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Abstract. Co-clustering is a specific type of clustering that addresses
the problem of simultaneously clustering objects and attributes of a data
matrix. Although general clustering techniques find non-overlapping co-
clusters, finding possible overlaps between co-clusters can reveal embed-
ded patterns in the data that the disjoint clusters cannot discover. The
overlapping co-clustering approaches proposed in the literature focus on
finding global overlapped co-clusters and they might overlook interesting
local patterns that are not necessarily identified as global co-clusters.
Discovering such local co-clusters increases the granularity of the analy-
sis, and therefore more specific patterns can be captured. This is the
objective of the present paper, which proposes the new Overlapped
Co-Clustering (OCoClus) method for finding overlapped co-clusters on
binary data, including both global and local patterns. This is a non-
exhaustive method based on the co-occurrence of attributes and objects
in the data. Another novelty of this method is that it is driven by an
objective cost function that can automatically determine the number
of co-clusters. We evaluate the proposed approach on publicly available
datasets, both real and synthetic data, and compare the results with a
number of baselines. Our approach shows better results than the baseline
methods on synthetic data and demonstrates its efficacy in real data.
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1 Introduction

Over the years, the task of clustering complex data has become more challenging
since a high number of attributes can increase computational complexity and
affect cluster consistency [17]. One way to deal with this complexity is to use
the co-clustering approach, which simultaneously clusters objects (rows) and
attributes (columns) in matrix data [5]. The focus of these methods relies on

c© Springer Nature Switzerland AG 2021
A. Britto and K. Valdivia Delgado (Eds.): BRACIS 2021, LNAI 13073, pp. 375–389, 2021.
https://doi.org/10.1007/978-3-030-91702-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91702-9_25&domain=pdf
http://orcid.org/0000-0001-9371-427X
http://orcid.org/0000-0001-7033-125X
http://orcid.org/0000-0001-7189-4724
http://orcid.org/0000-0003-2372-4995
http://orcid.org/0000-0002-1763-2966
http://orcid.org/0000-0002-0159-4643
https://doi.org/10.1007/978-3-030-91702-9_25


376 Y. S. R. N. dos Santos et al.

finding co-clusters, where each co-cluster is formed by a subset of objects and
attributes that can represent a submatrix of a given matrix.

Co-clustering approaches use, in general, a non-overlapping strategy, which
means that an element of a co-cluster can belong to only one co-cluster [1,14].
However, in many real situations, an element can participate simultaneously
in more than one co-cluster. For example, a movie could be both thriller and
science-fiction, a song can be both rock and high-energy, etc. Therefore, an
overlapping strategy is important because it identifies intersections between co-
clusters, revealing patterns that could be lost when using disjoint co-clustering.
Besides, the detection of overlapping co-clusters has proven to be challenging
since it is not trivial to evaluate the clustering quality [8].

We notice that most of the overlapping co-clustering approaches proposed
in the literature have two characteristics: (1) they discover global clusters, and
(2) they tend to fit a specific application. Examples can be found in text min-
ing [2], bioinformatics [13], recommendation systems [15], and social network
analysis [18], to name a few. In contrast, the works of Fu et al. [4], Li [7], Whang
et al. [16], and Zhu et al. [19], not only focus on global clusters on binary datasets,
but they were designed for generic purposes. The limitation of these works is that
they do not detect local co-clusters, i.e., refined groups formed by objects and
attributes that identify an overlap pattern on global co-clusters.

In this paper, we propose a new co-clustering method that combines simplic-
ity of use with the capacity to extract overlapping global and local co-clusters.
This method is named Overlapped Co-Clustering (OcoClus) and it is based on
the co-occurrence of attributes and objects. The main novelty of this method
is that, unlike the traditional overlapped co-clustering, it is able to infer a new
type of patterns called local co-clusters. Furthermore, OCoClus is driven by an
objective cost function that does not require the user-defined parameter of the
number of co-clusters.

In summary, we make the following contributions: (i) propose an incremental
co-clustering approach that is application-independent and an algorithm that
can find both overlapped and non-overlapped global and local co-clusters; (ii)
use a cost function that, finds the number of co-clusters automatically, that
ranks the co-clusters from the most relevant to the less relevant, and that finds
overlapped co-clusters.

The remainder of this work is organized as follows. The basic concepts defi-
nition of our work are presented in Sect. 2. Section 3 presents the works that are
related to our proposal. Section 4 presents the details of our method. Section 5
presents the evaluation of the method with synthetic and real data. Finally, the
conclusion and further research directions of our work are presented in Sect. 6.

2 Basic Concepts

In this section we present the basic concepts to guide the reader throughout this
paper.

Let D be a binary matrix with N rows (objects) and M columns (attributes).
The element dij of D, where i and j are integers that 1 ≤ i ≤ N and 1 ≤ j ≤ M ,
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is equal to 1 if the j-th attribute occurs in the i-th object (true element); other-
wise, it is 0. Co-clustering is the grouping task of finding K (global) co-clusters
in D where each co-cluster is formed by a subset of objects and attributes [11].
The subset of objects I can be represented as a binary vector of length N , where
Ii = 1 indicates that the i-th object is present in I. Similar to that, a subset
of attributes J with Jj = 1 indicates that the j-attribute is present in J with
length M . More formally, a co-cluster can be defined as follows:

Definition 1. Co-cluster: Let D be a binary matrix, I be the subset of objects,
J be the subset of attributes; a co-cluster C is defined as C = 〈I, J〉. The elements
cij of co-cluster C are formed by the outer product of its subsets I and J (C ∈
{0, 1}|I|×|J|). Thus, a co-cluster C can represent a submatrix of D.

Such (global) co-cluster C can be formed with only the true elements in
D or mixed with true elements and noise elements (dij = 0). In this paper,
the terms global co-cluster and co-cluster are interchangeably used. The co-
occurrence between objects and attributes can form a co-cluster C which can be
simplified by searching elements dij = 1 in the matrix D. Furthermore, it can
reduce the search space once the goal is to identify true co-occurrences. Inspired
by [9], we adapted four concepts for co-clustering problem: cost function FP ,
pure co-cluster PC, noise thresholds εI and εJ , and expanded pure co-cluster
EC. The cost function FP can be used to evaluate the process of forming a
co-cluster. More formally, we can define the cost function FP as follows:

Definition 2. Cost Function: Let C∗ be a co-cluster,
∏

be a set of global
co-clusters, D be an input matrix, ρ be a weight of importance for the co-clusters
cost, N be a noise matrix, γC

∗ and γN be user-defined functions for measuring
the costs of co-clusters and noise; a cost function FP is defined as FP (

∏
,D) =

ρ × ∑
C∗ ∈ ∏ γC

∗(C∗) + γN (N ).

The objective is to minimize FP regarding ρ, γC
∗(C∗) and γN (N ). Such

noise matrix N used by [9] takes into account the false positives, false negatives,
and the already covered elements in D. Regarding the set of co-clusters

∏
and

matrix D, the false positives are elements dij = 0 covered by some pattern in∏
, while false negatives are elements dij = 1 not covered by any pattern in

∏
.

The concept of pure co-cluster simplifies the identification of a global co-cluster,
which identifies a disjoint global co-cluster that contains only true elements.
Thus, we can define a Pure Co-cluster PC as follows:

Definition 3. Pure Co-cluster: Let D be a binary matrix, dij be an element
of D; a pure co-cluster PC = 〈PCJ , PCI〉 is formed by a subset of objects PCI

and a subset of attributes PCJ that identifies only the true elements. Thus, PC
can represent a submatrix of D, which contains only the true elements dij = 1.

A pure co-cluster PC can be expanded with noisy objects and attributes. We
use two thresholds to control the amount of noise in a co-cluster: εI for objects
and εJ for attributes. Thus, the noise thresholds εI and εJ can be defined as
follows:
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Definition 4. Noise Thresholds: Let C∗ be a co-cluster, C∗
J and C∗

I be the
subsets of attributes/objects that define C∗; a maximum noise threshold for
objects εI and attributes εJ limit the amount of noise that can be included in
C∗. Thus, each new object must be included in at least (1− εI)×||C∗

J || attributes
of C∗, while each new attribute must be included in at least (1 − εJ ) × ||C∗

I ||
objects of C∗.

The noise threshold value can range from [0, 1], where 0 does not allow any
noise while 1 allows the maximum amount. The number of objects and attributes
of a given subset is measured by the L1-norm || · || (or Hamming norm), which
simply counts the number of bits 1 in the vector. From that, the expanded
pure co-cluster EC represents a expanded version of PC with noise data. More
formally, an Expanded Pure Co-cluster EC can be defined as follows:

Definition 5. Expanded Pure Co-cluster: Let PC be the pure co-cluster,
ECI be a subset of objects, ECJ be a subset of attributes, εI be the noise object
threshold, εJ be the noise attribute threshold; an expanded pure co-cluster is
defined as EC = 〈ECJ , ECI〉, where ECJ and ECI can contain new attributes
and objects not present in PC regarding the noise thresholds εI and εJ .

3 Related Works

Because of the difficulty in finding co-clusters, there is no method widely accepted
as the state-of-the-art; instead, there are algorithms that perform better in cer-
tain types of data than others. Since a complete review is out of the scope of this
paper, we shall briefly discuss some reference algorithms. For a comprehensive
review of co-clustering algorithms, we refer to [12].

Dhillon [3] used the matrix decomposition using the eigenvectors combined
with bipartite graph to find global co-clusters in a real-valued matrix. It needs
to know the number of co-clusters a priori and the order of the discovered
co-clusters is not important. Furthermore, it uses a support matrix to include
some attributes as noise data; however, it does not have any noise-parameter
to control the number of objects or attributes as noise data. Kluger et al. [6]
extended the Dhillon [3] approach by using the singular value decomposition to
find global co-clusters. It assumes that the data have a checkerboard structure in
the matrix. This approach includes each element of a matrix into one co-cluster
without overlap; therefore, it cannot control the noise data.

Fu et al. [4] proposed a Bayesian-based overlapping co-clustering approach
based on a multivariate distribution to find global co-clusters in a binary data
matrix. It assumes that the number of co-clusters is known a priori. This app-
roach does not indicate that the order of the discovered co-clusters is important.
It tolerates noisy elements in the co-clusters; however, it does not have a noise-
parameter to control the number of objects or attributes included in the co-
cluster as noise. Zhu et al. [19] proposed an overlapping co-clustering approach
to approximate a binary data matrix with the sum of identified global co-clusters.
This method needs to have the number of co-clusters a priori. Furthermore, it
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does not deal with noise data and does not associate any importance for the
co-cluster that explains the discovered order.

Lucchese et al. [9] proposed a frequent pattern mining method for binary
datasets. The patterns are formed by sets of attributes and objects, where they
can represent a non-overlapped global co-cluster. It uses a generalized cost func-
tion to drive the mining process to find the number of patterns automatically.
The discovered order of the patterns is relevant regarding the cost function;
therefore, it can be seen as a ranking. Finally, two noise thresholds control the
number of noisy attributes and objects included in a pattern.

Whang et al. [16] modeled the input data as a bipartite graph to find global
overlapping co-clusters in binary data. This method allows to include noise
objects in the co-clusters with a probability distribution function that models
the noise. However, it does not define noise thresholds to control the number of
noise objects and attributes. It can automatically infer the number of co-clusters,
besides that, the method does not consider that the order of the discovered co-
clusters is relevant in the process.

Li [7] presented a generalized overlapped co-clustering approach that uses
singular value decomposition on the binary data matrix to identify global co-
clusters. This method does not include noise automatically or by a user-defined
noise threshold; it searches for homogeneous co-clusters without noise. Further-
more, it can infer the number of co-clusters; however, it is not guaranteed to
converge to the optimum number. Finally, the method does not show that the
discovered order of these co-clusters is relevant to it.

4 The Overlapped Co-clustering Approach

In this section we present a new method called OCoClus (Overlapped Co-
Clustering) for finding overlapped co-clusters in a binary dataset by identify-
ing both global and local co-clusters. OCoClus searches for the co-occurrences
between attributes and objects to identify co-clusters where a cost function drives
the co-clustering process. In the following we present the method definitions in
Sect. 4.1 and the proposal details in Sect. 4.2.

4.1 Method Definitions

Local co-clusters are patterns in the data related to specific characteristics that
are overlooked by global co-clusters since it finds clusters which are in the inter-
section of objects and attributes of the global clusters. Thus, we formally define
a local co-cluster LC as follows:

Definition 6. Local Co-cluster: Let
∏

be the set of co-clusters, LCI be a
subset of objects, LCJ be a subset of attributes, C be the co-cluster in

∏
; a local

co-cluster is defined as LC = 〈LCI , LCJ 〉, where the object intersections of co-
cluster C with the co-clusters in

∏
forms LCI , and the union of the attributes

between C and the intersected co-clusters in
∏

forms LCJ .
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We propose a new cost function F designed to make the overlapping and
non-overlapping co-clusters equally important including both global and local
co-cluster. The difference between the new cost function in Definition 7 and the
cost function given in Definition 2 is that the new cost function considers just
the size of the co-cluster and the quantity of noise that can be included in the
co-cluster. However, the cost function in Definition 2 weights the relevance of
the patterns regarding its size, it penalizes the patterns that cover an element
already covered and does not include an element into the expected pattern. From
that, we define the new cost function F as follows:

Definition 7. Cost Function: Let
∏

be the set of co-clusters, D be the binary
matrix, C∗ be the co-cluster, ||C∗

J || and ||C∗
I || be the size of the subsets of

attributes/objects that define C∗, N be the number of noise elements included in
C∗ (dij = 0), and H be the part that does not consider noise data; a cost func-
tion F is defined as F(

∏
,D) = H + N , where H =

∑
C∗ ∈ ∏ (||C∗

I || + ||C∗
J ||) −

(||C∗
I || × ||C∗

J ||). Thus, the objective is to minimize F regarding C∗
I , C∗

J and N .

Regarding the new cost function F , part H contributes to the cost function
evaluating co-clusters without noise, while part N contributes by allowing some
noise data regarding the maximum noise thresholds. Once we have already for-
malized the main definitions, it is simple to define the overlapped co-cluster used
to represent the global and local patterns as follows:

Definition 8. Overlapped Co-cluster: Let
∏

be the set of co-clusters, X
be the co-cluster ∈ ∏

with its subset of attributes XJ and objects XI , Op be
the set of co-clusters ∈ ∏

that intersect XI , and OpJ and OpI be the subset
of attributes and objects of Op; an overlapped co-cluster is formally defined as
OC = 〈XJ ∪ OpJ ,XI ∩ OpI〉.

Considering the Definition 8, the subset of objects of OCI is formed by the
nested intersection of objects between XI and OpI (XI ∩ OpI), and the subset
of attributes OCJ by joining the attributes of XJ with OpJ (XJ ∪ OpJ).

4.2 Method Description

Algorithm 1 is the main algorithm that organizes our approach. It receives four
input parameters: the matrix D, the number of co-clusters K, the object noise
threshold εI and the attribute noise threshold εJ . As a result, it outputs a set
of co-clusters Φ which contain K co-clusters that can overlap.

In Algorithm 1, the set of co-clusters
∏

is set as empty (line 1), and the resid-
ual matrix Dr is initiated with D, which is used to find uncovered co-clusters in D
(line 2). The algorithm iterates over findPureCocluster (line 4) and expandPure-
Cocluster (line 5) methods at most K times, where K is the maximum number of
co-clusters (line 3). In findPureCocluster method, the attributes in Dr are sorted
in descending order (from the most frequent to the least) and stored in a list S to
maximize the probability of forming large co-clusters. Therefore, the attributes
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Algorithm 1. OCoClus
Input: D: input matrix

K: max number of clusters {optional}
εI : max object noise threshold {optional}
εJ : max attribute noise threshold {optional}

Output: Φ: set of disjoint and overlapped co-clusters
OCoClus (K, D, εJ , εI)

1:
∏ ← ∅

2: Dr ← D{residual matrix}
3: for i = 1, . . . , K do
4: PC,E ← findPureCocluster(D, Dr,

∏
) {Definition 3}

5: EC ← expandPureCocluster(PC, E,
∏

, D, εI , εJ) {Definition 5}
6: if F(

∏
, D) < F(

∏ ∪ EC, D) then
7: break
8: end if
9:

∏ ← ∏ ∪ EC

10: Dr(i, j) ← 0 ∀i, j where ECI(i) = 1 ∧ ECJ(j) = 1
11: end for
12: Φ ← findOverlap(

∏
) {Definition 8}

13: return Φ

in S are evaluated for being added to a co-cluster without backtracking reduc-
ing the search space. Only the true elements in D forms the pure co-cluster PC
regarding the attributes in S. With this, the number of objects and attributes
that co-occur are used in the cost function F stated in Definition 7 to evaluate if
the tested subsets of objects and attributes can minimize the cost function. The
PC grows in the number of objects and attributes as long as the cost function
F is minimized. Besides, some attributes cannot be used to form the PC, then
these attributes are stored in an extension list E. The output is a pure co-cluster
PC and an extension list of attributes E.

In expandPureCocluster method, OCoClus expands PC with new objects
and attributes that allows noise data (line 5). With this, the expanded co-cluster
EC is initiated with PC identified at line 4. Then, the process is similar to
findPureCocluster ; however, at this part, the method checks if the inclusion
does not exceed the maximum noise thresholds (Definition 4) and improves the
cost function F . This inclusion occurs in two steps. First, the method tries to
include new objects that are not present in EC and does not modify the current
attributes. Second, it does not modify the current objects and tries to include
the attributes stored in the extension list E one at a time without backtracking.
If an attribute is included in EC, the process goes back to the first step and
repeats both steps. We remark that each new object and attribute is included in
EC if such inclusions respect both Definition 4 and Definition 7. This process is
repeated while E is not empty. The expandPureCocluster returns an expanded
co-cluster EC as the output.

Given the output of the expandedPureCocluster, if the new co-cluster EC
minimizes the cost function F of the model (line 6), it is added to

∏
(line

9). However, if EC does not minimize the cost function F of the model, even
though the parameter K does not reach its maximum value, the algorithm stops
searching for new co-clusters (line 7). Besides, if the cost function F is improved,
the residual matrix Dr is then updated with EC (line 10). The updated residual
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matrix Dr is used in the next iteration to find new patterns in D that are not
covered by any previous co-cluster. OCoClus can find the number of co-clusters
automatically whenever K is not given. However, if the user misspecify the value
of K, then the true number of co-clusters may not be discovered.

So far,
∏

covers non-overlapped patterns in the data (line 9); hence, it cannot
show which co-clusters share characteristics. Therefore, OCoClus refines these
non-overlapped co-clusters to identify global and local overlapped co-clusters
as stated in Definition 8. With this, the findOverlap method (line 12) iterates
over

∏
to identify possible overlapped co-clusters by taking the nested object

intersections between the co-clusters in
∏

. The nested intersection considers
what is shared among all intersected co-clusters instead of a common inter-
section between pairs of co-clusters. If such a co-cluster intersection exists, the
attributes of the co-clusters involved in the intersection are joined. The next step
is to delete the redundant co-clusters, i.e., co-cluster totally covered by another
co-cluster. From that, the findOverlap is a simple and effective method that
allows OCoClus to find both overlapped co-cluster structures. Its simplicity and
effectiveness become possible by exploring the nested intersections of objects
and joining attributes separately regarding the co-clusters in

∏
. This process

looks simple once the cost function F already evaluated the disjoint co-clusters
in the previous methods, but it effectively identifies overlapped co-clusters. At
the end, findOverlap returns the set of non-overlapped and overlapped (if exist)
co-clusters Φ. Finally, Algorithm 1 returns this set of non-overlapped and over-
lapped patterns including both global and local co-clusters (line 13).

Proposition 1. Let K be the maximum number of non-overlapped co-clusters,
N the total number of objects, M the total number of attributes, and P the num-
ber of overlapped co-clusters. The computational complexity of findPureCocluster
method is O(MN), expandPureCocluster method is O(M(MN+N)) = O(M2N),
and findOverlap method is O(K2+P2). Regarding the overall complexity of our
algorithm, OCoClus calls findPureCocluster and expandPureCocluster methods,
then builds Dr for each of the K (or less) non-overlapped co-clusters and finalizes
with the findOverlap method. Thus, the computational complexity of the OCoClus
Algorithm is O(KM2N + (K2+P2)).

5 Experimental Evaluation

We compare OCoClus1 with four publicly available methods presented in the
related works to use as the baseline methods, which are: Li [7], Lucchese et al.
[9], Kluger et al. [6], and Dhillon [3]. We include the works of Dhillon and Kluger
et al. because they are consolidated approaches in the literature and publicly
available as a package by scikit learn2. Considering their stable implementation,
we selected these works once the overlapping baseline methods fail to find the
embedded overlapped co-clusters. Therefore, we include those non-overlapped

1 https://github.com/bigdata-ufsc/ococlus.
2 https://scikit-learn.org/stable/modules/biclustering.html.

https://github.com/bigdata-ufsc/ococlus
https://scikit-learn.org/stable/modules/biclustering.html
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Table 1. Datasets description.

Dataset Number of
objects

Number of
attributes

Sparsity (%) Number of
co-clusters

Synthetic-1 100 100 76.62 7

Synthetic-2 600 1000 77.97 10

Synthetic-3 100 100 68 4

CAL500 502 103 76.6 –

CV-19 5729 567 98.18 –

methods in the baseline to compare such a co-clustering result. We used three
synthetic datasets named synthetic-1 and synthetic-2, and synthetic-3, where
we artificially embedded the co-clusters (patterns) to create the ground-truth
datasets. Furthermore, we also evaluated OCoClus on two real-life datasets,
named CAL5003 and CV-194, to show its efficacy in the real application sce-
nario. All the experiments data and source code are made public.

We performed the experiments in a machine with a processor Intel i7-7700
3.6 GHz, 16 GB of memory, and OS Windows 10 64bits. Furthermore, we ran 15
independent simulations for all methods on each synthetic dataset to compute
the average and standard deviation of the evaluation metrics score. Table 1 shows
the main characteristics of the datasets used in the experiments. It shows the
total number of objects and attributes, the sparsity in the data (percentage of
zeros), and the number of co-clusters for the synthetic datasets.

We use four evaluation metrics to assess the quality of the OCoClus. First,
we use the reconstruction error matrix to measure the difference between data
input and found co-clusters given by Recerror = ||X � Y || similar to [7]. In
short, we take the sum of the element-wise xor (�) between the input data
matrix X (ground-truth) and the reconstructed matrix Y regarding the found
co-clusters to measure the quantity of false positives and false negatives. The
clustering quality is better when the result of the Recerror is equal or close
to zero. The other three metrics are Omega index (overlapped version of ARI
measure), Overlapped Normalized Mutual Information (ONMI) and overlapped
F1 measure (Fscore) [10]. For these three last measures, the clustering quality is
better when the result is equal or close to one, where one is the maximum score.
We decided to use these measures since our approach focuses on the overlapping
problem and therefore the traditional measures like for example Adjusted Rand
Index (ARI), Normalized Mutual Information (NMI), and Fscore are not suitable
to capture the overlapping behaviour.

5.1 Evaluation of OCoClus with Synthetic Data

To be fair with all methods, we set the number of co-clusters K according
to the ground-truth shown in Table 1. Regarding the noise control used by
3 http://mulan.sourceforge.net/datasets-mlc.html.
4 https://ti.saude.rs.gov.br/covid19/; just passed away people data were used.

http://mulan.sourceforge.net/datasets-mlc.html
https://ti.saude.rs.gov.br/covid19/
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Table 2. Score of the evaluation metrics for the synthetic datasets.

Dataset Work Recerror Omega ONMI Fscore

S
y
n
th

et
ic

-1

Li 2086.27 ∓ 371.33 –0.0110 ∓ 0.0228 0.0060 ∓ 0.0103 0.0717 ∓ 0.1051

Luccheset1 0 ∓ 0 0.6640 ∓ 0 0.5419 ∓ 0 0.6617 ∓ 0

Luccheset2 160 ∓ 0 0.6125 ∓ 0 0.509 ∓ 0 0.6359 ∓ 0

Luccheset3 160 ∓ 0 0.6125 ∓ 0 0.509 ∓ 0 0.6359 ∓ 0

Dhillon 1404 ∓ 0 0.1818 ∓ 0 0.1648 ∓ 0 0.4868 ∓ 0

Kluger 3759 ∓ 0 0.2107 ∓ 0 0.1824 ∓ 0 0.3155 ∓ 0

OCoClus 0 ∓ 0 1 ∓ 0 1∓ 0 1 ∓ 0

S
y
n
th

et
ic

-2

Li 19528.33 ∓ 1568.05 0.748 ∓ 0.022 0.2624 ∓ 0.0092 0.4968 ∓ 0.0177

Luccheset1 353 ∓ 0 0.7644 ∓ 0 0.5985 ∓ 0 0.711 ∓ 0

Luccheset2 40078 ∓ 0 0.7483 ∓ 0 0.326 ∓ 0 0.5425 ∓ 0

Luccheset3 40078 ∓ 0 0.7483 ∓ 0 0.326 ∓ 0 0.5425 ∓ 0

Dhillon 31426 ∓ 0 0.9106 ∓ 0 0.3627 ∓ 0 0.5001 ∓ 0

Kluger 34382 ∓ 0 0.9653 ∓ 0.001 0.1744 ∓ 0.004 0.2828 ∓ 0.0036

OCoClus 0 ∓ 0 1 ∓ 0 1 ∓ 0 1 ∓ 0

S
y
n
th

et
ic

-3

Li 1530.4 ∓ 923.1 0.0152 ∓ 0.0554 0.0395 ∓ 0.0355 0.3466 ∓ 0.1857

Luccheset1 0 ∓ 0 0.1813 ∓ 0 0.4031 ∓ 0 0.6462 ∓ 0

Luccheset2 1000 ∓ 0 0 ∓ 0 0.0003 ∓ 0 0.4767 ∓ 0

Luccheset3 1000 ∓ 0 0 ∓ 0 0.0003 ∓ 0 0.4767 ∓ 0

Dhillon 2200 ∓ 0 –0.0123 ∓ 0 0.1565 ∓ 0 0.3856 ∓ 0

Kluger 1000 ∓ 0 0.0835 ∓ 0 0.2935 ∓ 0 0.4576 ∓ 0

OCoClus 0 ∓ 0 1 ∓ 0 1 ∓ 0 1 ∓ 0

Lucchese et al. [9], we use three configurations (t1, t2 and t3) of noise threshold
parameters to assess its clustering result when the noise values change. The con-
figuration t1 uses the object noise threshold εI = 0 and attribute noise threshold
εJ = 0. For the last two configurations t2 and t3, the noise values are the same
used in Lucchese et al. [9]. The configuration t2 uses εI = 0.5 and εJ = 0.8, while
configuration t3 uses εI = 1 and εJ = 1.

Table 2 shows respectively the average and standard deviation from the eval-
uation metrics for each method and synthetic dataset. It can be seen that OCo-
Clus obtained the best score result in all synthetic datasets; hence, it finds the
embedded overlapped co-clusters. Luccheset1 obtained the second best result
while the other two configurations obtained the same score values because they
identified the same co-clusters. The method proposed by Li [7] obtained the
worst result among the methods. This happens because the method sometimes
does not converge to any co-cluster which makes its overall result worse than or
close to the non-overlapped methods. Besides, it can be seen in Table 2 that the
baseline methods do not find the real number of co-clusters once their evaluation
scores do not reach the best value. Regarding the non-overlapped methods, the
method proposed by Kluger et al. [6] shows the worse overall co-clustering result.
Meanwhile, the method of Li [7] improved slightly its overall clustering result in
synthetic-2 dataset compared to synthetic-1 and synthetic-3. However, it does
not overcome the clustering results of the non-overlapped approaches at all.
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In summary, it can be seen in Table 2 that OCuClus outperformed the base-
line methods in all evaluation metrics. Such a result occurs because OCoClus
identifies all global and local co-clusters while the baselines fail to find both co-
cluster structures correctly in the data. The baselines focus on the global non-
overlapped and overlapped structures. Regarding the baseline methods, using the
constraint t1 in the work of Lucchese et al. [9], this configuration generated the
best clustering result. However, considering the other two constraints, we notice
that they do not improve the clustering result. Furthermore, the method pro-
posed by Li [7] shows an overall worse clustering result, even though it improved
its performance in the synthetic-2 dataset but not enough to overcome all meth-
ods. The methods of Kluger et al. [6] and Dhillon [3], in general, obtained stable
results in comparison with Li [7].

5.2 Real Application Scenario

In this section, we used OCoClus on two real datasets to demonstrate its general
utility. We set the noise thresholds εI and εJ to the minimum value, and this
means that we are not allowing any attribute or object to be added as noise
in the co-clusters. With this parameter control, it is possible to have a better
understanding of the co-cluster structure. In fact, OCoClus finds pure co-clusters
when the noise thresholds are set to the minimum value (zero); this means that
all attributes that occur in all objects do not include the presence of noise.

Music Annotation. The left side of Fig. 1 shows the bitmap of the CAL500
dataset, and the right side shows the bitmap of the OCoClus result. Similar to Li
[7], the question is to identify song sets that share similar annotations. Moreover,
we are interested in finding which are the common annotations that distinguish
each song set. This task can enhance our perception of the relationship between
songs and annotations and therefore it can be applied to music retrieval and
recommendation system. We used OCoClus in the processed dataset and the
main co-clusters are highlighted in the right side of Fig. 1.

OCoClus identified three main levels which are within the red lines and four
main co-clusters. The two larger global co-clusters have the size 150 × 13 and
100 × 12. Further, looking into these two co-clusters we found such annotations
as “NOT-Song-Fast Tempo”, “NOT-Emotion-Angry-Aggressive”, “NOT-Song-
Heavy Beat” and “NOT-Emotion-Bizarre-Weird” for the first co-cluster, and the
“Song-Fast Tempo”, “NOT-Emotion-Angry-Aggressive”, “Song-Heavy- Beat”
and “Song-High Energy” for the second co-cluster. The first co-cluster includes
songs such as “For you and I” by 10cc, “Three little birds” by Bob Marley
and The Weilers, and “I’ll be your baby tonight” by Bob Dylan. In the second
co-cluster includes songs such as “Trapped” by 2pac, “Dirty deeds done dirt
cheap” by AC/DC and “Livin on a prayer” by Bon Jovi. Considering the song
attributes in the first cluster, it can be seen that songs are formed by a slow
rhythm and without strong beats. The second cluster characterized songs with
strong beats and a fast rhythm. Therefore, the method identified clusters with
opposite characteristics, showing two groups of users with different preferences.
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Fig. 1. CAL500 Music dataset. The left side shows the bitmap of the binary annotation
matrix where objects represent songs and attributes represent annotations (black =
presence; white = absence). The right side shows the bitmap of the identified co-
clusters. Objects and attributes are ordered in the same way in both figures just for
visualization purpose. (best seen in color) (Color figure online)

Considering the local patterns, for instance, OCoClus finds a co-cluster of
songs as “Summertime” by Dj Jazzy Jeff and The fresh prince, “Sunset 138
bpm remix” by Dj Markitos and “Teenage shutdown” by Electric Frankenstein to
name few songs that share some annotations as “Song-Texture Electric”, “Song-
Fast Tempo” and “Song-High Energy”. The fourth local co-cluster consists of 45
songs and 7 music annotations. It characterizes a group formed by songs with
drums, men on vocals, with electronic and acoustic parts. We identified the
music genres like Rock, Pop music, Pop rock, and Alternative rock in this co-
cluster. For instance, to name a few songs, this cluster has the “Soul and Fire”
by Sebadoh, “Clocks” by Coldplay, “Tubthumping” by Chumbawamba, “Last
Goodbye” by Jeff Buckley, “November Rain” by Guns N ’Roses, and “Wonderful
Tonight” by Eric Clapton. Thus, it can be seen that OCoClus is useful for finding
overlapped and non-overlapped co-clusters that identify the relationship between
songs based on the semantic annotations.

Coronavirus Information. Table 3 shows the co-clusters with its attributes
and the number of objects. The union of clusters G8 and G9 show the cluster
of older people with a total of 1137. Attribute Senior 3 aggregates people 80
years old or above, and Senior 2 aggregates people from 70 to 79 years old.
Once the Senior 3 and heart disease attributes appear in G8, they are relevant
to form this cluster with 913 people and no other attributes have improved the
cost function for it. The G9 cluster has 224 people who died in August, which
also happened in the G6 cluster (467 people) during July. These two months
mark the peak of the winter season in the region where these people lived.

The clusters G2, G3, G4, G7, and G10 can be seen as a group of people who
had at least one main symptom of Covid-19 associated with some comorbidity.
The non-overlapped co-clusters are the first 10 groups in Table 3. We notice that
the Male attribute is present in two clusters (G1 and G3) regarding the top
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Table 3. Description of the clusters in the CV-19 dataset.

Clusters Attributes
Number of

objects

G1 Dyspnea, Cough, Male, Fever 1174
G2 Dyspnea, Other Comorbidities, Female 1066
G3 Heart Disease, Dyspnea, Male 1272
G4 Cough, Diabetes 1307
G5 Fever, PORTO ALEGRE - R10, PORTO ALEGRE 631
G6 Other Comorbidities, Infected July, Death July 467
G7 Other Symptoms, Dyspnea, Female 569
G8 Senior 3, Heart Disease 913
G9 Senior 2, Death August, Infected August 224
G10 Fever, Other Comorbidities, Male 769
G11 Dyspnea, Heart Disease, Cough, Fever, Male 539
G12 Dyspnea, Cough, Fever, Diabetes, Male 410
G13 Dyspnea, Cough, Diabetes, Other Comorbidities, Female 258
G14 Dyspnea, Other Comorbidities, Other Symptoms, Female 365

G15
Dyspnea, Cough, Fever, Heart Disease, Diabetes,

PORTO ALEGRE - R10, PORTO ALEGRE, Male
39

G16 Dyspnea, Cough, Fever, Heart Disease, Diabetes, Male 241

G17
Dyspnea, Cough, Fever, Heart Disease, Diabetes,

Senior 3, Male
41

G18 Dyspnea, Cough, Fever, Heart Disease, Senior 3, Male 135

four. Cluster G1 identifies 1174 men who experienced the three main symptoms
of Covid-19. Meanwhile, the Female attribute is present in one cluster regard-
ing the top four. It identifies 1066 women who presented Dyspnea and other
comorbidities as main attributes for this group.

The identified overlapped co-clusters show details that are overlooked in dis-
joint co-clusters and these co-clusters are the last 8 groups (G11–G18) in Table 3.
For instance, cluster G11 identifies a group of 539 men that felt symptoms as dys-
pnea, fever, and cough and had heart disease problem. In the same way, cluster
G12 identifies 410 men with symptoms as in G1, but now it has those with dia-
betic issues. In comparison, the overlapped cluster G13 identifies a group of 258
women with cough symptoms in combination with diabetes and other comor-
bidities. Cluster G14 represents another pattern since it identifies 365 women
with dyspnea and other symptoms in combination with other comorbidites.

Groups G11 and G12 are examples of global overlapped co-clusters, while
the groups G15 and G17 are two different examples of local co-clusters. Cluster
G15 represents a group of 39 men from Porto Alegre region and lived in the
capital, where they all felt the main symptoms of covid-19 and who had heart
disease and diabetes problems. For group G17, characterizes a group of 41 older
men over 80 years of age who had the main symptoms and who had heart
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disease and diabetes. Regarding the local co-clusters, it can be seen that such
co-clusters identify detailed patterns that are overlooked by global co-clusters.
The experiment with the Covid-19 dataset is an example of a real problem related
to data analysis complexity. Thus, it can be seen that each co-cluster reveals a
meaning pattern according to the information granularity.

6 Conclusion and Future Works

We proposed OCoClus, a new non-exhaustive overlapped co-clustering method
for binary data, designed for general purpose analysis. OCoClus is based on the
detection of co-occurrence of objects and attributes, to identify global and local
co-clusters that overlap. Besides that, when there are no overlapped patterns in
the dataset, OCoClus can identify the non-overlapped co-clusters. Furthermore,
it is driven by a cost function to automatically identify the number of co-clusters.
We performed experiments on synthetic and real data that demonstrates the
efficacy and utility of our proposed method.

OCoClus found all embedded co-clusters in the synthetic datasets used as
ground-truth, proven by the fact that OCoClus obtained the maximum score
in the evaluation metrics. Such a result shows that OCoClus outperformed the
limitations of the baseline methods. Nevertheless, we prove the usefulness of our
method in two real datasets where we show that OCoClus identified co-clusters
that can represent meaningful patterns. We highlight the fact that the obtained
results are interesting to propose new specialized systems that use the identified
co-clusters as input to decision support systems.

Like any work in the literature, our approach also has space for improvements
as future research. First, the number of co-clusters is driven by a cost function
regarding the number of objects and attributes. Then, the method tends to find
rectangular clusters which may generate patterns with few attributes for big data
mining. Second, an interesting research direction is to adapt the method to deal
with heterogeneous data. Third, it may be interesting to set the noise thresholds
εI and εJ in a data-driven way Finally, identifying uncorrelated co-clusters in
the data matrix is another interesting direction to improve the method.
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