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Abstract. The extensive exploration of the Low Earth Orbit (LEO) has
created a dangerous spacial environment, where space debris has threat-
ened the feasibility of future operations. In this sense, Active Debris
Removal (ADR) missions are required to clean up the space, deorbiting
the debris with a spacecraft. ADR mission planning has been investigated
in the literature by means of metaheuristic approaches, focused on max-
imizing the amount of removed debris given the constraints of the space-
craft. The state-of-the-art approach uses an inver-over and maximal open
walk algorithms to solve this problem. However, that approach fails to deal
with large instances and duration constraints. This work extends the state
of the art, increasing its performance and modeling all the constraints.
Experimental results evidence the improvements over the original app-
roach, including the ability to run for scenarios with thousands of debris.

Keywords: Time-dependent traveling salesman problem · Space
debris · Active debris removal · Genetic algorithm

1 Introduction

In the1960 s, space exploration began to boost the development of new tech-
nologies feasible through the use of satellites distributed in orbits. Among these
orbits, Low Earth Orbit (LEO) was widely used for satellite networks with a
large number of objects per service in orbit [20]. Over time, these satellites
became depreciated, lose communication or got out of control, thus becoming
space debris. A high population of debris represents a hazard to the operating
structures in orbit, since they are objects out of control and at high speed [12].

According to some predictive models, a sufficiently large population of debris
will increase the probability of collisions and, therefore, increase the debris pop-
ulation again, thus making this population increase recursively for many years.
This phenomenon is known as Kessler syndrome and may cause the collapse of
the LEO, rendering it useless for years [12].

In fact, the literature already pointed out that the debris population inLEOhas
already reached a critical point [16], and now measures to mitigate this situation
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are needed. While there are documented techniques that would stabilize the debris
population, for now, the only approach capable of reducing it consists in Active
Debris Removal (ADR) missions [16]. These missions aim to clean up orbit space
by forcing the re-entry of certain debris as performed by specific spacecraft. Due
to the limited resources and time to perform the rendezvous maneuvers and the
debris population size, the selection of the debris to be removed has became a hard
combinatorial problem [3,4,7].

A basic ADR should consider the bounds of cost and duration, dependent
position values of the moving debris along time [3,4], and also prioritizing the
removal of the most threatener debris first, thus increasing the benefits of such
missions [17]. Various approaches to this problem have been proposed in the
literature [7,9,13]. However, most of these works share the same limitations:
small instance sizes, unbounded approaches, and non-time-dependent modeling.

In this work, we propose an enhanced genetic algorithm to optimize ADR
mission planning. Our approach builds upon the work by [9], improving its per-
formance through a novel combination of genetic operators. The final algorithm
resembles the original inver-over genetic operator, with modifications to its
reversing strategy. Moreover, a new variant of the k-opt algorithm is implemented
using a stochastic approach. Finally, the open-walk algorithm is improved with
one additional constraint. Through extensive experiments, our approach yielded
better solutions with instances larger than the previous largest ones [9].

2 Literature Review

In order to solve the ADR optimization problem, a few methods have been
approached and documented in the last 10 years. Exact solutions were used by
Braun et al. [2] with brute force, and branch and bound variations by [3,14,19].
However, in both classes of methods can only be applied to small instances.
Approximate solutions were implemented using simulated annealing [4,7], rein-
forcement learning [25], and genetic algorithms [18,24]. Nonetheless, all of these
works were also tested only on small instances.

On the other hand, a few approximate methods considered bigger instances.
Barea et al. [1] used a linear programming method, which has a high complexity
as drawback. Yang et al. [26] used a greedy heuristic, but requires instance-
dependent parameters. Ant Colony Optimization was used in [13,21,27], but
ignoring mission constraints, strongly simplifying the cost dynamics to reduce
the complexity, or even leaving mission duration unbounded. Finally, Izzo et al.
[9] and Kanazaki et al. [11] used genetic algorithms, though both did not model
all the necessary mission constraints.

Generally speaking, the majority of the works do not prioritize debris by haz-
ard, consider bigger instances, model the time-dependence, or bound the cost or
the mission duration, meaning that most works fail to fully meet the ADR mis-
sion requirements. Building against this background, in this work we introduce
the enhanced inver-over operator to deal with large instances, and an enhanced
maximal open walk algorithm to model the cost and duration constraints while
prioritizing the most threatener debris.



142 J. B. Rodrigues Neto and G. de Oliveira Ramos

3 Problem Formulation

An ADR problem is the combinatorial problem of finding the correct sequence
to rendezvous maneuvers towards debris in order to maximize the mission profit
given some constraints. In this sense, ADR can be seen as a complex variant of
the Travelling Salesman Problem (TSP), where one wants to find the minimum
weight path in a dynamic complete graph, where the debris are the cities and
the dynamic transference trajectories are the edges. The dynamicity is due to
the time-dependent cost of the transference, so the correct generalized version
of the TSP will be a time-dependent TSP (TDTSP). This work will make use
of the integer linear TDTSP problem formulation by [7].

Hereafter, we will follow the notation typically used in the literature [7]. Let
V = {1, ..., n} be the set of n debris. The distance tensor is represented by C =
(cijtm), where cijtm is the cost of transfer from debris i at epoch t to debris j at
epoch t+m. Also, let X = (xijtm) be a binary tensor, where Xijtm = 1 indicates
that this transference is part of the solution and Xijtm = 0 otherwise. The nt

possible epochs of departure and arrival are discretized following nt ≥ n + 1
and M ≤ nt − (n − 1). Usually, in order to grant some freedom at the mission
planning, nt is far larger than n, while M limits the maximum duration of the
transfers.

Along these lines, the problem of finding the optimized route can be modelled
as finding the X matrix that minimizes the total cost with due respect to the
constraints, which can be formulated as follows.
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In the above formulation Eq. (1) represents the objective function and
Eqs. (2)–(6) represent the problem constraints, to which we will refer simply
as constraints (2)–(6) hereafter. Constraint (2) guarantees that the solution ten-
sor has all the n debris. Constraints (3) and (4) ensure that there is no loops in
the solution (one departure and one arrival transfer for each debris). Constraint
(5) enforces the transfer duration. Finally, constraint (6) limits the total mis-
sion duration. As the result, this formulation has a O(2n) search space, using n4

binary decision variables and 3n − 1 constraints.

3.1 Orbit Transfer

The trip between one debris and another require impulses (Δv) of the thrusters
to change the orbit of the spaceship. Low thrust propulsion systems can perform
this maneuvers efficiently. However, they require the optimization of the trajec-
tories to make the mission time available [5]. Determining a minimal fuel transfer
trajectory between two debris is a complex optimization problem in general case.
Thus, major works simplify this task by using a generic transfer strategy [4].

The major used transfer strategies are the Hohmann and Lambert transfers.
Since this work’s scope does not focus on the orbital transfer optimization prob-
lem, the mechanics of the transfers will be briefly described. In [6], Hohmann is
described as a minimum two-impulse elliptic maneuver to transfer from coplanar
orbits. Hohmann transfer is a high thrust transfer. Since debris are not always in
co-planar orbits it is also presented a variation of the Hohmann transfer, namely
the Edelbaum transfer, which is a three-impulse bi-elliptic transfer that allows
transferences between non-coplanar orbits.

In [5], Lambert is described as two-impulse trajectory to transfer from copla-
nar orbits given a certain transference duration. Also, it is possible to make use
of the J2 gravitational earth perturbation to wait for the natural alignment of
orbital planes, saving some fuel but increasing the mission duration [5,7].

Finally, the cost of a transference between two debris relies on the mass of
the spacecraft, since the thrusters consume propellant mass at each impulse, as
the mission goes on the cost of the transfers became lower due to the mass lost in
the previous maneuvers. So, it is also possible to optimize the removal sequence
taking in account the resultant masses of the objects [3].

4 Proposed Approach

In this work, the ADR problem is approached with an improved heuristic solu-
tion, similar to the method used by [9] with the inver-over operator in a Genetic
Algorithm and the maximal open walk algorithm. The inver-over operator opti-
mizes the total cost of the mission with a local search strategy through genetic
operations on the individuals. The maximal open walk algorithm constraints the
path. This work enhances this solution with a greedier implementation of the
algorithms. Moreover, to avoid the local optimum, a stochastic 2-opt is proposed
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to improve the solution, creating new connections. Finally, the most rewardable
open walk is extracted from the best individual as the final solution.

As this is a bi-optimization problem, the complexity was divided in two
stages. In the first part, the effectiveness of a solution will be given by the
total cost of the removal sequence, calculated with the Edelbaum transfer [6]
(Eqs. (7) and (8)), a consistent and reliable cost approximation for cheap orbital
maneuvers. In the second part, the effectiveness of a solution became the removed
threat of the LEO, calculated with the sum of radar cross section (RCS) area
of the removed debris. The RCS area is an abstraction of the size of the debris
and is widely used for the threat calculation in the literature, being a measure
about how much detectable an object is for a ground radar.

Δv =
√

v2
0 − 2V0Vf cos

π

2
Δi + v2

f (7)

cos Δi = cos i1 cos i2 + sin i1 sin i2(cos Ω1 cos Ω2 + sin Ω1 sin Ω2) (8)

T =
1
2

√
4π2a3

μ
(9)

Also, in order to minimize the complexity of the problem, major works in
the literature have assumed a few dynamics simplifications. In this work, the
following assumptions were made with the same purpose:

– The time dependence of the problem is relaxed by the correlation explored
in [9], where an optimal solution can remain optimal up to 50 d, depending
on the size of the instance.

– Since the Edelbaum transfer is an optimized variation of the Hohmann trans-
fer [6], the duration of the transference arcs can be computed using Kepler’s
third law of planetary motion (Eq. (9)), which measures the orbital transfer-
ence duration of an object (spacecraft) between two orbits (debris).

– The transfer cost also depends on mass of the spacecraft, that will decrease
during the mission, where the fuel mass will be consumed. Moreover, the
gravitational effects of the earth on the spacecraft also influence the transfer
cost. In this work, the masses of the objects and the orbital perturbation
effects are neglected in the cost transfer dynamics.

– There are more steps of the rendezvous process to remove a debris, and each
step take some time to be performed [15]. In this work the duration of the
mission will be given by the sum of the duration of the transferences, the
other stages will be neglected.

4.1 Inver-Over

The inver-over operator [22] is a unary genetic operator that resembles char-
acteristics of mutation and crossover at the same time. The evolution of an
individual is based on simple population-driven inversions and recombinations
of genes. This is a well established operator, know by its good performance with
larger instances [22].
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Algorithm 1. Inver-over
1: generate random population P;
2: while not satisfied termination-condition do
3: for each individual Si ∈ P do

4: S
′ ← Si

5: c ← select random gene ∈ S
′

6: repeat

7: S
′′ ← select random individual ∈ P that S

′′ �= S
′

8: c
′ ← gene after c in S

′′

9: if c
′
is the next or previous gene to c in S

′
then

10: exit from repeat loop;
11: end if
12: if c

′
> c then

13: ctemp ← gene after c
′
in S

′

14: else
15: ctemp ← gene before c

′
in S

′

16: end if
17: inverse the section from the gene after c until c

′
in S

′

18: c ← ctemp

19: until
20: if eval(S

′
) ≤ eval(Si) then

21: Si ← S
′

22: end if
23: end for
24: end while

In this work a different version on the algorithm is used, mixing the origi-
nal implementation with the [9] implementation. This work allows array cyclic
inversions to happen, inversions that include the section of the last to the first
gene. However, the next gene pick depends of the previous order of the selected
genes for inversion. This inversion process is analogous to a crossover operator.

Furthermore, it is stated that to avoid the local optima, a process analogous
to the mutation operator has to be used to create new connections that do not
exist in population [22]. However, these mutations are not greedy and usually
delay the convergence process, so for this implementation it was removed. The
implemented algorithm pseudo-code is sketched in Algorithm 1.

4.2 Stochastic 2-Opt

The 2-opt optimization [8] is a TSP local search algorithm that adjusts the
routing sequence greedily with simple inversions. The main idea is to break the
route in two paths and reconnect it invertedly, if it improves the fitness so the
inversion is kept in the solution. Unfortunately, this is an exact algorithm with
a complexity of O(n2), so a lot of solutions evaluations need to be performed in
order to improve the solution. Nonetheless, there are other methods to improve
the 2-opt performance, such as search parallelism and the Lin and Kernighan
technique [10]. The present work made use of a stochastic approach for the
algorithm.

The stochastic implementation relies on the observations that even with a N2

search space, the actual number of improvements performed by the algorithm is
roughly N [10]. So, with a random exploration of the space, there could be more
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Algorithm 2. Stochastic 2-opt
1: given an individual Si ∈ P ;

2: S
′ ← Si

3: moves ← {}
4: while not satisfied termination-condition do
5: repeat

6: c ← select random gene ∈ S
′

7: c
′ ← select random gene ∈ S

′

8: until (c, c
′
) /∈ moves

9: moves ← moves + (c, c
′
)

10: if c
′
< c then

11: tmp ← c

12: c ← c
′

13: c
′ ← tmp

14: end if
15: S

′′ ← inverse the section from the gene c until c
′
of S

′

16: if eval(S
′′
) ≤ eval(S

′
) then

17: S
′ ← S

′′

18: end if
19: end while
20: if eval(S

′
) ≤ eval(Si) then

21: Si ← S
′

22: end if

chances of finding a profitable move. In order to keep control of the algorithm
run time, a termination condition is used to limit the exploration. Also, a set
of explored moves prevents duplicated evaluations. The implemented algorithm
pseudo-code is sketched in Algorithm 2.

4.3 Maximal Open Walk

The maximal open walk proposed by [9] as “City Selection”, is a separated
algorithm that searches for the contiguous part of a Hamiltonian path with the
maximal cumulative value limited to some constraint. The path is the optimal
solution found, while the value and constraint are respectively, the threat, given
by the RCS area, and the total cost. In this work, another constraint is added
to this problem, the duration of the open walk, calculated with Kepler’s third
law. The implemented algorithm pseudo-code is sketched in Algorithm 3.

5 Experimental Evaluation

The objective of these experiments is to evaluate the performance of the app-
roach, understand the improvement gain by each technique and find some opti-
mal parameters. To preserve the comparability, all the runs used 20000 fixed
iterations as the termination-condition of the inver-over algorithm, a 100 indi-
viduals population, the original method runs used 0.05 as ri (mutation proba-
bility), the constrained runs were performed with a cost constraint of 1000 m/s
and a time constraint of 1 year.
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Algorithm 3. Maximal Open Walk
1: given an individual Si ∈ P ;
2: arcs ← {}
3: for each pair of contiguous genes (g

′
, g

′′
) ∈ Si do

4: arcs ← arcs + (cost(g
′
, g

′′
), duration(g

′
, g

′′
))

5: end for
6: walks ← {}
7: for each of arc a

′ ∈ arcs do

8: walk ← {a′}
9: cost ← a

′
cost

10: duration ← a
′
duration

11: for each of arc a
′′

after a
′ ∈ arcs do

12: if cost + a
′′
cost > maxcost or duration + a

′′
duration > maxduration then

13: exit from second for loop;
14: else
15: walk ← walk + a

′′

16: cost ← cost + a
′′
cost

17: duration ← duration + a
′′
duration

18: end if
19: end for
20: genes ← the genes of the arcs in walk
21: reward ← threat(genes)
22: walks ← walks + (genes, cost, duration, reward)
23: end for
24: return walk ∈ walks with the biggest walkreward

The data about the debris were extracted from the Satellite Catalog (SAT-
CAT), a catalogue of all the objects on the Earth orbit, maintained by the United
States Space Command (USSPACECOM). The following instances of the prob-
lem were extracted: Iridium-33, Cosmos-2251 and Fengyun-1C, with respectively
331, 1048 and 2653 debris. Data was collected at respectively 11-Jun-2021 00:06
UTC, 13-Jun-2021 22:06 UTC and 13-Jun-2021 22:06 UTC.

To preserve the comparability of some results, back-propagated instances
were generated inputting the actual instances in a SGPD4 orbital propagator
[23] that backtracked the debris positions back to 01-Jan-2015 at 00:00 UTC,
the same epoch of the instances used by [9]. Unfortunately this process is not
very precise, though still feasible. All the debris in the clouds were considered,
including the ones that will decay during the mission time.

For the sake of clearness, the Time (min) values on the experiments are
concerned to the computation time taken for the run, and Std. dev. is the abbre-
viation for Standard Deviation. All experiments were conducted on a public
online machine with a 2.30GHz CPU and 12.69 GB of RAM. Also, for all the
experiments, the statistical data results out of 10 independent runs.

5.1 Back-Propagated Instances

The experiments performed with the back-propagate debris are intended to pro-
vide comparative results to the work of [9] and guide the definition of the param-
eters. The inver-over algorithm implemented in this work differs from the original
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Fig. 1. Iridium-33 convergence results

Fig. 2. Cosmos-2251 convergence results

implementation on two points, each point will be tested separately to show the
advantages and justify its usage in this approach.

The changes made on the inversion implementation in this work aims to
improve the convergence of the algorithm, to do so, this work approach is more
population driven and less random mutated. To analyse the performance of the
changes, the instances Iridium-33 and Cosmos-2251 were each run twice for 10
times, the first runs with the [9] implementation, and the other ones with this
work implementation. The Figs. 1 and 2 demonstrate the improvement of the
convergence, for a better visualization, just the first 4000 iterations were drawn.
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Table 1. Inversion results

Instance Method Mean (min) Std. dev. (min)

Iridium-33 Original 2.14 0.02

Iridium-33 Enhanced 1.25 0.02

Cosmos-2251 Original 12.09 0.07

Cosmos-2251 Enhanced 7.30 0.08

It is possible to notice a considerably change on the shape of the curve and
the taken computation time in Table 1, making this works implementation con-
vergence better. For the record, the majority of runs in each instance got the
same final result, indicating that, for small and medium sized instances, the fast
convergence does not deteriorate the result.

To deviate from the local optima, the stochastic 2-opt (S2opt) is used in
this work. Parametric tests were conducted to analyse its performance when it
matters to time and achieved result. Iridium-33 and Cosmos-2251 were submitted
to 9 different runs, running 10 times each, with a different combination of two
parameters: how often does the S2opt runs and with how many iterations at each
time. All individuals of the population were processed at each S2opt iteration.

Since the search area of the S2opt is large, a range of possible attempts
should be chosen, being neither too small, so no improvement move is found,
or too big, so almost the whole search space is tested, turning it into a exact
solution. In this work, the chosen range is from 10,000 to 1,000,000 attempts,
while the parameters are equally spaced discrete values where its configuration
do not underflow or overflow the range. The parameters per run are the following:

– Run 1: At each 100 main iterations, run S2opt with 100 iterations.
– Run 2: At each 100 main iterations, run S2opt with 500 iterations.
– Run 3: At each 100 main iterations, run S2opt with 1000 iterations.
– Run 4: At each 500 main iterations, run S2opt with 100 iterations.
– Run 5: At each 500 main iterations, run S2opt with 500 iterations.
– Run 6: At each 500 main iterations, run S2opt with 1000 iterations.
– Run 7: At each 1000 main iterations, run S2opt with 100 iterations.
– Run 8: At each 1000 main iterations, run S2opt with 500 iterations.
– Run 9: At each 1000 main iterations, run S2opt with 1000 iterations.

Analysing the results in Figs. 3 and 4 it is possible to state that due to the
small size of the Iridium-33 debris, all the runs achieved the optimal solution.
Also, the number of S2opt iterations is directly proportional to the computation
time. And finally, the Runs 4, 7 an 8 have the better performances ratios, with
low values of cost and time, among these, Run 7 is the best one.

Also, to preserve the idea of a competitive evolution, the following experi-
ments use S2opt with an elitist strategy. This time, instead of running the S2opt
for the whole population at each S2opt iteration, just the better individuals will
be improved. Parametric tests were performed with 5 different sizes of elites, run-
ning 10 times each. To preserve the elitist characteristic, the elite group should
not be greater than 30% of the population.
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Fig. 3. Iridium-33 Stochastic 2-opt results

Fig. 4. Cosmos-2251 Stochastic 2-opt results

In these experiments, Iridium-33 will be discarded, since its small size does
not help to fully analyse the performance of the algorithm. Here, the tests are set
with the same parameters of the previous Run 7 (best run), at each 1000 main
iterations, run S2opt with 100 iterations.

Analysing the results in Table 2 it is possible to state that the elitist improve-
ment of the best 5 individuals at each iteration is the wise strategy to follow,
having a lower cost with a little bit more computational time taken.

To emphasises the importance of each technique, ablation experiments were
conducted for this solution. It is important to state that the Elitism is applied on
the S2Opt, so there is no possible scenario using Elitism without S2Opt. Table 3,
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Table 2. Elitist results

Run Elite size Cost (m/s) Time (min)

Mean Std. dev. Mean Std. dev.

Run 1 1 63,226 29.75 8.01 0.12

Run 2 5 63,211 0.10 7.54 0.05

Run 3 10 63,216 16.92 7.52 0.11

Run 4 20 63,217 22.01 8.02 0.13

Run 5 30 63,220 26.56 8.07 0.10

Table 3. Ablation results

Technique Cost (m/s) Time (min)

Inver-over S2Opt Elitism Mean Std. dev. Mean Std. dev.

Y Y Y 63,211 0.10 7.54 0.05

Y Y N 63,211 2.14 8.27 0.31

Y N N 63,214 8.23 7.49 0.07

N Y Y 63,225 21.01 12.57 0.12

N Y N 63,252 36.87 13.34 0.14

N N N 63,256 42.70 12.50 0.08

summarizes the results of each combination. The experiments were performed
on instance Cosmos-2251, with 10 runs each. The S2opt parameters are 100 runs
at each 1000 main iterations, and the elitist parameter is 5.

With the ablation experiments, it is possible to understand how each tech-
nique of our approach affects the final results. It is clear that the conjunction of
the techniques improves the found solutions.

5.2 Actual Instances

The experiments performed with the actual instances are intended to provide
results for the present status of the debris clouds. The runs were performed
using the best parameters found in the previous experiments. Also, for a com-
parative result, the original implementation was used with the actual instances,
and its solutions, inputted to the enhanced maximal open walk of this work.
For each instance were performed 10 runs, for the sake of clarity, the settings
are: Enhanced inversion implementation, with S2opt running 100 iterations for
the best 5 individuals at each 1000 main iterations, with a cost constraint of
1000 m/s and a time constraint of 1 year.

The results on both sections of Table 4 are from the same runs, the results at
the bottom are given by the maximal open walk applied to the optimized path
at the top. Being the missions objective: clear the maximum possible area are
under the cost and time constraints [17], our approach focused on making an
optimized use of the mission resources to outperforms other approaches. Cleaning
more area, even if the mission duration and cost are bigger, bounded to time
and cost constraints, of course.
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Table 4. Final results

Instance Method Cost (m/s) Duration (min) Time (min)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Iridium-33 Original 55,788 0.0 16,345 0.57 4.27 0.04

Iridium-33 Enhanced 55,810 12.69 16,346 0.80 2.56 0.03

Cosmos-2251 Original 186,896 4,512 52,069 1.23 46.52 1.29

Cosmos-2251 Enhanced 156,067 8,022 52,069 1.41 31.00 0.14

Fengyun-1C Original 2,438,068 24,731 134,904 0.71 188.29 6.50

Fengyun-1C Enhanced 899,179 11,468 134,905 0.82 115.37 5.24

Constrained results

Instance Method Cost (m/s) Duration (min) Area (m2)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Iridium-33 Original 971.16 26.17 34,722 3,785 3,984 196.0

Iridium-33 Enhanced 952.42 61.79 34,720 3,789 3,993 167.0

Cosmos-2251 Original 974.77 19.55 26,675 6,705 1,666 86.0

Cosmos-2251 Enhanced 967.90 19.62 33,163 5,009 1,703 41.0

Fengyun-1C Original 859.63 270.0 148.0 84.52 671.4 45.4

Fengyun-1C Enhanced 951.67 67.63 403.5 60.21 905.5 221.6

Summarizing, in the average of the runs, the enhanced approach decreased
the cost by 26.51% and the computation time by 35.56%. Also, when con-
strained, the solutions of the enhanced approach produced paths that performs
significantly better than the original approach solutions, cleaning 12.82% more
area under the same constraints. This is possible by a better usage of the con-
strained resources, increasing the cost by 5.28% and the mission duration by
1.06%. Finally, it is possible to notice that the most profitable mission is the
enhanced Iridium-33, cleaning way more area with the same constraints.

6 Conclusions

The exploration of TSP approaches when dealing with space debris have consid-
erably evolved the TDTSP problem modeling and its available solutions. How-
ever, it still lacks from approaches that fulfill the ADR mission requirements with
a feasible performance and big instance sizes. This work proposed an enhanced
method as a strong candidate to future approaches on TSP based ADR mission
plannings. Using the inver-over as a fast convergence algorithm to deal with the
greedy search throught fast inversions, the S2opt as a solution diversity creator
to deviate the search from local optima, our method found optimized solutions in
a feasible time out of large datasets. Real world instances were used to evaluate
this approach performance and execute parametric tests, the retrieved results
were considerably better than the original approach by [9].

However, this approach does not model the time dependence of the problem,
meaning that the produced solutions may not be good solutions in a real scenario,



An Enhanced TSP-Based Approach for ADR Mission Planning 153

since it does not consider the moving dynamics of the debris. Also, this approach
first optimizes the cost of the solution, and later chooses the most rewardable
sub-path, so it is not a fully bi-optimization algorithm. Meaning that solutions
with a good cost versus reward ratio could be missed.

As future work, we would like to implement a time-dependent removal
sequence to produce a complete solution for the ADR mission planning prob-
lem. We also plan to implement Lin and Kernighan’s algorithm to improve the
convergence of local search heuristic. The optimization of the transference cost
with the consideration of body masses and J2 effect on the transfers represents
another interesting direction. Finally, we would like to improve the approxima-
tion of the mission duration with a more suitable equation for the Edelbaum
(rather than Hohmann) transfer duration.
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