our immune system
to strange bodies, i.e., inflammatory-inducing infection, such as COVID-
19. Thus, it is essential to have reliable ways to classify and analyze
new instances of PIPs. Machine learning (ML) models have been widely
employed for the classification of biological sequences, being the basis for
most studies in extensive databases of biological information. Most ML
algorithms have difficulty to directly deal with these sequences. Thereby,
relevant features are extracted from these sequences, making feature
extraction one of the key steps in the application of ML algorithms to
biological data. Different features have been proposed, many of them
based on prior knowledge, such as molecular structures. However, many
biological sequences publicly available do not come with prior knowledge.
To deal with this limitation, we propose to investigate the use of math-
ematical descriptors to extract features from PIP sequences. To assess
how relevant are the features extracted using mathematical descriptors,
we run experiments where we apply three ML algorithms. In these exper-
iments, we obtained a predictive accuracy of 0.7034, which is on par with
current PIP classifiers.

Keywords: Feature extraction · Biological sequences · Mathematical
descriptors · Machine learning

1 Background

The inflammatory response is often the primary defense mechanism that our
bodies use to fight against infections caused by pathogens or other agents [5],
such as the pro-inflammatory feedback loop caused by the pathogenesis of the
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COVID-19 [1]. According to [4], the identification of PIPs is an important topic
in immunoinformatics and computational biology, where further studies on these
mechanisms are needed, as well as tools to identify them, such as ML pipelines.
According to [5], the current methods provide relevant results but with room for
further improvement.

Furthermore, existing methods use only conventional descriptors for fea-
ture extraction, e.g., ProInflam [3] (composition-based features, physicochemical
properties, and motif-based features), PIP-EL [4] (composition-based features,
composition-transition-distribution, amino acid index, and physicochemical prop-
erties), and ProIn-Fuse [5] (eight types of encoding schemes, e.g. kmer-pr, kmer-ac,
and binary). Considering this, we propose a new way to classify proinflammatory
peptides (PIP), using and expanding the MathFeature [2] package, a tool that pro-
vides multiple mathematical feature descriptors (e.g., Fourier, entropy, numerical
mapping, graphs) to numerically represent biological sequences through feature
engineering. This process is a fundamental step for ML models applied to biologi-
cal data. Therefore, we assume the following hypothesis:

– Hypothesis: ML models using only mathematical feature descriptors can be
as robust as existing models for PIP classification.

Finally, our best model, called MathPIP, present an Accuracy (ACC) of
0.7034, which is higher than some existing studies, e.g., ProInflam [3] (ACC:
0.6280) and PIP-EL [4] (ACC: 0.6490).

2 Materials and Methods

This section will cover our methodological procedures into three stages, them
being: Dataset selection, Feature engineering, and Experimental setting.

2.1 Data Selection

We have used a benchmark dataset provided by [5], which was also applied by
the author to compare the following tools: ProInflam [3], PIP-EL [4], and PoIn-
fuse [5]. We also followed the original division of the dataset with a ratio of 8:2,
that is, training with 607 PIPs and 1098 non-PIPs, and testing with 134 PIPs
and 156 non-PIPs. The class imbalance between PIP and non-PIP is 3:5 and
9:10, in the train and test, respectively.

2.2 Feature Engineering

A conventional way of extracting features to classify biological sequences is
using alignment techniques, which means searching databases for similar known
sequences or using conventional descriptors (alignment-free) such as k-mer, amino
acid composition, and physicochemical features. These techniques achieve rele-
vant results, as shown in [3–5]. Nevertheless, none of these studies explore math-
ematical descriptors such as numerical mapping, Fourier, entropy, and graphs.
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Thereby, through MathFeature, we can receive a biological sequence, translating
it to a Discrete Intermediary State (DIS), and applying math/informational tech-
niques to extract features from the DIS, as shown in Fig. 1.

Fig. 1. Feature engineering pipeline.

Finally, for this study, we use the following descriptors: Numerical Mappings
[6] (Accumulated Amino Acid Frequency, Integer, and EIIP), Fourier Series [6,
7] with integer mapping, entropy [6,8] (Shannon and Tsallis), and Complex
Networks [6].

2.3 Experimental Setting

We chose the python programming language and its libraries, e.g., pandas,
xgboost, sklearn, numpy, math, random, and MathFeature. We use the XGBoost
(XGB), Random Forest (RF), and Support Vector Machine (SVM) classifiers.
The metrics applied were Accuracy score (ACC), Matthews Correlation Coeffi-
cient (MCC), and Area Under the ROC Curve (AUC).

3 Results and Discussion

Each model presented in this section consists of a combination of ML classifiers,
DIS, and feature extraction descriptors. All models are trained and validated in
two ways: (1) the k-fold method (k = 10) and (2) the classical train-test method.
The k-fold method consists of splitting the dataset into k parts with an equal
number of instances. Then k-1 parts are used to train, and the last one is used to
validate. The process of training and validating is repeated k times generating
k models. Based on this, we calculate the mean of the scores and assign them
as being the ACC, MCC, and AUC of a given model, as shown in Table 1. This
validation method is relevant because we are randomly simulating a draw from
an unknown distribution of data, and validating it with another random draw,
which could help us get closer to the real world.

Thereby, our results show that the best mathematical descriptors are Accu-
mulated AA Frequency with XGB (ACC: 0.7589, MCC: 0.4504, and AUC:
0.6946), following by Shannon Entropy-RF (ACC: 0.7536, MCC: 0.4363, and
AUC: 0.6879) and Complex Networks-XGB (ACC: 0.7519, MCC: 0.4327, and
AUC: 0.6876). The cross-validation (10 fold) results were robust in almost all
models, sometimes by a considerable margin, in the scores. As mentioned above,
the results of Table 1 are the means of various combinations of the dataset divided
into different training and validation partitions, and some of these combinations
had class imbalances that, paired with model bias, likely generated the scores
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Table 1. Performance on training dataset using tenfold cross-validation

Classifier Descriptor ACC MCC AUC

RF Accumulated AA Frequency 0.7589 0.4499 0.6960

Integer Mappings 0.7419 0.4084 0.6803

EIIP Mapping 0.7291 0.3750 0.6593

Fourier + Integer Mapping 0.6862 0.2605 0.6069

Tsallis Entropy 0.7513 0.4329 0.6857

Shannon Entropy 0.7536 0.4363 0.6879

Complex Networks 0.7490 0.4247 0.6811

XGB Accumulated AA Frequency 0.7589 0.4504 0.6946

Integer Mappings 0.7414 0.4063 0.6772

EIIP Mapping 0.7132 0.3312 0.6359

Fourier + Integer Mapping 0.6862 0.2605 0.6069

Tsallis Entropy 0.7472 0.4206 0.6814

Shannon Entropy 0.7495 0.4246 0.6835

Complex Networks 0.7519 0.4327 0.6876

SVM Accumulated AA Frequency 0.7249 0.3626 0.6463

Integer Mappings 0.7079 0.3153 0.6267

EIIP Mapping 0.6880 0.2520 0.5923

Fourier + Integer Mapping 0.6956 0.2791 0.6082

Tsallis Entropy 0.6991 0.2898 0.6160

Shannon Entropy 0.6968 0.2833 0.6135

Complex Networks 0.7255 0.3637 0.6555

with the highest margin. This does not constitute a problem, since a drop in the
metrics of a given model is expected when applied to real problems, as exempli-
fied in the next experiment. That is, we also test all models using the train-test
data splitting method, the most common way to train ML classifiers, that for
this specific dataset was used by other studies in the literature. We used the same
proportions on train and test dataset (8:2), based on [5], as shown in Table 2.

Again, in testing dataset (simulating samples not seen), the best results
were of Accumulated AA Frequency with XGB (ACC: 0.7034, MCC: 0.4085,
and AUC: 0.6434), following by Complex Networks-XGB (ACC: 0.6931, MCC:
0.3838, and AUC: 0.6977) and Accumulated AA Frequency-RF (ACC: 0.6931,
MCC: 0.3847, and AUC: 0.6495). So, the best model of this paper (Accumulated
AA Frequency with XGB), here called MathPIP, was compared with existing
studies, using the same testing dataset (see Table 3).

MathPIP (XGB + Accumulated AA Frequency) was more accurate than
ProInflam and PIP-EL by a robust margin, if you take in count the MCC, e.g.,
0.1445 (14.45%) and 0.1095 (10.95%), respectively. Our results were worse when
compared to ProIn-fuse, with a difference of 4.26% in ACC. Nevertheless, ProIn-
fuse uses a fusion of eight feature descriptors that can explain its performance.
This hybrid approach is not tested in our study, which could possibly contribute
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Table 2. Performance on test dataset

Classifier Descriptor ACC MCC AUC

RF Accumulated AA Frequency 0.6931 0.3847 0.6495

Integer Mappings 0.6483 0.2887 0.6496

EIIP Mapping 0.6207 0.2321 0.6244

Fourier + Integer Mapping 0.5759 0.1318 0.5567

Tsallis Entropy 0.6690 0.3335 0.6760

Shannon Entropy 0.6690 0.3317 0.6760

Complex Networks 0.6724 0.3441 0.6613

XGB Accumulated AA Frequency 0.7034 0.4085 0.6434

Integer Mappings 0.6724 0.3412 0.6768

EIIP Mapping 0.6276 0.2519 0.6363

Fourier + Integer Mapping 0.5793 0.1401 0.5510

Tsallis Entropy 0.6759 0.3468 0.6843

Shannon Entropy 0.6724 0.3398 0.6449

Complex Networks 0.6931 0.3838 0.6977

SVM Accumulated AA Frequency 0.6586 0.3268 0.6142

Integer Mappings 0.6172 0.2304 0.6014

EIIP Mapping 0.6000 0.1949 0.6353

Fourier + Integer Mapping 0.5862 0.1568 0.5646

Tsallis Entropy 0.5621 0.1026 0.4945

Shannon Entropy 0.5759 0.1323 0.5174

Complex Networks 0.6345 0.2614 0.6773

Table 3. Comparison with existing studies

Method ACC MCC

ProInflam 0.6280 0.2640

PIP-EL 0.6490 0.2990

ProIn-fuse 0.7460 0.4880

MathPIP 0.7034 0.4085

to the model’s performance, however, our premise was to use well-known ML
models combined with a mathematical extraction method to test our hypothesis.
Moreover, to the best of our knowledge, our proposal is the first to use mathe-
matical descriptors to classify PIPs, indicating possible contributions to hybrid
approaches, as presented by existing studies. Finally, our findings indicate that
our initial study hypothesis, ML models using mathematical feature descriptors
can be as robust as existing models for PIP classification, is true since our tool
(MathPIP) showed superior (ProInflam and PIP-EL) and competitive (ProIn-
fuse) predictive performance.
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4 Conclusion

PIP is a relevant part of the inflammatory response, in which reliable ways to
classify and analyze new instances are needed. Thereby, considering that the
existing methods use only conventional descriptors for feature extraction, we
propose a new way to classify PIPs, expanding the MathFeature package, a
tool that provides multiple mathematical feature descriptors. We assessed our
hypothesis using a benchmark dataset with 1995 sequences (1705 for training and
290 for testing). Furthermore, we evaluate seven mathematical descriptors with
three ML classifiers (RF, XGB, and SVM), using three metrics (ACC, MCC, and
AUC). The best model, here call MathPIP, reached ACC, MCC, and AUC of
0.7034, 0.4085, and 0.6434, respectively. MathPIP compared to the other existing
studies, showed superior and competitive predictive performance, reinforcing
that our hypothesis is valid. Finally, these results are important because they
suggest new possibilities for a more generalized feature engineering process to
classify PIP sequences with ML models.
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Abstract. The water in the Metropolitan Region of Rio de Janeiro and in some
municipalities in theBaixada Fluminense comes from the hydrological basin of the
GuanduRiver (GR) and its potability is guaranteed by theWater Treatment Station
of the Companhia Estadual de Águas e Esgotos. Along its route to the CEDAE
dams, the GR suffers urban influences, being heavily impacted by receiving in
natura effluents. To check the quality of the water in the GR, daily monitoring is
carried out throughout its distribution network, including bacteriology. However,
so far there is no metagenomics work to know what are the other microorgan-
isms that exist in the GR that can cause diseases. This work aims to perform a
metagenomic analysis of the GR to assess its diversity. Samples distributed in
the catchment area of CEDAE and drinking water were collected, submitted to
DNA sequencing using Illumina. Quality control of Qpherd >30 sequences and
joining of paired-end sequences forward and reverse with the Prinseq program.
203,951,644 sequences were obtained. The bacterial diversity index analysis did
not show significant differences among the samples. The most abundant class was
Betaproteobacteria. The cluster analysis showed to be significant for the drink-
ing water sample to be grouped together with the raw water sample. The PCA-
Biplot showed three clusters and which variables differentiate the samples, some
genera having great contributions such as: Staphylococcus, Chthoniobacter and
Riemerella.

Keyword: Metagenomic · Diversity indexes · River

1 Introduction

The water in the Metropolitan Region of Rio de Janeiro and in some municipalities
in the Baixada Fluminense comes from the hydrological basin of the Guandu River,
and its potability is guaranteed by the Water Treatment Station (WTS) of the State
Water and Sewage Company (CEDAE), specificallyWTSGuandu, which supplies eight
municipalities and has a flow capacity to supply a population of nine million people,
being considered the largest WTS in the world [1].
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Along its route to the CEDAE dams, the Guandu River suffers urban influences,
mainly in themunicipalities of Japeri, Engenheiro Pedreira and Seropédica, being greatly
impacted by receiving in natura effluents. Within the municipality of Rio de Janeiro, it
is the main and only river with the capacity to supply water to the population of more
than six million [2], according to the last IBGE census carried out in 2010 [3].

To check the quality of its water, daily monitoring is carried out along its distribution
network and at the treatment outlets of the treatment stations andwater sources. Analysis
of taste and odor, presence of cyanotoxins, geosmin/MIB (2 Methyl-Isoborneol), bacte-
riology (thermotolerant coliforms and Escherichia coli) and physical-chemical analysis
such as: pH, turbidity, conductivity, fluoride and free residual chlorine are performed [4].

However, despite the dailymonitoring, so far there is nometagenomicswork, to know
what are the other microorganisms that exist in the Guandu River. Which is an additional
concerning, since some of these microorganisms possible can cause diseases, are resis-
tant to antibiotics and/or heavy metals. Metagenomic analysis makes this knowledge
possible, in addition to being important in environmental management, as it can provide
necessary information to properly manage this aquatic ecosystem to better understand
the environment and effectively allocate investments and actions [2].

Thus, metagenomics is the best way to identify the diversity of microorganisms
in the environment, especially the more complex ones, as it is a culture-independent
technique [5]. It uses nucleotide sequencing analysis as an approach, a powerful tool to
compare and explore the ecology, metabolism and evolution of community profiles of
environmental microbiomes, the digestive system microbiome of humans and animals
[6, 7]. Therefore, this work aims to perform metagenomic analysis of the Guandu River
to assess its diversity and abundance of disease-causing microorganisms and bacteria.

2 Materials and Methods

The procedures described in this section were adopted in all the collections carried out
in the Guandu River in January, February and March 2020, where eight samples were
collected (Table 1).

Table 1. Identification of codes with dates of collections and location

Samples Collection date Location Latitude Longitude

Capt_1_Fev_20 02/01/2020 Water catchment channel 22°48′24”S 43°37′33”W
Capt_2_Fev_20 02/01/2020 Water catchment channel 22°48′24”S 43°37′33”W
Guandu_Jan_20 01/17/2020 Guandu River 22°47′33.2”S 43°37′36.5”W
Capt_Jan_20 01/17/2020 Water catchment channel 22°48′24”S 43°37′33”W
Capt_1_Mar_20 03/09/2020 Near the water catchment

channel
22°48′24”S 43°37′33”W

Capt_2_Mar_20 03/09/2020 Near the water catchment
channel

22°48′24”S 43°37′33”W

Pot_1_Mar_20 03/09/2020 Residence 22°51′21.0"S 43°37′33”W
Pot_2_Mar_20 03/09/2020 Residence 22°50′21.0"S 43°36′32.0"W
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Genomic DNA was extracted with the NucleoSpin tissue kit (Macherey-Nagel
GmbH & Co. KG) which was used for 150-bp paired-end library preparation with
Nextera XT DNA Sample Preparation Kit and sequencing on the NextSeq platform
(Senai CETIQT Platform) [8]. The size distribution of the libraries was evaluated using
a 2100 Bioanalyzer and a High-Sensitivity DNA kit (Agilent, Santa Clara, CA, USA).
A 7500 Real Time PCR machine (Applied Biosystems, Foster City, CA, USA) and a
KAPA Library Quantification kit (KapaBiosystems, Wilmington, MA, USA) were used
for the quantification of the libraries. The sequences obtained were preprocessed with
PRINSEQ software to remove reads smaller than 35 bp and low-score sequences (Phred
30) [9]. Sequence reads were assembled using A5-Miseq software [10] with default
parameters.

The exploration of the taxonomic and functional diversity of the microbial com-
munity present in the samples was carried out from results obtained with the BlastN
local alignment program [11] of the metagenomic sequences against the non-redundant
nucleotide database (NT-GenBank) of theNCBI, and the non-redundant protein database
(NR-GenBank) from the NCBI, by the Diamond program [12] respectively. The simi-
larity results were analyzed by the MEGAN 6 program (“Metagenome Analyzer”) [13]
to perform the sequence binning.

All statistical analysis were performed using the R programming language version
4.0.1. Diversity analyses were performed using the Shannon and Simpson indexes and
the evenness using the Pielou index [14]. All indexes were calculated using the Vegan
package [15].

In addition to the diversity analysis, Hierarchical Cluster analysis was performed, to
verify how the samples are grouped and PCA (Principal Component Analysis - Biplot)
analysis, which aims to verify if the sample components are similar or not, and which
variables are important to discriminate one sample from each other.

3 Results

A total of 203,951,644 sequences were obtained from the eight samples collected
(Table 2). In this table it is possible to see the number of sequences that were submitted,
and the number of sequences obtained after the Prinseq filtering.

Table 2. Number of sequences obtained from Prinseq and sample names.

ID sample # Raw data (Read PE – 2×150) # Reads Post-Prinseq/Pear

Capt1 Fev_20 27459851 27215351

Capt2 Fev_20 39078131 38768421

Capt2 Mar_20 13662840 13057525

Capt1 Mar_20 45459743 44917613

Pot1 Mar_20 68619306 67476603

Pot2 Mar_20 922502 870349

Guandu Jan_20 6398071 6502029

Capt Jan_20 5222485 5143753
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Concerning the Bacteria Domain 217 Classes were found, among the three most
abundant we found: Betaproteobacteria with an average of 35.51% (of the identified
reads), which was expected because the most abundant species belong to this class that
are members of freshwater bacterioplankton [16, 17], followed by Actinobacteria with
13.25% (of the reads). Four classes presented relative abundance from 3% to 1% of the
reads (Opitutae, unclassified Cloroflexi, Deltaproteobacteria and Flavobacteria) while
the others with <1% (Fig. 1).

Fig. 1. Most abundant classes of bacteria. Relative abundance of the most frequent classes found
in the metagenomic study.

A total of 3097 bacterial genera were found, and from these data the Shannon,
Simpson and Pielou diversity indexes were calculated (Table 3). The samples did not
show significant differences among the indexes, except Pot_2 which refers to drinking
water.

Table 3. Calculated Diversity indexes of sample.

Capt_1_
Fev_20

Capt_2_
Fev_20

Guandu_
Jan_20

Capt_
Jan_20

Capt_1_
Mar_20

Capt_2_
Mar_20

Pot_1_
Mar_20

Pot_2_
Mar_20

Shannon 4.439 4.231 3.662 3.978 4.482 4.331 4.465 3.274

Simpson 0.958 0.946 0.923 0.948 0.959 0.953 0.958 0.825

Pielou 0.561 0.532 0.483 0.529 0.563 0.556 0.559 0.486

Even with the necessity to confirm the species, some disease-causing and pollution-
indicator genera such as Microcystis, Escherichia, Enterococcus and Prevotella were
found (Table 4). Increased some Microcystis species can induce hepatotoxicity [18].
Depending on which Escherichia strain is identified it can cause gastrointestinal ill-
nesses, in addition to being an indicator of fecal contamination [19]. While some species
related toEnterococcus genera can cause urinary tract infection [20], and somePrevotella
species has been linked to several inflammatory diseases such as rheumatoid arthritis,
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periodontitis, and metabolic diseases [21]. Although we do not know exactly the species
of the genera founded above, these results are worrisome and need exanimated carefully.

Table 4. Percentage of bacterial genera that can be pollution or disease indicators

Capt_1_
Fev_20

Capt_2_
Fev_20

Guandu_
Jan_20

Capt_
Jan_20

Capt_1_
Mar_20

Capt_2_
Mar_20

Pot_1_
Mar_20

Pot_2_
Mar_20

Microcystis 23,46% 21,12% 11,64% 11,25% 29,04% 18,17% 30,73% 3,59%

Escherichia 2,09% 1,75% 21,49% 10,68% 4,13% 5,26% 2,46% 33,40%

Enterococcus 0,92% 0,69% 0,77% 0,53% 1,16% 2,50% 1,12% 9,67%

Prevotella 7,09% 6,30% 24,17% 16,91% 8,65% 9,13% 9,70% 9,05%

According to the cluster analysis, the Pot_2 sample was the one that stood out the
most for belonging to an external group (Fig. 2), which was expected for being a potable
water sample,while Pot_1was groupedwith a rawwater sample (Chap_1_Mar_20). Fur-
thermore, it was observed that the sampleswere grouped according to the date collection,
which was also expected due to the similarity with the abiotic factors.

Fig. 2. Cluster analysis. In light blue, the Pot_2 sample stands out.

The PCA-Biplot (Fig. 3) shows three clusters and which variables differentiate the
samples. We selected some genera that stood out in the PCA analysis for having greater
contributions within the samples, such as: Staphylococcus - The genus includes com-
mensals and pathogens of humans and animals. Some genera cause diverse infections
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in humans and have become increasingly antibiotic resistant over the past 70 years [22];
Chthoniobacter - is an important microorganism in the decomposition of organic carbon
in the soil and exhibit significant positive correlations to various ARGs, which indicate
that this genus is themain potential hosts for ARGs [23] andRiemerella - It is a genus that
has pathological species normally found in birds [24]. Most of the selected genera have
a high diversity of species that may or may not be pathogens, so we cannot determine
the level of genera that is present in the samples.

The two first axes of the PCA analysis can explain 88.7% of the total variation in
space. The first axis explained 65.1% of the total variation and the second axis explained
23.6%.

Fig. 3. PCA analysis.

4 Conclusion

We can conclude that the water analysis shows a high biological diversity, also indicating
the presence of pollution and disease-causing genera (biosensors), sustaining that GR
is a polluted river, however more studies are necessary to confirm the classification
of the species. The taxonomic profile was similar between the samples, except for the
Potable 2 point. This study demonstrates the potential of the methodology in monitoring
and surveillance of aquatic environments. As perspective we will finish the recovery of
genomes (MAGS analysis) from the samples to improve the taxonomy resolution and
the results.
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Abstract. Mismatches are any type of base-pairs other than AT and
CG. They are an expected occurrence in PCR primer-target hybridis-
ation and may interfere with the amplification and in some cases even
prevent the detection of viruses and other types of target. Given the nat-
ural occurrence of mutations it is expected that the number of primer-
target mismatches increases which may result in a larger number of false-
negative PCR diagnostics. However, mismatches may equally improve
the primer-target hybridisation since some types of mismatches may
stabilize the helix. Only very recently have thermodynamic parameters
become available that would allow the prediction of mismatch effects at
buffer conditions similar to that of PCR. Here we collected primers from
WHO recommendation and aligned them to the genomes of the current
variants of concern (VOC): Alpha, Beta, Gamma and Delta variants.
We calculated the hybridisation temperatures taking into account up to
three consecutive mismatches with the new parameters. We assumed that
hybridisation temperatures to mismatched alignments within a range of
5 ◦C of the non-mismatched temperature to still result in functional
primers. In addition, we calculated strict and partial coverages for com-
plete and mismatched alignments considering only single, double and
triple consecutive mismatches. We found that if mismatches are taken
into account, the coverage of WHO primers actually increase for VOCs
and for the Delta variant it becomes 100%. This suggest that, at least
for the moment, these primers should continue to be effective for the
detection of VOCs.

Keywords: DNA mismatches · PCR primers · Mesoscopic models

Supported by organization Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
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1 Introduction

The emergence of the pandemic of COVID-19 required the deployment of large-
scale testing to control and monitor the disease. For this purpose, several pro-
tocols of PCR-based methods, mainly RT-PCR, were developed. Although RT-
PCR is the gold standard molecular diagnostic, a few factors can interfere with
its accuracy and performance such as sample quality and low amplification effi-
ciency [9]. PCR efficiency in particular may be affected by destabilizing mis-
matches in primer-target. They may affect the ability of primers hybridise to the
target, which may lead to non-amplification and, consequently, to non-detection.
The influence caused in the hybridisation by mismatches depends on their length,
sequential environment, position and number [4]. Even so, mismatches in primer-
target duplex impact only the first few cycles of the PCR reaction [9]. They also
affect the melting temperature, which is an important parameter to the primer
design and is related to their stability and performance.

Here, we describe the evaluation of 21 primers and probes for RT-PCR rec-
ommended by WHO [1] in early 2020 to be applied to the detection of “original”
SARS-CoV-2, which was evaluated in a previous work [5]. We collected those
from Institut Pasteur, Department of Medical Sciences (Thailand) and National
Institute of Infectious Diseases (Japan). We applied a mesoscopic model to cal-
culate the hybridisation temperatures of alignments using a newly developed
parameters for up to three consecutive mismatches [7]. The primers/probes were
analysed regarding to SARS-CoV-2 variants of concern (VOC) classified so far:
B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) variants.

2 Materials and Methods

Primer/Genome Sets. We collected 21 primers and probes from the summary
of protocols recommended by WHO [1]. Regarding the genomes, we collected
from GISAID [2] 7247 genomes of Alpha, 7497 of Beta and 2308 of Gamma
variants in 7 April 2021, and 7943 genomes of Delta variant in 5 June 2021.

Primer/Genome Alignments. Primers and probes were aligned against each
genome using Smith-Waterman algorithm [8], where AT and CG base pairs were
given score 2, mismatches score −1, and no gaps were considered. Alignments
were carried out regarding two strand configurations. The genome sequence as
obtained from the database

5′−(unmodified target genome sequence)−3′

3′−(primer/probe sequence)−5′

and its complementary counterpart

5′−(complementary target genome sequence)−3′

3′−(primer/probe sequence)−5′
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The alignments without mismatches were termed as strictly matched, those
which contained up to three consecutive mismatches as partially matched and
alignments with four or more consecutive mismatches were considered as not
aligned. The limit of three consecutive mismatches is due to the available melting
temperature parameters.

Calculating Hybridisation Temperatures. Hybridisation temperatures
were calculated using

Tm = a0 + a1τ, (1)

where τ is a statistical index, which is calculated from the classical partition func-
tion of a model Hamiltonian, and a0 and a1 are regression coefficients obtained
from a set of sequences containing up to three contiguous mismatched base
pairs [7]. Moreover, the calculation of τ also generate the average displace-
ment profile which shows the expected base-pair opening along the primer-target
duplex. For a complete description of this calculation see Ref. [7].

Calculating Strict and Partial Coverages. We calculated the melting tem-
peratures for the 21 primers/probes assuming a perfect hybridisation, which we
called the reference temperature Tref., see Table 1. Alignments were carried out
between primer and genomes of VOCs and kept only those with up to three con-
tiguous mismatches. The coverage for strictly matched alignments Cstrict was
calculated as

Cstrict =
NG − Nn.a. − NMM

NG
(2)

where NG is the total number of genomes which are at least 25000 bp in size,
Nn.a. the number of genomes for which no alignment was found, and NMM the
number of genomes for which a partial alignment with up to three contiguous
mismatches was found.

For partially matched alignments, we calculated the melting temperature
TMM taking into account the mismatches, and assumed the difference to the
reference temperature Tref.

ΔTMM = Tref. − TMM (3)

Then, we calculated the partially coverage Cpart. as

Cpart. =
NG − Nn.a. − Nlow(ΔTlim.)

NG
(4)

where Nlow is the number of primers satisfying

ΔTMM ≤ ΔTlim. (5)

Here, we use ΔTlim. = 5 ◦C, that is, we consider that primers with up to three
consecutive mismatches with TMM no more than 5 ◦C below the reference tem-
perature Tref. are acceptable.
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Availability. The software packages used for this work are freely available
and can be found in https://bioinf.fisica.ufmg.br/software/analyse mismatch
primers.tar.gz.

3 Results and Discussion

Mismatches in primer-template duplex may avoid the amplification and turn
the PCR reaction non-functional [4]. However, in some cases, mismatches may
contribute to stabilize the duplex, even the hybridisation may be greater con-
sidering mismatches in comparison to AT-rich primers with no mismatches [6].
Mismatches in the direction of 3′ end are more detrimental to PCR reaction [3],
yet at and near 3′ end they may prevent false priming [6].

In Fig. 1a, a single AG mismatch is shown located at 3′ end, which yields
a small surrouding perturbation (red line). Its temperature TMM = 55.3 ◦C is

AG CG AT TA GC AT GC GC TA GC CG AT GC TA TA CG GC AT GC0
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(a) NIID WH-1 F509 primer

ACGC TA GC CG AT GC TA TA CG GC AT GC CG AT TA CG CG GC AT AT0
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(b) NIID WH-1 F501 primer

GC GC CG AT TA AT CG AT CG TA TG GC CG TA AT TA GC TA CG
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(c) NIID WH-1 Seq R840 primer

GC GC TA GC CG AT GC CA TA CG GC AT GC CG AT TA CG CG GC AT AT
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(d) NIID WH-1 F501 primer
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Fig. 1. Average displacement profiles. The blue line shows the displacement for full
matched aligment and the red one for mismatched alignment. In each figure, the label
shows the primer name, genome accession code and position, separated by the symbol @.
(Color figure online)

https://bioinf.fisica.ufmg.br/software/analyse_mismatch_primers.tar.gz
https://bioinf.fisica.ufmg.br/software/analyse_mismatch_primers.tar.gz
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out of the limit in relation to reference temperature Tref. = 63.6 ◦C. In contrast,
Fig. 1b shows a single AC mismatch at 3′ end, which yields a large end fraying
and may impact in the DNA polymerase action, leading to a non-amplification.
Nevertheless, its temperature TMM = 69.0 ◦C is slightly lower than the reference
temperature Tref. = 70.3 ◦C, which indicates a feasible effective hybridisation. In
Figs. 1c and 1d, we show single mismatches in the middle of the alignment, TG
and CA pairs, respectively. Both single mismatches display a small perturbation
to duplex in comparison to matched reference (blue line). However, TG sequence
hybridises at a temperature of TMM = 45.4 ◦C, considerable lower than its
reference temperature Tref. = 60.2 ◦C, whereas CA sequence hybridises at TMM =
71.0 ◦C, which is slightly over to reference temperature Tref. = 70.3 ◦C. The
latter shows a feasible contribution of a single mismatch, which could stabilise
the primer-target duplex without impact in the amplification.

In Table 1, we show both strict and partial coverages for the four variants of
concern. In a considerable number of cases, the coverage increases considering
mismatches and, in special for Delta variant, it increases to 100%.

Table 1. Results for 21 PCR primers and probes from WHO [1] recommendation.
Shown are the reference temperatures Tref. and the range of strict and partially cover-
ages for Alpha, Beta, Gamma and Delta variants of concern (VOC) genomes, respec-
tively.

Primer/Probe Tref. (◦C) Alpha variant Beta variant Gamma variant Delta variant

Cstrict (%) Cpart. (%) Cstrict (%) Cpart. (%) Cstrict (%) Cpart. (%) Cstrict (%) Cpart. (%)

NIID WH-1 F24381 61.2 99.1 99.1 98.3 98.3 98.9 98.9 99.8 99.8

NIID WH-1 F501 70.3 99.5 99.7 99.3 99.5 99.6 99.7 99.7 100

NIID WH-1 F509 63.3 99.5 99.5 99.0 99.1 99.3 99.3 99.3 99.3

NIID WH-1 R24873 61.5 99.7 99.7 99.3 99.3 99.4 99.4 100 100

NIID WH-1 R854 61.7 99.1 99.1 98.3 98.3 99.6 99.6 99.4 99.4

NIID WH-1 R913 69.2 99.3 99.8 98.1 98.6 99.7 99.9 99.8 100

NIID WH-1 Seq F24383 60.4 99.1 99.1 98.3 98.3 98.9 98.9 99.8 99.8

NIID WH-1 Seq F519 58.8 99.3 99.3 98.4 98.4 99.1 99.1 98.2 98.2

NIID WH-1 Seq R24865 60.1 99.7 99.7 99.3 99.3 99.3 99.3 100 100

NIID WH-1 Seq R840 60.2 98.9 98.9 98.1 98.1 99.6 99.6 99.5 99.5

WH-NICN-F 64.4 99.8 99.8 99.1 99.1 99.0 99.0 98.8 98.8

WH-NICN-P 51.3 99.9 99.9 98.6 98.6 99.2 99.2 99.9 99.9

WH-NICN-R 64.1 99.8 99.9 98.6 98.7 98.9 99.0 99.8 99.8

WuhanCoV-spk1-f 65.4 99.4 99.5 98.4 98.6 98.9 98.9 99.8 99.9

WuhanCoV-spk2-r 64.6 99.9 99.9 99.4 99.4 99.4 99.4 99.7 99.7

nCoV IP2-12669Fw 54.3 99.8 99.8 99.3 99.3 99.2 99.2 100 100

nCoV IP2-12696bProbe 67.0 99.7 99.8 99.4 99.4 99.9 99.9 98.9 100

nCoV IP2-12759Rv 53.7 99.6 99.6 98.6 98.6 99.4 99.4 99.8 99.8

nCoV IP4-14059Fw 54.8 99.9 99.9 99.5 99.5 100 100 100 100

nCoV IP4-14084Probe 61.3 90.1 90.1 99.5 99.5 99.1 99.1 99.7 99.7

nCoV IP4-14146Rv 54.8 99.5 99.5 99.5 99.5 99.8 99.8 98.0 98.0

4 Conclusion

We evaluated DNA mismatches in PCR-type primers/probes recommended by
WHO to the detection of SARS-CoV-2 virus. We carried it out regarding the
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variants of concern classified so far. The impact caused by mismatches are not
straightforward and a full evaluation can be carried out with a detailed cal-
culation and up-to-date model parameters. Nevertheless, we showed that these
primers are able to align to VOCs genomes in a high coverage and it is feasible
a contribution of mismatches to primer-target hybridisation.
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